
MISRA C:2012 Amendment 2
Updates for ISO/IEC 9899:2011
Core functionality
February 2020

First published February 2020 by HORIBA MIRA Limited
Watling Street
Nuneaton
Warwickshire
CV10 0TU
UK

www.misra.org.uk

© HORIBA MIRA Limited, 2020.

“MISRA”, “MISRA C” and the triangle logo are registered trademarks owned by HORIBA MIRA Ltd, held
on behalf of the MISRA Consortium. Other product or brand names are trademarks or registered
trademarks of their respective holders and no endorsement or recommendation of these products
by MISRA is implied.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical or photocopying, recording or
otherwise without the prior written permission of the Publisher.

ISBN 978-1-906400-25-5 PDF

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

MISRA C:2012 Amendment 2
Updates for ISO/IEC 9899:2011
Core functionality
February 2020

i

MISRA Mission Statement

We provide world-leading, best practice guidelines for the safe and secure application of both
embedded control systems and standalone software.

MISRA is a collaboration between manufacturers, component suppliers and engineering
consultancies which seeks to promote best practice in developing safety- and security-related
electronic systems and other software-intensive applications. To this end, MISRA publishes
documents that provide accessible information for engineers and management, and holds events to
permit the exchange of experiences between practitioners.

Disclaimer

Adherence to the requirements of this document does not in itself ensure error-free robust software or
guarantee portability and re-use.

Compliance with the requirements of this document, or any other standard, does not of itself confer
immunity from legal obligations.

ii

Foreword

An updated edition of the C Standard, commonly referred to as “C11”, was released just as
MISRA C:2012 was being prepared for publication, meaning it arrived too late for the MISRA C
Working Group to take it into consideration.

As the adoption of C11 has become more widespread, the MISRA C Working Group have decided
that it is now time to address this new edition of the C Standard, support for which will be
implemented by means of a series of amendments to MISRA C:2012.

This document amends MISRA C:2012 as required to introduce support for ISO/IEC 9899:2011.
Subsequent amendments will be used to introduce specific guidance for the features introduced by
ISO/IEC 9899:2011.

In the three years since its publication, the additional guidance provided by MISRA Compliance has
been increasingly adopted. The MISRA C Working Group have decided that now is the time to
upgrade this guidance from optional to be an integral part of the MISRA C lifecycle. Therefore, this
document amends MISRA C:2012 to do that.

We trust that this amendment will be welcomed by the community at large, and will offer confidence
to projects and organizations who have held off migrating to C11.

Andrew Banks FBCS CITP
Chairman, MISRA C Working Group

iii

Acknowledgements

The MISRA consortium would like to thank the following individuals for their significant contribution
to the writing of this document:

Fulvio Baccaglini Perforce

Andrew Banks LDRA Ltd.

Jill Britton Perforce

Chris Tapp LDRA Ltd. and Keylevel Consultants Ltd.

Liz Whiting LDRA Ltd.

The MISRA consortium also wishes to acknowledge contributions from the following members of the
MISRA C Working Group during the development and review process:

Roberto Bagnara BUGSENG and University of Parma

Dave Banham Rolls-Royce plc

Gerlinde Kettl Vitesco Technologies GmbH

Gavin McCall Visteon Engineering Services Ltd.

The MISRA consortium also wishes to acknowledge contributions from the following individuals
during the development and review process:

David Ward HORIBA MIRA Ltd.

DokuWiki was used extensively during the drafting of this document. Our thanks go to all those
involved in its development.

This document was typeset using Open Sans. Open Sans is a trademark of Google and may be
registered in certain jurisdictions. Digitized data copyright © 2010–2011, Google Corporation.
Licensed under the Apache License, Version 2.0.

iv

Contents

1 Overview 1
1.1 Applicability 1
1.2 C language updates 1
1.3 Embodiment of MISRA Compliance 2
1.4 Future directions 2

2 Amendments 3
2.1 Section 1 — The vision 3
2.2 Section 3 — Tool selection 4
2.3 Section 4 — Prerequisite knowledge 4
2.4 Section 5 — Adopting and using MISRA C 4
2.5 Section 6.2.2 — Required guidelines 4
2.6 Section 6.5 — Decidability of rules 4
2.7 Section 6.9 — Presentation of guidelines 5
2.8 Section 6.10.1 — ISO C portability issue references 5
2.9 Section 7 — Directives 5
2.10 Section 8 — Rules 7
2.11 Section 9 — References 18
2.12 Appendix A — Summary of guidelines 19
2.13 Appendix B — Guideline attributes 19
2.14 Appendix C — Type safety issues with C 19
2.15 Appendix D — Essential types 19
2.16 Appendix F — Process and tools checklist 20
2.17 Appendix G — Implementation-defined behaviour checklist 20
2.18 Appendix H.1 — Undefined behaviour 23
2.19 Appendix H.2 — Critical Unspecified behaviour 31
2.20 Appendix I — Example Deviation Record 33

3 References 34

v

1 Overview

1.1 Applicability

This amendment is compatible with either:

1. MISRA C:2012 (3rd Edition, 1st Revision) [4], or

2. MISRA C:2012 (3rd Edition) [1] as corrected and amended by:

▬ MISRA C:2012 Technical Corrigendum 1 [2], and

▬ MISRA C:2012 Amendment 1 [3]

1.2 C language updates

This document amends MISRA C:2012 [4] to reference ISO/IEC 9899:2011 [6] with the effect that:

1. ISO/IEC 9899:2011 [6] is now supported by MISRA C:2012 [4].

2. When using ISO/IEC 9899:2011 [6], the following features may be used subject to restrictions
within the Guidelines:

▬ Additional floating-point characteristic macros (float.h)

▬ Unicode characters and strings (uchar.h)

▬ Static assertions

▬ Anonymous structures and unions (note that use of unions violates Rule 19.2)

▬ Support for opening files for exclusive access

▬ aligned_alloc (note that use violates Dir 4.12 and Rule 21.3)

▬ at_quick_exit, quick_exit (note that use of quick_exit violates Rule 21.8)

▬ timespec_get (note that use violates Rule 21.10)

3. When using ISO/IEC 9899:2011 [6], use of the following features is prohibited without the
support of a deviation against Rule 1.4:

▬ Type generic expressions

▬ No-return functions

▬ Support for multiple threads of execution (stdatomic.h, threads.h)

▬ Alignment of objects (stdalign.h)

▬ Bounds-checking interfaces

Notes:

1. ISO/IEC 9899:2018 [7] incorporates corrigenda applicable to ISO/IEC 9899:2011 [6]. As such,
it is functionally equivalent to ISO/IEC 9899:2011 [6] and is therefore also supported through
this amendment.

1

2. References to numbered sections within the various editions of the C Standard have been
removed by this amendment to make the wording applicable to future editions (where the
numbering may change) without the need for additional changes.

1.3 Embodiment of MISRA Compliance

MISRA Compliance [8] (first released in 2016) introduced a more precise specification of the
requirements that need to be satisfied when making a claim of compliance with MISRA C. Adoption of
MISRA Compliance was optional for previous editions of MISRA C as they defined their own
compliance requirements. This amendment removes the integrated compliance requirements and
makes the adoption of MISRA Compliance mandatory.

1.4 Future directions

It is a long-term objective for MISRA C to provide explicit guidance for the avoidance of all instances
of undefined and critically unspecified behaviour. For this reason, features that are initially permitted
without the support of specific guidelines may be subject to restrictions in the future.

Subsequent amendments will introduce specific guidelines to cover the features that are prohibited
by Rule 1.4, supporting their use through the introduction of guidance that must be followed to avoid
any undefined or unspecified behaviour.

Section 1: O
verview

2

2 Amendments

2.1 Section 1 — The vision

AMD2.1 : Replace the whole section with:

1 Introduction

1.1 Background

The MISRA C Guidelines define a subset of the C language in which the opportunity to make mistakes
is either removed or reduced. Many standards for the development of safety-related software
require, or recommend, the use of a language subset, and this can also be used to develop any
application with security, high integrity or high reliability requirements.

As well as defining this subset, these MISRA C Guidelines will:

● Provide educational material for those developing C programs;

● Provide reference material for tool developers.

1.2 The vision

It is a long-term objective for MISRA C to define a “predictable subset” of the C language, and to
provide explicit guidance for the avoidance of all instances of undefined and unspecified behaviour.
For this reason, features that are initially permitted without the support of specific guidelines may be
subject to restrictions in the future.

The vision for MISRA C is to:

● Enhance the existing guidance:

▬ Correct any known issues with the previous editions (where still relevant);

▬ Add new guidelines for which there is a strong rationale;

▬ Improve the specification and the rationale for existing guidelines, where appropriate;

▬ Remove any guidelines for which the rationale is insufficient;

▬ Increase the number of guidelines that can be processed by static analysis tools, by
improving the decidability where possible;

● Provide guidance on the applicability of the guidelines to automatically-generated code.

