
MISRA C:2012 Amendment 3
Updates for ISO/IEC 9899:2011/2018
Phase 2 — New C11/C18 features
October 2022

First published October 2022 by The MISRA Consortium Limited
1 St James Court
Whitefriars
Norwich
Norfolk
NR3 1RU
UK

www.misra.org.uk

Copyright © 2022 The MISRA Consortium Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical or photocopying, recording or
otherwise without the prior written permission of the Publisher.

“MISRA”, “MISRA C” and the triangle logo are registered trademarks owned by The MISRA Consortium
Limited. Other product or brand names are trademarks or registered trademarks of their respective
holders and no endorsement or recommendation of these products by MISRA is implied.

ISBN 978-1-911700-02-9 PDF

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

MISRA C:2012 Amendment 3
Updates for ISO/IEC 9899:2011/2018
Phase 2 — New C11/C18 features
October 2022

MISRA internal use only i

i

MISRA Mission Statement

We provide world-leading, best practice guidelines for the safe and secure application of both
embedded control systems and standalone software.

MISRA is a collaboration between manufacturers, component suppliers and engineering
consultancies which seeks to promote best practice in developing safety- and security-related
electronic systems and other software-intensive applications. To this end, MISRA publishes
documents that provide accessible information for engineers and management, and holds events to
permit the exchange of experiences between practitioners.

Disclaimer

Adherence to the requirements of this document does not in itself ensure error-free robust software or
guarantee portability and re-use.

Compliance with the requirements of this document, or any other standard, does not of itself confer
immunity from legal obligations.

ii

Foreword

An updated edition of the C Standard, ISO/IEC 9899:2011 and commonly referred to as C11, was
released just as MISRA C:2012 was being prepared for publication, meaning it arrived too late for the
MISRA C Working Group to take it into consideration.

Subsequently, a minor revision, ISO/IEC 9899:2018 and commonly referred to as C18, followed. While
C18 did not introduce any new features, it made some refinements to the existing C Standard.

As the adoption of C11 became more widespread, the MISRA C Working Group decided that it was
time to address the new edition of the C Standard, support for which is being implemented by means
of a series of amendments to MISRA C:2012 – the first of which, MISRA C:2012 Amendment 2 C11
Core was published in 2020.

This document further amends MISRA C:2012 as required to introduce support for more of the
features introduced by ISO/IEC 9899:2011, while also improving the guidance for the earlier C
Standard – it adds one new directive and twenty-three new rules, as well as revising a number of
existing guidelines and supporting material.

Subsequent amendments will be used to introduce specific guidance for the remaining C11 features.

We trust that this amendment will be welcomed by the community at large, and will offer confidence
to projects and organizations who have held off migrating to C11.

Andrew Banks FBCS CITP
Chairman, MISRA C Working Group

iii

Acknowledgements

The MISRA consortium would like to thank the following individuals for their significant contribution
to the writing of this document:

Andrew Banks LDRA Ltd. and Intuitive Consulting

Roberto Bagnara BUGSENG and University of Parma

Alex Gilding Perforce Software Inc.

Chris Tapp LDRA Ltd. and Keylevel Consultants Ltd.

The MISRA consortium also wishes to acknowledge contributions from the following members of the
MISRA C Working Group during the development and review process:

Dave Banham BlackBerry Ltd.

Jill Britton Perforce Software Inc.

Daniel Kästner AbsInt Angewandte Informatik GmbH

Gerlinde Kettl Vitesco Technologies GmbH

Gavin McCall Independent

Michal Rozenau Parasoft Corp

Liz Whiting LDRA Ltd.

The MISRA consortium also wishes to acknowledge contributions from the following individuals
during the development and review process:

Gaétan Noël BlackBerry Ltd.

David Ward HORIBA MIRA Ltd.

DokuWiki was used extensively during the drafting of this document. Our thanks go to all those
involved in its development.

This document was typeset using Open Sans. Open Sans is a trademark of Google and may be
registered in certain jurisdictions. Digitized data copyright © 2010–2011, Google Corporation.
Licensed under the Apache License, Version 2.0.

iv

Contents

1 Overview 1
1.1 Applicability 1
1.2 C language updates 1
1.3 Future directions 2

2 Amendments 3
2.1 Section 6 — Introduction to the guidelines 3
2.2 Section 7 — Directives 3
2.5 Appendix C — Type safety issues with C 38

3 Consequential amendments 43
3.1 Consequential amendments to other existing guidelines 43
3.2 Appendix A — Summary of guidelines 44
3.3 Appendix B — Guidelines attributes 45
3.4 Appendix H — Undefined and critical unspecified behaviour 46
3.6 Addendum 3 — Coverage against CERT C 47

4 References 48
4.1 MISRA C 48
4.2 The C Standard 48
4.3 Other Standards 49

v

1 Overview

1.1 Applicability

This amendment is intended to be used with MISRA C:2012 (Third Edition, First Revision) [2] as
revised and amended by

● MISRA C:2012 Technical Corrigendum 2 [4], and

● MISRA C:2012 Amendment 2 [6]

This amendment is also compatible with MISRA C:2012 (Third Edition) [1] as revised and amended by:

● MISRA C:2012 Technical Corrigendum 1 [3],

● MISRA C:2012 Technical Corrigendum 2 [4],

● MISRA C:2012 Amendment 1 [5], and

● MISRA C:2012 Amendment 2 [6]

1.2 C language updates

This document further amends MISRA C:2012 [2] as follows:

1. To permit the use, with restrictions, of the following ISO/IEC 9899:2011 [11] features:

▬ No-return functions (<stdnoreturn.h>)

▬ Alignment of objects (<stdalign.h>)

▬ Type-generic expressions (_Generic)

2. To provide further guidance on the use of the following C language features:

▬ Type-generic math macros (<tgmath.h>)

▬ Floating-point (including comparisons, NaNs and infinities)

▬ Complex numbers

3. To restrict usage of features declared as obsolescent by the C Standard

When using ISO/IEC 9899:2011 [11], use of the following features remains prohibited without the
support of a deviation against Rule 1.4:

● Support for multiple threads of execution (<stdatomic.h>, <threads.h>)

● Bounds-checking interfaces (Annex K)

Notes:

1. ISO/IEC 9899:2018 [12] incorporates corrigenda applicable to ISO/IEC 9899:2011 [11]. As
such, it is functionally equivalent to ISO/IEC 9899:2011 and is therefore also supported
through this amendment.

1

1.3 Future directions

It is a long-term objective for MISRA C to define a predictable subset of the C language, and to
provide explicit guidance for the avoidance of all instances of undefined and critically unspecified
behaviour. For this reason, features that are initially permitted without the support of specific
guidelines may be subject to restrictions in the future.

Further subsequent amendments will introduce specific guidelines to cover the remaining features
that are prohibited by Rule 1.4, supporting their use through the introduction of guidance that must
be followed to avoid any undefined or unspecified behaviour.

Section 1: O
verview

2

2 Amendments

2.1 Section 6 — Introduction to the guidelines

2.1.1 Amend Section 6.9 — Presentation of the guidelines

Amendment

Expand the examples to include typedefs and objects of complex type.

AMD3.1 : In the assumed list of typedefs, replace:

float32_t /* 32-bit floating-point */
float64_t /* 64-bit floating-point */

with:

float32_t /* 32-bit floating-point - real */
float64_t /* 64-bit floating-point - real */
float128_t /* 128-bit floating-point - real */
cfloat32_t /* 32-bit floating-point - complex */
cfloat64_t /* 64-bit floating-point - complex */
cfloat128_t /* 128-bit floating-point - complex */

AMD3.2 : In the example list of objects, replace:

float32_t f32a; /* 32-bit floating-point */
float64_t f64b; /* 64-bit floating-point */

with:

float32_t f32a; /* 32-bit floating-point - real */
float64_t f64b; /* 64-bit floating-point - real */
float128_t f128c; /* 128-bit floating-point - real */
cfloat32_t cf32a; /* 32-bit floating-point - complex */
cfloat64_t cf64b; /* 64-bit floating-point - complex */
cfloat128_t cf128c; /* 128-bit floating-point - complex */

2.2 Section 7 — Directives

2.2.1 Directive 4.6 — Typedefs

Amendment

Add support for complex types

AMD3.3 : In the “Amplification” section, replace:

For example, on a 32-bit C90 implementation the following definitions might be suitable:

with:

For example, on a C90 implementation (where the standard header <stdint.h> is not available) the
following definitions may be suitable, but need to be adjusted to suit the project’s implementation:

AMD3.4 : In the “Amplification” section, add a new paragraph immediately before the definition of
float32_t:

For real and complex floating-point objects, the following definitions may be suitable (depending on
the implementation), where the specified size represents the precision:

3

AMD3.5 : In the “Amplification” section, add the following after the definition of float128_t:

typedef float _Complex cfloat32_t;
typedef double _Complex cfloat64_t;
typedef long double _Complex cfloat128_t;

2.2.2 Directive 4.9 — Function-like macros

Amendment

Add an exception permitting the use of function-like macros for _Generic selections.

AMD3.6 : Add a new “Exception” section, as follows:

Exception

The use of function-like macros for _Generic selections is advised by Rule 23.1, and is therefore
permitted by this Directive.

AMD3.7 : Add to further example:

The following is compliant by exception – in most cases _Generic selections cannot be replaced
with a function.

#define GFUNC(X) (_Generic(...)) /* Compliant by exception */

AMD3.8 : Add to “See also” list:

, Rule 23.1

2.2.3 Directive 4.11 — Precision

Amendment

Add guidance on the use of precision

AMD3.9 : In the “Rationale” section, add a new paragraph immediately after the existing paragraph
beginning Although most….

The trigonometric periodic functions in <math.h> incur significant precision loss when called with
arguments with relatively large absolute value. If x is an IEC 60559 single-precision number and
x ≥ 223, then the smallest single-precision range containing [x, x + 2π) contains no more than three
floating-point numbers (the same holds for IEC 60559 double-precision numbers substituting
252 to 223). This implies that computing trigonometric periodic functions on large values, because of
the gross input inaccuracy, gives non-significant results independently from the quality of the
function implementation. For this reason, trigonometric periodic functions should not be called on
arguments whose absolute value is larger than k·π, where k is a property of the floating-point
representation. Ideally, this principle should be applied with k = 1, but depending on the application
and its precision goals, a larger value for k can be used.

