€ lektorbooks

Example projects with Node-RED, MQTT,
WinCC SCADA, Blynk, and ThingSpeak

nea

function 1
Modbushiensrite |+,

o - dedug 4
Modbus Slave - Mgl = © | x |
He & Connection Setup Display
View Window Help
™

A" RS

0 wmsaet (o

ID=1F=03

4]

mmc\

(Slektor

Coding Modbus TCP/IP
for Arduino

Example projects with Node-RED, MQTT,
WinCC SCADA, Blynk, and ThingSpeak

Dr. Majid Pakdel

(Slektor

@ This is an Elektor Publication. Elektor is the media brand of
Elektor International Media B.V.

PO Box 11, NL-6114-ZG Susteren, The Netherlands

Phone: +31 46 4389444

@ All rights reserved. No part of this book may be reproduced in any material form, including photocopying, or
storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this
publication, without the written permission of the copyright holder except in accordance with the provisions of the
Copyright Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licencing Agency
Ltd., 90 Tottenham Court Road, London, England W1P 9HE. Applications for the copyright holder's permission to
reproduce any part of the publication should be addressed to the publishers.

® Declaration

The authors and publisher have used their best efforts in ensuring the correctness of the information contained
in this book. They do not assume, or hereby disclaim, any liability to any party for any loss or damage caused by
errors or omissions in this book, whether such errors or omissions result from negligence, accident or any other
cause.

® ISBN 978-3-89576-614-5 Print
ISBN 978-3-89576-615-2 eBook

@ © Copyright 2024 Elektor International Media
www.elektor.com
Prepress Production: D-Vision, Julian van den Berg
Printers: Ipskamp, Enschede, The Netherlands

Elektor is the world's leading source of essential technical information and electronics products for pro engineers,
electronics designers, and the companies seeking to engage them. Each day, our international team develops and delivers
high-quality content - via a variety of media channels (including magazines, video, digital media, and social media) in
several languages - relating to electronics design and DIY electronics. www.elektormagazine.com

Contents

Contents

Preface ittt s s s s 7
ChapterlelIntroductionttt nnnersrnnnnassnnnnnssnnns 8
Chapter2 e Hardware it unnnssrnnnnsssannnsssannnnssnnns 9
Chapter3eThe ArduinoUnNo0ttt nnnnnnrsassnssnsnnnnnnnnnns 10
Chapter 4 o Ethernet Shield for ArduinoUno. vt vt v st s s e s s e e nnnnnnnnns 12
Chapter 5 ¢ Network Connection Overview« v v v e e e s v nnnnesrnnnnnnsnns 13
Chapter 6 e SettinguptheHardware. vt vttt vttt st s s s s nnnnnnnnnnnns 15
Chapter 7 e Arduino Programming Software. et nnnnsrnns 16
Chapter8 e Modbus Libraries. v« s st v vt e e st v s s e nnnnnssnnnnnssnns 17
Chapter9 e Modscan32and Modsim32vvvvnnrrrrnnnnnnnnnnnnnnnns 19
Chapter 10 e The Programming Software ArduinoIDE veuuuns 21
Chapter 11 e Testing Serial Communication ittt nns 26

Chapter 12 e Displaying the Value of a Variable using Serial Communication29

Chapter 13 e Additional Code to Support the TCP Server Operation............ 32
Chapter 14 e Adding Code to Implement the Modbus TCP Server..........:... 36
Chapter 15 e Last Change Before RunningtheProgram 41
Chapter 16 e Running the Arduino Modbus TCP Server Program:::.. 47
Chapter 17 e Adding Code to Read a HoldingRegistercciiiunnn 49
Chapter 18 e Adding Codeto Read anInputStatus. 58
Chapter 19 ¢ AddingCodetoReadaCoil. it rinnnnasrnnnnnsrnns 63
Chapter 20 e Understanding the Modbus TCP ClientTask s s s o i i i i i e nn s 71
Chapter 21 e Configuring Modbus TCP Client Library in the ArduinoIDE 72
Chapter 22 ¢ Removing the Modbus TCP Server Code from the Program 73
Chapter 23 e Setup Codes to Supportthe TCP ClientTask. 79
Chapter 24 e Writing Codes to Poll a Single Register in Modbus TCP Server...... 82
Chapter 25 o Testing the Modbus TCP Client Program.« s s v s st e e s e e nnnnns 85
Chapter 26 e Writing Codes to Read the other Modbus Register Types.......... 89
Chapter 27 e Testing the Modbus TCP Client Program. v v v e s s v v v nnnnnnns 92
Chapter 28 e The TCP/IP communication between two Arduino Uno boards 97
Chapter 29 e Modbus TCP/IP Temperature Control using WinCC SCADA 100

Coding Modbus TCP/IP for Arduino

Chapter 30 e Creating SCADA Project with WinCC.ot nnnnnsnnn 113
Chapter 31 e The Ethernetand Blynk Project iinnnnnnnn 129
Chapter 32 e Temperature/Humidity Sensor, Ethernet and Blynk Project 140
Chapter 33 e MQTT Protocol with Ethernet/ESP8266 Project 142
Chapter 34 e ThingSpeak IoT Cloud with Ethernet/ESP8266 156
Chapter 35 e The Modbus TCP/IP Communication using Node-RED 165
Chapter 36 e Arduino, Node-RED and Blynk IoTProjecto vun 184
Chapter 37 ¢ The MQTT DHT22 ESP32 and Node-RED Project. 191
AppendiX. i ittt s a s a e a s s E s s aaEaEEa e 196
Referencescciiiiininnennssnaransanssansansnnsnnsnnnsnnss 206
Indexttt it it i i i s s s s s s 207

Preface

This book provides a comprehensive and detailed guide on implementing the ModbusTCP/IP
protocol with Arduino development boards. Some of the information presented was derived
from my personal notes taken during Emile Ackbarali’s “How to Program an Arduino as a
Modbus TCP/IP Client & Server” training course on Udemy. Additionally, I have successfully
established TCP/IP communication between two Arduino Uno boards.

The book also delves into the topic of Modbus TCP/IP communication in the Node-RED
environment and explains the process of interfacing Modbus TCP/IP with WinCCSCADA.
Also, it demonstrates how to control sensors using Ethernet and the Blynk app, and explores
the utilization of the MQTT protocol with Ethernet/ESP8266. Projects are showcased
that combine Arduino, Node-RED, and Blynk IoT cloud, providing guidance on using the
MQTTprotocol in the Node-RED environment. Finally, the book elucidates how to connect to
the ThingSpeak IoTcloud using Ethernet/ESP8266.

I dedicate this book to the loving memory of my mother, Rahimeh Ghorbani, a great and
kind soul who dedicated her entire blessed life to education and love for her children.
Regrettably, I did not fully appreciate her while she was alive, and only after her passing did
I realize what a precious gem she was. Unfortunately, I lost her, and nothing in the world
can replace her. I hope she will forgive me and I pray that her soul rests in eternal peace.

Coding Modbus TCP/IP for Arduino

Chapter 1 e Introduction

Modbus TCP/IP (also Modbus-TCP) is simply the Modbus RTU protocol with a TCP interface
that runs on Ethernet. The Modbus messaging structure is the application protocol
that defines the rules for organizing and interpreting the data, independent of the data
transmission medium.

TCP/IP refers to the Transmission Control Protocol and Internet Protocol, which provides
the transmission medium for Modbus TCP/IP messaging. Simply stated, TCP/IP allows
blocks of binary data to be exchanged between computers. It is also a world-wide standard
that serves as the foundation for the World Wide Web. The primary function of TCP is to
ensure that all packets of data are received correctly, while IP makes sure that messages
are correctly addressed and routed. Note that the TCP/IP combination is merely a transport
protocol, and does not define what the data means or how the data is to be interpreted (this
is the job of the application protocol, Modbus in this case).

So, in summary, Modbus TCP/IP uses TCP/IP and Ethernet to carry the data of the Modbus
message structure between compatible devices. That is, Modbus TCP/IP combines a
physical network (Ethernet) with a networking standard (TCP/IP) and a standard method
of representing data (Modbus as the application protocol). Essentially, the Modbus TCP/IP
message is simply a Modbus communication encapsulated in an Ethernet TCP/IP wrapper.

The automation industry wants you to be able to program Modbus which means you should
be able, for example, to do the following tasks:

e Program an Arduino to be a Modbus TCP/IP Client/Server.

e Write an Android App to read Modbus data.

e Write a Windows Modbus Master application using Microsoft.Net.

All these tasks require more advanced knowledge of Modbus than just using it to interconnect
devices that are already Modbus-compliant. In this book, we will focus on the first one. We
are going to learn how to program an Arduino to be a Modbus TCP/IP Client/Server. At the
end of this book, you will be able to create your own custom Modbus TCP/IP Client/Server
hardware device using the Arduino Prototyping System.

You are going to build, configure and program an Arduino microcontroller board to be as
follows:
e A Modbus TCP Client device capable of reading/displaying Modbus data from a
TCP server device.
e A Modbus TCP Client device capable of writing Modbus data to a TCP server
device.
e A Modbus TCP Server device capable of being read by any Modbus TCP Client
application.

You will be using the Arduino IDE software to write the code. We are going to develop code
gradually so you will learn everything in this book.

Chapter 2 e Hardware

Chapter 2 ¢ Hardware

In this section, we will provide a list of the hardware components required for the examples
in this book. We will examine each component in detail, explaining their purpose. Firstly, we
have the Arduino Uno, which serves as the system's central component and development
board. Alongside the Arduino Uno, we have other variations such as Mega and Nano, all
falling under the category of different types of Arduino Uno's.

On top of that, there is the Ethernet Shield for Arduino Uno, which acts as an interface
converter. We also have other shields like the Modbus RS485 shield for Arduino, CAN
bus Shield, and Profibus Shield, each serving different purposes. Since the Arduino's
communication voltage level is TTL (ranging from zero to five volts), we need to convert it
to Ethernet for use on our local network, particularly for Modbus TCP.

The third component is the Ethernet Network Hub, typically functioning as a multi-port hub
for Ethernet connections from various devices. It can operate as a standard Ethernet hub,
without the need for a switch.

Additionally, the hardware setup phase will include interconnecting cables. To summarize,
the three primary components required for our purposes are as follows:

e The Arduino Uno.
e The Ethernet Shield for Arduino Uno.
e The Ethernet Network Hub.

Coding Modbus TCP/IP for Arduino

Chapter 3 e The Arduino Uno

In this book, our focus will be on programming and configuring the Arduino as a TCP/
IP Client and Server. While the Arduino has numerous features, we will only discuss the
ones necessary for our tasks, therefore excluding the majority of its features. Figure 3.1
illustrates the top view of the Arduino Uno.

1
- ARDUINO

wh
i

ol
855 WWW.ARDUING.CC — MADE IN, ITALY

Figure 3.1: The top view of the Arduino Uno.

The figure labeled as Figure 3.2 displays the various components of the Arduino Uno. The
first element is the USB interface, which serves two purposes: programming the Arduino
development board and providing power to the Arduino. Essentially, the Arduino draws
power from the USB interface. Additionally, the Arduino Uno can be powered by an AC/DC
converter through an External Power Supply.

Furthermore, the digital pins section includes TX and RX female pins, which function as
serial communication pins at the TTL level (ranging from zero to five volts). These pins
facilitate serial communication with other devices and with the computer via the USB
interface for programming. Digital devices can be connected through the digital pins, while
analog devices (within the voltage range of zero to five volts) can be connected to the
analog pins.

The power pins play a role in supplying power to both the digital and analog pins. In our

case, we will utilize the digital pins to connect to an LCD display. This display will be used
to present the data stored in the memory locations of the Arduino Uno.

e 10

Chapter 3 e The Arduino Uno

MADE
INITALY

Figure 3.2:

Figure 3.3: The 3D view of the Arduino Uno development board.

Figure 3.3 presents the visual depiction of the Arduino Uno development board in a
3D format. This provides a comprehensive understanding of the physical features and
dimensions of the Arduino Uno hardware, which is known for its simplicity and compact

size.

e 11

Coding Modbus TCP/IP for Arduino

Chapter 4 ¢ Ethernet Shield for Arduino Uno

In this section, our focus will be on the Arduino Ethernet shield. Figure 4.1 illustrates how
the shield appears. It is designed to perfectly fit on top of the Arduino Uno.

ETHERNET
L arouino SHIELD
ON ey 60 cmy

r(@2sn0)a ;2

-Faaile 1004

»
Wi . ARDUENO. CC it

Figure 4.1: The top view of the Arduino Ethernet Shield.

On the shield, you can see identical sockets to those found on the Arduino Uno. These
sockets directly connect to the pins on the Arduino Uno, making it stackable and allowing
for communication through these pins. The Ethernet shield is necessary for our project, as
it requires a TCP/IP network connection, specifically an Ethernet-based one. Although there
are various types of TCP/IP networks, such as coaxial cable or fiber optic cable, we have
chosen to use Ethernet on CAT5 cable due to its affordability, ease of use, and widespread
availability. Additionally, the Ethernet Shield board features indicator lights that provide
important information, so understanding their meaning is crucial.

The shield contains a number of informational LEDs:

PWR: indicates that the board and shield are powered.

LINK: indicates the presence of a network link and flashes when the shield transmits or
receives data.

FULLD: indicates that the network connection is full duplex.

100M: indicates the presence of a 100 Mb/s network connection (as opposed to 10 Mb/s).
RX: flashes when the shield receives data.

TX: flashes when the shield sends data.

COLL: flashes when network collisions are detected.

So, if we are doing proper communication, we should see the TX and RX lights flashing a lot,
and that is essentially the Ethernet Shield. Most of what you are supposed to understand
are these lights. These indicator lights will give us feedback as to how the network is
performing and how everything is working.

e 12

Chapter 5 e Network Connection Overview

Chapter 5 ¢ Network Connection Overview

In the previous section, we provided a list of the hardware components used in the setup,
particularly focusing on the Arduino Uno and the Ethernet shield for the Arduino Uno. In
this section, we aim to present a visual representation or block diagram of how these
components are interconnected to achieve the goals outlined in this book. Additionally, we
will showcase the physical setup of this configuration on our workbench in the following
section. By the end of this current section, you will have a clear understanding of the
interconnections through the block diagram and a visual representation of the physical
setup.

To begin, the main development board used is the Arduino Uno. This is then connected to
the Ethernet shield for the Arduino Uno. Additionally, a network hub is incorporated into
the setup. In our illustration, a five-port network hub is displayed, but in experimental
scenarios, a 16-port network hub can be used. You have the flexibility to use a four-port or
any other suitable option for your needs.

For the setup, only two ports are necessary. One port will be used to connect the laptop to
the Arduino Ethernet shield, while the other port will be utilized for connecting the laptop
to the network hub. Essentially, we are creating a small and simplified local area network
for our Modbus TCP communication. Refer to Figure 5.1 for a visual representation of the
required setup.

Arduino Uno

Ethernet
- Shield

Figure 5.1: Network connection scheme.

To set up the hardware, you will need to purchase some standard network cables (CAT5)
called straight-through network cables and crossover cables, which are inexpensive and
available at computer stores. Additionally, you will need a programming cable for the
Arduino Uno, indicated by a red line, which is essential for any tasks involving the Arduino.
The programming cable serves two purposes: programming the Arduino and receiving
text messages from the running application through a special serial monitor window. This
feature is particularly useful since the Arduino Uno lacks a visual interface. When working
with Modbus and dealing with values in the Arduino and Modbus registers, it is crucial to be

e 13

Coding Modbus TCP/IP for Arduino Chapter 5 e Network Connection Overview

able to visualize these values. Therefore, the application will be designed to send the values
to the laptop via this cable, allowing for monitoring changes in value, reading and writing
registers, and more. This summarizes the hardware setup, and in the following section, we
will demonstrate how it appears on our desktop.

e 14

Chapter 6 ¢ Setting up the Hardware

Chapter 6 e Setting up the Hardware

We are providing a visual representation of the physical hardware setup on the desktop, as
in the previous section we only showed a diagram. Now, we will look at the actual setup. In
Figure 6.1, you can see an Arduino with an Ethernet shield on top. The Arduino is located
at the bottom, and the Ethernet shield is connected to it. The pins on the shield physically
connect it to the Arduino. There are also indicator lights on the Ethernet shield that display
different statuses. The Ethernet port is located on the shield, and a blue cable connects it to
the Ethernet hub. The Ethernet hub has ports where the blue cable is inserted, specifically
the port connected to the Ethernet shield on the Arduino. Additionally, there is a gray
network cable that extends to the laptop, connecting to the Ethernet port.

This provides network connectivity to both the laptop and the Arduino via the Ethernet
shield. The USB cable serves as the programming cable for the Arduino and allows for
receiving feedback in the form of text messages. It is connected to the Arduino's port
in order to program it. This configuration aligns with what was described in the previous
section and is depicted in Figure 6.1. Now that you have a clear understanding of the setup,
we can proceed with exploring various programming examples and how they appear on the
desktop workbench.

Figure 6.1: Ethernet network physical hardware setup.

e 15

Coding Modbus TCP/IP for Arduino

Chapter 7 e Arduino Programming Software

In this segment, we will be discussing where to obtain the Arduino programming software,
as well as the process of downloading and installing it. To get the software, we recommend
visiting the official Arduino website at Arduino.CC. This website not only provides the
software download, but also offers a plethora of resources for learning about Arduino
basics, including information about both hardware and software. It is highly recommended
that you explore this website to gain a better understanding of Arduino, especially if you
are unfamiliar with it. However, in this particular section, our focus will be solely on the
software.

To access the software, navigate to the "Software" section on the website. Although there
is an online integrated development environment (IDE), we do not need that. Instead, we
want to download the Arduino IDE. The IDE is an open-source software that enables easy
coding and uploading to the Arduino board. By clicking on the Windows installer, you can
save the current Arduino version to your device. If you wish, you can choose to contribute
to support the open-source nature of Arduino. Otherwise, simply click on "Download" and
save the file as an executable. After saving, double-click the executable to run a regular
Windows installation process. We assume that you already have the knowledge of how to
install Windows software. With these steps, you can obtain the Arduino software, which is
completely free. We will demonstrate how to use the software in upcoming sections. For
now, our focus is solely on downloading the necessary components.

e 16

Chapter 8 e Modbus Libraries

Chapter 8 ¢ Modbus Libraries

In this section, we will demonstrate the libraries we plan to use in order to implement our
Modbus server and client on the Arduino. We will provide information on where to download
them, and once we begin coding, we will also guide you on how to utilize them. If you are
unfamiliar with Arduino libraries, they are pre-existing pieces of code that eliminate the
need for starting from scratch. Various individuals online have developed libraries for a
wide range of purposes, including the Modbus TCP server and client. If you have experience
implementing Modbus RS485 on the Arduino, you may have used libraries for that as
well. The objective of this book is to download these libraries, incorporate them into our
project, and utilize function or command calls within them. We will explain the process in
detail, but it is important to understand that these libraries are code modules designed to
simplify the process of writing programs for Modbus TCP server and client. In this book,
we will download separate libraries for the Modbus TCP server and the Modbus TCP client.
Attached to this book are two resources. The first is a link to the Modbus TCP server library.
The weblink is as follows:

https://github.com/andresarmento/modbus-arduino

Once you click on it, you will be directed to a web page. On this webpage, you will find
information about a Modbus library developed by Andre Sarmento specifically for Modbus
TCP server implementation. This is the designated page for the library. Our request is for
you to bookmark this page as you will need to refer to it for the provided documentation.
Andre Sarmento has put together comprehensive documentation on using the library,
making it a valuable resource. Upon reaching this page, your next step is to click on "Clone
or download" and select "Download ZIP" as demonstrated in Figure 8.1.

C Q B nhttpsy/github.com/andresarmento/modbus-arduino
o Product Solutions Open Source Pricing Search or jump to...
& andresarmento / modbus-arduino ' Pusiic £ Notific
<> Code (O Issues 43 {1 Pullrequests 10 © Actions [Projects [wiki @ Security [Insights
$ master + P 18ranch ©0Tags Q Go tofile

(3 Clone Which remote URL should | use?

@ andresarmento Format bug fix

HTTPS GitHub CLI
B libraries Change TCP_STOP

https://github.com/andresarmento/modbus-ard. | [O)
[UCENSEtxt Name correction, ¢

Clone using the web URL.

[READMEmd Format bug fix

[REABME.pt_8Rmd Format bug fix &) Open with GitHub Desktop
U ”

0O TopOont Update OOt) pownioad ZIP

Figure 8.1: Clicking on "Clone or download" and "Download ZIP".

After clicking on the "Download Zip" button, a prompt will appear asking you to save the
file. You should choose a folder to save it in. It is recommended to create a separate folder
for your libraries, such as Arduino apps and Arduino libs (Arduino libraries). The Arduino
app folder should be used to store all the applications you write, while the Arduino libs

e 17

Coding Modbus TCP/IP for Arduino

folder is where the libraries will be stored. In this case, we downloaded a file called Modbus
TCP server, which is mistakenly named Modbus Arduino master. To avoid confusion, we will
rename the zip file to modbus_server_tcp.zip. Once you have the zip file, you should extract
it by selecting "Extract All", which will create a folder with several subfolders containing
libraries. You will see these folders as shown in Figure 8.2, but you do not need to use all
of them, just some. Once you have downloaded and extracted the file, you are ready to
learn how to use it later.

- Arduino Libs
=] modbus_serEg_tcp
- modbulérduino-master
= | libraries
Modbus
+ ModbuslP
+ ModbuslP_ENC28J60
¥ ModbusIP_ESP8266AT
+ ModbusSerial

Figure 8.2: The modbus_server_tcp.zip extracted folders.

The subsequent resource in the attached section consists of downloadable files, specifically
a file called MgsModbus.zip. It is not a hyperlink, rather a file that can be downloaded. The
purpose of this file is to provide our library for implementing a Modbus TCP client. We chose
not to direct you to a webpage because the file is directly accessible from myarduinoprojects.
com. The corresponding weblink is as follows:

https://myarduinoprojects.com/modbus.html

The library featured on this page is not functioning properly due to the presence of several
bugs. To address this issue, we have made necessary corrections to the library. The corrected
version, which is guaranteed to work, can be downloaded from the appendix section of this
book. Upon downloading, you will receive a file named MgsModbus.zip. Extracting this file
will yield a folder containing two files, namely MgsModbus.cpp and MgsModbus.h, as shown
in Figure 8.3.

Name Size Item type
el MgsModbus.cpp 10.7KB C++ Source
|n] MgsModbus.h 334KB C/C++ Header

Figure 8.3: The files inside the MgsModbus.zip.

These are the library files needed for the Modbus TCP client implementation. After
downloading and extracting these two files, store them in a location such as the Arduino
Libs folder. It is important to keep them in one folder for easy accessibility. This completes
the process of obtaining the Modbus libraries. In the coding phase, we will demonstrate
how to properly use these libraries, as it involves steps like copying the files and including
them.

e 18

Chapter 9 ¢ Modscan32 and Modsim32

Chapter 9 e Modscan32 and Modsim32

The modscan32 and modsim32 download links are in the following weblink:
https://www.win-tech.com/html/demos.htm

To complete the process, you will need to click on each of them individually. This will lead
you to screens that will prompt you to download two files. The first file is modsim32.
zip, which you will need to click on to start the download. After downloading it, proceed
to download the second file, modscan32.zip. Once both files are downloaded, you can
continue with installation. There is no need for installation, as the program runs without it.

Now, we have both modsim32.zip and modscan32.zip files. After extracting them, we
obtained two directories: modsim32 and modscan32. To access modscan32, simply double-
click on it, and you will see the file named MODSCAN3.exe, as shown in Figure 9.1.

J modscan32 x lﬁ.
R x o B X | W= U= | | Desktop| Computer| OS (C:)
Name Sil
“] cusTomi 403
CUSTOM2 2n
__ EXLFRM 202
i%)] EXAMPLEL.CSV 205
2] MODBUS1.MDB 264
% MODBUSM.DLL 410
_| ModScal 103 byt
__ ModSca2 103 byt
__| MODSCAN3.CNT 160
5= MODSCARNS.EXE 647
0 ; 216
| MODSCAN3.VBP 102
® Modscan32.hip 245

Figure 9.1: MODSCAN3.exe in the modscan32 folder.

This is the executable that you want to run, and you should create a shortcut to your
desktop, which is a shortcut to this executable file. So, when we double-click on that, it
just runs as depicted in Figure 9.2. We do not have to do any installation process and we
are going to use modscan32 as a Modbus TCP client when we configure the Arduino as a
Modbus TCP server. So modscan32 is going to be used to communicate with it and will be
reading data from the Modbus TCP server (Arduino).

e 19

Coding Modbus TCP/IP for Arduino

Addreas: MODBUS PointType et Siue mesaanses: 0 |

Length: [100 |01: COIL STATUS = | e

= —

Figure 9.2: Running the MODSCAN3.exe file.

In the modsim32 folder, there is an executable called modsim32.exe. You can create a
shortcut for it. When you double-click on the shortcut, a modsim32 pop-up window, as
shown in Figure 9.3, will appear.

Figure 9.3: The modsim32 pop up window.

We will use modsim32 as a Modbus TCP server when configuring the Arduino as a
Modbus TCP client. This means that the Modbus TCP client will read data from modsim32.
Throughout the rest of this book, we will be using two Windows-based Modbus applications
called modscan32 and modsim32. As we progress through the sections and develop various
applications, you will learn how to use these applications.

e 20

Chapter 10 ¢ The Programming Software Arduino IDE

Chapter 10 e The Programming Software Arduino IDE

Now that you understand what the hardware looks like, and you may have already
downloaded some software, it is important to note that you may not have the hardware
in front of you at the moment. However, once you see how amazing and affordable the
hardware is, we are confident that you will acquire it and revisit the book to try it out
yourself. In this section, our aim is to introduce you to the Arduino programming software,
which is known as the Arduino IDE, or Integrated Development Environment. But before we
proceed with that, it is worth mentioning that when the Arduino software was installed, it
would have also installed a device driver. This driver, when connecting the Arduino to your
laptop or PC via a USB cable, creates a virtual COM port. We encourage you to look at this
virtual COM port now by accessing the device manager and navigating to the ports section.
As shown in Figure 10.1, you will find it there.

U5 Human Interface Devices
g IDE ATA/ATAPI controllers
25 Imaging devices
2 Keyboards
P Mice and other pointing devices
K Monitors
& Network adapters
4 7% Ports (COM & LPT)
[Y% Arduino Uno (COM4)
Y3 USB-SERIAL CH340 (COMT)
n Processors
¥ SIMATIC NET
% Sound, video and game controllers
<> Storage controllers
1M System devices
- Universal Serial Bus controllers

Figure 10.1: Ports in the "Device manager".

Before you begin programming the Arduino, make sure to check your port settings. The
port should be set to Arduino Uno COM4, although it may be different for your specific
device. Additionally, there is another virtual COM port called COM7, which is our USB to
RS485 converter.

Moving on, the Arduino icon can be seen in Figure 10.2, and this is what you should store
once you have installed and started it. In Figure 10.3, you can see the Arduino development
environment. This is where you will write your code, compile it, and download it into the
Arduino to make it work. While there are many features available, we will only focus on the
ones that are most important and commonly used in the book's projects. The code area, as
depicted in Figure 10.3, is where you will write your code.

Recycle

w oW
oy W@ v od

Figure 10.2: The Arduino icon.

o 21

Coding Modbus TCP/IP for Arduino

File Edit Sketch Tools Help

sketch_apr20b
void setup() {
// put your setup code here, to run once:
}
id loop() {
f/ put your main code here, to run repeatedly:

}

Figure 10.3: The Arduino IDE code area.

We will briefly discuss that, however, the primary tools you use in this setting are the
buttons located at the top. We will go through each one individually. The button labeled
"Verify" is the same as the compile function shown in Figure 10.4.

ak Verify

Figure 10.4: The "Verify" button.

After writing your code, when you are prepared to compile it and check if it is functioning
properly, you will click on the upload button as shown in Figure 10.5. However, despite
being labeled as "Upload," this button transfers your code and program to the Arduino
board. This difference in terminology is similar to a US-Europe distinction. In the US, you
would typically say "Download" to the Arduino, while in Europe, the term used is "Upload."
Nonetheless, the objective remains the same: to transfer the program successfully into the
Arduino board.

Figure 10.5: The "Upload" button.
By using the button illustrated in Figure 10.6, you can generate a fresh window. When you

select the "New" option in the Arduino interface, a completely new window opens instead
of opening an additional tab.

r&é New

Figure 10.6: The "New" button.

If you wish to open an existing project, you can use the Open button depicted in Figure
10.7. Furthermore, to save your project or code, use the button shown in Figure 10.8.

e 22

Chapter 10 ¢ The Programming Software Arduino IDE

Open...

sketch_apr20b s
| libraries »
void setup() {

// put your 01.Basics »

| 02Digital »

! [03.Analog »
void leop() {‘ 04.Communication [
// put your 05.Control 4
06.Sensors b

07.Display »

‘ 08.Strings »

09.UsB)

‘ 10.StarterKit_BasicKit »

‘ 11.ArduinolSP >

Figure 10.7: The "Open" button.

Figure 10.8: The "Save" button.

These buttons are the most often used by us. We are now asking that you perform an
action: navigate to file preferences and select the option to display line numbers. We

believe having line numbers is beneficial, and for that reason, we have demonstrated this
in Figure 10.9 and Figure 10.10.

Sketchbook location:

C:'\Users\Emile\Documents\Arduino

Editor language: System Defaut | (requires restart of Arduino)
i Editor font size: g

Interface scale: [V] Automatic = 100 - % (requires restart of Arduino)

Show verbose output during: || compilation [] upload

Compiler warnings: None w

ers
[7] Enable Code Folding
[7] Verify code after upload

[7] Use external editor

[¥] Aggressively cache compiled core

[#] Check for updates on startup

[¥] Update sketch files to new extension on save (.pde -> .ino)
[¥] save when verifying or uploading

Figure 10.9: Clicking on "Display line numbers".

e 23

Coding Modbus TCP/IP for Arduino

D sketch_apr20b | A
File Edit Sketch Tools Help

sketch_apr20b

1 wvoid setup() {
// put your setup code here, to run once:

4]

void loop() {
// put your main code here, to run repeatedly:

9}

Figure 10.10: Displayed line numbers.

As shown in Figure 10.10, the top menus on this interface, such as "Verify," "Compile," and
"Upload," perform similar functions. Many of these menu items have not been used yet.
Now let us look at the user window, which is the code area. When starting a new project,
some code is automatically provided. This includes two functions that are present in every
Arduino program: setup and loop. The comment in the code area states that the setup
function is for initialization, and the loop function is for the main code that will be repeatedly
executed, similar to how a PLC operates. Embedded systems typically work by continuously
repeating the code placed in the loop function. On the other hand, Windows operates on an
event-based system, where applications run differently.

When you are ready, you can click on the "Verify" button, even if there is no code present.
This will initiate the sketch compilation process, and it will show a "Done compiling"
message. Currently, we are connected to our Arduino device. To confirm this, go to the
"Tools" menu, click on "Port," and select the appropriate communication port. This port
selection will remain active once you have made your choice, as shown in Figure 10.11.
When initially opening the Arduino development environment, you will need to go through
this process of selecting the port.

File Edit Sketch Help

Auto Format
Archive Sketch
sketch_apr208 g Encoding & Reload
void SeTUR Serial Monitor Ctrl+ Shift+M
/£ BEE S Serial Plotter Ctrl+ Shifts L
1} WiFil01 Firmware Updater
roid leep{ Board: "Arduino/Genuine Uno® »
TIPSR pon *COMM (Arduino/Genuino Uno)” | Serialpons
) Get Board Info v COM4 (AlduinofGeﬂuitSUnoJ
Programmer: "AVRISP midl” L EOMS
Burn Bootloader

Figure 10.11: Choosing your communication port.

e 24

Chapter 10 ¢ The Programming Software Arduino IDE

We have gathered our program here and will now try to initiate the download process. After
recompiling, the program states "Uploading" and then "Done uploading." This indicates
the completion of the upload and signals that the Arduino will begin executing the new
program. The Arduino IDE is relatively straightforward compared to software like Microsoft
Visual Studio, which has an abundance of buttons and menu options. This concludes a
brief introduction to the Arduino IDE. In the later section, we will proceed with our first
application, downloading it and observing its functionality.

e 25

Coding Modbus TCP/IP for Arduino

Chapter 11 e Testing Serial Communication

We will start by writing code for this task. The reason for doing so is because, as mentioned
earlier, we will use serial communications on the Arduino as our means of interfacing with
it. This will allow us to gain insight into the Arduino's operations. Furthermore, we will
configure it to provide continuous feedback through Modbus communication.

To begin, we need to save this file by selecting "Save As". We will be storing everything
in the Arduino apps folder. It is recommended that you choose a folder of your preference
to store all the applications, and for this specific task, we will name the file "Serial01" as
depicted in Figure 11.1.

|- e I - °oLx
File Edit Sketch Tools Help

sketch_jun27;
isiu' Savein: |, Arduino Apps - @ % Al i o
- Name = Date modified Type
& o No items match your search.
3 » Recent Places
soid loop
M (B
5] Desktop
wl
Libraries
Computer
7 il] ’
Network 7
File name: Serial01] - §E§
Saveastype: [AlFies[.) - [cancel |

Figure 11.1: Saving the file as "Serial01".

Therefore, we will remove the comments as we no longer need them. What the code will
do is send the message "Hello World!" to the serial monitor within the Arduino software.
Let us show how this works. Firstly, we need to include the SPI.h library, which is a pre-
existing library that manages serial communication. Then, we will place all the code within
the setup function so that when the Arduino boots up, it will automatically send the "Hello
World!" message to the serial monitor. The serial.begin(9600) command sets the baud
rate to 9600 bits per second, as it is necessary for serial communication. Finally, the serial.
println command handles printing the message as a line. This is our first program and is
depicted as a simple program in Figure 11.2.

® 26

Chapter 11 e Testing Serial Communication

25 Serial01 | Arduine 1 : '-’
File Edit Sketch Tools Help
LS
|
Serial01 §
I 1 #include <SPI.h>
| 3 void setup() {

4 Serial. (9600) ;
Serial.println("Hello World!"™):

71}

9 void loop() {

12|}

Figure 11.2: Our first program.

Firstly, the code initializes the serial port and then prints "Hello World!" but it does not
display it. Now, let us demonstrate this process. We are going to save the code, verify
it, and compile the sketch. The initial run may take some time. Fortunately, there are no
errors. Now, we will navigate to the tools menu and open the serial monitor, which is shown
in Figure 11.3. This serial monitor window within the Arduino application displays anything
that is sent using certain commands.

Auto Format

Archive Sketch
s Fix Encoding & Reload
1 #include 4 ial Monitor Ctrl+Shift+M
' 55:% Plotter Ctrl+Shift+L

3 void setup

serial-H WiFil01 Firmware Updater
Serial.g

2 Board: "Arduino/Genuinc Uno” »
N } Port: "COM4 (Arduino/Genuino Une)” >
9 void loop(Get Board Info

1 Programmer: "AVRISP mill" >
12} Burn Bootloader

Figure 11.3: Choosing "Serial Monitor™".

Therefore, the information in this text is transmitted through serial communications and
displayed in this window using the programming cable. It is important to note that this is
unrelated to Modbus RS485 or TCP. We are solely utilizing Arduino serial communications
to receive feedback. To send our application to the Arduino, we will click the upload button.
As you can see, the application has started and printed "Hello World!", indicating that it
is functioning correctly. However, it does not perform any additional actions. This is the
desired outcome we would like you to observe. In Figure 11.4, you can see an example
of how we can print and receive feedback from the Arduino while it is executing its tasks.

e 27

Coding Modbus TCP/IP for Arduino

-

Hello World!

Seriald1

1 #include <SPI.h>

3 \void setup() {
Serial.begin(9600);
Serial.println("Hello World!");

73

9 void loop() {

I

Figure 11.4: Printing and getting feedback from the Arduino.

e 28

Chapter 12 e Displaying the Value of a Variable using Serial Communication

Chapter 12 e Displaying the Value of a Variable using
Serial Communication

In this section, we will further enhance our application. Our goal is to improve the previous
program by implementing a Modbus TCP server on Arduino. This server will have memory
locations such as holding registers, input registers, coils, and input statuses, just like any
other Modbus device. To achieve this, we need to create and display values in these memory
locations using variables. In this application, we will demonstrate how to print the value of
a variable in the serial monitor window. To begin, we will modify the application and save it
as "Serial02", as illustrated in Figure 12.1.

FER o9 e

1 #include

<

o1 SETUR | Recent Places

- 0 aEr
Date modified
27/06/2017 10:43 ...

Type
File folder

Serial.

Serial. -

5} Desktop

i FQJ

Libraries

1) i

Computer Molneendng v 9600baud

@

Lz

Figure 12.1: Saving the file as "Serial02".

We will refer to the tank level as an integer value. Thus, in this hypothetical scenario, we
have connected an Arduino to a tank level sensor that measures the water level in a water
tank. We have declared a variable named "tempstr" as a string data type to represent
this tank level. Essentially, we are defining a string variable called "tempstr" which will
be utilized for a specific purpose. Moving ahead, we may see the command serial.
begin(9600) and for now, we will assign a fixed value of 12 to the tank level variable.
Typically, if an Arduino were connected to a sensor, it would receive readings and assign
them to the tank level variable. However, since we do not have a sensor, we are hardcoding
the value. As for the "tempstr" variable, we aim to make it more easily understandable to
humans by combining the tank level with the word "feet" using the statement "tank level
plus string(tanklevel) plus ft." Finally, we will replace the phrase "hello world" with the
variable "tempstr" as shown in Figure 12.2.

e 29

Coding Modbus TCP/IP for Arduino

Fil:_Eiﬁt Sm:h Tl_wls H:Ip

Serial02 §

' 1 #include <SPI.h> -

3 int tanklevel;
4 String tmpstr;

€ void setup() |
Serial.begin(9600);

tanklevel = 127

tmpstr = "Tank Level:™ + String(tanklevel) + " ft";
Serial.println(tmpstr):

6 veid loop() {

Figure 12.2: The "Serial02" code.

Let us confirm that first. As a result, it was successfully compiled. Now, we will proceed to
send it to the Arduino and run it by clicking on the upload button. Then, we can see the
output in the serial window. The expected output should be "Tank Level: 12 ft" as the value
of the variable is being printed. Let us proceed to send it to the Arduino. Additionally, it is
important to mention that the window clears every time you perform an upload, and there
you have it — "Tank Level: 12 ft" as shown in Figure 12.3.

Tank Level:12 fr
Seriald2
1 #include <SPI.h>

I 3 int tanklevel;
4 String tmpstr;

oid setup() {
Serial.begin (9600) ;

tanklevel = 12;

tmpstr = "Tank Level:" + String(tanklevel) + * :t“:l
Serial.println(tmpstr):

Figure 12.3: Running the "Serial02" file.

e 30

Chapter 12 e Displaying the Value of a Variable using Serial Communication

Instead of using hard coded text, the variable value was printed. The printed output
includes both the hard coded text "Tank Level:" and "ft", as well as the value stored in the
variable "tanklevel". This allows us to check if values have been successfully changed by
using modscan32 on a holding register. We can verify any changes by viewing the serial
window output through the serial.printin function. This represents the second level of our
application.

e 31

Coding Modbus TCP/IP for Arduino

Chapter 13 e Additional Code to Support the TCP Server
Operation

All right, so we will be making changes to this application once again. We will click on the
"File" option, then select "Save as" and name it "Serial03" as shown in Figure 13.1. Now, let
us explain the modifications we would like to make to this code. Our objective is to insert
code within this loop that can identify any alterations in the variables we will be utilizing.
Once it detects these changes, it will display the updated values of those variables on the
serial monitor.