1.3 Scope

The versions of the C Standard supported by this document are:

● ISO/IEC 9899:1990 [2], amended and corrected by [4], [5] and [6] — referred to as “C90”

● ISO/IEC 9899:1999 [8], corrected by [9], [10] and [11] — referred to as “C99”

● ISO/IEC 9899:2011 [13], corrected by [14] — referred to as “C11”

● ISO/IEC 9899:2018 [43] — referred to as “C18” 3

Notes:

1. Access to a copy of the relevant C Standard is not necessary for the use of MISRA C, but it
may be helpful.

2. ISO/IEC 9899:2018 [43] does not introduce any functional changes. As such, any references
to C11 are equally applicable to C18.

3. The version of the C Standard chosen may be influenced by factors such as the amount of
legacy code being reused within a project and/or the availability of compilers for the target
processor.

1.4 Adoption

MISRA C should be adopted at the outset of a project. In addition, the guidance given in MISRA
Compliance [42] shall be followed when making a claim of compliance.

Note: If a project is building on existing code that has a proven track record, then the benefits of
compliance with MISRA C may be outweighed by the risks of introducing defects when making the
code compliant. In such cases, a judgement should be made between the benefits of adoption and
the risks of introducing defects.

2.2 Section 3 — Tool selection

AMD2.2 : Replace the whole section with:

Withdrawn – superseded by Sections 2.6.1 and 2.6.2 of MISRA Compliance:2020 [42].

2.3 Section 4 — Prerequisite knowledge

AMD2.3 : Replace the whole section with:

Withdrawn – superseded by Sections 2.3, 2.6.4, 2.6.5 and 7.1 of MISRA Compliance:2020 [42].

2.4 Section 5 — Adopting and using MISRA C

AMD2.4 : Replace the whole section with:

Withdrawn – superseded by MISRA Compliance:2020 [42].

2.5 Section 6.2.2 — Required guidelines

AMD2.5 : Replace “Section 5.4” with “Section 4 of MISRA Compliance [42]”

2.6 Section 6.5 — Decidability of rules

AMD2.6 : In the final paragraph, replace “Section 5.3.3” with “Section 3.4 of MISRA
Compliance:2020 [42]”

Section 2: Am
endm

ents

4

2.7 Section 6.9 — Presentation of guidelines

AMD2.7 : Replace the final bullet point with:

● “Cxx” is a comma separated list indicating which versions of the C Standard the guideline
applies to.

AMD2.8 : Insert the following immediately before the sentence starting Note:

Note: Any guidelines applying to C11 also apply to C18.

2.8 Section 6.10.1 — ISO C portability issue references

AMD2.9 : Replace the first paragraph with:

The ISO C Portability Issues are described in subsections of Annexes in the C Standard. It is important
to note that the numbering of the references is derived from the original standard and not from any
later version that incorporates corrections and amendments.

AMD2.10 : Amend the table column headings as follows:

Reference
Annex

C90 C99, C11

AMD2.11 : In the first bullet point, replace “Annex G of [2]” with “Annex G (C90)”.

AMD2.12 : In the second bullet point, replace “Annex J of [8]” with “Annex J (C99 and C11)”.

AMD2.13 : In the first line of the fourth paragraph, replace “Annex J (C99)” with “Annex J (C99 and
C11)”.

2.9 Section 7 — Directives

AMD2.14 : Update the Applies to and Source ref entries for the Directives, as shown below:

Directive Applies to Source ref

Dir 1.1 Append “, C11” Add “, C11 [Annex J.3]”

Dir 2.1 Append “, C11”

Dir 3.1 Append “, C11”

Dir 4.1 Append “, C11” Add “, C11 [Undefined 17, 18, 36, 43, 46–48, 51, 52, 119]”

Dir 4.2 Append “, C11”

Dir 4.3 Append “, C11”

Dir 4.4 Append “, C11”

Dir 4.5 Append “, C11”

Dir 4.6 Append “, C11”

Dir 4.7 Append “, C11”

Dir 4.8 Append “, C11”

Dir 4.9 Append “, C11”

Dir 4.10 Append “, C11”

Dir 4.11 Append “, C11”
Add “, C11 [Unspecified 30, 31, 44, 52–56; Undefined 108, 109, 113, 118, 191,
192, 194, 199, 201; Implementation J.3.12(8-14)]”

Dir 4.12 Append “, C11”

Se
ct

io
n

2:
 A

m
en

dm
en

ts

5

Directive Applies to Source ref

Dir 4.13 Append “, C11”

Dir 4.14 Append “, C11” Add “, C11 [Undefined 17, 18, 36, 43, 46–48, 51, 52, 119]”

2.9.1 Dir 1.1

AMD2.15 : Replace the first paragraph of the Amplification with:

Appendix G of this document lists those implementation-defined behaviours that:

AMD2.16 : Replace the second paragraph within the “Extensions” subsection with:

An implementation may provide extensions which implement a subset of the features for a later
version of the C Standard.

AMD2.17 : Replace the first bullet point within the “Extensions” subsection with:

● The #pragma preprocessing directive or the _Pragma operator;

AMD2.18 : Replace “C99” with “C99 and later” within the last sentence of the “Integer division”
subsection.

2.9.2 Dir 2.1

AMD2.19 : Remove the last paragraph from the Rationale.

2.9.3 Dir 4.1

AMD2.20 : Remove the last sentence from the third paragraph from the Rationale.

2.9.4 Dir 4.3

AMD2.21 : Replace “C99” with “C99 and later” within the second bullet point of the Amplification.

AMD2.22 : Replace the last sentence of the first paragraph to the Rationale with:

If this is necessary, then it is recommended that it be achieved by using macros or inline functions.

2.9.5 Dir 4.6

AMD2.23 : Remove “(C99)” from within the first paragraph of the Amplification.

AMD2.24 : Replace “C99” with “C99 and later” within the second paragraph of the Amplification.

AMD2.25 : Replace the last paragraph of the Exception with:

Therefore int main(int argc, char *argv[]) is permitted.

2.9.6 Dir 4.9

AMD2.26 : Remove “in C99” from within the second bullet point of the Rationale.

Section 2: Am
endm

ents

6

2.10 Section 8 — Rules

AMD2.27 : Update the Applies to and Source ref entries for the Rules, as shown below:

Rule Applies to Source ref

Rule 1.1 Append “, C11”

Rule 1.2 Append “, C11”

Rule 1.3 Append “, C11”

Rule 2.1 Append “, C11”

Rule 2.2 Append “, C11”

Rule 2.3 Append “, C11”

Rule 2.4 Append “, C11”

Rule 2.5 Append “, C11”

Rule 2.6 Append “, C11”

Rule 2.7 Append “, C11”

Rule 3.1 Append “, C11”

Rule 3.2 Append “, C11”

Rule 4.1 Append “, C11” Add “, C11 [Implementation J.3.4(7,8)]”

Rule 4.2 Append “, C11”

Rule 5.1 Append “, C11” Add “, C11 [Unspecified 8; Undefined 31]”

Rule 5.2 Append “, C11” Add “, C11 [Undefined 31]”

Rule 5.3 Append “, C11”

Rule 5.4 Append “, C11” Add “, C11 [Unspecified 8; Undefined 31]”

Rule 5.5 Append “, C11” Add “, C11 [Unspecified 8; Undefined 31]”

Rule 5.6 Append “, C11”

Rule 5.7 Append “, C11”

Rule 5.8 Append “, C11”

Rule 5.9 Append “, C11”

Rule 6.1 Append “, C11” Add “, C11 [Implementation J.3.9(1,2)]”

Rule 6.2 Append “, C11”

Rule 7.1 Append “, C11”

Rule 7.2 Append “, C11”

Rule 7.3 Append “, C11”

Rule 7.4 Append “, C11” Add “, C11 [Unspecified 15; Undefined 33]”

Rule 8.2 Append “, C11” Add “, C11 [Undefined 38–41, 79, 85]”

Rule 8.3 Append “, C11” Add “, C11 [Undefined 15]”

Rule 8.4 Append “, C11” Add “, C11 [Undefined 41]”

Rule 8.5 Append “, C11”

Rule 8.6 Append “, C11” Add “, C11 [Undefined 84]”

Rule 8.7 Append “, C11”

Rule 8.8 Append “, C11”

Rule 8.9 Append “, C11”

Rule 8.10 Append “, C11” Add “, C11 [Unspecified 21; Undefined 70]”

Rule 8.11 Append “, C11”

Rule 8.12 Append “, C11”

Se
ct

io
n

2:
 A

m
en

dm
en

ts

7

Rule Applies to Source ref

Rule 8.13 Append “, C11”

