

Copyright © 2018 by McGraw-Hill Education. All rights reserved. Except as
permitted under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means, or
stored in a database or retrieval system, without the prior written permission
of the publisher.

ISBN: 978-1-26-003132-4
MHID: 1-26-003132-2

The material in this eBook also appears in the print version of this title:
ISBN: 978-1-26-003131-7, MHID: 1-26-003131-4.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a
trademark symbol after every occurrence of a trademarked name, we use
names in an editorial fashion only, and to the benefit of the trademark owner,
with no intention of infringement of the trademark. Where such designations
appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to
use as premiums and sales promotions or for use in corporate training
programs. To contact a representative, please visit the Contact Us page at
www.mhprofessional.com.

Information contained in this work has been obtained by McGraw-Hill
Education from sources believed to be reliable. However, neither McGraw-
Hill Education nor its authors guarantee the accuracy or completeness of any
information published herein, and neither McGraw-Hill Education nor its
authors shall be responsible for any errors, omissions, or damages arising out
of use of this information. This work is published with the understanding that
McGraw-Hill Education and its authors are supplying information but are not
attempting to render engineering or other professional services. If such
services are required, the assistance of an appropriate professional should be
sought.

http://www.mhprofessional.com

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors
reserve all rights in and to the work. Use of this work is subject to these
terms. Except as permitted under the Copyright Act of 1976 and the right to
store and retrieve one copy of the work, you may not decompile, disassemble,
reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any
part of it without McGraw-Hill Education’s prior consent. You may use the
work for your own noncommercial and personal use; any other use of the
work is strictly prohibited. Your right to use the work may be terminated if
you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION
AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR
RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING
ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE
WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY
DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
McGraw-Hill Education and its licensors do not warrant or guarantee that the
functions contained in the work will meet your requirements or that its
operation will be uninterrupted or error free. Neither McGraw-Hill Education
nor its licensors shall be liable to you or anyone else for any inaccuracy, error
or omission, regardless of cause, in the work or for any damages resulting
therefrom. McGraw-Hill Education has no responsibility for the content of
any information accessed through the work. Under no circumstances shall
McGraw-Hill Education and/or its licensors be liable for any indirect,
incidental, special, punitive, consequential or similar damages that result
from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or cause arises in
contract, tort or otherwise.

About the Author

Donald J. Norris has a degree in electrical engineering and an MBA
specializing in production management. He is currently an adjunct professor
teaching an Embedded Systems course in the College of Engineering,
Technology and Aeronautics, part of the Southern New Hampshire
University (SNHU). He has also taught many different undergrad and grad
courses mainly in the computer science and technology areas at SNHU and
other regional schools for the past 33 years. Don created and taught the initial
robotics courses at SNHU both on-campus and online.

Don retired from civilian government service with the U.S. Navy, where
he specialized in underwater acoustics related to nuclear submarines and
associated advanced digital signal processing systems. Since then, he has
spent more than 23 years as a professional software developer using the C,
C#, C++, Python, Micro Python, Node.JS, JavaScript, PHP, and Java
languages in varied development projects. He also has been a certified IT
security consultant for the last six years.

He has written and had published seven books including three involving
the Raspberry Pi, one on how to build and fly your own drone, a book on the
Intel Edison, one on the Internet of Things, and one on Micro Python.

Don started a consultancy, Norris Embedded Software Solutions (dba
NESS LLC), which specializes in developing application solutions using
microcontrollers, sensors, and actuators. The business has also recently
completed several robotics projects for clients.

Don likes to think of himself as a perpetual hobbyist and geek and is

constantly trying out new technologies and out-of-box experiments. He is a
licensed private pilot, photography buff, amateur extra class operator, avid
runner, and most importantly, a proud grandfather of three great kids,
Evangeline, Hudson, and Holton.

This book is dedicated to Dr. Peter Kachavos, my son-in-law, who is a
remarkably intelligent man with an equally remarkable long medical career

in service to his patients and the community. Until recently, Peter was a
practicing internist with an office in Manchester, NH. He recently retired

after 25 years from that practice and soon will be pursuing other interesting
opportunities in the medical field.

Peter enjoys cooking, fine wine, traveling, and spending quality time with his
family. His wife is my daughter, Shauna, and their child is my two-year-old

granddaughter, Evangeline.

Peter and I have spent many hours discussing many topics ranging from
ancient Greek artifacts to the latest technologies impacting modern society. I

always look forward to those interesting and challenging discussions.

CONTENTS AT A GLANCE

1 Introduction to the STMicroelectronics Line of Microcontrollers

2 STM MCU Software

3 STM32CubeMX Application

4 STM Project Development

5 General-Purpose Input Output (GPIO) and the STM Hardware Abstraction
Layer (HAL)

6 Interrupts

7 Timers

8 Bit Serial Communications

9 Analog-to-Digital Conversion

10 Pulse Width Modulation (PWM)

11 Direct Memory Access (DMA) and the Digital-to-Analog Converter
(DAC)

Index

CONTENTS

Preface

1 Introduction to the STMicroelectronics Line of
Microcontrollers

Microcomputer vs Microcontroller
STM Nucleo Boards

Principal MCU Components
Bit Serial Ports
Nucleo-64 Board Options

Summary

2 STM MCU Software
Open-Source versus Commercial Proprietary Software
Bare Metal Development

Brief History of MCU
The MCU Toolchain

Configuring a STM32 Toolchain
Summary

3 STM32CubeMX Application
Pinout Tab

MCU Alternative Functions
Integrated Peripheral (IP) Tree Pane

Creating an Example Project using CubeMX
The main.c Code Listing

ARM Cortex Microcontroller Software Interface Standard (CMSIS)
CubeMX-Generated C Code
Compiling and Downloading the Project
Downloading the Hex Code

Summary

4 STM Project Development
Hello World Project

Creating the Hello Nucleo Project
Adding Functionality to the Program
Compiling and Executing the Modified Program
Simple Modification for the main.c Function
Complex Modification for the main.c File

Summary

5 General-Purpose Input Output (GPIO) and the STM Hardware
Abstraction Layer (HAL)

Memory-Mapped Peripherals
Core Memory Addresses
Peripheral Memory Addresses
HAL_GPIO Module

GPIO Pin Hardware
LED Test Demonstration
Enabling Multiple Outputs
Push-Button Test Demonstration

Clock Speed Demonstration
Setting the Pin Clock Speeds

Summary

6 Interrupts
Interrupts

NVIC Specifications
Interrupt Process

External Interrupts
Interrupt Demonstration

Summary

7 Timers
STM Timer Peripherals
STM Timer Configuration

Update Event Calculation
Polled or Non-interrupt Blink LED Timer Demonstration

Test Run
Interrupt-Driven Blink LED Timer Demonstration

Test Run
Multi-rate Interrupt-Driven Blink LED Timer Demonstration

Test Run
Modification to the Multi-rate Program

Test Run
Summary

8 Bit Serial Communications
UARTs and USARTs

USART Configuration
Windows Terminal Program
Enabling USART2

USART Transmit Demonstration Program
Test Run

USART Receive Demonstration Program
Test Run

Summary

9 Analog-to-Digital Conversion
ADC Functions

ADC Module with HAL
ADC Conversion Modes
Channels, Groups, and Ranks
ADC Demonstration
ADC Demonstration Software

Summary

10 Pulse Width Modulation (PWM)
General-Purpose Timer PWM Signal Generation
Timer Hardware Architecture
PWM Signals with HAL

Enabling the PWM Function
PWM Demonstration Software

Demonstration One
Demonstration Two
Demonstration Three
Demonstration Four
Adding Functional Test Code
Test Results

Summary

11 Direct Memory Access (DMA) and the Digital-to-Analog

Converter (DAC)
DMA

Basic Data Transfer Concepts
DMA Controller Details
Using HAL with DMA
Demonstration One

DAC Peripheral
DAC Principles
HAL Software for the DAC
Demonstration Two
Demonstration Three

Summary

Index

PREFACE

This book will serve both as an introduction to the STMicroelectronics
line of STM32 microcontrollers (MCUs) and also as an easy-to-follow
Getting Started Guide for readers interested in developing with a STM MCU.
I will be using one of the very inexpensive STM Nucleo-64 development
boards for all of the book projects, which should make it inviting for most
readers to become involved with the hardware. In fact, doing the book
demonstration projects is really the only way you can really be assured that
you have gained a good comprehension of the material in this book.

I will state from the beginning that it is simply not possible to gain a total
understanding of how a STM MCU functions by only reading this book. The
manufacturer datasheets that describe individual STM MCUs are often over
1,000 pages in length, which describes the enormity of the task of trying to
master the voluminous amount of information that describes these devices.
Instead, the book contents focus on a few of the core components that make
up a STM MCU and how to program those components to accomplish fairly
simple tasks.

Some readers will have trepidation about starting to develop with what are
typically considered professional grade MCUs. I wish to allay that fear and
state that I have found that developing applications with at least one
representative sample STM MCU to be remarkably easy and straightforward.
In fact, I will state that in some aspects it is easier to develop with a STM
MCU than with an Arduino or Raspberry Pi, which many readers will already
be quite familiar and probably have already created projects with those
boards.

Often, the single biggest issue with developing with MCUs is setting up a
stable development toolchain. I will describe how to do this in a simple to
follow, step-by-step process, which if you rigorously follow will guarantee
that you will be able to quickly and without much trouble generate working
binary programs. These programs will then be quickly downloaded into the

development board for execution.

1
Introduction to the

STMicroelectronics Line of
Microcontrollers

This chapter provides you with an introduction to the very
comprehensive STMicroelectronics (STM) line of microcontrollers (MCUs).
I will be focusing only on several specific controllers throughout the book,
but that should provide you with an adequate representation of the functions
and capabilities of the full line of STM MCUs.

Microcomputer vs Microcontroller
I believe at the start of this book that it must make very clear the differences
between a microcomputer and a MCU. The reason for this distinction is very
simple: STM is a company that designs and manufacturers MCUs, not
microcomputers. I think my following definition of a MCU is as good as any
that I have read:

A microcontroller is an integrated system containing a minimum of a
microprocessor, dynamic and non-volatile memory, and a set of
peripherals consistent with all design requirements.

Right away, you can see from the definition that a MCU contains a
microprocessor which is sometimes referred to as a microcomputer. There
also must be both dynamic or volatile memory as well as nonvolatile or static

memory, where the latter holds any programs or scripts necessary to run the
microprocessor. Finally, there are always peripherals added to the design that
allow for the input and output of digital signals. There are often additional
peripherals such as timers, interrupt controllers, serial data ports, and a
variety of others depending upon what requirements the MCU must meet.

I discuss all the principal MCU components below to provide you with a
solid background to understand how a MCU functions. Most of the following
explanations are based on the voluminous amount of information provided by
STM on their microcontrollers. The reason behind STM providing such a
large amount of information is to allow engineers/software developers access
to all the data they need in order to incorporate STM products into original
equipment manufacturer (OEM) designs and products. This approach is
fundamentally different than the approach taken by suppliers of maker style
boards and products, such as the Arduino, Raspberry Pi, BeagleBone, and so
forth. In the case of the latter, board documentation is geared toward how to
use a board in a project. The STM data is extremely specific describing items
such as the nanosecond timing pulses between memory chips and processor
buses. This is exactly the reason why some of the STM MCU datasheets are
over 1,100 pages in length. Fortunately, the datasheet for the primary STM
MCU I will be using in this book is only 138 pages. I will provide later in this
chapter the website where you can download the datasheet.

STM Nucleo Boards
MCU manufacturers such as STM have long recognized that they just
couldn’t provide only chips to potential customers as most would have no
way to effectively evaluate them for potential use in their products. This is
the reason why the manufacturers offer relatively low-cost evaluation and
demonstration boards, which have representative MCUs all setup and ready
to run. STM offers a series of such boards that it calls the Nucleo line. I will
be using a fairly simple Nucleo-64 board for the book projects. STM has
actually embraced the maker community by marketing the Nucleo lineup as
boards suitable for maker project use. These boards are very inexpensive,
usually about US$10–15, which leads me to believe that STM is striving to
gain a foothold in the maker community by actually subsidizing the
manufacturing costs for the boards. In any case, this is a boon for makers and
hobbyists and one that we should embrace.

Figure 1-1 shows the three basic Nucleo boards available at the time of
writing this book.

Figure 1-1 Three basic Nucleo boards.

The boards are named Nucleo-32, Nucleo-64, and Nucleo-144 from left to
right, respectively, as shown in Figure 1-1. The number in each name
represents the number of pins present in the MCU chip. Nucleo-64 is the
principal board used in this book.

Principal MCU Components
The first component to consider is the processor or microcomputer.

Processor
The processor used in Nucleo-32 and Nucleo-64 boards is the ARM Cortex
M-4 32-bit processor. It too has a lengthy 278-page user guide available from

infocenter.arm.com/help/topic/com.arm.doc.dui0553a/DUI0553A_cortex_m4_dgug.pdf
The actual processor circuitry is part of the STM MCU because STM has
purchased intellectual property (IP) rights from the ARM Corporation in
order to integrate it into its chips. However, for all practical purposes, the
ARM processor is programmed using the tools and techniques promulgated
by the ARM Corporation to support its processor IP. This distinction is of no
consequence in our case because the software tools to be used for the book
projects have all been carefully crafted and tested to work seamlessly
together by STM. Any license issues have already been resolved without
bothering the end user.

The following list contains some of the important specifications for the
Cortex M-4 processor for interested readers:

• Full-featured ARMv7-M instruction set, optimized for embedded
applications

• Floating point unit (FPU)

• Low-power 32-bit processor

• Memory protection unit (MPU)

• Nested vector interrupt controller (NVIC)

• Trace, breakpoint, and JTAG capabilities

• Advanced Microcontroller Bus Architecture (AMBA)

• Advanced High-Performance Bus (AHB5, AHB-Lite)

There are many more features to the Cortex M-4 processor as the 278-
page user guide would suggest. I would also recommend Joseph Yiu’s book,
The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Processors,
Third Edition, to readers who really want to delve into this processor to a
great depth.

Figure 1-2 is a block diagram of the Cortex M-4 processor showing all of
the listed items and more.

http://infocenter.arm.com/help/topic/com.arm.doc.dui0553a/DUI0553A_cortex_m4_dgug.pdf

Figure 1-2 ARM Cortex M-4 block diagram.

STM is responsible for the design and implementation of all components
outside of the box shown in Figure 1-2. Of course, the STM design must be
compliant with the ARM processor specifications. One item missing in the
figure is a clock input. The reason for it being missing is that the block
diagram is from the ARM Cortex M-4 user guide, while the clock circuitry is
the responsibility of STM, the MCU designer. STM has set the base
processor clock frequency at 72 MHz, which appears to be very low in
today’s world of multi-gigahertz clock rates for most PCs. In fact, the latest
Raspberry Pi model 3 has a 1.2-GHz clock rate. But first appearances are
deceiving in this case. The Cortex M-4 processor uses an extremely efficient
instruction set, with three-stage pipelining, which maximizes the performance
of the underlying reduced instruction set computing (RISC) that the processor
employs. In addition, many common microcontroller tasks, which I discuss
below, have been implemented in a combination of hardware and firmware,

further improving the overall performance, while keeping the power
consumption as low as possible. Power consumption and performance are
two key microcontroller attributes that system designers always keep in mind.
Keeping the clock rate as low as possible will always minimize the power
consumed as well as increase the longevity of the chip.

Memory
The Cortex M-4 processor uses a Harvard architecture. This means that
program instructions are stored and retrieved from a memory separate and
distinct from the memory that holds data. The other common computer
architecture is named von Neumann in which instructions and data share a
common memory. MCUs have very limited memory and take advantage of
the speed-up available by using concurrent instruction and data access.
Additionally, having separate memories means that the processor is no longer
constrained to the same sized data widths. This means instructions can be
fetched and executed in 4-byte chunks or 32 bits, while data can be
simultaneously handled with 1-byte or 8-bit chunks, thus speeding up the
overall throughput to and from the processor and memory. Another
advantage the Harvard architecture has over the von Neumann form is that
instruction prefetches can now be done in parallel with regular instruction
executions, thus further speeding up the overall system performance. Finally,
concurrent instruction and data access eliminates the need for data caches,
which are typically used in von Neumann machines. This further reduces
system complexity and power consumption.

The Nucleo-64 board used in this book is the STM MCU, model number
STM32F302R8. This chip has a 64-KB flash memory and a 16-KB static
random access memory (SRAM). Yes, those are kilobytes, not mega- or
gigabytes. You cannot expect to create any graphical programs that run in
this limited memory space. Microcontroller programs are truly a throwback
to the earliest days of computing where memory was very limited and
developers had to use every available byte to store and execute programs.
Having mentioned the scarce memory resources, you will be able to use a
variety of modern-day graphic-based programs to develop the MCU program,
but they will run on a PC. The compiled and optimized binary code will be
downloaded into the MCU from the PC.

It turns out that 64 KB is plenty of space to run fairly large programs

because the C/C++ cross-compiler used for this book’s projects produces
optimize code, eliminating all but the essential instructions needed for the
program. The 16-KB SRAM size is more than adequate for the dynamic
memory requirements to support a maximum 64-KB sized program. The
actual memory is integrated onto the MCU chip and its type is largely
irrelevant for our purposes.

Peripherals
The peripherals are what make the MCU viable for its intended purposes. In
my microcontroller definition I stated, “a set of peripherals consistent with all
design requirements.” This means that microcontrollers typically have
different peripheral configurations depending upon the requirements they are
designed to meet. This is a major reason why STM manufactures such a wide
variety of MCUs. I will focus on the Nucleo-64 microcontroller I mentioned
above and will use its set of peripherals as my discussion points. I will next
need to demonstrate how the Nucleo-64 board is set up in order to fully
explain how all the peripheral features function with this board.

Nucleo-64 Board Layout
Figure 1-3 is a block diagram showing how the major components that make
up a Nucleo-64 board are configured.

Figure 1-3 Nucleo-64 block diagram.

The first item you should note is that the board is actually made of two
sections, the top section being a ST-LINK/V2-1 programmer and the bottom
section is the STM32 MCU. The bottom section is also fitted with two sets of
connectors. One set is compatible with the Arduino shield pin configuration
and other set is the ST Morpho pinout configuration. There are two push
buttons, B1 and B2, shown in the figure. B1 is multipurpose, while B2 is the

reset push button. There is also one LED indicated in the figure; however,
there are several others also which are shown in follow-on figures. The
programmer section may be separated from the microcontroller section by
snapping the sparse printed circuit board (PCB) joints, which can be seen in
Figure 1-1. I would not recommend doing so because you would lose all
programming capability for the MCU section. I suppose it was set up in this
fashion so you could separate the sections once there was a working MCU for
a specific project and there was no need for any further programming.

