MISRA C:2012

Guidelines for the use of the
C language in critical systems

March 2013

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

First published March 2013 by MIRA Limited
Watling Street

Nuneaton

Warwickshire

CV100TU

UK

Www.misra.org.uk
© MIRA Limited 2013.

"MISRA", "MISRA C" and the triangle logo are registered trademarks of MIRA Limited, held on behalf of
the MISRA Consortium.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical or photocopying, recording or
otherwise without the prior written permission of the Publisher.

ISBN 978-1-906400-10-1 paperback
ISBN 978-1-906400-11-8 PDF

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

This copy of MISRA C:2012 Guidelines for the use of the C language in critical systems is issued
to LEE CHING MIN.

The file must not be altered in any way. No permission is given for distribution of this file. This
includes but is not exclusively limited to making the copy available to others by email, placing it
on a server for access by intra- or inter-net, or by printing and distributing hardcopies. Any such
use constitutes an infringement of copyright.

MISRA gives no guarantees about the accuracy of the information contained in this PDF version of
the Guidelines. The published paper document should be taken as authoritative.

Information is available from the MISRA web site on how to purchase printed copies of the
document.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

MISRA C:2012

Guidelines for the use of the
C language in critical systems

March 2013

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

MISRA Mission Statement

We provide world-leading, best practice guidelines for the safe application of both embedded control
systems and standalone software.

MISRA, The Motor Industry Software Reliability Association, is a collaboration between manufacturers,
component suppliers and engineering consultancies which seeks to promote best practice in
developing safety-related embedded electronic systems and other software-intensive applications.
To this end, MISRA publishes documents that provide accessible information for engineers and
management, and holds events to permit the exchange of experiences between practitioners.

www.misra.org.uk

Disclaimer

Adherence to the requirements of this document does not in itself ensure error-free robust software or
guarantee portability and re-use.

Compliance with the requirements of this document, or any other standard, does not of itself confer immunity
from legal obligations.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Foreword

At first sight, this third revision of the MISRA C Guidelines may seem somewhat daunting. Since it
is roughly twice the size of the previous revision, one might think that it contains twice as many
guidelines, and that compliance with those guidelines might take twice as much effort.

In fact, the increase in the number of guidelines is relatively modest at around 10%. The remainder of
the increase in size is due to improvements in the guidance given, such as:

Better rationales for guidelines;

More precise descriptions;

Code examples, showing compliance and non-compliance, for most of the guidelines;
More detailed guidance on compliance checking, and the deviation procedure;

Checklists that can be used to support a compliance statement.

Finally, I would like to draw attention to the introductory sections of the document. These not only
contain practical guidance on how to use MISRA C but, at the same time, have been made more
concise than their predecessors. | encourage all users to familiarize themselves with this material.

Steve Montgomery MA (Cantab), PhD
Chairman, MISRA C Working Group

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Acknowledgements

The MISRA consortium would like to thank the following individuals for their significant contribution
to the writing of this document:

Dave Banham Rolls-Royce plc (previously of Alstom Grid)
Andrew Banks Intuitive Consulting

Mark Bradbury Aero Engine Controls

Paul Burden Programming Research Ltd

Mark Dawson-Butterworth Zytek Automotive Ltd

Mike Hennell LDRA Ltd

Chris Hills Phaedrus Systems Ltd

Steve Montgomery Ricardo UK Ltd

Chris Tapp LDRA Ltd (also Keylevel Consultants Ltd)
Liz Whiting LDRA Ltd (previously of QinetiQ plc)

The MISRA consortium also wishes to acknowledge contributions from the following individuals during
the development and review process:

Roberto Bagnara William Forbes Voilmy Laurent Koki Onoda

John Bailey Takao Futagami Fred Long Paulo Pinheiro
Johan Bezem Jim Gimpel Daniel Lundin Mohanraj Ragupathi
Gunter Blache Gilles Goulas Gavin McCall Paul Rigas

Michael Burke Wolfgang von Hansen Douglas Mearns Andrew Scholan
Andrew Burnard Takahiro Hashimoto Svante Maller Marco Sorich

Paul Butler Dave Higham Frederic Mondot Takuji Takuma

Mirko Conrad Shinya Ito Jurgen Mottok Martin Thompson
David Cozens David Jennings Yannick Moy Takafumi Wakita
David Crocker Peter Jesty Alexander Much David Ward

Greg Davis Grzegorz Konopko Robert Mummé Tetsuhiro Yamamoto
Manoj Dwivedi Taneli Korhonen Tadanori Nakagawa Naoki Yoshikawa
Carl Edmunds Joel Kuehner Greg Newman Achim Olaf Zacher

Particular thanks are due to David Crocker for his significant contribution towards the development
of Appendix H.

The descriptions of implementation-defined behaviours in Appendix G have been reproduced from
versions of the ISO Standards published by BSI Standards Limited; the text is identical to that in the
ISO versions. Permission to reproduce extracts from British Standards is granted by the BSI Standards
Limited (BSI) under Licence No. 2013ET0003. No other use of this material is permitted. British
Standards can be obtained in PDF or hard copy formats from the BSI online shop: www.bsigroup.
com/Shop or by contacting BSI Customer Services for hard copies only: Tel: +44 20 8996 9001,
Email: cservices@bsigroup.com.

DokuWiki was used extensively during the drafting of this document. Our thanks go to all those
involved in its development.

This document was typeset using Open Sans. Open Sans is a trademark of Google and may be
registered in certain jurisdictions. Digitized data copyright © 2010-2011, Google Corporation. Licensed
under the Apache License, Version 2.0.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

http://www.apache.org/licenses/LICENSE-2.0.html
http://www.bsigroup.com/Shop

Contents

1 The vision

2 Background to MISRA C
2.1 The popularity of C
2.2 Disadvantages of C

3 Tool selection
31 The Clanguage and its compiler
3.2 Analysis tools

4 Prerequisite knowledge
41 Training
4.2 Understanding the compiler
4.3 Understanding the static analysis tools

5 Adopting and using MISRA C
51 Adoption
5.2 Software development process
53 Compliance
5.4 Deviation procedure
55 Claiming compliance

6 Introduction to the guidelines
6.1 Guideline classification
6.2 Guideline categories
6.3 Organization of guidelines
6.4 Redundancy in the guidelines
6.5 Decidability of rules
6.6 Scope of analysis
6.7 Multi-organization projects
6.8 Automatically generated code
6.9 Presentation of guidelines
6.10 Understanding the source references

7 Directives
71 The implementation
7.2 Compilation and build
7.3 Requirements traceability
74 Code design

Licensed to: LEE CHING MIN.

5 Mar 2019. Copy 1 of 1

o O OO O u M~ M NN N

N — O 0 0 0o

13
13
13
14
14
14
15
15
16
17
18

21
21
23
23
24

Vi

8 Rules
8.1

A standard C environment

8.2 Unused code
8.3 Comments
8.4 Character sets and lexical conventions
8.5 Identifiers
8.6 Types
8.7 Literals and constants
8.8 Declarations and definitions
8.9 Initialization
810 The essential type model
8.11 Pointer type conversions
8.12 Expressions
813 Side effects
8.14 Control statement expressions
815 Control flow
8.16 Switch statements
8.17 Functions
8.18 Pointers and arrays
819 Overlapping storage
8.20 Preprocessing directives
8.21 Standard libraries
8.22 Resources
9 References
Appendix A Summary of guidelines
Appendix B Guideline attributes
Appendix C Type safety issues with C
Appendix D Essential types
Appendix E Applicability to automatically generated code
Appendix F Process and tools checklist
Appendix G Implementation-defined behaviour checklist
Appendix H Undefined and critical unspecified behaviour
Appendix | Example deviation record
Appendix] Glossary

Licensed to: LEE CHING MIN.

5 Mar 2019. Copy 1 of 1

37
37
39
45
46
48
58
59
63
75
31
93
103
108
115
122
130
136
143
153
155
165
172

178
180
189
193
196
202
205
206
210
220
223

1 The vision

The MISRA C Guidelines define a subset of the C language in which the opportunity to make mistakes
is either removed or reduced. Many standards for the development of safety-related software require,
or recommend, the use of a language subset, and this can also be used to develop any application
with high integrity or high reliability requirements.

As well as defining this subset, these MISRA C Guidelines provide:
e Educational material for those developing C programs;
e Reference material for tool developers.

Previous editions of MISRA C have been based on the 1990 ISO definition of C. As the 1999 ISO
definition has now been adopted, in varying degrees, by embedded implementations it was considered
that the time was right to publish a new edition of MISRA C which recognized the 1999 ISO definition.

Each aspect of the guidance presented in the previous edition has been comprehensively reviewed
and improved where appropriate. This third edition also incorporates material created in response to
the feedback that has been provided by users of earlier editions of the Guidelines.

A major change in this third edition is the development of the second edition’s concept of underlying
type into the essential type. Using the new essential type concept, it has been possible to develop a set
of guidelines that bring stronger typing to the C language.

The vision for the third edition of MISRA C is therefore to:

e Adopt the 1999 ISO definition of the C language, while retaining support for the older 1990
definition;

e Correct any known issues with the second edition;

e Add new guidelines for which there is a strong rationale;

e Improve the specification and the rationale for existing guidelines;

e Remove any guidelines for which the rationale is insufficient;

e Increase the number of guidelines that can be processed by static analysis tools;

* Provide guidance on the applicability of the guidelines to automatically-generated code.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

2 Background to MISRA C

2.1 The popularity of C

The C programming language is popular because:
e Ccompilers are readily available for many processors;
e (Cprograms can be compiled to efficient machine code;
e |tis defined by an international standard;

e |t provides mechanisms to access the input/output capabilities of the target processor,
whether directly or by means of language extensions;

e Thereis a considerable body of experience with using C in critical systems;

e Itiswidely supported by static analysis and test tools.

2.2 Disadvantages of C

While popular, the language has several drawbacks which are discussed in the following sub-sections.

2.2.1 Language definition

The ISO Standard does not specify the language completely but places some aspects under the
control of an implementation. This is intentional, partly because of the desire to support many pre-
existing implementations for widely different target processors.

As a result there are areas of the language in which:
* The behaviour is undefined;
* The behaviour is unspecified;
* Animplementation is free to choose its own behaviour provided that it is documented.

A program that relies on undefined or unspecified behaviour is not necessarily guaranteed to behave
in a predictable manner.

A program that places excessive reliance on implementation-defined behaviour may be difficult to
port to a different target. The presence of implementation-defined behaviour may also hinder static
analysis if it is not possible to configure the analyser to handle it.

2.2.2 Language misuse

While C programs can be laid out in a structured and comprehensible manner, C makes it easy for
programmers to write obscure code that is difficult to understand.

The specification of the operators makes it difficult for programming errors to be detected by a
compiler. For example, the following two fragments of code are both perfectly legal so it is impossible
for a compiler to know whether one has been mistakenly used in place of the other:

== b) /* tests whether a and b are equal */
= b) /* assigns b to a and tests whether a is non-zero */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

2.2.3 Language misunderstanding

There are areas of the language that are commonly misunderstood by programmers. For example,
C has more operators than some other languages and consequently has a high number of different
operator precedence levels, some of which are not intuitive.

The type rules provided by C can also be confusing to programmers who are familiar with strongly-
typed languages. For example, operands may be “promoted” to wider types, meaning that the type
resulting from an operation is not necessarily the same as that of the operands.

2.2.4 Run-time error checking

C programs can be compiled into small and efficient machine code, but the trade-off is that there is a
very limited degree of run-time checking. C programs generally do not provide run-time checking for
common problems such as arithmetic exceptions (e.g. divide by zero), overflow, validity of pointers, or
array bound errors. The C philosophy is that the programmer is responsible for making such checks
explicitly.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 2: Background to MISRA C

3 Tool selection

3.1 The Clanguage and its compiler

When work started on this document, the ISO standard for the C language was ISO/IEC 9899:1999 [8]
as corrected by [9], [10] and [11]. This version of the language is hereafter referred to as C99. However,
many compilers are still available for its predecessor, defined by ISO/IEC 9899:1990 [2] as amended
and corrected by [4], [5] and [6], and hereafter referred to as C90. Some compilers provide an option
to select between the two versions of the language.

The current ISO standard for the C language is ISO/IEC 9899:2011 [13] as corrected by [14]. When
this standard was published, work on the MISRA C Guidelines had been nearly completed and it has
therefore not been possible to incorporate guidance for this later version.

Note: access to a copy of the relevant standard is not necessary for the use of MISRA C, but it may be
helpful.

The choice between C90 and C99 might be affected by factors such as the amount of legacy code
being reused on the project and the availability of compilers for the target processor.

The compiler selected for the project should meet the requirements of a conforming freestanding
implementation for the chosen version of the C language. It may exceed these requirements, for
example by providing all the features of the language (a freestanding implementation need only
provide a well-defined subset), or it might provide extensions as permitted by the language standard.

Ideally, confirmation that the compiler is indeed conforming should be supplied by the compiler
developer, for example by providing details of the conformance tests that were run and the results
that were obtained.

Sometimes, there may be a limited choice of compilers whose quality may not be known. If it proves
difficult to obtain information from the compiler developers, the following steps could be taken to
assist in the selection process:

e Checking that the compiler developer follows a suitable software development process, e.g.
onethatmeetstherequirementsofISO9001:2008 [21] as assessed using ISO90003:2004 [22];

e Reading reviews of the compiler and user experience reports;
e Reviewing the size of the user base and types of applications developed using the compiler;

e Performing and documenting independent validation testing, e.g. by using a conformance
test suite or by compiling existing applications.

Note: some process standards require qualification of compilers in some situations, e.g.
IEC 61508:2010 [32], ISO 26262:2011 [23] and DO-178C [24].

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

3.2 Analysis tools

It is possible to check that C source code complies with MISRA C by means of inspection alone.
However, this is likely to be extremely time-consuming and error prone. Any realistic process for
checking code against MISRA C will therefore involve the use of at least one static analysis tool.

All of the factors that apply to compiler selection apply also to the selection of static analysis tools,
although the validation of analysis tools is a little different from that of compilers. An ideal static
analysis tool would:

e Detect all violations of MISRA C guidelines;

* Produce no “false positives”, i.e. would only report genuine violations and would not report
non-violations or possible violations.

For the reasons explained in Section 6.5, it is not, and never will be, possible to produce a static
analysis tool that meets this ideal behaviour. The ability to detect the maximum number of violations
possible, while minimizing the number of false positive messages, is therefore an important factor in
choosing a tool.

There is a wide range of tools available with execution times ranging from seconds to days. Broadly
speaking, tools that consume less time are more likely to produce false positives than those that
consume large amounts of time. Consideration should also be given to the balance between analysis
time and analysis precision during tool selection.

Analysis tools vary in their emphasis. Some might be general purpose, whereas others might focus
on performing a thorough analysis of a subset of potential issues. Thus it might be necessary to use
more than one tool in order to maximize the coverage of issues.

Note: some process standards, including IEC 61508:2010 [32], ISO 26262:2011 [23] and DO-178C [24],
require the qualification of verification tools such as static analysers in some situations.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 3: Tool selection

4 Prerequisite knowledge

4.1 Training

In order to ensure an appropriate level of skill and competence on the part of those who produce C
source code, formal training should be provided for:

e The use of the C programming language for embedded applications;
e The use of the C programming language for high-integrity and safety-related systems.

Since compilers and static analysis tools are complex pieces of software, consideration should also be
given to providing training in their use. In the case of static analysis tools, it might be possible to obtain
training in their use specifically in relation to MISRA C.

4.2 Understanding the compiler

In this document, the term “compiler”, referred to as “the implementation” by the ISO C standards [2],
[8], means the compiler itself as well as any associated tools such as a linker, library manager and
executable file format conversion tools.

The compiler may provide various options that control its behaviour. It is important to understand the
effect of these options as their use, or non-use, might affect:

e The availability of language extensions;
e The conformance of the compiler with the ISO C standards;
e Theresources, especially processing time and memory space, required by the program;

e Thelikelihood that a defectin the compiler will be exposed, such as might occur when complex
highly-optimizing code transformations are performed.

It is important to understand the way in which the compiler implements those features of the
C language that are termed “implementation-defined” in the ISO C standards. It is also important to
understand any language extensions that the compiler may provide.

The compiler developer may maintain a list of defects that are known to affect the compiler along
with any workarounds that are available. Knowledge of the contents of this list would clearly be
advantageous before starting a project using that compiler. If such a list is not available from the
compiler developer then a local list should be maintained whenever a defect, or suspected defect, is
discovered and reported to the compiler developer.

4.3 Understanding the static analysis tools

The documentation for each static analysis tool being used on a project should be reviewed in order
to understand:

e How to configure the analyser to match the compiler’s implementation-defined behaviour,
e.g. sizes of the integer types;

e Which MISRA C guidelines the analyser is capable of checking (Section 5.3);

e Whether it is possible to configure the analyser to handle any language extensions that will
be used;

e Whetheritis possible to adjust the analyser’s behaviour in order to achieve a different balance
between analysis time and analysis precision.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

The tool developer may maintain a list of defects that are known to affect the tool along with any
workarounds that are available. Knowledge of the contents of this list would clearly be advantageous
before starting a project using that tool. If such a list is not available from the tool developer then a
local list should be maintained whenever a defect or suspected defect is discovered and reported to
the tool developer.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 4: Prerequisite knowledge

5 Adopting and using MISRA C

5.1 Adoption
MISRA C should be adopted from the outset of a project.

If a project is building on existing code that has a proven track record then the benefits of compliance
with MISRA C may be outweighed by the risks of introducing a defect when making the code compliant.
In such cases a judgement on adopting MISRA C should be made based on the net benefit likely to
be obtained.

5.2 Software development process

MISRA C is intended to be used within the framework of a documented software development
process. While MISRA C can be used in isolation, it is of greater benefit when used within a process to
ensure that other activities have been performed correctly so that, for example:

e The software requirements, including any safety requirements, are complete, unambiguous
and correct;

* The design specifications reaching the coding phase are correct, consistent with the
requirements and do not contain any other functionality;

e The object modules produced by the compiler behave as specified in the corresponding
designs;

* The object modules have been tested, individually and together, to identify and eliminate
errors.

MISRA C should be used by programmers before code is submitted for review or unit testing. A
project that checks for MISRA C compliance late inits lifecycle is likely to spend a considerable amount
of time re-coding, re-reviewing and re-testing. It is therefore expected that the software development
process will require the early application of MISRA C principles.

A full discussion of the requirements for safety-related software development processes is outside
the scope of this document. Examples of development processes may be found in standards and
guidelines such as IEC 61508:2010 [32], ISO 26262:2011 [23], DO-178C [24], EN 50128:2011 [33] and
IEC 62304:2006 [34]. The remainder of this section deals with the interaction between MISRA C and
the software development process.

5.2.1 Process activities required by MISRA C
In order to use MISRA C, it is necessary to develop and document:
e A compliance matrix, showing how compliance with each MISRA C guideline will be checked;

e Adeviation process by which justifiable non-compliances can be authorized and recorded.

The software development process should also document the steps that will be taken to avoid
run-time errors, and to demonstrate that they have been avoided. For example, it should include
descriptions of the processes by which it is demonstrated and recorded that:

* The execution environment provides sufficient resources, especially processing time and
stack space, for the program;

* Run-time errors, such as arithmetic overflow, are absent from areas of the program: for
example by virtue of code that checks the ranges of inputs to a calculation.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

5.2.2 Process activities expected by MISRA C

It is recognized that a consistent style assists programmers in understanding code written by
others. However, since style is a matter for individual organizations, MISRA C does not make any
recommendations related purely to programming style. It is expected that local style guides will be
developed and used as part of the software development process.

The use of metrics is recommended by many software process standards as a means to identify
code that may require additional review and testing effort. However, the nature of the metrics being
collected, and their corresponding thresholds, will be determined by the industry, organization and/or
the nature of the project. This document, therefore, does not offer any guidance on software metrics.

5.3 Compliance

In order to ensure that code complies with all of the MISRA C guidelines, a compliance matrix should be
produced. This matrix lists each guideline and indicates how it is to be checked. For most guidelines,
the easiest, most reliable and most cost-effective means of checking will be to use a static analysis tool
or tools, the compiler, or a combination of these. Where a guideline cannot be completely checked by
a tool, then a manual review will be required.

Some automatic code generator developers supply a compliance statement along with their tools.
This statement identifies those MISRA C guidelines that will not be violated by the generated code
provided the tool has been configured as specified by the tool developer. For example it might:

e Listthe guidelines that are not violated; or
e State that all mandatory and required guidelines are not violated.

The use of an automatic code generator compliance statement can significantly reduce the number
of MISRA C guidelines that need to be checked by other means.

SeeTable 1 for an example of a compliance matrix, and see Appendix Afor a summary of the guidelines,
which could be used to assist in generating a full compliance matrix.

Compilers Checking tools
Guideline Manual review
IAI IB/ IA/ IB/

Dir 1.1 Procedure x

Dir 2.1 no errors no errors

Rule 4.1 message 38

Rule 4.2 warning 97

Rule 5.1 warning 347

Table 1: Example compliance matrix

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 5: Adopting and using MISRA C

D VYSIIN 8uisn pue Sundopy :g Uodas

10

Once a compliance matrix is in place, the compilers and analysers can be configured and used to
generate a list of messages that require investigation.

The following information should be recorded for each tool used in the checking process:
e Version number;
e Options used when invoking the tool;

* Any configuration data that the tool uses.

5.3.1 Compiler configuration

If the compiler provides a choice between C90 and C99, it must be configured for the variant being
used on the project. Similarly, if the compiler provides a choice of targets, it must be configured for
the correct variant of the selected target.

The compiler’s optimization options should be reviewed and selected carefully in order to ensure
that an appropriate balance between execution speed and code size has been obtained. Using more
aggressive optimizations may increase the risk of exposing defects in the compiler.

Even if the compiler is not being used to ensure compliance, it may produce messages during the
translation process that indicate the presence of potential defects. Ifthe compiler provides control over
the number and nature of the messages it produces, these should be reviewed and an appropriate
level selected.

5.3.2 Static analysis tool configuration

While a compiler is usually specific to a particular processor, or family of processors, static analysis
tools tend to be general purpose. It is therefore important to configure each static analysis tool to
reflect the implementation decisions made by the compiler. For example, static analysers need to
know the sizes of the integer types.

If the static analyser supports both C90 and C99, it will need to be configured to match the variant in
use on the project.

If possible, the static analyser should be configured to support language extensions. If this is not
possible then an alternative procedure will need to be putin place for checking that the code conforms
to the extended language.

It may also be necessary to configure a static analyser in order to allow it to check certain guidelines.
For example, unless a project is using _Bool to represent Boolean data, an analyser needs to be made
aware of the essentially Boolean type (Appendix D) in order to check some MISRA C guidelines.

5.3.3 Investigating messages

The messages produced by the compliance checking process, or by the translation process, fall into
one of the following categories:

1. Correct diagnosis of a MISRA C guideline violation;

2. Diagnosis of a possible MISRA C guideline violation;

3. False diagnosis of a MISRA C guideline violation;

4. Diagnosis of something that is not a MISRA C guideline violation.

The preferred remedy for any messages in category (1) is to correct the source code in order to make
it compliant with the MISRA C guideline. If it is undesirable or impossible to render the code MISRA C
compliant then a deviation may need to be raised (see Section 5.4).

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Any messages in the other categories should be investigated. Sometimes, the easiest and quickest
solution will be to modify the source code to eliminate the message. However, this may not always be
possible or desirable, in which case a record of the investigation should be kept. The purpose of the
record is to:

e Explain why, despite diagnosis of a possible violation, the code complies with the MISRA C
guideline for category (2) messages;

e Explain and, if possible, obtain the tool developer’s agreement that the tool has incorrectly
diagnosed a violation of the MISRA C guideline for category (3) messages;

e Justify why the message can safely be disregarded for category (4) messages.

All records of such investigations should be reviewed and approved by an appropriately qualified
technical authority.

5.4 Deviation procedure

In some instances it may be necessary to deviate from the guidelines given in this document. For
example, a common method of accessing memory-mapped 1/O ports at fixed addresses does not
comply with MISRA C because it involves converting an integer to a pointer:

#define PORT (* (volatile unsigned char *)0x0002)
PORT = 0x10u;

Itisimportant that such deviations are properly recorded and authorized. Individual programmers can
be prevented from deviating guidelines by means of a formal authorization procedure. Formal record-
keeping is good practice and supports any safety argument that might be made for the software.

The deviation procedure should be formalized within the software development process. No process
is imposed by MISRA C because methods used will vary between organizations, for example:

e The physical methods used to raise, review and approve a deviation;

e The degree of review and evidence required, which may vary according to the guideline in
question, before a deviation can be approved.

Each MISRA C guideline is given a category which affects the way in which deviations may be applied
(see Section 6.2).

Deviations are divided into two categories: Project Deviations and Specific Deviations.

A Project Deviation is used when a MISRA C guideline is deviated in a particular class of circumstances.
For example, if memory-mapped I/O is used in a communications driver then it might be appropriate
to raise a Project Deviation to cover use of memory-mapped I/0 in all files making up that driver.
Project Deviations are typically, though not exclusively, raised early in the project.

A Specific Deviation is used when a MISRA C guideline is deviated for a single instance in a single file.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 5: Adopting and using MISRA C

11

D VYSIIN 8uisn pue Sundopy :g Uodas

12

A deviation record should include:

The guideline being deviated;

The circumstances in which the deviation is permitted: for Project Deviations this may be a
generic description such as “all code in module X" but for Specific Deviations it will identify the
location at which the non-compliant code occurs;

Justification for the deviation, including an assessment of the risks associating with deviating
compared with other possibilities;

Demonstration of how safety is assured, for example a proof that an unsafe condition cannot
occur, together with any additional reviews or tests that are required;

Potential consequences of the deviation and any mitigating actions that have been taken.

An example deviation record is provided in Appendix I.

5.5

Claiming compliance

Compliance cannot be claimed for an organization, only for a project.

When claiming compliance with MISRA C for a project, a developer is stating that evidence exists to

show:
1.

2.

5.

A compliance matrix has been completed which shows how compliance has been enforced;

All the C code in the project is compliant with the guidelines of this document, or is subject to
approved deviations;

There is a record of each approved deviation;

The guidance given in this section, as well as that given in Section 3 and Section 4, has been
adopted;

Staff are suitably skilled and have a sufficient range of experience.

Note: when claiming that code complies with the guidelines, the assumption is being made that the
tools or reviewers have identified all non-compliances. Since other tools or reviewers might identify
different non-compliances, it is important to recognize that compliance claims are not absolute, but
depend on the checking process used.

A summary of the guidance referred to in point (4) is provided in the form of a checklist in Appendix F.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

6 Introduction to the guidelines

This section explains the presentation of the guidelines in Section 7 and Section 8, the main content
of this document, and serves as an introduction to those sections.

6.1 Guideline classification
Every MISRA C guideline is classified as either being a “rule” or a “directive”.

Adirective is a guideline for which itis not possible to provide the full description necessary to perform
a check for compliance. Additional information, such as might be provided in design documents or
requirements specifications, is required in order to be able to perform the check. Static analysis tools
may be able to assist in checking compliance with directives but different tools may place widely
different interpretations on what constitutes a non-compliance.

Arule is a guideline for which a complete description of the requirement has been provided. It should
be possible to check that source code complies with a rule without needing any other information.
In particular, static analysis tools should be capable of checking compliance with rules subject to the
limitations described in Section 6.5.

Section 7 contains all the directives and Section 8 contains all the rules.

6.2 Guideline categories

"nou

Every MISRA C guideline is given a single category of “mandatory”, “required” or “advisory”, whose
meanings are described below. Beyond this basic classification the document does not give, nor
intend to imply, any grading of importance of each of the guidelines. All required guidelines, whether
rules or directives, should be considered to be of equal importance, as should all mandatory and
advisory ones.

6.2.1 Mandatory guidelines

C code which is claimed to conform to this document shall comply with every mandatory guideline —
deviation from mandatory guidelines is not permitted.

Note: if a checking tool produces a diagnostic message, this does not necessarily mean that a guideline
has been violated for the reasons given in Section 6.5.

6.2.2 Required guidelines

C code which is claimed to conform to this document shall comply with every required guideline, with
a formal deviation required, as described in Section 5.4, where this is not the case.

An organization or project may choose to treat any required guideline as if it were mandatory.

6.2.3 Advisory guidelines

These are recommendations. However, the status of “advisory” does not mean that these items can
be ignored, but rather that they should be followed as far as is reasonably practical. Formal deviation
is not necessary for advisory guidelines but, if the formal deviation process is not followed, alternative
arrangements should be made for documenting non-compliances.

An organization or project may choose to treat any advisory guideline as if it were mandatory or
required.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

13

Saul[apINS ayl 01 UOIINPOIIU| :9 UOIIIDS

14

6.3 Organization of guidelines

The guidelines are organized under different topics within the C language. However there is inevitably
overlap, with one guideline possibly being relevant to a number of topics. Where this is the case the
guideline has been placed under the most relevant topic.

6.4 Redundancy in the guidelines

There are a few cases within this document where a guideline is given that refers to a language feature
that is banned or advised against elsewhere in the document. This is intentional. It may be that the
user chooses to use that feature, either by raising a deviation against a required guideline, or by
choosing not to follow an advisory guideline. In this case the second guideline, constraining the use
of that feature, becomes relevant.

6.5 Decidability of rules

Each mandatory, required and advisory rule is classified as decidable or undecidable. This classification
describes the theoretical ability of a static analyser to answer the question “Does this code comply
with this rule?” The directives are not classified in this way because it is impossible, given only the
source code, to devise an algorithm that could guarantee to check for compliance.

Arule is decidable if it is possible for a program to answer the question with a “yes” or a “no” in every
case and undecidable otherwise. A review of the theory of computation, on which this classification
is based, is beyond the scope of this document but a rule is likely to be undecidable if detecting
violations depends on run-time properties such as:

e The value that an object holds;
e Whether control reaches a particular point in the program.

Decidable rules have useful properties with regard to static analysis. Provided that a defect-free and
complete static analyser is configured correctly:

e Areported violation of a decidable rule indicates a real violation;

e No reported violation of a decidable rule indicates there are no violations in the code being
analysed.

Some examples of decidable rules are:

* Rule 5.2: depends on the names and scopes of identifiers;

* Rule 11.3: depends on the source pointer and destination pointer types;

e Rule 20.7: depends on the syntactic form of the result of a macro expansion.
Static analysers vary in their ability to detect violations of undecidable rules:

* A reported violation of an undecidable rule may not necessarily indicate a real violation;
some analysers take the approach of reporting possible violations to remind users of the
uncertainty;

e No reported violation of an undecidable rule does not necessarily indicate that there are no
violations in the code being analysed.

Some examples of undecidable rules are:
* Rule 12.2: depends on the value of the right-hand operand of a shift operator;

e Rule 2.1: depends on knowing whether execution never reaches a certain point.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

As indicated in Section 5.3.3, a process should be developed for analysing the results of static analysis
and recording the outcome. Particular attention should be paid to the process for analysing any
output that relates to undecidable rules.

6.6 Scope of analysis

Each rule is classified according to the amount of code that needs to be checked in order to detect
violations. As for decidability, the concept of analysis scope is not applied to directives.

The analysis scopes that may be applied to rules are “Single Translation Unit” and “System”.

If aruleis classified as capable of being checked on a “Single Translation Unit” basis then it is possible
to detect all violations within a project by checking each translation unit independently. For example,
the presence of switch statements that do not contain default labels (Rule 16.4) within one translation
unit has no effect on whether other translation units contain such switch statements.

If a rule is classified as needing to be checked on a “System” basis, then identifying violations of a rule
within a translation unit requires checking more than the translation unit in question. Rules that are
classified as “System” are best checked by analysing all the source code, although it will be possible
to identify some violations when checking a subset of the whole source. For example, if a project has
two translation units A and B, it is possible to check that all declarations and definitions of an object
within each translation unit use the same type names and qualifiers (Rule 8.3). However, this does not
guarantee that the declarations and definitions in A use the same type names and qualifiers as those
in B. All of the source code that will be compiled and linked into the executable therefore needs to be
checked to guarantee compliance with this rule.

Allundecidable rules need to be checked on a“System” basis because, in the general case, information
about the behaviour of other translation units will be needed. For example, whether or not the value
of the automatic object x is set before x is used (Rule 9.1) in the function g, below, will depend on the
behaviour of the function £ which is defined in another translation unit:

extern void £ (uintlé t *p);
uintle t y;

void g (void)
{

uintlé t x; /* x is not given a value */
f (&x); /* f might modify the object pointed to by its parameter */
y = X; /* x may or may not be unset */

6.7 Multi-organization projects
Projects may involve code from various organizations, for example:
e The Standard Library code from the compiler implementer;
e Low-level driver code from a device vendor;
e Operating system and high-level driver code from a specialist supplier;

e Application code which may be shared between collaborating organizations according to
their expertise.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 6: Introduction to the guidelines

15

Saul[apINS ayl 01 UOIINPOIIU| :9 UOIIIDS

16

The Standard Library code is likely to be concerned with efficiency of execution. It may rely on
implementation details or unspecified behaviours such as:

e (asting pointers to object types into pointers to other object types;

e The layout of stack frames, and in particular the locations of function parameters within
those frames;

e Embedding assembly language statements in C.

As itis part of the implementation, and its functionality and interface is defined in the ISO C standard,
The Standard Library code is not required to comply with MISRA C. Unless otherwise specified in
the individual guidelines, the contents of standard header files, and any files that are included during
processing of a standard header file, are not required to comply with MISRA C. However, guidelines
that rely on the interface provided by standard header declarations and macros are still applicable.
For example, the essential type rules apply to the types of arguments passed to functions specified in
The Standard Library and to their results.

All other code should comply with the MISRA C guidelines to the greatest extent possible. If all the
source code is available then the entire program can be checked for compliance. However, in many
projects it is not possible for the developing organization to obtain all the source code. For example,
collaborating organizations may share functional specifications, interface specifications and object
code but are likely to protect their own intellectual property by not sharing source code. When only
part of the source code is available for analysis, other techniques should be applied in order to confirm
compliance. For example:

e Organizations that supply commercial code may be willing to issue a statement of MISRA C
compliance;

e Organizations that are collaborating might:
— Agree upon a common procedure and tools that each will apply to their own source code;

— Supply each other with stub versions of source code to permit cross-organizational
checks to be made.

A project should define which of the following methods it will use to deal with code supplied by other
organizations:

1. In the same manner as code being developed in-house — this relies on having the source
code available;

2. In the same manner as The Standard Library — this relies on the organization supplying a
suitable MISRA C compliance statement;

3. Compliance checks to be performed on the contents of header files and their interface — this
assumes that no compliance statement is available and no source code, other than header
files, is available.

In case (3), appropriate additional verification and validation techniques should be employed prior to
using the code.

Note: some process standards may include wider requirements for managing multi-organization
developments, for example ISO 26262 [23] Part 8 Clause 5 “Interfaces in distributed development”.

6.8 Automatically generated code

The MISRA C guidelines are applicable to code that has been generated automatically. Responsibility
for compliance lies both with the developer of the automatic code generation tool, and with the
developer of the model from which code is being generated. Since there are several modelling
packages, each of which may have several automatic code generators, it is not possible to allocate this

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

responsibility individually for each MISRA C guideline. It is expected that users of modelling packages
and code generators will employ relevant guidelines such as MISRA AC GMG [17], MISRA AC SLSF[18]
and MISRA ACTL [19].

The category assigned to a MISRA C guideline when applied to automatically generated code is not
necessarily the same as that when applied to manually generated code. When making this distinction,
itis important to note that some modelling packages permit the injection of manually generated code
into a model. Such code is not treated as having been generated automatically when determining the
applicable category of a guideline.

Appendix E identifies those MISRA C guidelines whose category as applied to automatically generated
code is different from that for manually generated code. It also states the documentation requirements
that are placed on automatic code generator developers.

6.9 Presentation of guidelines

The individual requirements of this document are presented in the following format:

ldent Requirement text

[Source ref]
Category Category
Analysis Decidability, Scope

Applies to Cxx

where:
e ‘“ldent”is a unique identifier for the guideline;
e "Requirement text” is the guideline itself;

e “Source ref” indicates the primary source(s) which led to this item or group of items, where
applicable. See Section 6.10 for an explanation of the significance of these references, and a
key to the source materials;

e “Category”is one of “Mandatory”, “Required” or “Advisory”, as explained in Section 6.2;
e “Decidability” is one of “Decidable” or “Undecidable”, as explained in Section 6.5;
e “Scope”is one of “System” or “Single Translation Unit”, as explained in Section 6.6;

e “Cxx"is one or more of “C90" and “C99", separated by a comma, indicating which versions of
the Clanguage the guideline applies to.

Note: since directives do not have a decidability or a scope of analysis, the “Analysis” line is omitted
for directives.

In addition, supporting text is provided for each item or group of related items. The text gives, where
appropriate, some explanation of the underlying issues being addressed by the guideline(s), and
examples of how to apply the guideline(s).

Within the supporting text, there may be a heading titled “Amplification”, followed by text that provides
a more precise description of the guideline. An amplification is normative; if it conflicts with the
headline, the amplification takes precedence. This mechanism is convenient as it allows a complicated
concept to be conveyed using a short headline.

Within the supporting text, there may be a heading titled “Exception”, followed by text that describes
situations in which the rule does not apply. The use of exceptions permits the description of some

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 6: Introduction to the guidelines

17

Saul[apINS ayl 01 UOIINPOIIU| :9 UOIIIDS

18

guidelines to be simplified. It is important to note that an exception is a situation in which the guideline
does not apply. Code that complies with a guideline by virtue of an exception does not require a
deviation.

The supporting text is not intended as a tutorial in the relevant language feature, as the reader is
assumed to have a working knowledge of the language. Further information on the language features
can be obtained by consulting the relevant section of the language standard or other C language
reference books. Where a source reference is given for one or more of the “Portability Issues” listed
in The Standard, then the original issue raised in it may provide additional help in understanding the
guideline.

Within the guidelines, and their supporting text, the following font styles are used to represent
C keywords and C code:

e Ckeywords appear in italic text;
e Items defined in the Glossary appear in italic text;
e (Ccode appears in amonospaced font, either within other text;
e Or
as separate code fragments.

Note: where code is quoted the fragments may be incomplete (for example an if statement without its
body). This is for the sake of brevity.

In code fragments the following typedef'd types have been assumed (this is to comply with Dir 4.6):

uint8 t /* unsigned 8-bit integer */
uintlé t /* unsigned 16-bit integer */
uint32 t /* unsigned 32-bit integer */
int8 t /* signed 8-bit integer */
intl6 t /* signed 16-bit integer */
int32 t /* signed 32-bit integer */
float32 t /* 32-bit floating-point */
float64 t /* 64-bit floating-point */

Non-specific object names are constructed to give an indication of the type. For example:

uint8 t u8a; /* 8-bit unsigned integer */
intlé_t sléb; /* 16-bit signed integer */
int32 t s32c; /* 32-bit signed integer */

bool t bla; /* essentially Boolean */
enum atag ena; /* enumerated type */
char chb; /* character *x/

float32 t £32a; /* 32-bit floating-point */
float64 t £f64b; /* 64-bit floating-point */

6.10 Understanding the source references

Where a guideline originates from one or more published sources these are indicated in square
brackets after the guideline. This serves two purposes. Firstly the specific sources may be consulted
by a reader wishing to gain a fuller understanding of the rationale behind the guideline (for example
when considering a request for a deviation). Secondly, with regard to Portability Issues described in
the ISO C standard, the form of the source gives extra information about the nature of the problem.

Rules which do not have a source reference may have originated from a contributing company’s in-
house standard, or have been suggested by a reviewer, or be widely accepted good practice.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

6.10.1 ISO C portability issue references

The ISO C Portability Issues are described in subsections of Annexes in the relevant standard. It is
important to note that for both C90 and C99, the numbering of references is derived from the original
standard and not from any later version that incorporates corrections and amendments. The reason
for this decision is partly historical, in that MISRA C:2004 used this scheme, and partly practical, in that
there is no officially-available revision of the C99 Standard that incorporates its Technical Corrigenda
although there is a draft [12].

The subsections of the relevant standard corresponding to this kind of reference are:

Reference Annex G of Annex] of
ISO 9899:1990 ISO 9899:1999
Unspecified G IN
Undefined G.2].2
Implementation G.3)3
Locale G4 .4

Where text follows the reference, it has the following meanings:

e Annex G of [2] references: the text identifies the number of an item or items in the relevant
section of the Annex, numbered from the beginning of that section. So for example [Locale 2]
refers to the second item in section G.4 of The Standard and [Undefined 3, 5] refers to the
third and fifth items in Section G.2 of The Standard.

* Annex] of [8] references: for sections J.1,].2 and].4, the same interpretation as above applies.
For section J.3, the text identifies the subsection of .3, followed by a parenthesized item
number or numbers. So for example [Unspecified 6] refers to the sixth item in Section
J.1 of The Standard and [Implementation J3.4(2, 5)] refers to the second and fifth items in
Section J.3.4 of The Standard.

Where a guideline is based on issues from Annex G (C90) or Annex J (C99) of The Standard, it is helpful
for the reader to understand the distinction between the Unspecified, Undefined, Implementation
and Locale references. These are explained briefly here, and further information can be found in
Hatton [3].

Unspecified

These are language constructs that must compile successfully, but in which the compiler writer has
some freedom as to what the construct does. An example of this is the “order of evaluation” described
in Rule 13.2.

While the use of some unspecified behaviour is unavoidable, it is unwise to assume that the compiler
produces object code that behaves in a particular way; the compiler need not even perform
consistently across all possible constructs.

MISRA C identifies specific instances of unspecified behaviour which are liable to result in unsafe
behaviour.

Undefined

These are essentially programming errors, but for which the compiler writer is not obliged to provide
error messages. Examples are invalid parameters to functions, or functions whose arguments do not
match the defined parameters.

These are particularly important from a safety point of view, as they represent programming errors
which may not necessarily be trapped by the compiler.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 6: Introduction to the guidelines

19

Saul[apINS ayl 01 UOIINPOIIU| :9 UOIIIDS

20

Implementation

These are similar to the “unspecified” issues, the main difference being that the compiler writer must
take a consistent approach and document it. In other words the functionality can vary from one
compiler to another, making code non-portable, but on any one compiler the behaviour should be
well-defined. An example of this is the behaviour of the integer division and remainder operators, /
and %, when applied to one positive and one negative integer.

The implementation-defined behaviours tend to be less critical from a safety point of view, provided
the compiler writer has fully documented the intended approach and then implemented it consistently.
It is advisable to avoid these issues where possible.

Locale

The locale-specific behaviours form a small set of features which may vary with international
requirements. An example of this is the facility to represent a decimal point by the " character instead
of the " character. No issues arising from this source are addressed in this document.

6.10.2 Other references

References other than the ISO C Portability Issues are taken from the following sources:

Reference Source

MISRA Guidelines | The MISRA Guidelines [15]

Koenig “C Traps and Pitfalls”, Koenig [31]
IEC 61508 IEC 61508:2010 [32]

ISO 26262 ISO 26262:2011 [23]

DO-178C DO-178C [24]

Unless stated otherwise, the text following a reference gives the relevant page number.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

/ Directives
7.1 The implementation

Dir 1.1 Any implementation-defined behaviour on which the output of the
program depends shall be documented and understood

C90 [Annex G.3], C99 [Annex .3]
Category Required
Applies to €90, C99

Amplification

Appendix G of this document lists, for both C90 and C99, those implementation-defined behaviours
that:

e Are considered to have the potential to cause unexpected program operation, and
* May be presentin a program even if it complies with all the other MISRA C guidelines.
All of these implementation-defined behaviours on which the program output depends must be:
e Documented, and
e Understood by developers.