2.2.4 Directive 4.15 — Infinities and NaNs

Amendment

Add guidance on the undetected generation of infinities and NaNs

AMD3.10 : Add the following new directive after Directive 4.14:

Section 2: Am
endm

ents

4

Dir 4.15 Evaluation of floating-point expressions shall not lead to the
undetected generation of infinities and NaNs

C90 [Implementation 20, 22]
C99 [Unspecified 30, 46, 47, 48, 49; Implementation J.3.6(2), J.3.6(5)]
C11 [Unspecified 30, 52, 53, 56, 57; Implementation J.3.6(2), J.3.6(5)]

Category Required

Applies to C90, C99, C11

Amplification

If the evaluation of an arithmetic floating-point expression or a call to a mathematical function can
possibly generate an infinity or a NaN (not-a-number), then that result shall be adequately tested. For
efficiency reasons, it is possible to exploit the implementation-defined propagation rules for infinities
and NaNs to delay the test, provided no infinity or NaN reaches sections of code that have not been
designed to handle them.

Rationale

Operations on floating-point numbers can overflow, that is, generate results of magnitude too large
to be represented in the considered format. For such cases, the widely-used IEC 60559 Standard has
special representations for positive and negative infinity. While the possibility to denote infinities is
useful in some contexts because it allows operations to continue after overflow has occurred, much
care has to be exercised, because:

● it is likely that an error has occurred that resulted in an approximation error of unknown
magnitude;

● infinities can easily generate unwanted underflows;

● careless computation with infinities can cause the generation of NaNs, whose correct
handling requires even more care.

Note: an infinity does not necessarily correspond to a large value: for instance, on an implementation
that conforms to IEC 60559, a float computation whose exact result is slightly larger than 3.4e+38
will be rounded to infinity and logf(infinity) returns infinity even though logf(3.4e+38)
is less than 89.

Some operations on floating-point numbers are invalid or undetermined, such as taking the square
root of a negative number or dividing a zero by a zero. The IEC 60559 Standard has special
representations for such exceptional, non-numerical results: they are called NaNs. While of course
there are legitimate uses of NaNs, programming with NaNs requires exceptional care, for example:

● in some implementations there are both “signalling” and “quiet” NaNs;

● NaNs can be signed;

● x == x is false if x is a NaN;

● some library functions (such as hypot()) can return a non-NaN even if one of the
arguments is NaN.

For these reasons, projects that do use infinites or NaNs need to take measures ensuring such
special representations are detected and handled before they propagate to areas of the systems
that are not prepared to receive them.

Se
ct

io
n

2:
 A

m
en

dm
en

ts

5

Example

#include <math.h>

extern float64_t get_result(); /* Return value may be infinite
 ... or valid data */
extern void use_result(float64_t c); /* Not protected against NANs or
 ... or infinities */

void f(void)
{
 float64_t a = get_result();

 use_result(a); /* Non-compliant - c not tested */

 if (!isnan(a))
 {
 use_result(a); /* Non-compliant - c may be infinite */
 }

 if (isfinite(a))
 {
 use_result(a); /* Compliant */
 }
}

The following example shows that it is not necessary to check for NaNs or infinities at every step:

void g(void)
{
 float64_t a = get_result();

 float64_t b = exp(-2.0 * a); /* Compliant - exp() propagates infinities
 ... and NaNs as expected */

 float64_t c = (a * (1.0 + b) - (1.0 - b)) / (a * a);

 /* Division can result in NaN, even if operands are not infinity or NaN */

 use_result(c); /* Non-compliant - not protected against NaNs
 ... or infinities */

 if (isfinite(c))
 {
 use_result(c); /* Compliant - protected against NaNs */
 ... and infinities */
 }
}

See also

Dir 1.1, Dir 4.1, Dir 4.7

Section 2: Am
endm

ents

6

2.3 Section 8 — Rules

2.3.1 Amend Rule 1.4 — General restrictions

Amendment

Remove the general restriction on features covered by this amendment.

AMD3.11 : Delete the first bullet point, relating to the _Generic keyword.

AMD3.12 : Delete the second bullet point, relating to the <stdnoreturn.h> header file.

AMD3.13 : Delete the fifth bullet point, relating to the <stdalign.h> header file.

2.3.2 New Rule 1.5 — Obsolescent features

Amendment

Add guidance on the use of obsolescent language features.

AMD3.14 : Add the following new rule after Rule 1.4:

Rule 1.5 Obsolescent language features shall not be used

Category Required

Analysis Undecidable, System

Applies to C99, C11

Amplification

Obsolescent features are those identified in the Future language directions and Future library
directions sections of the C Standard, and are listed in Appendix F.

Rationale

Features are declared as obsolescent by the C Standard when they are superseded by safer or better
alternatives, or are considered to exhibit undesirable behaviour. Features declared as obsolescent by
a particular version of the C Standard may be withdrawn in a later version.

See also

Rule 1.1

2.3.3 New Rule 6.3 — Bit fields

Amendment

Add further guidance on the use of bit fields.

AMD3.15 : Add the following new rule after Rule 6.2:

Se
ct

io
n

2:
 A

m
en

dm
en

ts

7

Rule 6.3 A bit field shall not be declared as a member of a union

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99, C11

C90 [Implementation 30]
C99 [Implementation J.3.9(4)

C11 [Implementation J.3.9(5)]

Amplification

A member of a union shall not be declared as a bit field.

This rule does not apply to sub-objects within union members that do not themselves have a union
type.

Rationale

The exact bitwise position of a bit field within a storage unit is implementation defined. Therefore, if
two bit fields are declared such that they fit within the same storage unit of a union, the compiler is
not required to overlay them over one another beginning from the starting bit of the storage unit.

If the union is used for type-punning, it is therefore unclear which bits of the previously-stored value
will be accessed by the bit field.

If the union is not intended to be used for type-punning, there is no point in declaring the members
as bit fields, because no space will be saved (a complete storage unit will need to be allocated within
the union anyway).

Section 2: Am
endm

ents

8

Example

/* Compliant - if the user wants to type-pun, the bits of 'big' which will
 ... be overlaid are clearly identified */
union U1 {
 uint8_t small;
 uint32_t big;
};

/* Non-compliant - it is unclear which, if any, bits of 'big' are overlaid by
 ... 'small' in this type */
union U2 {
 uint32_t small:8;
 uint32_t big;
};

/* Non-compliant - it is unclear if any bits of 'big' are overlaid by
 ... 'small' in this type */
union U3 {
 uint32_t small: 8;
 uint32_t big :24;
};

/* Compliant - a sub-object can be a bit-field */
union U4 {
 struct {
 uint8_t a:4;
 uint8_t b:4;
 uint8_t c:4;
 uint8_t d:4;
 } q;
 uint16_t r;
};

2.3.4 New Rule 7.5 — Integer constant macros

Amendment

Add guidance on the use of integer constant macros.

AMD3.16 : Add the following new rule after Rule 7.4:

Rule 7.5 The argument of an integer constant macro shall have an appropriate
form

C99 [Undefined 137], C11 [Undefined 145]

Category Mandatory

Analysis Decidable, Single Translation Unit

Applies to C99, C11

Amplification

The argument of an integer constant macro shall satisfy the following:

● The argument must be an unsuffixed integer (decimal, octal or hexadecimal) literal;

● The value of the argument must not exceed the limits for the equivalent exact-width type
indicated by the name of the macro used. For example, the argument to UINT16_C must be
representable as an unsigned 16-bit value.

Se
ct

io
n

2:
 A

m
en

dm
en

ts

9

Rationale

The behaviour is undefined if the argument of an integer constant macro does not have an
appropriate form.

Example

#include <stdint.h>

uint32_t u1 = UINT32_C(10); /* Compliant */
uint32_t u2 = UINT32_C(10UL); /* Non-compliant - constant is suffixed */
uint32_t u3 = UINT32_C(10.0); /* Non-compliant - floating-point constant */
uint16_t u4 = UINT16_C(-2); /* Non-compliant - constant expression */

 int32_t s1 = INT32_C(-2); /* Non-compliant - constant expression */
 int32_t s2 = -INT32_C(2); /* Compliant */

In the following example, the constant has a value that cannot be represented in 16 bits.

uint_least16_t u5 = UINT16_C (0x10000); /* Non-compliant, even if uint_least16_t
 ... is implemented as a 32-bit type */

2.3.5 New Rules 8.15-8.17 — Alignment

Amendment

Add guidance on the use of alignment.

AMD3.17 : Add the following new rules after Rule 8.14:

Rule 8.15 All declarations of an object with an explicit alignment specification
shall specify the same alignment

C11 [Undefined 73]

Category Required

Analysis Decidable, System

Applies to C11

Amplification

If any declaration (including the definition) of an object includes an explicit alignment specification, all
other declarations of the same object shall also include the same explicit alignment specification.

Two alignment specifications are the same if they are lexically identical after macro expansion.

This rule applies both to alignments specified directly by an expression, and by naming a type.

Rationale

If multiple declarations of an object with external linkage have conflicting alignment specifications, the
behaviour is undefined. Therefore, if the alignment of the object is important, it should be listed
explicitly in order to avoid the risk of creating conflicting declarations in multiple translation units. If
the alignment of the object does not need to be set explicitly, the alignment specification should be
omitted entirely to avoid confusion.

Since an object with internal linkage is only accessible by name from within a single translation unit,
there is no direct risk of incompatible alignment specifications causing undefined behaviour.

Section 2: Am
endm

ents

10

However, this rule reduces the risk of accidentally introducing undefined behaviour during
maintenance if the code is later modified to give an object external linkage instead.

If the alignment operand is a type name and the alignment specifications do not consistently use that
same type name, there is a risk of introducing inconsistency if the configuration changes, such as if
code is recompiled on a different platform with different fundamental type alignments.

Example

/* header.h - #included by both file1.c and file2.c */

extern alignas (16) int32_t a;
extern alignas (0) int32_t b;
extern int32_t c;
extern int32_t d;
extern alignas (16) int32_t e;
extern alignas (16) int32_t f;
extern int32_t g;

extern alignas (float) int32_t i;
extern alignas (float) int32_t j;
extern alignas (float) int32_t k;
extern alignas (float) int32_t l;
extern alignas (float32_t) int32_t m;

/* file1.c */

alignas (16) int32_t a; /* Compliant - same explicit alignment */
alignas (16) int32_t b; /* Non-compliant - not consistently explicit */
alignas (16) int32_t c; /* Non-compliant - not consistently explicit */
 int32_t d; /* Compliant - not manually aligned */
 int32_t e; /* Non-compliant - constraint violation */
alignas (16) int32_t f; /* Non-compliant because of file2.c */
alignas (16) int32_t g; /* Non-compliant, and undefined because of file2.c */

extern alignas (16) int32_t h; /* Non-compliant with file2.c */

alignas (float) int32_t i; /* Compliant - same type used */
alignas (double) int32_t j; /* Non-compliant - different type, and therefore
 may be a constraint violation */
alignas (4) int32_t k; /* Non-compliant - regardless of the size of float */
alignas (float32_t) int32_t l; /* Non-compliant - potentially a different type on
 a different platform */
alignas (float32_t) int32_t m; /* Compliant - same type used by name */

/* file2.c */
extern int32_t f; /* Non-compliant - not consistent with
 either file1.c or header.h */

extern alignas (8) int32_t g; /* Non-compliant - undefined behaviour because of
 inconsistency with file1.c */

extern alignas (8) int32_t h; /* Non-compliant - not consistent with file1.c
 and undefined behaviour */

See also

Rule 8.6, Rule 8.16, Rule 8.17

Se
ct

io
n

2:
 A

m
en

dm
en

ts

11

Rule 8.16 The alignment specification of zero should not appear in an object
declaration

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C11

Amplification

This rule applies to any integer constant expression operand to _Alignas that evaluates to zero.