Savein: | Arduino Apps - OF @

ine tankl I Name : Date modified Type
= = |, Serial0l 2/05/20171043 .. File folder

oid el e Wisearn 21/06/201710:59 ... File folder
Serial. -
tankleve Desitop
tmpatr - _;

p S Libraries

4L A

€ void loop) Computer

e]
Network ’ A
Fie name Sedal0 T - [Csae]

Saveastpe: |AllFles() - [Cancel

Figure 13.1: Saving the file as "Serial03".

Our goal is to bring the loop into the equation. The reason behind this decision is that
our Modbus TCP server operates in real-world scenarios where values frequently change.
It is crucial for us to be informed when these values do change. Furthermore, we plan
to utilize modscan32 to alter values and require confirmation that these changes have
occurred successfully. To achieve this, we will begin by removing certain code from within
the setup and migrating it into a separate function that can be called from the loop. This
function, named "void DisplayCurrentValues()", will house the relevant code from the
setup section. Subsequently, we will reintegrate this function back into the setup, calling
it "DisplayCurrentValues" as shown in Figure 13.2. Essentially, we have created a new
function to extract the code from the setup, allowing us to easily print all the values through
the serial monitor by calling the "DisplayCurrentValues()" function.

e 32

Chapter 13 e Additional Code to Support the TCP Server Operation

%) Serial03 | Arduino 1.8.2 . |
PETIETICR 9 8
File Edit Sketch Tocls Help

Tank Level:12 ft

Serial03 §

I 6 void secup() {
7 Serial.begin(9600):

tanklevel = 12;

DisplayCurrentValues () .'|

void loop() {

id DisplayCurentValues() {
String tmpstr;

tapstr = "Tank Level: * + String(tanklevel) + " ft*;
Serial.println(tmpatr);

Figure 13.2: Defining the function DisplayCurrentValues().

So, how can we determine if the time level has changed? Well, we need to introduce a new
variable. We will refer to it as "tanklevel_old," which will hold the previous value of the tank
level. Whenever the tank level value is updated, we will compare it with the previous value.
If they are different, we will proceed with the update. Thus, we have the "tanklevel_old"
variable here. To start off, we will initialize both variables and set the value of "tanklevel
old" to 12, as shown in Figure 13.3.

Moving forward, let's create a function that will be invoked within the loop. We will name it
"Send updated values" as it will send the newly updated values to the monitor.

e Tl N
I F dit Sketch Tools Help

Serial03 §

1 #include <SPI.h>

i int tanklevel;
4 int tanklewvel old;

void secup() {
Serial.begin(9600);

E tanklevel = 12;
10 tanklevel old = 12;

12 DisplayCurrentValues():

Figure 13.3: Defining the tanklevel_old variable.

e 33

Coding Modbus TCP/IP for Arduino

We are going to call this CheckForDatachange() and define that function. Then, we are
going to declare a Boolean variable data_has_changed. Initialize it to false. Remember
the purpose of this? The purpose of this function is to check to see if any of the data has
changed. So, we are going to see if the tanklevel_old variable is not equal to the tank_level
variable. That means a change has taken place. We want to set the Boolean data_has_
changed to be equal to true and update the tanklevel_old variable with the same value
that is currently in the tank_level variable. Then we are going to write if Boolean data_
has_changed equal to true, then call the function DisplayCurrentValues(). So, this loop
is constantly going to call function CheckDataForChange(). This function what compares
the tanklevel variable with the tanklevel_old variable and if tanklevel is updated, let us say
for some reason by outside sensor in a real world or for some other method, it will compare
it with tanklevel_old. So, both of them start off at 12. Suppose the tanklevel goes to 15.
Is 12 equal to 15? No, then the data_has_changed is true. Then take 15 and put it in the
old data (tanklevel_old), and call the function DisplayCurrentValues(). So, it will only
execute the function DisplayCurrentValues() when there is a change as shown in Figure
13.4.

d locp() {

I send updated values

CheckForDataChange();

oid CheckForDataChange() {
lean data_has_changed = false;

f (vanklevel old '= tanklevel) {
data_has_changed = true;
2 tanklevel old = tanklevel;

}
if (data_has_changed == true) {
DisplayCurrentValues():

}

Figure 13.4: Defining the function CheckDataForChange().

This is our updated application, which we believe will greatly assist us. The inclusion of
support code will facilitate receiving feedback from the Arduino, as we can observe through
the serial monitor. Once we validate the code, we will be ready to proceed. Now, we will
proceed to send this application to the Arduino, where we should obtain the same result,
indicated by a tank level of 12 ft. If there are any changes in the tank level, it will display
additional lines with the updated data, as shown in Figure 13.5.

Now, we have completed the development of our support code that will facilitate Modbus

functionality. In the following section, we will integrate this code into our application and
create a new application to implement the Modbus TCP server.

e 34

Chapter 13 e Additional Code to Support the TCP Server Operation

[03 erial II..L 1 i
[File Edit Sketch Tools Help

Tank Level: 12 ft

Serial03

N

#include <SPI.h>

3 int tanklevel:
4 int tanklevel_old:

€ void setup() {
7 Serial.begin(9600);

9 tanklevel = 12;
10 tanklevel old = 12;

12 DisplayCurrentValues():

1 // send updated values
13 CheckForDataChange():

21}

void CheckForDataChange() {

Figure 13.5: Running the "Serial03" file.

e 35

Coding Modbus TCP/IP for Arduino

Chapter 14 ¢ Adding Code to Implement the Modbus
TCP Server

In this section, we will be adding the Modbus TCP server code to our application. To begin,
we need to save the current file as a new one called "Serial04", as depicted in Figure 14.1.

s

[fFite Edit Sketch Tools Help

Senal03

1 #include

Saven: | Arduno Apps - @QF @
st tankl T Mame = Date modified Type
4 int tankll “
: o =) Serial0l 27/06/20171043 .. Filefolder
& void serl [l TCT A () Seram2 2/06/201710:50 .. File folder
Serial. = | Serial03 /06/2017 1158 ... File folder

§ tanklevd Desktop

tank]evd

=l

= Libraries
1) *
16 void loop) Computer

" s .

13 CheckFal Nk

Displavd

i Fie name- - m
Saveastpe: [l Fles() =] [Concal

23 void Cheel -

Figure 14.1: Saving the file as "Serial04".

In the preceding sections of this book, we instructed you to download certain libraries. Now,
we will utilize one of those libraries. Our attention will be directed towards the modbus_
server_tcp folder. To access it, click on this folder. Upon doing so, you will observe that
there are Modbus and ModbusIP subfolders within the libraries section. Although there
are additional folders, our focus should solely be on the Modbus and ModbusIP subfolders,

which are indicated in Figure 14.2.

=~ 4 Arduino Libs
L. MgsModbus
=, modbus_server_tcp
= Ju modbus-arduino-master
= [libraries
). Modbus
(2R ™ Moq}sﬂl
#- Ju ModbuslP_ENC28)60
@}, ModbuslP_ESP8266AT
#- Ju. ModbusSenal

Figure 14.2: Modbus and ModbusIP folders.

So, within Modbus, there are Modbus.h and Modbus.cpp files and within ModbuslIP, there are
ModbusIP.h and ModbusIP.cpp files as illustrated in Figure 14.3 and Figure 14.4 respectively.

Name Size Hemtype

| keywords.txt 120KB Text Document
ﬂm 133KB C++ Source

(1] Modbus.h 302KB C/C++ Header

Figure 14.3: Contents of the Modbus folder.

e 36

Chapter 14 ¢ Adding Code to Implement the Modbus TCP Server

Name Size Ttem type
examples File folder
keywords.bd 191 bytes Text Document

¢4 ModbuslP.cpp 230KB C++ Source

] ModbuslP.h 817 bytes C/Coe Header

Figure 14.4: Contents of the ModbusIP folder.

We have an interest in those specific files, and here are the instructions on what you need
to do with them. This particular step can be a bit challenging. Locate the "Libraries" folder
in Explorer, which can be found under the desktop. Within the "Libraries" folder, you will
see the "Documents" folder. Within the "Documents" folder, there are both the libraries
folder and another folder. These are the locations where you need to copy the files. We
have already completed this task, so now it is your turn to do it. However, we would like
to highlight that you need to create a new directory or folder under the libraries folder.
This directory should be named "Modbus," and there should also be another one named
"ModbuslIP," as shown in Figure 14.5.

Il Desktop
~a Libraries
=i | & Documents
= Arduino
- libraries
+ Adafruit_Circuit_Playground
3 Adafruit_LiquidCrystal
i LiquidCrystal
MgsModbus
Modbus
4 ModbyslP
+ ModblsMaster
3 Modbus-Master-Slave-for-Arduino-master
ModbusTCP

Figure 14.5: Creating Modbus and ModbusIP folders.

We will return to the libraries folder before continuing. For the Modbus library, please
copy the Modbus.h and Modbus.cpp files and paste them into this location. Similarly, for
the ModbusIP folder, copy the ModbusIP.h and ModbusIP.cpp files and paste them into
the ModbusIP directory. Therefore, both folders, along with their respective files, need to
be placed under the libraries folder. Once that is done, go ahead to the next step. Go to
"Sketch", select "Include Library", and scroll down to find the Modbus folder. Click on it to
include the Modbus library. Repeat this process by going to "Sketch", "Include Library" and
including the ModbuslIP library as shown in Figure 14.6. Now, we have successfully included
both libraries that were part of the download package. Additionally, we need to include a
built-in library called Ethernet.h. Therefore, we have included the ModbusIP.h, Modbus.h,
Ethernet.h, and SPI.h libraries in our project, as depicted in Figure 14.7. Moving on to step
two, for this example, our goal is to create a Modbus TCP server with only one register,
serving as an input register. We will name this register tanklevel_ir.

e 37

Coding Modbus TCP/IP for Arduino

Ctrl+R

Verify/Compile

Upload Ctrl=U
Upload Using Programmer Ctrl+Shift-U
! 1 #ing Export compiled Binary Ctrl+Alt+S
3 Show Sketch Folder Ctrl+K
il Include Library ' A
| Add File... Robot IR Remote
= Robot Motor i
Serial.begin (9600) ; =
D
tanklevel = 12; 5Pl
tanklevel old = 12: Servo
SoftwareSerial
DisplayCurrentValues():
SpacebrewYun
4} Temboo
Wire
void loop() {
Recommended librar
send updated values Adafruit Circuit Playg
CheckForDataChange () ; Adafruit LiquidCrysta
21 } Contributed librares
G5M
id CheckForDataChange () (
1 Mgshodbus -
Modbus
Modbus-Master-Slav

ModbuslP

ModbusMaster
ModbusTCP
Stepper

TFT

Figure 14.6: Including the Modbus and ModbusIP libraries.

File Edit Sketch Tools Help

Serial0d §

Figure 14.7: All the libraries included in our project.

So, our task is to create a designated area in the memory and name it as a register. To
do this, we define a constant integer called tanklevel_ir and set it equal to 100. Although
tanklevel_ir is a variable, it represents the address of the register. It should be noted that
the value 100 is not arbitrary, but rather the starting point within the input register range of
30,001 to 40,000. Therefore, the actual register address is 30,100. This location within the
Arduino is now our register address. In addition, we declare a Modbus IP object, for which
we will refer to it as ModbusIP mb, as depicted in Figure 14.8.

e 38

Chapter 14 ¢ Adding Code to Implement the Modbus TCP Server

2% Serial0 duino 1.8.2

Flle Edit Sketch Tools Help

SerialD4 §

' 4 #include <SPI.h>

nt tanklevel;
int tanklevel_old:

T tanklevel ir = 100;

11 //Modbus IP Object
12 ModbusIP mb;|

T

Figure 14.8: Defining tank level input register and Modbus IP object.

Next, our next step is to insert certain codes obtained from the provided examples within
this library. Let us guide you to the location of these examples. They can be found in
the ModbuslIP folder, specifically in the "examples" folder. We obtained them from the
"Lamp" folder, as shown in Figure 14.9. Additionally, we gathered a significant amount
of information from the library's webpage. The documentation available on this webpage
thoroughly guides you through the entire process. The weblink is as follows:

https://github.com/andresarmento/modbus-arduino

= 4 Arduine Libs
\ MgsModbus
= modbus_server_tcp
= 4 modbus-arduino-master
=) libraries
). Modbus
=1 MadbuslP

= examples
i
i o
| Switch
j. TempSensor
+ . ModbusIP_ENC28)60
4). ModbuslP_ESPE266AT
+ - Ju ModbusSenal

Figure 14.9: Directory to the Lamp folder.

Now let's return to our code and demonstrate its functionality. Remember, we are setting
up the Arduino as a node on a network. In this context, the "mac" refers to the Ethernet
address or MAC address. We have arbitrarily chosen 192.168.1.120 as our IP address. It
is essential to assign an IP address to the Arduino because, on a Modbus TCP network,
the IP address serves as the Modbus ID and must be unique. We use the command mb.
config(Mac, IP) to execute this configuration. Moving forward, we need to inform the
Arduino that "tanklevel_ir" should be recognized as an input register. To achieve this, we
use the "mb" Modbus object and employ the "add" command to add and read the register.
We assign it the address of tanklevel_ir, which in this case is 100. Once the register is
set up, we must assign it a value corresponding to the tanklevel. To do this, we use the
mb.Ireg(tanklevel_ir, tanklevel) command. This action takes the tanklevel value and
stores it in the specified register location, tanklevel_ir, as demonstrated in Figure 14.10.

e 39

Coding Modbus TCP/IP for Arduino

How did we become aware of all these functions? Simply go through the documentation,
and you will discover all of them listed. However, for now, keep in mind that our objective is
to get you started as fast as possible. Therefore, we will not go over each function in detail
because it could be too tedious. Our focus remains on facilitating your quick start.

s i 187 Yy I =

File Edit Sketch Tools Help

Serial04 §
void setup() {
Serial.begin(9600);
The media access control (ethernet hardware) address for the shield
byte mac[] = { OxDE, OxAD, OxBE, OxEF, OxFE, OxED };

The IP address for the shiel
ip[] = { 192, 16e, 1, 120 };
Modbus IP

g(mac, ip):

m

mb.

mb.addIreg(tanklevel ir); I

tanklevel = 12;
tanklevel old = 12;

mb.Ireg (tanklevel ir, tanklevel):

DisplayCurrentValues() ;

Figure 14.10: Completed setup code section.

In summary, we have completed the necessary steps such as adding our libraries, defining
an input register, assigning a value to it, and handling our network requirements. The final
step is to execute the mb.task() command depicted in Figure 14.11.

37 mb.task():

9| // send updated values
40 CheckForDataChange () :

2y
Figure 14.11: Adding the mb.task() command.

That's it. We have successfully created a Modbus TCP server. Now we can proceed to check
for any errors by clicking on the verify button, and once it is verified, we can send the
application to our Arduino by clicking on the upload button. After that, we should be able
to open modscan32.exe, switch it to Modbus TCP client mode, and retrieve the value of the
tanklevel input register, which is currently 12. Since our Modbus TCP server is capable of
being read by a Modbus TCP client, we will be able to obtain a value. This is the next task
we will be undertaking in the following section.

e 40

Chapter 15 e Last Change Before Running the Program

Chapter 15 e Last Change Before Running the Program

We are now prepared to test our latest application, Serial04. Before we proceed, let's
review the quick start example by referring back to the block diagram shown in Figure 5.1
from a previous section. This diagram illustrates our setup, where the Arduino and its shield
are configured as a Modbus TCP server with a single input register representing the tank
level. This setup is connected to the hub.

Next, we will use modscan32.exe to configure it as a Modbus TCP client. With this
configuration, we will read the single register (addressed as 100) that represents the tank
level. However, in the Modbus TCP protocol, the address will be 30,100. The process involves
the modscan32.exe sending Modbus queries as the TCP client and the Arduino responding
with Modbus responses. This exchange will continue as modscan32.exe continuously
requests information from the Arduino. This dynamic of a client pulling information from a
server is typical in the world of Modbus TCP.

Currently, we have assigned the IP address 192.168.1.120 to the Arduino. For our laptop,
which will be connected to the Ethernet interface, we need to assign a different IP address.
In this case, we will configure it as 192.168.1.121, as shown in Figure 15.1.

| Untitled - Notepad

File Edit Format View Help
192.168.1.120 - Arduino

192.168.1.121 - Laptop

Figure 15.1: IP addresses for the Arduino and Laptop.

All right, and modscan32.exe is going to use that IP address when it connects. Thus, let us
show you how to do that. We will search for a network and click on the Network and Sharing
Center, as shown in Figure 15.2.

Control Panel (27)

®

& Nﬁ:ﬂ:&{lﬂ.ﬁ.ﬁhﬂmﬂ.ﬁﬂnﬁ
& Find and et networking and connection problems

2, Manage network passwords

a: Add a wireless device to the network
:;: Connect to a network

%% Set up a connection or network

Documents (3)
| Debuglog
i3] samplesFromServer
7) testt
Files (13)
Network Shortcuts

Copl

) Tech candidate scenarios
[B] define-tid

(2] main

@B jsorepe

9 See more results

[network x @ Shutdown | b |

Figure 15.2: Clicking on the Network and Sharing Center.

e 41

Coding Modbus TCP/IP for Arduino

We will click on "Change adapter settings", as depicted in Figure 15.3. Then go to "Local
Area Connection" because this is our physical Ethernet connection on the laptop. Double
click it as illustrated in Figure 15.4. We are going to click on "Properties", as shown in Figure
15.5, scroll down there to Internet Protocol Version 4 (TCP/IPv4), as in Figure 15.6.

- 5 T e
.S R =
4* » Control Panel » Network and Intemet » Network and Sharing Center - Search Control Panel P
o -
Control Panel Home - E
= b - View your basic network information and set up connections
Manage wireless networks * [™Y o See full map
b -
h dapter sett £
EJS' W’ i LATITUDES540 Muktiple networks Internet
Chang nced sharing (This computer)
settings =
View your active networks Connect or disconnect
ARRIS-6EF2 gccess t)_rpz MTTG " e)
cnnections: Wireless Network Connection
Tar Public network (ARRIS-6EF2)
Unidentified network Access type: Mo network access =
= Public network Connections: § Local Area Connection
Change your networking settings.
64 Set up 2 new connection or netwerk
=y Set up a wireless, broadband, dial-up, ad hoc, or VPN connection; or set up a router or access point.
? Connect to a network
Connect or reconnect to a wireless, wired, dial-up, or VPN network connection.
See also
HomeGroup " Choose homegroup and sharing options
Internet Options Access files and printers located on other network computers, or change sharing settings. i
e [Troubleshoot problems

Figure 15.3: Clicking on "Change adapter settings".

Organize v Disable this network device Diagnose this connection Rename this connection ~ » DA e | o
- Bluetooth Network Connection = Local Area Connection g Local Area Connection 2
Not connected = _ Unidentified network Disabled
3 O Bluetooth Device (Persanal Area . @ Realtek Py GBE Family Controller @ Cisco Systems VPN Adapter for 6.
- Viiware Network Adapter VMnetl - VMware Network Realtek PCle GBE Family Controller jonnection - PH
. Enabled Enabled Teconnected
@ VMware Virtual Ethemet Adapter ... @ \Mware Virtual Ethemet Adapter .. WAN Miniport (IKEv2)
- VPN Connection - Sheppard - Wireless Network Connection - Wireless Network Connection 2
Disconnected ARRIS-6EF2 Mot connected
", WAN Miniport (L2TP) Dell Wireless 1705 802.11b/g/n 2... 3§ ol icrocoft virtual WiFi Miniport A

Figure 15.4: Clicking on "Local Area Connection".

e 42

Chapter 15 o Last Change Before Running the Program

§ Local Area Connection Status -
General |
1
Connection |
1Pv4 Cannectity: Mo network access
IPvé Connectivity: Mo network access
Meda State Enabled
Duration: 4days 03:57:33
Speed: 100.0 Mbps
Activity
-]
Sent — H — Received
C4
Bytes: s63,9%0 | 938,101
(et || G][g | l

Figure 15.5: Clicking on the "Properties”.

U Local Area Connection Properties
Networking | Shasing

Connect using
¥ Reakek PCle GBE Family Cortroler ‘

This connection uses the following tems:

¥ 8 Fie and Prrter Shanng for Microsoft Networks -
-4 SIMATIC Industrial Ethemet (150)
W s PROFINET IO RT-Protocol V2.0

.-Ll.rk{nyurTopdngr appe
W & Link-Layer Topology Discovery Responder -
»

[o]
Description

Transmission Control Protocol/intemet Protocol. The defautt
Mmmmwmm
across diverse interconnected networks

[ox J[coma |
Figure 15.6: Choosing the Internet Protocol Version 4 (TCP/IPv4).

This is where we have already set it, but we just wanted to show you, we clicked on "Use
the following IP address", and I hard coded my IP address, 192.168.1.121, subnet mask by
default, and its default gateway is 192.168.1.1, as illustrated in Figure 15.7.

e 43

Coding Modbus TCP/IP for Arduino

Internet Protocol Version 4 (TCP/IPvd) Properties @
General

You can get IP settings assigned automatically if your network supports
this capability. Otherwise, you need to ask your network administrator
for the appropriate IP settings.

) Obtain an IP address automatically
@ Use the following IP address:

IP address: 192 .168. 1 .121
Subnet mask: 255.255.255. 0
Default gateway: %192 168, 1 .1

Obtain DNS server address automatically
@ Use the following DNS server addresses:
" Preferred DNS server:

Alternate DNS server:

-l il [Advanced.. |

Figure 15.7: Setting the Internet Protocol Version 4 (TCP/IPv4) Properties.

All right, so the gateway really does not matter much in this instance, but the IP address is
very important. So, we are giving the Ethernet interface as where our cable is plugged into
our laptop which is 192.168.1.121. Remember, every element on a Modbus TCP network is
uniquely identified by its IP address, so the IP addresses must be unique. So, my laptop is
configured network-wise, and now we are going to send our application into our Arduino by
using the verify and upload buttons. All right, so it is compiling and uploading, and done.
Therefore, we get our "Tank Level: 12 ft" message as shown in Figure 15.8.

Tank Level: 12 ft

nclude <ModbusIP.h>
ude <Modbus.h>
ude <Ethernet.h>
nclude <SPI.h>

nt tanklevel;
int tanklevel old:

3 const int tanklevel ir = 100;

1 //Modbus IF Object
12 ModbusIP mb;

tup() {
rial.begin (9600);

/ The media acceas contrel (ethernet hardware) address for the shield
byte mac[] = [OxDE, OxAD, OxBE, OxEF. OxFE, OxED };
The IF address for the shield
byte ip[] = { 182, 168, 1, 120 };
fig Modbus IP
g(mac, ip):

wh_addTraa (ranklaval iri:

Figure 15.8: Getting the "Tank Level: 12 ft" message.

We are going to minimize the program, then we are going to start modscan32.exe. The
device ID does not matter for the IP address. We are going to click input register, leaving

e 44

Chapter 15 o Last Change Before Running the Program

this as address 101. Now, this modscan.exe uses this offset. If you have enough Modbus
knowledge, you know that the offset used is one. When you want to read 100, you put 101.
So, 30,101 is actually 30,100 in the Arduino. It is just a Modbus offset thing, which is quite
irritating when dealing with Modbus in the field. Next go to the "Connection2 tab and select
the "Connect" icon as depicted in Figure 15.9.

Device 1d: | 1 | l‘
. Number of Polls: 0
pddizes MODBUS Point Type Mm
Length: |1 |04: INPUT REGISTER | Reset Ctrs |

[Polls: 0 |Resps: 0

Figure 15.9: Selecting the "Connect" icon.

Usually, you pick something like a COM port here, but you are going to choose Remote TCP/
IP Server and type in the IP Address of the Arduino as illustrated in Figure 15.10.

m-—'“‘

Connect Using:
[Remote TCP/IP Server ~]
IP Address: Fmi!
Configurat
Hardware Flow Control
Baud Aate. |3600 -
I~ Wait for DSR from slave
Word Length: |8 at Delay I_ 5 after RTS before
10 ms after RTS before
transmitting first character
Party [NONE -1 I~ Wait for CTS from slave
Delay |1n ms after ast character
Stop Bits: |1 'I i before releasing RTS

Protocol Selections I
[] _coen |

Figure 15.10: Setting the "Connection Details".

So, you're telling modscan32.exe that this is the IP address of the Arduino, and this is
where you will read from. Click on the OK button. There we go, perfection 12, which is tank
height. So right now, we are reading the input register that we created within the Arduino
and we are doing so via Modbus TCP as shown in Figure 15.11.

e 45

Coding Modbus TCP/IP for Arduino

File Connection Setup View Window Help

| Dl=|@ R & 8|2
22T e == 2
|| == Modscat Lo & s
Device Id: E_ =
address: (1101] \opgus PointType Proma eramer e Pages: 0
Length: |1 |04: INPUT REGISTER ~ ~| T

30101: < 12&

For Help, press F1

Polls: 8 Resps: 8

Figure 15.11: Reading the input register with address 100.

So, we have created a brand-new Modbus TCP server. All right, it has one register, but it is
working. Now have a look at the blinking lights that you are seeing here on the Arduino in

the Figure 15.12.

Figure 15.12: Blinking lights on the Ethernet Shield.

So, you are seeing those lights going like crazy there. That is the data transmission messages
that are going back and forth there on the Arduino while the modscan32.exe pulls. Thus,
we have done it. Now in the next section, we are going to expand our application to holding

registers, input status registers, and coils.

e 46

Chapter 16 e Running the Arduino Modbus TCP Server Program

Chapter 16 e Running the Arduino Modbus TCP Server
Program

In the last section, there is one thing that we forgot to mention: make an edit to one of
the libraries and this must be done before you run the application in the next section. So
let us look at it here. Go to "Desktop", "Libraries", "Documents", "Arduino", and "libraries"
and have a look at ModbusIP, and the actual files in it. We are going to concentrate on
the ModbusIP.h. Open it. You can open it in any text editor that you have. It is an old
Windows application, for old Windows operating systems. We are going to use one called
Notepad++, our text editor of preference, as shown in Figure 16.1.

B Desiiop *) eamples
£ Gl Libraries || keywords.tet 191 bytd
Sl e s | ModbuslP.cpp 230K
=) Aduino 7 Modi-— 815 byt
i librl(;‘uk Open
& i Biyn
it
BlynkESPB266_Lib -
§ MosModbus Mount as ImDisk Virtual Disk
| Modbus 1Zp ,
5 I ModbuslP o e
© | eamples =
B Modbustaseer Open with , Notepad
& J Time P, -1 ng.,mu:ume(ﬁumummnemm.
=~ Ji TinyGSM F WordPad

Ji tools Restore previous versions

+ Camtasia Studio
i Send to >
Custom Office Templates T

Choose default program...

Figure 16.1: Editing ModbusIP.h file with Notepad++.

Now in your file, we want you to remove those comments and then save that file. So,
when you edit the file, it should look like Figure 16.2. The reason that we have removed
the comments here and essentially activated the line, TCP_KEEP_ALIVE, is for a particular
reason that has to with calling a TCP connection.

File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?
OB s s Dokt BRIHI1EIEH
[Eloew 1 &3 B ModbusiPh 3

#define TCP_KEEP_ALIVE

Figure 16.2: Activating the line, TCP_KEEP_ALIVE.

In Modbus communications, the underlying network connection is what you call a TCP
connection, and if this line remains commented out, what will happen when we actually
run the program, and we use modscan32.exe to read data from the Arduino as a Modbus
TCP server? It will be one. It will do one read, and then the connection will be terminated.
This TCP_KEEP_ALIVE directive instructs the code in the Arduino to keep the Modbus TCP
connection alive so that Modbus requests and responses over Modbus TCP can keep going

e 47

Coding Modbus TCP/IP for Arduino

until you end the conversation. We shut off the Arduino, that sort of thing. Do this edit,
remove those comments so that you activate this line. Do this before you verify and upload,
and do a final upload of the actual code into the Arduino. Now it should be fine with the test
for the other sections.

e 48

Chapter 17 o Adding Code to Read a Holding Register

Chapter 17 ¢ Adding Code to Read a Holding Register

All right, so in the last section, we created a Modbus TCP server with a single register, which
is an input register, and we read it successfully using the modscan32.exe as a Modbus
TCP client. Now what we are going to do in this section is include a holding register in this
application. So as before, we are going to save it as a new application with "File", then
select "Save as" , and we name it "Serial05" as shown in Figure 17.1.

[=c)
o e WNT I
[Fie Ean swetn Toois Hep

Serial0d Y - | Save sketch folder as
Savein: | Amduino Apps - @ @
#inclold - Name : Date modified Type
"} | Serial01 27/06/201710:43 ... File folder
int tani | RecentPlaces) cerain2 27/06/201710:59 ... File folder
7 |int tank - J. Serial03 27/06/2017 11:58 ... File folder
I Serial04 27/06/201702:38 ... File folder
9 const in| ‘ Desktop
1
11 |//Modbus =
12 ModbusIP. “f‘-!‘J
13 Libraries
14 void set) y
15 Serial &
L€ Computer
17 // The
1e byte =i Q
19 4 m 3
2 Network S
File name: Serial05] - Save
Save as type: [N Fiies (") 'I

Figure 17.1: Saving the file as "Serial05".

All right let us get started with making modifications. In our new hypothetical scenario, let
us imagine that we have a Modbus TCP server. This server has a holding register, which
functions as an analog output connected to a variable frequency drive (VFD) on a motor.
To represent the VFD speed, we will declare another integer variable. Additionally, we need
to include a variable called vfdspeed_old to detect changes in the VFD speed. This variable
will be used by the application to send a serial message indicating a change in value. Now,
let's assign an address for the holding register, which we will call vfdspeed_hr. We will
assign it the value 105, but you can choose any value you prefer. You can refer to Figure
17.2 for further clarification. Moving on, we need to add mb.addHreg(vfdspeed_hr) to
our program. This command is for adding the holding register, and you can find all of these
commands in the libraries provided. We have shared a weblink with you to access these
libraries, which we recommend marking as favorite. Feel free to explore and read more
about these commands in detail.

e 49

Coding Modbus TCP/IP for Arduino

So, we show you how to use it practically, and you can always go back and refer to it.
Now, we have added a holding register. Let us put an initial value for vfdspeed of 150
RPM. The vfdspeed_old value is also 150 RPM. So, we have set the vfdspeed variable to
150, and then we take the same value from vfdspeed and put it into our holding register
location, which is vfdspeed_hr. Just like that, we just added another register, this time a
holding register, as shown in Figure 17.3. Now let us take care of the visualization. Display
current values using the function DisplayCurrentValues(). We not only want to display
the tanklevel, now we want to display the vfdspeed. So, what we are going to do is to add

1 #include <ModbusIP.h> Ly

{ #include <SPI.h>

9 int vidspeed old;

L I e
S b ma e = wR e o

24

lude <Modbus.h>
e <Ethernet.h>

int tanklevel;
int tanklevel old;
nt vidspeed: I

nt tanklevel ir = 100;
nt vidspeed_hr = 105:

//Modbus IP Object
ModbusIF mb;

void setup() {
Serial.begin(9600);

// The media access control (ethernet hardware) address for the shield
byte mac[] = { OxDE, OxAD, OxBE, OxEF, OxFE, OxED };

/ The IP address for the shield

byte ip[] = { 192, 168, 1, 120 };

//Confia Modbua TP

Figure 17.2: Defining vfdspeed, vfdspeed old and vfdspeed_hr.

a line temp string called "tempstr".

e 50

Chapter 17 o Adding Code to Read a Holding Register

| 22 The IP address for the shield

ip[] = { 1%2, 168, 1, 120 }:

e

Modbus IP
g(mac, ip):

mb.addIreg(tanklevel ir);
mb.addHreg (vidspeed hr); (F |

tanklevel = 12;
tanklevel old = 12;
vidspeed = 150;
vidspeed_old = 150;

m

mb.Ireg (tanklevel ir, tanklevel);
mb.Hreg (vfdspeed hr, vfdspeedl:l

DisplayCurrentValues();
40 |}
42 |void loop() {
43
44 mb.task(): 3

Figure 17.3: Adding code to the setup section.

We want to add onto tempstr, including the introduction of a separator, "VFD speed:",
followed by vfdspeed and "rpm." Consequently, when displayed as illustrated in Figure
17.4, it should read tank level, distance in feet, separator, VFD speed, and RPM.

Furthermore, we need to modify the function CheckForDataChange(). Our objective is
not only to monitor changes in tank level but also in vfdspeed. To streamline this process,
copy and paste. Thank heavens for copy paste. One of Microsoft's greatest inventions.
Thus, if vfdspeed is not equal to vfdspeed_old, the data has indeed changed. Subsequently,
we update one to match the other, as showed in Figure 17.5.

e 51

Coding Modbus TCP/IP for Arduino

[e i T
R R

Serialos §
I 51 void CheckForDatalhange -

boolean data_has_changed = false:

if (tanklevel old != tanklevel) {
data_has_changed = true;
tanklevel old = tanklevel;

1

if (data_has_changed == true) {
DisplayCurrentValues();
1

d DisplayCurrentValues() {

String tmpstr;

tmpatr = "Tank Level: " + String(tanklevel) + " ft"; E
tmpstr = tmpstr + " | VFD Speed: " + vidspeed + " rpm";
Serial.println(tmpstr);

Serial0s §

45 -
46 // send updated values
47 CheckForDataChange() ;

a9}

51 void CheckForDataChange() {

boolean data_has_changed = false:

if (tanklevel old != tanklevel) {
data_has_changed = true;
tanklevel old = tanklevel;
) .=

60 if (vidspeed old != vidspeed) {
61 data_has_changed = true;

62 vEdspeed_old = vidspeed;

63| |}

m

if (data_has_changed == true) {
DisplayCurrentValues();

Figure 17.5: Adding code to the function CheckForDataChange().

All right, so now there is one last thing that we need to do in this loop here. We have
the mb.task() responsible for running in Modbus, and following that, we check for data
changes using the function CheckForDataChange(). What we're going to do is integrate
the following: vfdspeed is equal to mb.Hreg(vfdspeed_hr), as depicted in Figure 17.6.

e 52

Chapter 17 o Adding Code to Read a Holding Register

s e W TN e
File Edit Sketch Tools Help

Serial05 §
40}
roid loop() {
44 mb.task(); I
vidspeed = mb.Hreg (vfdspeed hr):

// send updated values
CheckForDataChange() ;

51/}

53 void CheckForDataChange() |

m

lean data_has_changed = false;

if (tanklevel old != tanklevel) {
data_has changed = true;
tanklevel_old = tanklevel;

}

62 if (vidspeed_old != vidspeed) {

&3 Astrs hae shanmad — froes

Figure 17.6: Adding code to the loop section.

Let us understand the purpose of this operation. In addition to the conventional display and
read process of the polling register using modscan32.exe, we are making modscan32.exe
to write a new value to this register. When the write occurs, it directly updates the value in
the memory location, vfdspeed_hr. However, it is important to note that this value doesn't
automatically transfer to the vfdspeed variable; you need to implement code to manage
this transition. That is precisely what this segment of code accomplishes.

In essence, during each loop iteration, it retrieves the content from the holding register
memory location and transfers it to the vfdspeed variable. It is worth mentioning that
this process isn't necessary for the input register, as writing to an input register is not
permissible. That sums up the functionality in this section.

Now we will bring up our serial monitor as shown in Figure 17.7, and we click there, upload

the program, and transfer this application into the Arduino. There we go, "Tank Level: 12 ft
| VFD speed 150 rpm" as depicted in Figure 17.8.

e 53

Coding Modbus TCP/IP for Arduino

ane Edit Sketch (Tools) Help

Aute Format
Archive Sketch

35 mb.Ireg
mb.Hreg
DisplayC
a0}
41
42 |void loop{

mb.task(

R

vidspeed

e

Fix Encoding & Reload
ial Monitor
Serial Plotter

WiFil01 Firmware Updater

Board: "Arduino/Genuino Uno”
Port: "COM4 (Arduino/Genuino Una)” »

Get Board Info

Programmer: "AVRISP midl"
Burn Bootloader

// send updated values
49 CheckForDataChange () ;

void CheckForDataChange() {
beolean data_has changed = false;

57 if (tanklevel old != tanklevel) {

cs Asras has rhancad — seoee

Ctrl+Shift+M >
Ctrl+Shift+L

-

Figure 17.7: Selecting the "Serial Monitor".

Serialos

mb.Ireg (tanklevel ir, tanklevel);
mb.Hreg (vfdspeed hr, vfdspeed):

DisplayCurrentValues();

void loop() {
b.task() ;]
vedspeed = mb.Hreg (vedspeed hr):

// send updated values
CheckForDataChange () :

void CheckForDataChange() {

boolean dats_has_changed = false:

if (tanklevel old !'= tanklevel) |

At has chaneed - ceoa

&

Figure 17.8: Uploading the program.

We have successfully configured our serial display. Now, let us move on to modscan32.
exe. We previously used modscan32.exe to monitor the input register. Now, we'll create a
new window for the holding register, specifically one register at offset 106, corresponding
to our vfdspeed_hr address, which we set as 105. After setting up the connection, we click

"Connect" (Figure 17.9).

e 54

Chapter 17 o Adding Code to Read a Holding Register

Device Id

Address: MODBUS Point Type

Length: |1 |IM: INPUT REGISTER

Address:

MODBUS Point Type

Length: |1 |03: HOLDING REGISTER -]

E

Figure 17.9: Choosing "Connection" and "Connect" in modscan32.exe.

In the "Connection Details" window, we click on the OK button as depicted in Figure 17.10,
hoping to see our 150 RPM (Figure 17.11). Now, let us proceed to change this to 200 RPM
by clicking on the displayed number, initially set at 150. Observe what happens in both the
serial monitor window and here. Adjust the value to 200 and click on the update button, as
illustrated in Figure 17.12.

File Connection Setup View Window Help I

r, o l‘ﬂ D“ i . . -__- -

=

Word Length IS -l
{ Paty [NONE -]

I™ Wat for DSR from slave

Delay Im ms alter RTS before

Uansmiting fist chaiactes
I~ Wat for CTS from slave

Cornect Using:
[Remote TCPAP Server K|
IP Address: |192.168.1.120
Canfiguration
Hardware Flow Control ————
Baud Rate IBSW j‘

Cancel

Delay |1U ms after last character
StopBis: [1 | before releasing RTS
Protocol Selections

Figure 17.10: Clicking on the "OK" button.

e 55

Coding Modbus TCP/IP for Arduino

Address: MODBUS Point Type

Length: |1 |IM: INPUT REGISTER

Address: MODBUS Point Type
Length: |1 |03: HOLDING REGISTER ~|

For Help, press F1 Polls: 341 [Resps: /|
Figure 17.11: Getting our 150 RPM.