Figure 1-4 is a top view of the Nucleo-64 board with most of the
components clearly annotated.

Figure 1-4 Annotated top view of the Nucleo-64 board.

Remarkably, there are relatively few components on the board. Most of
the space is taken up by connectors, push buttons, configuration jumpers,
LEDs, and the microcontroller chip. This sparse layout reflects the nature of
the MCU, which is to be an embedded device without any of the niceties

needed for the human-computer interface (HCI). HCI is possible with this
board by using an appropriate extension board that plugs into this board

Figure 1-5 shows the bottom side of the Nucleo-64 board.

Figure 1-5 Annotated bottom view of the Nucleo-64 board.

Not much to see in this figure other than a bunch of 0-ohm resistors that
may be removed if it was desired to disable certain features such as the reset
and user buttons and user LED, or make hardware configuration changes to
the ST-LINK programmer.

Figure 1-6 is much more interesting as it shows the pinouts for all the
connectors on the top of the Nucleo-64 board.

Figure 1-6 Nucleo-64 pinout diagram.

There are two sets of pinouts shown in Figure 1-6, one belonging to the
Arduino and the other to the ST Morpho. Connectors CN5, CN6, CN8, and
CN9 belong to the Arduino set. Connectors CN7 and CN10 belong to the
Morpho set. It is important to note that there are no one-to-one relationships
between the sets. The Morpho connectors are two double rows of 38 pins for
a total of 76 pins. The Arduino connectors are single-row connectors totaling
32 pins in all spread across four connectors.

Arduino Connectors
Tables 1-1 to 1-4, which are from the Nucleo-64 User Guide, detail the
Arduino connectors with cross-references between Arduino pin terms and
STM32 pins. I have provided further clarifications on some of the pin
functions following each table, where I felt it was appropriate.

Table 1-1 details the CN6 connector pinout. Refer to Figure 1-4 to see the
placement of CN6 on the board.

Table 1-1 CN6 Pinout

Grounding pin 3 will reset the MCU. The STM32 pin designation NRST
is short for non-maskable reset, which means a low on this pin is always
recognized as a forcible MCU reset. Pins 2 and 4 provide 3.3 V, but I would
recommend that only a very limited amount of current be drawn from these
pins or you risk disrupting the board operations. Pin 5 provides 5 V, but again
my same caution exists for excessive current draw. VIN is where you can
attach an external power supply. The input voltage range is approximately 7
to 12 V based on the voltage regulator ratings connected to this pin. Jumper
JP5 must be switched to accommodate the external power supply. Finally, the
IOREF pin allows Arduino shields to adjust the I/O voltage to the 3V3 for the
STM32 if those shields follow the STM specification.

Table 1-2 details the CN8 connector pinout. Refer to Figure 1-4 to see the
placement of CN8 on the board.

Table 1-2 CN8 Pinout

These pins are the analog voltage inputs that are routed to the MCU
multichannel analog-to-digital converter (ADC). You must restrict the analog
input voltage to 3.3 V or less to avoid damaging the ADC inputs. Note that
there is no one-to-one correspondence between the Arduino channels and the
MCU channels. Pins 5 and 6 are the default ADC inputs. If you need these to
bus #1 I2C inputs, you must disconnect solder bridges SB51 and SB56 and
connect SB42 and SB46. These connections are made using 0-ohm resistors
on the bottom side of the MCU board. Please note that the bus #1 I2C
connections are already available on pins 1 and 2 on connector CN5.

Table 1-3 details the CN5 connector pinout. Refer to Figure 1-4 to see the
placement of CN5 on the board.

Table 1-3 CN5 Pinout

The analog voltage reference (AREF) should be connected to 3.3 V
because that is the maximum allowed voltage to be input to the MCU ADC
channels. If you have another supply available with a lesser voltage, say 2.5
V, then you can connect AREF to that and increase the ADC dynamic range
by a third. Just be aware that inputting a voltage greater than 2.5 V will not
change the ADC output, effectively saturating it. Pins 3 to 6 may be
configured as general-purpose input/output (GPIO) or act as the bus #2 serial
peripheral interface (SPI). Pins 2, 3, and 4 can also act as timer pins if neither
the GPIO nor the SPI is required.

Table 1-4 details the CN9 connector pinout. Refer to Figure 1-4 to see the
placement of CN9 on the board.

Table 1-4 CN9 Pinout

These eight pins are normally regular GPIO, but they may be reconfigured
so that pins 4, 6, and 7 are timer pins. In addition, pins 1 and 2 can act as the
#2 USART.

Morpho Connectors
Table 1-5 is from the Nucleo-64 User Guide and details the STM Morpho
connections with references to the STM32 pins. I have provided further
clarifications on some of the pin functions following the table, where I felt it
was appropriate. I did not repeat the comments I provided for Arduino
connection as they are equally valid for the Morpho connections.

Table 1-5 CN7 and CN10 Pinouts

Table 1-5 details the CN7 and CN10 connector pinouts. Refer to Figure 1-
4 to see the placement of CN7 and CN10 on the board.

U5V is 5-V power supplied from the ST-LINK/V2-1 USB connector. The
BOOT0 input pin allows for changing how the MCU initially boots during a
power-on event. I will discuss the boot options in a later chapter. VBAT input
is often used as a battery backup for powering a real-time clock or a security
key. It is typically tied to VCC if not used for a battery backup.

The next series of MCU components that I will discuss enable the MCU to
perform its operations more efficiently and quickly than possible by relying
on software constructs.

Nested Vectored Interrupt Controller (NVIC)
Interrupts are essential elements in the MCU structure. Without them, MCUs
cannot efficiently function given the limited memory available and low clock
speeds. MCU interrupts are implemented both in hardware and software. But

first I need to define what an interrupt is and how it is used:

An interrupt is a disruption in the normal flow of a program initiated by
an external or temporal event.

Figure 1-7 is a flow diagram of a generic interrupt sequence. This diagram
will make it easier to understand how an interrupt works.

Figure 1-7 Interrupt flow diagram.

ISR in Figure 1-7 stands for interrupt service routine, which is the
program code that executes whatever needs to be accomplished due to the
interrupt. The block containing the phrase “Call ISR” causes the current state
or context of the MCU to be saved in SRAM. The current state typically
consists of the contents of program counter (PC) and a preset number of
registers that depends on the MCU model. The PC is a register, which
contains the address of the next instruction to be executed when the interrupt
was recognized. The actual ISR code may be located anywhere in memory
because it is accessed by replacing the PC with the first address of the ISR.

That address is contained in a list, which is known as the vector interrupt list.
The last instruction in an ISR is always a return from interrupt, which
restores the MCU’s pre-interrupt state and resumes executing instructions at
the stored PC address.

The figure is slightly off target and shows a block in the ISR section
containing the phrase “Enable interrupt system.” The STM NVIC uses
prioritized interrupts, which means a higher priority interrupt can always
interrupt a lower priority interrupt while it is executing. This normally is not
possible with a purely software-implemented interrupt scheme, which is
depicted by the figure’s flow diagram.

Figure 1-8 shows two ways the NVIC handles multiple interrupt requests
(IRQs).

Figure 1-8 NVIC handling multiple IRQs.

I don’t believe it makes much difference on how the NVIC handles
interrupts for most non-safety-related projects. However, it would be very
important if a designer was creating a safety critical system. One case that
came to mind was an automotive control system, in which a STM MCU was
managing a variety of systems including the infotainment system and a
collision avoidance system. I certainly think that a collision avoidance IRQ
would need immediate attention if the MCU was processing a radio station
change request at the time the higher priority IRQ was received.

The NVIC used in the Nucleo-64 MCU project board has the following

specifications:

• Sixteen interrupt lines

• Sixteen priority levels

• Up to 62 maskable interrupt channels

• Low-latency interrupt processing

• Processing of late arriving, higher priority interrupts

• Supporting tail chaining

• Interrupting entry restored on interrupt exit with no instruction
overhead

I will discuss how to program ISRs in the software chapter.

General-Purpose Inputs/Outputs (GPIOs)
Each of the 51 GPIO pins can be configured by software as output with push-
pull or open-drain and with or without pull-up or pull-down. They can also be
configured as floating input, with or without pull-up or pull-down. Most
GPIO pins have peripheral alternate functions as can be seen in the above
tables. All GPIOs are high-current-capable and have limited speed selection
to better manage internal noise, power consumption, and electromagnetic
emission.

Analog-to-Digital Converter (ADC)
There is one 12-bit ADC that has 16 channels. ADC conversions can be done
in either a single-shot or scan mode. In the scan mode, an automatic
conversion is performed on a preselected group of analog inputs. An interrupt
can be generated if a converted voltage is outside preset threshold. In
addition, a specific channel conversion can be triggered by the TIM1, TIM2,
TIM3, TIM4, or TIM5 timers.

External Interrupt/Event Controller (EXTI)
There is an external interrupt/event controller that uses 23 edge-detector lines
to generate interrupt/event requests. Each line may be independently

configured to select the trigger event such as leading edge, trailing edge, or
both. All these lines can be independently masked. There is a register that
maintains the status of each interrupt request. The EXTI can detect an
external line with a pulse width shorter than the internal main clock period.
Up to a maximum of 81 GPIOs can be connected to the 16 external interrupt
lines.

Timers and Counters
Many typical MCU activities involve temporal or timing events. Using
hardware timers and counters can minimize software execution cycles that
are best allocated to other activities. That is why MCUs typically incorporate
an array of timers and counters in their structure. Timers and counters are
also tightly coupled with interrupts to provide an extremely efficient way to
process timing and counting events.

Table 1-6 details the features supported by a single advanced control timer
as well as the general purpose (GP) and basic timers.

Table 1-6 MCU Timer Features

Although there are two more watchdog timers, they are not listed in the
table. I discuss each timer type below.

Advanced Control Timer (TIM1)
This timer has four independent channels that may be used for the following:

• Input capture

• Output capture

• Pulse width modulation (PWM)

• Single pulse output

It can be used as a GP 16-bit timer if desired; however, the PWM mode is
especially useful for the control of standard and continuous rotation servos.
This timer may also be linked with the GPx timers for event synchronization
and chaining.

General-Purpose Timers (TIMx)
There are four GP timers available for use. These timers, TIM2, TIM15,
TIM17, and TIM16, are full-featured timers with 16-bit prescalars. TIM2 is
the only 32-bit timer, while the rest use 16 bits. All of these timers, except for
the basic, have up to four channels for the following:

• Input capture

• Output compare

• PWM

• Single pulse output

These timers can work together in a linked manner and they can also link
with TIM1.

Basic Timer (TIM6)
The remaining timer is TIM6, which is a basic 16-bit type. It has limited
options and is used only for the most basic timing feature as its name implies.

Watchdog Timers
There are two watchdog timers. The first is an independent 12-bit, count-
down with an 8-bit prescalar. It is driven by a separate 32-KHz crystal, which
allows it to operate independently from the main MCU clock. It also operates
when the MCU is in the standby or even stop mode. This allows it to reset the
MCU if an event happens that inadvertently stops the MCU.

The second watchdog timer is a free-running 7-bit downcounter that can

also be set up to reset the MCU in case a problem occurs. This watchdog runs
from the MCU main clock, but it does have an early-warning interrupt
capability, which gracefully stops the MCU in case of an unanticipated
problem.

SysTick Timer
There is one more timer, SysTick, but it is not recommended to use. This
timer is ordinarily dedicated to support real-time operating systems (RTOS).
However, if the MCU project is not using an RTOS, then the timer is freely
available. This timer features the following:

• A 24-bit downcounter

• Autoreload capability maskable system interrupt generation when the
counter reaches 0

• Programmable clock source

I would say that this timer should only be used as a last resort in the
unlikely case that all the other timers have been fully committed. I cannot
conceive of a project complex enough where this would happen.

Bit Serial Ports
This MCU supports 4-bit serial protocols that allow for serial communication
between it and other computing systems or peripherals.

USART Serial Protocol
The first bit-serial protocol to be discussed is the standard Universal
Synchronous/Asynchronous Receiver/Transmitter (USART). This serial
protocol may or may not require a clock signal depending upon if it is
configured as synchronous or not. The MCU provides two USART terminal
ports; however, only one named USART2 is active and it is directly
connected to another USART port on a separate MCU located on the ST-
LINK portion of the Nucleo-64 PCB. There is also pin pair CN3 located on
the ST-LINK that exposes the TX and RX lines.

It is possible to disconnect the USART2 link by opening solder bridges
SB13 and SB14 and closing solder bridges SB62 and SB63. If this is done,

then the USART2 port on the main MCU using pins PA2 and PA3 would be
connected to CN9, pins 1 and 2, as well as to CN10, pins 35 and 37,
respectively. This would then provide a USART port to any compatible serial
device located on an extension board.

A second USART port named USART3 can be enabled by using jumper
wires between the ST Morpho connectors CN7 and CN3, located on the ST-
LINK. For example, on this Nucleo-64 board it is possible to use USART3
available on PC10 (TX) and PC11 (RX). Two jumper wires would need to be
connected as follows:

• PC10 (USART3_TX) available on CN7 pin 1 to CN3 pin RX

• PC11 (USART3_RX) available on CN7 pin 2 to CN3 pin TX

While this physically restores the USART link, I am fairly sure that the
underlying ST-LINK communications software would have to be modified to
use this new USART port number.

I2C Serial Protocol
The second bit-serial protocol is the Inter-Integrated Circuit interface or I2C
(pronounced “eye-two-cee” or “eye-squared-cee), which is also known as a
synchronous serial data link. A clock signal is needed because it is
synchronous. Figure 1-9 is a block diagram of the I2C interface showing one
master and one slave. This configuration is known as a multidrop or a bus
network.

Figure 1-9 I2C block diagram.

I2C supports more than one master as well as multiple slaves. This
protocol was created by Philips in 1982 and is a very mature technology,

meaning it is extremely reliable. Only two lines are used: SCLK for serial
clock and SDA for serial data.

The STM MCU implements three separate I2C buses. These buses can
operate at the standard clock rate of 100 KHz and the fast rate of 400 KHz.
This clock rate can be increased by the manufacturer to a nonstandard 1
MHz. However, that would make the I2C implementation noncompliant with
the protocol. Table 1-7 shows the Nucleo-64 pin designations for bus 1 clock
and data lines.

Table 1-7 I2C Signal Lines

SPI Serial Protocol
The third bit-serial protocol that I will discuss is the Serial Peripheral
Interface (SPI), which is shown in Figure 1-10.

Figure 1-10 SPI block diagram.

SPI (pronounced “spy” or “ess-pee-eye”) is also known as a synchronous

serial data link. It is also a full duplex protocol, meaning data can be
simultaneously sent and received between the host and slave. SPI is also
referred to as a Synchronous Serial Interface (SSI) or a 4-wire serial bus.

The MCU supports five SPI links in slave and master modes using full-
duplex and/or simplex communication. The interfaces are labeled SPI1 to
SPI5 and can use a clock rate of up to 25 Mbits/s. The data may be framed in
either a byte or double-byte format. There is also automatic error correction
in the form of CRC generation and verification.

Table 1-8 shows the Nucleo-64 pin designations for SPI2.

Table 1-8 SPI2 Signal Lines

Inter-Integrated Sound
The fourth and final bit-serial interface to be discussed is the inter-integrated
sound (I2S) interface. There are five standard I2S interfaces that are
multiplexed with SPI1 to SPI5. I2S2 and I2S3 may be operated in a master or
slave mode, in either simplex or full-duplex communication modes, and can
be configured to operate with a 16/32-bit resolution as an input or output
channel. All I2Sx interfaces can have audio sampling frequencies from 8 kHz
up to 192 kHz. Finally, the master I2S clock can be output to the external
DAC/CODEC at 256 times the sampling frequency when either I2S2 or I2S3
interface is configured in a master mode.

The above discussion is simply informational because I will not be
demonstrating the I2S interface.

Nucleo-64 Board Options
The following sections discuss options specific to the Nucleo-64 board and
are presented to provide you with some options when working with the
board.

LEDs
LD1 is a tricolor LED located on the ST-LINK PCB and provides
information concerning the state of communications between the ST-LINK,
the host PC, and the main MCU. The following list shows the various LED
states and the corresponding meaning:

• Slow blinking Red/Off: at power-on before USB initialization

• Fast blinking Red/Off: after the first correct communication between
the PC and ST-LINK/V2-1 (enumeration)

• Red LED On: when the initialization between the PC and ST-
LINK/V2-1 is complete

• Green LED On: after a successful target communication initialization

• Blinking Red/Green: during communication with target

• Green On: communication finished and successful

• Orange On: communication failure

LD2 is a green LED-labeled user and connected to Arduino signal D13
(CN5/CN6), which corresponds to STM32 I/O PB13

• When the I/O value is HIGH, the LED is on

• When the I/O value is LOW, the LED is off

LD3 is a red LED that indicates that the Nucleo-64 board is powered on
and 5-V power is available.

Push Buttons
There are two push buttons on the board:

• B1 USER: The user button is connected to the I/O PC13 (CN7/23) of
the MCU. This pin is pulled high through a 47K resistor. When B1 is
pressed the pin is grounded.

• B2 RESET: This push button is connected to NRST, and is used to
RESET the MCU.

NOTE The blue and black plastic hats that are placed on the push buttons
can be removed if necessary, for example, when a shield or when an
extension board is plugged on top of the Nucleo-64 board. This will avoid
pressure on the buttons and consequently a possible permanent target
RESET.

JP6
Jumper JP6 is labeled IDD and is used to measure the MCU current by
removing the jumper and connecting an ammeter in series with the two pin
leads.

• Jumper ON: MCU is powered (default).

• Jumper OFF: An ammeter must be connected to measure the MCU
current. The MCU cannot receive any power if there is no ammeter
connected.

OSC Clock
There are four options on how to connect an high-speed external clock (HSE)
on the Nucleo-64 board.

Master Clock Output from the ST-LINK (Default)
The master clock output (MCO) is generated by an 8-MHz crystal located on
the ST-LINK PCB and input into the main MCU via the PF0/PD0/PH0-
OSC_IN pins. This crystal frequency is fixed. Incidentally, the 72-MHz clock
rate I mentioned earlier in this chapter is generated by using a phase-locked
loop (PLL) embedded in the MCU using the 8-MHz input clock signal.

