
Dr. Majid Pakdel

Coding Modbus 
TCP/IP for Arduino 

Example projects with Node-RED, MQTT, 
WinCC SCADA, Blynk, and ThingSpeak

Coding Modbus 
TCP/IP for Arduino
Example projects with Node-RED, MQTT, 
WinCC SCADA, Blynk, and ThingSpeak

Majid Pakdel, born in 1981 in 
Mianeh, Iran, has a PhD in Electrical 
Engineering and an MS in Computer 
Engineering focusing on AI and 
Robotics. He has published 
20+ papers and 4 books. He was 
a visiting PhD student at Aalborg 
University in Energy Technology 
from 2015-2016.

This comprehensive guide unlocks the power of Modbus TCP/IP commu-
nication with Arduino. From the basics of the Modbus protocol right up 
to full implementation in Arduino projects, the book walks you through 
the complete process with lucid explanations and practical examples.

Learn how to set up Modbus TCP/IP communication with Arduino for 
seamless data exchange between devices over a network. Explore  di� erent
Modbus functions and master reading and writing registers to control
your devices remotely. Create Modbus client and server applications 
to integrate into your Arduino projects, boosting their connectivity and
automation level.

With detailed code snippets and illustrations, this guide is perfect for 
beginners and experienced Arduino enthusiasts alike. Whether you‘re 
a hobbyist looking to expand your skills or a professional seeking to
implement Modbus TCP/IP communication in your projects, this book 
provides all the knowledge you need to harness the full potential of Modbus
with Arduino.

Projects covered in the book:

> TCP/IP communication between two Arduino Uno boards
> Modbus TCP/IP communication within the Node-RED environment
> Combining Arduino, Node-RED, and Blynk IoT cloud
> Interfacing Modbus TCP/IP with WinCC SCADA to control sensors
> Using MQTT protocol with Ethernet/ESP8266
> Connecting to ThingSpeak IoT cloud using Ethernet/ESP8266

C
oding M

odbus TC
P/IP for A

rduino  •  D
r. M

ajid Pakdel

Elektor International Media
www.elektor.com

books booksbooks books

SKU20856_COV_Coding with Modbus TCP/IP for Arduino_170x240_v03.indd   Alle pagina'sSKU20856_COV_Coding with Modbus TCP/IP for Arduino_170x240_v03.indd   Alle pagina's 10-04-2024   08:3310-04-2024   08:33





Coding Modbus TCP/IP  
for Arduino

Example projects with Node-RED, MQTT, 
WinCC SCADA, Blynk, and ThingSpeak

●

Dr. Majid Pakdel

Boek Coding Modbus for Arduino-UK 240325.indd   3Boek Coding Modbus for Arduino-UK 240325.indd   3 09-04-2024   14:1509-04-2024   14:15



● 4

● This is an Elektor Publication. Elektor is the media brand of  
Elektor International Media B.V. 
PO Box 11, NL-6114-ZG  Susteren, The Netherlands 
Phone: +31 46 4389444

● All rights reserved. No part of this book may be reproduced in any material form, including photocopying, or 
storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this 
publication, without the written permission of the copyright holder except in accordance with the provisions of the 
Copyright Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licencing Agency 
Ltd., 90 Tottenham Court Road, London, England W1P 9HE. Applications for the copyright holder's permission to 
reproduce any part of the publication should be addressed to the publishers.

● Declaration
The authors and publisher have used their best efforts in ensuring the correctness of the information contained 
in this book. They do not assume, or hereby disclaim, any liability to any party for any loss or damage caused by 
errors or omissions in this book, whether such errors or omissions result from negligence, accident or any other 
cause.

● �ISBN 978-3-89576-614-5 	 Print 
ISBN 978-3-89576-615-2	 eBook

● �© Copyright 2024 Elektor International Media 
www.elektor.com 

Prepress Production: D-Vision, Julian van den Berg 
Printers: Ipskamp, Enschede, The Netherlands

 

Elektor is the world's leading source of essential technical information and electronics products for pro engineers, 

electronics designers, and the companies seeking to engage them. Each day, our international team develops and delivers 

high-quality content - via a variety of media channels (including magazines, video, digital media, and social media) in 

several languages - relating to electronics design and DIY electronics. www.elektormagazine.com

Boek Coding Modbus for Arduino-UK 240325.indd   4Boek Coding Modbus for Arduino-UK 240325.indd   4 09-04-2024   14:1509-04-2024   14:15



Contents

● 5

Contents

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                           7

Chapter 1 • Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                              8

Chapter 2 • Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                9

Chapter 3 • The Arduino Uno  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         10

Chapter 4 • Ethernet Shield for Arduino Uno . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             12

Chapter 5 • Network Connection Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              13

Chapter 6 • Setting up the Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   15

Chapter 7 • Arduino Programming Software  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                             16

Chapter 8 • Modbus Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                         17

Chapter 9 • Modscan32 and Modsim32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  19

Chapter 10 • The Programming Software Arduino IDE . . . . . . . . . . . . . . . . . . . . . .21

Chapter 11 • Testing Serial Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              26

Chapter 12 • �Displaying the Value of a Variable using Serial Communication . . . .    29

Chapter 13 • �Additional Code to Support the TCP Server Operation  . . . . . . . . . . .           32

Chapter 14 • �Adding Code to Implement the Modbus TCP Server  . . . . . . . . . . . . .             36

Chapter 15 • Last Change Before Running the Program . . . . . . . . . . . . . . . . . . . . .                     41

Chapter 16 • �Running the Arduino Modbus TCP Server Program . . . . . . . . . . . . . .              47

Chapter 17 • Adding Code to Read a Holding Register . . . . . . . . . . . . . . . . . . . . . .                      49

Chapter 18 • Adding Code to Read an Input Status . . . . . . . . . . . . . . . . . . . . . . . .                        58

Chapter 19 • Adding Code to Read a Coil  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                63

Chapter 20 • Understanding the Modbus TCP Client Task  . . . . . . . . . . . . . . . . . . .                   71

Chapter 21 • �Configuring Modbus TCP Client Library in the Arduino IDE . . . . . . . .        72

Chapter 22 • �Removing the Modbus TCP Server Code from the Program . . . . . . . .        73

Chapter 23 • �Setup Codes to Support the TCP Client Task . . . . . . . . . . . . . . . . . . .                   79

Chapter 24 • �Writing Codes to Poll a Single Register in Modbus TCP Server . . . . .     82

Chapter 25 • Testing the Modbus TCP Client Program . . . . . . . . . . . . . . . . . . . . . .                      85

Chapter 26 • �Writing Codes to Read the other Modbus Register Types . . . . . . . . .         89

Chapter 27 • Testing the Modbus TCP Client Program . . . . . . . . . . . . . . . . . . . . . .                      92

Chapter 28 • �The TCP/IP communication between two Arduino Uno boards . . . . .     97

Chapter 29 • �Modbus TCP/IP Temperature Control using WinCC SCADA . . . . . . .       100

Contents

Boek Coding Modbus for Arduino-UK 240325.indd   5Boek Coding Modbus for Arduino-UK 240325.indd   5 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 6

Chapter 30 • Creating SCADA Project with WinCC . . . . . . . . . . . . . . . . . . . . . . . .                        113

Chapter 31 • The Ethernet and Blynk Project . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            129

Chapter 32 • �Temperature/Humidity Sensor, Ethernet and Blynk Project . . . . . .      140

Chapter 33 • �MQTT Protocol with Ethernet/ESP8266 Project . . . . . . . . . . . . . . . .                142

Chapter 34 • �ThingSpeak IoT Cloud with Ethernet/ESP8266 . . . . . . . . . . . . . . . .                156

Chapter 35 • �The Modbus TCP/IP Communication using Node-RED . . . . . . . . . . .           165

Chapter 36 • Arduino, Node-RED and Blynk IoT Project . . . . . . . . . . . . . . . . . . . .                    184

Chapter 37 • �The MQTT DHT22 ESP32 and Node-RED Project  . . . . . . . . . . . . . . .               191

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                        196

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                       206

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                           207

Boek Coding Modbus for Arduino-UK 240325.indd   6Boek Coding Modbus for Arduino-UK 240325.indd   6 09-04-2024   14:1509-04-2024   14:15



● 7

Preface

This book provides a comprehensive and detailed guide on implementing the ModbusTCP/IP 
protocol with Arduino development boards. Some of the information presented was derived 
from my personal notes taken during Emile Ackbarali’s “How to Program an Arduino as a 
Modbus TCP/IP Client & Server” training course on Udemy. Additionally, I have successfully 
established TCP/IP communication between two Arduino Uno boards.

The book also delves into the topic of Modbus TCP/IP communication in the Node-RED 
environment and explains the process of interfacing Modbus TCP/IP with WinCCSCADA. 
Also, it demonstrates how to control sensors using Ethernet and the Blynk app, and explores 
the utilization of the MQTT protocol with Ethernet/ESP8266. Projects are showcased 
that combine Arduino, Node-RED, and Blynk IoT cloud, providing guidance on using the 
MQTTprotocol in the Node-RED environment. Finally, the book elucidates how to connect to 
the ThingSpeak IoTcloud using Ethernet/ESP8266.

I dedicate this book to the loving memory of my mother, Rahimeh Ghorbani, a great and 
kind soul who dedicated her entire blessed life to education and love for her children. 
Regrettably, I did not fully appreciate her while she was alive, and only after her passing did 
I realize what a precious gem she was. Unfortunately, I lost her, and nothing in the world 
can replace her. I hope she will forgive me and I pray that her soul rests in eternal peace.

Boek Coding Modbus for Arduino-UK 240325.indd   7Boek Coding Modbus for Arduino-UK 240325.indd   7 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 8

Chapter 1 • Introduction

Modbus TCP/IP (also Modbus-TCP) is simply the Modbus RTU protocol with a TCP interface 
that runs on Ethernet. The Modbus messaging structure is the application protocol 
that defines the rules for organizing and interpreting the data, independent of the data 
transmission medium.

TCP/IP refers to the Transmission Control Protocol and Internet Protocol, which provides 
the transmission medium for Modbus TCP/IP messaging. Simply stated, TCP/IP allows 
blocks of binary data to be exchanged between computers. It is also a world-wide standard 
that serves as the foundation for the World Wide Web. The primary function of TCP is to 
ensure that all packets of data are received correctly, while IP makes sure that messages 
are correctly addressed and routed. Note that the TCP/IP combination is merely a transport 
protocol, and does not define what the data means or how the data is to be interpreted (this 
is the job of the application protocol, Modbus in this case).

So, in summary, Modbus TCP/IP uses TCP/IP and Ethernet to carry the data of the Modbus 
message structure between compatible devices. That is, Modbus TCP/IP combines a 
physical network (Ethernet) with a networking standard (TCP/IP) and a standard method 
of representing data (Modbus as the application protocol). Essentially, the Modbus TCP/IP 
message is simply a Modbus communication encapsulated in an Ethernet TCP/IP wrapper.

The automation industry wants you to be able to program Modbus which means you should 
be able, for example, to do the following tasks: 

•	Program an Arduino to be a Modbus TCP/IP Client/Server.
•	Write an Android App to read Modbus data.
•	Write a Windows Modbus Master application using Microsoft.Net.

All these tasks require more advanced knowledge of Modbus than just using it to interconnect 
devices that are already Modbus-compliant. In this book, we will focus on the first one. We 
are going to learn how to program an Arduino to be a Modbus TCP/IP Client/Server. At the 
end of this book, you will be able to create your own custom Modbus TCP/IP Client/Server 
hardware device using the Arduino Prototyping System.

You are going to build, configure and program an Arduino microcontroller board to be as 
follows:

•	A Modbus TCP Client device capable of reading/displaying Modbus data from a 
TCP server device.

•	A Modbus TCP Client device capable of writing Modbus data to a TCP server 
device.

•	A Modbus TCP Server device capable of being read by any Modbus TCP Client 
application.

You will be using the Arduino IDE software to write the code. We are going to develop code 
gradually so you will learn everything in this book.

Boek Coding Modbus for Arduino-UK 240325.indd   8Boek Coding Modbus for Arduino-UK 240325.indd   8 09-04-2024   14:1509-04-2024   14:15



Chapter 2 • Hardware

● 9

Chapter 2 • Hardware

In this section, we will provide a list of the hardware components required for the examples 
in this book. We will examine each component in detail, explaining their purpose. Firstly, we 
have the Arduino Uno, which serves as the system's central component and development 
board. Alongside the Arduino Uno, we have other variations such as Mega and Nano, all 
falling under the category of different types of Arduino Uno's.

On top of that, there is the Ethernet Shield for Arduino Uno, which acts as an interface 
converter. We also have other shields like the Modbus RS485 shield for Arduino, CAN 
bus Shield, and Profibus Shield, each serving different purposes. Since the Arduino's 
communication voltage level is TTL (ranging from zero to five volts), we need to convert it 
to Ethernet for use on our local network, particularly for Modbus TCP.

The third component is the Ethernet Network Hub, typically functioning as a multi-port hub 
for Ethernet connections from various devices. It can operate as a standard Ethernet hub, 
without the need for a switch.

Additionally, the hardware setup phase will include interconnecting cables. To summarize, 
the three primary components required for our purposes are as follows:

•	The Arduino Uno.
•	The Ethernet Shield for Arduino Uno.
•	The Ethernet Network Hub.

Boek Coding Modbus for Arduino-UK 240325.indd   9Boek Coding Modbus for Arduino-UK 240325.indd   9 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 10

Chapter 3 • The Arduino Uno

In this book, our focus will be on programming and configuring the Arduino as a TCP/
IP Client and Server. While the Arduino has numerous features, we will only discuss the 
ones necessary for our tasks, therefore excluding the majority of its features. Figure 3.1 
illustrates the top view of the Arduino Uno.

Figure 3.1: The top view of the Arduino Uno.

The figure labeled as Figure 3.2 displays the various components of the Arduino Uno. The 
first element is the USB interface, which serves two purposes: programming the Arduino 
development board and providing power to the Arduino. Essentially, the Arduino draws 
power from the USB interface. Additionally, the Arduino Uno can be powered by an AC/DC 
converter through an External Power Supply. 

Furthermore, the digital pins section includes TX and RX female pins, which function as 
serial communication pins at the TTL level (ranging from zero to five volts). These pins 
facilitate serial communication with other devices and with the computer via the USB 
interface for programming. Digital devices can be connected through the digital pins, while 
analog devices (within the voltage range of zero to five volts) can be connected to the 
analog pins. 

The power pins play a role in supplying power to both the digital and analog pins. In our 
case, we will utilize the digital pins to connect to an LCD display. This display will be used 
to present the data stored in the memory locations of the Arduino Uno.

Boek Coding Modbus for Arduino-UK 240325.indd   10Boek Coding Modbus for Arduino-UK 240325.indd   10 09-04-2024   14:1509-04-2024   14:15



Chapter 3 • The Arduino Uno

● 11

Figure 3.2: The diagram of the Arduino Uno.

Figure 3.3: The 3D view of the Arduino Uno development board.

Figure 3.3 presents the visual depiction of the Arduino Uno development board in a 
3D format. This provides a comprehensive understanding of the physical features and 
dimensions of the Arduino Uno hardware, which is known for its simplicity and compact 
size.

Boek Coding Modbus for Arduino-UK 240325.indd   11Boek Coding Modbus for Arduino-UK 240325.indd   11 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 12

Chapter 4 • Ethernet Shield for Arduino Uno

In this section, our focus will be on the Arduino Ethernet shield. Figure 4.1 illustrates how 
the shield appears. It is designed to perfectly fit on top of the Arduino Uno.

Figure 4.1: The top view of the Arduino Ethernet Shield.

On the shield, you can see identical sockets to those found on the Arduino Uno. These 
sockets directly connect to the pins on the Arduino Uno, making it stackable and allowing 
for communication through these pins. The Ethernet shield is necessary for our project, as 
it requires a TCP/IP network connection, specifically an Ethernet-based one. Although there 
are various types of TCP/IP networks, such as coaxial cable or fiber optic cable, we have 
chosen to use Ethernet on CAT5 cable due to its affordability, ease of use, and widespread 
availability. Additionally, the Ethernet Shield board features indicator lights that provide 
important information, so understanding their meaning is crucial.

The shield contains a number of informational LEDs:

PWR: indicates that the board and shield are powered.
LINK: indicates the presence of a network link and flashes when the shield transmits or 
receives data.
FULLD: indicates that the network connection is full duplex.
100M: indicates the presence of a 100 Mb/s network connection (as opposed to 10 Mb/s).
RX: flashes when the shield receives data.
TX: flashes when the shield sends data.
COLL: flashes when network collisions are detected.

So, if we are doing proper communication, we should see the TX and RX lights flashing a lot, 
and that is essentially the Ethernet Shield. Most of what you are supposed to understand 
are these lights. These indicator lights will give us feedback as to how the network is 
performing and how everything is working.

Boek Coding Modbus for Arduino-UK 240325.indd   12Boek Coding Modbus for Arduino-UK 240325.indd   12 09-04-2024   14:1509-04-2024   14:15



Chapter 5 • Network Connection Overview

● 13

Chapter 5 • Network Connection Overview

In the previous section, we provided a list of the hardware components used in the setup, 
particularly focusing on the Arduino Uno and the Ethernet shield for the Arduino Uno. In 
this section, we aim to present a visual representation or block diagram of how these 
components are interconnected to achieve the goals outlined in this book. Additionally, we 
will showcase the physical setup of this configuration on our workbench in the following 
section. By the end of this current section, you will have a clear understanding of the 
interconnections through the block diagram and a visual representation of the physical 
setup. 

To begin, the main development board used is the Arduino Uno. This is then connected to 
the Ethernet shield for the Arduino Uno. Additionally, a network hub is incorporated into 
the setup. In our illustration, a five-port network hub is displayed, but in experimental 
scenarios, a 16-port network hub can be used. You have the flexibility to use a four-port or 
any other suitable option for your needs. 

For the setup, only two ports are necessary. One port will be used to connect the laptop to 
the Arduino Ethernet shield, while the other port will be utilized for connecting the laptop 
to the network hub. Essentially, we are creating a small and simplified local area network 
for our Modbus TCP communication. Refer to Figure 5.1 for a visual representation of the 
required setup.

Figure 5.1: Network connection scheme.

To set up the hardware, you will need to purchase some standard network cables (CAT5) 
called straight-through network cables and crossover cables, which are inexpensive and 
available at computer stores. Additionally, you will need a programming cable for the 
Arduino Uno, indicated by a red line, which is essential for any tasks involving the Arduino. 
The programming cable serves two purposes: programming the Arduino and receiving 
text messages from the running application through a special serial monitor window. This 
feature is particularly useful since the Arduino Uno lacks a visual interface. When working 
with Modbus and dealing with values in the Arduino and Modbus registers, it is crucial to be 

Boek Coding Modbus for Arduino-UK 240325.indd   13Boek Coding Modbus for Arduino-UK 240325.indd   13 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 14

able to visualize these values. Therefore, the application will be designed to send the values 
to the laptop via this cable, allowing for monitoring changes in value, reading and writing 
registers, and more. This summarizes the hardware setup, and in the following section, we 
will demonstrate how it appears on our desktop.

Chapter 5 • Network Connection Overview

Boek Coding Modbus for Arduino-UK 240325.indd   14Boek Coding Modbus for Arduino-UK 240325.indd   14 09-04-2024   14:1509-04-2024   14:15



Chapter 6 • Setting up the Hardware

● 15

Chapter 6 • Setting up the Hardware

We are providing a visual representation of the physical hardware setup on the desktop, as 
in the previous section we only showed a diagram. Now, we will look at the actual setup. In 
Figure 6.1, you can see an Arduino with an Ethernet shield on top. The Arduino is located 
at the bottom, and the Ethernet shield is connected to it. The pins on the shield physically 
connect it to the Arduino. There are also indicator lights on the Ethernet shield that display 
different statuses. The Ethernet port is located on the shield, and a blue cable connects it to 
the Ethernet hub. The Ethernet hub has ports where the blue cable is inserted, specifically 
the port connected to the Ethernet shield on the Arduino. Additionally, there is a gray 
network cable that extends to the laptop, connecting to the Ethernet port. 

This provides network connectivity to both the laptop and the Arduino via the Ethernet 
shield. The USB cable serves as the programming cable for the Arduino and allows for 
receiving feedback in the form of text messages. It is connected to the Arduino's port 
in order to program it. This configuration aligns with what was described in the previous 
section and is depicted in Figure 6.1. Now that you have a clear understanding of the setup, 
we can proceed with exploring various programming examples and how they appear on the 
desktop workbench.

Figure 6.1: Ethernet network physical hardware setup.

Boek Coding Modbus for Arduino-UK 240325.indd   15Boek Coding Modbus for Arduino-UK 240325.indd   15 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 16

Chapter 7 • Arduino Programming Software

In this segment, we will be discussing where to obtain the Arduino programming software, 
as well as the process of downloading and installing it. To get the software, we recommend 
visiting the official Arduino website at Arduino.CC. This website not only provides the 
software download, but also offers a plethora of resources for learning about Arduino 
basics, including information about both hardware and software. It is highly recommended 
that you explore this website to gain a better understanding of Arduino, especially if you 
are unfamiliar with it. However, in this particular section, our focus will be solely on the 
software. 

To access the software, navigate to the "Software" section on the website. Although there 
is an online integrated development environment (IDE), we do not need that. Instead, we 
want to download the Arduino IDE. The IDE is an open-source software that enables easy 
coding and uploading to the Arduino board. By clicking on the Windows installer, you can 
save the current Arduino version to your device. If you wish, you can choose to contribute 
to support the open-source nature of Arduino. Otherwise, simply click on "Download" and 
save the file as an executable. After saving, double-click the executable to run a regular 
Windows installation process. We assume that you already have the knowledge of how to 
install Windows software. With these steps, you can obtain the Arduino software, which is 
completely free. We will demonstrate how to use the software in upcoming sections. For 
now, our focus is solely on downloading the necessary components.

Boek Coding Modbus for Arduino-UK 240325.indd   16Boek Coding Modbus for Arduino-UK 240325.indd   16 09-04-2024   14:1509-04-2024   14:15



Chapter 8 • Modbus Libraries

● 17

Chapter 8 • Modbus Libraries

In this section, we will demonstrate the libraries we plan to use in order to implement our 
Modbus server and client on the Arduino. We will provide information on where to download 
them, and once we begin coding, we will also guide you on how to utilize them. If you are 
unfamiliar with Arduino libraries, they are pre-existing pieces of code that eliminate the 
need for starting from scratch. Various individuals online have developed libraries for a 
wide range of purposes, including the Modbus TCP server and client. If you have experience 
implementing Modbus RS485 on the Arduino, you may have used libraries for that as 
well. The objective of this book is to download these libraries, incorporate them into our 
project, and utilize function or command calls within them. We will explain the process in 
detail, but it is important to understand that these libraries are code modules designed to 
simplify the process of writing programs for Modbus TCP server and client. In this book, 
we will download separate libraries for the Modbus TCP server and the Modbus TCP client. 
Attached to this book are two resources. The first is a link to the Modbus TCP server library. 
The weblink is as follows:

https://github.com/andresarmento/modbus-arduino

Once you click on it, you will be directed to a web page. On this webpage, you will find 
information about a Modbus library developed by Andre Sarmento specifically for Modbus 
TCP server implementation. This is the designated page for the library. Our request is for 
you to bookmark this page as you will need to refer to it for the provided documentation. 
Andre Sarmento has put together comprehensive documentation on using the library, 
making it a valuable resource. Upon reaching this page, your next step is to click on "Clone 
or download" and select "Download ZIP" as demonstrated in Figure 8.1.

Figure 8.1: Clicking on "Clone or download" and "Download ZIP".

After clicking on the "Download Zip" button, a prompt will appear asking you to save the 
file. You should choose a folder to save it in. It is recommended to create a separate folder 
for your libraries, such as Arduino apps and Arduino libs (Arduino libraries). The Arduino 
app folder should be used to store all the applications you write, while the Arduino libs 

Boek Coding Modbus for Arduino-UK 240325.indd   17Boek Coding Modbus for Arduino-UK 240325.indd   17 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 18

folder is where the libraries will be stored. In this case, we downloaded a file called Modbus 
TCP server, which is mistakenly named Modbus Arduino master. To avoid confusion, we will 
rename the zip file to modbus_server_tcp.zip. Once you have the zip file, you should extract 
it by selecting "Extract All", which will create a folder with several subfolders containing 
libraries. You will see these folders as shown in Figure 8.2, but you do not need to use all 
of them, just some. Once you have downloaded and extracted the file, you are ready to 
learn how to use it later.

Figure 8.2: The modbus_server_tcp.zip extracted folders.

The subsequent resource in the attached section consists of downloadable files, specifically 
a file called MgsModbus.zip. It is not a hyperlink, rather a file that can be downloaded. The 
purpose of this file is to provide our library for implementing a Modbus TCP client. We chose 
not to direct you to a webpage because the file is directly accessible from myarduinoprojects.
com. The corresponding weblink is as follows:

https://myarduinoprojects.com/modbus.html

The library featured on this page is not functioning properly due to the presence of several 
bugs. To address this issue, we have made necessary corrections to the library. The corrected 
version, which is guaranteed to work, can be downloaded from the appendix section of this 
book. Upon downloading, you will receive a file named MgsModbus.zip. Extracting this file 
will yield a folder containing two files, namely MgsModbus.cpp and MgsModbus.h, as shown 
in Figure 8.3.

Figure 8.3: The files inside the MgsModbus.zip.

These are the library files needed for the Modbus TCP client implementation. After 
downloading and extracting these two files, store them in a location such as the Arduino 
Libs folder. It is important to keep them in one folder for easy accessibility. This completes 
the process of obtaining the Modbus libraries. In the coding phase, we will demonstrate 
how to properly use these libraries, as it involves steps like copying the files and including 
them.

Boek Coding Modbus for Arduino-UK 240325.indd   18Boek Coding Modbus for Arduino-UK 240325.indd   18 09-04-2024   14:1509-04-2024   14:15



Chapter 9 • Modscan32 and Modsim32

● 19

Chapter 9 • Modscan32 and Modsim32

The modscan32 and modsim32 download links are in the following weblink:

https://www.win-tech.com/html/demos.htm

To complete the process, you will need to click on each of them individually. This will lead 
you to screens that will prompt you to download two files. The first file is modsim32.
zip, which you will need to click on to start the download. After downloading it, proceed 
to download the second file, modscan32.zip. Once both files are downloaded, you can 
continue with installation. There is no need for installation, as the program runs without it.

Now, we have both modsim32.zip and modscan32.zip files. After extracting them, we 
obtained two directories: modsim32 and modscan32. To access modscan32, simply double-
click on it, and you will see the file named MODSCAN3.exe, as shown in Figure 9.1.

Figure 9.1: MODSCAN3.exe in the modscan32 folder.

This is the executable that you want to run, and you should create a shortcut to your 
desktop, which is a shortcut to this executable file. So, when we double-click on that, it 
just runs as depicted in Figure 9.2. We do not have to do any installation process and we 
are going to use modscan32 as a Modbus TCP client when we configure the Arduino as a 
Modbus TCP server. So modscan32 is going to be used to communicate with it and will be 
reading data from the Modbus TCP server (Arduino).

Boek Coding Modbus for Arduino-UK 240325.indd   19Boek Coding Modbus for Arduino-UK 240325.indd   19 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 20

Figure 9.2: Running the MODSCAN3.exe file.

In the modsim32 folder, there is an executable called modsim32.exe. You can create a 
shortcut for it. When you double-click on the shortcut, a modsim32 pop-up window, as 
shown in Figure 9.3, will appear. 

Figure 9.3: The modsim32 pop up window.

We will use modsim32 as a Modbus TCP server when configuring the Arduino as a 
Modbus TCP client. This means that the Modbus TCP client will read data from modsim32. 
Throughout the rest of this book, we will be using two Windows-based Modbus applications 
called modscan32 and modsim32. As we progress through the sections and develop various 
applications, you will learn how to use these applications.