Rule 8.14 Append “, C11” Add “, C11 [Undefined 68, 69]”

Rule 9.1 Append “, C11” Add “, C11 [Undefined 11, 19]”

Rule 9.2 Append “, C11” Add “, C11 [Undefined 82, 83]”

Rule 9.3 Append “, C11”

Rule 9.4 Append “, C11”

Rule 9.5 Append “, C11”

Rule 10.1 Append “, C11” Add “, C11 [Undefined 14, 51, 52; Implementation J.3.4(2,5), J.3.5(5), J.3.9(7)]”

Rule 10.2 Append “, C11”

Rule 10.3 Append “, C11” Add “, C11 [Undefined 17, 18; Implementation 3.5(4)]”

Rule 10.4 Append “, C11” Add “, C11 [Implementation 3.6(5)]”

Rule 10.5 Append “, C11”

Rule 10.6 Append “, C11”

Rule 10.7 Append “, C11”

Rule 10.8 Append “, C11”

Rule 11.1 Append “, C11” Add “, C11 [Undefined 24, 26, 41, 44]”

Rule 11.2 Append “, C11” Add “, C11 [Undefined 24, 25, 44]”

Rule 11.3 Append “, C11” Add “, C11 [Undefined 25, 37]”

Rule 11.4 Append “, C11” Add “, C11 [Undefined 24, 37; ImplementationJ.3.7(1)]”

Rule 11.5 Append “, C11” Add “, C11 [Undefined 25, 37]”

Rule 11.6 Append “, C11” Add “, C11 [Undefined 24, 44; Implementation J.3.7(1)]”

Rule 11.7 Append “, C11” Add “, C11 [Undefined 24, 44; Implementation J.3.7(1)]”

Rule 11.8 Append “, C11” Add “, C11 [Undefined 33, 64, 65]”

Rule 11.9 Append “, C11”

Rule 12.1 Append “, C11”

Rule 12.2 Append “, C11” Add “, C11 [Undefined 51]”

Rule 12.3 Append “, C11”

Rule 12.4 Append “, C11”

Rule 12.5 Append “, C11”

Rule 13.1 Append “, C11” Add “, C11 [Unspecified 18, 23]”

Rule 13.2 Append “, C11” Add “, C11 [Unspecified 16–19; Undefined 35]”

Rule 13.3 Append “, C11” Add “, C11 [Unspecified 16; Undefined 35]”

Rule 13.4 Append “, C11” Add “, C11 [Unspecified 16, 19; Undefined 35]”

Rule 13.5 Append “, C11”

Rule 13.6 Append “, C11” Add “, C11 [Unspecified 22]”

Rule 14.1 Append “, C11”

Rule 14.2 Append “, C11”

Rule 14.3 Append “, C11”

Rule 14.4 Append “, C11”

Rule 15.1 Append “, C11”

Rule 15.2 Append “, C11”

Rule 15.3 Append “, C11”

Rule 15.4 Append “, C11”

Section 2: Am
endm

ents

8

Rule Applies to Source ref

Rule 15.5 Append “, C11”

Rule 15.6 Append “, C11”

Rule 15.7 Append “, C11”

Rule 16.1 Append “, C11”

Rule 16.2 Append “, C11”

Rule 16.3 Append “, C11”

Rule 16.4 Append “, C11”

Rule 16.5 Append “, C11”

Rule 16.6 Append “, C11”

Rule 16.7 Append “, C11”

Rule 17.1 Append “, C11” Add “, C11 [Undefined 87, 136–143]”

Rule 17.2 Append “, C11”

Rule 17.4 Append “, C11” Add “, C11 [Undefined 88]”

Rule 17.5 Append “, C11”

Rule 17.6 Append “, C11” Add “, C11 [Undefined 77]”

Rule 17.7 Append “, C11”

Rule 17.8 Append “, C11”

Rule 18.1 Append “, C11” Add “, C11 [Undefined 46, 47, 49, 62]”

Rule 18.2 Append “, C11” Add “, C11 [Undefined 48]”

Rule 18.3 Append “, C11” Add “, C11 [Undefined 53]”

Rule 18.4 Append “, C11”

Rule 18.5 Append “, C11”

Rule 18.6 Append “, C11” Add “, C11 [Undefined 9, 10, 43]”

Rule 18.7 Append “, C11” Add “, C11 [Undefined 62]”

Rule 18.8 Append “, C11” Add “, C11 [Unspecified 22; Undefined 16, 75, 76]”

Rule 19.1 Append “, C11” Add “, C11 [Undefined 54, 100]”

Rule 19.2 Append “, C11” Add “, C11 [Unspecified 11; Undefined 64, 65]”

Rule 20.1 Append “, C11” Add “, C11 [Undefined 102, 103]”

Rule 20.2 Append “, C11” Add “, C11 [Undefined 34]”

Rule 20.3 Append “, C11” Add “, C11 [Undefined 91]”

Rule 20.4 Append “, C11” Add “, C11 [Undefined 104]”

Rule 20.5 Append “, C11”

Rule 20.6 Append “, C11” Add “, C11 [Undefined 93]”

Rule 20.7 Append “, C11”

Rule 20.8 Append “, C11”

Rule 20.9 Append “, C11”

Rule 20.10 Append “, C11” Add “, C11 [Unspecified 26; Undefined 3, 94, 95]”

Rule 20.11 Append “, C11” Add “, C11 [Unspecified 26]”

Rule 20.12 Append “, C11”

Rule 20.13 Append “, C11”

Rule 20.14 Append “, C11”

Rule 21.1 Append “, C11” Add “, C11 [Undefined 99, 106, 107, 110, 114, 122, 126, 138]”

Rule 21.2 Append “, C11” Add “, C11 [Undefined 99, 106, 107, 110, 114, 122, 126, 138]”

Se
ct

io
n

2:
 A

m
en

dm
en

ts

9

Rule Applies to Source ref

Rule 21.3 Append “, C11”
Add “, C11 [Unspecified 42, 43; Undefined 9, 10, 177–181;
Implementation J.3.12(37)]”

Rule 21.4 Append “, C11” Add “, C11 [Unspecified 35; Undefined 124–127, 183]”

Rule 21.5 Append “, C11” Add “, C11 [Undefined 128–135, 185; Implementation J.3.12(14)]”

Rule 21.6 Append “, C11”
Add “, C11 [Unspecified 4–7, 37–40; Undefined 146–175, 198;
Implementation J.3.12(16–34)]”

Rule 21.7 Append “, C11” Add “, C11 [Undefined 119]”

Rule 21.9 Append “, C11” Add “, C11 [Unspecified 46, 42; Undefined 187–189]”

Rule 21.10 Append “, C11”
Add “, C11 [Unspecified 48, 49; Undefined 154, 162, 193, 197;
Implementation J.3.12(41–45)]”

Rule 21.11 Append “, C11” Add “, C11 [Undefined 195, 196]”

Rule 21.12 Append “, C11” Add “, C11 [Unspecified 27, 28; Undefined 115–117; Implementation J.3.6(9)]”

Rule 21.13 Append “, C11” Add “, C11 [Undefined 113]”

Rule 21.14 Append “, C11”

Rule 21.15 Append “, C11”

Rule 21.16 Append “, C11” Add “, C11 [Unspecified 10]”

Rule 21.17 Append “, C11” Add “, C11 [Undefined 109, 191]”

Rule 21.18 Append “, C11” Add “, C11 [Undefined 109, 191, 192]”

Rule 21.19 Append “, C11” Add “, C11 [Undefined 120, 121, 184]”

Rule 21.20 Append “, C11”

Rule 22.1 Append “, C11”

Rule 22.2 Append “, C11” Add “, C11 [Undefined 179]”

Rule 22.3 Append “, C11” Add “, C11 [Implementation J.3.12(24)]”

Rule 22.4 Append “, C11”

Rule 22.5 Append “, C11”

Rule 22.6 Append “, C11” Add “, C11 [Undefined 148]”

Rule 22.7 Append “, C11”

Rule 22.8 Append “, C11”

Rule 22.9 Append “, C11”

Rule 22.10 Append “, C11”

2.10.1 Rule 1.1

AMD2.28 : Replace “Section 3.1” in the first paragraph of the Amplification with “Section 1.3”.