HSE Oscillator On-board with the Optional X3 Crystal
An 8-MHz crystal must be installed in empty X3 PCB pads. In addition, there
are some solder bridges to be changed, and some resistors and capacitors to
be added. The details are specified in the user’s guide.

External Oscillator Through Pin 29 of the CN7 Connector
There are some solder bridges to be changed, and some resistors to be
removed. The details are specified in the user’s guide.

HSE Not Used
PF0/PD0/PH0 and PF1/PD1/PH1 are used as GPIOs instead of as a clock
source. There are some solder bridges to be changed, and some resistors to be
removed. The details are specified in the user’s guide. I am unsure how the
MCU functions without an HSE, but it is an option according to the user’s
guide.

OSC 32-kHz Clock Supply
There are three ways to configure the pins corresponding to low-speed
external clock (LSE).

LSE On-board Oscillator
You can change the X2 crystal provided that it conforms to the oscillator
design guide for STM32 MCU. The default crystal already installed is a
model ABS25-32.768KHZ-6-T manufactured by Abracon Corporation.

External Oscillator Through Pin 25 of the CN7 Connector
There are some solder bridges to be changed, and some resistors to be
removed. The details are specified in the user’s guide.

LSE Not Used
PC14 and PC15 are used as GPIOs instead of the LSE source. There are some
solder bridges to be changed, and some resistors to be removed. The details
are specified in the user’s guide. I am fairly sure that the real-time clock and
watchdog timers will become inoperative with the LSE disabled.

Power Supply and Power Selection
I have already discussed on where an external power supply may be attached
in the Arduino connector. However, there are still some more power supply
features and options you should know about.

Power Supply Input from the USB Connector
The whole Nucleo-64 board including any attached extension board can be
powered by the 5-V power supplied through the CN1 USB connector

provided the host USB device complies with the USB standard of providing
500 mA. The ST-LINK requires 100 mA and the main MCU requires 300
mA, which leaves 100 mA for any extension board or external devices such
as LEDs or LCD displays. You must use an external supply if the total
current is planned to exceed a nominal 500-mA load. The red LED LD3 will
not light if there is insufficient current present to power the MCU.

When the board is power supplied by USB (U5V), a jumper must be
connected between pins 1 and 2 of JP5.

Jumper JP1 is configured according to the maximum current consumption
of the board when powered by the USB (U5V) connection. JP1 jumper can
be set in case the board is powered by USB and maximum current
consumption on U5V does not exceed 100 mA (including an eventual
extension board or Arduino shield). In such condition, the USB enumeration
will always succeed since no more than 100mA is required from the host.
Possible configurations of JP1 are summarized in Table 1-9.

Table 1-9 JP1 Configuration Table

NOTE If the Nucleo-64 board is powered by an USB charger, there will be
no USB enumeration from the ST-LINK causing the LD2 LED to remain
off. In this case, JP1 needs to remain in place so that the MCU can be
powered on.

VIN and E5V External Power Supply Inputs
The details and limitations of external power sources VIN and E5V are
summarized in Table 1-10.

Table 1-10 VIN and E5V External Supply Input Limitations

When the board is power supplied by VIN or E5V, these jumper
configurations must be set as follows:

• Jumper on JP5 pins 2 and 3

• Jumper removed on JP1

3.3-V external Power Supply Input
It is possible to power the MCU with an external 3.3-V power supply. The
power connection would be made at CN6, pin 4 or CN7, pins 12 and 16. In
this situation the 3.3-V supply is coming from an extension board. The ST-
LINK will not be powered on with this configuration, thus making
programming and debugging unavailable. The 3.3-V external power supply
configuration is summarized by Table 1-11.

Table 1-11 3.3-V External Power Supply Configuration

External Power Supply Output
When powered by USB, VIN, or E5V, the 5-V supply (CN6, pin 5 or CN7,
pin 18) may be used as output power supply for an Arduino shield or an
extension board. In this case, the maximum current of the power source
specified in Table 1-10 must be respected. The 3.3 V (CN6, pin 4 or CN7,
pins 12 and 16) can be used also as power supply output. The current is
limited by the maximum current capability of the regulator U4 (500 mA
max).

Table 1-12 details the position of the JP5 jumper with regard to using an
external power supply.

Table 1-12 JP5 Jumper Positions

Using VIN or E5V as an External Power Supply
VIN or E5V can be used as an external power supply in case the current
consumption of Nucleo-64 and the extension board exceeds the maximum
allowed current provided by the USB connection. It is still possible to use the
USB for programming and debugging only, but it is mandatory to power-on
the Nucleo-64 board first using VIN or E5V and then connect the USB cable
to the host PC. Following this sequence ensures that the USB enumeration
will occur when connected to an external power source.

The following power-on sequence procedure should be used:

1. Connect the jumper between pins 2 and 3 of JP5

2. Check that jumper JP1 is removed

3. Connect the external power source to VIN or E5V

4. Turn-on the external power supply VIN or E5V

5. Check that LD3 is turned on

6. Connect the host PC to USB connector, CN1

If this order is followed, the board may be supplied by VBUS first and

then by VIN or E5V. The following risks may be encountered:

• The host PC USB power supply can be damaged if more than 300 mA
is drawn by the Nuclueo-64 board and host cannot supply it.

• Up to 300 mA may be drawn from the host PC USB connection
because JP1 is in the off position. If the host cannot supply this amount,
the USB enumeration will fail and the MCU will not start.

This section concludes this introductory chapter for the STM32 Nucleo-64
board.

Summary
This is an introductory chapter on the STMicroelectronics (STM) Nucleo-64
microcontroller (MCU) development board. This board features the model
STM32F302R8 MCU, which runs at 72-MHz clock rate and has 64-KB flash
and 16-KB SRAM memories.

I first reviewed the differences between a microcomputer and a MCU. A
review of the principal components that make up a MCU followed next. The
first component discussed was the ARM Cortex M-4 32-bit microcomputer.
The next was the memory, where I briefly explained how the Cortex M-4
Harvard Architecture speeds up the processing cycle. The last component
portion was an extensive discussion of the MCU peripherals.

I carefully explained how the Arduino and ST Morpho connectors were
set up on the board using a series of detailed tables with additional
comments. Next followed some peripheral discussions concerning an
interrupt controller, timers/counters, and bit-serial interfaces.

The chapter finished up with a thorough discussion of the many board
options available with which you can customize the Nucleo-64 development
board to suit your own situation.

2
STM MCU Software

This chapter explores the software side of MCU development. The
discussion on MCU hardware in Chapter 1 becomes largely irrelevant
without a thorough discussion on how to use it, which is the role of software.
It would be helpful to provide a bit of prospective as it pertains to the
software situation as related to STM MCUs.

Open-Source versus Commercial Proprietary Software
The first thing you need to realize is that STM is a multibillion dollar, for-
profit company and must make a profit to stay in business as well as satisfy
its stakeholders. Although STM does support the maker community and
open-source development, it has fostered commercial software suites to be
the primary means by which software is developed for their MCUs and other
product lines. This means it is up to each individual maker and/or open-
source developer to decide whether or not to craft your own open-source
software toolchains or use a proprietary solution. I discuss both approaches
and you will shortly see what my decision was and why I made that decision.

The available STM MCU commercial toolchains can be used with very
little fuss but they are very expensive, with all of them costing more than
$1,000 for a single license. Some software suppliers such as Keil and IAR do
provide evaluation versions of their software freely available for those
developers who want to try their suites out before purchasing. The only
constraint with these versions is that they limit the uploaded MCU program
size to 32 KB. While this limit might appear to be small, in reality, it is more
than adequate for almost all projects the maker community would develop. I

used the Keil evaluation IDE for all the book project code development. I
have found that using this particular IDE makes developing code quite easy
and with little issues that happen when attempting to develop using purely
open-source tools. I want to be very clear that I am not recommending that
you avoid the open-source approach, but simply stating that I have attempted
both approaches and determined that using a proprietary IDE was much
simpler and almost always worked the first time.

Bare Metal Development
The phrase “bare metal development” is a fairly recent addition to the
developer’s lexicography. It generally is taken to mean any low-level method
of programming related to a specific hardware set. It is derived from the
phrase “programming on the bare metal.” This type of development has been
around since the advent of MCUs in the 1970s, when it was the only type
available. It wasn’t called bare metal development at that time, just embedded
development or simply MCU programming. It would be helpful to relate
some history to understand the present state of MCU software development.

Brief History of MCU
The Texas Instruments (TI) TMS1000 is often called the first
microcontroller. It was released in 1971 and had read-write memory (RAM),
read-only memory (ROM), an embedded 8-bit processor, and an on-board
clock system. Previous to this chip, other processors relied on external
memory and clock peripherals for those functions. TMS1000 was used in
early TI calculators as well as some gaming consoles. Meanwhile, Intel
designed and produced Intel 8048, which too had on-board RAM and ROM,
as well as an 8-bit processor, clock circuitry, and some GPIO pins for direct
peripheral interface. This chip turned out to be immensely popular, especially
with computer keyboard manufacturers. There were millions of 8048s used in
keyboards and it soon became a big revenue generator for Intel.

TMS1000 and Intel 8048 were likely programmed using the C language
along with a cross-compiler, which is a software application running on a
host PC that produces raw binary code suitable for use with the embedded
MCU processor. The early MCUs used a masked ROM to store the program.
This meant the program was first developed, tested, and then converted to a

mask that was used in the MCU wafer production process. There was no
ability to reconfigure a program in the field. As you might expect, the costs to
create a masked MCU was very high and developers had to get it right the
first time or risk very high retooling costs to change the program.

In the 1980s, MCUs started to appear with EPROMs, which stored
programs that could be changed once the MCU was exposed to ultraviolet
(UV) light. Figure 2-1 shows Intel 8751, which is UV reprogrammable
version of the immensely popular 8051 MCU.

Figure 2-1 Intel 8751 MCU.

If look carefully at the figure, you may see the outline of a sticker that
once was applied to cover the UV window. This covering was important to
prevent ambient sunshine from inadvertently erasing the EPROM. The UV
EPROM eventually gave way to the EEPROM, which is an electrically
erasable ROM. The Intel 8052 is a MCU version that uses an EEPROM. This
chip became hugely successful in the embedded development community
with many millions, if not billions, being employed in a wide variety of
systems, devices, and other embedded applications. In fact, Intel 8052 and
certain variants are still being manufactured today. At one time, the 805x
family was by far the world’s most widely used MCU line. However, I now
believe smartphone MCUs have overtaken the 805x’s as the most widely
used MCUs.

I include Table 2-1, which compares similar features between an 8052 and
the STM32F302R8 MCUs used in this book. This table starkly shows huge
improvements in technology in this field.

Table 2-1 Comparison between an 8052 and STM32F302R8 MCUs

Just remember that in its day, the 8052 was considered a very powerful
MCU. In the 1990s, I had the privilege of working with a new product
development team that used an 8052 development board as its main
controller. I programmed the MCU using the C language. Fortunately for the
team and myself, we could reprogram it very easily as bugs in the product
were discovered and resolved.

The MCU Toolchain
Embedded developers use a “toolchain” to create and debug software run on
a MCU. There is no unique toolchain because what is used depends on the
host computer being used, the target MCU, the development language, the
linker/loader, and other various components. Generally speaking, the
toolchain consists of an editor, cross-compiler, support libraries,
linker/loader, and a debugger. Most of the toolchain components are often
integrated into a single application called an integrated development
environment (IDE) or they can be separate pieces for which the developer
must connect and use in a proper sequence.

Using an IDE definitely helps a developer in efficiently creating code for a
microcontroller because an IDE has the following:

• An integrated source code editor

• A means to create a software project and automatically create and store
all necessary supporting files

• A navigation scheme to quickly sort through the many files that
constitute a project

• One-step cross-compilation

• Easy integration with appropriate load and debug applications, which in
this case is ST-LINK/V2

• Versatile debug modes

I also want to mention that the Keil IDE contains many more features than
the Arduino IDE, which many readers already likely use. The Arduino IDE
comes ready to use “right out-of-the box,” which makes it very convenient
for most users but at the same time limits its capabilities of supporting a vast
variety of different microcontrollers, and you are limited to one programming
language, that being, Processing. Setting up your own, customized toolchain
simply provides you a very flexible way to support your unique programming
requirements.

Toolchains may be quite simple, as is the case with the Arduino IDE, or
very complex, as might be the situation for a unique MCU being developed
in a Linux system with open-source software. I would consider the STM32
toolchain as established in this book as moderately complex. However, one
piece of good news is that the manufacturer freely provides an application
that nicely supports its MCU line as far as setting up clocks and peripherals
using the C language. I discuss this application named STMCube32MX in a
later section. Figure 2-2 shows the toolchain workflow for a generic
embedded development project.

Figure 2-2 Generic toolchain workflow.

The first step in the process is to create the source code using a text editor.
Most often, the editor is an integral part of the IDE, but developers often have
their own favorite editor, which they have been accustomed to use. In all
cases, the source is generated using the desired computer language, which

will then be used as the input to a cross-compiler. The cross-compiler is so
named because it functions with the host computer’s operating system, yet
produces binary code that will run on the target MCU. This newly generated
binary code must then be linked with all necessary binary libraries to form a
fully executable MCU program. That job is the responsibility of the linker.
The fully formed and executable binary program must next be uploaded into
the MCU. This is the responsibility of the loader. The loader function is often
partitioned as part hardware and part software. The ST-LINK/V2 performs
the load function for the Nucleo-64 development board used in this book’s
projects.

The MCU can now be run with a working program and tested to see if it
performs as desired. This is called debugging and is shown as a diamond in
the figure. If the program works without any flaws, which does not happen
very often, the MCU is ready to go into the production or release phase.
However, if bugs are detected, they must be resolved and this normally
means iterating all the way back to the source code and making appropriate
changes at that point. The whole toolchain must then be repeated as often as
necessary until the MCU functions as desired or any left-over bugs are so
trivial that they can be tolerated and stay in the final program executable
code. One example of a trivial bug may be that the MCU responds to a sensor
event in 21 ms instead of 20 ms, but that slight deviation has no measurable
impact in the overall MCU performance.

Configuring a STM32 Toolchain
There are many ways to configure a toolchain, as previously mentioned. I
have elected to use the Keil evaluation IDE, version 4.74.

NOTE I used a Windows 10 platform to host this toolchain. I did this
because I determined that the ST-LINK/V2 utility worked properly with
Windows as compared to using a Mac OS or a Linux environment. You
can always choose to create a toolchain with a Mac or Linux host, but be
prepared to encounter some compatibility problems when attempting to
link and load programs from the host to the target platform.

Installing the Keil IDE

The latest Keil IDE is version 5; however, I decided to install an older
evaluation version 4.74 of the IDE because it seems to be more stable and I
had more favorable experiences in using it. You may elect to install the latest
version if you so decide, but all my projects will be done with the earlier
version. The executable evaluation version 4.74 is available from the
following website:

https://www.keil.com/demo/eval/armv4.htm
You will first have to fill out a registration form before you are allowed to

access the download page. This form is shown in Figure 2-3 and doesn’t
appear to be too onerous and just requests some basic information about
yourself and how you intend to use the application.

https://www.keil.com/demo/eval/armv4.htm

Figure 2-3 Keil registration form.

You will see the download Web page, as shown in Figure 2-4, once you
fill out the registration form and click on the Submit button.

Figure 2-4 IDE download Web page.

The download file is named MDK474.exe and is a straight Windows
executable of approximately 576 MB in size. I would also recommend that
you just leave all the default installation parameters as they are because they
worked just fine for my toolchain setup.

You should see the Keil IDE icon on the Desktop, as shown in Figure 2-5,
once the installation is complete. Also notice that Keil brands its IDEs as
uVision. You will also see the uVision tag on many files that are
automatically created during the target build process. That’s all that is needed
to install the Keil IDE.

Figure 2-5 Keil IDE v4.74 icon.

STM32CubeMX
The manufacturer STM provides a very nice application called
STM32CubeMX that helps configure its line of MCUs and demonstration
boards. The STM32CubeMX utility is a GUI-based tool that helps you create
custom configuration files using the C language that are especially suited to
the Nucleo board being used. For instance, this utility can create all the
source code required to blink the user LED (LD2) on the NUCLEO-F302R8
board, which in turn uses a STM32F302R8 microcontroller. The C language
source code covers the processor clock, peripheral port, and general-purpose
input/output (GPIO) configuration as well as a few more. The
STM32CubeMX application can be freely downloaded from the STM
website, http://www.st.com/en/development-tools/stm32cubemx.html. You
will have to register at the STM website in order to download this software,
but it is free and STM will notify you of changes and updates to their tools as
they are published. This application should be downloaded into the
STM32Toolchain directory as was done with all the previous applications.

Figure 2-6 shows the opening splash screen for the STM32CubeMX utility
after it has been downloaded and installed. I would recommend that you
accept all the default suggestions as you run the installer application.

Figure 2-6 STMCubeMX opening splash screen.

http://www.st.com/en/development-tools/stm32cubemx.html

I clicked on the “New Project” button in order to show you how this utility
functions. A selection page will next appear with two tabs located near the
upper left-hand corner of the window. These tabs are labeled as follows:

• MCU Selector

• Board Selector

I next selected the MCU Selector tab and scrolled down an extensive
listing of microcontrollers until I encountered the STM32F302R8 MCU,
which is the type installed on the Nucleo board used in this book. Figure 2-7
shows the screen with this particular MCU selected.

Figure 2-7 Selecting a specific MCU with STMCubeMX utility.

You should notice that a nice abstract of the MCU components and
features appears in the window’s upper-top section. This information is often
useful to confirm that the MCU does support whatever functions you intend
to implement.

The other tab labeled Board Selector will be the one most useful to
support a Nucleo board demonstration project. I clicked on that tab and
scrolled down in order to select the precise Nucleo board used in the book,
which is the Nucleo64 NUCLEO-F302R8 board. Figure 2-8 shows the result
of making this selection.

Figure 2-8 Selecting the NUCLEO-F302R8 board.

A peripheral selection panel appropriate to the selected board appears near
the window’s left-hand side. You should notice that some peripherals will

have any empty box appearing in the Nb column next to the peripheral name,
which indicates that particular peripheral is not included on the selected
board. There is also a Max column located next to the Nb column, which
shows how many peripherals of a particular type are available for that
specific Nucleo board. An additional handy feature is the ability to quickly
download the selected Nucleo board user guide by clicking on the “Load
User Manual” located near the window’s lower right-hand corner.