Boek Coding Modbus for Arduino-UK 240325.indd   20Boek Coding Modbus for Arduino-UK 240325.indd   20 09-04-2024   14:1509-04-2024   14:15



Chapter 10 • The Programming Software Arduino IDE

● 21

Chapter 10 • The Programming Software Arduino IDE

Now that you understand what the hardware looks like, and you may have already 
downloaded some software, it is important to note that you may not have the hardware 
in front of you at the moment. However, once you see how amazing and affordable the 
hardware is, we are confident that you will acquire it and revisit the book to try it out 
yourself. In this section, our aim is to introduce you to the Arduino programming software, 
which is known as the Arduino IDE, or Integrated Development Environment. But before we 
proceed with that, it is worth mentioning that when the Arduino software was installed, it 
would have also installed a device driver. This driver, when connecting the Arduino to your 
laptop or PC via a USB cable, creates a virtual COM port. We encourage you to look at this 
virtual COM port now by accessing the device manager and navigating to the ports section. 
As shown in Figure 10.1, you will find it there. 

Figure 10.1: Ports in the "Device manager".

Before you begin programming the Arduino, make sure to check your port settings. The 
port should be set to Arduino Uno COM4, although it may be different for your specific 
device. Additionally, there is another virtual COM port called COM7, which is our USB to 
RS485 converter. 

Moving on, the Arduino icon can be seen in Figure 10.2, and this is what you should store 
once you have installed and started it. In Figure 10.3, you can see the Arduino development 
environment. This is where you will write your code, compile it, and download it into the 
Arduino to make it work. While there are many features available, we will only focus on the 
ones that are most important and commonly used in the book's projects. The code area, as 
depicted in Figure 10.3, is where you will write your code.

Figure 10.2: The Arduino icon.

Boek Coding Modbus for Arduino-UK 240325.indd   21Boek Coding Modbus for Arduino-UK 240325.indd   21 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 22

Figure 10.3: The Arduino IDE code area.

We will briefly discuss that, however, the primary tools you use in this setting are the 
buttons located at the top. We will go through each one individually. The button labeled 
"Verify" is the same as the compile function shown in Figure 10.4.

Figure 10.4: The "Verify" button.

After writing your code, when you are prepared to compile it and check if it is functioning 
properly, you will click on the upload button as shown in Figure 10.5. However, despite 
being labeled as "Upload," this button transfers your code and program to the Arduino 
board. This difference in terminology is similar to a US-Europe distinction. In the US, you 
would typically say "Download" to the Arduino, while in Europe, the term used is "Upload." 
Nonetheless, the objective remains the same: to transfer the program successfully into the 
Arduino board.

Figure 10.5: The "Upload" button.

By using the button illustrated in Figure 10.6, you can generate a fresh window. When you 
select the "New" option in the Arduino interface, a completely new window opens instead 
of opening an additional tab.

Figure 10.6: The "New" button.

If you wish to open an existing project, you can use the Open button depicted in Figure 
10.7. Furthermore, to save your project or code, use the button shown in Figure 10.8.

Boek Coding Modbus for Arduino-UK 240325.indd   22Boek Coding Modbus for Arduino-UK 240325.indd   22 09-04-2024   14:1509-04-2024   14:15



Chapter 10 • The Programming Software Arduino IDE

● 23

Figure 10.7: The "Open" button.

Figure 10.8: The "Save" button.

These buttons are the most often used by us. We are now asking that you perform an 
action: navigate to file preferences and select the option to display line numbers. We 
believe having line numbers is beneficial, and for that reason, we have demonstrated this 
in Figure 10.9 and Figure 10.10.

Figure 10.9: Clicking on "Display line numbers".

Boek Coding Modbus for Arduino-UK 240325.indd   23Boek Coding Modbus for Arduino-UK 240325.indd   23 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 24

Figure 10.10: Displayed line numbers.

As shown in Figure 10.10, the top menus on this interface, such as "Verify," "Compile," and 
"Upload," perform similar functions. Many of these menu items have not been used yet. 
Now let us look at the user window, which is the code area. When starting a new project, 
some code is automatically provided. This includes two functions that are present in every 
Arduino program: setup and loop. The comment in the code area states that the setup 
function is for initialization, and the loop function is for the main code that will be repeatedly 
executed, similar to how a PLC operates. Embedded systems typically work by continuously 
repeating the code placed in the loop function. On the other hand, Windows operates on an 
event-based system, where applications run differently.

When you are ready, you can click on the "Verify" button, even if there is no code present. 
This will initiate the sketch compilation process, and it will show a "Done compiling" 
message. Currently, we are connected to our Arduino device. To confirm this, go to the 
"Tools" menu, click on "Port," and select the appropriate communication port. This port 
selection will remain active once you have made your choice, as shown in Figure 10.11. 
When initially opening the Arduino development environment, you will need to go through 
this process of selecting the port.

Figure 10.11: Choosing your communication port.

Boek Coding Modbus for Arduino-UK 240325.indd   24Boek Coding Modbus for Arduino-UK 240325.indd   24 09-04-2024   14:1509-04-2024   14:15



Chapter 10 • The Programming Software Arduino IDE

● 25

We have gathered our program here and will now try to initiate the download process. After 
recompiling, the program states "Uploading" and then "Done uploading." This indicates 
the completion of the upload and signals that the Arduino will begin executing the new 
program. The Arduino IDE is relatively straightforward compared to software like Microsoft 
Visual Studio, which has an abundance of buttons and menu options. This concludes a 
brief introduction to the Arduino IDE. In the later section, we will proceed with our first 
application, downloading it and observing its functionality.

Boek Coding Modbus for Arduino-UK 240325.indd   25Boek Coding Modbus for Arduino-UK 240325.indd   25 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 26

Chapter 11 • Testing Serial Communication

We will start by writing code for this task. The reason for doing so is because, as mentioned 
earlier, we will use serial communications on the Arduino as our means of interfacing with 
it. This will allow us to gain insight into the Arduino's operations. Furthermore, we will 
configure it to provide continuous feedback through Modbus communication. 

To begin, we need to save this file by selecting "Save As". We will be storing everything 
in the Arduino apps folder. It is recommended that you choose a folder of your preference 
to store all the applications, and for this specific task, we will name the file "Serial01" as 
depicted in Figure 11.1.

Figure 11.1: Saving the file as "Serial01".

Therefore, we will remove the comments as we no longer need them. What the code will 
do is send the message "Hello World!" to the serial monitor within the Arduino software. 
Let us show how this works. Firstly, we need to include the SPI.h library, which is a pre-
existing library that manages serial communication. Then, we will place all the code within 
the setup function so that when the Arduino boots up, it will automatically send the "Hello 
World!" message to the serial monitor. The serial.begin(9600) command sets the baud 
rate to 9600 bits per second, as it is necessary for serial communication. Finally, the serial.
println command handles printing the message as a line. This is our first program and is 
depicted as a simple program in Figure 11.2.

Boek Coding Modbus for Arduino-UK 240325.indd   26Boek Coding Modbus for Arduino-UK 240325.indd   26 09-04-2024   14:1509-04-2024   14:15



Chapter 11 • Testing Serial Communication

● 27

Figure 11.2: Our first program.

Firstly, the code initializes the serial port and then prints "Hello World!" but it does not 
display it. Now, let us demonstrate this process. We are going to save the code, verify 
it, and compile the sketch. The initial run may take some time. Fortunately, there are no 
errors. Now, we will navigate to the tools menu and open the serial monitor, which is shown 
in Figure 11.3. This serial monitor window within the Arduino application displays anything 
that is sent using certain commands.

Figure 11.3: Choosing "Serial Monitor".

Therefore, the information in this text is transmitted through serial communications and 
displayed in this window using the programming cable. It is important to note that this is 
unrelated to Modbus RS485 or TCP. We are solely utilizing Arduino serial communications 
to receive feedback. To send our application to the Arduino, we will click the upload button. 
As you can see, the application has started and printed "Hello World!", indicating that it 
is functioning correctly. However, it does not perform any additional actions. This is the 
desired outcome we would like you to observe. In Figure 11.4, you can see an example 
of how we can print and receive feedback from the Arduino while it is executing its tasks.

Boek Coding Modbus for Arduino-UK 240325.indd   27Boek Coding Modbus for Arduino-UK 240325.indd   27 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 28

Figure 11.4: Printing and getting feedback from the Arduino.

Boek Coding Modbus for Arduino-UK 240325.indd   28Boek Coding Modbus for Arduino-UK 240325.indd   28 09-04-2024   14:1509-04-2024   14:15



Chapter 12 • Displaying the Value of a Variable using Serial Communication

● 29

Chapter 12 • �Displaying the Value of a Variable using 
Serial Communication

In this section, we will further enhance our application. Our goal is to improve the previous 
program by implementing a Modbus TCP server on Arduino. This server will have memory 
locations such as holding registers, input registers, coils, and input statuses, just like any 
other Modbus device. To achieve this, we need to create and display values in these memory 
locations using variables. In this application, we will demonstrate how to print the value of 
a variable in the serial monitor window. To begin, we will modify the application and save it 
as "Serial02", as illustrated in Figure 12.1.

Figure 12.1: Saving the file as "Serial02".

We will refer to the tank level as an integer value. Thus, in this hypothetical scenario, we 
have connected an Arduino to a tank level sensor that measures the water level in a water 
tank. We have declared a variable named "tempstr" as a string data type to represent 
this tank level. Essentially, we are defining a string variable called "tempstr" which will 
be utilized for a specific purpose. Moving ahead, we may see the command serial.
begin(9600) and for now, we will assign a fixed value of 12 to the tank level variable. 
Typically, if an Arduino were connected to a sensor, it would receive readings and assign 
them to the tank level variable. However, since we do not have a sensor, we are hardcoding 
the value. As for the "tempstr" variable, we aim to make it more easily understandable to 
humans by combining the tank level with the word "feet" using the statement "tank level 
plus string(tanklevel) plus ft." Finally, we will replace the phrase "hello world" with the 
variable "tempstr" as shown in Figure 12.2.

Boek Coding Modbus for Arduino-UK 240325.indd   29Boek Coding Modbus for Arduino-UK 240325.indd   29 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 30

Figure 12.2: The "Serial02" code.

Let us confirm that first. As a result, it was successfully compiled. Now, we will proceed to 
send it to the Arduino and run it by clicking on the upload button. Then, we can see the 
output in the serial window. The expected output should be "Tank Level: 12 ft" as the value 
of the variable is being printed. Let us proceed to send it to the Arduino. Additionally, it is 
important to mention that the window clears every time you perform an upload, and there 
you have it — "Tank Level: 12 ft" as shown in Figure 12.3.

Figure 12.3: Running the "Serial02" file.

Boek Coding Modbus for Arduino-UK 240325.indd   30Boek Coding Modbus for Arduino-UK 240325.indd   30 09-04-2024   14:1509-04-2024   14:15



Chapter 12 • Displaying the Value of a Variable using Serial Communication

● 31

Instead of using hard coded text, the variable value was printed. The printed output 
includes both the hard coded text "Tank Level:" and "ft", as well as the value stored in the 
variable "tanklevel". This allows us to check if values have been successfully changed by 
using modscan32 on a holding register. We can verify any changes by viewing the serial 
window output through the serial.println function. This represents the second level of our 
application.

Boek Coding Modbus for Arduino-UK 240325.indd   31Boek Coding Modbus for Arduino-UK 240325.indd   31 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 32

Chapter 13 • �Additional Code to Support the TCP Server 
Operation

All right, so we will be making changes to this application once again. We will click on the 
"File" option, then select "Save as" and name it "Serial03" as shown in Figure 13.1. Now, let 
us explain the modifications we would like to make to this code. Our objective is to insert 
code within this loop that can identify any alterations in the variables we will be utilizing. 
Once it detects these changes, it will display the updated values of those variables on the 
serial monitor.

Figure 13.1: Saving the file as "Serial03".

Our goal is to bring the loop into the equation. The reason behind this decision is that 
our Modbus TCP server operates in real-world scenarios where values frequently change. 
It is crucial for us to be informed when these values do change. Furthermore, we plan 
to utilize modscan32 to alter values and require confirmation that these changes have 
occurred successfully. To achieve this, we will begin by removing certain code from within 
the setup and migrating it into a separate function that can be called from the loop. This 
function, named "void DisplayCurrentValues()", will house the relevant code from the 
setup section. Subsequently, we will reintegrate this function back into the setup, calling 
it "DisplayCurrentValues" as shown in Figure 13.2. Essentially, we have created a new 
function to extract the code from the setup, allowing us to easily print all the values through 
the serial monitor by calling the "DisplayCurrentValues()" function.

Boek Coding Modbus for Arduino-UK 240325.indd   32Boek Coding Modbus for Arduino-UK 240325.indd   32 09-04-2024   14:1509-04-2024   14:15



Chapter 13 • Additional Code to Support the TCP Server Operation

● 33

Figure 13.2: Defining the function DisplayCurrentValues().

So, how can we determine if the time level has changed? Well, we need to introduce a new 
variable. We will refer to it as "tanklevel_old," which will hold the previous value of the tank 
level. Whenever the tank level value is updated, we will compare it with the previous value. 
If they are different, we will proceed with the update. Thus, we have the "tanklevel_old" 
variable here. To start off, we will initialize both variables and set the value of "tanklevel_
old" to 12, as shown in Figure 13.3.

Moving forward, let's create a function that will be invoked within the loop. We will name it 
"Send updated values" as it will send the newly updated values to the monitor.

Figure 13.3: Defining the tanklevel_old variable.

Boek Coding Modbus for Arduino-UK 240325.indd   33Boek Coding Modbus for Arduino-UK 240325.indd   33 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 34

We are going to call this CheckForDatachange() and define that function. Then, we are 
going to declare a Boolean variable data_has_changed. Initialize it to false. Remember 
the purpose of this? The purpose of this function is to check to see if any of the data has 
changed. So, we are going to see if the tanklevel_old variable is not equal to the tank_level 
variable. That means a change has taken place. We want to set the Boolean data_has_
changed to be equal to true and update the tanklevel_old variable with the same value 
that is currently in the tank_level variable. Then we are going to write if Boolean data_
has_changed equal to true, then call the function DisplayCurrentValues(). So, this loop 
is constantly going to call function CheckDataForChange(). This function what compares 
the tanklevel variable with the tanklevel_old variable and if tanklevel is updated, let us say 
for some reason by outside sensor in a real world or for some other method, it will compare 
it with tanklevel_old. So, both of them start off at 12. Suppose the tanklevel goes to 15. 
Is 12 equal to 15? No, then the data_has_changed is true. Then take 15 and put it in the 
old data (tanklevel_old), and call the function DisplayCurrentValues(). So, it will only 
execute the function DisplayCurrentValues() when there is a change as shown in Figure 
13.4.

Figure 13.4: Defining the function CheckDataForChange().

This is our updated application, which we believe will greatly assist us. The inclusion of 
support code will facilitate receiving feedback from the Arduino, as we can observe through 
the serial monitor. Once we validate the code, we will be ready to proceed. Now, we will 
proceed to send this application to the Arduino, where we should obtain the same result, 
indicated by a tank level of 12 ft. If there are any changes in the tank level, it will display 
additional lines with the updated data, as shown in Figure 13.5.

Now, we have completed the development of our support code that will facilitate Modbus 
functionality. In the following section, we will integrate this code into our application and 
create a new application to implement the Modbus TCP server.

Boek Coding Modbus for Arduino-UK 240325.indd   34Boek Coding Modbus for Arduino-UK 240325.indd   34 09-04-2024   14:1509-04-2024   14:15



Chapter 13 • Additional Code to Support the TCP Server Operation

● 35

Figure 13.5: Running the "Serial03" file.

Boek Coding Modbus for Arduino-UK 240325.indd   35Boek Coding Modbus for Arduino-UK 240325.indd   35 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 36

Chapter 14 • �Adding Code to Implement the Modbus 
TCP Server

In this section, we will be adding the Modbus TCP server code to our application. To begin, 
we need to save the current file as a new one called "Serial04", as depicted in Figure 14.1.

Figure 14.1: Saving the file as "Serial04".

In the preceding sections of this book, we instructed you to download certain libraries. Now, 
we will utilize one of those libraries. Our attention will be directed towards the modbus_
server_tcp folder. To access it, click on this folder. Upon doing so, you will observe that 
there are Modbus and ModbusIP subfolders within the libraries section. Although there 
are additional folders, our focus should solely be on the Modbus and ModbusIP subfolders, 
which are indicated in Figure 14.2.

Figure 14.2: Modbus and ModbusIP folders.

So, within Modbus, there are Modbus.h and Modbus.cpp files and within ModbusIP, there are 
ModbusIP.h and ModbusIP.cpp files as illustrated in Figure 14.3 and Figure 14.4 respectively.

Figure 14.3: Contents of the Modbus folder.

Boek Coding Modbus for Arduino-UK 240325.indd   36Boek Coding Modbus for Arduino-UK 240325.indd   36 09-04-2024   14:1509-04-2024   14:15



Chapter 14 • Adding Code to Implement the Modbus TCP Server

● 37

Figure 14.4: Contents of the ModbusIP folder.

We have an interest in those specific files, and here are the instructions on what you need 
to do with them. This particular step can be a bit challenging. Locate the "Libraries" folder 
in Explorer, which can be found under the desktop. Within the "Libraries" folder, you will 
see the "Documents" folder. Within the "Documents" folder, there are both the libraries 
folder and another folder. These are the locations where you need to copy the files. We 
have already completed this task, so now it is your turn to do it. However, we would like 
to highlight that you need to create a new directory or folder under the libraries folder. 
This directory should be named "Modbus," and there should also be another one named 
"ModbusIP," as shown in Figure 14.5.

Figure 14.5: Creating Modbus and ModbusIP folders.

We will return to the libraries folder before continuing. For the Modbus library, please 
copy the Modbus.h and Modbus.cpp files and paste them into this location. Similarly, for 
the ModbusIP folder, copy the ModbusIP.h and ModbusIP.cpp files and paste them into 
the ModbusIP directory. Therefore, both folders, along with their respective files, need to 
be placed under the libraries folder. Once that is done, go ahead to the next step. Go to 
"Sketch", select "Include Library", and scroll down to find the Modbus folder. Click on it to 
include the Modbus library. Repeat this process by going to "Sketch", "Include Library" and 
including the ModbusIP library as shown in Figure 14.6. Now, we have successfully included 
both libraries that were part of the download package. Additionally, we need to include a 
built-in library called Ethernet.h. Therefore, we have included the ModbusIP.h, Modbus.h, 
Ethernet.h, and SPI.h libraries in our project, as depicted in Figure 14.7. Moving on to step 
two, for this example, our goal is to create a Modbus TCP server with only one register, 
serving as an input register. We will name this register tanklevel_ir.

Boek Coding Modbus for Arduino-UK 240325.indd   37Boek Coding Modbus for Arduino-UK 240325.indd   37 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 38

Figure 14.6: Including the Modbus and ModbusIP libraries.

Figure 14.7: All the libraries included in our project.

So, our task is to create a designated area in the memory and name it as a register. To 
do this, we define a constant integer called tanklevel_ir and set it equal to 100. Although 
tanklevel_ir is a variable, it represents the address of the register. It should be noted that 
the value 100 is not arbitrary, but rather the starting point within the input register range of 
30,001 to 40,000. Therefore, the actual register address is 30,100. This location within the 
Arduino is now our register address. In addition, we declare a Modbus IP object, for which 
we will refer to it as ModbusIP mb, as depicted in Figure 14.8.

Boek Coding Modbus for Arduino-UK 240325.indd   38Boek Coding Modbus for Arduino-UK 240325.indd   38 09-04-2024   14:1509-04-2024   14:15



Chapter 14 • Adding Code to Implement the Modbus TCP Server

● 39

Figure 14.8: Defining tank level input register and Modbus IP object.

Next, our next step is to insert certain codes obtained from the provided examples within 
this library. Let us guide you to the location of these examples. They can be found in 
the ModbusIP folder, specifically in the "examples" folder. We obtained them from the 
"Lamp" folder, as shown in Figure 14.9. Additionally, we gathered a significant amount 
of information from the library's webpage. The documentation available on this webpage 
thoroughly guides you through the entire process. The weblink is as follows:

https://github.com/andresarmento/modbus-arduino

Figure 14.9: Directory to the Lamp folder.

Now let's return to our code and demonstrate its functionality. Remember, we are setting 
up the Arduino as a node on a network. In this context, the "mac" refers to the Ethernet 
address or MAC address. We have arbitrarily chosen 192.168.1.120 as our IP address. It 
is essential to assign an IP address to the Arduino because, on a Modbus TCP network, 
the IP address serves as the Modbus ID and must be unique. We use the command mb.
config(Mac, IP) to execute this configuration. Moving forward, we need to inform the 
Arduino that "tanklevel_ir" should be recognized as an input register. To achieve this, we 
use the "mb" Modbus object and employ the "add" command to add and read the register. 
We assign it the address of tanklevel_ir, which in this case is 100. Once the register is 
set up, we must assign it a value corresponding to the tanklevel. To do this, we use the 
mb.Ireg(tanklevel_ir, tanklevel) command. This action takes the tanklevel value and 
stores it in the specified register location, tanklevel_ir, as demonstrated in Figure 14.10.

Boek Coding Modbus for Arduino-UK 240325.indd   39Boek Coding Modbus for Arduino-UK 240325.indd   39 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 40

How did we become aware of all these functions? Simply go through the documentation, 
and you will discover all of them listed. However, for now, keep in mind that our objective is 
to get you started as fast as possible. Therefore, we will not go over each function in detail 
because it could be too tedious. Our focus remains on facilitating your quick start.

Figure 14.10: Completed setup code section.

In summary, we have completed the necessary steps such as adding our libraries, defining 
an input register, assigning a value to it, and handling our network requirements. The final 
step is to execute the mb.task() command depicted in Figure 14.11.

Figure 14.11: Adding the mb.task() command.

That's it. We have successfully created a Modbus TCP server. Now we can proceed to check 
for any errors by clicking on the verify button, and once it is verified, we can send the 
application to our Arduino by clicking on the upload button. After that, we should be able 
to open modscan32.exe, switch it to Modbus TCP client mode, and retrieve the value of the 
tanklevel input register, which is currently 12. Since our Modbus TCP server is capable of 
being read by a Modbus TCP client, we will be able to obtain a value. This is the next task 
we will be undertaking in the following section.

Boek Coding Modbus for Arduino-UK 240325.indd   40Boek Coding Modbus for Arduino-UK 240325.indd   40 09-04-2024   14:1509-04-2024   14:15



Chapter 15 • Last Change Before Running the Program

● 41

Chapter 15 • Last Change Before Running the Program

We are now prepared to test our latest application, Serial04. Before we proceed, let's 
review the quick start example by referring back to the block diagram shown in Figure 5.1 
from a previous section. This diagram illustrates our setup, where the Arduino and its shield 
are configured as a Modbus TCP server with a single input register representing the tank 
level. This setup is connected to the hub. 

Next, we will use modscan32.exe to configure it as a Modbus TCP client. With this 
configuration, we will read the single register (addressed as 100) that represents the tank 
level. However, in the Modbus TCP protocol, the address will be 30,100. The process involves 
the modscan32.exe sending Modbus queries as the TCP client and the Arduino responding 
with Modbus responses. This exchange will continue as modscan32.exe continuously 
requests information from the Arduino. This dynamic of a client pulling information from a 
server is typical in the world of Modbus TCP. 

Currently, we have assigned the IP address 192.168.1.120 to the Arduino. For our laptop, 
which will be connected to the Ethernet interface, we need to assign a different IP address. 
In this case, we will configure it as 192.168.1.121, as shown in Figure 15.1.

Figure 15.1: IP addresses for the Arduino and Laptop.

All right, and modscan32.exe is going to use that IP address when it connects. Thus, let us 
show you how to do that. We will search for a network and click on the Network and Sharing 
Center, as shown in Figure 15.2.

Figure 15.2: Clicking on the Network and Sharing Center.

Boek Coding Modbus for Arduino-UK 240325.indd   41Boek Coding Modbus for Arduino-UK 240325.indd   41 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 42

We will click on "Change adapter settings", as depicted in Figure 15.3. Then go to "Local 
Area Connection" because this is our physical Ethernet connection on the laptop. Double 
click it as illustrated in Figure 15.4. We are going to click on "Properties", as shown in Figure 
15.5, scroll down there to Internet Protocol Version 4 (TCP/IPv4), as in Figure 15.6. 

Figure 15.3: Clicking on "Change adapter settings".

Figure 15.4: Clicking on "Local Area Connection".

Boek Coding Modbus for Arduino-UK 240325.indd   42Boek Coding Modbus for Arduino-UK 240325.indd   42 09-04-2024   14:1509-04-2024   14:15



Chapter 15 • Last Change Before Running the Program

● 43

Figure 15.5: Clicking on the "Properties".

Figure 15.6: Choosing the Internet Protocol Version 4 (TCP/IPv4).

This is where we have already set it, but we just wanted to show you, we clicked on "Use 
the following IP address", and I hard coded my IP address, 192.168.1.121, subnet mask by 
default, and its default gateway is 192.168.1.1, as illustrated in Figure 15.7.

Boek Coding Modbus for Arduino-UK 240325.indd   43Boek Coding Modbus for Arduino-UK 240325.indd   43 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 44

Figure 15.7: Setting the Internet Protocol Version 4 (TCP/IPv4) Properties.

All right, so the gateway really does not matter much in this instance, but the IP address is 
very important. So, we are giving the Ethernet interface as where our cable is plugged into 
our laptop which is 192.168.1.121. Remember, every element on a Modbus TCP network is 
uniquely identified by its IP address, so the IP addresses must be unique. So, my laptop is 
configured network-wise, and now we are going to send our application into our Arduino by 
using the verify and upload buttons. All right, so it is compiling and uploading, and done. 
Therefore, we get our "Tank Level: 12 ft" message as shown in Figure 15.8.

Figure 15.8: Getting the "Tank Level: 12 ft" message.

We are going to minimize the program, then we are going to start modscan32.exe. The 
device ID does not matter for the IP address. We are going to click input register, leaving 

Boek Coding Modbus for Arduino-UK 240325.indd   44Boek Coding Modbus for Arduino-UK 240325.indd   44 09-04-2024   14:1509-04-2024   14:15



Chapter 15 • Last Change Before Running the Program

● 45

this as address 101. Now, this modscan.exe uses this offset. If you have enough Modbus 
knowledge, you know that the offset used is one. When you want to read 100, you put 101. 
So, 30,101 is actually 30,100 in the Arduino. It is just a Modbus offset thing, which is quite 
irritating when dealing with Modbus in the field. Next go to the "Connection2 tab and select 
the "Connect" icon as depicted in Figure 15.9.

Figure 15.9: Selecting the "Connect" icon.

Usually, you pick something like a COM port here, but you are going to choose Remote TCP/
IP Server and type in the IP Address of the Arduino as illustrated in Figure 15.10.

Figure 15.10: Setting the "Connection Details".

So, you're telling modscan32.exe that this is the IP address of the Arduino, and this is 
where you will read from. Click on the OK button. There we go, perfection 12, which is tank 
height. So right now, we are reading the input register that we created within the Arduino 
and we are doing so via Modbus TCP as shown in Figure 15.11.

Boek Coding Modbus for Arduino-UK 240325.indd   45Boek Coding Modbus for Arduino-UK 240325.indd   45 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 46

Figure 15.11: Reading the input register with address 100.

So, we have created a brand-new Modbus TCP server. All right, it has one register, but it is 
working. Now have a look at the blinking lights that you are seeing here on the Arduino in 
the Figure 15.12.

Figure 15.12: Blinking lights on the Ethernet Shield.

So, you are seeing those lights going like crazy there. That is the data transmission messages 
that are going back and forth there on the Arduino while the modscan32.exe pulls. Thus, 
we have done it. Now in the next section, we are going to expand our application to holding 
registers, input status registers, and coils.

Boek Coding Modbus for Arduino-UK 240325.indd   46Boek Coding Modbus for Arduino-UK 240325.indd   46 09-04-2024   14:1509-04-2024   14:15



Chapter 16 • Running the Arduino Modbus TCP Server Program

● 47

Chapter 16 • �Running the Arduino Modbus TCP Server 
Program

In the last section, there is one thing that we forgot to mention: make an edit to one of 
the libraries and this must be done before you run the application in the next section. So 
let us look at it here. Go to "Desktop", "Libraries", "Documents", "Arduino", and "libraries" 
and have a look at ModbusIP, and the actual files in it. We are going to concentrate on 
the ModbusIP.h. Open it. You can open it in any text editor that you have. It is an old 
Windows application, for old Windows operating systems. We are going to use one called 
Notepad++, our text editor of preference, as shown in Figure 16.1.