Note: a conforming implementation is required to document its treatment of all implementation-
defined behaviour. The developer of an implementation should be consulted if any documentation is
missing.

Rationale
Itis important to know that the output of a program was intentional and was not produced by chance.

Some of the more common implementation-defined behaviours on which safety-related embedded
software is likely to depend are described below.

Core behaviour

The fundamental implementation-defined behaviours, which are likely to be required by most
programs, include:

* How to identify a diagnostic message produced during translation;

* The type of the function main, commonly declared as void main (void) in freestanding
implementations;

e The number of significant characters in identifiers — needed to configure an analysis tool for
Rule 5.2;

e The source and execution character sets;
e The sizes of the integer types;

* How a #include'd name is mapped onto a file name and located in the host file system.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

2

S9AI123J1(:/ UOIIDSS

22

Extensions

Extensions are often used in embedded systems to provide access to peripherals and to place
objects into regions of memory with special properties such as Flash EEPROM or fast-access RAM. A
conforming implementation is permitted to provide extensions provided that they do not alter the
meaning of any strictly conforming program.

Some C90 implementations may provide extensions which implement a subset of the C99 features.
Some of the methods by which an implementation can provide extensions are:
* The #pragma preprocessing directive or the _Pragma operator (C99 only);

e New keywords.

The Standard Library

Some aspects of The Standard Library implementation that may be important are:
e The values assigned to errno when certain Standard Library functions are used;
e The implementation of clock and time functions;

e The characteristics of the file system.

The Application Binary Interface

It is sometimes necessary to interface C code with assembly language, for example to improve
execution speed in those places where it is critical. It might also be necessary to interface code
produced by different compilers, possibly for different languages.

The Application Binary Interface (ABI) for a compiler provides the information necessary to perform
this task, including some of the implementation-defined behaviours. It typically specifies:

* How function parameters are passed in registers and on the stack;

* How function values are returned;

e Which registers must be preserved by a function;

* How objects with automatic storage duration are allocated to stack frames;

e Alignment requirements for each data type;

* How structures are laid out and how bit-fields are allocated to storage units.
Some processors have a standard ABI which will be used by all implementations. Where no standard
ABI exists, an implementation will provide its own.
Integer division
In C90, signed integer division or remainder operations in which either operand has a negative value
may either round downwards or towards zero. In C99, rounding is guaranteed to be towards zero.
Floating-point implementation

The implementation of floating-point types can have significant impact on program behaviour, for
example:

e The range of values and the precision with which they are stored;

e The direction of rounding following floating-point operations;

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

e The direction of rounding when converting to narrower floating-point types or to integer
types;

e The behaviour in the presence of underflow, overflow and NaNs;

e The behaviour of library functions in the event of domain and range errors.

See also

Rule 5.1, Rule 5.2
7.2 Compilation and build

Dir 2.1 All source files shall compile without any compilation errors

Category Required
Applies to €90, C99

Rationale

A conforming compiler is permitted to produce an object module despite the presence of compilation
errors. However, execution of the resulting program may produce unexpected behaviour.

See Section 5.3.1 for further guidance on controlling and analysing compiler messages.

See also

Rule 1.1
7.3 Requirements traceability

Dir 3.1 All code shall be traceable to documented requirements

[DO-178C Section 6.4.4.3.d]
Category Required
Applies to 90, C99

Rationale

Functionality that is not needed to meet the project requirements gives rise to unnecessary paths.
It is possible that the developers of the software are not aware of the wider implications that might
arise from this additional functionality. For example, developers might add code that toggles the
state of a processor output pin every time a particular point in the program is reached. This might be
very useful during development for measuring timing or for triggering an emulator or logic analyser.
However, even though the pin in question might appear to be unused because it is not mentioned in
the software requirements specification, it might be connected to an actuator in the target controller,
resulting in unwanted external effects.

The method by which code is traced back to documented requirements shall be determined by the
project. One method of achieving traceability is to review the code against the corresponding design
documents which have in turn been reviewed against the requirements.

Note: there should not be any conflict between this guideline and the provision of a protective coding
strategy as the latter should be part of the requirements in a critical system.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 7: Directives

23

S9AI123J1(:/ UOIIDSS

24

7.4 Code design

Dir 4.1 Run-time failures shall be minimized

C90 [Undefined 15, 19, 26, 30, 31, 32, 94]
C99 [Undefined 15, 16, 33, 40, 43-45, 48, 49, 113]

Category Required
Applies to €90, C99

Rationale

The C language was designed to provide very limited built-in run-time checking. While this approach
allows generation of compact and fast executable code, it places the burden of run-time checking
on the programmer. In order to achieve the desired level of robustness, it is therefore important
that programmers carefully consider adding dynamic checks wherever there is potential for run-time
errors to occur.

It is sometimes possible to demonstrate that the values of operands preclude the possibility of a run-
time error during evaluation of an expression. In such cases, a dynamic check is not required provided
that the argument supporting its omission is documented. Any such documentation should include
the assumptions on which the argument depends. This information can be used during subsequent
modifications of the code to ensure that the argument remains valid.

The techniques that will be employed to minimize run-time failures should be planned and
documented, for example in design standards, test plans, static analysis configuration files and code
review checklists. The nature of these techniques may depend on the integrity requirements of the
project. See Section 5.2 for further details.

Note: the presence of a run-time error indicates a violation of Rule 1.3.

The following notes give some guidance on areas where consideration needs to be given to the
provision of dynamic checks.

e arithmetic errors This includes errors occurring in the evaluation of expressions, such as
overflow, underflow, divide by zero or loss of significant bits through shifting. In considering
integer overflow, note that unsigned integer calculations do not strictly overflow but wrap
around producing defined, but possibly unexpected, values. Careful consideration should be
given to the ranges of values and order of operation in arithmetic expressions, for example:

float32 t f1 = 1E38f;
float32 t f2 = 10.0f;
float32 t £3 = 0.1f;

float32 t f4 = (f1 * £f2) * £3; /* (f1 * f2) will overflow */
float32 t f5 = f1 * (f2 * £3); /* no overflow because (f2 * £3)
* is (approximately) 1 */

if ((£3 >= 0.0f) && (£3 <= 1.0f))
{
/*
* no overflow because f3 is known to be in range 0..1 so the
* result of the multiplication will fit in type float32 t
*/
f4 = £3 * 100.0f;
}

e pointer arithmetic Ensure that when an address is calculated dynamically the computed
address is reasonable and points somewhere meaningful. In particular it should be ensured
that if a pointer points within an array, then when the pointer has been incremented or
otherwise altered it still points within the same array. See restrictions on pointer arithmetic
— Rule 18.1, Rule 18.2 and Rule 18.3.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

e array bound errors Ensure that array indices are within the bounds of the array size before
using them to index the array — Rule 18.1.

e function parameters The validity of arguments should be checked prior to passing them to
library functions — Dir 4.11.

e pointer dereferencing Unless a pointer is already known to be non-NULL, a run-time check
should be made before dereferencing that pointer. Once a check has been made, it is
relatively straightforward within a single function to reason about whether the pointer may
have changed and whether another check is therefore required. It is much more difficult to
reason across function boundaries, especially when calling functions defined in other source
files or libraries.

Section 7: Directives

/o
* Given a pointer to a message, check the message header and return
* a pointer to the body of the message or NULL if the message is
* invalid.

*/
const char *msg body (const char *msg)

{
const char *body = NULL;

if (msg != NULL)
{
if (msg _header valid (msg))

{
body = &msg[MSG HEADER SIZE];

}
}

return body;

}

char msg buffer[MAX MSG SIZE];
const char *payload;

payload = msg body (msg buffer);

/* Check if there is a payload */
if (payload != NULL)

{
/* Process the payload */

}

e dynamic memory If dynamic memory allocation is being performed, it is essential to check
that each allocation succeeds and that an appropriate degradation or recovery strategy is
designed and tested.

See also

Dir 4.11, Dir 412, Rule 1.3, Rule 18.1, Rule 18.2, Rule 18.3

25

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

S9AI123J1(:/ UOIIDSS

26

Dir 4.2 All usage of assembly language should be documented

Category Advisory
Applies to €90, C99

Amplification

The rationale for the use of the assembly language and the mechanism for interfacing between C and
the assembly language should be documented.

Rationale

Assembly language code is implementation-defined and therefore not portable.

Dir 4.3 Assembly language shall be encapsulated and isolated

Category Required
Applies to €90, C99

Amplification

Where assembly language instructions are used they shall be encapsulated and isolated in:
e Assembly language functions;
e Cfunctions (inline functions preferred for C99);

e Cmacros.

Rationale

For reasons of efficiency it is sometimes necessary to embed simple assembly language instructions
in-line, for example to enable and disable interrupts. If this is necessary, then it is recommended that
it be achieved by using macros, or for C99, inline functions.

Encapsulating assembly language is beneficial because:
e Itimproves readability;

* The name, and documentation, of the encapsulating macro or function makes the intent of
the assembly language clear;

e All uses of assembly language for a given purpose can share the same encapsulation which
improves maintainability;

e The assembly language can easily be substituted for a different target or for purposes of
static analysis.

Note: the use of in-line assembly language is an extension to standard C, and therefore violates
Rule 1.2.

Example

#define NOP asm (" NOP")

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Dir 4.4 Sections of code should not be “commented out”

Category Advisory
Applies to €90, C99

Amplification

This rule applies to both // and /* ... */ styles of comment.

Rationale

Where it is required for sections of source code not to be compiled then this should be achieved
by use of conditional compilation (e.g. #if or #ifdef constructs with a comment). Using start and end
comment markers for this purpose is dangerous because C does not support nested comments, and
any comments already existing in the section of code would change the effect.

See also

Rule 3.1, Rule 3.2

Dir 4.5 Identifiers in the same name space with overlapping visibility should
be typographically unambiguous

Category Advisory
Applies to €90, C99

Amplification

The definition of the term “unambiguous” should be determined for a project taking into account the
alphabet and language in which the source code is being written.

For the Latin alphabet as used in English words, it is advised as a minimum that identifiers should not
differ by any combination of:

e Theinterchange of a lowercase character with its uppercase equivalent;
e The presence or absence of the underscore character;

e The interchange of the letter “O", and the digit “0";

e Theinterchange of the letter “I", and the digit “1”;

e Theinterchange of the letter “|", and the letter “I" (el);

e Theinterchange of the letter "I (el), and the digit “1";

e Theinterchange of the letter “S", and the digit “5";

e Theinterchange of the letter “Z", and the digit “2";

e The interchange of the letter “n”, and the letter “h";

e Theinterchange of the letter “B", and the digit “8";

e Theinterchange of the letter sequence “rn” (“r" followed by “n"), and the letter “m”;

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 7: Directives

27

S9AI123J1(:/ UOIIDSS

28

Rationale

Depending upon the font used to display the character set, it is possible for certain glyphs to appear
the same, even though the characters are different. This may lead to the developer confusing an
identifier with another one

Example

The following examples assume the interpretation suggested in the Amplification for the Latin
alphabet and English language

int32 t
int32 t

int32_t
int32 t

int32_t
int32 t

int32 t
int32 t

int32 t
int32 t

int32 t
int32 t

int32 t
int32 t

int32_t
int32_t

int32 t
struct

{
int32 t
}i

Dir 4.6

Category
Applies to

idl a b c;

idl_abc; /* Non-compliant */
id2 abc;

id2 ABC; /* Non-compliant */
id3 a bc;

id3_ab_c; /* Non-compliant */
id4 17

id4 1; /* Non-compliant */
id5 7;

id5 2; /* Non-compliant */
id6_0;

idé_0; /* Non-compliant */
id7 B;

id7_8; /* Non-compliant */
id8 rn;

id8 m; /* Non-compliant */
id9 rn;

id9 m; /* Compliant */

typedefs that indicate size and signedness should be used in place of
the basic numerical types

Advisory
C90, C99

Amplification

The basic numerical types of char, short, int, long, long long (C99), float, double and long double should
not be used, but specific-length typedefs should be used.

For C99, the types provided by <stdint.h> should be used. For C90, equivalent types should be
defined and used.

A type must not be defined with a specific length unless the implemented type is actually of that

length.

It is not necessary to use typedefs in the declaration of bit-fields.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

For example, on a 32-bit C90 implementation the following definitions might be suitable:

typedef signed char int8 t;

typedef signed short intl6 t;
typedef signed int int32 t;
typedef signed long inted t;

typedef unsigned char uint8 t;

typedef unsigned short uintlé t;
typedef unsigned int uint32 t;
typedef unsigned long uinted t;

typedef float float32 t;
typedef double float64 t;
typedef long double floatl28 t;
Rationale

In situations where the amount of memory being allocated is important, using specificlength types
makes it clear how much storage is being reserved for each object.

Adherence to this guideline does not guarantee portability because the size of the int type may
determine whether or not an expression is subject to integer promotion. For example, an expression
with type int16 t will not be promoted if int is implemented using 16 bits but will be promoted if int
is implemented using 32 bits. This is discussed in more detail in the section on integer promotion in
Appendix C.

Note: defining a specificlength type whose size is not the same as the implemented type is counter-
productive both in terms of storage requirements and in terms of portability. Care should be taken to
avoid defining types with the wrong size.

If abstract types are defined in terms of a specific-length type then it is not necessary, and may even
be undesirable, for those abstract types to specify the size or sign. For example, the following code
defines an abstract type representing mass in kilograms but does not indicate its size or sign:

typedef uintlé t mass kg t;

It might be desirable not to apply this guideline when interfacing with The Standard Library or code
outside the project’s control.

Exception
1. The basic numerical types may be used in a typedef to define a specific-length type.

2. For function main, an int may be used rather than the typedefs as a return type. Therefore
int main (void) is permitted.

3. For functionmain an int may be used rather than the typedefs for the input parameter argc.
4. For function main a char may be used rather than the typedefs for the input parameter argv.

Therefore int main(int argc, char *argv[]) ispermitted (C99 Section 5.1.2.2.1).

Example
/* Non-compliant - int used to define an object */
int x = 0;
/* Compliant - int used to define specific-length type */

typedef int SINT 16;

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 7: Directives

29

S9AI123J1(:/ UOIIDSS

30

/* Non-compliant - no sign or size specified */
typedef int speed t;

/* Compliant - further abstraction does not need specific length */
typedef intlé t torque t;

Dir 4.7 If a function returns error information, then that error information
shall be tested

Category Required
Applies to €90, C99

Amplification
The list of functions that are deemed to return error information shall be determined by the project.

The error information returned by a function shall be tested in a meaningful manner.

Rationale

A function (whether it is part of The Standard Library, a third party library or a user defined function)
may be deemed to provide some means of indicating the occurrence of an error. This may be via an
error flag, some special return value or some other means. Whenever such a mechanism is provided
by a function the calling program shall check for the indication of an error as soon as the function
returns.

However, note that the checking of input values to functions is considered a more robust means of
error prevention than trying to detect errors after the function has completed (see Dir 4.11).

Exception

If it can be shown, for example by checking arguments, that a function cannot return an error
indication then there is no need to perform a check.

See also

Dir 411, Rule 17.7

Dir 4.8 If a pointer to a structure or union is never dereferenced within a
translation unit, then the implementation of the object should be
hidden

Category Advisory

Applies to €90, C99

Amplification
The implementation of an object should be hidden by means of a pointer to an incomplete type.

Rationale

If @ pointer to a structure or union is never dereferenced, then the implementation details of the
object are not needed and its contents should be protected from unintentional changes.

Hiding the implementation details creates an opaque type which may be referenced via a pointer but
whose contents may not be accessed.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Example
/* Opagque.h */

#ifndef OPAQUE H
#define OPAQUE H

typedef struct OpaqueType *pOpaqueType;
#endif
/* Opaque.c */
finclude "Opaque.h"
struct OpaqueType
{
/* Object implementation */
}i
/* UseOpaque.c */
#include "Opaque.h"
void £ (void)

{
pOpaqueType pObject;

pObject = GetObject (); /* Get a handle to an OpaqueType object */
UseObject (pObject); /* Use it... */
}
Dir 4.9 A function should be used in preference to a function-like macro where

they are interchangeable
[Koenig 78-81]
Category Advisory
Applies to 90, C99

Amplification

This guideline applies only where a function is permitted by the syntax and constraints of the language
standard.

Rationale

In most circumstances, functions should be used instead of macros. Functions perform argument
type-checking and evaluate their arguments once, thus avoiding problems with potential multiple side
effects. In many debugging systems, it is easier to step through execution of a function than a macro.
Nonetheless, macros may be useful in some circumstances.

Some of the factors that should be considered when deciding whether to use a function or a macro
are:

e The benefits of function argument and result type-checking;

e The availability of inline functions in C99, although note that the extent to which inline is acted
upon is implementation-defined;

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 7: Directives

3

S9AI123J1(:/ UOIIDSS

32

e The trade-off between code size and execution speed;

* Whether the possibility for compile-time evaluation is important: macros with constant
arguments are more likely to be evaluated at compile-time than corresponding function calls;

* Whether the arguments would be valid for a function: macro arguments are textual whereas
function arguments are expressions;

e Ease of understanding and maintainability.

Example

The following example is compliant. The function-like macro cannot be replaced with a function
because it has a C operator as an argument:

#define EVAL BINOP(OP, L, R) ((L) OP (R))
uint32 t x = EVAL BINOP (+, 1, 2);

In the following example, the use of a macro to initialize an object with static storage duration is
compliant because a function call is not permitted here.

#define DIV2(X) ((X) / 2)

void £ (void)
{
static uintlé t x
uintl6é t y

DIV2 (10); /* Compliant - call not permitted */
DIV2 (10); /* Non-compliant - call permitted */

See also

Rule 13.2, Rule 20.7

Dir 4.10 Precautions shall be taken in order to prevent the contents of a header
file being included more than once

Category Required
Applies to €90, C99

Rationale

When a translation unit contains a complex hierarchy of nested header files, it is possible for a particular
header file to be included more than once. This can be, at best, a source of confusion. If this multiple
inclusion leads to multiple or conflicting definitions, then this can result in undefined or erroneous
behaviour.

Example

/* file.h */

#ifndef FILE H

/* Non-compliant - does not #define FILE H */
#endif

In order to facilitate checking, the contents of the header should be protected from being included
more than once using one of the following two forms:

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

<start-of-file>
#if !defined (identifier)
#define identifier

/* Contents of file */
#endif
<end-of-file>

<start-of-file>
#ifndef identifier
#define identifier

/* Contents of file */
#endif
<end-of-file>

Note: the identifier used to test and record whether a given header file has already been included shall
be unique across all header files in the project.

Note: comments are permitted anywhere within these forms.

Dir 4.11 The validity of values passed to library functions shall be checked

C90 [Undefined 60, 63, 96; Implementation 45-47]
C99 [Unspecified 30, 31, 44, 48-50;

Undefined 102, 103, 107, 112, 180, 181, 183, 187, 189;
Implementation J.3(8-11)]

Category Required
Applies to €90, C99

Amplification

The nature and organization of the project will determine which libraries, and functions within those
libraries, should be subject to this directive.

Rationale

Many functions in The Standard Library are not required by The Standard to check the validity of
parameters passed to them. Even where checking is required by The Standard, or where compiler
writers claim to check parameters, there is no guarantee that adequate checking will take place.

Similarly, the interface description for functionsin other libraries may not specify the checks performed
by those functions. There is also a risk that the specified checks are not performed adequately.

The programmer shall provide appropriate checks of input values for all library functions which have
a restricted input domain (The Standard Library, third-party libraries, and in-house libraries).

Examples of functions from The Standard Library that have a restricted domain and need checking
are:

* Many of the maths functions in <math.h>, for example:
— Negative numbers must not be passed to the sgrt or log functions;
— The second parameter of fmod should not be zero;

* Some implementations can produce unexpected results when the function toupper is passed
an argument which is not a lowercase letter (and similarly for tolower);

e The character testing functions in <ctype . h> exhibit undefined behaviour if passed invalid
values;

e The abs function applied to the most negative integer gives undefined behaviour.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 7: Directives

33

S9AI123J1(:/ UOIIDSS

34

Although most of the math library functions in <math.h> define allowed input domains, the values
they return when a domain error occurs may vary from one compiler to another. Therefore pre-
checking the validity of the input values is particularly important for these functions.

The programmer should identify any domain constraints which should sensibly apply to a function
being used (whichmay or may not be documentedinthe interface description), and provide appropriate
checks that the input value(s) lies within this domain. Of course the value may be restricted further,
if required, by knowledge of what the parameter represents and what constitutes a sensible range of
values for the parameter.

There are a number of ways in which the requirements of this guideline might be satisfied, including
the following:

e (Check the values before calling the function;

e Check the values in the called library function — this is particularly applicable for in-house
designed libraries, though it could apply to bought-in libraries if the supplier can demonstrate
that they have built in the checks;

e Produce “wrapped” versions of functions that perform the checks then call the original
function;

e Demonstrate statically that the input parameters can never take invalid values.

See also

Dir 4.1, Dir 4.7

Dir 4.12 Dynamic memory allocation shall not be used
Category Required

Applies to €90, C99

Amplification
This rule applies to all dynamic memory allocation packages including:
e Those provided by The Standard Library;

e Third-party packages.

Rationale

The Standard Library's dynamic memory allocation and deallocation routines can lead to undefined
behaviour as described in Rule 21.3. Any other dynamic memory allocation system is likely to exhibit
undefined behaviours that are similar to those of The Standard Library.

The specification of third-party routines shall be checked to ensure that dynamic memory allocation
is not being used inadvertently.

If a decision is made to use dynamic memory, care shall be taken to ensure that the software behaves
in a predictable manner. For example, there is a risk that:

e |nsufficient memory may be available to satisfy a request — care must be taken to ensure
that there is a safe and appropriate response to an allocation failure;

e There is a high variance in the execution time required to perform allocation or deallocation
depending on the pattern of usage and resulting degree of fragmentation.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Example

For convenience, these examples are based around use of The Standard Library’s dynamic memory
functions as their interfaces are well-known.

In this example, the behaviour is undefined following the first call to free because the value of the
pointer p becomes indeterminate. Although the value stored in the pointer is unchanged following
the call to free, it is possible, on some targets, that the memory to which it points no longer exists and
the act of copying that pointer could cause a memory exception.

#include <stdlib.h>
void £ (void)
{
char *p = (char *) malloc (10);

char *q;

free (p);

q = p; /* Undefined behaviour - value of p is indeterminate */
p = (char *) malloc (20);
free (p);
p = NULL; /* Assigning NULL to freed pointer makes it determinate */
}
See also

Dir 4.1, Rule 18.7, Rule 21.3, Rule 22.1, Rule 22.2

Dir 4.13 Functions which are designed to provide operations on a resource
should be called in an appropriate sequence

Category Advisory
Applies to €90, C99

Amplification

A set of functions providing operations on a resource typically has three kinds of operation:
1. Allocation of the resource, e.g. opening a file;
2. Deallocation of the resource, e.g. closing a file;
3. Other operations, e.g. reading from a file.

For each such set of functions, all uses of its operations should occur in an appropriate sequence.

Rationale

Static analyser tools are capable of providing path analysis checks that can identify paths through a
program that result in the deallocation function of a sequence not being called. In order to maximize
the benefits of such automated checks, developers are therefore encouraged to enable these checks
by designing and declaring sets of balanced functions to the static analyser.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 7: Directives

35

S9AI123J1(:/ UOIIDSS

36

Example

/* These functions are intended to be paired */

extern mutex t mutex lock (void);

extern void mutex unlock (mutex t m);

extern intlé t x;

void £ (void)

{

mutex t m = mutex lock ();

if (x> 0)
{

mutex unlock (m);

}

else

{
/* Mutex not unlocked on this path */

}

See also

Rule 22.1, Rule 22.2, Rule 22.6

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

8 Rules
8.1 A standard C environment

Rule 1.1 The program shall contain no violations of the standard C syntax and
constraints, and shall not exceed the implementation’s translation
limits
[MISRA Guidelines Table 3], [IEC 61508-7: Table C.1], [ISO 26262-6: Table 1]
Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification

The program shall use only those features of the C language and its library that are specified in the
chosen version of The Standard (see Section 3.1).

The Standard permitsimplementations to provide language extensions and the use of such extensions
is permitted by this rule.

Except when making use of a language extension, a program shall not:
e (Contain any violations of the language syntax described in The Standard;
e (Contain any violations of the constraints imposed by The Standard.

A program shall not exceed the translation limits imposed by the implementation. The minimum
translation limits are specified by The Standard but an implementation may provide higher limits.

Note: a conforming implementation generates a diagnostic for syntax and constraint violations but be
aware that:

e The diagnostic need not necessarily be an error but could, for example, be a warning;

e The program may be translated and an executable generated despite the presence of a
syntax or constraint violation;

Note: a conforming implementation does not need to generate a diagnostic when a translation limit is
exceeded; an executable may be generated but it is not guaranteed to execute correctly.

Rationale

Problems associated with language features that are outside the supported versions of ISO/IEC 9899
have not been considered during development of these guidelines.

There is anecdotal evidence of some non-conforming implementations failing to diagnose constraint
violations, for example in [38] p135, example 2 entitled “Error of writing into the const area”.

Example

Some C90 compilers provide support for inline functions using the __inline keyword. A C90 program
that uses __inline will be compliant with this rule provided that it is intended to be translated using
such a compiler.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

37

S9Ny :8 UONI3S

38

Many compilers for embedded targets provide additional keywords that qualify object types with
attributes of the memory area in which the object is located, for example:

* __Zpage — the object can be accessed using a short instruction
* __near — a pointer to the object can be held in 16 bits
* __far— apointer to the object can be held in 24 bits

A program using these additional keywords will be compliant with this rule provided that the compiler
supports those keywords as a language extension.

See also

Dir 2.1, Rule 1.2

Rule 1.2 Language extensions should not be used
Category Advisory

Analysis Undecidable, Single Translation Unit

Applies to €90, C99

Rationale

A program that relies on language extensions may be less portable than one that does not. Although
The Standard requires that a conforming implementation document any extensions that it provides
to the language, there is a risk that this documentation might not provide a full description of the
behaviour in all circumstances.

If this rule is not applied, the decision to use each language extension should be justified in the
project’s design documentation. The methods by which valid use of each extension will be assured,
for example checking the compiler and its diagnostics, should also be documented.

It is recognized that it is necessary to use language extensions in embedded systems. The Standard
requires that an extension does not alter the behaviour of any strictly conforming program. For
example, a compiler might implement, as an extension, full evaluation of binary logical operators
even though The Standard specifies that evaluation stops as soon as the result can be determined.
Such an extension does not conform to The Standard because side effects in the right-hand operand
of a logical AND operator would always occur, giving rise to a different behaviour.

See also

Rule 1.1

Rule 1.3 There shall be no occurrence of undefined or critical unspecified
behaviour

Category Required

Analysis Undecidable, System

Applies to €90, C99

Amplification

Some undefined and unspecified behaviours are dealt with by specific rules. This rule prevents all
other undefined and critical unspecified behaviours. Appendix H lists the undefined behaviours and
those unspecified behaviours that are considered critical.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rationale

Any program that gives rise to undefined or unspecified behaviour may not behave in the expected
manner. In many cases, the effect is to make the program non-portable but it is also possible for more
serious problems to occur. For example, undefined behaviour might affect the result of a computation.
If correct operation of the software is dependent on this computation then system safety might be
compromised. The problem is particularly difficult to detect if the undefined behaviour only manifests
itself on rare occasions.

Many of the MISRA C guidelines have been designed to avoid certain undefined and unspecified
behaviours. For example, compliance with all of Rule 11.4, Rule 11.8 and Rule 19.2 ensures that it is not
possible in C to create a non-const qualified pointer to an object declared with a const-qualified type.
This avoids C90 [Undefined 39] and C99 [Undefined 61]. However, other behaviours are not covered
by specific guidelines for example because:

e Itis unlikely that the behaviour will be encountered;

e There is no practical guidance that can be given other than the obvious statement that the
behaviour should be avoided.

Instead of introducing a guideline for each undefined and critical unspecified behaviour, the MISRA C
Guidelines directly address those that are considered most important and most likely to occur in
practice. Those behaviours that do not have specific guidelines are all covered together by this single
rule. Appendix H lists all undefined and critical unspecified behaviours, along with the MISRA C
guidelines that prevent their occurrence. It therefore indicates which behaviours are expected to be
prevented by this rule and which behaviours are covered by other rules.

Note: some implementations may provide well-defined behaviour for some of the undefined and
unspecified behaviours listed in The Standard. If such well-defined behaviours are relied upon,
including by means of a language extension, it will be necessary to deviate this rule in respect of those
behaviours.

See also

Dir 4.1
8.2 Unused code

Rule 2.1 A project shall not contain unreachable code
[IEC 61508-7 Section C.5.9], [DO-178C Section 6.4.4.3.c]
Category Required
Analysis Undecidable, System
Applies to €90, C99

Rationale

Provided that a program does not exhibit any undefined behaviour, unreachable code cannot be
executed and cannot have any effect on the program'’s outputs. The presence of unreachable code
may therefore indicate an error in the program'’s logic.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

39

S9Ny :8 UONI3S

40

A compiler is permitted to remove any unreachable code although it does not have to do so. Unreachable
code that is not removed by the compiler wastes resources, for example:

e Itoccupies space in the target machine's memory;

* |tspresence may cause acompiler to selectlonger, slower jump instructions when transferring
control around the unreachable code;

e Within a loop, it might prevent the entire loop from residing in an instruction cache.

Itis sometimes desirable to insert code that appears to be unreachable in order to handle exceptional
cases. For example, in a switch statement in which every possible value of the controlling expression
is covered by an explicit case, a default clause shall be present according to Rule 16.4. The purpose of
the default clause is to trap a value that should not normally occur but that may have been generated
as aresult of:

e Undefined behaviour presentin the program;
e Afailure of the processor hardware.

If a compiler can prove that a default clause is unreachable, it may remove it, thereby eliminating the
defensive action. On the assumption that the defensive action is important, it will be necessary either
to demonstrate that the compiler does not eliminate the code despite it being unreachable, or to
take steps to make the defensive code reachable. The former course of action requires a deviation
against this rule, probably with a review of the object code or unit testing being used to support such
a deviation. The latter course of action can usually be achieved by means of a volatile access. For
example, a compiler might determine that the range of values held by x is covered by the case clauses
in a switch statement such as:

uintlé t x;
switch (x)

By forcing x to be accessed by means of a volatile qualified value, the compiler has to assume that the
controlling expression could take any value:

switch (*(volatile uintl6 t *) &x)

Note: code that has been conditionally excluded by pre-processor directives is not subject to this rule
as it is not presented to the later phases of translation.

Example

enum light { red, amber, red amber, green };

enum light next light (enum light c)
{

enum light res;

switch (c)
{
case red:
res = red amber;
break;
case red amber:
res = green;
break;
case green:
res = amber;
break;
case amber:
res = red;
break;

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

default:
{
/*
* This default will only be reachable if the parameter c
* holds a value that is not a member of enum light.
*/
error handler ();
break;

}

return res;
res = c; /* Non-compliant - this statement is
* certainly unreachable */

}

See also

Rule 14.3, Rule 16.4

Rule 2.2 There shall be no dead code

[IEC 61508-7 Section C.5.10], [ISO 26262-6 Section 9.4.5], [DO-178C Section 6.4.4.3.c]
Category Required
Analysis Undecidable, System
Applies to €90, €99

Amplification

Any operation that is executed but whose removal would not affect program behaviour constitutes
dead code. Operations that are introduced by language extensions are assumed always to have an
effect on program behaviour.

Note: The behaviour of an embedded system is often determined not just by the nature of its actions,
but also by the time at which they occur.

Note: unreachable code is not dead code as it cannot be executed.

Rationale

The presence of dead code may be indicative of an error in the program’s logic. Since dead code may
be removed by a compiler, its presence may cause confusion.

Exception

A cast to void is assumed to indicate a value that is intentionally not being used. The cast is therefore
not dead code itself. It is treated as using its operand which is therefore also not dead code.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

41

S9Ny :8 UONI3S

Example

In this example, it is assumed that the object pointed to by p is used in other functions.
extern volatile uintlé t v;

extern char *p;

void £ (void)

{
uintlée t x;

(void) v; /* Compliant - v is accessed for its side effect

* and the cast to void is permitted

* by exception */
(int32 t) wv; /* Non-compliant - the cast operator is dead */
v >> 3; /* Non-compliant - the >> operator is dead */
x = 3; /* Non-compliant - the = operator is dead

* - x 1s not subsequently read */
pt++; / Non-compliant - result of * operator is not used */
(*p)++; /* Compliant - *p is incremented */

In the following compliant example, the __asm keyword is a language extension, not a function call
operation, and is therefore not dead code:

~__asm ("NOP");

In the following example, the function g does not contain dead code, and is not itself dead code because
it does not contain any operations. However, the call to the function is dead because it could be
removed without affecting program behaviour.

void g (void)

{

/* Compliant - there are no operations in this function */

void h (void)
{

g ()7 /* Non-compliant - the call could be removed *x/

See also

Rule 17.7

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rule 2.3 A project should not contain unused type declarations

Category Advisory
Analysis Decidable, System
Applies to €90, C99

Rationale

If a type is declared but not used, then it is unclear to a reviewer if the type is redundant or it has been
left unused by mistake.

Example
intl6 t unusedtype (void)
{
typedef intl6 t local Type; /* Non-compliant */

return 67;

Rule 2.4 A project should not contain unused tag declarations
Category Advisory
Analysis Decidable, System

Applies to €90, C99

Rationale

If a tag is declared but not used, then it is unclear to a reviewer if the tag is redundant or it has been
left unused by mistake.

Example

In the following example, the tag state is unused and the declaration could have been written
without it.

void unusedtag (void)
{
enum state { S init, S run, S sleep }; /* Non-compliant */

}

In the following example, the tag record_t is used only in the typedef of recordl t whichis used in
the rest of the translation unit whenever the type is needed. This typedef can be written in a compliant
manner by omitting the tag as shown in the definition of record2 t.

typedef struct record t /* Non-compliant */
{

uintl6é t key;

uintl6 t wval;
} recordl t;

typedef struct /* Compliant */
{

uintle t key;

uintlé_t wval;
} record2 t;

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

43

S9Ny :8 UONI3S

44

Rule 2.5 A project should not contain unused macro declarations

Category Advisory
Analysis Decidable, System
Applies to €90, C99

Rationale

If a macro is declared but not used, then it is unclear to a reviewer if the macro is redundant or it has
been left unused by mistake.

Example

void use macro (void)
{
#define SIZE 4
/* Non-compliant - DATA not used */
#define DATA 3
use intlé (SIZE);
}

Rule 2.6 A function should not contain unused label declarations
Category Advisory
Analysis Decidable, Single Translation Unit

Applies to €90, C99

Rationale

If a label is declared but not used, then it is unclear to a reviewer if the label is redundant or it has
been left unused by mistake.

Example

void unused label (void)

{
intl6é t x = 6;

labell: /* Non-compliant */
use intl6 (x);
}
Rule 2.7 There should be no unused parameters in functions
Category Advisory
Analysis Decidable, Single Translation Unit

Applies to €90, C99

Rationale

Most functions will be specified as using each of their parameters. If a function parameter is unused,
it is possible that the implementation of the function does not match its specification. This rule
highlights such potential mismatches.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Example

void withunusedpara (uintlé t *paral,

intlé6_t unusedpara) /* Non-compliant - unused */
{
*paral = 42U;
}
8.3 Comments
Rule 3.1 The character sequences /+ and // shall not be used within a
comment
Category Required
Analysis Decidable, Single Translation Unit

Applies to €90, C99

Rationale

If a comment starting sequence, /* or //, occurs within a /* comment, is it quite likely to be caused
by a missing */ comment ending sequence.

If a comment starting sequence occurs withina // comment, it is probably because a region of code
has been commented-out using / /.

Exception

The sequence // is permitted within a // comment.

Example

Consider the following code fragment:

/* some comment, end comment marker accidentally omitted
<<New Page>>

Perform Critical Safety Function(X);

/* this comment is non-compliant */

In reviewing the page containing the call to the function, the assumption is that it is executed code.
Because of the accidental omission of the end comment marker, the call to the safety critical function
will not be executed.

In the following C99 example, the presence of // comments changes the meaning of the program:
x=vyv // /*

+ z

/]ox/

’

This gives x = y + z; butwould have been x = y; in the absence of the two // comment start
sequences.

See also
Dir 4.4

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

45

S9Ny :8 UONI3S

46

Rule 3.2 Line-splicing shall not be used in // comments
Category Required
Analysis Decidable, Single Translation Unit

Applies to C99

Amplification

Line-splicing occurs when the \ character is immediately followed by a new-line character. If the
source file contains multibyte characters, they are converted to the source character set before any
splicing occurs.

Rationale

If the source line containing a // comment ends with a \ character in the source character set, the
next line becomes part of the comment. This may result in unintentional removal of code.

Note: line-splicing is described in Section 5.1.1.2(2) of both C90 and C99.

Example

In the following non-compliant example, the physical line containing the if keyword is logically part of
the previous line and is therefore a comment.

extern bool t b;

void £ (void)

{

uintle t x = 0; // comment \
if (b))
{
++x; /* This is always executed */
}
}
See also
Dir4.4

8.4 Character sets and lexical conventions

Rule 4.1 Octal and hexadecimal escape sequences shall be terminated

C90 [Implementation 11], C99 [Implementation J.3.4(7, 8)]
Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification

An octal or hexadecimal escape sequence shall be terminated by either:
e The start of another escape sequence, or
* The end of the character constant or the end of a string literal.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rationale

There is potential for confusion if an octal or hexadecimal escape sequence is followed by other
characters. For example, the character constant '\x1£f' consists of a single character whereas the
character constant '"\xlg' consists of the two characters '"\x1' and 'g'. The manner in which
multi-character constants are represented as integers is implementation-defined.

The potential for confusion is reduced if every octal or hexadecimal escape sequence in a character
constant or string literal is terminated.

Example

In this example, each of the strings pointed to by s1, s2 and s3 is equivalent to “"Ag".

const char *sl = "\x41lg"; /* Non-compliant */
const char *s2 = "\x41" "g"; /* Compliant - terminated by end of literal */
const char *s3 = "\x41\x67"; /* Compliant - terminated by another escape */
int cl = '"\141t"'; /* Non-compliant *x/
int c2 = "\141\t'; /* Compliant - terminated by another escape */

See also

C90: Section 6.1.3.4, C99: Section 6.4.4.4

Rule 4.2 Trigraphs should not be used

Category Advisory
Analysis Decidable, Single Translation Unit

Applies to €90, C99

Rationale

Trigraphs are denoted by a sequence of two question marks followed by a specified third character
(e.g. ??-represents a ~ (tilde) character and 2?) represents a]). They can cause accidental confusion
with other uses of two question marks.

Note: the so-called digraphs:

are permitted because they are tokens. Trigraphs are replaced wherever they appear in the program
prior to preprocessing.

Example

For example the string

" (Date should be in the form ??2-27?2-27?)"

would not behave as expected, actually being interpreted by the compiler as

" (Date should be in the form ~~]"

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

47

S9Ny :8 UONI3S

48

8.5 Identifiers

Rule 5.1 External identifiers shall be distinct

C90 [Undefined 7], C99 [Unspecified 7; Undefined 28]
Category Required
Analysis Decidable, System
Applies to €90, C99

Amplification

This rule requires that different external identifiers be distinct within the limits imposed by the
implementation.

The definition of distinct depends on the implementation and on the version of the C language that
is being used:

e In C90 the minimum requirement is that the first 6 characters of external identifiers are
significant but their case is not required to be significant;

* In C99 the minimum requirement is that the first 31 characters of external identifiers are
significant, with each universal character or corresponding extended source character
occupying between 6 and 10 characters.

In practice, many implementations provide greater limits. For example it is common for external
identifiers in C90 to be case-sensitive and for at least the first 31 characters to be significant.

Rationale
If two identifiers differ only in non-significant characters, the behaviour is undefined.

If portability is a concern, it would be prudent to apply this rule using the minimum limits specified in
The Standard.

Long identifiers may impair the readability of code. While many automatic code generation systems
produce long identifiers, there is a good argument for keeping identifier lengths well below this limit.

Note: In C99, if an extended source character appears in an external identifier and that character does
not have a corresponding universal character, The Standard does not specify how many characters
it occupies.

Example

In the following example, the definitions all occur in the same translation unit. The implementation in
question supports 31 significant case-sensitive characters in external identifiers.

/* 1234567890123456789012345678001 % ****xxxx Characters */
int32 t engine exhaust gas temperature raw;

int32 t engine exhaust gas temperature scaled; /* Non-compliant */
/* 1234567890123456789012345678001 % ****xxxx Characters */
int32 t engine exhaust gas temp raw;

int32 t engine exhaust gas_temp scaled; /* Compliant */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

In the following non-compliant example, the implementation supports 6 significant case-insensitive
characters in external identifiers. The identifiers in the two translation units are different but are not
distinct in their significant characters.

/* filel.c */
int32 t abc = 0;

/* file2.c */
int32 t ABC = 0;

See also

Dir 1.1, Rule 5.2, Rule 5.4, Rule 5.5

Rule 5.2 Identifiers declared in the same scope and name space shall be
distinct
C90 [Undefined 7], C99 [Undefined 28]
Category Required
Analysis Decidable, Single Translation Unit

Applies to €90, C99

Amplification

This rule does not apply if both identifiers are external identifiers because this case is covered by
Rule 5.1.

This rule does not apply if either identifier is a macro identifier because this case is covered by Rule 5.4
and Rule 5.5.

The definition of distinct depends on the implementation and on the version of the C language that
is being used:

e |n C90 the minimum requirement is that the first 31 characters are significant;

e In C99 the minimum requirement is that the first 63 characters are significant, with each
universal character or extended source character counting as a single character.

Rationale
If two identifiers differ only in non-significant characters, the behaviour is undefined.

If portability is a concern, it would be prudent to apply this rule using the minimum limits specified in
The Standard.

Long identifiers may impair the readability of code. While many automatic code generation systems
produce long identifiers, there is a good argument for keeping identifier lengths well below this limit.

Example

In the following example, the implementation in question supports 31 significant case-sensitive
characters in identifiers that do not have external linkage.

The identifier engine exhaust gas_ temperature local is compliant with this rule. Although
it is not distinct from the identifier engine exhaust gas temperature raw, it is in a different
scope. However, it is not compliant with Rule 5.3.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

49

S9Ny :8 UONI3S

50

/* 1234567890123456789012345678901*****x*sk* Characters */
extern int32 t engine exhaust gas temperature raw;
static int32 t engine exhaust gas temperature scaled; /* Non-compliant */

void £ (void)

{

/* 123456789012345678901234567800 1% ****xxxx Characters */
int32 t engine exhaust gas temperature local; /* Compliant */
}
/* 1234567890123456789012345678901 % ***x*xxxx Characters */
static int32 t engine exhaust gas temp raw;
static int32 t engine exhaust gas temp scaled; /* Compliant */
See also

Dir 1.1, Rule 5.1, Rule 5.3, Rule 5.4, Rule 5.5

Rule 5.3 An identifier declared in an inner scope shall not hide an identifier
declared in an outer scope

Category Required

Analysis Decidable, Single Translation Unit

Applies to €90, C99

Amplification
Anidentifier declared in an inner scope shall be distinct from any identifier declared in an outer scope.

The definition of distinct depends on the implementation and the version of the C language that is
being used:

e In C90 the minimum requirement is that the first 31 characters are significant;

e In C99 the minimum requirement is that the first 63 characters are significant, with each
universal character or extended source character counting as a single character.

Rationale

If an identifier is declared in an inner scope but is not distinct from an identifier that already exists in
an outer scope, then the inner-most declaration will “hide” the outer one. This may lead to developer
confusion.

Note: An identifier declared in one name space does not hide an identifier declared in a different name
space.