2.10.2 Rule 1.3

AMD2.29 : Replace the second paragraph of the Rationale with:

Many of the MISRA C guidelines have been designed to avoid certain undefined and unspecified
behaviours. However, other behaviours are not covered by specific guidelines, for example because:

Section 2: Am
endm

ents

10

2.10.3 Rule 1.4

AMD2.30 : Add the following as a new rule after Rule 1.3:

Rule 1.4 Emergent language features shall not be used

Category Required

Analysis Decidable, Single Translation Unit

Applies to C11

Amplification

Updates to the C Standard have introduced new language features. The following shall not be used:

● The _Generic operator;

● The _Noreturn function specifier and the <stdnoreturn.h> header file;

● The _Atomic type specifier, the _Atomic type qualifier and the facilities that are specified as
being provided by <stdatomic.h>;

● The _Thread_local storage class specifier and the facilities that are specified as being provided
by <threads.h>;

● The _Alignas alignment specifier, the _Alignof operator and the <stdalign.h> header file;

● Other than defining __STDC_WANT_LIB_EXT1__ to '0', the facilities of Annex K (Bounds-
checking interfaces) shall not be used.

Rationale

Use of the language features restricted by this rule may have instances of undefined, unspecified or
implementation-defined behaviour associated with them. In addition, features may also exhibit well
defined behaviour that does not meet developer expectations.

Any instances of undefined, unspecified or implementation-defined behaviour are diagnosed by:

● Dir 1.1, which requires that the use of implementation-defined behaviour be documented
and taken into consideration; and

● Rule 1.3, which prohibits the presence of undefined and critical unspecified behaviours.

However, detection of these behaviours alone does not mitigate against well defined behaviour that
does not meet developer expectations. Additional static analysis checks are needed to check for
these behaviours, but there is no requirement for a static analysis tool to implement these checks as
they are not specified within The Guidelines.

This Rule requires that any use of an emergent language feature be supported by a deviation to
ensure that all undesirable behaviours are identified and measures put in place to ensure that they
do not compromise safety or security.

See also

Dir 1.1, Rule 1.3

Se
ct

io
n

2:
 A

m
en

dm
en

ts

11

2.10.4 Rule 3.2

AMD2.31 : Remove the Note: paragraph from the Rationale.

2.10.5 Rule 4.1

AMD2.32 : Remove the “See also” section.

2.10.6 Rule 5.1

AMD2.33 : Replace “C99” with “C99 and later” within the second bullet of the Amplification.

AMD2.34 : Replace “C99” with “C99 and later” within the Note: of the Rationale.

2.10.7 Rule 5.2

AMD2.35 : Replace “C99” with “C99 and later” within the second bullet of the Amplification.

2.10.8 Rule 5.3

AMD2.36 : Replace “C99” with “C99 and later” within the second bullet of the Amplification.

2.10.9 Rule 5.4

AMD2.37 : Replace “C99” with “C99 and later” within the second bullet of the Amplification.

AMD2.38 : Replace “C99” with “C99 and later” within the Note: of the Rationale.

2.10.10 Rule 5.5

AMD2.39 : Replace “C99” with “C99 and later” within the second bullet of the Amplification.

2.10.11 Rule 5.7

AMD2.40 : Replace the last sentence of the Rationale with:

This is a constraint violation in C99 and later.

2.10.12 Rule 6.1

AMD2.41 : Replace “C99” with “C99 and later” within the second bullet of the Amplification.

AMD2.42 : Replace “C99” with “C99 and later” within the last paragraph of the Rationale.

AMD2.43 : Remove “C90 and to C99” from within the first paragraph of the Example.

2.10.13 Rule 6.2

AMD2.44 : Replace the first sentence of the Rationale with:

For C99 and later, the C Standard states that signed integers have exactly one sign bit, meaning that
a single-bit signed bit-field will have no value bits.

AMD2.45 : Replace “the C90 Standard” with “C90” in the third paragraph of the Rationale.

Section 2: Am
endm

ents

12

2.10.14 Rule 7.2

AMD2.46 : Replace “C99” with “C99 and later” within the last two bullet points of the Amplification.

2.10.15 Rule 7.4

AMD2.47 : Replace the Amplification with:

The type used to represent characters within a string literal depends on the encoding prefix:

● char when there is no prefix — character string literal;

● char for a u8 prefix — UTF-8 string literal;

● wchar_t for an L prefix — wide string literal;

● char16_t for a u prefix — wide string literal;

● char32_t for a U prefix — wide string literal.

No attempt shall be made to directly modify a character string literal, a UTF-8 string literal or a wide
string literal.

The result of the address-of operator, &, applied to a character string literal or a UTF-8 string literal
shall not be assigned to an object unless that object’s type is “pointer to array of const-qualified char”.

The result of the address-of operator, &, applied to a wide string literal shall not be assigned to an
object unless that object’s type is “pointer to array of const-qualified wchar_t”, “pointer to array of
const-qualified char16_t” or “pointer to array of const-qualified char32_t”, as appropriate for the
encoding prefix.

AMD2.48 : Replace “C99” with “C99 and later” within the last paragraph of the Rationale.

2.10.16 Rule 9.4

AMD2.49 : Replace “The C99 Standard” with “The C Standard” within the first paragraph of the
Rationale.

2.10.17 Rule 9.5

AMD2.50 : Remove “(C99 Section 6.7.8)” from within the last sentence of the Rationale.

2.10.18 Section 8.10.2 — Essential type

AMD2.51 : Replace the Note: below the table with:

Note: Implementations of C99 and later may provide extended integer types, each of which would be
allocated a location appropriate to its rank and signedness.

2.10.19 Rule 10.4

AMD2.52 : Replace the first sentence of the Amplification with:

This rule applies to operators that are described in the usual arithmetic conversions section of the
C Standard.

Se
ct

io
n

2:
 A

m
en

dm
en

ts

13

2.10.20 Rule 10.5

AMD2.53 : Replace “C99” with “C99 and later” at the start of the fourth bullet point of the Rationale.

AMD2.54 : Replace the last sentence of the Exception with:

This allows the implementation of Boolean models in C90.

AMD2.55 : Replace the first line of the Example with:

(bool_t) false /* Compliant - 'false' from stdbool.h is essentially Boolean */

2.10.21 Section 8.11 — Pointer type conversions

AMD2.56 : Replace “(C99 only)” with “(C99 and later)” at the end of the first bullet point in the last
bullet list.

AMD2.57 : Replace the two paragraphs starting “In C99, any…” and “In C90, any…” with:

Any implicit conversion that does not fall into this subset of pointer conversions either leads to
undefined behaviour (C90) or violates a constraint (C99 and later).

2.10.22 Rule 11.1

AMD2.58 : Replace the Note: in the Exception with:

Note: exception 3 covers the implicit conversions that commonly occur when:

2.10.23 Rule 11.3

AMD2.59 : Remove the last sentence of the Rationale.

2.10.24 Rule 11.4

AMD2.60 : Replace the first part of the Note: in the Rationale with:

Note: the types intptr_t and uintptr_t, declared in <stdint.h> (C99 and later),

2.10.25 Rule 11.8

AMD2.61 : Replace the second Note: in the Rationale with:

Note: removal of the restrict type qualifier (C99 and later) is benign.

2.10.26 Rule 12.1

AMD2.62 : Replace the first three rows of the table in the Amplification with:

Primary identifier, constant, string literal, (expression), generic selection 16 (high)

Postfix
[] () (function call) . -> ++ (post-increment) -- (post-decrement) (){}
(compound literal)

15

Unary
++ (pre-increment) -- (pre-decrement) & * + - ~ ! sizeof _Alignof defined
(preprocessor)

14

Section 2: Am
endm

ents

14

2.10.27 Rule 13.1

AMD2.63 : Replace “C99 permits” with “later versions of the C Standard permit” in the second
sentence of the Rationale.

2.10.28 Rule 13.2

AMD2.64 : Replace the last two paragraphs of the Amplification with:

Sequence points are summarized in Annex C of the C Standard. The sequence points in C90 are a
subset of those in later versions.

Full expressions are defined in the statements and blocks section of the C Standard.

2.10.29 Rule 13.6

AMD2.65 : Replace “C99” with “C99 and later” at the start of the third paragraph of the Rationale.

2.10.30 Rule 14.2

AMD2.66 : Replace “C99” with “C99 and later” at the end of the third bullet point of the
Amplification.

AMD2.67 : Remove “C99” from the first paragraph of the Example.

2.10.31 Rule 15.3

AMD2.68 : Replace “C99 is” with “C99 and later are” at the start of the last paragraph of the
Rationale.

2.10.32 Rule 16.1

AMD2.69 : Replace “C99” with “C99 and later” within the switch-clause: block of the Amplification.

2.10.33 Rule 17.1

AMD2.70 : Replace the Amplification paragraph with:

None of va_list, va_arg, va_start, va_end and va_copy shall be used.

2.10.34 Rule 17.4

AMD2.71 : Replace “C99” with “C99 and later” within the Note: of the Rationale.

AMD2.72 : Replace “C99” with “C99 and later” within the Example.

2.10.35 Rule 17.6

AMD2.73 : Replace “The C99 language standard” with “The C Standard” within the first sentence of
the Rationale.

AMD2.74 : Remove “C99” from within the first sentence of the Example.