Figure 2-9 shows a very useful and convenient MCU pinout diagram for
the unit installed on the Nucleo board. It shows all the pins already connected
to various peripherals including the User LED, which I will demonstrate in
the next chapter.

Figure 2-9 STM32F302RE MCU pinout diagram.

ST-LINK
The ST-LINK software is the next part of the toolchain, which must be
installed in order to start developing the Nucleo board. It is an extremely
important toolchain component because it supports the USB physical link
between the board and the host computer and is the only means by which
software can be uploaded to the board.

The USB ST-LINK driver software must first be downloaded and installed
into the host computer in order to establish a communications link between
the host and the Nucleo board. This driver software is available from the
same st.com website where you downloaded the STM32CubeMX utility
application. The software part number from the ST website is STSW-
LINK009 and the technical description is “USB driver for ST-LINK/V2 and
ST-LINK/V2-1.” This particular download is a signed driver suitable for
Windows 7, Windows 8, and Windows 10 for both 32- and 64-bit hosts. The
downloaded driver is an archive format named “en-stsw-link009” and must
be extracted from being run. Go into the newly created directory en-stsw-
link009 and click on the Windows batch file named “stlink_winusb_install”
to install the USB driver. You will briefly see a command window showing
the installation in progress. There is no driver software icon created, so the
only way to know if the driver installation successfully completed is to run
the ST-LINK utility. The ST-LINK utility installation is discussed below.

The actual ST-LINK/V2 utility must be separately downloaded from the
st.com website. Its part number is “STSW-LINK004” and it is approximately
22 MB in size. The downloadable archive is named “en.stsw-link004”, which
must also be extracted before being installed. Ensure that the archive has
been downloaded into the STM32Toolchain directory. Next, go into the
newly created directory en.stsw-link004 and click on the STM32-ST-LINK
Utility V4.0.0.setup application, which will install and configure the ST-
LINK/V2 utility. You should see the utility opening screen, as shown in
Figure 2-10, after you click on the ST-LINK/V2 icon appearing on the host
desktop.

http://st.com
http://st.com

Figure 2-10 ST-LINK/V2 opening screen.

One of the first things you need to do is to check which ST-LINK
firmware version is currently installed on the Nucleo board you are using. To
do this, first ensure the ST-LINK utility is NOT running and then connect the
Nucleo board to the host computer using a USB cable with mini-A connector
that plugs into the Nucleo board and a standard type A connector that plugs
into the host computer. Figure 2-11 shows the proper USB cable to be used.

Figure 2-11 USB cable.

Follow the steps below after connecting the Nucleo board to the host
computer to determine the current firmware installed on the board.

1. Open the ST-LINK/V2 utility by clicking on the desktop icon.

2. Click on the “ST-LINK” selection located on the horizontal menu bar.

3. Click on “ST-LINK Upgrade” selection in the sub-menu.

4. Click on the “Device Connect” button.

Figure 2-12 shows the result after I clicked on the Device Connect button.

Figure 2-12 ST-LINK firmware version display.

Obviously, do NOT upgrade the firmware version if the reported version
is more current than the one shown as the upgrade. This odd situation likely
happens because the upgrade version has been hard-coded into the ST-
LINK/V2 archive, which in turn is not updated as often as the firmware in
newly manufactured Nucleo boards. The way around this issue that
companies often use is to have a dynamic download link in their upgrade
software such that the latest firmware version is always available.
Apparently, STM chose not to pursue this approach, which is why this
situation happens. Hopefully, it will change its upgrade technique in the near
future. In any case, the firmware check, in itself, confirms that the USB
communication link between the host and the Nucleo board is working
properly.

The next step in the toolchain configuration is to set up a debugging tool
named OpenOCD. It is not really required to install the debugger, but it may
come in handy when you are trying to troubleshoot a program that doesn’t
work the way you believe it should.

OpenOCD15
The Open On-Chip Debugger (OpenOCD15) utility was designed to upload

new firmware onto a STM32 Nucleo board as well as support an extensive
software debugging mode. This utility was originally created by Dominic
Rath, but is now maintained by the STM community, including the STM
company. A Windows compatible version has been created by Liviu Ionescu
and is available at https://github.com/gnu-mcu-
eclipse/openocd/releases/tag/gae-0.10.0-20170124. Figure 2-13 shows the
many OpenOCD15 versions that are available to be downloaded when you go
to that website.

Figure 2-13 OpenOCD15 downloads.

I selected the version named “gnuarmeclipse-openocd-win64-0.10.0-

https://github.com/gnu-mcu-eclipse/openocd/releases/tag/gae-0.10.0-20170124

201701241841-setup.exe”, which is the one applicable for use with a 64-bit
Windows system. This executable file is 2.19 MB in size. Download this file
to the STM32Toolchain directory so that it is readily available to any
toolchain application that needs it. This file is a self-contained executable,
which simply needs to be run in order to install OpenOCD on your host
computer. Figure 2-14 shows the opening splash screen for the software
installation.

Figure 2-14 OpenOCD15 opening screen.

I recommend accepting all the default selections as the installation
proceeds, which only took a minute or so for my particular situation. Figure
2-15 shows the completion screen after the OpenOCD setup software has
finished its installation process.

Figure 2-15 OpenOCD finish screen.

Running the OpenOCD utility is a bit different than ordinary applications
because it has been created to be a service or background program. In Unix
and Linux terms, this program type is known as a daemon. There are two
ways to access the program.

1. Using the telnet utility with port 4444: OpenOCD acts like a server
when a telnet link is created. It will respond appropriately when
commands are received. It is strictly a command-line environment.

2. Using the telnet utility as remote server for the GNU Project Debugger
(GDB): OpenOCD implements the GDB remote protocol and may be
used as a mediator component between GDB and the target platform.
GDB uses the IDE’s GUI environment.

I have elected to use the telnet approach because it is simple and direct and
will serve most debugging purposes. GDB is more complex and is often
coupled with the Eclipse IDE, which is not being used in this toolchain.

Establishing a Telnet Link
The very first thing that you must do prior to using telnet is to enable it on
Windows 10. Unfortunately, it is not enabled by default and must be done by
the user. It is a relatively easy procedure as detailed below:

1. Enter “Control Panel” in the Search text box

2. Click on “Programs”

3. Click on “Program and Features”

4. Click on “Turn Windows features on or off” found in the left-hand
column

5. Scroll down and click on the check box next to “Telnet Client”

6. Click on the “OK” button

There is an equivalent command-line procedure to enable telnet, but I
found the GUI approach just as effective.

You will next need to determine the appropriate telnet script that supports
the particular board that is being used for your projects. All the available
scripts currently supporting Nucleo boards are detailed in Table 2-2.

Table 2-2 Telnet Scripts

I used the configuration file named “st_nucleo_f3.cfg” because it was
associated to my NUCLEO-F302R8 board.

The next part of this process is to open a terminal window. The easiest and
fastest way is to enter “cmd” in the Search textbox. Type in the following two
command lines into the window:

Remember to use the appropriate configuration file associated with your
Nucleo board.

The OpenOCD service should then respond in the terminal window with
what is shown in Figure 2-16.

Figure 2-16 Starting the OpenOCD service.

Notice that an error message is shown in the OpenOCD response
sequence, but I found that it was inconsequential and did not affect the
program operations. However, if you do not see the responses following the
error, it means that a real problem exists because no communications link
was created between the OpenOCD program and the target board. This
problem is usually caused by having an incorrect libusb version trying to be

used by Windows. Follow the Zadig utility procedure to correct this issue.

1. Download the Zadig utility from http://zadig.akeo.ie/ for your
Windows version.

2. Connect the Nucleo board to your computer.

3. Run the Zadig utility and select Options → List All Devices.

4. The Nucleo board should appear in the device list combo box after a
short interval.

5. Select the WinUSB driver if it is not already listed.

6. Click on the Reinstall Driver button as shown in Figure 2-17.

Figure 2-17 Reinstall WinUSB driver dialog box.

This action should fix the libusb driver issue. Go back and try starting the
OpenOCD service as previously described.

You can now minimize the terminal window, but do not close it because
the OpenOCD service will stop if you do. Open another terminal window and
enter the following command:

telnet localhost 4444

The OpenOCD service should respond with message as shown in Figure
2-18.

http://zadig.akeo.ie/

Figure 2-18 Opening OpenOCD response.

There will be a prompt awaiting your input to the service. There are many
ways of interacting with OpenOCD and typing in “help” will give a big
response for all of the many varied commands. Figure 2-19 shows just the
beginning portion of the help response.

Figure 2-19 Beginning portion of the OpenOCD help request.

For much greater details, I would highly recommend that you download
the OpenOCD user guide in PDF format from
http://openocd.org/doc/pdf/openocd.pdf. This is a 172-page document and

http://openocd.org/doc/pdf/openocd.pdf

currently references version 0.10.0 as of January 15, 2017.
I did try out a few commands just to see how OpenOCD worked. The first

command was to halt the Nucleo board from running a program. This
command was:

reset halt

The board was running a “blinky” type program when the command was
given. It instantly stopped after I pressed the Enter key on the keyboard. The
next command displayed the current contents of all the MCU registers. This
command was simply:

reg

Figure 2-20 shows the impressive results of using this very simple
command.

Figure 2-20 OpenOCD reg command results after a reset.

It is obvious that all the data registers were reset to 0 content based on the
reset command that was given previous to the reg command. In Figure 2-
21, I halted the blinky program without issuing a reset. In this case, the
contents of the general-purpose registers were not reset as you can see in the
figure.

Figure 2-21 OpenOCD reg command results after a halt.

OpenOCD also has a very handy command to examine any memory
location. The location contents can be returned as a word, half-word, or byte
using the commands mdw, mdh, and mdb, respectively. Figure 2-22 shows
the results of these commands being executed on memory location 0x4000
0000.

Figure 2-22 Memory content display commands.

I could expand upon the OpenOCD commands, but I feel you probably
understand by now that the only way to get comfortable with OpenOCD is to
use it and explore its many features.

The OpenOCD installation completes the overall toolchain installation
process. I will demonstrate in the next chapter how to create a new C
language project using the toolchain established in this chapter.

Summary
This chapter’s discussions provide instructions on how to set up a STM32
toolchain that will enable you to create software projects that will execute on
STM MCUs and demonstration boards. Instructions were only provided for
Windows-based host platforms. However, I did include a reference that
shows how to set up toolchains on Mac OSX and Linux platforms.

The Keil IDE using the C/C++ languages is used for this particular
toolchain.

3
STM32CubeMX Application

In this chapter I present an in-depth discussion of the STM32CubeMX
application, which is a free utility provided by STMicroelectronics (STM). I
will also start referring to it as CubeMX to just simplify the terminology. I
would also like to acknowledge a fine Leanpub eBook published by Carmine
Noviello titled Mastering STM32. Carmine’s book was invaluable reference
alongside the STM datasheets without which I could not have created this
book.

CubeMX is a fairly complex utility because it is intended to encompass
nearly all the microcontroller chips (MCUs) and development boards that
STM offers. This is quite an amazing feat considering that there are hundreds
of MCU variants and dozens of development boards that STM manufactures.
The CubeMX supports these devices by automatically generating C code that
developers can easily use in their programs. The generated code is designed
to support specific integrated peripheral (IP) devices included on the selected
MCU. CubeMX may be regarded as a MCU-centric utility because of the
following features:

• MCU selection based on the STM family, that is, F0, F1, …

• Specific IP required for the project involving mapping MCU
peripherals to a specific pinout

• Handles specific MCU clock, power, interrupt control, ...

• Automatically adapts pinout to package configuration

• Manages the ST hardware abstraction layer (ST HAL)

• Manages external libraries

• Adaptable to a variety of IDEs

Figure 3-1 shows the opening screen when the application is initially
launched.

Figure 3-1 CubeMX opening screen.

There are three choices available on the screen:

• New Project

• Load Project

• Help

The New Project selection will be shortly discussed in-depth, but I do first
want to briefly mention what happens with the other two selections. Clicking
on Load Project will display the open file dialog box, as shown in Figure 3-2.

Figure 3-2 Load Project screen shot.

In this figure there is only one project file named Hello.ioc, which is
located in a project directory that is automatically created whenever a new
project is created. The project directory is named using the same name
entered in the new project dialog box. The project file contains everything
that CubeMX needs to reconstitute the project in order to continue with any
development efforts.

Clicking on the Help selection will display the opening page of a PDF
document, as shown in Figure 3-3.

Figure 3-3 Opening page for CubeMX Help document.

This PDF revision is a 261-page document that carefully details all the
many features and functions contained within the CubeMX application. I
would strongly recommend that you select and open this document and then
save it to any convenient directory. In that way, you will always have access
to the help document without needing to open the CubeMX application itself.
You should also consider printing applicable portions of the document to
have ready reference to appropriate material while using the application.

Clicking on the New Project selection will display a page with two tab
selections. One tab is entitled MCU Selector and the other is Board Selector.
Clicking on the Board Selector will cause the dialog box shown in Figure 3-4
to appear.

Figure 3-4 Board Selector dialog screen shot.

I selected a Nucleo64 as the board type and NUCLEO-F302R8 as the
reference as may be seen in the figure, which matched the demonstration
board I selected to use in this book. Figure 3-5 shows the result of selecting
this particular board.

Figure 3-5 NUCLEO-F302R8 board selection.

There are four tabs shown in this figure, which I will discuss here one by
one. These tabs, displayed from left to right, are as follows:

• Pinout

• Clock Configuration

• Configuration

• Power Consumption Calculator

Pinout Tab
Figure 3-5 shows the Pinout tab display, which is divided into two parts. The

right-hand side shows the selected board MCU with all predesignated
peripheral and GPIO pins clearly shown. ST refers to this as the Chip view
for obvious reasons. These pin designations will be explored in detail in later
sections as well as later chapters. The left-hand portion of the Pinout display
in Figure 3-5 shows all the peripheral pins as well as software MiddleWares
in a tree view. Next to each tree element is a symbol, which reflects the
individual status of the peripheral or software line item. I will discuss these
symbols after discussing Chip view and exploring the significant amount of
information that can be gained from this view.

Figure 3-6 is an expanded diagram of the STM32F302R8Tx MCU chip
that is used as the core processor in the NUCLEO-F411RE development
board.

Figure 3-6 STM32F302R8Tx MCU.

NOTE It will be somewhat difficult for readers of the hard copy book to
follow the next discussion as the figure uses color coded pins, which are
very hard to distinguish in the gray-scaled rendered images. Therefore, I
will attempt to identify the pins under discussion as completely as I can,
given this constraint.

There are two fully enabled GPIO pins colored in green, which are PC13
and PB13. PC13 is located near the top left-hand corner, while PB13 is at the
lower right-hand corner. Pin PC13 is permanently connected to the
development board’s user blue push button and PB13 is permanently
connected to the user green LED. These connections are also noted in the
diagram, as shown in Figure 3-6.

There are nine orange-coded pins located on all four sides of the board. An
orange-coded pin indicates that a peripheral normally assigned to a specific
pin has not been enabled. For example, PA2 and PA3 are located on either
side of the lower left-hand corner of Figure 3-6 and have the peripheral
USART TX and RX functions assigned to each pin, respectively. Being
orange coded will mean that the CubeMX application will not automatically
generate any C code that will enable the USART functions for these pins.

All of the yellow-coded pins are typically located at or near the corners of
the chip and are solely dedicated to power source functions with designations
such as Vdd, Vss, Vbat, and Vca. These pins are strict hardware designations
and cannot be programmed or reconfigured.

Finally, there are two remaining olive colored pins, BOOT and NRST,
with BOOT located on the top edge and NRST located on the left edge. Like
the power source pins, these two pins have dedicated MCU functions and
cannot be programmed or reconfigured.

All remaining pins in the Chip view are gray-coded GPIO pins and can be
initialized to suit program requirements. How this is accomplished is
thoroughly discussed in the next chapter. All these pins have various
functions or status outputs, which may be revealed by hovering the mouse
over a particular pin. The functions and status outputs for pin PC0 as shown
in Figure 3-6 are as follows:

• Reset_State

• ADC1_IN6

• TIM1_CH1

• GPIO_Input

• GPIO_Output

• GPIO_Analog

• EVENTOUT

• GPIO_EXTI0

It would be difficult at this point to explain each of these functions and
status outputs. They are all discussed in the comprehensive STM32F302R8
MCU datasheet. The GPIO functions, however, will be discussed in the next
chapter.

MCU Alternative Functions
The STM MCU architecture allows for alternative pin mapping for various
peripheral functions. Control clicking on any enabled GPIO pin such as PC13
will reveal the alternate pin mappings associated with that pin, as shown in
Figure 3-7.

Figure 3-7 PC13 alternative pin mappings.

All available alternative pins will immediately be color-coded blue in
response to control clicking on a selected pin. In Figure 3-7, the alternative
pins are PA13 and PB13, but only if the alternative pin(s) are not in a reset
state. Using alternative mapping allows for optimized board layout if it is
inconvenient to layout a trace to the primary pin. The CubeMX will attempt
to automatically resolve pin layout conflicts whenever detected by assigning
a peripheral function to an alternative pin. However, by placing a logical
“push pin” on a selected MCU pin will lock a desired peripheral function to a
pin. These “push pins” are easily seen in the figure. These pins prevent
CubeMX from enabling an alternative mapping of the locked pins. Pins
locked out from alternative mapping are also color coded orange.

Integrated Peripheral (IP) Tree Pane

The IP tree pane shown in the left-hand side of Figure 3-6 allows a CubeMX
user an easy way to enable or disable peripherals that may be assigned to a
MCU pin. The tree pane also allows the user to enable certain software
middleware libraries. The tree listing uses a variety of colored icons and text
to indicate the peripheral status and configuration. Figure 3-8 shows these
colored icons and textual meanings associated with each of them. This figure
is excerpted from the CubeMX user manual, which I urge interested readers
to download and save. There is a wealth of information available in the 261-
page PDF manual, which I simply do not have the space to cover.

Figure 3-8 Tree pane IP icons and textual descriptions.

Clock Configuration Tab
The STM32 series of MCUs use a very flexible approach to configure a

variety of clock sources needed for MCU operations. These sources apply to
both core MCU functions and most of the peripheral functions. Clock sources
and the associated phase-locked loops (PLL) are shown graphically in Figure
3-9, which will be displayed when you click on the Clock Configuration tab.

