
MISRA C:2 012
Guidelines for the use of the
C language in critical systems

March 2013

MISRA C 2012 cover A4.indd 1 17/03/2013 22:45:55

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

First published March 2013 by MIRA Limited
Watling Street
Nuneaton
Warwickshire
CV10 0TU
UK

www.misra.org.uk

© MIRA Limited 2013.

“MISRA”, “MISRA C” and the triangle logo are registered trademarks of MIRA Limited, held on behalf of
the MISRA Consortium.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical or photocopying, recording or
otherwise without the prior written permission of the Publisher.

ISBN 978-1-906400-10-1 paperback
ISBN 978-1-906400-11-8 PDF

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

MISRA C 2012 cover A4.indd 2 17/03/2013 22:45:55

This copy of MISRA C:2012 Guidelines for the use of the C language in critical systems is issued
to LEE CHING MIN.

The file must not be altered in any way. No permission is given for distribution of this file. This
includes but is not exclusively limited to making the copy available to others by email, placing it
on a server for access by intra- or inter-net, or by printing and distributing hardcopies. Any such
use constitutes an infringement of copyright.

MISRA gives no guarantees about the accuracy of the information contained in this PDF version of
the Guidelines. The published paper document should be taken as authoritative.

Information is available from the MISRA web site on how to purchase printed copies of the
document.

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

i

MISRA C:2 012
Guidelines for the use of the
C language in critical systems

March 2013

MISRA C 2012 final.indd i 17/03/2013 22:52:08

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

ii

MISRA Miss ion Statement

We provide world-leading, best practice guidelines for the safe application of both embedded control
systems and standalone software.

MISRA, The Motor Industry Software Reliability Association, is a collaboration between manufacturers,
component suppliers and engineering consultancies which seeks to promote best practice in
developing safety-related embedded electronic systems and other software-intensive applications.
To this end, MISRA publishes documents that provide accessible information for engineers and
management, and holds events to permit the exchange of experiences between practitioners.

www.misra.org.uk

Disclaimer

Adherence to the requirements of this document does not in itself ensure error-free robust software or
guarantee portability and re-use.

Compliance with the requirements of this document, or any other standard, does not of itself confer immunity
from legal obligations.

MISRA C 2012 final.indd ii 17/03/2013 22:52:08

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

iii

Foreword

A t fi rst sight, this third revision of the MISRA C Guidelines may seem somewhat daunting. Since it
is roughly twice the size of the previous revision, one might think that it contains twice as many
guidelines, and that compliance with those guidelines might take twice as much eff ort.

In fact, the increase in the number of guidelines is relatively modest at around 10%. The remainder of
the increase in size is due to improvements in the guidance given, such as:

• Better rationales for guidelines;

• More precise descriptions;

• Code examples, showing compliance and non-compliance, for most of the guidelines;

• More detailed guidance on compliance checking, and the deviation procedure;

• Checklists that can be used to support a compliance statement.

Finally, I would like to draw attention to the introductory sections of the document. These not only
contain practical guidance on how to use MISRA C but, at the same time, have been made more
concise than their predecessors. I encourage all users to familiarize themselves with this material.

Steve Montgomery MA (Cantab), PhD
Chairman, MISRA C Working Group

MISRA C 2012 final.indd iii 17/03/2013 22:52:08

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

iv

Acknowledgem ents

The MISRA consortium would like to thank the following individuals for their signifi cant contribution
to the writing of this document:

Dave Banham Rolls-Royce plc (previ ously of Als tom Grid)

Andrew Banks Intuitiv e Cons ulting

Mark Bradbury Aero Engine Co ntrols

Paul Burden Programming Rese arch Ltd

Mark Dawson-Butterworth Zytek Automotive Ltd

M ike Hennell LDRA Ltd

Chris Hills Phaedr us Systems Ltd

Steve Montgomery Ricardo UK Ltd

Chris Tapp LDRA Ltd (also Keylevel Consultants Ltd)

Liz Whiting LDRA Ltd (previously of QinetiQ plc)

The MISRA consortium also wishes to acknowledge contributions from the following individuals during
the development and review process:

Roberto Bagnara William Forbes Voilmy Laurent Koki Onoda

John Bailey Takao Futagami Fred Long Paulo Pinheiro

Johan Bezem Jim Gimpel Daniel Lundin Mohanraj Ragupathi

Gunter Blache Gilles Goulas Gavin McCall Paul Rigas

Michael Burke Wolfgang von Hansen Douglas Mearns Andrew Scholan

Andrew Burnard Takahiro Hashimoto Svante Möller Marco Sorich

Paul Butler Dave Higham Frederic Mondot Takuji Takuma

Mirko Conrad Shinya Ito Jürgen Mottok Martin Thompson

David Cozens David Jennings Yannick Moy Takafumi Wakita

David Crocker Peter Jesty Alexander Much David Ward

Greg Davis Grzegorz Konopko Robert Mummé Tetsuhiro Yamamoto

Manoj Dwivedi Taneli Korhonen Tadanori Nakagawa Naoki Yoshikawa

Carl Edmunds Joel Kuehner Greg Newman Achim Olaf Zacher

Particular thanks are due to David Crocker for his signifi cant contribution towards the development
of Appendix H.

The descriptions of implementation-defi ned behaviours in Appendix G have been reproduced from
versions of the ISO Standards published by BSI Standards Limited; the text is identical to that in the
ISO versions. Permission to reproduce extracts from British Standards is granted by the BSI Standards
Limited (BSI) under Licence No. 2013ET0003. No other use of this material is permitted. British
Standards can be obtained in PDF or hard copy formats from the BSI online shop: www.bsigroup.
com/Shop or by contacting BSI Customer Services for hard copies only: Tel: +44 20 8996 9001,
Email: cservices@bsigroup.com.

DokuWiki was used extensively during the drafting of this document. Our thanks go to all those
involved in its development.

This document was typeset using Open Sans. Open Sans is a trademark of Google and may be
registered in certain jurisdictions. Digitized data copyright © 2010–2011, Google Corporation. Licensed
under the Apache License, Version 2.0.

MISRA C 2012 final.indd iv 17/03/2013 22:52:08

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

http://www.apache.org/licenses/LICENSE-2.0.html
http://www.bsigroup.com/Shop

v

Contents

1 The vision 1

2 Background to MISRA C 2
2.1 The popularity of C 2
2.2 Disadvantages of C 2

3 Tool selection 4
3.1 The C language and its compiler 4
3.2 Analysis tools 5

4 Prerequisite knowledge 6
4.1 Training 6
4.2 Understanding the compiler 6
4.3 Understanding the static analysis tools 6

5 Adopting and using MISRA C 8
5.1 Adoption 8
5.2 Software development process 8
5.3 Compliance 9
5.4 Deviation procedure 11
5.5 Claiming compliance 12

6 Introduction to the guidelines 13
6.1 Guideline classifi cation 13
6.2 Guideline categories 13
6.3 Organization of guidelines 14
6.4 Redundancy in the guidelines 14
6.5 Decidability of rules 14
6.6 Scope of analysis 15
6.7 Multi-organization projects 15
6.8 Automatically generated code 16
6.9 Presentation of guidelines 17
6.10 Understanding the source references 18

7 Directives 21
7.1 The implementation 21
7.2 Compilation and build 23
7.3 Requirements traceability 23
7.4 Code design 24

MISRA C 2012 final.indd v 17/03/2013 22:52:08

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

vi

8 Rules 37
8.1 A standard C environment 37
8.2 Unused code 39
8.3 Comments 45
8.4 Character sets and lexical conventions 46
8.5 Identifi ers 48
8.6 Types 58
8.7 Literals and constants 59
8.8 Declarations and defi nitions 63
8.9 Initialization 75
8.10 The essential type model 81
8.11 Pointer type conversions 93
8.12 Expressions 103
8.13 Side eff ects 108
8.14 Control statement expressions 115
8.15 Control fl ow 122
8.16 Switch statements 130
8.17 Functions 136
8.18 Pointers and arrays 143
8.19 Overlapping storage 153
8.20 Preprocessing directives 155
8.21 Standard libraries 165
8.22 Resources 172

9 References 178

Appendix A Summary of guidelines 180

Appendix B Guideline attributes 189

Appendix C Type safety issues with C 193

Appendix D Essential types 196

Appendix E Applicability to automatically generated code 202

Appendix F Process and tools checklist 205

Appendix G Implementation-defi ned behaviour checklist 206

Appendix H Undefi ned and critical unspecifi ed behaviour 210

Appendix I Example deviation record 220

Appendix J Glossary 223

MISRA C 2012 final.indd vi 17/03/2013 22:52:08

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

1

1 The vision
The MISRA C Guidelines defi ne a subset of the C language in which the opportunity to make mistakes
is either removed or reduced. Many standards for the development of safety-related software require,
or recommend, the use of a language subset, and this can also be used to develop any application
with high integrity or high reliability requirements.

As well as defi ning this subset, these MISRA C Guidelines provide:

• Educational material for those developing C programs;

• Reference material for tool developers.

Previous editions of MISRA C have been based on the 1990 ISO defi nition of C. As the 1999 ISO
defi nition has now been adopted, in varying degrees, by embedded implementations it was considered
that the time was right to publish a new edition of MISRA C which recognized the 1999 ISO defi nition.

Each aspect of the guidance presented in the previous edition has been comprehensively reviewed
and improved where appropriate. This third edition also incorporates material created in response to
the feedback that has been provided by users of earlier editions of the Guidelines.

A major change in this third edition is the development of the second edition’s concept of underlying
type into the essential type. Using the new essential type concept, it has been possible to develop a set
of guidelines that bring stronger typing to the C language.

The vision for the third edition of MISRA C is therefore to:

• Adopt the 1999 ISO defi nition of the C language, while retaining support for the older 1990
defi nition;

• Correct any known issues with the second edition;

• Add new guidelines for which there is a strong rationale;

• Improve the specifi cation and the rationale for existing guidelines;

• Remove any guidelines for which the rationale is insuffi cient;

• Increase the number of guidelines that can be processed by static analysis tools;

• Provide guidance on the applicability of the guidelines to automatically-generated code.

MISRA C 2012 final.indd 1 17/03/2013 22:52:08

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

2

2 Background to MISRA C

2.1 The popularity of C
The C programming language is popular because:

• C compilers are readily available for many processors;

• C programs can be compiled to effi cient machine code;

• It is defi ned by an international standard;

• It provides mechanisms to access the input/output capabilities of the target processor,
whether directly or by means of language extensions;

• There is a considerable body of experience with using C in critical systems;

• It is widely supported by static analysis and test tools.

2.2 Disadvantages of C
While popu lar, the language has several drawbacks which are discussed in the following sub-sections.

2.2.1 Language defi nition

The ISO S tandard does not specify the language completely but places some aspects under the
control of an implementation. This is intentional, partly because of the desire to support many pre-
existing implementations for widely diff erent target processors.

As a result there are areas of the language in which:

• The behaviour is undefi ned;

• The behaviour is unspecifi ed;

• An implementation is free to choose its own behaviour provided that it is documented.

A program that relies on undefi ned or unspecifi ed behaviour is not necessarily guaranteed to behave
in a predictable manner.

A program that places excessive reliance on implementation-defi ned behaviour may be diffi cult to
port to a diff erent target. The presence of implementation-defi ned behaviour may also hinder static
analysis if it is not possible to confi gure the analyser to handle it.

2.2.2 Language misuse

While C progr ams can be laid out in a structured and comprehensible manner, C makes it easy for
programmers to write obscure code that is diffi cult to understand.

The specifi cation of the operators makes it diffi cult for programming errors to be detected by a
compiler. For example, the following two fragments of code are both perfectly legal so it is impossible
for a compiler to know whether one has been mistakenly used in place of the other:

if (a == b) /* tests whether a and b are equal */
if (a = b) /* assigns b to a and tests whether a is non-zero */

MISRA C 2012 final.indd 2 17/03/2013 22:52:08

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

3

Se
ct

io
n

2:
 B

ac
kg

ro
un

d
to

 M
IS

R
A

C2.2.3 Language misunderstanding

There are areas of the language that are commonly misunderstood by programmers. For example,
C has more operators than some other languages an d consequently has a high number of diff erent
operator precedence levels, some of which are not intuitive.

The type rules provided by C can also be confusing to programmers who are familiar with strongly-
typed languages. For example, operands may be “promoted” to wider types, meaning that the type
resulting from an operation is not necessarily the same as that of the operands.

2.2.4 Run-time error checking

C programs can be compiled into small and effi cient machine code, but the trade-off is that there is a
very limited degree of run-time checking. C pr ograms generally do not provide run-time checking for
common problems such as arithmetic exceptions (e.g. divide by zero), overfl ow, validity of pointers, or
array bound errors. The C philosophy is that the programmer is responsible for making such checks
explicitly.

MISRA C 2012 final.indd 3 17/03/2013 22:52:08

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

4

3 Tool selection

3.1 The C language and its compiler
When work started on this document, the ISO standard for the C language was ISO/IEC 9899:1999 [8]
as corrected by [9], [10] and [11]. This vers ion of the language is hereafter referred to as C99. However,
many compilers are still available for its predecessor, defi ned by ISO/IEC 9899:1990 [2] as amended
and corrected by [4], [5] and [6], and hereafter referred to as C90. Some compilers provide an option
to select between the two versions of the language.

The current ISO standard for the C language is ISO/IEC 9899:2011 [13] as corrected by [14]. When
this standard was published, work on the MISRA C Guidelines had been nearly completed and it has
therefore not been possible to incorporate guidance for this later version.

Note: access to a copy of the relevant standard is not necessary for the use of MISRA C, but it may be
helpful.

The choice between C90 and C99 might be aff ected by factors such as the amount of legacy code
being reused on the project and the availability of compilers for the target processor.

The compiler selected for the project should meet the requirements of a conforming freestanding
implementation for the chosen version of the C language. It may exceed these requirements, for
example by providing all the features of the language (a freestanding implementation need only
provide a well-defi ned subset), or it might provide extensions as permitted by the language standard.

Ideally, confi rmation that the compiler is indeed conforming should be supplied by the compiler
developer, for example by providing details of the conformance tests that were run and the results
that were obtained.

Sometimes, there may be a limited choice of compilers whose quality may not be known. If it proves
diffi cult to obtain information from the compiler developers, the following steps could be taken to
assist in the selection process:

• Checking that the compiler developer follows a suitable software development process, e.g.
one that meets the requirements of ISO 9001:2008 [21] as assessed using ISO 90003:2004 [22];

• Reading reviews of the compiler and user experience reports;

• Reviewing the size of the user base and types of applications developed using the compiler;

• Performing and documenting independent validation testing, e.g. by using a conformance
test suite or by compiling existing applications.

Note: some process standards require qualifi cation of compilers in some situations, e.g.
IEC 61508:2010 [32], ISO 26262:2011 [23] and DO-178C [24].

MISRA C 2012 final.indd 4 17/03/2013 22:52:09

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

5

Se
ct

io
n

3:
 T

oo
l s

el
ec

tio
n3.2 Analysis tools

It is possible to check that C source code complies with MISRA C by means of inspection alone.
However, this is likely to be extremely time-consuming and error prone. Any realistic pro cess for
checking code against MISRA C will therefore involve the use of at least one static analysis tool.

All of the factors that apply to compiler selection apply also to the selection of static analysis tools,
although the validation of analysis tools is a little diff erent from that of compilers. An ideal static
analysis tool would:

• Detect all violations of MISRA C guidelines;

• Produce no “false positives”, i.e. would only report genuine violations and would not report
non-violations or possible violations.

For the reasons explained in Section 6.5, it is not, and never will be, possible to produce a static
analysis tool that meets this ideal behaviour. The ability to detect the maximum number of violations
possible, while minimizing the number of false positive messages, is therefore an important factor in
choosing a tool.

There is a wide range of tools available with execution times ranging from seconds to days. Broadly
speaking, tools that consume less time are more likely to produce false positives than those that
consume large amounts of time. Consideration should also be given to the balance between analysis
time and analysis precision during tool selection.

Analysis tools vary in their emphasis. Some might be general purpose, whereas others might focus
on performing a thorough analysis of a subset of potential issues. Thus it might be necessary to use
more than one tool in order to maximize the coverage of issues.

Note: some process standards, including IEC 61508:2010 [32], ISO 26262:2011 [23] and DO-178C [24],
require the qualifi cation of verifi cation tools such as static analysers in some situations.

MISRA C 2012 final.indd 5 17/03/2013 22:52:09

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

6

4 Prerequisite knowledge

4.1 Training
In order to ensure an appropriate level of skill and competence on the part of those who produce C
source code, formal training should be provided for:

• The use of the C programming langu age for embedded applic ations;

• The use of the C programming language for high-integrity and safety-related systems.

Since compilers and static analysis tools are complex pieces of software, consideration should also be
given to providing training in their use. In the case of static analysis tools, it might be possible to obtain
training in their use specifi cally in relation to MISRA C.

4.2 Understanding the compiler
In this document, the term “compiler”, referred to as “the implementation” by the ISO C standards [2],
[8], means the compiler itself as well as any associated tools such as a linker, library man ager and
executable fi le format conversion tools.

The compiler may provide various options that control its behaviour. It is important to understand the
eff ect of these options as their use, or non-use, might aff ect:

• The availability of language extensions;

• The conformance of the compiler with the ISO C standards;

• The resources, especially processing time and memory space, required by the program;

• The likelihood that a defect in the compiler will be exposed, such as might occur when complex
highly-optimizing code transformations are performed.

It is important to understand the way in which the compiler implements those features of the
C language that are termed “implementation-defi ned” in the ISO C standards. It is also important to
understand any language extensions that the compiler may provide.

The compiler developer may maintain a list of defects that are known to aff ect the compiler along
with any workarounds that are available. Knowledge of the contents of this list would clearly be
advantageous before starting a project using that compiler. If such a list is not available from the
compiler developer then a local list should be maintained whenever a defect, or suspected defect, is
discovered and reported to the compiler developer.

4.3 Understanding the static analysis tools
The documentation for each static analysis tool being used on a project should be reviewed in order
to understand:

• How to confi gure the analyser to match the compiler’s implementation-defi ned beh aviour,
e.g. sizes of the integer types;

• Which MISRA C guidelines the analyser is capable of checking (Section 5.3);

• Whether it is possible to confi gure the analyser to handle any language extensions that will
be used;

• Whether it is possible to adjust the analyser’s behaviour in order to achieve a diff erent balance
between analysis time and analysis precision.

MISRA C 2012 final.indd 6 17/03/2013 22:52:09

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

7

Se
ct

io
n

4:
 P

re
re

qu
is

ite
 k

no
w

le
dg

eThe tool developer may maintain a list of defects that are known to aff ect the tool along with any
workarounds that are available. Knowledge of the contents of this list would clearly be advantageous
before starting a project using that tool. If such a list is not available from the tool developer then a
local list should be maintained whenever a defect or suspected defect is discovered and reported to
the tool developer.

MISRA C 2012 final.indd 7 17/03/2013 22:52:09

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

8

5 Adopting and using MISRA C

5.1 Adoption
MISRA C should be adopted from the outset of a project.

If a project is building on existing code that has a proven track record then the benefi ts of compliance
with MISRA C may be outweighed by the risks of in troducing a defect when mak ing the code compliant.
In such cases a judgement on adopting MISRA C should be made based on the net benefi t likely to
be obtained.

5.2 Software development process
MISRA C is intended to be used within the framework of a documented software development
process. While MISRA C can be used in isolation, it is of greater benefi t when used within a process to
ensure that other activitie s have been performed correctly so that, for example:

• The software requirements, including any safety requirements, are complete, unambiguous
and correct;

• The design specifi cations reaching the coding phase are correct, consistent with the
requirements and do not contain any other functionality;

• The object modules produced by the compiler behave as specifi ed in the corresponding
designs;

• The object modules have been tested, individually and together, to identify and eliminate
errors.

MISRA C should be used by programmers before code is submitted for review or unit testing. A
project that checks for MISRA C compliance late in its lifecycle is likely to spend a considerable amount
of time re-coding, re-reviewing and re-testing. It is therefore expected that the software development
process will require the early application of MISRA C principles.

A full discussion of the requirements for safety-related software development processes is outside
the scope of this document. Examples of development processes may be found in standards and
guidelines such as IEC 61508:2010 [32], ISO 26262:2011 [23], DO-178C [24], EN 50128:2011 [33] and
IEC 62304:2006 [34]. The remainder of this section deals with the interaction between MISRA C and
the software development process.

5.2.1 Process activities required by MISRA C

In order to use MISRA C, it is necessary to develop and document:

• A compliance matrix, showing how compliance with each MISRA C guideline will be checked;

• A deviation process by which justifi able non-compliances can be author ized and recorded.

The software development process should also document the steps that will be taken to avoid
run-time errors, and to demonstrate that they have been avoided. For example, it should include
descriptions of the processes by which it is demonstrated and recorded that:

• The execution environment provides suffi cient resources, especially processing time and
stack space, for the program;

• Run-time errors, such as arithmetic overfl ow, are absent from areas of the program: for
example by virtue of code that checks the ranges of inputs to a calculation.

MISRA C 2012 final.indd 8 17/03/2013 22:52:09

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

9

Se
ct

io
n

5:
 A

do
pt

in
g

an
d

us
in

g
M

IS
R

A
C5.2.2 Process activities expected by MISRA C

It is recognized that a consistent style assists programmers in understanding code written by
others. However, since style is a matter for individual organizations, MISRA C does not make any
recommendations related purely to programming style. It is expected that local style guides will be
developed and used as part of the software development process.

The use of metrics is recommended by many software process standards as a means to identify
code that may require additional review and testing eff ort. However, the nature of the metrics being
collected, and their corresponding thresholds, will be determined by the industry, organization and/or
the nature of the project. This document, therefore, does not off er any guidance on software metrics.

5.3 C ompliance
In order to ensure that code complies with all of the MISRA C guidelines, a compliance matrix should be
produced. This matrix lists each guideline and indicates how it is to be checked. For most guidelines,
the easiest, most reliable and most cost-eff ective means of checking will be to use a static analysis tool
or tools, the compiler, or a combination of these. Where a guideline cannot be completely checked by
a tool, then a manual review will be required.

Some automatic code generator developers supply a compliance statement along with their tools.
This statement identifi es those MISRA C guidelines that will not be violated by the generated code
provided the tool has been confi gured as specifi ed by the tool developer. For example it might:

• List the guidelines that are not violated; or

• State that all mandatory and required guidelines are not violated.

The use of an automatic code generator compliance statement can signifi cantly reduce the number
of MISRA C guidelines that need to be checked by other means.

See Table 1 for an example of a compliance matrix, and see Appendix A for a summary of the guidelines,
which could be used to assist in generating a full compliance matrix.

Guideline
Compilers Checking tools

Manual review
‘A’ ‘B’ ‘A’ ‘B’

Dir 1.1 Procedure x

Dir 2.1 no errors no errors

…

Rule 4.1 message 38

Rule 4.2 warning 97

Rule 5.1 warning 347

…

Table 1: Example compliance matrix

MISRA C 2012 final.indd 9 17/03/2013 22:52:09

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

10

Section 5: Adopting and using M
ISR

A C

Once a compliance matrix is in place, the compilers and analysers can be confi gured and used to
generate a list of messages that require investigation.

The following information should be recorded for each tool used in the checking process:

• Version number;

• Options used when invoking the tool;

• Any confi guration data that the tool uses.

5.3.1 Compiler confi guration

If the compiler provides a choice between C90 and C99, it must be confi gured for the variant being
used on the project. Similarly, if the compiler provides a choice of targets, it must be confi gured for
the correct variant of the selected target.

The compiler’s optimization options should be reviewed and selected carefully in order to ensure
that an appropriate balance between execution speed and code size has been obtained. Using more
aggressive optimizations may increase the risk of exposing defects in the compiler.

Even if the compiler is not being used to ensure compliance, it may produce messages during the
translation process that indicate the presence of potential defects. If the compiler provides control over
the number and nature of the messages it produces, these should be reviewed and an appropriate
level selected.

5.3.2 S tatic analysis tool confi guration

While a compiler is usually specifi c to a particular processor, or family of processors, static analysis
tools tend to be general purpose. It is therefore important to confi gure each static analysis tool to
refl ect the implementation decisions made by the compiler. For example, static analysers need to
know the sizes of the integer types.

If the static analyser supports both C90 and C99, it will need to be confi gured to match the variant in
use on the project.

If possible, the static analyser should be confi gured to support language extensions. If this is not
possible then an alternative procedure will need to be put in place for checking that the code conforms
to the extended language.

It may also be necessary to confi gure a static analyser in order to allow it to check certain guidelines.
For example, unless a project is using _Bool to represent Boolean data, an analyser needs to be made
aware of the essentially Boolean type (Appendix D) in order to check some MISRA C guidelines.

5.3.3 Investigati ng messages

The messages produced by the compliance checking process, or by the translation process, fall into
one of the following categories:

1. Correct diagnosis of a MISRA C guideline violation;

2. Diagnosis of a possible MISRA C guideline violation;

3. False diagnosis of a MISRA C guideline violation;

4. Diagnosis of something that is not a MISRA C guideline violation.

The preferred remedy for any messages in category (1) is to correct the source code in order to make
it compliant with the MISRA C guideline. If it is undesirable or impossible to render the code MISRA C
compliant then a deviation may need to be raised (see Section 5.4).

MISRA C 2012 final.indd 10 17/03/2013 22:52:09

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

11

Se
ct

io
n

5:
 A

do
pt

in
g

an
d

us
in

g
M

IS
R

A
CAny messages in the other categories should be investigated. Sometimes, the easiest and quickest

solution will be to modify the source code to eliminate the message. However, this may not always be
possible or desirable, in which case a record of the investigation should be kept. The purpose of the
record is to:

• Explain why, despite diagnosis of a possible violation, the code complies with the MISRA C
guideline for category (2) messages;

• Explain and, if possible, obtain the tool developer’s agreement that the tool has incorrectly
diagnosed a violation of the MISRA C guideline for category (3) messages;

• Justify why the message can safely be disregarded for category (4) messages.

All records of such investigations should be reviewed and approved by an appropriately qualifi ed
technical authority.

5.4 Deviation procedure
In some instances it may be necessary to deviate from the guidelines given in this document. For
example, a common method of accessing memory-mapped I/O ports at fi xed addresses does not
comply with MISRA C because it involves converting an integer to a pointer:

#define PORT (*(volatile unsigned char *)0x0002)

PORT = 0x10u;

It is important that such deviations are properly recorded and authorized. Individual programmers can
be prevented from deviating guidelines by means of a formal authorization procedure. Formal record-
keeping is good practice and supports any safety argument that might be made for the software.

The deviation procedure should be formalized within the software development process. No process
is imposed by MISRA C because methods used will vary between organizations, for example:

• The physical methods used to raise, review and approve a deviation;

• The degree of review and evidence required, which may vary according to the guideline in
question, before a deviation can be approved.

Each MISRA C guideline is given a category which aff ects the way in which deviations may be applied
(see Section 6.2).

Deviations are divided into two categories: Project Deviations and Specifi c Deviations.

A Project Deviation is used when a MISRA C guideline is deviated in a particular class of circumstances.
For example, if memory-mapped I/O is used in a communications driver then it might be appropriate
to raise a Project Deviation to cover use of memory-mapped I/O in all fi les making up that driver.
Project Deviations are typically, though not exclusively, raised early in the project.

A Specifi c Deviation is used when a MISRA C guideline is deviated for a single instance in a single fi le.

MISRA C 2012 final.indd 11 17/03/2013 22:52:09

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

12

Section 5: Adopting and using M
ISR

A C

A deviation record should include:

• The guideline being deviated;

• The circumstances in which the deviation is permitted: for Project Deviations this may be a
generic description such as “all code in module X” but for Specifi c Deviations it will identify the
location at which the non-compliant code occurs;

• Justifi cation for the deviation, including an assessment of the risks associating with deviating
compared with other possibilities;

• Demonstration of how safety is assured, for example a proof that an unsafe condition cannot
occur, together with any additional reviews or tests that are required;

• Potential consequences of the deviation and any mitigating actions that have been taken.

An example deviation record is provided in Appendix I.

5.5 Claiming compliance
Compliance cannot be claimed for a n organization, only for a project.

When claiming compliance with MISRA C for a project, a developer is stating that evidence exists to
show:

1. A compliance matrix has been completed which shows how compliance has been enforced;

2. All the C code in the project is compliant with the guidelines of this document, or is subject to
approved deviations;

3. There is a record of each approved deviation;

4. The guidance given in this section, as well as that given in Section 3 and Section 4, has been
adopted;

5. Staff are suitably skilled and have a suffi cient range of experience.

Note: when claiming that code complies with the guidelines, the assumption is being made that the
tools or reviewers have identifi ed all non-compliances. Since other tools or reviewers might identify
diff erent non-compliances, it is important to recognize that compliance claims are not absolute, but
depend on the checking process used.

A summary of the guidance referred to in point (4) is provided in the form of a checklist in Appendix F.

MISRA C 2012 final.indd 12 17/03/2013 22:52:09

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

13

6 Introduction to the guidelines
This section explains the presentation of the guid elines in Section 7 and Section 8, the main content
of this document, and serves as an introduction to those sections.

6.1 Guideline classifi cation
Every MISRA C guideline is classifi ed as either being a “rule” or a “dir ective”.

A directive is a guideline for which it is not possible to provide the full description necessary to perform
a check for compliance. Additional information, such as might be provided in design documents or
requirements specifi cations, is required in order to be able to perform the check. Static analysis tools
may be able to assist in checking compliance with directives but diff erent tools may place widely
diff erent interpretations on what constitutes a non-compliance.

A rule is a guideline for which a complete description of the requirement has been provided. It should
be possible to check that source code complies with a rule without needing any other information.
In particular, static analysis tools should be capable of checking compliance with rules subject to the
limitations described in Section 6.5.

Section 7 contains all the directives and Section 8 contains all the rules.

6.2 Guideline categories
Every MISRA C guideline is given a single category of “mandatory”, “required” or “advisory”, whose
meaning s are described below. Beyond this basic classifi cation the document does not give, nor
intend to imply, any grading of importance of each of the guidelines. All required guidelines, whether
rules or directives, should be considered to be of equal importance, as should all mandatory and
advisory ones.

6.2.1 Mandatory guidelines

C code which is claimed to conform to this document shall comply with every mandatory guideline —
deviation from m andatory guidelines is not permitted.

Note: if a checking tool produces a diagnostic message, this does not necessarily mean that a guideline
has been violated for the reasons given in Section 6.5.

6.2.2 Required guidelines

C code which is claimed to conform to this document shall comply with every required guideline, with
a formal deviation requi red, as described in Section 5.4, where this is not the case.

An organization or project may choose to treat any required guideline as if it were mandatory.

6.2.3 Advisory guidelines

These are recommendations. However, the status of “advisory” does not mean that these items can
be ignored, but rather that they shou ld be followed as far as is reasonably practical. Formal deviation
is not necessary for advisory guidelines but, if the formal deviation process is not followed, alternative
arrangements should be made for documenting non-compliances.

An organization or project may choose to treat any advisory guideline as if it were mandatory or
required.

MISRA C 2012 final.indd 13 17/03/2013 22:52:09

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

14

Section 6: Introduction to the guidelines

6.3 Organization of guidelines
The guidelines are organized under diff erent topics within the C language. However there is inevitably
overlap, with one guidelin e possibly being relevant to a number of topics. Where this is the case the
guideline has been placed under the most relevant topic.

6.4 Redundancy in the guidelines
There are a few cases within this document where a guideline is given that refers to a language feature
that is banned or advise d against elsewhere in the document. This is intentional. It may be that the
user chooses to use that feature, either by raising a deviation against a required guideline, or by
choosing not to follow an advisory guideline. In this case the second guideline, constraining the use
of that feature, becomes relevant.

6.5 Decidability of rules
Each mandatory, required and advisory rule is classifi ed as decidable or undecidable. This classifi cation
describes the theoretical abi lity of a static analyser to answer the question “Does this code comply
with this rule?” The directives are not classifi ed in this way because it is impossible, given only the
source code, to devise an algorithm that could guarantee to check for compliance.

A rule is decidable if it is possible for a program to answer the question with a “yes” or a “no” in every
case and undecidable otherwise. A review of the theory of computation, on which this classifi cation
is based, is beyond the scope of this document but a rule is likely to be undecidable if detecting
violations depends on run-time properties such as:

• The value that an object holds;

• Whether control reaches a particular point in the program.

Decidable rules have useful properties with regard to static analysis. Provided that a defect-free and
complete static analyser is confi gured correctly:

• A reported violation of a decidable rule indicates a real violation;

• No reported violation of a decidable rule indicates there are no violations in the code being
analysed.

Some examples of decidable rules are:

• Rule 5.2: depends on the names and scopes of identifi ers;

• Rule 11.3: depends on the source pointer and destination pointer types;

• Rule 20.7: depends on the syntactic form of the result of a macro expansion.

Static analysers vary in their ability to detect violations of undecidable rules:

• A reported violation of an undecidable rule may not necessarily indicate a real violation;
some analysers take the approach of reporting possible violations to remind users of the
uncertainty;

• No reported violation of an undecidable rule does not necessarily indicate that there are no
violations in the code being analysed.

Some examples of undecidable rules are:

• Rule 12.2: depends on the value of the right-hand operand of a shift operator;

• Rule 2.1: depends on knowing whether execution never reaches a certain point.

MISRA C 2012 final.indd 14 17/03/2013 22:52:09

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

15

Se
ct

io
n

6:
 In

tr
od

uc
tio

n
to

 th
e

gu
id

el
in

esAs indicated in Section 5.3.3, a process should be developed for analysing the results of static analysis
and recording the outcome. Particular attention should be paid to the process for analysing any
output that relates to undecidable rules.

6.6 Scope of analysis
Each rule is classifi ed according to the amount of code that needs to be checked in order to detect
violations. As for decidability, the concept of analysis scope is not applied to directives.

The an alysis scopes that may be applied to rules are “Single Translation Unit” and “System”.

If a rule is classifi ed as capable of being checked on a “Single Translation Unit” basis then it is possible
to detect all violations within a project by checking each translation unit independently. For example,
the presence of switch statements that do not contain default labels (Rule 16.4) within one translation
unit has no eff ect on whether other translation units contain such switch statements.

If a rule is classifi ed as needing to be checked on a “System” basis, then identifying violations of a rule
within a translation unit requires checking more than the translation unit in question. Rules that are
classifi ed as “System” are best checked by analysing all the source code, although it will be possible
to identify some violations when checking a subset of the whole source. For example, if a project has
two translation units A and B, it is possible to check that all declarations and defi nitions of an object
within each translation unit use the same type names and qualifi ers (Rule 8.3). However, this does not
guarantee that the declarations and defi nitions in A use the same type names and qualifi ers as those
in B. All of the source code that will be compiled and linked into the executable therefore needs to be
checked to guarantee compliance with this rule.

All undecidable rules need to be checked on a “System” basis because, in the general case, information
about the behaviour of other translation units will be needed. For example, whether or not the value
of the automatic object x is set before x is used (Rule 9.1) in the function g, below, will depend on the
behaviour of the function f which is defi ned in another translation unit:

extern void f (uint16_t *p);

uint16_t y;

void g (void)
{
 uint16_t x; /* x is not given a value */

 f (&x); /* f might modify the object pointed to by its parameter */
 y = x; /* x may or may not be unset */
}

6.7 Multi-organization projects
Projects may involve code from various organizations, for example:

• The Standard Library code from the compiler implementer;

• Low-level driver code from a device vendor;

• Operating system and high-level driver code from a specialist s upplier;

• Application code which may be shared between collaborating organizations according to
their expertise.

MISRA C 2012 final.indd 15 17/03/2013 22:52:09

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

16

Section 6: Introduction to the guidelines

The Standard Library code is likely to be concerned with effi ciency of execution. It may rely on
implementation details or unspecifi ed behaviours such as:

• Casting pointers to object types into pointers to other object types;

• The layout of stack frames, and in particular the locations of function parameters within
those frames;

• Embedding assembly language statements in C.

As it is part of the implementation, and its functionality and interface is defi ned in the ISO C standard,
The Standard Library code is not required to comply with MISRA C. Unless otherwise specifi ed in
the individual guidelines, the contents of standard header fi les, and any fi les that are included during
processing of a standard header fi le, are not required to comply with MISRA C. However, guidelines
that rely on the interface provided by standard header declarations and macros are still applicable.
For example, the essential type rules apply to the types of arguments passed to functions specifi ed in
The Standard Library and to their results.

All other code should comply with the MISRA C guidelines to the greatest extent possible. If all the
source code is available then the entire program can be checked for compliance. However, in many
projects it is not possible for the developing organization to obtain all the source code. For example,
collaborating organizations may share functional specifi cations, interface specifi cations and object
code but are likely to protect their own intellectual property by not sharing source code. When only
part of the source code is available for analysis, other techniques should be applied in order to confi rm
compliance. For example:

• Organizations that supply commercial code may be willing to issue a statement of MISRA C
compliance;

• Organizations that are collaborating might:

 - Agree upon a common procedure and tools that each will apply to their own source code;

 - Supply each other with stub versions of source code to permit cross-organizational
checks to be made.

A project should defi ne which of the following methods it will use to deal with code supplied by other
organizations:

1. In the same manner as code being developed in-house — this relies on having the source
code available;

2. In the same manner as The Standard Library — this relies on the organization supplying a
suitable MISRA C compliance statement;

3. Compliance checks to be performed on the contents of header fi les and their interface — this
assumes that no compliance statement is available and no source code, other than header
fi les, is available.

In case (3), appropriate additional verifi cation and validation techniques should be employed prior to
using the code.

Note: some process standards may include wider requirements for managing multi-organization
developments, for example ISO 26262 [23] Part 8 Clause 5 “Interfaces in distributed development”.

6.8 Automatically generated code
The MISRA C guidelines are applicable to code that has been generated automatically. Responsibility
for compliance lies both with the developer of the automatic code generation tool, and with the
developer of the model from which code is being generated. Since there are several modelling
packages, each of which may have several automatic code generators, it is not possible to allocate this

MISRA C 2012 final.indd 16 17/03/2013 22:52:09

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

17

Se
ct

io
n

6:
 In

tr
od

uc
tio

n
to

 th
e

gu
id

el
in

esresponsibility individually for each MISRA C guideline. It is expected that users of modelling packages
and code generators will employ relevant guidelines such as MISRA AC GMG [17], MISRA AC SLSF [18]
and MISRA AC TL [19].

The category assigned to a MISRA C guideline when applied to automatically generated code is not
necessarily the same as that when applied to manually generated code. When making this distinction,
it is important to note that some modelling packages permit the injection of manually generated code
into a model. Such code is not treated as having been generated automatically when determining the
applicable category of a guideline.

Appendix E identifi es those MISRA C guidelines whose category as applied to automatically generated
code is diff erent from that for manually generated code. It also states the documentation requirements
that are placed on automatic code generator developers.

6.9 Presentation of gui delines
The individual requirements of this document are presented in the following format:

Ident Requirement text

[S ource ref]

Catego ry Category

Analysis D ecidability, Scope

Applies to Cxx

where:

• “Ident” is a unique identifi er for the guideline;

• “Requirement text” is the guideline itself;

• “Source ref” indicates the primary source(s) which led to this item or group of items, where
applicable. See Section 6.10 for an explanation of the signifi cance of these references, and a
key to the source materials;

• “Category” is one of “Mandatory”, “Required” or “Advisory”, as explained in Section 6.2;

• “Decidability” is one of “Decidable” or “Undecidable”, as explained in Section 6.5;

• “Scope” is one of “System” or “Single Translation Unit”, as explained in Section 6.6;

• “Cxx” is one or more of “C90” and “C99”, separated by a comma, indicating which versions of
the C language the guideline applies to.

Note: since directives do not have a decidability or a scope of analysis, the “Analysis” line is omitted
for directives.

In addition, supporting text is provided for each item or group of related items. The text gives, where
appropriate, some explanation of the underlying issues being addressed by the guideline(s), and
examples of how to apply the guideline(s).

Within the supporting text, there may be a heading titled “Amplifi cation”, followed by text that provides
a more precise description of the guideline. An amplifi cation is normative; if it confl icts with the
headline, the amplifi cation takes precedence. This mechanism is convenient as it allows a complicated
concept to be conveyed using a short headline.

Within the supporting text, there may be a heading titled “Exception”, followed by text that describes
situations in which the rule does not apply. The use of exceptions permits the description of some

MISRA C 2012 final.indd 17 17/03/2013 22:52:09

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

18

Section 6: Introduction to the guidelines

guidelines to be simplifi ed. It is important to note that an exception is a situation in which the guideline
does not apply. Code that complies with a guideline by virtue of an exception does not require a
deviation.

The supporting text is not intended as a tutorial in the relevant language feature, as the reader is
assumed to have a working knowledge of the language. Further information on the language features
can be obtained by consulting the relevant section of the language standard or other C language
reference books. Where a source reference is given for one or more of the “Portability Issues” listed
in The Standard, then the original issue raised in it may provide additional help in understanding the
guideline.

Within the guidelines, and their supporting text, the following font styles are used to represent
C keywords and C code:

• C keywords appear in italic text;

• Items defi ned in the Glossary appear in italic text;

• C code appears in a monospaced font, either within other text;

• Or

 as separate code fragments.

Note: where code is quoted the fragments may be incomplete (for example an if statement without its
body). This is for the sake of brevity.

In code fragments the following typedef ’d types have been assumed (this is to comply with Dir 4.6):

uint8_t /* unsigned 8-bit integer */
uint16_t /* unsigned 16-bit integer */
uint32_t /* unsigned 32-bit integer */
int8_t /* signed 8-bit integer */
int16_t /* signed 16-bit integer */
int32_t /* signed 32-bit integer */
float32_t /* 32-bit floating-point */
float64_t /* 64-bit floating-point */

Non-specifi c object names are constructed to give an indication of the type. For example:

uint8_t u8a; /* 8-bit unsigned integer */
int16_t s16b; /* 16-bit signed integer */
int32_t s32c; /* 32-bit signed integer */
bool_t bla; /* essentially Boolean */
enum atag ena; /* enumerated type */
char chb; /* character */
float32_t f32a; /* 32-bit floating-point */
float64_t f64b; /* 64-bit floating-point */

6.10 Understanding the source references
Where a guideline originates from one or more published sources these are indicate d in square
brackets after the guideline. This serves two purposes. Firstly the specifi c sources may be consulted
by a reader wishing to gain a fuller understanding of the rationale behind the guideline (for example
when considering a request for a deviation). Secondly, with regard to Portability Issues described in
the ISO C standard, the form of the source gives extra information about the nature of the problem.

Rules which do not have a source reference may have originated from a contributing company’s in-
house standard, or have been suggested by a reviewer, or be widely accepted good practice.

MISRA C 2012 final.indd 18 17/03/2013 22:52:09

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

19

Se
ct

io
n

6:
 In

tr
od

uc
tio

n
to

 th
e

gu
id

el
in

es6.10.1 ISO C portability issue references

The ISO C Portability Issues are described in subsections of Annexes in the relevant standard. It is
important to note that for both C90 and C99, the numbering of references is derived from the original
standard and not from any later version that incorporates corrections and amendments. The reason
for this decision is partly historical, in that MISRA C:2004 used this scheme, and partly practical, in that
there is no offi cially-available revision of the C99 Standard that incorporates its Technical Corrigenda
although there is a draft [12].

The subsections of the relevant standard corresponding to this kind of reference are:

Reference Annex G of
ISO 9899:1990

Annex J of
ISO 9899:1999

Unspecifi ed G.1 J.1

Undefi ned G.2 J.2

Implementation G.3 J.3

Locale G.4 J.4

Where text follows the reference, it has the following meanings:

• Annex G of [2] references: the text identifi es the number of an item or items in the relevant
section of the Annex, numbered from the beginning of that section. So for example [Locale 2]
refers to the second item in section G.4 of The Standard and [Undefi ned 3, 5] refers to the
third and fi fth items in Section G.2 of The Standard.

• Annex J of [8] references: for sections J.1, J.2 and J.4, the same interpretation as above applies.
For section J.3, the text identifi es the subsection of J.3, followed by a parenthesized item
number or numbers. So for example [Unspecifi ed 6] refers to the sixth item in Section
J.1 of The Standard and [Implementation J3.4(2, 5)] refers to the second and fi fth items in
Section J.3.4 of The Standard.

Where a guideline is based on issues from Annex G (C90) or Annex J (C99) of The Standard, it is helpful
for the reader to understand the distinction between the Unspecifi ed, Undefi ned, Implementation
and Locale references. These are explained briefl y here, and further information can be found in
Hatton [3].

Unspecifi ed

T hese are language constructs that must compile successfully, but in which the compiler writer has
some freedom as to what the construct does. An example of this is the “order of evaluation” described
in Rule 13.2.

While the use of some unspecifi ed behaviour is unavoidable, it is unwise to assume that the compiler
produces object code that behaves in a particular way; the compiler need not even perform
consistently across all possible constructs.

MISRA C identifi es specifi c instances of unspecifi ed behaviour which are liable to result in unsafe
behaviour.

Undefi ned

These are essent ially programming errors, but for which the compiler writer is not obliged to provide
error messages. Examples are invalid parameters to functions, or functions whose arguments do not
match the defi ned parameters.

These are particularly important from a safety point of view, as they represent programming errors
which may not necessarily be trapped by the compiler.

MISRA C 2012 final.indd 19 17/03/2013 22:52:09

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

20

Section 6: Introduction to the guidelines

Implementation

These are s imilar to the “unspecifi ed” issues, the main diff erence being that the compiler writer must
take a consistent approach and document it. In other words the functionality can vary from one
compiler to another, making code non-portable, but on any one compiler the behaviour should be
well-defi ned. An example of this is the behaviour of the integer division and remainder operators, /
and %, when applied to one positive and one negative integer.

The implementation-defi ned behaviours tend to be less critical from a safety point of view, provided
the compiler writer has fully documented the intended approach and then implemented it consistently.
It is advisable to avoid these issues where possible.

Locale

The locale-specifi c be haviours form a small set of features which may vary with international
requirements. An example of this is the facility to represent a decimal point by the “,” character instead
of the “.” character. No issues arising from this source are addressed in this document.

6.10.2 Other references

References other t han the ISO C Portability Issues are taken from the following sources:

Reference Source

MISRA Guidelines The MISRA Guidelines [15]

Koenig “C Traps and Pitfalls”, Koenig [31]

IEC 61508 IEC 61508:2010 [32]

ISO 26262 ISO 26262:2011 [23]

DO-178C DO-178C [24]

Unless stated otherwise, the text following a reference gives the relevant page number.

MISRA C 2012 final.indd 20 17/03/2013 22:52:09

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

21

7 Directives

7.1 The implementation

Dir 1.1 Any implementation-defi ned behaviour on which the output of the
program depends shall be documented and understood

C90 [Annex G.3], C99 [Annex J.3]

Category Required

Applies to C90, C99

 Amplifi cation

Appendix G of this document lists, for both C90 and C99, those implementation-defi ned behaviours
that:

• Are considered to have the potential to cause unexpected program operation, and

• May be present in a program even if it complies with all the other MISRA C guidelines.

All of these implementation-defi ned behaviours on which the program output depends must be:

• Documented, and

• Understood by developers.