Se
ct

io
n

2:
 A

m
en

dm
en

ts

15

2.10.36 Rule 18.1

AMD2.75 : Replace the last Note: of the Amplification with:

Note: within the description of the semantics for the “additive operators”, the C Standard states that,
for the purposes of pointer arithmetic, a pointer to an object that is not an array is treated as if it
were a pointer to the first element of an array with a single element.

AMD2.76 : Remove the last sentence of the third paragraph of the Rationale.

2.10.37 Rule 20.4

AMD2.77 : Replace the penultimate paragraph of the Example with:

The following example is only compliant in C90.

2.10.38 Rule 21.3

AMD2.78 : Replace the Amplification with:

The identifiers calloc, malloc, realloc, aligned_alloc and free shall not be used and no macro with one of
these names shall be expanded.

2.10.39 Rule 21.6

AMD2.79 : Replace the first paragraph of the Amplification with:

This rule applies to the functions that are specified as being provided by <stdio.h> and the wide-
character equivalents specified as being provided by <wchar.h>.

2.10.40 Rule 21.7

AMD2.80 : Replace the Amplification with:

The identifiers atof, atoi, atol and atoll shall not be used and no macro with one of these names shall
be expanded.

Section 2: Am
endm

ents

16

2.10.41 Rule 21.8

AMD2.81 : Replace Rule 21.8 with the following:

Rule 21.8 The Standard Library termination functions of <stdlib.h> shall not
be used

C90 [Undefined 93; Implementation 70–71]
C99 [Undefined 172; Implementation J.3.12(36–37)]

C11 [Undefined 182, 185; Implementation J.3.12(38-39)]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99, C11

Amplification

The termination functions are abort, exit, _Exit and quick_exit.

Identifiers with these names shall not be used and no macro with one of these names shall be
expanded.

Rationale

These functions have undefined and implementation-defined behaviours associated with them.

2.10.42 Rule 21.10

AMD2.82 : Replace the first paragraph of the Amplification with:

This rule applies to the functions that are specified as being provided by <time.h> and wcsftime.

None of these identifiers shall be used and no macro with one of these names shall be expanded.

Se
ct

io
n

2:
 A

m
en

dm
en

ts

17

2.10.43 Rule 21.21

AMD2.83 : Add the following as a new rule after Rule 21.20:

Rule 21.21 The Standard Library function system of <stdlib.h> shall not be
used

C90 [Implementation 73]
C99 [Undefined 175; Implementation J.3.2(11), J.3.12(38)]
C11 [Undefined 186; Implementation J.3.2(12), J.3.12(40)]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99, C11

Amplification

The identifier system shall not be used and no macro with this name shall be expanded.

Rationale

This function has undefined and implementation-defined behaviour associated with it.

Errors related to the use of system are a common cause of security vulnerabilities.

2.10.44 Rule 22.1

AMD2.84 : Replace the Amplification with:

This rule applies to malloc, calloc, realloc, aligned_alloc and fopen.

2.10.45 Rule 22.5

AMD2.85 : Replace the first paragraph of the Rationale with:

Within the section on “files”, The Standard states that the address of a FILE object used to control a
stream may be significant and a copy of the object may not give the same behaviour. This rule
ensures that such a copy cannot be made.

2.11 Section 9 — References

AMD2.86 : Replace the entry for reference 42 with:

[42] MISRA Compliance:2020 Achieving compliance with MISRA Coding Guidelines,
ISBN 978-1-906400-26-2 (PDF),
HORIBA MIRA Limited, Nuneaton, February 2020

AMD2.87 : Add a new entry to the end of the list of references:

[43] ISO/IEC 9899:2018, Programming languages — C,
International Organization for Standardization, 2018

Section 2: Am
endm

ents

18

2.12 Appendix A — Summary of guidelines

AMD2.88 : Insert the following after the entry for Rule 1.3:

Rule 1.4 Required Emergent language features shall not be used

AMD2.89 : Replace the entry for Rule 21.8 with:

Rule 21.8 Required The Standard Library termination functions of <stdlib.h> shall not
be used

AMD2.90 : Insert the following after the entry for Rule 21.20:

Rule 21.21 Required The Standard Library function system of <stdlib.h> shall not be
used

2.13 Appendix B — Guideline attributes

AMD2.91 : Update the Applies to entries for the Directives and Rules in line with the changes
detailed in Section 2.9 and Section 2.10 of this document.

AMD2.92 : Insert the following row into the table after the row for Rule 1.3:

Rule 1.4 Required C11 Decidable, Single Translation Unit

AMD2.93 : Insert the following row into the table after the row for Rule 21.20:

Rule 21.21 Required C90, C99, C11 Decidable, Single Translation Unit

2.14 Appendix C — Type safety issues with C

2.14.1 C.1.1

AMD2.94 : Replace “C99” with “C99/C11” within the first and second list items.

2.15 Appendix D — Essential types

2.15.1 D.1

AMD2.95 : Replace the Note: in the paragraph immediately before the table with:

Note: for C99 and later, any extended integer type is allocated a location appropriate to the rank and
signedness inferred by the C Standard.

AMD2.96 : Replace the last sentence in the paragraph immediately after the table with:

In C99 and later, “rank” is a term applied only to integer types.

2.15.2 D.6

AMD2.97 : Replace “The ISO C99 standard” with “The C Standard” at the start of the first sentence.

Se
ct

io
n

2:
 A

m
en

dm
en

ts

19

2.15.3 D.6.4

AMD2.98 : Replace “The C99 standard” with “The C Standard” at the start of the first sentence.

2.15.4 D.7.12

AMD2.99 : Insert the following as a new section after D.7.11:

D.7.12 Generic selection (_Generic)

The essential type is the same as the essential type of the result expression.

2.16 Appendix F — Process and tools checklist

AMD2.100 : Replace the whole Appendix with:

Withdrawn – superseded by Appendix A of MISRA Compliance:2020 [42].

2.17 Appendix G — Implementation-defined behaviour checklist

AMD2.101 : Move the first table into a sub-section by inserting a new heading and explanatory text
before it:

G.1 C90

The numbers in the first column of the table identify the number of an item in the relevant section of
Annex G of the C90 Standard [2]. The numbering starts from the beginning of that section and does
not include subsequent Technical Corrigenda. So, for example, G.3.1 refers to the first item in section
G.3.

AMD2.102 : Move the second table into a sub-section by inserting a new heading and explanatory
text before it:

G.2 C99 and C11

The numbers in the first column of the table identify the number of an item in the relevant section of
Annex J of the C99 Standard [8] or C11 Standard [13], as appropriate. The numbering starts from the
beginning of that section and does not include subsequent Technical Corrigenda. So, for example,
J.3.1 refers to the first item in section J.3.

AMD2.103 : Replace the second table as follows:

Annex
Annex Item

Implementation-defined behaviour
C99 C11

J.3.1 1 1 How a diagnostic is identified.

J.3.2
2 2

The name and type of the function called at program startup in a freestanding
environment.

3 3 The effect of program termination in a freestanding environment.

4 4 An alternative manner in which the main function may be defined.

5 5 The values given to the strings pointed to by the argv argument to main.

10 11 The set of environment names and the method for altering the environment list
used by the getenv function.

Section 2: Am
endm

ents

20

Annex
Annex Item

Implementation-defined behaviour
C99 C11

11 12 The manner of execution of the string by the system function.

J.3.3
1 1

Which additional multibyte characters may appear in identifiers and their
correspondence to universal character names.

2 2 The number of significant initial characters in an identifier.

J.3.4

1 1 The number of bits in a byte.

2 2 The values of the members of the execution character set.

4 4
The value of a char object into which has been stored any character other than a
member of the basic execution character set.

6 6
The mapping of members of the source character set (in character constants and
string literals) to members of the execution character set.

7 7
The value of an integer character constant containing more than one character or
containing a character or escape sequence that does not map to a single-byte
execution character.

8 8
The value of a wide character constant containing more than one multibyte
character, or containing a multibyte character or escape sequence not represented
in the extended execution character set.

9 9
The current locale used to convert a wide character constant consisting of a single
multibyte character that maps to a member of the extended execution character
set into a corresponding wide character code.

10 11
The current locale used to convert a wide string literal into corresponding wide
character codes.

11 12
The value of a string literal containing a multibyte character or escape sequence not
represented in the execution character set.

J.3.5

1 1 Any extended integer types that exist in the implementation.

2 2
Whether signed integer types are represented using sign and magnitude, two's
complement, or ones' complement, and whether the extraordinary value is a trap
representation or an ordinary value.

J.3.6
1 1

The accuracy of the floating-point operations and of the library functions in
<math.h> and <complex.h> that return floating-point results.

2 3 The rounding behaviors characterized by non-standard values of FLT_ROUNDS.