Rationale

If the alignment of an object is important, it should be specified explicitly.

If configuration settings or platform implementation details are intended to change the alignment of
an object to conditionally disable explicit alignment, this should be abstracted by the preprocessor.

Example

 int32_t a; /* Compliant: no alignment specification */
alignas (16) int32_t b; /* Compliant: explicit non-zero alignment specification */
alignas (0) int32_t c; /* Non-compliant: zero-alignment specification */

/* Non-compliant on platforms where sizeof (int) == sizeof (long) */
alignas (sizeof (long) - sizeof (int)) int32_t d;

When the alignment is not important, the configuration can remove it entirely:

#if REQUIRED_ALIGNMENT > 0
#define ALIGNED alignas (REQUIRED_ALIGNMENT)
#else
#define ALIGNED /**/
#endif

See also

Rule 8.15, Rule 8.17

Rule 8.17 At most one explicit alignment specifier should appear in an object
declaration

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C11

Rationale

If the alignment of an object is important, it should be specified explicitly.

Because an alignment specifier only places a minimum requirement on the actual alignment of an
object, C permits a declaration to contain multiple alignment specifiers, with the strictest imposing the
final requirement.

Section 2: Am
endm

ents

12

If separate conditions require different minimum permitted alignments for an object, they should be
combined explicitly by the expression controlling the specifier. Otherwise, the conflicting alignment
specifiers risk obscuring the intent of the declaration from a human reviewer.

Example

int32_t a; /* Compliant - no alignment specifier */
alignas(16) int32_t b; /* Compliant - one alignment specifier */
alignas(16) alignas(8) int32_t c; /* Non-compliant - two alignment specifiers */
alignas(16) alignas(0) int32_t d; /* Non-compliant - also violates Rule 8.16 */

The following example shows a way of generating conditional alignment:

#define SML_ALIGN 16
#define BIG_ALIGN 32
alignas(MAX(SML_ALIGN, BIG_ALIGN)) int32_t e; /* Compliant */

See also

Rule 8.15, Rule 8.16

2.3.6 Amend Section 8.10.2 — Essential types

Amendment

Expand the essential type model to include complex types.

AMD3.18 : In the list of essential type categories, replace:

● Essentially floating.

With:

● Essentially floating, which may be either:

▬ Essentially real floating, or

▬ Essentially complex floating.

Note: For the purposes of this essential type model, essentially real floating and essentially complex
floating are considered to be distinct essential type categories.

AMD3.19 : Replace the table showing the essential types with:

Essential type category

Boolean character signed unsigned enum<i>

_Bool char signed char
signed short
signed int
signed long
signed long long

unsigned char
unsigned short
unsigned int
unsigned long
unsigned long long

named enum

Se
ct

io
n

2:
 A

m
en

dm
en

ts

13

Essential type category

floating

real floating complex floating

float
double
long double

float _Complex
double _Complex

long double _Complex

2.3.7 Amend Rule 10.1

Amendment

Add a restriction on the use of:

● expressions of essentially complex floating type

● relational operators to compare essentially real floating objects.

AMD3.20 : In the “Amplification” section, replace the table, as follows:

Operator Operand

Essential type category of arithmetic operand

Boolean character enum signed unsigned
floating

real complex

[] integer 3 4 1 9

+ (unary) 3 4 5

- (unary) 3 4 5 8

+ - either 3 5

++ -- 3 5 9

* / either 3 4 5

% either 3 4 5 1 9

< > <= >= either 3 9

== != either 10 10

! && || any 2 2 2 2 2 2

<< >> left 3 4 5, 6 6 1 9

<< >> right 3 4 7 7 1 9

~ & | ^ any 3 4 5, 6 6 1 9

?: 1st 2 2 2 2 2 2

?: 2nd and 3rd

AMD3.21 : In the “Amplification” section, delete the first note:

Under this rule … operators.

AMD3.22 : In the “Rationale” section, add a new rationales 9 and 10:

9. The use of an expression of essentially complex floating type for these operands is a constraint
violation.

10. The inherent nature of floating-point types is such that comparisons of equality will often not
evaluate to true even when they are expected to. In addition the behaviour of such a comparison
cannot be predicted before execution, and may well vary from one implementation to another.
Deterministic floating-point comparisons should take into account the floating-point granularity
(FLT_EPSILON) and the magnitude of the numbers being compared.

Section 2: Am
endm

ents

14

AMD3.23 : In the “Exception” section, number the existing exception as Exception 1, and add a new
Exception 2:

2. Comparison (for equality or inequality) of essentially real floating or essentially complex floating
objects with the constant literal value of zero or the macro INFINITY or -INFINITY is permitted.

AMD3.24 : In the “Examples” section, replace the comment:

Compliant by exception

with

Compliant by exception 1

AMD3.25 : In the “Examples” section, append the following new examples:

The following examples demonstrate the scope of Rationale 10:

 float32_t f32w = -1.0f;
 float32_t f32x = 0.2f;
 float32_t f32y = 0.9f;
 float32_t f32z = 0.0f;

 if ((f32w + f32x) == f32y) /* Non-compliant */
 if (f32w != f32y) /* Non-compliant */
 if (f32w <= f32y) /* Compliant */

 if (f32w != 0.0f) /* Compliant - Exception 2 */
 if (f32w != f32z) /* Non-compliant - not a literal constant */

AMD3.26 : Add a “See also” list:

See also

Dir 4.15

2.3.8 Amend Rule 10.3

Amendment

Add an Exception to allow the assignment of an essentially real floating expression to an object of
essentially complex floating type when appropriate.

AMD3.27 : In the “Exception” section, add a new exception 4:

4. An essentially real floating expression may be assigned to an object of essentially complex floating
type provided that its corresponding real type is not narrower than the type of the expression.

AMD3.28 : In the “Example” section, in the group of compliant examples, add:

cf32a = f32a; /* By exception 4 */
cf64a = f64a; /* By exception 4 */

AMD3.29 : In the “Example” section, in the group of non-compliant incompatible examples, add:

f32a = cf32a; /* real floating and complex floating */
f64a = cf64a; /* real floating and complex floating */

AMD3.30 : In the “Example” section, in the group of non-compliant narrowing examples, add:

cf32a = f64a; /* complex floating and real floating */

Se
ct

io
n

2:
 A

m
en

dm
en

ts

15

2.3.9 Amend Rule 10.4

Amendment

Add an Exception to allow operations between essentially real floating and essentially complex floating
objects.

AMD3.31 : In the “Exception” section, after the existing exception 2, add a new paragraph and
exception 3:

Operations involving mixed real and complex operands have well-defined semantics and are
therefore permitted:

3. The operators covered by this rule may have one operand with essentially real floating type and the
other operand with essentially complex floating type. In the case of the conditional operator, this
exception applies to the second and third operands.

AMD3.32 : In the “Example” section, add the following::

The following is compliant by exception 3.

cf32a += f32a; /* complex floating and real floating */

2.3.10 Amend Rule 10.5

Amendment

Add restriction on the use of casting to and from essentially complex floating objects.

AMD3.33 : In the “Amplification” section, replace the table, as follows:

Essential type
category

from

to Boolean character enum signed unsigned real floating
complex
floating

Boolean - Avoid Avoid Avoid Avoid Avoid Avoid

character Avoid - Avoid Avoid

enum Avoid Avoid Avoid* Avoid Avoid Avoid Avoid

signed Avoid -

unsigned Avoid -

real floating Avoid Avoid -

complex floating Avoid Avoid -

2.3.11 Amend Rule 10.7

Amendment

Add clarification, permitting coexistence of essentially real floating and essentially complex floating
operations.

AMD3.34 : In the “Rationale” section, replace the second paragraph, as follows:

Restricting implicit conversions on composite expressions means that sequences of arithmetic
operations within an expression must be conducted in the same essential type, with the exception

Section 2: Am
endm

ents

16

that essentially real floating and essentially complex floating operations may coexist. This reduces
possible developer confusion.

2.3.12 Amend Rule 10.8

Amendment

Add Exceptions to allow casting between essentially real floating and essentially complex floating types.

AMD3.35 : Add a new “Exception” section:

Exception
 1. An essentially real floating expression may be cast to an essentially complex floating type providing
that the corresponding real type is not wider than the type of the expression.
 2. An essentially real complex expression may be cast to essentially real floating type providing that
type is not wider than the corresponding real type of the expression.

2.3.13 New Rules 17.9-17.11 — Use of _Noreturn

Amendment

Permit the use of _Noreturn in a controlled manner.

AMD3.36 : Add the following three new rules after Rule 17.8:

Rule 17.9 A function declared with a _Noreturn function specifier shall not return
to its caller

C11 [Undefined 71]

Category Mandatory

Analysis Undecidable, System

Applies to C11

Rationale

By definition, use of the _Noreturn function specifier indicates unambiguously that a function is not
expected to return to its caller, by any path.

Returning from such a function is indicative of an error in the program's control flow, resulting in
undefined behaviour.

Example

_Noreturn void a (void)
{
 return; /* Non-compliant - breaks _Noreturn contract */
}

Se
ct

io
n

2:
 A

m
en

dm
en

ts

17

_Noreturn void b (void)
{
 while (true) /* Permitted by Rule 14.3 Exception 1 */
 {
 ...
 }

 /* Compliant - function can never return */
}

_Noreturn void c (void)
{
 abort(); /* Compliant - no return from abort(). */
}

_Noreturn void d (int32_t i)
{
 if (i > 0)
 {
 abort();
 }

 /* Non-compliant - returns if i <= 0. */
}

See also

Rule 17.11

Rule 17.10 A function declared with a _Noreturn function specifier shall have void
return type

Category Required

Analysis Decidable, Single Translation Unit

Applies to C11

Rationale

By definition, use of the _Noreturn function specifier indicates unambiguously that a function will not
return to its caller.