Write Register -.! !
Node: [T
Addess [106
Vae [200

(e] [i

Figure 17.12: Clicking on the "Update" button.

As the values are updated, take note of the new line that appears. The application detects
the change in vfdspeed and executes the DisplayCurrentValues() function again,
presenting us with 200 RPM, as shown in Figure 17.13.

e 56

Chapter 17 o Adding Code to Read a Holding Register

Tank Level: 12 ft | VFD Speed: 150 rpm
Tank Level: 12 £t | VFD Speed: 200 rpm

Device 1d:

Address: 0101 MODBUS Paint Type g

Length: |1 IM: INPUT REGISTER

Device Id:
Address: MODBUS Point Type

Length: |1 [03: HOLDING REGISTER ~|

7] Autoscrol (Nolneendng | [9600baud

40106: < 200>

[Polls: 382 Resps: /|

Figure 17.13: Updating and displaying a new line.

If you change this again, perhaps to 160 RPM, you will receive another update, as depicted
in Figure 17.14. The serial monitor window gives really great feedback on changes in
register values, allowing you to get a feel of the ongoing processes. In addition to that,
this information is visible in modscan32.exe, where the changes are reflected. So good!
We have expanded our application a little further. In the next two sections, we will go into
input statuses and coils.

i v W

File Connection Setup View Wl Help

[

EIEIEI Elﬁgl M‘ Tank Level: 12 fr | VFD Speed: 150 rpm
HEE & &BE EE Tank Level: 12 ft | VFD Speed: 200 zpm
EESUE —!_‘I s Tank Level: 12 fr | VED Speed: 160 “'T}
= ModScal o |&@|=
Device Id: | 1 |
Address: MODBUS Point Type E

Length: |1 IIM: INPUT REGISTER

Address: 0106 MODBUS Point Type

Length: |1 [03: HOLDING REGISTER ~|

7] Autoscrol (Nolneendng | 9600baud «

40106: < 160>

For Help, press F1 [Polls: 413 Resps: /|

Figure 17.14: Updating and displaying a new line.

e 57

Coding Modbus TCP/IP for Arduino

Chapter 18 e Adding Code to Read an Input Status

All right, so we are moving one step further in this section. We will add an input status,
single input status to the application. So, go to "File", then select "Save as", and we name
it "Serial06", as shown in Figure 18.1.

e At WT I ‘

2 #include Savein: || Arduino Apps - @M@
i o - Name . Date modified Type
g -~p). Serial0l 27/06/20171043 ... File folder
6 inc van | RecentPlaces [ooz 2/06/201710:59 .. File folder
7 in .)l Serial03 27/06/201711:58 ... File folder
L Serialod 27/06/2017 0238 ... File folder
Desktop). Serialo5 28/06/201707:29 ... File folder
13 Libraries
14 //Modbus 1
15 ModbusIP &
18 Computer
7 void sed)
serial %
4 m | ’
/1 Thel Network
File name: Senal0f] - k
Saveastype: Al Fles () v] [canca |

Figure 18.1: Saving the file as "Serial06".

We essentially do something similar to what we did in the last section. We are adding an
input status, imagining a hypothetical situation where a valve is connected to the Arduino.
The status of the valve, whether open or closed, is connected via a discrete input or digital
input to the Arduino. Let us allocate a memory location, named the valvepos_is with value
110. The valvepos and valvepos_old variables are actually supposed to be of type Boolean,
as the valve can only have one of two states: on or off, as depicted in Figure 18.2.

e 58

Chapter 18 ¢ Adding Code to Read an Input Status

e e W

Serial0é §

2 & ude <Qdodbus.h>
3d ude <Ethernet.h>
4 #include <SPI.h>

tanklevel:

tanklevel old;

vidspeed:

vidspeed_old:
1 valvepos;

1 bool valvepos_old;

]

=t int tanklevel ir = 100:
t vidspeed hr = 105;
st inc valvepos_is = 110;

st i

17 //Modbus IP Object
12 ModbusIP mb;

roid setup() {
Serial.begin(9600):

23 /{ The media access control (ethernet hardware) address for the shield
24 byte mac[] = { OxDE, OxAD, OxBE, OxEF, OxFE, OxED }:
S // The IP address for the shield

Figure 18.2: Defining valvepos, valvepos_old and valvepos_is.

All right, let us do the work in setup. So, we will use mb.addIsts(valvepos_is). This is a
command again from the documentation. We will add an input status along with its initial
value. To initiate this, we will set the valve position to true. Thus, both the valvepos and
valvepos_old variables will be assigned the value true. Simultaneously, we need to place
the actual value of the valve position into our memory location, the input status memory
location, using mb.Ists(valvepos_is, valvepos), as illustrated in Figure 18.3.

(e sz T TN
e e S oo vep —]

Serial0s §
24 pyte BA = OxDE, AL, BE,
25 // The IP address for the shield
26 byte ip[] = { 192, 168, 1, 120 }:
27 fig Modbus IP
fig(mac, ip):

29
mb.addIreg(tanklevel ir);
mb.addireg (vidspeed hr);
mb.addIsta(valvepos_is);

m

4 tenklevel = 12;

35 tanklevel old = 12;

vfdspeed = 150;

valvepos old = true;

1 mb.Ireg (tanklevel ir, tanklevel):
2 mb.Hreg (vidspeed hr, vidspeed):

43 mb.Ists (valvepos_is, valvepos):
4

DisplayCurrentValues():

Figure 18.3: Adding code to the setup section.

e 59

Coding Modbus TCP/IP for Arduino

All right let's address the operations within CheckForDataChange and
DisplayCurrentValues. Now, for the valve position, we want to see something more
descriptive than a binary one or zero. So, we are going to use a string position, named
"pos". If valve position is true, then pos is equal to "closed" (indicating that the valve
is closed). If it is not true, then the valve position is "open", as shown in Figure 18.4.
considering we are initializing it to true, we should observe it displaying as "closed".

s e e T .
File Edit Sketch Tools Help
|

Serial08
1 (GECEMES CHATgEY e
DisplayCurrentValues();
1
83 }
veid DisplayCurrentValues() {

String tmpstr;

if (valvepos == rrue) {
poa = "Closed”;

}

else {
pos = "Open";

}

tmpatr “Tank Level: +
tmpstr = tmpatr +
tmpatr = tmpatr + v
Serial.printlin (tmpstr);

ng (tanklevel) +
z vidspeed pm

Figure 18.4: Adding code to the function DisplayCurrentValues().

Then we will add some code to the CheckForDataChange() function to account for any
changes, as depicted in Figure 18.5. What you can do also is physically link a discrete
input on the Arduino to the valve position, activating it with wires. However, for simulation
purposes, we will not need to include anything in the loop for transferring any value, as
we cannot write to an input status; it changes from the actual input side. With these
modifications, our application has been adjusted accordingly.

Now, we proceed to upload the program to Arduino. Upon completion, we should see

something on the serial monitor. After uploading, there it is—Tank Level, Speed, and "Valve
closed" because we initialized the variable to true, as illustrated in Figure 18.6.

e 60

Chapter 18 ¢ Adding Code to Read an Input Status

o :T_I 0 E " - S EETX

void CheckForDataChange() {

2 boclean data_has_changed = false;

if (tanklevel old '= tanklevel) {
data_has_changed = true;
tanklevel old = tanklevel;

}

f (vidspeed old != vfdspeed) |
data_has_changed = crue;
vidspeed old = vidspeed:

]

if (valvepos_old != valvepos) [I I
data_has_changed = true; 3
valvepos_old = valvepos;

i

79 if (data_has_changed == true) {
DisplayCurrentValues();
)

Figure 18.5: Adding code to the function CheckForDataChange().

o s W I
File Edit Sketch Tools Help

Tank Level: 12 ft | VFD Speed: 150 rpm | Valve: Closed

Serial0é

DisplayCurrentValues();

214 DisplayCurrentValues() |

90 if (valvepos == true) |

91 pos = "Closed":
]

33 else [

a4 pos = "Open”;

85|)

g(tanklevel) + " ft";
= + vidspeed + " rpm";

37 tmpstr = "Tank Level: " + §
98 tmpstr = tmpstr + " | VED Spe
93 tmpstr = tmpstr + " | Valve:
Serial.println(tmpstr);

Figure 18.6: Uploading the program.

Now, let us minimize this program and bring back modescan32.exe, and go through the
other same process. Go to "File", select "New", then proceed to "Input Status". Set the
address to 111, aligning with our choice of 110 in the program. Place it there, move to the
"Connection" tab, and finally, click "Connect", as shown in Figure 18.7.

e 61

Coding Modbus TCP/IP for Arduino

(@)=
Address: MODBUS Paint Type
Length: [1 [04: INPUT REGISTER Length: [I | |02:INPUT STATUS

) | Address: MODBUS Paint Typ

Length: |1 I Ilﬂ: HOLDING REGISTEF

Figure 18.7: Choosing "Connection" and "Connect" in modscan32.exe.

There we go; you can see it reads "1" because it was initialized to true, as depicted in Figure
18.8. We are now successfully reading an input status from our Modbus TCP server via our
modscan32 TCP client. In the next section, we will discuss coils, marking the completion
of all registers and bringing us to the end of Modbus TCP implementation on the Arduino.

D|=|a| B & 8l

Address: i MODBUS Point Type

Lengu [i [04: INPUT REGISTER Length: |1 |02: INPUT STATUS

| | Address: MODBUS Paint Typ

Length: |1 I Ilﬂ: HOLDING REGISTEF

For Help, press F1

Polls: 18 [Resps: 18 4
Figure 18.8: Getting the value of "1", closed.

e 62

Chapter 19 ¢ Adding Code to Read a Coil

Chapter 19 e Adding Code to Read a Coil

In this section, we are expanding this application one final time, including the coil.
Remember, there are four main types of memory in any Modbus slave or server: holding
registers, input registers, input statuses, and coils. Having covered three of them, we will
now tackle the last one, the coil. Following the same procedures as before, let's consider
a hypothetical situation where the coil is connected to a pump, controlling it's on and off
state. When the coil is zero, the pump is off, and when the coil is one, the pump is on. So,
let's declare a Boolean variable for the pump—pump, using Boolean because, like an input
status, it can have one of two values, one or zero. Now, we need to allocate a memory
location for it. Let's call this pump_cl for coil, choosing its value as 115, selected arbitrarily
as shown in Figure 19.1.

To support this in the code, we add the following in the setup: mb.addCoil(pump_cl).
Let's give this an initial value of pump equal to false and pump_old equal to false. This
implies that initially, the pump will be off, having a value of zero, and we must initialize it
with this value.

€ int tanklevel;
nt tanklevel old;
B int vidspeed:
at vidapeed old;
bool valvepos:

ol valvepos_old:

t tanklevel ir = 100: I
t vidspeed hr = 105;

T valvepos_is = 110:

at pump_cl = 115;]

Modbus IP Object
21 ModbusIP mb;

oid setup() {
A1 . beain (6NN £

Figure 19.1: Defining pump, pump_old and pump_cl.
Again, we have mb.Coil(pump_cl, pump). That command is in the documentation, so
what we are doing is that we are taking the value of pump which is false, we have initialized

it, and we are putting it into the memory location allocated for the coil, pump_cl, as depicted
in Figure 19.2.

e 63

Coding Modbus TCP/IP for Arduino

Sarialdt §

uyue 7 0 '
// The IP address for the shield
29| byre ip[] = { 192, 168, 1, 120 };
3 //Config Modbus IP
mb.config(mac, ip):

3 mb.addIreg(tanklevel ir);
34 mb.addHreg (vidapeed hr):
35 mb.addIsts(valvepos_is);
36 mb.addCoil (pump_cl);

tanklevel = 12;
tanklevel old = 12;
vidspeed = 150;
vidspeed old = 150;
valvepos = tr
3 valvepos_ol
44 pump = fals
pump old = £

mb.Ireg {tanklevel ir, tanklevel);
4E mb.Hreg (vidspeed_hr, vidspeed);
43 mb.Ists (valvepos_is, valvepos);
5 mb.Coil (pump_el, p“m);|

Figure 19.2: Adding code to the setup section.

Moving on to the loop section, given that the coil is writable, we need to transfer any value
written to it by modscan32.exe to the variable. Therefore, we add the following line: pump
is equal to mb.Coil(pump_cl), as illustrated in Figure 19.03.

oid loop() {
mb.task();

60| vfdspeed = mb.Hreg (vfdspeed_hr): I
61 pump = mb.Coil (pump_cl);

6 // send updated values
&4 CheckForDataChange();

66)

oid CheckForDataChange() {

boolean data_has_changed = false;

if (tanklevel _old !'= tanklevel) |
data_has changed = true;
tanklevel old = tanklevel;
EAE

Figure 19.3: Adding code to the loop section.

Essentially, if modscan32.exe writes to the pump_cl location and changes the value from 1
to 0 or O to 1, it will be sent into the pump variable, allowing the CheckForDataChange()

e 64

Chapter 19 ¢ Adding Code to Read a Coil

function to carry out its work. Now, with that in place, let us do our magic to the display
section. We define a string variable called pstat, representing pump status. If pump is
equal to true, then pstat is equal to "Pump is in run mode". If it is not, then pstat is equal
to "Pump is stopped", as shown in Figure 19.4. This will display "Pump run" or "Pump
stop" based on the variable. Of course, we also need to check for data change in the
CheckForDataChange() function, as depicted in Figure 19.5.

98 if (valvepos == true) |
00 pos = "Closed";
)
102| else |
103 pos = "Open®;
}

if (pump == true) (
pstat = " w |

}

109 else |
pstat = “Stop™;

}

tmpstr = "Tank lLevel: " String (tanklevel) + " ft";

TtmpStr = tmpstr + " | VFD Speed: " + vfdspeed + " rpm"; o
tmpstr = tmpstr + " | Valve: " + pos; |
tapstr = tmpatr + " | Pump: " + pstat: E
Serial.println(tmpstr);

Serial06 §

70 beolean data_has_changed = false;

if (tanklevel pld '= tanklevel) {
data_has _changed = true;
tanklevel old = tanklevel;

1

if (vfdspeed old '= vfdspeed) {
data_has_changed = -,:)e:|
vidspeed old = vfdspeed;

}

if (valvepos_old != valvepos) {
data_has_changed = true; =
valvepos_old = valvepos:

} =

if (pump_old '= pump) {
data_has_changed = true;
29 pump_old = pump:
90 }

if (Aara ham shanmad ms Fensl [

Figure 19.5: Adding code to the function CheckForDataChange().

e 65

Coding Modbus TCP/IP for Arduino

We are going to save this application as "Serial07", as illustrated in Figure 19.6. We should
have done that before, but do not forget to do it. So, keep your application separate.

£ Savein: |, Arduno Apps -0 m
5 L. Name . Dste modified Type
s L . Serial0l 27/06/20171043 ... Fille folder
Recent Places Jj serialt? 27/06/201710:59 ... File folder
= 4 Serial03 21/06/2017 1158 ... Fille folder
] 4 Serial0d 27/06/20170238 ... Fill folder |
ir (9 Desktop L Serial05 28/06/2017 07:29 ... File folder
e | Serialds 28/06/20170749 ... Fille folder
s =
L=
) Libraries
if (vi
od| W
vall Computer
}
12 (pd| Nerk < m 3
b | Fle rame: Serial0? z
pumg |
} Saveastwe [AllFiles () -

Figure 19.6: Saving the file as "Serial07".

All right, so let us click upload and the application that we have just written is uploading to
the Arduino. Let us see what we see on the serial monitor. There's Tank Level, VFD speed,
Valve and Pump. As expected, the pump is in stop mode because we initialized it to false,
as shown in Figure 19.7.

o

ude <ModbusIP.h>
<Modbus.h>
ude <Ethernet.h>
ude <SPI.h>

t tanklevel;
t tanklevel old;

nt tanklevel ir = 100;
vEdspeed_hr = 105;
wt valvepos_is = 110;
ot pump_cl = 115;

V] Autoscrod Nolneendng v 9600baud v

20 |//Modbus IP Object
21 ModbusIP mb:

void setup() {
Barial . heain (ARNNY =

Figure 19.7: Uploading the program.

All right let us close this down for now and let us go to modscan32.exe. Going to "File" >
"New", we have the coil already chosen with the address 115. However, we will select 116
due to the offset. We want to read a single coil, then proceed to the "Connection" tab and

e 66

Chapter 19 ¢ Adding Code to Read a Coil

click on "Connect", as depicted in Figure 19.8.

MODBUS Point Typ i MODBUS Point Type
1 [04: INPUT REGISTER Length: 1 |02: INPUT STATUS

Device kd: | 1 : L1]
jj | Address: MODBUS Point Typ || | Address: MODBUS Point Type
Length: [1 [03: HOLDING REGISTEF || | Lengh: |1 | |01 cosTaTus

pobs 13 Reprisi
Figure 19.8: Choosing "Connection" and "Connect" in modscan32.exe.

We are reading zero there because it was initially set to false as shown in Figure 19.9.

MODBUS PointTyp || | 244"* MODBUS Point Type
1 |04: INPUT REGISTER Length: |1 |02: INPUT STATUS

b | Address: MODBUS Point Typ ||| Address:
Length: [1 [03: HOLDING REGISTEF ||| Length: |1 [m1: con_ sTatus

MODBUS Point Type |

Poleih _Repsi
Figure 19.9: Getting the value of "0", stop.

We are going to double click and change it to one, as depicted in Figure 19.10. Watch what
happens here; observe the serial monitor. As soon as it changes to one, a new line appears

with the tank level, VFD speed, valve closed, and the pump now in run mode, as illustrated
in Figure 19.11.

e 67

Coding Modbus TCP/IP for Arduino

k- % 59 & ==
File Connection Setup View Window Help
Dlea BEL &2
EELL @
Devieeld: | 1 |
MODBUS Point Type

02: INPUT STATUS

MODBUS Point Type

01: COIL STATUS

Tank Level: 12 fr | VFD Speed: 150 rpm | Valve: Closed | Pump: Stop
Tank Level: 12 fr | VFD Speed: 150 rpm | Valve: Closed | Pump: l\g

Device |d:

Address: MODBUS Point Typ
Lengh: [1 | [04INPUT REGISTER

o = —
Device ld: | 1 |

Address: MODBUS Paint Type
Length: |1 |02: INPUT STATUS

ol MODBUS Point Typ | || Address: MODBUS Point Type

Length: |1 [03: HOLDING REGISTEF Length: |1 |01: colL sTATUS

Figure 19.11: Change in modscan32 and serial communication window.

That is very cool. We can change the RPM as well and we will update it to 230 RPM. Change
this back to stop mode, then click update. You will see "Stop" occurring right there, as
shown in Figure 19.12, Figure 19.13, Figure 19.14, and Figure 19.15, respectively.

e 68

Chapter 19 ¢ Adding Code to Read a Coil

Iﬁh Connection Setup View Window Help |

D8 BEED 82
LT

Device Id: | 1 |
MODBUS Point Type

02: INPUT STATUS

MODBUS Point Type

01: COIL STATUS

Tank level: 12 £t | VED Speed: 150 rpm | Valve: Closed | Pump: Stop
Tank Level: 12 £t | VED Speed: 150 rpm | Valve: Closed | Fump: Run
Tank Level: 12 ft | VFD Speed: 230 rpm | Valve: Closed | Pump: Run

Dy

2| || == Modscat (= @=]

; Device Id: | 1 |

Device Id: | 1 ;

Address: e | | R MODBUS Point Type:
Length: [1 [0z: NPUT STATUS

Deviced: | 1 |
Addross! MODBUS Point Type

Length: [1 |01: coIL sTATUS

I | Address: |0106

MODBUS Point Typ
Length: |1 |03: HOLDING REGISTEF

File Connection Setup View Window Help

olsle| BEG &2

[=)
Tank Level: 12 fr | VFD Speed: 150 rpm | Valve: Closed | Pump: Stop
Tank Level: 12 fr | VFD Speed: 150 rpm | Valve: Closed | Pump: Run
Tank Level: 12 ft | VFD Speed: 230 zpm | Valve: Closed | Pump: Run

Device 1d: [1 |
MODBUS Point Type

02: INPUT STATUS

Address; 0101 MOD
Length: 1| [oa;nPy

MODBUS Point Type

01: COIL STATUS

Figure 19.14: Changing again the coil value.

e 69

Coding Modbus TCP/IP for Arduino

= -
=Y a
File Connection Setup View Window Help

D=l BEE &2
EELEEDED
—————————

=3 ModSca2
Device Id:

Address: MODBUS Point Typ
Length: |1 [04: INPUT REGISTER

SEE]

= Device Id: |1 |

Address: MODBUS Point Type
Length: |1 |02: INPUT STATUS

SlErE=]

150 rpm | Valve:
150 rpm | Valve:
230 pm | Valve:
230 rpm | Valve:

Closed | Pump: Stop
Closed | Pump: Run
Closed | Pump: Run
Closed | Pump: Eﬂp

e ModSca3 [=E=] Sca |
Device Id; Device ld: | 1
Address: MODBUS Point Typ | | | Address: Point Type
Length: |1 [03: HOLDING REGISTEF ||| Length: [1 [01: coi sTaTUS

[For Help, press FI

Figure 19.15: Change in modscan32 and serial communication window.

So, we have done it! Now, we have a Modbus TCP server that encompasses all four types of
registers. We can read these registers and write to the holding registers and coils. That is a
full Modbus TCP server, and you can take this code now, port it to your own application, and
customize it. It serves as an excellent starting point for your Modbus TCP implementation.

e 70

Chapter 20 ¢ Understanding the Modbus TCP Client Task

Chapter 20 e Understanding the Modbus TCP Client Task

All right, so we are on to a brand-new section. In the previous two sections, what we
did was show how to configure the Arduino as a Modbus TCP server. Looking back at the
diagram in Figure 5.1, the Arduino Uno, together with the Ethernet shield, was configured
as a Modbus TCP server. On the laptop, we used modscan32.exe to be a Modbus TCP client.
In the world of Modbus TCP/IP, the client is like the master. So, what modscan32.exe did
was, through the network, it read values from the Arduino Uno. We had set up the tank
level as an input register, vfdspeed as a holding register, valvepos as an input status, and
pump as a coil, as depicted in Figure 20.1.

3 Untitied - Note.L.=21 51 [

File Edit Format View Help |
tanklevel

vfdspeed

valvepos

pump

Arduino Uno

Ethernet
Shield

Figure 20.1: Defining input register, holding register, input status and coil.

Thus, a Modbus TCP server obviously must have registers in it to be read and written to.
We use modscan32.exe to both read and write values. Every time we wrote a value and it
changed, we use the serial monitor, the red line in Figure 97, to get feedback that there was
a change. So, the Arduino sent a message through the programming cable, which appeared
on the serial monitor, providing feedback.

But the real core of the network is essentially the Ethernet network. Now, in this section, we
are going to do the opposite. The Arduino Uno will be the Modbus TCP client, and the laptop
will be the Modbus TCP server. We will run modsim32.exe as the Modbus TCP server and
configure registers within it. In the Arduino Uno (the TCP client), we will write code to read
data from the laptop, acting as the Modbus TCP server, and record that data. Additionally,
it will provide feedback to the laptop's serial monitor, confirming that the Arduino Uno is
indeed reading the values from modsim32.exe.

Remember the red line shown in Figure 97. This programming cable is using the serial
function just for feedback to do our testing. Now we will take our final application and
modify it. So, we are going to leave the tanklevel, vfdspeed, valvepos and pump registers.
However, those will not be registers in a Modbus TCP server. We are going to leave them
as variables in the to store the values read from the Modbus TCP server on the laptop.
Therefore, we will leave all of these intact, including the serial display, but change the
purpose of these variables. They will now store the data that we will read from our Modbus
TCP server. This is the goal of this section.

e 71

Coding Modbus TCP/IP for Arduino

Chapter 21 e Configuring Modbus TCP Client Library in
the Arduino IDE

In the last two sections where we configured the Arduino and the Ethernet shield together
as a Modbus TCP server, we used a specific library. Before that, we had you download two
libraries—one as an attachment and the other from an external link. For this section, we
will be using the second library, the one you downloaded directly and was attached as a
resource. Upon downloading and extracting the files, you would have obtained this folder,
as we walked you through earlier, named "MgsModbus". This is the library we will use to
implement the Modbus TCP client on the Arduino, as seen in our directory in Figure 21.1.

+ | Arduino Apps
= . Arduino Libs

)

Llﬂg@
+- | modlps_server_tcp

+ |, ModbusDB
Figure 21.1: The directory of the "MgsModbus" folder.

So, you are going to copy this entire folder here, and then follow the same steps as before.
Navigate to "Desktop", "Libraries", "Documents"”, "Arduino"”, "libraries", and paste it into
the "libraries" folder, as depicted in Figure 21.2.

- Desktop
=l Libraries
=i~ | & Documents
- ., Arduino
=). libraries
-). Adafruit_Circuit_Playground
#- 4. Adafruit_LiquidCrystal
#- J LiquidCrystal

= e MgsMedbus.cpp
n MgsMedbus.h

4 MgsMnpdbus
I, Modb A
|, ModbuslP 3
-). ModbusMaster
#- . Modbus-Master-Slave-for-Arduino-master

ModbusTCP

Figure 21.2: Doing copy and paste the "MgsModbus" folder.

This is what you should do. You should have a library called "MgsModbus" with these two
files in it— "MgsModbus.h" and "MgsModbus.cpp". You should have those two files in your
folder, ready to be used in our application. In the next section, we will show you how to
include the new library into your code file and then use it from there by calling functions
and using properties.

e 72

Chapter 22 ¢ Removing the Modbus TCP Server Code from the Program

Chapter 22 ¢ Removing the Modbus TCP Server Code
from the Program

What you are seeing here is the application from the last section, named "Serial07". We are
going to take this application, remove the code that implements the Modbus TCP server, and
replace it with new code that implements the Modbus TCP client. However, as mentioned
before, we will keep our tanklevel, vfdspeed, valvepos, and pump variables. We will do this
gradually because modifying code can be tricky, and it's easy to forget or delete something
important. Let's go step by step. This might take a couple of sections.

The first thing we are going to do is remove these two libraries, as shown in Figure 22.1.
These libraries, combined into one, were downloaded to implement the Modbus TCP server.
We no longer need them.

File Edit Sketch Tools Help

Serial07

< #include <dodbus.h> I
3 #include <Ethernet.h>
4 #include <SPI.h>

Figure 22.1: Deleting the Modbus TCP server libraries.

We are going to delete that and save the program as "Serial20" (Figure 22.2).

2 lpinc1 Savein: J, Arduino Apps - 02O
sy n- Name = Date modified Type
il = 4 Seriall 22/06/720171043 .. File folder
1ot vaf | ReEPIscs) serian2 /06720171059 .. File foldes
ot ved T). Seriall3 /06720171158 .. File folder
- vl b Seriad 2/06/20170238 .. File folder
o Desitop b serians 28/06/201707:9 .. File folder
e : - . Seriai6 28/06/20170749 .. Fie folder
1 = b serian? 28/06/20170810 .. File folder
Libranes
16 const Computer
i : -
o Fie name. Seni20 5 sy
i R e i
Serid

e —

Figure 22.2: Saving the file as "Serial20".

Now we are going to include the copied library in the previous section. Go to "Sketch", then
"Include Library", and select "MgsModbus", as illustrated in Figure 22.3.

e 73

Coding Modbus TCP/IP for Arduino

File Edit Tools Help
Verify/Compile CtrieR
Upload Ctri+U

Seral3 Upload Using Programmer Ctrl+Shift+U

1 Export compiled Binary Ctrl+Alt+S =
2 #in

3 #ig Show Sketch Folder Ctri+K | E

‘ Include Library ! A

Add File... Robot IR Remote 3
Robot Motor
vidspeed:
fdspeed old o
valvepos; SP1
1 1 valvepos_old; Servo
i = = SoftwareSerial
o

1 Ao SpacebrewYun
1 1t tanklevel _ir = 100; Temboo
1 nt vidspeed_hr = 105: Wire
1 it valvepos_is = 110;
17 int pump €l = 115; Recommended librar
18 Adafruit Circuit Playg
19 //Modbus IP Object Adafruit LiquidC
20 ModbusIP mb; 5 n
21 Contributed libraries
22 void setup() { GSM
23 Serial.begin(9600);
24 e bt ar

Figure 22.3: Selecting the MgsModbus library.

It is included right there. We have essentially removed the library responsible for Modbus
TCP server and included the one that handles Modbus TCP client. These registers are no
longer necessary because they allocated spaces for holding registers, input registers, etc.,
which are not needed for a Modbus TCP client, as shown in Figure 22.4. So we are going
to take out the object "ModbusIP mb" because we do not need it as it was a Modbus TCP
server object as depicted in Figure 22.5.

e 74

Chapter 22 ¢ Removing the Modbus TCP Server Code from the Program

Serial20 §

1 #include <MgsModbus.h> =
2 #include <Ethernet.h>
3 #include <SPI.h>

int tanklevel;
tanklevel old;
t vidspeed:
vidspeed old;
valvepos;
valvepos_old:
pump;
pump_old;

1: const int tanklevel ir = 1007
1* const int vidspeed_hr = 105;
17 const int valvepos_is = 110;
1" const int pump €l = 11§;
18 Il
1

3 //Modbus IP Gbject
0 ModbusIP mb;

22 void setup() {
23 Serial .begin(9600);
24

-

Figure 22.4: Deleting Modbus TCP server registers.

1 #include <MgsModbus.h> o
#include <Ethernet.h>
3 #include <SPI.h>

int tanklevel:
tanklevel old;
vidspeed;
vEdspeed_old:
valvepos;
wvalvepos_old:
pump;

ol pump_old;

Eé; | /Medbus 1P Object
* ModbusIP mb;

1
17 void setup{) {

ie Serial.begin (9600);
19

2

2

/ The media access control (ethernet hardware) address for the shield
1 mac[] = { OxDE, OxAD, OxBE, OxEF, OxFE, OxED };

22 // The IP address for the shield

23 byte ip[] = { 192, 168, 1, 120 }:

24 f/Confia Modhna TP

Figure 22.5: Deleting the object "ModbusIP mb".

Let us see what else we do not need. We can remove the MAC and IP configurations
(Figure 22.6), as well as the registers related to creating (Figure 22.7). The initialization of
variables can stay for now, so let us leave that. Remove the unnecessary codes related to
registers, as shown in Figure 22.8.

e 75

Coding Modbus TCP/IP for Arduino

e 76

= - —Er—

Serial20 §

13 -
14 void setup() {

15 Serial.begin (9600) ;

16 —
11" s/ The media access con ! dwar ds for the shield
1: byte mac[] = { OxDE, OxAD, OxBE, OxEF, OxFE, OxED }; =

// The IP address for the shield

byte ip[] = { 192, 168, 1, 120 }; L4
//Config Modbus IF

mb.config(mac, ip):

mb.addIreg(tanklevel ir):
mb.addlreg (vidspeed hr);
mb.addIsts (valvepos_is);
mb.addCoil (pump cl):

tanklevel = 12;
tanklevel old = 12;
vidspeed = 150;
vidspeed old = 150;
valvepos = true;

34 wvalvepos_old = true;
35| pump = false;
36 pump old = false; x

Figure 22.6: Deleting MAC and IP configurations.

Serial20 §

13 -
14 void setup() {

Serial.begin(9600) ;

mb.addIreg (tanklevel ir);
mb.addireg (vidspeed_hr);
mb. addIsts (valvepos_is);
mb. addCoil (pump_cl) ;

tanklevel = 12;
tanklevel _old = 12
vidspeed = 150;
vidspeed old = 150;
valvepos = true;
valvepos old = true;

mb.Ireg (tanklevel ir, tanklevel):

mb.Hreg (vidspeed_hr, vfdspeed);

35 mb.Ists (valvepos_is, valvepos);

36 mb.Coil (pump_cl, pump): =

Figure 22.7: Removing registers related to creating.

Chapter 22 ¢ Removing the Modbus TCP Server Code from the Program

Serial20 §

13 -
14 void setup() {

1S Serial.begin(9600);

17| tanklevel = 12:
12| canklevel old = 12;
19 vfdspeed = 150:
20 vfdspeed old = 150;

m

21 valvepos = true —
22 valvepos_old

23 pump = fal

24 pump_old = false;

mb.Ireg (ctanklevel ir, tanklevel);
. mb.Hreg (vfdspeed hr, vfdspeed);
I: mb.Iats (valvepoes_is, valvepos):
{4 mb.Coil (pump_cl, pump);

DisplayCurrentValues();

oid loop() {

Figure 22.8: Removing codes related to registers.

We are going to leave our DisplayCurrentValues() function right there. Let us go further
down to our loop section. We do not need the codes illustrated in Figure 22.9 and because
this code implements a Modbus TCP server.

26 DisplayCurrentValues():

30 void loep() {
31
vz | mb.task():

;—1 vidspeed = mb.Hreg (vfdspeed_hr);
- pump = mb.Coil (pump_cl):

// send updated values
CheckForDataChange() ;

void CheckForDataChange() {

44 boolean data_has_changed = false;
46 if (tanklevel old != tanklevel) { -

Figure 22.9: Removing codes from the loop section.

o 77

Coding Modbus TCP/IP for Arduino

So, we leave the functions CheckForDataChange() and DisplayCurrentValues(). We
have essentially removed the code that implemented the Modbus TCP server. In the next
section, we are going include the code that implements the Modbus TCP client.

e 78

Chapter 23 e Setup Codes to Support the TCP Client Task

Chapter 23 e Setup Codes to Support the TCP Client
Task

In the previous section, we included our new Modbus TCP client library and removed the
code that implemented the Modbus TCP server. Now, we are ready to start including some
code that supports Modbus TCP client.

Before the setup, declare an MgsModbus object called "Mb". In the previous code, we had
to declare a Modbus object as well. You are declaring an object that encapsulates all the
features of the library. We will declare another variable, just a normal integer and initialize
it to zero. We are going to call this "accumulator, seconds counter". For now, we will leave
that there and show you what this does later on when we are writing code to do the actual
polling. In addition to that, we are going to paste in some code as shown in Figure 23.1,

and we will explain it.

S 09 .

File Edit Sketch Tools Help |
|

Serial20 §

1 #include <MgsModbus.h>
I #include <Ethernet.h>
3 #include <SPI.h>

n

5 int tanklevel;

6 int tanklevel old:
7 int vidspeed;
vidspeed old;
valvepos;
valvepos_old;
1 pump;

12 bool pump_old;

14 MgsModbus Mb;

6 int acc = 0; // accumulator, seconds counter

1 / Ethernet settings (depending on MAC and Local network)
19 byte mac[] = {0x90, OxA2, OxDA, O0xOE, 0x9%4, OxBS };

20 IPAddress ip(1%2, 168, 1, 120);

21 IPAddress gateway(192, 168, 1, 1);

22 IPAddress subnet (255, 255, 255, 0):

24 woid ssruni) 1

Figure 23.1: Adding codes to implement the TCP client.
So, these codes were taken from one of the examples from the downloaded library, which
is myarduinoprojects.com/modbus.html as depicted in Figure 23.2.

Download

MgsModbus-v0.1.1.zip bugfix
gpl.zip>
example.zip One arduino as master and another as slave

Figure 23.2: Adding IP address codes from the examples.zip.

e 79

Coding Modbus TCP/IP for Arduino

As previously mentioned, the raw library did not function as expected and required
modifications. However, helpful code examples can be found in the example.zip file provided
by the library. Despite encountering challenges, useful code was obtained from this source.
In the code snippet (Figure 23.3), these commands are related to declaring variables for
the Ethernet library, rather than specifically for the MgsModbus library.

We have declared a MAC address for the Ethernet interface and set the IP address. We
declare a variable which is the IP address. The IP address of the Arduino was 192.168.1.20
and the laptop one was 192.168.1.1.21. So, we are going to stick with that convention, and
we define a gateway and subnet and so on.

Now let's move into the sort of setup area and we are going to put a statement in there called
ethernet.begin(mac, ip, gateway, subnet). This initializes the network connections,
MAC, IP, gateway and subnet. Moreover, we put here the initialization of ethernet shield.

Now, let us observe how each library is used differently with various commands. In the next
step, we will paste another statement in here, as illustrated in Figure 23.3. This statement
declares the server's IP address that we will be polling. In this case, the laptop has the
IP address of the server, which is 192.168.1.21. So, we define "Mb" as a Modbus object,
specifying the server we will be interrogating for values through polling. The statement
"Mb.remServerIP" is an array, and we assign the server's IP address to positions zero, one,
two, and three, as shown in Figure 23.3.

e s
[Fie gan Stetcn Took vep |

Serial20 §

oid secup()

Serial.begin(9600);

initialize ethernet shield
29 Ethernet.begin(mac, ip, gateway, subnet):

m

// server address
Mb.remServerIP[0] = 192;
Mb.remServerIP[1] = 168;
Mb.remServerIP[2] = 1;
Mb.remServerIP([3] = 121::[

tanklevel = 12;
tanklevel cld = 12;
vidspeed = 150;
vidspeed old = 150
1 valvepos = true;
42 valvepos_old = true;

Figure 23.3: Adding codes to the setup section.

It is just how it is described; this is how it is done with this library. We have made some
progress, though it's advisable to save when we have a completed, working version.

e 80

Chapter 23 e Setup Codes to Support the TCP Client Task

Currently, if you download this, it will not function as it lacks all the necessary code. While
we've added some code related to the Modbus TCP client, particularly in the setup area and
just before that, there's still no code for the actual polling of registers in the Modbus TCP
server. We will get into that code in the next section.

e 81

Coding Modbus TCP/IP for Arduino

Chapter 24 e Writing Codes to Poll a Single Register in
Modbus TCP Server

In the last section, we introduced some code to support the actual polling of the Modbus
TCP server by this Modbus TCP client. This included network support and the IP address of
the server (modsim32.exe) we'll be polling, running on the laptop. Now in this section, we
want to get into the guts of what we have to put in the loop. Specifically, we will add code
to pull a single input register from modsim32.exe. We are starting small and building up.
We will create a function called Poller() beneath the loop function. The Poller() function
will be called every time the loop executes, and within it, we will include the function
Mb.MbmRun() as depicted in Figure 24.1.

N Se \rduino 1.8.2 ™)]
oo a1 T, ==
e S e ey]

Serial20 §

48} B
49
50 void loop() {

Poller();
Mb.MomRun () ;[T

// send updated values
CheckForDataChange() ;

m

id CheckForDataChange() {
boolean data_has_changed = false;

if (tanklevel old != tanklevel) |
data_has_changed = true;
tanklevel old = tanklevel;

1

if (vfdspeed old != vidspeed) (
data_has changed = true;
71 vidsoeed old = vidspeed:

Figure 24.1: Adding Poller() and Mb.MbmRun() in the loop section.

So MbmRun is essentially the function that runs and implements Modbus TCP client
services. Thus, this is the core of the system implemented by the library that we are using.
Once this executes, Modbus TCP client will execute. What Poller() function will do is sort
of set up what registers are to be pulled every time this loop runs. We will define this
function, Poller(), then we are going to write some initial code and explain what it does
afterwards. Similarly, the accumulator is incremented by one every time. If the accumulator
equals 3000 and subsequently, if the accumulator equals 3200, a specific action happens.
Following this action, the accumulator is set to zero, as illustrated in Figure 24.2.

e 82

Chapter 24 o Writing Codes to Poll a Single Register in Modbus TCP Server

(=) Senial20

File Edit Sketch Tools Help

Serial20 §

Poller({):
Mb.MbmRun() ;

// send updated values
CheckForDataChange () :

id Poller() {

delay(l):
acc = acc + 1;

m

if (acc == 3000) {
do something
}
if (acc == 3200) {
do something
acc = 07

73 1}

Figure 24.2: Defining the Poller() function.