Figure 3-9 Clock Configuration GUI.

Figure 3-9 appears a bit daunting at first glance, but do not despair as it is
really not that complicated, especially after you interact with it a few times.
The STM32 clock sourcing is very much capable and flexible as compared to
ordinary 8-bit MCUs.

The very first thing that must be considered is the basic clock sources.
There is a high-speed clock (HSE) and a low-speed clock (LSE) used for the
STM32 MCU series. These clocks may be sourced either internally or
externally. These clocks will be internally sourced for all of this book’s
projects; however, either one or both can be externally sourced if so desired.
You must first enable the appropriate clock input pins if it desired to use
external clock(s). This is done by returning to the IP tree in the Pinout view
and expand the RCC section. Figure 3-10 shows a typical configuration for

these pins.

Figure 3-10 RCC pin configurations.

You must return to the Clock Configuration tab once the clock input pins
have been enabled and complete the clock source configurations.

There will be no need to change any of the clock configurations because
they are perfectly suitable to support all book projects as they are set in their
default states. I do want to caution readers who might be considering
overclocking the MCU. Overclocking is a common hack that users will
sometimes attempt in order to “gain” some perceived performance increase
from a computer system. Overclocking is especially prevalent in gaming
systems where high clock rates are thought to improve display frame rates
and game performance. While this may be true for some gaming systems, the
undue stress due to much higher chip heat dissipation will shorten processor
life considerably. Gaming systems also employ sophisticated cooling
subsystems, which are not present in the STM Nucleo board series. The
bottom line is to NOT overclock as that will definitely overheat the MCU and
cause it to prematurely fail.

Configuration View Tab
The Configuration View provides an overview for all of the software
configurable components including GPIOs, peripherals, and middleware.
There are clickable buttons, as can be seen in Figure 3-11, which allow for
configuration options for various components. The CubeMX application will
automatically create the supporting C/C++ code that supports the desired
configuration.

Figure 3-11 Configuration View.

There are color-coded icons and text in Figure 3-11, in much similar
fashion to what was displayed in the IP tree pane view. Figure 3-12 details
what the icons and text mean as they are applied to the Configuration View.

Figure 3-12 Configuration View icons and textual descriptions.

Power Consumption Calculator View Tab
Clicking on the remaining tab will display an uninitialized power
consumption calculator screen, as shown in Figure 3-13.

Figure 3-13 Power consumption calculator (PCC).

This PCC will allow you to calculate the following:

• Average current consumption

• Expected battery life

• Average DMIPS (Dhrystone million instructions per second): It is
essentially a measure of the MCU efficiency as computed using a
standardized software test

• Maximum ambient temperature (TAMAX): The maximum ambient
temperature is computed based on the MCU package type, internal
power consumption, and a preset 105°C maximum junction temperature

There are a series of procedural steps that are carefully detailed in the
CubeMX user manual, which will lead you through a step-by-step analysis to
ensure that the selected battery will handle your desired application. I will not
use the PCC because all the book projects use a USB power source.

Creating an Example Project using CubeMX
It is now time to discuss how to create a new project using the CubeMX
application. First start the application and then click on The New Project
selection. The opening New Project screen, as shown in Figure 3-14, will be
displayed.

Figure 3-14 New Project opening screen.

Click on the Board selection tab, which should cause the Board Selection
screen to be shown. Select your project board as I did in Figure 3-4. Double-
clicking on the board selection will cause a Pinout window view to appear for
the STM32F-302R8Tx MCU, as shown in Figure 3-5.

You will now need to click on the menu bar selection title Project in order
to name your new project. Select Setting from the drop-down menu, which is
shown in Figure 3-15.

Figure 3-15 Project dropdown menu.

Figure 3-16 shows the Project Settings window that will appear after you
click on the Settings selection in the Project dropdown menu.

Figure 3-16 Project Settings screen.

You must first enter a name in the Project Name textbox. I used
“STM32Nucleo_F302” as a project name, but you can choose anything that
you like. You should ensure that the Project Location textbox displays where
you desire the project folder to be stored. You can use the Browse button to
find the appropriate directory. For this demonstration, I used the same
location I previously used for earlier book projects. The next textbox entitled
Toolchain Folder Location should be a directory named using the

combination of the Project Location and the Project Name. Make note of this
location because you will shortly need to access files that CubeMX will
automatically create and store in it.

Next, ensure that you have selected “MDK-V4” as the Toolchain/IDE to
use, as shown in Figure 3-16. This selection is very important because
CubeMX cannot generate the correct C/C++ code without this being selected.
In addition, ensure that the Generate Under Root checkbox is checked, which
will allow the generated code to be located in the proper directories.

The default linker Settings are okay. Check that the MCU Reference
textbox matches the MCU you are using. If it does not match, then the
generated code cannot function with the physical MCU.

Finally, the Firmware Pack Name and Version textbox as well as the Use
Default Firm Location textbox should be okay as is.

In preparation for code generation, go back and click on the Project menu
bar selection and click on the Project Settings submenu selection. Next, click
on the Code Generator tab and the screen shown in Figure 3-17 should
appear.

Figure 3-17 Code Generator screen.

Ensure that all the radio buttons and checkboxes are selected, as shown in
Figure 3-17. You should note that I selected the radio button to “Copy only
the necessary library files” in order to minimize the size of the project as
stored on the host computer. Selecting the radio button “Copy all used
libraries into the project folder” would have increased the overall project
folder size. In either case, the final binary file size would still be the same.

Next, return to the Project submenu as has been shown in Figure 3-17, but

this time click on the Generate Code selection. The CubeMX will take a few
seconds to generate the code with a progress bar appearing on the screen.
When the code generation is completed, you should see the informational
dialog box, as shown in Figure 3-18.

Figure 3-18 Successful code generation dialog box.

After you click the Open Project button, you have the Keil IDE main
window with the STM32Nucleo_F302 project directories and files listing
appearing in the IDE’s Project pane. This view is shown in Figure 3-19.

Figure 3-19 Initial STM32Nucleo_F302 project in the Keil IDE.

There should be four subdirectories in the Project pane named
STM32Nucleo_F302, Application/MDK-ARM, Drivers/CMSIS, and
Application/User, respectively. In Figure 3-20, I expand all the subdirectories
to show you all the files contained in them.

Figure 3-20 Project directory, subdirectory, and file list.

Your listing should be similar, depending upon the particular MCU that
you used. Don’t be dismayed by the number of directories and files. You will
only be dealing with three at most in the upcoming chapter projects.

There will also be a pop-up dialog box warning you that a device was not
found. This dialog box is shown in Figure 3-21 and is simply a consequence
that the initial project load did not have a specific MCU selected.

Figure 3-21 Device not found dialog box.

This is easily fixed by clicking on File → Device Database, as shown in
Figure 3-22.

Figure 3-22 Device Database menu selection.

Next select STMicroelectronics as the manufacturer and scroll down its
rather impressive list of MCUs until you find your specific model. In my
case, I did not find STM32F302R8, but did find STM32F302RB, which
seems to work quite well. Maybe there will be some problems in the future,
but I have not encountered any to date with this selection. Figure 3-23 shows
the result of the STM32F302RB selection.

Figure 3-23 STM32F302RB selection.

Just click on the Close button because there is not a Submit or Select
button.

The main.c Code Listing
The following code listing is a file named main.c which was automatically
generated by the CubeMX application based solely on the parameters and
configuration settings that I entered. My purpose for this listing is to show
you the basic template, which will constitute the bulk of the code for all the
remaining projects in this book. In this listing is a method named main, which

is where the majority of any functional code will be placed. In this template,
it is intentionally empty because there is no functionality desired for this
program. I am also required to show the voluminous STM disclaimer
comments, which are part of STM’s copyright requirements to use this code.
This disclaimer will be present in all the actual code examples presented in
the book. However, it will not be expanded as shown in this listing. You can
always click on a small + sign to display the disclaimer.

After the listing, I have provided some additional comments regarding the
methods contained in the listing.

The main method, as I have previously mentioned, contains most of the
functional code required by the program. The following code snippet in the
main method is what I refer to as a forever loop:

The while (1) statement causes everything contained within its scope
braces to be repeated indefinitely or as I call it “forever.” This is a necessary
software construct because the majority of embedded systems do not use an
operating system (OS) and any running program would simply run once and
then halt and likely crash. Functional code, such as for blinking an LED,
would be placed in this while loop. The automatic comments generated by
the CubeMX application will help guide you in placing your own code in the
proper spots.

There are also a series of method calls in main that both initialize and
configure the internal peripherals and GPIO pins for the MCU. These are
listed in the same sequence as they are called:

There can be additional methods added to the main.c file depending upon
the number and types of internal peripherals that are enabled. In addition,
some extra code will have to be added to files outside of main.c to support
operations such as interrupts. I will cover those cases in later chapters.

At this point, I need to discuss the ARM CMSIS software architecture in
order for you to understand how the newly generated code fits in with the
overall software architecture.

ARM Cortex Microcontroller Software Interface
Standard (CMSIS)
ARM, which holds the intellectual property (IP) rights to all the Cortex-based
MCUs, has created an interface standard that allows for efficient cross-
vendor software development. This standard is called the Cortex
Microcontroller Software Interface Standard and usually abbreviated as
CMSIS. CMSIS addresses a full set of development tools including
compilers, run-time libraries, debuggers, and other associated tools and
utilities. CMSIS consists of the following main components:

• CMSIS-CORE: Standard application programming interface (API)
covering the Cortex M0, M3, M4, and M7 processors and associated
peripherals.

• CMSIS-Driver: Peripheral driver software interfacing all applicable
devices with supported middleware software. This CMSIS portion
contains items such as the file systems, communication stacks, and user
interfaces.

• CMSIS-DSP: Extensive optimized library supporting different data
including both fixed and floating point data types. Library is applicable
to Cortex M0, M3, M4, and M7 core processors.

• CMSIS-RTOS: A standardized API implementing a real-time operating
system (RTOS). This API provides a framework that supports a variety
of specific Cortex, RTOS implementations.

• CMSIS-DAP: Debug access port (DAP) is a standardized set of
firmware routines that implements debugging features optimized for
Cortex processors. It connects to the CoreSight Debug Access Port to
have rapid access to real-time data.

• CMSIS-SVD: This is an extensible markup language (XML) file named
System View Description (SVD), which contains peripheral
descriptions suitable for use by programming language header (include)
files as well as debuggers and interrupt controllers.

• CMSIS-Pack: An XML file collection containing logical descriptions
and parameters for a variety of devices. A main file named PDSC is
used to extract desired data from the XML file collection.

It should be noted that the STM hardware abstraction layer (HAL),
discussed in the next chapter, contains specifics only related to STM MCUs
and is somewhat noncompliant with the ARM Cortex Microcontroller
Software Interface Standard (CMSIS). Using the CMSIS is totally voluntary
on part of vendors manufacturing ARM-based MCUs and STM has
apparently decided that using HAL is the best approach in its case to handle
the wide variety of MCUs and associated development boards it makes. I
believe STM tried to stay compliant with the CMSIS but still needed to
support its vast array of products.

CubeMX-Generated C Code
It is now time to return to a discussion of the automatically generated code
that the CMSIS framework has introduced. Figure 3-24 is an interesting
composite of the newly generated directories that show how they are related
to the various CMSIS components.

Figure 3-24 Generated code related to CMSIS structure.

The Application/User directory contains essentially skeleton files that
present a framework that users can populate with specific code to implement
a desired application. The files contained within these directories are only
applicable to the Application block, as shown in Figure 3-24.

The Drivers/CMSIS structure contains header files with names such as
core_cm3, core_cm4, and so on, which contain specific logical definitions

required by the real MCU peripherals and all associated control/data
registers. There are also core MCU definitions as well as interrupt controller
definitions and helper functions.

The Drivers/STM32F3xx_Hal_Driver directory contains all the remaining
data and parameters necessary for MCU operations not already provided in
other directory files. This data covers items such as interrupt numbers,
peripheral device addresses, restart vectors, and additional helper functions.

The Application/MDK-ARM contains ARM-specific startup code
necessary to initialize the target MCU.

Compiling and Downloading the Project
At this point there is sufficient initialization and configuration code to build a
downloadable file suitable to be run on the target. Unfortunately, it is a null
project, meaning that nothing meaningful is being accomplished by the
MCU. However, it is still a useful exercise to determine if the code, as it
stands, can be compiled and downloaded to the target.

Figure 3-25 shows where the Keil IDE build icon is located. Clicking on
this icon will start the automatic build process converting the source code in
the project to a binary file.

Figure 3-25 Keil IDE build icon.

Figure 3-26 shows all the intermediate results that happen during the build
process. This log can be very useful in the case of errors that can happen
during the build process.

Figure 3-26 Build process log.

You may have noticed that the final compiled and linked binary file is in
an axf format. This format is not compatible to be used with the ST-LINK,
which expects the download file to have a hex format. This is easily fixed by
clicking on the Flash menu selection and then clicking on the Configure
Flash Tools. Click on the Output tab once the flash tools selection has
opened. Then click on the checkbox next to the Create HEX File selection.
Figure 3-27 shows this selection.

Figure 3-27 Select hex file output.

The project must be rebuilt once the hex file has been selected. This is
easily done by just again clicking on the build icon. The IDE is smart enough
to understand that the source code does not have to be recompiled but simply
linked again to form a hex file. The resulting hex file is clearly shown in
Figure 3-28.

Figure 3-28 Hex file output.

The target can now be programmed once the hex file is created. The ST-
LINK application is used to download the hex file into the target, as has been
previously described in Chapter 2.

Downloading the Hex Code
You first need to open the ST-LINK application and open the appropriate hex
file to be downloaded. The hex file is automatically placed into the project’s
MDK-ARM subdirectory as part of the build process. You will have to
browse to this directory using the ST-LINK open file feature found in the File
menu selection. Figure 3-29 shows how the sample hex file was selected.

Figure 3-29 Open the hex file to be downloaded.

The target must then be connected to the host computer running the ST-
LINK application using an appropriate USB cable, as has been previously
discussed. You will next need to click on the Target menu selection and then
click on the Connect selection. Figure 3-30 shows the ST-LINK window after
the application is connected to the target.

Figure 3-30 ST-LINK connected to a target.

All that’s left is to download the hex file that has been loaded into the ST-
LINK application. Click on the Target menu selection and then click on the
Program and Verify selection. Figure 3-31 shows the Program and Verify
dialog box.

Figure 3-31 Program and Verify dialog box.

Click on the Start button to download the hex file into the target board.
The red/green LED on the Nucleo board will start flashing with alternating
colors to indicate that the download operation is progressing. While the
download is very quick, the LED will continue to flash. I guess the STM
engineers just wanted to let users know the board was programmed. Figure 3-
32 shows the result of a successful download.

Figure 3-32 Successful hex file download.

The target board should be functioning in accordance with its program. In
this case, absolutely nothing will happen because no functionality was
programmed. This addition of functionality to the program will be
investigated in the next chapter. However, I want to ensure that the download
was okay, so I previously programmed the target to flash the user LED. Once
the new hex file was downloaded, the LED stopped blinking, which
indirectly confirmed that the nonfunctioning program was properly
downloaded.

Summary
The chapter began with an introduction to the STM32CubeMX application,
which I simply referred to as CubeMX for the remainder of the book. The
application has four main portions or tabs that I thoroughly discussed.
CubeMX’s purpose is to initialize and configure either STM MCUs or

associated development boards, which include automatically generating C
code to support the desired configuration. The automatic C code generation
does not extend to any embedded application, which is still the developer’s
responsibility.

A generic CubeMX project was created that did not do anything other than
to provide a platform for the automatically generated C code, which supports
the peripherals, clocks, communication channels, and interrupts for the
specific Nucleo development board. I also presented the code contained in
the main.c file and briefly discussed the contents and their operations.

I next discussed the ARM CMSIS, which most ARM vendors try to be in
compliance. I also showed how the automatic C code is related to the CMSIS
framework.

I showed you how to build a nonfunctioning project to prove that the
toolchain works as desired. The CubeMX application created all the C code
because there was no developer-responsible code required for this project.
The ST-LINK application was used to download a hex file to the target
platform.

The process detailed in this chapter will be repeated for all the remaining
book projects, and specialized code will be added to perform all desired
functions.

4
STM Project Development

In this chapter I will demonstrate how to build C/C++ language projects
with a STM Nucleo board using the toolchain created in Chapter 2 and the
CubeMX application described in Chapter 3. I will be using C/C++ language
to create the source code for these projects. It would be helpful, but not really
required, if readers are somewhat familiar with the C/C++ language in order
to achieve a better understanding of the entire process. I will go thoroughly
into the example code for the “Hello World” project to help clarify what is
happening with the source code for those readers who are not too proficient
in using C.

Hello World Project
The traditional and customary “Hello World” program is the one that
beginning developers almost always make when starting their computer
language studies. In the embedded world, this program has morphed into
blinking an LED instead of displaying “Hello World!” on a monitor screen. I
will demonstrate step-by-step how to create a “Hello World” project using a
Nucleo64-STMF302R8 demonstration board connected to a Windows 10-
based host system running the toolchain established in Chapter 2. You will
not benefit much from this chapter unless you have read the previous
chapters and created a working toolchain and become somewhat comfortable
using the CubeMX application.

Creating the Hello Nucleo Project

The first step in creating a project is to open CubeMX application. Once the
application is started, click on New Project and click on the Board tab. Select
the Nucleo board that you are using. In my case, it is the NUCLEO-F302R8
board, as shown in Figure 4-1.

Figure 4-1 New C/C++ Project dialog box.

Next, double-clicking on the board selection line will cause the project
pinout screen shown in Figure 4-2 to be displayed.

Figure 4-2 Project pinout screen.

The next step is to click on the Project menu item, which will result in the
dropdown menu, as shown in Figure 4-3.

Figure 4-3 Project dropdown menu.

Clicking on the Generate Code selection will cause the Project Settings
dialog box appear, as shown in Figure 4-4.

Figure 4-4 Project Settings dialog box.

You need to provide a name in the Project Name textbox. It should be
something relevant to the intended project purpose. Also confirm that the
Project Location is correct along with the Toolchain Folder Location.

It is very important that you select the MDK-ARM V4 from the
Toolchain/IDE combo list. The project cannot be created without MDK-
ARM V4 selection.