The terms outer and inner scope are defined as follows:
e |dentifiers that have file scope can be considered as having the outermost scope;
e |dentifiers that have block scope have a more inner scope;

e Successive, nested blocks, introduce more inner scopes.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Example
void fnl (void)
{
intl6 t i; /* Declare an object "i" */
{
intle t 1i; /* Non-compliant - hides previous "i" */
i = 3; /* Could be confusing as to which "i" this refers */

struct astruct

{
intl6é t m;
}i

extern void g

(struct astruct *p);

intlé_t xyz = 0; /* Declare an object "xyz" */
void fn2 (struct astruct xyz) /* Non-compliant - outer "xyz" is
* now hidden by parameter name */

{
g (&xyz);
}

uintl6é_t speed;

void fn3 (void)

{

typedef float32 t speed; /* Non-compliant - type hides object */

}

See also

Rule 5.2, Rule 5.8

Rule 5.4

Category
Analysis

Applies to

Amplification

Macro identifiers shall be distinct
C90 [Undefined 7], C99 [Unspecified 7; Undefined 28]
Required
Decidable, Single Translation Unit
€90, C99

This rule requires that, when a macro is being defined, its name be distinct from:

e thenam

e thenam

es of the other macros that are currently defined; and

es of their parameters.

It also requires that the names of the parameters of a given macro be distinct from each other but
does not require that macro parameters names be distinct across two different macros.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

57

S9Ny :8 UONI3S

52

The definition of distinct depends on the implementation and on the version of the C language that
is being used:

e In C90 the minimum requirement is that the first 31 characters of macro identifiers are
significant;

* In C99 the minimum requirement is that the first 63 characters of macro identifiers are
significant.

In practice, implementations may provide greater limits. This rule requires that macro identifiers be
distinct within the limits imposed by the implementation.

Rationale

Iftwo macro identifiers differ only in non-significant characters, the behaviour is undefined. Since macro
parameters are active only during the expansion of their macro, there is no issue with parameters in
one macro being confused with parameters in another macro.

If portability is a concern, it would be prudent to apply this rule using the minimum limits specified in
The Standard.

Long macro identifiers may impair the readability of code. While many automatic code generation
systems produce long macro identifiers, there is a good argument for keeping macro identifier lengths
well below this limit.

Note: In C99, if an extended source character appears in a macro name and that character does not
have a corresponding universal character, The Standard does not specify how many characters it
occupies.

Example

In the following example, the implementation in question supports 31 significant case-sensitive
characters in macro identifiers.

/* 1234567890123456789012345678901 % *H**xxxxx Characters */
#define engine exhaust gas temperature raw egt r

#define engine exhaust gas temperature scaled egt s /* Non-compliant */
/* 1234567890123456789012345678901 % *H**xxxx Characters */
#define engine exhaust gas temp raw egt r

#define engine exhaust gas_ temp scaled egt_s /* Compliant */
See also

Rule 5.1, Rule 5.2, Rule 5.5

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rule 5.5 |dentifiers shall be distinct fromm macro names

C90 [Undefined 7], C99 [Unspecified 7; Undefined 28]
Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification

This rule requires that the names of macros that exist prior to preprocessing be distinct from the
identifiers that exist after preprocessing. It applies to identifiers, regardless of scope or name space,
and to any macros that have been defined regardless of whether the definition is still in force when
the identifier is declared.

The definition of distinct depends on the implementation and the version of the C language that is
being used:

e In C90 the minimum requirement is that the first 31 characters are significant;

e In C99 the minimum requirement is that the first 63 characters are significant, with each
universal character or extended source character counting as a single character.

Rationale

Keeping macro names and identifiers distinct can help to avoid developer confusion.

Example

In the following non-compliant example, the name of the function-like macro Sum is also used as
an identifier. The declaration of the object sum is not subject to macro-expansion because it is not
followed by a (character. The identifier therefore exists after preprocessing has been performed.

#define Sum(x, y) ((x) + (y))
intl6 t Sum;

The following example is compliant because there is no instance of the identifier Sum after
preprocessing.

#define Sum(x, y) (((x) + (y))
intle t x = Sum (1, 2);

In the following example, the implementation in question supports 31 significant case-sensitive
characters in identifiers that do not have external linkage. The example is non-compliant because
the macro name is not distinct from an identifier name with internal linkage in the first 31 characters.

/* 1234567890123456789012345678901********* Characters */
#define low pressure turbine temperature 1 1p tb temp 1
static int32 t low pressure turbine temperature 2;

See also

Rule 5.1, Rule 5.2, Rule 5.4

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

53

S9Ny :8 UONI3S

54

Rule 5.6 A typedef name shall be a unique identifier

Category Required
Analysis Decidable, System
Applies to €90, C99

Amplification

A typedef name shall be unique across all name spaces and translation units. Multiple declarations of
the same typedef name are only permitted by this rule if the type definition is made in a header file and
that header file is included in multiple source files.

Rationale

Reusing a typedef name either as another typedef name or as the name of a function, object or
enumeration constant, may lead to developer confusion.

Exception

The typedef name may be the same as the structure, union or enumeration tag name associated with
the typedef.

Example

void func (void)
{
{
typedef unsigned char u8 t;
}
{
typedef unsigned char u8 t; /* Non-compliant - reuse */
}
}

typedef float mass;

void funcl (void)
{
float32 t mass = 0.0f; /* Non-compliant - reuse */

}

typedef struct list
{
struct list *next;
uintl6 t element;
} list; /* Compliant - exception */

typedef struct
{
struct chain
{
struct chain *1list;
uintlé t element;
}osl;
uintl6 t length;
} chain; /* Non-compliant - tag "chain" not
* associated with typedef */

See also
Rule 5.7

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rule 5.7 A tag name shall be a unique identifier
Category Required
Analysis Decidable, System

Applies to €90, C99

Amplification
The tag shall be unique across all name spaces and translation units.
All declarations of the tag shall specify the same type.

Multiple complete declarations of the same tag are only permitted by this rule if the tag is declared in
a header file and that header file is included in multiple source files.

Rationale
Reusing a tag name may lead to developer confusion.

There is also undefined behaviour associated with reuse of tag names in C90 although this is not
listed in The Standard’s Annex. This undefined behaviour was recognized in C99 as a constraint in
Section 6.7.2.3.

Exception

The tag name may be the same as the typedef name with which it is associated.

Example

struct stag
{
uintl6 t a;
uintlé t b;
}i
struct stag al = 0, 0 }; /* Compliant - compatible with above */
0, 0 }; /* Non-compliant - declares different type
* from struct stag.
* Constraint violation in C99 */

union stag a2

The following example also violates Rule 5.3

struct deer
{
uintlé6 t a;
uintl6 t b;
bi

void foo (void)
{
struct deer
{
uintlé t a;
}; /* Non-compliant - tag "deer" reused */

}

typedef struct coord
{
uintlé t x;
uintlé t y;
} coord; /* Compliant by Exception */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

55

S9Ny :8 UONI3S

56

struct elk
{

uintlé6 t x;
}i

struct elk /* Non-compliant - declaration of different type
* Constraint violation in C99 */
{
uint32 t x;
bi

See also

Rule 5.6

Rule 5.8 Identifiers that define objects or functions with external linkage shall
be unique

Category Required

Analysis Decidable, System

Applies to €90, C99

Amplification

An identifier used as an external identifier shall not be used for any other purpose in any name space
or translation unit, even if it denotes an object with no linkage.

Rationale

Enforcing uniqueness of identifier names in this manner helps avoid confusion. Identifiers of objects
that have no linkage need not be unique since there is minimal risk of such confusion.

Example
In the following example, £ilel.c and £ile2.c are both part of the same project.

/* filel.c */

int32 t count; /* "count" has external linkage */
void foo (void) /* "foo" has external linkage */
{

intlé_t index; /* "index" has no linkage */

}

/* file2.c */

static void foo (void) /* Non-compliant - "foo" is not unique
{ * (it is already defined with external
* linkage in filel.c) */
intl6_t count; /* Non-compliant - "count" has no linkage
* but clashes with an identifier with
* external linkage */
int32_t index; /* Compliant - "index" has no linkage */

}

See also

Rule 5.3

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rules

Rule 5.9 Identifiers that define objects or functions with internal linkage should
be unique

Category Advisory

Analysis Decidable, System

Applies to €90, C99

Amplification

The identifier name should be unique across all name spaces and translation units. Any identifier
used in this way should not have the same name as any other identifier, even if that other identifier
denotes an object with no linkage.

Rationale

Enforcing uniqueness of identifier names in this manner helps avoid confusion.

Exception

An inline function with internal linkage may be defined in more than one translation unit provided that
all such definitions are made in the same header file that is included in each translation unit.

Example
In the following example, filel.c and file2.c are both part of the same project.

/* filel.c */

static int32 t count; /* "count" has internal linkage */
static void foo (void) /* "foo" has internal linkage */
{
intl6é_t count; /* Non-compliant - "count" has no linkage
* but clashes with an identifier with
* internal linkage */
intlé_t index; /* "index" has no linkage */
}
void barl (void)
{
static intl6 t count; /* Non-compliant - "count" has no linkage
* but clashes with an identifier with
* internal linkage */
intl6 t index; /* Compliant - "index" is not unique but
* has no linkage */
foo ();

/* End of filel.c */

/* file2.c */
static int8 t count; /* Non-compliant - "count" has internal
* linkage but clashes with other

* identifiers of the same name */
static void foo (void) /* Non-compliant - "foo" has internal
* linkage but clashes with a function of
* the same name */
{
int32 t index; /* Compliant - both "index" and "nbytes" */
intl6_t nbytes; /* are not unique but have no linkage */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8

S9Ny :8 UONI3S

58

void bar2 (void)

{

static uint8 t nbytes; /* Compliant - "nbytes"™ is not unique but
* has no linkage and the storage class is
* irrelevant */

}

/* End of file2.c */

See also

Rule 8.10
8.6 Types

Rule 6.1 Bit-fields shall only be declared with an appropriate type

C90 [Undefined 38; Implementation 29], C99 [Implementation J.3.9(1, 2)]
Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification
The appropriate bit-field types are:
e (90: either unsigned int or signed int;
e (99:0neof:
— either unsigned int or signed int;

— another explicitly signed or explicitly unsigned integer type that is permitted by the
implementation;

— _Bool.

Note: It is permitted to use typedefs to designate an appropriate type.

Rationale
Using int is implementation-defined because bit-fields of type int can be either signed or unsigned.

The use of enum, short, char or any other type for bit-fields is not permitted in C90 because the
behaviour is undefined.

In C99, the implementation may define other integer types that are permitted in bit-field declarations.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Example

The following example is applicable to C90 and to C99 implementations that do not provide any
additional bit-field types. It assumes that the int type is 16-bit.

typedef unsigned int UINT 16;

struct s {
unsigned int bl:2; /* Compliant */
int b2:2; /* Non-compliant - plain int not permitted */
UINT 16 b3:2; /* Compliant - typedef designating unsigned int */
signed long bé4:2; /* Non-compliant even if long and int are the

* same size */

}i

Rule 6.2 Single-bit named bit fields shall not be of a signed type

Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Rationale

According to the C99 Standard Section 6.2.6.2, a single-bit signed bit-field has a single (one) sign bit
and no (zero) value bits. In any representation of integers, 0 value bits cannot specify a meaningful
value.

A single-bit signed bit-field is therefore unlikely to behave in a useful way and its presence is likely to
indicate programmer confusion.

Although the C90 Standard does not provide so much detail regarding the representation of types,
the same considerations apply as for C99.

Note: this rule does not apply to unnamed bit fields as their values cannot be accessed.

8.7 Literals and constants

Rule 7.1 Octal constants shall not be used

[Koenig 9]
Category Required
Analysis Decidable, Single Translation Unit

Applies to €90, C99

Rationale

Developers writing constants that have a leading zero might expect them to be interpreted as decimal
constants.

Note: this rule does not apply to octal escape sequences because the use of a leading \ character
means that there is less scope for confusion.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

59

S9Ny :8 UONI3S

60

Exception

The integer constant zero (written as a single numeric digit), is strictly speaking an octal constant, but
is a permitted exception to this rule.

Example

extern uintl6 t code[10];

code[1] = 109; /* Compliant - decimal 109 */

code[2] = 100; /* Compliant - decimal 100 */

code[3] = 052; /* Non-Compliant - decimal 42 */

code[4 1 = 071; /* Non-Compliant - decimal 57 */

Rule 7.2 A “u” or "U" suffix shall be applied to all integer constants that are
represented in an unsigned type

Category Required

Analysis Decidable, Single Translation Unit

Applies to €90, C99

Amplification
This rule applies to:

e Integer constants that appear in the controlling expressions of #if and #elif preprocessing
directives;

e Any other integer constants that exist after preprocessing.

Note: during preprocessing, the type of an integer constant is determined in the same manner as after
preprocessing except that:

e All'signed integer types behave as if they were Jong (C90) or intmax_t (C99);

e Allunsigned integer types behave as if they were unsigned long (C90) or uintmax_t (C99).

Rationale

The type of an integer constant is a potential source of confusion, because it is dependent on a
complex combination of factors including:

e The magnitude of the constant;

e Theimplemented sizes of the integer types;

e The presence of any suffixes;

e The number base in which the value is expressed (i.e. decimal, octal or hexadecimal).

For example, the integer constant 40000 is of type signed int in a 32-bit environment but of type signed
long in a 16-bit environment. The value 0x8000 is of type unsigned int in a 16-bit environment, but of
type signed intin a 32-bit environment.

Note:
e Anyvalue with a “U" suffix is of unsigned type;

* Anunsuffixed decimal value less than 2% is of signed type.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

But:

* An unsuffixed hexadecimal value greater than or equal to 2'> may be of signed or unsigned

type,

e For C90, an unsuffixed decimal value greater than or equal to 2" may be of signed or unsigned

type.

Signedness of constants should be explicit. If a constant is of an unsigned type, applying a “U” suffix

makes it clear that the programmer understands that the constant is unsigned.

Note: this rule does not depend on the context in which a constant is used; promotion and other
conversions that may be applied to the constant are not relevant in determining compliance with this

rule.

Example

The following example assumes a machine with a 16-bit int type and a 32-bit /ong type. It shows the
type of each integer constant determined in accordance with The Standard. The integer constant

0x8000 is non-compliant because it has an unsigned type but does not have a “U" suffix.

Constant Type Compliance
32767 signed int Compliant
Ox7fff signed int Compliant
32768 signed long Compliant
32768u unsigned int Compliant
0x8000 unsigned int Non-compliant
0x8000u unsigned int Compliant
Rule 7.3 The lowercase character “|” shall not be used in a literal suffix
Category Required
Analysis Decidable, Single Translation Unit

Applies to €90, C99

Rationale

Using the uppercase suffix “L" removes the potential ambiguity between “1” (digit 1) and "I (letter “el”)

when declaring literals.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

61

S9Ny :8 UONI3S

62

Example

Note: the examples containing the long long suffix are applicable only to C99.

const int64 t a = 0L;

const int64 t b = 01; /* Non-compliant */
const uinté4 t c = OLu;

const uint64 t d = 01U; /* Non-compliant */
const uinte64 t e = QULL;

const uinté64_t f = 0Ull; /* Non-compliant */
const intl28 t g = 0LL;

const intl28 t h = 011; /* Non-compliant */

const floatl28 t m = 1.2L;
const floatl28 t n = 2.41; /* Non-compliant */

Rule 7.4 A string literal shall not be assigned to an object unless the object’s
type is “pointer to const-qualified char”

C90 [Undefined 12], C99 [Unspecified 14; Undefined 30]
Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification
No attempt shall be made to modify a string literal or wide string literal directly.

The result of the address-of operator, &, applied to a string literal shall not be assigned to an object
unless that object’s type is “pointer to array of const-qualified char”.

The same considerations apply to wide string literals. A wide string literal shall not be assigned to an
object unless the object’s type is “pointer to const-qualified wchar t". The result of the address-of
operator, &, applied to a wide string literal shall not be assigned to an object unless that object’s type
is “pointer to array of const-qualified wchar t".

Rationale

Any attempt to modify a string literal results in undefined behaviour. For example, some
implementations may store string literals in read-only memory in which case an attempt to modify
the string literal will fail and may also result in an exception or crash.

This rule, when applied in conjunction with others, prevents a string literal from being modified.

It is explicitly unspecified in C99 whether string literals that share a common ending are stored in
distinct memory locations. Therefore, even if an attempt to modify a string literal appears to succeed,
itis possible that another string literal might be inadvertently altered.

Example
The following example shows an attempt to modify a string literal directly.
"0123456789"[0] = '*'; /* Non-compliant */

These examples show how to prevent modification of string literals indirectly.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

/* Non-compliant - s is not const-qualified */
char *s = "string";

/* Compliant - p is const-qualified; additional qualifiers are permitted */
const volatile char *p = "string";

extern void f1 (char *sl);
extern void f2 (const char *s2);

void g (void)

{

f1 ("string"); /* Non-compliant - parameter sl is not
* const-qualified */
f2 ("string"); /* Compliant */
}
char *namel (void)
{
return ("MISRA"); /* Non-compliant - return type is not
* const-qualified */
}
const char *name2 (void)
{
return ("MISRA"); /* Compliant */
}
See also

Rule 11.4, Rule 11.8
8.8 Declarations and definitions

Rule 8.1 Types shall be explicitly specified

Category Required
Analysis Decidable, Single Translation Unit

Applies to C90

Rationale

The C90 standard permits types to be omitted in some circumstances, in which case the int type is
implicitly specified. Examples of the circumstances in which an implicit int might be used are:

e Object declarations;

e Parameter declarations;

e Member declarations;

* typedef declarations;

e Function return types.
The omission of an explicit type might lead to confusion. For example, in the declaration:
extern void g (char ¢, const k);

the type of k is const int whereas const char might have been expected.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

S9Ny :8 UONI3S

Example

The following examples show compliant and non-compliant object declarations:

extern X; /* Non-compliant - implicit int type */
extern intlé t x; /* Compliant - explicit type */
const v /* Non-compliant - implicit int type */
const intl6 t y; /* Compliant - explicit type */

The following examples show compliant and non-compliant function type declarations:

extern £ (void); /* Non-compliant - implicit

* int return type */
extern intl6 t £ (void); /* Compliant *x/
extern void g (char c, const k); /* Non-compliant - implicit

* int for parameter k */
extern void g (char ¢, const intl6 t k); /* Compliant */

The following examples show compliant and non-compliant type definitions:

typedef (*pfi) (void); /* Non-compliant - implicit int

* return type */
typedef intlé t (*pfi) (void); /* Compliant */
typedef void (*pfv) (const x); /* Non-compliant - implicit int

* for parameter x */
typedef void (*pfv) (intlé t x); /* Compliant */

The following examples show compliant and non-compliant member declarations:

struct str

{

intlé_t x; /* Compliant */
const Vi /* Non-compliant - implicit int for member y */
}os;
See also
Rule 8.2
Rule 8.2 Function types shall be in prototype form with named parameters

C90 [Undefined 22-25], C99 [Undefined 36-39, 73, 79]
Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Rationale

The early version of C, commonly referred to as K&R C [30], did not provide a mechanism for checking
the number of arguments or their types against the corresponding parameters. The type of an object
or function did not have to be declared in K&R C since the default type of an object and the default
return type of a function was int.

The C90 standard introduced function prototypes, a form of function declarator in which the
parameter types were declared. This permitted argument types to be checked against parameter
types. It also allowed the number of arguments to be checked except when a function prototype
specified that a variable number of arguments was expected. The C90 standard did not require the
use of function prototypes for reasons of backward compatibility with existing code. For the same
reason, it continued to permit types to be omitted in which case the type would default to int.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

The C99 standard removed the default int type from the language but continued to allow K&R-style
function types in which there was no means to supply parameter type information in a declaration
and it was optional to supply parameter type information in a definition.

The mismatch between the number of arguments and parameters, their types and the expected and
actual return type of a function provides potential for undefined behaviour. The purpose of this rule
along with Rule 8.1 and Rule 8.4 is to avoid this undefined behaviour by requiring parameter types and
function return types to be specified explicitly. Rule 17.3 ensures that this information is available at
the time of a function call, thereby requiring the compiler to diagnose any mismatch that is detected.

This rule also requires that names be specified for all the parameters in a declaration. The parameter
names can provide useful information regarding the function interface and a mismatch between a
declaration and definition might be indicative of a programming error.

Note: An empty parameter list is not valid in a prototype. If a function type has no parameters its
prototype form uses the keyword void.

Example

The first example shows declarations of some functions and the corresponding definitions for some
of those functions.

/* Compliant */
extern intlé t funcl (intlé t n);

/* Non-compliant - parameter name not specified */
extern void func2 (intl6 t);

/* Non-compliant - not in prototype form */
static intl6 t func3 ();

/* Compliant - prototype specifies 0 parameters */
static intl6 t func4d (void);

/* Compliant */

intl6é t funcl (intl6 t n)
{
return n;

}

/* Non-compliant - old style identifier and declaration list */
static intl6 t func3 (vec, n)
intl6 t *vec;
intl6e t n;
{
return vec[n - 1 1;

}

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

65

S9Ny :8 UONI3S

66

This example section shows the application of the rule to function types other than in function
declarations and definitions.

/* Non-compliant - no prototype */
intle_t (*pfl) ();

/* Compliant - prototype specifies 0 parameters */
intle t (*pfl) (void);

/* Non-compliant - parameter name not specified */
typedef intl6 t (*pf2 t) (intlé6 t);

/* Compliant * /
typedef intlé t (*pf3 t) (intlé t n);

See also

Rule 8.1, Rule 8.4, Rule 17.3

Rule 8.3 All declarations of an object or function shall use the same names and
type qualifiers

C90 [Undefined 10], C99 [Undefined 14], [Koenig 59-62]
Category Required
Analysis Decidable, System
Applies to €90, C99

Amplification
Storage class specifiers are not included within the scope of this rule.

Rationale

Using types and qualifiers consistently across declarations of the same object or function encourages
stronger typing.

Specifying parameter names in function prototypes allows the function definition to be checked for
interface consistency with its declarations.

Exception

Compatible versions of the same basic type may be used interchangeably. For example, int, signed and
signed int are all equivalent.

Example
extern void f (signed int);

void £ (int); /* Compliant - Exception */
extern void g (int * const);

void g (int *) /* Non-compliant - type qualifiers */

Note: all the above are not compliant with Dir 4.6.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

extern intl6_t func (intl6_t num, intl6 _t den);

/* Non-compliant - parameter names do not match */
intl6é t func (intlé_t den, intl6 t num)
{

return num / den;

}

In this example the definition of area uses a different type name for the parameter h from that used
in the declaration. This does not comply with the rule even though width t and height t arethe
same basic type.

typedef uintl6 t width t;
typedef uintlé t height t;
typedef uint32 t area t;

extern area t area (width t w, height t h);

area t area (width t w, width t h)
{

return (area t) w * h;

}

This rule does not require that a function pointer declaration use the same names as a function
declaration. The following example is therefore compliant.

extern void fl1 (intlée t x);
extern void f2 (intleée t y);

void f (bool t b)
{

void (*fpl) (intlée t z) =Db 2 f1 : f2;
}
See also
Rule 8.4
Rule 8.4 A compatible declaration shall be visible when an object or function

with external linkage is defined
C90 [Undefined 24], C99 [Undefined 39]
Category Required
Analysis Decidable, Single Translation Unit
Applies to C90, C99

Amplification

A compatible declaration is one which declares a compatible type for the object or function being
defined.

Rationale

If a declaration for an object or function is visible when that object or function is defined, a compiler
must check that the declaration and definition are compatible. In the presence of function prototypes,
as required by Rule 8.2, checking extends to the number and type of function parameters.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

6/

S9Ny :8 UONI3S

63

The recommended method of implementing declarations of objects and functions with external
linkage is to declare them in a header file, and then include the header file in all those code files that

need them, including the one that defines them (See Rule 8.5).

Example

In these examples there are no declarations or definitions of objects or functions other than those

presentin the code.

extern intlé t count;
intlé_t count = 0; /* Compliant

extern uintl6 t speed = 6000u; /* Non-compliant - no declaration
* prior to this definition

uint8 t pressure = 101u; /* Non-compliant - no declaration
* prior to this definition

extern void funcl (void);
extern void func2 (intl6é t x, intl6 t y);
extern void func3 (intl6 t x, intlé t y);
void funcl (void)
{
/* Compliant */
}
The following non-compliant definition of func3 also violates Rule 8.3.
void func2 (intlé t x, intl6 t y)
{
/* Compliant */

void func3 (intlé t x, uintl6 t y)

/* Non-compliant - parameter types different */

void funcd (void)
/* Non-compliant - no declaration of func4 before this definition

static void func5 (void)

{
/* Compliant - rule does not apply to objects/functions with internal
* linkage

See also

Rule 8.2, Rule 8.3, Rule 8.5, Rule 17.3

*/

*/

*/

*/

*/

Licensed to: LEE CHING MIN.

5 Mar 2019. Copy 1 of 1

Rule 8.5 An external object or function shall be declared once in one and only

one file
[Koenig 66]
Category Required
Analysis Decidable, System

Applies to €90, C99

Amplification

This rule applies to non-defining declarations only.

Rationale

Typically, a single declaration will be made in a header file that will be included in any translation unit in
which the identifier is defined or used. This ensures consistency between:

e The declaration and the definition;
e Declarations in different translation units.

Note: there may be many header files in a project, but each external object or function shall only be
declared in one header file.

Example

/* featureX.h */
extern intl6_t a; /* Declare a */

/* file.c */
#include "featureX.h"

intlé_t a = 0; /* Define a */

See also

Rule 8.4

Rule 8.6 An identifier with external linkage shall have exactly one external
definition

C90 [Undefined 44], C99 [Undefined 78], [Koenig 55, 63-65]
Category Required
Analysis Decidable, System
Applies to €90, C99

Rationale

The behaviour is undefined if an identifier is used for which multiple definitions exist (in different files)
or no definition exists at all. Multiple definitions in different files are not permitted by this rule even
if the definitions are the same. It is undefined behaviour if the declarations are different, or initialize
the identifier to different values.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

69

S9Ny :8 UONI3S

/0

Example
In this example the object 1 is defined twice.

/* filel.c */
intlé t i = 10;

/* file2.c */
intlée t i = 20; /* Non-compliant - two definitions of 1 */

In this example the object 5 has one tentative definition and one external definition.

/* file3.c */
intle t Jj; /* Tentative definition */
intle t j = 1; /* Compliant - external definition */

The following example is non-compliant because the object k has two external definitions. The
tentative definition in file4.c becomes an external definition at the end of the translation unit.

/* filed.c */
intle t k; /* Tentative definition - becomes external */

/* file5.c */
intl6e t k = 0; /* External definition */

Rule 8.7 Functions and objects should not be defined with external linkage if
they are referenced in only one translation unit
[Koenig 56, 57]
Category Advisory
Analysis Decidable, System
Applies to €90, C99

Rationale

Restricting the visibility of an object by giving it internal linkage or no linkage reduces the chance that
it might be accessed inadvertently. Similarly, reducing the visibility of a function by giving it internal
linkage reduces the chance of it being called inadvertently.

Compliance with this rule also avoids any possibility of confusion between an identifier and an identical
identifier in another translation unit or a library.

Rule 8.8 The static storage class specifier shall be used in all declarations of
objects and functions that have internal linkage

Category Required

Analysis Decidable, Single Translation Unit

Applies to €90, C99

Amplification
Since definitions are also declarations, this rule applies equally to definitions.

Rationale

The Standard states that if an object or function is declared with the extern storage class specifier
and another declaration of the object or function is already visible, the linkage is that specified by the

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

earlier declaration. This can be confusing because it might be expected that the extern storage class
specifier creates external linkage. The static storage class specifier shall therefore be consistently
applied to objects and functions with internal linkage.

Example

static int32 t x = 0; /* definition: internal linkage */
extern int32 t x; /* Non-compliant */
static int32 t £ (void); /* declaration: internal linkage */
int32 t £ (void) /* Non-compliant */

{

return 1;

}

static int32 t g (void); /* declaration: internal linkage */
extern int32 t g (void) /* Non-compliant */
{

return 1;

}

Rule 8.9 An object should be defined at block scope if its identifier only
appears in a single function

Category Advisory
Analysis Decidable, System
Applies to 90, C99

Rationale

Definingan object at block scopereducesthe possibility that the object might be accessed inadvertently
and makes clear the intention that it should not be accessed elsewhere.

Within a function, whether objects are defined at the outermost or innermost block is largely a matter
of style.

It is recognized that there are situations in which it may not be possible to comply with this rule. For
example, an object with static storage duration declared at block scope cannot be accessed directly
from outside the block. This makes it impossible to set up and check the results of unit test cases
without using indirect accesses to the object. In this kind of situation, some projects may prefer not
to apply this rule.

Example

In this compliant example, i is declared at block scope because it is a loop counter. There is no need
for other functions in the same file to use the same object for any other purpose.

void func (void)

{
int32 t i;

for (i = 0; 1 < N; ++1)
{
}

}

In this compliant example, the function count keeps track of the number of times it has been called
and returns that number. No other function needs to know the details of the implementation of
count so the call counter is defined with block scope.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

/1

S9Ny :8 UONI3S

/2

uint32 t count (void)

{

static uint32 t call count = 0;

++call count;
return call count;

}

Rule 810 Aninline function shall be declared with the static storage class

C99 [Unspecified 20; Undefined 67]
Category Required
Analysis Decidable, Single Translation Unit

Applies to C99

Rationale

If an inline function is declared with external linkage but not defined in the same translation unit, the
behaviour is undefined.

A call to aninline function declared with external linkage may call the external definition of the function,
or it may use the inline definition. Although this should not affect the behaviour of the called function,
it might affect execution timing and therefore have an impact on a real-time program.

Note: an inline function can be made available to several translation units by placing its definition in a
header file.

See also

Rule 5.9

Rule 8.11 When an array with external linkage is declared, its size should be
explicitly specified

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to €90, C99

Amplification

This rule applies to non-defining declarations only. It is possible to define an array and specify its size
implicitly by means of initialization.

Rationale

Although it is possible to declare an array with incomplete type and access its elements, it is safer
to do so when the size of the array may be explicitly determined. Providing size information for each
declaration permits them to be checked for consistency. It may also permit a static checker to perform
some array bounds analysis without needing to analyse more than one translation unit.

Example
extern int32 t arrayl[10 1; /* Compliant */
extern int32 t array2[]; /* Non-compliant */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rule 8.12 Within an enumerator list, the value of an implicitly-specified
enumeration constant shall be unique

Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Rationale

An implicitly-specified enumeration constant has a value 1 greater than its predecessor. If the first
enumeration constant is implicitly-specified then its value is 0.

An explicitly-specified enumeration constant has the value of the associated constant expression.

If implicitly-specified and explicitly-specified constants are mixed within an enumeration list, it is
possible for values to be replicated. Such replication may be unintentional and may give rise to
unexpected behaviour.

This rule requires that any replication of enumeration constants be made explicit, thus making the
intent clear.

Example
In the following examples the green and yellow enumeration constants are given the same value.

/* Non-compliant - yellow replicates implicit green */
enum colour { red = 3, blue, green, yellow =5 };

/* Compliant *)
enum colour { red = 3, blue, green = 5, yellow = 5 };

Rule 813 A pointer should point to a const-qualified type whenever possible

Category Advisory
Analysis Undecidable, System
Applies to 90, C99

Amplification
A pointer should point to a const-qualified type unless either:
e |tis used to modify an object, or

e |tis copied to another pointer that points to a type that is not const-qualified by means of
either:

— Assignment, or
— Memory move or copying functions.

For the purposes of simplicity, this rule is written in terms of pointers and the types that they point to.
However, it applies equally to arrays and the types of the elements that they contain. An array should
have elements with const-qualified type unless either:

e Any element of the array is modified, or

e |tiscopiedtoapointer that points to a type that is not const-qualified by the means described
above.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

/3

S9Ny :8 UONI3S

74

Rationale

This rule encourages best practice by ensuring that pointers are not inadvertently used to modify
objects. Conceptually, it is equivalent to initially declaring:

e Allarrays to have elements with const-qualified type, and
e All pointers to point to const-qualified types.

and then removing const-qualification only where it is necessary to comply with the constraints of the
language standard.

Example

In the following non-compliant example, p is not used to modify an object but the type to which it
points is not const-qualified.

uintl6e t £ (uintlée t *p)
{
return *p;
}
The code would be compliant if the function were defined with:

uintl6é t g (const uintlé t *p)

The following example violates a constraint because an attempt is made to use a const-qualified pointer
to modify an object.

void h (const uintlé t *p)
{

In the following example, the pointer s is const-qualified but the type it points to is not. Since s is not
used to modify an object, this is non-compliant.

#include <string.h>
char last char (char * const s)
{
return s[strlen (s) - 1lu];
}
The code would be compliant if the function were defined with:

char last char (const char * const s)

In this non-compliant example, none of the elements of the array a are modified but the element type
is not const-qualified.

uintl6é t first (uintle t al 5])
{
return a[0 J;
}
The code would be compliant if the function were defined with:

uintlé t first (const uintlé t a[5])

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rule 814 The restrict type qualifier shall not be used

C99 [Undefined 65, 66]
Category Required
Analysis Decidable, Single Translation Unit

Applies to C99

Rationale

When used with care the restrict type qualifier may improve the efficiency of code generated by a
compiler. It may also allow improved static analysis. However, to use the restrict type qualifier the
programmer must be sure that the memory areas operated on by two or more pointers do not
overlap.

There is a significant risk that a compiler will generate code that does not behave as expected if restrict
is used incorrectly.

Example

The following example is compliant because the MISRA C Guidelines do not apply to The Standard
Library functions. The programmer must ensure that the areas defined by p, g and n do not overlap.

#include <string.h>

void £ (void)
{

/* memcpy has restrict-qualified parameters */
memcpy (p, 9, n);
}

The following example is non-compliant because a function has been defined using restrict.

void user copy (void * restrict p, void * restrict g, size t n)
{
}

8.9 Initialization

Rule 9.1 The value of an object with automatic storage duration shall not be
read before it has been set

C90 [Undefined 417, C99 [Undefined 10, 17]
Category Mandatory
Analysis Undecidable, System
Applies to €90, C99

Amplification

For the purposes of this rule, an array element or structure member shall be considered as a discrete
object.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

75

S9Ny :8 UONI3S

/6

Rationale

According to The Standard, objects with static storage duration are automatically initialized to zero
unless initialized explicitly. Objects with automatic storage duration are not automatically initialized
and can therefore have indeterminate values.

Note: it is sometimes possible for the explicit initialization of an automatic object to be ignored. This
will happen when a jump to a label using a goto or switch statement “bypasses” the declaration of the
object; the object will be declared as expected but any explicit initialization will be ignored.

Example

void £ (bool t b, uintlé t *p)

void g (void)
{
uintl6 t u;

f (false, &u);

/* Non-compliant - u has not been assigned a value */
} }
In the following non-compliant C99 example, the goto statement jumps past the initialization of x.
Note: This example is also non-compliant with Rule 15.1.

{
goto L1;

uintl6é t x = 10u;

Ll:
x = x + lu; /* Non-compliant - x has not been assigned a value */

See also

Rule 15.1, Rule 15.3

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rule 9.2 The initializer for an aggregate or union shall be enclosed in braces

C90 [Undefined 42], C99 [Undefined 76, 77]
Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification
This rule applies to initializers for both objects and subobjects.

An initializer of the form { 0 }, which sets all values to 0, may be used to initialize subobjects without
nested braces.

Note: this rule does not itself require explicit initialization of objects or subobjects.

Rationale

Usingbracestoindicateinitialization of subobjectsimprovesthe clarity of code and forces programmers
to consider the initialization of elements in complex data structures such as multi-dimensional arrays
or arrays of structures.

Exception
1. Anarray may be initialized using a string literal.

2. An automatic structure or union may be initialized using an expression with compatible
structure or union type.

3. Adesignated initializer may be used to initialize part of a subobject.

Example

The following three initializations, which are permitted by The Standard, are equivalent. The first form
is not permitted by this rule because it does not use braces to show subarray initialization explicitly.

lntl6_t y[3 J [2] = { 1! 2/ Or OI 5! 6 }; /* Non—compliant */
intle_t y[31021 ={ {1, 21}, {01}, {5 61} }; /* Compliant */
intle_t y[31021 =¢{{1, 21}, {0, 01}, {5 61} }; /* Compliant */

In the following example, the initialization of z1 is compliant by virtue of Exception 3 because a
designated initializer is used to initialize the subobject z1[1 1. The initialization of z2 is also
compliant for the same reason. The initialization of z3 is non-compliant because part of the subobject
z3[1 1 is intialized with a positional initializer but is not enclosed in braces. The initialization of
z4 is compliant because a designated initializer is used to initialize the subobject z4[0] and the
initializer for subobject z4 [1 1 is brace-enclosed.

intle t z1[2][2] ={ {01}, [2][1] =11:3; /* Compliant */
intle t z2[2][2] ={ {0},
[110 1] 1, 111101 =20
}; /* Compliant */
intle t z3[2][21 ={((01}, [2]00]=0,11; /* Non-compliant */
intle t z4[2][21 ={((0] 1] =20, {0, 11} }; /* Compliant */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

77

S9Ny :8 UONI3S

/8

The first line in the following example initializes 3 subarrays without using nested braces. The second
and third lines show equivalent ways to write the same initializer.

float32 t al 3 1[0 21 = {0 }; /* Compliant */
float32 t al 3][21 ={{013}, {01}, {01} }; /* Compliant */
float32 t a[3][2] ={ { 0.0f, 0.0f },
{ 0.0f£, 0.0f },
{ 0.0f£, 0.0f }
}i /* Compliant */
union ul {
intlé t i;
float32 t £;
}u={01}; /* Compliant */
struct sl {
uintl6 t len;
char buf[8];
sl 31 ={
{ 5u, { 'a', 'b', 'c', 'd', 'e', '\0', '\0', '\O' } },
{ 2u, { 0} },
{ .len = Ou } /* Compliant - buf initialized implicitly */
}s /* Compliant - s[] fully initialized */

Rule 9.3 Arrays shall not be partially initialized

Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification

If any element of an array object or subobject is explicitly initialized, then the entire object or subobject
shall be explicitly initialized.

Rationale

Providing an explicit initialization for each element of an array makes it clear that every element has
been considered.

Exception

1. Aninitializer of the form { 0 } may be used to explicitly initialize all elements of an array
object or subobject.

2. Anarray whose initializer consists only of designated initializers may be used, for example to
perform a sparse initialization.

3. Anarray initialized using a string literal does not need an initializer for every element.

Example

/* Compliant */
int32_ t x[3] = {0, 1, 2 };

/* Non-compliant - y[2] is implicitly initialized */
int32_t y[31 =4{0, 1 };

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

/* Non-compliant - t

[and t[3] are implicitly initialized */
float32 t t[4 1 = {

0]

[11 =1.0f, 2.0f };

/* Compliant - designated initializers for sparse matrix */
float32 t z[50] = { [1] =1.0f, [25] = 2.0f };

In the following compliant example, each element of the array arr is initialized:

float32 t arr[3][2] =
{
{ 0.0f, 0.0f },
{ PI / 4.0f, -PI / 4.0f },
{ 0} /* initializes all elements of array subobject arr[2] */

}i

In the following example, array elements 6 to 9 are implicitly initialized to "\0":

char h[10] = "Hello"; /* Compliant by Exception 3 */

Rule 9.4 An element of an object shall not be initialized more than once
Category Required

Analysis Decidable, Single Translation Unit

Applies to C99

Amplification

This rule applies to initializers for both objects and subobjects.

The provision of designated initializers in C99 allows the naming of the components of an aggregate
(structure or array) or of a union to be initialized within an initializer list and allows the object’s elements
to be initialized in any order by specifying the array indices or structure member names they apply to

(elements having no initialization value assume the default for uninitialized objects).

Rationale

Care is required when using designated initializers since the initialization of object elements can be
inadvertently repeated leading to overwriting of previously initialized elements. The C99 Standard
does not specify whether the side effects in an overwritten initializer occur or not although this is not

listed in Annex J.

In order to allow sparse arrays and structures, it is acceptable to only initialize those which are

necessary to the application.

Example
Array initialization:

/%
* Required behaviour using positional initialization
* Compliant - al is -5, -4, -3, -2, -1
*/

intlé t al[51 = { -5, -4, -3, -2, -1 };

/*
* Similar behaviour using designated initializers
* Compliant - a2 is -5, -4, -3, -2, -1
*/

intlée t a2[5] ={ [0] = -5, [

[31 =-2, 1

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

/9

S9Ny :8 UONI3S

30

/*

* Repeated designated initializer element values overwrite earlier ones

* Non-compliant - a3 is -5, -4, -2, 0, -1
*/
intle_ t a3[51 ={ [0] =-5 [11~=-4,[2]=-3,
[21=-2,141=-1 }r

In the following non-compliant example, it is unspecified whether the side effect occurs or not:
uintl6 t *p;

void £ (void)
{

uintlé t a[2] = { [0] =*p++, [01 =1 };
}

Structure initialization:

struct mystruct

{
int32 t a;
int32 t b;
int32 t c;
int32 t d;

}i

/*
* Required behaviour using positional initialization
* Compliant - sl is 100, -1, 42, 999
*/

struct mystruct sl = { 100, -1, 42, 999 };

/*
* Similar behaviour using designated initializers

* Compliant - s2 is 100, -1, 42, 999

*/

struct mystruct s2 = { .a = 100, .b = -1, .c =42, .d = 999 };

/*

* Repeated designated initializer element values overwrite earlier ones
* Non-compliant - s3 is 42, -1, 0, 999

*/

struct mystruct s3 = { .a = 100, .b = -1, .a = 42, .d = 999 };

Rule 9.5 Where designated initializers are used to initialize an array object the
size of the array shall be specified explicitly

Category Required

Analysis Decidable, Single Translation Unit

Applies to c99

Amplification
The rule applies equally to an array subobject that is a flexible array member.

Rationale

If the size of an array is not specified explicitly, it is determined by the highest index of any of the
elements that are initialized. When using designated initializers it may not always be clear which
initializer has the highest index, especially when the initializer contains a large number of elements.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

To make the intent clear, the array size shall be declared explicitly. This provides some protection
if, during development of the program, the indices of the initialized elements are changed as it is a
constraint violation (C99 Section 6.7.8) to initialize an element outside the bounds of an array.

Example

/* Non-compliant - probably unintentional to have single element */
int al[] = { [01 =1 };

/* Compliant * /

int a2[10] = { [0] =1 };

8.10 The essential type model

8.10.1 Rationale

The rules in this section collectively define the essential type model and restrict the C type system so
as to:

1. Support a stronger system of type-checking;

2. Provide a rational basis for defining rules to control the use of implicit and explicit type
conversions;

3. Promote portable coding practices;
4. Address some of the type conversion anomalies found within ISO C.

The essential type model does this by allocating an essential type to those objects and expressions which
ISO C considers to be of arithmetic type. For example, adding an int to a char gives a result having
essentially character type rather than the int type that is actually produced by integer promotion.

The full rationale behind the essential type model is given in Appendix C with Appendix D providing a
comprehensive definition of the essential type of any arithmetic expression.
8.10.2 Essential type
The essential type of an object or expression is defined by its essential type category and size.
The essential type category of an expression reflects its underlying behaviour and may be:

e FEssentially Boolean;

e [Essentially character;

e FEssentially enum;

e FEssentially signed;

e Essentially unsigned,

e FEssentially floating.