Let me explain what this does. Remember, loop just executes as fast as it can. So, when it
hits the Poller() function, it will execute this code and this delay actually stops execution
for one millisecond, delay(1), it stops the code and causes the processor to wait. So,
every time this comes in here, there is a delay for one millisecond. We use an accumulator
(acc) to record that delay. The accumulator is incremented by one each time, counting up
to 3000. This piece of code checks if the accumulator equals 3000, then it does something.
When it reaches 3200, it does something else and resets the accumulator, like resetting a
timer. This is how we implement a three-second poll, doing something every three seconds.

What we must do this way is because the way that this library is implemented is not the
most efficient. The MbmRun function needs to run as quickly as possible, and we are
introducing one-millisecond delays in between. So, we have to make adjustments here
and there. What does that "something" look like? Well, in this case, the "something" is
represented by the statement Mb.Req(MB_FC_READ_INPUT_REGISTER, 100, 1, 0) with
acc = 3000. Let us break down what this is doing. This statement is actually defined within
the library, and we'll show you where it is defined. This means it is a command to read
an input register. The value after, 100, represents the register to read. It will be an input
register, such as 30,000, 30,001, 30,002, and so on. You do not need to put the 30,000;
just register 100 is sufficient, representing 30,100. The next value, 1, indicates the number
of registers to read, and the zero is a default, defining the area in which the return data is
stored.

Here is how it works: when the accumulator hits 3000 after three seconds, this command

is set up to request reading an input register. Then, MbmRun executes it, and it must wait
for the TCP server to send a response. Between this point and there are 200 milliseconds

e 83

Coding Modbus TCP/IP for Arduino

(0.2 seconds). After that wait, it checks to see what data is received, and the data is stored
in the array MbData. The first element of this array, MbData[0], is the data received. Since
we put zero there in Mb.Req, it corresponds to the first element, MbData[0]. Therefore,
MbData serves as our return value, and we store it in the variable tanklevel, as shown in
Figure 24.3.

Everything else happens from there. In the 'poll' function, we've created a sort of timer,
and these are the commands responsible for reading input registers and retrieving the
data, subsequently placing it in the designated variables. We know that it might seem a bit
complex at first, but as we delve into more projects, you will become more accustomed to
it. We will continue to expand this program in future sessions. For now, let us conclude here.
In the next section, we will proceed to test this. This program, as it stands, is complete by
itself. We will save it, verify it, compile it, upload it to the Arduino, and conduct tests.

= seriz0 Ao 1o [N N CerET——

File Edit Sketch Tools Help —

Serial20 §
50 void loop =

Poller():;
Mb.MbmRun() ;

f/ send updated values
CheckForDataChange () ;

60 void Poller() |

delay(1):| I
acc = acc + 1;

£ (acc == 3000) {
Mb.Req (MB_FC_READ_INPUT_REGISTER, 100,1,0);
}
1f (acc == 3200) {
tanklevel = Mb.MbData([0]:
ace = 0:
b

731} -

Figure 24.3: Completed Poller() function.

e 84

Chapter 25 o Testing the Modbus TCP Client Program

Chapter 25 o Testing the Modbus TCP Client Program

So, we have come to the best part, testing the code. Thus, what we are going to do is first
set up modsim32.exe, which is our Modbus TCP server. We are going to create this one
input register, address 101. We are using 101 instead of 100 because of the offset that
modsim32.exe has. Modsim32.exe has the same sort of offset as modscan32.exe because
it is made by the same manufacturers. Remember, in our code, we are reading register
100, so we are using 101 to account for the offset, as shown in Figure 25.1. Let's set the
initial value of the tank level to 12, just for demonstration, as depicted in Figure 25.2. Now,
with modsim32.exe set up let's start our serial monitor window and position it accordingly.
We will then click "Connect" as a Modbus TCP server, as illustrated in Figure 25.3.
SO

)¢ L% (]
File Edit Sketch Tools Help

File Connection Display Window Help Sefial2o
= ——— void loop I
I Modsimt
Device Id: | 1 | Gl
= Mb.MbmRun () ;
Address: 0101 | MODBUS Point Type 5
04: INPUT REGISTER 'I 5 send updated values
Leagth: D 56 CheckForDataChange():
*** NOT CONNECTED! * * *
)
14 Poller() |
E
delay(l):
acc = acc + 1;
if (acc = 3000) [
Mb.Req (MB_FC_READ_INPUT_REGISTER, 168.1,0);
1
- if (mcc == 3200) {
) 63 tanklevel = Mb.MoData[0]:
7 acc = 0;
]
MODBL 31} b

Figure 25.1: Setting input register in the modsim32.exe.

File Connection

Write Register

) [@](=]
‘ Addess: [101
Address: (01 ype
{: vaue |13 -
Length: |1 A
3 L Cancel
ceenorcoll Ege] Cod |
Auto Simulation I

Figure 25.2: Updating the input register value.

e 85

Coding Modbus TCP/IP for Arduino

- O x
(-] Seriz - S
S i e = cowce
e cot s teon v —]

Serial20

Poller():
Mp.MomRun ()

send updated values
CheckForDataChange () ¢

)

oid Poller() {

L
&cC = acc + 1;

if (acc == 3000) {
Mb.Req(MB_FC_READ_INPUT_REGISTER, 100,1,0);
1
if (ace == 3200) {
tanklevel = Mb_MbData[0]:
acc = 0;

Connect

Disconnect 3 Port 2
Port3

Address: Fotd
Lot | 7 Ports

Port 6

Figure 25.3: Selecting connect as Modbus TCP server.

Next, we are going to send our program to the Arduino by using the upload button.
Therefore, it is compiling successfully, then it is uploading. We have the tank level, we have
the VFD Speed, Valve and Pump just like last time, as depicted in Figure 25.4. So, we are
going to change 12 ft to 8 ft and see what happens. There we go, it works. The tank level
is now 8 ft as shown in Figure 25.5 and Figure 25.6, respectively.

File Edit Sketch Tools Help

Tank Level: 12 fr | VFD Speed: 150 rpm | Valve: Closed | Pump: Stop
Serial20

Poller():
Mb.MbmRun () ;

send updated values
CheckForDataChange () ;

void Poller() {

acc = acc + 1;

if (acc == 3000) {
Mb.Req (MB_FC_READ_INFUT_REGISTER, 1oel 1.00¢ V] Autoscrol Nolneendng » 9600baud =
)
if (acc == 3200) { s =
tanklevel = Mb MbData[0]:
acc = 0z File Connection Display Window Help
L [Modsim1 ElErE
} - Device Id: | 1
Address: MODBUS Paint Type
r " |04 INPUT REGISTER -
Length: |1
< »

Figure 25.4: Register values just like last time.

e 86

Chapter 25 o Testing the Modbus TCP Client Program

6] = —

Tank Level: 12 £t | VFD Speed: 150 rpm | Valve: Closed | Pump: Stop

File Edit Sketch Tools Help

Senal20

Poller{);
Mp.MbmRun() ;

send updated values
CheckForDataChange () :

1

oid Poller() |

\
acc + 1;

acc

if (acc == 3000) |

Mb. Req (MB_FC_READ_INFUT_REGISTER, 166.1.00;) Autoacrel =
)
if (acc == 3200) { ModSim32 - =

tanklevel = Mb.MbData[0]; -~ -

i File _Connection |

) () Modsim1 fim = - o=
i ad Addess: [101
Address: E-'[[J e 187 é ype -
Length: \'_‘ } —_
Auito §imulation

Figure 25.5: Updating value of the tank level.

| A = =

Tank Level: 12 fr | VFD Speed: 150 rpm | Valve: Closed | Pump: Stop
Serial20 Tank Level: 8 fr | VFD Speed: 150 rpm | Valve: Closed | Pump: Stop

File Edit Sketch Tools Help

Loop -

Poller();
Mb.MbmRun () ;

send updated values
CheckForDataChange () ;

id Poller() {

acc = acc + 17

if (acc == 3000) {

Mb. Req (MB_FC_READ_INPUT_REGISTER, 86,1, 01] Nolneendng v | 9600bad v
)
if (acc == 3200) { ModSim32 - =
tanklevel = Mb.MbData[0]:
o File Connection Display Window Help
2 [Medsimt ole &=
! - Device Id: | 1 |
Address: [T101 | MODBUS Point Type
r 04: INPUT REGISTER b
Length: |1
< »

Figure 25.6: Changing value after updating the tank level value.

So, what just happened there? We changed the value to 8. Remember the three-second
interval. Poll, the register got it into its tank level memory, recognized a change, and then
displayed it on our serial monitor right there. If we change the tank level value to 10 it will
change to 10, as illustrated in Figure 25.7 and Figure 25.8, respectively.

e 87

Coding Modbus TCP/IP for Arduino

File Edit Sketch Tools Help -

Tank Level: 12 ft | VFD Speed: 150 rpm | Valve: Closed | Pump: Stop
Serial20 Tank Level: 8 fr | VED Speed: 150 rpm | Valve: Closed | Pump: Stop

4 loop -

Poller():
Mp.MbmRun () ;

// send updated values
CheckForDacaChange() :

id Poller() (

1)
acc = ace + 17

if (acc == 3000) | | Autoscroll No line ending v- 9600baud w

Mb.Req(MB_FC_READ_INPUT_REGISTER, 100,1,0) ¢
]
if (acc == 3200) { m32 - Mo o
tanklevel = Mb.MbDaza[0]: -
acc = 0; File Connection
Wite Register ==
) DOMoasi § ——— — Eal=
L il Addwess 101
Address: 01| | ype
% Value: |10 -
Length: |1
(o] _cocs
Auto Simulation
4 »

Figure 25.7: Updating value of the tank level.
J = a

File Edit Sketch Tools Help

Tank Level: 12 ft | VFD Speed: 150 rpm | Valve: Closed | Pump: Stop
Serial20 Tank Level: & fr | VED Speed: 150 rpm | Valve: Closed | Pump: Stop
Tank Level: 10 ft | VFD Speed: 150 rpm | Valve: Closed | Pump: Stop

Poller():
Mb.MomRun () 7

send updated values
CheckForDataChange () :

id Poller() {

delay(l);
ACC = acc + 17

£ (acc == 3000) {

Mb.Req(MB_FC_READ_INPUT_REGISTER, 1066,1,0); 7] Autoscrol Molneending » | 9600baud v
1
if (acc == 3200) { e =
tanklevel = Mb.MbData[0]: - -
acc = 0; File Connection Display Window Help _
] [Modsim ==
. - Device 1d: [1 |
Address: MODBUS Point Type
= = |04 INPUT REGISTER -
Length: |1
£ "

Figure 25.8: Changing value after updating the tank level value.

So, we are getting instant feedback, and we know our code is working. We can read an
input register. Our Modbus TCP client is doing what it is supposed to do, and so, it works.

e 88

Chapter 26 e Writing Codes to Read the other Modbus Register Types

Chapter 26 e Writing Codes to Read the other Modbus
Register Types

In the last section, we successfully tested this application that you are seeing here, "

Serial20", and we read input register value from modsim32.exe. In this section, what

we are going to expand the Poller() function to read the remaining registers: a holding

register, an input register, and a coil register. This way, you would have an idea of how to

handle all four types of memory locations.

We are going to add a little comment here, "read input register", and this would be for the
tank level. After that, we will read the holding register, which is the vfdspeed. We are going
to quickly cut and paste some code and explain what it does. It is very similar to the one
before, as shown in Figure 26.1.

a@&?[rf%ﬁ - E e L2 o]
T

Serial20 §
2}

€0 void Poller() {

delay(l):
acc = acc + 1;

f// read input register - tanklevel
if {(acc == 3000) {
Mb.Req(MB_FC_READ_INPUT_REGISTER, 100,1,0);

: o
if (acec == 3200) { .
tanklevel = Mb.MbData[0]; 1

acc = 0}
}

74 // read holding register - vfdspeed
if (acc == 4000) {
Mb.MbData[0] = 0;
Mb.Req (MB_FC_READ_REGISTERS, 105,1,0);
1
if (acc = 4200)
vidspeed = Mb.MbData[0];

e i -

Figure 26.1: Adding codes to read holding register.

If acc is equal to 4000, at 3 seconds, it sends a message. At 3.2 seconds, it checks to see
if the data is received. We should remove the acc = 0 command in the read input register
section. Then, at 4 seconds, it sends the read holding register command. Again, we will
explain all these terms, MB_FC_READ_INPUT_REGISTER and MB_FC_READ_REGISTERS in
a subsequent section. Right now, these are built-in commands in the library, and we are
using address 105, keeping with the convention we were using before. So, this is really
40,105, and 0.2 seconds later, we get the vfdspeed, from MbData. Now we are going to
read input status, which will be our valvepos. Since this is a status, which is true or false,
we have to translate the data that we get back to true or false. Let us show you how we
are going to do that.

e 89

Coding Modbus TCP/IP for Arduino

At the 5-second mark, we set to zero our buffer that receives the data and we send a
request to read the discrete input. We are going to make that as 110 and keeping the
convention before. So, this will be like 10,110. 200 milliseconds later, which is 0.2 of a
second later, we check for data. But in this case, if the MbData[0] is equal to 1, as in binary
1, that means it is true and valve position is true; else valve position is false. Thus, we just
translate the data received, which is a binary 1 or 0, into true or false as depicted in Figure
26.2.

g:g-. 2120 | Arduin ,; e Ea !

Serial20 §

if (aec == 4200) {
vidspeed = Mb.MbData[0]:
}

// read input status - valvepos
i if (acc == 5000) {
Mb.MbData[0] = 0:
Mb.Req (MB_FC_READ_DISCRETE_INPUT, 110,1,0);
}
if {acc == 5200) I
if (Mb.MbData[0] == 1) {
valvepos = true;
}
else {
valvepos = false;
)
}

97}

39 void CheckForDataChange() {
100 hd

Figure 26.2: Adding codes to read input status.

Finally, we have read coil, which is our pump, and we are going to paste the codes in
there. As you can see in Figure 26.3, it is very similar and we are using our convention.
We are going up to 115 as the address of the register of the coil and we are up to the six
second mark. 200 milliseconds later, we read and do the same thing; we test MbData. If
it is one, pump is true, if not false. As this is the last read that we do in this cycle, we set
acc back to zero. We wait three seconds again, before we restart the polling once again.
That is essentially it. We have included now reads for the holding register and input status
and a coil.

e 90

Chapter 26 e Writing Codes to Read the other Modbus Register Types

3
4
95
6

99
00
02

04
5

109
110

111

113

114

Serlal20 §

1
else {
valvepos = false;
}
k

// read coil - pump
if (ace == §000) |
Mb.MpData[0] = 0;
Mb.Req(MB_FC_READ COILS, I 115,1,0);
F
if (ace == 6200) [
if (Mb.MbData[0] == 1) {
pump = true;
}
else {
pump = false;
1
acc = 0;

1

112 }

T T

Figure 26.3: Adding codes to read coil.

In the next section, we are going to compile, upload and test them.

e 91

Coding Modbus TCP/IP for Arduino

Chapter 27 o Testing the Modbus TCP Client Program

In this section we test the application of your program within a previous section. We have
it open here and it has been saved as Serial21. What we are going to do now is execute
the modsim32.exe. We set up the registers that are to be read. The first one is our input
register, which is 12, the default value. We use default values from the code here and add
them from "File > New Section". The next one is holding register, with address 105, so we
input 106 due to the offset, setting the initial value at 150. That is our holding register. Next
is our input status with its value one. We will make it 111 because of the offset and set it
as true. So, it will start at one. When we are testing it, we can actually see the changes
happening. Let's go finally to the coil, which was 115. It will be 116 because of the offset.
Its default is false which is zero. Now we are going to "Connection - Connect Modbus TCP

Server", as shown in Figure 27.1.

Now that we have modsim32.exe set up and connected, with our registers ready for
reading, the setup is complete. Next, we will upload the application to the Arduino. As

File Display _Window _Help
ljl Connect ' Port1
Disconnect ~ » | Pon2
Port3
Address: et Address: MODBUS Point Type
[03: HOLDING REGISTER =]
Length: l:] x: Length: D
Port?
Ports
Portd |
o Dtoasis
Device Id: | 1 | Device Id: | 1 |
Address: MODBUS Point Type Address: D116 MODBUS Point Type
e |01: COIL STATUS =l

02: INPUT STATUS -
Long: [| e

*** NOT CONNECTED! ** =

Length: D

Figure 27.1: Choosing connection, connect Modbus TCP server.

shown in Figure 27.2, the download to the Arduino is successful.

e 92

Chapter 27 e Testing the Modbus TCP Client Program

Serial2

CheckForDataChange () ;

4 Pollez() {

€2 aelay(1):
acc = ace + 1z

/ resd input register - tanklevel

1f (acc == 3000) {
Mb. Req(MB_FC_READ_INFUT_REGISTER, 100,1,00¢
1
if (acc == 3200) {
tanklevel = Mb.MbData[0]:
|
105,100

£ (ace == 4200) {
vidspeed = Mp.MpData[0];

Figure 27.2: Uploading

pdSiml

Display

Window Help

(= @) =] [[Modsimt =] @l=]
Device Id: | 1 | Device 1d: | 1
o1 | MODBUS Paint Type Address: o105 | MODBUS Point Type
[oa:INPUT REGISTER =] —— [03:HOLDING REGISTER ~
U Length: |1
12> 0: <00150>
(o & 2] || [Modsims ==
Device Id: | 1 Deviceld: | 1 |

o111 MODBUS Paint Type Address: 0116 | MODBUS Point Type
02: INPUT STATUS - [m:coiLstaus -]
(L Length: 1 |
I 116: <0>

the application into the Arduino.

We have got the initial serial message right there, and we will change some values and see
what happens. We change the input register value to 8 as illustrated in Figure 27.3.

[e Connection Dispiay Window telp
[ModSimt (= @[] || £ Modsime o [@] "]
Device ld: | 1 Deviee lg: | 1 |
Address: 0101 MODBUS Point Type Address: W‘ MODBUS Point Type
; 04: INPUT RE 1 03: HOLDING REGISTER ~
Length: |1 Write Register ===
01: <00012> femesh
| Vaue |8
| p——
[Modsims q Cancel cl@l=
Device Id: Auto Simudation Deviceld: |1 |
Address: o111 | MODBUS Poifsim— wiE | MCDSUS Poatlype
————— |02:INPUT STATUS - ; 01: COIL STATUS -
Length: 1 Length: |1 ' K
0111: <1> ‘ 16: <0>

Figure 27.3: Changing the input register value to 8.

We should see a message there coming up and tank levels now is 8 feet as shown in Figure

27.4.

e 93

Coding Modbus TCP/IP for Arduino

i
Tank Level: 12 fr | VED Speed: 150 rpm | Valve: Closed | Pump: Step
Tank MVB: € £t | VED Speed: 150 zpm | Valve: Closed | Pump: Stop
[Medsima
Device Id:
Agdress: o101 | MODBUS Paint Type Address: [o10s | MODBUS Point Type
————— |04 INPUT REGISTER = 03: HOLDING REGISTER ~
Length: |1 Length: I:l
101: <00008> 06: <00150>
[Modsims [e@= [Modsimé S es]
Device d: | 1 Device Id: | 1
Address: o171 | MODBUS Paint Type Address: 0115 MODBUS Point Type
¢ 02: INPUT STATUS - ; 01: COIL STATUS -
Length: |1 Length: 1 |
0111 <1 ‘ 0116: <03

Figure 27.4: A new message in the serial window.

Let us change the rpm from 150 to 200. Go in the serial window as depicted in Figure 27.5
and Figure 27.6, respectively.

Tank level: 12 fr | VED Speed: 150 rpm | Valve: Closed | Pump: Stop
Tank Level: & ft | VED Speed: 150 rpm | Valve: Closed | Pump: Stop
Window Help

— =
[Modsins [=) @[] || (modsimt oo &S
Device Id: 1 Device Id:
Address: o101 | MODBUS Point Type Address: [oi06 | MODBUS Point Type
——— [0a:INPUT REGIST 1 - 03: HOLDING REGISTER =
Length: |1 Write Register | | Len
01: <0008 e |IL
Vale 200
[ZJ Modsims q Ug& Cancel = [e=]
= - — 3 Device Id: | § Auto Simudation Device 1d: | 1
%) Autoscr Nolne endng x| |3800 X Address: [T MODBUS Poi iy I MODBUS Point Type

I
. |02: INPUT STATUS - " [01: con sTATUS =l
Length: |1

Length: 1

0111 1> | 16: <0»

Lo |
Tank Level: 12 fr | VID Speed: 150 zpm | Valve: Closed | Pump: Stop
Tank Level: & ft | VFD Spesd: 150 rpm | Valve: Closed | Pump: Stop

File Connection Display Window

Tank Level: & fr | VD Speed: zni;pm | Valve: Closed | Pump: Stop Help
[Modsim) (=)ie 5] | Modsms =)
Device Id: | 1 Device Id:
Address: 0101 MODBUS Point Type Address: (0105 | MODBUS Point Type
—— |04:INPUT REGISTER v 03: HOLDING REGISTER ~
il e -
101; <00008> 0106: <00200>
[Modsims [ef@][= 7 ModSimé =1 ich k-3
Device Id; | 1 Device Id: | 1
Address: 0111 | MODBUS Point Type Address: [oi16 | MODBUS Point Type
[02: INPUT STATUS hd r 01: COIL STATUS hd
Length: 1 Length: |1
0111: <1> ‘ 16: <0

Figure 27.6: A new message in the serial window.

e 94

Chapter 27 e Testing the Modbus TCP Client Program

We will change the valve from closed to open, meaning one to zero. Valve is now open as
illustrated in Figure 27.7 and Figure 27.8, respectively.

File Connection Ormplay Window Help
[Medsimt (= @& [Clmodsma = ®=]
Device 1g: | 1 Device td; |1 |
Address: (0101 MODBUS Point Type Address: (0106 | MODBUS Point Type
- [va nPUT REGIS h 03: HOLDING REGISTER =
Length: |1 Write Coil
Addess: |111
101: <00008> ik |
®Of Con
[Modsims [Cancel | =@ =]
Device Id: | | Alio Simuaton Device Id: | 1
Address: [0111 | MODBUS Poif__— '—EE MODBUS Point Type
02: INPUT STATUS 01: COIL STATUS »|
Length: |1 Lengt: [1
0111: <1> 0116: <0>

Tank Level: 12 fr | VFD Speed: 150 rpm | Velve: Closed | Pump: Stop
Tank Level: B ft | VFD Speed: 150 rpm | Valve: Closed | Pump: Stop
Tank Level: B £c | VFD Speed: 200 rpm | Valve: Closed | Pump: Stop Window Help

Tank Level: E ftr | VFD Speed: 200 rpm | Valve: Open | Pump: Stop) — = e
ModSiml = &&= || 5 Modsime = [@) =]

Device 1d: | 1 Device 1d; |1 |
Address: o101 | MODBUS Peint Type Address: (0106 | MODBUS Point Type
|04 INPUT REGISTER = 03: HOLDING REGISTER ~
Length: (1 Length: 1|
101: <00008> 06: <00200>
() Modsims o]l ||| [Modsiert sl
Device Id: | 1 Device ld: | 1
Address: 0111 | MODBUS Point Type Address: 0116 | MODBUS Point Type
|0z INPUT STATUS - 01: COIL STATUS -
Length: 1 Length: |1
0111: <0> 0116: <0>

Figure 27.8: A new message in the serial window.

Let us change the coil status, transitioning the pump from stop to run, and there we go—
now in the run mode as shown in Figure 27.9 and Figure 27.10 respectively. Thus, we have
confirmed that our Modbus TCP server is successfully reading all four registers, including
input register, holding register, input status, and coil status. With this accomplishment, our
Modbus TCP client is now capable of interfacing with all four types of registers implemented
in the Arduino. You can then take this code and use it in your own applications. You can
read more registers, more certain types of registers. You have the core base code that you
can use.

e 95

Coding Modbus TCP/IP for Arduino

Tank Level: 12 ft | VFD Speed: 150 rpm | Valve: Closed | Pump: Stop
Tank Level: & ft | VD Speed: 150 rpm | Valve: Closed | Pump: Stop
Tank Level: § f | VFD Speed: 200 rpm | Valve: Closed | Pump: Stop
Tank Level: & ft | VED Speed: 200 rgm | Valve: Open | Pump: Stop

file Connection Dmsplay Window Help

il) Modsimt Le @[] | D Modsims EErE)
Device ld: | 1 Device 1d: | 1 |

Address: [0101 MODBUS Paint Type MODBUS Point Type

04: INPUT — : R |
e |: REGIS’ - 03: HOLDING REGISTER

01: <00008>

EeE=]

Device |d: Device ld: | 1

o MODBUS Pail MODBUS Point Type
|0z INPUT STATUS - = 01: COIL STATUS -
L) Length: 1

| 16: <0>

Tank Level: 12 ftr | VED Speed: 150 rpm | Valve: Closed | Pump: Stop
Tank Level: & fv | VFD Speed: 150 rpm | Valve: Closed | Pump: Stop
Tank Level: & fr | VFD Speed: 200 rpm | Valve: Closed | Pump: Stop
Tank Level: & fr | VD Speed: 200 rpm | Valve: Open | Pump: Stop

File_Connection Display Window _Help

Tank Level: & ft | VED Speed: 200 rpm | Valve: Open | Pump: nﬂ [Modsimt [= &[] || [Modsims lej@iz]
Device 1d: | 1 Device Id: | 1|
Address: 301 | MODBUS Paint Type addtsxy; [INT MODBUS Paint Type

04: INPUT REGISTER ud = 03: HOLDING REGISTER ~
Length: |1 :

01: <00008> 106: <00200>
(2 Modsims [a@] =] - r KB
Device |d: | 1 | Device 1d: | 1
Address: 0111 | MODBUS Point Type Address: o116 | MODBUS Point Type
: . |02: INPUT 5TATUS - 01: COIL STATUS -
Length: |1 Length: 1
0111: <0> ‘ 16: <1>

Figure 27.10: A new message in the serial window.

e 96

Chapter 28 e The TCP/IP communication between two Arduino Uno boards

Chapter 28 e The TCP/IP communication between two
Arduino Uno boards

In this section, we showcase a project thatillustrates how Arduino UNO boards can establish a
connection and communicate using the TCP/IP protocol. This project highlights the capability
of Arduino boards to communicate seamlessly over an Ethernet network. One Arduino board
is configured as a client, while the other operates as a server. The client board transmits
commands to the server board, instructing it to toggle the LED state between on and off.
The server board responds accordingly to the received commands. This project is a great
opportunity to gain experience about network communication and explore the capabilities of
Arduino boards. An overview and block diagram of the project are shown in the Figure 28.1.

SWITCH LED

Modbus TCP/IP L

Arduino #1 Ethernet Network Hub Arduino # 2

+ Ethernet Shield + Ethernet Shield

Figure 28.1: An overview and block diagram of the project.
The Arduino codes for Arduino board #1 and Arduino board #2 are as follows.

Arduino Code for Arduino #1:
#include <ezButton.h>
#include <SPI.h>
#include <Ethernet.h>
const int BUTTON_PIN 75
const int serverPort = 4080;
ezButton button(BUTTON_PIN); // create ezButton that attach to pin 7;
byte mac[] = {0x00, OxAA, OxBB, OxCC, OxDE, 0x03};
IPAddress serverAddress(192, 168, 0, 180);
EthernetClient TCPclient;
void setup() {
Serial.begin(9600) ;
button.setDebounceTime(50); // set debounce time to 50 milliseconds
Serial.println("ARDUINO #1: TCP CLIENT + A BUTTON/SWITCH");
// Initialize Ethernet Shield:
if (Ethernet.begin(mac) == 0)
Serial.println("Failed to configure Ethernet using DHCP");
// connect to TCP server (Arduino #2)
if (TCPclient.connect(serverAddress, serverPort))

e 97

Coding Modbus TCP/IP for Arduino

Serial.println("Connected to TCP server");
else
Serial.println("Failed to connect to TCP server");
}
void loop() {
button.loop(); // MUST call the loop() function first
if (!TCPclient.connected()) {
Serial.println("Connection is disconnected");
TCPclient.stop();
// reconnect to TCP server (Arduino #2)
if (TCPclient.connect(serverAddress, serverPort))
Serial.println("Reconnected to TCP server");
else
Serial.println("Failed to reconnect to TCP server");
}
if (button.isPressed()) {
TCPclient.write('1');
TCPclient.flush();
Serial.println("- The button 1is pressed, sent command: 1");
}
if (button.isReleased()) {
TCPclient.write('0');
TCPclient.flush();
Serial.println("- The button 1is released, sent command: 0");

Arduino Code for Arduino #2:
#include <SPI.h>
#include <Ethernet.h>
const int LED_PIN = 7;
const int serverPort = 4080;
byte mac[] = {0x00, OxAA, OxBB, O0xCC, OXDE, 0x02};
EthernetServer TCPserver(serverPort);
void setup() {
Serial.begin(9600);
pinMode (LED_PIN, OUTPUT);
Serial.println("ARDUINO #2: TCP SERVER + AN LED");
// Initialize Ethernet Shield:
if (Ethernet.begin(mac) == 0)
Serial.println("Failed to configure Ethernet using DHCP");
// Print your local IP address:
Serial.print("TCP Server IP address: ");
Serial.println(Ethernet.localIP());
Serial.println("-> Please update the serverAddress in Arduino #1 code");
// Listening for a TCP client (from Arduino #1)
TCPserver.begin();

e 98

Chapter 28 e The TCP/IP communication between two Arduino Uno boards

}
void loop() {
// Wait for a TCP client from Arduino #1:
EthernetClient client = TCPserver.available();
if (client) {
// Read the command from the TCP client:
char command = client.read();
Serial.print("- Received command: ");
Serial.println(command) ;
if (command == '1'")
digitalWrite(LED_PIN, HIGH); // Turn LED on
else if (command == '0'")
digitalWrite(LED_PIN, LOW); // Turn LED off

Ethernet.maintain();

In summary, the first Arduino code monitors the button state and sends commands to the
second Arduino over Ethernet. The second Arduino code listens for incoming connections
and reads the commands received, controlling the LED based on the command. The first
code uses the ezButton library and TCPclient.write() function, while the second code uses
the EthernetServer class and EthernetClient.read() function. The LED state is controlled
using the digitalWrite() function.

e 99

Coding Modbus TCP/IP for Arduino

Chapter 29 ¢ Modbus TCP/IP Temperature Control
using WinCC SCADA

Currently, the use of Arduino in supervisory control and data acquisition (SCADA) systems
has become popular for small-scale control and monitoring applications in various industries.
There are multiple approaches to implement Arduino SCADA, and one method involves
using the Modbus TCP/IP communication protocol. In this section, we will explore a liquid
temperature control system that incorporates an Arduino board connected to WinCC SCADA
via Modbus TCP/IP. In the following steps, we will guide you through the implementation
of this project, providing you with insights on how to use Modbus protocol to create an
Arduino-based SCADA system. To better understand the system, please refer to Figure
29.1, which depicts the schematic diagram.

w— WinCC SCADA
Data Communication Interface
Protocol: Modbus TCP/I
L ___\=
Ethernet shield
connected to PC
EthernetShidd via Ethernet Cable
Liguid heating plugeed inArduino L h
By wurEEss..) g Arduino UNO Supply 5V dc
Peltier Module o8 s Ll
= 5[3 ,r[E-) 12 VDC
LED O |'I
1K
Peltier Module

1K 135

Figure 29.1: The schematic diagram for this project.

In this project, we will use a heating element, specifically a Peltier module, to maintain the
temperature of a liquid. The temperature of the liquid will be kept within a range of 40 to
47 degrees Celsius. The Peltier module is attached to the bottom of a pot that contains
the liquid. To achieve this, the Peltier module will be turned on by the Arduino's digital
output when the liquid temperature falls below 40 degrees Celsius. Conversely, when the
temperature rises above around 47 degrees, the Peltier module will be turned off. This
process will continue until a stop command is received from the SCADA interface.

The LM35 temperature sensor is used to detect the temperature of the liquid, and an
additional temperature indicator is used to locally monitor the temperature. To control and
monitor this temperature control operation with the Arduino, a suitable Modbus Ethernet
shield is plugged into the Arduino Uno microcontroller. The communication between the
Arduino and the SCADA interface is established using the Modbus protocol. Two variants of
Modbus protocol are utilized: Modbus RTU protocol is used for serial network communication,

e 100

Chapter 29 ¢ Modbus TCP/IP Temperature Control using WinCC SCADA

and Modbus TCP/IP protocol is used for Ethernet network communication, as shown in
Figure 29.2.

Communication:

Modbus RTU or Modbus TCP/IP

Arduino

CADA Host
Microcontroller s e

Figure 29.2: Communication for Arduino with the SCADA interface.

This project uses the Modbus TCP/IP protocol for communication between the Arduino and
the SCADA interface. To establish this communication, an Ethernet shield is connected to
the Arduino Uno microcontroller, and an Ethernet cable is used to connect the Arduino to
the computer. The Arduino utilizes the Modbus protocol to transmit input/output data to
the SCADA interface, so it is necessary to upload the Modbus library to the Arduino board
to enable communication with the SCADA interface using the Modbus protocol.

Now, let's move on to the coding for the Arduino. If we examine the data access mechanism
between the Arduino and the SCADA interface, we can observe that Modbus TCP/IP is
used as the data communication protocol. In Modbus TCP/IP, data sharing between the
Arduino and the SCADA client occurs on a client/server model. In this setup, the Arduino
is configured as the server or slave, while the SCADA host acts as the client or master, as
shown in Figure 29.3.

Modbus Client

Ethernet Configuration Settings
IP Address: 192.168.0.15
Subnet Mask: 255.255.255.0

LWIELIGLE WinCC SCADA

Modbus TCP/IP protocol

Ethernet

Ethernet Configuration Settings
IP Address: 192.168.0.10
Subnet Mask: 255.255.255.0

Modbus Server

Figure 29.3: The client/server model in Modbus TCP/IP.

The Modbus TCP/IP protocol utilizes a standardized form of data transmission known as
an application protocol, which operates on an Ethernet physical network. It is important to
use an Ethernet crossover cable when physically connecting an Arduino to a PC. To begin,
you will need to include two libraries in the Arduino IDE. To do this, navigate to the Sketch

e 101

Coding Modbus TCP/IP for Arduino

menu, select "Include Library," and then choose "Add .zip Library" as shown in Figure
29.4. In the dialog box that appears, locate the desired library file on your desktop. There
are two library files available in zip format within this folder. You can now add these two
libraries to the Arduino IDE from the dialog box shown in Figure 29.5. These libraries can
be downloaded from online resources.

€ Arduino_Sketch | Arduino 1.6.7

File Edit Sketch Tools Help

Verify/Compile Ctrl+R
Upload Ctrl+U
Upload Using Programmer Ctrl+Shift+U

Arduing

#includ Export compiled Binary Ctrl+Alt+S
#includ
#includ Show Sketch Folder Ctrl+K pends on the Arduine
#anclud B nclude Library | a
boolean il =
- Manage Libraries...
const il Add File... 9!
Qyte mac[] = { m.ﬁﬂ:ﬂy_
O0xDE, OxAD, OxBE, OxEF, OxFE, OxED }:
IPAddress ip(192, 1€8, 0, 10); Arduino libraries

Figure 29.4: Adding zip library files.

@' Select a rip file or a folder containing the library you'd like to add

Look in: Arduing modbus lbrary

- B ArsuinoModbus-master zip
B ﬂ ArduinoRS4E5-master.zip

-
Recent Tiems

o

Figure 29.5: Adding two libraries into Arduino IDE.

If we proceed to look at the coding for Arduino, we will see that the coding has been started
with a number of library headers as shown in Figure 29.6.

e 102

Chapter 29 ¢ Modbus TCP/IP Temperature Control using WinCC SCADA

I Arduino_Sketch | Arduino 1.6.7
File Edit Sketch Tools Help

Arduino_Sketch

¢include <SPI.h>
¢include <Ethernet.h>
#include <ArduinoRS485

¢include <
oolean a
gonst int ledPin = 2;
byte mac[] = {
0xDE, OxAD, OxBE, OxEF, OxFE, OxED };

IPAddress ip(l192, 168, 0, 10);
IPAddress myDns (192, 1€8, 1, 1):
IPAddress gateway(192, 168, 0, 1)
IPAddress subnet (255, 255, 255, 0):

EthernetServer server(502):
ModbusTCPServer modbusTCPServer;
int coil;

int holdingreg;

ki 0t

Figure 29.6: The coding for Arduino.

The first two libraries enable Arduino to work with the Ethernet shield, through which
Arduino establishes a physical network with this kind of host. The other libraries implement
the Modbus protocol in the Arduino input/output data transmission mechanism. In the next
five lines of the coding, different network configuration settings for Ethernet network are
available. In configuration settings, MAC and DNS and IP address must be assigned to the
Ethernet shield. The rest are the settings you can keep optional.

The wide set of functions of this Arduino program initializes the Ethernet library with
network configuration settings, and the Arduino is starting to communicate physically with
the PC as depicted in Figure 29.7. As well as the physical network being established, the
Modbus TCP server also initiated and becomes ready to connect with any SCADA program
as a client. In the Modbus communication protocol, the data transfer functions offer some
new registers to configure, monitor, and control the Arduino input/output devices from
SCADA interface as illustrated in Figure 29.8. Modbus devices usually have a register map
to register data. The Modbus data model has four basic data types, discrete inputs, coils,
input registers and holding registers, as shown in Figure 29.9.

e 103

Coding Modbus TCP/IP for Arduino

@ Arduino_Sketch | Arduino 1.6.7
File Edit Sketch Tools Help

Arduino_Sketch

void setup() {
pinMode (ledPin, OUTPUT):;
Ethernet.begin(mac, ip, myDns, gateway, subnet);

Serial.begin(%9600);
while (!'Serial) {
; // wait for serial port to connect. Needed for native USB port only

// Check for Ethernet hardware present
if (Ethernet.hardwareStatus() == EthernetNoHardware) {
Serial.println("Ethernet shield was not found. Sorry, can't run without hardware. :(");
while (true) {
delay(l); // do nothing, no point running without Ethernet hardware
}
}
if (Ethernet.linkStatus() = LinkOFF) {
Serial.println(“Ethernet cable is not connected.”