Note: a conforming implementation is required to document its treatment of all implementation-
defi ned behaviour. The developer of an implementation should be consulted if any documentation is
missing.

Rationale

 It is important to know that the output of a program was intentional and was not produced by chance.

Some of the more common implementation-defi ned behaviours on which safety-related embedded
software is likely to depend are described below.

Core behav iour

The fundamental implementation-defi ned behaviours, which are likely to be required by most
programs, include:

• How to identify a diagnostic message produced during translation;

• The type of the function main, commonly declared as void main (void) in freestanding
implementations;

• The number of signifi cant characters in identifi ers — needed to confi gure an analysis tool for
Rule 5.2;

• The source and execution character sets;

• The sizes of the integer types;

• How a #include ’d name is mapped onto a fi le name and located in the host fi le system.

MISRA C 2012 final.indd 21 17/03/2013 22:52:09

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

22

Section 7: D
irectives

Extensions

Extensions are often used in embedded systems to provide access to peripherals and to place
objects into regions of memory with special properties such as Flash EEPROM or fast-access RAM. A
conforming implementation is permitted to provide extensions provided that they do not alter the
meaning of any strictly conforming program.

Some C90 implementations may provide extensions which implement a subset of the C99 features.

Some of the methods by which an implementation can provide extensions are:

• The #pragma preprocessing directive or the _Pragma operator (C99 only);

• New keywords.

The Standard Library

 Some aspects of The Standard Library implementation that may be important are:

• The values assigned to errno when certain Standard Library functions are used;

• The implementation of clock and time functions;

• The characteristics of the fi le system.

The Application Binar y Interface

It is sometimes necessary to interface C code with assembly language, for example to improve
execution speed in those places where it is critical. It might also be necessary to interface code
produced by diff erent compilers, possibly for diff erent languages.

The Application Binary Interface (ABI) for a compiler provides the information necessary to perform
this task, including some of the implementation-defi ned behaviours. It typically specifi es:

• How function parameters are passed in registers and on the stack;

• How function values are returned;

• Which registers must be preserved by a function;

• How objects with automatic storage duration are allocated to stack frames;

• Alignment requirements for each data type;

• How structures are laid out and how bit-fi elds are allocated to storage units.

Some processors have a standard ABI which will be used by all implementations. Where no standard
ABI exists, an implementation will provide its own.

Integer division

In C9 0, signed integer division or remainder operations in which either operand has a negative value
may either round downwards or towards zero. In C99, rounding is guaranteed to be towards zero.

Floating-point impleme ntation

The implementation of fl oating-point types can have signifi cant impact on program behaviour, for
example:

• The range of values and the precision with which they are stored;

• The direction of rounding following fl oating-point operations;

MISRA C 2012 final.indd 22 17/03/2013 22:52:09

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

23

Se
ct

io
n

7:
 D

ire
ct

iv
es• The direction of rounding when converting to narrower fl oating-point types or to integer

types;

• The behaviour in the presence of underfl ow, overfl ow and NaNs;

• The behaviour of library functions in the event of domain and range errors.

See also

Rule 5.1, Rul e 5.2

7.2 Compilation and build

Dir 2.1 All source fi les shall compile without any compilation errors

Category Required

Applies to C90, C99

Rationale

A conforming compiler is per mitted to produce an object module despite the presence of compilation
errors. However, execution of the resulting program may produce unexpected behaviour.

See Section 5.3.1 for further guidance on controlling and analysing compiler messages.

See also

Rule 1.1

7.3 Requirements traceability

Dir 3.1 All code shall be traceable to documented requirements

[DO-178C Section 6.4.4.3.d]

Category Required

Applies to C90, C99

Rationale

Functionality that is not needed to meet the project requirements gives rise to unnecessary paths.
It is possible that the developers of the software are not aware of the wider implications that might
arise from this additional functionality. For example, developers might add code that toggles the
state of a processor output pin every time a particular point in the program is reached. This might be
very useful during development for measuring timing or for triggering an emulator or logic analyser.
However, even though the pin in question might appear to be unused because it is not mentioned in
the software requirements specifi cation, it might be connected to an actuator in the target controller,
resulting in unwanted external eff ects.

The method by which code is traced back to documented requirements shall be determined by the
project. One method of achieving traceability is to review the code against the corresponding design
documents which have in turn been reviewed against the requirements.

Note: there should not be any confl ict between this guideline and the provision of a protective coding
strategy as the latter should be part of the requirements in a critical system.

MISRA C 2012 final.indd 23 17/03/2013 22:52:09

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

24

Section 7: D
irectives

7.4 Code design

Dir 4.1 Run-time failures shall be minimized
C90 [Undefi ned 15 , 19, 26, 30, 31, 32, 94]

C99 [Undefi ned 15, 16, 33, 40, 43–45, 48, 49, 113]
Category Required

Applies to C90, C99

Rationale

The C language was designed to provide very l imited built-in run-time checking. While this approach
allows generation of compact and fast executable code, it places the burden of run-time checking
on the programmer. In order to achieve the desired level of robustness, it is therefore important
that programmers carefully consider adding dynamic checks wherever there is potential for run-time
errors to occur.

It is sometimes possible to demonstrate that the values of operands preclude the possibility of a run-
time error during evaluation of an expression. In such cases, a dynamic check is not required provided
that the argument supporting its omission is documented. Any such documentation should include
the assumptions on which the argument depends. This information can be used during subsequent
modifi cations of the code to ensure that the argument remains valid.

The techniques that will be employed to minimize run-time failures should be planned and
documented, for example in design standards, test plans, static analysis confi guration fi les and code
review checklists. The nature of these techniques may depend on the integrity requirements of the
project. See Section 5.2 for further details.

Note: the presence of a run-time error indicates a violation of Rule 1.3.

The following notes give some guidance on areas where consideration needs to be given to the
provision of dynamic checks.

• arithmetic errors This includes errors occurring in the evaluation of expressions, such as
overfl ow, underfl ow, divide by zero or loss of signifi cant bits through shifting. In considering
integer overfl ow, note that unsigned integer calculations do not strictly overfl ow but wrap
around producing defi ned, but possibly unexpected, values. Careful consideration should be
given to the ranges of values and order of operation in arithmetic expressions, for example:

float32_t f1 = 1E38f;
float32_t f2 = 10.0f;
float32_t f3 = 0.1f;
float32_t f4 = (f1 * f2) * f3; /* (f1 * f2) will overflow */
float32_t f5 = f1 * (f2 * f3); /* no overflow because (f2 * f3)
 * is (approximately) 1 */

if ((f3 >= 0.0f) && (f3 <= 1.0f))
{
 /*
 * no overflow because f3 is known to be in range 0..1 so the
 * result of the multiplication will fit in type float32_t
 */
 f4 = f3 * 100.0f;
}

• pointer arithmetic Ensure that when an address is calculated dynamically the computed
address is reasonable and points somewhere meaningful. In particular it should be ensured
that if a pointer points within an array, then when the pointer has been incremented or
otherwise altered it still points within the same array. See restrictions on pointer arithmetic
— Rule 18.1, Rule 18.2 and Rule 18.3.

MISRA C 2012 final.indd 24 17/03/2013 22:52:10

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

25

Se
ct

io
n

7:
 D

ire
ct

iv
es• array bound errors Ensure that array indices are within the bounds of the array size before

using them to index the array — Rule 18.1.

• function parameters The validity of arguments should be checked prior to passing them to
library functions — Dir 4.11.

• pointer dereferencing Unless a pointer is already known to be non-NULL, a run-time check
should be made before dereferencing that pointer. Once a check has been made, it is
relatively straightforward within a single function to reason about whether the pointer may
have changed and whether another check is therefore required. It is much more diffi cult to
reason across function boundaries, especially when calling functions defi ned in other source
fi les or libraries.

/*
 * Given a pointer to a message, check the message header and return
 * a pointer to the body of the message or NULL if the message is
 * invalid.
 */
const char *msg_body (const char *msg)
{
 const char *body = NULL;

 if (msg != NULL)
 {
 if (msg_header_valid (msg))
 {
 body = &msg[MSG_HEADER_SIZE];
 }
 }
 return body;
}

 char msg_buffer[MAX_MSG_SIZE];
const char *payload;

payload = msg_body (msg_buffer);

/* Check if there is a payload */
if (payload != NULL)
{
 /* Process the payload */
}

• dynamic memory If dynamic memory allocation is being performed, it is essential to check
that each allocation succeeds and that an appropriate degradation or recovery strategy is
designed and tested.

See also

Dir 4.11, Dir 4.12, Rule 1.3, Rule 18.1, Rule 18.2, Rule 18.3

MISRA C 2012 final.indd 25 17/03/2013 22:52:10

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

26

Section 7: D
irectives

Dir 4.2 All usage of assembly language should be documente d

Category Advisory

Applies to C90, C99

Amplifi cation

The rationale for the use of the assembly language and the mechanism for interfacing between C and
the assembly language should be documented.

Rationale

Assemb ly language code is implementation-defi ned and therefore not portable.

Dir 4.3 Assembly language shall be encapsulated and isolated

Category Required

Applies to C90, C99

Amplifi cation

Where assembly language instructions are used they shall be encapsul ated and isolated in:

• Assembly language functions;

• C functions (inline functions preferred for C99);

• C macros.

Rationale

For reasons of effi ciency it is sometimes necessary to embed simple assembly language instructions
in-line, for example to enable and disable interrupts. If this i s necessary, then it is recommended that
it be achieved by using macros, or for C99, inline functions.

Encapsulating assembly language is benefi cial because:

• It improves readability;

• The name, and documentation, of the encapsulating macro or function makes the intent of
the assembly language clear;

• All uses of assembly language for a given purpose can share the same encapsulation which
improves maintainability;

• The assembly language can easily be substituted for a diff erent target or for purposes of
static analysis.

Note: the use of in-line assembly language is an extension to standard C, and therefore violates
Rule 1.2.

Example

#define NOP asm(" NOP")

MISRA C 2012 final.indd 26 17/03/2013 22:52:10

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

27

Se
ct

io
n

7:
 D

ire
ct

iv
esDir 4.4 Sections of code should not be “commented out”

Category Advisory

Applies to C90, C99

Amplifi cation

This rule applies to both // and /* ... */ styl es of comment.

Rationale

Where it i s required for sections of source code not to be compiled then this should be achieved
 by use of conditional compilation (e.g. #if or #ifdef constructs with a comm ent). Using start and end
comment markers for this purpose is dangerous because C does not support nested comments, and
any comments already existing in the section of code would change the eff ect.

See also

Rule 3.1, Rule 3.2

Dir 4.5 Identifi ers in the same name space with overlapping visibility should
be typographically unambiguous

Category Advisory

Applies to C90, C99

Amplifi cation

The defi nition of the term “unambiguous” should be determined for a project taking into account the
alphabet and language in which the source code is being written.

For the Latin alphabe t as used in English words, it is advised as a minimum that identifi ers should not
diff er by any combination of:

• The interchange of a lowercase character with its uppercase equivalent;

• The presence or absence of the underscore character;

• The interchange of the letter “O”, and the digit “0”;

• The interchange of the letter “I”, and the digit “1”;

• The interchange of the letter “I”, and the letter “l” (el);

• The interchange of the letter “l” (el), and the digit “1”;

• The interchange of the letter “S”, and the digit “5”;

• The interchange of the letter “Z”, and the digit “2”;

• The interchange of the letter “n”, and the letter “h”;

• The interchange of the letter “B”, and the digit “8”;

• The interchange of the letter sequence “rn” (“r” followed by “n”), and the letter “m”;

MISRA C 2012 final.indd 27 17/03/2013 22:52:10

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

28

Section 7: D
irectives

Rationale

Depending upon the font used to display the character set, it is possible for certain glyphs to appear
the same, even though the characters are diff erent. This may lead to the developer confusing an
identifi er with another one.

Example

T he following examples assume the interpretation suggested in the Amplifi cation for the Latin
alphabet and English language.

int32_t id1_a_b_c;
int32_t id1_abc; /* Non-compliant */

int32_t id2_abc;
int32_t id2_ABC; /* Non- compliant */

int32_t id3_a_bc;
int32_t id3_ab_c; /* Non-compliant */

int32_t id4_I;
int32_t id4_1; /* Non-compliant */

int32_t id5_Z;
int32_t id5_2; /* Non-compliant */

int32_t id6_O;
int32_t id6_0; /* Non-compliant */

int32_t id7_B;
int32_t id7_8; /* Non-compliant */

int32_t id8_rn;
int32_t id8_m; /* Non-compliant */

int32_t id9_rn;
struct
{
 int32_t id9_m; /* Compliant */
};

Dir 4.6 typedefs that indicate size and signedness should be used in place of
the basic numerical types

Category Advisory

Applies to C90, C99

Amplifi cation

The basic numerical types of char, short, int, long, long long (C99), fl oat, double and long double s hould
not be used, but specifi c-length typedefs should be used.

For C99, the types provided by <stdint.h> should be used. For C90, equivalent types should be
defi ned and used.

A type must not be defi ned with a specifi c length unless the implemented type is actually of that
length.

It is not necessary to use typedefs in the declaration of bit-fi elds.

MISRA C 2012 final.indd 28 17/03/2013 22:52:10

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

29

Se
ct

io
n

7:
 D

ire
ct

iv
esFor example, on a 32-bit C90 implementation the following defi nitions might be suitable:

typedef signed char int8_t;
typedef signed short int16_t;
typedef signed int int32_t;
typedef signed long int64_t;

typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned int uint32_t;
typedef unsigned long uint64_t;

typedef float float32_t;
typedef double float64_t;
typedef long double float128_t;

Rationale

In situations where the amount of memory being allocated is important, using specifi c-length types
makes it clear how much storage is being reserved for each object.

Adherence to this guideline does not guarantee portability because the size of the int type may
determine whether or not an expression is subject to integer promotion. For example, an expression
with type int16_t will not be promoted if int is implemented using 16 bits but will be promoted if int
is implemented using 32 bits. This is discussed in more detail in the section on integer promotion in
Appendix C.

Note: defi ning a specifi c-length type whose size is not the same as the implemented type is counter-
productive both in terms of storage requirements and in terms of portability. Care should be taken to
avoid defi ning types with the wrong size.

If abstract types are defi ned in terms of a specifi c-length type then it is not necessary, and may even
be undesirable, for those abstract types to specify the size or sign. For example, the following code
defi nes an abstract type representing mass in kilograms but does not indicate its size or sign:

typedef uint16_t mass_kg_t;

It might be desirable not to apply this guideline when interfacing with The Standard Library or code
outside the project’s control.

Exception

1. The basic numerical types may be used in a typedef to defi ne a specifi c-length type.

2. For function main, an int may be used rather than the typedefs as a return type. Therefore
int main (void) is permitted.

3. For function main an int may be used rathe r than the typedefs for the input parameter argc.

4. For function main a char may be used rather than the typedefs for the input parameter argv.

Therefore int main(int argc, char *argv[]) is permitted (C99 Section 5.1.2.2.1).

Example

/* Non-compliant - int used to define an object */
int x = 0;

/* Compliant - int used to define specific-length type */
typedef int SINT_16;

MISRA C 2012 final.indd 29 17/03/2013 22:52:10

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

30

Section 7: D
irectives

/* Non-compliant - no sign or size specified */
ty pedef int speed_t;

/* Compliant - further abstraction does not need specific length */
typedef int16_t torque_t;

Dir 4.7 If a function returns error information, then that error information
shall be tested

Category Required

Applies to C90, C99

Amplifi cation

The list of functions that are deemed to return error information shall be determined by the project.

The error informati on returned by a function shall be tested in a meaningful manner.

Rationale

A function (whether it is part of The Standard Library, a third party library or a user defi ned function)
may be deemed to provide some means of indicating the occurrence of an error. This may be via an
error fl ag, some special return value or some other means. Whenever such a mechanism is provided
by a function the calling program shall check for the indication of an error as soon as the function
returns.

However, note that the checking of input values to functions is considered a more robust means of
error prevention than trying to detect errors after the function has completed (see Dir 4.11).

Exceptio n

If it can be shown, for example by checking arguments, that a function cannot return an error
indication then there is no need to perform a check.

See also

Dir 4.11, Rule 17.7

Dir 4.8 If a pointer to a structu re or union is never dereferenced within a
translation unit, then the implementation of the object should be
hidden

Category Advisory

Applies to C90, C99

Amplifi cation

The impleme ntation of an object should be hidden by means of a pointer to an incomplete type.

Rationale

If a pointer to a structure or union is never dereferenced, then the implementation details of the
object are not needed and its contents should be protected from unintentional changes.

Hiding the implementation details creates an opaque type which may be referenced via a pointer but
whose contents may not be accessed.

MISRA C 2012 final.indd 30 17/03/2013 22:52:10

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

31

Se
ct

io
n

7:
 D

ire
ct

iv
esExample

/* Opaque.h */

ifndef OPAQUE_H
#define OPAQUE_H

typedef struct OpaqueType *pOpaqueType;

#endif

/* Opaque.c */

#include "Opaque.h"

struct OpaqueType
{
 /* Object implementation */
};

/* UseOpaque.c */

#include "Opaque.h"

void f (void)
{
 pOpaqueType pObject;

 pObject = GetObject (); /* Get a handle to an OpaqueType object */

 UseObject (pObject); /* Use it... */
}

Dir 4.9 A function should be used in preference to a function-like macro where
they are interchangeable

[Koenig 78–81]

Category Advisory

Applies to C90, C99

Amplifi cation

This guideli ne applies only where a function is permitted by the syntax and constraints of the language
standard.

Rationale

In most circumst ances, functions should be used instead of macros. Functions perform argument
type-checking and evaluate their arguments once, thus avoiding problems with potential multiple side
eff ects. In many debugging systems, it is easier to step through execution of a function than a macro.
Nonetheless, macros may be useful in some circumstances.

Some of the factors that should be considered when deciding whether to use a function or a macro
are:

• The benefi ts of function argument and result type-checking;

• The availability of inline functions in C99, although note that the extent to which inline is acted
upon is implementation-defi ned;

MISRA C 2012 final.indd 31 17/03/2013 22:52:10

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

32

Section 7: D
irectives

• The trade-off between code size and execution speed;

• Whether the possibility for compile-time evaluation is important: macros with constant
arguments are more likely to be evaluated at compile-time than corresponding function calls;

• Whether the arguments would be valid for a function: macro arguments are textual whereas
function arguments are expressions;

• Ease of understanding and maintainability.

Example

The following exam ple is compliant. The function-like macro cannot be replaced with a function
because it has a C operator as an argument:

#define EVAL_BINOP(OP, L, R) ((L) OP (R))

uint32_t x = EVAL_BINOP (+, 1, 2);

In the following example, the use of a macro to initialize an object with static storage duration is
compliant because a function call is not permitted here.

#define DIV2(X) ((X) / 2)

void f (void)
{
 static uint16_t x = DIV2 (10); /* Compliant - call not permitted */
 uint16_t y = DIV2 (10); /* Non-compliant - call permitted */
}

See also

Rule 13.2, Rule 20 .7

Dir 4.10 Precautions shall be taken in order to preven t the contents of a header
fi le being included more than once

Category Required

Applies to C90, C99

Rationale

When a translation unit contains a complex hierarchy of nested header fi les, it is possible for a particular
header fi le to be included more than once. This can be, at best, a source of confusion. If this multiple
inclusion leads to multiple or confl icting defi nitions, then this can result in undefi ned or erroneous
behaviour.

Example

/* file.h */
#ifndef FILE_H
/* Non-co mpliant - does not #define FILE_H */
#endif

In order to facilitate checking, the contents of the header should be protected from being included
more than once using one of the following two forms:

MISRA C 2012 final.indd 32 17/03/2013 22:52:10

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

33

Se
ct

io
n

7:
 D

ire
ct

iv
es<start-of-file>

#if !defined (identifier)
#define identifier
 /* Contents of file */
#endif
<end-of-file>

<start-of-file>
#ifndef identifier
#define identifier
 /* Contents of file */
#endif
<end-of-file>

Note: the identifi er used to test and record whether a given header fi le has already been included shall
be unique across all header fi les in the project.

Note: comments are permitted anywhere within these forms.

Dir 4.11 The validity of values passed to library func tions shall be checked
C90 [Undefi ned 60, 63, 96; Implementation 45–47]

C99 [Unspecifi ed 30, 31, 44, 48–50;
Undefi ned 102, 103, 107, 112, 180, 181, 183, 187, 189;

Implementation J.3(8–11)]
Category Required

Applies to C90, C99

Amplifi cation

The nature and organization of the project will determine which libraries, and functions within those
libraries, should be subject to this directive.

Rationale

Many functions in The Standard Library are not required by The Standard to check the validity of
parameters passed to them. Even where checking is required by The Standard, or where compiler
writers claim to check parameters, there is no guarantee that adequate checking will take place.

Similarly, the interface description for functions in other libraries may not specify the checks performed
by those functions. There is also a risk that the specifi ed checks are not performed adequately.

The programmer shall provide appropriate checks of input values for all library functions which have
a restricted input domain (The Standard Library, third-party libraries, and in-house libraries).

Examples of functions from The Standard Library that have a restricted domain and need checking
are:

• Many of the maths functions in <math.h>, for example:

 - Negative numbers must not be passed to the sqrt or log functions;

 - The second parameter of fmod should not be zero;

• Some implementations can produce unexpected results when the function toupper is passed
an argument which is not a lowercase letter (and similarly for tolower);

• The character testing functions in <ctype.h> exhibit undefi ned behaviour if passed invalid
values;

• The abs function applied to the most negative integer gives undefi ned behaviour.

MISRA C 2012 final.indd 33 17/03/2013 22:52:10

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

34

Section 7: D
irectives

Although most of the math library functions in <math.h> defi ne allowed input domains, the values
they return when a domain error occurs may vary from one compiler to another. Therefore pre-
checking the validity of the input values is particularly important for these functions.

The programmer should identify any domain constraints which should sensibly apply to a function
being used (which may or may not be documented in the interface description), and provide appropriate
checks that the input value(s) lies within this domain. Of course the value may be restricted further,
if required, by knowledge of what the parameter represents and what constitutes a sensible range of
values for the parameter.

There are a number of ways in which the requirements of this guideline might be satisfi ed, including
the following:

• Check the values before calling the function;

• Check the values in the called library function — this is particularly applicable for in-house
designed libraries, though it could apply to bought-in libraries if the supplier can demonstrate
that they have built in the checks;

• Produce “wrapped” versions of functions that perform the checks then call the original
function;

• Demonstrate statically that the input parameters can never take invalid values.

See also

Dir 4.1, Dir 4.7

Dir 4.12 Dynamic memory allocation sh all not be used

Category Required

Applie s to C90, C99

Amplifi cation

This rule applies to all dynamic memory allocation pac kages including:

• Those provided by The Standard Library;

• Third-party packages.

Rationale

The Standard Library’s dynamic memory allocation and deall ocation routines can lead to undefi ned
behaviour as described in Rule 21.3. Any other dynamic memory allocation system is likely to exhibit
undefi ned behaviours that are similar to those of The Standard Library.

The specifi cation of third-party routines shall be checked to ensure that dynamic memory allocation
is not being used inadvertently.

If a decision is made to use dynamic memory, care shall be taken to ensure that the software behaves
in a predictable manner. For example, there is a risk that:

• Insuffi cient memory may be available to satisfy a request — care must be taken to ensure
that there is a safe and appropriate response to an allocation failure;

• There is a high variance in the execution time required to perform allocation or deallocation
depending on the pattern of usage and resulting degree of fragmentation.

MISRA C 2012 final.indd 34 17/03/2013 22:52:10

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

35

Se
ct

io
n

7:
 D

ire
ct

iv
esExample

For convenience, these examples are based around use of The Standard Lib rary’s dynamic memory
functions as their interfaces are well-known.

In this example, the behaviour is undefi ned following the fi rst call to free because the value of the
pointer p becomes indeterminate. Although the value stored in the pointer is unchanged following
the call to free, it is possible, on some targets, that the memory to which it points no longer exists and
the act of copying that pointer could cause a memory exception.

#include <stdlib.h>

void f (void)
{
 char *p = (char *) malloc (10);
 char *q;

 free (p);
 q = p; /* Undefined behaviour - value of p is indeterminate */

 p = (char *) malloc (20);
 free (p);
 p = NULL; /* Assigning NULL to freed pointer makes it determinate */
}

See also

Dir 4.1, Rule 18.7, Rule 21.3, Rule 22.1, Rule 22.2

Dir 4.13 Functions which are designed to provide operations on a resource
should be called in an appropriate sequence

Category Adviso ry

Applies to C90, C99

Amplifi cation

A set of functions providing operations on a resource typically has three kinds of operation:

1. Allocation of th e resource, e.g. opening a fi le;

2. Deallocation of the resource, e.g. closing a fi le;

3. Other operations, e.g. reading from a fi le.

For each such set of functions, all uses of its operations should occur in an appropriate sequence.

Rationale

Static analyser tools are capable of providing path analysis checks that can identify paths through a
program that result in the deallocation function of a sequence not being called. In order to maximize
the benefi ts of such automated checks, developers are therefore encouraged to enable these checks
by designing and declaring sets of balanced functions to the static analyser.

MISRA C 2012 final.indd 35 17/03/2013 22:52:10

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

36

Section 7: D
irectives

Example

/* These functions are intended to be paired */
extern mutex_t mutex_lock (void);
extern void mutex_unlock (mutex_t m);

extern int16_t x;

void f (void)
{
 mutex_t m = mutex_lock ();

 if (x > 0)
 {
 mutex_unlock (m);
 }
 else
 {
 /* Mutex not unlocked on this path */
 }
}

See also

Rule 22.1, Rule 22.2, Rule 22.6

MISRA C 2012 final.indd 36 17/03/2013 22:52:10

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

37

8 Rules

8.1 A standard C environment

Rule 1.1 The program shall contain no violations of the standard C syntax and
constraints, and shall not exceed the implementation’s tr anslation
limits

[MISRA G uidelines Table 3], [IEC 61508-7: Table C.1], [ISO 26262-6: Table 1]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

The program shall use only those features of the C language and its library that are specifi ed in the
chosen version of The Standard (see Section 3.1).

The Standard permits implementations to provide language extensions and the use of such extensions
is permitted by this rule.

Except when making use of a language extension, a program shall not:

• Contain any violations of the language syntax described in The Standard;

• Contain any violations of the constraints imposed by The Standard.

A program shall not exceed the translation limits imposed by the implementation. The minimum
translation limits are specifi ed by The Standard but an implementation may provide higher limits.

Note: a conforming implementation generates a diagnostic for syntax and constraint violations but be
aware that:

• The diagnostic need not necessarily be an error but could, for example, be a warning;

• The program may be translated and an executable generated despite the presence of a
syntax or constraint violation;

Note: a conforming implementation does not need to generate a diagnostic when a translation limit is
exceeded; an executable may be generated but it is not guaranteed to execute correctly.

Rationale

Problems associated with language features that are outside the supported versions of ISO/IEC 9899
have not been considered during development of these guidelines.

There is anecdotal evidence of some non-conforming implementations failing to diagnose constraint
violations, for example in [38] p135, example 2 entitled “Error of writing into the const area”.

Example

Some C90 compilers provide support for inline functions using the __inline keyword. A C90 program
that uses __inline will be compliant with this rule provid ed that it is intended to be translated using
such a compiler.

MISRA C 2012 final.indd 37 17/03/2013 22:52:10

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

38

Section 8: Rules

Many compilers for embedded targets provide additional keywords that qualify object types with
attributes of the memory area in which the object is located, for example:

• __zpage — the object can be accessed using a short instruction

• __near — a pointer to the object can be held in 16 bits

• __far — a pointer to the object can be held in 24 bits

A program using these additional keywords will be compliant with this rule provided that the compiler
supports those keywords as a language extension.

See also

Dir 2.1, Rule 1.2

Rule 1.2 Language extensions should not be used

Category Advisory

Analysis Undecidable, Single Translation Unit

Applies to C90, C99

Rationale

A program tha t relies on language extensions may be les s portable than one that does not. Although
The Standard requires that a conforming implementation document any extensions that it provides
to the language, there is a risk that this documentation might not provide a full description of the
behaviour in all circumstances.

If this rule is not applied, the decision to use each language extension should be justifi ed in the
project’s design documentation. The methods by which valid use of each extension will be assured,
for example checking the compiler and its diagnostics, should also be documented.

It is recognized that it is necessary to use language extensions in embedded systems. The Standard
requires that an extension does not alter the behaviour of any strictly conforming program. For
example, a compiler might implement, as an extension, full evaluation of binary logical operators
even though The Standard specifi es that evaluation stops as soon as the result can be determined.
Such an extension does not conform to The Standard because side eff ects in the right-hand operand
of a logical AND operator would always occur, giving rise to a diff erent behaviour.

See also

Rule 1.1

Rule 1.3 There shall be no occurrence of undefi ned or critical unspecifi ed
behaviour

Category Required

Analysis Undecidable, System

Applies to C90, C99

Amplifi cation

Some undefi ned and unspecifi ed behaviour s are dealt with by specifi c rules. This rule prevents all
other undefi ned and critical unspecifi ed behaviours. Appendix H lists the undefi ned behaviours and
those unspecifi ed behaviours that are considered critical.

MISRA C 2012 final.indd 38 17/03/2013 22:52:10

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

39

Se
ct

io
n

8:
 R

ul
esRationale

Any program that gives rise to undefi ned or unspecifi ed behaviour may not behave in the expected
manner. In many cases, the eff ect is to make the program non-portable but it is also possible for m ore
serious problems to occur. For example, undefi ned behaviour might aff ect the result of a computation.
If correct operation of the software is dependent on this computation then system safety might be
compromised. The problem is particularly diffi cult to detect if the undefi ned behaviour only manifests
itself on rare occasions.

Many of the MISRA C guidelines have been designed to avoid certain undefi ned and unspecifi ed
behaviours. For example, compliance with all of Rule 11.4, Rule 11.8 and Rule 19.2 ensures that it is not
possible in C to create a non-const qualifi ed pointer to an object declared with a const-qualifi ed type.
This avoids C90 [Undefi ned 39] and C99 [Undefi ned 61]. However, other behaviours are not covered
by specifi c guidelines for example because:

• It is unlikely that the behaviour will be encountered;

• There is no practical guidance that can be given other than the obvious statement that the
behaviour should be avoided.

Instead of introducing a guideline for each undefi ned and critical unspecifi ed behaviour, the MISRA C
Guidelines directly address those that are considered most important and most likely to occur in
practice. Those behaviours that do not have specifi c guidelines are all covered together by this single
rule. Appendix H lists all undefi ned and critical unspecifi ed behaviours, along with the MISRA C
guidelines that prevent their occurrence. It therefore indicates which behaviours are expected to be
prevented by this rule and which behaviours are covered by other rules.

Note: some implementations may provide well-defi ned behaviour for some of the undefi ned and
unspecifi ed behaviours listed in The Standard. If such well-defi ned behaviours are relied upon,
including by means of a language extension, it will be necessary to deviate this rule in respect of those
behaviours.

See also

Dir 4.1

8.2 Unused code

Rule 2.1 A project shall not contain unreachable code

[IEC 61508-7 Section C.5.9], [DO-178C Section 6.4.4.3.c]

Category Required

Analysis Undecid able, System

Applies to C90, C99

Rationale

Provided that a program does not exhibit any undefi ned behavio ur, unreacha ble code cannot be
executed and cannot have any eff ect on the program’s outputs. The presence of unreachable code
may therefore indicate an error in the program’s logic.

MISRA C 2012 final.indd 39 17/03/2013 22:52:10

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

40

Section 8: Rules

A compiler is permitted to remove any unreachable code although it does not have to do so. Unreachable
code that is not removed by the compiler wastes resources, for example:

• It occupies space in the target machine’s memory;

• Its presence may cause a compiler to select longer, slower jump instructions when transferring
control around the unreachable code;

• Within a loop, it might prevent the entire loop from residing in an instruction cache.

It is sometimes desirable to insert code that appears to be unreachable in order to handle exceptional
cases. For example, in a switch statement in which every possible value of the controlling expression
is covered by an explicit case, a default clause shall be present according to Rule 16.4. The purpose of
the default clause is to trap a value that should not normally occur but that may have been generated
as a result of:

• Undefi ned behaviour present in the program;

• A failure of the processor hardware.

If a compiler can prove that a default clause is unreachable, it may remove it, thereby eliminating the
defensive action. On the assumption that the defensive action is important, it will be necessary either
to demonstrate that the compiler does not eliminate the code despite it being unreachable, or to
take steps to make the defensive code reachable. The former course of action requires a deviation
against this rule, probably with a review of the object code or unit testing being used to support such
a deviation. The latter course of action can usually be achieved by means of a volatile access. For
example, a compiler might determine that the range of values held by x is covered by the case clauses
in a switch statement such as:

uint16_t x;

switch (x)

By forcing x to be accessed by means of a volatile qualifi ed lvalue, the compiler has to assume that the
controlling expression could take any value:

switch (*(volatile uint16_t *) &x)

Note: code that has been conditionally excluded by pre-processor directives is not subject to this rule
as it is not presented to the later phases of translation.

Example

en um light { red, amber, red_amber, green };

enum light next_light (enum light c)
{
 enum light res;

 switch (c)
 {
 case red:
 res = red_amber;
 break;
 case red_amber:
 res = green;
 break;
 case green:
 res = amber;
 break;
 case amber:
 res = red;
 break;

MISRA C 2012 final.indd 40 17/03/2013 22:52:10

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

41

Se
ct

io
n

8:
 R

ul
es default:

 {
 /*
 * This default will only be reachable if the parameter c
 * holds a value that is not a member of enum light.
 */
 error_handler ();
 break;
 }
 }

 return res;
 res = c; /* Non-compliant - this statement is
 * certainly unreachable */
}

See also

R ule 14.3, Rule 16.4

Rule 2.2 There shall be no dead code

 [IEC 61508-7 Section C.5.10], [ISO 26262-6 Section 9.4.5], [DO-178C Section 6.4.4.3.c]

Category Required

Analysis Undecidable, System

Applies to C90, C99

Amplifi cation

Any operation that is executed but whose removal would not aff ect program behaviour constitutes
dead code. Operations that are introduced by language extensions are assumed always to have an
eff ect on program behaviour.

Note: The behaviour of an embedded system is often determined not just by the nature of its actions,
but also by the time at which they occur.

Note: unreachable code is not dead code as it cannot be executed.

Rationale

The presence of de ad code may be indicative of an error in the program’s logic. Since dead code may
be removed by a compiler, its presence may cause confusion.

Exception

A cast to void is a ssumed to indicate a value that is intentionally not being used. The cast is therefore
not dead code itself. It is treated as using its operand which is therefore also not dead code.

MISRA C 2012 final.indd 41 17/03/2013 22:52:10

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

42

Section 8: Rules

Example

In this example, it i s assumed that the object pointed to by p is used in other functions.

extern volatile uint16_t v;

extern char *p;

void f (void)
{
 uint16_t x;

 (void) v; /* Compliant - v is accessed for its side effect
 * and the cast to void is permitted
 * by exception */
 (int32_t) v; /* Non-compliant - the cast operator is dead */
 v >> 3; /* Non-compliant - the >> operator is dead */
 x = 3; /* Non-compliant - the = operator is dead
 * - x is not subsequently read */
 p++; / Non-compliant - result of * operator is not used */
 (*p)++; /* Compliant - *p is incremented */
}

In the following compliant example, the __asm keyword is a language extension, not a function call
operation, and is therefore not dead code:

__asm ("NOP");

In the following example, the function g does not contain dead code, and is not itself dead code because
it does not contain any operations. However, the call to the function is dead because it could be
removed without aff ecting program behaviour.

void g (void)
{
 /* Compliant - there are no operations in this function */
}

void h (void)
{
 g (); /* Non-compliant - the call could be removed */
}

See also

Rule 17.7

MISRA C 2012 final.indd 42 17/03/2013 22:52:10

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

43

Se
ct

io
n

8:
 R

ul
esRule 2.3 A project should not contain unused ty pe declarations

Category Advisory

Analysis Decidable, System

Applies to C90, C99

Rationale

If a type is declared but no t used, then it is unclear to a reviewer if the type is redundant or it has been
left unused by mistake.

Example

int16_t unusedtype (void)
{
 typedef int16_t local_Type; /* Non-compliant */

 return 67;
}

Rule 2.4 A project should not contain unused ta g declarations

Category Advisory

Analysis Decidable, System

Applies to C90, C99

Rationale

If a tag is declared but not used, then it is unclear to a reviewer if the tag is redundant or it has been
left unused by mistake.

Example

In the following example, the tag state is unused and the declaration could have been written
without it.

void unusedtag (void)
{
 enum state { S_init, S_run, S_sleep }; /* Non-compliant */
}

In the following example, the tag record_t is used only in the typedef of record1_t which is used in
the rest of the translation unit whenever the type is needed. This typedef can be written in a compliant
manner by omitting the tag as shown in the defi nition of record2_t.

typedef struct record_t /* Non-compliant */
{
 uint16_t key;
 uint16_t val;
} record1_t;

typedef struct /* Compliant */
{
 uint16_t key;
 uint16_t val;
} record2_t;

MISRA C 2012 final.indd 43 17/03/2013 22:52:11

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

44

Section 8: Rules

Rule 2.5 A project should not contain unused ma cro declarations

Category Advisory

Analysis Decidable, System

Applies to C90, C99

Rationale

If a macro is declared but n ot used, then it is unclear to a reviewer if the macro is redundant or it has
been left unused by mistake.

Example

void use_macro (void)
{
#def ine SIZE 4
/* Non-compliant - DATA not used */
#define DATA 3
 use_int16 (SIZE);
}

Rule 2.6 A function should not contain unused l abel declarations

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

If a label is declared but n ot used, then it is unclear to a reviewer if the label is redundant or it has
been left unused by mistake.

Example

void unused_label (void)
{
 int16_t x = 6;

label1: /* Non-compliant */
 use_int16 (x);
}

Rule 2.7 There should be no unused parameters i n functions

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

Most functions will be speci fi ed as using each of their parameters. If a function parameter is unused,
it is possible that the implementation of the function does not match its specifi cation. This rule
highlights such potential mismatches.

MISRA C 2012 final.indd 44 17/03/2013 22:52:11

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

45

Se
ct

io
n

8:
 R

ul
esExample

void withunusedpara (uint1 6_t *para1,
 int16_t unusedpara) /* Non-compliant - unused */
{
 *para1 = 42U;
}

8.3 Comments

Rule 3.1 The character sequences /* an d // shal l not be used within a
comment

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

If a comment starting sequen ce, /* or //, occurs within a /* comment, is it quite likely to be caused
by a missing */ comment ending sequence.

If a comment starting sequence occurs within a // comment, it is probably because a region of code
has been commented-out using //.

Exception

The sequence // is permitted within a // comment.

Example

Consider the following code fr agment:

/* some comment, end comment marker accidentally omitted

<<New Page>>

Perform_Critical_Safety_Function(X);

/* this comment is non-compliant */

In reviewing the page containing the call to the function, the assumption is that it is executed code.
Because of the accidental omission of the end comment marker, the call to the safety critical function
will not be executed.

In the following C99 example, the presence of // comments changes the meaning of the program:

x = y // /*
 + z
 // */
 ;

This gives x = y + z; but would have been x = y; in the absence of the two // comment start
sequences.

See also

Dir 4.4

MISRA C 2012 final.indd 45 17/03/2013 22:52:11

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

46

Section 8: Rules

Rule 3.2 Line-splicing shall n ot be used in // comment s

Category Required

Analysis Decidable, Single Translation Unit

Applies to C99

Amplifi cation

Line-splicing occurs when the \ character is immediately followed by a new-line character. If the
source fi le contains multibyte characters, they are converted to the source character set before any
splicing occurs.

Rationale

If the source line containing a // comment ends with a \ character in the source character set, the
next line becomes part of the comment. This may result in unintentional removal of code.

Note: line-splicing is described in Section 5.1.1.2(2) of both C90 and C99.

Example

In the following non-compliant exampl e, the physical line containing the if keyword is logically part of
the previous line and is therefore a comment.

extern bool_t b;

void f (void)
{
 uint16_t x = 0; // comment \
 if (b)
 {
 ++x; /* This is always executed */
 }
}

See also

Dir 4.4

8.4 Character sets and lexical conventions

Rule 4.1 Octal and hex adecimal escape sequences shall be term inated

C90 [Implementation 11], C99 [Implementation J.3.4(7, 8)]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

An octal or hexadecimal escape sequenc e shall be terminated by either:

• The start of another escape sequence, or

• The end of the character constant or the end of a string literal.

MISRA C 2012 final.indd 46 17/03/2013 22:52:11

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

47

Se
ct

io
n

8:
 R

ul
esRationale

There is potential for confusion if an oct al or hexadecimal escape sequence is followed by other
characters. For example, the character constant '\x1f' consists of a single character whereas the
character constant '\x1g' consists of the two characters '\x1' and 'g'. The manner in which
multi-character constants are represented as integers is implementation-defi ned.

The potential for confusion is reduced if every octal or hexadecimal escape sequence in a character
constant or string literal is terminated.

Example

In this example, each of the strings pointed to by s1, s2 and s3 is equivalent to “Ag”.

const char *s1 = "\x41g"; /* Non-compliant */
const char *s2 = "\x41" "g"; /* Compliant - terminated by end of literal */
const char *s3 = "\x41\x67"; /* Compliant - terminated by another escape */

int c1 = '\141t'; /* Non-compliant */
int c2 = '\141\t'; /* Compliant - terminated by another escape */

See also

C90: Section 6.1.3.4, C99: Section 6.4.4.4

Rule 4.2 Tr igraphs should not be used

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

Trigraphs are denoted by a sequence of two que stion marks followed by a specifi ed third character
(e.g. ??- represents a ~ (tilde) character and ??) represents a]). They can cause accidental confusion
with other uses of two question marks.

Note: the so-called digraphs:

 <: :> <% %> %: %:%:

are permitted because they are tokens. Trigraphs are replaced wherever they appear in the program
prior to preprocessing.

Example

For example the string

"(Date should be in the form ??-??-??)"

would not behave as expected, actually being interpreted by the compiler as

"(Date should be in the form ~~]"

MISRA C 2012 final.indd 47 17/03/2013 22:52:11

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

48

Section 8: Rules

8.5 Identifi ers

Rule 5.1 External identifi ers shall be distinct

C90 [Undefi ned 7] , C99 [Unspecifi ed 7; Undefi ned 28]

Category Required

Analysis Decidable, System

Applies to C90, C99

Amplifi cation

This rule requires that diff erent external identifi ers be distinct within the limits imposed by the
implementation.

The defi nition of distinct depends on the implementation and on the version of the C language that
is being used:

• In C90 the minimum requirement is that the fi rst 6 characters of external identifi ers are
signifi cant but their case is not required to be signifi cant;

• In C99 the minimum requirement is that the fi rst 31 characters of external identifi ers are
signifi cant, with each universal character or corresponding extended source character
occupying between 6 and 10 characters.

In practice, many implementations provide greater limits. For example it is common for external
identifi ers in C90 to be case-sensitive and for at least the fi rst 31 characters to be signifi cant.

Rationale

If two identifi ers diff er only in non-signifi ca nt characters, the behaviour is undefi ned.

If portability is a concern, it would be prudent to apply this rule using the minimum limits specifi ed in
The Standard.

Long identifi ers may impair the readability of code. While many automatic code generation systems
produce long identifi ers, there is a good argument for keeping identifi er lengths well below this limit.

Note: In C99, if an extended source character appears in an external identifi er and that character does
not have a corresponding universal character, The Standard does not specify how many characters
it occupies.

Example

In the following example, the defi nitions all occ ur in the same translation unit. The implementation in
question supports 31 signifi cant case-sensitive characters in external identifi ers.

/* 1234567890123456789012345678901********* Characters */
int32_t engine_exhaust_gas_temperature_raw;
int32_t engine_exhaust_gas_temperature_scaled; /* Non-compliant */

/* 1234567890123456789012345678901********* Characters */
int32_t engine_exhaust_gas_temp_raw;
int32_t engine_exhaust_gas_temp_scaled; /* Compliant */

MISRA C 2012 final.indd 48 17/03/2013 22:52:11

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

49

Se
ct

io
n

8:
 R

ul
esIn the following non-compliant example, the implementation supports 6 signifi cant case-insensitive

characters in external identifi ers. The identifi ers in the two translation units are diff erent but are not
distinct in their signifi cant characters.

/* file1.c */
int32_t abc = 0;

/* file2.c */
int32_t ABC = 0;

See also

Dir 1.1, Rule 5.2, Rule 5.4, Rule 5.5

Rule 5.2 Identifi er s declared in the same scope and name space shall be
distinct

C90 [Undefi ned 7] , C99 [Undefi ned 28]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

This rule does not apply if both identifi ers are external identifi ers beca use this case is covered by
Rule 5.1.

This rule does not apply if either identifi er is a macro identifi er because this case is covered by Rule 5.4
and Rule 5.5.

The defi nition of distinct depends on the implementation and on the version of the C language that
is being used:

• In C90 the minimum requirement is that the fi rst 31 characters are signifi cant;

• In C99 the minimum requirement is that the fi rst 63 characters are signifi cant, with each
universal character or extended source character counting as a single character.

Rationale

If two identifi ers diff er only in non-signifi cant characters, the behaviour is undefi ned.

If portabilit y is a concern, it would be prudent to apply this rule using the minimum limits specifi ed in
The Standard.

Long identifi ers may impair the readability of code. While many automatic code generation systems
produce long identifi ers, there is a good argument for keeping identifi er lengths well below this limit.

Example

In the following example, the implementation in question supports 31 signifi cant case-sensitive
character s in identifi ers that do not have external linkage.

The identifi er engine_exhaust_gas_temperature_local is compliant with this rule. Although
it is not distinct from the identifi er engine_exhaust_gas_temperature_raw, it is in a diff erent
scope. However, it is not compliant with Rule 5.3.

MISRA C 2012 final.indd 49 17/03/2013 22:52:11

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

50

Section 8: Rules

/* 1234567890123456789012345678901********* Characters */
extern int32_t engine_exhaust_gas_temperature_raw;
static int32_t engine_exhaust_gas_temperature_scaled; /* Non-compliant */

void f (void)
{
 /* 1234567890123456789012345678901********* Characters */
 int32_t engine_exhaust_gas_temperature_local; /* Compliant */
}

/* 1234567890123456789012345678901********* Characters */
static int32_t engine_exhaust_gas_temp_raw;
static int32_t engine_exhaust_gas_temp_scaled; /* Compliant */

See also

Dir 1.1, Rule 5.1, Rule 5.3, Rule 5.4, Rule 5.5

Rule 5.3 An identifi er declared in an inner scope shall not hide an ident ifi er
declared in an outer scope

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

An identifi er declared in an inner scope shall be distinct from any identifi er declared in an outer scope.

The defi nition of distinct depends on t he implementation and the version of the C language that is
being used:

• In C90 the minimum requirement is that the fi rst 31 characters are signifi cant;

• In C99 the minimum requirement is that the fi rst 63 characters are signifi cant, with each
universal character or extended source character counting as a single character.