Figure 16.1: Editing ModbusIP.h file with Notepad++.

Now in your file, we want you to remove those comments and then save that file. So, 
when you edit the file, it should look like Figure 16.2. The reason that we have removed 
the comments here and essentially activated the line, TCP_KEEP_ALIVE, is for a particular 
reason that has to with calling a TCP connection.

Figure 16.2: Activating the line, TCP_KEEP_ALIVE.

In Modbus communications, the underlying network connection is what you call a TCP 
connection, and if this line remains commented out, what will happen when we actually 
run the program, and we use modscan32.exe to read data from the Arduino as a Modbus 
TCP server? It will be one. It will do one read, and then the connection will be terminated. 
This TCP_KEEP_ALIVE directive instructs the code in the Arduino to keep the Modbus TCP 
connection alive so that Modbus requests and responses over Modbus TCP can keep going 

Boek Coding Modbus for Arduino-UK 240325.indd   47Boek Coding Modbus for Arduino-UK 240325.indd   47 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 48

until you end the conversation. We shut off the Arduino, that sort of thing. Do this edit, 
remove those comments so that you activate this line. Do this before you verify and upload, 
and do a final upload of the actual code into the Arduino. Now it should be fine with the test 
for the other sections.

Boek Coding Modbus for Arduino-UK 240325.indd   48Boek Coding Modbus for Arduino-UK 240325.indd   48 09-04-2024   14:1509-04-2024   14:15



Chapter 17 • Adding Code to Read a Holding Register

● 49

Chapter 17 • Adding Code to Read a Holding Register

All right, so in the last section, we created a Modbus TCP server with a single register, which 
is an input register, and we read it successfully using the modscan32.exe as a Modbus 
TCP client. Now what we are going to do in this section is include a holding register in this 
application. So as before, we are going to save it as a new application with "File", then 
select "Save as" , and we name it "Serial05" as shown in Figure 17.1.

Figure 17.1: Saving the file as "Serial05".

All right let us get started with making modifications. In our new hypothetical scenario, let 
us imagine that we have a Modbus TCP server. This server has a holding register, which 
functions as an analog output connected to a variable frequency drive (VFD) on a motor. 
To represent the VFD speed, we will declare another integer variable. Additionally, we need 
to include a variable called vfdspeed_old to detect changes in the VFD speed. This variable 
will be used by the application to send a serial message indicating a change in value. Now, 
let's assign an address for the holding register, which we will call vfdspeed_hr. We will 
assign it the value 105, but you can choose any value you prefer. You can refer to Figure 
17.2 for further clarification. Moving on, we need to add mb.addHreg(vfdspeed_hr) to 
our program. This command is for adding the holding register, and you can find all of these 
commands in the libraries provided. We have shared a weblink with you to access these 
libraries, which we recommend marking as favorite. Feel free to explore and read more 
about these commands in detail.

Boek Coding Modbus for Arduino-UK 240325.indd   49Boek Coding Modbus for Arduino-UK 240325.indd   49 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 50

Figure 17.2: Defining vfdspeed, vfdspeed_old and vfdspeed_hr.

So, we show you how to use it practically, and you can always go back and refer to it. 
Now, we have added a holding register. Let us put an initial value for vfdspeed of 150 
RPM. The vfdspeed_old value is also 150 RPM. So, we have set the vfdspeed variable to 
150, and then we take the same value from vfdspeed and put it into our holding register 
location, which is vfdspeed_hr. Just like that, we just added another register, this time a 
holding register, as shown in Figure 17.3. Now let us take care of the visualization. Display 
current values using the function DisplayCurrentValues(). We not only want to display 
the tanklevel, now we want to display the vfdspeed. So, what we are going to do is to add 
a line temp string called "tempstr".

Boek Coding Modbus for Arduino-UK 240325.indd   50Boek Coding Modbus for Arduino-UK 240325.indd   50 09-04-2024   14:1509-04-2024   14:15



Chapter 17 • Adding Code to Read a Holding Register

● 51

Figure 17.3: Adding code to the setup section.

We want to add onto tempstr, including the introduction of a separator, "VFD speed:", 
followed by vfdspeed and "rpm." Consequently, when displayed as illustrated in Figure 
17.4, it should read tank level, distance in feet, separator, VFD speed, and RPM.

Furthermore, we need to modify the function CheckForDataChange(). Our objective is 
not only to monitor changes in tank level but also in vfdspeed. To streamline this process, 
copy and paste. Thank heavens for copy paste. One of Microsoft's greatest inventions. 
Thus, if vfdspeed is not equal to vfdspeed_old, the data has indeed changed. Subsequently, 
we update one to match the other, as showed in Figure  17.5.

Boek Coding Modbus for Arduino-UK 240325.indd   51Boek Coding Modbus for Arduino-UK 240325.indd   51 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 52

Figure 17.4: Adding code to the function DisplayCurrentValues().

Figure 17.5: Adding code to the function CheckForDataChange().

All right, so now there is one last thing that we need to do in this loop here. We have 
the mb.task() responsible for running in Modbus, and following that, we check for data 
changes using the function CheckForDataChange(). What we're going to do is integrate 
the following: vfdspeed is equal to mb.Hreg(vfdspeed_hr), as depicted in Figure  17.6.

Boek Coding Modbus for Arduino-UK 240325.indd   52Boek Coding Modbus for Arduino-UK 240325.indd   52 09-04-2024   14:1509-04-2024   14:15



Chapter 17 • Adding Code to Read a Holding Register

● 53

Figure 17.6: Adding code to the loop section.

Let us understand the purpose of this operation. In addition to the conventional display and 
read process of the polling register using modscan32.exe, we are making modscan32.exe 
to write a new value to this register. When the write occurs, it directly updates the value in 
the memory location, vfdspeed_hr. However, it is important to note that this value doesn't 
automatically transfer to the vfdspeed variable; you need to implement code to manage 
this transition. That is precisely what this segment of code accomplishes.

In essence, during each loop iteration, it retrieves the content from the holding register 
memory location and transfers it to the vfdspeed variable. It is worth mentioning that 
this process isn't necessary for the input register, as writing to an input register is not 
permissible. That sums up the functionality in this section.

Now we will bring up our serial monitor as shown in Figure 17.7, and we click there, upload 
the program, and transfer this application into the Arduino. There we go, "Tank Level: 12 ft 
| VFD speed 150 rpm" as depicted in Figure 17.8.

Boek Coding Modbus for Arduino-UK 240325.indd   53Boek Coding Modbus for Arduino-UK 240325.indd   53 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 54

Figure 17.7: Selecting the "Serial Monitor".

Figure 17.8: Uploading the program.

We have successfully configured our serial display. Now, let us move on to modscan32.
exe. We previously used modscan32.exe to monitor the input register. Now, we'll create a 
new window for the holding register, specifically one register at offset 106, corresponding 
to our vfdspeed_hr address, which we set as 105. After setting up the connection, we click 
"Connect" (Figure 17.9).

Boek Coding Modbus for Arduino-UK 240325.indd   54Boek Coding Modbus for Arduino-UK 240325.indd   54 09-04-2024   14:1509-04-2024   14:15



Chapter 17 • Adding Code to Read a Holding Register

● 55

Figure 17.9: Choosing "Connection" and "Connect" in modscan32.exe.

In the "Connection Details" window, we click on the OK button as depicted in Figure 17.10, 
hoping to see our 150 RPM (Figure 17.11). Now, let us proceed to change this to 200 RPM 
by clicking on the displayed number, initially set at 150. Observe what happens in both the 
serial monitor window and here. Adjust the value to 200 and click on the update button, as 
illustrated in Figure 17.12.

Figure 17.10: Clicking on the "OK" button.

Boek Coding Modbus for Arduino-UK 240325.indd   55Boek Coding Modbus for Arduino-UK 240325.indd   55 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 56

Figure 17.11: Getting our 150 RPM.

Figure 17.12: Clicking on the "Update" button.

As the values are updated, take note of the new line that appears. The application detects 
the change in vfdspeed and executes the DisplayCurrentValues() function again, 
presenting us with 200 RPM, as shown in Figure 17.13.

Boek Coding Modbus for Arduino-UK 240325.indd   56Boek Coding Modbus for Arduino-UK 240325.indd   56 09-04-2024   14:1509-04-2024   14:15



Chapter 17 • Adding Code to Read a Holding Register

● 57

Figure 17.13: Updating and displaying a new line.

If you change this again, perhaps to 160 RPM, you will receive another update, as depicted 
in Figure 17.14. The serial monitor window gives really great feedback on changes in 
register values, allowing you to get a feel of the ongoing processes. In addition to that, 
this information is visible in modscan32.exe, where the changes are reflected. So good! 
We have expanded our application a little further. In the next two sections, we will go into 
input statuses and coils.

Figure 17.14: Updating and displaying a new line.

Boek Coding Modbus for Arduino-UK 240325.indd   57Boek Coding Modbus for Arduino-UK 240325.indd   57 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 58

Chapter 18 • Adding Code to Read an Input Status

All right, so we are moving one step further in this section. We will add an input status, 
single input status to the application. So, go to "File", then select "Save as", and we name 
it "Serial06", as shown in Figure 18.1.

Figure 18.1: Saving the file as "Serial06".

We essentially do something similar to what we did in the last section. We are adding an 
input status, imagining a hypothetical situation where a valve is connected to the Arduino. 
The status of the valve, whether open or closed, is connected via a discrete input or digital 
input to the Arduino. Let us allocate a memory location, named the valvepos_is with value 
110. The valvepos and valvepos_old variables are actually supposed to be of type Boolean, 
as the valve can only have one of two states: on or off, as depicted in Figure 18.2.

Boek Coding Modbus for Arduino-UK 240325.indd   58Boek Coding Modbus for Arduino-UK 240325.indd   58 09-04-2024   14:1509-04-2024   14:15



Chapter 18 • Adding Code to Read an Input Status

● 59

Figure 18.2: Defining valvepos, valvepos_old and valvepos_is.

All right, let us do the work in setup. So, we will use mb.addIsts(valvepos_is). This is a 
command again from the documentation. We will add an input status along with its initial 
value. To initiate this, we will set the valve position to true. Thus, both the valvepos and 
valvepos_old variables will be assigned the value true. Simultaneously, we need to place 
the actual value of the valve position into our memory location, the input status memory 
location, using mb.Ists(valvepos_is, valvepos), as illustrated in Figure 18.3.

Figure 18.3: Adding code to the setup section.

Boek Coding Modbus for Arduino-UK 240325.indd   59Boek Coding Modbus for Arduino-UK 240325.indd   59 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 60

All right let's address the operations within CheckForDataChange and 
DisplayCurrentValues. Now, for the valve position, we want to see something more 
descriptive than a binary one or zero. So, we are going to use a string position, named 
"pos". If valve position is true, then pos is equal to "closed" (indicating that the valve 
is closed). If it is not true, then the valve position is "open", as shown in Figure 18.4. 
considering we are initializing it to true, we should observe it displaying as "closed".

Figure 18.4: Adding code to the function DisplayCurrentValues().

Then we will add some code to the CheckForDataChange() function to account for any 
changes, as depicted in Figure 18.5. What you can do also is physically link a discrete 
input on the Arduino to the valve position, activating it with wires. However, for simulation 
purposes, we will not need to include anything in the loop for transferring any value, as 
we cannot write to an input status; it changes from the actual input side. With these 
modifications, our application has been adjusted accordingly.

Now, we proceed to upload the program to Arduino. Upon completion, we should see 
something on the serial monitor. After uploading, there it is—Tank Level, Speed, and "Valve 
closed" because we initialized the variable to true, as illustrated in Figure 18.6.

Boek Coding Modbus for Arduino-UK 240325.indd   60Boek Coding Modbus for Arduino-UK 240325.indd   60 09-04-2024   14:1509-04-2024   14:15



Chapter 18 • Adding Code to Read an Input Status

● 61

Figure 18.5: Adding code to the function CheckForDataChange().

Figure 18.6: Uploading the program.

Now, let us minimize this program and bring back modescan32.exe, and go through the 
other same process. Go to "File", select "New", then proceed to "Input Status". Set the 
address to 111, aligning with our choice of 110 in the program. Place it there, move to the 
"Connection" tab, and finally, click "Connect", as shown in Figure 18.7.

Boek Coding Modbus for Arduino-UK 240325.indd   61Boek Coding Modbus for Arduino-UK 240325.indd   61 09-04-2024   14:1509-04-2024   14:15

.



Coding Modbus TCP/IP for Arduino

● 62

Figure 18.7: Choosing "Connection" and "Connect" in modscan32.exe.

There we go; you can see it reads "1" because it was initialized to true, as depicted in Figure 
18.8. We are now successfully reading an input status from our Modbus TCP server via our 
modscan32 TCP client. In the next section, we will discuss coils, marking the completion 
of all registers and bringing us to the end of Modbus TCP implementation on the Arduino.

Figure 18.8: Getting the value of "1", closed.

Boek Coding Modbus for Arduino-UK 240325.indd   62Boek Coding Modbus for Arduino-UK 240325.indd   62 09-04-2024   14:1509-04-2024   14:15



Chapter 19 • Adding Code to Read a Coil

● 63

Chapter 19 • Adding Code to Read a Coil

In this section, we are expanding this application one final time, including the coil. 
Remember, there are four main types of memory in any Modbus slave or server: holding 
registers, input registers, input statuses, and coils. Having covered three of them, we will 
now tackle the last one, the coil. Following the same procedures as before, let's consider 
a hypothetical situation where the coil is connected to a pump, controlling it's on and off 
state. When the coil is zero, the pump is off, and when the coil is one, the pump is on. So, 
let's declare a Boolean variable for the pump—pump, using Boolean because, like an input 
status, it can have one of two values, one or zero. Now, we need to allocate a memory 
location for it. Let's call this pump_cl for coil, choosing its value as 115, selected arbitrarily 
as shown in Figure 19.1.

To support this in the code, we add the following in the setup: mb.addCoil(pump_cl). 
Let's give this an initial value of pump equal to false and pump_old equal to false. This 
implies that initially, the pump will be off, having a value of zero, and we must initialize it 
with this value.

Figure 19.1: Defining pump, pump_old and pump_cl.

Again, we have mb.Coil(pump_cl, pump). That command is in the documentation, so 
what we are doing is that we are taking the value of pump which is false, we have initialized 
it, and we are putting it into the memory location allocated for the coil, pump_cl, as depicted 
in Figure 19.2.

Boek Coding Modbus for Arduino-UK 240325.indd   63Boek Coding Modbus for Arduino-UK 240325.indd   63 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 64

Figure 19.2: Adding code to the setup section.

Moving on to the loop section, given that the coil is writable, we need to transfer any value 
written to it by modscan32.exe to the variable. Therefore, we add the following line: pump 
is equal to mb.Coil(pump_cl), as illustrated in Figure 19.03.

Figure 19.3: Adding code to the loop section.

Essentially, if modscan32.exe writes to the pump_cl location and changes the value from 1 
to 0 or 0 to 1, it will be sent into the pump variable, allowing the CheckForDataChange() 

Boek Coding Modbus for Arduino-UK 240325.indd   64Boek Coding Modbus for Arduino-UK 240325.indd   64 09-04-2024   14:1509-04-2024   14:15



Chapter 19 • Adding Code to Read a Coil

● 65

function to carry out its work. Now, with that in place, let us do our magic to the display 
section. We define a string variable called pstat, representing pump status. If pump is 
equal to true, then pstat is equal to "Pump is in run mode". If it is not, then pstat is equal 
to "Pump is stopped", as shown in Figure 19.4. This will display "Pump run" or "Pump 
stop" based on the variable. Of course, we also need to check for data change in the 
CheckForDataChange() function, as depicted in Figure 19.5.

Figure 19.4: Adding code to the function DisplayCurrentValues().

Figure 19.5: Adding code to the function CheckForDataChange().

Boek Coding Modbus for Arduino-UK 240325.indd   65Boek Coding Modbus for Arduino-UK 240325.indd   65 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 66

We are going to save this application as "Serial07", as illustrated in Figure 19.6. We should 
have done that before, but do not forget to do it. So, keep your application separate.

Figure 19.6: Saving the file as "Serial07".

All right, so let us click upload and the application that we have just written is uploading to 
the Arduino. Let us see what we see on the serial monitor. There's Tank Level, VFD speed, 
Valve and Pump. As expected, the pump is in stop mode because we initialized it to false, 
as shown in Figure 19.7.

Figure 19.7: Uploading the program.

All right let us close this down for now and let us go to modscan32.exe. Going to "File"  
"New", we have the coil already chosen with the address 115. However, we will select 116 
due to the offset. We want to read a single coil, then proceed to the "Connection" tab and 

Boek Coding Modbus for Arduino-UK 240325.indd   66Boek Coding Modbus for Arduino-UK 240325.indd   66 09-04-2024   14:1509-04-2024   14:15



Chapter 19 • Adding Code to Read a Coil

● 67

click on "Connect", as depicted in Figure 19.8.

Figure 19.8: Choosing "Connection" and "Connect" in modscan32.exe.

We are reading zero there because it was initially set to false as shown in Figure 19.9.

Figure 19.9: Getting the value of "0", stop.

We are going to double click and change it to one, as depicted in Figure 19.10. Watch what 
happens here; observe the serial monitor. As soon as it changes to one, a new line appears 
with the tank level, VFD speed, valve closed, and the pump now in run mode, as illustrated 
in Figure 19.11.

Boek Coding Modbus for Arduino-UK 240325.indd   67Boek Coding Modbus for Arduino-UK 240325.indd   67 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 68

Figure 19.10: Changing the coil value.

Figure 19.11: Change in modscan32 and serial communication window.

That is very cool. We can change the RPM as well and we will update it to 230 RPM. Change 
this back to stop mode, then click update. You will see "Stop" occurring right there, as 
shown in Figure 19.12, Figure 19.13, Figure 19.14, and Figure 19.15, respectively.

Boek Coding Modbus for Arduino-UK 240325.indd   68Boek Coding Modbus for Arduino-UK 240325.indd   68 09-04-2024   14:1509-04-2024   14:15



Chapter 19 • Adding Code to Read a Coil

● 69

Figure 19.12: Changing the holding register RPM value.

Figure 19.13: Change in modscan32 and serial communication window.

Figure 19.14: Changing again the coil value.

Boek Coding Modbus for Arduino-UK 240325.indd   69Boek Coding Modbus for Arduino-UK 240325.indd   69 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 70

Figure 19.15: Change in modscan32 and serial communication window.

So, we have done it! Now, we have a Modbus TCP server that encompasses all four types of 
registers. We can read these registers and write to the holding registers and coils. That is a 
full Modbus TCP server, and you can take this code now, port it to your own application, and 
customize it. It serves as an excellent starting point for your Modbus TCP implementation. 

Boek Coding Modbus for Arduino-UK 240325.indd   70Boek Coding Modbus for Arduino-UK 240325.indd   70 09-04-2024   14:1509-04-2024   14:15



Chapter 20 • Understanding the Modbus TCP Client Task

● 71

Chapter 20 • Understanding the Modbus TCP Client Task

All right, so we are on to a brand-new section. In the previous two sections, what we 
did was show how to configure the Arduino as a Modbus TCP server. Looking back at the 
diagram in Figure 5.1, the Arduino Uno, together with the Ethernet shield, was configured 
as a Modbus TCP server. On the laptop, we used modscan32.exe to be a Modbus TCP client. 
In the world of Modbus TCP/IP, the client is like the master. So, what modscan32.exe did 
was, through the network, it read values from the Arduino Uno. We had set up the tank 
level as an input register, vfdspeed as a holding register, valvepos as an input status, and 
pump as a coil, as depicted in Figure 20.1.

Figure 20.1: Defining input register, holding register, input status and coil.

Thus, a Modbus TCP server obviously must have registers in it to be read and written to. 
We use modscan32.exe to both read and write values. Every time we wrote a value and it 
changed, we use the serial monitor, the red line in Figure 97, to get feedback that there was 
a change. So, the Arduino sent a message through the programming cable, which appeared 
on the serial monitor, providing feedback.

But the real core of the network is essentially the Ethernet network. Now, in this section, we 
are going to do the opposite. The Arduino Uno will be the Modbus TCP client, and the laptop 
will be the Modbus TCP server. We will run modsim32.exe as the Modbus TCP server and 
configure registers within it. In the Arduino Uno (the TCP client), we will write code to read 
data from the laptop, acting as the Modbus TCP server, and record that data. Additionally, 
it will provide feedback to the laptop's serial monitor, confirming that the Arduino Uno is 
indeed reading the values from modsim32.exe.

Remember the red line shown in Figure 97. This programming cable is using the serial 
function just for feedback to do our testing. Now we will take our final application and 
modify it. So, we are going to leave the tanklevel, vfdspeed, valvepos and pump registers. 
However, those will not be registers in a Modbus TCP server. We are going to leave them 
as variables in the to store the values read from the Modbus TCP server on the laptop. 
Therefore, we will leave all of these intact, including the serial display, but change the 
purpose of these variables. They will now store the data that we will read from our Modbus 
TCP server. This is the goal of this section. 

Boek Coding Modbus for Arduino-UK 240325.indd   71Boek Coding Modbus for Arduino-UK 240325.indd   71 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 72

Chapter 21 • �Configuring Modbus TCP Client Library in 
the Arduino IDE

In the last two sections where we configured the Arduino and the Ethernet shield together 
as a Modbus TCP server, we used a specific library. Before that, we had you download two 
libraries—one as an attachment and the other from an external link. For this section, we 
will be using the second library, the one you downloaded directly and was attached as a 
resource. Upon downloading and extracting the files, you would have obtained this folder, 
as we walked you through earlier, named "MgsModbus". This is the library we will use to 
implement the Modbus TCP client on the Arduino, as seen in our directory in Figure 21.1.

Figure 21.1: The directory of the "MgsModbus" folder.

So, you are going to copy this entire folder here, and then follow the same steps as before. 
Navigate to "Desktop", "Libraries", "Documents", "Arduino", "libraries", and paste it into 
the "libraries" folder, as depicted in Figure 21.2.

Figure 21.2: Doing copy and paste the "MgsModbus" folder.

This is what you should do. You should have a library called "MgsModbus" with these two 
files in it— "MgsModbus.h" and "MgsModbus.cpp". You should have those two files in your 
folder, ready to be used in our application. In the next section, we will show you how to 
include the new library into your code file and then use it from there by calling functions 
and using properties.

Boek Coding Modbus for Arduino-UK 240325.indd   72Boek Coding Modbus for Arduino-UK 240325.indd   72 09-04-2024   14:1509-04-2024   14:15



Chapter 22 • Removing the Modbus TCP Server Code from the Program

● 73

Chapter 22 • �Removing the Modbus TCP Server Code 
from the Program

What you are seeing here is the application from the last section, named "Serial07". We are 
going to take this application, remove the code that implements the Modbus TCP server, and 
replace it with new code that implements the Modbus TCP client. However, as mentioned 
before, we will keep our tanklevel, vfdspeed, valvepos, and pump variables. We will do this 
gradually because modifying code can be tricky, and it's easy to forget or delete something 
important. Let's go step by step. This might take a couple of sections.

The first thing we are going to do is remove these two libraries, as shown in Figure 22.1. 
These libraries, combined into one, were downloaded to implement the Modbus TCP server. 
We no longer need them.

Figure 22.1: Deleting the Modbus TCP server libraries.

We are going to delete that and save the program as "Serial20" (Figure 22.2).

Figure 22.2: Saving the file as "Serial20".

Now we are going to include the copied library in the previous section. Go to "Sketch", then 
"Include Library", and select "MgsModbus", as illustrated in Figure 22.3.

Boek Coding Modbus for Arduino-UK 240325.indd   73Boek Coding Modbus for Arduino-UK 240325.indd   73 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 74

Figure 22.3: Selecting the MgsModbus library.

It is included right there. We have essentially removed the library responsible for Modbus 
TCP server and included the one that handles Modbus TCP client. These registers are no 
longer necessary because they allocated spaces for holding registers, input registers, etc., 
which are not needed for a Modbus TCP client, as shown in Figure 22.4. So we are going 
to take out the object "ModbusIP mb" because we do not need it as it was a Modbus TCP 
server object as depicted in Figure 22.5.

Boek Coding Modbus for Arduino-UK 240325.indd   74Boek Coding Modbus for Arduino-UK 240325.indd   74 09-04-2024   14:1509-04-2024   14:15



Chapter 22 • Removing the Modbus TCP Server Code from the Program

● 75

Figure 22.4: Deleting Modbus TCP server registers.

Figure 22.5: Deleting the object "ModbusIP mb".

Let us see what else we do not need. We can remove the MAC and IP configurations 
(Figure 22.6), as well as the registers related to creating (Figure 22.7). The initialization of 
variables can stay for now, so let us leave that. Remove the unnecessary codes related to 
registers, as shown in Figure 22.8.

Boek Coding Modbus for Arduino-UK 240325.indd   75Boek Coding Modbus for Arduino-UK 240325.indd   75 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 76

Figure 22.6: Deleting MAC and IP configurations.

Figure 22.7: Removing registers related to creating.

Boek Coding Modbus for Arduino-UK 240325.indd   76Boek Coding Modbus for Arduino-UK 240325.indd   76 09-04-2024   14:1509-04-2024   14:15



Chapter 22 • Removing the Modbus TCP Server Code from the Program

● 77

Figure 22.8: Removing codes related to registers.

We are going to leave our DisplayCurrentValues() function right there. Let us go further 
down to our loop section. We do not need the codes illustrated in Figure 22.9 and because 
this code implements a Modbus TCP server. 

Figure 22.9: Removing codes from the loop section.

Boek Coding Modbus for Arduino-UK 240325.indd   77Boek Coding Modbus for Arduino-UK 240325.indd   77 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 78

So, we leave the functions CheckForDataChange() and DisplayCurrentValues(). We 
have essentially removed the code that implemented the Modbus TCP server. In the next 
section, we are going include the code that implements the Modbus TCP client.

Boek Coding Modbus for Arduino-UK 240325.indd   78Boek Coding Modbus for Arduino-UK 240325.indd   78 09-04-2024   14:1509-04-2024   14:15



Chapter 23 • Setup Codes to Support the TCP Client Task

● 79

Chapter 23 • �Setup Codes to Support the TCP Client 
Task

In the previous section, we included our new Modbus TCP client library and removed the 
code that implemented the Modbus TCP server. Now, we are ready to start including some 
code that supports Modbus TCP client.

Before the setup, declare an MgsModbus object called "Mb". In the previous code, we had 
to declare a Modbus object as well. You are declaring an object that encapsulates all the 
features of the library. We will declare another variable, just a normal integer and initialize 
it to zero. We are going to call this "accumulator, seconds counter". For now, we will leave 
that there and show you what this does later on when we are writing code to do the actual 
polling. In addition to that, we are going to paste in some code as shown in Figure 23.1, 
and we will explain it.

Figure 23.1: Adding codes to implement the TCP client.

So, these codes were taken from one of the examples from the downloaded library, which 
is myarduinoprojects.com/modbus.html as depicted in Figure 23.2.

Figure 23.2: Adding IP address codes from the examples.zip.

Boek Coding Modbus for Arduino-UK 240325.indd   79Boek Coding Modbus for Arduino-UK 240325.indd   79 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 80

As previously mentioned, the raw library did not function as expected and required 
modifications. However, helpful code examples can be found in the example.zip file provided 
by the library. Despite encountering challenges, useful code was obtained from this source. 
In the code snippet (Figure 23.3), these commands are related to declaring variables for 
the Ethernet library, rather than specifically for the MgsModbus library.

We have declared a MAC address for the Ethernet interface and set the IP address. We 
declare a variable which is the IP address. The IP address of the Arduino was 192.168.1.20 
and the laptop one was 192.168.1.1.21. So, we are going to stick with that convention, and 
we define a gateway and subnet and so on. 

Now let's move into the sort of setup area and we are going to put a statement in there called 
ethernet.begin(mac, ip, gateway, subnet). This initializes the network connections, 
MAC, IP, gateway and subnet. Moreover, we put here the initialization of ethernet shield. 