Note: each enumerated type is a unique essentially enum type identified as enum<i> This allows
different enumerated types to be handled as distinct types, which supports a stronger system of
type-checking. One exception is the use of an enumerated type to define a Boolean value in C90.
Such types are considered to have essentially Boolean type. Another exception is the use of anonymous
enumerations as defined in Appendix D. Anonymous enumerations are a way of defining a set of related
constant integers and are considered to have an essentially signed type.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

31

S9Ny :8 UONI3S

32

When comparing two types of the same type category, the terms wider and narrower are used to
describe their relative sizes as measured in bytes. Two different types are sometimes implemented
with the same size.

The following table shows how the standard integer types map on to essential type categories.

Essential type category
Boolean character signed unsigned enum<i> floating
_Bool char signed char unsigned char named enum | float
signed short unsigned short double
signed int unsigned int long double
signed long unsigned long
signed long long | unsigned long long

Note: C99 implementations may provide extended integer types each of which would be allocated a
location appropriate to its rank and signedness (see C99 Section 6.3.1.1).

Therestrictions enforced by the rules in this section also apply to the compound assignment operators
(e.g. ~=) as these are equivalent to assigning the result obtained from the use of one of the arithmetic,
bitwise or shift operators. For example:

u8a += u8b + 1U;
is equivalent to:

u8a = u8a + (u8b + 1U);

Rule 10.1 Operands shall not be of an inappropriate essential type

C90 [Unspecified 23; Implementation 14, 17, 19, 32]
C99 [Undefined 13, 49; Implementation J3.4(2, 5), J3.5(5), J3.9(6)]

Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification

In the following table a number within a cell indicates where a restriction applies to the use of an
essential type as an operand to an operator. These numbers correspond to paragraphs in the Rationale
section below and indicate why each restriction is imposed.

Essential type category of arithmetic operand
Operator Operand
Boolean character enum signed unsigned floating
[] integer 3 4 1
+ (unary) 3 4 5
- (unary) 3 4 5 8
+ - either 3 5
*/ either 3 4 5
% either 3 4 5 1
< > <= >= either 3
== I= either
Doss || any 2 2 2 2 2

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Essential type category of arithmetic operand
Operator Operand
Boolean character enum signed unsigned floating
<< >> left 3 4 5,6 6 1
<< >> right 3 4 7 7 1
~ & | any 3 4 5,6 6 1
2 st 2 2 2 2 2
?: 2nd and 3rd

Under this rule the ++ and -- operators behave the same way as the binary + and - operators.

Other rules place further restrictions on the combination of essential types that may be used within
an expression.

Rationale
1. The use of an expression of essentially floating type for these operands is a constraint violation.

2. An expression of essentially Boolean type should always be used where an operand is
interpreted as a Boolean value.

3. An operand of essentially Boolean type should not be used where an operand is interpreted
as a numeric value.

4. An operand of essentially character type should not be used where an operand is interpreted
as a numeric value. The numeric values of character data are implementation-defined.

5. An operand of essentially enum type should not be used in an arithmetic operation because
an enum object uses an implementation-defined integer type. An operation involving an
enum object may therefore yield a result with an unexpected type. Note that an enumeration
constant from an anonymous enum has essentially signed type.

6. Shift and bitwise operations should only be performed on operands of essentially unsigned
type. The numeric value resulting from their use on essentially signed types is implementation-
defined.

7. Theright hand operand of a shift operator should be of essentially unsigned type to ensure that
undefined behaviour does not result from a negative shift.

8. Anoperand of essentially unsigned type should not be used as the operand to the unary minus
operator, as the signedness of the result is determined by the implemented size of int.

Exception

A non-negative integer constant expression of essentially signed type may be used as the right hand
operand to a shift operator.

Example
enum enuma { al, a2, a3 } ena, enb; /* Essentially enum<enuma> */
enum { K1 =1, K2 = 2 }; /* Essentially signed */

The following examples are non-compliant. The comments refer to the numbered rationale item that
results in the non-compliance.

f32a & 2U
f32a << 2

/* Rationale 1 - constraint violation */
/* Rationale 1 - constraint violation */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

33

8 UOI123S

sa|ny

34

cha && bla
ena ? al : a2
s8a && bla
u8a ? al : a2
f32a && bla

bla * blb
bla > blb

cha & chb
cha << 1

ena--
ena * al

s8a & 2
50 << 3U

u8a << s8a
u8a << -1

-u8a

/*
/*
/*
/*
/*

/*
/*

/*
/*

/*
/*

/*
/*

/*
/*

/*

Rationale
Rationale
Rationale
Rationale
Rationale

Rationale
Rationale

Rationale
Rationale

Rationale
Rationale

Rationale
Rationale

Rationale
Rationale

Rationale

DN DN

w

char type
enum type

used as a Boolean value
used as a Boolean value

signed type used as a Boolean value
unsigned type used as a Boolean value
floating type used as a Boolean value

Boolean used as a numeric value

Boolean used as a numeric value

char type
char type

enum type
enum type

used as a numeric value
used as a numeric value

used in arithmetic operation
used in arithmetic operation

bitwise operation on signed type

shift operation on signed type

shift magnitude uses signed type
shift magnitude uses signed type

unary minus on unsigned type

The following example is non-compliant with this rule and also violates Rule 10.3:

ena += al

The following examples are compliant:

bla && blb
bla ? uB8a : u8b

cha - chb
cha > chb

ena > al
K1 * s8a

s8a + sl6b

-(s8a) * s8b
s8a > 0

--sl6b

u8a + ul6b
uB8a & 2U

u8a > 0U
u8a << 2U
u8a << 1

f32a + £32b
£f32a > 0.0

/* Rationale 5 -

enum type

used in arithmetic operation

/* Compliant as K1 from anonymous enum

/* Compliant by exception

The following is compliant with this rule but violates Rule 10.2

cha + chb

See also

Rule 10.2

*/
*/
*/
*/
*/

*/
*/

*/
*/

*/
*/

*/
*/

*/
*/

*/

*/

*/

*/

Licensed to: LEE CHING MIN.

5 Mar 2019. Copy 1 of 1

Rule 10.2 Expressions of essentially character type shall not be used

Catego
Analysi

inappropriately in addition and subtraction operations

ry Required

S Decidable, Single Translation Unit

Applies to €90, C99

Amplification

The appropriate uses are:

1.

For the + operator, one operand shall have essentially character type and the other shall have
essentially signed type or essentially unsigned type. The result of the operation has essentially
character type.

2. For the - operator, the first operand shall have essentially character type and the second
shall have essentially signed type, essentially unsigned type or essentially character type. If both
operands have essentially character type then the result has the standard type (usually int in this
case) else the result has essentially character type.

Rationale

Expressions with essentially character type (character data) shall not be used arithmetically as the data
does not represent numeric values.

The uses above are permitted as they allow potentially reasonable manipulation of character data.
For example:

Subtraction of two operands with essentially character type might be used to convert between
digits in the range ‘0’ to ‘9" and the corresponding ordinal value;

Addition of an essentially character type and an essentially unsigned type might be used to
convert an ordinal value to the corresponding digit in the range ‘0" to ‘9’

Subtraction of an essentially unsigned type from an essentially character type might be used to
convert a character from lowercase to uppercase.

Example

The following examples are compliant:

lOl +
s8a +
cha -
lOl -

u8a /* Convert u8a to digit */
0’ /* Convert s8a to digit */
0" /* Convert cha to ordinal */
s8a /* Convert -s8a to digit */

The following examples are non-compliant:

sléa -
lOl +
cha +
cha -

lal
f32a

ena

See also

Rule 10.1

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

S9Ny :8 UONI3S

36

Rule 10.3 The value of an expression shall not be assigned to an object with a
narrower essential type or of a different essential type category

C90 [Undefined 15; Implementation 16]
C99 [Undefined 15, 16; Implementation 3.5(4)]

Category Required
Analysis Decidable, Single Translation Unit
Applies to 90, C99

Amplification
The following operations are covered by this rule:
1. Assignment as defined in the Glossary;

2. The conversion of the constant expression in a switch statement'’s case label to the promoted
type of the controlling expression.

Rationale

The C language allows the programmer considerable freedom and will permit assignments between
differentarithmetictypesto be performed automatically. However, the use of these implicit conversions
can lead to unintended results, with the potential for loss of value, sign or precision. Further details of
concerns with the C type system can be found in Appendix C.

The use of stronger typing, as enforced by the MISRA essential type model, reduces the likelihood of
these problems occurring.

Exception

1. Anon-negative integer constant expression of essentially signed type may be assigned to an object
of essentially unsigned type if its value can be represented in that type.

2. Theinitializer { 0 } may be used to initialize an aggregate or union type.

Example

enum enuma { Al, A2, A3 } ena;
enum enumb { Bl, B2, B3 } enb;
enum { Kl1=1, K2=128 };

The following are compliant:

uint8 t u8a = 0; /* By exception */
bool t flag = (bool t) 0;

bool t set = true; /* true is essentially Boolean */
bool t get = (u8b > u8c);

ena = Al;

s8a = Kl1; /* Constant value fits */
u8a = 2; /* By exception */
uBa = 2 * 24; /* By exception */
cha += 1; /* cha = cha + 1 assigns character to character */
pu8a = pu8b; /* Same essential type */
u8a = u8b + u8c + u8d; /* Same essential type */
u8a = (uint8 t) s8a; /* Cast gives same essential type */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

u32a = uloba; /* Assignment to a wider essential type */

u32a = 2U + 1250; /* Assignment to a wider essential type */
use_uintl6é (uBa); /* Assignment to a wider essential type */
use_uintl6é (u8a + uléb); /* Assignment to same essential type */

The following are non-compliant as they have different essential type categories:

uint8 t u8a = 1.0f; /* unsigned and floating */
bool t Dbla = 0; /* boolean and signed */
cha = 7; /* character and signed */
uBa = 'a'; /* unsigned and character */
ugb =1 - 2; /* unsigned and signed */
u8c += 'a'; /* u8c = uB8c + 'a' assigns character to unsigned */
use uint32 (s32a); /* signed and unsigned */

The following are non-compliant as they contain assignments to a narrower essential type:

s8a = K2; /* Constant value does not fit */
ul6a = u32a; /* uint32 t to uintlé6_t */
use_uintlé (u32a); /* uint32 t to uintlé_t */

uint8 t fool (uintlé t x)
{
return x; /* uintl6_t to uint8 t */

}

See also

Rule 10.4, Rule 10.5, Rule 10.6

Rule 10.4 Both operands of an operator in which the usual arithmetic conversions
are performed shall have the same essential type category
C90 [Implementation 21], C99 [Implementation 3.6(4)]
Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification

This rule applies to operators that are described in usual arithmetic conversions (see C90 Section 6.2.1.5,
C99 Section 6.3.1.8). This includes all the binary operators, excluding the shift, logical «&, logical | |
and comma operators. In addition, the second and third operands of the ternary operator are covered
by this rule.

Note: the increment and decrement operators are not covered by this rule.

Rationale

The C language allows the programmer considerable freedom and will permit conversions between
differentarithmetictypestobe performed automatically. However, the use of these implicit conversions
can lead to unintended results, with the potential for loss of value, sign or precision. Further details of
concerns with the C type system can be found in Appendix C.

The use of stronger typing, as enforced by the MISRA essential type model, allows implicit conversions
to be restricted to those that should then produce the answer expected by the developer.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

37

S9Ny :8 UONI3S

38

Exception
The following are permitted to allow a common form of character manipulation to be used:

1. The binary + and += operators may have one operand with essentially character type and the
other operand with an essentially signed or essentially unsigned type;

2. The binary - and -= operators may have a left-hand operand with essentially character type
and a right-hand operand with an essentially signed or essentially unsigned type.

Example

enum enuma { Al, A2, A3 } ena;
enum enumb { Bl, B2, B3 } enb;

The following are compliant as they have the same essential type category:

ena > Al
u8a + ul6b

The following is compliant by exception 1:

cha += u8a

The following is non-compliant with this rule and also violates Rule 10.3:
s8a += u8a /* signed and unsigned */

The following are non-compliant:

u8b + 2 /* unsigned and signed */
enb > Al /* enum<enumb> and enum<enuma> */
ena == enb /* enum<enuma> and enum<enumb> */
u8a += cha /* unsigned and char */
See also

Rule 10.3, Rule 10.7

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rule 10.5 The value of an expression should not be cast to an inappropriate

essential type
Category Advisory
Analysis Decidable, Single Translation Unit

Applies to €90, C99

Amplification

The casts which should be avoided are shown in the following table, where values are cast (explicitly
converted) to the essential type category of the first column.

Essonl ype
to Boolean character enum signed unsigned floating
Boolean Avoid Avoid Avoid Avoid Avoid
character Avoid Avoid
enum Avoid Avoid Avoid* Avoid Avoid Avoid
signed Avoid
unsigned Avoid
floating Avoid Avoid

* Note: an enumerated type may be cast to an enumerated type provided that the cast is to the same
essential enumerated type. Such casts are redundant.

Casting from void to any other type is not permitted as it results in undefined behaviour. This is
covered by Rule 1.3.

Rationale

An explicit cast may be introduced for legitimate functional reasons, for example:
e To change the type in which a subsequent arithmetic operation is performed;
e To truncate a value deliberately;
e To make a type conversion explicit in the interests of clarity.

However, some explicit casts are considered inappropriate:

e In C99, the result of a cast or assignment to _Bool is always 0 or 1. This is not necessarily the
case when casting to another type which is defined as essentially Boolean;

* A cast to an essentially enum type may result in a value that does not lie within the set of
enumeration constants for that type;

e Acastfrom essentially Boolean to any other type is unlikely to be meaningful;

e (Converting between floating and character types is not meaningful as there is no precise
mapping between the two representations.

Exception

An integer constant expression with the value 0 or 1 of either signedness may be cast to a type which is
defined as essentially Boolean. This allows the implementation of non-C99 Boolean models.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

39

S9Ny :8 UONI3S

90

Example

(bool t) false
(int32 t) 3U

(bool t) O

(bool t) 3U

(int32 t) ena
(enum enuma) 3

(char

) enc

See also

Rule 10.3, Rule 10.8

/*
/*
/*
/*

/*
/*
/*

Compliant - C99 'false'
Compliant

Compliant - by exception
Non-compliant

Compliant
Non-compliant
Compliant

8.10.3 Composite operators and expressions

Some of the concerns mentioned in Appendix C can be avoided by restricting the implicit and explicit

is essentially Boolean

conversions that may be applied to non-trivial expressions. These include:

In addition to the previous rules, the essential type model places further restrictions on expressions

The confusion about the type in which integer expressions are evaluated, as this depends on
the type of the operands after any integer promotion. The type of the result of an arithmetic

operation depends on the implemented size of int;

The common misconception among programmers that the type in which a calculation
is conducted is influenced by the type to which the result is assigned or cast. This false

expectation may lead to unintended results.

whose operands are composite expressions, as defined below.

The following are defined as composite operators in this document:

A compound assignment is equivalent to an assignment of the result of its corresponding composite

Multiplicative (*, /, %)

Additive (binary +, binary -)

Bitwise (&, |, ")

Shift (<<, >>)

*/
*/
*/
*/

*/
*/
*/

Conditional (2 :) if either the second or third operand is a composite expression

operator.

A composite expression is defined in this document as a non-constant expression which is the direct

result of a composite operator.

Note:

The result of a compound assignment operator is not a composite expression;

A parenthesized composite expression is also a composite expression;

A constant expression is not a composite expression.

Licensed to: LEE CHING MIN.

5 Mar 2019. Copy 1 of 1

Rule 10.6 The value of a composite expression shall not be assigned to an object
with wider essential type

Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification
This rule covers the assigning operations described in Rule 10.3.

Rationale

Therationaleisdescribedinthe introduction on composite operators and expressions (see Section 8.10.3).

Example
The following are compliant:

ul6c = ul6a + ulé6b; /* Same essential type */
u32a = (uint32 t) ul6a + ul6b; /* Cast causes addition in uint32 t */

The following are non-compliant:

u32a = ul6a + uléb; /* Implicit conversion on assignment */
use_uint32 (ul6a + ul6b); /* Implicit conversion of fn argument */
See also

Rule 10.3, Rule 10.7, Section 8.10.3

Rule 10.7 If @ composite expression is used as one operand of an operator in
which the usual arithmetic conversions are performed then the other
operand shall not have wider essential type

Category Required

Analysis Decidable, Single Translation Unit
Applies to €90, C99

Rationale
Therationaleisdescribedin theintroduction on composite operators and expressions (see Section 8.10.3).

Restricting implicit conversions on composite expressions means that sequences of arithmetic
operations within an expression must be conducted in exactly the same essential type. This reduces
possible developer confusion.

Note: this does not imply that all operands in an expression are of the same essential type.

The expression u32a + uléb + ulé6cis compliant as both additions will notionally be performed in
type uint32_t.In this case only non-composite expressions are implicitly converted.

The expression (ul6a + uléb) + u32cisnon-compliantas the left addition is notionally performed
intype uintl16_t and the rightin type uint32_t, requiring an implicit conversion of the composite
expression ulea + ul6btouint32 t.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

97

S9Ny :8 UONI3S

92

Example

The following are compliant:

u32a * uléa + ulé6b /* No composite conversion */

(u32a * ulea) + uléb /* No composite conversion */
u32a * ((uint32 t) ul6a + ulé6b) /* Both operands of * have

* same essential type */

u32a += (u32b + ul6b) /* No composite conversion */

The following are non-compliant:

u32a * (ul6a + uléb) /* Implicit conversion of (ul6a + ulé6b) */
u32a += (uléa + uléb) /* Implicit conversion of (ul6a + ul6b) */
See also

Rule 10.4, Rule 10.6, Section 8.10.3

Rule 10.8 The value of a composite expression shall not be cast to a different
essential type category or a wider essential type

Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Rationale
Therationaleisdescribedin theintroduction on composite operators and expressions (see Section 8.10.3).

Casting to a wider type is not permitted as the result may vary between implementations. Consider
the following:

(uint32 t) (ul6a + ul6b);

On a 16-bit machine the addition will be performed in 16 bits with the result wrapping modulo-2
before it is cast to 32 bits. However, on a 32-bit machine the addition will take place in 32 bits and
would preserve high-order bits that would have been lost on a 16-bit machine.

Casting to a narrower type with the same essential type category is acceptable as the explicit truncation
of the result always leads to the same loss of information.

Example
(uintlé t) (u32a + u32b) /* Compliant */
(uintl6 t) (s32a + s32b) /* Non-compliant - different essential

* type category */
(uintl6 t) s32a /* Compliant - s32a is not composite */
(uint32 t) (ul6a + ul6b) /* Non-compliant - cast to wider

* essential type */
See also

Rule 10.5, Section 8.10.3

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

8.11

Pointer type conversions

Pointer types can be classified as follows:

Pointer to object;
Pointer to function;
Pointer to incomplete;
Pointer to void,

A null pointer constant, i.e. the value O, optionally cast to void *.

The only conversions involving pointers that are permitted by The Standard are:

A conversion from a pointer type into void,
A conversion from a pointer type into an arithmetic type;
A conversion from an arithmetic type into a pointer type;

A conversion from one pointer type into another pointer type.

Although permitted by the language constraints, conversion between pointers and any arithmetic
types other than integer types is undefined.

The following permitted pointer conversions do not require an explicit cast:

A conversion from a pointer type into _Bool (C99 only);
A conversion from a null pointer constant into a pointer type;

A conversion from a pointer type into a compatible pointer type provided that the destination
type has all the type qualifiers of the source type;

A conversion between a pointer to an object or incomplete type and void *, or qualified version
thereof, provided that the destination type has all the type qualifiers of the source type.

In C99, any implicit conversion that does not fall into this subset of pointer conversions violates a
constraint (C99 Sections 6.5.4 and 6.5.16.1).

In C90, any implicit conversion that does not fall into this subset of pointer conversions leads to
undefined behaviour (C90 Sections 6.3.4 and 6.3.16.1).

The conversion between pointer types and integer types is implementation-defined.

Rule 111 Conversions shall not be performed between a pointer to a function

and any other type
C90 [Undefined 24, 27-29], C99 [Undefined 21, 23, 39, 41]

Category Required

Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification

A pointer to a function shall only be converted into or from a pointer to a function with a compatible

type.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

93

W Rationale
D
N
g- The conversion of a pointer to a function into or from any of:
> . .
00 e Pointer to object;
;CU * Pointer to incomplete;
3 e void *
results in undefined behaviour.
If a function is called by means of a pointer whose type is not compatible with the called function,
the behaviour is undefined. Conversion of a pointer to a function into a pointer to a function with
a different type is permitted by The Standard. Conversion of an integer into a pointer to a function
is also permitted by The Standard. However, both are prohibited by this rule in order to avoid the
undefined behaviour that would result from calling a function using an incompatible pointer type.
Exception
1. A null pointer constant may be converted into a pointer to a function;
2. A pointer to a function may be converted into void,
3. Afunction type may be implicitly converted into a pointer to that function type.
Note: exception 3 covers the implicit conversions described in C90 Section 6.2.2.1 and (99
Section 6.3.2.1. These conversions commonly occur when:
e Afunction is called directly, i.e. using a function identifier to denote the function to be called;
e Afunction is assigned to a function pointer.
Example
typedef void (*fpl6) (intl6 t n);
typedef void (*fp32) (int32 t n);
#include <stdlib.h> /* To obtain macro NULL */
fpl6é fpl = NULL; /* Compliant - exception 1 */
fp32 fp2 = (fp32) fpl; /* Non-compliant - function
* pointer into different
* function pointer */
if (fp2 != NULL) /* Compliant - exception 1 */
{
}
fple fp3 = (fple6e) 0x8000; /* Non-compliant - integer into
* function pointer */
fpl6e fp4d = (fpl6) 1.0e6F; /* Non-compliant - float into
* function pointer */
In the following example, the function call returns a pointer to a function type. Casting the return
value into void is compliant with this rule.
typedef fpl6 (*pfpl6) (void);
pfpl6 pfpl;
911 (void) (*pfpl ()); /* Compliant - exception 2 - cast function

* pointer into void */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

The following examples show compliant implicit conversions from a function type into a pointer to
that function type.

extern void f (int16_t n);
£ (1); /* Compliant - exception 3 - implicit conversion

* of £ into pointer to function */
fplée fp5 = f£; /* Compliant - exception 3 */

Rule 11.2 Conversions shall not be performed between a pointer to an
incomplete type and any other type

C90 [Undefined 29], C99 [Undefined 21, 22, 41]
Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification
A pointer to an incomplete type shall not be converted into another type.
A conversion shall not be made into a pointer to incomplete type.

Although a pointer to void is also a pointer to an incomplete type, this rule does not apply to pointers
to void as they are covered by Rule 11.5.

Rationale

Conversion into or from a pointer to an incomplete type may result in a pointer that is not correctly
aligned, resulting in undefined behaviour.

Conversion of a pointer to an incomplete type into or from a floating type always results in undefined
behaviour.

Pointersto anincomplete type are sometimes used to hide the representation of an object. Converting
a pointer to an incomplete type into a pointer to object would break this encapsulation.

Exception
1. A null pointer constant may be converted into a pointer to an incomplete type.

2. A pointer to an incomplete type may be converted into void.

Example
struct s; /* Incomplete type */
struct t; /* A different incomplete type */

struct s *sp;
struct t *tp;
intle_t *ip;

#include <stdlib.h> /* To obtain macro NULL */
ip = (intl6_t *) sp; /* Non-compliant */
sp = (struct s *) 1234; /* Non-compliant */
tp = (struct t *) sp; /* Non-compliant - casting pointer into a

* different incomplete type */
sp = NULL; /* Compliant - exception 1 */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

95

S9Ny :8 UONI3S

96

struct s *f (void);

(void) £ (); /* Compliant - exception 2 */

See also

Rule 11.5

Rule 11.3 A cast shall not be performed between a pointer to object type and a
pointer to a different object type
C90 [Undefined 207, C99 [Undefined 22, 34]
Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification

This rule applies to the unqualified types that are pointed to by the pointers.

Rationale

Casting a pointer to object into a pointer to a different object may result in a pointer that is not
correctly aligned, resulting in undefined behaviour.

Even if conversion is known to produce a pointer that is correctly aligned, the behaviour may be
undefined if that pointer is used to access an object. For example, if an object whose type is int is
accessed as a short the behaviour is undefined even if int and short have the same representation and
alignment requirements. See C90 Section 6.3, C99 Section 6.5, paragraph 7 for details.

Exception

It is permitted to convert a pointer to object type into a pointer to one of the object types char, signed
char or unsigned char. The Standard guarantees that pointers to these types can be used to access the
individual bytes of an object.

Example

uint8 t “*pl;
uint32 t *p2;

/* Non-compliant - possible incompatible alignment */
p2 = (uint32 t *) pl;

extern uint32 t read value (void);
extern void print (uint32 t n);

void £ (void)
{
uint32 t u = read value ();
uintl6é t *hi p (uintleée_t *) &u; /* Non-compliant even though
* probably correctly aligned */

hi p = 0; / Attempt to clear high 16-bits on big-endian machine */
print (u); /* Line above may appear not to have been performed */

}

The following example is compliant because the rule applies to the unqualified pointer types. It does
not prevent type qualifiers from being added to the object type.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

const short *p;
const volatile short *qg;

q = (const volatile short *) p; /* Compliant */

The following example is non-compliant because the unqualified pointer types are different, namely
“pointer to const-qualified int” and “pointer to int".

int * const * pcpi;
const int * const * pcpci;

pcpci = (const int * const *) pcpi;

See also

Rule 11.4, Rule 11.5, Rule 11.8

Rule 11.4 A conversion should not be performed between a pointer to object
and an integer type

C90 [Undefined 20; Implementation 24]
C99 [Undefined 21, 34; Implementation J.3.7(1)]

Category Advisory
Analysis Decidable, Single Translation Unit
Applies to 90, C99

Amplification
A pointer should not be converted into an integer.

An integer should not be converted into a pointer.

Rationale

Conversion of an integer into a pointer to object may result in a pointer that is not correctly aligned,
resulting in undefined behaviour.

Conversion of a pointer to object into an integer may produce a value that cannot be represented in
the chosen integer type resulting in undefined behaviour.

Note: the C99 types intptr_ t and uintptr t, declared in <stdint.h>, are respectively signed and
unsigned integer types capable of representing pointer values. Despite this, conversions between a
pointer to object and these types is not permitted by this rule because their use does not avoid the
undefined behaviour associated with misaligned pointers.

Casting between a pointer and an integer type should be avoided where possible, but may be
necessary when addressing memory mapped registers or other hardware specific features. If casting
between integers and pointers is used, care should be taken to ensure that any pointers produced do
not give rise to the undefined behaviour discussed under Rule 11.3.

Exception

A null pointer constant that has integer type may be converted into a pointer to object.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

97

S9Ny :8 UONI3S

Example

uint8 t *PORTA = (uint8 t *) 0x0002; /* Non-compliant */
uintlé t *p;

int32 t addr = (int32 t) &p; /* Non-compliant */
uint8 t *qgq = (uint8 t *) addr; /* Non-compliant */
bool t b = (bool t) p; /* Non-compliant */
enum etag { A, B } e = (enum etag) p; /* Non-compliant */

See also

Rule 11.3, Rule 11.7, Rule 11.9

Rule 11.5 A conversion should not be performed from pointer to void into
pointer to object
C90 [Undefined 207, C99 [Undefined 22, 34]
Category Advisory
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Rationale

Conversion of a pointer to void into a pointer to object may result in a pointer that is not correctly
aligned, resulting in undefined behaviour. It should be avoided where possible but may be necessary,
for example when dealing with memory allocation functions. If conversion from a pointer to object
into a pointer to void is used, care should be taken to ensure that any pointers produced do not give
rise to the undefined behaviour discussed under Rule 11.3.

Exception

A null pointer constant that has type pointer to void may be converted into pointer to object.

Example

uint32 t *p32;
void *p;
uintl6 t *plé6;

P = p32; /* Compliant - pointer to uint32 t into

* pointer to void */
plé = p; /* Non-compliant */
P = (void *) plé6; /* Compliant */
p32 = (uint32 t *) p; /* Non-compliant */
See also

Rule 11.2, Rule 11.3

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rule 11.6 A cast shall not be performed between pointer to void and an

arithmetic type
C90 [Undefined 29; Implementation 24]
C99 [Undefined 21, 41; Implementation J.3.7(1)]
Category Required
Analysis Decidable, Single Translation Unit

Applies to €90, C99

Rationale

Conversion of an integer into a pointer to void may result in a pointer that is not correctly aligned,
resulting in undefined behaviour.

Conversion of a pointer to void into an integer may produce a value that cannot be represented in the
chosen integer type resulting in undefined behaviour.

Conversion between any non-integer arithmetic type and pointer to void is undefined.

Exception
An integer constant expression with value O may be cast into pointer to void.

Example

void *p;
uint32 t u;

/* Non-compliant - implementation-defined */
p = (void *) 0x1234u;

/* Non-compliant - undefined */
p = (void *) 1024.0f;

/* Non-compliant - implementation-defined */
u = (uint32 t) p;

Rule 11.7 A cast shall not be performed between pointer to object and a non-
integer arithmetic type

C90 [Undefined 29; Implementation 24]
C99 [Undefined 21, 41; Implementation J.3.7(1)]

Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification

For the purposes of this rule a non-integer arithmetic type means one of:
e FEssentially Boolean;
e FEssentially character;
e [Essentially enum;

e Fssentially floating.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

99

S9Ny :8 UONI3S

100

Rationale

Conversion of an essentially Boolean, essentially character or essentially enum type into a pointer to
object may result in a pointer that is not correctly aligned, resulting in undefined behaviour.

Conversion of a pointer to object into an essentially Boolean, essentially character or essentially enum type
may produce a value that cannot be represented in the chosen integer type resulting in undefined
behaviour.

Conversion of a pointer to objectinto or from an essentially floating type results in undefined behaviour.

Example

intlée t *p;
float32 t f£;

f = (float32 t) p; /* Non-compliant */
p = (intlé t *) f; /* Non-compliant */
See also
Rule 11.4

Rule 11.8 A cast shall not remove any const or volatile qualification from the type
pointed to by a pointer

C90 [Undefined 12, 39, 40], C99 [Undefined 30, 61, 62]
Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Rationale

Any attempt to remove the qualification associated with the addressed type by using casting is a
violation of the principle of type qualification.

Note: the qualification referred to here is not the same as any qualification that may be applied to the
pointer itself.

Some of the problems that might arise if a qualifier is removed from the addressed object are:

* Removing a const qualifier might circumvent the read-only status of an object and result in it
being modified;

* Removing a const qualifier might result in an exception when the object is accessed;
e Removing a volatile qualifier might result in accesses to the object being optimized away.

Note: removal of the C99 restrict type qualifier is benign.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Example

uintle t X;
uintl6e t * const cpi = &x; /* const pointer */
uintl6 t * const *pcpi; /* pointer to const pointer */
uintlé t * *ppi;
const uintl6 t *pci; /* pointer to const */
volatile uintl6 t *pvi; /* pointer to volatile */
uintl6 t *pi;
pi = cpi; /* Compliant - no conversion
no cast required */
pi = (uintl6 t *)pci; /* Non-compliant */
pi = (uintl6 t *)pvi; /* Non-compliant */
ppi = (uintl6 t * *)pcpi; /* Non-compliant */
See also
Rule 11.3

Rule 11.9 The macro NULL shall be the only permitted form of integer null

pointer constant
Category Required
Analysis Decidable, Single Translation Unit

Applies to €90, C99

Amplification

An integer constant expression with the value 0 shall be derived from expansion of the macro NULL if it
appears in any of the following contexts:

e Asthe value being assigned to a pointer;

* Asanoperand of an == or ! = operator whose other operand is a pointer;
* Asthe second operand of a ?: operator whose third operand is a pointer;
e Asthe third operand of a 2 : operator whose second operand is a pointer.

lgnoring whitespace and any surrounding parentheses, any such integer constant expression shall
represent the entire expansion of NULL.

Note: a null pointer constant of the form (void *) 0 is permitted, whether or not it was expanded from
NULL.

Rationale

Using NULL rather than 0 makes it clear that a null pointer constant was intended.

Example

In the following example, the initialization of p2 is compliant because the integer constant expression O
does not appear in one of the contexts prohibited by this rule.

int32 t *pl 0; /* Non-compliant */

int32 t *p2 = (void *) 0; /* Compliant */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

101

S9Ny :8 UONI3S

102

In the following example, the comparison between p2 and (void *)0 is compliant because the
integer constant expression O appears as the operand of a cast and not in one of the contexts prohibited
by this rule.

#define MY NULL 1 0
#define MY NULL 2 (void *) 0

if (pl == MY NULL 1) /* Non-compliant */
{
}
if (p2 == MY NULL 2) /* Compliant */
{
}

The following example is compliant because use of the macro NULL provided by the implementation
is always permitted, even if it expands to an integer constant expression with value 0.

/* Could also be stdio.h, stdlib.h and others */
#include <stddef.h>

extern void £ (uint8 t *p);

/* Compliant for any conforming definition of NULL, such as:

See also

Rule 11.4

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

i 0
8.12 Expressions D
-}
o
Rule 121 The precedence of operators within expressions should be made o0
explicit c
g S
Category Advisory 0
()
Analysis Decidable, Single Translation Unit n
Applies to €90, C99
Amplification
The following table is used in the definition of this rule.
Description Operator or Operand Precedence
Primary identifier, constant, string literal, (expression) 16 (high)
) [1 O (function call) . => ++ (post-increment) -- (post-decrement) ()
Postfix {} (C99: compound literal) 15
Unary ++ (pre-increment) -- (pre-decrement) s * + - ~ ! sizeof defined 14
(preprocessor)
Cast 0 13
Multiplicative * /% 12
Additive + - 1)
Bitwise shift << >> 10
Relational <><=>= 9
Equality == I= 8
Bitwise AND & 7
Bitwise XOR » 6
Bitwise OR | 5
Logical AND && 4
Logical OR I 3
Conditional ?: 2
Assignment =*= /= %= 4= —=<<=>>=§= "= | = 1
Comma , 0 (low)
The precedences used in this table are chosen to allow a concise description of the rule. They are
not necessarily the same as those that might be encountered in other descriptions of operator
precedence.
For the purposes of this rule, the precedence of an expression is the precedence of the element
(operand or operator) at the root of the parse tree for that expression.
For example: the parse tree for the expression a << b + c can be represented as:
<<
/N
a +
/\
b c
103

The element at the root of this parse tree is '<<"' so the expression has precedence 10.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

S9Ny :8 UONI3S

104

The following advice is given:
e The operand of the sizeof operator should be enclosed in parentheses;

* Anexpression whose precedence is in the range 2 to 12 should have parentheses around any
operand that has both:

— Precedence of less than 13, and

— Precedence greater than the precedence of the expression.

Rationale

The C language has a relatively large number of operators and their relative precedences are not
intuitive. This can lead less experienced programmers to make mistakes. Using parentheses to
make operator precedence explicit removes the possibility that the programmer’s expectations are
incorrect. It also makes the original programmer's intention clear to reviewers or maintainers of the
code.

It is recognized that overuse of parentheses can clutter the code and reduce its readability. This rule
aims to achieve a compromise between code that is hard to understand because it contains either
too many or too few parentheses.

Examples

The following example shows expressions with a unary or postfix operator whose operands are either
primary-expressions or expressions whose top-level operators have precedence 15.

al 1 1->n; /* Compliant - no need to write (al[i])->n */
ptt; / Compliant - no need to write *(p++) */
sizeof x + y; /* Non-compliant - write either sizeof (x) + y

* or sizeof (x + y) */

The following example shows expressions containing operators at the same precedence level. All of
these are compliant but, depending on the types of a, b and ¢, any expression with more than one
operator may violate other rules.

—~ 0 0 ~ 0 0
O o+ o+ o+ +
+ 0 ~+ 00T
oo+
—a +—a
+ a +

c;
)i
d;
b (c+d);

The following example shows a variety of mixed-operator expressions:

/* Compliant - no need to write £ ((a + b), c) */
x=f (a+Db, c);

/* Non-compliant
* Operands of conditional operator (precedence 2) are:

* == precedence 8 needs parentheses
* a precedence 16 does not need parentheses
* - precedence 11 needs parentheses
*/
x =a==Db ?a:a-b;

/* Compliant */
x = (a ==)y 2 a: (a-Db);

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

/* Compliant
* Operands of << operator (precedence 10) are:

* a precedence 16 does not need parentheses
* (E) precedence 16 already parenthesized
*/

X =a << (b +c);

/* Compliant
* Operands of && operator (precedence 4) are:

* a precedence 16 does not need parentheses
* && precedence 4 does not need parentheses
*/

if (a && b && c)
{
}

/* Compliant
* Operands of && operator (precedence 4) are:

* defined (X) precedence 14 does not need parentheses
* (E) precedence 16 already parenthesized

*/

#if defined (X) && ((X + Y) > 2)

/* Compliant
* Operands of && operator (precedence 4) are:

* !defined (X) precedence 14 does not need parentheses
* defined (Y) precedence 14 does not need parentheses
* Operand of ! operator (precedence 14) is:

* defined (X) precedence 14 does not need parentheses
*/

#if !defined (X) && defined (Y)

Note: this rule does not require the operands of a , operator to be parenthesized. Use of the ,
operator is prohibited by Rule 12.3.

x = a, b; /* Compliant - parsed as (x = a), b */

Rule 12.2 The right hand operand of a shift operator shall lie in the range zero
to one less than the width in bits of the essential type of the left hand

operand
C90 [Undefined 32], C99 [Undefined 48]
Category Required
Analysis Undecidable, System

Applies to €90, C99

Rationale

If the right hand operand is negative, or greater than or equal to the width of the left hand operand,
then the behaviour is undefined.

If, for example, the left hand operand of a left-shift or right-shift is a 16-bit integer, then it is important
to ensure that this is shifted only by a number in the range 0 to 15.

See Section 8.10 for a description of essential type and the limitations on the essential types for the
operands of shift operators.

There are various ways of ensuring this rule is followed. The simplest is for the right hand operand to
be a constant (whose value can then be statically checked). Use of an unsigned integer type will ensure

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

105

S9Ny :8 UONI3S

106

that the operand is non-negative, so then only the upper limit needs to be checked (dynamically at
run time or by review). Otherwise both limits will need to be checked.

Example

u8a = uBa << 7; /* Compliant */
u8a = uBa << 8; /* Non-compliant */
ul6a = (uintlé _t) u8a << 9; /* Compliant */

To assist in understanding the following examples, it should be noted that the essential type of 1u is
essentially unsigned char, whereas the essential type of 1UL is essentially unsigned long.

lu << 10u; /* Non-compliant */
(uintlé t) Iu << 10u; /* Compliant */
1UL << 10u; /* Compliant */

Rule 123 The comma operator should not be used

Category Advisory
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Rationale

Use of the comma operator is generally detrimental to the readability of code, and the same effect
can usually be achieved by other means.

Example

£ 1, 2), 3); /* Non-compliant - how many parameters? */
The following example is non-compliant with this rule and other rules:

for (1 =0, p=¢&al 0]; 1 < N; ++i, ++p)

{
}

Rule 12.4 Evaluation of constant expressions should not lead to unsigned integer
wrap-around

Category Advisory
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification

This rule applies to expressions that satisfy the constraints for a constant expression, whether or not
they appear in a context that requires a constant expression.

If an expression is not evaluated, for example because it appears in the right operand of a logical AND
operator whose left operand is always false, then this rule does not apply.

Rationale

Unsigned integer expressions do not strictly overflow, but instead wrap-around. Although there may
be good reasons to use modulo arithmetic at run-time, it is less likely for its use to be intentional at
compile-time.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Example

The expression associated with a case label is required to be a constant expression. If an unsigned wrap-
around occurs during evaluation of a case expression, it is likely to be unintentional. On a machine
with a 16-bit int type, any value of BASE greater than or equal to 65 024 would result in wrap-around
in the following example:

#define BASE 65024u

switch (x)
{
case BASE + Ou:
£ ()
break;
case BASE + lu:

g ()
break;
case BASE + 512u: /* Non-compliant - wraps to 0 */
h ()7
break;

}

The controlling expression of a #if or #elif preprocessor directive is required to be a constant expression.
#if 1u + (Ou - 10u) /* Non-compliant as (Ou - 10u) wraps */

In this example, the expression DELAY + WIDTH has the value 70 000 but this will wrap-around to
4464 on a machine with a 16-bit int type.

#define DELAY 10000u
#define WIDTH 60000u

void fixed pulse (void)
{

uintl6é t off timel6 = DELAY + WIDTH; /* Non-compliant */
}

This rule does not apply to the expression ¢ + 1 in the following compliant example as it accesses an
object and therefore does not satisfy the constraints for a constant expression:

const uintlé t c = Oxffffu;

void £ (void)
{

uintlé t y = ¢ + 1lu; /* Compliant */
}

In the following example, the sub-expression (0u - 1u) leadsto unsigned integer wrap-around. In
the initialization of x, the sub-expression is not evaluated and the expression is therefore compliant.
However, in the initialization of y, it may be evaluated and the expression is therefore non-compliant.

bool t b;

void g (void)

{
uintle t x = (Ou == Ou) ? Ou : (Ou - 1lu); /* Compliant */
uintle t y = b 2 Ou : (Ou - 1lu); /* Non-compliant */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rules

Section 8

107

v 8.13 Side effects
N
=
- Rule 13.1 Initializer lists shall not contain persistent side effects
0¢]
';6 C99 [Unspecified 17, 22]
% Category Required
© Analysis Undecidable, System
Applies to c99
Rationale
C90 constrains the initializers for automatic objects with aggregate types to contain only constant
expressions. However, C99 permits automatic aggregate initializers to contain expressions that are
evaluated at run-time. It also permits compound literals which behave as anonymous initialized
objects. The order in which side effects occur during evaluation of the expressions in an initializer list
is unspecified and the behaviour of the initialization is therefore unpredictable if those side effects are
persistent.
Example
volatile uintl6 t vl;
void £ (void)
{
/* Non-compliant - volatile access 1s persistent side effect */
uintle t al 2] = { vl, 0 };
}
void g (uintl6 t x, uintl6 t y)
{
/* Compliant - no side effects */
uintle t al 2] = { x +vy, x -y };
}
uintl6e t x = Ou;
extern void p (uintlé t a[2 1);
void h (void)
{
/* Non-compliant - two side effects */
p ((uintlé t[2 1) { x++, x++ });
}
See also
Rule 13.2
108

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rule 13.2 The value of an expression and its persistent side effects shall be the
same under all permitted evaluation orders

C90 [Unspecified 7-9; Undefined 18], C99 [Unspecified 15-18; Undefined 32]
Category Required
Analysis Undecidable, System
Applies to €90, C99

Amplification
Between any two adjacent sequence points or within any full expression:
1. No object shall be modified more than once;

2. No object shall be both modified and read unless any such read of the object's value
contributes towards computing the value to be stored into the object;

3. There shall be no more than one modification access with volatile-qualified type;
4. There shall be no more than one read access with volatile-qualified type.

Note: An object might be accessed indirectly, by means of a pointer or a called function, as well as
being accessed directly by the expression.

Note: This Amplification is intentionally stricter than the headline of the rule. As a result, expressions
such as:

are not permitted by this rule even though the value and the persistent side effects, provided that x is
not volatile, are independent of the order of evaluation or side effects.

Sequence points are summarized in Annex C of both the C90 and C99 standards. The sequence
points in C90 are a subset of those in C99.

Full expressions are defined in Section 6.6 of the C90 standard and Section 6.8 of the C99 standard.

Rationale

The Standard gives considerable flexibility to compilers when evaluating expressions. Most operators
can have their operands evaluated in any order. The main exceptions are:

e Logical AND && in which the second operand is evaluated only if the first operand evaluates
to non-zero;

e Logical OR | | in which the second operand is evaluated only if the first operand evaluates to
zero;

e The conditional operator 2 : in which the first operand is always evaluated and then either the
second or third operand is evaluated;

e The , operator in which the first operand is evaluated and then the second operand is
evaluated.