Rationale

If an identifi er is declared in an inner scope but is not distinct from an identifi er that already exists in
an outer scope, then the inner-most declar ation will “hide” the outer one. This may lead to developer
confusion.

Note: An identifi er declared in one name space does not hide an identifi er declared in a diff erent name
space.

The terms outer and inner scope are defi ned as follows:

• Identifi ers that have fi le scope can be considered as having the outermost scope;

• Identifi ers that have block scope have a more inner scope;

• Successive, nested blocks, introduce more inner scopes.

MISRA C 2012 final.indd 50 17/03/2013 22:52:11

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

51

Se
ct

io
n

8:
 R

ul
esExample

void fn1 (void)
{
 int16_t i; /* Declare an object "i" */

 {
 int16_t i; /* Non-compliant - hides previous "i " */

 i = 3; /* Could be confusing as to which "i" this refers */
 }
}

struct astruct
{
 int16_t m;
};

extern void g (struct astruct *p);

int16_t xyz = 0; /* Declare an object "xyz" */

void fn2 (struct astruct xyz) /* Non-compliant - outer "xyz" is
 * now hidden by parameter name */
{
 g (&xyz);
}

uint16_t speed;

void fn3 (void)
{
 typedef float32_t speed; /* Non-compliant - type hides object */
}

See also

Rule 5.2, Rule 5.8

Rule 5.4 Macro identifi er s shall be distinct

C90 [Undefi ned 7], C99 [Unspecifi ed 7; Undefi ned 28]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

Th is rule requires that, when a macro is being defi ned, its name be distinct from:

• the names of the other macros that are currently defi ned; and

• the names of their parameters.

It also requires that the names of the parameters of a given macro be distinct from each other but
does not require that macro parameters names be distinct across two diff erent macros.

MISRA C 2012 final.indd 51 17/03/2013 22:52:11

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

52

Section 8: Rules

The defi nition of distinct depends on the implementation and on the version of the C language that
is being used:

• In C90 the minimum requirement is that the fi rst 31 characters of macro identifi ers are
signifi cant;

• In C99 the minimum requirement is that the fi rst 63 characters of macro identifi ers are
signifi cant.

In practice, implementations may provide greater limits. This rule requires that macro identifi ers be
distinct within the limits imposed by the implementation.

Rationale

If two macro identifi ers diff er only in non-signifi cant characters, the behaviour is undefi ned. Since macro
parameters are active only during the expansion of their macro, there is no issue with parameters in
one macro being confused with parameters in another macro.

If portability is a concern, it would be prudent to apply this rule using the minimum limits specifi ed in
The Standard.

Long macro identifi ers may impair the readability of code. While many automatic code generation
systems produce long macro identifi ers, there is a good argument for keeping macro identifi er lengths
well below this limit.

Note: In C99, if an extended source character appears in a macro name and that character does not
have a corresponding universal character, The Standard does not specify how many characters it
occupies.

Example

In the fo llowing example, the implementation in question supports 31 signifi cant case-sensitive
characters in macro identifi ers.

/* 1234567890123456789012345678901********* Characters */
#define engine_exhaust_gas_temperature_raw egt_r
#define engine_exhaust_gas_temperature_scaled egt_s /* Non-compliant */

/* 1234567890123456789012345678901********* Characters */
#define engine_exhaust_gas_temp_raw egt_r
#define engine_exhaust_gas_temp_scaled egt_s /* Compliant */

See also

Rule 5.1 , Rule 5.2, Rule 5.5

MISRA C 2012 final.indd 52 17/03/2013 22:52:11

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

53

Se
ct

io
n

8:
 R

ul
esRule 5.5 Identifi ers shall be distinct from macro names

C90 [Undefi ned 7], C99 [Unspecifi ed 7; Undefi ned 28]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

This rule requires that the names of macros that exist prior to preprocessing be distinct from the
identifi ers that exist after preprocessing. It applies to identifi ers, regardless of scope or name space,
and to any macros that have been defi ned regardless of whether the defi nition is still in force when
the identifi er is declared.

The defi nition of distinct depends on the implementation and the version of the C language that is
being used:

• In C90 the minimum requirement is that the fi rst 31 characters are signifi cant;

• In C99 the minimum requirement is that the fi rst 63 characters are signifi cant, with each
universal character or extended source character counting as a single character.

Rationale

Keeping macro names and identifi ers distinct can help to avoid developer confusion.

Example

In the following non-compliant exa mple, the name of the function-like macro Sum is also used as
an identifi er. The declaration of the object Sum is not subject to macro-expansion because it is not
followed by a (character. The identifi er therefore exists after preprocessing has been performed.

#define Sum(x, y) ((x) + (y))

int16_t Sum;

The following example is compliant because there is no instance of the identifi er Sum after
preprocessing.

#define Sum(x, y) ((x) + (y))

int16_t x = Sum (1, 2);

In the following example, the implementation in question supports 31 signifi cant case-sensitive
characters in identifi ers that do not have external linkage. The example is non-compliant because
the macro name is not distinct from an identifi er name with internal linkage in the fi rst 31 characters.

/* 1234567890123456789012345678901********* Characters */
#define low_pressure_turbine_temperature_1 lp_tb_temp_1
static int32_t low_pressure_turbine_temperature_2;

See also

Rule 5.1, Rule 5.2, Rule 5.4

MISRA C 2012 final.indd 53 17/03/2013 22:52:11

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

54

Section 8: Rules

Rule 5.6 A ty pedef name shall be a unique identifi er

Category Required

Analysis Decidable, System

Applies to C90, C99

Amplifi cation

A typedef name shall be unique across all name space s and translation units. Multiple declarations of
the same typedef name are only permitted by this rule if the type defi nition is made in a header fi le and
that header fi le is included in multiple source fi les.

Rationale

Reusing a typedef name either as another typedef name or as the name of a function, object or
enumeration constant, may lead to developer confusion.

Exception

The typedef name may be the same as the structure, union or enumeration tag name associated with
the typedef.

Example

void func (void)
{
 {
 typedef unsigned char u8_t;
 }
 {
 typedef unsigned char u8_t; /* Non-compliant - reuse */
 }
}

typedef float mass;

void func1 (void)
{
 float32_t mass = 0.0f; /* Non-compliant - reuse */
}

typedef struct list
{
 struct list *next;
 uint16_t element;
} list; /* Compliant - exception */

typedef struct
{
 struct chain
 {
 struct chain *list;
 uint16_t element;
 } s1;
 uint16_t length;
} chain; /* Non-compliant - tag "chain" not
 * associated with typedef */

See also

Rule 5.7

MISRA C 2012 final.indd 54 17/03/2013 22:52:11

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

55

Se
ct

io
n

8:
 R

ul
esRule 5.7 A tag name shall be a unique identifi er

Category Required

Analysis Decidable, System

Applies to C90, C99

Amplifi cation

The tag shall be unique across all name spaces and translati on units.

All declarations of the tag shall specify the same type.

Multiple complete declarations of the same tag are only permitted by this rule if the tag is declared in
a header fi le and that header fi le is included in multiple source fi les.

Rationale

Reusing a tag name may lead to developer confusion.

There is als o undefi ned behaviour associated with reuse of tag names in C90 although this is not
listed in The Standard’s Annex. This undefi ned behaviour was recognized in C99 as a constraint in
Section 6.7.2.3.

Exception

The tag name may be the same as the typedef name with which it is associated.

Example

struct stag
{
 uint16_t a;
 uint16_t b;
};

struct stag a1 = { 0, 0 }; /* Compliant - compatible with above */
union stag a2 = { 0, 0 }; /* Non-compliant - declares different type
 * from struct stag.
 * Constraint violation in C99 */

The following example also violates Rule 5.3

struct deer
{
 uint16_t a;
 uint16_t b;
};

void foo (void)
{
 struct deer
 {
 uint16_t a;
 }; /* Non-compliant - tag "deer" reused */
}

typedef struct coord
{
 uint16_t x;
 uint16_t y;
} coord; /* Compliant by Exception */

MISRA C 2012 final.indd 55 17/03/2013 22:52:11

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

56

Section 8: Rules

struct elk
{
 uint16_t x;
};

struct elk /* Non-compliant - declaration of different type
 * Constraint violation in C99 */
{
 uint32_t x;
};

See also

Rule 5.6

Rule 5.8 Identifi ers that defi ne objects or functions with external linkage shall
be unique

Category Required

Analysis Decidable, System

Applies to C90, C99

Amplifi cation

An identifi er used as an external identifi er shall not be used for any other p urpose in any name space
or translation unit, even if it denotes an object with no linkage.

Rationale

Enforcing uniqueness of identifi er names in this manner helps avoid confusion. Ide ntifi ers of objects
that have no linkage need not be unique since there is minimal risk of such confusion.

Example

In the following example, file1.c and file2.c are both part of the same project.

/* file1.c */
int32_t count; /* "count" has external linkage */
void foo (void) /* "foo" has external linkage */
{
 int16_t index; /* "index" has no linkage */
}

/* file2.c */
static void foo (void) /* Non-compliant - "foo" is not unique
{ * (it is already defined with external
 * linkage in file1.c) */
 int16_t count; /* Non-compliant - "count" has no linkage
 * but clashes with an identifier with
 * external linkage */
 int32_t index; /* Compliant - "index" has no linkage */
}

See also

Rule 5.3

MISRA C 2012 final.indd 56 17/03/2013 22:52:11

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

57

Se
ct

io
n

8:
 R

ul
esRule 5.9 Identifi ers that defi ne objects or functions with internal linkage should

 be unique

Category Advisor y

Analysis Decidable, System

Applies to C90, C99

Amplifi cation

The identifi er name should be unique across all name spaces and translation units. Any identifi er
used in this way should not have the same name as any other identifi er, even if that other identifi er
denotes an object with no linkage.

Rationale

Enforcing uniqueness of identifi er names in this manner helps avoid confusion.

Exception

A n inline function with internal linkage may be defi ned in more than one translation unit provided that
all such defi nitions are made in the same header fi le that is included in each translation unit.

Example

In the following example, file1.c and file2.c are both part of the same project.

/* file1.c */
static int32_t count; /* "count" has internal linkage */
static void foo (void) /* "foo" has internal linkage */
{
 int16_t count; /* Non-compliant - "count" has no linkage
 * but clashes with an identifier with
 * internal linkage */
 int16_t index; /* "index" has no linkage */
}

void bar1 (void)
{
 static int16_t count; /* Non-compliant - "count" has no linkage
 * but clashes with an identifier with
 * internal linkage */
 int16_t index; /* Compliant - "index" is not unique but
 * has no linkage */
 foo ();
}

/* End of file1.c */

/* file2.c */
static int8_t count; /* Non-compliant - "count" has internal
 * linkage but clashes with other
 * identifiers of the same name */
static void foo (void) /* Non-compliant - "foo" has internal
 * linkage but clashes with a function of
 * the same name */
{
 int32_t index; /* Compliant - both "index" and "nbytes" */
 int16_t nbytes; /* are not unique but have no linkage */
}

MISRA C 2012 final.indd 57 17/03/2013 22:52:11

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

58

Section 8: Rules

void bar2 (void)
{
 static uint8_t nbytes; /* Compliant - "nbytes" is not unique but
 * has no linkage and the storage class is
 * irrelevant */
}

/* End of file2.c */

See also

Rule 8.10

8.6 Types

Rule 6.1 Bit-fi elds shall only be declared with an appropriate type

C90 [Undefi ned 38; Implementation 29], C99 [Implem entation J.3.9(1, 2)]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

The appropriate bit-fi eld types are:

• C90: either unsigned int or signed int;

• C99: one of:

 - eithe r unsigned int or signed int;

 - another explicitly signed or explicitly unsigned integer type that is permitted by the
implementation;

 - _Bool.

Note: It is permitted to use typedefs to designate an appropriate type.

Rationale

Using int is implementation-defi ned because bit-fi elds of type int can be either signed or unsigned .

The use of enum, short, char or any other type for bit-fi elds is not permitted in C90 because the
behaviour is undefi ned.

In C99, the implementation may defi ne other integer types that are permitted in bit-fi eld declarations.

MISRA C 2012 final.indd 58 17/03/2013 22:52:11

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

59

Se
ct

io
n

8:
 R

ul
esExample

The following example is applicable to C90 and to C99 implementations that do not provide any
additio nal bit-fi eld types. It assumes that the int type is 16-bit.

typedef unsigned int UINT_16;

struct s {
 unsigned int b1:2; /* Compliant */
 int b2:2; /* Non-compliant - plain int not permitted */
 UINT_16 b3:2; /* Compliant - typedef designating unsigned int */
 signed long b4:2; /* Non-compliant even if long and int are the
 * same size */
};

Rule 6.2 Single-bit named bit fi elds shall not be of a signed type

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

According to the C99 Standard Section 6.2.6.2, a single-bit signed bit-fi eld has a single (one) sig n bit
and no (zero) value bits. In any representation of integers, 0 value bits cannot specify a meaningful
value.

A single-bit signed bit-fi eld is therefore unlikely to behave in a useful way and its presence is likely to
indicate programmer confusion.

Although the C90 Standard does not provide so much detail regarding the representation of types,
the same considerations apply as for C99.

Note: this rule does not apply to unnamed bit fi elds as their values cannot be accessed.

8.7 Literals and constants

Rule 7.1 Octal constants shall not be used

[Koenig 9]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

Developers writing constants that have a leading zero might expect them to be interpreted as decimal
constants.

Note: this rule does not apply to octal escape sequences because the use of a leading \ character
means that there is less scope for confusion.

MISRA C 2012 final.indd 59 17/03/2013 22:52:11

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

60

Section 8: Rules

Exception

The integer constant zero (written as a single numeric digit), is strictly speaking an octal constan t, but
is a permitted exception to this rule.

Example

extern uint16_t code[10];

code[1] = 109; /* Compliant - decimal 109 */
code[2] = 100; / * Compliant - decimal 100 */
code[3] = 052; /* Non-Compliant - decimal 42 */
code[4] = 071; /* Non-Compliant - decimal 57 */

Rule 7.2 A “u” or “U” suffi x shall be applied to all integer constants that are
represented in an unsigned type

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

This rule applies to:

• Integer constants that appear in the controlling expressions of #if and #elif pr eprocessing
directives;

• Any other integer constants that exist after preprocessing.

Note: during preprocessing, the type of an integer constant is determined in the same manner as after
preprocessing except that:

• All signed integer types behave as if they were long (C90) or intmax_t (C99);

• All unsigned integer types behave as if they were unsigned long (C90) or uintmax_t (C99).

Rationale

The type of an integer constant is a potential source of confusion, because it is dependent on a
complex c ombination of factors including:

• The magnitude of the constant;

• The implemented sizes of the integer types;

• The presence of any suffi xes;

• The number base in which the value is expressed (i.e. decimal, octal or hexadecimal).

For example, the integer constant 40000 is of type signed int in a 32-bit environment but of type signed
long in a 16-bit environment. The value 0x8000 is of type unsigned int in a 16-bit environment, but of
type signed int in a 32-bit environment.

Note:

• Any value with a “U” suffi x is of unsigned type;

• An unsuffi xed decimal value less than 231 is of signed type.

MISRA C 2012 final.indd 60 17/03/2013 22:52:11

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

61

Se
ct

io
n

8:
 R

ul
esBut:

• An unsuffi xed hexadecimal value greater than or equal to 215 may be of signed or unsigned
type;

• For C90, an unsuffi xed decimal value greater than or equal to 231 may be of signed or unsigned
type.

Signedness of constants should be explicit. If a constant is of an unsigned type, applying a “U” suffi x
makes it clear that the programmer understands that the constant is unsigned.

Note: this rule does not depend on the context in which a constant is used; promotion and other
conversions that may be applied to the constant are not relevant in determining compliance with this
rule.

Example

The following example assumes a machine with a 16-bit int type and a 32-bit long type. It shows the
type of each i nteger constant determined in accordance with The Standard. The integer constant
0x8000 is non-compliant because it has an unsigned type but does not have a “U” suffi x.

Constant Type Compliance

32767 signed int Compliant

0x7fff signed int Compliant

32768 signed long Compliant

32768u unsigned int Compliant

0x8000 unsigned int Non-compliant

0x8000u unsigned int Compliant

Rule 7.3 The lowercase character “l” shall not be used in a literal suffi x

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

 Rat ionale

Using the uppercase suffi x “L” removes the potential ambiguity between “1” (digit 1) and “l” (letter “el”)
when declaring literals.

MISRA C 2012 final.indd 61 17/03/2013 22:52:12

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

62

Section 8: Rules

Example

Note: the examples containing the long long suffi x are applicable only to C99.

const int64_t a = 0L;
const int64_t b = 0l; /* Non-compliant */
const uint64_t c = 0Lu;
const uint64_t d = 0lU; /* Non-compliant */
const uint64_t e = 0ULL;
const uint64_t f = 0Ull; /* Non-compliant */
const int128_t g = 0LL;
const int128_t h = 0ll; /* Non-compliant */
const float128_t m = 1.2L;
const float128_t n = 2.4l; /* Non-compliant */

Rule 7.4 A string liter al shall not be assigned to an object unless the object’s
type is “pointer to const-qualifi ed char”

C90 [Undefi ned 12], C99 [Unspecifi ed 14; Undefi ned 30]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

No attempt shall be made to modify a string literal or wide string literal directly.

The result of the address-of operator, &, applied to a string literal shall not be assigned to an object
unless that object’s type is “pointer to array of const-qualifi ed char”.

The same considerations apply to wide string literals. A wide string literal shall not be assigned to an
object unless the object’s type is “pointer to const-qualifi ed wchar_t”. The result of the address-of
operator, &, applied to a wide string literal shall not be assigned to an object unless that object’s type
is “pointer to array of const-qualifi ed wchar_t”.

Rationale

Any attempt to m odify a string literal results in undefi ned behaviour. For example, some
implementations may store string literals in read-only memory in which case an attempt to modify
the string literal will fail and may also result in an exception or crash.

This rule, when applied in conjunction with others, prevents a string literal from being modifi ed.

It is explicitly unspecifi ed in C99 whether string literals that share a common ending are stored in
distinct memory locations. Therefore, even if an attempt to modify a string literal appears to succeed,
it is possible that another string literal might be inadvertently altered.

Example

The following exam ple shows an attempt to modify a string literal directly.

"0123456789"[0] = '*'; /* Non-compliant */

These examples show how to prevent modifi cation of string literals indirectly.

MISRA C 2012 final.indd 62 17/03/2013 22:52:12

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

63

Se
ct

io
n

8:
 R

ul
es/* Non-compliant - s is not const-qualified */

char *s = "string";

/* Compliant - p is const-qualified; additional qualifiers are permitted */
const volatile char *p = "string";

extern void f1 (char *s1);

extern void f2 (const char *s2);

void g (void)
{
 f1 ("string"); /* Non-compliant - parameter s1 is not
 * const-qualified */
 f2 ("string"); /* Compliant */
}

char *name1 (void)
{
 return ("MISRA"); /* Non-compliant - return type is not
 * const-qualified */
}

const char *name2 (void)
{
 return ("MISRA"); /* Compliant */
}

See also

Rule 11.4, Rule 1 1.8

8.8 Declarations and defi nitions

Rule 8.1 Types shall be explicitly specifi ed

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90

Rationale

The C90 standard permits types to be omitted in some circumstances, in which case the int type is
implicitly specifi ed. Examples of the circumstances in which an implicit int might be used are:

• Object declarations;

• Parameter declarations;

• Member declarations;

• typedef declarations;

• Function return types.

The omission of an explicit type might lead to confusion. For example, in the declaration:

extern void g (char c, const k);

the type of k is const int whereas const char might have been expected.

MISRA C 2012 final.indd 63 17/03/2013 22:52:12

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

64

Section 8: Rules

Example

The following examples show complian t and non-compliant object declarations:

extern x; /* Non-compliant - implicit int type */
extern int16_t x; /* Compliant - explicit type */
const y; /* Non-compliant - implicit int type */
const int16_t y; /* Compliant - explicit type */

The following examples show compliant and non-compliant function type declarations:

extern f (void); /* Non-compliant - implicit
 * int return type */
extern int16_t f (void); /* Compliant */

extern void g (char c, const k); /* Non-compliant - implicit
 * int for parameter k */
extern void g (char c, const int16_t k); /* Compliant */

The following examples show compliant and non-compliant type defi nitions:

typedef (*pfi) (void); /* Non-compliant - implicit int
 * return type */
typedef int16_t (*pfi) (void); /* Compliant */
typedef void (*pfv) (const x); /* Non-compliant - implicit int
 * for parameter x */
typedef void (*pfv) (int16_t x); /* Compliant */

The following examples show compliant and non-compliant member declarations:

struct str
{
 int16_t x; /* Compliant */
 const y; /* Non-compliant - implicit int for member y */
} s;

See also

Rule 8.2

Rule 8.2 Function types shall be in prototype form with named parameters

C90 [Undefi ned 22–25], C99 [Undefi ned 36–39, 73, 79]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

The early version of C, commonly referred to as K&R C [30], did not provide a mechanism for checking
the number of arguments or their types against the corresponding parameters. The type of an object
or function did not have to be declared in K&R C since the default type of an object and the default
return type of a function was int.

The C90 standard introduced function prototypes, a form of function declarator in which the
parameter types were declared. This permitted argument types to be checked against parameter
types. It also allowed the number of arguments to be checked except when a function prototype
specifi ed that a variable number of arguments was expected. The C90 standard did not require the
use of function prototypes for reasons of backward compatibility with existing code. For the same
reason, it continued to permit types to be omitted in which case the type would default to int.

MISRA C 2012 final.indd 64 17/03/2013 22:52:12

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

65

Se
ct

io
n

8:
 R

ul
esThe C99 standard removed the default int type from the language but continued to allow K&R-style

function types in which there was no means to supply parameter type information in a declaration
and it was optional to supply parameter type information in a defi nition.

The mismatch between the number of arguments and parameters, their types and the expected and
actual return type of a function provides potential for undefi ned behaviour. The purpose of this rule
along with Rule 8.1 and Rule 8.4 is to avoid this undefi ned behaviour by requiring parameter types and
function return types to be specifi ed explicitly. Rule 17.3 ensures that this information is available at
the time of a function call, thereby requiring the compiler to diagnose any mismatch that is detected.

This rule also requires that names be specifi ed for all the parameters in a declaration. The parameter
names can provide useful information regarding the function interface and a mismatch between a
declaration and defi nition might be indicative of a programming error.

Note: An empty parameter list is not valid in a prototype. If a function type has no parameters its
prototype form uses the keyword void.

Example

The fi rst example shows declarations of some functions and the correspon ding defi nitions for some
of those functions.

/* Compliant */
extern int16_t func1 (int16_t n);

/* Non-compliant - parameter name not specified */
extern void func2 (int16_t);

/* Non-compliant - not in prototype form */
static int16_t func3 ();

/* Compliant - prototype specifies 0 parameters */
static int16_t func4 (void);

/* Compliant */
int16_t func1 (int16_t n)
{
 return n;
}

/* Non-compliant - old style identifier and declaration list */
static int16_t func3 (vec, n)
int16_t *vec;
int16_t n;
{
 return vec[n - 1];
}

MISRA C 2012 final.indd 65 17/03/2013 22:52:12

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

66

Section 8: Rules

This example section shows the application of the rule to function types other than in function
declarations and defi nitions.

/* Non-compliant - no prototype */
int16_t (*pf1) ();

/* Compliant - prototype specifies 0 parameters */
int16_t (*pf1) (void);

/* Non-compliant - parameter name not specified */
typedef int16_t (*pf2_t) (int16_t);

/* Compliant */
typedef int16_t (*pf3_t) (int16_t n);

See also

Rule 8.1, Rule 8.4, Rule 17.3

Rule 8.3 All declarations of an object or function shall use the same names and
type qualifi ers

C90 [Undefi ned 10] , C99 [Undefi ned 14], [Koenig 59–62]

Category Required

Analysis Decidable, System

Applies to C90, C99

Amplifi cation

Storage class specifi ers are not included within the scope of this rule.

Rationale

Using typ es and qualifi ers consistently across declarations of the same object or function encou rages
stronger typing.

Specifying parameter names in function prototypes allows the function defi nition to be checked for
interface consistency with its declarations.

Exception

Compatible versions of the same basic type may be used interchangeably. For example, int, signed and
signed int are all equivalent.

Example

extern void f (signed int);
 void f (int); /* Compliant - Exception */
extern void g (int * const);
 void g (int *); /* Non-compliant - type qualifiers */

Note: all the above are not compliant with Dir 4.6.

MISRA C 2012 final.indd 66 17/03/2013 22:52:12

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

67

Se
ct

io
n

8:
 R

ul
esextern int16_t func (int16_t num, int16_t den);

/* Non-compliant - parameter names do not match */
int16_t func (int16_t den, int16_t num)
{
 return num / den;
}

In this example the defi nition of area uses a diff erent type name for the parameter h from that used
in the declaration. This does not comply with the rule even though width_t and height_t are the
same basic type.

typedef uint16_t width_t;
typedef uint16_t height_t;
typedef uint32_t area_t;

extern area_t area (width_t w, height_t h);

area_t area (width_t w, width_t h)
{
 return (area_t) w * h;
}

This rule does not require that a function pointer declaration use the same names as a function
declaration. The following example is therefore compliant.

extern void f1 (int16_t x);
extern void f2 (int16_t y);

void f (bool_t b)
{
 void (*fp1) (int16_t z) = b ? f1 : f2;
}

See also

Rule 8.4

Rule 8.4 A compatible declaration shall be visible when an object or function
with external linkage is d efi ned

C90 [Undefi ned 24], C99 [Undefi ned 39]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

A compatible declaration is one which declares a compatible type for the object or function being
defi ned.

 Rationale

If a declaration for an object or function is visible when that object or function is defi ned, a compiler
must check that the declaration and defi nition are compatible. In the presence of function prototypes,
as required by Rule 8.2, checking extends to the number and type of function parameters.

MISRA C 2012 final.indd 67 17/03/2013 22:52:12

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

68

Section 8: Rules

The recommended method of implementing declarations of objects and functions with external
linkage is to declare them in a header fi le, and then include the header fi le in all those code fi les that
need them, including the one that defi nes them (See Rule 8.5).

Example

In these examples there are no declarations or defi nitions of objects or functions other than those
present in the code.

extern int16_t count;
 int16_t count = 0; /* Compliant */

extern uint16_t speed = 6000u; /* Non-compliant - no declaration
 * prior to this definition */
uint8_t pressure = 101u; /* Non-compliant - no declaration
 * prior to this definition */

extern void func1 (void);
extern void func2 (int16_t x, int16_t y);
extern void func3 (int16_t x, int16_t y);

void func1 (void)
{
 /* Compliant */
}

The following non-compliant defi nition of func3 also violates Rule 8.3.

void func2 (int16_t x, int16_t y)
{
 /* Compliant */
}

void func3 (int16_t x, uint16_t y)
{
 /* Non-compliant - parameter types different */
}

void func4 (void)
{
 /* Non-compliant - no declaration of func4 before this definition */
}

static void func5 (void)
{
 /* Compliant - rule does not apply to objects/functions with internal
 * linkage */
}

See also

Rule 8.2, Rule 8.3, Rule 8.5, Rule 17.3

MISRA C 2012 final.indd 68 17/03/2013 22:52:12

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

69

Se
ct

io
n

8:
 R

ul
esRule 8.5 An external object or function shall be declared once in one and only

one fi le

[Koenig 66]

Category Required

Analysis Decidable, System

Applies to C90, C99

Amplifi cation

This rul e applies to non-defi ning declarations only.

Rationale

Typically, a single declaration will be made in a header fi le that will be included in any translatio n unit in
which the identifi er is defi ned or used. This ensures con sistency between:

• The declaration and the defi nition;

• Declarations in diff erent translation units.

Note: there may be many header fi les in a project, but each external object or function shall only be
declared in one header fi le.

Example

/* featureX.h */
extern int16_t a; /* Declare a */

/* file.c */
#include "featureX.h"

int16_t a = 0; /* Define a */

See also

Rule 8.4

Rule 8.6 An identifi er with external linkage shall have exactly one external
defi nition

C90 [Undefi ned 44], C99 [Undefi ned 78], [Koenig 55, 63–65]

Category Required

Analysis Decidable, System

Applies to C90, C99

Rationale

The behaviour is undefi ned if an identifi er is used for which multiple defi nitions exist (in diff erent fi les)
or no defi nition exists at all. Multiple defi nitions in diff erent fi les are not permitted by this rule even
if the defi nitions are the same. It is undefi ned behaviour if the declarations are diff erent, or initialize
the identifi er to diff erent values.

MISRA C 2012 final.indd 69 17/03/2013 22:52:12

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

70

Section 8: Rules

Example

In this example the object i is defi ned twice.

/* file1.c */
int16_t i = 10;

/* file2.c */
int16_t i = 20; /* Non-compliant - two definitions of i */

In this example the obj ect j has one tentative defi nition and one external defi nition.

/* file3.c */
int16_t j; /* Tentative definition */
int16_t j = 1; /* Compliant - external definition */

The following example is non-compliant because the object k has two external defi nitions. The
tentative defi nition in file4.c becomes an external defi nition at the end of the translation unit.

/* file4.c */
int16_t k; /* Tentative definition - becomes external */

/* file5.c */
int16_t k = 0; /* External definition */

Rule 8.7 Functions and objects should not be defi ned with external linkage if
they are referenced in only one translation unit

[Koenig 56, 57]

Category Advisory

Analysis Decidable, System

Applies to C90, C99

Rationale

Restricting the visibility of an object by giving it internal linkage or no linkage reduces the chance that
it might be accessed inadvertently. Similarly, reducing the visibilit y of a function by giving it internal
linkage reduces the chance of it being called inadvertently.

Compliance with this rule also avoids any possibility of confusion between an identifi er and an identical
identifi er in another translation unit or a library.

Rule 8.8 The static storage class specifi er shall be used in all declarations of
objects and functions that have internal linkage

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

Since defi nitions are also declarations, this rule applies equally to defi nitions.

Rationale

The Standard states that if an object or function is declared with the extern st orage class specifi er
and another declaration of the object or function is already visible, the l inkage is that specifi ed by the

MISRA C 2012 final.indd 70 17/03/2013 22:52:12

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

71

Se
ct

io
n

8:
 R

ul
esearlier declaration. This can be confusing because it might be expected that the extern storage class

specifi er creates external linkage. The static storage class specifi er shall therefore be consistently
applied to objects and functions with internal linkage.

Example

static int32_t x = 0; /* definition: internal linkage */
extern int32_t x; /* Non-compliant */

static int32_t f (void); /* declaration: inte rnal linkage */
int32_t f (void) /* Non-compliant */
{
 return 1;
}

static int32_t g (void); /* declaration: internal linkage */
extern int32_t g (void) /* Non-compliant */
{
 return 1;
}

Rule 8.9 An object should be defi ned at block scope if its identifi er only
appears in a single function

Category Advisory

Analysis Decidable, System

Applies to C90, C99

Rationale

Defi ning an objec t at block scope reduces the possibility that the object might be accessed inadvertently
and makes clear the intention that it should not be accessed elsewhere.

Within a function, whether objects are defi ned at the outermost or innermost block is largely a matter
of style.

It is recognized that there are situations in which it may not be possible to comply with this rule. For
example, an object with static storage duration declared at block scope cannot be accessed directly
from outside the block. This makes it impossible to set up and check the results of unit test cases
without using indirect accesses to the object. In this kind of situation, some projects may prefer not
to apply this rule.

Example

In this compliant example, i is declared at block scope because it is a loop counter. There is no need
for other functions in the same fi le to use the same object for any other pu rpose.

void func (void)
{
 int32_t i;

 for (i = 0; i < N; ++i)
 {
 }
}

In this compliant example, the function count keeps track of the number of times it has been called
and returns that number. No other function needs to know the details of the implementation of
count so the call counter is defi ned with block scope.

MISRA C 2012 final.indd 71 17/03/2013 22:52:12

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

72

Section 8: Rules

uint32_t count (void)
{
 static uint32_t call_count = 0;

 ++call_count;
 return call_count;
}

Rule 8.10 An inline function shall be declared with the static storage class

C99 [Unspecifi ed 20; Undefi ned 67]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C99

 Rationale

If an inline function is declared with external linkage but not defi ned in the same translation unit, the
behaviour is undefi ned.

A call to an inline function declared with external linkage may call the external defi nition of the function,
or it may use the inline defi nition. Although this should not aff ect the behaviour of the called function,
it might aff ect execution timing and therefore have an impact on a real-time program.

Note: an inline function can be made available to several translation units by placing its defi nition in a
header fi le.

 See also

Rule 5.9

Rule 8.11 When an array with external linkage is declared, its size should be
explicitly specifi ed

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi c ation

This rule applies to non-defi ning declarations only. It is possible to defi ne an array and specify its size
implicitly by means of initialization.

Rational e

Although it is possible to declare an array with incomplete type and access its elements, it is safer
to do so when the size of the array may be explicitly determined. Providing size information for each
declaration permits them to be checked for consistency. It may also permit a static checker to perform
some array bounds analysis without needing to analyse more than one translation unit.

Example

 extern int32_t array1[10]; /* Compliant */
extern int32_t array2[]; /* Non-compliant */

MISRA C 2012 final.indd 72 17/03/2013 22:52:12

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

73

Se
ct

io
n

8:
 R

ul
esRule 8.12 Within a n enumerator list, the value of an implicitly-specifi ed

enumeration constant shall be unique

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rational e

An implicitly-specifi ed enumeration constant has a value 1 greater than its predecessor. If the fi rst
enumeration constant is implicitly-specifi ed then its value is 0.

An explicitly-specifi ed enumeration constant has the value of the associated constant expression.

If implicitly-specifi ed and explicitly-specifi ed constants are mixed within an enumeration list, it is
possible for values to be replicated. Such replication may be unintentional and may give rise to
unexpected behaviour.

This rule requires that any replication of enumeration constants be made explicit, thus making the
intent clear.

Example

 In the following examples the green and yellow enumeration constants are given the same value.

/* Non-compliant - yellow replicates implicit green */
enum colour { red = 3, blue, green, yellow = 5 };

/* Compliant */
enum colour { red = 3, blue, green = 5, yellow = 5 };

Rule 8.13 A pointe r should point to a const-qualifi ed type whenever possible

Category Advisory

Analysis Undecidable, System

Applies to C90, C99

Amplifi c ation

A pointer should point to a const-qualifi ed type unless either:

• It is used to modify an object, or

• It is copied to another pointer that points to a type that is not const-qualifi ed by means of
either:

 - Assignment, or

 - Memory move or copying functions.

For the purposes of simplicity, this rule is written in terms of pointers and the types that they point to.
However, it applies equally to arrays and the types of the elements that they contain. An array should
have elements with const-qualifi ed type unless either:

• Any element of the array is modifi ed, or

• It is copied to a pointer that points to a type that is not const-qualifi ed by the means described
above.

MISRA C 2012 final.indd 73 17/03/2013 22:52:12

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

74

Section 8: Rules

Rational e

This rule encourages best practice by ensuring that pointers are not inadvertently used to modify
objects. Conceptually, it is equivalent to initially declaring:

• All arrays to have elements with const-qualifi ed type, and

• All pointers to point to const-qualifi ed types.

and then removing const-qualifi cation only where it is necessary to comply with the constraints of the
language standard.

Example

 In the following non-compliant example, p is not used to modify an object but the type to which it
points is not const-qualifi ed.

uint16_t f (uint16_t *p)
{
 return *p;
}

The code would be compliant if the function were defi ned with:

uint16_t g (const uint16_t *p)

The following example violates a constraint because an attempt is made to use a const-qualifi ed pointer
to modify an object.

void h (const uint16_t *p)
{
 *p = 0;
}

In the following example, the pointer s is const-qualifi ed but the type it points to is not. Since s is not
used to modify an object, this is non-compliant.

#include <string.h>

char last_char (char * const s)
{
 return s[strlen (s) - 1u];
}

The code would be compliant if the function were defi ned with:

char last_char (const char * const s)

In this non-compliant example, none of the elements of the array a are modifi ed but the element type
is not const-qualifi ed.

uint16_t first (uint16_t a[5])
{
 return a[0];
}

The code would be compliant if the function were defi ned with:

uint16_t first (const uint16_t a[5])

MISRA C 2012 final.indd 74 17/03/2013 22:52:12

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

75

Se
ct

io
n

8:
 R

ul
esRule 8.14 The rest rict type qualifi er shall not be used

C99 [Undefi ned 65, 66]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C99

Rational e

When used with care the restrict type qualifi er may improve the effi ciency of code generated by a
compiler. It may also allow improved static analysis. However, to use the restrict type qualifi er the
programmer must be sure that the memory areas operated on by two or more pointers do not
overlap.

There is a signifi cant risk that a compiler will generate code that does not behave as expected if restrict
is used incorrectly.

Example

 The following example is compliant because the MISRA C Guidelines do not apply to The Standard
Library functions. The programmer must ensure that the areas defi ned by p, q and n do not overlap.

#include <string.h>

void f (void)
{
 /* memcpy has restrict-qualified parameters */
 memcpy (p, q, n);
}

The following example is non-compliant because a function has been defi ned using restrict.

void user_copy (void * restrict p, void * restrict q, size_t n)
{
}

8.9 Initializ ation

Rule 9.1 The value of an object with automatic storage duration shall not be
read before it has been set

C90 [Undefi ned 41], C99 [Undefi ned 10, 17]

Category Mandatory

Analysis Undecidable, System

Applies to C90, C99

Amplifi ca tion

For the purposes of this rule, an array element or structure member shall be considered as a discrete
object.

MISRA C 2012 final.indd 75 17/03/2013 22:52:12

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

76

Section 8: Rules

Rationale

According to The Standard, objects with static storage duration are automatically initialized to zero
unless initialized explicitly. Objects with automatic storage duration are not automatically initialized
and can therefore have indeterminate values.

Note: it is sometimes possible for the explicit initialization of an automatic object to be ignored. This
will happen when a jump to a label using a goto or switch statement “bypasses” the declaration of the
object; the object will be declared as expected but any explicit initialization will be ignored.

Example

void f (bool_t b, uint16_t *p)
{
 if (b)
 {
 *p = 3U;
 }
}

void g (void)
{
 uint16_t u;

 f (false, &u);

 if (u == 3U)
 {
 /* Non-compliant - u has not been assigned a value */
 }
}

In the following non-compliant C99 example, the goto statement jumps past the initialization of x.

Note: This example is also non-compliant with Rule 15.1.

{
 goto L1;

 uint16_t x = 10u;

L1:
 x = x + 1u; /* Non-compliant - x has not been assigned a value */
}

See also

Rule 15.1, R ule 15.3

MISRA C 2012 final.indd 76 17/03/2013 22:52:12

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

77

Se
ct

io
n

8:
 R

ul
esRule 9.2 The initializer for an aggregate or uni on shall be enclosed in braces

C90 [Undefi ned 42], C99 [Undefi ned 76, 77]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

This rule applies to init ializers for both objects and subobjects.

An initializer of the form { 0 }, which sets all values to 0, may be used to initialize subobjects without
nested braces.

Note: this rule does not itself require explicit initialization of objects or subobjects.

Rationale

Using braces to indicate init ialization of subobjects improves the clarity of code and forces programmers
to consider the initialization of elements in complex data structures such as multi-dimensional arrays
or arrays of structures.

Exception

1. An array may be initialized u sing a string literal.

2. An automatic structure or union may be initialized using an expression with compatible
structure or union type.

3. A designated initializer may be used to initialize part of a subobject.

Example

The following three initializat ions, which are permitted by The Standard, are equivalent. The fi rst form
is not permitted by this rule because it does not use braces to show subarray initialization explicitly.

int16_t y[3][2] = { 1, 2, 0, 0, 5, 6 }; /* Non-compliant */
int16_t y[3][2] = { { 1, 2 }, { 0 }, { 5, 6 } }; /* Compliant */
int16_t y[3][2] = { { 1, 2 }, { 0, 0 }, { 5, 6 } }; /* Compliant */

In the following example, the initialization of z1 is compliant by virtue of Exception 3 because a
designated initializer is used to initialize the subobject z1[1]. The initialization of z2 is also
compliant for the same reason. The initialization of z3 is non-compliant because part of the subobject
z3[1] is intialized with a positional initializer but is not enclosed in braces. The initialization of
z4 is compliant because a designated initializer is used to initialize the subobject z4[0] and the
initializer for subobject z4[1] is brace-enclosed.

int16_t z1[2][2] = { { 0 }, [1][1] = 1 }; /* Compliant */
int16_t z2[2][2] = { { 0 },
 [1][1] = 1, [1][0] = 0
 }; /* Compliant */
int16_t z3[2][2] = { { 0 }, [1][0] = 0, 1 }; /* Non-compliant */
int16_t z4[2][2] = { [0][1] = 0, { 0, 1 } }; /* Compliant */

MISRA C 2012 final.indd 77 17/03/2013 22:52:12

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

78

Section 8: Rules

The fi rst line in the following example initializes 3 subarrays without using nested braces. The second
and third lines show equivalent ways to write the same initializer.

float32_t a[3][2] = { 0 }; /* Compliant */
float32_t a[3][2] = { { 0 }, { 0 }, { 0 } }; /* Compliant */
float32_t a[3][2] = { { 0.0f, 0.0f },
 { 0.0f, 0.0f },
 { 0.0f, 0.0f }
 }; /* Compliant */

union u1 {
 int16_t i;
 float32_t f;
} u = { 0 }; /* Compliant */

struct s1 {
 uint16_t len;
 char buf[8];
} s[3] = {
 { 5u, { 'a', 'b', 'c', 'd', 'e', '\0', '\0', '\0' } },
 { 2u, { 0 } },
 { .len = 0u } /* Compliant - buf initialized implicitly */
}; /* Compliant - s[] fully initialized */

Rule 9.3 Arrays shall not be partially initializ ed

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

If any element of an arra y object or subobject is explicitly initialized, then the entire object or subobject
shall be explicitly initialized.

Rationale

Providing an explicit initial ization for each element of an array makes it clear that every element has
been considered.

Exception

1. An initializer of the form { 0 } may be used to explicitly initialize all elements of an array
object or subobject.

2. An array whose initializer consists only of designated initializers may be used, for example to
perform a sparse initialization.

3. An array initialized using a string literal does not need an initializer for every element.

Example

/* Compliant */
int32_t x[3] = { 0, 1, 2 };

/* Non-compliant - y[2] is implicitly initialized */
int32_t y[3] = { 0, 1 };

MISRA C 2012 final.indd 78 17/03/2013 22:52:12

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

79

Se
ct

io
n

8:
 R

ul
es/* Non-compliant - t[0] and t[3] are implicitly initialized */

float32_t t[4] = { [1] = 1.0f, 2.0f };

/* Compliant - designated initializers for sparse matrix */
float32_t z[50] = { [1] = 1.0f, [25] = 2.0f };

In the following compliant example, each element of the array arr is initialized:

float32_t arr[3][2] =
{
 { 0.0f, 0.0f },
 { PI / 4.0f, -PI / 4.0f },
 { 0 } /* initializes all elements of array subobject arr[2] */
};

In the following example, array elements 6 to 9 are implicitly initialized to '\0':

char h[10] = "Hello"; /* Compliant by Exception 3 */

Rule 9.4 An element of an object shall not be in itialized more than once

Category Required

Analysis Decidable, Single Translation Unit

Applies to C99

Amplifi cation

This rule applies to init ializers for both objects and subobjects.

The provision of designated initializers in C99 allows the naming of the components of an aggregate
(structure or array) or of a union to be initialized within an initializer list and allows the object’s elements
to be initialized in any order by specifying the array indices or structure member names they apply to
(elements having no initialization value assume the default for uninitialized objects).

Rationale

Care is required when using de signated initializers since the initialization of object elements can be
inadvertently repeated leading to overwriting of previously initialized elements. The C99 Standard
does not specify whether the side eff ects in an overwritten initializer occur or not although this is not
listed in Annex J.

In order to allow sparse arrays and structures, it is acceptable to only initialize those which are
necessary to the application.

Example

Array initialization:

/*
 * Req uired behaviour using positional initialization
 * Compliant - a1 is -5, -4, -3, -2, -1
 */
int16_t a1[5] = { -5, -4, -3, -2, -1 };

/*
 * Similar behaviour using designated initializers
 * Compliant - a2 is -5, -4, -3, -2, -1
 */
int16_t a2[5] = { [0] = -5, [1] = -4, [2] = -3,
 [3] = -2, [4] = -1 };

MISRA C 2012 final.indd 79 17/03/2013 22:52:13

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

80

Section 8: Rules

/*
 * Repeated designated initializer element values overwrite earlier ones
 * Non-compliant - a3 is -5, -4, -2, 0, -1
 */
int16_t a3[5] = { [0] = -5, [1] = -4, [2] = -3,
 [2] = -2, [4] = -1 };

In the following non-compliant example, it is unspecifi ed whether the side eff ect occurs or not:

uint16_t *p;

void f (void)
{
 uint16_t a[2] = { [0] = *p++, [0] = 1 };
}

Structure initialization:

struct mystruct
{
 int32_t a;
 int32_t b;
 int32_t c;
 int32_t d;
};

/*
 * Required behaviour using positional initialization
 * Compliant - s1 is 100, -1, 42, 999
 */
struct mystruct s1 = { 100, -1, 42, 999 };

/*
 * Similar behaviour using designated initializers
 * Compliant - s2 is 100, -1, 42, 999
 */
struct mystruct s2 = { .a = 100, .b = -1, .c = 42, .d = 999 };

/*
 * Repeated designated initializer element values overwrite earlier ones
 * Non-compliant - s3 is 42, -1, 0, 999
 */
struct mystruct s3 = { .a = 100, .b = -1, .a = 42, .d = 999 };

Rule 9.5 Where designated initializers are used t o initialize an array object the
size of the array shall be specifi ed explicitly

Category Required

Analysis Decidable, Single Translation Unit

Applies to C99

Amplifi cation

The rule applies equally t o an array subobject that is a fl exible array member.

Rationale

If the size of an array is not specifi ed explicitly, it is determined by the highest index of any of the
elements that are initialized. When using designated initializers it may not always be clear which
initializer has the highest index, especially when the initializer contains a large number of elements.

MISRA C 2012 final.indd 80 17/03/2013 22:52:13

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

81

Se
ct

io
n

8:
 R

ul
esTo make the intent clear, the array size shall be declared explicitly. This provides some protection

if, during development of the program, the indices of the initialized elements are changed as it is a
constraint violation (C99 Section 6.7.8) to initialize an element outside the bounds of an array.

Example

/* Non-compliant - probably unint entional to have single element */
int a1[] = { [0] = 1 };

/* Compliant */
int a2[10] = { [0] = 1 };

8.10 The essential type model

8.10.1 Rationale

The ru les in this section colle ctively defi ne the essential type model and restrict the C type system so
as to:

1. Support a stronger system of type-checking;

2. Provide a rational basis for defi ning rules to control the use of implicit and explicit type
conversions;

3. Promote portable coding practices;

4. Address some of the type conversion anomalies found within ISO C.

The essential type model does this by allocating an essential type to those objects and expressions which
ISO C considers to be of arithmetic type. For example, adding an int to a char gives a result having
essentially character type rather than the int type that is actually produced by integer promotion.