Now, let us observe how each library is used differently with various commands. In the next 
step, we will paste another statement in here, as illustrated in Figure 23.3. This statement 
declares the server's IP address that we will be polling. In this case, the laptop has the 
IP address of the server, which is 192.168.1.21. So, we define "Mb" as a Modbus object, 
specifying the server we will be interrogating for values through polling. The statement 
"Mb.remServerIP" is an array, and we assign the server's IP address to positions zero, one, 
two, and three, as shown in Figure 23.3.

Figure 23.3: Adding codes to the setup section.

It is just how it is described; this is how it is done with this library. We have made some 
progress, though it's advisable to save when we have a completed, working version. 

Boek Coding Modbus for Arduino-UK 240325.indd   80Boek Coding Modbus for Arduino-UK 240325.indd   80 09-04-2024   14:1509-04-2024   14:15



Chapter 23 • Setup Codes to Support the TCP Client Task

● 81

Currently, if you download this, it will not function as it lacks all the necessary code. While 
we've added some code related to the Modbus TCP client, particularly in the setup area and 
just before that, there's still no code for the actual polling of registers in the Modbus TCP 
server. We will get into that code in the next section.

Boek Coding Modbus for Arduino-UK 240325.indd   81Boek Coding Modbus for Arduino-UK 240325.indd   81 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 82

Chapter 24 • �Writing Codes to Poll a Single Register in 
Modbus TCP Server

In the last section, we introduced some code to support the actual polling of the Modbus 
TCP server by this Modbus TCP client. This included network support and the IP address of 
the server (modsim32.exe) we'll be polling, running on the laptop. Now in this section, we 
want to get into the guts of what we have to put in the loop. Specifically, we will add code 
to pull a single input register from modsim32.exe. We are starting small and building up. 
We will create a function called Poller() beneath the loop function. The Poller() function 
will be called every time the loop executes, and within it, we will include the function 
Mb.MbmRun() as depicted in Figure 24.1.

Figure 24.1: Adding Poller() and Mb.MbmRun() in the loop section.

So MbmRun is essentially the function that runs and implements Modbus TCP client 
services. Thus, this is the core of the system implemented by the library that we are using. 
Once this executes, Modbus TCP client will execute. What Poller() function will do is sort 
of set up what registers are to be pulled every time this loop runs. We will define this 
function, Poller(), then we are going to write some initial code and explain what it does 
afterwards. Similarly, the accumulator is incremented by one every time. If the accumulator 
equals 3000 and subsequently, if the accumulator equals 3200, a specific action happens. 
Following this action, the accumulator is set to zero, as illustrated in Figure 24.2.

Boek Coding Modbus for Arduino-UK 240325.indd   82Boek Coding Modbus for Arduino-UK 240325.indd   82 09-04-2024   14:1509-04-2024   14:15



Chapter 24 • Writing Codes to Poll a Single Register in Modbus TCP Server

● 83

Figure 24.2: Defining the Poller() function.

Let me explain what this does. Remember, loop just executes as fast as it can. So, when it 
hits the Poller() function, it will execute this code and this delay actually stops execution 
for one millisecond, delay(1), it stops the code and causes the processor to wait. So, 
every time this comes in here, there is a delay for one millisecond. We use an accumulator 
(acc) to record that delay. The accumulator is incremented by one each time, counting up 
to 3000. This piece of code checks if the accumulator equals 3000, then it does something. 
When it reaches 3200, it does something else and resets the accumulator, like resetting a 
timer. This is how we implement a three-second poll, doing something every three seconds.

What we must do this way is because the way that this library is implemented is not the 
most efficient. The MbmRun function needs to run as quickly as possible, and we are 
introducing one-millisecond delays in between. So, we have to make adjustments here 
and there. What does that "something" look like? Well, in this case, the "something" is 
represented by the statement Mb.Req(MB_FC_READ_INPUT_REGISTER, 100, 1, 0) with 
acc = 3000. Let us break down what this is doing. This statement is actually defined within 
the library, and we'll show you where it is defined. This means it is a command to read 
an input register. The value after, 100, represents the register to read. It will be an input 
register, such as 30,000, 30,001, 30,002, and so on. You do not need to put the 30,000; 
just register 100 is sufficient, representing 30,100. The next value, 1, indicates the number 
of registers to read, and the zero is a default, defining the area in which the return data is 
stored.

Here is how it works: when the accumulator hits 3000 after three seconds, this command 
is set up to request reading an input register. Then, MbmRun executes it, and it must wait 
for the TCP server to send a response. Between this point and there are 200 milliseconds 

Boek Coding Modbus for Arduino-UK 240325.indd   83Boek Coding Modbus for Arduino-UK 240325.indd   83 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 84

(0.2 seconds). After that wait, it checks to see what data is received, and the data is stored 
in the array MbData. The first element of this array, MbData[0], is the data received. Since 
we put zero there in Mb.Req, it corresponds to the first element, MbData[0]. Therefore, 
MbData serves as our return value, and we store it in the variable tanklevel, as shown in 
Figure 24.3.

Everything else happens from there. In the 'poll' function, we've created a sort of timer, 
and these are the commands responsible for reading input registers and retrieving the 
data, subsequently placing it in the designated variables. We know that it might seem a bit 
complex at first, but as we delve into more projects, you will become more accustomed to 
it. We will continue to expand this program in future sessions. For now, let us conclude here. 
In the next section, we will proceed to test this. This program, as it stands, is complete by 
itself. We will save it, verify it, compile it, upload it to the Arduino, and conduct tests.

Figure 24.3: Completed Poller() function.

Boek Coding Modbus for Arduino-UK 240325.indd   84Boek Coding Modbus for Arduino-UK 240325.indd   84 09-04-2024   14:1509-04-2024   14:15



Chapter 25 • Testing the Modbus TCP Client Program

● 85

Chapter 25 • Testing the Modbus TCP Client Program

So, we have come to the best part, testing the code. Thus, what we are going to do is first 
set up modsim32.exe, which is our Modbus TCP server. We are going to create this one 
input register, address 101. We are using 101 instead of 100 because of the offset that 
modsim32.exe has. Modsim32.exe has the same sort of offset as modscan32.exe because 
it is made by the same manufacturers. Remember, in our code, we are reading register 
100, so we are using 101 to account for the offset, as shown in Figure 25.1. Let's set the 
initial value of the tank level to 12, just for demonstration, as depicted in Figure 25.2. Now, 
with modsim32.exe set up let's start our serial monitor window and position it accordingly. 
We will then click "Connect" as a Modbus TCP server, as illustrated in Figure 25.3.

Figure 25.1: Setting input register in the modsim32.exe.

Figure 25.2: Updating the input register value.

Boek Coding Modbus for Arduino-UK 240325.indd   85Boek Coding Modbus for Arduino-UK 240325.indd   85 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 86

Figure 25.3: Selecting connect as Modbus TCP server.

Next, we are going to send our program to the Arduino by using the upload button. 
Therefore, it is compiling successfully, then it is uploading. We have the tank level, we have 
the VFD Speed, Valve and Pump just like last time, as depicted in Figure 25.4. So, we are 
going to change 12 ft to 8 ft and see what happens. There we go, it works. The tank level 
is now 8 ft as shown in Figure 25.5 and Figure 25.6, respectively.

Figure 25.4: Register values just like last time.

Boek Coding Modbus for Arduino-UK 240325.indd   86Boek Coding Modbus for Arduino-UK 240325.indd   86 09-04-2024   14:1509-04-2024   14:15



Chapter 25 • Testing the Modbus TCP Client Program

● 87

Figure 25.5: Updating value of the tank level.

Figure 25.6: Changing value after updating the tank level value.

So, what just happened there? We changed the value to 8. Remember the three-second 
interval. Poll, the register got it into its tank level memory, recognized a change, and then 
displayed it on our serial monitor right there. If we change the tank level value to 10 it will 
change to 10, as illustrated in Figure 25.7 and Figure 25.8, respectively.

Boek Coding Modbus for Arduino-UK 240325.indd   87Boek Coding Modbus for Arduino-UK 240325.indd   87 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 88

Figure 25.7: Updating value of the tank level.

Figure 25.8: Changing value after updating the tank level value.

So, we are getting instant feedback, and we know our code is working. We can read an 
input register. Our Modbus TCP client is doing what it is supposed to do, and so, it works.

Boek Coding Modbus for Arduino-UK 240325.indd   88Boek Coding Modbus for Arduino-UK 240325.indd   88 09-04-2024   14:1509-04-2024   14:15



Chapter 26 • Writing Codes to Read the other Modbus Register Types

● 89

Chapter 26 • �Writing Codes to Read the other Modbus 
Register Types

In the last section, we successfully tested this application that you are seeing here, " 
Serial20", and we read input register value from modsim32.exe. In this section, what 
we are going to expand the Poller() function to read the remaining registers: a holding 
register, an input register, and a coil register. This way, you would have an idea of how to 
handle all four types of memory locations. 

We are going to add a little comment here, "read input register", and this would be for the 
tank level. After that, we will read the holding register, which is the vfdspeed. We are going 
to quickly cut and paste some code and explain what it does. It is very similar to the one 
before, as shown in Figure 26.1.

Figure 26.1: Adding codes to read holding register.

If acc is equal to 4000, at 3 seconds, it sends a message. At 3.2 seconds, it checks to see 
if the data is received. We should remove the acc = 0 command in the read input register 
section. Then, at 4 seconds, it sends the read holding register command. Again, we will 
explain all these terms, MB_FC_READ_INPUT_REGISTER and MB_FC_READ_REGISTERS in 
a subsequent section. Right now, these are built-in commands in the library, and we are 
using address 105, keeping with the convention we were using before. So, this is really 
40,105, and 0.2 seconds later, we get the vfdspeed, from MbData. Now we are going to 
read input status, which will be our valvepos. Since this is a status, which is true or false, 
we have to translate the data that we get back to true or false. Let us show you how we 
are going to do that. 

Boek Coding Modbus for Arduino-UK 240325.indd   89Boek Coding Modbus for Arduino-UK 240325.indd   89 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 90

At the 5-second mark, we set to zero our buffer that receives the data and we send a 
request to read the discrete input. We are going to make that as 110 and keeping the 
convention before. So, this will be like 10,110. 200 milliseconds later, which is 0.2 of a 
second later, we check for data. But in this case, if the MbData[0] is equal to 1, as in binary 
1, that means it is true and valve position is true; else valve position is false. Thus, we just 
translate the data received, which is a binary 1 or 0, into true or false as depicted in Figure 
26.2.

Figure 26.2: Adding codes to read input status.

Finally, we have read coil, which is our pump, and we are going to paste the codes in 
there. As you can see in Figure 26.3, it is very similar and we are using our convention. 
We are going up to 115 as the address of the register of the coil and we are up to the six 
second mark. 200 milliseconds later, we read and do the same thing; we test MbData. If 
it is one, pump is true, if not false. As this is the last read that we do in this cycle, we set 
acc back to zero. We wait three seconds again, before we restart the polling once again. 
That is essentially it. We have included now reads for the holding register and input status 
and a coil.

Boek Coding Modbus for Arduino-UK 240325.indd   90Boek Coding Modbus for Arduino-UK 240325.indd   90 09-04-2024   14:1509-04-2024   14:15



Chapter 26 • Writing Codes to Read the other Modbus Register Types

● 91

Figure 26.3: Adding codes to read coil.

In the next section, we are going to compile, upload and test them.

Boek Coding Modbus for Arduino-UK 240325.indd   91Boek Coding Modbus for Arduino-UK 240325.indd   91 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 92

Chapter 27 • Testing the Modbus TCP Client Program

In this section we test the application of your program within a previous section. We have 
it open here and it has been saved as Serial21. What we are going to do now is execute 
the modsim32.exe. We set up the registers that are to be read. The first one is our input 
register, which is 12, the default value. We use default values from the code here and add 
them from "File  New Section". The next one is holding register, with address 105, so we 
input 106 due to the offset, setting the initial value at 150. That is our holding register. Next 
is our input status with its value one. We will make it 111 because of the offset and set it 
as true. So, it will start at one. When we are testing it, we can actually see the changes 
happening. Let's go finally to the coil, which was 115. It will be 116 because of the offset. 
Its default is false which is zero. Now we are going to "Connection  Connect Modbus TCP 
Server", as shown in Figure 27.1.

Figure 27.1: Choosing connection, connect Modbus TCP server.

Now that we have modsim32.exe set up and connected, with our registers ready for 
reading, the setup is complete. Next, we will upload the application to the Arduino. As 
shown in Figure 27.2, the download to the Arduino is successful.

Boek Coding Modbus for Arduino-UK 240325.indd   92Boek Coding Modbus for Arduino-UK 240325.indd   92 09-04-2024   14:1509-04-2024   14:15



Chapter 27 • Testing the Modbus TCP Client Program

● 93

Figure 27.2: Uploading the application into the Arduino.

We have got the initial serial message right there, and we will change some values and see 
what happens. We change the input register value to 8 as illustrated in Figure 27.3.

Figure 27.3: Changing the input register value to 8.

We should see a message there coming up and tank levels now is 8 feet as shown in Figure 
27.4.

Boek Coding Modbus for Arduino-UK 240325.indd   93Boek Coding Modbus for Arduino-UK 240325.indd   93 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 94

Figure 27.4: A new message in the serial window.

Let us change the rpm from 150 to 200. Go in the serial window as depicted in Figure 27.5 
and Figure 27.6, respectively.

Figure 27.5: Changing the rpm from 150 to 200.

Figure 27.6: A new message in the serial window.

Boek Coding Modbus for Arduino-UK 240325.indd   94Boek Coding Modbus for Arduino-UK 240325.indd   94 09-04-2024   14:1509-04-2024   14:15



Chapter 27 • Testing the Modbus TCP Client Program

● 95

We will change the valve from closed to open, meaning one to zero. Valve is now open as 
illustrated in Figure 27.7 and Figure 27.8, respectively.

Figure 27.7: Changing the valve from closed to open.

Figure 27.8: A new message in the serial window.

Let us change the coil status, transitioning the pump from stop to run, and there we go—
now in the run mode as shown in Figure 27.9 and Figure 27.10 respectively. Thus, we have 
confirmed that our Modbus TCP server is successfully reading all four registers, including 
input register, holding register, input status, and coil status. With this accomplishment, our 
Modbus TCP client is now capable of interfacing with all four types of registers implemented 
in the Arduino. You can then take this code and use it in your own applications. You can 
read more registers, more certain types of registers. You have the core base code that you 
can use.

Boek Coding Modbus for Arduino-UK 240325.indd   95Boek Coding Modbus for Arduino-UK 240325.indd   95 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 96

Figure 27.9: Changing the coil status, the pump from stop to run.

Figure 27.10: A new message in the serial window.

Boek Coding Modbus for Arduino-UK 240325.indd   96Boek Coding Modbus for Arduino-UK 240325.indd   96 09-04-2024   14:1509-04-2024   14:15



Chapter 28 • The TCP/IP communication between two Arduino Uno boards

● 97

Chapter 28 • �The TCP/IP communication between two 
Arduino Uno boards

In this section, we showcase a project that illustrates how Arduino UNO boards can establish a 
connection and communicate using the TCP/IP protocol. This project highlights the capability 
of Arduino boards to communicate seamlessly over an Ethernet network. One Arduino board 
is configured as a client, while the other operates as a server. The client board transmits 
commands to the server board, instructing it to toggle the LED state between on and off. 
The server board responds accordingly to the received commands. This project is a great 
opportunity to gain experience about network communication and explore the capabilities of 
Arduino boards. An overview and block diagram of the project are shown in the Figure 28.1. 

Figure 28.1: An overview and block diagram of the project.

The Arduino codes for Arduino board #1 and Arduino board #2 are as follows.

Arduino Code for Arduino #1:
#include <ezButton.h>
#include <SPI.h>
#include <Ethernet.h>
const int BUTTON_PIN = 7;
const int serverPort = 4080;
ezButton button(BUTTON_PIN);  // create ezButton that attach to pin 7;
byte mac[] = {0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x03};
IPAddress serverAddress(192, 168, 0, 180);
EthernetClient TCPclient;
void setup() {
  Serial.begin(9600);
  button.setDebounceTime(50); // set debounce time to 50 milliseconds
  Serial.println("ARDUINO #1: TCP CLIENT + A BUTTON/SWITCH");
  // Initialize Ethernet Shield:
  if (Ethernet.begin(mac) == 0)
    Serial.println("Failed to configure Ethernet using DHCP");
  // connect to TCP server (Arduino #2)
  if (TCPclient.connect(serverAddress, serverPort))

Boek Coding Modbus for Arduino-UK 240325.indd   97Boek Coding Modbus for Arduino-UK 240325.indd   97 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 98

    Serial.println("Connected to TCP server");
  else
    Serial.println("Failed to connect to TCP server");
}
void loop() {
  button.loop(); // MUST call the loop() function first
  if (!TCPclient.connected()) {
    Serial.println("Connection is disconnected");
    TCPclient.stop();
    // reconnect to TCP server (Arduino #2)
    if (TCPclient.connect(serverAddress, serverPort))
      Serial.println("Reconnected to TCP server");
    else
      Serial.println("Failed to reconnect to TCP server");
  }
  if (button.isPressed()) {
    TCPclient.write('1');
    TCPclient.flush();
    Serial.println("- The button is pressed,  sent command: 1");
  }
  if (button.isReleased()) {
    TCPclient.write('0');
    TCPclient.flush();
    Serial.println("- The button is released, sent command: 0");
  }
}

Arduino Code for Arduino #2:
#include <SPI.h>
#include <Ethernet.h>
const int LED_PIN = 7;
const int serverPort = 4080;
byte mac[] = {0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x02};
EthernetServer TCPserver(serverPort);
void setup() {
  Serial.begin(9600);
  pinMode(LED_PIN, OUTPUT);
  Serial.println("ARDUINO #2: TCP SERVER + AN LED");
  // Initialize Ethernet Shield:
  if (Ethernet.begin(mac) == 0)
    Serial.println("Failed to configure Ethernet using DHCP");
  // Print your local IP address:
  Serial.print("TCP Server IP address: ");
  Serial.println(Ethernet.localIP());
  Serial.println("-> Please update the serverAddress in Arduino #1 code");
  // Listening for a TCP client (from Arduino #1)
  TCPserver.begin();

Boek Coding Modbus for Arduino-UK 240325.indd   98Boek Coding Modbus for Arduino-UK 240325.indd   98 09-04-2024   14:1509-04-2024   14:15



Chapter 28 • The TCP/IP communication between two Arduino Uno boards

● 99

}
void loop() {
  // Wait for a TCP client from Arduino #1:
  EthernetClient client = TCPserver.available();
  if (client) {
    // Read the command from the TCP client:
    char command = client.read();
    Serial.print("- Received command: ");
    Serial.println(command);
    if (command == '1')
      digitalWrite(LED_PIN, HIGH); // Turn LED on
    else if (command == '0')
      digitalWrite(LED_PIN, LOW);  // Turn LED off
    Ethernet.maintain();
  }
}

In summary, the first Arduino code monitors the button state and sends commands to the 
second Arduino over Ethernet. The second Arduino code listens for incoming connections 
and reads the commands received, controlling the LED based on the command. The first 
code uses the ezButton library and TCPclient.write() function, while the second code uses 
the EthernetServer class and EthernetClient.read() function. The LED state is controlled 
using the digitalWrite() function.

Boek Coding Modbus for Arduino-UK 240325.indd   99Boek Coding Modbus for Arduino-UK 240325.indd   99 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 100

Chapter 29 • �Modbus TCP/IP Temperature Control  
using WinCC SCADA

Currently, the use of Arduino in supervisory control and data acquisition (SCADA) systems 
has become popular for small-scale control and monitoring applications in various industries. 
There are multiple approaches to implement Arduino SCADA, and one method involves 
using the Modbus TCP/IP communication protocol. In this section, we will explore a liquid 
temperature control system that incorporates an Arduino board connected to WinCC SCADA 
via Modbus TCP/IP. In the following steps, we will guide you through the implementation 
of this project, providing you with insights on how to use Modbus protocol to create an 
Arduino-based SCADA system. To better understand the system, please refer to Figure 
29.1, which depicts the schematic diagram.

Figure 29.1: The schematic diagram for this project.

In this project, we will use a heating element, specifically a Peltier module, to maintain the 
temperature of a liquid. The temperature of the liquid will be kept within a range of 40 to 
47 degrees Celsius. The Peltier module is attached to the bottom of a pot that contains 
the liquid. To achieve this, the Peltier module will be turned on by the Arduino's digital 
output when the liquid temperature falls below 40 degrees Celsius. Conversely, when the 
temperature rises above around 47 degrees, the Peltier module will be turned off. This 
process will continue until a stop command is received from the SCADA interface. 

The LM35 temperature sensor is used to detect the temperature of the liquid, and an 
additional temperature indicator is used to locally monitor the temperature. To control and 
monitor this temperature control operation with the Arduino, a suitable Modbus Ethernet 
shield is plugged into the Arduino Uno microcontroller. The communication between the 
Arduino and the SCADA interface is established using the Modbus protocol. Two variants of 
Modbus protocol are utilized: Modbus RTU protocol is used for serial network communication, 

Boek Coding Modbus for Arduino-UK 240325.indd   100Boek Coding Modbus for Arduino-UK 240325.indd   100 09-04-2024   14:1509-04-2024   14:15



Chapter 29 • Modbus TCP/IP Temperature Control using WinCC SCADA

● 101

and Modbus TCP/IP protocol is used for Ethernet network communication, as shown in 
Figure 29.2.

Figure 29.2: Communication for Arduino with the SCADA interface.

This project uses the Modbus TCP/IP protocol for communication between the Arduino and 
the SCADA interface. To establish this communication, an Ethernet shield is connected to 
the Arduino Uno microcontroller, and an Ethernet cable is used to connect the Arduino to 
the computer. The Arduino utilizes the Modbus protocol to transmit input/output data to 
the SCADA interface, so it is necessary to upload the Modbus library to the Arduino board 
to enable communication with the SCADA interface using the Modbus protocol.

Now, let's move on to the coding for the Arduino. If we examine the data access mechanism 
between the Arduino and the SCADA interface, we can observe that Modbus TCP/IP is 
used as the data communication protocol. In Modbus TCP/IP, data sharing between the 
Arduino and the SCADA client occurs on a client/server model. In this setup, the Arduino 
is configured as the server or slave, while the SCADA host acts as the client or master, as 
shown in Figure 29.3.

Figure 29.3: The client/server model in Modbus TCP/IP.

The Modbus TCP/IP protocol utilizes a standardized form of data transmission known as 
an application protocol, which operates on an Ethernet physical network. It is important to 
use an Ethernet crossover cable when physically connecting an Arduino to a PC. To begin, 
you will need to include two libraries in the Arduino IDE. To do this, navigate to the Sketch 

Boek Coding Modbus for Arduino-UK 240325.indd   101Boek Coding Modbus for Arduino-UK 240325.indd   101 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 102

menu, select "Include Library," and then choose "Add .zip Library" as shown in Figure 
29.4. In the dialog box that appears, locate the desired library file on your desktop. There 
are two library files available in zip format within this folder. You can now add these two 
libraries to the Arduino IDE from the dialog box shown in Figure 29.5. These libraries can 
be downloaded from online resources.

Figure 29.4: Adding zip library files.

Figure 29.5: Adding two libraries into Arduino IDE.

If we proceed to look at the coding for Arduino, we will see that the coding has been started 
with a number of library headers as shown in Figure 29.6.

Boek Coding Modbus for Arduino-UK 240325.indd   102Boek Coding Modbus for Arduino-UK 240325.indd   102 09-04-2024   14:1509-04-2024   14:15



Chapter 29 • Modbus TCP/IP Temperature Control using WinCC SCADA

● 103

Figure 29.6: The coding for Arduino.

The first two libraries enable Arduino to work with the Ethernet shield, through which 
Arduino establishes a physical network with this kind of host. The other libraries implement 
the Modbus protocol in the Arduino input/output data transmission mechanism. In the next 
five lines of the coding, different network configuration settings for Ethernet network are 
available. In configuration settings, MAC and DNS and IP address must be assigned to the 
Ethernet shield. The rest are the settings you can keep optional. 

The wide set of functions of this Arduino program initializes the Ethernet library with 
network configuration settings, and the Arduino is starting to communicate physically with 
the PC as depicted in Figure 29.7. As well as the physical network being established, the 
Modbus TCP server also initiated and becomes ready to connect with any SCADA program 
as a client. In the Modbus communication protocol, the data transfer functions offer some 
new registers to configure, monitor, and control the Arduino input/output devices from 
SCADA interface as illustrated in Figure 29.8. Modbus devices usually have a register map 
to register data. The Modbus data model has four basic data types, discrete inputs, coils, 
input registers and holding registers, as shown in Figure 29.9.

Boek Coding Modbus for Arduino-UK 240325.indd   103Boek Coding Modbus for Arduino-UK 240325.indd   103 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 104

Figure 29.7: Ethernet library initialization with network configuration settings.

Figure 29.8: Configuration of Arduino monitoring and control.

Boek Coding Modbus for Arduino-UK 240325.indd   104Boek Coding Modbus for Arduino-UK 240325.indd   104 09-04-2024   14:1509-04-2024   14:15



Chapter 29 • Modbus TCP/IP Temperature Control using WinCC SCADA

● 105

Figure 29.9: Basic data types of the Modbus data model.

We have created holding registers in the Arduino program to store temperature sensor 
values and coil registers to store digital output data. In the void loop function, the actual 
operational functionality of the Arduino is implemented. This function sends data to a SCADA 
client for real-time temperature control monitoring and control. The void loop function also 
includes the "updateControl" function, which is responsible for the desired temperature 
control operation. This function uses one holding register address to transfer temperature 
sensor data and two coil register addresses to read from address 1 and write Arduino digital 
output to address 0, as shown in Figure 29.10 and Figure 29.11. The complete Arduino 
sketch code for this project is given below.

Figure 29.10: The void loop function.

Boek Coding Modbus for Arduino-UK 240325.indd   105Boek Coding Modbus for Arduino-UK 240325.indd   105 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 106

Figure 29.11: The updateControl function.

#include <SPI.h>
#include <Ethernet.h>
#include <ArduinoRS485.h> // ArduinoModbus depends on the ArduinoRS485 library
#include <ArduinoModbus.h>
boolean a=HIGH,b=LOW;
const int ledPin = 2;
byte mac[] = {
  0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress ip(192, 168, 0, 10);
IPAddress myDns(192, 168, 1, 1);
IPAddress gateway(192, 168, 0, 1);
IPAddress subnet(255, 255, 255, 0);
EthernetServer server(502);
ModbusTCPServer modbusTCPServer;
int coil;
int holdingreg;
void setup() {
  pinMode(ledPin, OUTPUT);
  Ethernet.begin(mac, ip, myDns, gateway, subnet);
  Serial.begin(9600);
  while (!Serial) {
    ; // wait for serial port to connect. Needed for native USB port only
  }
  // Check for Ethernet hardware present
  if (Ethernet.hardwareStatus() == EthernetNoHardware) {
    Serial.println("Ethernet shield was not found.  Sorry, can't run without 
hardware. :(");

Boek Coding Modbus for Arduino-UK 240325.indd   106Boek Coding Modbus for Arduino-UK 240325.indd   106 09-04-2024   14:1509-04-2024   14:15



Chapter 29 • Modbus TCP/IP Temperature Control using WinCC SCADA

● 107

    while (true) {
    delay(1); // do nothing, no point running without Ethernet hardware
    }
  }
  if (Ethernet.linkStatus() == LinkOFF) {
    Serial.println("Ethernet cable is not connected.");
  }
  // start listening for clients
  server.begin();
  Serial.print("Modbus server address:");
  Serial.println(Ethernet.localIP());
  // start the Modbus TCP server
  if (!modbusTCPServer.begin()) {
    Serial.println("Failed to start Modbus TCP Server!");
    while (1);
  }
  // configure a single coil at address 0x00
  coil = modbusTCPServer.configureCoils(0, 10);
  holdingreg = modbusTCPServer.configureHoldingRegisters(0, 10);
  Serial.print("Coil initialization Result = ");
  Serial.print(coil);
  Serial.print("\n");
  Serial.print("Holding register initialization Result = ");
  Serial.print(holdingreg);
  Serial.print("\n");
}
void loop() {
  // wait for a new client:
  EthernetClient client = server.available();
  // when the client sends the first byte, say hello:
  if (client) {
    // a new client connected
    Serial.println("new client");
    // let the Modbus TCP accept the connection
    modbusTCPServer.accept(client);
    while (client.connected()) {
      // poll for Modbus TCP requests, while client connected
      modbusTCPServer.poll();
      updateControl();
      }
    Serial.println("client disconnected");
  }
  }
void updateControl() {
  int sensor = analogRead(A0);
  modbusTCPServer.holdingRegisterWrite(0x00, sensor);

Boek Coding Modbus for Arduino-UK 240325.indd   107Boek Coding Modbus for Arduino-UK 240325.indd   107 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 108

  int c = modbusTCPServer.coilRead (1); 
  if (c){
  if(sensor>=100 && a==LOW)//if temperature rises above around 47 degrees
    {
      digitalWrite(ledPin,LOW);//Turn off heater
      a=HIGH;
      b=LOW;
      modbusTCPServer.coilWrite(0x00, 0);
         }
    else if(sensor<=80 && b==LOW)//if temperature is under 40 degrees
    {
      digitalWrite(ledPin,HIGH);//Turn on heater
      a=LOW;
      b=HIGH;
      modbusTCPServer.coilWrite(0x00, 1); 
    }
   }
   else
   {
   digitalWrite(ledPin,LOW);
   modbusTCPServer.coilWrite(0x00, 0);
   a=HIGH;
   b=LOW;
   }
  }

To create PC-based visualization for monitoring and controlling a liquid temperature control 
system, a SCADA project has been created using WinCC SCADA, which is integrated in TIA 
Portal software. WinCC SCADA supports interfacing Modbus TCP/IP data from any Modbus 
device. Already, a complete SCADA project has been created using TIA Portal software, and 
in the next section, we will describe how to create it step by step. You can download the TIA 
Portal software from the Google Drive link provided on the following webpage:

	 https://plc247.com/download-tia-portal-v16-full-googledrive

We will now provide a brief overview of this project. By clicking on the project view, we can 
open the project. If we examine the data interface technique used between Arduino and 
WinCC SCADA, we will notice that the WinCC SCADA project uses variables to obtain input/
output values from Arduino. These variables are referred to as text in the WinCC SCADA 
environment. To transmit data from Arduino to WinCC SCADA using this text, a connection 
must be established in the WinCC project. This connection requires the configuration of 
Modbus TCP/IP communication settings. Therefore, two steps must be taken to configure 
the communication settings in this SCADA project. The first step involves creating and 
configuring a connection, while the second step involves creating and configuring multiple 
tags. To access the navigation menu on the left side, double click on "Connections", as 
displayed in Figure 29.12.