3 4
The evaluation methods characterized by non-standard negative values of
FLT_EVAL_METHOD.

4 5
The direction of rounding when an integer is converted to a floating-point number
that cannot exactly represent the original value.

5 6
The direction of rounding when a floating-point number is converted to a narrower
floating-point number.

6 7
How the nearest representable value or the larger or smaller representable value
immediately adjacent to the nearest representable value is chosen for certain
floating constants.

7 8
Whether and how floating expressions are contracted when not disallowed by the
FP_CONTRACT pragma.

8 9 The default state for the FENV_ACCESS pragma.

9 10
Additional floating-point exceptions, rounding modes, environments, and
classifications, and their macro names.

10 11 The default state for the FP_CONTRACT pragma.

11 Whether the “inexact” floating-point exception can be raised when the rounded
result actually does equal the mathematical result in an IEC 60559 conformant
implementation.

Se
ct

io
n

2:
 A

m
en

dm
en

ts

21

Annex
Annex Item

Implementation-defined behaviour
C99 C11

12
Whether the “underflow” (and “inexact”) floating-point exception can be raised when
a result is tiny but not inexact in an IEC 60559 conformant implementation.

J.3.9

2 2 Allowable bit-field types other than _Bool, signed int, and unsigned int.

3 4 Whether a bit-field can straddle a storage-unit boundary.

4 5 The order of allocation of bit-fields within a unit.

J.3.10 1 1 What constitutes an access to an object that has volatile-qualified type.

J.3.11

* 1
The locations within #pragma directives where header name preprocessing tokens
are recognized.

1 2
How sequences in both forms of header names are mapped to headers or external
source file names.

2 3
Whether the value of a character constant in a constant expression that controls
conditional inclusion matches the value of the same character constant in the
execution character set.

3 4
Whether the value of a single-character character constant in a constant expression
that controls conditional inclusion may have a negative value.

4 5
The places that are searched for an included < > delimited header, and how the
places are specified or the header is identified.

5 6 How the named source file is searched for in an included " " delimited header.

6 7
The method by which preprocessing tokens (possibly resulting from macro
expansion) in a #include directive are combined into a header name.

8 9
Whether the # operator inserts a \ character before the \ character that begins a
universal character name in a character constant or string literal.

9 10 The behavior on each recognized non-STDC #pragma directive.

10 11
The definitions for __DATE__ and __TIME__ when respectively, the date and time of
translation are not available.

J.3.12
1 1

Any library facilities available to a freestanding program, other than the minimal set
required by clause 4.

4 4
Whether the feraiseexcept function raises the “inexact” floating-point exception in
addition to the “overflow” or “underflow” floating-point exception.

5 5
Strings other than "C" and "" that may be passed as the second argument to the
setlocale function.

6 6
The types defined for float_t and double_t when the value of the
FLT_EVAL_METHOD macro is less than 0.

9 9

The values returned by the mathematics functions on underflow range errors,
whether errno is set to the value of the macro ERANGE when the integer
expression math_errhandling & MATH_ERRNO is nonzero, and whether the
“underflow” floating-point exception is raised when the integer expression
math_errhandling & MATH_ERREXCEPT is nonzero.

11 12
The base-2 logarithm of the modulus used by the remquo functions in reducing the
quotient.

33 35
The meaning of any n-char or n-wchar sequence in a string representing a NaN that
is converted by the strtod, strtof, strtold, wcstod, wcstof, or wcstold function.

34 36
Whether or not the strtod, strtof, strtold, wcstod, wcstof, or wcstold function sets
errno to ERANGE when underflow occurs.

36 38
Whether open streams with unwritten buffered data are flushed, open streams are
closed, or temporary files are removed when the abort or _Exit function is called.

37 39 The termination status returned to the host environment by the abort, exit, or _Exit
function. Or quick_exit for C11.

Section 2: Am
endm

ents

22

Annex
Annex Item

Implementation-defined behaviour
C99 C11

44 46
Whether the functions in <math.h> honor the rounding direction mode in an IEC
60559 conformant implementation, unless explicitly specified otherwise.

J.3.13
1 1

The values or expressions assigned to the macros specified in the headers
<float.h>, <limits.h>, and <stdint.h>.

2 3
The number, order, and encoding of bytes in any object (when not explicitly
specified in this International Standard).

2.18 Appendix H.1 — Undefined behaviour

AMD2.104 : Add the following to the end of the “C90 Id” bullet point:

The numbering starts from the beginning of section G.2 and does not include subsequent Technical
Corrigenda;

AMD2.105 : Add the following to the end of the “C99 Id” bullet point:

The numbering starts from the beginning of section J.2 and does not include subsequent Technical
Corrigenda;

AMD2.106 : Insert the following bullet point after the “C99 Id” bullet point:

● “C11 Id” is the number of the undefined behaviour in Annex J of The C11 Standard. The
numbering starts from the beginning of section J.2 and does not include subsequent
Technical Corrigenda;

AMD2.107 : Replace the table, as follows:

Id
Decidable Guidelines Notes

C90 C99 C11

1 1 N/A This behaviour is listed in C99 but each such
instance is also given its own entry in Annex J. The
entry for this behaviour is therefore redundant.

1 2 2 Yes

2 Yes

3 Yes Rule 20.10

3 3 Yes

4 4 Yes

5 No

5 6 Yes

6 7 Yes

5 Yes Rule 5.2

6 Yes Rule 17.3

8 7 8 Yes

8 9 No Dir 4.12, Rule 18.6,
Rule 21.3

9 No Dir 4.12, Rule 18.6,
Rule 21.3

9 10 No Dir 4.12, Rule 18.6,
Rule 21.3

Se
ct

io
n

2:
 A

m
en

dm
en

ts

23

Id
Decidable Guidelines Notes

C90 C99 C11

10 11 No Compliance with Rule 9.1 avoids a common cause
of this undefined behaviour but it is not sufficient
to avoid all situations in which an indeterminate
value might arise.

11 12 No The following rules help to avoid this behaviour:
Rule 9.1, Rule 11.2, Rule 11.3, Rule 11.4, Rule 11.5
and Rule 19.1. However, if a trap representation is
copied into an object that does not have character
type, for example using memmove, memcpy or via
a pointer to character type as permitted by the
exception of Rule 11.3, it is not possible to avoid
this behaviour.

12 13 No Rule 11.2,Rule 11.3,
Rule 11.4, Rule 11.5

13 14 No The following rules help to avoid this behaviour:
Rule 9.1, Rule 10.1, Rule 11.2, Rule 11.3, Rule 11.4,
Rule 11.5, and Rule 19.1. However, if the Exception
of Rule 11.3 is used then it is not possible to
prevent generation of a negative zero.

10 14 15 Yes Rule 5.6, Rule 5.7,
Rule 8.3

15 No Dir 4.1, Dir 4.14,
Rule 10.3

16 No Rule 18.8

15 17 No Dir 4.1, Dir 4.14,
Rule 10.3

16 18 No Dir 4.1, Dir 4.14,
Rule 10.3

17 19 No Rule 9.1, Rule 11.2,
Rule 11.3, Rule 11.4,
Rule 11.5, Rule 19.1

16 18 20 Yes

21 No

19 22 Yes

17 20 23 Yes

* 21 24 No Rule 11.1, Rule 11.2,
Rule 11.4, Rule 11.6

22 25 No Rule 11.2, Rule 11.3,
Rule 11.5

27 23 26 No Rule 11.1

4 24 27 Yes

* 25 28 Yes

26 29 Yes

27 30 Yes

7 28 31 Yes Rule 5.1, Rule 5.2,
Rule 5.3, Rule 5.4,
Rule 5.5

29 32 Yes Rule 21.2

11 Yes

Section 2: Am
endm

ents

24

Id
Decidable Guidelines Notes

C90 C99 C11

12 30 33 No Rule 7.4, Rule 11.4,
Rule 11.8

13 Yes

14 Yes Rule 20.2

31 34 Yes Rule 20.2

18 32 35 No Rule 13.2, Rule 13.3,
Rule 13.4

19 33 36 No Dir 4.1, Dir 4.14

20 No Rule 11.3, Rule 11.4,
Rule 11.5

34 37 No Rule 11.3, Rule 11.4,
Rule 11.5

35 Yes

21 Yes

22 36 38 No Rule 8.2, Rule 17.3 Rule 17.3 is only applicable to, and only required
for, C90.