The full rationale behind the essential type model is given in Appendix C with Appendix D providing a
comprehensive defi nition of the essential type of any arithmetic expression.

8.10.2 Essential type

The essential type of an object or expression i s defi ned by its essential type category and size.

The essential type category of an expression refl ects its underlying behaviour and may be:

• Essentially Boolean;

• Essentially character;

• Essentially enum;

• Essentially signed;

• Essentially unsigned;

• Essentially fl oating.

Note: each enumerated type is a unique essentially enum type identifi ed as enum<i>. This allows
diff erent enumerated types to be handled as distinct types, which supports a stronger system of
type-checking. One exception is the use of an enumerated type to defi ne a Boolean value in C90.
Such types are considered to have essentially Boolean type. Another exception is the use of anonymous
enumerations as defi ned in Appendix D. Anonymous enumerations are a way of defi ning a set of related
constant integers and are considered to have an essentially signed type.

MISRA C 2012 final.indd 81 17/03/2013 22:52:13

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

82

Section 8: Rules

When comparing two types of the same type category, the terms wider and narrower are used to
describe their relative sizes as measured in bytes. Two diff erent types are sometimes implemented
with the same size.

The following table shows how the standard integer types map on to essential type categories.

Essential type category

Boolean character signed unsigned enum<i> fl oating

_Bool char signed char
signed short
signed int
signed long
signed long long

unsigned char
unsigned short
unsigned int
unsigned long
unsigned long long

named enum fl oat
double
long double

Note: C99 implementations may provide extended integer types each of which would be allocated a
location appropriate to its rank and signedness (see C99 Section 6.3.1.1).

The restrictions enforced by the rules in this section also apply to the compound assignment operators
(e.g. ^=) as these are equivalent to assigning the result obtained from the use of one of the arithmetic,
bitwise or shift operators. For example:

u8a += u8b + 1U;

is equivalent to:

u8a = u8a + (u8b + 1U);

Rule 10.1 Operands shall not be of an inappropriate essential type
C90 [Unspecifi ed 23; Implementation 14, 17, 19, 32]

C99 [Undefi ned 13, 49; Implementation J3.4(2, 5), J3.5(5), J3.9(6)]
Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

 Amplifi cation

In the following table a number within a cell indicates where a restriction applies to the use of an
essential type as an operand to an operator. These numbers correspond to paragraphs in the Rationale
section below and indicate why each restriction is imposed.

Operator Operand
Essential type category of arithmetic operand

Boolean character enum signed unsigned fl oating

[] integer 3 4 1

+ (unary) 3 4 5

- (unary) 3 4 5 8

+ - either 3 5

* / either 3 4 5

% either 3 4 5 1

< > <= >= either 3

== != either

! && || any 2 2 2 2 2

MISRA C 2012 final.indd 82 17/03/2013 22:52:13

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

83

Se
ct

io
n

8:
 R

ul
es

Operator Operand
Essential type category of arithmetic operand

Boolean character enum signed unsigned fl oating

<< >> left 3 4 5, 6 6 1

<< >> right 3 4 7 7 1

~ & | ^ any 3 4 5, 6 6 1

?: 1st 2 2 2 2 2

?: 2nd and 3rd

Under this rule the ++ and -- operators behave the same way as the binary + and - operators.

Other rules place further restrictions on the combination of essential types that may be used within
an expression.

 Rationale

1. The use of an expression of essentially fl oating type for these operands is a constraint violation.

2. An expression of essentially Boolean type should always be used where an operand is
interpreted as a Boolean value.

3. An operand of essentially Boolean type should not be used where an operand is interpreted
as a numeric value.

4. An operand of essentially character type should not be used where an operand is interpreted
as a numeric value. The numeric values of character data are implementation-defi ned.

5. An operand of essentially enum type should not be used in an arithmetic operation because
an enum object uses an implementation-defi ned integer type. An operation involving an
enum object may therefore yield a result with an unexpected type. Note that an enumeration
constant from an anonymous enum has essentially signed type.

6. Shift and bitwise operations should only be performed on operands of essentially unsigned
type. The numeric value resulting from their use on essentially signed types is implementation-
defi ned.

7. The right hand operand of a shift operator should be of essentially unsigned type to ensure that
undefi ned behaviour does not result from a negative shift.

8. An operand of essentially unsigned type should not be used as the operand to the unary minus
operator, as the signedness of the result is determined by the implemented size of int.

 Exception

A non-negative integer constant expression of essentially signed type may be used as the right hand
operand to a shift operator.

 Example

enum enuma { a1, a2, a3 } ena, enb; /* Essentially enum<enuma> */
enum { K1 = 1, K2 = 2 }; /* Essentially signed */

The following examples are non-compliant. The comments refer to the numbered rationale item that
results in the non-compliance.

f32a & 2U /* Rationale 1 - constraint violation */
f32a << 2 /* Rationale 1 - constraint violation */

MISRA C 2012 final.indd 83 17/03/2013 22:52:13

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

84

Section 8: Rules

cha && bla /* Rationale 2 - char type used as a Boolean value */
ena ? a1 : a2 /* Rationale 2 - enum type used as a Boolean value */
s8a && bla /* Rationale 2 - signed type used as a Boolean value */
u8a ? a1 : a2 /* Rationale 2 - unsigned type used as a Boolean value */
f32a && bla /* Rationale 2 - floating type used as a Boolean value */

bla * blb /* Rationale 3 - Boolean used as a numeric value */
bla > blb /* Rationale 3 - Boolean used as a numeric value */

cha & chb /* Rationale 4 - char type used as a numeric value */
cha << 1 /* Rationale 4 - char type used as a numeric value */

ena-- /* Rationale 5 - enum type used in arithmetic operation */
ena * a1 /* Rationale 5 - enum type used in arithmetic operation */

s8a & 2 /* Rationale 6 - bitwise operation on signed type */
50 << 3U /* Rationale 6 - shift operation on signed type */

u8a << s8a /* Rationale 7 - shift magnitude uses signed type */
u8a << -1 /* Rationale 7 - shift magnitude uses signed type */

-u8a /* Rationale 8 - unary minus on unsigned type */

The following example is non-compliant with this rule and also violates Rule 10.3:

ena += a1 /* Rationale 5 - enum type used in arithmetic operation */

The following examples are compliant:

bla && blb
bla ? u8a : u8b

cha - chb
cha > chb

ena > a1
K1 * s8a /* Compliant as K1 from anonymous enum */

s8a + s16b
-(s8a) * s8b
s8a > 0
--s16b

u8a + u16b
u8a & 2U

u8a > 0U
u8a << 2U
u8a << 1 /* Compliant by exception */

f32a + f32b
f32a > 0.0

The following is compliant with this rule but violates Rule 10.2

cha + chb

See also

Rule 10.2

MISRA C 2012 final.indd 84 17/03/2013 22:52:13

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

85

Se
ct

io
n

8:
 R

ul
esRule 10.2 Expressions of essentially character type shall not be used

inappropriately in addition and subtraction operations

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

The appropria te uses are:

1. For the + operator, one operand shall have essentially character type and the other shall have
essentially signed type or essentially unsigned type. The result of the operation has essentially
character type.

2. For the - operator, the fi rst operand shall have essentially character type and the second
shall have essentially signed type, essentially unsigned type or essentially character type. If both
operands have essentially character type then the result has the standard type (usually int in this
case) else the result has essentially character type.

Rationale

Expressions with essentially character type (character data) shall not be used arithmetically as the data
does not represent numeric values.

The uses above are permitted as they allow potentially reasonable manipulation of character data.
For example:

• Subtraction of two operands with essentially character type might be used to convert between
digits in the range ‘0’ to ‘9’ and the corresponding ordinal value;

• Addition of an essentially character type and an essentially unsigned type might be used to
convert an ordinal value to the corresponding digit in the range ‘0’ to ‘9’;

• Subtraction of an essentially unsigned type from an essentially character type might be used to
convert a character from lowercase to uppercase.

Example

The following examples are com pliant:

'0' + u8a /* Convert u8a to digit */
s8a + '0' /* Convert s8a to digit */
cha - '0' /* Convert cha to ordinal */
'0' - s8a /* Convert -s8a to digit */

The following examples are non-compliant:

s16a - 'a'
'0' + f32a
cha + ':'
cha - ena

See also

Rule 10.1

MISRA C 2012 final.indd 85 17/03/2013 22:52:13

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

86

Section 8: Rules

Rule 10.3 The value of an exp ression shall not be assigne d to an object with a
narrower essential type or of a diff erent essential type category

C90 [Undefi ned 15; Implementation 16]
C99 [Undefi ned 15, 16; Implementation 3.5(4)]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

The following operations are cove red by this rule:

1. Assignment as defi ned in the Glossary;

2. The conversion of the constant expression in a switch statement’s case label to the promoted
type of the controlling expression.

Rationale

The C language allows the programmer c onsiderable freedom and will permit assignments between
diff erent arithmetic types to be performed automatically. However, the use of these implicit conversions
can lead to unintended results, with the potential for loss of value, sign or precision. Further details of
concerns with the C type system can be found in Appendix C.

The use of stronger typing, as enforced by the MISRA essential type model, reduces the likelihood of
these problems occurring.

Exception

1. A non-negative integer constant expression of ess entially signed type may be assigned to an object
of essentially unsigned type if its value can be represented in that type.

2. The initializer { 0 } may be used to initialize an aggregate or union type.

Example

enum enuma { A1, A2, A3 } ena;
enum enumb { B1, B 2, B3 } enb;
enum { K1=1, K2=128 };

The following are compliant:

uint8_t u8a = 0; /* By exception */
bool_t flag = (bool_t) 0;
bool_t set = true; /* true is essentially Boolean */
bool_t get = (u8b > u8c);

ena = A1;
s8a = K1; /* Constant value fits */
u8a = 2; /* By exception */
u8a = 2 * 24; /* By exception */
cha += 1; /* cha = cha + 1 assigns character to character */

pu8a = pu8b; /* Same essential type */
u8a = u8b + u8c + u8d; /* Same essential type */
u8a = (uint8_t) s8a; /* Cast gives same essential type */

MISRA C 2012 final.indd 86 17/03/2013 22:52:13

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

87

Se
ct

io
n

8:
 R

ul
esu32a = u16a; /* Assignment to a wider essential type */

u32a = 2U + 125U; /* Assignment to a wider essential type */
use_uint16 (u8a); /* Assignment to a wider essential type */
use_uint16 (u8a + u16b); /* Assignment to same essential type */

The following are non-compliant as they have diff erent essential type categories:

uint8_t u8a = 1.0f; /* unsigned and floating */
bool_t bla = 0; /* boolean and signed */
cha = 7; /* character and signed */
u8a = 'a'; /* unsigned and character */
u8b = 1 - 2; /* unsigned and signed */
u8c += 'a'; /* u8c = u8c + 'a' assigns character to unsigned */
use_uint32 (s32a); /* signed and unsigned */

The following are non-compliant as they contain assignments to a narrower essential type:

s8a = K2; /* Constant value does not fit */
u16a = u32a; /* uint32_t to uint16_t */

use_uint16 (u32a); /* uint32_t to uint16_t */

uint8_t foo1 (uint16_t x)
{
 return x; /* uint16_t to uint8_t */
}

See also

Rule 10.4, Rule 10.5, Rule 10.6

Rule 10.4 Both operands of a n operator in which the usual arithmetic conversions
are performed s hall have the same essential type category

C90 [Implementation 21], C99 [Implementation 3.6(4)]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

This rule applies to operators that are described in usual arithmetic co nversions (see C90 Section 6.2.1.5,
C99 Section 6.3.1.8). This includes all the binary operators, excluding the shift, logical &&, logical ||
and comma operators. In addition, the second and third operands of the ternary operator are covered
by this rule.

Note: the increment and decrement operators are not covered by this rule.

Rationale

The C language allows the programmer considerable freedom and will permit conv ersions between
diff erent arithmetic types to be performed automatically. However, the use of these implicit conversions
can lead to unintended results, with the potential for loss of value, sign or precision. Further details of
concerns with the C type system can be found in Appendix C.

The use of stronger typing, as enforced by the MISRA essential type model, allows implicit conversions
to be restricted to those that should then produce the answer expected by the developer.

MISRA C 2012 final.indd 87 17/03/2013 22:52:13

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

88

Section 8: Rules

Exception

The following are permitted to allow a common form of character manipulation to be used:

1. The binary + and += operators may have one operand with essentially character type and the
other operand with an essentially signed or essentially unsigned type;

2. The binary - and -= operators may have a left-hand operand with essentially character type
and a right-hand operand with an essentially signed or essentially unsigned type.

Example

enum enuma { A1, A2, A3 } ena;
enum enumb { B1, B2, B3 } enb;

The following are compliant a s they have the same essential type category:

ena > A1
u8a + u16b

The following is compliant by exception 1:

cha += u8a

The following is non-compliant with this rule and also violates Rule 10.3:

s8a += u8a /* signed and unsigned */

The following are non-compliant:

u8b + 2 /* unsigned and signed */
enb > A1 /* enum<enumb> and enum<enuma> */
ena == enb /* enum<enuma> and enum<enumb> */
u8a += cha /* unsigned and char */

See also

Rule 10.3, Rule 10.7

MISRA C 2012 final.indd 88 17/03/2013 22:52:13

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

89

Se
ct

io
n

8:
 R

ul
esRule 10.5 The value of an expression should not be cast to an inappropriate

essential ty pe

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

The casts which should be avoided are shown in the following table, where values are cast (explicitly
converted) to the essential type category of the fi rst column.

Essential type
category from

to Boolean character enum signed unsigned fl oating

Boolean Avoid Avoid Avoid Avoid Avoid

character Avoid Avoid

enum Avoid Avoid Avoid* Avoid Avoid Avoid

signed Avoid

unsigned Avoid

fl oating Avoid Avoid

* Note: an enumerated type may be cast to an enumerated type provided that the cast is to the same
essential enumerated type. Such casts are redundant.

Casting from void to any other type is not permitted as it results in undefi ned behaviour. This is
covered by Rule 1.3.

Rational e

An explicit cast may be introduced for legitimate functional reasons, for example:

• To change the type in which a subsequent arithmetic operation is performed;

• To truncate a value deliberately;

• To make a type conversion explicit in the interests of clarity.

However, some explicit casts are considered inappropriate:

• In C99, the result of a cast or assignment to _Bool is always 0 or 1. This is not necessarily the
case when casting to another type which is defi ned as essentially Boolean;

• A cast to an essentially enum type may result in a value that does not lie within the set of
enumeration constants for that type;

• A cast from essentially Boolean to any other type is unlikely to be meaningful;

• Converting between fl oating and character types is not meaningful as there is no precise
mapping between the two representations.

Exceptio n

An integer constant expression with the value 0 or 1 of either signedness may be cast to a type which is
defi ned as essentially Boolean. This allows the implementation of non-C99 Boolean models.

MISRA C 2012 final.indd 89 17/03/2013 22:52:13

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

90

Section 8: Rules

Example

 (bool_t) false /* Compliant - C99 'false' is essentially Boolean */
(int32_t) 3U /* Compliant */
(bool_t) 0 /* Compliant - by exception */
(bool_t) 3U /* Non-compliant */

(int32_t) ena /* Compliant */
(enum enuma) 3 /* Non-compliant */
(char) enc /* Compliant */

See also

Rule 10.3, Rule 10.8

8.10.3 Composite operators and ex pressions

Some of the concerns mentioned in Appendix C can be avoided by restricting the implicit and explicit
conversions that may be applied to non-trivial expressions. These include:

• The confusion about the type in which integer expressions are evaluated, as this depends on
the type of the operands after any integer promotion. The type of the result of an arithmetic
operation depends on the implemented size of int;

• The common misconception among programmers that the type in which a calculation
is conducted is infl uenced by the type to which the result is assigned or cast. This false
expectation may lead to unintended results.

In addition to the previous rules, the essential type model places further restrictions on expressions
whose operands are composite expressions, as defi ned below.

The following are defi ned as composite operators in this document:

• Multiplicative (*, /, %)

• Additive (binary +, binary -)

• Bitwise (&, |, ^)

• Shift (<<, >>)

• Conditional (?:) if either the second or third operand is a composite expression

A compound assignment is equivalent to an assignment of the result of its corresponding composite
operator.

A composite expression is defi ned in this document as a non-constant expression which is the direct
result of a composite operator.

Note:

• The result of a compound assignment operator is not a composite expression;

• A parenthesized composite expression is also a composite expression;

• A constant expression is not a composite expression.

MISRA C 2012 final.indd 90 17/03/2013 22:52:13

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

91

Se
ct

io
n

8:
 R

ul
esRule 10.6 The value of a composite expression shall not be assigned to an object

with wider essential type

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

This rule covers the assigning operations described in Rule 10.3.

Rationale

The rationale is described in the introduction on composite operators and expressions (see Section 8.10.3).

Example

The following are compliant:

u16c = u16a + u16b; /* Same essential type */
u32a = (uint32_t) u16a + u16b; /* Cast causes addition in uint32_t */

The following are non-compliant:

u32a = u16a + u16b; /* Implicit conversion on assignment */
use_uint32 (u16a + u16b); /* Implicit conversion of fn argument */

See also

Rule 10.3, Rule 10.7, Section 8.10.3

Rule 10.7 If a c omposite expression is used as one operand of an operator in
which the u sual arithmetic conversions are performed then the other
operand shall not have wider essential type

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

The rationale is described in the introduction on composite operator s and expressions (see Section 8.10.3).

Restricting implicit conversions on composite expressions means that sequences of arithmetic
operations within an expression must be conducted in exactly the same essential type. This reduces
possible developer confusion.

Note: this does not imply that all operands in an expression are of the same essential type.

The expression u32a + u16b + u16c is compliant as both additions will notionally be performed in
type uint32_t. In this case only non-composite expressions are implicitly converted.

The expression (u16a + u16b) + u32c is non-compliant as the left addition is notionally performed
in type uint16_t and the right in type uint32_t, requiring an implicit conversion of the composite
expression u16a + u16b to uint32_t.

MISRA C 2012 final.indd 91 17/03/2013 22:52:13

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

92

Section 8: Rules

Example

The following are compliant:

 u32a * u16a + u16b /* No comp osite conversion */
(u32a * u16a) + u16b /* No composite conversion */
 u32a * ((uint32_t) u16a + u16b) /* Both operands of * have
 * same essential type */
 u32a += (u32b + u16b) /* No composite conversion */

The following are non-compliant:

 u32a * (u16a + u16b) /* Implicit conversion of (u16a + u16b) */
 u32a += (u16a + u16b) /* Implicit conversion of (u16a + u16b) */

See also

Rule 10.4, Rule 10.6, Section 8.10.3

Rule 10.8 The value of a composite expression shal l not be cast to a diff erent
essential type category or a wider essentia l type

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

The rationale is described in the introduction on composite operators and expressions (see Section 8.1 0.3).

Casting to a wider type is not permitted as the result may vary between implementations. Consider
the following:

(uint32_t) (u16a + u16b);

On a 16-bit machine the addition will be performed in 16 bits with the result wrapping modulo-2
before it is cast to 32 bits. However, on a 32-bit machine the addition will take place in 32 bits and
would preserve high-order bits that would have been lost on a 16-bit machine.

Casting to a narrower type with the same essential type category is acceptable as the explicit truncation
of the result always leads to the same loss of information.

Example

(uint16_t) (u32a + u32b) /* Compliant */
(uint16_t) (s32a + s32b) /* Non -compliant - different essential
 * type category */
(uint16_t) s32a /* Compliant - s32a is not composite */
(uint32_t) (u16a + u16b) /* Non-compliant - cast to wider
 * essential type */

See also

Rule 10.5, Section 8.10.3

MISRA C 2012 final.indd 92 17/03/2013 22:52:13

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

93

Se
ct

io
n

8:
 R

ul
es8.11 Poin ter type conversions

Pointer types can be classifi ed as follows:

• Pointer to object;

• Pointer to function;

• Pointer to incomplete;

• Point er to void;

• A null pointer constant, i.e. the value 0, optionally cast to void *.

The only conversions involving pointers that are permitted by The Standard are:

• A conversion from a pointer type into void;

• A conversion from a pointer type into an arithmetic type;

• A conversion from an arithmetic type into a pointer type;

• A conversion from one pointer type into another pointer type.

Although permitted by the language constraints, conversion between pointers and any arithmetic
types other than integer types is undefi ned.

The following permitted pointer conversions do not require an explicit cast:

• A conversion from a pointer type into _Bool (C99 only);

• A conversion from a null pointer constant into a pointer type;

• A conversion from a pointer type into a compatible pointer type provided that the destination
type has all the type qualifi ers of the source type;

• A conversion between a pointer to an object or incomplete type and void *, or qualifi ed version
thereof, provided that the destination type has all the type qualifi ers of the source type.

In C99, any implicit conversion that does not fall into this subset of pointer conversions violates a
constraint (C99 Sections 6.5.4 and 6.5.16.1).

In C90, any implicit conversion that does not fall into this subset of pointer conversions leads to
undefi ned behaviour (C90 Sections 6.3.4 and 6.3.16.1).

The conversion between pointer types and integer types is implementation-defi ned.

Rule 11.1 Conversions shall not be performed between a pointer to a function
and any other type

C90 [Undefi ned 24, 27–29], C99 [Undefi ned 21, 23, 39, 4 1]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

A pointer to a function shall only be converted into or from a pointer to a function with a compatible
type.

MISRA C 2012 final.indd 93 17/03/2013 22:52:13

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

94

Section 8: Rules

Rationale

The conve rsion of a pointer to a function into or from any of:

• Pointer to object;

• Pointer to incomplete;

• void *

results in undefi ned behaviour.

If a function is called by means of a pointer whose type is not compatible with the called function,
the behaviour is undefi ned. Conversion of a pointer to a function into a pointer to a function with
a diff erent type is permitted by The Standard. Conversion of an integer into a pointer to a function
is also permitted by The Standard. However, both are prohibited by this rule in order to avoid the
undefi ned behaviour that would result from calling a function using an incompatible pointer type.

Exception

1. A null pointer constant may be converted into a pointer to a function;

2. A pointer to a function may be converted into void;

3. A functio n type may be implicitly converted into a pointer to that function type.

Note: exception 3 covers the implicit conversions described in C90 Section 6.2.2.1 and C99
Section 6.3.2.1. These conversions commonly occur when:

• A function is called directly, i.e. using a function identifi er to denote the function to be called;

• A function is assigned to a function pointer.

Example

typedef void (*fp16) (int16_t n);
typedef void (*fp32) (int32_t n);

#include <stdlib.h> /* To obtain macro NULL */

fp16 fp1 = NULL; /* Compliant - exception 1 */
fp32 fp2 = (fp32) fp1; /* Non-compliant - function
 * pointer into different
 * function pointer */

if (fp2 != NULL) /* Compliant - exception 1 */
{
}

fp16 fp3 = (fp16) 0x8000; /* Non-compliant - integer into
 * function pointer */
fp16 fp4 = (fp16) 1.0e6F; /* Non-compliant - float into
 * function pointer */

In the following example, the function call returns a pointer to a function type. Casting the return
value into void is compliant with this rule.

typedef fp16 (*pfp16) (void);

pfp16 pfp1;

(void) (*pfp1 ()); /* Compliant - exception 2 - cast function
 * pointer into void */

MISRA C 2012 final.indd 94 17/03/2013 22:52:13

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

95

Se
ct

io
n

8:
 R

ul
esThe following examples show compliant implicit conversions from a function type into a pointer to

that function type.

extern void f (int16_t n);

f (1); /* Compliant - exception 3 - implicit conversion
 * of f into pointer to function */
fp16 fp5 = f; /* Compliant - exception 3 */

Rule 11.2 Conversions shall not be performed between a pointer to an
incomplete type and any other type

C90 [Undefi ned 29], C99 [Undefi ned 21, 22, 41]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

A pointer to an incomplete type shall not be converted into another type.

A conversion shall not be made into a pointer to incompl ete type.

Although a pointer to void is also a pointer to an incomplete type, this rule does not apply to pointers
to void as they are covered by Rule 11.5.

Rationale

Conversion into or from a pointer to an incomplete type may result in a pointer that is not correctly
aligned, resulting in undefi ned behaviour .

Conversion of a pointer to an incomplete type into or from a fl oating type always results in undefi ned
behaviour.

Pointers to an incomplete type are sometimes used to hide the representation of an object. Converting
a pointer to an incomplete type into a pointer to object would break this encapsulation.

Exception

1. A null pointer constant may be converted into a pointer to an incomplete type.

2. A pointer to an incomplete type may be converted into void.

Exam ple

struct s; /* Incomplete type */
struct t; /* A different incomplete type */
struct s *sp;
struct t *tp;
int16_t *ip;

#include <stdlib.h> /* To obtain macro NULL */

ip = (int16_t *) sp; /* Non-compliant */
sp = (struct s *) 1234; /* Non-compliant */
tp = (struct t *) sp; /* Non-compliant - casting pointer into a
 * different incomplete type */
sp = NULL; /* Compliant - exception 1 */

MISRA C 2012 final.indd 95 17/03/2013 22:52:13

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

96

Section 8: Rules

struct s *f (void);

(void) f (); /* Compliant - exception 2 */

See also

Rule 11.5

Rule 11.3 A cast shall not be performed between a pointer to object type and a
pointer to a diff erent object type

C90 [Undefi ned 20], C99 [Undefi ned 22, 34]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

This rule applies to the unqualifi ed types that are pointed to by the pointers.

Rationale

Casting a pointer to object into a pointer to a diff erent object may result in a pointer that is not
correctly aligned, resulting in undefi ned behaviour .

Even if conversion is known to produce a pointer that is correctly aligned, the behaviour may be
undefi ned if that pointer is used to access an object. For example, if an object whose type is int is
accessed as a short the behaviour is undefi ned even if int and short have the same representation and
alignment requirements. See C90 Section 6.3, C99 Section 6.5, paragraph 7 for details.

Exception

It is permitted to convert a pointer to object type into a pointer to one of the object types char, signed
char or unsigned char. The Standard guarantees that pointers to these types can be used to access the
individual bytes of an object.

Example

uint8_t *p1;
uint32_t *p2;

/* Non-compliant - possible incompatible alignment */
p2 = (uint32_t *) p1;

extern uint32_t read_value (void);
extern void print (uint32_t n);

void f (void)
{
 uint32_t u = read_value ();
 uint16_t *hi_p = (uint16_t *) &u; /* Non-compliant even though
 * probably correctly aligned */

 hi_p = 0; / Attempt to clear high 16-bits on big-endian machine */
 print (u); /* Line above may appear not to have been performed */
}

The following example is compliant because the rule applies to the unqualifi ed pointer types. It does
not prevent type qualifi ers from being added to the object type.

MISRA C 2012 final.indd 96 17/03/2013 22:52:13

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

97

Se
ct

io
n

8:
 R

ul
esconst short *p;

const volatile short *q;

q = (const volatile short *) p; /* Compliant */

The following example is non-compliant because the unqualifi ed pointer types are diff erent, namely
“pointer to const-qualifi ed int” and “pointer to int”.

int * const * pcpi;
const int * const * pcpci;

pcpci = (const int * const *) pcpi;

See also

Rule 11.4, Rule 11.5, Rule 11.8

Rule 11.4 A conversion should not be performed between a pointer to object
and an integer type

C90 [Undefi ned 20; Implementation 24]
C99 [Undefi ned 21, 34; Implementation J.3.7(1)]

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

A pointer should not be converted into an integer.

An integer should not be converted into a pointer.

Rationale

Conversion of an integer into a pointer to object may result in a poin ter that is not correctly aligned,
resulting in undefi ned behaviour.

Conversion of a pointer to object into an integ er may produce a value that cannot be represented in
the chosen integer type resulting in undefi ned behaviour.

Note: the C99 types intptr_t and uintptr_t, declared in <stdint.h>, are respectively signed and
unsigned integer types capable of representing pointer values. Despite this, conversions between a
pointer to object and these types is not permitted by this rule because their use does not avoid the
undefi ned behaviour associated with misaligned pointers.

Casting between a pointer and an integer type should be avoided where possible, but may be
necessary when addressing memory mapped registers or other hardware specifi c features. If casting
between integers and pointers is used, care should be taken to ensure that any pointers produced do
not give rise to the undefi ned behaviour discussed under Rule 11.3.

Exception

A null pointer constant that has integer type may be converted into a pointer to object.

MISRA C 2012 final.indd 97 17/03/2013 22:52:14

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

98

Section 8: Rules

Example

uint8_t *PORTA = (uint8_t *) 0x0002; /* Non-compliant */

uint16_t *p;

int32_t addr = (in t32_t) &p; /* Non-compliant */
uint8_t *q = (uint8_t *) addr; /* Non-compliant */
bool_t b = (bool_t) p; /* Non-compliant */

enum etag { A, B } e = (enum etag) p; /* Non-compliant */

See also

Rule 11.3, Rule 11.7, Rule 11.9

Rule 11.5 A conversion should not be performed from pointer to void into
pointer to object

C90 [Undefi ned 20], C99 [Undefi ned 22, 34]

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

Conversion of a pointer to void into a pointer to object may result in a pointer that is not correctly
aligned, resulting in undefi ned behaviour. It should be avoided where possible but may be necessary,
for example when d ealing with memory allocation functions. If conversion from a pointer to object
into a pointer to void is used, care should be taken to ensure that any pointers produced do not give
rise to the undefi ned behaviour discussed under Rule 11.3.

 Exception

A null pointer constant that has type pointer to void may be converted into pointer to object.

 Example

uint32_t *p32;
void *p;
uint16_t *p16;

p = p32; /* Compliant - pointer to uint32_t into
 * pointer to void */
p16 = p; /* Non-compliant */
p = (void *) p16; /* Compliant */
p32 = (uint32_t *) p; /* Non-compliant */

 See also

Rule 11.2, Rule 11.3

MISRA C 2012 final.indd 98 17/03/2013 22:52:14

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

99

Se
ct

io
n

8:
 R

ul
esRule 11.6 A cast shall not b e performed between pointer to void and an

arithmetic type
C90 [Undefi ned 29; Implementation 24]

C99 [Undefi ned 21, 41; Implementation J.3.7(1)]
Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

Conversi on of an integer into a pointer to void may result in a pointer that is not correctly aligned,
resulting in undefi ned behaviour.

Conversion of a pointer to void into an integer may produce a value that cannot be represented in the
chosen integer type resulting in undefi ned behaviour.

Conversion between any non-integer arithmetic type and pointer to void is undefi ned.

Exception

An integ er constant expression with value 0 may be cast into pointer to void.

Example

void * p;
uint32_t u;

/* Non-compliant - implementation-defined */
p = (void *) 0x1234u;

/* Non-compliant - undefined */
p = (void *) 1024.0f;

/* Non-compliant - implementation-defined */
u = (uint32_t) p;

Rule 11.7 A cast shall not b e performed between pointer to object and a non-
integer arithmetic type

C90 [Undefi ned 29; Implementation 24]
C99 [Undefi ned 21, 41; Implementation J.3.7(1)]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

For the purposes of this rule a non-integer arithmetic type means one of:

• Essentially Boolean;

• Essentially character;

• Essentially enum;

• Essentially fl oating.

MISRA C 2012 final.indd 99 17/03/2013 22:52:14

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

100

Section 8: Rules

Rationale

Conversi on of an essentially Boolean, essentially character or essentially enum type into a pointer to
object may result in a pointer that is not correctly aligned, resulting in undefi ned behaviour.

Conversion of a pointer to object into an essentially Boolean, essentially character or essentially enum type
may produce a value that cannot be represented in the chosen integer type resulting in undefi ned
behaviour.

Conversion of a pointer to object into or from an essentially fl oating type results in undefi ned behaviour.

Example

int16_t * p;
float32_t f;

f = (float32_t) p; /* Non-compliant */
p = (int16_t *) f; /* Non-compliant */

See also

Rule 11.4

Rule 11.8 A cast shall not remove any const or volatile qualifi cation from the type
pointed to by a pointer

C90 [Undefi ned 12, 39, 40], C99 [Undefi ned 30, 61, 62]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

Any attempt to re move the qualifi cation associated with the addressed type by using casting is a
violation of the principle of type qualifi cation.

Note: the qualifi cation referred to here is not the same as any qualifi cation that may be applied to the
pointer itself.

Some of the problems that might arise if a qualifi er is removed from the addressed object are:

• Removing a const qualifi er might circumvent the read-only status of an object and result in it
being modifi ed;

• Removing a const qualifi er might result in an exception when the object is accessed;

• Removing a volatile qualifi er might result in accesses to the object being optimized away.

Note: removal of the C99 restrict type qualifi er is benign.

MISRA C 2012 final.indd 100 17/03/2013 22:52:14

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

101

Se
ct

io
n

8:
 R

ul
esExample

 uint16_t x;
 uint16_t * const cpi = &x; /* const pointer */
 uint16_t * const *pcpi; /* pointer to const pointer */
 uint16_t * *ppi;
 const uint16_t *pci; /* pointer to const */
volatile uint16_t *pvi; /* pointer to volatile */
 uint16_t *pi;

pi = cpi; /* Compliant - no conversion
 no cast required */
pi = (uint16_t *)pci; /* Non-compliant */
pi = (uint16_t *)pvi; /* Non-compliant */
ppi = (uint16_t * *)pcpi; /* Non-compliant */

See also

Rule 11.3

Rule 11.9 The macr o NULL shall be the only per mitted form of integer null
pointer constant

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

An integer constant ex pression with the value 0 shall be derived from expansion of the macro NULL if it
appears in any of the following contexts:

• As the value being assigned to a pointer;

• As an operand of an == or != operator whose other operand is a pointer;

• As the second operand of a ?: operator whose third operand is a pointer;

• As the third operand of a ?: operator whose second operand is a pointer.

Ignoring whitespace and any surrounding parentheses, any such integer constant expression shall
represent the entire expansion of NULL.

Note: a null pointer constant of the form (void *)0 is permitted, whether or not it was expanded from
NULL.

Rationale

Using NULL rather than 0 m akes it clear that a null pointer constant was intended.

Example

In the following example, th e initialization of p2 is compliant because the integer constant expression 0
does not appear in one of the contexts prohibited by this rule.

int32_t *p1 = 0; /* Non-compliant */

int32_t *p2 = (void *) 0; /* Compliant */

MISRA C 2012 final.indd 101 17/03/2013 22:52:14

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

102

Section 8: Rules

In the following example, the comparison between p2 and (void *)0 is compliant because the
integer constant expression 0 appears as the operand of a cast and not in one of the contexts prohibited
by this rule.

#define MY_NULL_1 0
#define MY_NULL_2 (void *) 0

if (p1 == MY_NULL_1) /* Non-compliant */
{
}
if (p2 == MY_NULL_2) /* Compliant */
{
}

The following example is compliant because use of the macro NULL provided by the implementation
is always permitted, even if it expands to an integer constant expression with value 0.

/* Could also be stdio.h, stdlib.h and others */
#include <stddef.h>

extern void f (uint8_t *p);

/* Compliant for any conforming definition of NULL, such as:
 * 0
 * (void *) 0
 * (((0)))
 * (((1 - 1)))
 */
f (NULL);

See also

Rule 11.4

MISRA C 2012 final.indd 102 17/03/2013 22:52:14

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

103

Se
ct

io
n

8:
 R

ul
es8.12 Expressions

Rule 12.1 The precedence of operators withi n expression s should be made
explicit

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

The following table is used in the defi nition of this rule.

Description Operator or Operand Precedence

Primary identifi er, constant, string literal, (expression) 16 (high)

Postfi x [] () (function call) . -> ++ (post-increment) -- (post-decrement) ()
{} (C99: compound literal) 15

Unary ++ (pre-increment) -- (pre-decrement) & * + - ~ ! sizeof defi ned
(preprocessor) 14

Cast () 13

Multiplicative * / % 12

Additive + - 11

Bitwise shift << >> 10

Relational < > <= >= 9

Equality == != 8

Bitwise AND & 7

Bitwise XOR ^ 6

Bitwise OR | 5

Logical AND && 4

Logical OR || 3

Conditional ?: 2

Assignment = *= /= %= += -= <<= >>= &= ^= |= 1

Comma , 0 (low)

The precedences used in this table are chosen to allow a concise description of the rule. They are
not necessarily the same as those that might be encountered in other descriptions of operator
precedence.

For the purposes of this rule, the precedence of an expression is the precedence of the element
(operand or operator) at the root of the parse tree for that expression.

For example: the parse tree for the expression a << b + c can be represented as:

 <<
 / \
 a +
 / \
 b c

The element at the root of this parse tree is '<<' so the expression has precedence 10.

MISRA C 2012 final.indd 103 17/03/2013 22:52:14

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

104

Section 8: Rules

The following advice is given:

• The operand of the sizeof operator should be enclosed in parentheses;

• An expression whose precedence is in the range 2 to 12 should have parentheses around any
operand that has both:

 - Precedence of less than 13, and

 - Precedence greater than the precedence of the expression.

 Rationale

The C language has a relatively large number of operators and their relative precedences are not
intuitive. This can lead less experienced programmers to make mistakes. Using parentheses to
make operator precedence explicit removes the possibility that the programmer’s expectations are
incorrect. It also makes the original programmer’s intention clear to reviewers or maintainers of the
code.

It is recognized that overuse of parentheses can clutter the code and reduce its readability. This rule
aims to achieve a compromise between code that is hard to understand because it contains either
too many or too few parentheses.

 Examples

The following example shows expressions with a unary or postfi x operator whose operands are either
primary-expressions or expressions whose top-level operators have precedence 15.

a[i]->n; /* Compliant - no need to write (a[i])->n */
p++; / Compliant - no need to write *(p++) */
sizeof x + y; /* Non-compliant - write either sizeof (x) + y
 * or sizeof (x + y) */

The following example shows expressions containing operators at the same precedence level. All of
these are compliant but, depending on the types of a, b and c, any expression with more than one
operator may violate other rules.

a + b;
a + b + c;
(a + b) + c;
a + (b + c);
a + b - c + d;
(a + b) - (c + d);

The following example shows a variety of mixed-operator expressions:

/* Compliant - no need to write f ((a + b), c) */
x = f (a + b, c);

/* Non-compliant
 * Operands of conditional operator (precedence 2) are:
 * == precedence 8 needs parentheses
 * a precedence 16 does not need parentheses
 * - precedence 11 needs parentheses
 */
x = a == b ? a : a - b;

/* Compliant */
x = (a == b) ? a : (a - b);

MISRA C 2012 final.indd 104 17/03/2013 22:52:14

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

105

Se
ct

io
n

8:
 R

ul
es/* Compliant

 * Operands of << operator (precedence 10) are:
 * a precedence 16 does not need parentheses
 * (E) precedence 16 already parenthesized
 */
x = a << (b + c);

/* Compliant
 * Operands of && operator (precedence 4) are:
 * a precedence 16 does not need parentheses
 * && precedence 4 does not need parentheses
 */
if (a && b && c)
{
}

/* Compliant
 * Operands of && operator (precedence 4) are:
 * defined(X) precedence 14 does not need parentheses
 * (E) precedence 16 already parenthesized
 */
#if defined (X) && ((X + Y) > Z)

/* Compliant
 * Operands of && operator (precedence 4) are:
 * !defined (X) precedence 14 does not need parentheses
 * defined (Y) precedence 14 does not need parentheses
 * Operand of ! operator (precedence 14) is:
 * defined (X) precedence 14 does not need parentheses
 */
#if !defined (X) && defined (Y)

Note: this rule does not require the operands of a , operator to be parenthesized. Use of the ,
operator is prohibited by Rule 12.3.

x = a, b; /* Compliant - parsed as (x = a), b */

Rule 12.2 The right hand operand of a shift operator shall lie in the range zero
to one less than the width in bits of the essential type of the left hand
operand

C90 [Undefi ned 32], C99 [Undefi ned 48]

Category Required

Analysis Undecidable, System

Applies to C90, C99

Rationale

If the right hand operand is negative, or greater than or equal to the width of the left hand operand,
then the behaviour is undefi ned.

If, for example, the left hand operand of a left-shift or right-shift is a 16-bit integer, then it is important
to ensure that this is shifted only by a number in the range 0 to 15.

See Section 8.10 for a description of essential type and the limitations on the essential types for the
operands of shift operators.

There are various ways of ensuring this rule is followed. The simplest is for the right hand operand to
be a constant (whose value can then be statically checked). Use of an unsigned integer type will ensure

MISRA C 2012 final.indd 105 17/03/2013 22:52:14

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

106

Section 8: Rules

that the operand is non-negative, so then only the upper limit needs to be checked (dynamically at
run time or by review). Otherwise both limits will need to be checked.

Example

u8a = u8a << 7; /* Compliant */
u8a = u8a << 8; /* Non-compliant */
u16a = (uint16_t) u8a << 9; /* Compliant */

To assist in understanding the following examples, it should be noted that the essential type of 1u is
essentially unsigned char, whereas the essential type of 1UL is essentially unsigned long.

1u << 10u; /* Non-compliant */
(uint16_t) 1u << 10u; /* Compliant */
1UL << 10u; /* Compliant */

Rule 12.3 The comma operato r should not be used

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

Use of the comma operator is generally detrimental to the readability of code, and the same eff ect
can usually be achieved by other means.

Example

f ((1, 2), 3); /* Non-compliant - how many parameters? */

The following example is non-compliant with this rule and other rules:

for (i = 0, p = &a[0]; i < N; ++i, ++p)
{
}

Rule 12.4 Evaluation of con stant expressions should not lead to unsigned integer
wrap-around

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

Thi s rule applies to expressions that satisfy the constraints for a constant expression, whether or not
they appear in a context that requires a constant expression.

If an expression is not evaluated, for example because it appears in the right operand of a logical AND
operator whose left operand is always false, then this rule does not apply.

Rationale

Unsigne d integer expressions do not strictly overfl ow, but instead wrap-around. Although there may
be good reasons to use modulo arithmetic at run-time, it is less likely for its use to be intentional at
compile-time.

MISRA C 2012 final.indd 106 17/03/2013 22:52:14

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

107

Se
ct

io
n

8:
 R

ul
esExample

The expre ssion associated with a case label is required to be a constant expression. If an unsigned wrap-
around occurs during evaluation of a case expression, it is likely to be unintentional. On a machine
with a 16-bit int type, any value of BASE greater than or equal to 65 024 would result in wrap-around
in the following example:

#define BASE 65024u

switch (x)
{
 case BASE + 0u:
 f ();
 break;
 case BASE + 1u:
 g ();
 break;
 case BASE + 512u: /* Non-compliant - wraps to 0 */
 h ();
 break;
}

The controlling expression of a #if or #elif preprocessor directive is required to be a constant expression.

#if 1u + (0u - 10u) /* Non-compliant as (0u - 10u) wraps */

In this example, the expression DELAY + WIDTH has the value 70 000 but this will wrap-around to
4 464 on a machine with a 16-bit int type.

#define DELAY 10000u
#define WIDTH 60000u

void fixed_pulse (void)
{
 uint16_t off_time16 = DELAY + WIDTH; /* Non-compliant */
}

This rule does not apply to the expression c + 1 in the following compliant example as it accesses an
object and therefore does not satisfy the constraints for a constant expression:

const uint16_t c = 0xffffu;

void f (void)
{
 uint16_t y = c + 1u; /* Compliant */
}

In the following example, the sub-expression (0u - 1u) leads to unsigned integer wrap-around. In
the initialization of x, the sub-expression is not evaluated and the expression is therefore compliant.
However, in the initialization of y, it may be evaluated and the expression is therefore non-compliant.

bool_t b;

void g (void)
{
 uint16_t x = (0u == 0u) ? 0u : (0u - 1u); /* Compliant */
 uint16_t y = b ? 0u : (0u - 1u); /* Non-compliant */

}

MISRA C 2012 final.indd 107 17/03/2013 22:52:14

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

108

Section 8: Rules

8.13 Side eff ects

Rule 13.1 Initi alizer lists shall not contain persistent side eff ects

C99 [Unspecifi ed 17, 22]

Category Required

Analysis Undecidable, System

Applies to C99

Rationale

C90 cons trains the initializers for automatic objects with aggregate types to contain only constant
expressions. However, C99 permits automatic aggregate initializers to contain expressions that are
evaluated at run-time. It also permits compound literals which behave as anonymous initialized
objects. The order in which side eff ects occur during evaluation of the expressions in an initializer list
is unspecifi ed and the behaviour of the initialization is therefore unpredictable if those side eff ects are
persistent.

Example

volatile u int16_t v1;

void f (void)
{
 /* Non-compliant - volatile access is persistent side effect */
 uint16_t a[2] = { v1, 0 };
}

void g (uint16_t x, uint16_t y)
{
 /* Compliant - no side effects */
 uint16_t a[2] = { x + y, x - y };
}

uint16_t x = 0u;

extern void p (uint16_t a[2]);

void h (void)
{
 /* Non-compliant - two side effects */
 p ((uint16_t[2]) { x++, x++ });
}

See also

Rule 13.2

MISRA C 2012 final.indd 108 17/03/2013 22:52:14

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

109

Se
ct

io
n

8:
 R

ul
esRule 13.2 The value of an expression and its persistent side eff ects shall be the

same under all permitted evaluation orders

C90 [Unspecifi ed 7–9; Undefi ned 18], C99 [Unspecifi ed 15–18; Undefi ned 32]

Category Required

Analysis Undecidable, System

Applies to C90, C99

Amplifi cation

Between any two adjacent sequence points or within any full expression:

1. No object shall be modifi ed more than once;

2. No object shall be both modifi ed and read unless any such read of the object’s value
contributes towards computing the value to be stored into the object;

3. There shall be no more than one modifi cation access with volatile-qualifi ed type;

4. There shall be no more than one read access with volatile-qualifi ed type.

Note: An object might be accessed indirectly, by means of a pointer or a called function, as well as
being accessed directly by the expression.

Note: This Amplifi cation is intentionally stricter than the headline of the rule. As a result, expressions
such as:

x = x = 0;

are not permitted by this rule even though the value and the persistent side eff ects, provided that x is
not volatile, are independent of the order of evaluation or side eff ects.

Sequence points are summarized in Annex C of both the C90 and C99 standards. The sequence
points in C90 are a subset of those in C99.

Full expressions are defi ned in Section 6.6 of the C90 standard and Section 6.8 of the C99 standard.

Rationale

The Standard gives con siderable fl exibility to compilers when evaluating expressions. Most operators
can have their operands evaluated in any order. The main exceptions are:

• Logical AND && in which the second operand is evaluated only if the fi rst operand evaluates
to non-zero;

• Logical OR || in which the second operand is evaluated only if the fi rst operand evaluates to
zero;

• The conditional operator ?: in which the fi rst operand is always evaluated and then either the
second or third operand is evaluated;

• The , operator in which the fi rst operand is evaluated and then the second operand is
evaluated.

Note: The presence of parentheses may alter the order in which operators are applied. However, this
does not aff ect the order of evaluation of the lowest-level operands, which may be evaluated in any
order.

Many of the common instances of the unpredictable behaviour associated with expression evaluation
can be avoided by following the advice given by Rule 13.3 and Rule 13.4.

MISRA C 2012 final.indd 109 17/03/2013 22:52:14

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

110

Section 8: Rules

Examples

When the COPY_ELEMENT macro is invoked in this non-compliant example, i is read twice and
modifi ed twice. It is unspecifi ed whether the order of operations on i is:

• Read, modify, read, modify, or

• Read, read, modify, modify.