Boek Coding Modbus for Arduino-UK 240325.indd   108Boek Coding Modbus for Arduino-UK 240325.indd   108 09-04-2024   14:1509-04-2024   14:15



Chapter 29 • Modbus TCP/IP Temperature Control using WinCC SCADA

● 109

Figure 29.12: Double clicking on "Connections".

On the right side, you will see that a connection for Arduino Uno has already been created 
with the required configuration. Here the configuration for connection has been made on 
some settings, as depicted in Figure 29.13. Primarily, select the communication driver, 
which is Modbus TCP/IP. At the bottom, to make settings for connection parameters, you 
have to fill up field for CPU type, IP address for Arduino controller and the port address. The 
IP address and port address you have to provide there depend on the network configuration 
settings for Arduino, which we provided in the Arduino sketch as illustrated inside the red 
rectangle in Figure 29.13.

Figure 29.13: Setting the connections parameters.

Now, look for the created tags and their configuration settings. To get these created tags, 
double click on "Show all tags" under HMI tags as shown in Figure 29.14.

Boek Coding Modbus for Arduino-UK 240325.indd   109Boek Coding Modbus for Arduino-UK 240325.indd   109 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 110

Figure 29.14: Double clicking on "Show all tags".

Figure 29.15: The coil register addresses for first two tags.

Boek Coding Modbus for Arduino-UK 240325.indd   110Boek Coding Modbus for Arduino-UK 240325.indd   110 09-04-2024   14:1509-04-2024   14:15



Chapter 29 • Modbus TCP/IP Temperature Control using WinCC SCADA

● 111

Figure 29.16: The holding register addresses for temperature data.

A few newly created tags have appeared on the right side. If we go for tags configuration, 
on important settings, we must set addresses for these tags on data communication 
between the Arduino and SCADA. Those are our Modbus addresses and are used as source 
for the Arduino input/output data, which have been created in Arduino sketch. The SCADA 
project gets the required data from these Modbus addresses using these tags. So, you must 
show these Modbus addresses when you create and configure tags. The addresses for the 
first two tags are coil registers for handling digital input/output data. The address for next 
tag is for the holding register, which contains the temperature data as depicted in Figure 
29.15 and Figure 29.16, respectively. Now, go to the user interface that has been created 
to visualize the temperature control system as illustrated in Figure 29.17.

Figure 29.17: Visualizing the temperature control system.

Some functional graphical options have been created in this user interface. Through this 
we can start or restart the system, monitor the functional status real time, and look at the 
temperature value as shown in Figure 29.18.

Boek Coding Modbus for Arduino-UK 240325.indd   111Boek Coding Modbus for Arduino-UK 240325.indd   111 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 112

Figure 29.18: Functional graphical options in the user interface.

To make these objects functional, the created tags have been assigned to or linked to these 
functional objects. When you finish creating your user interface with required graphical 
options, and connect these objects with those tags, then it will be ready to run the user 
interface. In this section, we have tried to explain the configuration technique for the 
SCADA project. If you need this SCADA project, it will be described in detail in the next 
section. Now, it is the time to run it. When this SCADA project will be running on the PC, 
you will observe a functional process for temperature control in real time from that SCADA 
interface. To run this SCADA project, click on the "Run" icon as shown in Figure 29.19. By 
clicking on the start button the heater is on as depicted in Figure 29.20.

Figure 29.19: Clicking on the "Run" icon.

Figure 29.20: Clicking on "Start" button to make the heater on.

We hope this section will help you understand what the Modbus TCP/IP protocol is, how this 
communication protocol works, and how it can be applied to Arduino Uno microcontroller to 
build an Arduino-based SCADA system. 

Boek Coding Modbus for Arduino-UK 240325.indd   112Boek Coding Modbus for Arduino-UK 240325.indd   112 09-04-2024   14:1509-04-2024   14:15



Chapter 30 • Creating SCADA Project with WinCC

● 113

Chapter 30 • Creating SCADA Project with WinCC

WinCC is a supervisory control and data acquisition (SCADA) system developed by Siemens. 
It is used for monitoring and controlling industrial processes in various industries, such as 
manufacturing, energy, and pharmaceuticals. WinCC facilitates real-time data acquisition, 
visualization, and data analysis for plant operations. The software allows operators to 
monitor processes, make adjustments, and receive alarms and notifications. It also offers 
features like historical data logging, trend analysis, and reporting. You can download the 
TIA Portal software from the Google Drive link provided on the following webpage:

	 https://plc247.com/download-tia-portal-v16-full-googledrive 

WinCC is highly customizable and scalable, enabling it to handle both small and large 
industrial systems. To begin creating a SCADA project with WinCC we click on the TIA Portal 
software and run it as administrator as shown in Figure 30.1.

Figure 30.1: Running TIA Portal as administrator.

We create a new project and name it Temp_SCADA as shown in the Figure 30.2

.
Figure 30.2: Creating a new project.

To begin, we open the window and proceed to select the project view. Within the Devices 
tab, we choose to add a new device. From the options available, we specifically select the 
PC systems icon and then the SIMATIC HMI application. From there, we choose the "WinCC 
RT Advanced" option and confirm our selection by clicking the "OK" button, as shown in 
Figure 30.3.

Boek Coding Modbus for Arduino-UK 240325.indd   113Boek Coding Modbus for Arduino-UK 240325.indd   113 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 114

Figure 30.3: Adding "WinCC RT Advanced" icon.

Then, as you see in Figure 30.4 we add the "IE general" in the "SIMATIC PC station" slot.

Figure 30.4: Adding the IE general in the SIMATIC PC station slot.

Within the HMI_RT_1 section located on the left side; we proceed to select the "Connections" 
icon. In the corresponding "Connections" window located on the right side, we proceed to 
choose the option under the "Name" tab and specify the "Communication driver" as Modicon 
Modbus TCP. For the "Parameter" tab, we specify the "CPU type" as Concept or ProWORX, 
the "Port" as 502, the "Server" as 192.168.0.10, and the "Remote slave address" as 1. This 
configuration is shown in Figure 30.5.

Boek Coding Modbus for Arduino-UK 240325.indd   114Boek Coding Modbus for Arduino-UK 240325.indd   114 09-04-2024   14:1509-04-2024   14:15



Chapter 30 • Creating SCADA Project with WinCC

● 115

Figure 30.5: Setting the "Connections" icon.

In the project tree on the left side, we select the "Show all tags" option under HMI tags. 
Then, within the HMI tags window, we click on the option located under the "Name" section, 
as shown in Figure 30.6.

Figure 30.6: Opening the "HMI tags" window.

Next, we incorporate a fresh tag labeled "temp_int" and configure its parameters in 
alignment with the depiction provided in Figure 30.7.

Boek Coding Modbus for Arduino-UK 240325.indd   115Boek Coding Modbus for Arduino-UK 240325.indd   115 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 116

Figure 30.7: Setting the tag "temp_int" parameters.

In Figure 30.8, we assign the address 4x400001 to the tag "temp_int".

Figure 30.8: Setting the tag "temp_int" address.

Figure 30.9: Setting the "Acquisition cycle".

In Figure 30.9, we adjust the acquisition cycle parameter to 100 ms. The acquisition cycle 
refers to the frequency at which data from a specific tag is obtained or refreshed by the 
WinCC system. It determines how often the values related to WinCC tags are retrieved 
from the underlying data source, such as a PLC or database. Each WinCC tag can have its 
own acquisition cycle configuration, enabling users to specify how frequently the values are 

Boek Coding Modbus for Arduino-UK 240325.indd   116Boek Coding Modbus for Arduino-UK 240325.indd   116 09-04-2024   14:1509-04-2024   14:15



Chapter 30 • Creating SCADA Project with WinCC

● 117

updated. This ensures that the data displayed and logged in WinCC is accurate and current. 
The acquisition cycle can be specified in milliseconds, seconds, or minutes, depending on 
the application requirements. As shown in Figure 30.10, we create a new tag called "heater" 
and specify its "Data type" as Bit.

Figure 30.10: Defining a new tag called heater.

In Figure 30.11, we assign the address 0x1 to the tag "heater".

Figure 30.11: Setting the tag "heater" address.

Once again, we establish the acquisition cycle parameter as 100 ms, as illustrated in Figure 
30.12.

Figure 30.12: Setting the "Acquisition cycle".

Boek Coding Modbus for Arduino-UK 240325.indd   117Boek Coding Modbus for Arduino-UK 240325.indd   117 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 118

Another tag called "control" is included, which has identical parameters as the "heater" tag, 
but with a distinct address. In this scenario, the address is designated as 0x2, as depicted 
in Figure 30.13 and Figure  30.14 correspondingly.

Figure 30.13: Setting the new tag "Data type".

Figure 30.14: Setting the new tag "Address" and "Acquisition cycle".

In WinCC, users can use the internal tag connection feature to set up a connection between 
different tags within the project. By enabling communication and data exchange between 
these tags, the flow of information is made easier. The internal tag connection functionality 
in WinCC offers several applications, such as connecting process tags to display tags, 
linking internal memory tags to process tags, or connecting a script tag to a user interface 
tag. By setting up internal tag connections, users can develop a dynamic and interactive 
HMI system, allowing for the visualization and manipulation of real-time data in real-time 
operations. To illustrate, a new tag named "temp_real" with a data type of "Float" is created, 
and its connection is adjusted following Figure 30.15 and Figure 30.16.

Figure 30.15: Setting the new tag "Data type" as Float.

Boek Coding Modbus for Arduino-UK 240325.indd   118Boek Coding Modbus for Arduino-UK 240325.indd   118 09-04-2024   14:1509-04-2024   14:15



Chapter 30 • Creating SCADA Project with WinCC

● 119

Figure 30.16: Setting the new tag "Connection" as <internal tag>.

The screens in WinCC can incorporate various elements, including buttons, text fields, 
data tables, trend charts, alarms, and other visualization objects. These screens can 
be customized and configured to display real-time data from the industrial automation 
system that is connected to, thereby allowing operators to effectively monitor and control 
processes. WinCC offers a robust screen editor that enables users to design and create 
screens with ease, using a drag-and-drop interface. These screens can be organized 
hierarchically and interconnected to establish a structured navigation system, enabling 
users to access different parts of the HMI system. Additionally, the screens can be designed 
to accommodate different languages and provide a user-friendly interface for operators 
to interact with the system. To create a new screen named "Temperature Control", we 
navigate to the Screens icon in the project tree and select the "Add new screen" option. 
Then, from the right-side "Elements" section, we choose a button, as shown in Figure 
30.17.

Figure 30.17: Selecting a text box from "Elements" section.

First, we perform the action of copying and pasting, and then we include a new button 
and change the names of these buttons to "Stat" and "Stop." Next, from the Basic objects 
section, we select the circle object, as showed in Figure 30.18. Afterward, we place two 
circle objects next to the inserted buttons and include a text object on the screen, as 
depicted in Figure 30.19.

Boek Coding Modbus for Arduino-UK 240325.indd   119Boek Coding Modbus for Arduino-UK 240325.indd   119 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 120

Figure 30.18: Adding elements and objects to the "Temperature Control" screen.

Figure 30.19: Added two circles objects.

In Figure 30.20, we depict the addition of three text objects and their renaming as "System 
Status," "System Running," and "System Stop."

Figure 30.20: Added two text objects.

Following the same process as before, we include two circles and two text elements and 
give them the names "Heater ON" and "Heater OFF" as indicated in Figure 30.21. Then, as 
depicted in Figure 30.21, we select the display number element and place it on the screen. 
Additionally, we locate a text object in close proximity to the display number and label it as 
"Liquid Temperature" as seen in Figure 30.22.

Boek Coding Modbus for Arduino-UK 240325.indd   120Boek Coding Modbus for Arduino-UK 240325.indd   120 09-04-2024   14:1509-04-2024   14:15



Chapter 30 • Creating SCADA Project with WinCC

● 121

Figure 30.21: Adding new two circles and two text objects.

Figure 30.22: Adding display element and text object.

To perform the desired action, proceed by right-clicking on the "Start" button and choosing 
"Properties." Then, navigate to the "Events" tab and select the "Click" option. From there, 
locate the SetBit function in the right window and opt for the "control" tag for the Tag(input/
output) option as shown in Figure 30.23.

Figure 30.23: Choosing the "control" tag for the Tag(input/output) option.

Boek Coding Modbus for Arduino-UK 240325.indd   121Boek Coding Modbus for Arduino-UK 240325.indd   121 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 122

In this case, we follow the same steps as we did for the "Start" button when dealing with 
the "Stop" button. However, we choose the "ResetBit", as shown in Figure 30.24.

Figure 30.24: Choosing the  "control" tag for the Tag(input/output) option.

Figure 30.25: Dynamizing colors and flashing for circle object.

To activate the dynamic colors and flashing of the "System Running" circle object, we 
need to click on it and navigate to the "Animations" tab. In the "Animation types" section, 
we select the "Dynamize colors and flashing" option, as shown in Figure 30.25. In the 
newly opened "Appearance" window, we specify the tag name as "control" and the type as 

Boek Coding Modbus for Arduino-UK 240325.indd   122Boek Coding Modbus for Arduino-UK 240325.indd   122 09-04-2024   14:1509-04-2024   14:15



Chapter 30 • Creating SCADA Project with WinCC

● 123

"Range". Afterwards, we fill the Ranges 0 and 1 with the corresponding black and red colors 
for the "Background" colors, as illustrated in Figure 30.26.

Figure 30.26: Filling "Background" colors for Ranges.

The process of dynamizing colors and flashing for the "System Stop" circle object is carried 
out in the same way as for other objects. However, in this case, we fill Ranges 0 and 1 with 
red and black colors, respectively for the corresponding "Background" colors, as shown in 
Figure 30.27. Similarly, for the "Heater ON" circle object, we follow the same procedures 
as for the "System Running" circle object, but distinguishably, we choose the tag name as 
"heater", as showed in Figure 30.28. 

Boek Coding Modbus for Arduino-UK 240325.indd   123Boek Coding Modbus for Arduino-UK 240325.indd   123 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 124

Figure 30.27: Filling "Background" colors for Ranges.

Figure 30.28: Filling "Background" colors for Ranges.

Boek Coding Modbus for Arduino-UK 240325.indd   124Boek Coding Modbus for Arduino-UK 240325.indd   124 09-04-2024   14:1509-04-2024   14:15



Chapter 30 • Creating SCADA Project with WinCC

● 125

We follow the same steps for making the colors dynamic and flashing for the "Heater OFF" 
circle object, similar to what we did for the "System Stop" circle object. The only difference 
is that in this case, we choose the tag name as "heater", as shown in Figure 30.29.

Figure 30.29: Filling "Background" colors for Ranges.

Figure 30.30: The "Liquid Temperature" tag connection.

Boek Coding Modbus for Arduino-UK 240325.indd   125Boek Coding Modbus for Arduino-UK 240325.indd   125 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 126

First, we click on the "Liquid Temperature" display element. Next, we go to the "Animations" 
tab and choose "Add new animation" in the "Animation types" window. In the "Tag 
connections" section, we select "Connect tag to property" following the steps shown in 
Figure 30.30. Then, we open the "Add tag connection" window and choose the "Process 
value" option, as shown in Figure 30.31.

Figure 30.31: Selecting the "Process value".

Figure 30.32: Selecting "temp_real" as Process Tag.

Boek Coding Modbus for Arduino-UK 240325.indd   126Boek Coding Modbus for Arduino-UK 240325.indd   126 09-04-2024   14:1509-04-2024   14:15



Chapter 30 • Creating SCADA Project with WinCC

● 127

Next, we select "temp_real" as the Process Tag and then continue to click on the "Edit" 
button, as indicated in Figure 30.32, to open the "temp_real" window. Within the "Events" 
tab, we choose to click on the "LinearScaling" option. In the "Y(Output)" row, we designate 
the "temp_real" tag. For the "a" row, we input a value of 0.488. In the "X" row, we select 
the "temp_int" tag and assign a value of zero in the "b" row. Finally, we confirm our 
selections by clicking on the "OK" button, as displayed in Figure 30.33. It is important to 
note that the LinearScaling function uses the linear equation Y = (aX) + b to assign a 
value to the Y tag, which is determined by the value of the X tag provided.

Figure 30.33: Setting the "LinearScaling" parameters.

Boek Coding Modbus for Arduino-UK 240325.indd   127Boek Coding Modbus for Arduino-UK 240325.indd   127 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 128

Figure 30.34: Setting the Format pattern of "Liquid Temperature".

Afterward, input the value 999.99 into the "Format pattern" field in the "Properties" tab, as 
shown in Figure 30.34. Finally, include a text object and change its name to "Heater Status" 
before saving the project, as showed in Figure 30.35.

Figure 30.35: Adding a text object and saving the project.

Boek Coding Modbus for Arduino-UK 240325.indd   128Boek Coding Modbus for Arduino-UK 240325.indd   128 09-04-2024   14:1509-04-2024   14:15



Chapter 31 • The Ethernet and Blynk Project

● 129

Chapter 31 • The Ethernet and Blynk Project

The Ethernet Shield W5100 will be used in this project for controlling the display and 
enabling the turning of LED lights on and off from any location. Additionally, it will connect 
to the internet using the Blynk app, which simplifies the process of connecting our devices 
to the internet. Based on the Arduino UNO + Blynk project, LED lights can now be controlled 
remotely through the internet. To address this issue, we will incorporate an Ethernet Shield 
W5100. The current setup enables the Arduino to set up a connection with the outside world 
through the internet. Refer to Figure 31.1 for a visual representation of the connection 
between the Arduino, Ethernet Shield, and Internet.

Figure 31.1: The connection between Arduino, Ethernet Shield, and Internet.

The IoT, also known as the Internet of Things, refers to a technology where devices and 
appliances are connected through the internet network. This concept has generated 
significant interest and is the subject of ongoing discussions. There is a continuous stream 
of new hardware advancements, standard announcements, and the introduction of new 
services and tools. One intriguing service in this domain is Blynk, as represented in Figure 
31.2. You can download the Blynk mobile app for iOS and Android systems from the link 
provided on the following webpage:

	 https://docs.blynk.io/en/downloads/blynk-apps-for-ios-and-android

Figure 31.2: The Blynk app.

Boek Coding Modbus for Arduino-UK 240325.indd   129Boek Coding Modbus for Arduino-UK 240325.indd   129 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 130

The Blynk Application is a mobile program used to control or display data connected to 
microcontrollers (such as Arduino, ESP8266, Raspberry Pi) and can also be controlled 
remotely. 

It can be connected to the Internet. The hardware used in this project is as follows:

•	Arduino UNO R3 - Made in Italy.
•	Ethernet Shield W5100.
•	1 Channel DC 5V Relay Module.
•	DC 5 V 2 A Power Supply Adapter
•	LED Lamp + Power Supply

Assemble the Ethernet Shield, W5100, on the Arduino Uno and connect it to a single relay 
module, as shown in Figure 31.3.

Figure 31.3: Connecting the Ethernet Shield to a single relay module.

Afterwards, launch the Blynk app and choose the option "Create New Account", as shown 
in Figure 31.4.

Boek Coding Modbus for Arduino-UK 240325.indd   130Boek Coding Modbus for Arduino-UK 240325.indd   130 09-04-2024   14:1509-04-2024   14:15



Chapter 31 • The Ethernet and Blynk Project

● 131

Figure 31.4: Selecting "Create New Account" in the Blynk application.

Fill in your email and password, and then click on the "Sign-Up" button, as shown in Figure 
31.5.

Figure 31.5: Fill in your email and password.

Boek Coding Modbus for Arduino-UK 240325.indd   131Boek Coding Modbus for Arduino-UK 240325.indd   131 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 132

Figure 31.6: Clicking on the "New Project".

Afterwards, we proceed to select the "New Project" icon, which can be seen in Figure 31.6. 
Subsequently, we choose the "Arduino Uno" as our device, as illustrated in Figure 31.7.

Figure 31.7: Selecting "Arduino Uno" as our device.

The project's connection type is Ethernet, and it has been named "W5100". To email the 
authentication token to your email address, click on the "E-mail" button, as shown in Figure 
31.8.

Boek Coding Modbus for Arduino-UK 240325.indd   132Boek Coding Modbus for Arduino-UK 240325.indd   132 09-04-2024   14:1509-04-2024   14:15



Chapter 31 • The Ethernet and Blynk Project

● 133

Figure 31.8: Getting the authentication token via email.

After moving to the following page, a notification will appear indicating that the program 
will forward an authentication token to the provided email address. Proceed by selecting the 
"OK" button and locate the symbol resembling a plus sign as in Figure 31.9.

Figure 31.9: Clicking the + sign.

Click on the "Add" button and then select the "Button" option as shown in Figure 31.10.

Figure 31.10: Selecting "Button" from the "Widget Box".

"BUTTON" will be included on the screen for you to click on, enabling you to set the value 
according to the illustration shown in Figure 31.11.

Boek Coding Modbus for Arduino-UK 240325.indd   133Boek Coding Modbus for Arduino-UK 240325.indd   133 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 134

Figure 31.11: Clicking on "BUTTON" to set the value.

Afterward, choose the "SWITCH" mode and continue to click on "PIN" according to the 
presentation in Figure 31.12.

Figure 31.12: Selecting "SWITCH" type and clicking on "PIN".

Next, follow the steps shown in Figure 31.13: Choose pin  Digital  D7  CONTINUE.

Boek Coding Modbus for Arduino-UK 240325.indd   134Boek Coding Modbus for Arduino-UK 240325.indd   134 09-04-2024   14:1509-04-2024   14:15



Chapter 31 • The Ethernet and Blynk Project

● 135

Figure 31.13: Setting the PIN.

As shown in Figure 31.14, "BUTTON" will be situated on the left-hand side.

Figure 31.14: "BUTTON" on the left-hand side.

To achieve a visually pleasing result, we should move the button to the center of the screen. 

The next steps are how to add a new library to your Arduino IDE using the "Library 
Manager" (accessible from IDE version 1.6.2 onwards). Start by opening the IDE and 
navigating to the "Sketch" menu. From there, select "Include Library" and then choose 
"Manage Libraries", as shown in Figure 31.15.

Figure 31.15: Installing a new library into your Arduino IDE.

Boek Coding Modbus for Arduino-UK 240325.indd   135Boek Coding Modbus for Arduino-UK 240325.indd   135 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 136

The "Library Manager" will open, and you will find a list of libraries that are already installed 
or ready for installation. Search for Blynk library and in the version, selection choose the 
latest version to date, as shown in Figure 31.16.

Figure 31.16: Installing the Blynk library.

Finally, click on "Install" and wait for the IDE to install the new library. Downloading may 
take time depending on your connection speed. Once it has finished, an "Installed" tag 
should appear next to the "Bridge" library. You can close the library manager. You can now 
find the new library available in the "Sketch"  "Include Library" menu. When finished 
installing the Blynk library, go to "File"  "Examples"  "Blynk"  "Boards_Ethernet"  
"Arduino_Ethernet", as depicted in Figure 31.17.

Figure 31.17: Selecting "Arduino_Ethernet" examples.

Edit the "YourAuthToken" obtained from the email and incorporate it into the Arduino 
sketch, as shown in Figure 31.18.

Boek Coding Modbus for Arduino-UK 240325.indd   136Boek Coding Modbus for Arduino-UK 240325.indd   136 09-04-2024   14:1509-04-2024   14:15



Chapter 31 • The Ethernet and Blynk Project

● 137

Figure 31.18: Edit the «YourAuthToken» into the Arduino sketch.

Once edited, upload the code as follows to Arduino Uno.

/*************************************************************
Download latest Blynk library here:
https://github.com/blynkkk/blynk-library/releases/latest
Blynk is a platform with iOS and Android apps to control
Arduino, Raspberry Pi and the likes over the Internet.
You can easily build graphic interfaces for all your
projects by simply dragging and dropping widgets.
Downloads, docs, tutorials: http://www.blynk.cc
Sketch generator: http://examples.blynk.cc
Blynk community: http://community.blynk.cc
Social networks: http://www.fb.com/blynkapp
http://twitter.com/blynk_app
Blynk library is licensed under MIT license
This example code is in public domain.
*************************************************************
This example shows how to use Arduino Ethernet shield (W5100)
to connect your project to Blynk.
NOTE: Pins 10, 11, 12 and 13 are reserved for Ethernet module.
DON'T use them in your sketch directly!
WARNING: If you have an SD card, you may need to disable it
by setting pin 4 to HIGH. Read more here:
https://www.arduino.cc/en/Main/ArduinoEthernetShield

Boek Coding Modbus for Arduino-UK 240325.indd   137Boek Coding Modbus for Arduino-UK 240325.indd   137 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 138

Feel free to apply it to any other example. It's simple!
*************************************************************/
/* Comment this out to disable prints and save space */
#define BLYNK_PRINT Serial
#include <SPI.h>
#include <Ethernet.h>
#include <BlynkSimpleEthernet.h>
// You should get Auth Token in the Blynk App.
// Go to the Project Settings (nut icon).
char auth[] = "b8152a62d1c54b20862ab77ae4b23345"; // Must to be fixed
#define W5100_CS 10
#define SDCARD_CS 4
void setup()
{
// Debug console
Serial.begin(9600);
pinMode(SDCARD_CS, OUTPUT);
digitalWrite(SDCARD_CS, HIGH); // Deselect the SD card
Blynk.begin(auth);
// You can also specify server:
//Blynk.begin(auth, "blynk-cloud.com", 8442);
//Blynk.begin(auth, IPAddress(192,168,1,100), 8442);
// For more options, see Boards_Ethernet/Arduino_Ethernet_Manual example
}
void loop()
{
Blynk.run();
}

Disconnect the USB cable and replace it with an RJ45 LAN cable to establish the connection 
between the Ethernet Shield and the router. This will enable the shield to communicate 
with the network and receive power from a 5-V adapter connected to the Arduino UNO. 
Return to the Blynk Application and click on the symbol indicated in Figure 31.19 three 
times to evaluate the functionality of the W5100 program. Refer to Figure 31.20 for a visual 
representation of the hardware setup for the project.