Figure 29.7: Ethernet library initialization with network configuration settings.

if (Ethernet.linkStatus() == LinkOFF) {
Serial.println("Ethernet cable is not co

}

// start listening for clients
server.be 0:
Serial. {"Modbus server address:”);
Serial.pr 1n (Ethernet. B()):
// start the Modbus ICP server
if ('modbusICPServer.bsgin()) {
Serial.println("Failed to start Modbus TCP Server!"):
while (1);
}
// configure a single coil at address 0x00
coil = modbusTCPServer.c 0, 10: T
holdingreg = modbusTCPServer. Hold
Serial.print("Coil initialization Res

Serial.print(coil):

Serial.print{"\n");

Serial.print("Holding register initialization Result = ");
Serial.print (holdingreg):

Serial.print(*\n%);

void loop() {
// wait for a mew client:

tClient client = server.available{):

Figure 29.8: Configuration of Arduino monitoring and control.

e 104

Chapter 29 ¢ Modbus TCP/IP Temperature Control using WinCC SCADA

Object type Access Size | Address Range

provided by an 1/O system

provided by an I/O system

Figure 29.9: Basic data types of the Modbus data model.

We have created holding registers in the Arduino program to store temperature sensor
values and coil registers to store digital output data. In the void loop function, the actual
operational functionality of the Arduino is implemented. This function sends data to a SCADA
client for real-time temperature control monitoring and control. The void loop function also
includes the "updateControl" function, which is responsible for the desired temperature
control operation. This function uses one holding register address to transfer temperature
sensor data and two coil register addresses to read from address 1 and write Arduino digital
output to address 0, as shown in Figure 29.10 and Figure 29.11. The complete Arduino
sketch code for this project is given below.

void loop() {
// wait for a new client:
EthernetClient client = server.available():

// vwhen the client sends the first byte, say hello:
if (client) {

// a new client connected

Serial.println("new client®);

// let the Modbus TCP accept the connection

modbusTCPServer.accept (client);
while (client.connected()) {
é // poll for Modbus TCP requests, while client connected
> modbusTCPServer.poll():
updateControl():
}
Serial.println("client discon

}
}

void updateControl() {
int sensor =
modbusTCPSexver.hc
int ¢ = modbusICPServer. ad (1):
if (el

Figure 29.10: The void loop function.

e 105

Coding Modbus TCP/IP for Arduino

oid updateControl() {

int sensor = a (RO):
modbusICPServer.! irice (0x00, sensor):
int ¢ = modbusTCPServer.c i (1);
if (e} |
if (sensor>=100 && a==LOW)//if temperature rises above arounf 47 degree
{
te (ledPin, LOW) ; //Turn off heater
modbusTCPServer.coillrite (0x00, 0);

}

else if(sensor<=80 && b==LOW)//if

digitalWrite (ledPin, LOW);
modbusTCPServer.coilWrice (0x00, 0);
a=HIGH:

b=L0W:

Figure 29.11: The updateControl function.

#include <SPI.h>
#include <Ethernet.h>
#include <ArduinoRS485.h> // ArduinoModbus depends on the ArduinoRS485 library
#include <ArduinoModbus.h>
boolean a=HIGH,b=LOW;
const int ledPin = 2;
byte mac[] = {
OxDE, OXAD, OxBE, OXEF, OXFE, OXED };
IPAddress ip(192, 168, 0, 10);
IPAddress myDns(192, 168, 1, 1);
IPAddress gateway (192, 168, 0, 1);
IPAddress subnet(255, 255, 255, 0);
EthernetServer server(502);
ModbusTCPServer modbusTCPServer;
int coil;
int holdingreg;
void setup() {
pinMode (ledPin, OUTPUT);
Ethernet.begin(mac, ip, myDns, gateway, subnet);
Serial.begin(9600);
while (!Serial) {
5 // wait for serial port to connect. Needed for native USB port only

}
// Check for Ethernet hardware present
if (Ethernet.hardwareStatus() == EthernetNoHardware) {

Serial.println("Ethernet shield was not found. Sorry, can't run without

hardware. :(");

e 106

Chapter 29 e Modbus TCP/IP Temperature Control using WinCC SCADA

}

while (true) {
delay(1); // do nothing, no point running without Ethernet hardware
}
}
if (Ethernet.linkStatus() == LinkOFF) {
Serial.println("Ethernet cable is not connected.");
}
// start listening for clients
server.begin();
Serial.print("Modbus server address:");
Serial.println(Ethernet.localIP());
// start the Modbus TCP server
if (!modbusTCPServer.begin()) {
Serial.println("Failed to start Modbus TCP Server!");
while (1);
}
// configure a single coil at address 0x00
coil = modbusTCPServer.configureCoils(0, 10);
holdingreg = modbusTCPServer.configureHoldingRegisters(0, 10);
Serial.print("Coil initialization Result = ");
Serial.print(coil);
Serial.print("\n");
Serial.print("Holding register initialization Result = ");
Serial.print(holdingreg);
Serial.print("\n");

void loop() {

// wait for a new client:
EthernetClient client = server.available();
// when the client sends the first byte, say hello:
if (client) {
// a new client connected
Serial.println("new client");
// let the Modbus TCP accept the connection
modbusTCPServer.accept(client);
while (client.connected()) {
// poll for Modbus TCP requests, while client connected
modbusTCPServer.poll();
updateControl();
}
Serial.println("client disconnected");
}
}

void updateControl() {

int sensor = analogRead(A0);
modbusTCPServer.holdingRegisterWrite(0x00, sensor);

e 107

Coding Modbus TCP/IP for Arduino

int ¢ = modbusTCPServer.coilRead (1);

if (c){
if(sensor>=100 && a==LOW)//if temperature rises above around 47 degrees
{
digitalWrite(ledPin,LOW);//Turn off heater
a=HIGH;
b=LOW;
modbusTCPServer.coilWrite(0Ox00, 0);
}
else if(sensor<=80 && b==LOW)//if temperature 1is under 40 degrees
{
digitalWrite(ledPin,HIGH);//Turn on heater
a=LowW;
b=HIGH;
modbusTCPServer.coilWrite(Ox00, 1);
}
}
else
{

digitalWrite(ledPin,LOW);
modbusTCPServer.coilWrite(0x00, 0);
a=HIGH;

b=LOW;

}

}

To create PC-based visualization for monitoring and controlling a liquid temperature control
system, a SCADA project has been created using WinCC SCADA, which is integrated in TIA
Portal software. WinCC SCADA supports interfacing Modbus TCP/IP data from any Modbus
device. Already, a complete SCADA project has been created using TIA Portal software, and
in the next section, we will describe how to create it step by step. You can download the TIA
Portal software from the Google Drive link provided on the following webpage:

https://plc247.com/download-tia-portal-v16-full-googledrive

We will now provide a brief overview of this project. By clicking on the project view, we can
open the project. If we examine the data interface technique used between Arduino and
WinCC SCADA, we will notice that the WinCC SCADA project uses variables to obtain input/
output values from Arduino. These variables are referred to as text in the WinCC SCADA
environment. To transmit data from Arduino to WinCC SCADA using this text, a connection
must be established in the WinCC project. This connection requires the configuration of
Modbus TCP/IP communication settings. Therefore, two steps must be taken to configure
the communication settings in this SCADA project. The first step involves creating and
configuring a connection, while the second step involves creating and configuring multiple
tags. To access the navigation menu on the left side, double click on "Connections", as
displayed in Figure 29.12.

e 108

Chapter 29 ¢ Modbus TCP/IP Temperature Control using WinCC SCADA

Project Edit View Insert Online Options
x

4 Y soveprojec & X 1= T3

Devices

(e

w |1 Project2
B Add newdence
th Devices & networks
w [PCSystem_1 [SIMATIC PC stat__
Y Device cenfiguration
% Online & disgnestics
= ~ (23 HMI_RT_1 [WinCC RT Advan._
Y Device confguration
¥ Runtime sewings
» [Screens
» [§ Screen management
» L MM tags

N

A HM alarms

Figure 29.12: Double clicking on "Connections".

On the right side, you will see that a connection for Arduino Uno has already been created
with the required configuration. Here the configuration for connection has been made on
some settings, as depicted in Figure 29.13. Primarily, select the communication driver,
which is Modbus TCP/IP. At the bottom, to make settings for connection parameters, you
have to fill up field for CPU type, IP address for Arduino controller and the port address. The
IP address and port address you have to provide there depend on the network configuration
settings for Arduino, which we provided in the Arduino sketch as illustrated inside the red
rectangle in Figure 29.13.

2 Arduino UNO Modicon Modbus TCP... [+]
<Add new>

<] n

Parameter | Area pointer

SIMATIC PC station - WinCC RT Advanced Station
WinCC Interface:
' byte mac[] = {

0xDE, OxAD, OxBE, OxEF, OxFE, OxED }:
IPAddress ip(192, 1é8, 0, 10):
IPAddress myDns (152, 1€8, 1, 1):
IPAddress gateway(192, 168, 0, 1);
IPAddress subnet(255, 255, 255, 0): ROrtiy] 502
Server: 1192.168.0.10

CPURype: | Concept ProWORX: Compact. Quantum, Momentum F‘

EthernetServer server(502);

Remote slave address: 255
ModbusTCPServer modbusTCPServer;

Change wiord order: 0
Use single write:

Figure 29.13: Setting the connections parameters.

Now, look for the created tags and their configuration settings. To get these created tags,
double click on "Show all tags" under HMI tags as shown in Figure 29.14.

e 109

Coding Modbus TCP/IP for Arduino

int sensor = analogRead (AD):

int ¢ = modbusTCPServer.colliiesd (1)7
iz (e

£8 WeeLOW) /718
1
digitaldeite (1eaPin, LOW) ://Tusn off heater
amsIGH;

else if(sensor<=00 &s b==LOW)//if Temperature is under 40 degress
{

digitalWsite (ledPin, BIGH) ;//Turn oa heater

a=LO;

Figure 29.15: The coil register addresses for first two tags.

e 110

Chapter 29 ¢ Modbus TCP/IP Temperature Control using WinCC SCADA

e g
HM tags
Neme a ection PLC name PLCtag Address
& control no UNO [w] <Undefined> [l 02
@ heater no UNO <Undefined> Ox1
@ temp_int no UNO <Undefined> 4x400001
‘a temp_real maltag> S b
<Add new>
degr
(<] [
Discrete alarms | Analogalarms | Loggin i
D Name Alarm text e.. Trigger ady
Ty BodbusTCRServes. coi isi e (3800, 1)3
¥

Figure 29.16: The holding register addresses for temperature data.

A few newly created tags have appeared on the right side. If we go for tags configuration,
on important settings, we must set addresses for these tags on data communication
between the Arduino and SCADA. Those are our Modbus addresses and are used as source
for the Arduino input/output data, which have been created in Arduino sketch. The SCADA
project gets the required data from these Modbus addresses using these tags. So, you must
show these Modbus addresses when you create and configure tags. The addresses for the
first two tags are coil registers for handling digital input/output data. The address for next
tag is for the holding register, which contains the temperature data as depicted in Figure
29.15 and Figure 29.16, respectively. Now, go to the user interface that has been created
to visualize the temperature control system as illustrated in Figure 29.17.

Project tree
: Devices
;a EEEIEEEY
Il N HM tags
=) Project2 A Hame a ection
W Add new device @ contrel no UNO |l
gh Devices & newvorks @ heater ne UNO
* L PCSymtem_ 1 [SIMANC PC stat a temp_int no UNO
Y Device configuration = <@ temp_real mal tag>
i % Online & disgnostics <Add new>
= = (21 HMILRT_1 [WinCC RT Advan...
—| Y Device configuration
Y Runtime zemings &l
i = screens |
| i B Add new screen li] [
| _] Tempersture Control || Discrete alarms | Analog alarms | Log
b+) Screen Wanagement

Figure 29.17: Visualizing the temperature control system.
Some functional graphical options have been created in this user interface. Through this

we can start or restart the system, monitor the functional status real time, and look at the
temperature value as shown in Figure 29.18.

o111

Coding Modbus TCP/IP for Arduino

Figure 29.18: Functional graphical options in the user interface.

To make these objects functional, the created tags have been assigned to or linked to these
functional objects. When you finish creating your user interface with required graphical
options, and connect these objects with those tags, then it will be ready to run the user
interface. In this section, we have tried to explain the configuration technique for the
SCADA project. If you need this SCADA project, it will be described in detail in the next
section. Now, it is the time to run it. When this SCADA project will be running on the PC,
you will observe a functional process for temperature control in real time from that SCADA
interface. To run this SCADA project, click on the "Run" icon as shown in Figure 29.19. By
clicking on the start button the heater is on as depicted in Figure 29.20.

AAAL"E

Project tree

Figure 29.20: Clicking on "Start" button to make the heater on.

We hope this section will help you understand what the Modbus TCP/IP protocol is, how this
communication protocol works, and how it can be applied to Arduino Uno microcontroller to
build an Arduino-based SCADA system.

o112

Chapter 30 e Creating SCADA Project with WinCC

Chapter 30 e Creating SCADA Project with WinCC

WinCC is a supervisory control and data acquisition (SCADA) system developed by Siemens.
It is used for monitoring and controlling industrial processes in various industries, such as
manufacturing, energy, and pharmaceuticals. WinCC facilitates real-time data acquisition,
visualization, and data analysis for plant operations. The software allows operators to
monitor processes, make adjustments, and receive alarms and notifications. It also offers
features like historical data logging, trend analysis, and reporting. You can download the
TIA Portal software from the Google Drive link provided on the following webpage:

https://plc247.com/download-tia-portal-v16-full-googledrive
WinCC is highly customizable and scalable, enabling it to handle both small and large

industrial systems. To begin creating a SCADA project with WinCC we click on the TIA Portal
software and run it as administrator as shown in Figure 30.1.

Open
Open file location
' Run as adminigtrator

B Share with Sky

(i Sean with ByteFence Anti-Malware...
Troubleshoot compatibility
Pin to Start

Figure 30.1: Running TIA Portal as administrator.

We create a new project and name it Temp_SCADA as shown in the Figure 30.2

Create new project

Project name: | Temp_SCADA
Path: | ClUsersIMD. NASIM UL GANIDGCUments hutomaton

Version: [V15
Author: |
Comment: =l

Figure 30.2: Creating a new project.

To begin, we open the window and proceed to select the project view. Within the Devices
tab, we choose to add a new device. From the options available, we specifically select the
PC systems icon and then the SIMATIC HMI application. From there, we choose the "WinCC
RT Advanced" option and confirm our selection by clicking the "OK" button, as shown in
Figure 30.3.

e 113

Coding Modbus TCP/IP for Arduino

(4 ™ O saveproject 3

Project Edit View Insert Online Options Too
¥ 15 Tz x =) | Devicename:

Devices

=]

= |] Temp_SCADA
I Add new device
o Devices & networks
3 H Ungrouped devices
» big Securitysenings
» g commen dats
» [Decumentation settings
» @ Languages & resources
» [Online access
» 1 Card ReaderiUSE memory

v | Detals view

Hame

Add new device

|PCSyatem 1

PC tystems

[Open device view

w W PCsystems
» [PCgeneral
» [Industrial PC:
» [l SIMATIC 57 Open Controller
» [SiMATIC 57 Embedded Controlier
» [SINUNERSK operater components
» [l SIMATIC Controller Application
= [SIMATIC HM application

RT Profeszicnal
B wincc client
¥ [3 User spplications

Device: - Wincc
WinCC RT Advenced
Article ne.: BAV2 104-Dm00e- 1000
Version: (15000 I=]
Description:

Runtime softwa re for PCbased visualizotion
{requires WinCC Runtime Advanced)

== =

Figure 30.3: Adding "WinCC RT Advanced" icon.

Then, as you see in Figure 30.4 we add the "IE general" in the "SIMATIC PC station" slot.

Temp_SCADA » PC-System_1 [SIMATIC PC station]

SIMATIC PC station

it [Posystem 1 [simanc resede] g B @ 5| j| RS

[e Topology view ﬂé Network view |||'f Device view Options
—a J Device overview |_ d
2L 99 Modute ~ | Catalog
= MR al[Searchs
~ IEgeneral_) [Filer | <Al
» PROFINE e
» (@ PC general

» [SIMATIC Conrolier Ap...
» {54 SIMATIC HM applica...
» 8 user applications
= [Communications mo.
= [PROFINETEthernet
» € 1604
» g CP 1612 (A2)
» g crrs1z (A7)
» [CF 1616 onboard
» i CP 1616
» hw cP 1623
» g cris28
T IE general
» [y PROFIBUS

Figure 30.4: Adding the IE general in the SIMATIC PC station slot.

Within the HMI_RT_1 section located on the left side; we proceed to select the "Connections"
icon. In the corresponding "Connections" window located on the right side, we proceed to
choose the option under the "Name" tab and specify the "Communication driver" as Modicon
Modbus TCP. For the "Parameter" tab, we specify the "CPU type" as Concept or ProWORX,
the "Port" as 502, the "Server" as 192.168.0.10, and the "Remote slave address" as 1. This

configuration is shown in Figure 30.5.

e 114

Chapter 30 e Creating SCADA Project with WinCC

Project tree

-
S
=
=
E
o
=

Figure 30.5: Setting the "Connections" icon.

In the project tree on the left side, we select the "Show all tags" option under HMI tags.
Then, within the HMI tags window, we click on the option located under the "Name" section,
as shown in Figure 30.6.

3 Y swepropert @ X T2 X 08 3 3 5 coonine B % e (et o proece |
SCADA PC-Syst 105 PC st b HMI_RT_1 [Wir ance At

Project tree

Visualization

b (g Sereen mansgement
~ g HM tags

Figure 30.6: Opening the "HMI tags" window.

Next, we incorporate a fresh tag labeled "temp_int" and configure its parameters in
alignment with the depiction provided in Figure 30.7.

e 115

Coding Modbus TCP/IP for Arduino

Temp_SCADA » PC-System_1 [SIMATIC PC station] » HMI_RT_1 [WinCC RT Advanced] » HM tags

ZpHMtags |35Systemtags || Options
#F P = <
HM tags v |Find and replace
Hame o Tag table Date type Connection PLC name ~
& temp_int Default tag table = int [Z[antemel tag> EIm] Find:
<Add new> =
w [PCSyztem_1 [SIMATIC |
w [HM_RT_1 [WinCC RT | 7’*5 —
%, Connecsions nt e
e
(<] = < " 3]
: _ e x|
Discrete alarms Analog alarms | Logging tags |

Figure 30.7: Setting the tag "temp_int" parameters.

In Figure 30.8, we assign the address 4x400001 to the tag "temp_int".

Temp_SCADA » PC-System_1 [SIMATIC PC station] » HMI_RT_1 [WinCC RT Advanced] » HM tags
‘% HM tags ||i. System tags Options
#2E% =]
HM tags ~ | Find and repla
Hame o PLC name PLC 1ag Address ALe..
@ temp_int - ndefine [3300001 Tw] <ab, Find
<Add news
oprand ope: KEH -
Address: 400001
File number:
I3 I ;| lam

Figure 30.8: Setting the tag "temp_int" address.

Temp_SCADA » PC-System_1 [SIMATIC PC station] » HMI_RT_1 [WinCC RT Advanced] » HM tags
‘ﬁ'. HM tags ":" System tags Options
#F2x3 =4
HMI tags ~ |Find ang
Name o 855 mode Acquisition cycle Logged Source comment Com...
aa temp_int ssolute access> 18 2.1 Find
<Add new= = =
[PCSystem_1 [SIMATIC . [)
w |5 HM_RT_1 [MWinCCRT .. — E -
*ycycles Hame Cycletime Cycle unit i
None Al
LT R tlisec.. [|
] ms isec.. (=
M 500 500 hAll
[s 1 Second
3 Mm 2= 2 Second
— e B ss 5 second
J Discrete alarms Analog alarms | Logging tags M 0: 10 Second
[1 min 1 Minute
D Neme Alarm text 1
|| m 5 min 5 Minute [V}
o o i 5] (4] iG]
B Add new ’%[?

Figure 30.9: Setting the "Acquisition cycle".

In Figure 30.9, we adjust the acquisition cycle parameter to 100 ms. The acquisition cycle
refers to the frequency at which data from a specific tag is obtained or refreshed by the
WinCC system. It determines how often the values related to WinCC tags are retrieved
from the underlying data source, such as a PLC or database. Each WinCC tag can have its
own acquisition cycle configuration, enabling users to specify how frequently the values are

e 116

Chapter 30 e Creating SCADA Project with WinCC

updated. This ensures that the data displayed and logged in WinCC is accurate and current.
The acquisition cycle can be specified in milliseconds, seconds, or minutes, depending on
the application requirements. As shown in Figure 30.10, we create a new tag called "heater"
and specify its "Data type" as Bit.

Temp_SCADA » PC-System_1 [SIMATIC PC station] » HMI_RT_1 [WinCC RT Advanced] » HM tags

HM tags (35 System tags |
AL P
HMI tags
Nemé o Taq table Dats type Connection PLC name
- temp_int Default tag table +-1nt Connection_1
- heater Default tag table [:\ 5| Connection_1]
<Add news> +~Double
+lInt
16 bit group
AsCH
Bit
Dou[ae
r Float -
(<] L e L 12

Figure 30.10: Defining a new tag called heater.

In Figure 30.11, we assign the address 0x1 to the tag "heater".

Temp_SCADA » PC-System_1 [SIMATIC PC station] * HMI_RT_1 [WinCC RT Advanced] » HM tags

|$ HMI tags ” 3m System tags Optig
F 235 =
HMI tags ~ Fi
Name o ne PLC tag Address Access mode
- temp_int Undefined £x400001 <abielute access> Find
€ heater Undefined [i2] £x400002.1 ~ | absolute acceszs
<Add new>
Operand ype: 1 -

Address: 1|
stnomber. |
File number: ||
[« _

J Discrete alarms [Analog alarms || Logging tags | @
Figure 30.11: Setting the tag "heater" address.

Once again, we establish the acquisition cycle parameter as 100 ms, as illustrated in Figure
30.12.

Temp_SCADA » PC-System_1 [SIMATIC PC station] » HMI_RT_1 [WinCC RT Advanced] » HM tags

DS
HMI tags
Heme a Accass mede Acquisition cycle Logged Source comment
- temp_int <absolute access> 100 ms
<& heater T absolute sccesss i
<Add news

Figure 30.12: Setting the "Acquisition cycle".

o117

Coding Modbus TCP/IP for Arduino

Another tag called "control" is included, which has identical parameters as the "heater" tag,
but with a distinct address. In this scenario, the address is designated as 0x2, as depicted
in Figure 30.13 and Figure 30.14 correspondingly.

Temp_SCADA » PC-System_1 [SIMATIC PC station] » HMI_RT_1 [WinCC RT Advanced] » HM tags

WMoy Eaimtenne.]
2 =

HMI tags

Hame a Tag able Deats type Connection PLC name
- temp_int Defaulttag table += It Connection_1
£ heater Default tag table Bit Connection_1
< control Default tag table E_‘ Bit |i Connection_1 :

<Add news

Figure 30.13: Setting the new tag "Data type".

Temp_SCADA » PCSystem_1 [SIMATIC PC station] * HMI_RT_1 [WinCC RT Advanced] » HM tags

|$ HMItags |3y System tags
FR2ED =

HM tags

Hame Address Access mode Acquisition cycle |Logged Source comm...
- temp_int 4x400001 <absolute access> 100 ms
$7] heater L] <absolute access> 100 ms
€ control =l 02 [+] <absolute access>

<Add new> ==

Figure 30.14: Setting the new tag "Address" and "Acquisition cycle".

In WIinCC, users can use the internal tag connection feature to set up a connection between
different tags within the project. By enabling communication and data exchange between
these tags, the flow of information is made easier. The internal tag connection functionality
in WIinCC offers several applications, such as connecting process tags to display tags,
linking internal memory tags to process tags, or connecting a script tag to a user interface
tag. By setting up internal tag connections, users can develop a dynamic and interactive
HMI system, allowing for the visualization and manipulation of real-time data in real-time
operations. To illustrate, a new tag named "temp_real" with a data type of "Float" is created,
and its connection is adjusted following Figure 30.15 and Figure 30.16.

Temp_SCADA » PC-System_1 [SIMATIC PC station] * HMI_RT_1 [WinCC RT Advanced] » HM tags

|E¢" HM tags (35 System tags
F 22 =1

HMI tags

Nermne o Tag table Dets type Connection PLC name
&l temp_int Defaulttag table +-Imt Connection_1
L] heater Default tag table Bit Connection_1
€ control Default tag table Bit Connecton_1
< ternp_real Default tag 1able F‘ Connection_1 'T

<Add new=

Figure 30.15: Setting the new tag "Data type" as Float.

e 118

Chapter 30 e Creating SCADA Project with WinCC

station] * HMI_RT_1 [WinCC RT Advanced] * HM tags

[saHM tags |za System tags

2 =
HM tags

. Name o ‘type Connection |PLC name [PLCteg b
@ tempint 2t Connection_1 ndefined>
@ heater Connection_1 Undefined> 2
@ control Connection_1 <Undefined>

| @ temp_real t) | Connection_1 - dindefined>
| <Add news a
| v [PC-5ystem_1 [SIMATIC .. W
| LTI =
| 2, Connections

s=t|

|

| Discrete alarms | Analogalarms || Legging u!
D Neme Ao |
| <Add news

Figure 30.16: Setting the new tag "Connection" as <internal tag>.

The screens in WinCC can incorporate various elements, including buttons, text fields,
data tables, trend charts, alarms, and other visualization objects. These screens can
be customized and configured to display real-time data from the industrial automation
system that is connected to, thereby allowing operators to effectively monitor and control
processes. WinCC offers a robust screen editor that enables users to design and create
screens with ease, using a drag-and-drop interface. These screens can be organized
hierarchically and interconnected to establish a structured navigation system, enabling
users to access different parts of the HMI system. Additionally, the screens can be designed
to accommodate different languages and provide a user-friendly interface for operators
to interact with the system. To create a new screen named "Temperature Control", we
navigate to the Screens icon in the project tree and select the "Add new screen" option.
Then, from the right-side "Elements" section, we choose a button, as shown in Figure
30.17.

PC-System_1 [SIMATIC PC station] »

= [PCSystem_1 [SIMATICFCs...

BY Device configuration

% Online & diagnostics

(23 HMIRT_1 [WinCC RT Adv...
Y Device configuration
¥ Runtime settings

~ 5 Screens
W Add new screen
] Contral |

» [Screen management
~ g HMage
% Showsll tags
[Add new tag table
'3 Default tag table [5]
%2 Connections

Figure 30.17: Selecting a text box from "Elements" section.

First, we perform the action of copying and pasting, and then we include a new button
and change the names of these buttons to "Stat" and "Stop." Next, from the Basic objects
section, we select the circle object, as showed in Figure 30.18. Afterward, we place two
circle objects next to the inserted buttons and include a text object on the screen, as
depicted in Figure 30.19.

e 119

Coding Modbus TCP/IP for Arduino

Y Device configuration
4§ Funtime setings

S

» [} Screen management
~ L@ HMags
% Showsll ags
I Add new tag table
5 Defaultiag wble [5]
*2, Connectiens
I3 rine alarms

Y evice canfiguration
¥ Runtime setings
~ [E Sereens.

I Add newscreer
] Temperature Contl |

Figure 30.19: Added two circles objects.

Figure 30.18: Adding elements and objects to the "Temperature Control" screen.

In Figure 30.20, we depict the addition of three text objects and their renaming as "System

Status," "System Running," and "System Stop."

Figure 30.20: Added two text objects.

Following the same process as before, we include two circles and two text elements and
give them the names "Heater ON" and "Heater OFF" as indicated in Figure 30.21. Then, as
depicted in Figure 30.21, we select the display number element and place it on the screen.
Additionally, we locate a text object in close proximity to the display number and label it as

"Liquid Temperature" as seen in Figure 30.22.

e 120

Chapter 30 e Creating SCADA Project with WinCC

2 PCSystem_1 [SIMATCRCs...
B Device configuration

' Online & diagnoztic:
= [HMLRT_1 [WiInCCRTAd..
¥ Device configuration
¥ Runtime semtings
~ [Screens.
[Add newscreen

Screenmanagement
g ang:

% Showall tags

I Add new tag table

% Default tag table [5]

* (23 HMIRT_1 [WinCCRTAdv..
Y evice configuration
¥ Runtime setings
~ [Screens.
I Add new screen
e

+ 1) Screen management
= G HMugs

% Showelltegs

I Add new tag table
154 Default tag table [5]

To perform the desired action, proceed by right-clicking on the "Start" button and choosing
"Properties." Then, navigate to the "Events" tab and select the "Click" option. From there,
locate the SetBit function in the right window and opt for the "control" tag for the Tag(input/
output) option as shown in Figure 30.23.

-..SCADA » PCSystem_1 [SIMATIC PC station] » HMI_RT_1 [WinCC RT Advanced] } Screens + Temperature Control = i M X | Toolbox

fshoma [3) 155 B f U S A2 2 Az s g

=R

Figure 30.23: Choosing the "control" tag for the Tag(input/output) option.

e 121

Coding Modbus TCP/IP for Arduino

In this case, we follow the same steps as we did for the "Start" button when dealing with
the "Stop" button. However, we choose the "ResetBit", as shown in Figure 30.24.

...SCADA +» PCSystem_1 [SIMATIC PC station] » HMI_RT_1 [WinCC RT Advanced] ¢ Screens ¢ Temperature Control — i @ X Toolbox

[(3[BT USA:E: Arbegds St —2 PsAz Sallsms F15: 0

Stop

[n00nnnn

Figure 30.25: Dynamizing colors and flashing for circle object.

To activate the dynamic colors and flashing of the "System Running" circle object, we
need to click on it and navigate to the "Animations" tab. In the "Animation types" section,
we select the "Dynamize colors and flashing" option, as shown in Figure 30.25. In the
newly opened "Appearance" window, we specify the tag name as "control" and the type as

e 122

Chapter 30 e Creating SCADA Project with WinCC

"Range". Afterwards, we fill the Ranges 0 and 1 with the corresponding black and red colors
for the "Background" colors, as illustrated in Figure 30.26.

[([[[]BIUSA:E: Arps s St—2 BsAs sl 12 @

Stop

[nonnnon |
e

Circle_1 [Circle]

[
[§ =il 2s5.0.0 [~J2¢.28.45 [¥] Mo [=1 Activige |V

Figure 30.26: Filling "Background" colors for Ranges.

The process of dynamizing colors and flashing for the "System Stop" circle object is carried
out in the same way as for other objects. However, in this case, we fill Ranges 0 and 1 with
red and black colors, respectively for the corresponding "Background" colors, as shown in
Figure 30.27. Similarly, for the "Heater ON" circle object, we follow the same procedures

as for the "System Running" circle object, but distinguishably, we choose the tag name as
"heater", as showed in Figure 30.28.

e 123

Coding Modbus TCP/IP for Arduino

—: P Srhlros PR

[n0oonon |

[Ja[[-)BIUSA:E: Asheds St—2 B:Ar Bl 123

Stop

Figure 30.28: Filling "Background" colors for Ranges.

e 124

Chapter 30 e Creating SCADA Project with WinCC

We follow the same steps for making the colors dynamic and flashing for the "Heater OFF"
circle object, similar to what we did for the "System Stop" circle object. The only difference
is that in this case, we choose the tag name as "heater", as shown in Figure 30.29.

Stop

Figure 30.30: The "Liquid Temperature" tag connection.

e 125

Coding Modbus TCP/IP for Arduino

First, we click on the "Liquid Temperature" display element. Next, we go to the "Animations"
tab and choose "Add new animation" in the "Animation types" window. In the "Tag
connections" section, we select "Connect tag to property" following the steps shown in
Figure 30.30. Then, we open the "Add tag connection" window and choose the "Process
value" option, as shown in Figure 30.31.

Add tag connection

- SCADA » PCSystem_1 [SIMATIC PC station] » HMI_RT_1 [WinCCRT Advanced] * Screens ¢ Temperature Control -

Stop

Figure 30.32: Selecting "temp_real" as Process Tag.

e 126

Chapter 30 e Creating SCADA Project with WinCC

Next, we select "temp_real" as the Process Tag and then continue to click on the "Edit"
button, as indicated in Figure 30.32, to open the "temp_real" window. Within the "Events"
tab, we choose to click on the "LinearScaling" option. In the "Y(Output)" row, we designate
the "temp_real" tag. For the "a" row, we input a value of 0.488. In the "X" row, we select
the "temp_int" tag and assign a value of zero in the "b" row. Finally, we confirm our
selections by clicking on the "OK" button, as displayed in Figure 30.33. It is important to
note that the LinearScaling function uses the linear equation Y = (aX) + b to assign a
value to the Y tag, which is determined by the value of the X tag provided.

temp_real [HMI Tag] IR

b
<Add functions

|

T

Properties | Events] Texts |
L1 TBE X
& Value change
On exceeding * LinearScaling
On falling below Y (Output) temp_real
. 0488
X |temp_int [=]..)

o

| -0&_’ | cancel

Figure 30.33: Setting the

"LinearScaling" parameters.

e 127

Coding Modbus TCP/IP for Arduino

fahome [5)[157] B I U SA:tE: Arpsds St —2 B A Sl T2

e —

1O fleld_1 [VO field]

~|
oo e —5—— @
[Properties | info_i| % Diagnostics | -1

Figure 30.34: Setting the Format pattern of "Liquid Temperature”.

Afterward, input the value 999.99 into the "Format pattern" field in the "Properties" tab, as

shown in Figure 30.34. Finally, include a text object and change its name to "Heater Status"
before saving the project, as showed in Figure 30.35.

earch in project> |l
s r

» en management
» g M tags
"2 Connections

Figure 30.35: Adding a text object and saving the project.

e 128

Chapter 31 e The Ethernet and Blynk Project

Chapter 31 e The Ethernet and Blynk Project

The Ethernet Shield W5100 will be used in this project for controlling the display and
enabling the turning of LED lights on and off from any location. Additionally, it will connect
to the internet using the Blynk app, which simplifies the process of connecting our devices
to the internet. Based on the Arduino UNO + Blynk project, LED lights can now be controlled
remotely through the internet. To address this issue, we will incorporate an Ethernet Shield
W5100. The current setup enables the Arduino to set up a connection with the outside world
through the internet. Refer to Figure 31.1 for a visual representation of the connection
between the Arduino, Ethernet Shield, and Internet.

tﬁ Internet

—

Arduino + Ethernet Shield

PC
/ Router t " oy o
Hub
Servidor Web

Cliente Web
Figure 31.1: The connection between Arduino, Ethernet Shield, and Internet.

The IoT, also known as the Internet of Things, refers to a technology where devices and
appliances are connected through the internet network. This concept has generated
significant interest and is the subject of ongoing discussions. There is a continuous stream
of new hardware advancements, standard announcements, and the introduction of new
services and tools. One intriguing service in this domain is Blynk, as represented in Figure
31.2. You can download the Blynk mobile app for iOS and Android systems from the link
provided on the following webpage:

https://docs.blynk.io/en/downloads/blynk-apps-for-ios-and-android

Figure 31.2: The Blynk app.

e 129

Coding Modbus TCP/IP for Arduino

The Blynk Application is a mobile program used to control or display data connected to
microcontrollers (such as Arduino, ESP8266, Raspberry Pi) and can also be controlled
remotely.

It can be connected to the Internet. The hardware used in this project is as follows:

e Arduino UNO R3 - Made in Italy.
Ethernet Shield W5100.

e 1 Channel DC 5V Relay Module.

e DC 5V 2 A Power Supply Adapter
LED Lamp + Power Supply

Assemble the Ethernet Shield, W5100, on the Arduino Uno and connect it to a single relay
module, as shown in Figure 31.3.

Figure 31.3: Connecting the Ethernet Shield to a single relay module.

Afterwards, launch the Blynk app and choose the option "Create New Account", as shown
in Figure 31.4.

e 130

Chapter 31 e The Ethernet and Blynk Project

¥3C4d m 0817

Figure 31.4: Selecting "Create New Account" in the Blynk application.

Fill in your email and password, and then click on the "Sign-Up" button, as shown in Figure
31.5.

PG4 0817

) 2 = 5) e e B e
| W e B REY By B S Rl Bp
Al s el I Eed W T Rk

4¢ |[F=d E N B B N fia

TH - 123

Figure 31.5: Fill in your email and password.

e 131

Coding Modbus TCP/IP for Arduino

New Project

Community

Figure 31.6: Clicking on the "New Project".

Afterwards, we proceed to select the "New Project" icon, which can be seen in Figure 31.6
Subsequently, we choose the "Arduino Uno" as our device, as illustrated in Figure 31.7.

‘v W3G4 B 0821

Arduino UNO

Arduino Yun

CAMCEL CONTINUE

Figure 31.7: Selecting "Arduino Uno" as our device.

The project's connection type is Ethernet, and it has been named "W5100". To email the

authentication token to your email address, click on the "E-mail" button, as shown in Figure
31.8.

e 132

Chapter 31 e The Ethernet and Blynk Project

34 01056

W5100

Arduino UNO

Ethemet

Figure 31.8: Getting the authentication token via email.

After moving to the following page, a notification will appear indicating that the program
will forward an authentication token to the provided email address. Proceed by selecting the
"OK" button and locate the symbol resembling a plus sign as in Figure 31.9.

W3G.4 W 11:05

Figure 31.9: Clicking the + sign.

Click on the "Add" button and then select the "Button" option as shown in Figure 31.10.

O ?3C4 & 08:28

Button

Figure 31.10: Selecting "Button" from the "Widget Box".

"BUTTON" will be included on the screen for you to click on, enabling you to set the value
according to the illustration shown in Figure 31.11.

e 133

Coding Modbus TCP/IP for Arduino

0364 01106

Figure 31.11: Clicking on "BUTTON" to set the value.

Afterward, choose the "SWITCH" mode and continue to click on "PIN" according to the
presentation in Figure 31.12.

P3G4 2 1639

C @ swircH

Figure 31.12: Selecting "SWITCH" type and clicking on "PIN".

Next, follow the steps shown in Figure 31.13: Choose pin > Digital > D7 -> CONTINUE.

e 134

Chapter 31 e The Ethernet and Blynk Project

{» W3G.4 = 08:30

Digital

CANCEL = CONTINUE

Figure 31.13: Setting the PIN.

As shown in Figure 31.14, "BUTTON" will be situated on the left-hand side.

0 W3G.4 B 11:50

Figure 31.14: "BUTTON" on the left-hand side.
To achieve a visually pleasing result, we should move the button to the center of the screen.

The next steps are how to add a new library to your Arduino IDE using the "Library
Manager" (accessible from IDE version 1.6.2 onwards). Start by opening the IDE and
navigating to the "Sketch" menu. From there, select "Include Library" and then choose
"Manage Libraries", as shown in Figure 31.15.

sketch_mar26a | Arduino 1.6.2
File Edit Sketch' Tools Help

Cr+R Manage Libraries...
] cetch Folder Ctrl+ orary..
Include Library 4

Jewr libraries
o Add File...

Figure 31.15: Installing a new library into your Arduino IDE.

e 135

Coding Modbus TCP/IP for Arduino

The "Library Manager" will open, and you will find a list of libraries that are already installed
or ready for installation. Search for Blynk library and in the version, selection choose the
latest version to date, as shown in Figure 31.16.

[NON] Library Manager
Type All Topic Al Blynk

Blynk by Volodymyr Shymanskyy Version 0.6.1 INSTALLED

Build a smartphone app for your project in minutes! It supports WiFi, BLE, Bluetooth, Ethernet, GSM, USB, Serial. Works with many boards
like ESP8266, ESP32, Arduino UNO, Nano, Due, Mega, Zero, MKR100, Yun, Raspberry Pi, Particle, Energia, ARM mbed, Intel Edison/Galileo/Joule,
BBC micro:bit, DFRobot, RedBearlLab, Microduino, LinkIt ONE ...