#define COPY_ELEMENT (index) (a[(index)] = b[(index)])

COPY_ELEMENT (i++);

In this non-compliant example the order in which v1 and v2 are read is unspecifi ed.

extern volatile uint16_t v1, v2;
uint16_t t;

t = v1 + v2;

In this compliant example PORT is read and modifi ed.

extern volatile uint8_t PORT;

PORT = PORT & 0x80u;

The order of evaluation of function arguments is unspecifi ed as is the order in which side eff ects occur
as shown in this non-compliant example.

uint16_t i = 0;

/*
 * Unspecified whether this call is equivalent to:
 * f (0, 0)
 * or f (0, 1)
 */
f (i++, i);

The relative order of evaluation of a function designator and function arguments is unspecifi ed. In
this non-compliant example, if the call to g modifi es p then it is unspecifi ed whether the function
designator p->f uses the value of p prior to the call of g or after it.

p->f (g (&p));

See also

Dir 4.9, Rule 13.1, Rule 13.3, Rule 13.4

MISRA C 2012 final.indd 110 17/03/2013 22:52:14

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

111

Se
ct

io
n

8:
 R

ul
esRule 13.3 A full expression containing an increment (++) or decrement (--)

operator should hav e no other potential side eff ects other than that
caused by the increment or decrement operator

C90 [Unspecifi ed 7, 8; Undefi ned 18], C99 [Unspecifi ed 15; Undefi ned 32]

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

A function call is considered to be a side eff ect for the purposes of t his rule.

All sub-expressions of the full expression are treated as if they were evaluated for the purposes of this
rule, even if specifi ed as not being evaluated by The Standard.

Rationale

The use of increment and decrement operators in combination with other oper ators is not
recommended because:

• It can signifi cantly impair the readability of the code;

• It introduces additional side eff ects into a statement with the potential for undefi ned behaviour
(covered by Rule 13.2).

It is clearer to use these operations in isolation from any other operators.

Example

The expression:

u8a = u8b++

is non-compliant. The non-compliant expression statement:

u8a = ++u8b + u8c--;

is clearer when written as the following sequence:

++u8b;
u8a = u8b + u8c;
u8c--;

The following are all compliant because the only side eff ect in each expression is caused by the
increment or decrement operator.

x++;
a[i]++;
b.x++;
c->x++;
++(*p);
*p++;
(*p)++;

MISRA C 2012 final.indd 111 17/03/2013 22:52:14

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

112

Section 8: Rules

The following are all non-compliant because they contain a function call as well as an increment or
decrement operator:

if ((f () + --u8a) == 0u)
{
}

g (u8b++);

The following are all non-compliant even though the sub-expression containing the increment or
decrement operator or some other side eff ect is not evaluated:

u8a = (1u == 1u) ? 0u : u8b++;

if (u8a++ == ((1u == 1u) ? 0u : f ()))
{
}

See also

Rule 13.2

Rule 13.4 The result of an assignment operator should not be used
C90 [Unspecifi ed 7, 8; Undefi ned 18], C99 [Unspe cifi ed 15, 18; Undefi ned 32]

[Koenig 6]
Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

This rule applies even if the expression containing the assignment operator is not evaluat ed.

Rationale

The use of assignment operators, simple or compound, in combination with other arithmetic oper ators
is not recommended because:

• It can signifi cantly impair the readability of the code;

• It introduces additional side eff ects into a statement making it more diffi cult to avoid the
undefi ned behaviour covered by Rule 13.2.

Example

x = y; /* Compliant */
a[x] = a[x = y]; /* Non-compliant - the value of x = y
 * is used */

/*
 * Non-compliant - value of bool_var = false is used but
 * bool_var == false was probably intended
 */
if (bool_var = false)
{
}

MISRA C 2012 final.indd 112 17/03/2013 22:52:14

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

113

Se
ct

io
n

8:
 R

ul
es/* Non-compliant even though bool_var = true isn't evaluated */

if ((0u == 0u) || (bool_var = true))
{
}

/* Non-compliant - value of x = f() is used */
if ((x = f ()) != 0)
{
}

/* Non-compliant - value of b += c is used */
a[b += c] = a[b];

/* Non-compliant - values of c = 0 and b = c = 0 are used */
a = b = c = 0;

See also

Rule 13.2

Rule 13.5 The right hand operand of a logical && or || operator shall not
contain persistent side eff ect s

Category Required

Analysis Undecidable, System

Applies to C90, C99

Rationale

The evaluation of the right-hand operand of the && and || operators is conditional on the value of the
left-hand operand. If the right-hand operand contains side eff ects then those side eff ects may or may
not occur which may be contrary to programmer expectations.

If evaluation of the right-hand operand would produce side eff ects which are not persistent at the point
in the program where the expression occurs then it does not matter whether the right-hand operand
is evaluated or not.

The term persistent side eff ect is defi ned in Appendix J.

Example

uint16_t f (uint16_t y)
{
 /* These side effects are not persistent as seen by the caller */
 uint16_t temp = y;

 tem p = y + 0x8080U;

 return temp;
}

MISRA C 2012 final.indd 113 17/03/2013 22:52:14

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

114

Section 8: Rules

uint16_t h (uint16_t y)
{
 static uint16_t temp = 0;

 /* This side effect is persistent */
 temp = y + temp;

 return temp;
}

void g (void)
{
 /* Compliant - f () has no persistent side effects */
 if (ishigh && (a == f (x)))
 {
 }

 /* Non-compliant - h () has a persistent side effect */
 if (ishigh && (a == h (x)))
 {
 }
}

volatile uint16_t v;
 uint16_t x;

/* Non-compliant - access to volatile v is persistent */
if ((x == 0u) || (v == 1u))
{
}

/* Non-compliant if fp points to a function with persistent side effects */
(fp != NULL) && (*fp) (0);

Rule 13.6 The operand of the sizeof operator shall not contain any expression
which has potential side eff ects

C99 [Unspecifi ed 21]

Category Mandatory

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

Any expressions appearing in the operand of a sizeof operator are not normally evaluated. This rule
mandates that the evaluation of any such expression shall not contain side eff ects, whether or not it is
actually evaluated.

A function call is considered to be a side eff ect for the purposes of this rule.

Rationale

The operand of a sizeof operator may be either an expression or may specify a type. If the operand
contains an expression , a possible programming error is to expect that expression to be evaluated
when it is actually not evaluated in most circumstances.

The C90 standard states that expressions appearing in the operand are not evaluated at run-time.

In C99, expressions appearing in the operand are usually not evaluated at run-time. However, if the
operand contains a variable-length array type then the array size expression will be evaluated if

MISRA C 2012 final.indd 114 17/03/2013 22:52:14

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

115

Se
ct

io
n

8:
 R

ul
esnecessary. If the result can be determined without evaluating the array size expression then it is

unspecifi ed whether it is evaluated or not.

Exception

An expression of the form sizeof (V), where V is an lvalue with a volatile qualifi ed type that is not
a variable-length array, is permitted.

 Example

volatile int32_t i;
 int32_t j;
 size_t s;

s = sizeof (j); /* Compliant */
s = sizeof (j++); /* Non-compliant */
s = sizeof (i); /* Compliant - exception */
s = sizeof (int32_t); /* Compliant */

In this example the fi nal sizeof expression illustrates how it is possible for a variable-length array size
expression to have no eff ect on the size of the type. The operand is the type “array of n pointers
to function with parameter type array of v int32_t”. Because the operand has variable-length
array type, it is evaluated. However, the size of the array of n function pointers is unaff ected by the
parameter list for those function pointer types. Therefore, the volatile-qualifi ed object v may or may
not be evaluated and its side eff ects may or may not occur.

volatile uint32_t v;

void f (int32_t n)
{
 size_t s;

 s = sizeof (int32_t[n]); /* Compliant */
 s = sizeof (int32_t[n++]); /* Non-compliant */
 s = sizeof (void (*[n]) (int32_t a[v])); /* Non-compliant */
}

Se e also

Rule 18.8

8.14 Control sta tement expressions
The term loop counter is used by some of the rules in this section. A loop counter is defi ned as an
object, array element or member of a structure or union which satisfi es the following:

1. It has a scalar type;

2. Its value varies monotonically on each iteration of a given instance of a loop; and

3. It is involved in a decision to exit the loop.

Note: the second condition means that the value of the loop counter must change on each iteration
of the loop and it must always change in the same direction for a given instance of the loop. It may,
however, change in diff erent directions on diff erent instances, for example sometimes reading the
elements of an array backwards and sometimes reading them forwards.

According to this defi nition, a loop need not have just one loop counter: it is possible for a loop to have
no loop counter or to have more than one. See Rule 14.2 for further restrictions on loop counters in for
loops.

MISRA C 2012 final.indd 115 17/03/2013 22:52:15

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

116

Section 8: Rules

The following code fragments show examples of loops and their corresponding loop counters.

In this loop, i is a loop counter because it has a scalar type, varies monotonically (increasing) and is
involved in the loop termination condition.

for (uint16_t i = 0; a[i] < 10; ++i)
{
}

The following loop has no loop counter. The object count has scalar type and varies monotonically but
is not involved in the termination condition.

extern volatile bool_t b;
uint16_t count = 0;

while (b)
{
 count = count + 1U;
}

In the following code, both i and sum are scalar and monotonically varying (decreasing and increasing
respectively). However sum is not a loop counter because it is not involved in the decision to exit the
loop.

uint16_t sum = 0;

for (uint16_t i = 10U; i != 0U; --i)
{
 sum += i;
}

In the following loop, p is a loop counter. It is not involved in the loop control expression but it is
involved in a decision to exit the loop by means of the break statement.

extern volatile bool_t b;

extern char *p;

do
{
 if (*p == '\0')
 {
 break;
 }

 ++p;
} while (b);

The loop counter in the following example is p->count.

struct s
{
 uint16_t count;
 uint16_t a[10];
};

extern struct s *p;

for (p->count = 0U; p->count < 10U; ++(p->count))
{
 p->a[p->count] = 0U;
}

MISRA C 2012 final.indd 116 17/03/2013 22:52:15

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

117

Se
ct

io
n

8:
 R

ul
esRule 14.1 A loop counter shall not have essentially fl oating type

Category Required

Analysis Undecidable, System

Applies to C90, C99

Rationale

When using a fl oating-point loop counter, accumulation of rounding errors may result in a mismatch
between the expected and actual number of iterations. This can happen when a loop step that is not
a power of the fl oating-point radix is rounded to a value that can be represented.

Even if a loop with a fl oating-point loop counter appears to behave correctly on one implementation,
it may give a diff erent number of iterations on another implementation.

Example

In the follo wing non-compliant example, the value of counter is unlikely to be 1 000 at the end of the
loop.

uint32_t counter = 0u;

for (float32_t f = 0.0f; f < 1.0f; f += 0.001f)
{
 ++counter;
}

The following compliant example uses an integer loop counter to guarantee 1 000 iterations and uses
it to generate f for use within the loop.

float32_t f;

for (uint32_t counter = 0u; counter < 1000u; ++counter)
{
 f = (float32_t) counter * 0.001f;
}

The following while loop is non-compliant because f is being used as a loop counter.

float32_t f = 0.0f;

while (f < 1.0f)
{
 f += 0.001f;
}

The following while loop is compliant because f is not being used as a loop counter.

float32_t f;
uint32_t u32a;

f = read_float32 ();

do
{
 u32a = read_u32 ();
 /* f does not change in the loop so cannot be a loop counter */
} while (((float32_t) u32a - f) > 10.0f);

See also

Rule 14.2

MISRA C 2012 final.indd 117 17/03/2013 22:52:15

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

118

Section 8: Rules

Rule 14.2 A for loop shall be well-form ed

Category Required

Analysis Undecidable, System

Applies to C90, C99

Amplifi cation

The three claus es of a for statement are the:

First clause which

• Shall be empty, or

• Shall assign a value to the loop counter, or

• Shall defi ne and initialize the loop counter (C99).

Second clause which

• Shall be an expression that has no persistent side eff ects, and

• Shall use the loop counter and optionally loop control fl ags, and

• Shall not use any other object that is modifi ed in the for loop body.

Third clause which

• Shall be an expression whose only persistent side eff ect is to modify the value of the loop
counter, and

• Shall not use objects that are modifi ed in the for loop body.

There shall only be one loop counter in a for loop, which shall not be modifi ed in the for loop body.

A loop control fl ag is defi ned as a single identifi er denoting an object with essentially Boolean type that
is used in the Second clause.

The behaviour of a for loop body includes the behaviour of any functions called within that statement.

Rationale

The for statement p rovides a general-purpose looping facility. Using a restricted form of loop makes
code easier to review and to analyse.

Exception

All three clauses m ay be empty, for example for (; ;), so as to allow for infi nite loops.

MISRA C 2012 final.indd 118 17/03/2013 22:52:15

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

119

Se
ct

io
n

8:
 R

ul
esExample

In the following C99 example, i is the loop counter and flag is a loop control fl ag.

bool_t flag = false;

for (int16_t i = 0; (i < 5) && !flag; i++)
{
 if (C)
 {
 flag = true; /* Compliant - allows early termination
 * of loop */
 }

 i = i + 3; /* Non-compliant - altering the loop
 * counter */
}

See also

Rule 14.1, Rule 14.3 , Rule 14.4

Rule 14.3 Controlling expressions shall not be invariant

Category Required

Analysis Undecidable, System

Applies to C90, C99

Amplifi cation

This rule applies to:

• Controlling expressi ons of if, while, for, do … while and switch statements;

• The fi rst operand of the ?: operator.

Rationale

If a controlling expression has an invariant value, it i s possible that there is a programming error. Any
code that cannot be reached due to the presence of an invariant expression may be removed by the
compiler. This might have the eff ect of removing defensive code, for instance, from the executable.

Exception

1. Invariants that are used to create infi nite loops are pe rmitted.

2. A do … while loop with an essentially Boolean controlling expression that evaluates to 0 is
permitted.

Example

s8a = (u16a < 0u) ? 0 : 1; /* Non-compliant - u16a always >= 0 */

if (u16a <= 0xffffu)
{
 /* Non-compliant - always true */
}

MISRA C 2012 final.indd 119 17/03/2013 22:52:15

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

120

Section 8: Rules

if (2 > 3)
{
 /* Non-compliant - always false */
}

for (s8a = 0; s8a < 130; ++s8a)
{
 /* Non-compliant - always true */
}

if ((s8a < 10) && (s8a > 20))
{
 /* Non-compliant - always false */
}

if ((s8a < 10) || (s8a > 5))
{
 /* Non-compliant - always true */
}

while (s8a > 10)
{
 if (s8a > 5)
 {
 /* Non-compliant - s8a not volatile */
 }
}

while (true)
{
 /* Compliant by exception 1 */
}

do
{
 /* Compliant by exception 2 */
} while (0u == 1u);

const uint8_t numcyl = 4u;

/*
 * Non-compliant - compiler is permitted to assume that numcyl always
 * has value 4
 */
if (numcyl == 4u)
{
}

const volatile uint8_t numcyl_cal = 4u;

/*
 * Compliant - compiler assumes numcyl_cal may be changed by
 * an external method, e.g. automotive calibration tool, even
 * though the program cannot modify its value
 */
if (numcyl_cal == 4u)
{
}

MISRA C 2012 final.indd 120 17/03/2013 22:52:15

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

121

Se
ct

io
n

8:
 R

ul
esuint16_t n; /* 10 <= n <= 100 */

uint16_t sum;

sum = 0;

for (uint16_t i = (n - 6u); i < n; ++i)
{
 sum += i;
}

if ((sum % 2u) == 0u)
{
 /*
 * Non-compliant - sum is the sum of 6 consecutive non-negative
 * integers so must be an odd number. The controlling expression
 * of the if statement will always be false.
 */
}

See also

Rule 2.1, Rule 14.2

Rule 14.4 The controlling expression of an if statement a nd the controlling
expression of an iteration- statement shall have essentially Boolean type

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

The controlling expression of a for statement is optional. The rule does not re quire the expression to
be present but does require it to have essentially Boolean type if it is present.

Rationale

Strong typing requires the controlling expression of an if statement or iteration-s tatement to have
essentially Boolean type.

Example

int32_t *p, *q;

while (p) /* Non-compliant - p is a pointer */
{
}

whil e (q != NULL) /* Compliant */
{
}

while (true) /* Compliant */
{
}

MISRA C 2012 final.indd 121 17/03/2013 22:52:15

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

122

Section 8: Rules

extern bool_t flag;

while (flag) /* Compliant */
{
}

int32_t i;

if (i) /* Non-compliant */
{
}

if (i != 0) /* Compliant */
{
}

See also

Rule 14.2, Rule 20.8

8.15 Control fl ow

Rule 15.1 The goto statement should not be used

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

Unconstrained use of goto can lead to programs that are unstructured and extremely diffi cult to
under stand.

In some cases a total ban on goto requires the introduction of fl ags to ensure correct control fl ow,
and it is possible that these fl ags may themselves be less transparent than the goto they replace.
Therefore, if this rule is not followed, the restricted use of goto is allowed where that use follows the
guidance in Rule 15.2 and Rule 15.3.

See also

Rule 9.1, Rule 15.2, Rule 15.3, Rule 15.4

Rule 15.2 The goto statement shall jump to a label declared later in the same
function

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Ratio nale

Unconstrained use of goto can lead to programs that are unstructured and extremely diffi cult to
understand.

Restricting the use of goto so that “back” jum ps are prohibited ensures that iteration only occurs if the
iteration statements provided by the language are used, helping to minimize visual code complexity.

MISRA C 2012 final.indd 122 17/03/2013 22:52:15

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

123

Se
ct

io
n

8:
 R

ul
esExample

void f (void)
{
 int32_t j = 0;

L1:
 ++j;

 if (10 == j)
 {
 goto L2; /* Compliant */
 }

 goto L1; /* Non-compliant */

L2 :
 ++j;
}

See also

Rule 15.1, Rule 15.3, Rule 15.4

Rule 15.3 Any label referenced by a goto statement shall be declared in the
same block, or in any block enclosing the goto statement

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

For the purposes of this rule, a switch-clause that does not consist of a compound statement is treated
as if it were a block.

Rationale

Unconstrained use of goto can lead to progr ams that are unstructured and extremely diffi cult to
understand.

Preventing jumps between blocks, or into nested blocks, helps to minimize vi sual code complexity.

Note: C99 is more restrictive when variably modifi ed types are used. An attempt to make a jump from
outside the scope of an identifi er with a variably modifi ed type into such a scope results in a constraint
violation.

MISRA C 2012 final.indd 123 17/03/2013 22:52:15

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

124

Section 8: Rules

Example

void f1 (int32_t a)
{
 if (a <= 0)
 {
 goto L2; /* Non-compliant */
 }

 goto L1; /* Compliant */

 if (a == 0)
 {
 goto L1; /* C ompliant */
 }

 goto L2; /* Non-compliant */

L1:
 if (a > 0)
 {
 L2:
 ;
 }
}

In the following example, the label L1 is defi ned in a block which encloses the block containing the
goto statement. However, the jump crosses from one switch-clause to another and, since switch-clauses
are treated like blocks for the purposes of this rule, the goto statement is non-compliant.

switch (x)
{
 case 0:
 if (x == y)
 {
 goto L1;
 }
 break;
 case 1:
 y = x;
L1:
 ++x;
 break;
 default:
 break;
}

See also

Rule 9.1, Rule 15.1, Rule 15.2, Rule 15.4, Rule 16.1

MISRA C 2012 final.indd 124 17/03/2013 22:52:15

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

125

Se
ct

io
n

8:
 R

ul
esRule 15.4 There should be no more than one break or goto statement used to

terminate any iteration statement

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

Restricting the number of exits from a loop hel ps to minimize visual code complexity. The use of one
break or goto statement allows a single secondary exit path to be created when early loop termination
is required.

Example

Both of the following nested loops are compliant as each has a single break used for early loop
termination.

for (x = 0; x < LIMIT; ++x)
{
 if (ExitNow (x))
 {
 break;
 }

 for (y = 0; y < x; ++y)
 {
 if (Exit Now (LIMIT - y))
 {
 break;
 }
 }
}

The following loop is non-compliant as there are multiple break and goto statements used for early
loop termination.

for (x = 0; x < LIMIT; ++x)
{
 if (BreakNow (x))
 {
 break;
 }
 else if (GotoNow (x))
 {
 goto EXIT;
 }
 else
 {
 KeepGoing (x);
 }
}

EXIT:
 ;

MISRA C 2012 final.indd 125 17/03/2013 22:52:15

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

126

Section 8: Rules

In the following example, the inner while loop is compliant because there is a single goto statement
that can cause its early termination. However, the outer while loop is non-compliant because it can be
terminated early either by the break statement or by the goto statement in the inner while loop.

while (x != 0u)
{
 x = calc_new_x ();

 if (x == 1u)
 {
 break;
 }

 while (y != 0u)
 {
 y = calc_new_y ();

 if (y == 1u)
 {
 goto L1;
 }
 }
}

L1:
z = x + y;

See also

Rule 15.1, Rule 15.2, Rule 15.3

Rule 15.5 A function should have a single point of exit at the end

[IEC 61508-3 Table B.9], [ISO 26262-6 Table 8]

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cati on

A function should have no more than one return statement.

When a return statement is used, it should be the fi nal statement in the compound statement that
forms the body of the function.

Rationale

A single point of exit is required by IEC 61508 and IS O 26262 as part of the requirements for a modular
approach.

Early returns may lead to the unintentional omission of function termination code.

If a function has exit points interspersed with statements that produce persistent side eff ects, it is not
easy to determine which side eff ects will occur when the function is executed.

MISRA C 2012 final.indd 126 17/03/2013 22:52:15

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

127

Se
ct

io
n

8:
 R

ul
esExample

In the following non-compliant code example, early returns are used to validate the function
parameters.

bool_t f (uint16_t n, char *p)
{
 if (n > MAX)
 {
 return false;
 }

 if (p == NULL)
 {
 return false;
 }

 return true;
}

See also

R ule 17.4

Rule 15.6 The body of an iteration-statement or a selection-statement shall be a
compound-statement

[Koenig 24]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

The body of an iteration-statement (while, do … while or for) or a selection -statement (if, else, switch) shall
be a compound-statement.

Rationale

It is possible for a developer to mistakenly believe that a sequence of statements forms the body of
an iteration -statement or selection-statement by virtue of their indentation. The accidental inclusion of a
semi-colon after the controlling expression is a particular dange r, leading to a null control statement.
Using a compound-statement clearly defi nes which statements actually form the body.

Additionally, it is possible that indentation may lead a developer to associate an else statement with
the wrong if.

Exception

An if statement immediately following an else need not be contained within a compound-statement.

Example

The layout for the compound-statement and its enclosing braces are style issues which are not
addressed by this document; the style used in the following examples is not mandatory.

MISRA C 2012 final.indd 127 17/03/2013 22:52:15

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

128

Section 8: Rules

Maintenance to the following

while (data_available)
 process_data (); /* Non-c ompliant */

could accidentally give

while (data_available)
 process_data (); /* Non-compliant */
 service_watchdog ();

where service_watchdog() should have been added to the loop body. The use of a compound-
statement signifi cantly reduces the chance of this happening.

The next example appears to show that action_2() is the else statement to the fi rst if.

if (flag_1)
 if (flag_2) /* Non-compliant */
 action_1 (); /* Non-compliant */
else
 action_2 (); /* Non-compliant */

when the actual behaviour is

if (flag_1)
{
 if (flag_2)
 {
 action_1 ();
 }
 else
 {
 action_2 ();
 }
}

The use of compound-statements ensures that if and else associations are clearly defi ned.

The exception allows the use of else if, as shown below

if (flag_1)
{
 action_1 ();
}
else if (flag_2) /* Compliant by exception */
{
 action_2 ();
}
else
{
 ;
}

The following example shows how a spurious semi-colon could lead to an error

while (flag); /* Non-compliant */
{
 flag = fn ();
}

The following example shows the compliant method of writing a loop with an empty body:

while (!data_available)
{
}

MISRA C 2012 final.indd 128 17/03/2013 22:52:15

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

129

Se
ct

io
n

8:
 R

ul
esRule 15.7 All if … else if constructs shall be terminated with an else statement

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

 Amplifi cation

A fi nal else statement shall always be provided whenever an if statement is followed by a sequence
of one or more else if constructs. The else statement shall contain at least either one side eff ect or a
comment.

 Rationale

Terminating a sequence of if … else if constructs with an else statement is defensive programming and
complements the requirement for a default clause in a switch statement (see Rule 16.5).

The else statement is required to have a side eff ect or a comment to ensure that a positive indication is
given of the desired behaviour, aiding the code review process.

Note: a fi nal else statement is not required for a simple if statement.

Example

The following example is non-compliant as there is no explicit indication that no action is to be taken
by the terminating else.

if (flag_1)
{
 action_1 ();
}
else if (flag_2)
{
 action_2 ();
}

/* Non-compliant */

The following shows a compliant terminating else.

else
{
 ; /* No action required - ; is optional */
}

See also

Rule 16.5

MISRA C 2012 final.indd 129 17/03/2013 22:52:15

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

130

Section 8: Rules

8.16 Switch statements

Rule 16.1 All switch s tatements shall be well-formed

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

A switch stateme nt shall be considered to be well-formed if it conforms to the subset of C switch
statements that is specifi ed by the following syntax rules. If a syntax rule given here has the same
name as one defi ned in The Standard then it replaces the standard version for the scope of the switch
statement; otherwise, all syntax rules given in The Standard are unchanged.

switch-statement:
 switch (switch-expression) { case-label-clause-list fi nal-default-clause-list }
 switch (switch-expression) { initial-default-clause-list case-label-clause-list }

case-label-clause-list:
 case-clause-list
 case-label-clause-list case-clause-list

case-clause-list:
 case-label switch-clause
 case-label case-clause-list

case-label:
 case constant-expression:

fi nal-default-clause-list:
 default: switch-clause
 case-label fi nal-default-clause-list

initial-default-clause-list:
 default: switch-clause
 default: case-clause-list

switch-clause:
 statement-listopt break;
 C90: { declaration-listopt statement-listopt break; }
 C99: { block-item-listopt break; }

Except where explicitly permitted by this syntax, the case and default keywords may not appear
anywhere within a switch statement body.

Note: some of the restrictions imposed on switch statements by this rule are expounded in the rules
referenced in the “See also” section. It is therefore possible for code to violate both this rule and one
of the more specifi c rules.

Note: the term switch label is used within the text of the specifi c switch statement rules to denote
either a case label or a default label.

Rationale

The syntax for the switch statement in C is not particularly rigorous and can allow complex, unstructured
behaviour. This and other rules impose a simple and consistent structure on the switch statement.

MISRA C 2012 final.indd 130 17/03/2013 22:52:15

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

131

Se
ct

io
n

8:
 R

ul
esExample

The remaining rules in this section give examples that are also relevant to this rule.

See also

Rule 15.3, Rule 16.2, Rule 16.3, Rule 16.4, Rule 16.5, Rule 16.6

Rule 16.2 A switch label shall only be used when the most closely-enclos ing
compound statement is the body of a switch statement

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

The Standard permits a switch label, i.e. a case label or default label, to be placed before any statement
contained in the body of a switch statement, potentially leading to unstr uctured code. In order to
prevent this, a switch label shall only appear at the outermost level of the compound statement
forming the body of a switch statement.

Example

switch (x)
{
 case 1: /* Compliant */
 if (flag)
 {
 case 2: /* Non-compliant */
 x = 1;
 }
 break;
 default:
 break;
}

See also

Rule 1 6.1

Rule 16.3 An unconditional break statement shall terminate every switch-clause

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

If a devel oper fails to end a switch-c lause with a break statement, then control fl ow “falls” into the
following switch-clause or, if there is no such clause, off the end and into the state ment following
the switch statement. Whilst falling into a following switch-clause is sometimes intentional, it is often
an error. An unterminated switch-clause occurring at the end of a switch statement may fall into any
switch-clauses which are added later.

MISRA C 2012 final.indd 131 17/03/2013 22:52:15

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

132

Section 8: Rules

To ensure that such errors can be detected, the last statement in every switch-clause shall be a break
statement, or if the switch-clause is a compound statement, the last statement in the compound
statement shall be a break statement.

Note: a switch-clause is defi ned as containing at least one statement. Two consecutive labels, case or
default, do not have any intervening statement and are therefore permitted by this rule.

Example

switch (x)
{
 case 0:
 break; /* Compliant - unconditional break */
 case 1: /* Compliant - empty fall through allows a group */
 case 2:
 break; /* Compliant */
 case 4:
 a = b; /* Non-compliant - break omitted */
 case 5:
 if (a == b)
 {
 ++a;
 break; /* Non-compliant - conditional break */
 }
 default:
 ; /* Non-compliant - default must also have a break */
}

See also

Rule 16.1

Rule 16.4 Every switch statement shall have a default label

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

The switch-clause following the defau lt label shall, prior to the terminating break statement, contain
either:

• A statement, or

• A comment.

Rationale

The requirement for a default label is defensive programming. Any statements following the default
label are intended to take some appropriate action. If no statements follow the label then the comment
can be used to explain why no specifi c action has been taken.

MISRA C 2012 final.indd 132 17/03/2013 22:52:15

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

133

Se
ct

io
n

8:
 R

ul
esExample

int16_t x;

switch (x)
{
 case 0:
 ++x;
 break;
 case 1:
 case 2:
 break;
 /* Non-compliant - default label is required */
}

int16_t x;

switch (x)
{
 case 0:
 ++x;
 break;
 case 1:
 case 2:
 break;
 default: /* Compliant - default label is present */
 errorflag = 1; /* should be non-empty if possible */
 break;
}

enum Colours
{ RED, GREEN, BLUE } colour;

switch (colour)
{
 case RED:
 next = GREEN;
 break;
 case GREEN:
 next = BLUE;
 break;
 case BLUE:
 next = RED;
 break;
 /* Non-compliant - no default label.
 * Even though all values of the enumeration are
 * handled there is no guarantee that colour takes
 * one of those values */
}

See also

Rule 2.1, Rule 16.1

MISRA C 2012 final.indd 133 17/03/2013 22:52:15

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

134

Section 8: Rules

Rule 16.5 A default label shall appear as either the fi rst or the last switch label of
a switch statement

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rati onale

This rule makes it easy to locate the de fault label within a switch statement.

Example

switch (x)
{
 default: /* Compliant - default is the first label */
 case 0:
 ++x;
 break;
 case 1:
 case 2:
 break;
}

switch (x)
{
 case 0:
 ++x;
 break;
 default: /* Non-comp liant - default is mixed with the case labels */
 x = 0;
 break;
 case 1:
 case 2:
 break;
}

switch (x)
{
 case 0:
 ++x;
 break;
 case 1:
 case 2:
 break;
 default: /* Compliant - default is the final label */
 x = 0;
 break;
}

See also

Rule 15.7, Rule 16.1

MISRA C 2012 final.indd 134 17/03/2013 22:52:16

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

135

Se
ct

io
n

8:
 R

ul
esRule 16.6 Every switch statement shall have at least two switch-clauses

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

A switch statement with a single path is red undant and may be indicative of a programming er ror.

Example

switch (x)
{
 default: /* Non-compliant - switch is redundant */
 x = 0;
 break;
}

switch (y)
{
 case 1:
 default: /* Non-compliant - switch is redundant */
 y = 0;
 break;
}

switch (z)
{
 case 1:
 z = 2;
 break;
 default: /* Compliant */
 z = 0;
 break;
}

See also

Rule 16.1

MISRA C 2012 final.indd 135 17/03/2013 22:52:16

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

136

Section 8: Rules

Rule 16.7 A switch-expression shall not have essentially Boolean type

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

The Standard requires the controlling expression of a switch statement to h ave an integer type. Since
t he type that is used to implement Boolean values is an integer, it is possible to have a switch statement
controlled by a Boolean expression. In this instance an if-else construct would be more appropriate.

Example

switch (x == 0) /* Non-compliant - essentially Boolean */
{ /* In this case an "if-else" would be more logical */
 case false:
 y = x;
 break;
 default:
 y = z;
 break;
}

8.17 Functions

Rule 17.1 The features of <stdarg.h> shall not be used

C90 [Undefi ned 45, 70–76], C99 [Undefi ned 81, 128–135]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

None of va_list, va_arg, va_start, va_end and, fo r C99, va_ copy shall be used.

Rationale

The Standard lists many instances of undefi ned behaviour associated with the features of
<stdarg.h>, including:

• va_end not being used prior to end of a fu nction in which va_start was used;

• va_arg being used in diff erent functions on the same va_li st;

• The type of an argument not being compatible with the type specifi ed to va_arg.

MISRA C 2012 final.indd 136 17/03/2013 22:52:16

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

137

Se
ct

io
n

8:
 R

ul
esExample

#include <stdarg.h>

void h (va_list ap) /* Non-compliant */
{
 double y;

 y = va_arg (ap, double); /* Non-compliant */
}

void f (uint16_t n, ...)
{
 uint32_t x;

 va_list ap; /* Non-compliant */

 va_start (ap, n); /* Non-compliant */
 x = va_arg (ap, uint32_t); /* Non-compliant */

 h (ap);

 /* undefined - ap is indeterminate because va_arg used in h () */
 x = va_arg (ap, uint32_t); /* Non-compliant */

 /* undefined - returns without using va_end () */
}

void g (void)
{
 /* undefined - uint32_t:double type mismatch when f uses va_arg () */
 f (1, 2.0, 3.0);
}

Rule 17.2 Functions shall not call themselves, either directly or indirectly

Category Required

Analysis Undecidable, System

Applies to C90, C99

Rationale

Recursion carries with it the danger of exceeding available stack space, which can lead to a serious
failure. Unl ess recursion is very tightly controlled, it is not possible to determine before execution
what the worst-case stack usage could be.

MISRA C 2012 final.indd 137 17/03/2013 22:52:16

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

138

Section 8: Rules

Rule 17.3 A function shall not be declared implicitly

C90 [Undefi ned 6, 22, 23]

Category Mandatory

Analysis Decidable, Single Translation Unit

Applies to C90

Rationale

Provided that a function call is made in the presence of a prototype, a constraint ensures that the
 number of arguments matches the number of parameters and that each argument can be assigned
to its corresponding parameter.

If a function is declare d implicitly, a C90 compiler will assume that the function has a return type of int.
Since an implicit function declaration does not provide a prototype, a compiler will have no information
about the number of function parameters and their types. Inappropriate type conversions may result
in passing the arguments and assigning the return value, as well as other undefi ned behaviour.

Example

If the function power is declared as:

extern double power (double d, int n);

but the declaration is not visible in the following code then undefi ned behaviour will occur.

void func (void)
{
 /* Non-compliant - return type and both argument type s incorrect */
 double sq1 = power (1, 2.0);
}

See also

Rule 8.2, Rule 8.4

Rule 17.4 All exit paths from a function with non-void return type shall have an
explicit return statement with an expression

C90 [Undefi ned 43], C99 [Undefi ned 82]

Category Mandatory

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

The expression given to th e return statement provides the value that the function returns. If a non-
void function does not return a value but the calling function uses the returned value, the behaviour
is undefi ned. This can be avoided by ensuring that, in a non-v oid function:

• Every return statement has an expression, and

• Control cannot reach the end of the function without encountering a return statement.

Note: C99 constrains every return statement in a non-void function to return a value.

MISRA C 2012 final.indd 138 17/03/2013 22:52:16

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

139

Se
ct

io
n

8:
 R

ul
esExample

int32_t absolute (int32_t v)
{
 if (v < 0)
 {
 return v;
 }

 /*
 * Non-compliant - control can reach this point without
 * returning a value
 */
}

uint16_t lookup (uint16_t v)
{
 if ((v < V_MIN) || (v > V_MAX))
 {
 /* Non-compliant - n o value returned. Constraint in C99 */
 return;
 }

 return table[v];
}

See also

Rule 15.5

Rule 17.5 The function argument corresponding to a parameter declared to
have an array type shall have an appropriate number of elements

Category Advisory

Analysis Undecidable, System

Applies to C90, C99

Amplifi cation

If a parameter is declared as an array with a s pecifi ed size, the correspon ding argument in each
function call should point into an object that has at least as many elements as the array.

Rationale

The use of an array declarator for a function parameter specifi es the f unction interface more clearly
than using a pointer. The minimum number of elements expected by the function is explicitly stated,
whereas this is not possible with a pointer.

A function parameter arra y declarator which does not specify a size is assumed to indicate that the
function can handle an array of any size. In such cases, it is expected that the array size will be
communicated by some other means, for example by being passed as another parameter, or by
terminating the array with a sentinel value.

The use of an array bound is recommended as it allows out-of-bounds checking to be implemented
within the function body and extra checks on parameter passing. It is legal in C to pass an array of the
incorrect size to a parameter with a specifi ed size, which can lead to unexpected behaviour.

MISRA C 2012 final.indd 139 17/03/2013 22:52:16

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

140

Section 8: Rules

Example

/*
 * Intent is that function does not access outside the range
 * array1[0] .. array1[3]
 */
void fn1 (int32_t array1[4]);

/* Intent is that function handles arrays of any size */
void fn2 (int32_t array2[]);

void fn (int32_t *ptr)
{
 int32_t arr3[3] = { 1, 2, 3 };
 int32_t arr4[4] = { 0, 1, 2, 3 };

 /* Compliant - size of array matches the prototype */
 fn1 (arr4);

 /* Non-compliant - size of array does not match prototype */
 fn1 (arr3);

 /* Compliant only if ptr points to at least 4 elements */
 fn1 (ptr);

 /* Compliant */
 fn2 (arr4);

 /* Compliant */
 fn2 (ptr);
}

See also

Rule 17.6

Rule 17.6 The declaration of an array parameter shall not contain the static
keyword between the []

C99 [Undefi ned 71]

Category Mandatory

Analysis Decidable, Single Translation Unit

Applies to C99

Rationale

The C99 language standard provides a mechanism for the programmer t o inform the compiler that a n
array parameter contains a specifi ed minimum number of elements. Some compilers are able to take
advantage of this information to generate more effi cient code for some types of processor .

If the guarantee made by the programmer is not honoured, and the number of elements is less than
the minimum specifi ed, the behaviour is undefi ned.

The processors used in typical embedded applications are unlikely to provide the facilities required
to take advantage of the additional information provided by the programmer. The risk of the program
failing to meet the guaranteed minimum number of elements outweighs any potential performance
increase.

MISRA C 2012 final.indd 140 17/03/2013 22:52:16

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

141

Se
ct

io
n

8:
 R

ul
esExample

There is no use of this C99 language feature that is compliant with this rule. The examples show some
of the undefi ned behaviour that can arise from its use.

/* Non-compliant - uses static in array declarator */
uint16_t total (uint16_t n, uint16_t a[static 20])
{
 uint16_t i;

 uint16_t sum = 0U;

 /* Undefined behaviour if a has fewer than 20 elements */
 for (i = 0U; i < n; ++i)
 {
 sum = sum + a[i];
 }

 return sum;
}

extern uint16_t v1[10];
extern uint16_t v2[20];

void g (void)
{
 uint16_t x;

 x = total (10U, v1); /* Undefined - v1 has 10 elements but needs
 * at least 20 */
 x = total (20U, v2); /* Defined but non-compliant */
}

See also

Rule 17.5

Rule 17.7 The value returned by a function having non-void return type shall be
used

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

It is possible to call a function without using the return value, which may be an error. If the return valu e
of a function is intended not to be used explicitly, it should be cast to the void type. This has the eff ect
of using the value without violating Rule 2.2.

Example

uint16_t func (uin t16_t para1)
{
 return para1;
}

MISRA C 2012 final.indd 141 17/03/2013 22:52:16

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

142

Section 8: Rules

uint16_t x;

void discarded (uint16_t para2)
{
 func (para2); /* Non-compliant - value discarded */
 (void) func (para2); /* Compliant */
 x = func (para2); /* Compliant */
}

See also

Dir 4.7, Rule 2.2

Rule 17.8 A function parameter should not be modifi ed

Category Advisory

Analysis Undecidable, System

Applies to C90, C99

Rationale

A function parameter behaves in the same manner as an object that has automatic storage duration.
While the C language permits parameters to be modifi ed, such use can be confusing and confl ict with
progra mmer expectations. It may be less confusing to copy the parameter to an automatic object
and modify that copy. With a modern compiler, this will not usually result in any storage or execution
time penalty.

Programmers who are unfamiliar with C, but who are used to other languages, may modify a parameter
believing that the eff ects of the modifi cation will be felt in the calling function.

Example

int16_t glob = 0;

void proc (int16_t para)
{
 para = glob; /* Non-compliant */
}

void f (char *p, char *q)
{
 p = q; /* Non-compliant */
 *p = *q; /* Compliant */
}

MISRA C 2012 final.indd 142 17/03/2013 22:52:16

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

143

Se
ct

io
n

8:
 R

ul
es8.18 Pointers and arrays

Rule 18.1 A pointer resulting from arithmetic on a pointer operand shall address
an element of the same array as that pointer operand

C90 [Undefi ned 30], C99 [Undefi ned 43, 44, 46, 59]

Category Required

Analysis Undecidable, System

Applies to C90, C99

 Amplifi cation

Creation of a pointer to one beyond the end of the array is well-defi ned by The Standard and is
permitted by this rule. Dereferencing a pointer to one beyond the end of an array results in undefi ned
behaviour and is forbidden by this rule.

This rule applies to all forms of array indexing:

integer_expression + pointer_expression
pointer_expression + integer_expression
pointer_expression - integer_expression
pointer_expression += integer_expression
pointer_expression -= integer_expression
++pointer_expression
pointer_expression++
--pointer_expression
pointer_expression--
pointer_expression [integer_expression]
integer_expression [pointer_expression]

Note: a subarray is also an array.

Note: for purposes of pointer arithmetic, The Standard treats an object that is not a member of an
array as if it were an array with a single element (C90 Section 6.3.6, C99 Section 6.5.6).

Ra tionale

Although some compilers may be able to determine at compile time that an array boundary has been
exceeded, no checks are generally made at run-time for invalid array subscripts. Using an invalid array
subscript can lead to erroneous behaviour of the program.

Run-time derived array subscript values are of the most concern since they cannot easily be checked
by static analysis or manual review. Code of a defensive programming nature should, where possible
and practicable, be provided to check such subscript values against valid ones and, if required,
appropriate action be taken.

It is undefi ned behaviour if the result obtained from one of the above expressions is not a pointer to
an element of the array pointed to by pointer_expression or an element one beyond the end of
that array. See C90 Section 6.3.6 and C99 Section 6.5.6 for further information.

Multi-dimensional arrays are “arrays of arrays”. This rule does not allow pointer arithmetic that results
in the pointer addressing a diff erent subarray. Array subscripting over “internal” boundaries shall not
be used, as such behaviour is undefi ned.

Example

T he use of the + operator will also violate Rule 18.4.

MISRA C 2012 final.indd 143 17/03/2013 22:52:16

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

144

Section 8: Rules

int32_t f1 (int32_t * const a1, int32_t a2[10])
{
 int32_t *p = &a1[3]; /* Compliant/non-compliant depending on
 * the value of a1 */
 return *(a2 + 9); /* Compliant */
}

void f2 (void)
{
 int32_t data = 0;
 int32_t b = 0;
 int32_t c[10] = { 0 };
 int32_t d[5][2] = { 0 }; /* 5-element array of 2-element arrays
 * of int32_t */

int32_t *p1 = &c[0]; /* Compliant */

int32_t *p2 = &c[10]; /* Compliant - points to one beyond */

int32_t *p3 = &c[11]; /* Non-compliant - undefined, points to
 * two beyond */
data = *p2; /* Non-compliant - undefined, dereference
 * one beyond */

data = f1 (&b, c);
data = f1 (c, c);

p1++; /* Compliant */
c[-1] = 0; /* Non-compliant - undefined, array
 * bounds exceeded */
data = c[10]; /* Non-compliant - undefined, dereference
 * of address one beyond */
data = *(&data + 0); /* Compliant - C treats data as an
 * array of size 1 */

d[3][1] = 0; /* Compliant */
data = *(*(d + 3) + 1); /* Compliant */
data = d[2][3]; /* Non-compliant - undefined, internal
 * boundary exceeded */

p1 = d[1]; /* Compliant */
data = p1[1]; /* Compliant - p1 addresses an array
 * of size 2 */
}

The following example illustrates pointer arithmetic applied to members of a structure. Because each
member is an object in its own right, this rule prevents the use of pointer arithmetic to move from one
member to the next. However, it does not prevent arithmetic on a pointer to a member provided that
the resulting pointer remains within the bounds of the member object.

struct
{
 uint16_t x;
 uint16_t y;
 uint16_t z;
 uint16_t a[10];
} s;

uint16_t *p;

MISRA C 2012 final.indd 144 17/03/2013 22:52:16

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

145

Se
ct

io
n

8:
 R

ul
esvoid f3 (void)

{
 p = &s.x;
 ++p; /* Compliant - p points one beyond s.x */
 p[0] = 1; /* Non-compliant - undefined, dereference of address one
 * beyond s.x which is not necessarily
 * the same as s.y */
 p[1] = 2; /* Non-compliant - undefined */

p = &s.a[0]; /* Compliant - p points into s.a */
p = p + 8; /* Compliant - p still points into s.a */
p = p + 3; /* Non-compliant - undefined, p points more than one
 * beyond s.a */
}

See also

Dir 4.1, Rule 18.4

Rule 18.2 Subtraction between pointers shall only be applied to pointers that
address elements of the same array

C90 [Undefi ned 31], C99 [Undefi ned 45]

Category Required

Analysis Undecidable, System

Applies to C90, C99

Rationale

This rule applies to exp ressions of the form:

pointer_expression_1 - pointer_expression_2

It is undefi ned behaviour if pointer_expression_1 and pointer_expression_2 do not point to
elements of the same array or the element one beyond the end of that array.

Example

#include <stddef.h>

void f1 (int32_t *ptr)
{
 int32_t a1[10];
 int32_t a2[10];
 int32_t *p1 = &a1[1];
 int32_t *p2 = &a2[10];
 ptrdiff_t diff;

 diff = p1 - a1; /* Compliant */
 diff = p2 - a2; /* Compliant */
 diff = p1 - p2; /* Non-compliant */
 diff = ptr - p1; /* Non-compliant */
}

See also

Dir 4.1, Rule 18.4

MISRA C 2012 final.indd 145 17/03/2013 22:52:16

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

146

Section 8: Rules

Rule 18.3 The re lational operators >, >=, < and <= shall not be applied to objects
of pointer type except where they point into the same object

C90 [Undefi ned 33], C99 [Undefi ned 50]

Category Required

Analysis Undecidable, System

Applies to C90, C99

Rationale

Attempting to make comparisons between p ointers will produce undefi ned behaviour if the two
pointers do not point to the same object.

Note: it is permissible to address the next element beyond the end of an array, but accessing this
element is not allowed.