Figure 31.19: Clicking the symbol.

Boek Coding Modbus for Arduino-UK 240325.indd   138Boek Coding Modbus for Arduino-UK 240325.indd   138 09-04-2024   14:1509-04-2024   14:15



Chapter 31 • The Ethernet and Blynk Project

● 139

Figure 31.20: The hardware implementation of the project.

Boek Coding Modbus for Arduino-UK 240325.indd   139Boek Coding Modbus for Arduino-UK 240325.indd   139 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 140

Chapter 32 • �Temperature/Humidity Sensor, Ethernet 
and Blynk Project

This section will cover a mobile application that provides real-time information about the 
temperature and humidity of a room. The application allows users to connect their Android 
devices to a hardware setup. To detect the temperature and humidity, a DHT11 sensor is 
connected to an Arduino Uno. These readings are then transmitted to the Android device 
and presented neatly in an app. This setup is simple to build and is perfect for monitoring 
a remote room with an impressive display. To create this system, you will need an Arduino 
Uno, an Arduino Ethernet Shield, a DHT11 Sensor, three male-to-female jumper wires, the 
Arduino IDE, the Blynk app, and a LAN Cable. The sensor is connected to digital pin 2 on the 
Arduino. The app generates a virtual display that constantly updates with real-time values, 
as depicted in Figure 32.1.

Figure 32.1: Blynk app displaying the values.

In Figure 32.2, the schematic diagram illustrates the connection between the DHT11 
temperature and humidity sensor and the Ethernet shield.

Figure 32.2: Ethernet shield connection to the DHT11 sensor.

Boek Coding Modbus for Arduino-UK 240325.indd   140Boek Coding Modbus for Arduino-UK 240325.indd   140 09-04-2024   14:1509-04-2024   14:15



Chapter 32 • Temperature/Humidity Sensor, Ethernet and Blynk Project

● 141

Here is the Arduino code provided:

#include <SPI.h>
#define BLYNK_PRINT Serial
#include <Ethernet.h>
#include <BlynkSimpleEthernet.h>
#include <SimpleTimer.h>
#include <dht11.h>
dht11 DHT11;
SimpleTimer timer;

char auth[] = "";        // write your auth code here
void setup()
{
  DHT11.attach(2);      // connect pin 2 to the sensor
  Serial.begin(9600);
  Blynk.begin(auth);     // start blynk server and connect to the cloud
 while (Blynk.connect() == false) {
    // Wait until connected
  }
  
void loop()
{
  int chk = DHT11.read();
   Blynk.virtualWrite(1, DHT11.temperature);  // Write values to the app
  Blynk.virtualWrite(2, DHT11.humidity);
Serial.println(DHT11.temperature);

  Blynk.run();
  timer.run();
  
}

Boek Coding Modbus for Arduino-UK 240325.indd   141Boek Coding Modbus for Arduino-UK 240325.indd   141 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 142

Chapter 33 • �MQTT Protocol with Ethernet/ESP8266 
Project

We will explore the usage of the MQTT protocol with Ethernet, and ultimately, we will be 
able to manipulate an LED connected to an Ethernet shield, as well as monitor data from 
a temperature sensor using the publish and subscribe functionality of the MQTT protocol. 
Since our Arduino or ESP8266 device lacks knowledge about the MQTT protocol, we need 
to install the MQTT library. 

Figure 33.1: Clicking on "Manage Libraries".

First, we need to open "Sketch" and access the "Library" menu. In Figure 33.1, you can 
see that we need to select "Manage Libraries". It may take a few seconds or minutes for 
the "Library Manager" to appear. There, search for "PupSubClient" and press "Enter". Look 
for the version by Nick O'Leary in the search results. The default version also includes the 
latest MQTT library. You do not need to be concerned about the version of the MQTT library; 
it is automatically included with the "PupSubClient" library. Simply click on the "Install" 
button to install the MQTT library for Arduino or ESP8266, illustrated in Figure 33.2.

Figure 33.2: Installing the "PubSubClient" library.

After installing the library, we need to close the "Library Manager". Then, we can navigate 
to "File", "Examples", and scroll down to find "PupSubClient". Within it, we can find the 
"mqtt_esp8266" as shown in Figure 33.3. This example project will serve as a reference 
for us. We can remove the initial commands in the code to ensure a cleaner code for better 
explanation. In the code, we can see the "ESP8266WiFi.h" header file and the MQTT client 
library, which is located in "PupSubClient.h". As we are using the Ethernet shield, we need 
to input the SSID and password for the ESP8266 to connect to the internet. Thus, the code 
we should use is as follows:

Boek Coding Modbus for Arduino-UK 240325.indd   142Boek Coding Modbus for Arduino-UK 240325.indd   142 09-04-2024   14:1509-04-2024   14:15



Chapter 33 • MQTT Protocol with Ethernet/ESP8266 Project

● 143

/* Repeating Web client
 Circuit:
 * Ethernet shield attached to pins 10, 11, 12, 13 */
#include <SPI.h>
#include <Ethernet.h>
// assign a MAC address for the ethernet controller.
// fill in your address here:
byte mac[] = {
  0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED
};
// Set the static IP address to use if the DHCP fails to assign
IPAddress ip(192, 168, 0, 177);
IPAddress myDns(192, 168, 0, 1);
// initialize the library instance:
EthernetClient client;
char server[] = "www.arduino.cc";  // also change the Host line in httpRequest()
//IPAddress server(64,131,82,241);
unsigned long lastConnectionTime = 0;           // last time you connected to the 
server, in milliseconds
const unsigned long postingInterval = 10*1000;  // delay between updates, in 
milliseconds
void setup() {
  // You can use Ethernet.init(pin) to configure the CS pin
  // start serial port:
  Serial.begin(9600);
  while (!Serial) {
    ; // wait for serial port to connect. Needed for native USB port only
  }
  // start the Ethernet connection:
  Serial.println("Initialize Ethernet with DHCP:");
  if (Ethernet.begin(mac) == 0) {
    Serial.println("Failed to configure Ethernet using DHCP");
    // Check for Ethernet hardware present
    if (Ethernet.hardwareStatus() == EthernetNoHardware) {
      Serial.println("Ethernet shield was not found.  Sorry, can't run without 
hardware. :(");
      while (true) {
        delay(1); // do nothing, no point running without Ethernet hardware
      }
    }
    if (Ethernet.linkStatus() == LinkOFF) {
      Serial.println("Ethernet cable is not connected.");
    }
    // try to configure using IP address instead of DHCP:
    Ethernet.begin(mac, ip, myDns);
    Serial.print("My IP address: ");

Boek Coding Modbus for Arduino-UK 240325.indd   143Boek Coding Modbus for Arduino-UK 240325.indd   143 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 144

    Serial.println(Ethernet.localIP());
  } else {
    Serial.print("  DHCP assigned IP ");
    Serial.println(Ethernet.localIP());
  }
  // give the Ethernet shield a second to initialize:
  delay(1000);
}
void loop() {
  // if there's incoming data from the net connection.
  // send it out the serial port.  This is for debugging
  // purposes only:
  if (client.available()) {
    char c = client.read();
    Serial.write(c);
  }
  // if ten seconds have passed since your last connection,
  // then connect again and send data:

  if (millis() - lastConnectionTime > postingInterval) {
    httpRequest();
  }
}
// this method makes a HTTP connection to the server:
void httpRequest() {
  // close any connection before send a new request.
  // This will free the socket on the WiFi shield
  client.stop();
  // if there's a successful connection:
  if (client.connect(server, 80)) {
    Serial.println("connecting...");
    // send the HTTP GET request:
    client.println("GET /latest.txt HTTP/1.1");
    client.println("Host: www.arduino.cc");
    client.println("User-Agent: arduino-ethernet");
    client.println("Connection: close");
    client.println();
    // note the time that the connection was made:
    lastConnectionTime = millis();
  } else {
    // if you couldn't make a connection:
    Serial.println("connection failed");
  }
}

Boek Coding Modbus for Arduino-UK 240325.indd   144Boek Coding Modbus for Arduino-UK 240325.indd   144 09-04-2024   14:1509-04-2024   14:15



Chapter 33 • MQTT Protocol with Ethernet/ESP8266 Project

● 145

Then, of course, we need an MQTT server for our project. However, we recommend against 
using the "broker.mqtt-dashboard.com" as it is a commonly used server in MQTT projects. 
If you upload the same code, it may cause issues. Therefore, we will search for a different 
MQTT server. To find our preferred MQTT server, you can open a command prompt and 
enter "ping test.mosquitto.org". This is a free-to-use MQTT broker or MQTT server, which 
can be represented by the IP address 5.196.95.208, as depicted in Figure 33.4.

Figure 33.3: Opening the mqtt_esp8266 example.

Figure 33.4: Getting the server IP address.

So, we have an IP address that we need to use. We will copy it and then no longer need 
it, so we can close it and open our project. We will need to insert a double code address 
for the server, which can be either 5.196.95.208 or "test.mosquitto.org". Both options are 
acceptable, so I will comment out test.mosquitto.org. This is the MQTT server we are using, 

Boek Coding Modbus for Arduino-UK 240325.indd   145Boek Coding Modbus for Arduino-UK 240325.indd   145 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 146

and if you want to learn more about it, you can copy the URL and visit it in a browser. The 
server we are using is "test.mosquitto.org", and the port for MQTT unencrypted is 1883, 
as seen in Figure 33.5. However, this information is no longer necessary, and all we need 
is the IP address of the server, which can be either the IP address or the server name, as 
shown in Figure 33.6.

Figure 33.5: Opening the "test.mosquitto.org" with the browser.

Now if we scroll down further then we see that there will be a topic and you can see we are 
using a built-in LED which is basically connected to GPIO2 on ESP8266.

Boek Coding Modbus for Arduino-UK 240325.indd   146Boek Coding Modbus for Arduino-UK 240325.indd   146 09-04-2024   14:1509-04-2024   14:15



Chapter 33 • MQTT Protocol with Ethernet/ESP8266 Project

● 147

Figure 33.6: Putting the MQTT server IP address or name.

Figure 33.7: Renaming the "client.subscribe" to "device/led".

When we publish a message using the topic "device/led", you'll notice, upon scrolling 
down, the option to either "client" or "subscribe to" enclosed in double quotes. To enhance 
readability, we prefer to refer to this topic as "device/led", specifically addressing the control 
of the onboard LED connected to GPIO2 on the ESP8266, as depicted in Figure 33.7.

In essence, when we publish a message (message one) on the "device/led" topic, the 
ESP8266 subscribes to this topic, resulting in the activation of the LED. It is worth noting that 

Boek Coding Modbus for Arduino-UK 240325.indd   147Boek Coding Modbus for Arduino-UK 240325.indd   147 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 148

the onboard LED on the ESP8266 operates on an active-low configuration. Consequently, 
publishing message one generates a logic low, turning on the LED. Conversely, a logic 
high, generated by publishing message zero on the "device/led" topic, turns off the LED, 
as detailed in Figure 33.8. This simple mechanism allows for the convenient control of the 
LED on the ESP8266.

Figure 33.8: Publishing message one on "device/led" topic.

If you continue scrolling, you will come across an option called "outTopic" where you can 
send sensor data. To send temperature data, we need to specify the name as "device/
temp". After doing so, we can confirm that the MQTT server is connected, as shown in 
Figure 33.9.

Figure 33.9: Editing "client.publish".

Boek Coding Modbus for Arduino-UK 240325.indd   148Boek Coding Modbus for Arduino-UK 240325.indd   148 09-04-2024   14:1509-04-2024   14:15



Chapter 33 • MQTT Protocol with Ethernet/ESP8266 Project

● 149

Therefore, that is a message that will be displayed even if you include this line of code. It 
may not seem very meaningful, but the true essence lies within the loop function.

Figure 33.10: Publishing the temperature to the MQTT server.

In the loop function, the code continuously sends the message "Hello world," incrementing 
the value variable each time. To adapt this code for sending temperature data from an 
LM35 sensor connected to pin A0 on the ESP8266, we will modify the global variable 
"value." Instead of incrementing, we set "value" equal to analogRead(A0) multiplied by 
0.32, converting the sensor reading to degrees Celsius. This temperature value is then 
printed on the serial monitor with the label "Temperature is."

The modified code will publish this temperature data to the MQTT server using the "device/
temp" topic, as shown in Figure 33.10. The MQTT server, with the IP address 5.196.95.208, 
will receive and process the temperature data.

For LED control, the "device/led" topic is important. Subscribing to "device/led" allows the 
ESP8266 to respond to messages from the server. Sending "1" to "device/led" turns on the 
LED, while "0" turns it off. Thus, the ESP8266 effectively controls the LED and publishes 
temperature data on "device/temp".

We successfully connected the ESP8266 to the laptop, but we still need an MQTT client. We 
recommend installing the MQTT client called MQTTLens, which is a simple and easy-to-use 
client that runs on Google Chrome. To install it, search for MQTTLens on Google Chrome, 
and you will find it as a Google Chrome extension. Please note that MQTTLens only works 
on Google Chrome, so make sure you have it installed. To install MQTTLens, simply click on 
it and it will take you to the Google Chrome app page. Click on "Add to Chrome" as shown in 
Figure 33.11, and it will be quickly installed. It may ask you to log into your Google account, 
so just click on "Add app" and then close it. You can see the progress of the installation in 

Boek Coding Modbus for Arduino-UK 240325.indd   149Boek Coding Modbus for Arduino-UK 240325.indd   149 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 150

the lower-left corner of your screen. Once it is added to Chrome, you will be able to see 
MQTTLens in your extensions.

Figure 33.11: Adding MQTTLens to Chrome.

Figure 33.12: Installed MQTTLens app.

As you can see in Figure 33.12, when we click, the software opens, allowing us to see that 
MQTT Lens is the software or MQTT client we will utilize to control the ESP8266. To set up 
MQTTLens, click on the plus button illustrated in Figure 33.13.

Figure 33.13: Clicking on the plus button.

To set up a connection, we are required to provide a connection name. Let's name it 
BinaryUpdates. We also need the IP address of the server. We prefer inputting the server's 
numerical address rather than its name. Simply copy the IP address from our code and paste 
it under the "Hostname" section. We want to use MQTTlens as the MQTT client to connect 
to the MQTT server on port 1883. Once everything is in place, we can scroll down without 
making any changes to the advanced settings. Finally, click on "CREATE CONNECTION" as 
shown in Figure 33.14.

Boek Coding Modbus for Arduino-UK 240325.indd   150Boek Coding Modbus for Arduino-UK 240325.indd   150 09-04-2024   14:1509-04-2024   14:15



Chapter 33 • MQTT Protocol with Ethernet/ESP8266 Project

● 151

Figure 33.14: Creating the connection.

By hovering over your mouse, you can see that a connection has been established when 
it displays a green color, as depicted in Figure 33.15. Conversely, if it remains red or any 
other color, it indicates that something is amiss and is not functioning properly.

Figure 33.15: The connection created with green color.

Boek Coding Modbus for Arduino-UK 240325.indd   151Boek Coding Modbus for Arduino-UK 240325.indd   151 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 152

Let us go ahead and open the Arduino IDE side by side, so you can see the process. Make 
sure the code is ready, go to tools, check that the port and board are properly selected, 
and upload the code. Now we can monitor the temperature sensor data and control the 
built-in LED on the ESP8266. The code is uploading and once it is done, go to tools and 
open the serial monitor. Set the baud rate to 115200. Now you will start seeing the data 
being displayed. To confirm that the ESP8266 is connected to the internet, press the reset 
button on the device. It will show that it is connecting to the access point and then indicate 
that Wi-Fi is connected, and an IP address has been obtained. It will also try to establish a 
connection with MQTT. Once connected, the data will start streaming as illustrated in Figure 
33.16.

Figure 33.16: Coming up published messages.

To begin, we will minimize the Arduino IDE and keep the serial monitor open. In our 
Arduino code, we have the topic "device/temp" where our sensor data is transmitted. To 
view the temperature data, we simply navigate to the subscribe section on MQTTlens and 
right-click to paste "device/temp" as the topic for subscription. By subscribing, we can now 
see the continuous stream of temperature data, which is indicated by the increasing count 
and timestamp. Additionally, the temperature can be seen in the MQTT and serial monitor. 
This functionality is working correctly. Moving on to controlling the LED, if we take the topic 
for the LED as "device/led", we can publish the message "one" to turn the LED on. It is 
important to not press unnecessary keys and only send the value "one" on the "device/
led" topic. Clicking on "Publish" will trigger the arrival of the message, resulting in the LED 
lighting up. This can be seen on the hardware side and in the serial monitor where "one" 
is received. Similarly, sending the message "zero" on the same topic will turn the LED off, 
and we will receive the message "zero" as depicted in Figure 33.17.

Boek Coding Modbus for Arduino-UK 240325.indd   152Boek Coding Modbus for Arduino-UK 240325.indd   152 09-04-2024   14:1509-04-2024   14:15



Chapter 33 • MQTT Protocol with Ethernet/ESP8266 Project

● 153

Figure 33.17: Publishing the messages in MQTTlens and serial monitor.

To operate the ESP8266 through a mobile app, it is necessary to download and install the 
Android app called "MY MQTT", as shown in Figure 33.18.

Figure 33.18: The MY MQTT app icon.

When you open this app, there is a view that allows you to select what MQTT can access. 
In the lower-right corner, there is a "Continue" button that you click to proceed. A pop-up 
appears and you confirm by clicking "OK". Now, in the top-left corner, there is a dashboard 
and a back icon. When you click on the back icon, it takes you to the settings. In the settings, 
you will find a setting button. Clicking on it allows you to enter various parameters. The first 
parameter is the Broker URL, which is the IP address of our MQTT server (0.5.196.95.208) 
that MQTT should connect to. Below that, there is a port number (1883) for MQTT. You do 
not need to fill in the username and password, just click on "Save". Once saved, it will show 
a message saying that the settings have been saved successfully. In the top-left corner, 
there is a back icon again. Clicking on it will show a green indication and the MQTT server 
IP address (5.196.95.208) displayed in Figure 33.19.

Boek Coding Modbus for Arduino-UK 240325.indd   153Boek Coding Modbus for Arduino-UK 240325.indd   153 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 154

Figure 33.19: MY MQTT app connection to MQTT server.

We need to look at our hardware setup. We have an ESP8266, and there is an onboard LED. 
Before publishing any messages, let us click the reset button once. Now, we will navigate 
to the mobile app's publish section. In the topic field, we will input "device/led," and for 
the message, we'll enter '0' to publish the message '0' on the 'device/led' topic. Clicking 
"Publish", you will notice the onboard LED turns off. This demonstrates how to turn off the 
LED.

Next, if we publish the message "1" and click "Publish" again, you will observe the LED 
lighting up. Repeating the process by publishing "0" turns the LED off, and publishing "1" 
lights it up once more. This illustrates how to control the LED using published messages.

Now, let us explore the subscribe feature. Clicking the top-left back button, we will 
navigate to the subscribe section. Here, we'll type "device/temp" as the topic for receiving 
temperature data. Clicking "Add", you will see the topic subscribed and added. Returning 
to the dashboard by clicking back, you can see the streaming data on the dashboard, as 
depicted in Figure 33.20 and Figure  33.21, respectively.

Figure 33.20: Subscribing the device/temp topic

Boek Coding Modbus for Arduino-UK 240325.indd   154Boek Coding Modbus for Arduino-UK 240325.indd   154 09-04-2024   14:1509-04-2024   14:15



Chapter 33 • MQTT Protocol with Ethernet/ESP8266 Project

● 155

Figure 33.21: Data streaming on "Dashboard".

Boek Coding Modbus for Arduino-UK 240325.indd   155Boek Coding Modbus for Arduino-UK 240325.indd   155 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 156

Chapter 34 • �ThingSpeak IoT Cloud with Ethernet/
ESP8266

In this section, we will explore how to transmit sensor data from the Ethernet/ESP8266. We 
will connect a temperature sensor, LM35, to the Ethernet/ESP8266 and then send the data 
to the ThingSpeak cloud platform. ThingSpeak is a well-known IoT platform that enables 
data transmission to a server, where it can be displayed in attractive widgets or stored in a 
database. It is user-friendly, and if you already have a ThingSpeak account, you can access 
the dashboard, which is depicted in Figure 34.1.

Figure 34.1: The ThingSpeak dashboard.

In the world of ThingSpeak, a channel is required to display data from the Ethernet/
ESP8266, specifically temperature data. To create a channel, we must click on the "New 
channel" option and fill out a form with the desired channel name. For our purposes, we 
will name it "Temperature Monitoring" and provide an optional description, such as "LM35 
Temperature Sensor Data". Within ThingSpeak, there is a concept called "Field". Multiple 
fields can be enabled, depending on the number of sensor data points to be sent. In this 
case, we only have one temperature sensor connected to Ethernet/ESP8266, so we are 
only interested in displaying the temperature value. "Field 1", as shown in Figure 34.2, is 
automatically selected, and we can proceed to click the "Save channel" button.

Figure 34.2: Selecting the "Field 1".

Now, upon creating this channel, you can see a "Field 1" chart. Within the chart, you will 
find your channel name, unique channel ID, author details, and the access is currently set 
to private. The specifics of this are not important now. If you look at this, it will show you a 
private view which includes a chart for "Field 1", as depicted in Figure 34.3. Currently, "Field 
1" does not have any sensor value. However, once a real sensor value is obtained, you will 
be able to view temperature data in that field. Additionally, you can add more widgets and 
explore other features, which we will discuss at the right time. So far, everything is going 

Boek Coding Modbus for Arduino-UK 240325.indd   156Boek Coding Modbus for Arduino-UK 240325.indd   156 09-04-2024   14:1509-04-2024   14:15



Chapter 34 • ThingSpeak IoT Cloud with Ethernet/ESP8266

● 157

well. Now, let's move on to the programming aspect of the microcontroller. We will be using 
an LM35 temperature sensor and connecting its output to the A0 pin. Since the LM35 is 
an analog temperature sensor, one of its pins will be connected to 3.3 V to provide power.

Figure 34.3: A chart of a "Field 1".

Furthermore, we need to connect another pin of the temperature sensor to the ground pin to 
set up the connection between LM35 and ESP8266. Next, we must launch the Arduino IDE. 
If you already have the Arduino IDE, we need to go to the sketch include library and select 
"Manage libraries" because we want ESP8266 to communicate with ThingSpeak. Therefore, 
we need to install the ThingSpeak libraries to avoid writing lengthy and complex bare-metal 
code or hard-coded HTTP requests. To keep it simple, we can search for "ThingSpeak" in 
the library search bar. Once the search is complete, we will find the ThingSpeak library 
developed by MathWorks Corporation, the same company known for the popular MATLAB 
software. We select the library and click on the "install" option, as depicted in Figure 34.4. 
After clicking "Install," we need to patiently wait for the ThingSpeak library to be installed 
for ESP8266. Once the installation is complete, we can see that it has been successfully 
installed.

Boek Coding Modbus for Arduino-UK 240325.indd   157Boek Coding Modbus for Arduino-UK 240325.indd   157 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 158

Figure 34.4: Installing the ThingSpeak library.

Therefore, we need to show some respect and close the "Library Manager". Afterwards, 
we can proceed to create a new project. As a result, a default project is automatically 
generated. We have already written some code, and now we will explain it line by line. 
Before doing anything else, it is important to save the file as good practice. Click on "Save" 
and name the file as "ThingSpeak_ESP8266". Now the program is saved. Our ESP8266 
communicates with the ThingSpeak cloud platform via Wi-Fi, so we need to enter the SSID 
(Wi-Fi access point name) in the code. Additionally, we need to provide the password. In 
the code, there is an integer variable named "pin," which is set to A0. This is because we 
will connect the LM35 temperature sensor to the ESP8266 via pin A0. Furthermore, we 
create an instance of the Wi-Fi client class, as shown in Figure 34.5. This client object 
serves as the hardware client that communicates with the ThingSpeak server.

Figure 34.5: Beginning header codes for ESP8266.

Afterward, you will notice that our channel is assigned a distinct channel number. Essentially, 
every ThingSpeak channel requires a unique channel number, or ID. Therefore, we need to 
navigate to our ThingSpeak dashboard and select the API keys section. Within the API keys, 
you will find a write API key that needs to be copied, as indicated in Figure 34.6.

Boek Coding Modbus for Arduino-UK 240325.indd   158Boek Coding Modbus for Arduino-UK 240325.indd   158 09-04-2024   14:1509-04-2024   14:15



Chapter 34 • ThingSpeak IoT Cloud with Ethernet/ESP8266

● 159

Figure 34.6: Getting the "Write API Key".

So, the next step is to return to the ThingSpeak channel and retrieve the channel ID. Once 
we have it, we can proceed to replace it within the code. We need to obtain "Write API Key" 
and insert it. Another part involves initializing the serial connection with a baud rate of 
9600, followed by a delay. The code then connects to the internet via Wi-Fi using the SSID 
and password in Figure 34.7. If you have experience with Arduino programming, you may 
recognize the usage of the global variable "val". This variable is defined at the beginning 
and is used to read the A0 pin. To convert the data from the LM35 temperature sensor 
from analog to degrees Celsius, we multiply the read value by 0.322265. This conversion 
is necessary because the microcontroller receives ADC counts from the analog sensor and 
needs to convert it to degrees Celsius. The reason for multiplying by this specific number is 
due to the voltage ranges of the LM35 and the node MCU. The LM35 operates between four 
and 30 volts, while the node MCU functions with a voltage of 3.3 volts.

Figure 34.7: The setup section code.

Boek Coding Modbus for Arduino-UK 240325.indd   159Boek Coding Modbus for Arduino-UK 240325.indd   159 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 160

Figure 34.8: The loop section code.

So, we have just calculated this number and stored the temperature sensor value in the 
"val" variable. After printing it on the serial monitor and waiting for one second, we call 
the "writeField" function, a part of the ThingSpeak library we have installed. This function 
pushes the data into our unique ThingSpeak channel, with the channel number and write 
API key being specific to our temperature monitoring channel, as created earlier. The "val" 
variable represents the data we want to send to the server.

To execute this, we save the file, check that the correct board and COM port are selected 
in the "Tools" menu, and then click on the upload button in the top-left corner. Before 
finalizing, it is crucial to open the serial monitor to observe the temperature sensor data. 
Confirming its appearance on the serial monitor, we can cross-verify the data in the 
ThingSpeak channel.

ThingSpeak, supporting the HTTP protocol, uses the "ThingSpeak.h" header file, which 
implements this protocol. ESP8266 communicates with ThingSpeak by sending data in the 
form of HTTP requests. The ThingSpeak library streamlines this process, avoiding the need 
to write HTTP requests from scratch.

Heading to the tools menu and opening the serial monitor, we can witness the temperature 
data appearing on the ThingSpeak channel, indicating a successful communication between 
ESP8266 and the ThingSpeak server. Figure 34.9 shows an example where we're receiving 
a temperature reading of 28 degrees Celsius. 

Figure 34.9: The temperature data on serial monitor.

If we navigate to our ThingSpeak dashboard, we need to go to the private view because 
the channel is set as private by default. This means that the data will not be shared with 
everyone. Once in the view, we can observe the temperature displayed. It is worth noting 

Boek Coding Modbus for Arduino-UK 240325.indd   160Boek Coding Modbus for Arduino-UK 240325.indd   160 09-04-2024   14:1509-04-2024   14:15



Chapter 34 • ThingSpeak IoT Cloud with Ethernet/ESP8266

● 161

that when comparing it to the window side by side, as shown in Figure 34.10, there might 
be a noticeable delay in the arrival of the data.

Figure 34.10: The side-by-side view of "Field 1" chart and serial monitor.

In the free version of ThingSpeak, there is a limitation that data can only be sent every 
15 seconds. This means that the data does not appear every second and is bound to a 
15-second interval. This is how the code operates. If you want to display the temperature 
data in visually appealing widgets instead of just a chart, you need to click on the "Add 
Widgets" option, as illustrated in Figure 34.11.

Figure 34.11: Adding widgets.

Afterwards, we need to choose the widget. Suppose for this example, we opt for a gauge. 
Therefore, select the gauge, continue by clicking on "Next", and proceed to assign the 
name to the gauge, as depicted in Figure 34.12 and Figure 34.13. We prefer to label it as 
"Temperature".

Figure 34.12: Selecting the gauge.