The default Linker Settings should be okay and the “Mcu and Firmware
Package” and “Firmware Package Name and Version” should also be similar
to what is shown in the figure.

Finally, ensure that the checkbox next to “Use Default Firmware
Location” is checked, otherwise the IDE will not be able to create the binary
file.

Do NOT click on the Ok button, but instead click on the Code Generator
tab near the top of the dialog box. This should make the Project
Settings/Code Generator dialog box appear, as shown in Figure 4-5.

Figure 4-5 Project Settings/Code Generator dialog box.

The radio button next to “Copy all used libraries into the project folder”
will initially be selected. You should click on the radio button next to “Copy

only the necessary library files” in order to minimize the size of the overall
project. Neglecting to make this change will not affect the size of the final
binary file, but will needlessly enlarge the project folder size.

Now you can click on the Ok button to have the CubeMX application
automatically generate the C/C++ code.

After a short interval, a successful Code Generation dialog box should
appear, as shown in Figure 4-6.

Figure 4-6 Successful Code Generation dialog box.

Clicking on the Open Project button will cause the Keil IDE to be opened
with the newly created project shown in the Project pane to the left side of the
window, as shown in Figure 4-7.

Figure 4-7 Keil IDE with the new project.

The error dialog that appears in Figure 4-7 has been discussed in the

previous chapter and is due to the IDE not having a reference to the real
target hardware. That is easily fixed by going to the Device Database, as
described in Chapter 3. Once that is resolved, you should expand the Project
directory by clicking on the + check box. Once expanded, click on the
dropdown arrow next to the Application/User subdirectory to reveal the files
in that directory. Finally, double-click on the main.c file, which will display
the following listing. Note that this listing is the same, as has been previously
shown in Chapter 3. However, I do this to provide the proper context to make
the desired modifications in order to add some functionality into an otherwise
nonfunctional program. Also, note that the extensive STM disclaimer
commentary has been minimized to save listing space.

I have chosen to provide commentary to the listing using italicized number
annotations to designate those portions of the listing being discussed. Simply
refer to the listing and the associated number in italics to keep track of the
discussion topic.

[1]—Either the /* ... */ or // designate a commented line, which is ignored
by the compiler. The first format allows for multiple comment lines, while
the second is only for a single line. Comments are for human use as a means

for the developer to explain what is happening within the source code. I
strongly recommend that you always comment your programs as you see
with this listing.

[2]—The # symbol indicates a compiler instruction or directive
immediately follows. In this case the statement is #include “main.h” which
instructs the compiler to use a header file named main.h. This particular
header file is stored in a workspace header file directory because the header
file name is enclosed by double quotes. The main.h contains constants,
definitions, and functions that provide “understandable” names to general-
purpose input/output (GPIO) pins such as LD2 for the user LED and Push
Button for the user push button.

[3]—This header file provides all the required constants and definitions
for the project code to utilize the HAL framework.

[4]—All methods that are called must be declared prior to use in the
C/C++ language. That is the purpose of the prototype section.

[5]—This is the starting point for the program. The int in front of the
main function name indicates that the main function returns an integer value.
This returned value to the operating system is normally a 0 if the program
terminated normally, otherwise a 1 is typically returned.

The function arguments

are used only when starting values are to be supplied to the program
before it starts to execute. In this case, they are not required.

[6]—This is the opening brace. All C/C++ functions enclose all their code
between opening and closing braces. There must be a matching closing brace
for this main function or else the C/C++ compiler will generate an error.

[7]—This statement starts a system timer that generates a SysTick every 1
ms. Note the statement ends with a semicolon, which is normally required for
all C/C++ declarative statements. Omitting semicolons is a common mistake
done by beginning (and not so beginning) developers.

[8]—This statement initializes the appropriate GPIO pin that directly
controls the user LED. In this case, the GPIO pin is PA5, meaning it is one of
the eight pins found in port A. There are multiple GPIO ports in STM MCUs.
The exact amount depends on the particular model.

[9]—This is the start of an infinite loop, meaning the program will run
forever until manually stopped or having the power disconnected. The 1 in

the parenthesis indicates a true value. Often, developers will use a Boolean
variable instead of a fixed constant, thus allowing the program to be stopped
programmatically from within the scope of the while construct. This scope is
determined by opening and closing braces, similar to what was used with the
main function. This use of multiple brace pairs is known as nesting.

I will provide additional explanations regarding the code modifications.
I hope that this brief review of the main.c source code has provided you a

little insight into how a C/C++ program functions.

Adding Functionality to the Program
I will show you how to add a very simple function to this program, which
will flash the onboard green user LED at a rate of once per second. The two
statements to be added are shown in the following code snippet, which is the
forever loop.

The first statement HAL_GPIO_TogglePin(LD2_GPIO_Port, LD2_Pin);
toggles the GPIO pin that is permanently connected to the user LED on the
selected Nucleo board. Note the use of human recognizable names for both
the GPIO pin connected to the LED and the associated GPIO port. That
feature is made possible by the defines contained in the main.h file, which is
included in the main.c file.

The second statement HAL_Delay(500); pauses the processor for 500 ms
before the LED state changes. This will cause the LED to blink once per
second with a 50% duty cycle, meaning it is on for 0.5 s and off for 0.5 s.

Compiling and Executing the Modified Program
Just click on the build icon after you added the additional two statements in
the forever loop. Also, ensure you have enabled the hex file output, as
described in the previous chapter. This is required prior to using the ST-
LINK utility.

Again, follow the ST-LINK detailed instructions provided in Chapter 3 on
how to load the hex file and download it into the target board.

The user LED should immediately start to blink once the hex file is
downloaded. I am fairly confident that you should have no problem with this
procedure given that the program built successfully.

Simple Modification for the main.c Function
The simplest modification to the main.c function is to change the LED timing
duration, which is what I have done for this next demonstration. The
following code snippet shows the modifications made to the on and off LED
timing duration. It was changed to 2 s:

The source code in the main.c file was first changed and then saved. I then
rebuilt the project, which in turn generated a new hex file. This hex new file
was then loaded into the ST-LINK utility and subsequently downloaded into
the Nucleo board using the process I previously described. I immediately
observed that the user LED was then flashing at a rate of 2 s on and 2 s off
after the new hex file was downloaded into the target.

Complex Modification for the main.c File

The next demonstration is a bit more complex than the previous one in that I
want to show you how to blink the LED with different on and off times. I will
still be using the user LED LD2 as the light source but will modify the main.c
file to incorporate two different timing intervals.

I choose to use several define statements to create different on and off
durations for the LED. The main function also uses an if/else statement that
causes the on and off intervals to alternate based on the truth value of a
Boolean variable named sw. The following is the code snippet for the
modified portion of the main.c file:

After the main.c file was modified, the project was built in the manner
previously described and the resultant hex file was downloaded into the
Nucleo board using the ST-LINK utility. The user LED immediately started
blinking on for 0.5 s and off for 1.5 s for a net 2-s blink rate. The on and off
durations may easily be modified by changing the appropriate define
statements.

This last demonstration project concludes this initial discussion on how to
create and modify embedded software projects for a STM Nucleo-64 board.
The next chapter explores how to use additional GPIOs and the use of

interrupts, which will greatly expand the capabilities of the Nucleo board.

Summary
This chapter contains three demonstration C/C++ language projects that all
blinked an on-board LED installed on a Nucleo64-STM32F302R8 board.
Each project progressed in complexity from an extremely simple constant
rate LED flashing to a more complex multi-interval flashing of the LED.

I explained using a step-by-step approach how to conduct a project build.
The final hex file created by the build process was downloaded into the
Nucleo-64 board using the ST-LINK utility.

A brief discussion of how a C/C++ main function works was also
presented for readers who might be a bit “rusty” on their C/C++ language
prowess.

5
General-Purpose Input Output
(GPIO) and the STM Hardware

Abstraction Layer (HAL)

As the formidable title states, this chapter deals with how GPIO operates
on a STM Nucleo-64 board and how the HAL software is involved. It is
important to first study the STM MCU architecture in order to fully
understand how the GPIO ports function and their relationship to HAL. I
would also acknowledge that many of the figures and table content are
sourced from either the STM32F302R8 datasheet or reference manual. I
would highly recommend that you download and have them readily available
to help fill in any gaps in my discussions.

Figure 5-1 is the STM32F302R8 block diagram, which is the MCU used
in the Nucleo-64 development board used in this book.

Figure 5-1 STM32F302R8 block diagram.

Note that there are six banks of GPIO ports shown on the left side of

Figure 5-1, which are connected to the bidirectional advanced high-speed bus
1 (AHB1). This bus transfers digital data internally at a rate up to a maximum
of 100 Mbps. HAL effectively manages the data transfers from the GPIO
ports as well as from the many other peripheral components depicted in the
figure.

I will start the HAL discussion by examining perhaps the simplest HAL
module, which is the HAL_GPIO. This module has already been used
multiple times in programs discussed in earlier chapters. The HAL_GPIO
module was used without explanation simply because it was necessary to
implement a required function such as blinking an LED or reading the state
of a push-button switch. I will shortly closely examine the HAL_GPIO
module, but first I will discuss the concept of memory-mapped peripherals.

Memory-Mapped Peripherals
STM MCU peripherals are controlled and data is transferred using addresses
within a 32-bit range. This is known as memory mapping because it makes
no difference from a programming perspective whether it is communicating
with a memory location or a peripheral register. The 32-bit address range is
usually represented by eight integer digits, meaning the total possible range
of locations is 0x0000 0000 to 0xFFFF FFFF. Note that the hex number is
preceded by a 0x and a space is paced after four of the leading hex digits. The
0x is a common programming construct indicating that the number is in a hex
format and the space between the two hex number groups is just to make the
number more readable. This address format is also used throughout the STM
documentation.

Figure 5-2 shows the major blocks that constitute the entire 32-bit address
range.

Figure 5-2 Complete 32-bit STM address range.

Also shown in Figure 5-2 are two breakout blocks, which detail the core
memory locations as well as the peripheral/bus locations. I will next briefly
discuss the core memory locations, which are important in their own right,
but not very relevant to the peripheral address locations.

Core Memory Addresses
Table 5-1 shows the types of memory and their preassigned memory
addresses.

Table 5-1 STM Core Memory Address Ranges

One question that many readers might be pondering is how a PC can
handle 8, 16, or even 32 GB of SRAM with only 32 bits of addressing
capability? The answer lies in using both an operating system designed for
extended memory accesses and a hardware unit known as a memory
management unit (MMU). All the major PC OSs such as Windows, OSX,
and Linux have extended memory functionality built-in that allows for 32-bit
addressing to extend into multiple blocks or pages. You could think of using
a 4-bit register, where each bit would activate a particular block or page.
Therefore, bit 0 would allow access to all the base addresses starting at
0x0000 0000, while bit 1 would allow addressing to virtually start at 0x0001
0000 0000. Of course, there are only 32 real bits being used, but the OS
handles the addresses as if they started one location beyond 0xFFFF FFFF.
This 4-bit register can be thought of as being part of the MMU. Four bits
means that a maximum of 64 GB can be handled in a 32-bit PC, which
coincidentally is often the maximum SRAM that may be installed in such a

PC. Of course, all practical physical memory limitations are relieved when a
64-bit system is used, but that requires an expensive CPU and additional
energy requirements.

The preceding discussion is not applicable to a typical STM MCU because
memory is quite constrained and vast amounts are not needed to handle
typical embedded applications. I do want to mention that STM32F302R8
does incorporate a memory protection unit (MPU). The MPU is not a MMU,
but is provided to manage CPU memory accesses such that one task will not
accidentally corrupt or conflict with another task’s memory accesses.
Memory can be arranged in up to eight areas with each area sized between 32
B and 4 GB, the last comprising the whole addressable memory range. The
MPU is normally controlled by a real-time operating system (RTOS), which
has an API contained within the CMSIS, which has been introduced in the
last chapter. I will not be using the MPU for any of the book projects. You
should consider its use only for the most safety-critical or mission-essential
applications. Think of it being used in automotive or flight safety systems.

Peripheral Memory Addresses
Figure 5-3 shows the beginning portion of the memory addresses allocated to
the STM32F302R8 peripherals,

Figure 5-3 Beginning portion of the STM32F302R8 peripheral allocations.

You should be able to see that the AHB2 bus has the address range
0x4800 0000 to 0x4FFF 17FF. What is specific to this chapter’s focus is the
total GPIO range of 0x4002 0000 to 0x4002 0x1FFF, which is divided into
six smaller 1-KB blocks. Five of the six 1-KB blocks are allocated to GPIO
ports A, B, C, D, and F, respectively. There is an unused block at range
0x4800 1000 to 0x4800 13FF, which has no significant impact on the port
allocations. I have no idea why there is a reserved block allocated in what
was a contiguous block allocation or why the final GPIO port is labeled F
instead of E, as one might expect from the prior port designations. The port
memory designation and allocation question probably can only be answered
by the STM MCU chip designers. It is up to MCU users to accept the
designations and allocations as they are and work with them to the best of
their abilities.

I elected to include the following figure on peripheral locations for
completeness sake and to provide a readily available reference for additional
peripherals. Figure 5-4 shows the peripherals connected to the internal
advanced peripheral bus 1 (APB1). The peripherals connected to the bus are
as follows:

Figure 5-4 AHB1 peripheral allocations.

• Timers (TIMxx)

• Universal Synchronous/Asynchronous Receiver/Transmitters
(USARTx)

• Serial peripheral interfaces (SPIx)

• Inter-integrated interfaces (I2Cx)

• Universal serial bus (USB)

• Integrated sound interface (I2S)

• Digital-to-analog converter (DAC)

• Controller area network interface (CAN)

• Real-time clock (RTC)

• Watch dog timers (IWDG, WWDG)

I will now return to the HAL_GPIO discussion after introducing to the
concept of peripheral memory-mapped addresses.

HAL_GPIO Module
It would be wise to examine a sample GPIO circuit before discussing how it
functions with the module software. It is always an important step to
understanding the underlying hardware that implements the software.

GPIO Pin Hardware
Figure 5-5 is a block diagram, which also contains schematics that model a
typical STM GPIO port pin.

Figure 5-5 Typical STM GPIO port pin block diagram/schematic.

Starting from the right-hand side of Figure 5-5 you can see the I/O pin,
which has robust overvoltage protection circuits attached. The GPIO pin is
protected up to an applied 5-V input level in spite of the fact that the main
MCU voltage supply is 3.3 V and the core processor voltages are 1.8 V. This
makes interfacing quite easy without the need to employ voltage level shifters
or resistance voltage dividers. The I/O pin is simultaneously connected to
both input and output drivers as shown in the figure. However, only one
driver at a time can be activated. Inspecting the input driver section reveals
three possible inputs that may be sent to the core MCU. These are as follows:

• Analog: Bypasses the Schmitt trigger

• Alternate function: Schmitt trigger output

• Read: Output from one of the associated read register lines

The GPIO pin configuration settings determine which input is used at a
given time.

Likewise, the output section has multiple ways of creating a signal output
for the I/O pin. These are as follows:

• Write: Output from an associated write register line. The output register

also has a R/W control line.

• Alternate function: Generated from an internal MCU peripheral.

Note that the output control block has two MOSFET transistors connected
to the output control circuitry, which provide for the following operations:

• Push-pull

• Open-drain

• Disabled

Finally, the I/O pin has programmable enabled resistors attached to the
pin, which will allow for the following:

• Pull-up

• Pull-down

• Neither

This sample circuitry is replicated for every GPIO pin existing in the
MCU.

Each GPIO port has several registers attached to it, which control all of its
pins’ behaviors by setting or resetting bits associated with the respective pins.
Figure 5-6 shows the format for the GPIO port mode register for ports A … E
and H.

Figure 5-6 GPIO port mode register.

This register would be programmatically accessed by using the symbol
GPIOx_MODER where x = A … E and H for the targeted port. The power-
on reset values automatically placed in all the GPIO registers are as follows:

• 0x0C00 0000 for port A

• 0x0000 0280 for port B

• 0x0000 0000 for all other ports

The di-bit or two bit values that can be stored in a register have the
following meanings:

• 00—Input mode

• 01—Output mode

• 10—Alternate function mode

• 11—Analog mode

Additional GPIO registers further configure other behaviors that are
associated with the port pins including the following:

• Enabling push-pull, open-drain, or none (also called floating)

• Enabling pull-up, pull-down, or none

• Operational speed

The next two figures concisely display all the registers involved in all
GPIO configurations. These figures are very important and will serve as the
basis for configuring GPIO ports for all future projects. I had to break the
GPIO register’s listings into two separate figures due to the number of
involved registers. Figure 5-7 shows the first nine registers in order of their
offset addresses to the base MODER address.

Figure 5-7 First nine GPIO registers’ details in order of offset addresses.

The last nine registers in the offset address order are shown in Figure 5-8.

Figure 5-8 Last nine GPIO registers’ details in order of offset addresses.

The key to reading these figures is to understand what each register is
supposed to control, its offset address, and how individual GPIO pins are
accessed in the register.

I will next demonstrate a simple program that will control an LED
attached to port A, pin PA10.

LED Test Demonstration
The purpose of the following demonstration is to show how to configure the
port A GPIO registers to directly control an LED. The demonstration
program will not blink the LED and you have to change the source code,
recompile, and reload to affect the LED state.

However, there is a bit of hardware preparation that must be done before
the test program can be run. That involves connecting the LED with a current
limiting resistor to the selected port A pin. To ease this requirement, I elected
to use an Arduino prototyping board, which is shown in Figure 5-9. This
board is quite inexpensive and is readily available from a number of online
sources.

Figure 5-9 Arduino prototype board.

You will also need an LED and a 330-Ω 1/4-watt resistor to limit the
current flowing through the LED. It will also be important to know which
GPIO pins are exposed in the Arduino protoboard. This is easily answered by
referring to the STM Nucleo-64 board user manual. Figure 5-10 comes from
that manual and shows the STM32F302R8 pins associated with both the
Arduino and Morpho connectors. In our case, only the Arduino pins are

needed.

Figure 5-10 Arduino/Morpho pin connectors.

I arbitrarily selected PA10 as the LED output, simply because it was not
already configured to a peripheral in the main.c template program. Figure 5-
11 is the schematic used for this setup.

Figure 5-11 LED test schematic.

The longest LED lead is connected to the anode and the shortest lead is
connected to the cathode. I simply soldered the resistor and the LED together
because this arrangement allowed me to easily connect the LED/resistor
combination to the protoboard, as shown in Figure 5-12. The protoboard is
also plugged into the Nucleo-64 board for this photograph.