Example

void f1 (void)
{
 int32_t a1[10];
 int32_t a2[10];
 int32_t *p1 = a1;

 if (p1 < a1) /* Compliant */
 {
 }
 if (p1 < a2) /* Non-compliant */
 {
 }
}

struct limits
{
 int32_t lwb;
 int32_t upb;
};

void f2 (void)
{
 struct limits limits_1 = { 2, 5 };
 struct limits limits_2 = { 10, 5 };

 if (&limits_1.lwb <= &limits_1.upb) /* Compliant */
 {
 }
 if (&limits_1.lwb > &limits_2.upb) /* Non-Compliant */
 {
 }
}

See also

Dir 4.1

MISRA C 2012 final.indd 146 17/03/2013 22:52:16

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

147

Se
ct

io
n

8:
 R

ul
esRule 18.4 The +, -, += and -= operators sho uld not be applied to an expression

of pointer type

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

Array indexing using the array subscript syntax , ptr[expr], is the preferred form of pointer arithmetic
because it is often clearer and hence less error prone than pointer manipulation. Any explicitly
calculated pointer value has the potential to access unintended or invalid memory addresses. Such
behaviour is also possible with array indexing, but the subscript syntax may ease the task of manual
review.

Pointer arithmetic in C can be confusing to the novice. The expression ptr+1 may be mistakenly
interpreted as the addition of 1 to the address held in ptr. In fact the new memory address depends
on the size in bytes of the pointer’s target. This misunderstanding can lead to unexpected behaviour
if sizeof is applied incorrectly.

When used with caution however, pointer manipulation using ++ can in some cases be considered
more natural; e.g. sequentially accessing locations during a memory test where it is more convenient
to treat the memory space as a contiguous set of locations and the address bounds can be determined
at compilation time.

Exception

Subject to Rule 18.2, pointer subtraction between two pointers is allowed.

Example

void fn1 (void)
{
 uint8_t a[10];
 uint8_t *ptr;
 ui nt8_t index = 0U;

 index = index + 1U; /* Compliant - rule only applies to pointers */

 a[index] = 0U; /* Compliant */
 ptr = &a[5]; /* Compliant */

 ptr = a;
 ptr++; /* Compliant - increment operator not + */
 (ptr + 5) = 0U; / Non-compliant */
 ptr[5] = 0U; /* Compliant */
}

MISRA C 2012 final.indd 147 17/03/2013 22:52:16

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

148

Section 8: Rules

void fn2 (void)
{
 uint8_t array_2_2[2][2] = { { 1U, 2U }, { 4U, 5U } };
 uint8_t i = 0U;
 uint8_t j = 0U;
 uint8_t sum = 0U;

 for (i = 0U; i < 2U; i++)
 {
 uint8_t *row = array_2_2[i];

 for (j = 0U; j < 2U; j++)
 {
 sum += row[j]; /* Compliant */
 }
 }
}

In the following example, Rule 18.1 may also be violated if p1 does not point to an array with at least
six elements and p2 does not point to an array with at least 4 elements.

void fn3 (uint8_t *p1, uint8_t p2[])
{
 p1++; /* Compliant */
 p1 = p1 + 5; /* Non-compliant */
 p1[5] = 0U; /* Compliant */

 p2++; /* Compliant */
 p2 = p2 + 3; /* Non-compliant */
 p2[3] = 0U; /* Compliant */
}

uint8_t a1[16];
uint8_t a2[16];
uint8_t data = 0U;

void fn4 (void)
{
 fn3 (a1, a2);
 fn3 (&data, &a2[4]);
}

See also

Rule 18.1, Rule 18.2

Rule 18.5 Declarations should contain no more than two le vels of pointer
nesting

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

No more than two pointer declarators should be applied consecutively to a type. A ny typedef-name
appearing in a declaration is treated as if it were replaced by the type that it denotes.

MISRA C 2012 final.indd 148 17/03/2013 22:52:16

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

149

Se
ct

io
n

8:
 R

ul
esRationale

The use of more than two levels of pointer nesting can seriously impair the ability t o understand the
behaviour of the code, and should therefore be avoided.

Example

typedef int8_t * INTPTR;

void function (int8_t ** arrPar[]) /* Non-compliant */
{
 int8_t ** obj2; /* Compliant */
 int8_t *** obj3; /* Non-compliant */
 INTPTR * obj4; /* Compliant */
 INTPTR * const * const obj5; /* Non-compliant */
 int8_t ** arr[10]; /* Compliant */
 int8_t ** (*parr)[10]; /* Compliant */
 int8_t * (**pparr)[10]; /* Compliant */
}

struct s
{
 int8_t * s1; /* Compliant */
 int8_t ** s2; /* Compliant */
 int8_t *** s3; /* Non-compliant */
};

struct s * ps1; /* Compliant */
struct s ** ps2; /* Compliant */
struct s *** ps3; /* Non-compliant */

int8_t ** (*pfunc1)(void); /* Compliant */
int8_t ** (**pfunc2)(void); /* Compliant */
int8_t ** (***pfunc3)(void); /* Non-compliant */
int8_t *** (**pfunc4)(void); /* Non-compliant */

Note:

• arrPar is of type pointer to pointer to pointer to int8_t because parameters declared with
array type are converted to a pointer to the initial element of the array — this is three levels
and is non-compliant;

• arr is of type array of pointer to pointer to int8_t — this is compliant;

• parr is of type pointer to array of pointer to pointer to int8_t — this is compliant;

• pparr is of type pointer to pointer to array of pointer to int8_t — this is compliant.

MISRA C 2012 final.indd 149 17/03/2013 22:52:16

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

150

Section 8: Rules

Rule 18.6 The address of an object with automatic storage shall not be copied to
another object that persists after the fi rst object has ceased to exist

C90 [Undefi ned 9, 26], C99 [Undefi ned 8, 9, 40]

Category Required

Analysis Undecidable, System

Applies to C90, C99

Amplifi cation

The address of an object might be copied by means of:

• Assignment;

• Memory move or copying fun ctions.

Rationale

The address of an object becomes indeterminate when the lifetime of that object expires. Any use of
an indeterminate address results in undefi ned behaviour.

Example

int8_t *func (void)
{
 int8_t local_auto;

 return &local_auto; /* Non-compliant - &local_ auto is indeterminate
 * when func returns */
}

In the following example, the function g stores a copy of its pointer parameter p. If p always points
to an object with static storage duration then the code is compliant with this rule. However, in the
example given, p does point to an object with automatic storage duration. In such a case, copying the
parameter p is non-compliant.

uint16_t *sp;

void g (uint16_t *p)
{
 sp = p; /* Non-compliant - address of f's parameter u
 * copied to static sp */
}

void f (uint16_t u)
{
 g (&u);
}

void h (void)
{
 static uint16_t *q;

 uint16_t x = 0u;

 q = &x; /* Non-compliant - &x stored in object with
 * greater lifetime */
}

MISRA C 2012 final.indd 150 17/03/2013 22:52:16

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

151

Se
ct

io
n

8:
 R

ul
esRule 18.7 Flexible array members shall not be declared

C99 [Undefi ned 59]

Category Required

Analysis Decidable, Sing le Translation Unit

Applies to C90, C99

Rationale

Flexible array members are most likely to be used in conjunction with dynamic memory allocation
 which is banned by Dir 4.12 and Rule 21.3.

The presence of fl exible array members modifi es the behaviour of the sizeof operator in ways that
might not be expected by a programmer. The assignment of a structure that contains a fl exible array
member to another structure of the same type may not behave in the expected manner as it copies
only those elements up to but not including the start of the fl exible array member.

Example

#include <stdlib.h>

struct s
{
 uint16_t len;
 uint32_t data[]; /* Non-compliant - flexible array member */
} str;

struct s *copy (struct s *s1)
{
 struct s *s2;

 /* Omit malloc () return check for brevity */
 s2 = malloc (sizeof (struct s) + (s1->len * sizeof (uint32_t)));

 *s2 = *s1; /* Only copies s1->len */

 return s2;
}

See also

Dir 4.12, Rule 21.3

MISRA C 2012 final.indd 151 17/03/2013 22:52:16

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

152

Section 8: Rules

Rule 18.8 Variable-length array types shall not be used

C99 [Unspecifi ed 21; Undefi ned 69, 70]

Category Required

Analysis Decidable, Sing le Translation Unit

Applies to C99

Rationale

Variable-length array types are specifi ed when the size of an array declared in a block or a function
prototype is not an integer c onstant expression. They are typically implemented as a variable size object
stored on the stack. Their use can therefore make it impossible to determine statically the amount of
memory that must be reserved for a stack.

If the size of a variable-length array is negative or zero, the behaviour is undefi ned.

If a variable-length array is used in a context in which it is required to be compatible with another
array type, possibly itself variable-length, then the size of the array types shall be identical. Further, all
sizes shall evaluate to positive integers. If these requirements are not met, the behaviour is undefi ned.

If a variable-length array type is used in the operand of a sizeof operator, under some circumstances
it is unspecifi ed whether the array size expression is evaluated or not.

Each instance of a variable-length array type has its size fi xed at the start of its lifetime. This gives rise
to behaviour that might be confusing, for example:

void f (void)
{
 uint16_t n = 5;

 typedef uint16_t Vector[n]; /* An array type with 5 elements */

 n = 7;

 Vector a1; /* An array type with 5 elements */

 uint16_t a2[n]; /* An array type with 7 elements */
}

Example

There is no use of variable-length arrays that is compliant with this rule. The examples show some of
the undefi ned behaviour that ca n arise from their use.

void f (int16_t n)
{
 uint16_t vla[n]; /* Non-compliant - Undefined if n <= 0 */
}

void g (void)
{
 f (0); /* Undefined */
 f (-1); /* Undefined */
 f (10); /* Defined */
}

MISRA C 2012 final.indd 152 17/03/2013 22:52:16

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

153

Se
ct

io
n

8:
 R

ul
esvoid h (uint16_t n,

 uint16_t a[10][n]) /* Non-compliant */
{
 uint16_t (*p)[20];

 /* Undefined unless n == 20: incompatible types otherwise */
 p = a;
}

See also

Rule 13.6

8.19 Overlapping storage

Rule 19.1 An object shall not b e assigned or copied to an overlapping object

C90 [Undefi ned 34, 55], C99 [Undefi ned 51, 94]

Category Mandato ry

Analysis Undecida ble, System

Applies to C90, C99

Rationale

The behaviour is undefi ned when two objects are created which have some overlap in memory and
one is assigned or copied to the other.

Except ion

The following are permitted because the behaviour is well-defi ned:

1. Assignment between two objects that overlap exactly and have compatible t ypes (ignoring
their type qualifi ers)

2. Copying between objects that overlap partially or completely using The Standard Library
function memmove

Example

This example also violates Rule 19.2 because it uses unions.

void fn (void)
{
 union
 {
 int16_t i;
 int32_t j;
 } a = { 0 }, b = { 1 };

 a.j = a.i; /* Non-compliant */
 a = b; /* Compliant - exception 1 */
}

MISRA C 2012 final.indd 153 17/03/2013 22:52:17

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

154

Section 8: Rules

#include <string.h>

int16_t a[20];

void f (void)
{
 memcpy (&a[5], &a[4], 2u * sizeof (a[0])); /* Non-compliant */
}

void g (void)
{
 int16_t *p = &a[0];
 int16_t *q = &a[0];

 *p = *q; /* Compliant - exception 1 */
}

See also

Rule 19.2

Rule 19.2 The union keyword should not be used

C90 [Undefi ned 39, 40; Implementation 27], C99 [Unspecifi ed 10; Undefi ned 61, 62]

Category Advisory

Analysis Decidable, Single Transl ation Unit

Applies to C90, C99

Rationale

A union member can be written and the same member can then be read back in a well-defi ned
manner.

However, if a union member is written and then a diff erent uni on member is read back, the behaviour
depends on the relative sizes of the members:

• If the member read is wider than the member written then the value is unspecifi ed;

• Otherwise, the value is implementation-defi ned.

The Standard permits the bytes of a union member to be accessed by means of another member
whose type is array of unsigned char. However, since it is possible to access bytes with unspecifi ed
values, unions should not be used.

If this rule is not followed, the kinds of behaviour that need to be determined are:

• Padding — how much padding is inserted at the end of the union;

• Alignment — how are members of any structures within the union aligned;

• Endianness — is the most signifi cant byte of a word stored at the lowest or highest memory
address;

• Bit-order — how are bits numbered within bytes and how are bits allocated to bit fi elds.

Example

 In this non-compliant example, a 16-bit value is stored into a union but a 32-bit value is read back
resulting in an unspecifi ed value being returned.

MISRA C 2012 final.indd 154 17/03/2013 22:52:17

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

155

Se
ct

io
n

8:
 R

ul
esuint32_t zext (uint16_t s)

{
 union
 {
 uint32_t ul;
 uint16_t us;
 } tmp;

 tmp.us = s;
 return tmp.ul; /* unspecified value */
}

See also

Rule 19.1

8.20 Preprocessing dir ectives

Rule 20.1 #include directiv es should only be preceded by preprocessor
directives or comments

C90 [Undefi ned 56], C99 [Undefi ned 96, 97]

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

The rule shall be applied to the contents of a fi le before preprocessing occurs.

Rationale

To aid code readability, all the #include directives in a particular code fi le should be grouped together
near the top of the fi le.

Additionally, using #include to include a standard header fi le within a declaration or defi nition, or using
part of The Standard Library before the inclusion of the related standard header fi le leads to undefi ned
behaviour.

Example

/* f.h */
xyz = 0;

/* f.c */

int16_t
#include "f.h" /* Non-compliant */

/* f1.c */
#define F1_MACRO

#include "f1.h" /* Compliant */
#include "f2.h" /* Compliant */

int32_t i = 0;

#include "f3.h" /* Non-compliant */

MISRA C 2012 final.indd 155 17/03/2013 22:52:17

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

156

Section 8: Rules

Rule 20.2 The ', " or \ cha racters and the /* or // character sequences shall
not occur in a header fi le name

C90 [Undefi ned 14], C99 [Undefi ned 31]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

The beh aviour is undefi ned if:

• The ', " or \ characters, or the /* or // character sequences are used between < and >
delimiters in a header name preprocessing token;

• The ' or \ characters, or the /* or // character sequences are used between the " delimiters
in a header name preprocessing token.

Note: although use of the \ character results in undefi ned behaviour, many implementations will
accept the / character in its place.

Example

#include "fi'le.h" /* Non-compliant */

Rule 20.3 The #include dire ctive shall be followed by either a <filename> or
"filename" sequence

C90 [Undefi ned 48], C99 [Undefi ned 85]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

Thi s rule applies after macro replacement has been performed.

Rationale

The beh aviour is undefi ned if a #include directive does not use one of the following forms:

• #include <filename>

• #include "filename"

MISRA C 2012 final.indd 156 17/03/2013 22:52:17

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

157

Se
ct

io
n

8:
 R

ul
esExample

#include "filename.h" /* Compliant */
#include <filename.h> /* Compliant */
#include another.h /* Non-compliant */

#define HEADER "filename.h"
#include HEADER /* Compliant */
#define FILENAME file2.h
#include FILENAME /* Non-compliant */

#define BASE "base"
#define EXT ".ext"
#include BASE EXT /* Non-compliant - strings are concatenated
 * after preprocessing */

#include "./include/cpu.h" /* Compliant - filename may include a path */

Rule 20.4 A macro shall not be defi ned with the same name as a keyword

C90 [Undefi ned 56], C99 [Undefi ned 98]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

Thi s rule applies to all keywords, including those that implement language extensions.

Rationale

Using m acros to change the meaning of keywords can be confusing. The behaviour is undefi ned if a
standard header is included while a macro is defi ned with the same name as a keyword.

Example

The follo wing example is non-compliant because it alters the behaviour of the int keyword. Including
a standard header in the presence of this macro results in undefi ned behaviour.

#define int some_other_type
#include <stdlib.h>

The following example shows that it is non-compliant to redefi ne the keyword while but it is compliant
to defi ne a macro that expands to statements.

#define while(E) for (; (E) ;) /* Non-compliant - redefined while */
#define unless(E) if (! (E)) /* Compliant */

#define seq(S1, S2) do { \
 S1; S2; } while (false) /* Compliant */
#define compound(S) { S; } /* Compliant */

The following example is compliant in C90, but not C99, because inline is not a keyword in C90.

/* Remove inline if compiling for C90 */
#define inline

See also

Rule 21. 1

MISRA C 2012 final.indd 157 17/03/2013 22:52:17

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

158

Section 8: Rules

Rule 20.5 #undef should not be used

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

The use of #unde f can make it unclear which macros exist at a particular point within a translation
unit.

Example

#define QUALIFIER volatile

#undef QUALIFIER /* Non-compliant */

void f (QUALIFIER int32_t p)
{
 while (p != 0)
 {
 ; /* Wait... */
 }
}

Rule 20.6 Tokens that look like a pr eprocessing directive shall not occur within a
macro argument

C90 [Undefi ned 50], C99 [Undefi ned 87]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

An argument cont aining sequences of tokens that would otherwise act as preprocessing directives
leads to undefi ned behaviour.

Example

#define M(A) pri ntf (#A)

#include <stdio.h>

void main (void)
{
 M (
#ifdef SW /* Non-compliant */
 "Message 1"
#else /* Non-compliant */
 "Message 2"
#endif /* Non-compliant */
);
}

The above may print

#ifdef SW "Message 1" #else "Message 2" #endif

MISRA C 2012 final.indd 158 17/03/2013 22:52:17

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

159

Se
ct

io
n

8:
 R

ul
esor

"Message 2"

or exhibit some other behaviour.

Rule 20.7 Expressions resulting from the expansion of macro parameters shall
be enclosed in parentheses

[Koenig 78–81]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

If the expans ion of any macro parameter produces a token, or sequence of tokens, that form an
expression then that expression, in the fully-expanded macro, shall either:

• Be a parenthesized expression itself; or

• Be enclosed in parentheses.

Note: this does not necessarily require that all macro parameters are parenthesized; it is acceptable
for parentheses to be provided in macro arguments.

Rationale

If parentheses ar e not used, then operator precedence may not give the desired results when macro
substitution occurs.

If a macro parameter is not being used as an expression then the parentheses are not necessary
because no operators are involved.

Example

In the following no n-compliant example,

#define M1(x, y) (x * y)

r = M1 (1 + 2, 3 + 4);

the macro expands to give:

r = (1 + 2 * 3 + 4);

The expressions 1 + 2 and 3 + 4 are derived from expansion of parameters x and y respectively,
but neither is enclosed in parentheses. The value of the resulting expression is 11, whereas the result
21 might have been expected.

The code could be written in a compliant manner either by parenthesizing the macro arguments, or
by writing an alternative version of the macro that inserts parentheses during expansion, for example:

r = M1 ((1 + 2), (3 + 4)); /* Compliant */

#define M2(x, y) ((x) * (y))

r = M2 (1 + 2, 3 + 4); /* Compliant */

MISRA C 2012 final.indd 159 17/03/2013 22:52:17

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

160

Section 8: Rules

The following example is compliant because the fi rst expansion of x is as the operand of the ##
operator, which does not produce an expression. The second expansion of x is as an expression
which is parenthesized as required.

#define M3(x) a ## x = (x)

int16_t M3 (0);

The following example is compliant because expansion of the parameter M as a member name does
not produce an expression. Expansion of the parameter S produces an expression, with structure or
union type, which does require parentheses.

#define GET_MEMBER(S, M) (S).M

v = GET_MEMBER (s1, minval);

The following compliant example shows that it is not always necessary to parenthesize every instance
of a parameter, although this is often the easiest method of complying with this rule.

#define F(X) G(X)
#define G(Y) ((Y) + 1)

int16_t x = F (2);

The fully-expanded macro is ((2) + 1). Tracing back through macro expansion, the value 2
arises from expansion of parameter Y in macro G which in turn arises from parameter X in macro F.
Since 2 is parenthesized in the fully-expanded macro, the code is compliant.

See also

Dir 4.9

Rule 20.8 The contro lling expression of a #i f or #elif preprocessing directive shall
evaluate to 0 or 1

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

This rule does not a pply to controlling expressions in preprocessing directives which are not evaluated.
Controlling expressions are not evaluated if they are within code that is being excluded and cannot
have an eff ect on whether code is excluded or not.

Rationale

Strong typing requires t he controlling expression of conditional inclusion preprocessing directives to
have a Boolean value.

Example

#define FALSE 0
#define TR UE 1

#if FALSE /* Compliant */
#endif

#if 10 /* Non-compliant */
#endif

MISRA C 2012 final.indd 160 17/03/2013 22:52:17

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

161

Se
ct

io
n

8:
 R

ul
es#if ! defined (X) /* Compliant */

#endif

#if A > B /* Compliant assuming A and B are numeric */
#endif

See also

Rule 14.4

Rule 20.9 All identifi ers used in the controlling exp ression of #if or #elif
preprocessing directives shall be #defi ne ’d before evaluation

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

As well as using a #defi ne pr eprocessor directive, identifi ers may eff ectively be #defi ne ’d in other,
implementation-defi ned, ways. For example some implementations support:

• Using a compiler command-line option, such as -D to allow identifi ers to be defi ned prior to
translation;

• Using environment variables to achieve the same eff ect;

• Pre-defi ned identifi ers provided by the compiler.

Rationale

If an attempt is made to use a ma cro identifi er in a preprocessor directive, and that identifi er has
not been defi ned, then the preprocessor will assume that it has a value of zero. This may not meet
developer expectations.

Example

The following examples assume that the macro M is undefi ned.

#if M == 0 /* Non-compliant */
 /* Does 'M' expand to zero or is it undefined? */
#endif

#if defined (M) /* Compliant - M is not evaluated */
#if M == 0 /* Compliant - M is known to be defined */
 /* 'M' must expand to zero. */
#endif
#endif

/* Compliant - B is only evaluated in (B == 0) if it is defined */
#if defined (B) && (B == 0)
#endif

MISRA C 2012 final.indd 161 17/03/2013 22:52:17

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

162

Section 8: Rules

Rule 20.10 The # and ## preprocessor operators should not be used

C90 [Unspecifi ed 12; Undefi ned 51, 52], C99 [Unspecifi ed 25; Undefi ned 3, 88, 89]

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

The order of evaluation associated with multiple #, multiple ## or a mix of # and ## preprocessor
operators is unspecifi ed. In some cases it is therefore not possible to predict the result of macro
expansion.

The use of the ## operator can result in code that is obscure.

Note: Rule 1.3 covers the undefi ned behaviour that arises if either:

• The result of a # operator is not a valid string literal; or

• The result of a ## operator is not a valid preprocessing token.

See also

Rule 20.11

Rule 20.11 A macro parameter immediately fol lowing a # operator shall not
 immediately be followed by a ## operator

C90 [Unspecifi ed 12], C99 [Unspecifi ed 25]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

The order of evaluation associated with multiple #, m ultiple ## or a mix of # and ## preprocessor
operators is unspecifi ed. The use of # and ## is discouraged by Rule 20.10. In particular, the result of
a # operator is a string literal and it is extremely unlikely that pasting this to any other preprocessing
token will result in a valid token.

Example

#define A(x) #x /* Compliant */
#define B(x, y) x ## y /* Compliant */
#define C(x, y) #x ## y /* Non-compliant */

See also

Rule 20.10

MISRA C 2012 final.indd 162 17/03/2013 22:52:17

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

163

Se
ct

io
n

8:
 R

ul
esRule 20.12 A macro parameter used as an operand to the # or ## o perators,

which is itself subj ect to further macro replacement, shall only be
used as an operand to these operators

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

A macro parameter that is used as an operand of a # or ## operator is not expanded prior to being
used. The same parameter appearing elsewhere in the replacement text is expanded. If the macro
parameter is itself subject to macro replacement, its use in mixed contexts within a macro replacement
may not meet developer expectations.

Example

In the following non-compliant example, the macro parameter x is replaced w ith AA which is subject
to further macro replacement when not used as the operand of ##.

#define AA 0xffff
#define BB(x) (x) + wow ## x /* Non-compliant */

void f (void)
{
 int32_t wowAA = 0;

 /* Expands as wowAA = (0xffff) + wowAA; */
 wowAA = BB (AA);
}

In the following compliant example, the macro parameter X is not subject to further macro replacement.

int32_t speed;
int32_t speed_scale;
int32_t scaled_speed;

#define SCALE(X) ((X) * X ## _scale)

/* expands to scaled_speed = ((speed) * speed_scale); */
scaled_speed = SCALE (speed);

Rule 20.13 A line whose fi rst token is # shall be a valid preprocessing directive

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

White-space is permitted between the # and preprocessing tokens.

Rati onale

A preprocessor directive may be used to conditionally exclude source code until a corresponding
#else, #elif or #endif directive is encountered. A malformed or invalid preprocessing directive contained

MISRA C 2012 final.indd 163 17/03/2013 22:52:17

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

164

Section 8: Rules

within the excluded source code may not be detected by the compiler, possibly leading to the exclusion
of more code than was intended.

Requiring all preprocessor directives to be syntactically valid, even when they occur within an excluded
block of code, ensures that this cannot happen.

Example

In the following example all the code between the #ifndef and #endif direct ives may be excluded if
AAA is defi ned. The developer intended that AAA be assigned to x, but the #else directive was entered
incorrectly and not diagnosed by the compiler.

#define AAA 2

int32_t foo (void)
{
 int32_t x = 0;

#ifndef AAA
 x = 1;
#else1 /* Non-compliant */
 x = AAA;
#endif

 return x;
}

The following example is compliant because the text #start appearing in a comment is not a token.

/*
#start is not a token in a comment
 */

Rule 20.14 All #else, #elif and #endif preprocessor directives shall reside in the
same fi le a s the #if, #ifdef or #ifndef directive to which they are related

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Rationale

Confusion can arise when blocks of code are included or excluded by the u se of conditional compilation
directives which are spread over multiple fi les. Requiring that a #if directive be terminated within the
same fi le reduces the visual complexity of the code and the chance that errors will be made during
maintenance.

Note: #if directives may be used within included fi les provided they are terminated within the same
fi le.

Example

/* file1.c */
#ifdef A /* Compliant */
#include "file1.h"
#endif
/* End of file1.c */

MISRA C 2012 final.indd 164 17/03/2013 22:52:17

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

165

Se
ct

io
n

8:
 R

ul
es/* file2.c */

#if 1 /* Non-compliant */
#include "file2.h"
/* End of file2.c*/

/* file1.h */
#if 1 /* Compliant */
#endif
/* End of file1.h */

/* file2.h */
#endif
/* End of file1.h */

8.21 Standard libraries

Rule 21.1 #defi ne and #undef shall not be used on a reserved identifi er or
reserved macro nam e

C90 [Undefi ned 54, 57, 58, 62, 71]
C99 [Undefi ned 93, 100, 101, 104, 108, 116, 118, 130]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

This rule applies to the following:

• Identifi ers or macro names beginn ing with an underscore;

• Identifi ers in fi le scope described in Section 7, “Library”, of The Standard;

• Macro names described in Section 7, “Library”, of The Standard as being defi ned in a standard
header.

This rule also prohibits the use of #defi ne or #undef on the identifi er defi ned as this results in explicitly
undefi ned behaviour.

This rule does not include those identifi ers or macro names that are described in the section of the
applicable C standard entitled “Future Library Directions”.

The Standard states that defi ning a macro with the same name as:

• A macro defi ned in a standard header, or

• An identifi er with fi le scope declared in a standard header

is well-defi ned provided that the header is not included. This rule does not permit such defi nitions on
the grounds that they are likely to cause confusion.

Note: the macro NDEBUG is not defi ned in a standard header and may therefore be #defi ne ’d.

Rationale

Reserved identifi ers and reserved macro names are intended for use by the implement ation.
Removing or changing the meaning of a reserved macro may result in undefi ned behaviour.

MISRA C 2012 final.indd 165 17/03/2013 22:52:17

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

166

Section 8: Rules

Example

#undef __LINE__ /* Non-compliant - begins with _ */
#define _ GUARD_H 1 /* Non-compliant - begins with _ */
#undef _BUILTIN_sqrt /* Non-compliant - the implementation
 * may use _BUILTIN_sqrt for other
 * purposes, e.g. generating a sqrt
 * instruction */

#define defined /* Non-compliant - reserved identifier */
#define errno my_errno /* Non-compliant - library identifier */
#define isneg(x) ((x) < 0) /* Compliant - rule doesn't include
 * future library
 * directions */

See also

Rule 20.4

Rule 21.2 A reserved identifi er or macro name shall not be declared

C90 [Undefi ned 5 7, 58, 64, 71], C99 [Undefi n ed 93, 100, 101, 104, 108, 116, 118, 130]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

See the Amplifi cation for Rule 21.1 for a description of the relevant identifi ers and ma cro names.

Rationale

The implementation is permitted to rely on reserved identifi ers behaving as described in The Standard
and may treat them specially. If reserved identifi ers are reused, the program may exhibit undefi ned
behaviour.

Example

In the following non-compliant example, the function memcpy is declared explicitly. The compliant
metho d of declaring this function is to include <string.h>.

/*
 * Include <stddef.h> to define size_t
 */
#include <stddef.h>
extern void *memcpy (void *restrict s1, const void *restrict s2, size_t n);

An implementation is permitted to provide a function-like macro defi nition for each Standard Library
function in addition to the library function itself. This feature is often used by compiler writers to
generate effi cient inline operations in place of the call to a library function. Using a function-like macro,
the call to a library function can be replaced with a call to a reserved function that is detected by the
compiler’s code generation phase and replaced with the inline operation. For example, the fragment
of <math.h> that declares sqrt might be written using a function-like macro that generates a call to
_BUILTIN_sqrt which is replaced with an inline SQRT instruction on processors that support it:

extern double sqrt (double x);

#define sqrt(x) (_BUILTIN_sqrt (x))

MISRA C 2012 final.indd 166 17/03/2013 22:52:17

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

167

Se
ct

io
n

8:
 R

ul
esThe following non-compliant code might interfere with the compiler’s built-in mechanism for handling

sqrt and therefore produce undefi ned behaviour:

#define _BUILTIN_sqrt(x) (x) /* Non-compliant */
#include <math.h>

float64_t x = sqrt ((float64_t) 2.0); /* sqrt may not behave as
 * defined in The Standard */

Rule 21.3 The memory allocation and deallocation functions of <stdlib.h>
shall not be used

C90 [Unspecifi ed 19; Undefi ned 9, 91, 92; Implementation 69]
C99 [Unspecifi ed 39, 40; Undefi ned 8, 9, 168–171; Implementation J.3.12(35)]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amp lifi cation

The identifi ers calloc, malloc, realloc and free shall not be used and no macro with one of these names
shall be expanded.

Rat ionale

Use of dynamic memory allocation and deallocation routines provided by The Standard Library can
lead to undefi ned behaviour, for example:

• Memory that was not dynamically allocated is subsequently freed;

• A pointer to freed memory is used in any way;

• Accessing allocated memory before storing a value into it.

Note: this rule is a specifi c instance of Dir 4.12.

See also

Di r 4.12, Rule 18.7, Rule 22.1, Rule 22.2

MISRA C 2012 final.indd 167 17/03/2013 22:52:17

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

168

Section 8: Rules

Rule 21.4 The standard header fi le <setjmp.h> shall not be used
C90 [Unspecifi ed 14; Undefi ned 64–67]

C99 [Unspecifi ed 32; Undefi ned 118–121, 173]
[Koenig 74]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

None of the facilities that are sp ecifi ed as being provided by <setjmp.h> shall be used.

Rationale

setjmp and longjmp allow the normal fu nction call mechanisms to be bypassed. Their use may lead to
undefi ned and unspecifi ed behaviour.

Rule 21.5 The standard header fi le <signal.h> shall not be used
C90 [Undefi ned 67–69; Implementation 48–52]

C99 [Undefi ned 122–127; Implementation J.3.12(12)]
[Koenig 74]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

None of the facilities that are speci fi ed as being provided by <signal.h> shall be used.

Rationale

Signal handling contains implementation-d efi ned and undefi ned behaviour.

Rule 21.6 The Standard Library input/output functions shall n ot be used
C90 [Unspecifi ed 2–5, 16–18; Undefi ned 77–89; Implementation 53–68]

C99 [Unspecifi ed 3–6, 34–37; Undefi ned 138–166, 186; Implementation J.3.12(14–32)]
Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

This rule applies to the functions that are s pecifi ed as being provided by <stdio.h> and, in C99,
their wide-character equivalents specifi ed in Sections 7.24.2 and 7.24.3 of the C99 Standard as being
provided by <wchar.h>.

None of these identifi ers shall be used and no macro with one of these names shall be expanded.

MISRA C 2012 final.indd 168 17/03/2013 22:52:17

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

169

Se
ct

io
n

8:
 R

ul
esRationale

Streams and fi le I/O have unspecifi ed, undefi ned an d implementation-defi ned behaviours associated
with them.

See also

Rule 22.1, Rule 22.3, Rule 22.4, Rule 22.5, Rule 22. 6

Rule 21.7 The atof, atoi, atol and atoll functions of <stdlib.h> shall not be
used

C90 [Undefi ned 90], C99 [Undefi ne d 113]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

The identifi ers atof, atoi, atol and, for C99 only atoll, shall not be used and no macro wit h one of these
names shall be expanded.

Rationale

These functions have undefi ned behaviour associated with them when the string cannot be converte d.

Rule 21.8 The library functions abort, exit, getenv and system of <stdlib.h>
shall not be used

C90 [Undefi ned 93; Im plementation 70–73]
C99 [Undefi ned 172, 174, 175; Implementation J.3.12(36–38)]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

The identifi ers abort, exit, getenv and system shall not be used and no macro with one of thes e names
shall be expanded.

Rationale

These functions have undefi ned and implementation-defi ned behaviours associated with them.

MISRA C 2012 final.indd 169 17/03/2013 22:52:17

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

170

Section 8: Rules

Rule 21.9 The lib rary functions bsearch and qsort of <stdlib.h> shall not be
used

C90 [Unspecifi ed 20, 21], C99 [Unspe cifi ed 41, 42; Undefi ned 176–178]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

The identifi ers bsearch and qsort shall not be used and no macro with one of these names shall be
expanded.

Rationale

If the comparison function does not behave consistently when comparing elements, or it modifi es any
of the elements, the behaviour is undefi ned.

Note: the unspecifi ed behaviour, which relates to the treatment of elements that compare as equal,
can be avoided by ensuring that the comparison function never returns 0. When two elements are
otherwise equal, the comparison function could return a value that indicates their relative order in
the initial array.

The implementation of qsort is likely to be recursive and will therefore place unknown demands on
stack resource. This is of concern in embedded systems as the stack is likely to be a fi xed, often small,
size.

Rule 21.10 The Standard Library time and date functions shall not be used
C90 [Unspecifi ed 22; Undefi ned 80, 97; Impleme ntation 75, 76]

C99 [Unspecifi ed 43, 44; Undefi ned 146, 154, 182; Implementation J.3.12(39–42)]
Category Required

Analysis Decidable, Single Translation Unit

Applies to C90, C99

Amplifi cation

None of the facilities that are specifi ed as being provided by <time.h> shall be used.

In C99, t he identifi er wcsftime shall not be used and no macro with this name shall be expanded.

Rationale

The time and date functions have unspecifi ed, undefi ned and implementation-defi ned behaviours
associ ated with them.

MISRA C 2012 final.indd 170 17/03/2013 22:52:18

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

171

Se
ct

io
n

8:
 R

ul
esRule 21.11 The standard header fi le <tgmath.h> shall not be used

C99 [Undefi ned 184, 185]

Category Required

Analysis Decidable, Single Translation Unit

Applies to C99

Amplifi cation

None of the facilities that are specifi ed as being provided by <tgmath.h> shall be used.

Rational e

Using the facilities of <tgmath.h> may result in undefi ned behaviour.

Example

#include <tgmath.h>

fl oat f1, f2;

void f (void)
{
 f1 = sqrt (f2); /* Non-compliant - generic sqrt used */
}

#include <math.h>

float f1, f2;

void f (void)
{
 f1 = sqrtf (f2); /* Compliant - float version of sqrt used */
}

Rule 21.12 The exception handling features of <fenv.h> should not be used

C99 [Unspecifi ed 27, 28; Undefi ned 109–111; Impl ementation J.3.6(8)]

Category Advisory

Analysis Decidable, Single Translation Unit

Applies to C99

Amplifi cation

The identifi ers feclearexcept, fegetexceptfl ag, feraiseexcept, fesetexceptfl ag and fetestexcept sh all not be
used and no macro with one of these names shall be expanded.

The macros FE_INEXACT, FE_DIVBYZERO, FE_UNDERFLOW, FE_OVERFLOW, FE_INVALID and FE_ALL_EXCEPT,
along with any implementation-defi ned fl oating-point exception macros, shall not be used.

Rationale

In some circumstances, the values of the fl oating-point status fl ags are unspecifi ed and attempts to
a ccess them may lead to undefi ned behaviour.

MISRA C 2012 final.indd 171 17/03/2013 22:52:18

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

172

Section 8: Rules

The order in which exceptions are raised by the feraiseexcept function is unspecifi ed and could
therefore result in a program that has been designed for a certain order not operating correctly.

Example

#include <fenv.h>

void f (float32_t x, float32_t y)
{
 float32_t z;

 feclearexcept (FE_DIVBYZERO); /* Non-compliant */

 z = x / y;

 if (fetestexcept (FE_DIVBYZERO)) /* Non-compliant */
 {
 }

 else
 {
#pragma STDC FENV_ACCESS ON

 z = x * y;
 }

 if (z > x)
 {
#pragma STDC FENV_ACCESS OFF

 if (fetestexcept (FE_OVERFLOW)) /* Non-compliant */
 {
 }
 }
}

8.22 Resources
Many of the rules in this section are applicable only when rules in other sections have been deviated.

Rule 22.1 All resources obtained dynamically by means of Standard Library
functions shall be explicitly released

Category Required

Analysis Undecidable, System

Applies to C90, C99

Amplifi cation

The Standard Library functions that allocate resources are malloc, calloc, realloc and fopen.

Rati onale

If resources are not explicitly released then it is possible for a failure to occur due to exhaustion of
those resources. Releasing resources as soon as possible reduces the possibility that exhaustion will
occur.

MISRA C 2012 final.indd 172 17/03/2013 22:52:18

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

173

Se
ct

io
n

8:
 R

ul
esExample

#include <stdlib.h>

int main (void)
{
 void *b = malloc (40);

 /* Non-compliant - dynamic memory not released */
 return 1;
}

#include <stdio.h>

int main (void)
{
 FILE *fp = fopen ("tmp", "r");

 /* Non-compliant - file not closed */
 return 1;
}

In the following non-compliant example, the handle on “tmp-1” is lost when “tmp-2” is opened.

#include <stdio.h>

int main (void)
{
 FILE *fp;

 fp = fopen ("tmp-1", "w");

 fprintf (fp, "*");

 /* File "tmp-1" should be closed here, but stream 'leaks'. */

 fp = fopen ("tmp-2", "w");

 fprintf (fp, "!");

 fclose (fp);

 return (0);
}

See also

Dir 4.12, Dir 4.13, Rule 21.3, Rule 21.6

MISRA C 2012 final.indd 173 17/03/2013 22:52:18

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

174

Section 8: Rules

Rule 22.2 A block of memory shall only be freed if it was allocated by means o f a
Standard Library function

C90 [Undefi ned 92], C99 [Undefi ned 169]

Category Manda tory

Analysis Undecidable, System

Applies to C90, C99

Amplifi cation

The Standard Library functions that allocate memory are malloc, calloc and realloc.

A block of memory is freed when its address is passed to free and potentially freed when its address is
passed to realloc. Once freed, a block of memory is no longer considered to be allocated and therefore
cannot subsequently be freed again.

Rationale

Freeing non-allocated memory, or freeing the same allocated memory more than once leads to
undefi ned behaviour.

Example

#include <stdlib.h>

v oid fn (void)
{
 int32_t a;

 /* Non-compliant - a does not point to allocated storage */
 free (&a);
}

void g (void)
{
 char *p = (char *) malloc (512);
 char *q = p;

 free (p);

 /* Non-compliant - allocated block freed a second time */
 free (q);

 /* Non-compliant - allocated block may be freed a third time */
 p = (char *) realloc (p, 1024);
}

See also

Dir 4.12, Dir 4.13, Rule 21.3

MISRA C 2012 final.indd 174 17/03/2013 22:52:18

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

175

Se
ct

io
n

8:
 R

ul
esRule 22.3 The same fi le shall not be open for read and write access at the same

time on diff erent streams

C90 [Implementati on 61], C99 [Implementation J.3.12(22)]

Category Required

Analysis Undecidable, System

Applies to C90, C99

Amplifi cation

This rule applies to fi les opened with The Standard Library functions. It may also apply to similar
features provided by the execution environment.

Rationale

The S tandard does not specify the behaviour if a fi le is both written and read via diff erent streams.

Note: it is acceptable to open a fi le multiple times for read-onl y access.

Example

#include <stdio.h>

void fn (void)
{
 FILE *fw = fopen ("tmp", "r+"); /* "r+" opens for read/write */
 FILE *fr = fopen ("tmp", "r"); /* Non-compliant */
}

See also

Rule 21.6

MISRA C 2012 final.indd 175 17/03/2013 22:52:18

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

176

Section 8: Rules

Rule 22.4 There shall be no attempt to write to a stream which has been opened
as read-only

Category Manda tory

Analysis Undecidable, System

Applies to C90, C99

Rational e

The Standard does not spec ify the behaviour if an attempt is made to write to a read-only stream. For
this reason it is considered unsafe to write to a read-only stream.

Exampl e

#include <stdio.h>

void fn (void)
{
 FILE *fp = fopen ("tmp", "r");

 (void) fprintf (fp, "What happens now?"); /* Non-compliant */

 (void) fclose (fp);
}

See also

Rule 21.6

Rule 22.5 A pointer to a FILE object shall not be dereferenced

Category Manda tory

Analysis Undecidable, System

Applies to C90, C99

Amplifi cation

A pointer to a FILE object shall not be dereferenced directl y or indirectly (e.g. by a call to memcpy or
memcmp).

Rationale

The Standard (C90 Section 7.9.3(6), C99 Section 7.19.3(6)) states that the address of a FILE object
used to control a stream may be signifi cant and a copy of the object may not give the same behaviour.
This rule ensures that such a copy cannot be made.

The direct manipulation of a FILE object is prohibited as this may be incompatible with its use as a
stream designator.

Example

#include <stdio.h>

FILE *pf1;
FILE *pf2;
FILE f3;

MISRA C 2012 final.indd 176 17/03/2013 22:52:18

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

177

Se
ct

io
n

8:
 R

ul
espf2 = pf1; /* Compliant */

 f3 = *pf2; /* Non-compliant */

The following example assumes that FILE * specifi es a complete ty pe with a member named pos:

pf1->pos = 0; /* Non-compliant */

See also

Rule 21.6

Rule 22.6 The value of a pointer to a FILE shall not be used after the associated
stream has been closed

C99 [Undefi ned 140]

Category Mandatory

Analysis Undecidable, System

Applies to C90, C99

Rationale

The Standard states that the value of a FILE pointer is indeterminate after a close operation on a
stream.