More info

Select version
v Select version

Install

Figure 31.16: Installing the Blynk library.

Finally, click on "Install" and wait for the IDE to install the new library. Downloading may
take time depending on your connection speed. Once it has finished, an "Installed" tag
should appear next to the "Bridge" library. You can close the library manager. You can now
find the new library available in the "Sketch" - "Include Library" menu. When finished
installing the Blynk library, go to "File" > "Examples" - "Blynk" - "Boards_Ethernet" >
"Arduino_Ethernet", as depicted in Figure 31.17.

) sketch_jui24a | Archaino 163
[File||Edit Sketch Tools Help

Robot Control

New Ctrl+N
Open.. Ctrl+ O A
Open Recent L] 06.5ensors L
Sketchbook L] 07.Display » =
Close Ctri+W 09.USB r
Save Ctrl+S 10.Starterkit L
Save As.. Ctri+Shift+5 ArduinclSP
PageSetup Ctrl+Shift=P Bridge »
Print CtrleP EEPROM 4
Preferences Cirls Comma Exsions ;
Ethernet I
Quit Cirl+Q Firmata ’
G5M b
LiquidCrystal L
[
[

—_— Wite
Blynk tests

More

Widgets

S Boards_Bluetooth [4
t Motor
| 5; e [Boards Fthemet I Arduino Fthemet]
[
I Boards_GSM 1 Arduino_Ethernet2
[Servo L -
| Boards_LSB_Senal 1 Arduino_Ethernet Manual
SoftwareSerial ' d
| . | Boards WiFi 1 ENC28)60
| S
Boards_With_HTTP_APL 1 Energia_Ethernet
Stepper '
e | Export_ Demo L] Intel_Galileo
GettingStarted 1 Seeed_EthemetV2_0
WiFi '
0
»
0

Figure 31.17: Selecting "Arduino_Ethernet" examples.

Edit the "YourAuthToken" obtained from the email and incorporate it into the Arduino

sketch, as shown in Figure 31.18.

e 136

Chapter 31 e The Ethernet and Blynk Project

P
Arduino_Ethernet | Arduino -E:5;
File Edit Sketch Tools Help

Arduino_Ethernet

PRINT Serial

#include <SPI.h>
#include <Ethernet.h>
#include <BlynkSimpleEthernet.n>

m

/ You should get Auth T
to tl
char auth[] =

#define W5100_CS 10
#define SDCARD CS 4

veid setup()

< |

Arduino/G o Uno on COM3

Figure 31.18: Edit the «YourAuthToken» into the Arduino sketch.

Once edited, upload the code as follows to Arduino Uno.

/******~k***~k***~k****k*******~k***~k***~k****k********************k**
Download latest Blynk library here:
https://github.com/blynkkk/blynk-1library/releases/latest
Blynk 1is a platform with i0S and Android apps to control
Arduino, Raspberry Pi and the likes over the Internet.

You can easily build graphic interfaces for all your

projects by simply dragging and dropping widgets.

Downloads, docs, tutorials: http://www.blynk.cc

Sketch generator: http://examples.blynk.cc

Blynk community: http://community.blynk.cc

Social networks: http://www.fb.com/blynkapp
http://twitter.com/blynk_app

Blynk library is licensed under MIT license

This example code is in public domain.

KA KA AR AR AR AR A A AR A Ak A A A A Ak kA kA Ak Ak hkhkhkhkhkhk kA hk kA hkkhkhkkhkhkkkkkkkkkkkkx
This example shows how to use Arduino Ethernet shield (W5100)
to connect your project to Blynk.

NOTE: Pins 10, 11, 12 and 13 are reserved for Ethernet module.
DON'T use them 1in your sketch directly!

WARNING: If you have an SD card, you may need to disable it
by setting pin 4 to HIGH. Read more here:
https://www.arduino.cc/en/Main/ArduinoEthernetShield

e 137

Coding Modbus TCP/IP for Arduino

Feel free to apply it to any other example. It's simple!
k****~k***~k***~k****k*******~k************k******************/
/* Comment this out to disable prints and save space */
#define BLYNK_PRINT Serial

#include <SPI.h>

#include <Ethernet.h>

#include <BlynkSimpleEthernet.h>

// You should get Auth Token 1in the Blynk App.

// Go to the Project Settings (nut dicon).

char auth[] = "b8152a62d1c54b20862ab77ae4b23345"; // Must to be fixed
#define W5100_CS 10

#define SDCARD_CS 4

void setup()

{

// Debug console

Serial.begin(9600);

pinMode (SDCARD_CS, OUTPUT);

digitalWrite(SDCARD_CS, HIGH); // Deselect the SD card
Blynk.begin(auth);

// You can also specify server:

//Blynk.begin(auth, "blynk-cloud.com", 8442);
//Blynk.begin(auth, IPAddress(192,168,1,100), 8442);

// For more options, see Boards_Ethernet/Arduino_Ethernet_Manual example
}

void loop()

{

Blynk.run();

}

Disconnect the USB cable and replace it with an RJ45 LAN cable to establish the connection
between the Ethernet Shield and the router. This will enable the shield to communicate
with the network and receive power from a 5-V adapter connected to the Arduino UNO.
Return to the Blynk Application and click on the symbol indicated in Figure 31.19 three
times to evaluate the functionality of the W5100 program. Refer to Figure 31.20 for a visual
representation of the hardware setup for the project.

‘0 ¥3G4 H11:51

Figure 31.19: Clicking the symbol.

e 138

Chapter 31 e The Ethernet and Blynk Project

Figure 31.20: The hardware implementation of the project.

e 139

Coding Modbus TCP/IP for Arduino

Chapter 32 ¢ Temperature/Humidity Sensor, Ethernet
and Blynk Project

This section will cover a mobile application that provides real-time information about the
temperature and humidity of a room. The application allows users to connect their Android
devices to a hardware setup. To detect the temperature and humidity, a DHT11 sensor is
connected to an Arduino Uno. These readings are then transmitted to the Android device
and presented neatly in an app. This setup is simple to build and is perfect for monitoring
a remote room with an impressive display. To create this system, you will need an Arduino
Uno, an Arduino Ethernet Shield, a DHT11 Sensor, three male-to-female jumper wires, the
Arduino IDE, the Blynk app, and a LAN Cable. The sensor is connected to digital pin 2 on the
Arduino. The app generates a virtual display that constantly updates with real-time values,
as depicted in Figure 32.1.

Figure 32.1: Blynk app displaying the values.

In Figure 32.2, the schematic diagram illustrates the connection between the DHT11
temperature and humidity sensor and the Ethernet shield.

Figure 32.2: Ethernet shield connection to the DHT11 sensor.

e 140

Chapter 32 e Temperature/Humidity Sensor, Ethernet and Blynk Project

Here is the Arduino code provided:

#include <SPI.h>

#define BLYNK_PRINT Serial
#include <Ethernet.h>

#include <BlynkSimpleEthernet.h>
#include <SimpleTimer.h>
#include <dhtll.h>

dhtll DHT11;

SimpleTimer timer;

char auth[] = ""; // write your auth code here
void setup()

{
DHT11l.attach(2); // connect pin 2 to the sensor
Serial.begin(9600) ;
Blynk.begin(auth); // start blynk server and connect to the cloud

while (Blynk.connect() == false) {
// Wait until connected

void loop()
{
int chk = DHT1l.read();
Blynk.virtualWrite(l, DHT1l.temperature); // Write values to the app
Blynk.virtualWrite(2, DHT1l.humidity);
Serial.println(DHT11.temperature);

Blynk.run();
timer.run();

e 141

Coding Modbus TCP/IP for Arduino

Chapter 33 ¢ MQTT Protocol with Ethernet/ESP8266
Project

We will explore the usage of the MQTT protocol with Ethernet, and ultimately, we will be
able to manipulate an LED connected to an Ethernet shield, as well as monitor data from
a temperature sensor using the publish and subscribe functionality of the MQTT protocol.
Since our Arduino or ESP8266 device lacks knowledge about the MQTT protocol, we need
to install the MQTT library.

© sketch_jun24a | Arduino 1.8.19
File Edit Sketch Tools Help

Verify/Compile CtrisR
Upload Ctri«ll
ghatcH Upload Using Programmer Ctri=ShiftsL

Expart compiled Binary Ctri=alt+5

| Show Skeich Folder Cirl+K
B cucibony] MEP

Add File..
= Add ZIP Library...

Figure 33.1: Clicking on "Manage Libraries".

First, we need to open "Sketch" and access the "Library" menu. In Figure 33.1, you can
see that we need to select "Manage Libraries". It may take a few seconds or minutes for
the "Library Manager" to appear. There, search for "PupSubClient" and press "Enter". Look
for the version by Nick O'Leary in the search results. The default version also includes the
latest MQTT library. You do not need to be concerned about the version of the MQTT library;
it is automatically included with the "PupSubClient" library. Simply click on the "Install"
button to install the MQTT library for Arduino or ESP8266, illustrated in Figure 33.2.

@ Library Manager X

Type All < Topc Al ~ || pubsubcant
| PPROSCRent

by Tnor Levkov

A client library for gsm ppp protocol. This ibrary can be used to make GET and POST requests and to connect matt with PubSubChent. It
supports ESP32.

DMore info

| PubSubChent
by Nick O'Leary
A client library for MQTT messaging. MQTT is a ightweight messaging pratocol ideal for small devices. Ths library allows vou to send and

recaive MOTT messages. It supports the |atast MQTT 3.1.1 protocol and can ba configured to use the older MQTT 3.1 if needad. It supports 3
Arduino Ethemet Chent compatible hardware, mcluding the Intel Galleo/Edison, ESPE266 and T1 CC3I000.
DMgre infp

version 2.6.0 ~ mll]
Figure 33.2: Installing the "PubSubClient" library.

After installing the library, we need to close the "Library Manager". Then, we can navigate
to "File", "Examples", and scroll down to find "PupSubClient". Within it, we can find the
"mqtt_esp8266" as shown in Figure 33.3. This example project will serve as a reference
for us. We can remove the initial commands in the code to ensure a cleaner code for better
explanation. In the code, we can see the "ESP8266WiFi.h" header file and the MQTT client
library, which is located in "PupSubClient.h". As we are using the Ethernet shield, we need
to input the SSID and password for the ESP8266 to connect to the internet. Thus, the code
we should use is as follows:

e 142

Chapter 33 « MQTT Protocol with Ethernet/ESP8266 Project

/* Repeating Web client
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13 */
#include <SPI.h>
#include <Ethernet.h>
// assign a MAC address for the ethernet controller.
// fill in your address here:
byte mac[] = {
OxDE, OXAD, OxBE, OxEF, OXFE, OXED
}s
// Set the static IP address to use if the DHCP fails to assign
IPAddress ip(192, 168, 0, 177);
IPAddress myDns (192, 168, 0, 1);
// initialize the library instance:
EthernetClient client;

char server[] = "www.arduino.cc"; // also change the Host line in httpRequest()
//IPAddress server(64,131,82,241);
unsigned long lastConnectionTime = 0; // last time you connected to the

server, in milliseconds
const unsigned long postingInterval = 10%x1000; // delay between updates, in
milliseconds
void setup() {
// You can use Ethernet.init(pin) to configure the CS pin
// start serial port:
Serial.begin(9600);
while (!Serial) {
5 // wait for serial port to connect. Needed for native USB port only
}
// start the Ethernet connection:
Serial.println("Initialize Ethernet with DHCP:");
if (Ethernet.begin(mac) == 0) {
Serial.println("Failed to configure Ethernet using DHCP");
// Check for Ethernet hardware present
if (Ethernet.hardwareStatus() == EthernetNoHardware) {
Serial.println("Ethernet shield was not found. Sorry, can't run without
hardware. :(");
while (true) {
delay(1); // do nothing, no point running without Ethernet hardware

}

if (Ethernet.linkStatus() == LinkOFF) {
Serial.println("Ethernet cable 1is not connected.");

}

// try to configure using IP address instead of DHCP:

Ethernet.begin(mac, ip, myDns);

Serial.print("My IP address: ");

e 143

Coding Modbus TCP/IP for Arduino

Serial.println(Ethernet.localIP());
} else {
Serial.print(" DHCP assigned IP ");
Serial.println(Ethernet.localIP());
}
// give the Ethernet shield a second to initialize:
delay (1000);
}
void loop() {
// if there's incoming data from the net connection.
// send it out the serial port. This is for debugging
// purposes only:
if (client.available()) {
char ¢ = client.read();
Serial.write(c);
}
// if ten seconds have passed since your last connection,
// then connect again and send data:

if (millis() - lastConnectionTime > postingInterval) {
httpRequest();

}
// this method makes a HTTP connection to the server:
void httpRequest() {
// close any connection before send a new request.
// This will free the socket on the WiFi shield
client.stop();
// if there's a successful connection:
if (client.connect(server, 80)) {
Serial.println("connecting...");
// send the HTTP GET request:
client.println("GET /latest.txt HTTP/1.1");
client.println("Host: www.arduino.cc");
client.println("User-Agent: arduino-ethernet");
client.println("Connection: close");
client.println();
// note the time that the connection was made:
lastConnectionTime = millis();
} else {
// if you couldn't make a connection:
Serial.println("connection failed");

o 144

Chapter 33 « MQTT Protocol with Ethernet/ESP8266 Project

Then, of course, we need an MQTT server for our project. However, we recommend against
using the "broker.mqtt-dashboard.com" as it is a commonly used server in MQTT projects.
If you upload the same code, it may cause issues. Therefore, we will search for a different
MQTT server. To find our preferred MQTT server, you can open a command prompt and
enter "ping test.mosquitto.org". This is a free-to-use MQTT broker or MQTT server, which
can be represented by the IP address 5.196.95.208, as depicted in Figure 33.4.

© sketch jun24a | Arduino 1.8.19
File Edit Sketch Tools Help
New Ctri+N
Open.. Ctrl+0
Open Recent
Sketchbook » 1
[Eamples] o
o Sl E:E::;gl ,lere, to run ong
Save Cirl=S = "
SaveAs. CirisShifiaS 07 Display *
0B.Strings 3
Page Setup Ctrl+Shifts P DOUSE »
Print Ctrl+P 10.5tarterkit_Basickit
Preferences Ctri«Comma 1 ArduinolSP .
Quit Ctri+Q
POy Adafruit Circuit Playground » T2, LO TUN Trepe
Bridge »
Esplora)
)| 1 Ethemet >
Firmata ¥
G5M »
LiquidCrystal E
Robot Control >
Robot Motor »
sD »
Servo ¥
SpacebrewYun »
Stepper »
Tembaoo »
RETIRED »
EEPROM , mattauth
SofmareSerisl 4 matt_basic
spl e
Wire , mat largemessage
maqtt_publish_in_callback
magtt_recannect_nonblocking
maqtt_stream

Figure 33.3: Opening the mqgtt_esp8266 example.

W Select Command Prompt - ping test.mosquitto.org

Figure 33.4: Getting the server IP address.

So, we have an IP address that we need to use. We will copy it and then no longer need
it, so we can close it and open our project. We will need to insert a double code address
for the server, which can be either 5.196.95.208 or "test.mosquitto.org". Both options are
acceptable, so I will comment out test.mosquitto.org. This is the MQTT server we are using,

e 145

Coding Modbus TCP/IP for Arduino

and if you want to learn more about it, you can copy the URL and visit it in a browser. The
server we are using is "test.mosquitto.org", and the port for MQTT unencrypted is 1883,
as seen in Figure 33.5. However, this information is no longer necessary, and all we need
is the IP address of the server, which can be either the IP address or the server name, as
shown in Figure 33.6.

i test mosquitto.org x +

= C @ testmosquitto.org

() rr

This is test.mosquitto.org. [t hosts a publicly available Eclipse
Mosquitte MQTT server/broker, MQTT is a wery lightweight
protocol that uses a publishfsubscribe model. This makes it
suitable for "machine to machine” messaging such as with low
power sensors or mobile devices.

MaQrT

For more information on MQTT, see http//matt.org/ or the
Mosquitto MOTT man page.

If you are interested in your own hosted instance of Mosquitto
you should look at the Cedalo offering. Cedalo are the company
that sponsor the main development of Mosquitto.

The server

The server listens on the following ports:

LI S ERMOT T, unencrypted, unauthenticate [}
= 1884 : MOTT, unencrypted, authenticated

Figure 33.5: Opening the "test.mosquitto.org" with the browser.

Now if we scroll down further then we see that there will be a topic and you can see we are
using a built-in LED which is basically connected to GPIO2 on ESP8266.

e 146

Chapter 33 « MQTT Protocol with Ethernet/ESP8266 Project

© matt_espB266 | Arduine 1819

File Edit Sketch Tools Help

matt_espB266 §

'B266WiF1.h>
<PubSubClient.h>

| #include <Ef

2 #include
1 // Update these with values suitable for your network.

6 const char* ssid = "binaryupdates";

/ const char* password = "bestcourses";
const char* mgtt_server = "5.196.95.208"; // test.mosquitto.nrg]

10WiFiClient espClient:
<11 PubSubClient client (espClient});
12 unsigned long lastMsg = 0;

13 #define MSG_BUFFER _SIZE (50) 1
14 char msg[MSG_BUFFER_SIZE];
15 int value = 0;

17 void setup wifi() {

Figure 33.6: Putting the MQTT server IP address or name.

© matt_espB266 | Arduino 1.8.19
File Edit Sketch Tools Help

mitt_espA266 §

// Loop until we're reconnected

63 while (!client.connected(}) {

&4 Serial.print ("Attempting MQTT connection...")i
65 // Create a random client ID
String clientId = "ESPB266Client-";

clientld += String(random(Oxffff), HEX):
// Attempt to connect
69 if (client.connect (clientId.c str(})) {
70 Serial.println("connected”);

il // Once connected, publish an announcement...
72 client.publish("outTopic”, "hello world");

13 // ... and resubscribe

74 client ..--1.},-.-,.:1'1'l‘-e("device/ledi")r'

15 } else {

Serial.print("failed, rc=");:
Serial.print(client.state());
Serial.println(" try again in 5 seconds");

79 // Wait 5 seconds before retrying

Figure 33.7: Renaming the "client.subscribe" to "device/led".

When we publish a message using the topic "device/led", you'll notice, upon scrolling
down, the option to either "client" or "subscribe to" enclosed in double quotes. To enhance
readability, we prefer to refer to this topic as "device/led", specifically addressing the control
of the onboard LED connected to GPIO2 on the ESP8266, as depicted in Figure 33.7.

In essence, when we publish a message (message one) on the "device/led" topic, the
ESP8266 subscribes to this topic, resulting in the activation of the LED. It is worth noting that

e 147

Coding Modbus TCP/IP for Arduino

the onboard LED on the ESP8266 operates on an active-low configuration. Consequently,
publishing message one generates a logic low, turning on the LED. Conversely, a logic
high, generated by publishing message zero on the "device/led" topic, turns off the LED,
as detailed in Figure 33.8. This simple mechanism allows for the convenient control of the
LED on the ESP8266.

@ matt_espB266 | Arduina 1.8.19
File Edit Sketch Tools Heip

maqt_esps2ss §

13| Serial.print(topic):

44| Serial.print("™] "):

45 for (int 1 = 0; i < length; i++) {
4¢ Serial.print ((char)payload[i]};
7))

18| Serial.println();:

50 // Switch on the LED if an 1 was received as first character

51 if ((char)payload[0] == "§') {

704 digitalWrite (BUILTIN LED, LOW): // Turn the LED on (Note
o3 // but actually the LED is on; this is because

54 // it is active low on the ESP-01)

55 } else {

5¢ digitalWrite (BUILTIN LED, HIGH); // Turn the LED off by m
57| 1}

Figure 33.8: Publishing message one on "device/led" topic.

If you continue scrolling, you will come across an option called "outTopic" where you can
send sensor data. To send temperature data, we need to specify the name as "device/
temp". After doing so, we can confirm that the MQTT server is connected, as shown in
Figure 33.9.

@ matt_espB266 | Arduino 1819

File Edit Sketch Tools Help

mat_espB266 §

String clientId = "ESP8266Client-";
clientId += String(random(0xffff), HEX):
68 // Attempt to connect

69 if (client.connect (clientId.c str())) {

0 Serial.println("connected”) ;

// Once connected, publish an announcement...
ent.publish ("device/temp", "MQTT Server is Connected");

// ... and resubscribe

14 lient.subscribe ("device/led");
75 } else {
¢ Serial.print("failed, rc=");

Serial.print (client.state()};
Serial.println(" try again in 5 seconds"):
13 // Wait 5 seconds before retrying

0 delay (5000) ;

Figure 33.9: Editing "client.publish".

e 148

Chapter 33 « MQTT Protocol with Ethernet/ESP8266 Project

Therefore, that is a message that will be displayed even if you include this line of code. It
may not seem very meaningful, but the true essence lies within the loop function.

© matt_espa266 | Arduine 1819

File Edit Sketch Tools Help

unsigned Ng NOW = M s():
if (now - lagtMsg > 2000) {
lastMsg = now;

value = analogRead (A0)*0.32;
snprintf (msg, MSG_BUFFER_SIZE, "Temperature is :%1d", value);
Serial.print ("Publish message: "}):

Serial.println(msg);
1 publish("device/temp", msg);
}

109

Figure 33.10: Publishing the temperature to the MQTT server.

In the loop function, the code continuously sends the message "Hello world," incrementing
the value variable each time. To adapt this code for sending temperature data from an
LM35 sensor connected to pin A0 on the ESP8266, we will modify the global variable
"value." Instead of incrementing, we set "value" equal to analogRead(A0) multiplied by
0.32, converting the sensor reading to degrees Celsius. This temperature value is then
printed on the serial monitor with the label "Temperature is."

The modified code will publish this temperature data to the MQTT server using the "device/
temp" topic, as shown in Figure 33.10. The MQTT server, with the IP address 5.196.95.208,
will receive and process the temperature data.

For LED control, the "device/led" topic is important. Subscribing to "device/led" allows the
ESP8266 to respond to messages from the server. Sending "1" to "device/led" turns on the
LED, while "0" turns it off. Thus, the ESP8266 effectively controls the LED and publishes
temperature data on "device/temp".

We successfully connected the ESP8266 to the laptop, but we still need an MQTT client. We
recommend installing the MQTT client called MQTTLens, which is a simple and easy-to-use
client that runs on Google Chrome. To install it, search for MQTTLens on Google Chrome,
and you will find it as a Google Chrome extension. Please note that MQTTLens only works
on Google Chrome, so make sure you have it installed. To install MQTTLens, simply click on
it and it will take you to the Google Chrome app page. Click on "Add to Chrome" as shown in
Figure 33.11, and it will be quickly installed. It may ask you to log into your Google account,
so just click on "Add app" and then close it. You can see the progress of the installation in

e 149

Coding Modbus TCP/IP for Arduino

the lower-left corner of your screen. Once it is added to Chrome, you will be able to see

MQTTLens in your extensions.

B4 testmosquitto.org X @ MQTTLens - Chrome V

<« C & chromegoogle.com/webstare/d

mat

& chrome web store

Home > Apps > MQTTLens

p ‘ MQTTLens
T KRk Ak k140

x +

aeigabkbeoakmigmdigohjobjm?hl=er

Extensions | 100,000+ users

Add to Chrome

Iy

Figure 33.11: Adding MQTTLens to Chrome.

P4 testmosquitto.ong El

C @ Chrome | chrome:

& MOTTlens ChromeWebStore X B Apps

//apps

=

Web Store Slides

YouTube MQTTLens

Sheets

Figure 33.12: Installed MQTTLens app.

As you can see in Figure 33.12, when we click, the software opens, allowing us to see that
MQTT Lens is the software or MQTT client we will utilize to control the ESP8266. To set up

MQTTLens, click on the plus button illustrated in Figure 33.13.

=X

P MQTTlens

Connections E | K

Version 0.0.14

Figure 33.13: Clicking on the plus button.

To set up a connection, we are required to provide a connection name. Let's name it
BinaryUpdates. We also need the IP address of the server. We prefer inputting the server's
numerical address rather than its name. Simply copy the IP address from our code and paste
it under the "Hostname" section. We want to use MQTTlens as the MQTT client to connect
to the MQTT server on port 1883. Once everything is in place, we can scroll down without
making any changes to the advanced settings. Finally, click on "CREATE CONNECTION" as

shown in Figure 33.14.

e 150

Chapter 33 « MQTT Protocol with Ethernet/ESP8266 Project

Tonnection name Connection color scheme a
BinaryUpdates |
Hostname: Port
teped/ v| 5.196.95.208 1883
Client ID
lens_ebcQCO4eZ 2hISIWFSloawAAT TVZA
Session Autematic Connection Keep Alive
Clean Session Automatic Connectian 120 seconds
Credentials
Username Password
Enter §
Last-Will v
B canceL

Figure 33.14: Creating the connection.

By hovering over your mouse, you can see that a connection has been established when
it displays a green color, as depicted in Figure 33.15. Conversely, if it remains red or any
other color, it indicates that something is amiss and is not functioning properly.

S T
p MQTTlens Version 0.0.14
Connections + "l <
: ol | Connec}tion: BinaryUpdates
Subscribe ~
Publish ~

0-atmostonce v | [] Retained JatEl}

Subscriptions

Figure 33.15: The connection created with green color.

e 151

Coding Modbus TCP/IP for Arduino

Let us go ahead and open the Arduino IDE side by side, so you can see the process. Make
sure the code is ready, go to tools, check that the port and board are properly selected,
and upload the code. Now we can monitor the temperature sensor data and control the
built-in LED on the ESP8266. The code is uploading and once it is done, go to tools and
open the serial monitor. Set the baud rate to 115200. Now you will start seeing the data
being displayed. To confirm that the ESP8266 is connected to the internet, press the reset
button on the device. It will show that it is connecting to the access point and then indicate
that Wi-Fi is connected, and an IP address has been obtained. It will also try to establish a
connection with MQTT. Once connected, the data will start streaming as illustrated in Figure
33.16.

© comd = =]

Publish message: Temperature is :27
Publish message: Temperature is :27
Publish message: Temperature is :27
Publish message: Temperature is :27
{1159905cOTnAAOMIANL e | 908097 | Obf0pOfinof loN'
Connecting to binaryupdates

iFi connected

IP address:

192.168.225.23

Attempting MOTT connection...connected
Publish message: Temperature is :27
Publish message: Temperature is :27

18 #utoscrof [Show trmestamp Bath ML 8 CR [115200 bowd | ~| Clear output|

Figure 33.16: Coming up published messages.

To begin, we will minimize the Arduino IDE and keep the serial monitor open. In our
Arduino code, we have the topic "device/temp" where our sensor data is transmitted. To
view the temperature data, we simply navigate to the subscribe section on MQTTlens and
right-click to paste "device/temp" as the topic for subscription. By subscribing, we can now
see the continuous stream of temperature data, which is indicated by the increasing count
and timestamp. Additionally, the temperature can be seen in the MQTT and serial monitor.
This functionality is working correctly. Moving on to controlling the LED, if we take the topic
for the LED as "device/led", we can publish the message "one" to turn the LED on. It is
important to not press unnecessary keys and only send the value "one" on the "device/
led" topic. Clicking on "Publish" will trigger the arrival of the message, resulting in the LED
lighting up. This can be seen on the hardware side and in the serial monitor where "one"
is received. Similarly, sending the message "zero" on the same topic will turn the LED off,
and we will receive the message "zero" as depicted in Figure 33.17.

e 152

Chapter 33 « MQTT Protocol with Ethernet/ESP8266 Project

p MQTTlens Version 0.0.14

@ oM
T
Publish message: Temperature is :28
essage arrived [device/led] 1

Connections + »l h
Connection: BinaryUpdates

@ srovpcates I W

Subscribe ~

Publish message: Temperature is :28 RS
Publish message: Temperature is :28 bl
Publish message: Temperature is :28 Publish o

Publish message: Temperature is :28 TR = -
Publish message: Temperature is :28 = CEESE (0 ““a‘”e"
Publish message: Temperature is :28 5

Publish message: Temperature is :28
essage arrived [devjce/led] 0

Publish message: Temperature is :28

Subscriptions

Publish message: Temperature is :28 T 2
opic: SongmebstS | o CommTm
Publish message: Temperature is :28 "device/temp" messages + {od
Time Topic QoS
47 70030 o
@ Autoscroi (] shaw umesiamp sonmacR | 115200 bous
Message: Temperature is 26 O
Time Topic QoS o
487.0932 (0]
Message: Temperature is 28 D
Time Topic Qos)
4a7.0034 EEDNTE) ©
Message: Temperature 1s :28 (=]

Figure 33.17: Publishing the messages in MQTTlens and serial monitor.

To operate the ESP8266 through a mobile app, it is necessary to download and install the
Android app called "MY MQTT", as shown in Figure 33.18.

[~ N

MY

Figure 33.18: The MY MQTT app icon.

When you open this app, there is a view that allows you to select what MQTT can access.
In the lower-right corner, there is a "Continue" button that you click to proceed. A pop-up
appears and you confirm by clicking "OK". Now, in the top-left corner, there is a dashboard
and a back icon. When you click on the back icon, it takes you to the settings. In the settings,
you will find a setting button. Clicking on it allows you to enter various parameters. The first
parameter is the Broker URL, which is the IP address of our MQTT server (0.5.196.95.208)
that MQTT should connect to. Below that, there is a port number (1883) for MQTT. You do
not need to fill in the username and password, just click on "Save". Once saved, it will show
a message saying that the settings have been saved successfully. In the top-left corner,
there is a back icon again. Clicking on it will show a green indication and the MQTT server
IP address (5.196.95.208) displayed in Figure 33.19.

e 153

Coding Modbus TCP/IP for Arduino

Dashboard

Subscribe

b

Publish

Stored Messages

(I

Settings

Figure 33.19: MY MQTT app connection to MQTT server.

We need to look at our hardware setup. We have an ESP8266, and there is an onboard LED.
Before publishing any messages, let us click the reset button once. Now, we will navigate
to the mobile app's publish section. In the topic field, we will input "device/led," and for
the message, we'll enter '0' to publish the message '0' on the 'device/led' topic. Clicking
"Publish", you will notice the onboard LED turns off. This demonstrates how to turn off the
LED.

Next, if we publish the message "1" and click "Publish" again, you will observe the LED
lighting up. Repeating the process by publishing "0" turns the LED off, and publishing "1"
lights it up once more. This illustrates how to control the LED using published messages.

Now, let us explore the subscribe feature. Clicking the top-left back button, we will
navigate to the subscribe section. Here, we'll type "device/temp" as the topic for receiving
temperature data. Clicking "Add", you will see the topic subscribed and added. Returning
to the dashboard by clicking back, you can see the streaming data on the dashboard, as
depicted in Figure 33.20 and Figure 33.21, respectively.

Figure 33.20: Subscribing the device/temp topic

e 154

Chapter 33 « MQTT Protocol with Ethernet/ESP8266 Project

¢©) Dashboard

4 Recerved Messages

Temperature is 27
derice g
Temperature is 27

device Memp

Figure 33.21: Data streaming on "Dashboard".

e 155

Coding Modbus TCP/IP for Arduino

Chapter 34 e ThingSpeak IoT Cloud with Ethernet/
ESP8266

In this section, we will explore how to transmit sensor data from the Ethernet/ESP8266. We
will connect a temperature sensor, LM35, to the Ethernet/ESP8266 and then send the data
to the ThingSpeak cloud platform. ThingSpeak is a well-known IoT platform that enables
data transmission to a server, where it can be displayed in attractive widgets or stored in a
database. It is user-friendly, and if you already have a ThingSpeak account, you can access
the dashboard, which is depicted in Figure 34.1.

& C & thingspeak.com/channels

m ThlngSpeak ™ Channels - Apps ~ Devices~ Support~

My Channels

New Channel ch by tag Q

Figure 34.1: The ThingSpeak dashboard.

In the world of ThingSpeak, a channel is required to display data from the Ethernet/
ESP8266, specifically temperature data. To create a channel, we must click on the "New
channel" option and fill out a form with the desired channel name. For our purposes, we
will name it "Temperature Monitoring" and provide an optional description, such as "LM35
Temperature Sensor Data". Within ThingSpeak, there is a concept called "Field". Multiple
fields can be enabled, depending on the number of sensor data points to be sent. In this
case, we only have one temperature sensor connected to Ethernet/ESP8266, so we are
only interested in displaying the temperature value. "Field 1", as shown in Figure 34.2, is
automatically selected, and we can proceed to click the "Save channel" button.

New Channel

Name Temperature Monitoring

Description LM35 Temperature Sensor Data @

Field 1 Field Label 1

Figure 34.2: Selecting the "Field 1".

Now, upon creating this channel, you can see a "Field 1" chart. Within the chart, you will
find your channel name, unique channel ID, author details, and the access is currently set
to private. The specifics of this are not important now. If you look at this, it will show you a
private view which includes a chart for "Field 1", as depicted in Figure 34.3. Currently, "Field
1" does not have any sensor value. However, once a real sensor value is obtained, you will
be able to view temperature data in that field. Additionally, you can add more widgets and
explore other features, which we will discuss at the right time. So far, everything is going

e 156

Chapter 34 ¢ ThingSpeak IoT Cloud with Ethernet/ESP8266

well. Now, let's move on to the programming aspect of the microcontroller. We will be using
an LM35 temperature sensor and connecting its output to the AO pin. Since the LM35 is
an analog temperature sensor, one of its pins will be connected to 3.3 V to provide power.

& thingspeak.com/channels/1536012/private_show

m ThingSpeak ™ Channels = Apps ~ Devices = Support =

Private View Public View Channel Settings Sharing APl Keys Data Import / Export

Add Visualizations | Add Widgets “ & Export recent data

Channel Stats

Created: lgsathan.a.minute.age
Entries: 0

Field 1 Chart T o & x

Temperature Monitoring

Field Label 1

Date
ThingSpeak.com

Figure 34.3: A chart of a "Field 1".

Furthermore, we need to connect another pin of the temperature sensor to the ground pin to
set up the connection between LM35 and ESP8266. Next, we must launch the Arduino IDE.
If you already have the Arduino IDE, we need to go to the sketch include library and select
"Manage libraries" because we want ESP8266 to communicate with ThingSpeak. Therefore,
we need to install the ThingSpeak libraries to avoid writing lengthy and complex bare-metal
code or hard-coded HTTP requests. To keep it simple, we can search for "ThingSpeak" in
the library search bar. Once the search is complete, we will find the ThingSpeak library
developed by MathWorks Corporation, the same company known for the popular MATLAB
software. We select the library and click on the "install" option, as depicted in Figure 34.4.
After clicking "Install," we need to patiently wait for the ThingSpeak library to be installed
for ESP8266. Once the installation is complete, we can see that it has been successfully
installed.

e 157

Coding Modbus TCP/IP for Arduino

& |ibrary Manager

Type Al ~ | Topsc (Al « ThingSpeak
| ThingSpeak
by MathWorks

ThingSpeak Communication Library for Arduino, ESP8266 & EPS32 ThingSpeak (https://wwthingspeak.com) is an analytic
| 1ot platform service that allows you to aggregate, visualize and analyze live data streams in the doud.

Mare infe
Version 2.0.1 @

Figure 34.4: Installing the ThingSpeak library.

Therefore, we need to show some respect and close the "Library Manager". Afterwards,
we can proceed to create a new project. As a result, a default project is automatically
generated. We have already written some code, and now we will explain it line by line.
Before doing anything else, it is important to save the file as good practice. Click on "Save"
and name the file as "ThingSpeak_ESP8266". Now the program is saved. Our ESP8266
communicates with the ThingSpeak cloud platform via Wi-Fi, so we need to enter the SSID
(Wi-Fi access point name) in the code. Additionally, we need to provide the password. In
the code, there is an integer variable named "pin," which is set to AO. This is because we
will connect the LM35 temperature sensor to the ESP8266 via pin AO. Furthermore, we
create an instance of the Wi-Fi client class, as shown in Figure 34.5. This client object
serves as the hardware client that communicates with the ThingSpeak server.

ile Edt_Sketch Tools Help

ThingSpeak_NodeMCU_ESPB266

1 #include <ESPS8 iFi.h>;
2 #include <WiFiClient.h>;
3 #include <ThingSpeak.h>;

t char* ssid = "binaryupdates.com"; // Your Network SSID
const char* password = "@visitus@"; // Your Network Password

1

8 int val;

9 int pin = AO; //LM53 Pin Connected at A0 Pin

1 WiFiClient client;

d long myChannelNumber = 1528049; //Your Channel Number (Without Brackets)
st char * myWriteAPIKey = "NRTFY67A6USAY6JP"; //Your Write API Key

Figure 34.5: Beginning header codes for ESP8266.

Afterward, you will notice that our channel is assigned a distinct channel number. Essentially,
every ThingSpeak channel requires a unique channel number, or ID. Therefore, we need to
navigate to our ThingSpeak dashboard and select the API keys section. Within the API keys,
you will find a write API key that needs to be copied, as indicated in Figure 34.6.

e 158

Chapter 34 ¢ ThingSpeak IoT Cloud with Ethernet/ESP8266

& thingspeak.com/channels/1536012/api_keys

Q ThlngSpeak ™ Channels - Apps~ Devices- Support~

Temperature Monitoring

Channel |1D: 1536012 LM35 Temperature Sensor Data
Author: umeshlokhande
Access: Private

Private View Public View Channel Settings Sharing APl Keys Data

Write API Key

L5 A S NHN@MP 2BZCCOXFX

Figure 34.6: Getting the "Write API Key".

So, the next step is to return to the ThingSpeak channel and retrieve the channel ID. Once
we have it, we can proceed to replace it within the code. We need to obtain "Write API Key"
and insert it. Another part involves initializing the serial connection with a baud rate of
9600, followed by a delay. The code then connects to the internet via Wi-Fi using the SSID
and password in Figure 34.7. If you have experience with Arduino programming, you may
recognize the usage of the global variable "val". This variable is defined at the beginning
and is used to read the AO pin. To convert the data from the LM35 temperature sensor
from analog to degrees Celsius, we multiply the read value by 0.322265. This conversion
is necessary because the microcontroller receives ADC counts from the analog sensor and
needs to convert it to degrees Celsius. The reason for multiplying by this specific number is
due to the voltage ranges of the LM35 and the node MCU. The LM35 operates between four
and 30 volts, while the node MCU functions with a voltage of 3.3 volts.

ThingSpeak_NodeMCU_ESP8266 §
e v l

15
16 void setup()
178
168 kerial.Begin (9600);
19 delay(10);
// Connect to WiFi network
WiFi.begin(ssid, password);
ThingSpeak.begin(client);
B}
25 void loop()
268 {
val = analogRead (pin) *0.322265; // Read Analog values and Store in val variable
Serial.print ("Temperature: ");

Figure 34.7: The setup section code.

e 159

Coding Modbus TCP/IP for Arduino

File Edt Sketch Tools Help

ThingSpeak.begin (client);

5 void loop()

val = analogRead (pin) *0.322265; // Read Analog values and Store in val variable
t("Temperature: ");
t(val); // Print on Serial Monitor
Serial.println("*C");
delay(1000) ;
ThingSpeak.writeField (myChannelNumber, 1,val, myWriteAPIKey); //Update in ThingSpeak
delay(100);
4}

Serial
] Serial

Figure 34.8: The loop section code.