Figure 5-12 LED/resistor combination plugged into the protoboard.

It is time to work on the software once the hardware is all set.

LED Test Program
As I have previously mentioned, all STM peripherals, including GPIO ports
are controlled by configuring a series of related registers, as detailed in
Figures 5-7 and 5-8. In this demonstration program I will be configuring pin

PA10, which is in the Port A GPIO bank of pins. PA10 will need to be
configured as an output. I will be using a slightly modified main method
created in the previous chapter’s project. You should set up a new project
with this main method and simply modify the method by entering the
following two lines and making two changes to the MX_GPIO_Init(void)
method as detailed below.

Enter these two statements immediately after the first MX_GPIO_Init(}
statement:

The HAL library relies on C structure named GPIO_InitStruct to configure
any GPIO pin. Using this structure hides the necessity to use actual memory-
mapped addresses to configure a GPIO pin. The following code segment
from the MX_GPIO_Init(void) method shows how the structure is initialized
to configure PA10 to an output pin:

The last list statement is not part of the structure initialization but is
required to apply the newly initialized structure within the HAL framework.
The structure components are directly related to the memory-mapped GPIO
registers, as shown in Table 5-2.

Table 5-2 GPIO_InitStruct to GPIO Register Equivalence

You should notice that the main method code listing ends with a while
(1) statement, which simply forces the MCU to loop forever after the LED is
turned on. The only way to turn off the LED is to disconnect the power to the
board. Resetting the board will only immediately turn on the LED.

Test Run
You will first need to compile the project in preparation for uploading into
the Nucleo-64 board. You then use the ST-LINK utility to transfer the hex
file from the project’s Debug directory into the Nucleo, as previously
described in Chapter 4. The LED should immediately turn on once the hex
file is loaded into the board. Recheck the main.c code if the LED fails to turn-
on. Incidentally, recheck that you have inserted the hardware into the proper
pin sockets. Sometimes, it is as simple as that to fix a problem.

Enabling Multiple Outputs
It is relatively easy to modify the main.c file to enable multiple outputs. I
selected GPIO PA6 as an additional output to control an LED. Incidentally, I
referred to the defines contained in the main.h file to determine the pins
already committed in the project. I have included the relevant portion of the
file in the following listing for your use. Note that PA10 was not added as a
define; I would have added that if I were building a permanent program
instead of a transient demonstration program. The same is true for pin PA6.

Make the following changes to enable the multiple LED outputs.
In the main method change:

You will need to recompile and upload the new hex file into the Nucleo-
64 board to test the new functionality.

Test Run
I left the LED/resistor combination connected between PA10 and ground to
recheck that it turned on when the program was loaded. It is always wise to
do that type of check because it sometimes happens that unintended things
happen when a program modification is done, which is believed to not affect
an existing and tested function. I next disconnected the LED/resistor circuit
and reconnected it to PA6 and ground and confirmed that it also turned on the
LED.

It would be straightforward to enable even more outputs using the same
procedure. Just note that you would need to enable another GPIO port bank if
you were to use all of the available pins in the GPIOA port.

Push-Button Test Demonstration
This demonstration will show you how to enable a GPIO pin input to detect

when a user presses the blue user push button. An LED will light for as long
as the push button is pressed. There is no additional hardware required for
this demonstration other than what was needed for the previous LED
demonstration. I will also be using GPIOA PA10 as an output pin to control
the LED.

The MX_GPIO_Init(void) method has already configured the blue user
push button, so all that is needed is to read the button state in the main()
method. This is accomplished using the following statement:

HAL_GPIO_ReadPin(GPIOC, GPIO_PIN_13)

You should also recall from the Chapter 4 discussion that the blue user
push button is connected to GPIO Port C, pin 13 and it is also constantly
being pulled high. This means the button state will be high when not pushed
and transition to a low value when pushed. The corresponding C snippet must
continuously respond to this event as follows:

Enter the above code segment in the main() method to continue with the
demonstration. Next compile and upload the hex file to the Nucleo-64 board.

Test Run
I observed that the LED turned on for as long as the push button was
depressed. Note that you will have to use a small screwdriver to press the
button as it is hidden under the Arduino protoboard.

The next demonstration concerns a basic property involved with all MCU
signal operations, including the GPIO pins.

Clock Speed Demonstration
Clock speed as related to MCU signal operations is a misnomer. You would
ordinarily consider it to be a measure of the maximum number of signal
transitions per second. However, it is really a measure of the clock skew or
amount of time it takes to transition a signal from 10% to 90% of the
maximum value. It also applies in the opposite direction or going from 90%
to 10% of the maximum value. The former is known as leading edge delay
and the latter is called trailing edge delay.

Clock skew is directly related to true clock speed because the leading and
trailing edge delays ultimately determine the maximum possible number of
signal transitions per second. I will still refer to clock skew as clock speed
because that is how STM choose to label this important signal property.

The important question that one should ask is why should clock speed
even be considered. The answer lies in extending both MCU and battery life.
The physics behind improving clock speed dictates that it takes energy or
power, in this case, to overcome the circuit capacitance effects that mainly
determine clock speed. Small amounts of additional power are required to
improve the circuit switching times. This implies an increase in current flow
from the battery over time and consequently a shortened battery life. In
addition, increased power dissipation will induce small amounts of additional
heat stress in the MCU and also shorten its life. The aforementioned are the
main reasons why clock speed should always be selected to be the lowest
level but still support required functionality.

This demonstration will illustrate the actual clock speed timings that are
associated with the maximum and minimum clock speed settings. There are
four speed settings available with the HAL framework, which are as follows:

• Low

• Medium

• Fast

• Very Fast

I will be using both the Low and Very Fast settings and applying them to
signal outputs from pins PC0 and PC1, respectively. No additional MCU
hardware is required. However, you will need a fast multi-channel
oscilloscope to replicate this demonstration. The oscilloscope should also
have a minimum bandwidth rating of at least 100 MHz. I used a Picoscope
USB oscilloscope, model 3406B, to capture the measurements. This test
device functions with a PC to measure and display up to four independent
channels.

Setting the Pin Clock Speeds
The PC0 and PC1 pin clock speeds are set by creating two more
GPIO_InitStruct C data structures and placing them in the
MX_GPIO_Init(void) method. In addition, there will be a small amount of
code required in the main() method.

The two new GPIO_InitStruct C data structures are listed below:

The new C structs set up the pins as identical GPIO outputs with the

exception that one is low speed and the other is very fast speed. The code
segment in main() simply toggles the pin outputs between high and low at
the fastest possible rate because there is no other intervening code between
the output statements.

Test Results
Figure 5-13 is a screenshot showing an instantaneous capture of the GPIO pin
signal waveforms.

Figure 5-13 PC0 and PC1 pins’ signal waveforms.

It is easy to see that the signal waveforms are not crisp digital signals with
sharp transitions but instead are slightly distorted with definite rising and
falling edge slopes. The distortions are likely due to high oscilloscope probe
capacitive loading and the slight inductance due to the jumper leads I
connected between the oscilloscope probes and the Arduino protoboard
sockets. I also used 10× high impedance probe settings to help reduce the
loading on the GPIO pins. I know this helped because I repeated the
measurements using the direct X1 probe settings, which further distorted the
settings. The vertical voltage amplitude scale must be multiplied by 10 to
account for the 10× probe settings.

If you carefully examine the figure you should see two automatic

measurements that were computed by the oscilloscope on the displayed
waveforms. I have repeated these measurements below for easy viewing:

Pulse period: 94.1 ns
Frequency: 10.62 MHz

I also closely examined waveforms in Figure 5-13 to estimate parameters that
I used to calculate the equivalent bandwidth necessary reflecting the
measured waveforms leading edges. I also used a rule of thumb for
estimating the equivalent bandwidth using the leading edge rise time. These
calculations follow:

The 70-MHz bandwidth calculated for the Very Fast speed setting reflects
several factors including the maximum possible AHB1 bus speed, which is
100 MHz and the STM32F302R8 high-speed clock rate, which is 72 MHz for
the Nucleo-64 development board it controls. All-in-all, a 70-MHz bandwidth
is fairly decent while the 19.4 MHz for the Low speed setting could be
problematic for demanding applications such as very high-speed data
communications. My experimental results actually agree quite closely with
STM’s estimates of 75 MHz for the Very Fast setting and 25 MHz for the
Low setting.

Summary
This chapter’s focus was on how to work with GPIO pins and the HAL. I
began with a review of how STM peripherals are memory-mapped because
that is the fundamental basis on how the MCU configures and controls them.

I next proceeded to discuss how a typical GPIO hardware pin is set up and
the various functions by which it may be configured including as an input, an
output, an analog role, or an alternate function. The various control registers
associated with a GPIO pin were also discussed.

A simple LED test demonstration was next shown where I used an
LED/resistor combination, which was inserted into Arduino protoboard
sockets. The protoboard in turn was inserted into the Nucleo-64 development
board. I went through all the program changes required to be entered into a
main.c file in order to light the LED. A complete and annotated main.c listing
was provided for your reference and use.

The above program was next modified to accommodate multiple outputs,
which controlled an additional LED.

The next demonstration illustrated how the blue user bush button located
on the Nucleo-64 development board could be programmed with a GPIO
input pin to light an LED when it was pressed. The purpose of this program
was to show you how to set up a GPIO pin as an input.

The last demonstration concerned how the GPIO clock speed parameter
affected GPIO signal output waveforms. I explained that the clock speed was
a misnomer and the real intent was to control GPIO signal skew. Skew is the
time it takes to transition from one state to another state.

6
Interrupts

This chapter covers interrupts. As the name implies, they deal with
stopping the normal program execution upon recognition of a predesignated
event and then attending to that event.

Interrupts
An interrupt from a high-level perspective is any process that momentarily
stops an ongoing program execution and requires the MCU to execute
specialized code related to the event that initiated the interrupt. This
specialized code is known as an interrupt handler. The event that causes the
interrupt is termed an asynchronous event, meaning that it has no causal
relationship with the normally executing program code. You will shortly see
that timer peripherals are typically the source of these asynchronous events.
Data communication channels as well as direct memory access (DMA)
processes also commonly use interrupts.

An interrupt can originate with hardware, which is the case when a timer
is involved. It can also be purely software driven, which will often happen
when an abnormal program termination is detected, such as an attempt to
divide by zero or attempting to access a nonexistent memory location.
Software interrupts in most computer languages are normally referred to as
exceptions. However, in ARM terminology, all interrupts whether they are
hardware or software initiated are called exceptions.

The ARM Cortex-M integrated peripheral (IP) contains a hardware device
called the nested vector interrupt controller (NVIC) whose purpose is to
manage exceptions. Figure 6-1 is a block diagram illustrating how the NVIC

is connected with other key Cortex-M components, including the Cortex-M
core and other peripherals.

Figure 6-1 NVIC block diagram.

You can see two types of wired connections in the left side of Figure 6-1.
A single line labeled NMI stands for non-maskable interrupt and is used to
allow a peripheral to signal the NVIC to unconditionally start the interrupt
process. The other interrupt type is IRQ, which stands for interrupt request.
This interrupt type can be masked, meaning that the NVIC does not have to
immediately respond to an IRQ if a corresponding masking IRQ register bit
has been set. There is usually only one NMI, but there are many IRQ lines
that are dependent on the specific model NVIC capacity.

The NVIC is also linked between the Cortex-M core with both dedicated
I/O lines and the standard internal bus interconnect structure. This means the
NVIC is completely CMCIS compliant and uses the same type of control and
configuration registers as has been detailed in the GPIO discussion. The
NVIC is fully integrated into the HAL software framework and uses its own
C structures to set up a variety of registers. Driver software for the NVIC will
be discussed in a demonstration program. At this point, I will discuss some
important details regarding the NVIC.

NVIC Specifications
The STM NVIC general specification states that up to 256 interrupt channels

can be managed by a single NVIC. Out of the 256 channels, 240 may be
external, while 16 are always internal. In reality, the NVIC portion of the
STMF302R8 MCU, which controls the project development board, only
supports 52 channels. In addition, there are 16 hardware interrupt lines that
have direct connections to the NVIC. Any of the MCU’s 51 GPIO lines may
be configured as a maskable interrupt, which means they can become an
interrupt channel. You should think of an interrupt channel as more of a
software construct than a hardware implementation. In fact, the interrupt C
structure uses the word “channel” to reinforce this concept.

Interrupts also may be assigned a priority level. This means that a higher
priority interrupt can interrupt a lower priority interrupt. This action gives
meaning to the word “nested” in the acronym NVIC. An 8-bit register holds
interrupt priority levels, which means there can be a maximum of 256 priority
levels. I cannot conceive of a practical embedded system that would ever
need anywhere that many interrupt priority levels. Such a system would
likely be impossible to design, let alone implement.

It is time to now return to a detailed discussion of the interrupt process as I
have already introduced the NVIC.

Interrupt Process
There a few definitions to be set forth before proceeding with this section:

• Arm: Allows a hardware device to trigger an interrupt

• Disarm: Disallows a device to trigger an interrupt

• Enable: Allows the interrupt process

• Disable: Disallows the interrupt process

Enabling and disabling interrupts are easily accomplished in the C
language by using the EnableInterrupts() and DisableInterrupts()
methods, respectively. A potential interrupt source can trigger an interrupt
provided that interrupts are enabled and a specific trigger bit associated with
that potential source has been set in the appropriate NVIC control register.
This is considered arming a specific device. Conversely, resetting that same
register trigger bit will be considered disarming the device. There is one
important deviation from this procedure when considering the SysTick

interrupt. It has no enable bit because of its importance in having its events
always recognized by the MCU.

Interrupt priorities are established by setting appropriate bits in the NVIC
BASEPRI register. For example, if a specific interrupt is set at a priority level
equal to 3, then any interrupt with priority level of 0, 1, or 2 will interrupt the
level 3 interrupt. However, if the BASEPRI register is set to 0, then the
interrupt priority feature is disabled and all interrupts are processed as they
are received by the NVIC.

There are five preconditions that must be true before an interrupt can be
generated:

1. The potential interrupt device must be armed, that is, trigger bit set.

2. NVIC must be enabled.

3. Global interrupts must be enabled.

4. Interrupt priority must be higher than the current level.

5. An actual hardware triggering event must happen.

These five conditions can happen in any order. However, they must all be
true simultaneously for an interrupt to be recognized and processed.

The following five events will happen if an interrupt is recognized:

1. The instruction currently executing will complete.

2. The currently operating thread will be suspended.

3. The contents of 12 registers will be stored on the stack. An additional
18 words will be stored if the floating point unit (FPU) happened to be
active when the interrupt was recognized.

4. The LR register is set to a specific value. (LR is a special stack
register.)

5. The PC register is loaded with the interrupt service routine (ISR)
address.

Figure 6-2 is a graphical depiction of the five events listed above.

Figure 6-2 Interrupt processing sequence.

The key point to make is that the NVIC upon recognizing a valid interrupt
request will interface automatically with the MCU using firmware stored
within the NVIC. No special code is needed, which makes the interrupt
processing as fast as possible. It only takes 12 clock cycles, as shown in
Figure 6-2, to go from recognizing an interrupt to executing the first
instruction in the ISR. This means there is a latency time of approximately
1.5 µs for an MCU clocked at 80 MHz.

This series of events is called a context switch and is automatically
invoked by the NVIC hardware. The result of a context switch is that the
currently operating thread becomes a background thread and the ISR
becomes a foreground thread. The context switch also works quite nicely
with prioritized interrupts where the lower priority ISR becomes a
background thread and the higher priority ISR becomes a foreground thread.

There is also the concept of a pending interrupt request, which you should
know about. A requesting interrupt is held in a pending state if it is detected
if the global interrupts are not yet enabled or the requesting interrupt has a
lower priority than a currently active interrupt. Once the five preconditions
are met, the requesting interrupt’s state will be changed from pending to
active.

It is also very important to clear all device trigger bits or else there will be
continuous interrupt requests reoccurring. It is called an acknowledgment to
clear a trigger bit and is done by a software instruction. The only device
which has an automatic acknowledgment is the SysTick interrupt because of
its critical role in MCU operation and its recurring nature of operation. The

acknowledgment instruction is almost always included in the ISR.
A few words on the nature of an ISR would be helpful in order to

understand what role it plays in the interrupt process. The ISR contains all the
code required to process and complete whatever action prompted the initial
interrupt. An ISR is usually a very compact software module designed for a
single task supporting the interrupting device. However, there is one
implementation where just one large ISR services many interrupt sources. In
this case, a polling technique is employed to determine the exact interrupt
source and use just that portion of the large ISR to service the interrupting
device. This is not the case for STM MCUs. The STM implementation uses
separate and small ISRs to service each requesting interrupt device. There is a
list of addresses for these small ISRs stored in a vector table. This feature
gives rise to the word “vector” in the NVIC name.

I do want to mention one area where the STM vectored interrupt process
actually uses polling. This would be the case where multiple GPIO pins on
the same port could separately issue their own interrupt. Since the GPIO port
only has one vector address, it is left to the software to poll all the port’s
trigger bits to determine which bit is armed (requested the interrupt).

Every ISR is written to service the interrupting device as efficiently as
possible and will issue the acknowledgment as well as invoke the context
switch. The latter is easily accomplished by a C language command that has
an assembly language format similar to BX LR, which will very quickly pop
all the stored register values back to their respective registers and thus restore
the MCU to its pre-interrupt state. It is software engineering design objective
that ISRs should run as quickly as possible and return to the previous
foreground thread. This means no wait loops should ever be placed in an ISR.

Any data which is generated or modified in an ISR must be stored in
globally shared memory locations, because it will otherwise not be available
to any other software module due to the nature of how the C language
implements the ISR framework.

External Interrupts
External interrupts such as those which are sourced through GPIO pins are
connected to the NVIC using an external interrupt controller (EXTI). Using
an EXTI allows for multiplexing of many GPIO pins into the NVIC external
interrupt inputs. Figure 6-3 is a block diagram of the EXTI.

Figure 6-3 EXTI block diagram.