Note: The presence of parentheses may alter the order in which operators are applied. However, this
does not affect the order of evaluation of the lowest-level operands, which may be evaluated in any
order.

Many of the common instances of the unpredictable behaviour associated with expression evaluation
can be avoided by following the advice given by Rule 13.3 and Rule 13.4.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

109

S9Ny :8 UONI3S

110

Examples

When the COPY ELEMENT macro is invoked in this non-compliant example, i is read twice and
modified twice. It is unspecified whether the order of operations on i is:

e Read, modify, read, modify, or
* Read, read, modify, modify.
#define COPY ELEMENT (index) (a[(index)] = b[(index)])
COPY ELEMENT (i++);
In this non-compliant example the order in which v1 and v2 are read is unspecified.

extern volatile uintl6 t vl, v2;
uintle6 t t;

t = vl + v2;

In this compliant example PORT is read and modified.
extern volatile uint8 t PORT;

PORT = PORT & 0x80u;

The order of evaluation of function arguments is unspecified as is the order in which side effects occur
as shown in this non-compliant example.

uintle t 1 = 0;

/*
* Unspecified whether this call is equivalent to:
* £ (0, 0)

* or £ (0, 1)
*/

fo(i++, i);

The relative order of evaluation of a function designator and function arguments is unspecified. In
this non-compliant example, if the call to g maodifies p then it is unspecified whether the function
designator p—>f uses the value of p prior to the call of g or after it.

p—>f (g (&p))7

See also

Dir 4.9, Rule 13.1, Rule 13.3, Rule 13.4

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rule 13.3 A full expression containing an increment (++) or decrement (--)
operator should have no other potential side effects other than that
caused by the increment or decrement operator

C90 [Unspecified 7, 8; Undefined 18], C99 [Unspecified 15; Undefined 32]
Category Advisory
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification
A function call is considered to be a side effect for the purposes of this rule.

All sub-expressions of the full expression are treated as if they were evaluated for the purposes of this
rule, even if specified as not being evaluated by The Standard.

Rationale

The use of increment and decrement operators in combination with other operators is not
recommended because:

e |t can significantly impair the readability of the code;

e Itintroduces additional side effects into a statement with the potential for undefined behaviour
(covered by Rule 13.2).

It is clearer to use these operations in isolation from any other operators.

Example

The expression:

u8a = u8b++

is non-compliant. The non-compliant expression statement:
u8a = ++u8b + u8c--;

is clearer when written as the following sequence:

++u8b;
u8a = u8b + u8c;
u8c--;

The following are all compliant because the only side effect in each expression is caused by the
increment or decrement operator.

X++;

al 1]++;
b.x++;
CcC—>x++;
t+(*p);
*ptt;
(*p)++;

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

111

S9Ny :8 UONI3S

112

The following are all non-compliant because they contain a function call as well as an increment or
decrement operator:

if ((£ () 4+ -—u8a) == 0u)

g (u8b++);

The following are all non-compliant even though the sub-expression containing the increment or
decrement operator or some other side effect is not evaluated:

u8a = (1lu == 1u) 2?2 0u : u8b++;

if (uBa++ == ((lu == 1u) 2 O0u : £ ()))
{

}

See also

Rule 13.2

Rule 13.4 The result of an assignment operator should not be used

C90 [Unspecified 7, 8; Undefined 18], C99 [Unspecified 15, 18; Undefined 32]
[Koenig 6]
Category Advisory

Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification
This rule applies even if the expression containing the assignment operator is not evaluated.

Rationale

The use of assignment operators, simple or compound, in combination with other arithmetic operators
is not recommended because:

e |t can significantly impair the readability of the code;

e |t introduces additional side effects into a statement making it more difficult to avoid the
undefined behaviour covered by Rule 13.2.

Example
X = y; /* Compliant */
al x] =al x=yvy 1; /* Non-compliant - the value of x =y
* is used */

/*

* Non-compliant - value of bool var = false is used but

* bool var == false was probably intended

*/
if (bool var = false)

{
}

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

/*
if
{
}

/*
if
{
}

/*
al

Non-compliant even though bool var = tru
((Ou==0u) || (bool var = true))

Non-compliant - value of x = f£() is used
((x=1£ ()) '=0)

Non-compliant - value of b += c is used

b+=c] =al b];

/* Non-compliant - values of ¢ = 0 and b =
a=b=c=0;

See also

Rule 13.2

R

ule 13.5 The right hand operand of a logical && or | | operator shall not

contain persistent side effects

Category Required

Analysis Undecidable, System
Applies to €90, C99

Rationale

The evaluation of the right-hand operand of the && and | | operators is conditional on the value of the
left-hand operand. If the right-hand operand contains side effects then those side effects may or may

e isn't evaluated

c = 0 are used

not occur which may be contrary to programmer expectations.

If evaluation of the right-hand operand would produce side effects which are not persistent at the point
in the program where the expression occurs then it does not matter whether the right-hand operand

is evaluated or not.

The term persistent side effect is defined in Appendix J.

Example

ui

{

ntle t £ (uintlé t vy)

/* These side effects are not persistent
uintlé t temp = y;

temp = y + 0x8080U;

return temp;

as seen by the caller */

Licensed to: LEE CHING MIN.

5 Mar 2019. Copy 1 of 1

*/

*/

*/

*/

Section 8: Rules

113

S9Ny :8 UONI3S

114

uintl6é t h (uintlée t y)
{
static uintlé t temp = 0;

/* This side effect is persistent */
temp = y + temp;

return temp;

}

void g (void)
{
/* Compliant - f () has no persistent side effects */
if (ishigh && (a == f (x)))
{
}

/* Non-compliant - h () has a persistent side effect */
if (ishigh && (a == (x)))
{
}
}
volatile uintl6 t v;
uintlé t x;
/* Non-compliant - access to volatile v is persistent */
if (((x==0u) I (v==1u))

{
}

/* Non-compliant if fp points to a function with persistent side effects */
(fp != NULL) && (*fp) (0);

Rule 13.6 The operand of the sizeof operator shall not contain any expression
which has potential side effects

C99 [Unspecified 21]
Category Mandatory
Analysis Decidable, Single Translation Unit
Applies to 90, C99

Amplification

Any expressions appearing in the operand of a sizeof operator are not normally evaluated. This rule
mandates that the evaluation of any such expression shall not contain side effects, whether or not it is
actually evaluated.

A function call is considered to be a side effect for the purposes of this rule.

Rationale

The operand of a sizeof operator may be either an expression or may specify a type. If the operand
contains an expression, a possible programming error is to expect that expression to be evaluated
when it is actually not evaluated in most circumstances.

The C90 standard states that expressions appearing in the operand are not evaluated at run-time.

In C99, expressions appearing in the operand are usually not evaluated at run-time. However, if the
operand contains a variable-length array type then the array size expression will be evaluated if

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

necessary. If the result can be determined without evaluating the array size expression then it is
unspecified whether it is evaluated or not.

Exception

An expression of the form sizeof (V), wherevisan /value with a volatile qualified type that is not
a variable-length array, is permitted.

Example

volatile int32 t 1i;
int32_t j;
size t s;

s = sizeof (j); /* Compliant *x/
s = sizeof (j++); /* Non-compliant */
s = sizeof (i); /* Compliant - exception */
s = sizeof (int32 t); /* Compliant */

In this example the final sizeof expression illustrates how it is possible for a variable-length array size
expression to have no effect on the size of the type. The operand is the type “array of n pointers
to function with parameter type array of v int32 t" Because the operand has variable-length
array type, it is evaluated. However, the size of the array of n function pointers is unaffected by the
parameter list for those function pointer types. Therefore, the volatile-qualified object v may or may
not be evaluated and its side effects may or may not occur.

volatile uint32 t v;
void £ (int32 t n)

{

size t s;

= sizeof (int32 t[n]); /* Compliant */
= sizeof (int32 t[n++]); /* Non-compliant */
= sizeof (void (*[n]) (int32_t al v 1)) /* Non-compliant */

}

See also

Rule 18.8

8.14 Control statement expressions

The term loop counter is used by some of the rules in this section. A loop counter is defined as an
object, array element or member of a structure or union which satisfies the following:

1. Ithas ascalar type;
2. lIts value varies monotonically on each iteration of a given instance of a loop; and
3. ltisinvolved in a decision to exit the loop.

Note: the second condition means that the value of the Joop counter must change on each iteration
of the loop and it must always change in the same direction for a given instance of the loop. It may,
however, change in different directions on different instances, for example sometimes reading the
elements of an array backwards and sometimes reading them forwards.

According to this definition, a loop need not have just one loop counter: it is possible for a loop to have
no loop counter or to have more than one. See Rule 14.2 for further restrictions on loop counters in for
loops.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

115

S9Ny :8 UONI3S

116

The following code fragments show examples of loops and their corresponding loop counters.

In this loop, i is a loop counter because it has a scalar type, varies monotonically (increasing) and is
involved in the loop termination condition.

for (uintlé t i = 0; a[1] < 10; ++i)
{
}

The following loop has no loop counter. The object count has scalar type and varies monotonically but
is not involved in the termination condition.

extern volatile bool t b;
uintl6é t count = 0;

while (b)
{

count = count + 1U;

}

In the following code, both i and sum are scalar and monotonically varying (decreasing and increasing
respectively). However sum is not a loop counter because it is not involved in the decision to exit the
loop.

uintl6é t sum = 0;

for (uintlé t i = 10U; i != 0U; --1i)
{
sum += 1i;

}

In the following loop, p is a loop counter. It is not involved in the loop control expression but it is
involved in a decision to exit the loop by means of the break statement.

extern volatile bool t b;
extern char *p;

do

{
lf (*p — I\Ol)

break;

++p;
} while (b);

The loop counter in the following example is p->count.

struct s

{

uintl6 t count;
uintlé t a[10];
}i

extern struct s *p;

for (p->count = 0U; p->count < 10U; ++(p->count))
{
p->al[p->count] = 0U;

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rule 14.1 A loop counter shall not have essentially floating type
Category Required

Analysis Undecidable, System

Applies to €90, C99

Rationale

When using a floating-point /oop counter, accumulation of rounding errors may result in a mismatch
between the expected and actual number of iterations. This can happen when a loop step that is not
a power of the floating-point radix is rounded to a value that can be represented.

Even if a loop with a floating-point loop counter appears to behave correctly on one implementation,
it may give a different number of iterations on another implementation.

Example

In the following non-compliant example, the value of counter is unlikely to be 1 000 at the end of the
loop.

uint32 t counter = Ou;

for (float32 t £ = 0.0f; £ < 1.0f; £ += 0.001f)
{

++counter;

}

The following compliant example uses an integer loop counter to guarantee 1 000 iterations and uses
it to generate £ for use within the loop.

float32 t f;

for (uint32_t counter = Ou; counter < 1000u; ++counter)

{
f = (float32 t) counter * 0.001f;

}
The following while loop is non-compliant because £ is being used as a loop counter.
float32 t £ = 0.0£f;

while (£ < 1.0f)

{
f += 0.001f£;

}
The following while loop is compliant because £ is not being used as a loop counter.

float32 t f;
uint32 t u32a;

f = read float32 ();

do

{

u32a = read u32 ();

/* f does not change in the loop so cannot be a loop counter */
} while (((float32 t) u32a - £) > 10.0f);

See also

Rule 14.2

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

117

Rule 14.2 A forloop shall be well-formed

Category Required
Analysis Undecidable, System
Applies to €90, C99

S9Ny :8 UONI3S

Amplification
The three clauses of a for statement are the:
First clause which
e Shall be empty, or
e Shall assign a value to the loop counter, or
e Shall define and initialize the loop counter (C99).
Second clause which
e Shall be an expression that has no persistent side effects, and
e Shall use the loop counter and optionally loop control flags, and
e Shall not use any other object that is modified in the for loop body.
Third clause which

e Shall be an expression whose only persistent side effect is to modify the value of the /oop
counter, and

e Shall not use objects that are modified in the for loop body.
There shall only be one loop counter in a for loop, which shall not be modified in the for loop body.

A loop control flag is defined as a single identifier denoting an object with essentially Boolean type that
is used in the Second clause.

The behaviour of a for loop body includes the behaviour of any functions called within that statement.

Rationale

The for statement provides a general-purpose looping facility. Using a restricted form of loop makes
code easier to review and to analyse.

Exception

All three clauses may be empty, for example for (; ;), so as to allow for infinite loops.

118

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Example
In the following C99 example, 1 is the Joop counter and £lag is a loop control flag.

bool t flag = false;

for (intle t i = 0; (1 <5) && !flag; i++)
{

if (C)
{
flag = true; /* Compliant - allows early termination
* of loop */
}
i =1+ 3; /* Non-compliant - altering the loop
* counter */
}
See also

Rule 14.1, Rule 14.3, Rule 14.4

Rule 14.3 Controlling expressions shall not be invariant

Category Required
Analysis Undecidable, System
Applies to 90, C99

Amplification
This rule applies to:
e Controlling expressions of if, while, for, do ... while and switch statements;

e The first operand of the 2 : operator.

Rationale

If a controlling expression has an invariant value, it is possible that there is a programming error. Any
code that cannot be reached due to the presence of an invariant expression may be removed by the
compiler. This might have the effect of removing defensive code, for instance, from the executable.

Exception
1. Invariants that are used to create infinite loops are permitted.

2. A do .. while loop with an essentially Boolean controlling expression that evaluates to O is

permitted.
Example
s8a = (ulda < Qu) 2 0 : 1; /* Non-compliant - ul6a always >= 0 */

if (ul6a <= Oxffffu)
{

/* Non-compliant - always true */

}

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

119

8 UOI123S

sa|ny

120

if (2 > 3)

/* Non-compliant

for (s8a = 0; s8a < 130; ++s8a)

/* Non-compliant

if ((s8a < 10) && (s8a > 20))

/* Non-compliant

if ((s8a < 10) || (s8a > 5))

/* Non-compliant

while (s8a > 10)
{

if (s8a > 5)

{

/* Non-compliant

while (true)

{
/* Compliant by exception 1 */

do

{
/* Compliant by exception 2 */
} while (Ou == 1lu);

const uint8 t numcyl = 4u;

always false */
always true */
always false */
always true */

s8a not volatile */

/*
* Non-compliant - compiler is permitted to assume that numcyl always
* has value 4
*/

if (numcyl == 4u)

{

}

const volatile uint8 t numcyl cal = 4u;

/*

* Compliant - compiler assumes numcyl cal may be changed by

* an external method, e.g. automotive calibration tool, even

* though the program cannot modify its value
*/

if (numcyl cal == 4u)

{

}

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

uintlé_t n; /* 10 <= n <= 100 */
uintl6 t sum;

sum = 0;

for (uintle t i = (n - 6u); i < n; ++i)
{

sum += i;

/*

* Non-compliant - sum is the sum of 6 consecutive non-negative
* integers so must be an odd number. The controlling expression
* of the if statement will always be false.

*/

See also

Rule 2.1, Rule 14.2

Rule 14.4 The controlling expression of an if statement and the controlling
expression of an iteration-statement shall have essentially Boolean type

Category Required
Analysis Decidable, Single Translation Unit
Applies to 90, C99

Amplification

The controlling expression of a for statement is optional. The rule does not require the expression to

be present but does require it to have essentially Boolean type if it is present.

Rationale

Strong typing requires the controlling expression of an if statement or Jjteration-statement to have

essentially Boolean type.

Example

int32 t *p, *q;

while (p) /* Non-compliant - p is a pointer */
{
}
while (g != NULL) /* Compliant */
{
}
while (true) /* Compliant */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

121

S9Ny :8 UONI3S

122

extern bool t flag;

while (flag) /* Compliant */
{

}

int32 t i;

if (1) /* Non-compliant */
{

}

if (1 !=0) /* Compliant */
{

}

See also

Rule 14.2, Rule 20.8
8.15 Control flow

Rule 15.1 The goto statement should not be used

Category Advisory
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Rationale

Unconstrained use of goto can lead to programs that are unstructured and extremely difficult to
understand.

In some cases a total ban on goto requires the introduction of flags to ensure correct control flow,
and it is possible that these flags may themselves be less transparent than the goto they replace.
Therefore, if this rule is not followed, the restricted use of goto is allowed where that use follows the
guidance in Rule 15.2 and Rule 15.3.

See also

Rule 9.1, Rule 15.2, Rule 15.3, Rule 15.4

Rule 15.2 The goto statement shall jump to a label declared later in the same

function
Category Required
Analysis Decidable, Single Translation Unit

Applies to €90, C99

Rationale

Unconstrained use of goto can lead to programs that are unstructured and extremely difficult to
understand.

Restricting the use of goto so that “back” jumps are prohibited ensures that iteration only occurs if the
iteration statements provided by the language are used, helping to minimize visual code complexity.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Example

void £ (void)
{
int32 t § = 0;

Ll:
++3;
if (10 == 5)
{
goto L2; /* Compliant */
}
goto L1; /* Non-compliant */
L2:
++7;
}
See also

Rule 15.1, Rule 15.3, Rule 15.4

Rule 15.3 Any label referenced by a goto statement shall be declared in the
same block, or in any block enclosing the goto statement

Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification

For the purposes of this rule, a switch-clause that does not consist of a compound statement is treated
as if it were a block.

Rationale

Unconstrained use of goto can lead to programs that are unstructured and extremely difficult to
understand.

Preventing jumps between blocks, or into nested blocks, helps to minimize visual code complexity.

Note: C99 is more restrictive when variably modified types are used. An attempt to make a jump from
outside the scope of an identifier with a variably modified type into such a scope results in a constraint
violation.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

123

Example
void f1 (int32 t a)

{

goto L2; /* Non-compliant */
}

S9Ny :8 UONI3S

goto L1; /* Compliant */

if (a ==)
{

goto L1; /* Compliant */
}

goto L2; /* Non-compliant */

Ll:
if (a > 0)

L2:

}

In the following example, the label 1.1 is defined in a block which encloses the block containing the
goto statement. However, the jJump crosses from one switch-clause to another and, since switch-clauses
are treated like blocks for the purposes of this rule, the goto statement is non-compliant.

switch (x)
{
case 0:
if (x ==y)
{
goto L1;
}
break;
case 1:
y = X;
Ll:
++x;
break;
default:
break;

See also

Rule 9.1, Rule 15.1, Rule 15.2, Rule 15.4, Rule 16.1

124

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rule 154 There should be no more than one break or goto statement used to
terminate any iteration statement

Category Advisory
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Rationale

Restricting the number of exits from a loop helps to minimize visual code complexity. The use of one
break or goto statement allows a single secondary exit path to be created when early loop termination
is required.

Example

Both of the following nested loops are compliant as each has a single break used for early loop
termination.

for (x = 0; x < LIMIT; ++x)
{
if (ExitNow (x))
{
break;

}

for (y = 0; v < x; ++y)

{
if (ExitNow (LIMIT - vy))
{

break;

}

}

The following loop is non-compliant as there are multiple break and goto statements used for early
loop termination.

for (x = 0; x < LIMIT; ++x)
{
if (BreakNow (x))
{
break;
}
else 1if (GotoNow (x))
{
goto EXIT;
}

else

{
KeepGoing (x);
}

EXIT:

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

125

% In the following example, the inner while loop is compliant because there is a single goto statement
A that can cause its early termination. However, the outer while loop is non-compliant because it can be
g- terminated early either by the break statement or by the goto statement in the inner while loop.
>
00 while (x != Ou)
o {
E? x = calc new x ();
0}
wn if (x == 1lu)
{
break;
}
while (y !'= Ou)
{
y = calc new y ();
if ((y == 1lu)
{
goto L1;
}
}
}
Ll:
z =x t+ vy;
See also
Rule 15.1, Rule 15.2, Rule 15.3
Rule 15.5 Afunction should have a single point of exit at the end
[IEC 61508-3 Table B.9], [ISO 26262-6 Table 8]
Category Advisory
Analysis Decidable, Single Translation Unit
Applies to €90, C99
Amplification
A function should have no more than one return statement.
When a return statement is used, it should be the final statement in the compound statement that
forms the body of the function.
Rationale
A single point of exit is required by IEC 61508 and ISO 26262 as part of the requirements for a modular
approach.
Early returns may lead to the unintentional omission of function termination code.
If a function has exit points interspersed with statements that produce persistent side effects, it is not
easy to determine which side effects will occur when the function is executed.
126

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Example

In the following non-compliant code example, early returns are used to validate the function
parameters.

bool t £ (uintl6 t n, char *p)

{
if (n > MAX)

{

return false;

}
if (p == NULL)
{

return false;

}

return true;

}

See also

Rule 17.4

Rule 15.6 The body of an iteration-statement or a selection-statement shall be a
compound-statement

[Koenig 24]
Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification

The body of an iteration-statement (while, do ... while or for) or a selection-statement (if, else, switch) shall
be a compound-statement.

Rationale

It is possible for a developer to mistakenly believe that a sequence of statements forms the body of
an iteration-statement or selection-statement by virtue of their indentation. The accidental inclusion of a
semi-colon after the controlling expression is a particular danger, leading to a null control statement.
Using a compound-statement clearly defines which statements actually form the body.

Additionally, it is possible that indentation may lead a developer to associate an else statement with
the wrong if.

Exception

An if statement immediately following an else need not be contained within a compound-statement.

Example

The layout for the compound-statement and its enclosing braces are style issues which are not
addressed by this document; the style used in the following examples is not mandatory.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

127

% Maintenance to the following
N
— while (data available)
gg process data (); /* Non-compliant */
o could accidentally give
X
c while (data available)
g process_data (); /* Non-compliant */
service watchdog ();
where service watchdog () should have been added to the loop body. The use of a compound-
statement significantly reduces the chance of this happening.
The next example appears to show that action 2 () is the else statement to the first if.
if (flag 1)
if (flag 2) /* Non-compliant */
action 1 (); /* Non-compliant */
else
action 2 (); /* Non-compliant */
when the actual behaviour is
if (flag 1)
{
if (flag 2)
{
action 1 ();
}
else
{
action 2 ();
}
}
The use of compound-statements ensures that jf and else associations are clearly defined.
The exception allows the use of efse if, as shown below
if (flag 1)
{
action 1 ();
}
else if (flag 2) /* Compliant by exception */
{
action 2 ();
}
else
{
}
The following example shows how a spurious semi-colon could lead to an error
while (flag); /* Non-compliant */
{
flag = fn ();
}
The following example shows the compliant method of writing a loop with an empty body:
while (!data available)
128 {

}

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rule 157 Allif... else if constructs shall be terminated with an else statement

Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification

A final else statement shall always be provided whenever an if statement is followed by a sequence
of one or more else if constructs. The else statement shall contain at least either one side effect or a
comment.

Rationale

Terminating a sequence of jf ... else if constructs with an else statement is defensive programming and
complements the requirement for a default clause in a switch statement (see Rule 16.5).

The else statement is required to have a side effect or a comment to ensure that a positive indication is
given of the desired behaviour, aiding the code review process.

Note: a final else statement is not required for a simple if statement.

Example

The following example is non-compliant as there is no explicit indication that no action is to be taken
by the terminating else.

if (flag 1)
{
action 1 ();
}
else if (flag 2)
{

action 2 ();

}

/* Non-compliant */

The following shows a compliant terminating e/se.
else

{

; /* No action required - ; is optional */

}

See also

Rule 16.5

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

129

S9Ny :8 UONI3S

130

8.16 Switch statements

Rule 16.1 All switch statements shall be well-formed

Category Required
Analysis Decidable, Single Translation Unit
Applies to 90, C99

Amplification

A switch statement shall be considered to be well-formed if it conforms to the subset of C switch
statements that is specified by the following syntax rules. If a syntax rule given here has the same
name as one defined in The Standard then it replaces the standard version for the scope of the switch
statement; otherwise, all syntax rules given in The Standard are unchanged.

switch-statement:
switch (switch-expression) { case-label-clause-list - final-default-clause-list }
switch (switch-expression) { initial-default-clause-list case-label-clause-list }

case-label-clause-list:
case-clause-list
case-label-clause-list case-clause-list

case-clause-list:
case-label switch-clause
case-label case-clause-list

case-label:
case constant-expression:

final-default-clause-list:
default: switch-clause
case-label final-default-clause-list

initial-default-clause-list:
default: switch-clause
default: case-clause-list

switch-clause:
statement—//stOpt break;
C90: { declaration-list . statement-listopt break; }
C99: { b/ock—/tem—//‘stopt break; }

Except where explicitly permitted by this syntax, the case and default keywords may not appear
anywhere within a switch statement body.

Note: some of the restrictions imposed on switch statements by this rule are expounded in the rules
referenced in the “See also” section. It is therefore possible for code to violate both this rule and one
of the more specific rules.

Note: the term switch label is used within the text of the specific switch statement rules to denote
either a case label or a default label.

Rationale

The syntaxforthe switch statementin Cis not particularly rigorous and can allow complex, unstructured
behaviour. This and other rules impose a simple and consistent structure on the switch statement.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Example

The remaining rules in this section give examples that are also relevant to this rule.

See also

Rule 15.3, Rule 16.2, Rule 16.3, Rule 16.4, Rule 16.5, Rule 16.6

Rule 16.2 A switch label shall only be used when the most closely-enclosing
compound statement is the body of a switch statement

Category Required
Analysis Decidable, Single Translation Unit
Applies to 90, C99

Rationale

The Standard permits a switch label, i.e. a case label or default label, to be placed before any statement
contained in the body of a switch statement, potentially leading to unstructured code. In order to
prevent this, a switch label shall only appear at the outermost level of the compound statement
forming the body of a switch statement.

Example

switch (x)
{
case 1: /* Compliant */
if (flag)
{

case 2: /* Non-compliant */

}

break;
default:

break;

}

See also

Rule 16.1

Rule 16.3 Anunconditional break statement shall terminate every switch-clause

Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Rationale

If a developer fails to end a switch-clause with a break statement, then control flow “falls” into the
following switch-clause or, if there is no such clause, off the end and into the statement following
the switch statement. Whilst falling into a following switch-clause is sometimes intentional, it is often
an error. An unterminated switch-clause occurring at the end of a switch statement may fall into any
switch-clauses which are added later.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

131

wn To ensure that such errors can be detected, the last statement in every switch-clause shall be a break
D . . .
A statement, or if the switch-clause is a compound statement, the last statement in the compound
g- statement shall be a break statement.
-
o) Note: a switch-clause is defined as containing at least one statement. Two consecutive labels, case or
';6 default, do not have any intervening statement and are therefore permitted by this rule.
=
D
@ Example
switch (x)
{
case 0:
break; /* Compliant - unconditional break */
case 1: /* Compliant - empty fall through allows a group */
case 2:
break; /* Compliant */
case 4:
a = b; /* Non-compliant - break omitted */
case 5:
if (a ==b)
{
++a;
break; /* Non-compliant - conditional break */
}
default:
; /* Non-compliant - default must also have a break */
}
See also
Rule 16.1
Rule 16.4 Every switch statement shall have a default label
Category Required
Analysis Decidable, Single Translation Unit
Applies to C90, C99
Amplification
The switch-clause following the default label shall, prior to the terminating break statement, contain
either:
* Astatement, or
e Acomment.
Rationale
The requirement for a default label is defensive programming. Any statements following the default
label are intended to take some appropriate action. If no statements follow the label then the comment
can be used to explain why no specific action has been taken.
132

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Example
intle t x;

switch (x)
{
case 0:
++x;
break;
case 1:
case 2:
break;

/* Non-compliant - default label is required */

intlé_t x;

switch (x)
{
case 0:
++x;
break;
case 1:
case 2:
break;

default: /* Compliant - default label is present */
errorflag = 1; /* should be non-empty if possible */

break;

enum Colours
{ RED, GREEN, BLUE } colour;

switch (colour)
{
case RED:
next = GREEN;
break;
case GREEN:
next = BLUE;
break;
case BLUE:
next = RED;
break;

/* Non-compliant - no default label.
* Even though all values of the enumeration are
* handled there is no guarantee that colour takes

* one of those values

See also

Rule 2.1, Rule 16.1

*/

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rules

Section 8

133

S9Ny :8 UONI3S

134

Rule 16.5

Category
Analysis

Applies to

Rationale

A default 1abel shall appear as either the first or the last switch label of
a switch statement

Required

Decidable, Single Translation Unit

€90, C99

This rule makes it easy to locate the default label within a switch statement.

Example

switch (x

{

default:

case 0:
++x;
break;

case 1:

case 2:
break;

}

switch (x

{

case 0:
++x;
break;

default:
x = 0;
break;

case 1:

case 2:
break;

}

switch (x

{

case 0:
++x;
break;

case 1:

case 2:
break;

default:
x = 0;
break;

}

See also

/* Compliant - default is the first label */
/* Non-compliant - default is mixed with the case labels */
/* Compliant - default is the final label */

Rule 15.7, Rule 16.1

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rule 16.6 Every switch statement shall have at least two switch-clauses

Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Rationale

A switch statement with a single path is redundant and may be indicative of a programming error.

Example

switch (x)
{
default: /* Non-compliant - switch is redundant */
x = 0;
break;

}

switch (vy)
{
case 1:
default: /* Non-compliant - switch is redundant */
y = 0;
break;

}

switch (z)
{
case 1:
z = 2;
break;
default: /* Compliant */
z = 0;
break;

}

See also

Rule 16.1

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

135

Rule 16.7 A switch-expression shall not have essentially Boolean type

Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

S9Ny :8 UONI3S

Rationale

The Standard requires the controlling expression of a switch statement to have an integer type. Since
the type thatis used to implement Boolean values is an integer, it is possible to have a switch statement
controlled by a Boolean expression. In this instance an if-e/se construct would be more appropriate.

Example
switch (x == 0) /* Non-compliant - essentially Boolean */
{ /* In this case an "if-else" would be more logical */
case false:
y = X5
break;
default:
y = z;
break;

8.17 Functions

Rule 171 The features of <stdarg.h> shall not be used

C90 [Undefined 45, 70-76], C99 [Undefined 81, 128-135]
Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification
None of va_list, va_arg, va_start, va_end and, for C99, va_copy shall be used.

Rationale

The Standard lists many instances of undefined behaviour associated with the features of
<stdarg.h>, including:

e vag_end not being used prior to end of a function in which va_start was used;
* vo_arg being used in different functions on the same va_list;

e The type of an argument not being compatible with the type specified to va_arg.

136

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Example

#include <stdarg.h>

void h (va_list ap) /*
{

double vy;

y = va_arg (ap, double); /*

}

void £ (uintl6 t n, ...)

{
uint32 t x;

va list ap; /*
va_start (ap, n); /*
X = va_arg (ap, uint32 t); /*

h (ap)

Non-compliant

Non-compliant

Non-compliant

Non-compliant
Non-compliant

*/

*/

/* undefined - ap is indeterminate because va arg used in h ()

X = va arg (ap, uint32 t); /*

Non-compliant

/* undefined - returns without using va end ()

}

void g (void)

{

/* undefined - uint32 t:double type mismatch when f uses va arg ()

£ (1, 2.0, 3.0);

Rule 17.2 Functions shall not call themselves, either directly or indirectly

Category Required
Analysis Undecidable, System
Applies to €90, C99

Rationale

Recursion carries with it the danger of exceeding available stack space, which can lead to a serious
failure. Unless recursion is very tightly controlled, it is not possible to determine before execution

what the worst-case stack usage could be.

Licensed to: LEE CHING MIN.

5 Mar 2019. Copy 1 of 1

*/

*/
*/

*/
*/

*/

*/

Section 8: Rules

137

S9Ny :8 UONI3S

138

Rule 17.3 Afunction shall not be declared implicitly

C90 [Undefined 6, 22, 23]
Category Mandatory
Analysis Decidable, Single Translation Unit

Applies to C90

Rationale

Provided that a function call is made in the presence of a prototype, a constraint ensures that the
number of arguments matches the number of parameters and that each argument can be assigned
to its corresponding parameter.

If a function is declared implicitly, a C90 compiler will assume that the function has a return type of int.
Since an implicit function declaration does not provide a prototype, a compiler will have no information
about the number of function parameters and their types. Inappropriate type conversions may result
in passing the arguments and assigning the return value, as well as other undefined behaviour.

Example
If the function power is declared as:
extern double power (double d, int n);
but the declaration is not visible in the following code then undefined behaviour will occur.
void func (void)
{
/* Non-compliant - return type and both argument types incorrect */

double sgl = power (1, 2.0);
}

See also

Rule 8.2, Rule 8.4

Rule 174 All exit paths from a function with non-void return type shall have an
explicit return statement with an expression

C90 [Undefined 437, C99 [Undefined 82]
Category Mandatory
Analysis Decidable, Single Translation Unit
Applies to 90, C99

Rationale

The expression given to the return statement provides the value that the function returns. If a non-
void function does not return a value but the calling function uses the returned value, the behaviour
is undefined. This can be avoided by ensuring that, in a non-void function:

e Every return statement has an expression, and
e Control cannot reach the end of the function without encountering a return statement.

Note: C99 constrains every return statement in a non-void function to return a value.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Example

int32 t absolute (int32 t v)
{

if (v < 0)

{

return v;

}

/*
* Non-compliant - control can reach this point without
* returning a value
*/
}

uintl6é t lookup (uintlé6 t v)

{
if ((v <VMIN) [| (v >VMAX))

{
/* Non-compliant - no value returned. Constraint in C99 */
return;

}

return table[v];

See also

Rule 15.5

Rule 1775 The function argument corresponding to a parameter declared to
have an array type shall have an appropriate number of elements

Category Advisory

Analysis Undecidable, System
Applies to €90, C99

Amplification

If a parameter is declared as an array with a specified size, the corresponding argument in each
function call should point into an object that has at least as many elements as the array.

Rationale

The use of an array declarator for a function parameter specifies the function interface more clearly
than using a pointer. The minimum number of elements expected by the function is explicitly stated,
whereas this is not possible with a pointer.

A function parameter array declarator which does not specify a size is assumed to indicate that the
function can handle an array of any size. In such cases, it is expected that the array size will be
communicated by some other means, for example by being passed as another parameter, or by
terminating the array with a sentinel value.

The use of an array bound is recommended as it allows out-of-bounds checking to be implemented
within the function body and extra checks on parameter passing. It is legal in C to pass an array of the
incorrect size to a parameter with a specified size, which can lead to unexpected behaviour.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

139

n
v Example
N
= /*
gg * Intent is that function does not access outside the range
99 I/arrayl[0] .. arrayl[3]
;CU void fnl (int32 t arrayl[4 1);
{R /* Intent is that function handles arrays of any size */
void fn2 (int32 t array2[]);
void fn (int32 t *ptr)
{
int32 t arr3[31 = { 1, 2, 3 };
int32 t arr4[4 1 = { 0, 1, 2, 3 };
/* Compliant - size of array matches the prototype */
fnl (arrd);
/* Non-compliant - size of array does not match prototype */
fnl (arr3);
/* Compliant only if ptr points to at least 4 elements */
fnl (ptr):;
/* Compliant *)
fn2 (arrd);
/* Compliant */
fn2 (ptr);
}
See also
Rule 17.6
Rule 17.6 The declaration of an array parameter shall not contain the static
keyword between the []
C99 [Undefined 71]
Category Mandatory
Analysis Decidable, Single Translation Unit
Applies to C99
Rationale
The C99 language standard provides a mechanism for the programmer to inform the compiler that an
array parameter contains a specified minimum number of elements. Some compilers are able to take
advantage of this information to generate more efficient code for some types of processor.
If the guarantee made by the programmer is not honoured, and the number of elements is less than
the minimum specified, the behaviour is undefined.
The processors used in typical embedded applications are unlikely to provide the facilities required
to take advantage of the additional information provided by the programmer. The risk of the program
failing to meet the guaranteed minimum number of elements outweighs any potential performance
increase.
140

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Example

There is no use of this C99 language feature that is compliant with this rule. The examples show some
of the undefined behaviour that can arise from its use.

/* Non-compliant - uses static in array declarator */
uintl6 t total (uintlé t n, uintlé t a[static 20])

{
uintlé t i;

uintl6é t sum = 0U;

/* Undefined behaviour if a has fewer than 20 elements */
for (1 = 0U; 1 < n; ++1i)
{

sum = sum + al[i];

}

return sum;

}

extern uintlé6 t v1[10];
extern uintl6 t v2[20];

void g (void)
{
uintl6 t x;

x = total (10U, vl); /* Undefined - vl has 10 elements but needs
* at least 20 */
x = total (20U, v2); /* Defined but non-compliant */
}
See also
Rule 17.5

Rule 177 The value returned by a function having non-void return type shall be

used
Category Required
Analysis Decidable, Single Translation Unit

Applies to €90, C99

Rationale

It is possible to call a function without using the return value, which may be an error. If the return value
of a function is intended not to be used explicitly, it should be cast to the void type. This has the effect
of using the value without violating Rule 2.2.

Example

uintl6é t func (uintlé t paral)
{

return paral;

}

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

141

wm uintlé t x;
;
— void discarded (uintlé t para2)
o {
> func (para2); /* Non-compliant - value discarded */
99 (void) func (para2); /* Compliant */
;CU x = func (para2); /* Compliant */
— }
D
n
See also
Dir 4.7, Rule 2.2
Rule 17.8 Afunction parameter should not be modified
Category Advisory
Analysis Undecidable, System
Applies to €90, C99
Rationale
A function parameter behaves in the same manner as an object that has automatic storage duration.
While the Clanguage permits parameters to be modified, such use can be confusing and conflict with
programmer expectations. It may be less confusing to copy the parameter to an automatic object
and modify that copy. With a modern compiler, this will not usually result in any storage or execution
time penalty.
Programmers who are unfamiliar with C, but who are used to other languages, may modify a parameter
believing that the effects of the modification will be felt in the calling function.
Example
intl6é t glob = 0;
void proc (intlé6 t para)
{
para = glob; /* Non-compliant */
}
void £ (char *p, char *qgq)
{
p = 4a; /* Non-compliant */
*p = *q; /* Compliant */
}
142

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

8.18 Pointers and arrays

Rule 18.1 A pointer resulting from arithmetic on a pointer operand shall address
an element of the same array as that pointer operand

C90 [Undefined 30], C99 [Undefined 43, 44, 46, 59]
Category Required
Analysis Undecidable, System
Applies to 90, C99

Amplification

Creation of a pointer to one beyond the end of the array is well-defined by The Standard and is
permitted by this rule. Dereferencing a pointer to one beyond the end of an array results in undefined
behaviour and is forbidden by this rule.

This rule applies to all forms of array indexing:

integer expression + pointer expression
pointer expression + integer expression
pointer expression - integer expression
pointer expression += integer expression
pointer expression -= integer expression
++pointer expression

pointer expression++

--pointer expression

pointer expression--

pointer expression [integer expression]
integer expression [pointer expression]

Note: a subarray is also an array.

Note: for purposes of pointer arithmetic, The Standard treats an object that is not a member of an
array as if it were an array with a single element (C90 Section 6.3.6, C99 Section 6.5.6).

Rationale

Although some compilers may be able to determine at compile time that an array boundary has been
exceeded, no checks are generally made at run-time for invalid array subscripts. Using an invalid array
subscript can lead to erroneous behaviour of the program.

Run-time derived array subscript values are of the most concern since they cannot easily be checked
by static analysis or manual review. Code of a defensive programming nature should, where possible
and practicable, be provided to check such subscript values against valid ones and, if required,
appropriate action be taken.

It is undefined behaviour if the result obtained from one of the above expressions is not a pointer to
an element of the array pointed to by pointer expression or an element one beyond the end of
that array. See C90 Section 6.3.6 and C99 Section 6.5.6 for further information.

Multi-dimensional arrays are “arrays of arrays”. This rule does not allow pointer arithmetic that results
in the pointer addressing a different subarray. Array subscripting over “internal” boundaries shall not
be used, as such behaviour is undefined.

Example

The use of the + operator will also violate Rule 18.4.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

143

S9Ny :8 UONI3S

144

int32_t f1
{

int32 t *p

return *

void f2 (
{
int32 t
int32 t
int32 t
int32 t

int32 t *pl =

int32 t *p2

int32 t *p3

data = *p2;
data = f1
data = f1
pl++;

cl[-1] =
data = c|
data = *(
dl 3][1
data = *(
data = d|
pl = d[1
data = pl[

}

(int32 t * const al,

int32_t a2[10]

)

sall[3 1; /* Compliant/non-compliant depending on
* the value of al

S5-element array of 2-element arrays

Compliant - points to one beyond

(a2 + 9); /* Compliant
void)
data = 0;
b =0;
cl 10 1 = { 0 };
dr 51021 =4{01}; /*
* of int32 t
= &c[0 1; /* Compliant
= &c[10]; /*
= &c[11 1; /* Non-compliant
*
; /* Non-compliant
*
(&b, c);
(¢, c);
/* Compliant
0; /* Non-compliant
*
10 1; /* Non-compliant
*
&data + 0); /* Compliant
*
] = 0; /* Compliant
(d+3) +1); / Compliant
2 10 3 1; /* Non-compliant
*
1 /* Compliant
1 71; /* Compliant

undefined, points to
two beyond

undefined, dereference
one beyond

undefined, array
bounds exceeded
undefined, dereference
of address one beyond
C treats data as an
array of size 1

undefined, internal
boundary exceeded

pl addresses an array
of size 2

*/
*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/
*/

*/

*/

*/

The following example illustrates pointer arithmetic applied to members of a structure. Because each
member is an object in its own right, this rule prevents the use of pointer arithmetic to move from one
member to the next. However, it does not prevent arithmetic on a pointer to a member provided that
the resulting pointer remains within the bounds of the member object.

struct

{
uintl6 t
uintlé_t
uintlé t
uintl6 t

}oss

Xy
yi
Z;
al 10 1;

uintlé t *p;

Licensed to: LEE CHING MIN.

5 Mar 2019. Copy 1 of 1

void £3 (void)
{
P = &s.X;
++p; /*
pl 01 =1; /*
*
*
pl 11 =2; /*
p = &s.al 0 1; /*
p=p+8; /*
p=p+ 3; /*
*
}
See also

Dir 4.1, Rule 18.4

Rule 18.2

Category

Analysis

Compliant
Non-compliant

Non-compliant

Compliant
Compliant
Non-compliant

- p points one beyond s.x

- undefined, dereference of address one
beyond s.x which is not necessarily
the same as s.y

- undefined

- p points into s.a

- p still points into s.a

- undefined, p points more than one
beyond s.a

address elements of the same array

Requ

Undecidable, System

Applies to C90

Rationale

ired

C99

C90 [Undefined 31], C99 [Undefined 45]

This rule applies to expressions of the form:

pointer expression 1 - pointer expression 2

Itis undefined behaviour if pointer expression 1andpointer expression 2 do notpointto

elements of the same array or the element one beyond the end of that array.

Example

#include <stddef.h>

void f1l
{

int32 t all
int32 t azl

(int32_t

int32 t *pl = &
int32 t *p2 = &
ptrdiff t diff;

diff
diff
diff
diff

See also

pl - al;
P2 - az;
pl - p2;
ptr - pl;

Dir 4.1, Rule 18.4

*ptr)

/*
/*
/*
/*

Compliant */
Compliant */
Non-compliant */

Non-compliant */

Licensed to: LEE CHING MIN.

5 Mar 2019. Copy 1 of 1

*/

*/

*/

*/
*/

*/

Subtraction between pointers shall only be applied to pointers that

Section 8: Rules

145

Rule 18.3 The relational operators >, >=, < and <= shall not be applied to objects
of pointer type except where they point into the same object

C90 [Undefined 33], C99 [Undefined 50]
Category Required
Analysis Undecidable, System
Applies to €90, C99

S9Ny :8 UONI3S

Rationale

Attempting to make comparisons between pointers will produce undefined behaviour if the two
pointers do not point to the same object.

Note: it is permissible to address the next element beyond the end of an array, but accessing this
element is not allowed.