23 No Rule 8.2, Rule 17.3

24 No Rule 5.6, Rule 5.7,
Rule 8.3, Rule 8.4,
Rule 8.5, Rule 11.1,
Rule 21.2

25 No Rule 8.4, Rule 8.5,
Rule 11.1, Rule 21.2,
Rule 17.3

37 39 No Rule 8.4, Rule 8.5,
Rule 11.1, Rule 21.2

38 40 No Rule 8.2

39 41 No Rule 5.6, Rule 5.7,
Rule 8.2, Rule 8.3,
Rule 8.4, Rule 8.5,
Rule 11.1, Rule 21.2

42 Yes

26 40 43 No Dir 4.1, Dir 4.14

28 Yes Rule 11.1

29 41 44 Yes Rule 11.1, Rule 11.2,
Rule 11.6, Rule 11.7

42 45 No Dir 4.1

* No Added by C18

30 43 46 No Dir 4.14, Rule 18.1

* 44 47 No Dir 4.14, Rule 18.1

31 45 48 No Dir 4.14, Rule 18.2

46 49 No Rule 18.1

* 47 50 No

32 48 51 No Dir 4.14, Rule 10.1,
Rule 12.2

Se
ct

io
n

2:
 A

m
en

dm
en

ts

25

Id
Decidable Guidelines Notes

C90 C99 C11

49 52 No Compliance with Dir 4.14 avoids some instances of
this undefined behaviour that are related to data
from external sources.
Compliance with Rule 10.1 avoids this undefined
behaviour except when the expression being left-
shifted has an unsigned type that is promoted to a
signed type.

33 50 53 No Rule 18.3

34 51 54 No Rule 19.1

* 52 55 Yes

* 53 56 Yes

* 54 57 Yes

* 55 58 Yes

35 56 59 Yes

36 57 60 Yes

37 58 61 Yes

38 Yes Rule 6.1

59 62 No Rule 18.7

60 63 Yes

39 61 64 No Rule 11.4, Rule 11.8,
Rule 19.2

40 62 65 No Rule 11.4, Rule 11.8,
Rule 19.2

41 No Rule 9.1

* 63 66 Yes

* 64 67 Yes

65 68 No Rule 8.14

66 69 No Rule 8.14

67 70 Yes Rule 8.10

71 No

72 Yes

73 Yes

* 68 74 Yes

69 75 No Rule 18.8

70 76 No Rule 18.8

71 77 No Rule 17.6

72 78 Yes

* 73 79 Yes Rule 8.2, Rule 11.1

* 74 80 No

* 75 81 Yes

42 Yes Rule 9.2

76 82 Yes Rule 9.2

77 83 Yes Rule 9.2

44 78 84 Yes Rule 8.6

Section 2: Am
endm

ents

26

Id
Decidable Guidelines Notes

C90 C99 C11

79 85 Yes Rule 8.2

* 80 86 Yes

45 81 87 Yes Rule 17.1

43 82 88 Yes Rule 17.4

46 83 89 Yes

* Yes Added by C18

47 84 90 Yes

48 85 91 Yes Rule 20.3

86 92 Yes

49 Yes

50 87 93 Yes Rule 20.6

51 88 94 Yes Rule 20.10

52 89 95 Yes Rule 20.10

53 90 96 Yes

91 97 Yes

92 98 Yes

54 93 99 Yes Rule 21.1

55 94 100 No Compliance with Rule 19.1 avoids a common cause
of this undefined behaviour but does not prevent
copying part of an object to another part of the
same object, such as an array.

* 95 101 Yes

56 Yes Rule 17.3, Rule 20.1,
Rule 20.4, Rule 21.2

96 102 Yes Rule 20.1

97 103 Yes Rule 20.1, Rule 21.2

98 104 Yes Rule 20.4

57 Yes Rule 21.1, Rule 21.2

99 105 Yes Rule 21.2

100 106 Yes Rule 21.1, Rule 21.2

101 107 Yes Rule 21.1

60 102 108 No Dir 4.11

* 103 109 No Dir 4.11, Rule 21.17
Rule 21.18

61 Yes Rule 17.3, Rule 21.2

62 104 110 Yes Compliance with Rule 21.1 prevents undefinition of
the macro but no rule prevents the macro
expansion from being suppressed, e.g. by means of
(assert)(E).

105 111 Yes

106 112 Yes

63 107 113 No Dir 4.11, Rule 21.13

58 Yes Rule 21.1

Se
ct

io
n

2:
 A

m
en

dm
en

ts

27

Id
Decidable Guidelines Notes

C90 C99 C11

108 114 Yes Compliance with Rule 21.1 prevents undefinition of
the macro but no rule prevents the macro
expansion from being suppressed, e.g. by means of
(errno) if it is implemented as a function-like
macro. Compliance with Rule 21.2 prevents
definition of the identifier errno.

109 115 No Compliance with Rule 21.12 avoids some instances
of this undefined behaviour but does not prevent
floating-point control modes from being changed.

110 116 No Rule 21.12

111 117 No Rule 21.12

112 118 No Dir 4.11

90 No Rule 21.7

94 No Compliance with Dir 4.14 avoids some instances of
this undefined behaviour that are related to data
from external sources.

113 119 No Compliance with Dir 4.14 avoids some instances of
this undefined behaviour that are related to data
from external sources.

* 114 120 No Rule 21.19

* 115 121 No Rule 21.19

116 122 Yes Rule 21.1, Rule 21.2

117 123 Yes

64 Yes Rule 21.1, Rule 21.2,
Rule 21.4

118 124 Yes Rule 21.1, Rule 21.2,
Rule 21.4

65 119 125 Yes Rule 21.4

* 120 126 No Rule 21.4

66 121 127 No Rule 21.4

67 No Rule 21.4, Rule 21.5 Compliance with either rule is sufficient to avoid the
undefined behaviour.

* 122 128 No Rule 21.5

* 123 129 No Rule 21.5

130 No Rule 21.5

124 131 No Rule 21.5

68 No Rule 21.5

125 132 No Rule 21.5

69 126 133 No Rule 21.5

* 127 134 No Rule 21.5

135 Yes

* 128 136 No Compliance with Rule 17.1 avoids instances of this
undefined behaviour that arise through improper
use of the features of <stdarg.h>.

70 129 137 No Rule 17.1

71 Yes Rule 17.1, Rule 21.1,
Rule 21.2

Section 2: Am
endm

ents

28

Id
Decidable Guidelines Notes

C90 C99 C11

130 138 Yes Rule 17.1, Rule 21.1,
Rule 21.2

75 No Rule 17.1

76 No Rule 17.1

131 139 No Rule 17.1

132 140 Yes Rule 17.1

73 No Rule 17.1

74 No Rule 17.1

133 141 No Rule 17.1

134 142 No Rule 17.1

72 135 143 Yes Rule 17.1

* Yes Added by C18

59 136 144 Yes

137 145 Yes

138 146 No Rule 21.6

139 147 No Rule 21.6

* 140 148 No Rule 21.6 If Rule 21.6 is deviated then Rule 22.6 provides
protection against this undefined behaviour. Rule
21.6 is preferred as it is decidable.

77 141 149 No Rule 21.6

142 150 No Rule 21.6

78 143 151 No Rule 21.6

* 144 152 No Rule 21.6

79 No Rule 21.6

85 No Rule 21.6

145 153 No Rule 21.6

146 154 No Rule 21.6, Rule 21.10

* 147 155 No Rule 21.6

* 148 156 No Rule 21.6

83 No Rule 21.6

84 No Rule 21.6

149 157 No Rule 21.6

82 No Rule 21.6

87 No Rule 21.6

150 158 No Rule 21.6

* 151 159 No Rule 21.6

152 160 No Rule 21.6

81 153 161 No Rule 21.6

97 No Rule 21.10

80 154 162 No Rule 21.6, Rule 21.10

86 155 163 No Rule 21.6

164 Yes Rule 21.6

89 156 165 No Rule 21.6

Se
ct

io
n

2:
 A

m
en

dm
en

ts

29

Id
Decidable Guidelines Notes

C90 C99 C11

* 157 166 No Rule 21.6

158 167 No Rule 21.6

88 159 168 No Rule 21.6

* 160 169 No Rule 21.6

* 161 170 No Rule 21.6

* 162 171 No Rule 21.6

* 163 172 No Rule 21.6

* 164 173 No Rule 21.6

* 165 174 No Rule 21.6

* 166 175 No Rule 21.6

* 167 176 No Rule 21.3

91 168 177 No Rule 21.3

178 Yes Rule 21.3 Does not apply to C18 as the behaviour is now
defined

92 169 179 No Rule 21.3, Rule 22.2

* 170 180 No Rule 21.3

* 171 181 No Rule 21.3

93 172 182 No Rule 21.8

173 183 No Rule 21.4

* 174 184 No Rule 21.19

185 No Rule 21.5, Rule 21.8

175 186 No Rule 21.21

176 187 No Rule 21.9

177 188 No Rule 21.9

* 178 189 No Rule 21.9

95 179 190 No

96 180 191 No Dir 4.11, Rule 21.17,
Rule 21.18

181 192 No Dir 4.11, Rule 21.18

* 182 193 No Compliance with Rule 21.10 avoids this undefined
behaviour except in respect of wcsxfrm.