A function that cannot return cannot provide a return value and shall therefore be defined with a
void return type.

Example

_Noreturn int32_t f (void); /* Non-compliant */
_Noreturn void g (void); /* Compliant */

See also

Rule 17.9, Rule 17.11

Section 2: Am
endm

ents

18

Rule 17.11 A function that never returns should be declared with a _Noreturn
function specifier

Category Advisory

Analysis Undecidable, System

Applies to C11

Rationale

Declaring a function that cannot return as _Noreturn highlights that this is “by design”.

Exception

This rule does not apply to main(), as the C Standard states that it is a constraint violation for main()
to be declared with the _Noreturn function specifier.

Example

void f (void) /* Non-compliant - exit() call means there is no return */
{
 exit (0);
}

See also

Rule 17.9

2.3.14 New Rule 17.12 — Function identifiers

Amendment

Add guidance on the use of function identifiers.

AMD3.37 : Add the following new rule after the new Rule 17.11:

Rule 17.12 A function identifier should only be used with either a preceding &, or
with a parenthesized parameter list

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C90, C99, C11

Rationale

A function identifier not preceded by & and not followed by a parenthesized parameter list (which
may be empty) can be confusing: it may not be clear whether the intent is to call the function (but the
parenthesized parameter list has accidentally been omitted) or the intent is to obtain the function
address.

Se
ct

io
n

2:
 A

m
en

dm
en

ts

19

Example

typedef int32_t (*pfn_i)(void);

extern int32_t func1 (void); /* Note: A function */
extern int32_t (*func2)(void); /* Note: A function pointer */

void func (void)
{
 pfn_i pfn1 = &func1; /* Compliant */
 pfn_i pfn2 = func1; /* Non-compliant */

 int32_t i32a = (*pfn1)(); /* Compliant - explicit call via a fn-pointer */
 pfn1(); /* Compliant - implicit call via a fn-pointer */

 if (func1 == func2) /* Non-compliant */
 {
 /* ... */
 }

 if (func1 () == func2 ()) /* Compliant - comparing return values */
 {
 /* ... */
 }

 if (&func1 == func2) /* Compliant - comparing a function's address */
 {
 /* ... */
 }
}

2.3.15 New Rule 17.13 — Function type qualifiers

Amendment

Add guidance on the use of function type qualifiers.

AMD3.38 : Add the following new rule after the new Rule 17.12:

Rule 17.13 A function type shall not be type qualified

C90 [Undefined *], C99 [Undefined 63], C11 [Undefined 66]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99, C11

Amplification

The type qualifiers are const, volatile, restrict or _Atomic.

Rationale

The behaviour is undefined if the specification of a function type includes any type qualifiers.

Note: this rule applies to a function type and not to the return type of a function.

Section 2: Am
endm

ents

20

Example

const uint16_t cf (void); /* Compliant - returns const uint16_t */
const uint16_t * pcf (void); /* Compliant - returns a pointer to
 const uint16_t */

In the following examples, ftype is the type of a function returning uint16_t:

typedef uint16_t ftype (void);

typedef const ftype cftype; /* Non-compliant - cftype is const-qualified */

typedef ftype dftype; /* Compliant - dftype is not qualified */
typedef ftype * const pcftype; /* Compliant - const pointer to ftype */

typedef const uint16_t * cfptype (void); /* Compliant - cfptype is the type of a
 function returning
 const uint16_t * */

2.3.16 New Rule 18.9 — Object lifetime

Amendment

Add guidance on the lifetime of objects.

AMD3.39 : Add the following new rule after Rule 18.8:

Rule 18.9 An object with temporary lifetime shall not undergo array-to-pointer
conversion

C99 [Undefined 8, 35], C11 [Undefined 9]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99, C11

Amplification

Temporary lifetime is a storage duration which describes the lifetime of the elements of non-lvalue
arrays.

An array which is a member of a non-lvalue expression with structure or union type shall not be used
as a value, other than as the immediate postfix-expression operand to a subscript operator.

The subscript operator shall not be used to produce a modifiable lvalue.

Rationale

An array object can be a member of a structure or union, and therefore form part of the result value
of any value expression. Because arrays used in an expression are always value-converted to a
pointer to their elements, it is possible to form a pointer to such array sub-objects even when they
are not part of a declared object with normal lifetime.

Modifying elements of such an array implicitly results in undefined behaviour in C90, and explicitly
results in undefined behaviour in C99 and later. Accessing the elements of such an array after the
end of its lifetime results in undefined behaviour, which is implicitly limited to the next sequence

Se
ct

io
n

2:
 A

m
en

dm
en

ts

21

point in C90 and C99 (meaning the pointer cannot be stored or passed to any function), and to the
duration of the complete containing expression in C11 and later.

The pointer will not be to const-qualified elements unless the array element type is const-qualified;
therefore the array's type may appear to allow modification, and the generation of apparently
modifiable element lvalues, even though the array itself has temporary lifetime.

Since the containing object can always be assigned to a named intermediate object by value, there is
little reason to ever attempt to take the address of the value with temporary lifetime.

Example

/* Value object containing an array as an element */

struct S1 {
 int32_t array[10];
};

struct S1 s1;
struct S1 getS1 (void);

void foo(int32_t const * p);

/* Compliant - not temporary storage duration */

int32_t * p = s1.array;
s1.array[0] = 1;
foo(s1.array);

/* Non-compliant - temporary storage duration */

p = getS1().array; /* also creates dangling pointer */
foo(getS1().array);
foo((s1 = s1).array); /* other forms of non-lvalue expression */

/* Compliant - immediate element access is always safe */

int32_t j = getS1().array[3]; /* element copied: const access */
j = (s1 = s1).array[3];

/* Non-compliant - element used as a modifiable lvalue */

getS1().array[3] = j;
(1 ? s1 : s1).array[3] = j;

2.3.17 Amend Rule 21.11 — Type-generic macros

Amendment

Add cross-references to the additional guidance on the use of the features defined within
<tgmath.h>, and recategorize now that additional guidance is available.

AMD3.40 : Replace the rule headline as follows:

The standard header file <tgmath.h> should not be used

AMD3.41 : Recategorize the Rule as Advisory (was Required).

AMD3.42 : Replace the rule amplification as follows:

The standard header file <tgmath.h> should not be #included.

Section 2: Am
endm

ents

22

Note: Due to the duplication of macro names between <tgmath.h>, <math.h> and <complex.h>
this rule does not have the additional requirement that none of the features that are specified as being
provided by <tgmath.h> should be used, as use by means of #including either of these other
standard header files is not constrained. Any other definition of a macro specified as being provided
by <tgmath.h> will be a violation of Rule 21.1 and/or Rule 21.2.

AMD3.43 : Add a “See also” list:

See also

Rule 21.1, Rule 21.2, Rule 21.22, Rule 21.23

2.3.18 Amend Rule 21.12 — Floating-point environment

Amendment

Extend Rule 21.12 to include all features of <fenv.h>.

AMD3.44 : Replace the rule headline as follows:

The standard header file <fenv.h> shall not be used.

AMD3.45 : Revise the source references to add C99 [Undefined 112] and C11 [Undefined 118].

AMD3.46 : Recategorize the Rule as Required (was Advisory).

AMD3.47 : Replace the rule amplification as follows:

The standard header file <fenv.h> shall not be #included, and none of the features that are
specified as being provided by <fenv.h> shall be used.

AMD3.48 : Extend the rationale, by adding the following to the end of the current rationale:

Calling the fesetenv or feupdateenv functions with invalid arguments results in undefined behaviour.

Calling the fesetround function should be done with care because:

1. Setting the rounding mode may have unexpected consequences, e.g. setting the current
rounding mode to upwards does not guarantee that the result of evaluating an expression is
an upward approximation to the value of the expression over the reals.

2. Several implementations of functions declared in <math.h> have been designed to support
round-to-nearest only: if such functions are called when a different rounding mode is set, the
results can be unpredictable.

Note: In conforming implementations, the rounding direction mode is set to rounding to nearest at
program start-up.

2.3.19 New Rules 21.22 and 21.23 — Type-generic macros

Amendment

Add guidance on the use of the type-generic macros declared in <tgmath.h>.

AMD3.49 : Add the following two new rules after Rule 21.21 (added by MISRA C:2012 Amendment 2
[6])

Se
ct

io
n

2:
 A

m
en

dm
en

ts

23

Rule 21.22 All operand arguments to any type-generic macros declared in
<tgmath.h> shall have an appropriate essential type

C99 [Undefined 184], C11 [Undefined 195]

Category Mandatory

Analysis Decidable, Single Translation Unit

Applies to C99, C11

Amplification

The operand arguments passed to the type-generic macros defined in <tgmath.h> shall have
essentially signed, essentially unsigned or essentially floating (either essentially real floating or essentially
complex floating) type.

Arguments to the following macros shall not have essentially complex floating type:

atan2, cbrt, ceil, copysign, erf, erfc, exp2, expm1, fdim, floor, fma, fmax, fmin, fmod, frexp, hypot, ilogb,
ldexp, lgamma, llrint, llround, log10, log1p, log2, logb, lrint, lround, nearbyint, nextafter, nexttoward,
remainder, remquo, rint, round, scalbn, scalbln, tgamma, trunc.

Note: The final parameter to the frexp and remquo macros is for output, and is not considered an
operand.

Rationale

Arguments of non-arithmetic types are not convertible to any of the corresponding real types defined
for the macros defined in <tgmath.h>. Attempting to use them therefore results in undefined
behaviour.

Casting an argument with essentially signed or essentially unsigned type to an essentially real floating
type is not required because the purpose of these macros is to be type-generic. The essential type of
the parameter derives from the argument.

Passing an essentially complex floating argument to one of the macros listed in the amplification
results in undefined behaviour.