Example

#include <stdio.h>

void fn (void)
{
 FILE *fp;
 void *p;

 fp = fopen ("tm p", "w");

 if (fp == NULL)
 {
 error_action ();
 }

 fclose (fp);

 fprintf (fp, "?"); /* Non-compl iant */
 p = fp; /* Non-compliant */
}

See also

Dir 4.13, Rule 21.6

MISRA C 2012 final.indd 177 17/03/2013 22:52:18

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

178

9 References
[1] MISRA Guidelines for the Use of the C Language In Vehicle Based Software, ISBN 0-9524159-9-0,

Motor Industry Research Association, Nuneaton, April 1998

[2] ISO/IEC 9899: 1990, Programming languages — C, International Organizati on for
Standardization, 1990

[3] Hatton L., Safer C – Developing Software for High-integrity and Safety-critical Systems, ISBN 0-07-
707640-0, McGraw-Hill, 19 94

[4] ISO/IEC 9899:1990/COR 1:1995, Technical Corrigendum 1, 1995

[5] ISO/IEC 9899:1990/AMD 1:1995, Amendment 1, 1995

[6] ISO/IEC 9899: 1990/COR 2:1996, Technical Corrigendum 2, 1996

[7] ANSI X3.159-1989, Programming languages — C, American National Standards Institute, 1989

[8] ISO/IEC 9899:1999, Programming languages — C, International Organiz ation for
Standardization, 1999

[9] ISO/IEC 9899:1999/COR 1:2001 , Technical Corrigendum 1, 2001

[10] ISO/IEC 9899:199 9/COR 2:2004, Technical Corrigendum 2, 2004

[11] ISO/IEC 9899:199 9/COR 3:2007, Technical Corrigendum 3, 2007

[12] ISO/IEC 9899:1999 Committee Draft WG14/N1256, Programming languages — C, International
Organization for Standardization, September 2007

[13] ISO/IEC 9899:2011, Programming languages — C, Internationa l Organization for
Standardization, 2011

[14] ISO/IEC 9899:2011/C OR 1:2012, Technical Corrigendum 1, 2012

[15] MISRA Development G uidelines for Vehicle Based Software, ISBN 0-9524156-0-7, Mo tor Industry
Research Association, Nuneaton, November 1994

[16] MISRA AC AGC Guidelines for the application of MISRA-C:2004 in the context of automatic code
generatio n, ISBN 978-1-906400-02-6, MIRA Limited, Nuneaton, November 2007

[17] MISRA AC GMG Generic modelling design and style guidelines, ISBN 978-1-906400-06-4, MIRA
Limited, Nuneaton, May 2009

[18] MI SRA AC SLSF Modelling design and style guidelines for the application of Simulink and Statefl ow,
ISBN 978-1-906400-07-1, MIRA Limited, Nun eaton, May 2009

[19] MISRA AC TL Modelling style guidelines for the application of Targetlink in the context of automatic
code generation, ISBN 978-1-906400-01-9, MIRA Limi ted, Nuneaton, November 2007

[20] CRR80, The Use of Commercial Off -the-Shelf (COTS) Software in Safety Related Application s, ISBN
0-7176-0984-7, HSE Books

[21] ISO 9001:2008, Quality management systems — Requirements, International Organization for
Standardization, 2008

MISRA C 2012 final.indd 178 17/03/2013 22:52:18

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

179

Se
ct

io
n

9:
 R

ef
er

en
ce

s[22] ISO 90003:20 04, Software engineering — Guidelines for the application of ISO 9001:2000 to
computer software, ISO, 2004

[23] ISO 26262:2011, Road vehicles — Functional safety, ISO, 2011

[24] DO-178C/ED-1 2C, Software Considerations in Airborne Systems and Equipment Certifi cation, RTCA,
2011

[25] The TickIT Guide, Using ISO 9001: 2000 for Software Quality Management System Construction,
Certifi cation and Continual Improvement, Issue 5, British Standards Institution, 2001

[26] Straker D., C Style: Standards and Guidelines, ISBN 0–13-116898-3, Prentice Hall 1991

[27] Fenton N.E. and Pfl eeger S.L., Software Metrics: A Rigorous and Practical Approach, 2nd Edition,
ISBN 0-534-95429-1, PWS, 1998

[28] MISR A Report 5 Software Metrics, Motor Industry Research Association, Nuneaton, February
1995

[29] MISR A Report 6 Verifi cation and Validation, Motor Industry Research Association, Nuneaton,
February 1995

[30] Kernighan B.W., Ritchie D.M., The C programming language, 2nd edition, ISBN 0-13-110362-8,
Prentice Hall, 1988 (note: The 1st edition is not a suitable reference document as it does not
describe ANSI/ISO C)

[31] Koenig A., C Traps and Pitfalls, ISBN 0-201-17928-8, Add ison-Wesley, 1988

[32] IEC 61508:2010, Functional safety of electrical/electronic/programmable electronic safety-related
systems, Int ernational Electromechanical Commission, in 7 parts published in 2010

[33] EN 50128:2011, Railway a pplications — Communications, signalling and processing systems —
Software for railway control and protec tion, CENELEC, 2011

[34] IEC 62304:2006, Medical device software — Software life cycle processes, IEC, 2006

[35] ANSI/IEEE Std 754, IEEE Standard for Binary Floating-Point Arithmetic, 1985

[36] ISO/IEC 10646:2003, Informat ion technology — Universal Multiple-Octet Coded Character Set
(UCS), Inter national Organization for Standardization, 2003

[37] Goldberg D., What Every Computer Scientist Should Know about Floating-Point Arithmetic,
Computing Surveys, March 1991

[38] Software Engin eering Center, Information-technology Promotion Agency, Japan (IPA/SEC),
Embedded System development Coding Reference (ESCR) [C language edition] Version 1.1, SEC
Books, 2012

MISRA C 2012 final.indd 179 17/03/2013 22:52:18

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

180

Appendix A Summary of guidelines

The implementation

Dir 1.1 Required Any implementation-defi ned behavio ur on which the output of the
program depends shall be documented and understood

Compilation and build

Dir 2.1 Required All source fi les shall compile without any compilation errors

Requirements traceability

Dir 3.1 Required All code shall be traceable to documented requirements

Code design

Dir 4.1 Required Run-time failures shall be minimized

Dir 4.2 Advisory All usage of assembly language should be documented

Dir 4.3 Required Assembl y language shall be encapsulated and isolated

Dir 4.4 Advisory Sections of code should not be “commented out”

Dir 4.5 Advisory Identifi ers in the same name space with overlapping visibility should be
typographically unambiguous

Dir 4.6 Advisory typedefs that indicate size and signedness should be used in place of the
basic numerical types

Dir 4.7 Required If a function returns error information, then that error information shall
be tested

Dir 4.8 Advisory If a pointer to a structure or union is never dereferenced within a
translation unit, then the implementation of the object should be
hidden

Dir 4.9 Advisory A function should be used in preference to a function-like macro where
they are interchangeable

Dir 4.10 Required Precautions shall be taken in order to prevent the contents of a header
fi le being included more than once

Dir 4.11 Required The validity of values passed to library functions shall be checked

Dir 4.12 Required Dynamic memory allocation shall not be used

Dir 4.13 Advisory Functions which are designed to provide operations on a resource
should be called in an appropriate sequence

MISRA C 2012 final.indd 180 17/03/2013 22:52:18

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

181

Ap
pe

nd
ix

 A
: S

um
m

ar
y

of
 g

ui
de

lin
esA standard C environment

Rule 1.1 Required The program shall contain no violations of the standard C syntax and
constraints, and shall not exceed the implementation’s translation limits

Rule 1.2 Advisory Language extensions should not be used

Rule 1.3 Required There shall be no occurrence of undefi ned or critical unspecifi ed
behaviour

Unused code

Rule 2.1 Required A project shall not contain unreachable code

Rule 2.2 Required There shall be no dead code

Rule 2.3 Advisory A project should not contain unused type declarations

Rule 2.4 Advisory A project should not contain unused tag declarations

Rule 2.5 Advisory A project should not contain unused macro declarations

Rule 2.6 Advisory A function should not contain unused label declarations

Rule 2.7 Advisory There should be no unused parameters in functions

Comments

Rule 3.1 Required The character sequences /* and // shall not be used within a comment

Rule 3.2 Required Line-splicing shall not be used in // comments

Character sets and lexical conventions

Rule 4.1 Required Octal and hexadecimal escape sequences shall be terminated

Rule 4.2 Advisory Trigraphs should not be used

Identifi ers

Rule 5.1 Required External identifi ers shall be distinct

Rule 5.2 Required Identifi ers declared in the same scope and name space shall be distinct

Rule 5.3 Required An identifi er declared in an inner scope shall not hide an identifi er
declared in an outer scope

Rule 5.4 Required Macro identifi ers shall be distinct

Rule 5.5 Required Identifi ers shall be distinct from macro names

Rule 5.6 Required A typedef name shall be a unique identifi er

Rule 5.7 Required A tag name shall be a unique identifi er

MISRA C 2012 final.indd 181 17/03/2013 22:52:18

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

182

Appendix A: Sum
m

ary of guidelines

Rule 5.8 Required Identifi ers that defi ne objects or functions with external linkage shall be
unique

Rule 5.9 Advisory Identifi ers that defi ne objects or functions with internal linkage should
be unique

Types

Rule 6.1 Required Bit-fi elds shall only be declared with an appropriate type

Rule 6.2 Required Single-bit named bit fi elds shall not be of a signed type

Literals and constants

Rule 7.1 Required Octal constants shall not be used

Rule 7.2 Required A “u” or “U” suffi x shall be applied to all integer constants that are
represented in an unsigned type

Rule 7.3 Required The lowercase character “l” shall not be used in a literal suffi x

Rule 7.4 Required A string literal shall not be assigned to an object unless the object’s type
is “pointer to const-qualifi ed char”

Declarations and defi nitions

Rule 8.1 Required Types shall be explicitly specifi ed

Rule 8.2 Required Function types shall be in prototype form with named parameters

Rule 8.3 Required All declarations of an object or function shall use the same names and
type qualifi ers

Rule 8.4 Required A compatible declaration shall be visible when an object or function
with external linkage is defi ned

Rule 8.5 Required An external object or function shall be declared once in one and only
one fi le

Rule 8.6 Required An identifi er with external linkage shall have exactly one external
defi nition

Rule 8.7 Advisory Functions and objects should not be defi ned with external linkage if
they are referenced in only one translation unit

Rule 8.8 Required The static storage class specifi er shall be used in all declarations of
objects and functions that have internal linkage

Rule 8.9 Advisory An object should be defi ned at block scope if its identifi er only appears
in a single function

Rule 8.10 Required An inline function shall be declared with the static storage class

Rule 8.11 Advisory When an array with external linkage is declared, its size should be
explicitly specifi ed

MISRA C 2012 final.indd 182 17/03/2013 22:52:18

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

183

Ap
pe

nd
ix

 A
: S

um
m

ar
y

of
 g

ui
de

lin
esRule 8.12 Required Within an enumerator list, the value of an implicitly-specifi ed

enumeration constant shall be unique

Rule 8.13 Advisory A pointer should point to a const-qualifi ed type whenever possible

Rule 8.14 Required The restrict type qualifi er shall not be used

Initialization

Rule 9.1 Mandatory The value of an object with automatic storage duration shall not be read
before it has been set

Rule 9.2 Required The initializer for an aggregate or union shall be enclosed in braces

Rule 9.3 Required Arrays shall not be partially initialized

Rule 9.4 Required An element of an object shall not be initialized more than once

Rule 9.5 Required Where designated initializers are used to initialize an array object the
size of the array shall be specifi ed explicitly

The essential type model

Rule 10.1 Required Operands shall not be of an inappropriate essential type

Rule 10.2 Required Expressions of essentially character type shall not be used
inappropriately in addition and subtraction operations

Rule 10.3 Required The value of an expression shall not be assigned to an object with a
narrower essential type or of a diff erent essential type category

Rule 10.4 Required Both operands of an operator in which the usual arithmetic conversions
are performed shall have the same essential type category

Rule 10.5 Advisory The value of an expression should not be cast to an inappropriate
essential type

Rule 10.6 Required The value of a composite expression shall not be assigned to an object
with wider essential type

Rule 10.7 Required If a composite expression is used as one operand of an operator in which
the usual arithmetic conversions are performed then the other operand
shall not have wider essential type

Rule 10.8 Required The value of a composite expression shall not be cast to a diff erent
essential type category or a wider essential type

Pointer type conversions

Rule 11.1 Required Conversions shall not be performed between a pointer to a function
and any other type

Rule 11.2 Required Conversions shall not be performed between a pointer to an
incomplete type and any other type

Rule 11.3 Required A cast shall not be performed between a pointer to object type and a
pointer to a diff erent object type

MISRA C 2012 final.indd 183 17/03/2013 22:52:18

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

184

Appendix A: Sum
m

ary of guidelines

Rule 11.4 Advisory A conversion should not be performed between a pointer to object and
an integer type

Rule 11.5 Advisory A conversion should not be performed from pointer to void into pointer
to object

Rule 11.6 Required A cast shall not be performed between pointer to void and an arithmetic
type

Rule 11.7 Required A cast shall not be performed between pointer to object and a non-
integer arithmetic type

Rule 11.8 Required A cast shall not remove any const or volatile qualifi cation from the type
pointed to by a pointer

Rule 11.9 Required The macro NULL shall be the only permitted form of integer null pointer
constant

Expressions

Rule 12.1 Advisory The precedence of operators within expressions should be made
explicit

Rule 12.2 Required The right hand operand of a shift operator shall lie in the range zero
to one less than the width in bits of the essential type of the left hand
operand

Rule 12.3 Advisory The comma operator should not be used

Rule 12.4 Advisory Evaluation of constant expressions should not lead to unsigned integer
wrap-around

Side eff ects

Rule 13.1 Required Initializer lists shall not contain persistent side eff ects

Rule 13.2 Required The value of an expression and its persistent side eff ects shall be the
same under all permitted evaluation orders

Rule 13.3 Advisory A full expression containing an increment (++) or decrement (--)
operator should have no other potential side eff ects other than that
caused by the increment or decrement operator

Rule 13.4 Advisory The result of an assignment operator should not be used

Rule 13.5 Required The right hand operand of a logical && or || operator shall not contain
persistent side eff ects

Rule 13.6 Mandatory The operand of the sizeof operator shall not contain any expression
which has potential side eff ects

MISRA C 2012 final.indd 184 17/03/2013 22:52:18

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

185

Ap
pe

nd
ix

 A
: S

um
m

ar
y

of
 g

ui
de

lin
esControl statement expressions

Rule 14.1 Required A loop counter shall not have essentially fl oating type

Rule 14.2 Required A for loop shall be well-formed

Rule 14.3 Required Controlling expressions shall not be invariant

Rule 14.4 Required The controlling expression of an if statement and the controlling
expression of an iteration-statement shall have essentially Boolean type

Control fl ow

Rule 15.1 Advisory The goto statement should not be used

Rule 15.2 Required The goto statement shall jump to a label declared later in the same
function

Rule 15.3 Required Any label referenced by a goto statement shall be declared in the same
block, or in any block enclosing the goto statement

Rule 15.4 Advisory There should be no more than one break or goto statement used to
terminate any iteration statement

Rule 15.5 Advisory A function should have a single point of exit at the end

Rule 15.6 Required The body of an iteration-statement or a selection-statement shall be a
compound-statement

Rule 15.7 Required All if … else if constructs shall be terminated with an else statement

Switch statements

Rule 16.1 Required All switch statements shall be well-formed

Rule 16.2 Required A switch label shall only be used when the most closely-enclosing
compound statement is the body of a switch statement

Rule 16.3 Required An unconditional break statement shall terminate every switch-clause

Rule 16.4 Required Every switch statement shall have a default label

Rule 16.5 Required A default label shall appear as either the fi rst or the last switch label of a
switch statement

Rule 16.6 Required Every switch statement shall have at least two switch-clauses

Rule 16.7 Required A switch-expression shall not have essentially Boolean type

Functions

Rule 17.1 Required The features of <stdarg.h> shall not be used

Rule 17.2 Required Functions shall not call themselves, either directly or indirectly

Rule 17.3 Mandatory A function shall not be declared implicitly

MISRA C 2012 final.indd 185 17/03/2013 22:52:18

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

186

Appendix A: Sum
m

ary of guidelines

Rule 17.4 Mandatory All exit paths from a function with non-void return type shall have an
explicit return statement with an expression

Rule 17.5 Advisory The function argument corresponding to a parameter declared to have
an array type shall have an appropriate number of elements

Rule 17.6 Mandatory The declaration of an array parameter shall not contain the static
keyword between the []

Rule 17.7 Required The value returned by a function having non-void return type shall be
used

Rule 17.8 Advisory A function parameter should not be modifi ed

Pointers and arrays

Rule 18.1 Required A pointer resulting from arithmetic on a pointer operand shall address
an element of the same array as that pointer operand

Rule 18.2 Required Subtraction between pointers shall only be applied to pointers that
address elements of the same array

Rule 18.3 Required The relational operators >, >=, < and <= shall not be applied to objects
of pointer type except where they point into the same object

Rule 18.4 Advisory The +, -, += and -= operators should not be applied to an expression of
pointer type

Rule 18.5 Advisory Declarations should contain no more than two levels of pointer nesting

Rule 18.6 Required The address of an object with automatic storage shall not be copied to
another object that persists after the fi rst object has ceased to exist

Rule 18.7 Required Flexible array members shall not be declared

Rule 18.8 Required Variable-length array types shall not be used

Overlapping storage

Rule 19.1 Mandatory An object shall not be assigned or copied to an overlapping object

Rule 19.2 Advisory The union keyword should not be used

Preprocessing directives

Rule 20.1 Advisory #include directives should only be preceded by preprocessor directives
or comments

Rule 20.2 Required The ', " or \ characters and the /* or // character sequences shall not
occur in a header fi le name

Rule 20.3 Required The #include directive shall be followed by either a <filename> or
"filename" sequence

Rule 20.4 Required A macro shall not be defi ned with the same name as a keyword

Rule 20.5 Advisory #undef should not be used

MISRA C 2012 final.indd 186 17/03/2013 22:52:18

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

187

Ap
pe

nd
ix

 A
: S

um
m

ar
y

of
 g

ui
de

lin
esRule 20.6 Required Tokens that look like a preprocessing directive shall not occur within a

macro argument

Rule 20.7 Required Expressions resulting from the expansion of macro parameters shall be
enclosed in parentheses

Rule 20.8 Required The controlling expression of a #if or #elif preprocessing directive shall
evaluate to 0 or 1

Rule 20.9 Required All identifi ers used in the controlling expression of #if or #elif
preprocessing directives shall be #defi ne ’d before evaluation

Rule 20.10 Advisory The # and ## preprocessor operators should not be used

Rule 20.11 Required A macro parameter immediately following a # operator shall not
immediately be followed by a ## operator

Rule 20.12 Required A macro parameter used as an operand to the # or ## operators, which
is itself subject to further macro replacement, shall only be used as an
operand to these operators

Rule 20.13 Required A line whose fi rst token is # shall be a valid preprocessing directive

Rule 20.14 Required All #else, #elif and #endif preprocessor directives shall reside in the
same fi le as the #if, #ifdef or #ifndef directive to which they are related

Standard libraries

Rule 21.1 Required #defi ne and #undef shall not be used on a reserved identifi er or
reserved macro name

Rule 21.2 Required A reserved identifi er or macro name shall not be declared

Rule 21.3 Required The memory allocation and deallocation functions of <stdlib.h> shall
not be used

Rule 21.4 Required The standard header fi le <setjmp.h> shall not be used

Rule 21.5 Required The standard header fi le <signal.h> shall not be used

Rule 21.6 Required The Standard Library input/output functions shall not be used

Rule 21.7 Required The atof, atoi, atol and atoll functions of <stdlib.h> shall not be used

Rule 21.8 Required The library functions abort, exit, getenv and system of <stdlib.h> shall
not be used

Rule 21.9 Required The library functions bsearch and qsort of <stdlib.h> shall not be
used

Rule 21.10 Required The Standard Library time and date functions shall not be used

Rule 21.11 Required The standard header fi le <tgmath.h> shall not be used

Rule 21.12 Advisory The exception handling features of <fenv.h> should not be used

MISRA C 2012 final.indd 187 17/03/2013 22:52:18

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

188

Appendix A: Sum
m

ary of guidelines

Resources

Rule 22.1 Required All resources obtained dynamically by means of Standard Library
functions shall be explicitly released

Rule 22.2 Mandatory A block of memory shall only be freed if it was allocated by means of a
Standard Library function

Rule 22.3 Required The same fi le shall not be open for read and write access at the same
time on diff erent streams

Rule 22.4 Mandatory There shall be no attempt to write to a stream which has been opened
as read-only

Rule 22.5 Mandatory A pointer to a FILE object shall not be dereferenced

Rule 22.6 Mandatory The value of a pointer to a FILE shall not be used after the associated
stream has been closed

MISRA C 2012 final.indd 188 17/03/2013 22:52:18

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

189

Appendix B Guideline attributes

Rule Category Applies to Analysis

Dir 1.1 Required C90, C99

Dir 2.1 Required C90, C99

Dir 3.1 Required C90, C99

Dir 4.1 Required C90, C99

Dir 4.2 Advisory C90, C99

Dir 4.3 Required C90, C99

Dir 4.4 Advisory C90, C99

Dir 4.5 Advisory C90, C99

Dir 4.6 Advisory C90, C99

Dir 4.7 Required C90, C99

Dir 4.8 Advisory C90, C99

Dir 4.9 Advisory C90, C99

Dir 4.10 Required C90, C99

Dir 4.11 Required C90, C99

Dir 4.12 Required C90, C99

Dir 4.13 Advisory C90, C99

Rule 1.1 Required C90, C99 Decidable, Single Translation Unit

Rule 1.2 Advisory C90, C99 Undecidable, Single Translation Unit

Rule 1.3 Required C90, C99 Undecidable, System

Rule 2.1 Required C90, C99 Undecidable, System

Rule 2.2 Required C90, C99 Undecidable, System

Rule 2.3 Advisory C90, C99 Decidable, System

Rule 2.4 Advisory C90, C99 Decidable, System

Rule 2.5 Advisory C90, C99 Decidable, System

Rule 2.6 Advisory C90, C99 Decidable, Single Translation Unit

Rule 2.7 Advisory C90, C99 Decidable, Single Translation Unit

Rule 3.1 Required C90, C99 Decidable, Single Translation Unit

Rule 3.2 Required C99 Decidable, Single Translation Unit

Rule 4.1 Required C90, C99 Decidable, Single Translation Unit

Rule 4.2 Advisory C90, C99 Decidable, Single Translation Unit

Rule 5.1 Required C90, C99 Decidable, System

Rule 5.2 Required C90, C99 Decidable, Single Translation Unit

Rule 5.3 Required C90, C99 Decidable, Single Translation Unit

Rule 5.4 Required C90, C99 Decidable, Single Translation Unit

Rule 5.5 Required C90, C99 Decidable, Single Translation Unit

Rule 5.6 Required C90, C99 Decidable, System

Rule 5.7 Required C90, C99 Decidable, System

Rule 5.8 Required C90, C99 Decidable, System

Rule 5.9 Advisory C90, C99 Decidable, System

Rule 6.1 Required C90, C99 Decidable, Single Translation Unit

MISRA C 2012 final.indd 189 17/03/2013 22:52:18

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

190

Appendix B: G
uideline attributes

Rule Category Applies to Analysis

Rule 6.2 Required C90, C99 Decidable, Single Translation Unit

Rule 7.1 Required C90, C99 Decidable, Single Translation Unit

Rule 7.2 Required C90, C99 Decidable, Single Translation Unit

Rule 7.3 Required C90, C99 Decidable, Single Translation Unit

Rule 7.4 Required C90, C99 Decidable, Single Translation Unit

Rule 8.1 Required C90 Decidable, Single Translation Unit

Rule 8.2 Required C90, C99 Decidable, Single Translation Unit

Rule 8.3 Required C90, C99 Decidable, System

Rule 8.4 Required C90, C99 Decidable, Single Translation Unit

Rule 8.5 Required C90, C99 Decidable, System

Rule 8.6 Required C90, C99 Decidable, System

Rule 8.7 Advisory C90, C99 Decidable, System

Rule 8.8 Required C90, C99 Decidable, Single Translation Unit

Rule 8.9 Advisory C90, C99 Decidable, System

Rule 8.10 Required C99 Decidable, Single Translation Unit

Rule 8.11 Advisory C90, C99 Decidable, Single Translation Unit

Rule 8.12 Required C90, C99 Decidable, Single Translation Unit

Rule 8.13 Advisory C90, C99 Undecidable, System

Rule 8.14 Required C99 Decidable, Single Translation Unit

Rule 9.1 Mandatory C90, C99 Undecidable, System

Rule 9.2 Required C90, C99 Decidable, Single Translation Unit

Rule 9.3 Required C90, C99 Decidable, Single Translation Unit

Rule 9.4 Required C99 Decidable, Single Translation Unit

Rule 9.5 Required C99 Decidable, Single Translation Unit

Rule 10.1 Required C90, C99 Decidable, Single Translation Unit

Rule 10.2 Required C90, C99 Decidable, Single Translation Unit

Rule 10.3 Required C90, C99 Decidable, Single Translation Unit

Rule 10.4 Required C90, C99 Decidable, Single Translation Unit

Rule 10.5 Advisory C90, C99 Decidable, Single Translation Unit

Rule 10.6 Required C90, C99 Decidable, Single Translation Unit

Rule 10.7 Required C90, C99 Decidable, Single Translation Unit

Rule 10.8 Required C90, C99 Decidable, Single Translation Unit

Rule 11.1 Required C90, C99 Decidable, Single Translation Unit

Rule 11.2 Required C90, C99 Decidable, Single Translation Unit

Rule 11.3 Required C90, C99 Decidable, Single Translation Unit

Rule 11.4 Advisory C90, C99 Decidable, Single Translation Unit

Rule 11.5 Advisory C90, C99 Decidable, Single Translation Unit

Rule 11.6 Required C90, C99 Decidable, Single Translation Unit

Rule 11.7 Required C90, C99 Decidable, Single Translation Unit

Rule 11.8 Required C90, C99 Decidable, Single Translation Unit

Rule 11.9 Required C90, C99 Decidable, Single Translation Unit

Rule 12.1 Advisory C90, C99 Decidable, Single Translation Unit

MISRA C 2012 final.indd 190 17/03/2013 22:52:19

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

191

Ap
pe

nd
ix

 B
: G

ui
de

lin
e

at
tr

ib
ut

esRule Category Applies to Analysis

Rule 12.2 Required C90, C99 Undecidable, System

Rule 12.3 Advisory C90, C99 Decidable, Single Translation Unit

Rule 12.4 Advisory C90, C99 Decidable, Single Translation Unit

Rule 13.1 Required C99 Undecidable, System

Rule 13.2 Required C90, C99 Undecidable, System

Rule 13.3 Advisory C90, C99 Decidable, Single Translation Unit

Rule 13.4 Advisory C90, C99 Decidable, Single Translation Unit

Rule 13.5 Required C90, C99 Undecidable, System

Rule 13.6 Mandatory C90, C99 Decidable, Single Translation Unit

Rule 14.1 Required C90, C99 Undecidable, System

Rule 14.2 Required C90, C99 Undecidable, System

Rule 14.3 Required C90, C99 Undecidable, System

Rule 14.4 Required C90, C99 Decidable, Single Translation Unit

Rule 15.1 Advisory C90, C99 Decidable, Single Translation Unit

Rule 15.2 Required C90, C99 Decidable, Single Translation Unit

Rule 15.3 Required C90, C99 Decidable, Single Translation Unit

Rule 15.4 Advisory C90, C99 Decidable, Single Translation Unit

Rule 15.5 Advisory C90, C99 Decidable, Single Translation Unit

Rule 15.6 Required C90, C99 Decidable, Single Translation Unit

Rule 15.7 Required C90, C99 Decidable, Single Translation Unit

Rule 16.1 Required C90, C99 Decidable, Single Translation Unit

Rule 16.2 Required C90, C99 Decidable, Single Translation Unit

Rule 16.3 Required C90, C99 Decidable, Single Translation Unit

Rule 16.4 Required C90, C99 Decidable, Single Translation Unit

Rule 16.5 Required C90, C99 Decidable, Single Translation Unit

Rule 16.6 Required C90, C99 Decidable, Single Translation Unit

Rule 16.7 Required C90, C99 Decidable, Single Translation Unit

Rule 17.1 Required C90, C99 Decidable, Single Translation Unit

Rule 17.2 Required C90, C99 Undecidable, System

Rule 17.3 Mandatory C90 Decidable, Single Translation Unit

Rule 17.4 Mandatory C90, C99 Decidable, Single Translation Unit

Rule 17.5 Advisory C90, C99 Undecidable, System

Rule 17.6 Mandatory C99 Decidable, Single Translation Unit

Rule 17.7 Required C90, C99 Decidable, Single Translation Unit

Rule 17.8 Advisory C90, C99 Undecidable, System

Rule 18.1 Required C90, C99 Undecidable, System

Rule 18.2 Required C90, C99 Undecidable, System

Rule 18.3 Required C90, C99 Undecidable, System

Rule 18.4 Advisory C90, C99 Decidable, Single Translation Unit

Rule 18.5 Advisory C90, C99 Decidable, Single Translation Unit

Rule 18.6 Required C90, C99 Undecidable, System

Rule 18.7 Required C99 Decidable, Single Translation Unit

MISRA C 2012 final.indd 191 17/03/2013 22:52:19

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

192

Appendix B: G
uideline attributes

Rule Category Applies to Analysis

Rule 18.8 Required C99 Decidable, Single Translation Unit

Rule 19.1 Mandatory C90, C99 Undecidable, System

Rule 19.2 Advisory C90, C99 Decidable, Single Translation Unit

Rule 20.1 Advisory C90, C99 Decidable, Single Translation Unit

Rule 20.2 Required C90, C99 Decidable, Single Translation Unit

Rule 20.3 Required C90, C99 Decidable, Single Translation Unit

Rule 20.4 Required C90, C99 Decidable, Single Translation Unit

Rule 20.5 Advisory C90, C99 Decidable, Single Translation Unit

Rule 20.6 Required C90, C99 Decidable, Single Translation Unit

Rule 20.7 Required C90, C99 Decidable, Single Translation Unit

Rule 20.8 Required C90, C99 Decidable, Single Translation Unit

Rule 20.9 Required C90, C99 Decidable, Single Translation Unit

Rule 20.10 Advisory C90, C99 Decidable, Single Translation Unit

Rule 20.11 Required C90, C99 Decidable, Single Translation Unit

Rule 20.12 Required C90, C99 Decidable, Single Translation Unit

Rule 20.13 Required C90, C99 Decidable, Single Translation Unit

Rule 20.14 Required C90, C99 Decidable, Single Translation Unit

Rule 21.1 Required C90, C99 Decidable, Single Translation Unit

Rule 21.2 Required C90, C99 Decidable, Single Translation Unit

Rule 21.3 Required C90, C99 Decidable, Single Translation Unit

Rule 21.4 Required C90, C99 Decidable, Single Translation Unit

Rule 21.5 Required C90, C99 Decidable, Single Translation Unit

Rule 21.6 Required C90, C99 Decidable, Single Translation Unit

Rule 21.7 Required C90, C99 Decidable, Single Translation Unit

Rule 21.8 Required C90, C99 Decidable, Single Translation Unit

Rule 21.9 Required C90, C99 Decidable, Single Translation Unit

Rule 21.10 Required C90, C99 Decidable, Single Translation Unit

Rule 21.11 Required C99 Decidable, Single Translation Unit

Rule 21.12 Advisory C99 Decidable, Single Translation Unit

Rule 22.1 Required C90, C99 Undecidable, System

Rule 22.2 Mandatory C90, C99 Undecidable, System

Rule 22.3 Required C90, C99 Undecidable, System

Rule 22.4 Mandatory C90, C99 Undecidable, System

Rule 22.5 Mandatory C90, C99 Undecidable, System

Rule 22.6 Mandatory C90, C99 Undecidable, System

MISRA C 2012 final.indd 192 17/03/2013 22:52:19

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

193

Appendix C Type safety issues with C
ISO C may be considered to exhibit poor type safety as it permits a wide range of implicit type
conversions to take place. These type conversions can compromise safety as their implementation-
defi ned aspects can cause developer confusion.

An explanation of these conversions follows, along with some examples to show how they can lead
to developer confusion.

C.1 T ype conversions

C.1.1 I mplicit conversions

Implicit type conversions within ISO C permit the use of mixed types within expressions and may
occur even when the types used are all the same. There are three types of implicit conversion:

1. An integer promotion conversion to signed int or unsigned int takes place whenever a bit-fi eld or
object with (un)signed char, (un)signed short or enum type is used arithmetically as described in
C90 Section 6.2.1.1, C99 Section 6.3.1.1. Integer promotion preserves the original value, but the
signedness may change (e.g. unsigned char will be converted to signed int);

2. The usual arithmetic conversions convert (balance) operands to a common type whenever
operands with diff erent types are used with certain operators, as described in
C90 Section 6.2.1.5, C99 Section 6.3.1.8;

3. Conversion on assignment.

An expression may contain none, one, two or all of these implicit conversions, as the examples below
show (si and ui are 32-bit signed and unsigned integers and u8 is an 8-bit unsigned char):

Expression Promote Balance Convert Notes

si = si + si;

si = uc + uc; Yes uc promoted to signed int

ui = si + ui; Yes si is balanced to unsigned int

ui = ui + uc; Yes Yes uc promoted to signed int and balanced to
unsigned int

ui = si; Yes si converted to unsigned int

ui = uc + uc; Yes Yes uc promoted to signed int and result of
expression converted to unsigned int

si = si + ui; Yes Yes si is balanced to unsigned int and result of
expression converted to signed int

si = ui + uc; Yes Yes Yes
uc promoted to signed int, balanced to
unsigned int and result of expression converted
to signed int

MISRA C 2012 final.indd 193 17/03/2013 22:52:19

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

194

Appendix C: Type safety issues w
ith C

C.1.2 Explicit conversions

Explicit type conversions (casts) may be introduced for functional reasons:

• To change the type in which a subsequent arithmetic operation is performed;

• To truncate a value deliberately;

• To make a type conversion explicit in the interests of clarity.

ISO C does not require all explicit casts to be checked, allowing conversions to take place between
incompatible types.

C.1.3 C oncerns with conversions

Implicit and explicit conversion can lead to several concerns, including:

• Loss of value: e.g. conversion to a type where the magnitude of the value cannot be represented;

• Loss of sign: e.g. conversion from a signed type to an unsigned type resulting in loss of sign;

• Loss of precision: e.g. conversion from a fl oating type to an integer type with consequent loss
of precision;

• Loss of layout: e.g. conversion from a pointer to one type to a pointer to a diff erent type
leading to an incompatible storage layout.

Whilst many type conversions are safe, the only ones that can be guaranteed safe for all data values
and all possible conforming implementations are:

• Conversion of an integer value to a wider integer type of the same signedness;

• Conversion of a fl oating type to a wider fl oating type.

Depending on the implemented integer sizes, other type conversions may also be safe. However, any
potentially dangerous type conversions should be identifi ed by making them explicit.

C.2 D eveloper confusion
As the sizes in which types are implemented can vary between implementations, the contexts in
which implicit conversions take place can also vary. This places a requirement on the developer to
maintain a mental model of the type system in use for any particular project. It is relatively easy for
a developer to use the wrong model from time-to-time, especially if they are working on multiple
projects having diff erent implementations.

C.2.1 T ype widening in integer promotion

The type in which integer expressions are evaluated depends on the type of the operands after any
integer promotion. Multiplying two 8-bit values will always give a result that is at least 16 bits wide.
However, multiplying two 16-bit values will only give a 32-bit result when the implemented size of
int is at least 32 bits. It is safer never to rely on the type-widening obtained by integer promotion as
the associated implementation-defi ned behaviour may lead to developer confusion. Consider the
following example:

uint16_t u16a = 40000; /* unsigned short or unsigned int ? */
uint16_t u16b = 30000; /* unsigned short or unsigned int ? */
uint32_t u32x; /* unsigned int or unsigned long ? */

u32x = u16a + u16b; /* u32x = 70000 or 4464 ? */

MISRA C 2012 final.indd 194 17/03/2013 22:52:19

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

195

Ap
pe

nd
ix

 C
: T

yp
e

sa
fe

ty
 is

su
es

 w
ith

 CThe expected result is possibly 70 000, but the value assigned to u32x will depend on the implemented
size of int. If this is 32 bits, the addition will occur in 32-bit signed arithmetic and the “correct” value will
be obtained. If it is only 16 bits, the addition will take place in 16-bit unsigned arithmetic, wraparound
will occur and will yield the value 4 464 (70 000 % 65 536). Wraparound in unsigned arithmetic is well
defi ned but, as its eff ects depend on the type in which the arithmetic is performed, its intentional use
should documented.

C.2.2 Evaluati on type confusion

A similar problem arises where a developer is deceived into thinking that the type in which a calculation
is conducted is infl uenced by the type to which the result is assigned or converted. For example, in the
following code the two 16-bit objects are added together in 16-bit arithmetic (assuming int is 16-bit),
and the result is converted to type uint32_t on assignment.

u32x = u16a + u16b;

It is not unusual for developers to be deceived into thinking that the addition is performed in 32-bit
arithmetic, because of the type of u32x.

Confusion of this nature is not confi ned to integer arithmetic or to implicit conversions. The following
examples demonstrate some statements in which the result is well defi ned but the calculation may
not be performed in the type that the developer expects:

u32a = (uint32_t)(u16a * u16b); /* May not be a 32-bit operation */
f64a = u16a / u16b; /* Not floating point division */
f32a = (float32_t)(u16a / u16b); /* Not floating point division */
f64a = f32a + f32b; /* May be a low precision operation */
f64a = (float64_t)(f32a + f32b); /* May be a low precision operation */

C.2.3 Change o f signedness in arithmetic operations

Integer promotion may lead to the result of an expression not meeting developer expectations. For
example, the expression 10 - u16a yields a result that is dependent on the size of int. If u16a has a
value of 100 and int is 32 bits, then the result is signed with a value of -90. However, if int is 16 bits the
result will be unsigned with a value of 65 446.

C.2.4 Change of signedness in bitwise operations

Integer promotion arising when bitwise operators are applied to small unsigned types can lead to
confusion. For example a bitwise complement operation on an operand of type unsigned char will
generally yield a result of type (signed) int with a negative value. The operand is promoted to type int
before the operation and the extra high order bits are set by the complement process. The number of
extra bits, if any, is dependent on the size of an int and it is particularly hazardous if the complement
operation is followed by a right shift as this leads to implementation-defi ned behaviour.

u8a = 0xff;

if (~u8a == 0x00U) /* This test will always fail */

MISRA C 2012 final.indd 195 17/03/2013 22:52:19

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

196

Appendix D Essential types
The C language as defi ned by the ISO C standard contains a n umber of weaknesses and inconsistencies
and, unfortunately, the standard type of an expression is not always fully descriptive of the essential
nature of the data being represented. For example:

• Integer promotion The set of integer types do not behave in a consistent way. As a result of
integer promotion, an expression which is intrinsically unsigned (e.g. unsigned char + unsigned
char) typically has a standard type of signed int.

• Integer constants Integer constants only exist for signed/unsigned int, long and long long types.
This complicates the issue of ensuring type consistency (for example when passing constants
as function arguments).

• Character constants The standard type of a character constant (e.g. 'x') is defi ned to be
int (not char). This obscures the distinction between character data (i.e. “characters”) and
numeric data (i.e. “number values”).

• Logical expressions A Boolean type does not exist in the C90 language. Type _Bool was
introduced into C99, but unfortunately, for reasons of backwards compatibility, the result of
equality (==, !=), relational (<, <=, >=, >), and logical (&&, ||, !) operators is still of
type int rather than type _Bool.

• Bit-fi elds ISO C does not defi ne a bit-fi eld type. This means that it is not possible, for example,
to cast to a bit-fi eld type. The standard type of a bit-fi eld as defi ned by ISO C is one of _Bool,
signed int or unsigned int. The signedness of a bit-fi eld of type int is implementation-defi ned.

• Enumerations An enumeration has a type which is implementation-defi ned.
The implementation is free to use any integer type which is capable of representing the
enumeration. If the enumeration includes negative values, the type will be a signed integer
type. If the enumeration consists only of non-negative values, the type may be either a signed
or unsigned integer type.

• Enumeration constants Regardless of the type used to implement an enumeration, an
enumeration constant is always of type int.

D.1 The essential type category of expressions
MISRA C:2012 introduces the concept of es sential type to help mitigate the issues identifi ed above.

The essential type category of an expression is one of:

• Essentially Boolean;

• Essentially character;

• Essentially enum;

• Essentially signed;

• Essentially unsigned;

• Essentially fl oating.

MISRA C 2012 final.indd 196 17/03/2013 22:52:19

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

197

Ap
pe

nd
ix
 D

: E
ss

en
tia

l t
yp

esThe following table shows how the standard integer types map on to essential type categories. Note:
C99 implementations may provide extended integer types each of which would be allocated a location
appropriate to its rank and signedness (see C99 Section 6.3.1.1).

Essential type category

Boolean character signed unsigned enum<i> fl oating

_Bool char signed char
signed short
signed int
signed long
signed long long

unsigned char
unsigned short
unsigned int
unsigned long
unsigned long long

named enum fl oat
double
long double

The concept of rank is particularly relevant when describing the set of signed and unsigned types;
signed and unsigned long long share the “highest” rank and signed and unsigned char share the “lowest”
rank. In the ISO C99 standard, “rank” is a term applied only to integer types.

The essential type of an expression only diff ers from the standard C type (standard type) in expressions
where the standard type is either signed int or unsigned int.

In the following paragraphs the specifi c situations are defi ned where essential type and standard type
are diff erent.

D.2 The essenti al type of character data
An object with a standard type of char (i.e. single byte character) has essentially char type.

D.3 The signed and unsigned type of lowest rank (STLR and UTLR)
The Essential Type Model introduces the concept of the Signed Type of Lowest Rank (the STLR) and the
Unsigned Type of Lowest Rank (the UTLR). These allow integer constant expressions and bit-fi elds to be
used within expressions having an essential type with a rank lower than that of int. In the case of integer
constant expressions, this is a convenience as it avoids the need to cast the expression, or its operands,
to a type with lower rank. Similarly, for an implementation that does not permit bit-fi elds to have a
type whose rank is lower than that of int, it avoids the need to cast bit-fi elds in some situations.

1. The STLR is the signed type having the lowest rank required to represent the value of a particular
integer constant expression or both the maximum and minimum values of a bit-fi eld;

2. The UTLR is the unsigned type having the lowest rank required to represent the value of a
particular integer constant expression or the maximum value of a bit-fi eld.

D.4 The essenti al type of bit-fi elds
The essential type of a bit-fi eld is determined by the fi rst of the following that applies:

1. For a bit-fi eld which is implemented with an essentially Boolean type it is essentially Boolean;

2. For a bit-fi eld which is implemented with a signed type it is the STLR which is able to represent
the bit-fi eld;

3. For a bit-fi eld which is implemented with an unsigned type it is the UTLR which is able to
represent the bit-fi eld.

MISRA C 2012 final.indd 197 17/03/2013 22:52:19

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

198

Appendix D
: Essential types

D.5 The essenti al type of enumerations
Two distinct types of enumeration need to be considered:

1. A named enum type is an enumeration which has a tag or which is used in the defi nition of any
object, function or type;

2. An anonymous enum type is an enumeration which does not have a tag and which is not used
in the defi nition of any object, function or type. This will typically be used to defi ne a set of
constants, which may or may not be related.

A named enum type is distinct from all other named enum types, even if declared in an inner scope with
exactly the same tag and enumeration constants. Each instance of a named enum type is denoted as
enum<i> in this document, with the i being diff erent for each such type.

An alias for a named enum type created using typedef denotes that named enum type and is not a new
type.

The essential type of an anonymous enum type is its standard type.

The following all have named enum type and have distinct essential types:

 enum ETAG { A, B, C };
typedef enum { A, B, C } ETYPE;
typedef enum ETAG { A, B, C } ETYPE;
 enum { A, B, C } x;

The following typedefs both refer to the same enum<i>:

typedef enum { A, B, C } ETYPE;
typedef ETYPE FTYPE;

D.6 The essenti al type of literal constants
The ISO C99 standard defi nes the following constants of integer type:

• Integer constants;

• Enumeration constants;

• Character constants.

Note: a constant of integer type is not necessarily an integer constant.

Integer cons tants

1. If the standard type of an integer constant is signed int then its essential type is the STLR;

2. If the standard type of an integer constant is unsigned int then its essential type is the UTLR.

Enumeration constants

The standard type of an enumeration constant in C is always int, regardless of the implemented type of
the enumeration and regardless of the type of any initializer expression used to defi ne its value. For
example, if an enumeration constant is initialized with an unsigned value (e.g. 500U), the constant will
still be considered to have a standard type of signed int.

MISRA C 2012 final.indd 198 17/03/2013 22:52:19

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

199

Ap
pe

nd
ix
 D

: E
ss

en
tia

l t
yp

esThe essential type of an enumeration constant is determined as follows:

1. If an enumeration defi nes a named enum type then the essential type of its enumeration
constants is enum<i>;

1.1 If a named enum type is used to defi ne an essentially Boolean type then the essential type of
its enumeration constants is essentially Boolean.

2. If an enumeration defi nes an anonymous enum type then the essential type of each enumeration
constant is the STLR of its value.

In the following, each of the enumeration constants, and the object x, have essential type of enum<i>:

enum ETAG { A = 8, B = 64, C = 128 } x;

The following anonymous enum type defi nes a set of constants. The essential type of each constant is
the STLR. Therefore on a machine with 8-bit char and 16-bit short types, A and B have an essential type
of signed char but C has an essential type of signed short.

enum { A = 8, B = 64, C = 128 };

Character con stants

The standard type of a character constant (e.g. 'q', 'xy') is int, not char.

1. If a character constant consists of a single character then its essential type is char;

2. Else the essential type is the same as its standard type.

Boolean const ants

The C99 standard provides no syntax to explicitly defi ne a constant of _Bool type. The library header
<stdbool.h> defi nes false and true in terms of constants 0 and 1 of type int, but these have an
essential type of essentially Boolean. If these are not used or are not available, a constant expression of
type _Bool may be declared using an explicit cast or an operator that delivers an essentially Boolean
value.

Tools may also provide additional ways of identifying essentially Boolean types. For example, a tool
could be confi gured to recognize:

enum Bool {False, True};

The use of a cast to defi ne a constant expression of Boolean type (e.g. (_Bool)0) is only appropriate
if the expression is not to be used in a #if or #elif preprocessing directive. Use of a cast within a
preprocessing directive is a syntax error.

D.7 The essential type of expressions
The essential type of any expression not listed in this section is the same as its standard type.

Comma (,)

T he essential type of the result is the essential type of the right hand operand.

Relational (< <= >= >), Equality (== !=) and Logical (&& || !)

The result of the expression is essentially Boolean.

MISRA C 2012 final.indd 199 17/03/2013 22:52:19

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

200

Appendix D
: Essential types

Shift (<< >>)

1. If the left hand operand is essentially unsigned then:

1.1 If both operands are integer constant expressions then the essential type of the result is the
UTLR of the result;

1.2 Else the essential type of the result is the essential type of the left hand operand.

2. Else the essential type is the standard type.

Bitwise compl ement (~)

1. If the operand is essentially unsigned then:

1.1 If the operand is an integer constant expression then the essential type of the result is the
UTLR of the result;

1.2 Else the essential type of the result is the essential type of the operand.

2. Else the essential type is the standard type.

Unary plus (+)

1. If the operand is essentially signed or essentially unsigned then the essential type of the result is
the essential type of the operand;

2. Else the essential type is the standard type.

Unary minus (-)

1. If the operand is essentially signed then:

1.1 If the expression is an integer constant expression then the essential type of the result is the
STLR of the whole expression;

1.2 Else the essential type of the result is the essential type of the operand.

2. Else the essential type is the standard type.

Conditional (?:)

1. If the essential type of the second and third operands is the same then the result has the same
essential type;

2. Else if the second and third operands are both essentially signed then the essential type of the
result is the essential type of the one with the highest rank;

3. Else if the second and third operands are both essentially unsigned then the essential type of
the result is the essential type of the one with the highest rank;

4. Else the essential type is the standard type.

Operations su bject to the usual arithmetic conversions (* / % + - & | ^)

1. If the operands are both essentially signed then:

1.1 If the expression is an integer constant expression then the essential type of the result is the
STLR of the result;

1.2 Else the essential type of the result is the essential type of the operand with the highest
rank.

MISRA C 2012 final.indd 200 17/03/2013 22:52:19

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

201

Ap
pe

nd
ix
 D

: E
ss

en
tia

l t
yp

es2. Else if the operands are both essentially unsigned then:

2.1 If the expression is an integer constant expression then the essential type of the result is the
UTLR of the result;

2.2 Else the essential type of the result is the essential type of the operand with the highest
rank.

3. Else the essential type is the standard type.

Addition with char

1. If one operand is essentially character and the other is essentially signed or essentially unsigned
then the essential type of the result is char;

2. Else the essential type is the standard type.

Subtraction w ith char

1. If the fi rst operand is essentially character and the second is essentially signed or essentially
unsigned then the essential type of the result is char;

2. Else the essential type is the standard type.

MISRA C 2012 final.indd 201 17/03/2013 22:52:19

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

202

Appendix E Applicability to automatically generated
code

E.1 Guideline cat egories for automatically generated code
Most MISRA C guidelines have the same category for automatically generated code as they do for
manually generated code.

This section lists those guidelines for which the category is diff erent. For convenience, guidelines with
similar rationales are grouped together.

E.1.1 Additional cat egories

An additional guideline category is used in automatically generated code:

E.1.1.1 Readability

If a guideline has the “readability” category then it is not necessary to comply with it provided that the
automatically generated code is not intended to be read, reviewed or modifi ed by human programmers.
If the code is being used by humans then the category remains the same as for manually generated
code.

E.1.2 Hiding identifi er s

Rule 5.3 Advisory

An automatic code generator is capable of tracking the identifi ers that it uses and should not be
confused about any identifi er reuse. The guideline is therefore advisory when applied to automatically
generated code.

When manually generated code is injected into automatically generated code or vice-versa it is possible
for an identifi er to be hidden without the code generator being aware. This guideline therefore remains
required if the identifi er that is being hidden, or that is hiding another identifi er, is declared in manually
generated code.

E.1.3 Octal constants

Rule 7.1 Advisory

An automatic code generator is unlikely to generate an octal constant unintentionally.

E.1.4 Compatible declarations with external linkage

Rule 8.4 Advisory Rule 8.5 Advisory

These guidelines require:

• A compatible declaration to be visible when an object or function with external linkage is
defi ned;

• Each object or function with external linkage to be declared in only one fi le.

MISRA C 2012 final.indd 202 17/03/2013 22:52:19

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

203

Ap
pe

nd
ix
 E

: A
pp

lic
ab

ili
ty

 to
 a

ut
om

at
ic

al
ly

 g
en

er
at

ed
 c

od
eTogether, they provide a mechanism for ensuring that all translation units using a declaration of the

object or function are doing so in a manner that is compatible with the defi nition. However, this is
not the only strategy for guaranteeing compatibility. For example, an automatic code generator might
hold the declaration of each object or function in a data dictionary and use that declaration in each
translation unit that needs it.