Boek Coding Modbus for Arduino-UK 240325.indd   161Boek Coding Modbus for Arduino-UK 240325.indd   161 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 162

Figure 34.13: Configuring widget parameters.

After obtaining LM35 temperature data in "Field 1," we aim to display this data with a range 
between 0 and 50 degrees Celsius. To enhance aesthetics, we have added color coding. 
Within the range of 0 to 30 degrees Celsius, the color is set to yellow, and for values 
between 30 to 50 degrees Celsius, we have chosen a random color, let's say red. You have 
the flexibility to customize these colors based on your preferences.

Additionally, you can add more details like units; for example, we have set it to "degree 
Celsius." You have the creative freedom to design it according to your liking. Clicking 
"Create" (as shown in Figure 34.13), you will now have a visually appealing widget. As 
illustrated in Figure  34.14, the data will appear in this widget, providing a clear and 
aesthetically pleasing representation of the temperature readings.

Figure 34.14: Added gauge widget.

To share this data with someone, you need to make sure that the channel is set to public. To 
do this, you must go to the shading option and select "Share channel view with everyone", 
as shown in Figure 34.15.

Boek Coding Modbus for Arduino-UK 240325.indd   162Boek Coding Modbus for Arduino-UK 240325.indd   162 09-04-2024   14:1509-04-2024   14:15



Chapter 34 • ThingSpeak IoT Cloud with Ethernet/ESP8266

● 163

Figure 34.15: Making the channel public.

This is essentially how the channel will appear from now on. In the public view, the gauge 
will not be visible. However, if you want to include the gauge, we can add it again and 
adjust its settings, similar to what was done in Figure 34.13. Consequently, our public view 
will be identical to our private view. Now, the URL at the top of the browser, as shown in 
Figure 34.16, will be accessible to the public.

Figure 34.16: The public view URL.

If we share this URL with our friends, they will be able to see our data in real-time. Let 
us demonstrate by opening a separate browser, such as Firefox, where we are not signed 
in to our ThingSpeak account. We will simply paste the copied URL from our ThingSpeak 
channel. This URL is unique to our channel and is public. Once we hit enter, we can see that 
the channel is now public, as depicted in Figure 34.17.

Figure 34.17: Opening the public URL in Firefox.

Boek Coding Modbus for Arduino-UK 240325.indd   163Boek Coding Modbus for Arduino-UK 240325.indd   163 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 164

Regardless of location, anyone in the world can view this information on ThingSpeak without 
needing to log in. This means that even if we have not signed in, we can still access the data 
and make it visible to the world. This is how you can create an attractive dashboard with a 
unique URL and other features.

Boek Coding Modbus for Arduino-UK 240325.indd   164Boek Coding Modbus for Arduino-UK 240325.indd   164 09-04-2024   14:1509-04-2024   14:15



Chapter 35 • The Modbus TCP/IP Communication using Node-RED

● 165

Chapter 35 • �The Modbus TCP/IP Communication using 
Node-RED

Node-RED is a visual programming tool for wiring together Internet of Things (IoT) devices, 
APIs, and online services. It provides a web-based flow editor that allows users to create 
and deploy flows of logic in a browser-based interface. Node-RED is built on top of Node.
js and provides a browser-based editor that makes it easy to create and deploy flows. It 
supports a wide range of IoT devices, APIs, and online services, making it a popular choice 
for IoT development and automation. Node-RED is open-source and has a large community 
of contributors, which makes it easy to find help and support. In this section, we are going 
to implement the Modbus TCP/IP communication using Node-RED.

To install Node-RED on Windows, follow these steps:

Step 1: Install Node.js
Node-RED requires Node.js to be installed on your machine. You can download the latest 
version of Node.js from the official website and install it on your Windows machine.

Step 2: Install Node-RED
Once Node.js is installed, you can install Node-RED using the Node Package Manager (NPM) 
by running the following command in the command prompt or terminal:

npm install -g --unsafe-perm node-red

This command will install Node-RED globally on your machine.

Step 3: Launch Node-RED
After the installation is complete, you can launch Node-RED by running the following 
command in the command prompt or terminal:

node-red

This will start Node-RED and open the Node-RED editor in your default browser.

Step 4: Accessing Node-RED
To access the Node-RED, open your web browser and navigate to "http://localhost:1880". 
This will display the Node-RED editor, where you can start creating your first flow.

That's it! You have successfully installed Node-RED on your Windows machine. An overview 
of these steps is shown in Figure 35.1.

To install Modbus TCP/IP in Node-RED, you should open the Node-RED and launch your 
Node-RED editor by navigating to "http://localhost:1880" in your web browser, and install 
the Modbus TCP/IP node. In the Node-RED editor, click on the menu icon in the top right 
corner and select "Manage palette", as depicted in Figure 35.2. In the "Install" tab, search 
for "node-red-contrib-modbus" and click on the "Install" button next to it, as illustrated in 

Boek Coding Modbus for Arduino-UK 240325.indd   165Boek Coding Modbus for Arduino-UK 240325.indd   165 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 166

Figure 35.3. This will install the Modbus TCP/IP node into your Node-RED environment as 
shown in Figure 35.4.

Figure 35.1: An overview of the Node-RED installation steps.

Figure 35.2: Selecting "Manage palette".

Boek Coding Modbus for Arduino-UK 240325.indd   166Boek Coding Modbus for Arduino-UK 240325.indd   166 09-04-2024   14:1509-04-2024   14:15



Chapter 35 • The Modbus TCP/IP Communication using Node-RED

● 167

Figure 35.3: Searching for and installing the "node-red-contrib-modbus".

Figure 35.4: Installed Modbus TCP/IP node into the Node-RED environment.

To begin working with Modbus TCP/IP in the Node-RED environment, it is recommended 
to retrieve the IPv4 address of the Windows system using the "ipconfig" command in 
the Windows command environment (cmd), as shown in Figure 35.5. Please note that 
the Node-RED program must be temporarily stopped to execute the "ipconfig" command. 
Once the IPv4 address has been obtained, you can reactivate the Node-RED program by 
executing the "node-red" command, as depicted in Figure 29.4. 

To start working within the Node-RED environment, you need to bring the Modbus Read 
node into the interface and double-click on it to access the Edit Modbus-Read node window. 
The settings for this window should be configured according to Figure 35.6.

Boek Coding Modbus for Arduino-UK 240325.indd   167Boek Coding Modbus for Arduino-UK 240325.indd   167 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 168

Figure 35.5: Obtaining the IPv4 address.

Figure 35.6: The "Edit Modbus-Read node" window settings.

To conclude, we select the pencil icon associated with "Add new modbus-client..." to access 
the window for configuring the new modbus-client. In this window, we configure the 
Properties tab as shown in Figure 35.7. Afterward, we click the "Add" button and proceed 
to the "Edit Modbus-Read node" window, where we click the "Done" button.

Boek Coding Modbus for Arduino-UK 240325.indd   168Boek Coding Modbus for Arduino-UK 240325.indd   168 09-04-2024   14:1509-04-2024   14:15



Chapter 35 • The Modbus TCP/IP Communication using Node-RED

● 169

Figure 35.7: "Add new modbus-client config node" window settings.

Figure 35.8: "Edit Modbus-Response node" for the first output.

Figure 35.9: "Edit Modbus-Response node" for the second output.

To receive a Modbus response in Node-RED, you can utilize the Mod-Response node. To 
the two output ports in thebusRead node, we make of two Modbus- nodes referred to as 
"first" and "secondNode" as depicted in Figure 35.8 and Figure 35.9 respectively. Following 
that, the "Deploy" button is clicked. We set up communication between the Modbus Slave 

Boek Coding Modbus for Arduino-UK 240325.indd   169Boek Coding Modbus for Arduino-UK 240325.indd   169 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 170

software and Node-RED using the TCP/IP protocol, employing the same port, ID, and IP 
address, along with the holding register (F = 03) previously selected in the ModbusRead 
node settings. Subsequently, an integer is entered in the address 0, which was previously 
chosen in the ModbusRead node, as shown in Figure 35.10. In Figure 35.10, the integer is 
represented as an array comprising four elements since the Quantity was set to four in the 
ModbusRead node settings.

Figure 35.10: Using the Modbus Slave software to communicate with the Node-RED.

The Debug node is a pre-installed feature in Node-RED that displays messages while 
constructing and executing flows. It is widely used for identifying and resolving problems 
in Node-RED flows, as well as visualizing data movement within the flow. To see the flow of 
data, we employ two Debug nodes named "firstout" and "secondout" which are connected 
to the outputs of the ModbusRead node, as illustrated in Figure 35.11 and Figure 35.12 
correspondingly.

Boek Coding Modbus for Arduino-UK 240325.indd   170Boek Coding Modbus for Arduino-UK 240325.indd   170 09-04-2024   14:1509-04-2024   14:15



Chapter 35 • The Modbus TCP/IP Communication using Node-RED

● 171

Figure 35.11: "Edit debug node" called "firstout".

Figure 35.12: "Edit debug node" called "secondout".

Node-RED provides a special type of node called the Function node, which allows users 
to create customized functions to manipulate messages within their flows. These function 
nodes are beneficial for performing tasks such as data transformations, message filtering, 
and implementing complex logic. Users can use standard JavaScript functions and libraries 
in their function nodes to manipulate messages as required. To separate the array elements 
of the ModbusRead node output, we connect the ModbusRead node's first output to the 
function node, as shown in Figure 35.13. Additionally, the debug window displays relevant 
results related to the Debug nodes in Figure 35.13.

Boek Coding Modbus for Arduino-UK 240325.indd   171Boek Coding Modbus for Arduino-UK 240325.indd   171 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 172

Figure 35.13: Connecting the ModbusRead node first output to the function node.

To input the JavaScript codes shown in Figure 35.14, we simply need to double-click on the 
function node.

Figure 35.14: JavaScript codes in the "Edit function node".

In "Setup" tab of the Edit function node window, we set the outputs to four since our array 
has four elements as depicted in Figure 35.15.

Boek Coding Modbus for Arduino-UK 240325.indd   172Boek Coding Modbus for Arduino-UK 240325.indd   172 09-04-2024   14:1509-04-2024   14:15



Chapter 35 • The Modbus TCP/IP Communication using Node-RED

● 173

Figure 35.15: Setting the Outputs as four.

By attaching two Debug nodes to the function node's outputs and after clicking on the 
"Deploy" button, the results can be seen on the debug window, as illustrated in Figure 
35.16.

Figure 35.16: Connecting two Debug nodes to the two outputs of the function node.

By using the Modbus Slave software, we can input an integer into address 1. Subsequently, 
the debug window will display the entered integer, as depicted in Figure 35.17.

Boek Coding Modbus for Arduino-UK 240325.indd   173Boek Coding Modbus for Arduino-UK 240325.indd   173 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 174

Figure 35.17: Adding an integer in the address 1.

To showcase a 32-bit integer, you need to insert the specified JavaScript code into the "Edit 
function node" window, as depicted in Figure 35.18.

Figure 35.18: Adding JavaScript codes to display a 32-bit integer.

To present a 32-bit integer, we incorporate a Function node with JavaScript codes, as 
illustrated in Figure 35.18. This node is then connected to a Debug node. Afterward, we 
click on the Deploy button. To see the outcome on the debug window, we apply the Modbus 
Slave software and include a 32-bit integer at address 0, as demonstrated Figure 35.19.

Boek Coding Modbus for Arduino-UK 240325.indd   174Boek Coding Modbus for Arduino-UK 240325.indd   174 09-04-2024   14:1509-04-2024   14:15



Chapter 35 • The Modbus TCP/IP Communication using Node-RED

● 175

Figure 35.19: Adding a 32-bit integer in the address 0.

To display a float number in the Node-RED editor, you need to follow these steps: click 
on the menu icon located at the top right corner, choose "Manage palette", switch to the 
"Install" tab, search for "float" and locate the "node-red-contrib-float". Finally, click on the 
"Install" button as shown in Figure 35.20.

Figure 35.20: Clicking on the "Install" button.

Once the "node-red-contrib-float" is installed, a new node called "toFloat" will appear in the 
nodes section of the Node-RED editor. To show a float number, we place the "toFloat" node 
between the "function2" and "firstout" nodes in Figure 35.19 and input a float number at 
address 0 using the Modbus Slave software. The resulting output can be seen in the debug 
window, as illustrated in Figure 35.21. 

Boek Coding Modbus for Arduino-UK 240325.indd   175Boek Coding Modbus for Arduino-UK 240325.indd   175 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 176

Figure 35.21: Adding a float number in the address 0.

The ModbusWrite node is a versatile tool for writing data to various types of Modbus devices, 
such as PLCs, RTUs, and other industrial automation devices. It can be combined with other 
Modbus nodes in Node-RED to create flexible and powerful Modbus-based applications. Our 
specific task involves writing an integer to address 0 of the holding register with a Modbus 
ID of 1 in the EasyModbusTCP Server Simulator, as shown in Figure 35.22. To accomplish 
this, we need to implement the corresponding flows in the Node-RED editor, as depicted 
in Figure 35.23. The first node, referred to as the inject node, serves as a useful tool for 
testing and debugging Node-RED flows. It allows manual injection of messages into the 
flow for observation of the processing. Additionally, the inject node can be used to trigger 
flows at specific times or intervals, or to simulate real-world events within the flows. The 
"Properties" window of the "Edit inject node" is displayed in Figure 35.24.

Boek Coding Modbus for Arduino-UK 240325.indd   176Boek Coding Modbus for Arduino-UK 240325.indd   176 09-04-2024   14:1509-04-2024   14:15



Chapter 35 • The Modbus TCP/IP Communication using Node-RED

● 177

Figure 35.22: Writing an integer in the address 0 of the holding register.

Figure 35.23: Implementing the Modbus Write flows in the Node-RED Editor.

After selecting the msg.payload that matches the value of 12 in Figure 35.23, we proceed 
by clicking the "Done" button.

Boek Coding Modbus for Arduino-UK 240325.indd   177Boek Coding Modbus for Arduino-UK 240325.indd   177 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 178

Figure 35.24: Choosing the msg.payload = 12.

To open the "Edit Modbus-Write" node and adjust the settings as shown in Figure 35.25, we 
simply need to double-click on the ModbusWrite node, which is the following node.

Figure 35.25: Settings of the "Edit Modbus-Write" node.

Next, we will select the pencil icon located next to the "ModbusServer" in Figure 30.4. This 
action will open the window for editing the modbus-client node, where we can make the 
necessary settings depicted in Figure 35.26.

Boek Coding Modbus for Arduino-UK 240325.indd   178Boek Coding Modbus for Arduino-UK 240325.indd   178 09-04-2024   14:1509-04-2024   14:15



Chapter 35 • The Modbus TCP/IP Communication using Node-RED

● 179

Figure 35.26: Settings of the "Edit modbus-client node" window.

We explore an alternative method of writing in Modbus using the function and Modbus-
Flex-Write nodes. The Modbus Flex Write node in Node-RED is a contributed node that 
enables writing data to Modbus registers. It offers flexibility by allowing single-value writes 
to a single register as well as multiple-value writes to multiple registers. Do not forget to 
deploy your flow to apply any changes made. The Modbus Flex Write node will send the 
specified write request to the Modbus server and update the corresponding registers with 
the provided data. Figure 35.27 provides an overview of the flows in the Node-RED Editor. 
The inject node is used solely to trigger the flow, but it can also include the value to be 
written. You can see the "Edit inject node" window in Figure 35.28.

Figure 35.27: The overview of the flows in the Node-RED Editor.

Boek Coding Modbus for Arduino-UK 240325.indd   179Boek Coding Modbus for Arduino-UK 240325.indd   179 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 180

Figure 35.28: The "Edit inject node" window.

Figure 35.29 illustrates the function node and the "Edit function node" window, which 
contains JavaScript codes.

Figure 35.29: JavaScript codes for the function node.

For writing a 32-bit integer we have:

var fc=16;
var sa=1;
var addresses=2;
var buf=Buffer.alloc(4);//create buffer
buf.writeInt32BE(68001);
var values=[(buf[0]*256+buf[1]),(buf[2]*256)+buf[3]]

Boek Coding Modbus for Arduino-UK 240325.indd   180Boek Coding Modbus for Arduino-UK 240325.indd   180 09-04-2024   14:1509-04-2024   14:15



Chapter 35 • The Modbus TCP/IP Communication using Node-RED

● 181

msg.slave_ip="192.168.1.101";
msg.payload={"value":values , 'fc': fc, 'unitid': 1, 'address': sa , 'quantity': 
addresses };
return msg;

For writing a 32-bit float we have:

var fc=16;
var sa=1;
var addresses=2;
var value=16001.5;
buf=Buffer.alloc(4);
buf.writeFloatBE(value);
//buf.writeFloatBE(16001.5);
var values=[(buf[0]*256+buf[1]),(buf[2]*256)+buf[3]]
msg.slave_ip="192.168.1.101";
msg.payload={"value":values , 'fc': fc, 'unitid': 1, 'address': sa , 'quantity': 
addresses };
return msg;

For writing a 64-bit float we have:

var fc=16;
var sa=1;
var addresses=4;
var value=16001.5;
buf=Buffer.alloc(8);
buf.writeDoubleBE(value);
//buf.writeFloatBE(16001.5);
var values=[(buf[0]*256+buf[1]),(buf[2]*256)+buf[3],(buf[4]*256+buf[5]),(buf[6]*2
56)+buf[7]];
msg.slave_ip="192.168.1.101";
msg.payload={"value":values , 'fc': fc, 'unitid': 1, 'address': sa , 'quantity': 
addresses };
return msg;

When you double-click on the Modbus-Flex-Write node, the window for editing the node 
called "Edit Modbus-Flex-Write" will appear, as shown in Figure 35.30.

Boek Coding Modbus for Arduino-UK 240325.indd   181Boek Coding Modbus for Arduino-UK 240325.indd   181 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 182

Figure 35.30: "Edit Modbus-Flex-Write" node window settings.

When we click on the pencil icon next to the "ModbusServer" in Figure 281, it opens the 
Edit modbus-client node window. In this window, we make the settings shown in Figure 
35.26. Afterward, we click on the Deploy button to view the integers located at addresses 
0 and 1 in the holding registers of the EasyModbusTCP Server Simulator. This is illustrated 
in Figure 35.31.

Figure 35.31: Displaying results in the addresses 0 and 1 of the holding registers.

Boek Coding Modbus for Arduino-UK 240325.indd   182Boek Coding Modbus for Arduino-UK 240325.indd   182 09-04-2024   14:1509-04-2024   14:15



Chapter 35 • The Modbus TCP/IP Communication using Node-RED

● 183

Figure 35.32: Displaying results in the holding registers of Modbus Slave software.

Additionally, it is possible to utilize the previous Modbus Slave software for showcasing the 
outcomes of Modbus writing in holding registers, as depicted in Figure 35.32.

Boek Coding Modbus for Arduino-UK 240325.indd   183Boek Coding Modbus for Arduino-UK 240325.indd   183 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 184

Chapter 36 • Arduino, Node-RED and Blynk IoT Project

In this section, we will be discussing Blynk IoT and its many advantages. One of the main 
benefits is the ability to send the dashboard to your cell phone and monitor it from there. 
Additionally, Blynk allows you to set up alerts, such as email notifications, when a signal is 
out of range. These features are available in the free version. Another interesting aspect is 
the ability to import data from Node-RED, which we will demonstrate in this section. To get 
started, you simply create a Blynk account using your email and then add a device. There 
are several ways to add a device, including entering a code, scanning a QR code, or using a 
template like the Quick Start template we used in our case. As shown in Figure 36.1, Figure 
36.2, and Figure 36.3 respectively, you can see that the device is already set up.

Figure 36.1: Creating a new device.

Figure 36.2: Choosing "From template".

Figure 36.3: Filling in the quick start template.

Boek Coding Modbus for Arduino-UK 240325.indd   184Boek Coding Modbus for Arduino-UK 240325.indd   184 09-04-2024   14:1509-04-2024   14:15



Chapter 36 • Arduino, Node-RED and Blynk IoT Project

● 185

Currently, there is no connectivity, making it uncertain where Node-RED will source the 
data from. However, by selecting the Quickstart Template, we can access the necessary 
information. In this particular scenario, the dashboard has already been established and 
features a gauge and a graph, thus demonstrating it's functioning as shown in Figure 36.4.

Figure 36.4: The Quickstart Template dashboard.

Using our potentiometer, we successfully adjust the signal range from 0 to 1023. This 
adjustment was received through email, meaning that setting it to the maximum in the 
email would result in its arrival here, as depicted in Figure 36.5. 

Figure 36.5: Arriving email for Blynk.

We have set up the sensor to receive alerts or alarms when it goes out of range, which 
is quite interesting. The dashboard displays various topics and widgets that we can check 
on our device. Additionally, we can also monitor and control automation settings from this 
device. For example, we configured email notifications to be sent if the value of the virtual 
pin falls below 100 or exceeds 1000. We received the emails successfully, and if you want 
to make any changes or add new automation, you can refer to Figure 36.6 for guidance.

Figure 36.6: "My Automations" settings section.

Boek Coding Modbus for Arduino-UK 240325.indd   185Boek Coding Modbus for Arduino-UK 240325.indd   185 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 186

That is when things become intriguing, as illustrated in Figure 36.7.

Figure 36.7: The Quickstart Template settings section.

In Figure 36.8, we can see a virtual pin labeled as "v0" that possesses the mentioned 
attributes as indicated in this line and can be found on the web dashboard mentioned here.

Figure 36.8: Added a virtual pin, v0.

To include additional data, you can access the available options by selecting "Edit" and then 
selecting "New Datastreams" as demonstrated in Figure 36.9.

Figure 36.9: Adding a new virtual pin.

Boek Coding Modbus for Arduino-UK 240325.indd   186Boek Coding Modbus for Arduino-UK 240325.indd   186 09-04-2024   14:1509-04-2024   14:15



Chapter 36 • Arduino, Node-RED and Blynk IoT Project

● 187

Figure 36.10: Adding widget box elements from web dashboard.

To add widget box elements, simply click on the "Web Dashboard" tab as depicted in Figure 
36.10. In the free version, we included a graph, a gauge, and an integer value. It is worth 
noting that there are additional options available for a fee. However, for a proof of concept, 
we believe these options are satisfactory. If you wish to view the dashboard on your phone, 
instructions on how to do so and where to download it from the Android or iOS App Store 
will be provided. The installation process is straightforward, making it even more helpful, 
as showed in the mobile dashboard tab. Furthermore, in the "Device Info" tab, displayed in 
Figure 36.11, we can access valuable device information and create a Quickstart Template.

Figure 36.11: The "Device Info" tab.

Figure 36.12 illustrates the Node-RED flow featuring the Quickstart Template and the 
installed Blynk IoT's write node.

Boek Coding Modbus for Arduino-UK 240325.indd   187Boek Coding Modbus for Arduino-UK 240325.indd   187 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 188

Figure 36.12: The Quickstart Template (Blynk IoT write node) in Node-RED flow.

To add an item that is not currently in the menu, you need to select the "Manage palette" 
option. Once selected, click "Install" and search for "Blynk IoT". Once you find it, click 
"Install". This is depicted in Figure 36.13.

Figure 36.13: Installing the Blynk IoT.

When we open the Quickstart Template in Node-RED flow, it reveals a Blynk IoT write node. 
By doing so, we can access the "Edit write node" window, as depicted in Figure 36.14.

Boek Coding Modbus for Arduino-UK 240325.indd   188Boek Coding Modbus for Arduino-UK 240325.indd   188 09-04-2024   14:1509-04-2024   14:15



Chapter 36 • Arduino, Node-RED and Blynk IoT Project

● 189

Figure 36.14: "Edit write node" window.

Next, we need to select the pencil icon found beside the "Connection" row to access the 
"Edit blynk-iot-client node" interface. Here, we will adjust the parameters as showed in 
Figure 36.15.

Figure 36.15: Editing the Blynk IoT client node.

Using the "Device Info" tab in Figure 36.11, you can populate the parameters. Upon clicking 
deploy in the Node-RED flow, we can then see our dashboard. In this particular scenario, 
let's say we have successfully identified a matching value of 236, as depicted in Figure 
36.16.

Boek Coding Modbus for Arduino-UK 240325.indd   189Boek Coding Modbus for Arduino-UK 240325.indd   189 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 190

Figure 36.16: Our Blynk dashboard.

Additionally, within the automations, we will be introducing a new one where the objective 
is to send an email.

Figure 36.17: Setting the new automation.

Furthermore, we have instructed the platform to execute the action shown in Figure 
36.17 when the integer V0 falls outside the range of 100 to 1000. This ensures a visually 
appealing and user-friendly platform experience. Additionally, users have the convenience 
of importing data from platforms such as Node-RED.

Boek Coding Modbus for Arduino-UK 240325.indd   190Boek Coding Modbus for Arduino-UK 240325.indd   190 09-04-2024   14:1509-04-2024   14:15



Chapter 37 • The MQTT DHT22 ESP32 and Node-RED Project

● 191

Chapter 37 • �The MQTT DHT22 ESP32 and Node-RED 
Project

The Wokwi Simulator is an online platform that offers users the opportunity to simulate 
and experiment with their Arduino and Raspberry Pi projects. It creates a virtual hardware 
environment that eliminates the requirement for physical components, allowing users to 
write and execute code. Through the Wokwi Simulator, users can design, prototype, debug 
code, and simulate circuit components' interactions. It is an invaluable tool for individuals 
interested in learning and exploring programming and electronics. We conducted a search 
on the Wokwi website for the MQTT DHT22 ESP32, which yielded the following result.

https://wokwi.com/projects/374901947392501761

We go to the Node-RED dashboard and look for MQTT, and then add two MQTT input/output 
nodes to the flow, as depicted in Figure 37.1.

Figure 37.1: Putting two MQTT in nodes in the flow.

Next, we locate the gauge node and incorporate two-gauge nodes into the flow, as 
illustrated in Figure 37.2.

Boek Coding Modbus for Arduino-UK 240325.indd   191Boek Coding Modbus for Arduino-UK 240325.indd   191 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 192

Figure 37.2: Putting two-gauge nodes in the flow.

Next, we proceed to select "mqqt in node" and adjust the parameters in the corresponding 
"Edit mqqt in node" window. Afterward, we complete the setup by clicking on the "Done" 
button, as shown in Figure 37.3. Similarly, we repeat these configurations for the other 
mqqt in node, with the exception that the topic will be "/ThinkIOT/hum", showed in Figure 
37.4.

Figure 37.3: Setting the "Edit mqqt in node" parameters.

Boek Coding Modbus for Arduino-UK 240325.indd   192Boek Coding Modbus for Arduino-UK 240325.indd   192 09-04-2024   14:1509-04-2024   14:15



Chapter 37 • The MQTT DHT22 ESP32 and Node-RED Project

● 193

Figure 37.4: Setting the "Edit mqqt in node" parameters.

Next, we select the top gauge, which opens the "Edit gauge node" window. We proceed to 
fill in the parameters and then click on the "Done" button, as shown in Figure 37.5.

Figure 37.5: Setting the "Edit gauge node" parameters.

Boek Coding Modbus for Arduino-UK 240325.indd   193Boek Coding Modbus for Arduino-UK 240325.indd   193 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 194

Figure 37.6: Setting the "Edit gauge node" parameters.

Next, we continue to click on the lower gauge, which will open the window for editing the 
gauge node. We fill in the necessary parameters and then click on the "Done" button, as 
illustrated in Figure 37.6. We set up connections between the mqqt in nodes and their 
corresponding gauges, and then click on the "Deploy" button, as displayed in Figure 37.7.

Figure 37.7: Clicking on the "Deploy" button.

Once Node-RED is deployed, we can proceed to run the Wokwi simulator. To find the 
dashboard, we need to click on the search icon located at the top right corner, as shown in 
Figure 37.8.

Boek Coding Modbus for Arduino-UK 240325.indd   194Boek Coding Modbus for Arduino-UK 240325.indd   194 09-04-2024   14:1509-04-2024   14:15



Chapter 37 • The MQTT DHT22 ESP32 and Node-RED Project

● 195

Figure 37.8: Clicking on "Dashboard" icon.

Next, we open the gauge view window by clicking on the icon shown in Figure 37.9 and 
Figure 37.10 respectively after selecting the "Theme" tab.

Figure 37.9: Clicking on the icon after the "Theme" tab.