Example

Real-valued arguments must have essentially signed or essentially unsigned or essentially floating type:

float f1, f2;
int i1, i2;

char c1, c2;
void *p1, *p2;

void fn1 (void)
{
 f2 = sqrt (f1); /* Compliant - essentially floating real type */
 i2 = sqrt (i1); /* Compliant - essentially integer real type */

 c2 = sqrt (c1); /* Non-compliant - essentially character real type */

 p2 = sqrt (p1); /* Non-compliant - undefined behaviour */
}

Arguments to the macros listed in the amplification must have a real type:

Section 2: Am
endm

ents

24

 float f1, f2;
_Complex float cf1, cf2;

void fn2 (void)
{
 f2 = sqrt (f1); /* Compliant - real argument */
 cf2 = sqrt (cf1); /* Compliant - sqrt has a complex equivalent */

 f2 = ceil (f1); /* Compliant - real argument */
 cf2 = ceil (cf1); /* Non-compliant - undefined behaviour */
}

See also

Rule 21.11, Rule 21.23

Rule 21.23 All operand arguments to any multi-argument type-generic macros
declared in <tgmath.h> shall have the same standard type

Category Required

Analysis Decidable, Single Translation Unit

Applies to C99, C11

Amplification

This rule applies to the following multi-argument type-generic macros:

atan2, copysign, fdim, fma, fmax, fmin, fmod, frexp, hypot, ldexp, nextafter, nexttoward, pow, remainder,
remquo, scalbn, scalbln

All operand arguments passed to any of the multi-argument macros defined in <tgmath.h> shall
have the same standard type, after integer promotion has been applied to any integer arguments.

Note: The final parameter to the frexp and remquo macros is for output, and is not considered an
operand.

Rationale

Ensuring that the types used to determine the corresponding real type for the whole call expression
are consistent makes the relationship between the input values and the result clearer.

On platforms with extended real types, the essentially real floating types may not be able to be strictly
ordered by precision. In this case there is a risk that if two arguments have different types, the
deduced common real type may be an unexpected size or silently lose precision.

Se
ct

io
n

2:
 A

m
en

dm
en

ts

25

Example

void f (void) {
 float32_t f1;
 float32_t f2;
 float64_t d1;
 float64_t d2;

 f2 = pow(f1, f2); /* Compliant */
 d2 = pow(d1, d2); /* Compliant */

 f2 = pow(f1, d2); /* Non-compliant - unclear which argument was
 intended to control precision */
 f2 = pow(f1, (float32_t)d2); /* Compliant */
}

void g (void) {
 short s16;
 int i32;
 long l32;

 i32 = pow(s16, i32); /* Compliant - both arguments are int after
 integer promotion */
 i32 - pow(i32, l32); /* Non-compliant - arguments are not the same
 type after promotion */

 i32 = pow(s16, 10); /* Compliant - 10 has literal type int */
 i32 = pow(10u, 110ul); /* Non-compliant - literal types unsigned int
 and unsigned long */
}

See also

Rule 21.11, Rule 21.22

2.3.20 New Rule 21.24 — C random numbers

Amendment

Add restrictions on the use of the random number functions of <stdlib.h>.

AMD3.50 : Add the following new rule after new Rule 21.23

Rule 21.24 The random number generator functions of <stdlib.h> shall not be
used

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99, C11

Amplification

The functions rand and srand shall not be used and no macro with one of these names shall be
expanded.

Rationale

The C Standard Library function rand() makes no guarantees as to the quality of the random
sequence produced.

Section 2: Am
endm

ents

26

The C Standard warns that the numbers generated by some implementations of the rand()
function have a short cycle and the results can be predictable. Applications with particular
requirements should use a generator that is known to be sufficient for their needs.

The srand() function is also included within this rule, as without any associated use of the rand()
function, its use is superfluous.

Example

#include <stdlib.h>

int r = rand(); /* Non-compliant */

2.3.21 Create new section 8.23 — Generic selections

Amendment

Add new section 8.23 and associated rules.

AMD3.51 : Add new Section 8.23 for generic selections

8.23 Generic selections

Rule 23.1 A generic selection should only be expanded from a macro

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C11

Amplification

A generic selection expression should only be expanded from a function-like macro, with one of the
macro's arguments expanded into the controlling expression of the generic selection.

Rationale

Generic selections are useful to implement type queries or checks, or generic functions. If the generic
selection is applied directly rather than expanded from a macro body, the type of the operand is
already known locally and querying it is not necessary.

Example

The following example is non-compliant, as it is not a macro.

int32_t x = 0;

/* Non-compliant - not a macro */
int32_t y = _Generic(x
 , int32_t : 1
 , float32_t : 2);

The following example implements a regular generic function, and can be expanded into contexts
where the operand type may vary.

Se
ct

io
n

2:
 A

m
en

dm
en

ts

27

/* Compliant - used to implement a generic function */
#define arith(X) (_Generic((X) \
 , int32_t : handle_int32 \
 , float32_t : handle_float \
 , default : handle_any) (X))

The following example is not compliant because it expands to a generic selection which does not
depend on the type of an argument.

/* Non-compliant */
#define maybe_inc(Y) (_Generic(x \
 , int32_t : 1 \
 , default : 0) + (Y))

See also

Dir 4.9, Rule 13.6, Rule 23.2

Rule 23.2 A generic selection that is not expanded from a macro shall not
contain potential side effects in the controlling expression

Category Required

Analysis Decidable, Single Translation Unit

Applies to C11

Amplification

If the controlling expression of a generic selection is not expanded from a macro argument, it shall
not appear to contain any side effects.

A function call is considered to be a side effect for the purposes of this rule.

Rationale

The controlling expression of a generic selection is never evaluated. It is only used for its type, and
usually has to be repeated in order to be combined with the result value in some way.

If an expression is specified which syntactically contains a side effect, that effect will not be applied,
even if the expression has a type that would cause it to be evaluated by sizeof, such as a VLA.

Example

#ifdef BIG
typedef int64_t STATE;
#else
typedef int16_t STATE;
#endif

STATE shared_state;

/* Compliant */
_Static_assert (_Generic (shared_state
 , int32_t: 0
 , default: 1)
 , "error on wrong type");

This example is non-compliant because the apparent side effect modifying shared_state is not
evaluated by the controlling expression.

Section 2: Am
endm

ents

28

/* Non-compliant */
_Static_assert (_Generic (++shared_state
 , int32_t: 0
 , default: 1)
 , "error on wrong type");

See also

Rule 13.6, Rule 23.1, Rule 23.7

Rule 23.3 A generic selection should contain at least one non-default
association

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C11

Amplification

A generic selection should contain at least one association which explicitly specifies an object type.
The presence of a default association is always optional.

Rationale

A generic selection that consists only of a usable default association does not do anything useful;
the default association's result value is evaluated unconditionally.

Omitting a default association indicates intent to check the operand type, by introducing a constraint
violation when the type does not match.

Example

/* Non-compliant - consists only of a default association */
#define no_op(X) _Generic((X), default: (X))

/* Compliant - has a non-default and a default association */
#define filter_ints(X) (_Generic((X) \
 , int32_t: handle_int \
 , default: handle_numeric_value) (X))

/* Compliant - has non-default associations */
#define only_ints(X) (_Generic((X) \
 , int32_t: handle_int \
 , uint32_t: handle_int) (X))

The following example demonstrates that, by omitting a default association, there is a clear intent to
check the operand type, by introducing a constraint violation when the type does not match.

/* Compliant - it has a single permitted type and is
 intended to prevent implicit conversion */
#define require_char(X) (_Generic ((X), char8_t: (X)))

See also

Rule 23.4, Rule 23.8

Se
ct

io
n

2:
 A

m
en

dm
en

ts

29

Rule 23.4 A generic association shall list an appropriate type

Category Required

Analysis Decidable, Single Translation Unit

Applies to C11

Amplification

The controlling expression of a generic selection undergoes lvalue conversion before having its type
compared to the entries in the association list. The association list shall not contain any associations
for:

● a const-qualified object type

● a volatile-qualified object type

● an atomic object type

● an array type

● a function type

● an unnamed structure or union definition

Rationale

Since the Standard does not impose a constraint limiting the types in the association list to the
possible types of values after conversion, it is possible to list associations for types that would never
be eligible for selection.

Value conversion removes top-level qualification and “decays” array and function values into pointers.
Therefore, such types can never match the type of the converted value of the controlling expression.
Listing them is not a constraint violation, but serves no useful purpose, and is almost certainly an
error. This only affects object types, not qualification on pointed-to types.

Listing an unnamed structure or union in the association list is a violation of this rule because every
occurrence of a struct-declaration-list creates a distinct type, therefore it can only be matched by a
default association.

Example

In this set of examples, the first pair are non-compliant because they explicitly specify generic
associations for types that can never be the type of the controlling expression, while the second pair
are compliant as they only attempt to specify generic associations for types that can match the
controlling expression.

typedef int32_t Func (int);
typedef int32_t Array [10];

typedef Func * FuncP;
typedef Array * ArrayP;

/* Non-compliant (because Func is listed) */
#define handle_function_nc(X) _Generic((X) \
 , Func : handle_funcp (&(X)) \
 , FuncP: handle_funcp (X))

Section 2: Am
endm

ents

30

/* Non-compliant (because Array is listed) */
#define handle_array_nc(X) _Generic((X) \
 , Array : handle_intp ((X) + 0) \
 , ArrayP : handle_intp (*(X)) \
 , int32_t *: handle_intp (X))

/* Compliant */
#define handle_function(X) _Generic((X), FuncP: handle_funcp (X))

/* Compliant */
#define handle_array(X) _Generic(&(X)[0] \
 , int32_t *: handle_intp (X) \
 , ArrayP : handle_intp (*(X)))

Array arr1;
Array arr2[10]; /* Two-dimensional - array of arrays */

handle_array (arr1); /* type of &(arr1[0]) is int32_t * - can pass to handle_intp */
handle_array (arr2); /* type of &(arr2[0]) is ArrayP - must dereference again */

In this set of examples, the first example is non-compliant because it explicitly specifies a type that
includes qualifiers at the object level; qualification is removed by value conversion, so such types are
not selectable. The second example is able to take qualification into account because the qualifiers
apply to the pointed-to type, not the object type, and are not removed from the type of the value of
the controlling expression.

typedef int32_t Int;
typedef int32_t const CInt;

/* Non-compliant */
#define filter_const_nc(X) (_Generic((X) \
 , CInt : handle_const_intp \
 , default: handle_other_value) (&(X)))

/* Compliant */
#define filter_const(X) (_Generic((X) \
 , CInt * : handle_const_intp \
 , Int * : handle_const_intp \
 , default: handle_other_value) (X))

In this set of examples, the first example is non-compliant because it tries to explicitly specify array
types, which are not selectable, in an attempt to involve dependent type information in the match.
The second example below is compliant because it explicitly specifies a pointer type, and forces the
type of the controlling expression to be a pointer with &. Creating a pointer to an array preserves the
complete array type, including its dimension.