Example

void f1 (void)

{
int32 t al[l 10];
int32 t a2 10];
int32 t *pl = al;

if (pl < al) /* Compliant */
{
}
if (pl < a2) /* Non-compliant */
{
}

}

struct limits
{
int32 t lwb;
int32 t upb;
}i

void f2 (void)

{
struct limits limits 1 = { 2, 5 };
struct limits limits 2 = { 10, 5 };

if (&limits 1.lwb <= &limits 1.upb) /* Compliant */
{
}
if (&limits _1.lwb > &limits 2.upb) /* Non-Compliant */
{
}

}

See also

Dir 4.1

146

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rule 18.4 The +, -, += and -= operators should not be applied to an expression
of pointer type

Category Advisory
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Rationale

Array indexing using the array subscript syntax, ptr [expr], is the preferred form of pointer arithmetic
because it is often clearer and hence less error prone than pointer manipulation. Any explicitly
calculated pointer value has the potential to access unintended or invalid memory addresses. Such
behaviour is also possible with array indexing, but the subscript syntax may ease the task of manual
review.

Pointer arithmetic in C can be confusing to the novice. The expression ptr+1 may be mistakenly
interpreted as the addition of 1 to the address held in ptr. In fact the new memory address depends
on the size in bytes of the pointer’s target. This misunderstanding can lead to unexpected behaviour
if sizeof is applied incorrectly.

When used with caution however, pointer manipulation using ++ can in some cases be considered
more natural; e.g. sequentially accessing locations during a memory test where it is more convenient
to treat the memory space as a contiguous set of locations and the address bounds can be determined
at compilation time.

Exception

Subject to Rule 18.2, pointer subtraction between two pointers is allowed.

Example

void fnl (void)

{
uint8 t al 10];
uint8 t *ptr;
uint8 t index = 0U;

index = index + 1U; /* Compliant - rule only applies to pointers */
al index] = 0U; /* Compliant */
ptr = &al[5 1; /* Compliant */
ptr = a;

ptr++; /* Compliant - increment operator not + */
(ptr + 5) = 0U; / Non-compliant */
ptr[5 1 = 0U; /* Compliant */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

147

S9Ny :8 UONI3S

148

void fn2
{

uint8 t array 2 2[2][2] =

(

void)

{ {1U, 20 3},

uint8 t i = 0U;
uint8 t j = 0U;
uint8 t sum = 0U;

for (i

{

= 0U; 1 < 20; i++)

uint8 t *row = array 2 2[i];

for (

{

sum += row[J 1;

}

}

j = 0U; J < 2U; j++)

/* Compliant */

{ 40, 50U } };

In the following example, Rule 18.1 may also be violated if p1 does not point to an array with at least
six elements and p2 does not point to an array with at least 4 elements.

void fn3 (uint8 t *pl, uint8 t p2[])

{
pl++; /* Compliant */
pl = pl + 5; /* Non-compliant */
pll 5 1 = 0U; /* Compliant */
p2++; /* Compliant */
p2 = p2 + 3; /* Non-compliant */
p2[3 1 = 0U; /* Compliant */

}

uint8 t al[16];

uint8 t a2[16];

uint8 t data = 0U;

void fn4 (void)

{
fn3 (al, az2);
fn3 (&data, &a2[4]);

}

See also

Rule 18.1, Rule 18.2

Rule 18.5

Category
Analysis

Applies to

Declarations should contain no more than two levels of pointer

nesting

Advisory
Decidable, Single Translation Unit
C90, C99

Amplification

No more than two pointer declarators should be applied consecutively to a type. Any typedef-name
appearing in a declaration is treated as if it were replaced by the type that it denotes.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rationale

The use of more than two levels of pointer nesting can seriously impair the ability to understand the

behaviour of the code, and should therefore be avoided.

Rules

(e 0]
c
Example 9O
)
U
typedef int8 t * INTPTR; (D)
- wn
void function (int8 t ** arrPar| /* Non-compliant */
{
int8 t ** obj2; /* Compliant */
int8 t *** obj3; /* Non-compliant */
INTPTR * obij4; /* Compliant */
INTPTR * const * const obj5; /* Non-compliant */
int8 t ** arr[10]; /* Compliant */
int8 t ** (*parr)[10 1; /* Compliant */
int8 t * (**pparr)[10 1; /* Compliant */
}
struct s
{
int8 t * sl; /* Compliant */
int8 t ** s2; /* Compliant */
int8 t *** s3; /* Non-compliant */
bi
struct s * psl; /* Compliant */
struct s ** ps2; /* Compliant */
struct s *** ps3; /* Non-compliant */
int8 t ** (*pfuncl) (void); /* Compliant */
int8 t ** (**pfunc2) (void); /* Compliant */
int8 t ** (***pfunc3) (void); /* Non-compliant */
int8 t *** (**pfuncd4) (void); /* Non-compliant */
Note:
* arrPar isof type pointer to pointer to pointer to int8 t because parameters declared with
array type are converted to a pointer to the initial element of the array — this is three levels
and is non-compliant;
* arrisof type array of pointer to pointer to int8 t — this is compliant;
* parr is of type pointer to array of pointer to pointer to int8 t — thisis compliant;
* pparr is of type pointer to pointer to array of pointer to int8_t — this is compliant.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

S9Ny :8 UONI3S

150

Rule 18.6 The address of an object with automatic storage shall not be copied to
another object that persists after the first object has ceased to exist
C90 [Undefined 9, 26], C99 [Undefined 8, 9, 40]
Category Required
Analysis Undecidable, System
Applies to €90, C99

Amplification
The address of an object might be copied by means of:
e Assignment;

* Memory move or copying functions.

Rationale

The address of an object becomes indeterminate when the lifetime of that object expires. Any use of
an indeterminate address results in undefined behaviour.

Example

int8 t *func (void)
{

int8 t local auto;

return &local auto; /* Non-compliant - &local auto is indeterminate
* when func returns */

}

In the following example, the function g stores a copy of its pointer parameter p. If p always points
to an object with static storage duration then the code is compliant with this rule. However, in the
example given, p does point to an object with automatic storage duration. In such a case, copying the
parameter p is non-compliant.

uintl6é t *sp;

void g (uintl6 t *p)
{
sp = p; /* Non-compliant - address of f's parameter u
* copied to static sp */

void £ (uintl6 t u)
{

g (&u);
}

void h (void)
{
static uintlé t *g;

uintl6e t x = Ou;

= &x; on-compliant - &x stored in object wi
q /* N pliant tored i bject with
* greater lifetime */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rule 18.7 Flexible array members shall not be declared

C99 [Undefined 59]

Category Required

Analysis Decidable, Single Translation Unit
Applies to €90, C99

Rationale

Flexible array members are most likely to be used in conjunction with dynamic memory allocation

which is banned by Dir 4.12 and Rule 21.3.

The presence of flexible array members modifies the behaviour of the sizeof operator in ways that
might not be expected by a programmer. The assignment of a structure that contains a flexible array
member to another structure of the same type may not behave in the expected manner as it copies

only those elements up to but not including the start of the flexible array member.

Example

#include <stdlib.h>

struct s

{

}

uintl6é t len;

uint32 t datal]; /* Non-compliant - flexible array member */
str;

struct s *copy (struct s *sl)

{

}

struct s *s2;

/* Omit malloc () return check for brevity */
s2 = malloc (sizeof (struct s) + (sl->len * sizeof (uint32 t)));
*52 = *sl; /* Only copies sl->len */

return s2;

See also

Dir 412, Rule 21.3

Licensed to: LEE CHING MIN.

5 Mar 2019. Copy 1 of 1

Section 8: Rules

151

S9Ny :8 UONI3S

152

Rule 18.8 Variable-length array types shall not be used

C99 [Unspecified 21; Undefined 69, 70]
Category Required
Analysis Decidable, Single Translation Unit
Applies to C99

Rationale

Variable-length array types are specified when the size of an array declared in a block or a function
prototype is not an integer constant expression. They are typically implemented as a variable size object
stored on the stack. Their use can therefore make it impossible to determine statically the amount of
memory that must be reserved for a stack.

If the size of a variable-length array is negative or zero, the behaviour is undefined.

If a variable-length array is used in a context in which it is required to be compatible with another
array type, possibly itself variable-length, then the size of the array types shall be identical. Further, all
sizes shall evaluate to positive integers. If these requirements are not met, the behaviour is undefined.

If a variable-length array type is used in the operand of a sizeof operator, under some circumstances
it is unspecified whether the array size expression is evaluated or not.

Each instance of a variable-length array type has its size fixed at the start of its lifetime. This gives rise
to behaviour that might be confusing, for example:

void £ (void)
{
uintl6 t n = 5;

typedef uintl6_t Vector[n]; /* An array type with 5 elements */
n=717;
Vector al; /* An array type with 5 elements */
uintlé t a2[n]; /* An array type with 7 elements */
} _
Example

There is no use of variable-length arrays that is compliant with this rule. The examples show some of
the undefined behaviour that can arise from their use.

void £ (intlé t n)
{

uintlé_t vlal n 1; /* Non-compliant - Undefined if n <= 0 */
}

void g (void)

{

£ (0); /* Undefined */
£ (-1); /* Undefined */
£f (10); /* Defined */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

void h (uintl6 t n,

uintlé t a[10 1[n]) /* Non-compliant */
{
uintle t (*p) [20];
/* Undefined unless n == 20: incompatible types otherwise */
p = a;
}
See also
Rule 13.6

8.19 Overlapping storage

Rule 191 An object shall not be assigned or copied to an overlapping object

C90 [Undefined 34, 55], C99 [Undefined 51, 94]
Category Mandatory
Analysis Undecidable, System
Applies to €90, C99

Rationale

The behaviour is undefined when two objects are created which have some overlap in memory and
one is assigned or copied to the other.

Exception
The following are permitted because the behaviour is well-defined:

1. Assignment between two objects that overlap exactly and have compatible types (ignoring
their type qualifiers)

2. Copying between objects that overlap partially or completely using The Standard Library
function memmove

Example

This example also violates Rule 19.2 because it uses unions.

void fn (void)
{
union
{
intle t 1i;
int32 t §;
}a={013}, b=1{11;
a.j = a.i; /* Non-compliant */
a = b; /* Compliant - exception 1 */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

153

wn #include <string.h>
D
N
— intle t a[20];
)
> void £ (void)
o {
;CU memcpy (&al[5 1, &l 4], 2u * sizeof (a[0])); /* Non-compliant */
— }
D
n , .
void g (void)
{
intlé t *p = &al 0];
intl6_t *qg = &al 0];
*p = *q; /* Compliant - exception 1 */
}
See also
Rule 19.2
Rule 19.2 The union keyword should not be used
C90 [Undefined 39, 40; Implementation 27], C99 [Unspecified 10; Undefined 61, 62]
Category Advisory
Analysis Decidable, Single Translation Unit
Applies to €90, C99
Rationale
A union member can be written and the same member can then be read back in a well-defined
manner.
However, if a union member is written and then a different union member is read back, the behaviour
depends on the relative sizes of the members:
e If the member read is wider than the member written then the value is unspecified;
e Otherwise, the value is implementation-defined.
The Standard permits the bytes of a union member to be accessed by means of another member
whose type is array of unsigned char. However, since it is possible to access bytes with unspecified
values, unions should not be used.
If this rule is not followed, the kinds of behaviour that need to be determined are:
e Padding — how much padding is inserted at the end of the union;
e Alignment — how are members of any structures within the union aligned;
e Endianness — is the most significant byte of a word stored at the lowest or highest memory
address;
e Bit-order — how are bits numbered within bytes and how are bits allocated to bit fields.
Example
In this non-compliant example, a 16-bit value is stored into a union but a 32-bit value is read back
154 resulting in an unspecified value being returned.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

uint32 t zext (uintl6 t s)
{

union

{
uint32 t ul;
uintl6 t us;

} tmp;

tmp.us = s;

return tmp.ul; /* unspecified value */
}
See also
Rule 191

8.20 Preprocessing directives

Rule 20.1 #include directives should only be preceded by preprocessor
directives or comments

C90 [Undefined 56], C99 [Undefined 96, 97]
Category Advisory
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification

The rule shall be applied to the contents of a file before preprocessing occurs.

Rationale

To aid code readability, all the #include directives in a particular code file should be grouped together
near the top of the file.

Additionally, using #include to include a standard header file within a declaration or definition, or using
part of The Standard Library before the inclusion of the related standard header file leads to undefined
behaviour.

Example

/* £.h */
xyz = 0;

/* f.c x/

intl6e t
finclude "f.h" /* Non-compliant */

/* fl.c */
#define F1 MACRO

finclude "f1l.h" /* Compliant */
#include "f2.h" /* Compliant */

int32 t i = 0;

#include "f3.h" /* Non-compliant */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

155

Rule 20.2 The ', " or \ characters and the /* or // character sequences shall
not occur in a header file name
C90 [Undefined 14], C99 [Undefined 31]
Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

S9Ny :8 UONI3S

Rationale
The behaviour is undefined if:

e The ', " or \ characters, or the /* or // character sequences are used between < and >
delimiters in a header name preprocessing token;

e The 'or\ characters, orthe /* or // character sequences are used between the " delimiters
in a header name preprocessing token.

Note: although use of the \ character results in undefined behaviour, many implementations will
accept the / character in its place.

Example

#include "fi'le.h" /* Non-compliant */

Rule 20.3 The #include directive shall be followed by either a <filename> or
"filename" sequence

C90 [Undefined 48], C99 [Undefined 85]
Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification

This rule applies after macro replacement has been performed.

Rationale

The behaviour is undefined if a #include directive does not use one of the following forms:

° #include <filename>

° #include "filename"

156

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Example

#include "filename.h" /* Compliant */
#include <filename.h> /* Compliant */
#include another.h /* Non-compliant */

#define HEADER "filename.h"

#include HEADER /* Compliant */
#define FILENAME file2.h
#include FILENAME /* Non-compliant */

#define BASE "base"

#define EXT ".ext"
#include BASE EXT /* Non-compliant - strings are concatenated

* after preprocessing */
#include "./include/cpu.h" /* Compliant - filename may include a path */

Rule 20.4 A macro shall not be defined with the same name as a keyword

C90 [Undefined 56], C99 [Undefined 98]
Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification

This rule applies to all keywords, including those that implement language extensions.

Rationale

Using macros to change the meaning of keywords can be confusing. The behaviour is undefined if a
standard header is included while a macro is defined with the same name as a keyword.

Example

The following example is non-compliant because it alters the behaviour of the int keyword. Including
a standard header in the presence of this macro results in undefined behaviour.

#define int some other type
#include <stdlib.h>

The following example shows that it is non-compliant to redefine the keyword while but it is compliant
to define a macro that expands to statements.

#define while(E) for (; (E) ;) /* Non-compliant - redefined while */
#define unless(E) 1if (! (E)) /* Compliant */
#define seq(S1, S2) do { \

S1; S2; } while (false) /* Compliant *x/
#define compound(S) { S; } /* Compliant *x/

The following example is compliant in C90, but not C99, because inline is not a keyword in C90.

/* Remove inline if compiling for C90 */
#define inline

See also

Rule 21.1

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

157

Rule 20.5 #undef should not be used

Category Advisory
Analysis Decidable, Single Translation Unit
Applies to €90, C99

S9Ny :8 UONI3S

Rationale

The use of #undef can make it unclear which macros exist at a particular point within a translation
unit.

Example

#define QUALIFIER volatile

#undef QUALIFIER /* Non-compliant */

void f (QUALIFIER int32 t p)
{
while (p != 0)
{
; /* Wait... */
}

Rule 20.6 Tokens that look like a preprocessing directive shall not occur within a
macro argument

C90 [Undefined 50], C99 [Undefined 87]
Category Required
Analysis Decidable, Single Translation Unit
Applies to 90, C99

Rationale

An argument containing sequences of tokens that would otherwise act as preprocessing directives
leads to undefined behaviour.

Example
#define M(A) printf (#A)

#include <stdio.h>

void main (void)
{
M (

#ifdef SW /* Non-compliant */
"Message 1"

#else /* Non-compliant */
"Message 2"

#endif /* Non-compliant */

)i
}

158 The above may print

#ifdef SW "Message 1" #else "Message 2" #endif

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

or
"Message 2"

or exhibit some other behaviour.

Rule 20.7 Expressions resulting from the expansion of macro parameters shall
be enclosed in parentheses

[Koenig 78-81]
Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification

If the expansion of any macro parameter produces a token, or sequence of tokens, that form an
expression then that expression, in the fully-expanded macro, shall either:

e Be aparenthesized expression itself; or
* Be enclosed in parentheses.

Note: this does not necessarily require that all macro parameters are parenthesized; it is acceptable
for parentheses to be provided in macro arguments.

Rationale

If parentheses are not used, then operator precedence may not give the desired results when macro
substitution occurs.

If @ macro parameter is not being used as an expression then the parentheses are not necessary
because no operators are involved.

Example

In the following non-compliant example,
#define M1(x, v) (x * v)
r=ML (1+2,3+4);

the macro expands to give:
r=(1+2%*3+4);

The expressions 1 + 2 and 3 + 4 are derived from expansion of parameters x and y respectively,
but neither is enclosed in parentheses. The value of the resulting expression is 11, whereas the result
21 might have been expected.

The code could be written in a compliant manner either by parenthesizing the macro arguments, or
by writing an alternative version of the macro that inserts parentheses during expansion, for example:

r=ML ((1 +2), (3 +4)); /* Compliant */
#define M2(x, v) ((x) * (y))
r=M2 (1 + 2, 3+ 4); /* Compliant */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

159

S9Ny :8 UONI3S

160

The following example is compliant because the first expansion of x is as the operand of the ##
operator, which does not produce an expression. The second expansion of x is as an expression
which is parenthesized as required.

fdefine M3(x) a ## x = (x)
intl6 t M3 (0);

The following example is compliant because expansion of the parameter M as a member name does
not produce an expression. Expansion of the parameter s produces an expression, with structure or
union type, which does require parentheses.

#define GET MEMBER(S, M) (S).M
v = GET MEMBER (sl, minval);

The following compliant example shows that it is not always necessary to parenthesize every instance
of a parameter, although this is often the easiest method of complying with this rule.

#define F(

X) G(X))
#define G(Y (

) (Y) +1)
intle t x = F (2);

The fully-expanded macrois ((2) + 1).Tracing back through macro expansion, the value 2
arises from expansion of parameter Y in macro G which in turn arises from parameter x in macro F.
Since 2 is parenthesized in the fully-expanded macro, the code is compliant.

See also

Dir 4.9

Rule 20.8 The controlling expression of a #if or #elif preprocessing directive shall
evaluate to O or 1

Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification

This rule does not apply to controlling expressions in preprocessing directives which are not evaluated.
Controlling expressions are not evaluated if they are within code that is being excluded and cannot
have an effect on whether code is excluded or not.

Rationale

Strong typing requires the controlling expression of conditional inclusion preprocessing directives to
have a Boolean value.

Example

#define FALSE 0
#define TRUE 1

#if FALSE /* Compliant */
fendif
#if 10 /* Non-compliant */
#endif

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

#if ! defined (X) /* Compliant */
#endif

#if A > B /* Compliant assuming A and B are numeric */
#endif

See also

Rule 14.4

Rule 20.9 All identifiers used in the controlling expression of #if or #elif
preprocessing directives shall be #define'd before evaluation

Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification

As well as using a #define preprocessor directive, identifiers may effectively be #define'd in other,
implementation-defined, ways. For example some implementations support:

e Using a compiler command-line option, such as -D to allow identifiers to be defined prior to
translation;

e Using environment variables to achieve the same effect;

e Pre-defined identifiers provided by the compiler.

Rationale

If an attempt is made to use a macro identifier in a preprocessor directive, and that identifier has
not been defined, then the preprocessor will assume that it has a value of zero. This may not meet
developer expectations.

Example

The following examples assume that the macro M is undefined.

#if M == 0 /* Non-compliant */
/* Does 'M' expand to zero or is it undefined? */

ffendif

#if defined (M) /* Compliant - M is not evaluated */

#if M == /* Compliant - M is known to be defined */
/* '™M' must expand to zero. */

fendif

fendif

/* Compliant - B is only evaluated in (B == 0) if it is defined */

#if defined (B) && (B == 0)

fendif

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

161

S9Ny :8 UONI3S

162

Rule 2010 The # and ## preprocessor operators should not be used

C90 [Unspecified 12; Undefined 51, 52], C99 [Unspecified 25; Undefined 3, 88, 89]
Category Advisory
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Rationale

The order of evaluation associated with multiple #, multiple ## or a mix of # and ## preprocessor
operators is unspecified. In some cases it is therefore not possible to predict the result of macro
expansion.

The use of the ## operator can result in code that is obscure.
Note: Rule 1.3 covers the undefined behaviour that arises if either:
e Theresult of a # operator is not a valid string literal; or

* Theresult of a ## operator is not a valid preprocessing token.

See also

Rule 20.11

Rule 20.11 A macro parameter immediately following a # operator shall not
immediately be followed by a ## operator
C90 [Unspecified 12], C99 [Unspecified 25]
Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Rationale

The order of evaluation associated with multiple #, multiple #4 or a mix of # and ## preprocessor
operators is unspecified. The use of # and ## is discouraged by Rule 20.10. In particular, the result of
a # operator is a string literal and it is extremely unlikely that pasting this to any other preprocessing
token will result in a valid token.

Example
#define A(x) #x /* Compliant x/
#define B(x, vy) x ## y /* Compliant */
#define C(x, vy) #x ## v /* Non-compliant */
See also
Rule 20.10

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rule 2012 A macro parameter used as an operand to the # or ## operators,
which is itself subject to further macro replacement, shall only be
used as an operand to these operators

Category Required

Analysis Decidable, Single Translation Unit
Applies to €90, C99

Rationale

A macro parameter that is used as an operand of a # or ## operator is not expanded prior to being
used. The same parameter appearing elsewhere in the replacement text is expanded. If the macro
parameter isitself subject to macro replacement, its use in mixed contexts within a macro replacement
may not meet developer expectations.

Example

In the following non-compliant example, the macro parameter x is replaced with Aa which is subject
to further macro replacement when not used as the operand of ##.

#define AA Oxffff
#define BB(x) ((x) + wow ## x /* Non-compliant */
void £ (void)

{
int32 t wowAA = 0;

/* Expands as wowAA = (Oxffff) + wowAA; */
WwowAA = BB (AA);
}
Inthe following compliant example, the macro parameter xis not subject to further macroreplacement.
int32 t speed;
int32 t speed scale;
int32 t scaled speed;

#define SCALE(X) ((X) * X ## scale)

/* expands to scaled speed = ((speed) * speed scale); */
scaled speed = SCALE (speed);

Rule 2013 Aline whose first token is # shall be a valid preprocessing directive

Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification
White-space is permitted between the # and preprocessing tokens.

Rationale

A preprocessor directive may be used to conditionally exclude source code until a corresponding
#else, #elif or #endif directive is encountered. A malformed or invalid preprocessing directive contained

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

163

S9Ny :8 UONI3S

164

within the excluded source code may not be detected by the compiler, possibly leading to the exclusion
of more code than was intended.

Requiring all preprocessor directives to be syntactically valid, even when they occur within an excluded
block of code, ensures that this cannot happen.

Example

In the following example all the code between the #ifndef and #endif directives may be excluded if
aaA s defined. The developer intended that AAA be assigned to x, but the #else directive was entered
incorrectly and not diagnosed by the compiler.

#define AAA 2

int32 t foo (void)
{
int32 t x = 0;

#ifndef AAA
x = 1;

#elsel /* Non-compliant */
x = AAA;

fendif

return x;

}
The following example is compliant because the text #start appearing in a comment is not a token.

/*
#start is not a token in a comment
*/

Rule 20.14 Al #else, #elif and #endif preprocessor directives shall reside in the
same file as the #if, #ifdef or #ifndef directive to which they are related

Category Required

Analysis Decidable, Single Translation Unit

Applies to €90, C99

Rationale

Confusion can arise when blocks of code are included or excluded by the use of conditional compilation
directives which are spread over multiple files. Requiring that a #if directive be terminated within the
same file reduces the visual complexity of the code and the chance that errors will be made during
maintenance.

Note: #if directives may be used within included files provided they are terminated within the same
file.

Example

/* filel.c */

#ifdef A /* Compliant */
#include "filel.h"

#endif

/* End of filel.c */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

/* file2.c */

#if 1 /* Non-compliant */
#include "file2.h"

/* End of file2.c*/

/* filel.h */

#if 1 /* Compliant */
#endif

/* End of filel.h */

/* file2.h */

fendif

/* End of filel.h */

8.21 Standard libraries

Rule 21.1 #define and #undef shall not be used on a reserved identifier or
reserved macro name

C90 [Undefined 54, 57, 58, 62, 71]
C99 [Undefined 93, 100, 101, 104, 108, 116, 118, 130]

Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification
This rule applies to the following:
e |dentifiers or macro names beginning with an underscore;
e |dentifiersin file scope described in Section 7, “Library”, of The Standard;

* Macronames described in Section 7, “Library”, of The Standard as being defined in a standard
header.

This rule also prohibits the use of #define or #undef on the identifier defined as this results in explicitly
undefined behaviour.

This rule does not include those identifiers or macro names that are described in the section of the
applicable C standard entitled “Future Library Directions”.

The Standard states that defining a macro with the same name as:
e A macro defined in a standard header, or
e Anidentifier with file scope declared in a standard header

is well-defined provided that the header is not included. This rule does not permit such definitions on
the grounds that they are likely to cause confusion.

Note: the macro NDEBUG is not defined in a standard header and may therefore be #define'd.

Rationale

Reserved identifiers and reserved macro names are intended for use by the implementation.
Removing or changing the meaning of a reserved macro may result in undefined behaviour.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

165

S9Ny :8 UONI3S

166

Example

#undef LINE /* Non-compliant - begins with _ */
#define GUARD H 1 /* Non-compliant - begins with */
#undef BUILTIN sqgrt /* Non-compliant - the implementation

* may use BUILTIN sqgrt for other
* purposes, e.g. generating a sqgrt

* instruction */
#define defined /* Non-compliant - reserved identifier */
#define errno my errno /* Non-compliant - library identifier */
#define isneg(x) ((x) < 0) /* Compliant - rule doesn't include

* future library

* directions */

See also

Rule 20.4

Rule 21.2 A reserved identifier or macro name shall not be declared

C90 [Undefined 57, 58, 64, 71], C99 [Undefined 93, 100, 101, 104, 108, 116, 118, 130]
Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification

See the Amplification for Rule 21.1 for a description of the relevant identifiers and macro names.

Rationale

The implementation is permitted to rely on reserved identifiers behaving as described in The Standard
and may treat them specially. If reserved identifiers are reused, the program may exhibit undefined
behaviour.

Example

In the following non-compliant example, the function memcpy is declared explicitly. The compliant
method of declaring this function is to include <string.h>.

/*
* Include <stddef.h> to define size t
*/
#include <stddef.h>
extern void *memcpy (void *restrict sl, const void *restrict s2, size t n);

An implementation is permitted to provide a function-like macro definition for each Standard Library
function in addition to the library function itself. This feature is often used by compiler writers to
generate efficient inline operations in place of the call to a library function. Using a function-like macro,
the call to a library function can be replaced with a call to a reserved function that is detected by the
compiler’'s code generation phase and replaced with the inline operation. For example, the fragment
of <math.h> that declares sgrt might be written using a function-like macro that generates a call to
_BUILTIN sqgrt whichisreplaced with an inline SQRT instruction on processors that support it:

extern double sgrt (double x);

#define sqrt(x) (_BUILTIN sqgrt (x))

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

The following non-compliant code might interfere with the compiler’s built-in mechanism for handling
sqgrt and therefore produce undefined behaviour:

#define BUILTIN sqrt(x) (x) /* Non-compliant */
#include <math.h>

float6d t x = sqrt ((floated t) 2.0); /* sqgrt may not behave as
* defined in The Standard */

Rule 21.3 The memory allocation and deallocation functions of <stdlib.h>
shall not be used

C90 [Unspecified 19; Undefined 9, 91, 92; Implementation 69]
C99 [Unspecified 39, 40; Undefined 8, 9, 168-171; Implementation J.3.12(35)]

Category Required
Analysis Decidable, Single Translation Unit
Applies to C90, C99

Amplification

The identifiers calloc, malloc, realloc and free shall not be used and no macro with one of these names
shall be expanded.

Rationale

Use of dynamic memory allocation and deallocation routines provided by The Standard Library can
lead to undefined behaviour, for example:

* Memory that was not dynamically allocated is subsequently freed;
* Apointer to freed memory is used in any way;
e Accessing allocated memory before storing a value into it.

Note: this rule is a specific instance of Dir 4.12.

See also

Dir 4.12, Rule 18.7, Rule 22.1, Rule 22.2

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

167

S9Ny :8 UONI3S

168

Rule 21.4 The standard header file <setjmp.h> shall not be used

C90 [Unspecified 14; Undefined 64-67]
C99 [Unspecified 32; Undefined 118-121, 173]
[Koenig 74]

Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification

None of the facilities that are specified as being provided by <setjmp.h> shall be used.

Rationale

setimp and longjmp allow the normal function call mechanisms to be bypassed. Their use may lead to
undefined and unspecified behaviour.

Rule 21.5 The standard header file <signal .h> shall not be used

C90 [Undefined 67-69; Implementation 48-52]
C99 [Undefined 122-127; Implementation J.3.12(12)]
[Koenig 74]

Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification

None of the facilities that are specified as being provided by <signal.h> shall be used.

Rationale

Signal handling contains implementation-defined and undefined behaviour.

Rule 21.6 The Standard Library input/output functions shall not be used

C90 [Unspecified 2-5, 16-18; Undefined 77-89; Implementation 53-68&]
C99 [Unspecified 3-6, 34-37; Undefined 138-166, 186; Implementation J.3.12(14-32)]

Category Required
Analysis Decidable, Single Translation Unit
Applies to 90, C99

Amplification

This rule applies to the functions that are specified as being provided by <stdio.h> and, in C99,
their wide-character equivalents specified in Sections 7.24.2 and 7.24.3 of the C99 Standard as being
provided by <wchar.h>.

None of these identifiers shall be used and no macro with one of these names shall be expanded.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rationale

Streams and file I/0 have unspecified, undefined and implementation-defined behaviours associated
with them.

See also

Rule 22.1, Rule 22.3, Rule 22.4, Rule 22.5, Rule 22.6

Rule 21.7 The atof, atoi, atol and atoll functions of <stdlib.h> shall not be

used
C90 [Undefined 90], C99 [Undefined 113]
Category Required
Analysis Decidable, Single Translation Unit

Appliesto €90, C99

Amplification

The identifiers atof, atoi, atol and, for C99 only atoll, shall not be used and no macro with one of these
names shall be expanded.

Rationale

These functions have undefined behaviour associated with them when the string cannot be converted.

Rule 21.8 The library functions abort, exit, getenv and system of <stdlib.h>
shall not be used

C90 [Undefined 93; Implementation 70-73]
C99 [Undefined 172, 174, 175; Implementation J.3.12(36-38)]

Category Required
Analysis Decidable, Single Translation Unit
Applies to 90, C99

Amplification

The identifiers abort, exit, getenv and system shall not be used and no macro with one of these names
shall be expanded.

Rationale

These functions have undefined and implementation-defined behaviours associated with them.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

169

E Rule 219 The library functions bsearch and gsort of <stdlib.h> shall not be

=, used

)

(?o C90 [Unspecified 20, 21], C99 [Unspecified 41, 42; Undefined 176-178]
- Category Required

% Analysis Decidable, Single Translation Unit

n

Applies to €90, C99

Amplification

The identifiers bsearch and gsort shall not be used and no macro with one of these names shall be
expanded.

Rationale

If the comparison function does not behave consistently when comparing elements, or it modifies any
of the elements, the behaviour is undefined.

Note: the unspecified behaviour, which relates to the treatment of elements that compare as equal,
can be avoided by ensuring that the comparison function never returns 0. When two elements are
otherwise equal, the comparison function could return a value that indicates their relative order in
the initial array.

The implementation of gsort is likely to be recursive and will therefore place unknown demands on
stack resource. This is of concern in embedded systems as the stack is likely to be a fixed, often small,
size.

Rule 21.10 The Standard Library time and date functions shall not be used

C90 [Unspecified 22; Undefined 80, 97; Implementation 75, 76]
C99 [Unspecified 43, 44; Undefined 146, 154, 182; Implementation J.3.12(39-42)]

Category Required
Analysis Decidable, Single Translation Unit
Applies to €90, C99

Amplification
None of the facilities that are specified as being provided by <time.h> shall be used.
In C99, the identifier wesftime shall not be used and no macro with this name shall be expanded.

Rationale

The time and date functions have unspecified, undefined and implementation-defined behaviours
associated with them.

170

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rule 2111 The standard header file <tgmath .h> shall not be used

C99 [Undefined 184, 185]
Category Required
Analysis Decidable, Single Translation Unit

Applies to C99

Amplification

None of the facilities that are specified as being provided by <tgmath.h> shall be used.

Rationale

Using the facilities of <tgmath.h> may result in undefined behaviour,

Example

#include <tgmath.h>
float f1, £2;

void £ (void)
{

fl1 = sqrt (f2); /* Non-compliant - generic sqrt used */
}

#include <math.h>
float f1, £f2;

void £ (void)
{

fl = sqrtf (£2); /* Compliant - float version of sqgrt used */
}

Rule 2112 The exception handling features of <fenv.h> should not be used

C99 [Unspecified 27, 28; Undefined 109-111; Implementation J.3.6(8)]
Category Advisory
Analysis Decidable, Single Translation Unit

Applies to C99

Amplification

The identifiers feclearexcept, fegetexceptflag, feraiseexcept, fesetexceptflag and fetestexcept shall not be
used and no macro with one of these names shall be expanded.

The macros FE_INEXACT, FE_DIVBYZERO, FE_UNDERFLOW, FE_OVERFLOW, FE_INVALID and FE_ALL_EXCEPT,
along with any implementation-defined floating-point exception macros, shall not be used.

Rationale

In some circumstances, the values of the floating-point status flags are unspecified and attempts to
access them may lead to undefined behaviour.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

171

S9Ny :8 UONI3S

172

The order in which exceptions are raised by the feraiseexcept function is unspecified and could
therefore result in a program that has been designed for a certain order not operating correctly.

Example

#include <fenv.h>

void £ (float32 t x, float32 t y)

{
float32 t z;

feclearexcept (FE _DIVBYZERO); /* Non-compliant */
z =x / y;

if (fetestexcept (FE DIVBYZERO)) /* Non-compliant */
{

}

else

{
#pragma STDC FENV_ACCESS ON

if (z > x)
#pragma STDC FENV_ACCESS OFF

if (fetestexcept (FE OVERFLOW)) /* Non-compliant */

8.22 Resources

Many of the rules in this section are applicable only when rules in other sections have been deviated.

Rule 22.1 All resources obtained dynamically by means of Standard Library
functions shall be explicitly released

Category Required
Analysis Undecidable, System
Applies to €90, €99

Amplification

The Standard Library functions that allocate resources are malloc, calloc, realloc and fopen.
Rationale

If resources are not explicitly released then it is possible for a failure to occur due to exhaustion of

those resources. Releasing resources as soon as possible reduces the possibility that exhaustion will
occur.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Example

#include <stdlib.h>

Rules

int main (void)
{
void *b = malloc (40);

Section 8

/* Non-compliant - dynamic memory not released */
return 1;

}

#include <stdio.h>
int main (void)
{
FILE *fp = fopen ("tmp", "r");

/* Non-compliant - file not closed */
return 1;

}

In the following non-compliant example, the handle on “tmp-1"is lost when “tmp-2" is opened.
#include <stdio.h>

int main (void)

{
FILE *fp;

fp = fopen ("tmp-1", "w");

fprintf (fp, "*");

/* File "tmp-1" should be closed here, but stream 'leaks'. */
fp = fopen ("tmp-2", "w");
fprintf (fp, "!");

fclose (fp);

return (0);

See also

Dir 4.12, Dir 413, Rule 21.3, Rule 21.6

173

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

S9Ny :8 UONI3S

174

Rule 22.2 Ablock of memory shall only be freed if it was allocated by means of a
Standard Library function

C90 [Undefined 92], C99 [Undefined 169]
Category Mandatory
Analysis Undecidable, System
Applies to €90, C99

Amplification
The Standard Library functions that allocate memory are malloc, calloc and realloc.

A block of memory is freed when its address is passed to free and potentially freed when its address is
passed to realloc. Once freed, a block of memory is no longer considered to be allocated and therefore
cannot subsequently be freed again.

Rationale

Freeing non-allocated memory, or freeing the same allocated memory more than once leads to
undefined behaviour.

Example
#include <stdlib.h>

void fn (void)

{

int32 t a;
/* Non-compliant - a does not point to allocated storage */
free (&a);

}

void g (void)

{

char *p = (char *) malloc (512);

char *g = p;

free (p);

/* Non-compliant - allocated block freed a second time */
free (g);

/* Non-compliant - allocated block may be freed a third time */
p = (char *) realloc (p, 1024);
}

See also

Dir 412, Dir 413, Rule 21.3

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rule 22.3 The same file shall not be open for read and write access at the same
time on different streams

Category Required

Analysis Undecidable, System

Applies to €90, C99

Amplification

This rule applies to files opened with The Standard Library functions. It may also apply to similar
features provided by the execution environment.

Rationale

The Standard does not specify the behaviour if a file is both written and read via different streams.

C90 [Implementation 61], C99 [Implementation J.3.12(22)]

Note: it is acceptable to open a file multiple times for read-only access.

Example

#include <stdio.h>

void fn (void)

{

FILE *fw = fopen ("tmp",
FILE *fr = fopen ("tmp",
}
See also
Rule 21.6

/* "r+" opens for read/write */
/* Non-compliant */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 8: Rules

175

S9Ny :8 UONI3S

176

Rule 22.4 There shall be no attempt to write to a stream which has been opened

as read-only
Category Mandatory
Analysis Undecidable, System

Applies to €90, C99

Rationale

The Standard does not specify the behaviour if an attempt is made to write to a read-only stream. For
this reason it is considered unsafe to write to a read-only stream.

Example

#include <stdio.h>

void fn (void)

{
FILE *fp = fopen ("tmp", "r");
(void) fprintf (fp, "What happens now?"); /* Non-compliant */
(void) fclose (fp);

}

See also

Rule 21.6

Rule 22.5 A pointer to a FILE object shall not be dereferenced

Category Mandatory
Analysis Undecidable, System
Applies to €90, C99

Amplification

A pointer to a FILE object shall not be dereferenced directly or indirectly (e.g. by a call to memcpy or
memcnp).

Rationale

The Standard (C90 Section 7.9.3(6), C99 Section 7.19.3(6)) states that the address of a FILE object
used to control a stream may be significant and a copy of the object may not give the same behaviour.
This rule ensures that such a copy cannot be made.

The direct manipulation of a FILE object is prohibited as this may be incompatible with its use as a
stream designator.