So, we have just calculated this number and stored the temperature sensor value in the
"val" variable. After printing it on the serial monitor and waiting for one second, we call
the "writeField" function, a part of the ThingSpeak library we have installed. This function
pushes the data into our unique ThingSpeak channel, with the channel number and write
API key being specific to our temperature monitoring channel, as created earlier. The "val"
variable represents the data we want to send to the server.

To execute this, we save the file, check that the correct board and COM port are selected
in the "Tools" menu, and then click on the upload button in the top-left corner. Before
finalizing, it is crucial to open the serial monitor to observe the temperature sensor data.
Confirming its appearance on the serial monitor, we can cross-verify the data in the
ThingSpeak channel.

ThingSpeak, supporting the HTTP protocol, uses the "ThingSpeak.h" header file, which
implements this protocol. ESP8266 communicates with ThingSpeak by sending data in the
form of HTTP requests. The ThingSpeak library streamlines this process, avoiding the need
to write HTTP requests from scratch.

Heading to the tools menu and opening the serial monitor, we can witness the temperature
data appearing on the ThingSpeak channel, indicating a successful communication between
ESP8266 and the ThingSpeak server. Figure 34.9 shows an example where we're receiving
a temperature reading of 28 degrees Celsius.

Temperature: 28*C
Temperature: 28*C

Figure 34.9: The temperature data on serial monitor.
If we navigate to our ThingSpeak dashboard, we need to go to the private view because

the channel is set as private by default. This means that the data will not be shared with
everyone. Once in the view, we can observe the temperature displayed. It is worth noting

e 160

Chapter 34 ¢ ThingSpeak IoT Cloud with Ethernet/ESP8266

that when comparing it to the window side by side, as shown in Figure 34.10, there might
be a noticeable delay in the arrival of the data.

Channel Stats =

& CoM -

Created: 10.minutesage

Entries: 3

Lastentry: Jessthan.amindte2ge

Field 1 Chart (e e I 2

Temperature Monitoring

Field Label 1:28
Thu Oct 14 2021
12:43:04 GMT+0530 |g.

el 1

Field Lab
&

Temperature:
Temperature:
Temperature:
Temperature:
Temperature:
Temperature:
Temperature:
Temperature:
Temperature:
Temperature:
Temperature:
Temperature:
Temperature:
Temperature:

28*C
28*C
Vgl o
28*C
Z8EC
28*C
28*C
28*C
28*C
28*C
28%C
zH*C
28*C
28%C

BothMLACR ~ 9600baud

Clear output

[Autosaral [] Show tmestamp

Figure 34.10: The side-by-side view of "Field 1" chart and serial monitor.

In the free version of ThingSpeak, there is a limitation that data can only be sent every
15 seconds. This means that the data does not appear every second and is bound to a
15-second interval. This is how the code operates. If you want to display the temperature
data in visually appealing widgets instead of just a chart, you need to click on the "Add
Widgets" option, as illustrated in Figure 34.11.

@ thingspeak.com/channels/1536012/private_show

m ThingSpeak'“ Channels »

Apps Devices = Support =

Add Visualizations ‘ Add Widgets H B Export recent data
| [,
S/
Figure 34.11: Adding widgets.

Afterwards, we need to choose the widget. Suppose for this example, we opt for a gauge.
Therefore, select the gauge, continue by clicking on "Next", and proceed to assign the
name to the gauge, as depicted in Figure 34.12 and Figure 34.13. We prefer to label it as
"Temperature".

Click on a widget to add it to the Channel

Nexyt Cancel
IS

Figure 34.12: Selecting the gauge.

e 161

Coding Modbus TCP/IP for Arduino

Configure widget parameters

Name Temperature
Field Fieldl =
Min 0
Max 30
Display Value
Units | Deg. Celcius
Tick Interval
Update Interval = 13 Ee it
Range O 30 o

30 50 [=]

m | i |

Figure 34.13: Configuring widget parameters.

After obtaining LM35 temperature data in "Field 1," we aim to display this data with a range
between 0 and 50 degrees Celsius. To enhance aesthetics, we have added color coding.
Within the range of 0 to 30 degrees Celsius, the color is set to yellow, and for values
between 30 to 50 degrees Celsius, we have chosen a random color, let's say red. You have
the flexibility to customize these colors based on your preferences.

Additionally, you can add more details like units; for example, we have set it to "degree
Celsius." You have the creative freedom to design it according to your liking. Clicking
"Create" (as shown in Figure 34.13), you will now have a visually appealing widget. As
illustrated in Figure 34.14, the data will appear in this widget, providing a clear and
aesthetically pleasing representation of the temperature readings.

Field 1 Chart (e =T I Temperature = T

20 /30
10 40

[] 50

Temperature Monitoring

Field Label 1

ThingSpeak com

28
Deg. Celcius

Figure 34.14: Added gauge widget.
To share this data with someone, you need to make sure that the channel is set to public. To

do this, you must go to the shading option and select "Share channel view with everyone",
as shown in Figure 34.15.

e 162

Chapter 34 ¢ ThingSpeak IoT Cloud with Ethernet/ESP8266

Private View Public View Channel Settings Sharing API Keys

Channel Sharing Settings

_ Keep channel view private
@® Share channel view with everyone

© Share channel view only with the following users:

Figure 34.15: Making the channel public.

This is essentially how the channel will appear from now on. In the public view, the gauge
will not be visible. However, if you want to include the gauge, we can add it again and
adjust its settings, similar to what was done in Figure 34.13. Consequently, our public view

will be identical to our private view. Now, the URL at the top of the browser, as shown in
Figure 34.16, will be accessible to the public.

|:| ThingSpeak"‘ Channels ~ Apps = Devices

Support =

Private View Public View Channel Settings Sharing APl Keys Data Import / Export

Figure 34.16: The public view URL.

If we share this URL with our friends, they will be able to see our data in real-time. Let
us demonstrate by opening a separate browser, such as Firefox, where we are not signed
in to our ThingSpeak account. We will simply paste the copied URL from our ThingSpeak
channel. This URL is unique to our channel and is public. Once we hit enter, we can see that
the channel is now public, as depicted in Figure 34.17.

Q B nttpsythingspeak.com/channels/1536012 B

[JThingSpeak™ chamnels Apps Support~

CommercialUse HowtoBuy Y

Temperature Monitoring =

Channel D: 1536012 LM35 Temperature Sensor Data
Author: umeshlokhande

Aecessf SR

B Export recent data

Field 1 Chart 2 o Temperature 2 e

Temperature Monitoring

Field Label 1

28
Deg Celcius

Figure 34.17: Opening the public URL in Firefox.

e 163

Coding Modbus TCP/IP for Arduino

Regardless of location, anyone in the world can view this information on ThingSpeak without
needing to log in. This means that even if we have not signed in, we can still access the data
and make it visible to the world. This is how you can create an attractive dashboard with a
unique URL and other features.

e 164

Chapter 35 ¢ The Modbus TCP/IP Communication using Node-RED

Chapter 35 e The Modbus TCP/IP Communication using
Node-RED

Node-RED is a visual programming tool for wiring together Internet of Things (IoT) devices,
APIs, and online services. It provides a web-based flow editor that allows users to create
and deploy flows of logic in a browser-based interface. Node-RED is built on top of Node.
js and provides a browser-based editor that makes it easy to create and deploy flows. It
supports a wide range of IoT devices, APIs, and online services, making it a popular choice
for IoT development and automation. Node-RED is open-source and has a large community
of contributors, which makes it easy to find help and support. In this section, we are going
to implement the Modbus TCP/IP communication using Node-RED.

To install Node-RED on Windows, follow these steps:

Step 1: Install Node.js
Node-RED requires Node.js to be installed on your machine. You can download the latest
version of Node.js from the official website and install it on your Windows machine.

Step 2: Install Node-RED
Once Node.js is installed, you can install Node-RED using the Node Package Manager (NPM)
by running the following command in the command prompt or terminal:

npm install -g --unsafe-perm node-red
This command will install Node-RED globally on your machine.
Step 3: Launch Node-RED
After the installation is complete, you can launch Node-RED by running the following
command in the command prompt or terminal:
node-red

This will start Node-RED and open the Node-RED editor in your default browser.

Step 4: Accessing Node-RED
To access the Node-RED, open your web browser and navigate to "http://localhost:1880".
This will display the Node-RED editor, where you can start creating your first flow.

That's it! You have successfully installed Node-RED on your Windows machine. An overview
of these steps is shown in Figure 35.1.

To install Modbus TCP/IP in Node-RED, you should open the Node-RED and launch your
Node-RED editor by navigating to "http://localhost:1880" in your web browser, and install
the Modbus TCP/IP node. In the Node-RED editor, click on the menu icon in the top right
corner and select "Manage palette", as depicted in Figure 35.2. In the "Install" tab, search
for "node-red-contrib-modbus" and click on the "Install" button next to it, as illustrated in

e 165

Coding Modbus TCP/IP for Arduino

Figure 35.3. This will install the Modbus TCP/IP node into your Node-RED environment as
shown in Figure 35.4.

= node-red = =

icrosoft Windows [Version 6.3.96881
(c> 2813 Microsoft Corporation. All rights reserved.

sUserssuser>node —w
18.17.1

sUserssuserinpm —v

sUserssuserdnpm install —g ——unsafe—-perm node—red
dded 295 packages in 1m

41 packages are looking for funding
run ‘npm fund® for details

Hew version of npm available?
Change log:
Run to update?

NUserssusernode—red
Sep B4:52:19 - [infol

—RED

[info]l Mode-RED version: v3.8.2

[info]l Node.js wversion: vi8.17.1

[info]l Windows_NT 6.3.9688 x64 LE

[info] Loading palette nodes

[infol Settings file : C:slUsersusers.node—redisettings.js
[info]l Context store : ‘default’ [module=memoryl

[infol User directory : C:slUserssusers.node-red

[warn] Projects disabled : editorTheme.projects.enabled=false
[infol Flows file : C:slUserssusers.node—redsf lows. json
{info} Creating new flow file

warn

B4:52:19
B4:52:19
B4:52:19
84:52:28
B4:52:22
B4:52:22
B4:52:22
B4:52:22
B4:52:22
B4:52:22
94:52:22

our flow credentials file iz encrypted using a system—generated key.

If the system—generated key iz lost for any reason. your credentials
file will not be recoverable, vou will have to delete it and re—enter
our credentials.

ou should set your own key using the ‘credentialSecret’ option in
our settings file. Node—RED will then re—encrypt your credentials
file uwusing your chosen key the next time you deploy a change.

Sep B4:52:22 - [infol Server now running at http:- -127.8.8.1:1888
Sep B4:52:22 - [warn] Encrypted credentials not found
Sep B4:52:22 — [infol Starting flows

Figure 35.1: An overview of the Node-RED installation steps.

[} QO O 127001

=< Node-RED

Flow 1
v common - .
inject E Import
debug Export

complete Search flows
catch C ition nodes
status
link in R Groups

It = Manage palette

Figure 35.2: Selecting "Manage palette”.

e 166

Chapter 35 ¢ The Modbus TCP/IP Communication using Node-RED

User Settings

View Nodes | ‘ Install

X | sort:| IF | az | recent)
Palette —
a modbus| B/ 48T X
Keyboard A~
i @bitpoolos/edge-modbus &
Madules to support reading Modbus devices.
% 150 B 6months ago install

© @krakul/node-red-modbus-rtu-slave &

Provides basic nodes for simulating a modbus RTU slave
% 101 B Tmonths ago install
© node-red-contrib-modbus

The all in one Maodbus TCP and Serial contribution package for Node-RED.
% 5260 BY 5months ago install

Figure 35.3: Searching for and installing the "node-red-contrib-modbus".

Figure 35.4: Installed Modbus TCP/IP node into the Node-RED environment.

v modbus

To begin working with Modbus TCP/IP in the Node-RED environment, it is recommended
to retrieve the IPv4 address of the Windows system using the "ipconfig" command in
the Windows command environment (cmd), as shown in Figure 35.5. Please note that
the Node-RED program must be temporarily stopped to execute the "ipconfig" command.
Once the IPv4 address has been obtained, you can reactivate the Node-RED program by
executing the "node-red" command, as depicted in Figure 29.4.

To start working within the Node-RED environment, you need to bring the Modbus Read

node into the interface and double-click on it to access the Edit Modbus-Read node window.
The settings for this window should be configured according to Figure 35.6.

e 167

Coding Modbus TCP/IP for Arduino

EX node-red =

icrosoft Windows [Uersion 6.3.96881]
(c> 2813 Microsoft Corporation. All rights reserved.

sUzerssuserripeconfig

Jindows IP Configuration

[Ethernet adapter Bluetooth Network Connection:
Media State Media disconnected
Connection—specific DNS Suffix

Jireless LAN adapter Wi-Fi:

Connection—specific DHS Suffix

Link-local IPvée Address . . . fe8B::2Bfe:?2dB84:2c38:886dx4
IPv4 Address. 192.168.1.181

Subnet Mask 255.255.255.8

Default Gateway . . . - 192.168.1.1

[Ethernet adapter Ethernet:

Media State
Connection—specific DNS Suffix
unnel adapter isatap.{87168CBA—826E-4E3D-2?78F-87744DB6B486%:

Media State
Connection—specific DNS Suffix

Media disconnected

: Media disconnected

sUserssusersnode—red
6 Sep B6:48:56 — [infol

Figure 35.5: Obtaining the IPv4 address.

Edit Modbus-Read node

% Properties -
Modbus Re‘z-;:i Settings Optionals

Name WModbusRead

Topic

Unit-Id 1

FC FC 3: Read Holding Registers v

Address 0

Quantity 4

& Delay fo activate input

Server Add new modbus-client vl &

Figure 35.6: The "Edit Modbus-Read node" window settings.

To conclude, we select the pencil icon associated with "Add new modbus-client..." to access
configure the
Properties tab as shown in Figure 35.7. Afterward, we click the "Add" button and proceed

the window for configuring the new modbus-client. In this window, we

to the "Edit Modbus-Read node" window, where we click the "Done" button.

e 168

Chapter 35 ¢ The Modbus TCP/IP Communication using Node-RED

Flow 1 Edit Modbus-Read node = Add new modbus-client config node
Cancel
| {* Properties & B
[A
m MName ModbusClientfromServer
|| Type TCP v
Host 192.168.1.101
Port 505
TCP Type DEFAULT v
Unit-1d 1

Timeout (ms) 1000

£22 Reconnect on timeout

Reconnect
timeout (ms) 2000

Figure 35.7: "Add new modbus-client config node" window settings.

Q filter nodes Flow 1 [Edit Medbus-Response node
S L 1

Delete Cancel

~ modbus
Properties - RENEREN =
Name | frsthiode ‘

~ @aclve (15ec) £ Register

Max. 20

Figure 35.8: "Edit Modbus-Response node" for the first output.

a filter nodes | Flow1 | Edit Modbus-Response node
- I—
Delete Cancel
~ modbus
Properties 8B =
2 ;
0 Name ‘ secondNode |
) L @ active (158c.) £ Register
L Max. 20

Figure 35.9: "Edit Modbus-Response node" for the second output.

To receive a Modbus response in Node-RED, you can utilize the Mod-Response node. To
the two output ports in thebusRead node, we make of two Modbus- nodes referred to as
"first" and "secondNode" as depicted in Figure 35.8 and Figure 35.9 respectively. Following
that, the "Deploy" button is clicked. We set up communication between the Modbus Slave

e 169

Coding Modbus TCP/IP for Arduino

software and Node-RED using the TCP/IP protocol, employing the same port, ID, and IP
address, along with the holding register (F = 03) previously selected in the ModbusRead
node settings. Subsequently, an integer is entered in the address 0, which was previously
chosen in the ModbusRead node, as shown in Figure 35.10. In Figure 35.10, the integer is
represented as an array comprising four elements since the Quantity was set to four in the
ModbusRead node settings.

[] ®1123,0,0,07
B active (1sec.)

L

@ {data:[123, 0, 0, 0], buffer: <Buffer 00 7b 00 00 00 00 00 00=}

a3 Modbus Slave - Mbslavel - B
File Edit Connection S5etup Display View Window Help
DEE& T2 22N
Mbslave1 [= |[& |[= |
ID=1:F=03
Namel 00000 Enter signed int 16 n
0
1| 0 Value: 123 | | oK |
2 0
— [Auto increment Cancel
3 0
4 0
E 0
6 0
7| 0
8 0
9| 0
b For Help, press F1. [192.168.1.101]: 505

Figure 35.10: Using the Modbus Slave software to communicate with the Node-RED.

The Debug node is a pre-installed feature in Node-RED that displays messages while
constructing and executing flows. It is widely used for identifying and resolving problems
in Node-RED flows, as well as visualizing data movement within the flow. To see the flow of
data, we employ two Debug nodes named "firstout" and "secondout" which are connected
to the outputs of the ModbusRead node, as illustrated in Figure 35.11 and Figure 35.12
correspondingly.

e 170

Chapter 35 ¢ The Modbus TCP/IP Communication using Node-RED

Edit debug node

- 4+ Properties

= Output

Flow 1

@ active (1 sec.)

B To

@ data [}

¥ Name

Cancel Done

& B|m

~ msg. payload
3 debug window
[system console

[node status (32 characters)

| firstout]

Figure 35.11: "Edit debug node" called "firstout".

Flow 1
o
[o o [
@ active (15ec) \-. iE Output
X To
| ICEERE
% Hame

Edit debug node

Cancel

» msg. payload
debug window
[system console

[] node status (32 characters)

| secondoul|

Figure 35.12: "Edit debug node" called "secondout".

Node-RED provides a special type of node called the Function node, which allows users
to create customized functions to manipulate messages within their flows. These function
nodes are beneficial for performing tasks such as data transformations, message filtering,
and implementing complex logic. Users can use standard JavaScript functions and libraries
in their function nodes to manipulate messages as required. To separate the array elements
of the ModbusRead node output, we connect the ModbusRead node's first output to the
function node, as shown in Figure 35.13. Additionally, the debug window displays relevant

results related to the Debug nodes in Figure 35.13.

e 171

Coding Modbus TCP/IP for Arduino

<« €] O O 127001188 o Lo
R Flow 1 + -
ind A
[+ common firstout L
plieel 2 ModbusRead o
clive (5 sec function 1
o ® active (5 se a f
complste 2
P firstNode | 5
catch ®1122,000
secondNode
status
@ [data:[123,0, 0, 0], buffer: <Buffer 00 7b
link in)
1: @
link call
2: 8
link out E
comment a: exe
1: @x7b
| function 2: ox8
3: exe
function 4: exe
5: @xe
switch 6: @x@
v £ 3 7 exe

Figure 35.13: Connecting the ModbusRead node first output to the function node.

To input the JavaScript codes shown in Figure 35.14, we simply need to double-click on the
function node.

Edit function node

Cancel Done

& Properties a B =
¥ Name function 1 5~
£+ Setup On Start On Message On Stop
1 var msg® = {payload:msg.payload[8]}; el
2 var msgl = {payload: msg.payload[1]};

var msg2 = {payload: msg.payload[2]};
var msg3 = {payload: msg.payload[3]};
return [msgl,msgl,msg2,msg3];

Bow

0l

Figure 35.14: JavaScript codes in the "Edit function node".

In "Setup" tab of the Edit function node window, we set the outputs to four since our array
has four elements as depicted in Figure 35.15.

e 172

Chapter 35 ¢ The Modbus TCP/IP Communication using Node-RED

Delete
&+ Properties
¥ Name

1 Setup

3¢ Ouiputs

& Modules

Module name

O Enabled

Edit function node

function 1

On Start

On Message

Import as

CAMERC
~
g--
on Stop
v

Figure 35.15: Setting the Outputs as four.

By attaching two Debug nodes to the function node's outputs and after clicking on the
"Deploy" button, the results can be seen on the debug window, as illustrated in Figure

Flow 1 4% debug i &
4 ¥ all nodes = -
___ _—mmm»
function 1 :——--_.;E . 9/8/2023, 81210 AW node: firstout
[] l 0 msg.payload : number
L 8

@ active (5 sec.

@712300,0]

0, 01, buffer: <Buffer 00 7b 00 00 00 00 00 00>}

123

916/2023, 8:12:11 A node: secondout
msg.payload : number

]

9/6/2023, 8:12:15 A node: firstout
msg.payload : number

123

916/2023, 8:12:15 AM node: secondout
msg.payload : number

2]

Figure 35.16: Connecting two Debug nodes to the two outputs of the function node.

By using the Modbus Slave software, we can input an integer into address 1. Subsequently,
the debug window will display the entered integer, as depicted in Figure 35.17.

e 173

Coding Modbus TCP/IP for Arduino

Flow 1 + - 3 debug i &

TYallnodes v | @al ~

‘x..-/-\ -
._ ‘;—j ‘9/6/2023, 8:15:46 AM node: secondout

@ active (5sec.} msg.payload : number

e
i Modbus Slave - Mbslavel - H
90612023, 8:15:51 AM node: firstout

msg.payload : number

| File Edit Connection Setup Display View Window Help |

DEE&S ™ =202

123

9/8/2023, 8:15:51 AW node: secondout
000 00 00>} msg.payload : number

3456
9612023, B:15:56 AN node: firstout
msg.payload : number

123

9612023, 8:15:56 A node: secondout
msg.payload : number

3456

9612023, 8:16:01 AW node: firstout
msg.payload : number

123

9i6/2023, 8:16:01 AM node: secondout

msg.payload : number

For Help, press F1. [192.162,1.101]: 505

w
3 3456

Figure 35.17: Adding an integer in the address 1.

To showcase a 32-bit integer, you need to insert the specified JavaScript code into the "Edit
function node" window, as depicted in Figure 35.18.

Edit function node

Delete Cancel

£ Properties & B H=
% Name function 2 &~
£ Setup On Start On Message On Stop
1 var msg@ = {payload:(msg.payload[8]<<16) + msg.payload[1]} e

2 return msg@;

Figure 35.18: Adding JavaScript codes to display a 32-bit integer.

To present a 32-bit integer, we incorporate a Function node with JavaScript codes, as
illustrated in Figure 35.18. This node is then connected to a Debug node. Afterward, we
click on the Deploy button. To see the outcome on the debug window, we apply the Modbus
Slave software and include a 32-bit integer at address 0, as demonstrated Figure 35.19.

e 174

Chapter 35 ¢ The Modbus TCP/IP Communication using Node-RED

Flow 1 + - 4 debug il &
~
Tallnodes «| | @ all
>
{ s 90612023, 8:38:48 AM node: firstout
@ 0 msg.payload : number
A >

@ active (5 sec 292552705

9/6/2023, 8:36:53 AM node: firstout

msg.payload : number

P Modbus Slave - Mbslave1l - © 292552705

| File Edit Connection Setup Display View Window Help |

S EIEEEELS

962023, :36:53 AN node: firstout
msg.payload : number
00010000 a2 9d=} 292552705

9/6/2023, 8:37:03 AM node: firstout

msg.payload : number

202552705

v

>

Figure 35.19: Adding a 32-bit integer in the address 0.

For Help, press F1. [192.168.1.101%: 505

To display a float number in the Node-RED editor, you need to follow these steps: click
on the menu icon located at the top right corner, choose "Manage palette", switch to the
"Install" tab, search for "float" and locate the "node-red-contrib-float". Finally, click on the
"Install" button as shown in Figure 35.20.

User Settings

Close
- Noges Install
X | sort| |F | az | recent o]
Palette —
a float] 7i4597 X
Keyboard

& node-red-contrib-float &

Node-RED node to parse decimal and binary numbers to IEEE-754 Floating Point
Numbers

N 1.0.3 P 4ypears, 2 months ago install

Figure 35.20: Clicking on the "Install" button.

Once the "node-red-contrib-float" is installed, a new node called "toFloat" will appear in the
nodes section of the Node-RED editor. To show a float number, we place the "toFloat" node
between the "function2" and "firstout" nodes in Figure 35.19 and input a float humber at

address 0 using the Modbus Slave software. The resulting output can be seen in the debug
window, as illustrated in Figure 35.21.

e 175

Coding Modbus TCP/IP for Arduino

Flow 1 + - 4¥ debug i| &

Tallnodes v @all

OO

9/8/2023, 8:45.18 AM node: firstout

% function 1
r. -&-E msg.payload : number
L 1- I
i il ; e . m [) 456.76808537109375
= 4

9/6/2023, 8:45.23 AM node: firstout

msg.payload : number

P Modbus Slave - Mbslave1l - © 456.76808537109375

| File Edit Connection Setup Display View Window Help

DEE& ™ (2028

r43 e4 6242 0000a29d-}

v

For Help, press F1. [132.168.1.101%: 505 5

Figure 35.21: Adding a float number in the address 0.

The ModbusWrite node is a versatile tool for writing data to various types of Modbus devices,
such as PLCs, RTUs, and other industrial automation devices. It can be combined with other
Modbus nodes in Node-RED to create flexible and powerful Modbus-based applications. Our
specific task involves writing an integer to address 0 of the holding register with a Modbus
ID of 1 in the EasyModbusTCP Server Simulator, as shown in Figure 35.22. To accomplish
this, we need to implement the corresponding flows in the Node-RED editor, as depicted
in Figure 35.23. The first node, referred to as the inject node, serves as a useful tool for
testing and debugging Node-RED flows. It allows manual injection of messages into the
flow for observation of the processing. Additionally, the inject node can be used to trigger
flows at specific times or intervals, or to simulate real-world events within the flows. The
"Properties" window of the "Edit inject node" is displayed in Figure 35.24.

e 176

Chapter 35 ¢ The Modbus TCP/IP Communication using Node-RED

EasyModbusTCP Server Simulator n
Setup Info
[] _..Modbus-TCP Server Listening (Port 502).__ Move to Address m
| hittp./www. EasyModbus TCP.net
Version 2.4 . 4+ || Discrete Inputs | Cols | Input Registers | Holding Registers
é Address Value 2
Number of connected clients 1 P 12
Protocol Information Show Protocol Informations 2 0
11:01:44 14 Request from Client - Functioncode: 6 ; Starting Address: 0 Register Value: 12 K]]
11:01:44 14 Response To Client - Functioncode: 6 ; Starting Address: 0 ; Register Value: 12
4 o
5 o
6]
7 0
8 o
9 o
10]
Activated Function codes: i o
12 o
FC 01 (Read Coils) a o
FC 02 (Read Discrete Inputs)
FC 03 (Read Holding Registers) 4 o
FC 04 (Read Input Registers) 15]
FC 05 (Write Single Coil) Iy 0
FC 06 (Write Single Register)
FC 15 (Write Multiple Coils) 7 o
FC 16 (Write Mulhple Reglsnels) 18 0
R . \
FC 23 (Read/) . .
20 o
s g

Figure 35.22: Writing an integer in the address 0 of the holding register.

Flow 1 + - 4 debug i@ = &
~
TYallnodes ~| @al =

oacv.e -_, d6dcIcbed7S76419 < msg payioad : Object

value: 12

unitid: "1"

fo: 6

address: @

quantity: "1"

messageld: "64fa106727c08d22db783166"
91712023, 11:01:44 AN node: debug 2
d6dcIcbedTS76419 : msg.payload : Object
~object

address: ©

value: 12

Figure 35.23: Implementing the Modbus Write flows in the Node-RED Editor.

After selecting the msg.payload that matches the value of 12 in Figure 35.23, we proceed
by clicking the "Done" button.

e 177

Coding Modbus TCP/IP for Arduino

Editinject node
Delete Cancel
Properties - BRNE: R =i
% Name
msg. payload =+ 9% 12 %
flow.
global
% siring
% number
© boolean
{} JsON
{5 buffer
O timestamp
+a inject
¥ expression
O Inject once onds, then
$ env variable
C Repeat none msg. v

Figure 35.24: Choosing the msg.payload = 12.

To open the "Edit Modbus-Write" node and adjust the settings as shown in Figure 35.25, we
simply need to double-click on the ModbusWrite node, which is the following node.

Edit Modbus-Write node

Delete Cancel Done

1 Properties LIRS
Settings Optionals

Name modbuswrite

Unit-ld 1

FC FC 6: Preset Single Register

Address 4]

O Delay to activate input [

Server ModbusServer v I

Figure 35.25: Settings of the "Edit Modbus-Write" node.
Next, we will select the pencil icon located next to the "ModbusServer" in Figure 30.4. This

action will open the window for editing the modbus-client node, where we can make the
necessary settings depicted in Figure 35.26.

e 178

Chapter 35 ¢ The Modbus TCP/IP Communication using Node-RED

Edit Modbus-Write node = Edit medbus-client node

Delete Cancel
% Properties L JRRE]

A
Settings Queues Optionals

MName ModbusServer

Type TCP v

Host 192.166.1.101

Port 502

TCP Type DEFAULT v

Unit-1d 1

Timeout (ms) 1000

&8 Reconnect on timeout -

Figure 35.26: Settings of the "Edit modbus-client node" window.

We explore an alternative method of writing in Modbus using the function and Modbus-
Flex-Write nodes. The Modbus Flex Write node in Node-RED is a contributed node that
enables writing data to Modbus registers. It offers flexibility by allowing single-value writes
to a single register as well as multiple-value writes to multiple registers. Do not forget to
deploy your flow to apply any changes made. The Modbus Flex Write node will send the
specified write request to the Modbus server and update the corresponding registers with
the provided data. Figure 35.27 provides an overview of the flows in the Node-RED Editor.
The inject node is used solely to trigger the flow, but it can also include the value to be
written. You can see the "Edit inject node" window in Figure 35.28.

Flow 1 + - i¥ debug i &) &

s IS :
B 12 1 modbuswrite .
d Eatme X 8 b140cfbd | msg payload | Object

value: 160

TYalinodes | | @Wal

11:14:18 AN node: debug 3

unitid: 1

fc: 6

] RHECHN ——() function 1 (—— I modbusflexwrite —_ quantity: 1
h ! { d:
v @ "64fa12fa27c88d22db783167"

81712023, 11:14:18 AM node: debug 4
81253389b140cTbd : msg.payload : Object
~object

address: 1

value: 168

Figure 35.27: The overview of the flows in the Node-RED Editor.

e 179

Coding Modbus TCP/IP for Arduino

Edit inject node
Delete
1 Properties

% Name

(3 Inject once after

C Repeat none

O Enabled

seconds, then

Cancel Done

LA

Figure 35.28: The "Edit inject node" window.

Figure 35.29 illustrates the function node and the "Edit function node" window, which

contains JavaScript codes.

Edit function node
Delete
& Properties
¥ Name function 1
Setup On Start On Message On Stop
1 var fc = 6;
2 var sa = 1;
3 var addresses = 1;
4 var value = 168;
5 msg.slave ip = "192.168.1.181";
6 msg.payload = { "wvalue": value, "fc': fc, 'unitid': 1, "address’: sa, 'quantity’:
7 return msg;|

Cancel Done

a3 =

addresses

i

Figure 35.29: JavaScript codes for the function node.

For writing a 32-bit integer we have:

var fc=16;
var sa=1;
var addresses=2;
var
buf.

var

writeInt32BE(68001);

e 180

buf=Buffer.alloc(4);//create buffer

values=[(buf[0]*256+buf[1]), (buf[2]%256)+buf[3]]

Chapter 35 ¢ The Modbus TCP/IP Communication using Node-RED

msg.slave_ip="192.168.1.101";
msg.payload={"value":values , 'fc': fc, 'unitid': 1, 'address': sa , 'quantity':
addresses };

return msg;
For writing a 32-bit float we have:

var fc=16;

var sa=1;

var addresses=2;

var value=16001.5;

buf=Buffer.alloc(4);

buf.writeFloatBE(value);
//buf.writeFloatBE(16001.5);

var values=[(buf[0]*256+buf[1]), (buf[2]*256)+buf[3]]
msg.slave_ip="192.168.1.101";
msg.payload={"value":values , 'fc': fc, 'unitid': 1, 'address': sa , 'quantity':
addresses };

return msg;
For writing a 64-bit float we have:

var fc=16;

var sa=1;

var addresses=4;

var value=16001.5;

buf=Buffer.alloc(8);

buf.writeDoubleBE(value);

//buf.writeFloatBE(16001.5);

var values=[(buf[0]*256+buf[1]), (buf[2]*256)+buf[3], (buf[4]*256+buf[5]), (buf[6]*2
56)+buf[7]1];

msg.slave_ip="192.168.1.101";

msg.payload={"value":values , 'fc': fc, 'unitid': 1, 'address': sa , 'quantity':
addresses };

return msg;

When you double-click on the Modbus-Flex-Write node, the window for editing the node
called "Edit Modbus-Flex-Write" will appear, as shown in Figure 35.30.

e 181

Coding Modbus TCP/IP for Arduino

Edit Modbus-Flex-Write node

Properties

Settings Optionals
Name modbusflexwrite
Server ModbusServer

 Delay to activate input [

Cancel Done

Figure 35.30: "Edit Modbus-Flex-Write" node window settings.

When we click on the pencil icon next to the "ModbusServer" in Figure 281, it opens the
Edit modbus-client node window. In this window, we make the settings shown in Figure
35.26. Afterward, we click on the Deploy button to view the integers located at addresses
0 and 1 in the holding registers of the EasyModbusTCP Server Simulator. This is illustrated

in Figure 35.31.

EasyModbusTCP Server Simulator

Setup Info

Number of connected clients 1

-..Modbus-TCP Server Listening (Port 502)...

Move to Address |1

|
. — hittp://www.EasyModbus TCP net
. Version 2.4 o

Protocol Information Show Protocol Informations

11:14:18.02 Request from Client - Functioncode: & ; Starting Address: 1 Register Value: 160
11:14:18.02 Response To Cliert - Functioncode: 6 ; Starting Address: 1; Register Value: 160
11:01:44.14 Request from Client - Functioncode: 6 ; Starting Address: 0 Register Value: 12
11:01:44.14 Response To Client - Functioncode: 6 ; Starting Address: 0 ; Register Value: 12

Activated Function codes:

FC 01 (Read Coils)

C 02 (Read Discrete Inputs)

C 03 (Read Holding Registers)

C 04 (Read Input Registers)

C 05 (Write Single Coil)

C 06 (Write Single Register)

C 15 (Write Multiple Coils)

FC 16 (Write Multiple Registers)

FC 23 (Read/Write Multiple Registers)

Value
12
160

oololoo o olololeloaao o e alala

Input Registers | Helding Registers

~

Figure 35.31: Displaying results in the addresses 0 and 1 of the holding registers.

e 182

Chapter 35 ¢ The Modbus TCP/IP Communication using Node-RED

Flow 1 + - #¥ debug i | & | &
Yallnodes v| @all

9/7/2023, 11:35:17 AM node: debug 1

{
. d6dcBcbed7576419 < msg.payload : Object
0 active y 9.payl i

. v { value: 12, unitid: "1", fc: &,
address: @, guantity: "1" .. }
9772023, 11:35:17 AN node: debug 2
d6dccbed7576419 - msg.payload : Object

. b { address: @, value: 12 }
90772023, 11:35:42 AM node: debug 3
87253389b140cfbd : msg.payload : Object

O active .
»{ value: 16@, unitid: 1, fc: 6,
— [} x
2% Modbus Slave - Mbsl... - address: 1, quantity: 1. }

File Edit Connection Setup Display

972023, 11:35:42 AM node: debug 4
8253389b140¢fbd : msg.payload : Object

View Window Help

DEES|M 2ae

b { address: 1, value: 160 }

— v
For Help, press F1. [192.162 B

Figure 35.32: Displaying results in the holding registers of Modbus Slave software.

Additionally, it is possible to utilize the previous Modbus Slave software for showcasing the
outcomes of Modbus writing in holding registers, as depicted in Figure 35.32.

e 183

Coding Modbus TCP/IP for Arduino

Chapter 36 e Arduino, Node-RED and Blynk IoT Project

In this section, we will be discussing Blynk IoT and its many advantages. One of the main
benefits is the ability to send the dashboard to your cell phone and monitor it from there.
Additionally, Blynk allows you to set up alerts, such as email notifications, when a signal is
out of range. These features are available in the free version. Another interesting aspect is
the ability to import data from Node-RED, which we will demonstrate in this section. To get
started, you simply create a Blynk account using your email and then add a device. There
are several ways to add a device, including entering a code, scanning a QR code, or using a
template like the Quick Start template we used in our case. As shown in Figure 36.1, Figure
36.2, and Figure 36.3 respectively, you can see that the device is already set up.

<« C & https://ny3.blynk doud/dashboard/72428/globalffilter/434611 2% 00
[=
My organization - 3301UY My Devices n
B Deves 1Device = ® - o
. My Devices 1
All 1 Device name D Status Device model Lastupdated Actions
LOCATIONS Q Quickstart Template alex online 7:27 Pt Toda
Figure 36.1: Creating a new device.
New Device

Choose a way to create new device

From template Scan QR code Manual entry
00¢ o]o)
000 s
000 Ak

- create a device by fillng In simple form

Cancel

Figure 36.2: Choosing "From template”.

New Device

Create new device by filling in the Form below

Figure 36.3: Filling in the quick start template.

e 184

Chapter 36 e Arduino, Node-RED and Blynk IoT Project

Currently, there is no connectivity, making it uncertain where Node-RED will source the
data from. However, by selecting the Quickstart Template, we can access the necessary
information. In this particular scenario, the dashboard has already been established and
features a gauge and a graph, thus demonstrating it's functioning as shown in Figure 36.4.

Quickstart Template ostre
& alex [l My organization - 3301UY

O AddTag

Dashboard Timeline Devicelnfo Metadata Actions Log

Latest - 6 Hours 1Day 1Week 1Month 3 Months Custom

Chart | Integer VO

@ intager Vo

764

f‘—"‘ 7:11:00 P
anl Al L—
i @ integer V0: 557 1y \ Integer VO

Figure 36.4: The Quickstart Template dashboard.

Using our potentiometer, we successfully adjust the signal range from 0 to 1023. This
adjustment was received through email, meaning that setting it to the maximum in the
email would result in its arrival here, as depicted in Figure 36.5.

Blynk
@ sensor out of range

Figure 36.5: Arriving email for Blynk.

We have set up the sensor to receive alerts or alarms when it goes out of range, which
is quite interesting. The dashboard displays various topics and widgets that we can check
on our device. Additionally, we can also monitor and control automation settings from this
device. For example, we configured email notifications to be sent if the value of the virtual
pin falls below 100 or exceeds 1000. We received the emails successfully, and if you want
to make any changes or add new automation, you can refer to Figure 36.6 for guidance.

My Automations

New Automation

]

1 acthon

Latest: 728 P Today

Figure 36.6: "My Automations" settings section.

e 185

Coding Modbus TCP/IP for Arduino

That is when things become intriguing, as illustrated in Figure 36.7.

Figure 36.7: The Quickstart Template settings section.

In Figure 36.8, we can see a virtual pin labeled as "v0" that possesses the mentioned
attributes as indicated in this line and can be found on the web dashboard mentioned here.

Q Info Metadata Datastreams Events Automations WebDashboard Mobile Dashboard
Q searc
id Name Alias Color Pin Data Type Units. Is Raw Min Max Decimals Default Valy|
- Button Image Button Image . v String false =
[Click to copy Name
b
\nsg er VO Integer VO Vo Integer false L] 1023 - 0

Figure 36.8: Added a virtual pin, vO.