/* Avoid multiple associations if size == 1 */
#define SizeofNonEmpty(A) (sizeof (A) > 1 ? sizeof (A) : 2)

/* Non-compliant - tries to match argument array type */
#define only_strings_nc(X) _Generic((X) \
 , char[SizeofNonEmpty (X)]: handle_sized_string (sizeof (X), (X)) \
 , char[1] : handle_null_terminator (1, (X)))

Se
ct

io
n

2:
 A

m
en

dm
en

ts

31

/* Compliant - matches pointer to argument array type */
#define only_strings(X) _Generic(&(X) \
 , char (*) [SizeofNonEmpty (X)]: handle_sized_string (sizeof (X), (X)) \
 , char (*) [1]: handle_null_terminator (1, (X)))

only_strings_nc ("hello"); /* Constraint violation */
only_strings ("world"); /* Matches as char (*) [6] */

See also

Rule 23.5

Rule 23.5 A generic selection should not depend on implicit pointer type
conversion

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C11

Amplification

This rule only applies to selection based on pointer types. Selection based on an arithmetic type is
never a violation of this rule.

This rule applies when a default association is selected for a controlling expression whose type could,
in other contexts (such as when passed as an argument to a function), be implicitly converted to
another type explicitly listed in the association list.

Rationale

The controlling expression of a generic selection undergoes value conversion before having its type
compared to any of the entries in the association list, but this is the only conversion applied to its
type. It can then only match an association exactly, or select the default association.

No attempt is made to implicitly convert the type to match an association.

For instance, listing an association for void * will never match a pointer to a complete object type,
and listing an association for T const * will never match T *. This is different from function
arguments, and may therefore cause surprise for users of a generic function implemented as a
generic association, if a type that would be implicitly convertible to an explicitly-listed type is instead
allowed to fall through to the default association.

Example

Given:

void handle_pi (int32_t *); /* No associations have this signature */
void handle_cpi (const int32_t *);
void handle_any (void *);

Using the following generic function with a pointer to const int32_t is compliant, but using a
pointer to (mutable) int32_t is not, because there is no implicit conversion to qualified-pointer in
generic matching:

Section 2: Am
endm

ents

32

#define handle_pointer1(X) (_Generic ((X) \
 , const int32_t *: handle_cpi \
 , default : handle_any) (X))

const int32_t ci;
handle_pointer1 (&ci); /* Compliant - const int32_t * is selected */

int32_t mi;
handle_pointer1 (&mi); /* Non-compliant - default is selected
 NOT const int32_t * */

Using the following generic function with a (mutable) pointer to int32_t is non-compliant, as there
is no conversion to qualified pointer or to pointer to void in generic matching.

#define handle_pointer2(X) (_Generic ((X) \
 , void *: handle_any \
 , const int32_t *: handle_cpi \
 , default : handle_any) (X))

handle_pointer2 (&mi); /* Non-compliant - default is selected
 NOT void * or const int32_t * */

A generic function that wishes to handle pointers to any object type and distinguish them by
qualification, can wrap the controlling expression such that the pointed-to type is explicitly converted
to a pointer to void:

void handle_unq (void *);
void handle_cq (void const *);
void handle_vq (void volatile *);
void handle_cvq (void const volatile *);

#define handle_pointer(X) (_Generic (1 ? (X) : (void *)(X) \
 , void * : handle_unq \
 , void const * : handle_cq \
 , void volatile * : handle_vq \
 , void const volatile * : handle_cvq) (X))
/* Uses are always compliant */

Per the specification of the conditional operator's composite result type, any argument to the macro
with a pointer to object type will be converted to a similarly-qualified pointer to void before it is used
as the controlling expression.

See also

Rule 23.3, Rule 23.4, Rule 23.6

Rule 23.6 The controlling expression of a generic selection shall have an
essential type that matches its standard type

Category Required

Analysis Decidable, Single Translation Unit

Applies to C11

Amplification

Using an expression that has a distinct essential type from its standard type as the controlling
expression of a generic selection is always a violation of this rule, except for integer constant
expressions that are neither character constants nor essentially boolean.

Notes:

Se
ct

io
n

2:
 A

m
en

dm
en

ts

33

1. An enumeration constant unconditionally has the type signed int and will not match
either the implementation defined underlying type, if different from int, or the
(indistinguishable) enumerated type, whichever is listed.

2. The same consideration applies to true and false defined in <stdbool.h>, which have
type int and will not match an association of type _Bool.

Rationale

The association selected by a generic selection must be in line with the type system under which the
code was designed, in order to be useful and consistent. Code written under MISRA guidelines is
subject to the essential type system, and therefore if the selected type is not consistent with the
essential type of the controlling expression, the generic selection will have violated the type system
used for the design.

Because generic selections choose a standard type by name, they can expose this difference if used
with an argument that has inconsistent essential and standard types.

Exception

This rule does not apply to integer constant expressions which would have an essentially signed or
unsigned type of lower rank than int, because of the Type of Lowest Rank rule, but are neither
character constants nor essentially boolean.

Example

The non-compliant examples below accept an operand with essential type of signed short and
char respectively, but both have a standard type of signed int, and only the standard type
determines which association will match.

An exception is made for integer constant expressions that are not character constants, because this
is in line with most user expectations.

#define filter_ints(X) (_Generic((X) \
 , signed short: handle_sshort \
 , unsigned short: handle_ushort \
 , signed int : handle_sint \
 , unsigned int : handle_uint \
 , signed long : handle_slong \
 , unsigned long : handle_ulong \
 , default : handle_any) (X))

short s16 = 0;
int i32 = 0;
long l32 = 0;

/* Non-compliant */
filter_ints (s16 + s16); /* Selects int, essentially short */
filter_ints ('c'); /* Selects int, essentially char */

/* Compliant */
filter_ints (s16);
filter_ints (i32);
filter_ints (l32);

/* Compliant by exception */
filter_ints (10u); /* UTLR is unsigned char */
filter_ints (250 + 350); /* STLR is signed short */

Because an enumerated type is compatible with its implementation-defined underlying type, it is not
distinguishable from the underlying type by _Generic (although distinguishing different enumerated
types is possible because this compatibility is not transitive).

Section 2: Am
endm

ents

34

Attempting to list both would be a constraint violation. Therefore, using an enumerated type as the
controlling expression to a generic selection that lists the underlying type, or vice versa, is always a
violation.

enum E { A = 0, B = 1, C = 2 };
enum E e = A;

/* Non-compliant, assuming compiler chooses 'unsigned int' as the underlying type */
filter_ints (e); /* selects 'unsigned int', essentially enum */
filter_ints (A); /* selects 'signed int', essentially enum */

See also

Rule 23.5

Rule 23.7 A generic selection that is expanded from a macro should evaluate its
argument only once

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C11

Amplification

If the controlling expression of a generic selection is expanded from a macro argument, it should also
be expanded elsewhere in the macro body so that it is evaluated exactly once in the entire expanded
macro body. The number of times that the expression is evaluated should not depend on which
association is selected, and should be consistent for all associations in the generic selection.

This rule does not depend on the presence of side effects in the operand expression.

Rationale

The controlling expression of a generic selection is never evaluated. It is only used for its type, and
usually has to be repeated in order to be combined with the result value in some way.

If an expression is specified which syntactically contains a side effect, that effect will not be applied. If
the generic selection is (as is usually the case) the result of a macro expansion which uses one of the
macro's arguments to select the type, this non-evaluation is concealed from the invoking code.

Combining the input value with the result expression “outside” the generic selection (such as
choosing a function to call as the result, rather than the complete function call) is more likely to
guarantee consistent evaluation of the expanded operand.

Exception

This rule is not violated if all result expressions for the generic selection are constant expressions,
and the macro never expands the argument outside of the controlling expression. This allows for the
implementation of type queries like is_pointer_const.

Example

The following examples are consistent in their expansion of side effects for all associations. In the
first example, the argument used for the controlling expression are expanded exactly once outside of
the generic selection, so the generic selection does not prevent it from being evaluated. In the

Se
ct

io
n

2:
 A

m
en

dm
en

ts

35

second example, the argument expands once each into the result expression of each association. It
will be evaluated exactly once regardless of which generic association is selected.

/* Compliant */
#define gfun1(X) (_Generic((X) \
 , float32_t: fun1f \
 , float64_t: fun1 \
 , default : fun1l) (X))

#define gfun2(X) _Generic((X) \
 , float32_t: fun2f (X) \
 , float64_t: fun2 (X) \
 , default : fun2l (X))

The following example is non-compliant because whether or not the macro argument is evaluated
depends on whether the default association is selected or not. The default association does not
evaluate it because it has no use for the value, but this dangerously assumes that there were no side
effects in the expression.

/* Non-compliant */
#define gfun3(X) _Generic((X) \
 , float32_t : fun3f (X) \
 , float64_t : fun3 (X) \
 , float128_t: fun3l (X) \
 , default : default_result)

The following example only expands a macro argument into the controlling expression, and all
possible result expressions are integer constant expressions. This implements a type query that can
be used for type checking.

/* Compliant by exception */
#define is_pointer_const(P) _Generic(1 ? (P) : (void *)(P) \
 , void const *: 1 \
 , void const volatile *: 1 \
 , default : 0)

_Static_assert (is_pointer_const (pi), "must not be an out-parameter");

See also

Rule 23.2

Rule 23.8 A default association shall appear as either the first or the last
association of a generic selection

Category Required

Analysis Decidable, Single Translation Unit

Applies to C11

Amplification

A default association shall only appear as either the first generic association in the association list, or
the last – this rule only applies when a generic selection contains a default association.

Rationale

Having a default association appear as either the first or last in the association list makes it easy to
locate, clarifying the intent of the selection structure.

Section 2: Am
endm

ents

36

Example

/* Non-compliant - default is not first or last association */
#define sqrt(X) (_Generic((X) \
 , float32_t : sqrtf \
 , default : sqrt \
 , float128_t: sqrtl) (X))

/* Compliant - default is first association */
#define cbrt(X) (_Generic((X) \
 , default : cbrt \
 , float32_t : cbrtf \
 , float128_t: cbrtl) (X))

/* Compliant - no default */
#define assert_untyped_nonatomic(X) (_Generic((X) \
 , void * : handle_ptr \
 , void const * : handle_ptr \
 , void volatile * : handle_ptr \
 , void const volatile * : handle_ptr) (X))

See also

Rule 16.5, Rule 23.3

Se
ct

io
n

2:
 A

m
en

dm
en

ts

37

2.4 Section 9 — References

2.4.1 Amend Reference 35 — Floating-point

Amendment

Replace the reference to IEEE 754 with IEC 60559.