Example

#include <stdio.h>

FILE *pfl;
FILE *pf2;
FILE f£3;

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

pf2 = pfl; /* Compliant */ wn
£f3 = *pf2; /* Non-compliant */ %
The following example assumes that FILE * specifies a complete type with a member named pos: D:
o0
pfl->pos = 0; /* Non-compliant */ CC)
| o
See also o
wn
Rule 21.6
Rule 226 The value of a pointer to a FILE shall not be used after the associated
stream has been closed
C99 [Undefined 140]
Category Mandatory
Analysis Undecidable, System
Applies to €90, C99
Rationale
The Standard states that the value of a FILE pointer is indeterminate after a close operation on a
stream.
Example
#include <stdio.h>
void fn (void)
{
FILE *fp;
void *p;
fp = fopen ("tmp", "w");
if (fp == NULL)
{
error action ();
}
fclose (fp);
fprintf (fp, "2"); /* Non-compliant */
p = fp; /* Non-compliant */
}
See also
Dir 4.13, Rule 21.6
177

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

178

9 References

(1]

(2]

(3]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

MISRA Guidelines for the Use of the C Language In Vehicle Based Software, ISBN 0-9524159-9-0,
Motor Industry Research Association, Nuneaton, April 1998

ISO/IEC 9899:1990, Programming languages — C, International Organization for
Standardization, 1990

Hatton L., Safer C - Developing Software for High-integrity and Safety-critical Systems, ISBN 0-07-
707640-0, McGraw-Hill, 1994

ISO/IEC 9899:1990/COR 1:1995, Technical Corrigendum 1, 1995

ISO/IEC 9899:1990/AMD 1:1995, Amendment 1, 1995

ISO/IEC 9899:1990/COR 2:1996, Technical Corrigendum 2, 1996

ANSI X3.159-1989, Programming languages — C, American National Standards Institute, 1989

ISO/IEC 9899:1999, Programming languages — C, International Organization for
Standardization, 1999

ISO/IEC 9899:1999/COR 1:2001, Technical Corrigendum 1, 2001
ISO/IEC 9899:1999/COR 2:2004, Technical Corrigendum 2, 2004
ISO/IEC 9899:1999/COR 3:2007, Technical Corrigendum 3, 2007

ISO/IEC 9899:1999 Committee Draft WG14/N1256, Programming languages — C, International
Organization for Standardization, September 2007

ISO/IEC 9899:2011, Programming languages — C, International Organization for
Standardization, 2011

ISO/IEC 9899:2011/COR 1:2012, Technical Corrigendum 1, 2012

MISRA Development Guidelines for Vehicle Based Software, ISBN 0-9524156-0-7, Motor Industry
Research Association, Nuneaton, November 1994

MISRA AC AGC Guidelines for the application of MISRA-C:2004 in the context of automatic code
generation, ISBN 978-1-906400-02-6, MIRA Limited, Nuneaton, November 2007

MISRA AC GMG Generic modelling design and style guidelines, ISBN 978-1-906400-06-4, MIRA
Limited, Nuneaton, May 2009

MISRA AC SLSF Modelling design and style guidelines for the application of Simulink and Stateflow,
ISBN 978-1-906400-07-1, MIRA Limited, Nuneaton, May 2009

MISRA AC TL Modelling style guidelines for the application of Targetlink in the context of automatic
code generation, ISBN 978-1-906400-01-9, MIRA Limited, Nuneaton, November 2007

CRR80, The Use of Commercial Off-the-Shelf (COTS) Software in Safety Related Applications, ISBN
0-7176-0984-7, HSE Books

ISO 9001:2008, Quality management systems — Requirements, International Organization for
Standardization, 2008

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

[25]

[26]

[27]

(33]

(34]
[35]

[36]

ISO 90003:2004, Software engineering — Guidelines for the application of ISO 9001:2000 to
computer software, 1SO, 2004

ISO 26262:2011, Road vehicles — Functional safety, 1SO, 2011

DO-178C/ED-12C, Software Considerations in Airborne Systems and Equipment Certification, RTCA,
2011

The TickIT Guide, Using 1ISO 9001:2000 for Software Quality Management System Construction,
Certification and Continual Improvement, Issue 5, British Standards Institution, 2001

Straker D., C Style: Standards and Guidelines, ISBN 0-13-116898-3, Prentice Hall 1991

Fenton N.E. and Pfleeger S.L., Software Metrics: A Rigorous and Practical Approach, 2nd Edition,
ISBN 0-534-95429-1, PWS, 1998

MISRA Report 5 Software Metrics, Motor Industry Research Association, Nuneaton, February
1995

MISRA Report 6 Verification and Validation, Motor Industry Research Association, Nuneaton,
February 1995

Kernighan B.W., Ritchie D.M., The C programming language, 2nd edition, ISBN 0-13-110362-8,
Prentice Hall, 1988 (note: The 1st edition is not a suitable reference document as it does not
describe ANSI/ISO C)

Koenig A., C Traps and Pitfalls, ISBN 0-201-17928-8, Addison-Wesley, 1988

IEC 61508:2010, Functional safety of electrical/electronic/programmable electronic safety-related
systems, International Electromechanical Commission, in 7 parts published in 2010

EN 50128:2011, Railway applications — Communications, signalling and processing systems —
Software for railway control and protection, CENELEC, 2011

IEC 62304:2006, Medical device software — Software life cycle processes, IEC, 2006
ANSI/IEEE Std 754, IEEE Standard for Binary Floating-Point Arithmetic, 1985

ISO/IEC 10646:2003, Information technology — Universal Multiple-Octet Coded Character Set
(UCS), International Organization for Standardization, 2003

Goldberg D., What Every Computer Scientist Should Know about Floating-Point Arithmetic,
Computing Surveys, March 1991

Software Engineering Center, Information-technology Promotion Agency, Japan (IPA/SEC),
Embedded System development Coding Reference (ESCR) [C language edition] Version 1.1, SEC
Books, 2012

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Section 9: References

179

180

Appendix A Summary of guidelines

The implementation

Dir 1.1

Required

Any implementation-defined behaviour on which the output of the
program depends shall be documented and understood

Compilation and build

Dir 2.1

Required

All source files shall compile without any compilation errors

Requirements traceability

Dir 3.1 Required
Code design

Dir 4.1 Required
Dir 4.2 Advisory
Dir 4.3 Required
Dir 4.4 Advisory
Dir 4.5 Advisory
Dir 4.6 Advisory
Dir 4.7 Required
Dir 4.8 Advisory
Dir 4.9 Advisory
Dir 410 Required
Dir 4.11 Required
Dir 4.12 Required
Dir 4.13 Advisory

All code shall be traceable to documented requirements

Run-time failures shall be minimized

All usage of assembly language should be documented
Assembly language shall be encapsulated and isolated
Sections of code should not be “commented out”

Identifiers in the same name space with overlapping visibility should be
typographically unambiguous

typedefs that indicate size and signedness should be used in place of the
basic numerical types

If a function returns error information, then that error information shall
be tested

If a pointer to a structure or union is never dereferenced within a
translation unit, then the implementation of the object should be
hidden

A function should be used in preference to a function-like macro where
they are interchangeable

Precautions shall be taken in order to prevent the contents of a header
file being included more than once

The validity of values passed to library functions shall be checked
Dynamic memory allocation shall not be used

Functions which are designed to provide operations on a resource
should be called in an appropriate sequence

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

A standard C environment

Rule 1.1 Required
Rule 1.2 Advisory
Rule 1.3 Required

Unused code

Rule 2.1 Required
Rule 2.2 Required
Rule 2.3 Advisory
Rule 2.4 Advisory
Rule 2.5 Advisory
Rule 2.6 Advisory
Rule 2.7 Advisory
Comments

Rule 3.1 Required
Rule 3.2 Required

Character sets and

Rule 4.1 Required
Rule 4.2 Advisory
|dentifiers

Rule 5.1 Required
Rule 5.2 Required
Rule 5.3 Required
Rule 5.4 Required
Rule 5.5 Required
Rule 5.6 Required
Rule 5.7 Required

The program shall contain no violations of the standard C syntax and
constraints, and shall not exceed the implementation’s translation limits

Language extensions should not be used

There shall be no occurrence of undefined or critical unspecified
behaviour

A project shall not contain unreachable code

There shall be no dead code

A project should not contain unused type declarations
A project should not contain unused tag declarations

A project should not contain unused macro declarations
A function should not contain unused label declarations

There should be no unused parameters in functions

The character sequences /* and // shall not be used within a comment

Line-splicing shall not be used in // comments

lexical conventions
Octal and hexadecimal escape sequences shall be terminated

Trigraphs should not be used

External identifiers shall be distinct
Identifiers declared in the same scope and name space shall be distinct

An identifier declared in an inner scope shall not hide an identifier
declared in an outer scope

Macro identifiers shall be distinct
Identifiers shall be distinct from macro names
A typedef name shall be a unique identifier

A tag name shall be a unique identifier

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Appendix A: Summary of guidelines

181

saulPpIng Jo Asewwins @y xipuaddy

182

Rule 5.8
Rule 5.9
Types

Rule 6.1

Rule 6.2

Required

Advisory

Required

Required

Identifiers that define objects or functions with external linkage shall be
unique

Identifiers that define objects or functions with internal linkage should
be unique

Bit-fields shall only be declared with an appropriate type

Single-bit named bit fields shall not be of a signed type

Literals and constants

Rule 7.1

Rule 7.2

Rule 7.3

Rule 7.4

Required

Required

Required

Required

Octal constants shall not be used

A"u" or "U" suffix shall be applied to all integer constants that are
represented in an unsigned type

The lowercase character “I” shall not be used in a literal suffix

A string literal shall not be assigned to an object unless the object’s type
is “pointer to const-qualified char”

Declarations and definitions

Rule 8.1

Rule 8.2

Rule 8.3

Rule 8.4

Rule 8.5

Rule 8.6

Rule 8.7

Rule 8.8

Rule 8.9

Rule 8.10

Rule 8.11

Required
Required

Required

Required

Required

Required

Advisory

Required

Advisory

Required

Advisory

Types shall be explicitly specified
Function types shall be in prototype form with named parameters

All declarations of an object or function shall use the same names and
type qualifiers

A compatible declaration shall be visible when an object or function
with external linkage is defined

An external object or function shall be declared once in one and only
one file

An identifier with external linkage shall have exactly one external
definition

Functions and objects should not be defined with external linkage if
they are referenced in only one translation unit

The static storage class specifier shall be used in all declarations of
objects and functions that have internal linkage

An object should be defined at block scope if its identifier only appears
in a single function

An inline function shall be declared with the static storage class

When an array with external linkage is declared, its size should be
explicitly specified

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rule 812 Required
Rule 813 Advisory
Rule 814 Required
Initialization

Rule 9.1 Mandatory
Rule 9.2 Required
Rule 9.3 Required
Rule 9.4 Required
Rule 9.5 Required

Within an enumerator list, the value of an implicitly-specified
enumeration constant shall be unique

A pointer should point to a const-qualified type whenever possible

The restrict type qualifier shall not be used

The value of an object with automatic storage duration shall not be read
before it has been set

The initializer for an aggregate or union shall be enclosed in braces
Arrays shall not be partially initialized

An element of an object shall not be initialized more than once

Appendix A: Summary of guidelines

Where designated initializers are used to initialize an array object the
size of the array shall be specified explicitly

The essential type model

Rule 10.1

Rule 10.2

Rule 10.3

Rule 10.4

Rule 10.5

Rule 10.6

Rule 10.7

Rule 10.8

Required

Required

Required

Required

Advisory

Required

Required

Required

Operands shall not be of an inappropriate essential type

Expressions of essentially character type shall not be used
inappropriately in addition and subtraction operations

The value of an expression shall not be assigned to an object with a
narrower essential type or of a different essential type category

Both operands of an operator in which the usual arithmetic conversions
are performed shall have the same essential type category

The value of an expression should not be cast to an inappropriate
essential type

The value of a composite expression shall not be assigned to an object
with wider essential type

If a composite expression is used as one operand of an operator in which
the usual arithmetic conversions are performed then the other operand
shall not have wider essential type

The value of a composite expression shall not be cast to a different
essential type category or a wider essential type

Pointer type conversions

Rule 111

Rule 11.2

Rule 11.3

Required

Required

Required

Conversions shall not be performed between a pointer to a function
and any other type

Conversions shall not be performed between a pointer to an
incomplete type and any other type

A cast shall not be performed between a pointer to object type and a 183
pointer to a different object type

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

> Rule 11.4
©

©

4

o Rule 11.5
P

'j? Rule 11.6
s ule 11.
C

3

3 Rule 11.7
Q

-

<

(_Dh Rule 11.8
0Q

c.

o

o Rule 11.9
=

M

wn

Advisory

Advisory

Required

Required

Required

Required

Expressions

Rule 12.1

Rule 12.2

Rule 12.3

Rule 12.4

Advisory

Required

Advisory

Advisory

Side effects

Rule 13.1

Rule 13.2

Rule 13.3

Rule 13.4

Rule 13.5

Rule 13.6

184

Required

Required

Advisory

Advisory

Required

Mandatory

A conversion should not be performed between a pointer to object and
an integer type

A conversion should not be performed from pointer to void into pointer
to object

A cast shall not be performed between pointer to void and an arithmetic
type

A cast shall not be performed between pointer to object and a non-
integer arithmetic type

A cast shall not remove any const or volatile qualification from the type
pointed to by a pointer

The macro NULL shall be the only permitted form of integer null pointer
constant

The precedence of operators within expressions should be made
explicit

The right hand operand of a shift operator shall lie in the range zero
to one less than the width in bits of the essential type of the left hand
operand

The comma operator should not be used

Evaluation of constant expressions should not lead to unsigned integer
wrap-around

Initializer lists shall not contain persistent side effects

The value of an expression and its persistent side effects shall be the
same under all permitted evaluation orders

A full expression containing an increment (++) or decrement (--)
operator should have no other potential side effects other than that
caused by the increment or decrement operator

The result of an assignment operator should not be used

The right hand operand of a logical && or | | operator shall not contain
persistent side effects

The operand of the sizeof operator shall not contain any expression
which has potential side effects

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Control statement expressions

Rule 141 Required
Rule 14.2 Required
Rule 14.3 Required
Rule 14.4 Required
Control flow
Rule 151 Advisory
Rule 15.2 Required
Rule 15.3 Required
Rule 15.4 Advisory
Rule 15.5 Advisory
Rule 15.6 Required
Rule 15.7 Required
Switch statements
Rule 161 Required
Rule 16.2 Required
Rule 16.3 Required
Rule 16.4 Required
Rule 16.5 Required
Rule 16.6 Required
Rule 16.7 Required
Functions

Rule 17.1 Required
Rule 17.2 Required
Rule 173 Mandatory

A loop counter shall not have essentially floating type
A for loop shall be well-formed
Controlling expressions shall not be invariant

The controlling expression of an if statement and the controlling
expression of an iteration-statement shall have essentially Boolean type

The goto statement should not be used

The goto statement shall jump to a label declared later in the same
function

Appendix A: Summary of guidelines

Any label referenced by a goto statement shall be declared in the same
block, or in any block enclosing the goto statement

There should be no more than one break or goto statement used to
terminate any iteration statement

A function should have a single point of exit at the end

The body of an iteration-statement or a selection-statement shall be a
compound-statement

Allif ... else if constructs shall be terminated with an else statement

All switch statements shall be well-formed

A switch label shall only be used when the most closely-enclosing
compound statement is the body of a switch statement

An unconditional break statement shall terminate every switch-clause
Every switch statement shall have a default label

A default label shall appear as either the first or the last switch label of a
switch statement

Every switch statement shall have at least two switch-clauses

A switch-expression shall not have essentially Boolean type

The features of <stdarg.h> shall not be used
Functions shall not call themselves, either directly or indirectly

A function shall not be declared implicitly 185

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

saulPpIng Jo Asewwins @y xipuaddy

186

Rule 174 Mandatory All exit paths from a function with non-void return type shall have an
explicit return statement with an expression

Rule 175 Advisory The function argument corresponding to a parameter declared to have
an array type shall have an appropriate number of elements

Rule 17.6 ~ Mandatory The declaration of an array parameter shall not contain the static
keyword between the []

Rule 177 Required The value returned by a function having non-void return type shall be
used
Rule 17.8 Advisory A function parameter should not be modified

Pointers and arrays

Rule 181 Required A pointer resulting from arithmetic on a pointer operand shall address
an element of the same array as that pointer operand

Rule 18.2 Required Subtraction between pointers shall only be applied to pointers that
address elements of the same array

Rule 18.3 Required The relational operators >, >=, < and <= shall not be applied to objects
of pointer type except where they point into the same object

Rule 18.4 Advisory The +, -, += and -= operators should not be applied to an expression of
pointer type

Rule 18.5 Advisory Declarations should contain no more than two levels of pointer nesting

Rule 18.6 Required The address of an object with automatic storage shall not be copied to
another object that persists after the first object has ceased to exist

Rule 18.7 Required Flexible array members shall not be declared

Rule 18.8 Required Variable-length array types shall not be used

Overlapping storage
Rule 191 Mandatory An object shall not be assigned or copied to an overlapping object

Rule 19.2 Advisory The union keyword should not be used

Preprocessing directives

Rule 201 Advisory #include directives should only be preceded by preprocessor directives
or comments

Rule 20.2 Required The ', " or \ characters and the /* or // character sequences shall not
occur in a header file name

Rule 20.3 Required The #include directive shall be followed by either a <filename> or
"filename" sequence

Rule 20.4 Required A macro shall not be defined with the same name as a keyword
Rule 20.5 Advisory #undef should not be used

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rule 20.6

Rule 20.7

Rule 20.8

Rule 20.9

Rule 20.10

Rule 20.11

Rule 20.12

Rule 20.13

Rule 20.14

Standard libraries

Rule 211

Rule 21.2

Rule 21.3

Rule 21.4

Rule 21.5

Rule 21.6

Rule 21.7

Rule 21.8

Rule 21.9

Rule 21.10

Rule 21.11

Rule 21.12

Required

Required

Required

Required

Advisory

Required

Required

Required

Required

Required

Required

Required

Required
Required
Required
Required

Required

Required

Required
Required

Advisory

Tokens that look like a preprocessing directive shall not occur within a
macro argument

Expressions resulting from the expansion of macro parameters shall be
enclosed in parentheses

The controlling expression of a #if or #elif preprocessing directive shall
evaluate to O or 1

All identifiers used in the controlling expression of #if or #elif
preprocessing directives shall be #define'd before evaluation

The # and #4# preprocessor operators should not be used

A macro parameter immediately following a # operator shall not
immediately be followed by a ## operator

A macro parameter used as an operand to the # or ## operators, which
is itself subject to further macro replacement, shall only be used as an
operand to these operators

Aline whose first token is # shall be a valid preprocessing directive

All #else, #elif and #endif preprocessor directives shall reside in the
same file as the #if, #ifdef or #ifndef directive to which they are related

#define and #undef shall not be used on a reserved identifier or
reserved macro name

A reserved identifier or macro name shall not be declared

The memory allocation and deallocation functions of <stdlib.h> shall
not be used

The standard header file <setjmp.h> shall not be used

The standard header file <signal.h> shall not be used

The Standard Library input/output functions shall not be used

The atof, atoi, atol and agtoll functions of <stdlib.h> shall not be used

The library functions abort, exit, getenv and system of <stdlib.h> shall
not be used

The library functions bsearch and gsort of <stdlib.h> shall not be
used

The Standard Library time and date functions shall not be used
The standard header file <tgmath.h> shall not be used

The exception handling features of <fenv.h> should not be used

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Appendix A: Summary of guidelines

187

saulPpIng Jo Asewwins @y xipuaddy

188

Resources

Rule 22,1 Required
Rule 22.2 Mandatory
Rule 22.3 Required
Rule 22.4 Mandatory
Rule 22.5 Mandatory
Rule 22.6 Mandatory

All resources obtained dynamically by means of Standard Library
functions shall be explicitly released

A block of memory shall only be freed if it was allocated by means of a
Standard Library function

The same file shall not be open for read and write access at the same
time on different streams

There shall be no attempt to write to a stream which has been opened
as read-only

A pointer to a FILE object shall not be dereferenced

The value of a pointer to a FILE shall not be used after the associated
stream has been closed

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Appendix B Guideline attributes

Rule Category Applies to Analysis
Dir 1.1 Required €90, C99
Dir 2.1 Required €90, C99
Dir 3.1 Required €90, C99
Dir 4.1 Required €90, C99
Dir 4.2 Advisory €90, C99
Dir4.3 Required €90, C99
Dir 4.4 Advisory €90, C99
Dir 4.5 Advisory €90, C99
Dir 4.6 Advisory €90, C99
Dir4.7 Required €90, C99
Dir 4.8 Advisory €90, C99
Dir 4.9 Advisory €90, C99
Dir 4.10 Required 90, C99
Dir 411 Required €90, C99
Dir 4.12 Required €90, C99
Dir 413 Advisory €90, C99
Rule 1.1 Required €90, C99 Decidable, Single Translation Unit
Rule 1.2 Advisory €90, C99 Undecidable, Single Translation Unit
Rule 1.3 Required €90, C99 Undecidable, System
Rule 2.1 Required €90, C99 Undecidable, System
Rule 2.2 Required €90, C99 Undecidable, System
Rule 2.3 Advisory €90, C99 Decidable, System
Rule 2.4 Advisory €90, C99 Decidable, System
Rule 2.5 Advisory 90, C99 Decidable, System
Rule 2.6 Advisory €90, C99 Decidable, Single Translation Unit
Rule 2.7 Advisory €90, C99 Decidable, Single Translation Unit
Rule 3.1 Required €90, C99 Decidable, Single Translation Unit
Rule 3.2 Required C99 Decidable, Single Translation Unit
Rule 4.1 Required €90, C99 Decidable, Single Translation Unit
Rule 4.2 Advisory €90, C99 Decidable, Single Translation Unit
Rule 5.1 Required €90, C99 Decidable, System
Rule 5.2 Required €90, C99 Decidable, Single Translation Unit
Rule 5.3 Required €90, C99 Decidable, Single Translation Unit
Rule 5.4 Required €90, C99 Decidable, Single Translation Unit
Rule 5.5 Required €90, C99 Decidable, Single Translation Unit
Rule 5.6 Required €90, C99 Decidable, System
Rule 5.7 Required C90, C99 Decidable, System
Rule 5.8 Required €90, C99 Decidable, System
Rule 5.9 Advisory €90, C99 Decidable, System
Rule 6.1 Required €90, C99 Decidable, Single Translation Unit

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

189

s91NnglJ11e aulepIng g xipuaddy

190

Rule Category Applies to Analysis

Rule 6.2 Required €90, C99 Decidable, Single Translation Unit
Rule 7.1 Required €90, C99 Decidable, Single Translation Unit
Rule 7.2 Required €90, C99 Decidable, Single Translation Unit
Rule 7.3 Required €90, C99 Decidable, Single Translation Unit
Rule 7.4 Required €90, C99 Decidable, Single Translation Unit
Rule 8.1 Required C90 Decidable, Single Translation Unit
Rule 8.2 Required €90, C99 Decidable, Single Translation Unit
Rule 8.3 Required €90, C99 Decidable, System

Rule 8.4 Required €90, C99 Decidable, Single Translation Unit
Rule 8.5 Required €90, C99 Decidable, System

Rule 8.6 Required €90, C99 Decidable, System

Rule 8.7 Advisory €90, C99 Decidable, System

Rule 8.8 Required €90, C99 Decidable, Single Translation Unit
Rule 8.9 Advisory €90, C99 Decidable, System

Rule 8.10 Required C99 Decidable, Single Translation Unit
Rule 8.11 Advisory €90, C99 Decidable, Single Translation Unit
Rule 8.12 Required €90, C99 Decidable, Single Translation Unit
Rule 8.13 Advisory €90, C99 Undecidable, System

Rule 8.14 Required C99 Decidable, Single Translation Unit
Rule 9.1 Mandatory €90, C99 Undecidable, System

Rule 9.2 Required €90, C99 Decidable, Single Translation Unit
Rule 9.3 Required €90, C99 Decidable, Single Translation Unit
Rule 9.4 Required C99 Decidable, Single Translation Unit
Rule 9.5 Required C99 Decidable, Single Translation Unit
Rule 10.1 Required €90, C99 Decidable, Single Translation Unit
Rule 10.2 Required €90, C99 Decidable, Single Translation Unit
Rule 10.3 Required €90, C99 Decidable, Single Translation Unit
Rule 10.4 Required €90, C99 Decidable, Single Translation Unit
Rule 10.5 Advisory €90, C99 Decidable, Single Translation Unit
Rule 10.6 Required C90, C99 Decidable, Single Translation Unit
Rule 10.7 Required €90, C99 Decidable, Single Translation Unit
Rule 10.8 Required €90, C99 Decidable, Single Translation Unit
Rule 11.1 Required €90, C99 Decidable, Single Translation Unit
Rule 11.2 Required €90, C99 Decidable, Single Translation Unit
Rule 11.3 Required €90, C99 Decidable, Single Translation Unit
Rule 11.4 Advisory €90, C99 Decidable, Single Translation Unit
Rule 11.5 Advisory €90, C99 Decidable, Single Translation Unit
Rule 11.6 Required €90, C99 Decidable, Single Translation Unit
Rule 11.7 Required €90, C99 Decidable, Single Translation Unit
Rule 11.8 Required €90, C99 Decidable, Single Translation Unit
Rule 11.9 Required €90, C99 Decidable, Single Translation Unit
Rule 12.1 Advisory 90, C99 Decidable, Single Translation Unit

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Rule Category Applies to Analysis
Rule 12.2 Required 90, C99 Undecidable, System
Rule 12.3 Advisory €90, C99 Decidable, Single Translation Unit
Rule 12.4 Advisory €90, C99 Decidable, Single Translation Unit
Rule 13.1 Required C99 Undecidable, System
Rule 13.2 Required 90, C99 Undecidable, System
Rule 13.3 Advisory €90, C99 Decidable, Single Translation Unit
Rule 13.4 Advisory €90, C99 Decidable, Single Translation Unit
Rule 13.5 Required €90, C99 Undecidable, System
Rule 13.6 Mandatory €90, C99 Decidable, Single Translation Unit
Rule 14.1 Required €90, C99 Undecidable, System
Rule 14.2 Required €90, C99 Undecidable, System
Rule 14.3 Required €90, C99 Undecidable, System
Rule 14.4 Required C90, C99 Decidable, Single Translation Unit
Rule 15.1 Advisory 90, C99 Decidable, Single Translation Unit
Rule 15.2 Required €90, C99 Decidable, Single Translation Unit
Rule 15.3 Required €90, C99 Decidable, Single Translation Unit
Rule 15.4 Advisory €90, C99 Decidable, Single Translation Unit
Rule 15.5 Advisory 90, C99 Decidable, Single Translation Unit
Rule 15.6 Required 90, C99 Decidable, Single Translation Unit
Rule 15.7 Required 90, C99 Decidable, Single Translation Unit
Rule 16.1 Required 90, C99 Decidable, Single Translation Unit
Rule 16.2 Required C90, C99 Decidable, Single Translation Unit
Rule 16.3 Required C90, C99 Decidable, Single Translation Unit
Rule 16.4 Required C90, C99 Decidable, Single Translation Unit
Rule 16.5 Required C90, C99 Decidable, Single Translation Unit
Rule 16.6 Required 90, C99 Decidable, Single Translation Unit
Rule 16.7 Required 90, C99 Decidable, Single Translation Unit
Rule 171 Required 90, C99 Decidable, Single Translation Unit
Rule 17.2 Required C90, C99 Undecidable, System
Rule 17.3 Mandatory C90 Decidable, Single Translation Unit
Rule 17.4 Mandatory C90, C99 Decidable, Single Translation Unit
Rule 17.5 Advisory C90, C99 Undecidable, System
Rule 17.6 Mandatory C99 Decidable, Single Translation Unit
Rule 17.7 Required €90, C99 Decidable, Single Translation Unit
Rule 17.8 Advisory €90, C99 Undecidable, System
Rule 181 Required C90, C99 Undecidable, System
Rule 18.2 Required C90, C99 Undecidable, System
Rule 18.3 Required 90, C99 Undecidable, System
Rule 18.4 Advisory €90, C99 Decidable, Single Translation Unit
Rule 18.5 Advisory €90, C99 Decidable, Single Translation Unit
Rule 18.6 Required C90, C99 Undecidable, System
Rule 18.7 Required c99 Decidable, Single Translation Unit

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Appendix B: Guideline attributes

191

s91NnglJ11e aulepIng g xipuaddy

192

Rule Category Applies to Analysis

Rule 18.8 Required C99 Decidable, Single Translation Unit
Rule 19.1 Mandatory €90, C99 Undecidable, System

Rule 19.2 Advisory €90, C99 Decidable, Single Translation Unit
Rule 20.1 Advisory €90, C99 Decidable, Single Translation Unit
Rule 20.2 Required €90, C99 Decidable, Single Translation Unit
Rule 20.3 Required €90, C99 Decidable, Single Translation Unit
Rule 20.4 Required €90, C99 Decidable, Single Translation Unit
Rule 20.5 Advisory €90, C99 Decidable, Single Translation Unit
Rule 20.6 Required €90, C99 Decidable, Single Translation Unit
Rule 20.7 Required €90, C99 Decidable, Single Translation Unit
Rule 20.8 Required €90, C99 Decidable, Single Translation Unit
Rule 20.9 Required €90, C99 Decidable, Single Translation Unit
Rule 20.10 Advisory €90, C99 Decidable, Single Translation Unit
Rule 20.11 Required €90, C99 Decidable, Single Translation Unit
Rule 20.12 Required €90, C99 Decidable, Single Translation Unit
Rule 20.13 Required €90, C99 Decidable, Single Translation Unit
Rule 20.14 Required €90, C99 Decidable, Single Translation Unit
Rule 211 Required 90, C99 Decidable, Single Translation Unit
Rule 21.2 Required 90, C99 Decidable, Single Translation Unit
Rule 21.3 Required 90, C99 Decidable, Single Translation Unit
Rule 21.4 Required 90, C99 Decidable, Single Translation Unit
Rule 21.5 Required C90, C99 Decidable, Single Translation Unit
Rule 21.6 Required C90, C99 Decidable, Single Translation Unit
Rule 21.7 Required €90, C99 Decidable, Single Translation Unit
Rule 21.8 Required €90, C99 Decidable, Single Translation Unit
Rule 21.9 Required 90, C99 Decidable, Single Translation Unit
Rule 21.10 Required 90, C99 Decidable, Single Translation Unit
Rule 21.11 Required C99 Decidable, Single Translation Unit
Rule 21.12 Advisory C99 Decidable, Single Translation Unit
Rule 22.1 Required €90, C99 Undecidable, System

Rule 22.2 Mandatory C90, C99 Undecidable, System

Rule 22.3 Required C90, C99 Undecidable, System

Rule 22.4 Mandatory 90, C99 Undecidable, System

Rule 22.5 Mandatory €90, C99 Undecidable, System

Rule 22.6 Mandatory €90, C99 Undecidable, System

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Appendix C Type safety issues with C

ISO C may be considered to exhibit poor type safety as it permits a wide range of implicit type
conversions to take place. These type conversions can compromise safety as their implementation-
defined aspects can cause developer confusion.

An explanation of these conversions follows, along with some examples to show how they can lead
to developer confusion.

C.1 Type conversions

C.1.1 Implicit conversions

Implicit type conversions within ISO C permit the use of mixed types within expressions and may
occur even when the types used are all the same. There are three types of implicit conversion:

1. Aninteger promotion conversion to signed int or unsigned int takes place whenever a bit-field or
object with (un)signed char, (un)signed short or enum type is used arithmetically as described in
C90 Section 6.2.1.1, C99 Section 6.3.1.1. Integer promotion preserves the original value, but the
signedness may change (e.g. unsigned char will be converted to signed int);

2. The usual arithmetic conversions convert (balance) operands to a common type whenever
operands with different types are used with certain operators, as described in
C90 Section 6.2.1.5, C99 Section 6.3.1.8;

3. Conversion on assignment.

An expression may contain none, one, two or all of these implicit conversions, as the examples below
show (si and ui are 32-bit signed and unsigned integers and u8 is an 8-bit unsigned char):

Expression Promote Balance Convert Notes
si = si + si;
si = uc + uc; Yes uc promoted to signed int
ui = si + ui; Yes si is balanced to unsigned int
.) uc promoted to signed int and balanced to
ui = ui + uc; Yes Yes . .
unsigned int
ui = si; Yes si converted to unsigned int
. uc promoted to signed int and result of
ui = uc + uc; Yes Yes .) .
expression converted to unsigned int
Lo . si is balanced to unsigned int and result of
si = si + ui; Yes Yes . . .
expression converted to signed int
uc promoted to signed int, balanced to
si = ui + uc; Yes Yes Yes unsigned int and result of expression converted

to signed int

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

193

D Yam sanssi A1ajes adA] D xipuaddy

194

C.1.2 Explicit conversions

Explicit type conversions (casts) may be introduced for functional reasons:
e To change the type in which a subsequent arithmetic operation is performed;
e To truncate a value deliberately;
e To make a type conversion explicit in the interests of clarity.

ISO C does not require all explicit casts to be checked, allowing conversions to take place between
incompatible types.

C.1.3 Concerns with conversions

Implicit and explicit conversion can lead to several concerns, including:
e Lossofvalue:e.g.conversiontoatypewherethe magnitude ofthe value cannot be represented;
e Loss of sign: e.g. conversion from a signed type to an unsigned type resulting in loss of sign;

e Loss of precision: e.g. conversion from a floating type to an integer type with consequent loss
of precision;

* Loss of layout: e.g. conversion from a pointer to one type to a pointer to a different type
leading to an incompatible storage layout.

Whilst many type conversions are safe, the only ones that can be guaranteed safe for all data values
and all possible conforming implementations are:

e Conversion of an integer value to a wider integer type of the same signedness;
e Conversion of a floating type to a wider floating type.

Depending on the implemented integer sizes, other type conversions may also be safe. However, any
potentially dangerous type conversions should be identified by making them explicit.

C.2 Developer confusion

As the sizes in which types are implemented can vary between implementations, the contexts in
which implicit conversions take place can also vary. This places a requirement on the developer to
maintain a mental model of the type system in use for any particular project. It is relatively easy for
a developer to use the wrong model from time-to-time, especially if they are working on multiple
projects having different implementations.

C.2.1 Type widening in integer promotion

The type in which integer expressions are evaluated depends on the type of the operands after any
integer promotion. Multiplying two 8-bit values will always give a result that is at least 16 bits wide.
However, multiplying two 16-bit values will only give a 32-bit result when the implemented size of
intis at least 32 bits. It is safer never to rely on the type-widening obtained by integer promotion as
the associated implementation-defined behaviour may lead to developer confusion. Consider the
following example:

uintl6é t uléa = 40000; /* unsigned short or unsigned int ? */
uintl6_t ulé6b = 30000; /* unsigned short or unsigned int ? */
uint32 t u32x; /* unsigned int or unsigned long ? */
u32x = uléa + ulé6b; /* u32x = 70000 or 4464 2 */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

The expected resultis possibly 70 000, but the value assigned to u32x will depend on the implemented
size of int. If this is 32 bits, the addition will occur in 32-bit signed arithmetic and the “correct” value will
be obtained. If it is only 16 bits, the addition will take place in 16-bit unsigned arithmetic, wraparound
will occur and will yield the value 4 464 (70 000 % 65 536). Wraparound in unsigned arithmetic is well
defined but, as its effects depend on the type in which the arithmetic is performed, its intentional use
should documented.

C.2.2 Evaluation type confusion

Asimilar problem arises where a developer is deceived into thinking that the type in which a calculation
is conducted is influenced by the type to which the result is assigned or converted. For example, in the
following code the two 16-bit objects are added together in 16-bit arithmetic (assuming int is 16-bit),
and the result is converted to type uint32 t on assignment.

u32x = ulba + ulb6b;

It is not unusual for developers to be deceived into thinking that the addition is performed in 32-bit
arithmetic, because of the type of u32x.

Confusion of this nature is not confined to integer arithmetic or to implicit conversions. The following
examples demonstrate some statements in which the result is well defined but the calculation may
not be performed in the type that the developer expects:

u32a = (uint32 t) (ul6a * uléb); /* May not be a 32-bit operation */
f6d4a = uléa / uléb; /* Not floating point division */
£32a = (float32 t) (ul6a / uléb); /* Not floating point division *x/
fed4a = f32a + £32b; /* May be a low precision operation */
f64a = (float64 t) (£32a + £32b); /* May be a low precision operation */

C.2.3 Change of signedness in arithmetic operations

Integer promotion may lead to the result of an expression not meeting developer expectations. For
example, the expression 10 - ulé6a yields a result that is dependent on the size of int. If ul6a has a
value of 100 and int is 32 bits, then the result is signed with a value of -90. However, if int is 16 bits the
result will be unsigned with a value of 65 446.

C.2.4 Change of signedness in bitwise operations

Integer promotion arising when bitwise operators are applied to small unsigned types can lead to
confusion. For example a bitwise complement operation on an operand of type unsigned char will
generally yield a result of type (signed) int with a negative value. The operand is promoted to type int
before the operation and the extra high order bits are set by the complement process. The number of
extra bits, if any, is dependent on the size of an int and it is particularly hazardous if the complement
operation is followed by a right shift as this leads to implementation-defined behaviour.

u8a = Oxff;

if (~u8a == 0x00U) /* This test will always fail */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Appendix C: Type safety issues with C

195

196

Appendix D Essential types

The Clanguage as defined by the ISO C standard contains a number of weaknesses and inconsistencies
and, unfortunately, the standard type of an expression is not always fully descriptive of the essential
nature of the data being represented. For example:

D1

Integer promotion The set of integer types do not behave in a consistent way. As a result of
integer promotion, an expression which is intrinsically unsigned (e.g. unsigned char + unsigned
char) typically has a standard type of signed int.

Integer constants Integer constants only exist for signed/unsigned int, long and long long types.
This complicates the issue of ensuring type consistency (for example when passing constants
as function arguments).

Character constants The standard type of a character constant (e.g. 'x"') is defined to be
int (not char). This obscures the distinction between character data (i.e. “characters”) and
numeric data (i.e. "number values”).

Logical expressions A Boolean type does not exist in the C90 language. Type _Bool was
introduced into C99, but unfortunately, for reasons of backwards compatibility, the result of
equality (==, !'=), relational (<, <=, >=, >) andlogical (&, ||, !)operatorsis still of
type int rather than type _Bool.

Bit-fields ISO C does not define a bit-field type. This means that it is not possible, for example,
to cast to a bit-field type. The standard type of a bit-field as defined by ISO C is one of _Bool,
signed int or unsigned int. The signedness of a bit-field of type int is implementation-defined.

Enumerations An enumeration has a type which is implementation-defined.

The implementation is free to use any integer type which is capable of representing the
enumeration. If the enumeration includes negative values, the type will be a signed integer
type. If the enumeration consists only of non-negative values, the type may be either a signed
or unsigned integer type.

Enumeration constants Regardless of the type used to implement an enumeration, an
enumeration constant is always of type int.

The essential type category of expressions

MISRA C:2012 introduces the concept of essential type to help mitigate the issues identified above.

The essential type category of an expression is one of:

Essentially Boolean;
Essentially character;
Essentially enum;
Essentially signed,
Essentially unsigned,

Essentially floating.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

The following table shows how the standard integer types map on to essential type categories. Note:
C99 implementations may provide extended integer types each of which would be allocated a location
appropriate to its rank and signedness (see C99 Section 6.3.1.1).

Essential type category
Boolean character signed unsigned enums<j> floating
_Bool char signed char unsigned char named enum | float
signed short unsigned short double
signed int unsigned int long double
signed long unsigned long
signed long long | unsigned long long

The concept of rank is particularly relevant when describing the set of signed and unsigned types;
signed and unsigned long long share the “highest” rank and signed and unsigned char share the “lowest”
rank. In the ISO C99 standard, “rank” is a term applied only to integer types.

The essential type of an expression only differs from the standard C type (standard type) in expressions
where the standard type is either signed int or unsigned int.

In the following paragraphs the specific situations are defined where essential type and standard type
are different.

D.2 The essential type of character data

An object with a standard type of char (i.e. single byte character) has essentially char type.

D.3 The signed and unsigned type of lowest rank (STLR and UTLR)

The Essential Type Model introduces the concept of the Signed Type of Lowest Rank (the STLR) and the
Unsigned Type of Lowest Rank (the UTLR). These allow integer constant expressions and bit-fields to be
used within expressions having an essential type with a rank lower than that of int. In the case of integer
constant expressions, this is a convenience as it avoids the need to cast the expression, or its operands,
to a type with lower rank. Similarly, for an implementation that does not permit bit-fields to have a
type whose rank is lower than that of int, it avoids the need to cast bit-fields in some situations.

1. The STLRisthe signed type having the lowest rank required to represent the value of a particular
integer constant expression or both the maximum and minimum values of a bit-field;

2. The UTLR is the unsigned type having the lowest rank required to represent the value of a
particular integer constant expression or the maximum value of a bit-field.

D.4 The essential type of bit-fields
The essential type of a bit-field is determined by the first of the following that applies:
1. For a bit-field which is implemented with an essentially Boolean type it is essentially Boolean;

2. For a bit-field which is implemented with a signed type it is the STLR which is able to represent
the bit-field;

3. For a bit-field which is implemented with an unsigned type it is the UTLR which is able to
represent the bit-field.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Appendix D: Essential types

197

sadA] |enuassy :q xipuaddy

198

D.5 The essential type of enumerations
Two distinct types of enumeration need to be considered:

1. Anamed enum type is an enumeration which has a tag or which is used in the definition of any
object, function or type;

2. An anonymous enum type is an enumeration which does not have a tag and which is not used
in the definition of any object, function or type. This will typically be used to define a set of
constants, which may or may not be related.

A named enum type is distinct from all other named enum types, even if declared in an inner scope with
exactly the same tag and enumeration constants. Each instance of a named enum type is denoted as
enum<i>in this document, with the / being different for each such type.

An alias for a named enum type created using typedef denotes that named enum type and is not a new
type.

The essential type of an anonymous enum type is its standard type.

The following all have named enum type and have distinct essential types:

enum ETAG { A, B, C };
typedef enum { A, B, C } ETYPE;
typedef enum ETAG { A, B, C } ETYPE;

enum { A, B, C} x;

The following typedefs both refer to the same enum<i>:

typedef enum { A, B, C } ETYPE;
typedef ETYPE FTYPE;

D.6 The essential type of literal constants

The ISO C99 standard defines the following constants of integer type:
* Integer constants;
e Enumeration constants,

e (Character constants.

Note: a constant of integer type is not necessarily an integer constant.

Integer constants
1. If the standard type of an integer constant is signed int then its essential type is the STLR;

2. Ifthe standard type of an integer constant is unsigned int then its essential type is the UTLR.

Enumeration constants

The standard type of an enumeration constant in Cis always int, regardless of the implemented type of
the enumeration and regardless of the type of any initializer expression used to define its value. For
example, if an enumeration constant is initialized with an unsigned value (e.g. 500U), the constant will
still be considered to have a standard type of signed int.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

The essential type of an enumeration constant is determined as follows: 8
o
1. If an enumeration defines a named enum type then the essential type of its enumeration >
constants is enum<i>; <
1.1 If a named enum type is used to define an essentially Boolean type then the essential type of c
its enumeration constants is essentially Boolean. Q
n
2. Ifanenumeration defines an anonymous enum type then the essential type of each enumeration |.u
constant is the STLR of its value. @]
X
In the following, each of the enumeration constants, and the object x, have essential type of enum<i>: '8
enum ETAG { A = 8, B = 64, C = 128 } x; 8_
o
The following anonymous enum type defines a set of constants. The essential type of each constant is <
the STLR. Therefore on a machine with 8-bit char and 16-bit short types, A and B have an essential type
of signed char but C has an essential type of signed short.
enum { A = 8, B = 64, C = 128 };
Character constants
The standard type of a character constant (e.g. 'q', "xy")is int, not char.
1. If a character constant consists of a single character then its essential type is char;
2. Else the essential type is the same as its standard type.
Boolean constants
The C99 standard provides no syntax to explicitly define a constant of _Bool type. The library header
<stdbool.h> defines false and true in terms of constants 0 and 1 of type int, but these have an
essential type of essentially Boolean. If these are not used or are not available, a constant expression of
type _Bool may be declared using an explicit cast or an operator that delivers an essentially Boolean
value.
Tools may also provide additional ways of identifying essentially Boolean types. For example, a tool
could be configured to recognize:
enum Bool {False, True};
The use of a cast to define a constant expression of Boolean type (e.g. (_Bool) 0) is only appropriate
if the expression is not to be used in a #if or #elif preprocessing directive. Use of a cast within a
preprocessing directive is a syntax error.
D.7 The essential type of expressions
The essential type of any expression not listed in this section is the same as its standard type.
Comma(,)
The essential type of the result is the essential type of the right hand operand.
Relational (< <= >= >), Equality (== '=)and Logical (&& || !)
The result of the expression is essentially Boolean.
199

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Shift (<< >>)
1. Ifthe left hand operand is essentially unsigned then:

1.1 If both operands are integer constant expressions then the essential type of the result is the
UTLR of the result;

1.2 Else the essential type of the result is the essential type of the left hand operand.
2. Else the essential type is the standard type.
Bitwise complement (~)

1. Ifthe operand is essentially unsigned then:

sadA] |enuassy :q xipuaddy

1.1 If the operand is an integer constant expression then the essential type of the result is the
UTLR of the result;

1.2 Else the essential type of the result is the essential type of the operand.

2. Else the essential type is the standard type.

Unary plus (+)

1. If the operand is essentially signed or essentially unsigned then the essential type of the result is
the essential type of the operand;

2. Else the essential type is the standard type.
Unary minus (-)
1. Ifthe operand is essentially signed then:

1.1 If the expression is an integer constant expression then the essential type of the result is the
STLR of the whole expression;

1.2 Else the essential type of the result is the essential type of the operand.

2. Else the essential type is the standard type.

Conditional (?:)

1. Ifthe essential type of the second and third operands is the same then the result has the same
essential type;

2. Elseif the second and third operands are both essentially signed then the essential type of the
result is the essential type of the one with the highest rank;

3. Else if the second and third operands are both essentially unsigned then the essential type of
the result is the essential type of the one with the highest rank;

4. Else the essential type is the standard type.

Operations subject to the usual arithmetic conversions(* / $ + - & | *)
1. If the operands are both essentially signed then:

1.1 If the expression is an integer constant expression then the essential type of the result is the
STLR of the result;

1.2 Else the essential type of the result is the essential type of the operand with the highest

200 rank.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

2. Elseif the operands are both essentially unsigned then:

2.1 If the expression is an integer constant expression then the essential type of the result is the
UTLR of the result;

2.2 Else the essential type of the result is the essential type of the operand with the highest
rank.

3. Else the essential type is the standard type.

Addition with char

1. If one operand is essentially character and the other is essentially signed or essentially unsigned
then the essential type of the result is char;

2. Else the essential type is the standard type.

Subtraction with char

1. If the first operand is essentially character and the second is essentially signed or essentially
unsigned then the essential type of the result is char;

2. Else the essential type is the standard type.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Appendix D: Essential types

2071

202

Appendix E Applicability to automatically generated
code

E.1 Guideline categories for automatically generated code

Most MISRA C guidelines have the same category for automatically generated code as they do for
manually generated code.

This section lists those guidelines for which the category is different. For convenience, guidelines with
similar rationales are grouped together.
E.1.1 Additional categories

An additional guideline category is used in automatically generated code:

E.1.1.1 Readability

If a guideline has the “readability” category then it is not necessary to comply with it provided that the
automatically generated code is notintended to be read, reviewed or modified by human programmers.
If the code is being used by humans then the category remains the same as for manually generated
code.

E.1.2 Hiding identifiers

Rule 5.3 |Advisory |

An automatic code generator is capable of tracking the identifiers that it uses and should not be
confused about any identifier reuse. The guideline is therefore advisory when applied to automatically
generated code.

When manually generated code is injected into automatically generated code or vice-versa it is possible
for anidentifier to be hidden without the code generator being aware. This guideline therefore remains
required if the identifier that is being hidden, or that is hiding another identifier, is declared in manually
generated code.

E.1.3 Octal constants

Rule 7.1 | Advisory

An automatic code generator is unlikely to generate an octal constant unintentionally.