Figure 37.10: The gauges data view.

Hence, by following the approach explained in this section, we can grasp the procedure to 
showcase data through the MQTT protocol within the Node-RED framework.

Boek Coding Modbus for Arduino-UK 240325.indd   195Boek Coding Modbus for Arduino-UK 240325.indd   195 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 196

Appendix

MgsModbus.cpp:

#include "MgsModbus.h"
// For Arduino 1.0
EthernetServer MbServer(MB_PORT);
EthernetClient MbmClient;
//#define DEBUG
MgsModbus::MgsModbus()
{
}
//****************** Send data for ModBusMaster ****************
void MgsModbus::Req(MB_FC FC, word Ref, word Count, word Pos)
{
  MbmFC = FC;
  byte ServerIp[] = {0,0,0,0};
  ServerIp[0] = remServerIP[0];
  ServerIp[1] = remServerIP[1];
  ServerIp[2] = remServerIP[2];
  ServerIp[3] = remServerIP[3];
  MbmByteArray[0] = 0;  // ID high byte
  MbmByteArray[1] = 1;  // ID low byte
  MbmByteArray[2] = 0;  // protocol high byte
  MbmByteArray[3] = 0;  // protocol low byte
  MbmByteArray[5] = 6;  // Lenght low byte;
  MbmByteArray[4] = 0;  // Lenght high byte
  MbmByteArray[6] = 1;  // unit ID
  MbmByteArray[7] = FC; // function code
  MbmByteArray[8] = highByte(Ref);
  MbmByteArray[9] = lowByte(Ref);
  //****************** Read Coils (1) & Read Input discretes (2) 
**********************
  if(FC == MB_FC_READ_COILS || FC == MB_FC_READ_DISCRETE_INPUT) {
    if (Count < 1) {Count = 1;}
    if (Count > 125) {Count = 2000;}
    MbmByteArray[10] = highByte(Count);
    MbmByteArray[11] = lowByte(Count);
  }
  //****************** Read Registers (3) & Read Input registers (4) 
******************
  if(FC == MB_FC_READ_REGISTERS || FC == MB_FC_READ_INPUT_REGISTER) {
    if (Count < 1) {Count = 1;}
    if (Count > 125) {Count = 125;}
    MbmByteArray[10] = highByte(Count);
    MbmByteArray[11] = lowByte(Count);

Boek Coding Modbus for Arduino-UK 240325.indd   196Boek Coding Modbus for Arduino-UK 240325.indd   196 09-04-2024   14:1509-04-2024   14:15



Appendix

● 197

  }
  //****************** Write Coil (5) **********************
  if(MbmFC == MB_FC_WRITE_COIL) {
    if (GetBit(Pos)) {MbmByteArray[10] = 0xFF;} else {MbmByteArray[10] = 0;} // 
0xFF coil on 0x00 coil off
    MbmByteArray[11] = 0; // always zero
  }
  //****************** Write Register (6) ******************
  if(MbmFC == MB_FC_WRITE_REGISTER) {
    MbmByteArray[10] = highByte(MbData[Pos]);
    MbmByteArray[11] = lowByte(MbData[Pos]);
  }
  //****************** Write Multiple Coils (15) **********************
  // not fuly tested
  if(MbmFC == MB_FC_WRITE_MULTIPLE_COILS) {
    if (Count < 1) {Count = 1;}
    if (Count > 800) {Count = 800;}
    MbmByteArray[10] = highByte(Count);
    MbmByteArray[11] = lowByte(Count);
    MbmByteArray[12] = (Count + 7) /8;
    MbmByteArray[4] = highByte(MbmByteArray[12] + 7); // Lenght high byte
    MbmByteArray[5] = lowByte(MbmByteArray[12] + 7); // Lenght low byte;
    for (int i=0; i<Count; i++) {
      bitWrite(MbmByteArray[13+(i/8)],i-((i/8)*8),GetBit(Pos+i));
    }
  }
  //****************** Write Multiple Registers (16) ******************
  if(MbmFC == MB_FC_WRITE_MULTIPLE_REGISTERS) {
    if (Count < 1) {Count = 1;}
    if (Count > 100) {Count = 100;}
    MbmByteArray[10] = highByte(Count);
    MbmByteArray[11] = lowByte(Count);
    MbmByteArray[12] = (Count*2);
    MbmByteArray[4] = highByte(MbmByteArray[12] + 7); // Lenght high byte
    MbmByteArray[5] = lowByte(MbmByteArray[12] + 7); // Lenght low byte;
    for (int i=0; i<Count;i++) {
      MbmByteArray[(i*2)+13] = highByte (MbData[Pos + i]);
      MbmByteArray[(i*2)+14] = lowByte (MbData[Pos + i]);
    }
  }
  //****************** ?? ******************
  if (MbmClient.connect(ServerIp,502)) {
    #ifdef DEBUG
      Serial.println("connected with modbus slave");
      Serial.print("Master request: ");
      for(int i=0;i<MbmByteArray[5]+6;i++) {

Boek Coding Modbus for Arduino-UK 240325.indd   197Boek Coding Modbus for Arduino-UK 240325.indd   197 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 198

        if(MbmByteArray[i] < 16){Serial.print("0");}
        Serial.print(MbmByteArray[i],HEX);
        if (i != MbmByteArray[5]+5) {Serial.print(".");} else {Serial.println();}
      }
    #endif    
    for(int i=0;i<MbmByteArray[5]+6;i++) {
      MbmClient.write(MbmByteArray[i]);
    }
    MbmCounter = 0;
    MbmByteArray[7] = 0;
    MbmPos = Pos;
    MbmBitCount = Count;
  } else {
    #ifdef DEBUG
      Serial.println("connection with modbus master failed");
    #endif    
    MbmClient.stop();
  }
}
//****************** Recieve data for ModBusMaster ****************
void MgsModbus::MbmRun()
{
  //****************** Read from socket ****************
  while (MbmClient.available()) {
    MbmByteArray[MbmCounter] = MbmClient.read();
    if (MbmCounter > 4)  {
      if (MbmCounter == MbmByteArray[5] + 5) { // the full answer is recieved  
        MbmClient.stop();
        MbmProcess();
        #ifdef DEBUG
          Serial.println("recieve klaar");
        #endif    
      }
    }
    MbmCounter++;
  }
}
void MgsModbus::MbmProcess()
{
  MbmFC = SetFC(int (MbmByteArray[7]));
  #ifdef DEBUG
    for (int i=0;i<MbmByteArray[5]+6;i++) {
      if(MbmByteArray[i] < 16) {Serial.print("0");}
      Serial.print(MbmByteArray[i],HEX);
      if (i != MbmByteArray[5]+5) {Serial.print(".");
      } else {Serial.println();}

Boek Coding Modbus for Arduino-UK 240325.indd   198Boek Coding Modbus for Arduino-UK 240325.indd   198 09-04-2024   14:1509-04-2024   14:15



Appendix

● 199

    }
  #endif    
  //****************** Read Coils (1) & Read Input discretes (2) 
**********************
  if(MbmFC == MB_FC_READ_COILS || MbmFC == MB_FC_READ_DISCRETE_INPUT) {
    word Count = MbmByteArray[8] * 8;
    if (MbmBitCount < Count) {
      Count = MbmBitCount;
    }
    for (int i=0;i<Count;i++) {
      if (i + MbmPos < MbDataLen * 16) {
        SetBit(i + MbmPos,bitRead(MbmByteArray[(i/8)+9],i-((i/8)*8)));
      }
    }
  }
  //****************** Read Registers (3) & Read Input registers (4) 
******************
  if(MbmFC == MB_FC_READ_REGISTERS || MbmFC == MB_FC_READ_INPUT_REGISTER) {
    word Pos = MbmPos;
    for (int i=0;i<MbmByteArray[8];i=i+2) {
      if (Pos < MbDataLen) {
        MbData[Pos] = (MbmByteArray[i+9] * 0x100) + MbmByteArray[i+1+9];
        Pos++;
      }
    }
  }
  //****************** Write Coil (5) **********************
  if(MbmFC == MB_FC_WRITE_COIL){
  }
  //****************** Write Register (6) ******************
  if(MbmFC == MB_FC_WRITE_REGISTER){
  }
  //****************** Write Multiple Coils (15) **********************
  if(MbmFC == MB_FC_WRITE_MULTIPLE_COILS){
  }
  //****************** Write Multiple Registers (16) ******************
  if(MbmFC == MB_FC_WRITE_MULTIPLE_REGISTERS){
  }
}
//****************** Recieve data for ModBusSlave ****************
void MgsModbus::MbsRun()
{  
  //****************** Read from socket ****************
  EthernetClient client = MbServer.available();
  if(client.available())
  {

Boek Coding Modbus for Arduino-UK 240325.indd   199Boek Coding Modbus for Arduino-UK 240325.indd   199 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 200

    delay(10);
    int i = 0;
    while(client.available())
    {
      MbsByteArray[i] = client.read();
      i++;
    }
    MbsFC = SetFC(MbsByteArray[7]);  //Byte 7 of request is FC
  }
  int Start, WordDataLength, ByteDataLength, CoilDataLength, MessageLength;
  //****************** Read Coils (1 & 2) **********************
  if(MbsFC == MB_FC_READ_COILS || MbsFC == MB_FC_READ_DISCRETE_INPUT) {
    Start = word(MbsByteArray[8],MbsByteArray[9]);
    CoilDataLength = word(MbsByteArray[10],MbsByteArray[11]);
    ByteDataLength = CoilDataLength / 8;
    if(ByteDataLength * 8 < CoilDataLength) ByteDataLength++;      
    CoilDataLength = ByteDataLength * 8;
    MbsByteArray[5] = ByteDataLength + 3; //Number of bytes after this one.
    MbsByteArray[8] = ByteDataLength;     //Number of bytes after this one (or 
number of bytes of data).
    for(int i = 0; i < ByteDataLength ; i++)
    {
      MbsByteArray[9 + i] = 0; // To get all remaining not written bits zero
      for(int j = 0; j < 8; j++)
      {
        bitWrite(MbsByteArray[9 + i], j, GetBit(Start + i * 8 + j));
      }
    }
    MessageLength = ByteDataLength + 9;
    client.write(MbsByteArray, MessageLength);
    MbsFC = MB_FC_NONE;
  }
  //****************** Read Registers (3 & 4) ******************
  if(MbsFC == MB_FC_READ_REGISTERS || MbsFC == MB_FC_READ_INPUT_REGISTER) {
    Start = word(MbsByteArray[8],MbsByteArray[9]);
    WordDataLength = word(MbsByteArray[10],MbsByteArray[11]);
    ByteDataLength = WordDataLength * 2;
    MbsByteArray[5] = ByteDataLength + 3; //Number of bytes after this one.
    MbsByteArray[8] = ByteDataLength;     //Number of bytes after this one (or 
number of bytes of data).
    for(int i = 0; i < WordDataLength; i++)
    {
      MbsByteArray[ 9 + i * 2] = highByte(MbData[Start + i]);
      MbsByteArray[10 + i * 2] =  lowByte(MbData[Start + i]);
    }
    MessageLength = ByteDataLength + 9;

Boek Coding Modbus for Arduino-UK 240325.indd   200Boek Coding Modbus for Arduino-UK 240325.indd   200 09-04-2024   14:1509-04-2024   14:15



Appendix

● 201

    client.write(MbsByteArray, MessageLength);
    MbsFC = MB_FC_NONE;
  }
  //****************** Write Coil (5) **********************
  if(MbsFC == MB_FC_WRITE_COIL) {
    Start = word(MbsByteArray[8],MbsByteArray[9]);
    if (word(MbsByteArray[10],MbsByteArray[11]) == 0xFF00){SetBit(Start,true);}
    if (word(MbsByteArray[10],MbsByteArray[11]) == 0x0000){SetBit(Start,false);}
    MbsByteArray[5] = 2; //Number of bytes after this one.
    MessageLength = 8;
    client.write(MbsByteArray, MessageLength);
    MbsFC = MB_FC_NONE;
  } 
  //****************** Write Register (6) ******************
  if(MbsFC == MB_FC_WRITE_REGISTER) {
    Start = word(MbsByteArray[8],MbsByteArray[9]);
    MbData[Start] = word(MbsByteArray[10],MbsByteArray[11]);
    MbsByteArray[5] = 6; //Number of bytes after this one.
    MessageLength = 12;
    client.write(MbsByteArray, MessageLength);
    MbsFC = MB_FC_NONE;
  }
  //****************** Write Multiple Coils (15) **********************
  if(MbsFC == MB_FC_WRITE_MULTIPLE_COILS) {
    Start = word(MbsByteArray[8],MbsByteArray[9]);
    CoilDataLength = word(MbsByteArray[10],MbsByteArray[11]);
    MbsByteArray[5] = 6;
    for(int i = 0; i < CoilDataLength; i++)
    {
      SetBit(Start + i,bitRead(MbsByteArray[13 + (i/8)],i-((i/8)*8)));
    }
    MessageLength = 12;
    client.write(MbsByteArray, MessageLength);
    MbsFC = MB_FC_NONE;
  }  
  //****************** Write Multiple Registers (16) ******************
  if(MbsFC == MB_FC_WRITE_MULTIPLE_REGISTERS) {
    Start = word(MbsByteArray[8],MbsByteArray[9]);
    WordDataLength = word(MbsByteArray[10],MbsByteArray[11]);
    ByteDataLength = WordDataLength * 2;
    MbsByteArray[5] = 6;
    for(int i = 0; i < WordDataLength; i++)
    {
      MbData[Start + i] =  word(MbsByteArray[ 13 + i * 2],MbsByteArray[14 + i * 
2]);
    }

Boek Coding Modbus for Arduino-UK 240325.indd   201Boek Coding Modbus for Arduino-UK 240325.indd   201 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 202

    MessageLength = 12;
    client.write(MbsByteArray, MessageLength);
    MbsFC = MB_FC_NONE;
  }
}
//****************** ?? ******************
MB_FC MgsModbus::SetFC(int fc)
{
  MB_FC FC;
  FC = MB_FC_NONE;
  if(fc == 1) FC = MB_FC_READ_COILS;
  if(fc == 2) FC = MB_FC_READ_DISCRETE_INPUT;
  if(fc == 3) FC = MB_FC_READ_REGISTERS;
  if(fc == 4) FC = MB_FC_READ_INPUT_REGISTER;
  if(fc == 5) FC = MB_FC_WRITE_COIL;
  if(fc == 6) FC = MB_FC_WRITE_REGISTER;
  if(fc == 15) FC = MB_FC_WRITE_MULTIPLE_COILS;
  if(fc == 16) FC = MB_FC_WRITE_MULTIPLE_REGISTERS;
  return FC;
}
word MgsModbus::GetDataLen()
{
  return MbDataLen;
}
boolean MgsModbus::GetBit(word Number)
{
  int ArrayPos = Number / 16;
  int BitPos = Number - ArrayPos * 16;
  boolean Tmp = bitRead(MbData[ArrayPos],BitPos);
  return Tmp;
}
boolean MgsModbus::SetBit(word Number,boolean Data)
{
  int ArrayPos = Number / 16;
  int BitPos = Number - ArrayPos * 16;
  boolean Overrun = ArrayPos > MbDataLen * 16; // check for data overrun
  if (!Overrun){                 
    bitWrite(MbData[ArrayPos],BitPos,Data);
  } 
  return Overrun;
}

Boek Coding Modbus for Arduino-UK 240325.indd   202Boek Coding Modbus for Arduino-UK 240325.indd   202 09-04-2024   14:1509-04-2024   14:15



Appendix

● 203

MgsModbus.h:

/*
  MgsModbus.h - an Arduino library for a Modbus TCP master and slave.
  V-0.1.1 Copyright (C) 2013  Marco Gerritse
  written and tested with Arduino 1.0
    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.
    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
  For this library the following library is used as start point:
    [1] Mudbus.h - an Arduino library for a Modbus TCP slave.
        Copyright (C) 2011  Dee Wykoff
    [2] Function codes 15 & 16 by Martin Pettersson
  The following references are used to write this library:
    [3] Open Modbus/Tcp specification, Release 1.0, 29 March 1999
        By Andy Swales, Schneider Electric
    [4] Modbus application protocol specification V1.1b3, 26 april 202
        From http:/www.modbus.org  
  External software used for testing:
    [5] modpoll - www.modbusdriver.com/modpoll.html
    [6] ananas - www.tuomio.fi/ananas
    [7] mod_rssim - www.plcsimulator.org 
    [8] modbus master - www.cableone.net/mblansett/
  This library use a single block of memory for all modbus data (mbData[] array). 
The same data can be reached via several modbus functions, either via a 16 bit 
access
  or via an access bit. The length of MbData must at least 1.
  For the master the following modbus functions are implemented: 1, 2, 3, 4, 5, 
6, 15, 16
  For the slave the following modbus functions are implemented: 1, 2, 3, 4, 5, 6, 
15, 16
  The internal and external addresses are 0 (zero) based
  V-0.1.1 2013-06-02
  bugfix
  V-0.1.0 2013-03-02
  initinal version
*/
#include "Arduino.h"
#include <SPI.h>

Boek Coding Modbus for Arduino-UK 240325.indd   203Boek Coding Modbus for Arduino-UK 240325.indd   203 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 204

#include <Ethernet.h>
#ifndef MgsModbus_h
#define MgsModbus_h
#define MbDataLen 30 // length of the MdData array
#define MB_PORT 502

enum MB_FC {
  MB_FC_NONE                     = 0,
  MB_FC_READ_COILS               = 1,
  MB_FC_READ_DISCRETE_INPUT      = 2,
  MB_FC_READ_REGISTERS           = 3,
  MB_FC_READ_INPUT_REGISTER      = 4,
  MB_FC_WRITE_COIL               = 5,
  MB_FC_WRITE_REGISTER           = 6,
  MB_FC_WRITE_MULTIPLE_COILS     = 15,
  MB_FC_WRITE_MULTIPLE_REGISTERS = 16
};
class MgsModbus
{
public:
  // general
  MgsModbus();
  word MbData[MbDataLen]; // memory block that holds all the modbus user data
  boolean GetBit(word Number);
  boolean SetBit(word Number,boolean Data); // returns true when the number is in 
the MbData range
  // modbus master
  void Req(MB_FC FC, word Ref, word Count, word Pos);
  void MbmRun();
  IPAddress remSlaveIP;
  byte remServerIP[4];
  // modbus slave
  void MbsRun();  
  word GetDataLen();
private: 
  // general
  MB_FC SetFC(int fc);
  // modbus master
  uint8_t MbmByteArray[260]; // send and recieve buffer
  MB_FC MbmFC;
  int MbmCounter;
  void MbmProcess();
  word MbmPos;
  word MbmBitCount;
  //modbus slave
  uint8_t MbsByteArray[260]; // send and recieve buffer

Boek Coding Modbus for Arduino-UK 240325.indd   204Boek Coding Modbus for Arduino-UK 240325.indd   204 09-04-2024   14:1509-04-2024   14:15



Appendix

● 205

  MB_FC MbsFC;
};
#endif

Boek Coding Modbus for Arduino-UK 240325.indd   205Boek Coding Modbus for Arduino-UK 240325.indd   205 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 206

References

How to Program an Arduino as a Modbus TCP/IP Client & Server from Emile Ackbarali

https://www.udemy.com/course/how-to-program-an-arduino-as-a-modbus-tcp-
client-server/

The modbus-arduino library

https://github.com/andresarmento/modbus-arduino

The Modbus Library

https://myarduinoprojects.com/modbus.html

Arduino & Modbus Protocol

https://docs.arduino.cc/learn/communication/modbus

Arduino-Modbus Tutorials

https://arduinogetstarted.com/tutorials/arduino-modbus

Writing Modbus Data with Node-Red

https://stevesnoderedguide.com/modbus-writing-data

Modbus RTU TCP/IP on Node-RED (16bit, 32bit and floating data)

https://youtu.be/uillyhwBoEU?si=xVtQ8AgTA1YlxYOo

Node-RED - Modbus TCP - Comment réaliser une application Client/Serveur - Partie 1/2

https://youtu.be/WcOsJNsHbfw?si=W0_I-0ga3nl8pAZY

Node RED - Modbus TCP - Comment réaliser une application Client/Serveur - Partie 2/2 - 
Home I/O

https://youtu.be/Bmpm52wCoQI?si=dsQZ8LF39m4mCJMe

Communication between two Arduino's

https://www.circuits-diy.com/communication-between-two-arduino/

Boek Coding Modbus for Arduino-UK 240325.indd   206Boek Coding Modbus for Arduino-UK 240325.indd   206 09-04-2024   14:1509-04-2024   14:15



Index

● 207

Index

A
analogRead	 149
Animation types"	 122
API key	 160
Arduino IDE	 16

B
baud rate	 159
Blynk app	 129
Blynk IoT	 188
Blynk library	 136
Boolean	 58

C
CAN bus Shield	 9
CAT5 cable	 12
CheckForDatachange	 34
CheckForDataChange	 60
coil register addresses	 110

D
dashboard	 186
Deploy	 194
device/temp	 152
DHT11 sensor	 140
DisplayCurrentValues	 32
DNS and IP address	 103

E
EasyModbusTCP Server Simulator	 182
Edit Modbus-Write	 178
ESP8266	 130
Ethernet/ESP8266	 156
Ethernet hub	 15
Ethernet Network Hub	 9
Ethernet port	 15
Ethernet Shield	 9
Ethernet Shield W5100	 129
External Power Supply	 10

F
Firefox	 163

G
Google Chrome	 149

H
Hello World!	 26
HTTP protocol	 160

I
IE general	 114
iOS App Store	 187
IPv4 address	 167

J
JavaScript	 174

L
libraries	 36
Library Manager	 136
LinearScaling function	 127
LM35	 100
LM35 sensor	 149
Local Area Connection	 42

M
MAC address	 39
Manage palette	 188
MATLAB	 157
mb.config(Mac, IP)	 39
MbmRun	 82
mb.task()	 40, 52
MgsModbus	 72
MgsModbus.cpp	 18
MgsModbus.h	 18
MgsModbus.zip	 18
Modbus	 8
Modbus Arduino master	 18
Modbus Flex Write node	 179
ModbusIP	 37
ModbusIP.h	 37
ModbusRead	 170
Modbus RS485	 9
Modbus Slave software	 174
Modbus TCP client	 17
Modbus TCP communication	 13

Boek Coding Modbus for Arduino-UK 240325.indd   207Boek Coding Modbus for Arduino-UK 240325.indd   207 09-04-2024   14:1509-04-2024   14:15



Coding Modbus TCP/IP for Arduino

● 208

Modbus TCP/IP	 8
Modbus TCP server library	 17
modscan32	 19
modsim32.exe	 20
MQTTLens	 149
MQTT library	 142
MQTT protocol	 142
MQTT server	 145

N
Node-RED	 165
Notepad++	 47

P
Peltier module	 100
PLC	 24
Poller()	 82
polling register	 53
Profibus Shield	 9
ProWORX	 114
pump_cl	 63
PupSubClient	 142

Q
Quickstart Template	 185

R
Raspberry Pi)	 130
read coil	 90
RJ45 LAN	 138
RPM	 51

S
SCADA	 100
Serial02	 29
SetBit function	 121
Sharing Center	 41
SIMATIC HMI	 113
sketch	 27
SPI.h libraries	 37
SSID	 158
subnet	 80

T
tank level	 29
tanklevel_ir	 37

TCPclient.write()	 99
TCP connection	 47
TCP/IP	 8
TCP/IPv4	 42
test.mosquitto.org	 145
ThingSpeak.h	 160
TIA Portal	 113
TIA Portal software	 108
TTL level	 10
TX and RX	 12

V
valvepos_old variables	 59
VFD speed	 49
vfdspeed_hr	 50
virtual COM port	 21

W
WinCC SCADA	 108
Wokwi Simulator	 191

Boek Coding Modbus for Arduino-UK 240325.indd   208Boek Coding Modbus for Arduino-UK 240325.indd   208 09-04-2024   14:1509-04-2024   14:15





Dr. Majid Pakdel

Coding Modbus 
TCP/IP for Arduino 

Example projects with Node-RED, MQTT, 
WinCC SCADA, Blynk, and ThingSpeak

Coding Modbus 
TCP/IP for Arduino
Example projects with Node-RED, MQTT, 
WinCC SCADA, Blynk, and ThingSpeak

Majid Pakdel, born in 1981 in 
Mianeh, Iran, has a PhD in Electrical 
Engineering and an MS in Computer 
Engineering focusing on AI and 
Robotics. He has published 
20+ papers and 4 books. He was 
a visiting PhD student at Aalborg 
University in Energy Technology 
from 2015-2016.

This comprehensive guide unlocks the power of Modbus TCP/IP commu-
nication with Arduino. From the basics of the Modbus protocol right up 
to full implementation in Arduino projects, the book walks you through 
the complete process with lucid explanations and practical examples.

Learn how to set up Modbus TCP/IP communication with Arduino for 
seamless data exchange between devices over a network. Explore  di� erent 
Modbus functions and master reading and writing registers to control 
your devices remotely. Create Modbus client and server applications 
to integrate into your Arduino projects, boosting their connectivity and 
automation level.

With detailed code snippets and illustrations, this guide is perfect for 
beginners and experienced Arduino enthusiasts alike. Whether you‘re 
a hobbyist looking to expand your skills or a professional seeking to 
 implement Modbus TCP/IP communication in your projects, this book 
provides all the knowledge you need to harness the full potential of Modbus 
with Arduino.

Projects covered in the book:

> TCP/IP communication between two Arduino Uno boards
> Modbus TCP/IP communication within the Node-RED environment
> Combining Arduino, Node-RED, and Blynk IoT cloud
> Interfacing Modbus TCP/IP with WinCC SCADA to control sensors
> Using MQTT protocol with Ethernet/ESP8266
> Connecting to ThingSpeak IoT cloud using Ethernet/ESP8266

C
oding M

odbus TC
P/IP for A

rduino  •  D
r. M

ajid Pakdel

Elektor International Media
www.elektor.com

books booksbooks books

SKU20856_COV_Coding with Modbus TCP/IP for Arduino_170x240_v03.indd   Alle pagina'sSKU20856_COV_Coding with Modbus TCP/IP for Arduino_170x240_v03.indd   Alle pagina's 10-04-2024   08:3310-04-2024   08:33


	Search…
	Coding Modbus TCP/IP for Arduino
	All rights reserved
	Contents
	Preface

	1 • Introduction
	2 • Hardware
	3 • The Arduino Uno
	4 • Ethernet Shield for Arduino Uno
	5 • Network Connection Overview
	6 • Setting up the Hardware
	7 • Arduino Programming Software
	8 • Modbus Libraries
	9 • Modscan32 and Modsim32
	10 • The Programming Software Arduino IDE
	11 • Testing Serial Communication
	12 • Displaying the Value of a Variable using Serial Communication
	13 • Additional Code to Support the TCP Server Operation
	14 • Adding Code to Implement the Modbus TCP Server
	15 • Last Change Before Running the Program
	16 • Running the Arduino Modbus TCP Server Program
	17 • Adding Code to Read a Holding Register
	18 • Adding Code to Read an Input Status
	19 • Adding Code to Read a Coil
	20 • Understanding the Modbus TCP Client Task
	21 • Configuring Modbus TCP Client Library in the Arduino IDE
	22 • Removing the Modbus TCP Server Code from the Program
	23 • Setup Codes to Support the TCP Client Task
	24 • Writing Codes to Poll a Single Register in Modbus TCP Server
	25 • Testing the Modbus TCP Client Program
	26 • Writing Codes to Read the other Modbus Register Types
	27 • Testing the Modbus TCP Client Program
	28 • The TCP/IP communication between two Arduino Uno boards
	29 • Modbus TCP/IP Temperature Control using WinCC SCADA
	30 • Creating SCADA Project with WinCC
	31 • The Ethernet and Blynk Project
	32 • Temperature/Humidity Sensor, Ethernet and Blynk Project
	33 • MQTT Protocol with Ethernet/ESP8266 Project
	34 • ThingSpeak IoT Cloud with Ethernet/ESP8266
	35 • The Modbus TCP/IP Communication using Node-RED
	36 • Arduino, Node-RED and Blynk IoT Project
	37 • The MQTT DHT22 ESP32 and Node-RED Project
	Appendix
	MgsModbus.cpp
	MgsModbus.h

	References
	Index