183 194 No Dir 4.11

184 195 Yes Rule 21.11

185 196 Yes Rule 21.11

* No Added by C18

* No Added by C18

* No Added by C18

* No Added by C18

* Yes Added by C18

* No Added by C18

197 No Rule 21.10

186 198 No Rule 21.6

187 199 No Dir 4.11

Section 2: Am
endm

ents

30

Id
Decidable Guidelines Notes

C90 C99 C11

188 200 No

189 201 No Dir 4.11

190 202 No

191 203 No

2.19 Appendix H.2 — Critical Unspecified behaviour

AMD2.108 : After the second bullet point (“C99 Id”), insert:

● “C11 Id” is the number of the unspecified behaviour in Annex J of The C11 Standard;

AMD2.109 : Replace the table, as follows:

Id Critical Guidelines Notes

C90 C99 C11

1 1 1 No

2 2 No

3 No

2 3 4 No Rule 21.6

3 4 5 No Rule 21.6

4 5 6 No Rule 21.6

5 6 7 No Rule 21.6

6 Yes

7 8 Yes Rule 5.1

8 9 Yes

9 10 Yes Compliance with Rule 21.16 avoids this unspecified
behaviour in respect of memcmp only.

10 11 Yes Rule 19.2

11 12 Yes

12 13 Yes

13 14 Yes Compliance with Rule 10.1 avoids generation of
negative zeros when operating on expressions that
have a signed type before promotion.

14 15 Yes Rule 7.4

7, 8 15 16 Yes Rule 13.2

9 16 17 Yes Rule 13.2

17 18 Yes Rule 13.1

7 18 19 Yes Rule 13.2

10 19 20 No

20 21 Yes Rule 8.10

21 22 Yes Rule 13.6,
Rule 18.8

7 22 23 Yes Rule 13.1

11 23 24 No

* 24 25 Yes

Se
ct

io
n

2:
 A

m
en

dm
en

ts

31

Id Critical Guidelines Notes

C90 C99 C11

12 25 26 Yes Rule 20.10,
Rule 20.11

13 26 No

* Yes Added by C18 – #line __LINE__ new-line

27 27 Yes Rule 21.12

28 28 Yes Rule 21.12

29 29 No

30 30 Yes Dir 4.11

31 31 Yes Dir 4.11

14 32 32 No Rule 21.4

15 33 33 No Rule 17.1

34 No

34 35 Yes Rule 21.6

16 35 36 Yes Rule 21.6

17 36 37 Yes Rule 21.6

18 37 38 Yes Rule 21.6

38 39 No

19 39 40 No Rule 18.1, Rule 18.2,
Rule 18.3, Rule 21.3

Compliance with either Rule 21.3 or all of Rule 18.1,
Rule 18.2 and Rule 18.3 will avoid this unspecified
behaviour.

40 41 Yes Rule 21.3

20 41 42 Yes Rule 21.9 C11 incorrectly omitted align_alloc, which was
corrected in C18.

21 42 43 Yes Rule 21.9 C11 incorrectly omitted align_alloc, which was
corrected in C18.

44 Yes

45 Yes

22 43 46 Yes Rule 21.10

44 47 Yes Rule 21.10

* Yes Added by C18 – thrd_exit destructor invokation
ordering

* Yes Added by C18 – tss_delete destructor invocations
with multiple threads

45 48 Yes

46 49 Yes

50 Yes

47 51 Yes

48 52 Yes Dir 4.11

49 53 Yes Dir 4.11

TC3 54 Yes Dir 4.11 Added to C99 by TC3.

TC3 55 Yes Dir 4.11 Added to C99 by TC3.

50 56 Yes Dir 4.11

51 57 Yes

52 58 Yes

Section 2: Am
endm

ents

32

2.20 Appendix I — Example Deviation Record

AMD2.110 : Replace the whole Appendix with:

Withdrawn – superseded by Appendix B of MISRA Compliance:2020 [42].

Se
ct

io
n

2:
 A

m
en

dm
en

ts

33

3 References
The following documents are referenced from within this amendment:

[1] MISRA C:2012 Guidelines for the use of the C language in critical systems (3rd Edition),
ISBN 978-1-906400-10-1 (paperback), ISBN 978-1-906400-11-8 (PDF),
MIRA Limited, Nuneaton, March 2013

[2] MISRA C:2012 Technical Corrigendum 1, Technical clarification of MISRA C:2012,
ISBN 978-1-906400-17-0 (PDF),
HORIBA MIRA Limited, Nuneaton, June 2017

[3] MISRA C:2012 Amendment 1, Additional security guidelines for MISRA C:2012,
ISBN 978-1-906400-16-3 (PDF),
HORIBA MIRA Limited, Nuneaton, April 2016

[4] MISRA C:2012 Guidelines for the use of the C language in critical systems (3rd Edition, 1st Revision),
ISBN 978-1-906400-21-7 (paperback), ISBN 978-1-906400-22-4 (PDF),
HORIBA MIRA Limited, Nuneaton, February 2019

[5] ISO/IEC 9899:1999, Programming languages — C,
International Organization for Standardization, 1999

[6] ISO/IEC 9899:2011, Programming languages — C,
International Organization for Standardization, 2011

[7] ISO/IEC 9899:2018, Programming languages — C,
International Organization for Standardization, 2018

[8] MISRA Compliance:2020 Achieving compliance with MISRA Coding Guidelines,
ISBN 978-1-906400-26-2 (PDF),
HORIBA MIRA Limited, Nuneaton, February 2020

34

	1 Overview
	1.1 Applicability
	1.2 C language updates
	1.3 Embodiment of MISRA Compliance
	1.4 Future directions

	2 Amendments
	2.1 Section 1 — The vision
	2.2 Section 3 — Tool selection
	2.3 Section 4 — Prerequisite knowledge
	2.4 Section 5 — Adopting and using MISRA C
	2.5 Section 6.2.2 — Required guidelines
	2.6 Section 6.5 — Decidability of rules
	2.7 Section 6.9 — Presentation of guidelines
	2.8 Section 6.10.1 — ISO C portability issue references
	2.9 Section 7 — Directives
	2.9.1 Dir 1.1
	2.9.2 Dir 2.1
	2.9.3 Dir 4.1
	2.9.4 Dir 4.3
	2.9.5 Dir 4.6
	2.9.6 Dir 4.9

	2.10 Section 8 — Rules
	2.10.1 Rule 1.1
	2.10.2 Rule 1.3
	2.10.3 Rule 1.4
	2.10.4 Rule 3.2
	2.10.5 Rule 4.1
	2.10.6 Rule 5.1
	2.10.7 Rule 5.2
	2.10.8 Rule 5.3
	2.10.9 Rule 5.4
	2.10.10 Rule 5.5
	2.10.11 Rule 5.7
	2.10.12 Rule 6.1
	2.10.13 Rule 6.2
	2.10.14 Rule 7.2
	2.10.15 Rule 7.4
	2.10.16 Rule 9.4
	2.10.17 Rule 9.5
	2.10.18 Section 8.10.2 — Essential type
	2.10.19 Rule 10.4
	2.10.20 Rule 10.5
	2.10.21 Section 8.11 — Pointer type conversions
	2.10.22 Rule 11.1
	2.10.23 Rule 11.3
	2.10.24 Rule 11.4
	2.10.25 Rule 11.8
	2.10.26 Rule 12.1
	2.10.27 Rule 13.1
	2.10.28 Rule 13.2
	2.10.29 Rule 13.6
	2.10.30 Rule 14.2
	2.10.31 Rule 15.3
	2.10.32 Rule 16.1
	2.10.33 Rule 17.1
	2.10.34 Rule 17.4
	2.10.35 Rule 17.6
	2.10.36 Rule 18.1
	2.10.37 Rule 20.4
	2.10.38 Rule 21.3
	2.10.39 Rule 21.6
	2.10.40 Rule 21.7
	2.10.41 Rule 21.8
	2.10.42 Rule 21.10
	2.10.43 Rule 21.21
	2.10.44 Rule 22.1
	2.10.45 Rule 22.5

	2.11 Section 9 — References
	2.12 Appendix A — Summary of guidelines
	2.13 Appendix B — Guideline attributes
	2.14 Appendix C — Type safety issues with C
	2.14.1 C.1.1

	2.15 Appendix D — Essential types
	2.15.1 D.1
	2.15.2 D.6
	2.15.3 D.6.4
	2.15.4 D.7.12

	2.16 Appendix F — Process and tools checklist
	2.17 Appendix G — Implementation-defined behaviour checklist
	2.18 Appendix H.1 — Undefined behaviour
	2.19 Appendix H.2 — Critical Unspecified behaviour
	2.20 Appendix I — Example Deviation Record

	3 References