To include additional data, you can access the available options by selecting "Edit" and then
selecting "New Datastreams" as demonstrated in Figure 36.9.

Digital

Analog

\Jiu,,@'\,r.
Enumerable

Location m

Figure 36.9: Adding a new virtual pin.

e 186

Chapter 36 e Arduino, Node-RED and Blynk IoT Project

Info Metadata Datastreams Events Automations WebDashboard Mobile Dashboard

FS Widget Box Device name onine

30 widgets

Tag x
(10 Dashboard

- 6 Hours 1Day 1 Week 1 Month 3 Months Custom

Radial Gauge G I ty Chart Integer VO (v

Integer VO

Alarm and Sound G ARR

-
Figure 36.10: Adding widget box elements from web dashboard.

To add widget box elements, simply click on the "Web Dashboard" tab as depicted in Figure
36.10. In the free version, we included a graph, a gauge, and an integer value. It is worth
noting that there are additional options available for a fee. However, for a proof of concept,
we believe these options are satisfactory. If you wish to view the dashboard on your phone,
instructions on how to do so and where to download it from the Android or iOS App Store
will be provided. The installation process is straightforward, making it even more helpful,
as showed in the mobile dashboard tab. Furthermore, in the "Device Info" tab, displayed in
Figure 36.11, we can access valuable device information and create a Quickstart Template.

Quickstart Template “esine

< Back

O adamg

Dashboard ~ Timeline Devicelnfo Metadata Actions!nn
7] Click to copy Code

>

1 Device

online. 7:30 PM Today
] ® Quickstart Template

5:43 PM Today 7:20 PM Today
by alex.cortes.leal@gmail.com by alex.cortes.leal@gmail.com

4

Template ID, vice Name, and AuthToken should be declared at the

very top of the firmware code.

Figure 36.11: The "Device Info" tab.

Figure 36.12 illustrates the Node-RED flow featuring the Quickstart Template and the
installed Blynk IoT's write node.

e 187

Coding Modbus TCP/IP for Arduino

Flow 1

app event
read event

write event

set property

sync

Figure 36.12: The Quickstart Template (Blynk IoT write node) in Node-RED flow.

To add an item that is not currently in the menu, you need to select the "Manage palette"
option. Once selected, click "Install" and search for "Blynk IoT". Once you find it, click

"Install". This is depicted in Figure 36.13.

MNodes

Palette

Q. blynk
Keyboard
& node-red-contrib-biynk-apl &=
e Rt
. as

&0 node-red-contrib-blynk-bridge =
* =

%

Install

-

sort: |F

3]

Figure 36.13: Installing the Blynk IoT.

When we open the Quickstart Template in Node-RED flow, it reveals a Blynk IoT write node.
By doing so, we can access the "Edit write node" window, as depicted in Figure 36.14.

e 188

Chapter 36 e Arduino, Node-RED and Blynk IoT Project

Edit write node
Delete Cancel
& Properties & [

M Connection Quickstart Template
& Pin Mode Fixed
@ Virtual Pin 0

W Name Quickstan Template

Figure 36.14: "Edit write node" window.

Next, we need to select the pencil icon found beside the "Connection" row to access the

"Edit blynk-iot-client node" interface. Here, we will adjust the parameters as showed in
Figure 36.15.

Edit write node > Edit blynk-lot-client node
Delete Cance|
£ Properties &
¥ Name Quickstart Template
® Enabled D) (enabie this buon for caRNect 10 Diynk o Stany
Connection Advanced
AU blynk.cloud

I3
@ Auth Token kppBCGXK1_SScPgy'Ygwh]MVMdYp-HBxX

G, Template ID TMPLvE1bxUJT

The secure url of Biynk Cloud Server is:
blynk.cloud

Figure 36.15: Editing the Blynk IoT client node.

Using the "Device Info" tab in Figure 36.11, you can populate the parameters. Upon clicking
deploy in the Node-RED flow, we can then see our dashboard. In this particular scenario,

let's say we have successfully identified a matching value of 236, as depicted in Figure
36.16.

e 189

Coding Modbus TCP/IP for Arduino

' Quickstart Template osine
< Back @ : A
ale il My crganization - 3301V
5 AddTag
Dashboard Timeline Devicelnfo Metadata ActionsLog
i A \
8 1 Device 12
Latest - 6 Hours 1Day 1Week 1Month 3 Months Custom

[:l | {I) ® Quickstart Template

Chart Integer VO
4 ® integer vo 2]b

e Y }' Integer VO
96

w2 (-

Figure 36.16: Our Blynk dashboard.

Additionally, within the automations, we will be introducing a new one where the objective

is to send an email.

When
Is not between 10 and
Do this

. Send E-Mail

RECIPIENTS
alex
SUBJECT
sensor3 - Blynk

ESSAGE

sensor out of range

1000

Figure 36.17: Setting the new automation.

Furthermore, we have instructed the platform to execute the action shown in Figure
36.17 when the integer VO falls outside the range of 100 to 1000. This ensures a visually
appealing and user-friendly platform experience. Additionally, users have the convenience
of importing data from platforms such as Node-RED.

e 190

Chapter 37 « The MQTT DHT22 ESP32 and Node-RED Project

Chapter 37 ¢ The MQTT DHT22 ESP32 and Node-RED
Project

The Wokwi Simulator is an online platform that offers users the opportunity to simulate
and experiment with their Arduino and Raspberry Pi projects. It creates a virtual hardware
environment that eliminates the requirement for physical components, allowing users to
write and execute code. Through the Wokwi Simulator, users can design, prototype, debug
code, and simulate circuit components' interactions. It is an invaluable tool for individuals
interested in learning and exploring programming and electronics. We conducted a search
on the Wokwi website for the MQTT DHT22 ESP32, which yielded the following result.

https://wokwi.com/projects/374901947392501761

We go to the Node-RED dashboard and look for MQTT, and then add two MQTT input/output
nodes to the flow, as depicted in Figure 37.1.

W =) x
W New ESP32 Project - Wokwi Sim X == &8 Node-RED x| 4

€ = C @ wokwicombprojectsinew/.. & 12 % = O » O ‘ € 2 C @ bahostitd/#low/. = &« & 0O e =

WOKWT [l save = | | & shiee @ B Mode RED == Deploy ~ =

veesseses

Figure 37.1: Putting two MQTT in nodes in the flow.

Next, we locate the gauge node and incorporate two-gauge nodes into the flow, as
illustrated in Figure 37.2.

e 1901

Coding Modbus TCP/IP for Arduino

W New ESP32 Project - Wokwi Sim: X | == & Node-RED x +

&€ = C @ wokwicom/projectsinew/.. & 12 #* = @ » 0O q € =2 C @ localhost1880/#flow/... 1= # %N 0O
WOKWI [sAve ~ | | & sHige
Q gaug

~ dashboard

ESP32

vesescsece
L LI XXX 1]

Figure 37.2: Putting two-gauge nodes in the flow.

Next, we proceed to select "mqgqt in node" and adjust the parameters in the corresponding
"Edit mggt in node" window. Afterward, we complete the setup by clicking on the "Done"
button, as shown in Figure 37.3. Similarly, we repeat these configurations for the other
mqgqt in node, with the exception that the topic will be "/ThinkIOT/hum", showed in Figure
37.4.

W New E5P32 Project - Wokwi Sim. X |1 & Mode-ReD x R s

€ =2 C & wokwicom/projectsinew/.. G 12 & = © » 0O o i & 3 C @ localhostigs/Eflow/.. = % N 0O ° i
WOKWI! Bl save = | & sHare @)

Simulation

Edit mgtt in node

sketch.ino diagram json @ libraries. txt Library Manager =
Deiete Cancel Done
66 client.setCallback(callback); n
: dht, setup(DHT_PIN, DHTesp::iDHT22); =
1 s “ P % © Properties e @
}
void loop() {
] if (lclient.connected()) 4
7 reconnect(); @ Server test mosquitio.org:1883 ~ F'd
72
73 client.loop(); Action Subscribe to single topic ~
74
75 unsigned long now = 03 — P
76 if (now - lastMsg > 2000) { //perintah publish data 5 opec ThinklOTitemp
i lastMsg = now;
78 TempAndHumidity data = dht.getTempAndHumidity(); ® QoS 0 v
88 String temp = String(data.temperature, 2); # Output auto-detect (parsed JSON object, string or b ~
81 client.publish("/ThinkIOT/temp™, temp.c_str()): publish temp t
82 string hum = String(data.humidity, 1); X
a3 client.publish(™/ThinkIOT/hum”, hum.c_str()); publish hum to % Name
84

t("“Temperature: “);
(temp);

t("Humidity: ");
(hum) ;

Figure 37.3: Setting the "Edit mqqgt in node" parameters.

e 192

Chapter 37 « The MQTT DHT22 ESP32 and Node-RED Project

W New ESP32 Project - Wokwi Sim. X | T @ tode-RED x BB T2 A
€ > C (& wosicomfprojectsinewl.. G 12 % v @ R 0@ i | ¢ > C (0 bcahostiBsion. 2 & ® O @
WOKW! (|l SAVE » | | & SHARE @
e Edit mgtt in node
sketchino diagramjson @ libvanestxt Library Manager ~
. Delet Cancel

66 client.setCallback(callback); . m

w_; dht. setup(DHT_PIN, DHTesp::DHT22); & Properties AN

69 void loop() {

70 if (lclient.connected()) {

7 recormect(); @ Server testmosquitto.ong: 1883 v |,

72 }

73 client.loop(); Action Subscribe to single topic v

74

75 unsigned long now = millis(); —_ :

76 if (now - lastMsg > 2000) { //perintah publish data P ThIQTAN

77 lastMsg = now; =

8 TempAndtumidity data = dht.getTempAndHumidity(); ®Qos 0 ~

79

80 string temp = string(data.temperature, 2); & Output auto-detect (parsed JSON object, stringor b v

a1 client,publish(™/ThinkIOT/temp™, temp.c_str()); // publish temp t

82 String hum = String(data.humidity, 1);

83 client.publish("/ThinkIOT/hum", hum.c_str()); // publish hum toy % Name

84

85 Y

86 (temp);

a7 T “Humidity: "); -1

88 tln(hum);

89

% }

Figure 37.4: Setting the "Edit mqqt in node" parameters.

Next, we select the top gauge, which opens the "Edit gauge node" window. We proceed to
fill in the parameters and then click on the "Done" button, as shown in Figure 37.5.

Edit gauge node
Delete Cancel
£ Properties & BB
EiSize
= Type Gauge v
I Label Temperature

I Value format | {{value}}

I Units

Range min 0 max 50

Sectors 0 ptional 50
Fill gauge from centre. (]

> Class

W Name TEMP

Figure 37.5: Setting the "Edit gauge node" parameters.

e 193

Coding Modbus TCP/IP for Arduino

Edit gauge node

£ Properties o

58 Group [Home] ThinkiOT || 2
5 size

= Type Gauge v

I Labe Humidity

I Value format value}}

I Units

Range min 0 max 60

Colour gradient - -
Sectors 0 60

Fill gauge from centre. O]

¢/» Class

Figure 37.6: Setting the "Edit gauge node" parameters.
Next, we continue to click on the lower gauge, which will open the window for editing the
gauge node. We fill in the necessary parameters and then click on the "Done" button, as

illustrated in Figure 37.6. We set up connections between the mqqt in nodes and their
corresponding gauges, and then click on the "Deploy" button, as displayed in Figure 37.7.

b

@ “""|.]

[ThinkiOT/temp

e
ThinkIOTrhum
Humidity | |

Figure 37.7: Clicking on the "Deploy" button.

Once Node-RED is deployed, we can proceed to run the Wokwi simulator. To find the
dashboard, we need to click on the search icon located at the top right corner, as shown in
Figure 37.8.

e 194

Chapter 37 « The MQTT DHT22 ESP32 and Node-RED Project

it debug i @| % ~
i Information
& Help

TR0

o 3§ Debug messages

4,

5
reoz @ Context Data
L
“ Ll Dashbogrd
4,5 h@

Figure 37.8: Clicking on "Dashboard" icon.

& Configuration nodes

Next, we open the gauge view window by clicking on the icon shown in Figure 37.9 and
Figure 37.10 respectively after selecting the "Theme" tab.

i dashboard i) % v
Layout = Sie Theme _ﬁ

Tabs & Links a | v | #ub | +ink
~ B Home
« B ThinkiOT
[l Humidity
TEMP

Figure 37.9: Clicking on the icon after the "Theme" tab.

B Node-R X = NodeRl X 4 il . 2| e

€ 3 C Obahostit®pu. @ 2 * » OO :

Home

ThinklOT

Humidity

I

L\32.5

Temperature

' 1.1
%

Figure 37.10: The gauges data view.

Hence, by following the approach explained in this section, we can grasp the procedure to
showcase data through the MQTT protocol within the Node-RED framework.

e 195

Coding Modbus TCP/IP for Arduino

Appendix
MgsModbus.cpp:

#include "MgsModbus.h"
// For Arduino 1.0
EthernetServer MbServer (MB_PORT) ;
EthernetClient MbmClient;
//#define DEBUG
MgsModbus: :MgsModbus ()
{
}
[[xxxkkxxkkkxxkkkxkkkx Send data for ModBusMaster xkkxkkkkkkkkxkkx
void MgsModbus::Req(MB_FC FC, word Ref, word Count, word Pos)
{
MbmFC = FC;
byte ServerIp[] = {0,0,0,0};
ServerIp[0] = remServerIP[0];
ServerIp[l] = remServerIP[1];
ServerIp[2] = remServerIP[2];
ServerIp[3] = remServerIP[3];

MbmByteArray[0] = 0; // ID high byte
MbmByteArray[1] = 1; // ID low byte
MbmByteArray[2] = 0; // protocol high byte
MbmByteArray[3] = 0; // protocol low byte
MbmByteArray[5] = 6; // Lenght low byte;
MbmByteArray[4] = 0; // Lenght high byte
MbmByteArray[6] = 1; // unit ID

MbmByteArray[7] = FC; // function code
MbmByteArray[8] = highByte(Ref);
MbmByteArray[9] = lowByte(Ref);
[[**Kkkkkxxxkxxk*kk*kkxx Read Coils (1) & Read Input discretes (2)
kkkkkkkkkkkkkkkkkkkkkkx
if(FC == MB_FC_READ_COILS || FC == MB_FC_READ_DISCRETE_INPUT) {
if (Count < 1) {Count = 1;}
if (Count > 125) {Count = 2000;}
MbmByteArray[10] = highByte(Count);
MbmByteArray[11] = lowByte(Count);
}
|| *xxkkkkkkkxxxxxx*x*x Read Registers (3) & Read Input registers (4)
khkkkkkkkkkkkkkkkkk
if(FC == MB_FC_READ_REGISTERS || FC == MB_FC_READ_INPUT_REGISTER) {
if (Count < 1) {Count = 1;}
if (Count > 125) {Count = 125;}
MbmByteArray[10] = highByte(Count);
MbmByteArray[11] = lowByte(Count);

e 196

Appendix

}
[[xxxFkkrkkkkkkkxkkkx Write Coil (5) *kkkkkkkkkkkkkkkkkkkkk
if(MbmFC == MB_FC_WRITE_COIL) {
if (GetBit(Pos)) {MbmByteArray[10] = OxFF;} else {MbmByteArray[10] = 0;} //
OxFF coil on 0x00 coil off
MbmByteArray[11] = 0; // always zero
}
[[xrxFkkkkkkkkkkxkkkx Write Register (6) *kkkkkkkkkkkkkkkkk
if(MbmFC == MB_FC_WRITE_REGISTER) {
MbmByteArray[10] = highByte(MbData[Pos]);
MbmByteArray[11] = lowByte(MbData[Pos]);
}
[[xrxFkkkkkkkkkkxkkkx Write Multiple Coils (15) *kxskokkkskokkkskokkkkkkkkkk
// not fuly tested
if(MbmFC == MB_FC_WRITE_MULTIPLE_COILS) {
if (Count < 1) {Count = 1;}
if (Count > 800) {Count = 800;}
MbmByteArray[10] = highByte(Count);
MbmByteArray[11] = lowByte(Count);
MbmByteArray[12] = (Count + 7) /8;
MbmByteArray[4] = highByte(MbmByteArray[12] + 7); // Lenght high byte
MbmByteArray[5] = lowByte(MbmByteArray[12] + 7); // Lenght low byte;
for (int i=0; i<Count; i++) {
bitWrite (MbmByteArray[13+(i/8)],1-((i/8)*8),GetBit(Pos+1i));

}
[[xrxFkkkkkkkkkkxkkkx Write Multiple Registers (16) Hkxskokkkskokkkkokkkk ok
if(MbmFC == MB_FC_WRITE_MULTIPLE_REGISTERS) {
if (Count < 1) {Count = 1;}
if (Count > 100) {Count = 100;}
MbmByteArray[10] = highByte(Count);
MbmByteArray[11] = lowByte(Count);
MbmByteArray[12] = (Count*2);
MbmByteArray[4] highByte(MbmByteArray[12] + 7); // Lenght high byte
MbmByteArray[5] = lowByte(MbmByteArray[12] + 7); // Lenght low byte;
for (int i=0; i<Count;i++) {
MbmByteArray[(i*2)+13] = highByte (MbData[Pos + i]);
MbmByteArray[(i*2)+14] = lowByte (MbData[Pos + i]);

}
[] KKK KKK KKKKKK KKK KhKk 27 KKK KKKk ok ok k kK& &Kk kK
if (MbmClient.connect(ServerIp,502)) {
#ifdef DEBUG
Serial.println("connected with modbus slave");
Serial.print("Master request: ");
for(int i=0;1i<MbmByteArray[5]+6;i++) {

e 197

Coding Modbus TCP/IP for Arduino

if (MbmByteArray[i] < 16){Serial.print("0");}
Serial.print(MbmByteArray[i],HEX);
if (i != MbmByteArray[5]+5) {Serial.print(".");} else {Serial.println();}
}
#endif
for(int i=0;i<MbmByteArray[5]+6;i++) {
MbmClient.write(MbmByteArray[i]);
}
MbmCounter = 0;
MbmByteArray[7] = 0;
MbmPos = Pos;
MbmBitCount = Count;
} else {
#ifdef DEBUG
Serial.println("connection with modbus master failed");
#endif
MbmClient.stop();

}

[[xxxkkxxkkkxkkkxkkxkx Recieve data for ModBusMaster xxkkxkkkkkkkxxkk
void MgsModbus: :MbmRun ()
{

[[xxFkkxkkkxkkkxkkkxx Read from socket xxkkxxkkkkkkkkkk
while (MbmClient.available()) {
MbmByteArray [MbmCounter] = MbmClient.read();
if (MbmCounter > 4) {
if (MbmCounter == MbmByteArray[5] + 5) { // the full answer is recieved
MbmClient.stop();
MbmProcess () ;
#ifdef DEBUG
Serial.println("recieve klaar");

#endif
}
}
MbmCounter++;
}

}
void MgsModbus: :MbmProcess()
{

MbmFC = SetFC(int (MbmByteArray[7]));
#ifdef DEBUG
for (int i=0;i<MbmByteArray[5]+6;i++) {
if(MbmByteArray[i] < 16) {Serial.print("0");}
Serial.print(MbmByteArray[i],HEX) ;
if (i != MbmByteArray[5]+5) {Serial.print(".");
} else {Serial.println();}

e 198

Appendix

}
#endif
[[**KkKkkkkxxxxxxxk*** Read Coils (1) & Read Input discretes (2)
khkkkkhkkhkkkkkkhkkkkkkkkk
if(MbmFC == MB_FC_READ_COILS || MbmFC == MB_FC_READ_DISCRETE_INPUT) {
word Count = MbmByteArray[8] * 8;
if (MbmBitCount < Count) {
Count = MbmBitCount;
}
for (int i=0;i<Count;i++) {
if (i + MbmPos < MbDatalLen * 16) {
SetBit(i + MbmPos,bitRead(MbmByteArray[(i/8)+9],i-((i/8)*8)));

}
[[***xKkkxkxkkxkkxk*x*x Read Registers (3) & Read Input registers (4)
khkkkkkkkkkkkkkkkkk

if(MbmFC == MB_FC_READ_REGISTERS || MbmFC == MB_FC_READ_INPUT_REGISTER) {

word Pos = MbmPos;

for (int i=0;i<MbmByteArray[8];i=1+2) {

if (Pos < MbDatalLen) {
MbData[Pos] = (MbmByteArray[i+9] * 0x100) + MbmByteArray[i+1+9];

Pos++;

}

[[xxxFkrkKkkkkkkxkkkkx Write Coil (5) *kkkkkkkkkkkkkkkkkkkkk
if(MbmFC == MB_FC_WRITE_COIL){

}

[[xrxFkkkkkkkkkkxkkkx Write Register (6) *kkkkkkkkkkkkkkkkk
if(MbmFC == MB_FC_WRITE_REGISTER){

}

[[xrxFkkkkkkkkkkxkkkx Write Multiple Coils (15) *kxskokkkskokkkskokkkkkkkkkk
if(MbmFC == MB_FC_WRITE_MULTIPLE_COILS){
}

[[xrxFkkkkkkkkkkxkkkx Write Multiple Registers (16) Hkxskokkkskokkkkokkkk ok
if(MbmFC == MB_FC_WRITE_MULTIPLE_REGISTERS){
}

}

[[xxxkkxkkkxkkkxkkxx Recieve data for ModBusSlave kxxkkkxkkkxkkkxkk
void MgsModbus: :MbsRun()
{

[[*xxkKkkxkxkkkxkkkkxkkkx Read from socket *xxkkxxkkkkkkkkx
EthernetClient client = MbServer.available();
if(client.available())

{

e 199

Coding Modbus TCP/IP for Arduino

delay(10);
int i = 0
while(client.available())
{
MbsByteArray[i] = client.read();
i+t
}
MbsFC = SetFC(MbsByteArray[7]); //Byte 7 of request 1is FC
}
int Start, WordDatalLength, ByteDatalLength, CoilDatalLength, MessagelLength;
[[xxFkkxkKkkxxkkkxkkkxx Read Coils (1 & 2) *kkkkkkkkkkkkkkkkkkkkk
if(MbsFC == MB_FC_READ_COILS || MbsFC == MB_FC_READ_DISCRETE_INPUT) {
Start = word(MbsByteArray[8],MbsByteArray[9]);
CoilDatalLength = word(MbsByteArray[10],MbsByteArray[11]);
ByteDatalLength = CoilDatalLength / 8;
if(ByteDataLength * 8 < CoilDatalLength) ByteDatalLength++;
CoilDatalLength = ByteDatalLength x 8;
MbsByteArray[5] = ByteDatalLength + 3; //Number of bytes after this one.
MbsByteArray[8] = ByteDatalLength; //Number of bytes after this one (or
number of bytes of data).
for(int i = 0; i < ByteDatalLength ; i++)

{
MbsByteArray[9 + i] = 0; // To get all remaining not written bits zero
for(int j = 0; j < 8; j++)
{
bitWrite(MbsByteArray[9 + 1], j, GetBit(Start + i * 8 + j));
}
}

Messagelength = ByteDatalLength + 9;
client.write(MbsByteArray, Messagelength);
MbsFC = MB_FC_NONE;
}
[[*x*KkKkkkkkkkkkxxkkxx Read Registers (3 & 4) xkkkxkkkkkkkkkkkxk
if(MbsFC == MB_FC_READ_REGISTERS || MbsFC == MB_FC_READ_INPUT_REGISTER) {
Start = word(MbsByteArray[8],MbsByteArray[9]);
WordDatalLength = word(MbsByteArray[10],MbsByteArray[11]);
ByteDatalLength = WordDatalLength * 2;
MbsByteArray[5] = ByteDatalLength + 3; //Number of bytes after this one.
MbsByteArray[8] = ByteDatalLength; //Number of bytes after this one (or
number of bytes of data).
for(int i = 0; i < WordDatalLength; i++)
{

MbsByteArray[9 + i * 2] highByte(MbData[Start + i]);
MbsByteArray[10 + i x 2] = TlowByte(MbData[Start + 1i]);

}
Messagelength = ByteDatalength + 9;

e 200

Appendix

}

client.write(MbsByteArray, Messagelength);
MbsFC = MB_FC_NONE;

[[xxxFkkrkKkkkkkkxkkkx Write Coil (5) *kkkkkkkkkkkkkkkkkkkkk

if(MbsFC == MB_FC_WRITE_COIL) {

}

Start = word(MbsByteArray[8],MbsByteArray[9]);

if (word(MbsByteArray[10],MbsByteArray[11]) == OxFF00){SetBit(Start,true);}
if (word(MbsByteArray[10],MbsByteArray[11]) == 0x0000){SetBit(Start,false);}

MbsByteArray[5] = 2; //Number of bytes after this one.
Messagelength = 8;

client.write(MbsByteArray, Messagelength);

MbsFC = MB_FC_NONE;

[[xrxFkkkkkkkkkkxkkkx Write Register (6) *kkkkkkkkkkkkkkkkk

if(MbsFC == MB_FC_WRITE_REGISTER) {

}

Start = word(MbsByteArray[8],MbsByteArray[9]);
MbData[Start] = word(MbsByteArray[10],MbsByteArray[11]);
MbsByteArray[5] = 6; //Number of bytes after this one.
Messagelength = 12;

client.write(MbsByteArray, Messagelength);

MbsFC = MB_FC_NONE;

[[xrxFkkkkKkkkkkkxkkkx Write Multiple Coils (15) *kxskokkkskokkkskokkkkkkkkkk

if(MbsFC == MB_FC_WRITE_MULTIPLE_COILS) {

}

Start = word(MbsByteArray[8],MbsByteArray[9]);
CoilDatalLength = word(MbsByteArray[10],MbsByteArray[11]);
MbsByteArray[5] = 6;
for(int i = 0; i < CoilDataLength; i++)
{
SetBit(Start + i,bitRead(MbsByteArray[13 + (i/8)]1,i-((i/8)*8)));
}
Messagelength = 12;
client.write(MbsByteArray, Messagelength);
MbsFC = MB_FC_NONE;

[[xrxFkkkkkkkkkkxkkkx Write Multiple Registers (16) Hkxskokkkskokkkkokkkk ok
if(MbsFC == MB_FC_WRITE_MULTIPLE_REGISTERS) {

21);

Start = word(MbsByteArray[8],MbsByteArray[9]);
WordDatalLength = word(MbsByteArray[10],MbsByteArray[11]);
ByteDatalLength = WordDatalLength * 2;

MbsByteArray[5] = 6;

for(int i = 0; i < WordDatalLength; i++)

{

MbData[Start + i] = word(MbsByteArray[13 + i % 2],MbsByteArray[14 + i x

}

e 201

Coding Modbus TCP/IP for Arduino

Messagelength = 12;
client.write(MbsByteArray, Messagelength);
MbsFC = MB_FC_NONE;

}
[] K HFkkk kKKK KK KKK kkk 27 Kk ok kokok ok ok ok k kK ok ok ok ok ok ok
MB_FC MgsModbus: :SetFC(int fc)
{
MB_FC FC;
FC = MB_FC_NONE;
if(fc == 1) FC = MB_FC_READ_COILS;
if(fc == 2) FC = MB_FC_READ_DISCRETE_INPUT;
if(fc == 3) FC = MB_FC_READ_REGISTERS;
if(fc == 4) FC = MB_FC_READ_INPUT_REGISTER;
if(fc == 5) FC = MB_FC_WRITE_COIL;
if(fc == 6) FC = MB_FC_WRITE_REGISTER;
if(fc == 15) FC = MB_FC_WRITE_MULTIPLE_COILS;
if(fc == 16) FC = MB_FC_WRITE_MULTIPLE_REGISTERS;
return FC;

}
word MgsModbus: :GetDatalLen()
{
return MbDatalen;
}
boolean MgsModbus: :GetBit(word Number)
{

int ArrayPos = Number / 16;
int BitPos = Number - ArrayPos * 16;
boolean Tmp = bitRead(MbData[ArrayPos],BitPos);
return Tmp;
}
boolean MgsModbus: :SetBit(word Number,boolean Data)
{
int ArrayPos = Number / 16;
int BitPos = Number - ArrayPos * 16;
boolean Overrun = ArrayPos > MbDatalLen * 16; // check for data overrun
if (!Overrun){
bitWrite(MbData[ArrayPos],BitPos,Data);
}

return Overrun;

e 202

Appendix

MgsModbus.h:

/*

MgsModbus.h - an Arduino library for a Modbus TCP master and slave.

V-0.1.1 Copyright (C) 2013 Marco Gerritse

written and tested with Arduino 1.0

This program 1is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program 1is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the 1implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

For this library the following library 1is used as start point:

[1] Mudbus.h - an Arduino library for a Modbus TCP slave.
Copyright (C) 2011 Dee Wykoff
[2] Function codes 15 & 16 by Martin Pettersson

The following references are used to write this library:

[3] Open Modbus/Tcp specification, Release 1.0, 29 March 1999
By Andy Swales, Schneider Electric

[4] Modbus application protocol specification V1.1b3, 26 april 202
From http:/www.modbus.org

External software used for testing:

[5] modpoll - www.modbusdriver.com/modpoll.html

[6] ananas - www.tuomio.fi/ananas

[7] mod_rssim - www.plcsimulator.org

[8] modbus master - www.cableone.net/mblansett/

This library use a single block of memory for all modbus data (mbDatal[] array).
The same data can be reached via several modbus functions, either via a 16 bit
access

or via an access bit. The length of MbData must at least 1.

For the master the following modbus functions are implemented: 1, 2, 3, 4, 5,
6, 15, 16

For the slave the following modbus functions are implemented: 1, 2, 3, 4, 5, 6,
15, 16

The 1internal and external addresses are 0 (zero) based

V-0.1.1 2013-06-02

bugfix

V-0.1.0 2013-03-02

initinal version
*/

#include "Arduino.h"
#include <SPI.h>

e 203

Coding Modbus TCP/IP for Arduino

#include <Ethernet.h>

#ifndef MgsModbus_h

#define MgsModbus_h

#define MbDatalLen 30 // length of the MdData array
#define MB_PORT 502

enum MB_FC {
MB_FC_NONE =0
MB_FC_READ_COILS =1
MB_FC_READ_DISCRETE_INPUT =2
MB_FC_READ_REGISTERS = 3,
MB_FC_READ_INPUT_REGISTER =4
MB_FC_WRITE_COIL =5
MB_FC_WRITE_REGISTER =6
MB_FC_WRITE_MULTIPLE_COILS = 15,
MB_FC_WRITE_MULTIPLE_REGISTERS = 16
s
class MgsModbus
{
public:
// general
MgsModbus () ;
word MbData[MbDatalLen]; // memory block that holds all the modbus user data
boolean GetBit(word Number);
boolean SetBit(word Number,boolean Data); // returns true when the number is 1in
the MbData range
// modbus master
void Req(MB_FC FC, word Ref, word Count, word Pos);
void MbmRun();
IPAddress remSlaveIP;
byte remServerIP[4];
// modbus slave
void MbsRun();
word GetDatalLen();
private:
// general
MB_FC SetFC(int fc);
// modbus master
uint8_t MbmByteArray[260]; // send and recieve buffer
MB_FC MbmFC;
int MbmCounter;
void MbmProcess();
word MbmPos;
word MbmBitCount;
//modbus slave
uint8_t MbsByteArray[260]; // send and recieve buffer

e 204

Appendix

MB_FC MbsFC;
1
#endif

e 205

Coding Modbus TCP/IP for Arduino

References
How to Program an Arduino as a Modbus TCP/IP Client & Server from Emile Ackbarali

https://www.udemy.com/course/how-to-program-an-arduino-as-a-modbus-tcp-
client-server/

The modbus-arduino library
https://github.com/andresarmento/modbus-arduino

The Modbus Library
https://myarduinoprojects.com/modbus.html

Arduino & Modbus Protocol
https://docs.arduino.cc/learn/communication/modbus

Arduino-Modbus Tutorials
https://arduinogetstarted.com/tutorials/arduino-modbus

Writing Modbus Data with Node-Red
https://stevesnoderedguide.com/modbus-writing-data

Modbus RTU TCP/IP on Node-RED (16bit, 32bit and floating data)
https://youtu.be/uillyhwBoEU?si=xVtQ8AgTA1YIxYOo

Node-RED - Modbus TCP - Comment réaliser une application Client/Serveur - Partie 1/2
https://youtu.be/WcOsINsHbfw?si=WQ0_I-0ga3nI8pAZY

Node RED - Modbus TCP - Comment réaliser une application Client/Serveur - Partie 2/2 -
Home I/0

https://youtu.be/Bmpm52wCoQI?si=dsQZ8LF39m4mCIMe
Communication between two Arduino's

https://www.circuits-diy.com/communication-between-two-arduino/

e 206

Index

Index

A

analogRead
Animation types"
API key

Arduino IDE

B

baud rate
Blynk app
Blynk IoT
Blynk library
Boolean

C

CAN bus Shield

CATS cable
CheckForDatachange
CheckForDataChange
coil register addresses

D

dashboard

Deploy

device/temp

DHT11 sensor
DisplayCurrentValues
DNS and IP address

E

EasyModbusTCP Server Simulator
Edit Modbus-Write
ESP8266
Ethernet/ESP8266
Ethernet hub

Ethernet Network Hub
Ethernet port

Ethernet Shield
Ethernet Shield W5100
External Power Supply

F
Firefox

149
122
160

16

159
129
188
136

58

12
34
60
110

186
194
152
140

32
103

182
178
130
156

15

15

129

10

163

G

Google Chrome

H
Hello World!
HTTP protocol

I

IE general
iOS App Store
IPv4 address

J
JavaScript

L

libraries

Library Manager
LinearScaling function
LM35

LM35 sensor

Local Area Connection

M

MAC address
Manage palette
MATLAB
mb.config(Mac, IP)
MbmRun
mb.task()
MgsModbus
MgsModbus.cpp
MgsModbus.h
MgsModbus.zip
Modbus

Modbus Arduino master

Modbus Flex Write node

ModbusIP

ModbusIP.h
ModbusRead

Modbus RS485
Modbus Slave software
Modbus TCP client

Modbus TCP communication

149

26
160

114
187
167

174

36
136
127
100
149

42

39
188
157

39
82
40, 52
72
18
18
18

18
179
37
37
170

174

17
13

e 207

Coding Modbus TCP/IP for Arduino

Modbus TCP/IP

Modbus TCP server library
modscan32
modsim32.exe

MQTTLens

MQTT library

MQTT protocol

MQTT server

N
Node-RED
Notepad++

P
Peltier module
PLC

Poller()

polling register
Profibus Shield
ProWORX
pump_cl
PupSubClient

Q

Quickstart Template

R

Raspberry Pi)
read coil
R145 LAN
RPM

S

SCADA
Serial02

SetBit function
Sharing Center
SIMATIC HMI
sketch

SPI.h libraries
SSID

subnet

T
tank level
tanklevel_ir

e 208

17
19
20
149
142
142
145

165
47

100
24
82
53

114
63
142

185

130
90
138
51

100
29
121
41
113
27
37
158
80

29
37

TCPclient.write() 99
TCP connection 47
TCP/IP 8
TCP/1IPv4 42
test.mosquitto.org 145
ThingSpeak.h 160
TIA Portal 113
TIA Portal software 108
TTL level 10
TX and RX 12
\"

valvepos_old variables 59
VFD speed 49
vfdspeed_hr 50
virtual COM port 21
w

WinCC SCADA 108
Wokwi Simulator 191

€ lektorbooks

Coding Modbus
TCP/IP for Arduino

This comprehensive guide unlocks the power of Modbus TCP/IP commu-
nication with Arduino. From the basics of the Modbus protocol right up
to full implementation in Arduino projects, the book walks you through
the complete process with lucid explanations and practical examples.

Learn how to set up Modbus TCP/IP communication with Arduino for
seamless data exchange between devices over a network. Explore different
Modbus functions and master reading and writing registers to control
your devices remotely. Create Modbus client and server applications
to integrate into your Arduino projects, boosting their connectivity and
automation level.

With detailed code snippets and illustrations, this guide is perfect for
beginners and experienced Arduino enthusiasts alike. Whether you're
a hobbyist looking to expand your skills or a professional seeking to
implement Modbus TCP/IP communication in your projects, this book
provides all the knowledge you need to harness the full potential of Modbus
with Arduino.

Projects covered in the book:

> TCP/IP communication between two Arduino Uno boards

> Modbus TCP/IP communication within the Node-RED environment
> Combining Arduino, Node-RED, and Blynk loT cloud

> Interfacing Modbus TCP/IP with WinCC SCADA to control sensors
> Using MQTT protocol with Ethernet/ESP8266

» Connecting to ThingSpeak loT cloud using Ethernet/ESP8266

(>)lektor

design » share > earn

Majid Pakdel, born in 1981 in
Mianeh, Iran, has a PhD in Electrical
Engineering and an MS in Computer
Engineering focusing on Al and
Robotics. He has published

20+ papers and 4 books. He was

a visiting PhD student at Aalborg
University in Energy Technology
from 2015-2016.

Elektor International Media
www.elektor.com

I|S|BN| 9|7|8|389|5?i)|6|)1|4||5
9 783895|766 145

	Search…
	Coding Modbus TCP/IP for Arduino
	All rights reserved
	Contents
	Preface

	1 • Introduction
	2 • Hardware
	3 • The Arduino Uno
	4 • Ethernet Shield for Arduino Uno
	5 • Network Connection Overview
	6 • Setting up the Hardware
	7 • Arduino Programming Software
	8 • Modbus Libraries
	9 • Modscan32 and Modsim32
	10 • The Programming Software Arduino IDE
	11 • Testing Serial Communication
	12 • Displaying the Value of a Variable using Serial Communication
	13 • Additional Code to Support the TCP Server Operation
	14 • Adding Code to Implement the Modbus TCP Server
	15 • Last Change Before Running the Program
	16 • Running the Arduino Modbus TCP Server Program
	17 • Adding Code to Read a Holding Register
	18 • Adding Code to Read an Input Status
	19 • Adding Code to Read a Coil
	20 • Understanding the Modbus TCP Client Task
	21 • Configuring Modbus TCP Client Library in the Arduino IDE
	22 • Removing the Modbus TCP Server Code from the Program
	23 • Setup Codes to Support the TCP Client Task
	24 • Writing Codes to Poll a Single Register in Modbus TCP Server
	25 • Testing the Modbus TCP Client Program
	26 • Writing Codes to Read the other Modbus Register Types
	27 • Testing the Modbus TCP Client Program
	28 • The TCP/IP communication between two Arduino Uno boards
	29 • Modbus TCP/IP Temperature Control using WinCC SCADA
	30 • Creating SCADA Project with WinCC
	31 • The Ethernet and Blynk Project
	32 • Temperature/Humidity Sensor, Ethernet and Blynk Project
	33 • MQTT Protocol with Ethernet/ESP8266 Project
	34 • ThingSpeak IoT Cloud with Ethernet/ESP8266
	35 • The Modbus TCP/IP Communication using Node-RED
	36 • Arduino, Node-RED and Blynk IoT Project
	37 • The MQTT DHT22 ESP32 and Node-RED Project
	Appendix
	MgsModbus.cpp
	MgsModbus.h

	References
	Index