E.1.4 Compatible declarations with external linkage

Rule 8.4 |Advisory |Ru|e 8.5 |Advisory |

These guidelines require:

* A compatible declaration to be visible when an object or function with external linkage is
defined;

e Each object or function with external linkage to be declared in only one file.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Together, they provide a mechanism for ensuring that all translation units using a declaration of the
object or function are doing so in @ manner that is compatible with the definition. However, this is
not the only strategy for guaranteeing compatibility. For example, an automatic code generator might
hold the declaration of each object or function in a data dictionary and use that declaration in each
translation unit that needs it.

E.1.4.1 The restrict type qualifier

Rule 8.14 | Advisory

When an automatic code generator can determine that two pointers do not alias it may wish to use
the restrict type qualifier.

E.1.5 Essential type

Rule 10.1 | Advisory | Rule 10.2 | Advisory |Rule 10.3 | Advisory |Rule10.4 | Advisory
Rule 10.6 | Advisory |Rule 10.7 | Advisory | Rule 10.8 |Advisory |Rule 14.4 | Advisory
Rule 20.8 | Advisory

The essential type concept is one method for avoiding problems associated with integer promotion
and the usual arithmetic conversions. An automatic code generator may adopt a different approach to
avoiding such problems which is equally valid. Further, the automatic code generator is aware of both
C's implicit type conversion rules and the sizes of the types on the target machine.

Therulesrelatingtoessential type are therefore all given advisory category when applied to automatically
generated code.

E.1.6 Loop counters

Rule 14.1 | Advisory

An automatic code generator is aware of the floating-point implementation and will therefore be
aware of the implications of using a floating-point /oop counter.

E.1.7 Labels and goto

Rule 15.2 | Advisory | Rule 153 | Advisory

An automatic code generator may need to generate a backwards jump, for example in the
implementation of a state-machine. It is very unlikely to generate a jump into a block of injected
manually-generated code and should therefore be able to avoid jumping over initialization.

E.1.8 Switch statements

Rule 16.1 | Advisory Rule 16.2 | Advisory Rule 16.3 | Advisory Rule 16.4 | Advisory

Rule 16.5 | Advisory Rule 16.6 | Advisory Rule 16.7 | Advisory

If an automatic code generator determines that it can optimize away a default clause that is suggested
by the model, for example every value for the controlling expression is covered by a case clause, then
it may only do so if it inserts a comment into the generated C that explains why the default clause is
absent. This comment can be reviewed and accepted as part of the MISRA C compliance argument.

An automatic code generator is capable of handling switch clauses that fall through into subsequent
clauses.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Appendix E: Applicability to automatically generated code

203

9p02 pajetauasd Ajjeonnewolne 01 Ajigediiddy :3 xipuaddy

204

Unusual switch statements such as those that have a controlling expression with essentially Boolean
type, or that have only one switch clause, might be indicative of an error in human generated code but
may be necessary or desirable in automatically generated code.

E.1.9 Readability

Dir 4.5 Readability | Rule 2.3 | Readability | Rule 2.4 | Readability | Rule 2.5 | Readability
Rule 2.6 | Readability | Rule 2.7 Readability | Rule 5.9 Readability | Rule 7.2 Readability
Rule 7.3 Readability | Rule 9.2 | Readability | Rule 9.3 | Readability | Rule 9.5 | Readability
Rule 11.9 | Readability | Rule 13.3 | Readability | Rule 14.2 | Readability | Rule 15.7 | Readability
Rule 17.5 | Readability | Rule 17.7 | Readability | Rule 17.8 | Readability | Rule 18.5 | Readability
Rule 20.5 | Readability

These guidelines are for the benefit of human developers and reviewers.

If any identifier with internal linkage is declared in injected code, then Rule 5.9 as applied to that
identifier is advisory for the entire translation unit.

If code is injected into an automatically generated for loop then Rule 14.2 is required insofar as the
injected code causes a non-compliance.

E.2 Documentation requirements for automatic code generation
tools

The developer of an automatic code generation tool shall provide documentation for each item listed
in this section.
E.2.1 Implementation-defined behaviour and language extensions

In accordance with Dir 1.1, the use of any implementation-defined behaviour on which automatically
generated code depends shall be documented.

In accordance with Rule 1.2, the use of language extensions by automatically generated code, and the
methods by which their use is assured, shall be documented.

In accordance with Dir 4.2, the use of assembly language by automatically generated code shall be
documented.

E.2.2 The essential type model

If an automatic code generator does not use the essential type model, then the strategy that it uses in
its place shall be documented.

E.2.3 Run-time errors

An automatic code generator should select an appropriate code generation strategy to minimize the
possibility for run-time failures, as required by Dir 4.1. If the possibility for run-time failures remains,
the error handling strategy used by the code generator shall be documented. Since it is likely that
manually generated code will be needed in order to handle the error, the error handling interface
shall be documented as part of the overall error handling strategy.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Appendix F Process and tools checklist

This Appendix provides a checklist of the development process and tool use guidance that need to be

followed in order to claim MISRA C compliance as described in Section 5.3.

Section Guidance

3.1 A choice has been made between C90 and C99

4.2 There is a process for dealing with deficiencies in the C implementation

531 The translator has been configured to accept the correct version of the C language

5.3.1 The translator has been configured to generate an appropriate level of diagnostic information

5.3.1 The translator has been configured appropriately for the target machine

531 The translator’s optimization level has been configured appropriately

533 There is a process for investigating and resolving any diagnostic messages produced by the
= translator

53 There is a compliance matrix showing how compliance with each MISRA C guideline is to be
’ checked

53.2 The analysis tools have been configured to accept the correct version of the C language

532 The analysis process can deal with any language extensions that have been used

53> The analysis tools have been configured for the implementation, for example to be aware of
= the sizes of the integer types

533 There is a process for investigating and resolving any diagnostic messages produced by the
" analysis tools

54 There is a deviation process for recording and approving deviations

51 There is a process for ensuring that the program has sufficient resources, such as processing
- time and stack space

591 There is a process for demonstrating and recording the absence of run-time errors, for

example in module designs

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

205

Appendix G Implementation-defined behaviour
checklist

This Appendix provides the checklist of implementation-defined behaviours referred to in Dir 1.1.

AC90 ltem Implementation-defined behaviour
nnex
G.31 1 | How a diagnostic is identified (5.1.1.3).
G.3.2 1 | The semantics of the arguments to main (5.1.2.2.7).
1 The number of significant initial characters (beyond 31) in an identifier without
external linkage (6.1.2).
G33 5 The number of significant initial characters (beyond 6) in an identifier with external

linkage (6.1.2).

3 | Whether case distinctions are significant in an identifier with external linkage (6.1.2).

The members of the source and execution character sets, except as explicitly
specified in this International Standard (5.2.1).

3 | The number of bits in a character in the execution character set (5.2.4.2.1).

The mapping of members of the source character set (in character constants and
string literals) to members of the execution character set (6.1.3.4).

G3.4 The value of an integer character constant that contains a character or escape
5 | sequence not represented in the basic execution character set or the extended
character set for a wide character constant (6.1.3.4).

The value of an integer character constant that contains more than one character or
a wide character constant that contains more than one multibyte character (6.1.3.4).

The current locale used to convert multibyte characters into corresponding wide
characters (codes) for a wide character constant (6.1.3.4).

1 | The representations and sets of values of the various types of integers (6.1.2.5).

G.3.5
4 | The sign of the remainder on integer division (6.3.5).

The representations and sets of values of the various types of floating-point numbers
(6.1.2.5).

The direction of truncation when an integral number is converted to a floating-point
number that cannot exactly represent the original value (6.2.1.3).

G.3.6 The direction of truncation or rounding when a floating-point number is converted to
a narrower floating-point number (6.2.1.4).

4 | The order of allocation of bit-fields within a unit (6.5.2.1).

5 | Whether a bit-field can straddle a storage-unit boundary (6.5.2.1).

G.3.10 1 | What constitutes an access to an object that has volatile-qualified type (6.5.5.3).

Whether the value of a single-character character constant in a constant expression
that controls conditional inclusion matches the value of the same character constant
in the execution character set. Whether such a character constant may have a
negative value (6.8.1).

The method for locating includable source files (6.8.2).

G313 The support of quoted names for includable source files (6.8.2).

The mapping of source file character sequences (6.8.2).

g~ wN

The behavior on each recognized #pragma directive (6.8.6).

The definitions for __DATE__and __TIME__ when respectively, the date and time of
translation are not available (6.8.8).

Whether the mathematics functions set the integer expression errno to the value of
the macro ERANGE on underflow range errors (7.5.1).

G.3.14
The set of environment names and the method for altering the environment list used

206 30 by the getenv function (7.10.4.4).

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

- Item Implementation-defined behaviour
Annex
1.31 1 | How a diagnostic is identified (3.10, 5.1.1.3).
5 The name and type of the function called at program startup in a freestanding
environment (5.1.2.1).
3 | The effect of program termination in a freestanding environment (5.1.2.1).
132 4 | An alternative manner in which the main function may be defined (5.1.2.2.1).
5 | The values given to the strings pointed to by the argv argument to main (5.1.2.2.1).
10 The set of environment names and the method for altering the environment list used
by the getenv function (7.20.4.5).
1 Which additional multibyte characters may appear in identifiers and their
133 correspondence to universal character names (6.4.2).
2 | The number of significant initial characters in an identifier (5.2.4.1, 6.4.2).
1 | The number of bits in a byte (3.6).
2 | The values of the members of the execution character set (5.2.1).
4 The value of a char object into which has been stored any character other than a
member of the basic execution character set (6.2.5).
6 The mapping of members of the source character set (in character constants and
string literals) to members of the execution character set (6.4.4.4, 5.1.1.2).
The value of an integer character constant containing more than one character
7 | or containing a character or escape sequence that does not map to a single-byte
1.3.4 execution character (6.4.4.4).
The value of a wide character constant containing more than one multibyte character,
8 | or containing a multibyte character or escape sequence not represented in the
extended execution character set (6.4.4.4).
The current locale used to convert a wide character constant consisting of a single
9 | multibyte character that maps to a member of the extended execution character set
into a corresponding wide character code (6.4.4.4).
The current locale used to convert a wide string literal into corresponding wide
10
character codes (6.4.5).
1 The value of a string literal containing a multibyte character or escape sequence not
represented in the execution character set (6.4.5).
1 | Any extended integer types that exist in the implementation (6.2.5).
135 Whether signed integer types are represented using sign and magnitude, two's
2 | complement, or ones’ complement, and whether the extraordinary value is a trap

representation or an ordinary value (6.2.6.2).

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Appendix G: Implementation-defined behaviour checklist

207

> €99 . .
© A Item Implementation-defined behaviour
o nnex
g 1 The accuracy of the floating-point operations and of the library functions in <math.h>
o and <complex.h> that return floating-point results (5.2.4.2.2).
X 5 The rounding behaviors characterized by non-standard values of FLT_ROUNDS
() (5.2.4.2.2).
— 3 The evaluation methods characterized by non-standard negative values of FLT_EVAL _
3 METHOD (5.2.4.2.2).
_% 4 The direction of rounding when an integer is converted to a floating-point number
3 that cannot exactly represent the original value (6.3.1.4).
D 5 The direction of rounding when a floating-point number is converted to a narrower
- floating-point ber (6.3.1.5
= g-point number (6.3.1.5).
'Q_Jr How the nearest representable value or the larger or smaller representable value
o 6 | immediately adjacent to the nearest representable value is chosen for certain floating
5 136 constants (6.4.4.2).
('3_ 7 Whether and how floating expressions are contracted when not disallowed by the
r_Dh FP_CONTRACT pragma (6.5).
g' 8 | The default state for the FENV_ACCESS pragma (7.6.1).
o 9 Additional floating-point exceptions, rounding modes, environments, and
o classifications, and their macro names (7.6, 7.12).
)
5 10 | The default state for the FP_CONTRACT pragma (7.12.2).
2 Whether the “inexact” floating-point exception can be raised when the rounded
o 11 | result actually does equal the mathematical result in an IEC 60559 conformant
cC implementation (F.9).
2 1 Whether the “underflow” (and “inexact”) floating-point exception can be raised when
> a resultis tiny but not inexact in an IEC 60559 conformant implementation (F.9).
D
% 2 | Allowable bit-field types other than _Bool, signed int, and unsigned int (6.7.2.1).
ﬁ 1.3.9 3 | Whether a bit-field can straddle a storage-unit boundary (6.7.2.1).
—+
4 | The order of allocation of bit-fields within a unit (6.7.2.1).
J.3.10 1 | What constitutes an access to an object that has volatile-qualified type (6.7.3).
1 The locations within #pragma directives where header name preprocessing tokens
are recognized (6.4, 6.4.7).
5 How sequences in both forms of header names are mapped to headers or external
source file names (6.4.7).
Whether the value of a character constant in a constant expression that controls
3 | conditional inclusion matches the value of the same character constant in the
execution character set (6.10.1).
4 Whether the value of a single-character character constant in a constant expression
that controls conditional inclusion may have a negative value (6.10.1).
5 The places that are searched for an included < > delimited header, and how the
J.3.11 places are specified or the header is identified (6.10.2).
6 | How the named source file is searched for in an included delimited header (6.10.2).
5 The method by which preprocessing tokens (possibly resulting from macro
expansion) in a #include directive are combined into a header name (6.10.2).
9 Whether the # operator inserts a character before the character that begins a
universal character name in a character constant or string literal (6.10.3.2).
10 | The behavior on each recognized non-STDC #pragma directive (6.10.6).
The definitions for __DATE__and __TIME__when respectively, the date and time of
11 . .
translation are not available (6.10.8).

208

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

C99
Annex

ltem

Implementation-defined behaviour

1312

Any library facilities available to a freestanding program, other than the minimal set
required by clause 4 (5.1.2.1).

Whether the feraiseexcept function raises the “inexact” floating-point exception in
addition to the “overflow” or “underflow” floating-point exception (7.6.2.3).

Strings other than C and that may be passed as the second argument to the setlocale
function (7.11.1.1).

The types defined for float_t and double_t when the value of the FLT_EVAL_METHOD
macro is less than 0 (7.12).

The values returned by the mathematics functions on underflow range errors,
whether errno is set to the value of the macro ERANGE when the integer expression
math_errhandling & MATH_ERRNO is nonzero, and whether the “underflow” floating-
point exception is raised when the integer expression math_errhandling & MATH_
ERREXCEPT is nonzero. (7.12.1).

[

The base-2 logarithm of the modulus used by the remquo functions in reducing the
quotient (7.12.10.3).

33

The meaning of any n-char or n-wchar sequence in a string representing a NaN that is
converted by the strtod, strtof, strtold, wcstod, westof, or westold function (7.20.1.3,
7.24.4.1.1).

34

Whether or not the strtod, strtof, strtold, wcstod, westof, or westold function sets
errno to ERANGE when underflow occurs (7.20.1.3, 7.24.41.1).

37

The termination status returned to the host environment by the abort, exit, or _Exit
function (7.20.4.1, 7.20.4.3, 7.20.4.4).

44

Whether the functions in <math.h> honor the rounding direction mode in an IEC
60559 conformant implementation, unless explicitly specified otherwise (F.9).

3.3

The values or expressions assigned to the macros specified in the headers <float.h>,
<limits.h>, and <stdint.h>(5.2.4.2, 7.18.2, 7.18.3).

The number, order, and encoding of bytes in any object (when not explicitly specified
in this International Standard) (6.2.6.1).

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Appendix G: Implementation-defined behaviour checklist

209

210

Appendix H Undefined and critical unspecified
behaviour

This Appendix identifies the undefined and critical unspecified behaviours that are referred to by

Rule 1.3.

H.1 Undefined behaviour

The columns in this table have the following meanings:

e (901dis the number of the undefined behaviour in Annex G of The C90 Standard; where the
behaviour is mentioned in the body of The Standard but not listed in Annex G, a * character

is shown;

e (99 Idis the number of the undefined behaviour in Annex | of The C99 Standard,;

e Decidable? is “Yes” or “No” according to whether detecting instances of the behaviour is, in
general, decidable or not;

e Guidelines lists the MISRA C Guidelines which, if complied with, avoid the undefined behaviour;

* Notes provides additional notes on the behaviour including information on rules that may
help to avoid the behaviour even if it cannot be totally avoided.

If a particular undefined behaviour has no entry in the “Guidelines” column then an instance of that

behaviour in a program is a violation of Rule 1.3.

Note: it is assumed that any code that is written in other language and linked with the program does
not introduce undefined behaviour directly or indirectly. For example, assembly language modules
might define overlapping objects which, if accessed from C, would lead to undefined behaviour even
though this might not be apparent from the C source code.

Id
Decidable | Guidelines Notes
C90 c99
1 N/A This behaviour is listed in C99 but each such
instance is also given its own entry in Annex J. The
entry for this behaviour is therefore redundant.

1 2 Yes

3 Yes

4 Yes
2 Yes

5 Yes
3 Yes Rule 20.10

6 Yes
5 Yes Rule 5.2
6 Yes Rule 17.3
8 7 Yes

8 No Dir 412, Rule 18.6,

Rule 21.3
9 No Dir 412, Rule 18.6,
Rule 21.3

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Id
Decidable | Guidelines Notes
C90 C99
9 No Dir 4.12, Rule 18.6,
Rule 21.3
41 No Rule 9.1
10 No Compliance with Rule 9.1 avoids a common cause
of this undefined behaviour but it is not sufficient
to avoid all situations in which an indeterminate
value might arise.
1 No The following rules help to avoid this behaviour:
Rule 9.1, Rule 11.2, Rule 11.3, Rule 11.4, Rule 11.5
and Rule 19.1. However, if a trap representation
is copied into an object that does not have
character type, for example using memmove,
memcpy or via a pointer to character type as
permitted by the exception of Rule 11.3, it is not
possible to avoid this behaviour.
12 No Rule 11.2, Rule 11.3,
Rule 11.4, Rule 11.5
13 No The following rules help to avoid this behaviour:
Rule 9.1, Rule 10.1, Rule 11.2, Rule 11.3, Rule 11.4,
Rule 11.5, and Rule 19.1. However, if the Exception
of Rule 11.3 is used then it is not possible to
prevent generation of a negative zero.
10 14 Yes Rule 5.6, Rule 5.7,
Rule 8.3
15 No Dir 4.1, Rule 10.3
15 No Dir 4.1, Rule 10.3
16 No Dir 4.1, Rule 10.3
17 No Rule 9.1, Rule 11.2,
Rule 11.3, Rule 11.4,
Rule 11.5, Rule 19.1
16 18 Yes
19 Yes
17 20 Yes
* 21 No Rule 11.1, Rule 11.2,
Rule 11.4, Rule 11.6
22 No Rule 11.2, Rule 11.3,
Rule 11.5
27 23 No Rule 11.1
4 24 Yes
* 25 Yes
26 Yes
27 Yes
7 28 Yes Rule 5.1, Rule 5.2,
Rule 5.3, Rule 5.4,
Rule 5.5
29 Yes Rule 21.2
1 Yes
12 30 No Rule 7.4, Rule 11.4,
Rule 11.8
13 Yes

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Appendix H: Undefined and critical unspecified behaviour

211

Jnoineyaq paljnadsun [eaniid pue paulyapun :H Xipuaddy

212

Id
Decidable | Guidelines Notes
C90 C99
14 Yes Rule 20.2
31 Yes Rule 20.2
18 32 No Rule 13.2, Rule 13.3,
Rule 13.4
19 33 No Dir 4.1
20 No Rule 11.3, Rule 11.4,
Rule 11.5
34 No Rule 11.3, Rule 11.4,
Rule 11.5
35 Yes
21 Yes
22 36 No Rule 8.2, Rule 17.3 Rule 17.3is only applicable to, and only required
for, C90
25 No Rule 8.4, Rule 8.5,
Rule 11.1, Rule 21.2,
Rule 17.3
37 No Rule 8.4, Rule 8.5,
Rule 11.1, Rule 21.2
23 No Rule 8.2, Rule 17.3
38 No Rule 8.2
24 No Rule 5.6, Rule 5.7,
Rule 8.3, Rule 8.4,
Rule 8.5, Rule 11.1,
Rule 21.2
39 No Rule 5.6, Rule 5.7,
Rule 8.2, Rule 8.3,
Rule 8.4, Rule 8.5,
Rule 11.1, Rule 21.2
26 40 No Dir 4.1
28 Yes Rule 111
29 41 Yes Rule 11.1, Rule 11.2,
Rule 11.6, Rule 11.7
42 No Dir 4.1
30 43 No Rule 18.1
* 44 No Rule 18.1
31 45 No Rule 18.2
46 No Rule 18.1
* 47 No
32 48 No Rule 12.2
49 No Compliance with Rule 10.1 avoids this undefined
behaviour except when the expression being left-
shifted has an unsigned type that is promoted to
a signed type.
33 50 No Rule 18.3
34 51 No Rule 191
* 52 Yes
* 53 Yes

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

< Decidable | Guidelines Notes
C90 C99
* 54 Yes
* 55 Yes
35 56 Yes
36 57 Yes
37 58 Yes
38 Yes Rule 6.1
59 No Rule 18.7
60 Yes
39 61 No Rule 11.4, Rule 11.8,
Rule 19.2
40 62 No Rule 11.4, Rule 11.8,
Rule 19.2
* 63 Yes
* 64 Yes
65 No Rule 8.14
66 No Rule 8.14
67 Yes Rule 8.10
* 68 Yes
69 No Rule 18.8
70 No Rule 18.8
71 No Rule 17.6
72 Yes
* 73 Yes Rule 8.2, Rule 11.1
* 74 No
* 75 Yes
42 Yes Rule 9.2
76 Yes Rule 9.2
77 Yes Rule 9.2
44 78 Yes Rule 8.6
79 Yes Rule 8.2
* 80 Yes
45 81 Yes Rule 171
43 82 Yes Rule 17.4
46 83 Yes
47 84 Yes
48 85 Yes Rule 20.3
86 Yes
49 Yes
50 87 Yes Rule 20.6

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Appendix H: Undefined and critical unspecified behaviour

213

Jnoineyaq paljnadsun [eaniid pue paulyapun :H Xipuaddy

214

Id
Decidable | Guidelines Notes
C90 C99
51 88 Yes Rule 20.10
52 89 Yes Rule 20.10
53 90 Yes
91 Yes
92 Yes
54 93 Yes Rule 21.1
55 94 No Compliance with Rule 19.1 avoids a common
cause of this undefined behaviour but does not
prevent copying part of an object to another part
of the same object, such as an array.
* 95 Yes
56 Yes Rule 17.3, Rule 20.1,
Rule 20.4, Rule 21.2

96 Yes Rule 20.1

97 Yes Rule 20.1, Rule 21.2

98 Yes Rule 20.4

57 Yes Rule 21.1, Rule 21.2

99 Yes Rule 21.2

100 Yes Rule 21.1, Rule 21.2

101 Yes Rule 2111

60 102 No Dir 4.11
* 103 No Dir 4.11
61 Yes Rule 17.3, Rule 21.2
62 104 Yes Compliance with Rule 21.1 prevents undefinition
of the macro but no rule prevents the macro
expansion from being suppressed, e.g. by means
of (assert) (E)
105 Yes
106 Yes
63 107 No Dir 4.11
58 Yes Rule 21.1

108 Yes Compliance with Rule 21.1 prevents undefinition
of the macro but no rule prevents the macro
expansion from being suppressed, e.g. by means
of (errno) ifitisimplemented as a function-
like macro. Compliance with Rule 21.2 prevents
definition of the identifier errno.

109 No Compliance with Rule 21.12 avoids some instances
of this undefined behaviour but does not prevent
floating-point control modes from being changed.

110 No Rule 21.12

m No Rule 2112

112 No Dir 4.11

90 No Rule 21.7
94 No

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

& Decidable | Guidelines Notes
C90 C99
113 No
* 114 No
* 115 No
116 Yes Rule 21.1, Rule 21.2
17 Yes
64 Yes Rule 21.1, Rule 21.2,
Rule 21.4
118 Yes Rule 21.1, Rule 21.2,
Rule 21.4
65 119 Yes Rule 21.4
* 120 No Rule 21.4
66 121 No Rule 21.4
67 No Rule 21.4, Rule 21.5 Compliance with either rule is sufficient to avoid
the undefined behaviour.
* 122 No Rule 21.5
* 123 No Rule 21.5
124 No Rule 21.5
68 No Rule 21.5
125 No Rule 21.5
69 126 No Rule 21.5
* 127 No Rule 21.5
* 128 No Compliance with Rule 17.1 avoids instances of this
undefined behaviour that arise through improper
use of the features of <stdarg.h>.
70 129 No Rule 171
71 Yes Rule 17.1, Rule 21.1,
Rule 21.2
130 Yes Rule 17.1, Rule 21.1,
Rule 21.2
75 No Rule 171
76 No Rule 17.1
131 No Rule 17.1
132 Yes Rule 17.1
73 No Rule 171
74 No Rule 171
133 No Rule 17.1
134 No Rule 17.1
72 135 Yes Rule 17.1
59 136 Yes
137 Yes
138 No Rule 21.6
139 No Rule 21.6

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Appendix H: Undefined and critical unspecified behaviour

215

Jnoineyaq paljnadsun [eaniid pue paulyapun :H Xipuaddy

216

& Decidable | Guidelines Notes
C90 C99
* 140 No Rule 21.6 If Rule 21.6 is deviated then Rule 22.6 provides
protection against this undefined behaviour.
Rule 21.6 is preferred as it is decidable.
77 141 No Rule 21.6
142 No Rule 21.6
78 143 No Rule 21.6
* 144 No Rule 21.6
79 No Rule 21.6
85 No Rule 21.6
145 No Rule 21.6
146 No Rule 21.6, Rule 21.10
* 147 No Rule 21.6
* 148 No Rule 21.6
83 No Rule 21.6
84 No Rule 21.6
149 No Rule 21.6
82 No Rule 21.6
87 No Rule 21.6
150 No Rule 21.6
* 151 No Rule 21.6
152 No Rule 21.6
81 153 No Rule 21.6
97 No Rule 21.10
80 154 No Rule 21.6, Rule 21.10
86 155 No Rule 21.6
89 156 No Rule 21.6
* 157 No Rule 21.6
158 No Rule 21.6
88 159 No Rule 21.6
* 160 No Rule 21.6
* 161 No Rule 21.6
* 162 No Rule 21.6
* 163 No Rule 21.6
* 164 No Rule 21.6
* 165 No Rule 21.6
* 166 No Rule 21.6
* 167 No Rule 21.3
91 168 No Rule 21.3
92 169 No Rule 21.3, Rule 22.2

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

< Decidable | Guidelines Notes
C90 C99
* 170 No Rule 21.3
* 171 No Rule 21.3
93 172 No Rule 21.8
173 No Rule 21.4
* 174 No Compliance with Rule 21.8 avoids this undefined
behaviour in respect of getenv only.
175 No Rule 21.8
176 No Rule 21.9
177 No Rule 219
* 178 No Rule 21.9
95 179 No
96 180 No Dir 4.11
181 No Dir 4.11
* 182 No Compliance with Rule 21.10 avoids this undefined
behaviour except in respect of wesxfrm.
183 No Dir 4.11
184 Yes Rule 21.11
185 Yes Rule 21.11
186 No Rule 21.6
187 No Dir 4.11
188 No
189 No Dir 4.11
190 No
191 No

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Appendix H: Undefined and critical unspecified behaviour

217

Jnoineyaq paljnadsun [eaniid pue paulyapun :H Xipuaddy

218

H.2 Critical unspecified behaviour

The columns in this table have the following meanings:

If a particular unspecified behaviour is marked as being critical but has no entry in the “Guidelines

C90 Id is the number of the unspecified behaviour in Annex G of The C90 Standard; where the
behaviour is mentioned in the body of The Standard but not listed in Annex G, a * character

is shown;

C99 Id is the number of the unspecified behaviour in Annex J of The C99 Standard;

Critical? is "Yes” or “No” according to whether reliance on this behaviour is likely to lead to
unexpected program operation;

Guidelines lists the MISRA C Guidelines which, if complied with, avoid the unspecified behaviour;

Notes provides additional notes on the behaviour including information on rules that may
help to avoid the behaviour even if it cannot be totally avoided.

"

column then reliance on that behaviour in a program is a violation of Rule 1.3.

Note: it is assumed that any code that is written in other language and linked with the program does
not rely on unspecified behaviour directly or indirectly. For example, assembly language functions
might attempt to access parameters despite their layout being unspecified.

& Critical Guidelines Notes
C90 C99
1 1 No
2 No
2 3 No Rule 21.6
3 4 No Rule 21.6
4 5 No Rule 21.6
5 6 No Rule 21.6
7 Yes Rule 5.1
6 Yes
8 Yes
9 Yes
10 Yes Rule 19.2
11 Yes
12 Yes
Compliance with Rule 10.1 avoids generation of
13 Yes negative zeros when operating on expressions
that have a signed type before promotion.
14 Yes Rule 7.4
78 15 Yes Rule 13.2
9 16 Yes Rule 13.2
17 Yes Rule 131
7 18 Yes Rule 13.2
10 19 No

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

< Critical Guidelines Notes
C90 C99
20 Yes Rule 8.10
21 Yes Rule 13.6, Rule 18.8
7 22 Yes Rule 13.1
1 23 No
* 24 Yes
12 25 Yes Rule 20.10, Rule 20.11
13 26 No
27 Yes Rule 21.12
28 Yes Rule 21.12
29 No
30 Yes Dir 4.11
31 Yes Dir 4.11
14 32 No Rule 21.4
15 33 No Rule 17.1
34 Yes Rule 21.6
16 35 Yes Rule 21.6
17 36 Yes Rule 21.6
18 37 Yes Rule 21.6
38 No
19 | 39 No wle 12:; e 182 i q!&?ﬁiﬁu?f?fﬂitﬁéiﬂi%g%%ﬁlg\%id this
unspecified behaviour
40 Yes Rule 21.3
20 41 Yes Rule 219
21 42 Yes Rule 21.9
22 43 Yes Rule 21.10
44 Yes Rule 21.10
45 Yes
46 Yes
47 Yes
48 Yes Dir 4.11
49 Yes Dir 4.11
50 Yes Dir 4.11

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Appendix H: Undefined and critical unspecified behaviour

219

220

Appendix |

Example deviation record

Project F10_BCM Deviation ID R_00102
MISRA C Ref Rule 10.6 Status Approved
Source Tool: MMMC Scope Project
E CUnwin D B Stevens
Raised by Approved by
Signature Signature
Position Software Team Leader Position Engineering Director
Date 27-Jul-2012 Date 12-Aug-2012

.1 Summary

The rationale for MISRA C:2012 Rule 10.6 is that it avoids potential developer confusion regarding
the type in which some arithmetic operations take place. Unfortunately, because of a “feature” of the
compiler being used on this project, it is not possible to make the code comply with the rule without
incurring serious run-time performance degradation. The impact of this is that the software’s timing
requirements cannot be satisfied in all cases and there is a significant risk that the vehicle's legislated
hydrocarbon emissions target will not be met.

.2 Detailed Description

The project makes use of several variable time-step integrators which accumulate a multiple-precision
long-term sum. The quantity to be integrated and the integration time-step are both 16-bit unsigned
quantities which need to be multiplied to give a 32-bit result which is then accumulated.

Since the C compiler in use on this project implements the int type in 32-bits, the code to compute
the 32-bit product is:

extern uintl6 t gty, time step;
uint32 t prod = (uint32 t) gty * (uint32 t) time step;

Clearly, even though the operands of the multiplication operator are 32-bit, there is no possibility that
the product is too large for 32-bits because both operands were zero-extended from 16-bits.

In accordance with our standard development procedures, all object modules are passed through a
worst-case execution time analysis tool to ensure that each function meets its execution time budget
as specified in the architectural design. The analyser highlighted that the code generated for these
integrators was far in excess of the budget laid out for them. Investigation revealed that the reason
for the excessive execution time was that the compiler was generating a call to a “shift-and-add” style
of long multiplication routine. This is surprising because the processor is equipped with an IMUL
instruction that is capable of multiplying two 16-bit unsigned integers to deliver a 32-bit result in a
single clock cycle. Although the multiplication operands are 32-bit, the compiler has the means to
know that the most significant 16-bits of these operands are 0 so it should be capable of selecting
the IMUL instruction.

Experimentation with the compiler suggests that it will select the IMUL instruction provided that the
operands of the multiplication are implicitly converted from 16-bit to 32-bit, i.e.

uint32 t prod = gty * time step;

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

This is particularly odd because the behaviour of the code as described by the C Standard is
independent of whether the conversion is implicit or explicit. While the program will generate the
same results regardless of whether IMUL or a library call is used for multiplication, the library call
requires a worst case of 100 cycles to execute. The compiler vendor has confirmed in writing that this
is the behaviour they expect under the circumstances.

.3 Justification

Since this type of integrator is used in several functions in the project and is executed at least once
every 100 microseconds on average, the performance of the library function is not acceptable. At
the specified CPU internal frequency of 25 MHz this means that 4% of the time is spent just on these
multiplications. This in itself is insignificant and can be contained in the headroom available in the
overall timing budget. However, the design specifies that the integrator shall make its result available
within a maximum of 10 microseconds in order to satisfy timing requirements of other functions. The
failure to meet this requirement means that there is significant risk in achieving the emissions target,
the commercial implications of which are in excess of $10m.

Our preferred solution to this problem is to write the integrators using implicit conversions. This
would require deviation against MISRA C:2012 Rule 10.6 for instances of such an integrator. The code
is functionally identical to that generated by the MISRA-compliant code but executes up to 100 times
faster.

The following other options were considered:

* Increase the clock speed — to achieve the required performance would require a 10-fold
increase in clock but the processor’s maximum PLL frequency is 100 MHz;

e Change processor — not commercially viable given that hardware design validation is well
underway; the additional costs to the project would be around $250 000 and there would be
a timing impact too;

e Change compiler — there is no other commercially recognized compiler for this processor;
there is an unsupported public domain compiler but it is not considered of suitable quality
for this project;

e Recodethelibrary routine — the library uses a base-2 long multiplication; it could be recoded
to implement a base-65 536 long multiplication using 3 IMUL instructions but we are reluctant
to make changes to the compiler vendor's code; we have sought their views on this approach
and received the response that “they could not support us making changes to their library”.

l.4 Conditions under which the deviation is requested

This deviation is requested for all instances of variable time-step integrators within the project.

.5 Consequences of non-compliance

There are no consequences associated with non-compliance with MISRA C:2012 Rule 10.6 in the
circumstances described in this deviation record.

There are no additional verification and validation requirements resulting from this deviation.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Appendix I: Example deviation record

221

pJ023J uonelnsp ajdwex]y ;| xipuaddy

222

.6 Actions to control reporting

The MMMC tool used to check compliance with this rule provides a facility whereby a diagnostic
message can be suppressed within an expression. Since all integrators are of the form:

prod = gty * time step;

a macro can be used to implement the integrator and suppress the warning. The following macro will
be used to implement the multiplication and assignment of its result to the product term:

/* Violates Rule 10.6: See deviation R 00102 */
#define INTEG (prod, gty, time step) \
(/* -mmmc-R10 6 */ (prod) = (gty) * (time step) /* -mmmc-pop */)

Although this macro could be implemented as a function, the overhead of the call and return is
excessive given the simplicity of the operation being performed. A macro is therefore preferred to a
function in this instance even though this means violating Dir 4.9.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Appendix] Glossary
Assigned
An expression is assigned if it is the subject of an assignment.

Assignment

It is sometimes convenient to use the term assignment to denote any operation which takes place as
if it were by assignment. The operations covered by this term are:

e Assignment by means of one of the assignment operators;

e Passing an argument to a function, in which case the argument is copied as if by assignment
to the corresponding parameter;

e Returning an expression from a function, in which case the result is copied as if by assignment
to an object with the function’s return type;

e Using an expression to initialize all or part of an object, including a compound literal in C99, in
which case the expression is copied as if by assignment to the destination.

Code

Code consists of everything within a translation unit that is not excluded by conditional compilation.

Dead code
Any operation whose result does not affect the program’s behaviour is dead code.

Note: initialization is not the same as an assignment operation and is therefore not a candidate for
dead code.

Examples of dead code include:
e Storing values into non-volatile objects that are never subsequently used;
* An expression statement that does not assign a value to an object.
The following are never dead code:
e Accessing a volatile object;
e Using a language extension.

Since the time at which actions occur is often an important aspect of the behaviour of an embedded
program, it follows that code whose effectis to insert a delay is not dead code. However, any such code
is very likely to be written with reference to timer hardware and will therefore involve volatile object
accesses in any event. For example:

extern const volatile uintl6 t MILLISEC TIMER;

void delay ms (uintl6 t n)

{
uintlé t start time = MILLISEC TIMER;

while ((MILLISEC TIMER - start_time) < n)
{
/* wait */

}

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

223

Kiesso|D :[xipuaddy

224

External identifier

An external identifier is an identifier with external linkage and must therefore denote either an object
or a function.

Header file
A header file is any file that is the subject of a #include directive.

Note: the filename extension is not significant.

Inline function

An inline function is one that is declared with the jnline function specifier.

Loop counter

A loop counter is defined in Section 8.14 .

Macro identifier

A macro identifier is an identifier that is either a macro name or a macro parameter.
Opaque type

A type whose implementation detail is not made available to its users.

Persistent side effect

A side effect is said to be persistent at a particular point in execution if it might have an effect on
the execution state at that point. All of the following side effects are persistent at a given point in the
program:

e Modifying a file;
* Modifying an object;
e Accessing a volatile object.

When a function is called, it may have side effects. Modifying a file or accessing a volatile object are
persistent as viewed by the calling function. However any objects modified by the called function,
whose lifetimes have ended by the time it returns, do not affect the caller's execution state. Any side
effects arising from modifying such objects are not persistent as viewed by the caller.

For example:
uintlé t £ (void)
{

uintlé t temp = 1; /* Side effect of modifying temp is not
* persistent to the caller */

return (temp);

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Project

A project consists of the code from the set of translation units used to build a single executable. A
typical embedded controller might consist of several logically distinct projects, for example:

* Primary bootloader;
e Secondary bootloader;

e Main application.

Prototype form

Afunction type is said to be in prototype form if itincludes a prototype, i.e. it specifies a list of parameter
types and, optionally, names. For example, the following are all in prototype form:

void f (void); /* Prototype specifying no parameters */
void g (intl6 _t, char); /* Prototype specifying types but no names */
void h (uint32 t n); /* Prototype specifying type and name */

The following are not in prototype form:

void £ (); /* No information about parameters */
void g (%, y) /* Function definition "K&R"-style */
intle t x;

char y;

{
}

Standard type

The standard type of an expression is its type as determined according to The Standard.

Unreachable code

Code is unreachable if, in the absence of hardware failures and ignoring the effects of undefined
behaviour, there is no combination of program inputs that can cause it to be executed.

Unreachable code may result from the structure of the program’s control flow graph. For example,
any code following a return statement is unreachable and some operands of logical or conditional
operators may be unreachable:

uintle t y;
uintl6e t £ (void)
{

uintlé t x;

return true ? y : (y + 1U); /* y + 1 is never executed */
x = 100U; /* statement is never executed */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Appendix J: Glossary

225

Kiesso|D :[xipuaddy

226

Unreachable code may also result when there is a control flow path to a statement but that path can
never be followed, for example:

uintle t x, y;

switch (2u * x)
{
case 0:
y = 10u;
break;
case 1:
y = 0u; /* unreachable: 2 * x can never be odd */
break;

case 2:
y = %;
break;

default:

break;

}

Used
An expression is said to be used if it appears in one of the following contexts:
e The operand of an operator, including a parameter of a function call operator;
e The controlling expression of an if, while, for, do ... while, or switch statement;
e Thevalue returned by a return statement;
* Aninitializer.
This term should not be confused with reading the value of an object, for example:

uintlé t x = 3;
uintlé t *p = &x; /* x is used but not read */

return *p; /* x is read but not used */

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

ISBN 978-1-906400-10-1 paperback
ISBN 978-1-906400-11-8 PDF

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

	MISRA C:2
012
	Contents
	1 The vision
	2 Background to MISRA C
	2.1 The popularity of C
	2.2 Disadvantages of C
	2.2.1 Language definition
	2.2.2 Language misuse
	2.2.3 Language misunderstanding
	2.2.4 Run-time error checking

	3 Tool selection
	3.1 The C language and its compiler
	3.2 Analysis tools

	4 Prerequisite knowledge
	4.1 Training
	4.2 Understanding the compiler
	4.3 Understanding the static analysis tools

	5 Adopting and using MISRA C
	5.1 Adoption
	5.2 Software development process
	5.2.1 Process activities required by MISRA C
	5.2.2 Process activities expected by MISRA C

	5.3 Compliance
	5.3.1 Compiler configuration
	5.3.2 Static analysis tool configuration
	5.3.3 Investigating messages

	5.4 Deviation procedure
	5.5 Claiming compliance

	6 Introduction to the guidelines
	6.1 Guideline classification
	6.2 Guideline categories
	6.2.1 Mandatory guidelines
	6.2.2 Required guidelines
	6.2.3 Advisory guidelines

	6.3 Organization of guidelines
	6.4 Redundancy in the guidelines
	6.5 Decidability of rules
	6.6 Scope of analysis
	6.7 Multi-organization projects
	6.8 Automatically generated code
	6.9 Presentation of guidelines

	6.10 Understanding the source references
	6.10.1 ISO C portability issue references
	6.10.2 Other references

	7 Directives
	7.1 The implementation
	7.2 Compilation and build
	7.3 Requirements traceability
	7.4 Code design

	8 Rules
	8.1 A standard C environment
	8.2 Unused code
	8.3 Comments
	8.4 Character sets and lexical conventions
	8.5 Identifiers
	8.6 Types
	8.7 Literals and constants
	8.8 Declarations and definitions

	8.9 Initialization

	8.10 The essential type model
	8.10.1 Rationale
	8.10.2 Essential type
	8.10.3 Composite operators and expressions

	8.11 Pointer type conversions
	8.12 Expressions
	8.13 Side effects
	8.14 Control statement expressions
	8.15 Control flow
	8.16 Switch statements
	8.17 Functions
	8.18 Pointers and arrays
	8.19 Overlapping storage
	8.20 Preprocessing directives
	8.21 Standard libraries
	8.22 Resources

	9 References
	Appendix A Summary of guidelines
	Appendix B Guideline attributes
	Appendix C Type safety issues with C
	C.1 T ype conversions
	C.1.1 Implicit conversions
	C.1.2 Explicit conversions
	C.1.3 Concerns with conversions

	C.2 D eveloper confusion
	C.2.1 Type widening in integer promotion
	C.2.2 Evaluation type confusion
	C.2.3 Change of signedness in arithmetic operations
	C.2.4 Change of signedness in bitwise operations

	Appendix D Essential types
	D.1 The essential type category of expressions
	D.2 The essential type of character data
	D.3 The signed and unsigned type of lowest rank (STLR and UTLR)
	D.4 The essential type of bit-fields
	D.5 The essential type of enumerations
	D.6 The essential type of literal constants
	D.7 The essential type of expressions

	Appendix E Applicability to automatically generatedcode
	E.1 Guideline categories for automatically generated code
	E.1.1 Additional categories
	E.1.2 Hiding identifiers
	E.1.3 Octal constants
	E.1.4 Compatible declarations with external linkage
	E.1.5 Essential type
	E.1.6 Loop counters
	E.1.7 Labels and goto
	E.1.8 Switch statements
	E.1.9 Readability

	E.2 Documentation requirements for automatic code generation tools
	E.2.1 Implementation-defined behaviour and language extensions
	E.2.2 The essential type model
	E.2.3 Run-time errors

	Appendix F Process and tools checklist
	Appendix G Implementation-defined behaviour checklist
	Appendix H Undefined and critical unspecified behaviour
	H.1 Undefined behaviour
	H.2 Critical unspecified behaviour

	Appendix I Example deviation record
	Appendix J Glossary