AMD3.52 : Replace Reference 35 (IEEE 754) with:

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems,
International Organization for Standardization, 1989

2.5 Appendix C — Type safety issues with C

2.5.1 Appendix C.1 — Type conversions

2.5.1.1 Appendix C.1.3 — Concerns with conversions

Amendment

Add concern over loss of imaginary part.

AMD3.53 : After the first bullet point (“Loss of value”) insert:

● Loss of imaginary part: e.g. conversion of a complex floating type to a real floating type,
where the imaginary part of the complex value is discarded

AMD3.54 : After the final bullet point (“Conversion of a floating type …”) insert:

● Conversion of a real floating type to a complex floating type, having wider or equal
corresponding real type.

Section 2: Am
endm

ents

38

2.6 Appendix D — The essential type model

Amendment

Address complex floating-point expressions.

AMD3.55 : Append a new bullet point, as follows:

● Complex floating-point expressions There is no promotion from real floating to complex
floating for the operands of a complex expression.

2.6.1 Appendix D.1 — The essential type category of expressions

Amendment

Expand the essential type model to include complex types.

AMD3.56 : In the list of essential type categories, replace:

● Essentially floating.

With:

● Essentially floating, which may be either:

▬ Essentially real floating, or

▬ Essentially complex floating.

Note: For the purposes of this essential type model, essentially real floating and essentially complex
floating are considered to be distinct essential type categories.

AMD3.57 : Replace the table showing the essential types with:

Essential type category

Boolean character signed unsigned enum<i>

_Bool char signed char
signed short
signed int
signed long
signed long long

unsigned char
unsigned short
unsigned int
unsigned long
unsigned long long

named enum

Essential type category

floating

real floating complex floating

float
double
long double

float _Complex
double _Complex

long double _Complex

2.6.2 Appendix D.7.12 — Generic selection (_Generic)

Notes:

1. Appendix D.7.12 was introduced by MISRA C:2012 Amendment 2 [6].

Se
ct

io
n

2:
 A

m
en

dm
en

ts

39

2. MISRA C:2012 Technical Corrigendum 2 [4] combined the previously existing sections D.7.9,
D.7.10 and D.7.11 into a single D.7.9, but did not renumber the subsequent D.7.12.

AMD3.58 : Renumber appendix D.7.12 as D.7.10

AMD3.59 : Replace:

The essential type is the same as the essential type of the result expression.

with

The essential type of a _Generic selection is the essential type of the selected expression.

Section 2: Am
endm

ents

40

2.7 Appendix F — Obsolescent language features

Note: Appendix F was removed by MISRA C:2012 Amendment 2 [6] and replaced with a placeholder.

AMD3.60 : Replace the existing Appendix F placeholder (introduced by
MISRA C:2012 Amendment 2 [6]) as follows:

Appendix F — Obsolescent language features

Obsolescent language features are those identified in the Future language directions and Future
library directions sections of the applicable C Standard — this appendix should be used in
conjunction with Rule 1.5.

In the following table:

● ID is a unique MISRA sequential identifier

● Obsolescent Feature identifies the language feature that has been declared as obsolescent.

● An X in the C99, C11 or C18 denotes that the specified feature has been declared as
obsolescent in the applicable version of the C Standard.

● Comments identifies other MISRA C guidelines for which the use of the specified feature
should also be considered a violation, or specifies a note.

ID Obsolescent Feature C99 C11 C18 Comments

1
Declaring an identifier with internal linkage at file scope without
the static storage class specifier is an obsolescent feature.

X X X Rule 8.8

2
Restriction of the significance of an external name to fewer than
255 characters […] is an obsolescent feature.

X X X Note 1

3
The placement of a storage-class specifier other than at the
beginning of the declaration specifiers in a declaration is an
obsolescent feature.

X X X -

4
The use of function declarators with empty parentheses (not
prototype-format parameter type declarators) is an obsolescent
feature.

X X X Rule 8.2

5
The use of function definitions with separate parameter identifier
and declaration lists (not prototype-format parameter type and
identifier declarators) is an obsolescent feature.

X X X Rule 8.2

6 The macro ATOMIC_VAR_INIT is an obsolescent feature. - - X Rule 1.4

7
The ability to undefine and perhaps then redefine the macros
bool, true, and false is an obsolescent feature.

X X X Rule 21.1

8 The gets function is obsolescent, and is deprecated. X - - Rule 21.6, Note 2

9
The use of ungetc on a binary stream where the file position
indicator is zero prior to the call is an obsolescent feature.

X X X Rule 21.6

10
Invoking realloc with a size argument equal to zero is an
obsolescent feature.

- - X Rule 21.3

Notes:

1. This is a feature of the implementation and is not (usually) determinable by a static analysis
tool.

2. The gets function was removed from the C Standard in C11.

Se
ct

io
n

2:
 A

m
en

dm
en

ts

41

2.8 Appendix J — Glossary

Amendment

Insert the following new definitions, in the appropriate (alphabetical) order:

AMD3.61 : Insert new generic-related definitions:

2.8.1.1 Generic function

The term generic function is defined by the C Standard to mean a callable entity that can handle
operands of different types in appropriately different ways (i.e. “ad-hoc polymorphism”).

The exact details of its implementation are left intentionally unspecified in order to provide maximum
latitude to implementations. It is not required that any generic functions in the C Standard library are
actually implemented using generic selections, although generic selections provide an in-language
mechanism for doing so; compiler intrinsic features are another possible mechanism.

Other properties of the entity representing a generic function are also unspecified. It is not likely that
a generic function has a single address that can be taken, for instance.

2.8.1.2 Generic match

A type matches if it is compatible, without undergoing any implicit conversion, with the type of the
value of the controlling expression. At most one type listed in the selection may match; the generic
association specifying that type will be selected.

If no type matches, the default association will be selected if present.

2.8.1.3 Generic selection

A generic association is selected if the type specified is compatible with the type of the value of the
controlling expression. If no explicitly-specified type is compatible with the type of the value of the
controlling expression, the default association is selected if present. Otherwise, if no association is
selected, the generic selection violates the constraint that exactly one association must be selected by
the generic selection expression.

The result expression of the selected association becomes the result of the complete generic
selection expression.

AMD3.62 : Insert a new definition for type-punning:

2.8.1.4 Type-punning

Type-punning is when an object is referred to using different types.

For example, writing data to one member of a union and reading it from another

Section 2: Am
endm

ents

42

3 Consequential amendments

3.1 Consequential amendments to other existing guidelines

3.1.1 Obsolescent features

Amendment

Add cross-references to new Rule 1.5 for guidelines already addressing obsolescent features.

AMD3.63 : For Rule 8.2, insert into “See also” list:

Rule 1.5,

AMD3.64 : For Rule 8.8, add a “See also” list:

See also

Rule 1.5

3.1.2 Consistency of terminology regarding header file inclusion

Amendment

Adopt revised terminology regarding header file inclusion for the other rules not already affected by
this amendment.

AMD3.65 : For Rule 17.1, replace the Headline with:

The standard header file <stdarg.h> shall not be used

AMD3.66 : For Rule 17.1, replace the Amplification with:

The standard header file <stdarg.h> shall not be #included, and none of the features that are
specified as being provided by <stdarg.h> shall be used.

AMD3.67 : For Rule 21.4, replace the Amplification with:

The standard header file <setjmp.h> shall not be #included, and none of the features that are
specified as being provided by <setjmp.h> shall be used.

AMD3.68 : For Rule 21.5, replace the Amplification with:

The standard header file <signal.h> shall not be #included, and none of the features that are
specified as being provided by <signal.h> shall be used.

AMD3.69 : For Rule 21.10, replace the second line of the Amplification with:

The standard header file <time.h> shall not be #included, and none of the features that are
specified as being provided by <time.h> shall be used.

AMD3.70 : For Rule 21.10, in the third line of the Amplification replace:

In C99,

with: 43

For C99 and later,

3.2 Appendix A — Summary of guidelines

3.2.1 Existing guidelines

AMD3.71 : Modify existing entries, as follows:

● Rule 21.11: Recategorize as Advisory and update headline

● Rule 21.12: Recategorize as Required and update headline

3.2.2 New guidelines

AMD3.72 : Insert new entries, in the appropriate places, as follows:

Guideline Category Headline

Dir 4.15 Required Evaluation of floating-point expressions shall not lead to the undetected
generation of infinities and NaNs

Rule 1.5 Required Obsolescent language features shall not be used

Rule 6.3 Required A bit field shall not be declared as a member of a union

Rule 7.5 Mandatory The argument of an integer-constant macro shall have an appropriate form

Rule 8.15 Required All declarations of an object with an explicit alignment specification shall
specify the same alignment

Rule 8.16 Advisory The alignment specification of zero should not appear in an object
declaration

Rule 8.17 Advisory At most one explicit alignment specifier should appear in an object
declaration

Rule 17.9 Mandatory A function declared with a _Noreturn function specifier shall not return to
its caller

Rule 17.10 Required A function declared with a _Noreturn function specifier shall have void
return type

Rule 17.11 Advisory A function that never returns should be declared with a _Noreturn
function specifier

Rule 17.12 Advisory A function identifier should only be used with either a preceding &, or with a
parenthesized parameter list

Rule 17.13 Required A function type shall not be type qualified

Rule 18.9 Required An object with temporary lifetime shall not undergo array-to-pointer
conversion

Rule 21.22 Mandatory All arguments to any type-generic macros declared in <tgmath.h> shall have
appropriate type

Rule 21.23 Required All arguments to any multi-argument type-generic macros declared in
<tgmath.h> should have the same standard type

Rule 21.24 Required The random number generator functions of <stdlib.h> shall not be used

Rule 23.1 Advisory A generic selection should only be expanded from a macro

Rule 23.2 Required A generic selection that is not expanded from a macro shall not contain
potential side effects in the controlling expression

Rule 23.3 Advisory A generic selection should contain at least one non-default association

Rule 23.4 Required A generic association shall list an appropriate type

Rule 23.5 Advisory A generic selection should not depend on implicit pointer type conversion

Section 3: Consequential am
endm

ents

44

Guideline Category Headline

Rule 23.6 Required The controlling expression of a generic selection shall have an essential type
that matches its standard type

Rule 23.7 Advisory A generic selection that is expanded from a macro should evaluate its
argument only once

Rule 23.8 Required A default association shall appear as either the first or the last association
of a generic selection

3.3 Appendix B — Guidelines attributes

3.3.1 Existing guidelines

AMD3.73 : Modify existing entries, as follows:

● Rule 21.11: Recategorize as Advisory

● Rule 21.12: Recategorize as Required

3.3.2 New guidelines

AMD3.74 : Insert new entries, in the appropriate places, as follows:

Guideline Category Applies to Analysis

Dir 4.15 Required C90, C99, C11

Rule 1.5 Required C99, C11 Undecidable, System

Rule 6.3 Required C90, C99, C11 Decidable, Single Translation Unit

Rule 7.5 Mandatory C99, C11 Decidable, Single Translation Unit

Rule 8.15 Required C11 Decidable, System

Rule 8.16 Advisory C11 Decidable, Single Translation Unit

Rule 8.17 Advisory C11 Decidable, Single Translation Unit

Rule 17.9 Mandatory C11 Undecidable, System

Rule 17.10 Required C11 Decidable, Single Translation Unit

Rule 17.11 Advisory C11 Undecidable, System

Rule 17.12 Advisory C90, C99, C11 Decidable, Single Translation Unit

Rule 17.13 Required C90, C99, C11 Decidable, Single Translation Unit

Rule 18.9 Required C90, C99, C11 Decidable, Single Translation Unit

Rule 21.22 Mandatory C99, C11 Decidable, Single Translation Unit

Rule 21.23 Required C99, C11 Decidable, Single Translation Unit

Rule 21.24 Required C90, C99, C11 Decidable, Single Translation Unit

Rule 23.1 Advisory C11 Decidable, Single Translation Unit

Rule 23.2 Required C11 Decidable, Single Translation Unit

Rule 23.3 Advisory C11 Decidable, Single Translation Unit

Rule 23.4 Required C11 Decidable, Single Translation Unit

Rule 23.5 Advisory C11 Decidable, Single Translation Unit

Rule 23.6 Required C11 Decidable, Single Translation Unit

Rule 23.7 Advisory C11 Decidable, Single Translation Unit

Rule 23.8 Required C11 Decidable, Single Translation Unit

Se
ct

io
n

3:
 C

on
se

qu
en

tia
l a

m
en

dm
en

ts

45

3.4 Appendix H — Undefined and critical unspecified behaviour

3.4.1 Appendix H.1 — Undefined behaviour

AMD3.75 : Replace the following rows in the table:

Id
Decidable Guidelines Notes

C90 C99 C11

8 9 Yes Rule 18.9

35 Yes Rule 18.9

* 63 66 Yes Rule 17.13

71 No Rule 21.10

73 Yes Rule 8.15

112 118 No Dir 4.11, Rule 21.12

137 145 Yes Rule 7.5

184 195 Yes Rule 21.11,
Rule 21.22

3.4.2 Appendix H.2 — Critical unspecified behaviour

AMD3.76 : Replace the following rows in the table:

Id
Decidable Guidelines Notes

C90 C99 C11

30 30 Yes Dir 4.11, Dir 4.15

46 52 Yes Dir 4.15

47 53 Yes Dir 4.15

TC3 54 Yes Dir 4.11, Dir 4.15 Added to C99 by TC3

TC3 55 Yes Dir 4.11, Dir 4.15 Added to C99 by TC3

48 56 Yes Dir 4.11, Dir 4.15

49 57 Yes Dir 4.11, Dir 4.15

Section 3: Consequential am
endm

ents

46

3.5 Addendum 1 — Rule mappings

Update MISRA C:2012 Addendum 1 [7] as follows:

MISRA C:2004 MISRA C:2012 Significant changes from MISRA C:2004 for C90 code

Rule 13.3 (required)

Dir 1.1 (required)
Dir 4.11 (required)
Dir 4.15 (required)
Rule 10.1 (required)

Caution must be exercised when using floating-point
arithmetic

Rule 16.9 (required) Rule 17.12 (Advisory)
Reinstated by Amendment 3. The issues raised by MISRA
C:2004 Rule 16.9 are also partly covered by the set of type
checking rules, MISRA C:2012 Rules 10.1–10.4.

3.6 Addendum 3 — Coverage against CERT C

Update MISRA C:2012 Addendum 3 [9] to reflect the changes in this Amendment

3.6.1 Guideline by guideline

AMD3.77 : Replace the appropriate rows as follows:

CERT C Rule
MISRA C:2012 Guidelines

Comments
Guidelines Coverage

EXP35-C R.18.9 Explicit Strong

EXP36-C R.11.3, R11.4, R11.5, R11.6 Explicit Strong

EXP46-C R.10.1 Explicit Strong

MSC30-C R.21.24 Restrictive Strong rand() shall not be used

MSC32-C R.21.24 Restrictive Strong srand() shall not be used

3.6.2 Coverage summary

AMD3.78 : Replace the summary table as follows:

Classification Strength Number

Explicit
Strong 41

Weak 5

Implicit
Strong 1

Weak 13

Restrictive
Strong 24

Weak 0

Partial Strong/Weak/None 0

Out of Scope None 13

None None 2

Total 99

Se
ct

io
n

3:
 C

on
se

qu
en

tia
l a

m
en

dm
en

ts

47

4 References
The following documents are referenced from within this amendment:

4.1 MISRA C

[1] MISRA C:2012 Guidelines for the use of the C language in critical systems (3rd Edition)
ISBN 978-1-906400-10-1 (paperback), ISBN 978-1-906400-11-8 (PDF),
MIRA Limited, Nuneaton, March 2013

[2] MISRA C:2012 Guidelines for the use of the C language in critical systems (3rd Edition,
1st Revision),
ISBN 978-1-906400-21-7 (paperback), ISBN 978-1-906400-22-4 (PDF),
HORIBA MIRA Limited, Nuneaton, February 2019

[3] MISRA C:2012 Technical Corrigendum 1, Technical clarification of MISRA C:2012,
ISBN 978-1-906400-17-0 (PDF),
HORIBA MIRA Limited, Nuneaton, June 2017

[4] MISRA C:2012 Technical Corrigendum 2, Technical clarification of MISRA C:2012,
ISBN 978-1-911700-00-5 (PDF),
The MISRA Consortium Limited, Norwich, February 2022

[5] MISRA C:2012 Amendment 1, Additional security guidelines for MISRA C:2012,
ISBN 978-1-906400-16-3 (PDF),
HORIBA MIRA Limited, Nuneaton, April 2016

[6] MISRA C:2012 Amendment 2, Updates for ISO/IEC 9899:2011 Core Functionality,
ISBN 978-1-906400-25-5 (PDF),
HORIBA MIRA Limited, Nuneaton, February 2020

[7] MISRA C:2012 Addendum 1, Rule mappings,
ISBN 978-1-906400-12-5 (PDF),
MIRA Limited, Nuneaton, March 2013

[8] MISRA C:2012 Addendum 2 (2nd Edition), Coverage of MISRA C:2012 against ISO/IEC TS
17961:2013 “C Secure”,
ISBN 978-1-906400-18-7 (PDF),
HORIBA MIRA Limited, Nuneaton, January 2018

[9] MISRA C:2012 Addendum 3, Coverage of MISRA C:2012 against against CERT C 2016 Edition,
ISBN 978-1-906400-19-4 (PDF),
HORIBA MIRA Limited, Nuneaton, January 2018

4.2 The C Standard

[10] ISO/IEC 9899:1999, Programming languages — C,
International Organization for Standardization, 1999

[11] ISO/IEC 9899:2011, Programming languages — C,
International Organization for Standardization, 2011

[12] ISO/IEC 9899:2018, Programming languages — C,
International Organization for Standardization, 2018

48

4.3 Other Standards

[13] IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems,
International Organization for Standardization, 1989

Note: Subsequent to the publication of ISO/IEC 9899:2018 [12], IEC 60559:2020 has been published.

Se
ct

io
n

4:
 R

ef
er

en
ce

s

49

	1 Overview
	1.1 Applicability
	1.2 C language updates
	1.3 Future directions

	2 Amendments
	2.1 Section 6 — Introduction to the guidelines
	2.1.1 Amend Section 6.9 — Presentation of the guidelines

	2.2 Section 7 — Directives
	2.2.1 Directive 4.6 — Typedefs
	2.2.2 Directive 4.9 — Function-like macros
	2.2.3 Directive 4.11 — Precision
	2.2.4 Directive 4.15 — Infinities and NaNs

	2.3 Section 8 — Rules
	2.3.1 Amend Rule 1.4 — General restrictions
	2.3.2 New Rule 1.5 — Obsolescent features
	2.3.3 New Rule 6.3 — Bit fields
	2.3.4 New Rule 7.5 — Integer constant macros
	2.3.5 New Rules 8.15-8.17 — Alignment
	2.3.6 Amend Section 8.10.2 — Essential types
	2.3.7 Amend Rule 10.1
	2.3.8 Amend Rule 10.3
	2.3.9 Amend Rule 10.4
	2.3.10 Amend Rule 10.5
	2.3.11 Amend Rule 10.7
	2.3.12 Amend Rule 10.8
	2.3.13 New Rules 17.9-17.11 — Use of _Noreturn
	2.3.14 New Rule 17.12 — Function identifiers
	2.3.15 New Rule 17.13 — Function type qualifiers
	2.3.16 New Rule 18.9 — Object lifetime
	2.3.17 Amend Rule 21.11 — Type-generic macros
	2.3.18 Amend Rule 21.12 — Floating-point environment
	2.3.19 New Rules 21.22 and 21.23 — Type-generic macros
	2.3.20 New Rule 21.24 — C random numbers
	2.3.21 Create new section 8.23 — Generic selections

	2.4 Section 9 — References
	2.4.1 Amend Reference 35 — Floating-point

	2.5 Appendix C — Type safety issues with C
	2.5.1 Appendix C.1 — Type conversions

	2.6 Appendix D — The essential type model
	2.6.1 Appendix D.1 — The essential type category of expressions
	2.6.2 Appendix D.7.12 — Generic selection (_Generic)

	2.7 Appendix F — Obsolescent language features
	2.8 Appendix J — Glossary

	3 Consequential amendments
	3.1 Consequential amendments to other existing guidelines
	3.1.1 Obsolescent features
	3.1.2 Consistency of terminology regarding header file inclusion

	3.2 Appendix A — Summary of guidelines
	3.2.1 Existing guidelines
	3.2.2 New guidelines

	3.3 Appendix B — Guidelines attributes
	3.3.1 Existing guidelines
	3.3.2 New guidelines

	3.4 Appendix H — Undefined and critical unspecified behaviour
	3.4.1 Appendix H.1 — Undefined behaviour
	3.4.2 Appendix H.2 — Critical unspecified behaviour

	3.5 Addendum 1 — Rule mappings
	3.6 Addendum 3 — Coverage against CERT C
	3.6.1 Guideline by guideline
	3.6.2 Coverage summary

	4 References
	4.1 MISRA C
	4.2 The C Standard
	4.3 Other Standards