E.1.4.1 The restrict type qualifi er

Rule 8.14 Advisory

When an automatic code generator can determine that two pointers do not alias it may wish to use
the restrict type qualifi er.

E.1.5 Essential type

Rule 10.1 Advisory Rule 10.2 Advisory Rule 10.3 Advisory Rule 10.4 Advisory
Rule 10.6 Advisory Rule 10.7 Advisory Rule 10.8 Advisory Rule 14.4 Advisory
Rule 20.8 Advisory

The essential type concept is one method for avoiding problems associated with integer promotion
and the usual arithmetic conversions. An automatic code generator may adopt a diff erent approach to
avoiding such problems which is equally valid. Further, the automatic code generator is aware of both
C’s implicit type conversion rules and the sizes of the types on the target machine.

The rules relating to essential type are therefore all given advisory category when applied to automatically
generated code.

E.1.6 L oop counters

Rule 14.1 Advisory

An automatic code generator is aware of the fl oating-point implementation and will therefore be
aware of the implications of using a fl oating-point loop counter.

E.1.7 Labels and goto

Rule 15.2 Advisory Rule 15.3 Advisory

An automatic code generator may need to generate a backwards jump, for example in the
implementation of a state-machine. It is very unlikely to generate a jump into a block of injected
manually-generated code and should therefore be able to avoid jumping over initialization.

E.1.8 Switch statements

Rule 16.1 Advisory Rule 16.2 Advisory Rule 16.3 Advisory Rule 16.4 Advisory
Rule 16.5 Advisory Rule 16.6 Advisory Rule 16.7 Advisory

If an automatic code generator determines that it can optimize away a default clause that is suggested
by the model, for example every value for the controlling expression is covered by a case clause, then
it may only do so if it inserts a comment into the generated C that explains why the default clause is
absent. This comment can be reviewed and accepted as part of the MISRA C compliance argument.

An automatic code generator is capable of handling switch clauses that fall through into subsequent
clauses.

MISRA C 2012 final.indd 203 17/03/2013 22:52:19

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

204

Appendix E: Applicability to autom
atically generated code

Unusual switch statements such as those that have a controlling expression with essentially Boolean
type, or that have only one switch clause, might be indicative of an error in human generated code but
may be necessary or desirable in automatically generated code.

E.1.9 Re adability

Dir 4.5 Readability Rule 2.3 Readability Rule 2.4 Readability Rule 2.5 Readability
Rule 2.6 Readability Rule 2.7 Readability Rule 5.9 Readability Rule 7.2 Readability
Rule 7.3 Readability Rule 9.2 Readability Rule 9.3 Readability Rule 9.5 Readability
Rule 11.9 Readability Rule 13.3 Readability Rule 14.2 Readability Rule 15.7 Readability
Rule 17.5 Readability Rule 17.7 Readability Rule 17.8 Readability Rule 18.5 Readability
Rule 20.5 Readability

These guidelines are for the benefi t of human developers and reviewers.

If any identifi er with internal linkage is declared in injected code, then Rule 5.9 as applied to that
identifi er is advisory for the entire translation unit.

If code is injected into an automatically generated for loop then Rule 14.2 is required insofar as the
injected code causes a non-compliance.

E.2 Documentation requirements for automatic code generation
tools

The developer of an automatic code generation tool shall provide documentation for each item listed
in this section.

E.2.1 Implementation-de fi ned behaviour and language extensions

In accordance with Dir 1.1, the use of any implementation-defi ned behaviour on which automatically
generated code depends shall be documented.

In accordance with Rule 1.2, the use of language extensions by automatically generated code, and the
methods by which their use is assured, shall be documented.

In accordance with Dir 4.2, the use of assembly language by automatically generated code shall be
documented.

E.2.2 The essential type model

If an automati c code generator does not use the essential type model, then the strategy that it uses in
its place shall be documented.

E.2.3 Run-time errors

An automatic code gener ator should select an appropriate code generation strategy to minimize the
possibility for run-time failures, as required by Dir 4.1. If the possibility for run-time failures remains,
the error handling strategy used by the code generator shall be documented. Since it is likely that
manually generated code will be needed in order to handle the error, the error handling interface
shall be documented as part of the overall error handling strategy.

MISRA C 2012 final.indd 204 17/03/2013 22:52:19

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

205

Appendix F Process and tools checklist
This Appendix prov ides a checklist of the development process and tool use guidance that need to be
followed in order to claim MISRA C compliance as described in Section 5.3.

Section Guidance

3.1 A choice has been made between C90 and C99

4.2 There is a process for dealing with defi ciencies in the C implementation

5.3.1 The translator has been confi gured to accept the correct version of the C language

5.3.1 The translator has been confi gured to generate an appropriate level of diagnostic information

5.3.1 The translator has been confi gured appropriately for the target machine

5.3.1 The translator’s optimization level has been confi gured appropriately

5.3.3 There is a process for investigating and resolving any diagnostic messages produced by the
translator

5.3 There is a compliance matrix showing how compliance with each MISRA C guideline is to be
checked

5.3.2 The analysis tools have been confi gured to accept the correct version of the C language

5.3.2 The analysis process can deal with any language extensions that have been used

5.3.2 The analysis tools have been confi gured for the implementation, for example to be aware of
the sizes of the integer types

5.3.3 There is a process for investigating and resolving any diagnostic messages produced by the
analysis tools

5.4 There is a deviation process for recording and approving deviations

5.2.1 There is a process for ensuring that the program has suffi cient resources, such as processing
time and stack space

5.2.1 There is a process for demonstrating and recording the absence of run-time errors, for
example in module designs

MISRA C 2012 final.indd 205 17/03/2013 22:52:20

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

206

Appendix G Implementation-defi ned behaviour
checklist

This Appendix provides the checklist of implementation-defi ned behaviours referred to in Dir 1.1.

C90
Annex Item Implementation-defi ned behaviour

G.3.1 1 How a diagnostic is identifi ed (5.1.1.3).

G.3.2 1 The semantics of the arguments to main (5.1.2.2.1).

G.3.3

1 The number of signifi cant initial characters (beyond 31) in an identifi er without
external linkage (6.1.2).

2 The number of signifi cant initial characters (beyond 6) in an identifi er with external
linkage (6.1.2).

3 Whether case distinctions are signifi cant in an identifi er with external linkage (6.1.2).

G.3.4

1 The members of the source and execution character sets, except as explicitly
specifi ed in this International Standard (5.2.1).

3 The number of bits in a character in the execution character set (5.2.4.2.1).

4 The mapping of members of the source character set (in character constants and
string literals) to members of the execution character set (6.1.3.4).

5
The value of an integer character constant that contains a character or escape
sequence not represented in the basic execution character set or the extended
character set for a wide character constant (6.1.3.4).

6 The value of an integer character constant that contains more than one character or
a wide character constant that contains more than one multibyte character (6.1.3.4).

7 The current locale used to convert multibyte characters into corresponding wide
characters (codes) for a wide character constant (6.1.3.4).

G.3.5
1 The representations and sets of values of the various types of integers (6.1.2.5).

4 The sign of the remainder on integer division (6.3.5).

G.3.6

1 The representations and sets of values of the various types of fl oating-point numbers
(6.1.2.5).

2 The direction of truncation when an integral number is converted to a fl oating-point
number that cannot exactly represent the original value (6.2.1.3).

3 The direction of truncation or rounding when a fl oating-point number is converted to
a narrower fl oating-point number (6.2.1.4).

4 The order of allocation of bit-fi elds within a unit (6.5.2.1).

5 Whether a bit-fi eld can straddle a storage-unit boundary (6.5.2.1).

G.3.10 1 What constitutes an access to an object that has volatile-qualifi ed type (6.5.5.3).

G.3.13

1

Whether the value of a single-character character constant in a constant expression
that controls conditional inclusion matches the value of the same character constant
in the execution character set. Whether such a character constant may have a
negative value (6.8.1).

2 The method for locating includable source fi les (6.8.2).

3 The support of quoted names for includable source fi les (6.8.2).

4 The mapping of source fi le character sequences (6.8.2).

5 The behavior on each recognized #pragma directive (6.8.6).

6 The defi nitions for __DATE__ and __TIME__ when respectively, the date and time of
translation are not available (6.8.8).

G.3.14
5 Whether the mathematics functions set the integer expression errno to the value of

the macro ERANGE on underfl ow range errors (7.5.1).

30 The set of environment names and the method for altering the environment list used
by the getenv function (7.10.4.4).

MISRA C 2012 final.indd 206 17/03/2013 22:52:20

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

207

Ap
pe

nd
ix
 G

: I
m

pl
em

en
ta

tio
n-

de
fi n

ed
 b

eh
av

io
ur

 c
he

ck
lis

t

C99
Annex Item Implementation-defi ned behaviour

J.3.1 1 How a diagnostic is identifi ed (3.10, 5.1.1.3).

J.3.2

2 The name and type of the function called at program startup in a freestanding
environment (5.1.2.1).

3 The eff ect of program termination in a freestanding environment (5.1.2.1).

4 An alternative manner in which the main function may be defi ned (5.1.2.2.1).

5 The values given to the strings pointed to by the argv argument to main (5.1.2.2.1).

10 The set of environment names and the method for altering the environment list used
by the getenv function (7.20.4.5).

J.3.3
1 Which additional multibyte characters may appear in identifi ers and their

correspondence to universal character names (6.4.2).

2 The number of signifi cant initial characters in an identifi er (5.2.4.1, 6.4.2).

J.3.4

1 The number of bits in a byte (3.6).

2 The values of the members of the execution character set (5.2.1).

4 The value of a char object into which has been stored any character other than a
member of the basic execution character set (6.2.5).

6 The mapping of members of the source character set (in character constants and
string literals) to members of the execution character set (6.4.4.4, 5.1.1.2).

7
The value of an integer character constant containing more than one character
or containing a character or escape sequence that does not map to a single-byte
execution character (6.4.4.4).

8
The value of a wide character constant containing more than one multibyte character,
or containing a multibyte character or escape sequence not represented in the
extended execution character set (6.4.4.4).

9
The current locale used to convert a wide character constant consisting of a single
multibyte character that maps to a member of the extended execution character set
into a corresponding wide character code (6.4.4.4).

10 The current locale used to convert a wide string literal into corresponding wide
character codes (6.4.5).

11 The value of a string literal containing a multibyte character or escape sequence not
represented in the execution character set (6.4.5).

J.3.5

1 Any extended integer types that exist in the implementation (6.2.5).

2
Whether signed integer types are represented using sign and magnitude, two’s
complement, or ones’ complement, and whether the extraordinary value is a trap
representation or an ordinary value (6.2.6.2).

MISRA C 2012 final.indd 207 17/03/2013 22:52:20

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

208

Appendix G
: Im

plem
entation-defi ned behaviour checklist

C99
Annex Item Implementation-defi ned behaviour

J.3.6

1 The accuracy of the fl oating-point operations and of the library functions in <math.h>
and <complex.h> that return fl oating-point results (5.2.4.2.2).

2 The rounding behaviors characterized by non-standard values of FLT_ROUNDS
(5.2.4.2.2).

3 The evaluation methods characterized by non-standard negative values of FLT_EVAL_
METHOD (5.2.4.2.2).

4 The direction of rounding when an integer is converted to a fl oating-point number
that cannot exactly represent the original value (6.3.1.4).

5 The direction of rounding when a fl oating-point number is converted to a narrower
fl oating-point number (6.3.1.5).

6
How the nearest representable value or the larger or smaller representable value
immediately adjacent to the nearest representable value is chosen for certain fl oating
constants (6.4.4.2).

7 Whether and how fl oating expressions are contracted when not disallowed by the
FP_CONTRACT pragma (6.5).

8 The default state for the FENV_ACCESS pragma (7.6.1).

9 Additional fl oating-point exceptions, rounding modes, environments, and
classifi cations, and their macro names (7.6, 7.12).

10 The default state for the FP_CONTRACT pragma (7.12.2).

11
Whether the “inexact” fl oating-point exception can be raised when the rounded
result actually does equal the mathematical result in an IEC 60559 conformant
implementation (F.9).

12 Whether the “underfl ow” (and “inexact”) fl oating-point exception can be raised when
a result is tiny but not inexact in an IEC 60559 conformant implementation (F.9).

J.3.9

2 Allowable bit-fi eld types other than _Bool, signed int, and unsigned int (6.7.2.1).

3 Whether a bit-fi eld can straddle a storage-unit boundary (6.7.2.1).

4 The order of allocation of bit-fi elds within a unit (6.7.2.1).

J.3.10 1 What constitutes an access to an object that has volatile-qualifi ed type (6.7.3).

J.3.11

1 The locations within #pragma directives where header name preprocessing tokens
are recognized (6.4, 6.4.7).

2 How sequences in both forms of header names are mapped to headers or external
source fi le names (6.4.7).

3
Whether the value of a character constant in a constant expression that controls
conditional inclusion matches the value of the same character constant in the
execution character set (6.10.1).

4 Whether the value of a single-character character constant in a constant expression
that controls conditional inclusion may have a negative value (6.10.1).

5 The places that are searched for an included < > delimited header, and how the
places are specifi ed or the header is identifi ed (6.10.2).

6 How the named source fi le is searched for in an included delimited header (6.10.2).

7 The method by which preprocessing tokens (possibly resulting from macro
expansion) in a #include directive are combined into a header name (6.10.2).

9 Whether the # operator inserts a character before the character that begins a
universal character name in a character constant or string literal (6.10.3.2).

10 The behavior on each recognized non-STDC #pragma directive (6.10.6).

11 The defi nitions for __DATE__ and __TIME__ when respectively, the date and time of
translation are not available (6.10.8).

MISRA C 2012 final.indd 208 17/03/2013 22:52:20

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

209

Ap
pe

nd
ix
 G

: I
m

pl
em

en
ta

tio
n-

de
fi n

ed
 b

eh
av

io
ur

 c
he

ck
lis

t

C99
Annex Item Implementation-defi ned behaviour

J.3.12

1 Any library facilities available to a freestanding program, other than the minimal set
required by clause 4 (5.1.2.1).

4 Whether the feraiseexcept function raises the “inexact” fl oating-point exception in
addition to the “overfl ow” or “underfl ow” fl oating-point exception (7.6.2.3).

5 Strings other than C and that may be passed as the second argument to the setlocale
function (7.11.1.1).

6 The types defi ned for fl oat_t and double_t when the value of the FLT_EVAL_METHOD
macro is less than 0 (7.12).

9

The values returned by the mathematics functions on underfl ow range errors,
whether errno is set to the value of the macro ERANGE when the integer expression
math_errhandling & MATH_ERRNO is nonzero, and whether the “underfl ow” fl oating-
point exception is raised when the integer expression math_errhandling & MATH_
ERREXCEPT is nonzero. (7.12.1).

11 The base-2 logarithm of the modulus used by the remquo functions in reducing the
quotient (7.12.10.3).

33
The meaning of any n-char or n-wchar sequence in a string representing a NaN that is
converted by the strtod, strtof, strtold, wcstod, wcstof, or wcstold function (7.20.1.3,
7.24.4.1.1).

34 Whether or not the strtod, strtof, strtold, wcstod, wcstof, or wcstold function sets
errno to ERANGE when underfl ow occurs (7.20.1.3, 7.24.4.1.1).

37 The termination status returned to the host environment by the abort, exit, or _Exit
function (7.20.4.1, 7.20.4.3, 7.20.4.4).

44 Whether the functions in <math.h> honor the rounding direction mode in an IEC
60559 conformant implementation, unless explicitly specifi ed otherwise (F.9).

J.3.13
1 The values or expressions assigned to the macros specifi ed in the headers <fl oat.h>,

<limits.h>, and <stdint.h> (5.2.4.2, 7.18.2, 7.18.3).

2 The number, order, and encoding of bytes in any object (when not explicitly specifi ed
in this International Standard) (6.2.6.1).

MISRA C 2012 final.indd 209 17/03/2013 22:52:20

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

210

Appendix H Undefi ned and critical unspecifi ed
behaviour

This Appendix identifi es the undefi ned and critical unspecifi ed behaviours that are referred to by
Rule 1.3.

H.1 Undefi ne d behaviour
The columns in this table have the following meanings:

• C90 Id is the number of the undefi ned behaviour in Annex G of The C90 Standard; where the
behaviour is mentioned in the body of The Standard but not listed in Annex G, a * character
is shown;

• C99 Id is the number of the undefi ned behaviour in Annex J of The C99 Standard;

• Decidable? is “Yes” or “No” according to whether detecting instances of the behaviour is, in
general, decidable or not;

• Guidelines lists the MISRA C Guidelines which, if complied with, avoid the undefi ned behaviour;

• Notes provides additional notes on the behaviour including information on rules that may
help to avoid the behaviour even if it cannot be totally avoided.

If a particular undefi ned behaviour has no entry in the “Guidelines” column then an instance of that
behaviour in a program is a violation of Rule 1.3.

Note: it is assumed that any code that is written in other language and linked with the program does
not introduce undefi ned behaviour directly or indirectly. For example, assembly language modules
might defi ne overlapping objects which, if accessed from C, would lead to undefi ned behaviour even
though this might not be apparent from the C source code.

Id
Decidable Guidelines Notes

C90 C99

1 N/A This behaviour is listed in C99 but each such
instance is also given its own entry in Annex J. The
entry for this behaviour is therefore redundant.

1 2 Yes

3 Yes

4 Yes

2 Yes

5 Yes

3 Yes Rule 20.10

6 Yes

5 Yes Rule 5.2

6 Yes Rule 17.3

8 7 Yes

8 No Dir 4.12, Rule 18.6,
Rule 21.3

9 No Dir 4.12, Rule 18.6,
Rule 21.3

MISRA C 2012 final.indd 210 17/03/2013 22:52:20

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

211

Ap
pe

nd
ix
 H

: U
nd

efi
 n

ed
 a

nd
 c

ri
tic

al
 u

ns
pe

ci
fi e

d
be

ha
vi

ou
r

Id
Decidable Guidelines Notes

C90 C99

9 No Dir 4.12, Rule 18.6,
Rule 21.3

41 No Rule 9.1

10 No Compliance with Rule 9.1 avoids a common cause
of this undefi ned behaviour but it is not suffi cient
to avoid all situations in which an indeterminate
value might arise.

11 No The following rules help to avoid this behaviour:
Rule 9.1, Rule 11.2, Rule 11.3, Rule 11.4, Rule 11.5
and Rule 19.1. However, if a trap representation
is copied into an object that does not have
character type, for example using memmove,
memcpy or via a pointer to character type as
permitted by the exception of Rule 11.3, it is not
possible to avoid this behaviour.

12 No Rule 11.2, Rule 11.3,
Rule 11.4, Rule 11.5

13 No The following rules help to avoid this behaviour:
Rule 9.1, Rule 10.1, Rule 11.2, Rule 11.3, Rule 11.4,
Rule 11.5, and Rule 19.1. However, if the Exception
of Rule 11.3 is used then it is not possible to
prevent generation of a negative zero.

10 14 Yes Rule 5.6, Rule 5.7,
Rule 8.3

15 No Dir 4.1, Rule 10.3

15 No Dir 4.1, Rule 10.3

16 No Dir 4.1, Rule 10.3

17 No Rule 9.1, Rule 11.2,
Rule 11.3, Rule 11.4,
Rule 11.5, Rule 19.1

16 18 Yes

19 Yes

17 20 Yes

* 21 No Rule 11.1, Rule 11.2,
Rule 11.4, Rule 11.6

22 No Rule 11.2, Rule 11.3,
Rule 11.5

27 23 No Rule 11.1

4 24 Yes

* 25 Yes

26 Yes

27 Yes

7 28 Yes Rule 5.1, Rule 5.2,
Rule 5.3, Rule 5.4,
Rule 5.5

29 Yes Rule 21.2

11 Yes

12 30 No Rule 7.4, Rule 11.4,
Rule 11.8

13 Yes

MISRA C 2012 final.indd 211 17/03/2013 22:52:20

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

212

Appendix H
: U

ndefi ned and critical unspecifi ed behaviour

Id
Decidable Guidelines Notes

C90 C99

14 Yes Rule 20.2

31 Yes Rule 20.2

18 32 No Rule 13.2, Rule 13.3,
Rule 13.4

19 33 No Dir 4.1

20 No Rule 11.3, Rule 11.4,
Rule 11.5

34 No Rule 11.3, Rule 11.4,
Rule 11.5

35 Yes

21 Yes

22 36 No Rule 8.2, Rule 17.3 Rule 17.3 is only applicable to, and only required
for, C90

25 No Rule 8.4, Rule 8.5,
Rule 11.1, Rule 21.2,
Rule 17.3

37 No Rule 8.4, Rule 8.5,
Rule 11.1, Rule 21.2

23 No Rule 8.2, Rule 17.3

38 No Rule 8.2

24 No Rule 5.6, Rule 5.7,
Rule 8.3, Rule 8.4,
Rule 8.5, Rule 11.1,
Rule 21.2

39 No Rule 5.6, Rule 5.7,
Rule 8.2, Rule 8.3,
Rule 8.4, Rule 8.5,
Rule 11.1, Rule 21.2

26 40 No Dir 4.1

28 Yes Rule 11.1

29 41 Yes Rule 11.1, Rule 11.2,
Rule 11.6, Rule 11.7

42 No Dir 4.1

30 43 No Rule 18.1

* 44 No Rule 18.1

31 45 No Rule 18.2

46 No Rule 18.1

* 47 No

32 48 No Rule 12.2

49 No Compliance with Rule 10.1 avoids this undefi ned
behaviour except when the expression being left-
shifted has an unsigned type that is promoted to
a signed type.

33 50 No Rule 18.3

34 51 No Rule 19.1

* 52 Yes

* 53 Yes

MISRA C 2012 final.indd 212 17/03/2013 22:52:20

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

213

Ap
pe

nd
ix
 H

: U
nd

efi
 n

ed
 a

nd
 c

ri
tic

al
 u

ns
pe

ci
fi e

d
be

ha
vi

ou
r

Id
Decidable Guidelines Notes

C90 C99

* 54 Yes

* 55 Yes

35 56 Yes

36 57 Yes

37 58 Yes

38 Yes Rule 6.1

59 No Rule 18.7

60 Yes

39 61 No Rule 11.4, Rule 11.8,
Rule 19.2

40 62 No Rule 11.4, Rule 11.8,
Rule 19.2

* 63 Yes

* 64 Yes

65 No Rule 8.14

66 No Rule 8.14

67 Yes Rule 8.10

* 68 Yes

69 No Rule 18.8

70 No Rule 18.8

71 No Rule 17.6

72 Yes

* 73 Yes Rule 8.2, Rule 11.1

* 74 No

* 75 Yes

42 Yes Rule 9.2

76 Yes Rule 9.2

77 Yes Rule 9.2

44 78 Yes Rule 8.6

79 Yes Rule 8.2

* 80 Yes

45 81 Yes Rule 17.1

43 82 Yes Rule 17.4

46 83 Yes

47 84 Yes

48 85 Yes Rule 20.3

86 Yes

49 Yes

50 87 Yes Rule 20.6

MISRA C 2012 final.indd 213 17/03/2013 22:52:20

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

214

Appendix H
: U

ndefi ned and critical unspecifi ed behaviour

Id
Decidable Guidelines Notes

C90 C99

51 88 Yes Rule 20.10

52 89 Yes Rule 20.10

53 90 Yes

91 Yes

92 Yes

54 93 Yes Rule 21.1

55 94 No Compliance with Rule 19.1 avoids a common
cause of this undefi ned behaviour but does not
prevent copying part of an object to another part
of the same object, such as an array.

* 95 Yes

56 Yes Rule 17.3, Rule 20.1,
Rule 20.4, Rule 21.2

96 Yes Rule 20.1

97 Yes Rule 20.1, Rule 21.2

98 Yes Rule 20.4

57 Yes Rule 21.1, Rule 21.2

99 Yes Rule 21.2

100 Yes Rule 21.1, Rule 21.2

101 Yes Rule 21.1

60 102 No Dir 4.11

* 103 No Dir 4.11

61 Yes Rule 17.3, Rule 21.2

62 104 Yes Compliance with Rule 21.1 prevents undefi nition
of the macro but no rule prevents the macro
expansion from being suppressed, e.g. by means
of (assert)(E)

105 Yes

106 Yes

63 107 No Dir 4.11

58 Yes Rule 21.1

108 Yes Compliance with Rule 21.1 prevents undefi nition
of the macro but no rule prevents the macro
expansion from being suppressed, e.g. by means
of (errno) if it is implemented as a function-
like macro. Compliance with Rule 21.2 prevents
defi nition of the identifi er errno.

109 No Compliance with Rule 21.12 avoids some instances
of this undefi ned behaviour but does not prevent
fl oating-point control modes from being changed.

110 No Rule 21.12

111 No Rule 21.12

112 No Dir 4.11

90 No Rule 21.7

94 No

MISRA C 2012 final.indd 214 17/03/2013 22:52:20

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

215

Ap
pe

nd
ix
 H

: U
nd

efi
 n

ed
 a

nd
 c

ri
tic

al
 u

ns
pe

ci
fi e

d
be

ha
vi

ou
r

Id
Decidable Guidelines Notes

C90 C99

113 No

* 114 No

* 115 No

116 Yes Rule 21.1, Rule 21.2

117 Yes

64 Yes Rule 21.1, Rule 21.2,
Rule 21.4

118 Yes Rule 21.1, Rule 21.2,
Rule 21.4

65 119 Yes Rule 21.4

* 120 No Rule 21.4

66 121 No Rule 21.4

67 No Rule 21.4, Rule 21.5 Compliance with either rule is suffi cient to avoid
the undefi ned behaviour.

* 122 No Rule 21.5

* 123 No Rule 21.5

124 No Rule 21.5

68 No Rule 21.5

125 No Rule 21.5

69 126 No Rule 21.5

* 127 No Rule 21.5

* 128 No Compliance with Rule 17.1 avoids instances of this
undefi ned behaviour that arise through improper
use of the features of <stdarg.h>.

70 129 No Rule 17.1

71 Yes Rule 17.1, Rule 21.1,
Rule 21.2

130 Yes Rule 17.1, Rule 21.1,
Rule 21.2

75 No Rule 17.1

76 No Rule 17.1

131 No Rule 17.1

132 Yes Rule 17.1

73 No Rule 17.1

74 No Rule 17.1

133 No Rule 17.1

134 No Rule 17.1

72 135 Yes Rule 17.1

59 136 Yes

137 Yes

138 No Rule 21.6

139 No Rule 21.6

MISRA C 2012 final.indd 215 17/03/2013 22:52:20

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

216

Appendix H
: U

ndefi ned and critical unspecifi ed behaviour

Id
Decidable Guidelines Notes

C90 C99

* 140 No Rule 21.6 If Rule 21.6 is deviated then Rule 22.6 provides
protection against this undefi ned behaviour.
Rule 21.6 is preferred as it is decidable.

77 141 No Rule 21.6

142 No Rule 21.6

78 143 No Rule 21.6

* 144 No Rule 21.6

79 No Rule 21.6

85 No Rule 21.6

145 No Rule 21.6

146 No Rule 21.6, Rule 21.10

* 147 No Rule 21.6

* 148 No Rule 21.6

83 No Rule 21.6

84 No Rule 21.6

149 No Rule 21.6

82 No Rule 21.6

87 No Rule 21.6

150 No Rule 21.6

* 151 No Rule 21.6

152 No Rule 21.6

81 153 No Rule 21.6

97 No Rule 21.10

80 154 No Rule 21.6, Rule 21.10

86 155 No Rule 21.6

89 156 No Rule 21.6

* 157 No Rule 21.6

158 No Rule 21.6

88 159 No Rule 21.6

* 160 No Rule 21.6

* 161 No Rule 21.6

* 162 No Rule 21.6

* 163 No Rule 21.6

* 164 No Rule 21.6

* 165 No Rule 21.6

* 166 No Rule 21.6

* 167 No Rule 21.3

91 168 No Rule 21.3

92 169 No Rule 21.3, Rule 22.2

MISRA C 2012 final.indd 216 17/03/2013 22:52:21

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

217

Ap
pe

nd
ix
 H

: U
nd

efi
 n

ed
 a

nd
 c

ri
tic

al
 u

ns
pe

ci
fi e

d
be

ha
vi

ou
r

Id
Decidable Guidelines Notes

C90 C99

* 170 No Rule 21.3

* 171 No Rule 21.3

93 172 No Rule 21.8

173 No Rule 21.4

* 174 No Compliance with Rule 21.8 avoids this undefi ned
behaviour in respect of getenv only.

175 No Rule 21.8

176 No Rule 21.9

177 No Rule 21.9

* 178 No Rule 21.9

95 179 No

96 180 No Dir 4.11

181 No Dir 4.11

* 182 No Compliance with Rule 21.10 avoids this undefi ned
behaviour except in respect of wcsxfrm.

183 No Dir 4.11

184 Yes Rule 21.11

185 Yes Rule 21.11

186 No Rule 21.6

187 No Dir 4.11

188 No

189 No Dir 4.11

190 No

191 No

MISRA C 2012 final.indd 217 17/03/2013 22:52:21

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

218

Appendix H
: U

ndefi ned and critical unspecifi ed behaviour

H.2 Critical unspecifi ed behaviour
The columns in this table have the following meanings:

• C90 Id is the number of the unspecifi ed behaviour in Annex G of The C90 Standard; where the
behaviour is mentioned in the body of The Standard but not listed in Annex G, a * character
is shown;

• C99 Id is the number of the unspecifi ed behaviour in Annex J of The C99 Standard;

• Critical? is “Yes” or “No” according to whether reliance on this behaviour is likely to lead to
unexpected program operation;

• Guidelines lists the MISRA C Guidelines which, if complied with, avoid the unspecifi ed behaviour;

• Notes provides additional notes on the behaviour including information on rules that may
help to avoid the behaviour even if it cannot be totally avoided.

If a particular unspecifi ed behaviour is marked as being critical but has no entry in the “Guidelines”
column then reliance on that behaviour in a program is a violation of Rule 1.3.

Note: it is assumed that any code that is written in other language and linked with the program does
not rely on unspecifi ed behaviour directly or indirectly. For example, assembly language functions
might attempt to access parameters despite their layout being unspecifi ed.

Id
Critical Guidelines Notes

C90 C99

1 1 No

2 No

2 3 No Rule 21.6

3 4 No Rule 21.6

4 5 No Rule 21.6

5 6 No Rule 21.6

7 Yes Rule 5.1

6 Yes

8 Yes

9 Yes

10 Yes Rule 19.2

11 Yes

12 Yes

13 Yes
Compliance with Rule 10.1 avoids generation of
negative zeros when operating on expressions
that have a signed type before promotion.

14 Yes Rule 7.4

7, 8 15 Yes Rule 13.2

9 16 Yes Rule 13.2

17 Yes Rule 13.1

7 18 Yes Rule 13.2

10 19 No

MISRA C 2012 final.indd 218 17/03/2013 22:52:21

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

219

Ap
pe

nd
ix
 H

: U
nd

efi
 n

ed
 a

nd
 c

ri
tic

al
 u

ns
pe

ci
fi e

d
be

ha
vi

ou
r

Id
Critical Guidelines Notes

C90 C99

20 Yes Rule 8.10

21 Yes Rule 13.6, Rule 18.8

7 22 Yes Rule 13.1

11 23 No

* 24 Yes

12 25 Yes Rule 20.10, Rule 20.11

13 26 No

27 Yes Rule 21.12

28 Yes Rule 21.12

29 No

30 Yes Dir 4.11

31 Yes Dir 4.11

14 32 No Rule 21.4

15 33 No Rule 17.1

34 Yes Rule 21.6

16 35 Yes Rule 21.6

17 36 Yes Rule 21.6

18 37 Yes Rule 21.6

38 No

19 39 No Rule 18.1, Rule 18.2,
Rule 18.3, Rule 21.3

Compliance with either Rule 21.3 or all of
Rule 18.1, Rule 18.2 and Rule 18.3 will avoid this
unspecifi ed behaviour

40 Yes Rule 21.3

20 41 Yes Rule 21.9

21 42 Yes Rule 21.9

22 43 Yes Rule 21.10

44 Yes Rule 21.10

45 Yes

46 Yes

47 Yes

48 Yes Dir 4.11

49 Yes Dir 4.11

50 Yes Dir 4.11

MISRA C 2012 final.indd 219 17/03/2013 22:52:21

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

220

Appendix I Example deviation record

Project F10_BCM Deviation ID R_00102

MISRA C Ref Rule 10.6 Status Approved

Source Tool: MMMC Scope Project

Raised by
E C Unwin

Approved by
D B Stevens

Signature Signature

Position Software Team Leader Position Engineering Director

Date 27-Jul-2012 Date 12-Aug-2012

I.1 Summary
The rationale for MISRA C:2012 Rule 10.6 is that it avoids potential developer confusion regarding
the type in which some arithmetic operations take place. Unfortunately, because of a “feature” of the
compiler being used on this project, it is not possible to make the code comply with the rule without
incurring serious run-time performance degradation. The impact of this is that the software’s timing
requirements cannot be satisfi ed in all cases and there is a signifi cant risk that the vehicle’s legislated
hydrocarbon emissions target will not be met.

I.2 Detaile d Description
The project makes use of several variable time-step integrators which accumulate a multiple-precision
long-term sum. The quantity to be integrated and the integration time-step are both 16-bit unsigned
quantities which need to be multiplied to give a 32-bit result which is then accumulated.

Since the C compiler in use on this project implements the int type in 32-bits, the code to compute
the 32-bit product is:

extern uint16_t qty, time_step;

uint32_t prod = (uint32_t) qty * (uint32_t) time_step;

Clearly, even though the operands of the multiplication operator are 32-bit, there is no possibility that
the product is too large for 32-bits because both operands were zero-extended from 16-bits.

In accordance with our standard development procedures, all object modules are passed through a
worst-case execution time analysis tool to ensure that each function meets its execution time budget
as specifi ed in the architectural design. The analyser highlighted that the code generated for these
integrators was far in excess of the budget laid out for them. Investigation revealed that the reason
for the excessive execution time was that the compiler was generating a call to a “shift-and-add” style
of long multiplication routine. This is surprising because the processor is equipped with an IMUL
instruction that is capable of multiplying two 16-bit unsigned integers to deliver a 32-bit result in a
single clock cycle. Although the multiplication operands are 32-bit, the compiler has the means to
know that the most signifi cant 16-bits of these operands are 0 so it should be capable of selecting
the IMUL instruction.

Experimentation with the compiler suggests that it will select the IMUL instruction provided that the
operands of the multiplication are implicitly converted from 16-bit to 32-bit, i.e.

uint32_t prod = qty * time_step;

MISRA C 2012 final.indd 220 17/03/2013 22:52:21

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

221

Ap
pe

nd
ix
 I:

 E
xa

m
pl

e
de

vi
at

io
n

re
co

rdThis is particularly odd because the behaviour of the code as described by the C Standard is
independent of whether the conversion is implicit or explicit. While the program will generate the
same results regardless of whether IMUL or a library call is used for multiplication, the library call
requires a worst case of 100 cycles to execute. The compiler vendor has confi rmed in writing that this
is the behaviour they expect under the circumstances.

I.3 Justifi catio n
Since this type of integrator is used in several functions in the project and is executed at least once
every 100 microseconds on average, the performance of the library function is not acceptable. At
the specifi ed CPU internal frequency of 25 MHz this means that 4% of the time is spent just on these
multiplications. This in itself is insignifi cant and can be contained in the headroom available in the
overall timing budget. However, the design specifi es that the integrator shall make its result available
within a maximum of 10 microseconds in order to satisfy timing requirements of other functions. The
failure to meet this requirement means that there is signifi cant risk in achieving the emissions target,
the commercial implications of which are in excess of $10m.

Our preferred solution to this problem is to write the integrators using implicit conversions. This
would require deviation against MISRA C:2012 Rule 10.6 for instances of such an integrator. The code
is functionally identical to that generated by the MISRA-compliant code but executes up to 100 times
faster.

The following other options were considered:

• Increase the clock speed — to achieve the required performance would require a 10-fold
increase in clock but the processor’s maximum PLL frequency is 100 MHz;

• Change processor — not commercially viable given that hardware design validation is well
underway; the additional costs to the project would be around $250 000 and there would be
a timing impact too;

• Change compiler — there is no other commercially recognized compiler for this processor;
there is an unsupported public domain compiler but it is not considered of suitable quality
for this project;

• Recode the library routine — the library uses a base-2 long multiplication; it could be recoded
to implement a base-65 536 long multiplication using 3 IMUL instructions but we are reluctant
to make changes to the compiler vendor’s code; we have sought their views on this approach
and received the response that “they could not support us making changes to their library”.

I.4 Conditions under which the deviation is requested
This deviation is requested for all instances of variable time-step integrators within the project.

I.5 Consequences of non-compliance
There are no consequences associated with non-compliance with MISRA C:2012 Rule 10.6 in the
circumstances described in this deviation record.

There are no additional verifi cation and validation requirements resulting from this deviation.

MISRA C 2012 final.indd 221 17/03/2013 22:52:21

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

222

Appendix I: Exam
ple deviation record

I.6 Actions to control reporting
The MMMC tool used to check compliance with this rule provides a facility whereby a diagnostic
message can be suppressed within an expression. Since all integrators are of the form:

prod = qty * time_step;

a macro can be used to implement the integrator and suppress the warning. The following macro will
be used to implement the multiplication and assignment of its result to the product term:

/* Violates Rule 10.6: See deviation R_00102 */
#define INTEG(prod, qty, time_step) \
 (/* -mmmc-R10_6 */ (prod) = (qty) * (time_step) /* -mmmc-pop */)

Although this macro could be implemented as a function, the overhead of the call and return is
excessive given the simplicity of the operation being performed. A macro is therefore preferred to a
function in this instance even though this means violating Dir 4.9.

MISRA C 2012 final.indd 222 17/03/2013 22:52:21

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

223

Appendix J Glossary
Assigned

An expression is assigned if it is t he subjec t of an assignment.

Assignment

It is sometimes convenient to use the term assignment to denote any operation which takes place as
if it were by assignment. The operations covered by this term are:

• Assignment by means of one of the assignment operators;

• Passing an argument to a function, in which case the argument is copied as if by assignment
to the corresponding parameter;

• Returning an expression from a function, in which case the result is copied as if by assignment
to an object with the function’s return type;

• Using an expression to initialize all or part of an object, including a compound literal in C99, in
which case the expression is copied as if by assignment to the destination.

Code

Code consists of everything within a translation unit that is not excluded by conditional compilation.

Dead code

Any operation whose result does not aff ect t he program’s behaviour is dead code.

Note: initialization is not the same as an assignment operation and is therefore not a candidate for
dead code.

Examples of dead code include:

• Storing values into non-volatile objects that are never subsequently used;

• An expression statement that does not assign a value to an object.

The following are never dead code:

• Accessing a volatile object;

• Using a language extension.

Since the time at which actions occur is often an important aspect of the behaviour of an embedded
program, it follows that code whose eff ect is to insert a delay is not dead code. However, any such code
is very likely to be written with reference to timer hardware and will therefore involve volatile object
accesses in any event. For example:

extern const volatile uint16_t MILLISEC_TIMER;

void delay_ms (uint16_t n)
{
 uint16_t start_time = MILLISEC_TIMER;

 while ((MILLISEC_TIMER - start_time) < n)
 {
 /* wait */
 }
}

MISRA C 2012 final.indd 223 17/03/2013 22:52:21

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

224

Appendix J: G
lossary

External identifi er

An external identifi er is an identifi er with external linkage and must therefore denote either an object
or a function.

Header fi le

A header fi le is any fi le that is the subject of a #include directive.

Note: the fi lename exten sion is not signifi cant.

Inline function

An inline function is one that is declared with the inline function specifi er.

Loop counter

A loop counter is defi ned in Section 8.14 .

Macro identifi er

A macro identifi er is an identifi er that is either a macro name or a macro par ameter.

Opaque type

A type whose implementation detail is not made available to its users.

Pers istent side eff ect

A side eff ect is said to be persistent at a pa rticular point in execution if it might have an eff ect on
the execution state at that point. All of the following side eff ects are persistent at a given point in the
program:

• Modifying a fi le;

• Modifying an object;

• Accessing a volatile object.

When a function is called, it may have side eff ects. Modifying a fi le or accessing a volatile object are
persistent as viewed by the calling function. However any objects modifi ed by the called function,
whose lifetimes have ended by the time it returns, do not aff ect the caller’s execution state. Any side
eff ects arising from modifying such objects are not persistent as viewed by the caller.

For example:

uint16_t f (void)
{
 uint16_t temp = 1; /* Side effect of modifying temp is not
 * persistent to the caller */

 return (temp);
}

x = f ();

MISRA C 2012 final.indd 224 17/03/2013 22:52:21

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

225

Ap
pe

nd
ix
 J:

 G
lo

ss
ar

yProject

A project consists of the code from the set of translation units used to build a single executable. A
typical embedded controller might consist of several logically distinct projects, for example:

• Primary bootloader;

• Secondary bootloader;

• Main app lication.

Prototype form

A function type is said to be in prototype form if it includes a prototype, i.e. it specifi es a list of parameter
types and, optionally, names. For example, the following are all in prototype form:

void f (void); /* Prototype specifying no parameters */
void g (int16_t, char); /* Prototype specifying types but no names */
void h (uint32_t n); /* Prototype specifying type and name */

The following are not in prototype form:

void f (); /* No information about parameters */

void g (x, y) /* Function definition "K&R"-style */
int16_t x;
char y;
{
}

Standard type

The standard type of an expression is its type as determined according to The Standard.

Unreachable code

Code is unreachable if, in the absence of hardware failures and ignoring the eff ects of undefi ned
behaviour, there is no combination of program inputs that can cause it to be executed.

Unreachable code may result from the structure of the program’s control fl ow graph. For example,
any code following a return statement is unreachable and some operands of logical or conditional
operators may be unreachable:

uint16_t y;

uint16_t f (void)
{
 uint16_t x;

 return true ? y : (y + 1U); /* y + 1 is never executed */
 x = 10U; /* statement is never executed */
}

MISRA C 2012 final.indd 225 17/03/2013 22:52:21

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

226

Appendix J: G
lossary

Unreachable code may also result when there is a control fl ow path to a statement but that path can
never be followed, for example:

uint16_t x, y;

switch (2u * x)
{
case 0:
 y = 10u;
 break;
case 1:
 y = 0u; /* unreachable: 2 * x can never be odd */
 break;

case 2:
 y = x;
 break;
default:
 break;
}

Used

An expression is said to be used if it appears in one of the following contexts:

• The operand of an operator, including a parameter of a function call operator;

• The controlling expression of an if, while, for, do … while, or switch statement;

• The valu e returned by a return statement;

• An initializer.

This term should not be confused with reading the value of an object, for example:

uint16_t x = 3;
uint16_t *p = &x; /* x is used but not read */

return *p; /* x is read but not used */

MISRA C 2012 final.indd 226 17/03/2013 22:52:21

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

MISRA C 2012 cover A4.indd 3 17/03/2013 22:45:55

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

ISBN 978-1-906400-10-1 paperback
ISBN 978-1-906400-11-8 PDF

MISRA C 2012 cover A4.indd 4 17/03/2013 22:45:55

Licensed to: LEE CHING MIN.
5 Mar 2019. Copy 1 of 1

	MISRA C:2
012
	Contents
	1 The vision
	2 Background to MISRA C
	2.1 The popularity of C
	2.2 Disadvantages of C
	2.2.1 Language definition
	2.2.2 Language misuse
	2.2.3 Language misunderstanding
	2.2.4 Run-time error checking

	3 Tool selection
	3.1 The C language and its compiler
	3.2 Analysis tools

	4 Prerequisite knowledge
	4.1 Training
	4.2 Understanding the compiler
	4.3 Understanding the static analysis tools

	5 Adopting and using MISRA C
	5.1 Adoption
	5.2 Software development process
	5.2.1 Process activities required by MISRA C
	5.2.2 Process activities expected by MISRA C

	5.3 Compliance
	5.3.1 Compiler configuration
	5.3.2 Static analysis tool configuration
	5.3.3 Investigating messages

	5.4 Deviation procedure
	5.5 Claiming compliance

	6 Introduction to the guidelines
	6.1 Guideline classification
	6.2 Guideline categories
	6.2.1 Mandatory guidelines
	6.2.2 Required guidelines
	6.2.3 Advisory guidelines

	6.3 Organization of guidelines
	6.4 Redundancy in the guidelines
	6.5 Decidability of rules
	6.6 Scope of analysis
	6.7 Multi-organization projects
	6.8 Automatically generated code
	6.9 Presentation of guidelines

	6.10 Understanding the source references
	6.10.1 ISO C portability issue references
	6.10.2 Other references

	7 Directives
	7.1 The implementation
	7.2 Compilation and build
	7.3 Requirements traceability
	7.4 Code design

	8 Rules
	8.1 A standard C environment
	8.2 Unused code
	8.3 Comments
	8.4 Character sets and lexical conventions
	8.5 Identifiers
	8.6 Types
	8.7 Literals and constants
	8.8 Declarations and definitions

	8.9 Initialization

	8.10 The essential type model
	8.10.1 Rationale
	8.10.2 Essential type
	8.10.3 Composite operators and expressions

	8.11 Pointer type conversions
	8.12 Expressions
	8.13 Side effects
	8.14 Control statement expressions
	8.15 Control flow
	8.16 Switch statements
	8.17 Functions
	8.18 Pointers and arrays
	8.19 Overlapping storage
	8.20 Preprocessing directives
	8.21 Standard libraries
	8.22 Resources

	9 References
	Appendix A Summary of guidelines
	Appendix B Guideline attributes
	Appendix C Type safety issues with C
	C.1 T ype conversions
	C.1.1 Implicit conversions
	C.1.2 Explicit conversions
	C.1.3 Concerns with conversions

	C.2 D eveloper confusion
	C.2.1 Type widening in integer promotion
	C.2.2 Evaluation type confusion
	C.2.3 Change of signedness in arithmetic operations
	C.2.4 Change of signedness in bitwise operations

	Appendix D Essential types
	D.1 The essential type category of expressions
	D.2 The essential type of character data
	D.3 The signed and unsigned type of lowest rank (STLR and UTLR)
	D.4 The essential type of bit-fields
	D.5 The essential type of enumerations
	D.6 The essential type of literal constants
	D.7 The essential type of expressions

	Appendix E Applicability to automatically generatedcode
	E.1 Guideline categories for automatically generated code
	E.1.1 Additional categories
	E.1.2 Hiding identifiers
	E.1.3 Octal constants
	E.1.4 Compatible declarations with external linkage
	E.1.5 Essential type
	E.1.6 Loop counters
	E.1.7 Labels and goto
	E.1.8 Switch statements
	E.1.9 Readability

	E.2 Documentation requirements for automatic code generation tools
	E.2.1 Implementation-defined behaviour and language extensions
	E.2.2 The essential type model
	E.2.3 Run-time errors

	Appendix F Process and tools checklist
	Appendix G Implementation-defined behaviour checklist
	Appendix H Undefined and critical unspecified behaviour
	H.1 Undefined behaviour
	H.2 Critical unspecified behaviour

	Appendix I Example deviation record
	Appendix J Glossary