The EXTI controller in the STM32F302R8 MCU carries out the following
activities:

• Handles up to 23 separate software events and/or hardware triggers
connected to 16 external interrupt/event lines

• Provides a status bit for each line

• Provides independent triggers and masks for each line

• Can detect external pulse with a shorted clock period than the APB2
bus clock, which drives the EXTI

Any of the STM32F302R8 51 GPIO pins may be used as an interrupt
source. Of course, only up to 23 could be active at any given time. That many
external interrupts should easily be able to handle any conceivable embedded
design. There are also five other EXTI lines that are connected as follows:

1. EXTI line 16 connected to the PVD output

2. EXTI line 17 connected to the RTC Alarm event

3. EXTI line 18 connected to the USB OTG FS Wakeup event

4. EXTI line 21 connected to the RTC Tamper and TimeStamp events

5. EXTI line 22 connected to the RTC Wakeup

Figure 6-4 shows relationship between the GPIO pins, external interrupt
controller inputs, and the NVIC IRQs.

Figure 6-4 GPIO pins, external interrupt controller, and NVIC IRQs.

You should take note that GPIO pin PC13 is grouped together with many
other pins into a common NVIC IRQ named EXTI15_10_IRQ. This is quite
important in the interrupt program demonstration.

At this point, you should have gained sufficient knowledge to appreciate a
simple interrupt demonstration discussed in the next section.

Interrupt Demonstration
This interrupt demonstration will be created such that a user can push the
blue button on the Nucleo-64 board and cause the user LED to blink at a
different interval toggle, that is, push it once to blink twice per second turn
and push it again to have it blink once every two seconds. The program takes
full advantage of the HAL framework to invoke the appropriate GPIO
interrupt for GPIO pin PC13 connected to the blue user push button. The ISR
contains code that toggles LD2, a green LED, which is connected to GPIO
pin PA5.

The following is a complete code listing for the main.c file contained in
the project. A discussion of key parts of the code follows the listing.

Examining the MX_GPIO_Init method reveals that it is not much different
than the code for the same method used in the previous chapter. The two
changes in the method are as follows:

GPIO pin PC13 has been configured to generate an interrupt when pressed
by the following statement:

Next, the external interrupt was assigned a priority by the statement:

The NVIC was then enabled to recognize an interrupt from PC13 by the
following statement:

That’s all the changes necessary to be applied to the MX_GPIO_Init
method.

The only thing left is to add the ISR handler code to the project. This ISR
must be placed in the stm32f3xx_it.c file. The ISR signature is void
EXTI15_10_IRQHandler(void). The complete stm32f3xx_it.c file listing is
shown below:

You should immediately see that the ISR has only seven statements, which
agrees very nicely with my earlier discussion that ISRs must be as concise as
possible and dedicated to a single task. The first statement is a no operation
(nop) “for” loop that introduces a very short delay to debounce the push
button. The next statement is a compound “if” that reads the voltage level
connected to the push button. It will be high because the program is already
in the interrupt handler. If the external C variable tDelay is set to 250, it will
be reset to 1000 and vice versa. The last statement in the ISR activates the
NVIC IRQ handler for the external controller connected to pin PC13.

Test Run
I built the project and downloaded that into the Nucleo-64 board using the

procedure detailed multiple time in previous chapters. I initially observed that
the LED blinked twice a second after the initial download. I then pressed the
blue button and observed that the LED started blinking at a rate of once every
two seconds. Pressing it again returned to the twice a second blink rate. This
was a convincing proof that the interrupt demonstration was working as
desired. Admittedly, this is a very simple demonstration, yet it contains all
the elements necessary to support far more complex interrupt driven
programs. You find that interrupts are an embedded developer’s best friend.
Most of my embedded development projects use interrupts. Not using them
deprives you of an important tool in creating efficient embedded programs. It
is not an overstatement to say that modern embedded projects would not be
practical without employing at least one interrupt.

Summary
I started the chapter by discussing how the STM MCU interrupt process
functions. This discussion included the description and functioning of the
NVIC and a walk through a complete interrupt processing sequence.

An interrupt demonstration next followed in which a user pressed the blue
push button located on the project Nucleo-64 board, which caused an
interrupt to be generated. The corresponding interrupt service routine (ISR)
code consequently toggled the state of an onboard LED.

7
Timers

Timer peripherals are very important components within a MCU.
Many embedded applications are time or temporal dependent and timers are
the primary means by which the MCU controls the application. While it is
certainly possible to use a MCU to directly time processes, it would be great
waste of processing power and highly inefficient approach. Using hardware
timers along with interrupts is really the only practical way to implement
embedded time-dependent applications. Fortunately, there is a powerful timer
variety provided by STM in its line of MCUs.

STM Timer Peripherals
A timer is simply a free-running counter that counts pulses from a clock
source. Since the pulse train from a clock source has a known period or
interval between pulses, the elapsed time is directly related to the number of
pulses counted. The timer clock source used with a typical MCU is usually
derived from an internal master clock. However, the master clock usually
runs at a very fast speed, so timer pulses must be divided by hardware to
more reasonable values that can be used by timers. The hardware used to
“slow” the master clock rate varies and can be binary dividers (prescaler) or
phase-locked loops (PLL). Timer counters can count up or accumulate counts
until they overflow based on the number of bits used in the counter. A 16-bit
counter will overflow when the maximum count of 65535 is reached. An
overflow interrupt is often the event which happens with this situation.

Conversely, a timer counter can count down from some preset value and
trigger an interrupt when it reaches a 0 value. This counter type is known as a

decrementing counter and has many uses.
Timers have many uses, including but not limited to the following:

• Generating a precise time base. All STM timers can do this.

• Measuring the frequency of an incoming digital pulse train.

• Measuring elapsed time on an output signal. This is called output
compare for STM timers.

• Generating precise pulse-width modulation (PWM) signals used for
servo and motor control.

• Generating single pulse with programmable length and delay
characteristics.

• Generating periodic direct memory access (DMA) signals in response
to update, trigger, input capture, and output compare events.

There are following five broad categories of STM timers:

• Basic: Simple 16-bit timers. They do not have inputs or output pins.
They are principally used as “masters” for other timers. They also are
used as a digital-to-analog converter (DAC) clock source. They can
generate a time base like all STM timers can do.

• General purpose (GP): These are 16-bit or 32-bit timers with both input
and output pins. They can do all of the functions described in the above
list. GP timers can have up to four programmable channels, which may
be configured as follows:

• One or two channels

• One or two channels with a complementary output. The
complementary output has a “dead time” generator, which provides
for an independent time base.

• Advanced: All the features of the GP timer with additional functions
related to motor control and digital power conversion. There are three
complementary outputs available with this timer category with an
emergency shutdown input.

• High resolution: Multiple high-resolution outputs made possible by six
sub-timers, one master and five slaves. Multiple dead-time insertions

are possible with this timer. There are also five fault inputs and 10
external event inputs. This timer has the acronym HRTIM1 in STM
terminology.

• Low power: Timers used in exceptional low-power applications. These
timers are designed to stay running in just about all STM MCU modes,
except the Standby mode. They can even continue to operate without an
internal clock source.

The STM32F302R8 MCU used in the demonstration board has basic, GP,
and advanced timers. I will focus on how these timers function and are
programmed. The concepts discussed will also apply to the other timer types
if you encounter them in other projects. As always, the manufacturer
datasheets are your best resource to determine how a particular timer works
and how it should be programmed.

The STM32F302R8 MCU has six timers, as shown in Table 6-1. This
table has a handy reference to keep in mind when selecting and programming
a timer.

Table 6-1 STM32F302R8 MCU Timers

I will now discuss how to configure a STM timer using the HAL
framework.

STM Timer Configuration
STM timers are configured in the same manner as GPIO pins and interrupts
as I have previously discussed. STM timers are configured with a C structure
named TIM_HandleTypeDef, which contains the following members:

The struct members represent the following timer parameters and settings:

• Prescaler: The division factor used to scale the master clock rate. There
are only 16-bit prescalers used in all the timers. A 16-bit register can
hold prescaler values ranging from 1 to 65535. For example, a prescaler
value of 40,000 applied to an 80-MHz master clock would mean a 2-
kHz clock rate would be input into the timer.

• CounterMode: Sets the count direction. The available CounterModes
are as follows:

• TIM_COUNTERMODE_UP

• TIM_COUNTERMODE_DOWN

• TIM_COUNTERMODE_CENTERALIGNED1

• TIM_COUNTERMODE_CENTERALIGNED2

• TIM_COUNTERMODE_CENTERALIGNED3

• Period: This is a number that represents the maximum time to be
elapsed before the timer counter is reloaded with this number. The
maximum number is 0xffff for 16-bit counters and 0xffff ffff for 32-bit
counters. A value of 0x0 will ensure a timer does not start.

• ClockDivision: This is a bit-specific field used for setting the ratio
between the internal timer clock frequency and a sampling clock used
for digital filters. It is also used to set dead-time parameters. The
available ClockDivision modes are as follows:

• TIM_CLOCKDIVISION_DIV1

• TIM_CLOCKDIVISION_DIV2

• TIM_CLOCKDIVISION_DIV4

• RepetitionCounter: Sets a limit for the number of times a timer can

overflow or underflow. The timer update register will be set when the
limit is reached. An event can also be raised in conjunction with the
register update.

Update Event Calculation
The following equation should be used to compute the time between update
events for a given high-speed clock rate, a prescalar value, and a period
value:

A sample calculation is shown below:
Given:

The discussion on the demonstration project presented below will show
you how to configure a GP timer in a polled mode, which in turn will blink
an LED.

Polled or Non-interrupt Blink LED Timer
Demonstration
This is the first of two demonstrations showing you how to configure the
TIM2 GP timer to control LD2, the onboard green LED. This demonstration
will not use an interrupt, so I can focus on the discussion of how to configure
a timer. The LED will blink at a 0.5-s rate based on the selection of prescaler
and period values as well as the Nucleo-64 board’s preset 64-MHz high-
speed clock rate.

You should start this project using the CubeMX application by providing
an appropriate project name. I used the name TIM2_Example1 for this
project. In the Pinout view, you should select the internal high-speed clock as
timer TIM2 clock source, which is shown in Figure 7-1.

Figure 7-1 TIM2 clock source selection.

Selecting the clock source also triggers the CubeMX application to include
all the TIM2 initialization statements to be included in the new project. This
step is vital to generate a working project.

Don’t forget that all the other previous project creation steps are still
appropriate, such as including only the necessary library files and ensuring
that a hex file is generated.

I will discuss the key parts of the project code after the below listing.

Most of this code is a repeat of the main.c code shown in the interrupt
demonstration project discussed in the previous chapter. The key differences
are the addition of a MX_GPIO_Init method and some new operational code
required in the forever loop portion of the main method.

The MX_GPIO_Init method configures the TIM_HandleTypeDef, a typed C
struct with specific values to have the timer reset every 0.5 s. The struct is
named htim2 and is both initialized and started in this method.

The forever loop in the main method has code, which continually checks
the timer count and will turn on the LED when the count reaches 150. It will
remain on until the count progresses to a value of 399, at which point the
LED will be reset. These statements result in the LED being on for 0.25 s and
off for 0.25 s.

Test Run
I built the project and uploaded it into the Nucleo-64 board. The user LED
immediately began to blink at a 0.5-s rate, which confirmed the program
worked as desired. The next step in this timer demonstration series is to
implement an interrupt-driven version that will also blink the LED, but not
require any specialized code in the main method’s forever loop.

Interrupt-Driven Blink LED Timer Demonstration
This demonstration will also blink an LED. In this demonstration, I will use
an interrupt approach, thus eliminating any specialized code in the forever
loop main that continually reads the timer counter value and reacts when
certain values are reached.

You will need to generate a new project using the CubeMX application. I
named this project Timer_int to reflect its purpose. You will also need to
select the timer clock source as has been done in the previous demonstration.
Simply use the internal high-speed clock as the source, which will trigger the
application to include all the TIM2 timer initialization and configuration
code. However, this time you will also have to set up the timer to trigger an
interrupt when its period is elapsed. This is easily done using the CubeMX
Configuration tab. You should see timer TIM2 appear in the tab, but first
ensure you have selected the clock source. Otherwise timer TIM2 will not

appear. Click on the TIM2 icon and then click on the enable global interrupt
check box. The Configuration tab and the enable global interrupt check box
are both shown in Figure 7-2.

Figure 7-2 Configuring timer TIM2 interrupt functionality.

I will not repeat the extensive code listing previously shown, but will
instead just present the code segments needed to implement the interrupt-
based code.

The first part is the easy one, where the forever loop is changed to a null
action:

while(1);

The only other change that needs to be done is to set the timer period to
250 to ensure the LED blinks twice a second. The timer will now interrupt at
the appropriate interval without any special code needed to monitor real-time
counter values.

The following three statements must be added just before the forever loop
in the main method:

The TIM2 IRQ handler method must be defined in the main.c file as

follows:

Finally, a callback method must also be defined, which toggles the LED
pin every time the TIM2 timer generates an interrupt:

Test Run
I made the modifications to the main.c file, built the project and then
uploaded it into the Nucleo-64 board. The user LED immediately began to
blink at a 0.5 second rate, which confirmed the program worked as desired.

Multi-rate Interrupt-Driven Blink LED Timer
Demonstration
This demonstration is an expansion of the previous demonstration in which
the user LED will be repeatedly blinked at two different rates, one at 0.5 s
and the other at a 1.0-s rate. A timer interrupt will also be used in this
program but with a significant difference between the single- and multi-rate
implementations. In the single-rate program, the LED is directly controlled in
the callback function. In the multi-rate version, the callback function simply
increments a counter variable, which is then used in the forever loop to
control the LED. The incrementing counter variable timCnt causes the LED
to be set or reset depending on its value. The following listing is the complete
main.c listing. I have also added additional comments regarding the forever
loop code snippet following the listing.

The forever loop contains a series of if statements that will be triggered
based on specific counter values. The statements within the if statements
either set or reset the user LED. Each counter increment takes 0.25 s to
complete, which means that two increments will take 0.5 s. The LED will
toggle at two times per second for the first 4 s. The second set of 4 s will
toggle the LED once every second.

This code format is rather lengthy, but it does trade code space for
simplicity. It is rather easy to follow the algorithm step-by-step to determine
how the LED is controlled using this format.

Test Run

I built the project and then uploaded it into the Nucleo-64 board. The user
LED immediately began to blink at a 0.5-s rate for 4 s and then at a 1.0-s rate
for 4 s, which confirmed that the program worked as desired.

Modification to the Multi-rate Program
I changed code snippet in the above forever code to make that much more
compact. That modification is listed below.

The program functioned just about the same with this modified code,
which used the modulus operator along with a toggle method to control the
LED. The code is much smaller than the original, but it is more complex and
harder to understand and consequently maintain. This change highlights an
interesting challenge that developers constantly face. This challenge is
whether or not to use simpler code, which can take more code space versus
using compact and “efficient” code, which is likely harder to understand and
modify.

Test Run
I built the modified project and then uploaded it into the Nucleo-64 board.
The user LED immediately began to blink at a 0.5-s rate for 4 s and then at a

1.0-s rate for 4 s, which confirmed the modified program worked the same as
the original program. I did notice that the LED seemed to flicker more using
this version vice the original. I can only attribute the flicker to the use of the
toggle method versus the firm set and reset methods.

This last demonstration completes all discussions and demonstrations that
I wished to convey regarding interrupts and timers. This chapter really is just
the tip of the proverbial iceberg because there is a tremendous amount of
information on these topics that I could not cover. There are almost 2,000
pages alone in STM’s HAL user manual. As always, the STM datasheets, and
user and reference manuals will be an invaluable resource to learn about the
many additional features and functions that you can carry out with interrupts
and timers.

Summary
I started the chapter discussions with the focus on timers, which are important
peripherals because they alleviate the MCU from having to directly perform
timing functions. I explained the five available categories of STM timers, of
which there are three types provided on the project MCU. These are basic,
general purpose (GP), and advanced.

I next showed you how to configure a timer to perform a specific timing
event. This discussion was followed by a demonstration in which the onboard
LED blinked once per second. This demonstration did not use an interrupt,
which was the focus of the second timer demonstration.

In the second timer demonstration, I showed how easy it was to integrate a
timing operation with an interrupt process. In this demonstration also the
onboard LED blinked, but it blinked using only the interrupt process.

The third timer demonstration showed how to restructure the interrupt
process such that a multi-rate LED blink could be implemented. The interrupt
callback method controlled a counter variable, which in turn controlled the
actual LED activation within the forever loop.

In the final timer demonstration, I changed the original forever loop code
with a much more compact and complex version with the same functionality .
I did this to illustrate how developers must constantly decide on how to write
code, simpler and consuming more code space or very compact and complex,
which is harder to understand.

8
Bit Serial Communications

This chapter covers how a MCU uses bit serial communication to
bidirectionally transfer data between it and external devices and systems. The
primary peripheral devices used for this function are the universal
asynchronous receiver transmitter (UART) and the universal
synchronous/asynchronous receiver/transmitter (USART). The principal
difference between these peripherals is that the USART can use a
synchronizing clock pulse train between nodes, while the UART is
completely self-synchronizing. These differences are explained in more detail
in the following section “UARTs and USARTs.”

UARTs and USARTs
Figure 8-1 is a block diagram showing two UARTs connected, where Node A
is transmitting to Node B.

Figure 8-1 UART block diagram.

The digital pulse train between the nodes is composed of one start bit,
eight data bits, and one stop bit. These bits all together are considered to be a
single frame. You should note that the start and stop bits are 50% longer in
duration then the data bits. This difference in pulse duration is how the
UART distinguishes the start and stop bits from the data bits. The receiving
node must detect the start bit in order to determine when the frame starts. The
receiving node also has been configured to accept a predetermined number of
data bits and whether or not there will be one or two stop bits. UARTs can be
set to send seven or eight data bits as well as one or two stop bits. There is
also a provision for sending an additional parity bit, which aids in detecting
transmission errors. Often, parity bits are not used, especially in cases where
the transmission channel is not noisy or transmission line delays are not
present.

The USART is a variant of the UART because an additional clock line can
be used between nodes, as shown in Figure 8-2.

Figure 8-2 USART block diagram.

There is no need for start and stop bits to be used when two USART nodes
are interconnected, as shown in Figure 8-2. The data bits are clearly
synchronized to the clock pulses, which shortens the frame length and
improves channel communication efficiency. However, seven or eight data
bits may be set as well as a parity bit, as was the case for the UART node. It
should also be obvious from the name that a USART can operate as a UART,
if so desired.

Figure 8-3 is a block diagram that shows full-duplex communication
setups using UART and USART nodes.

Figure 8-3 Full-duplex communications block diagram.

Full-duplex communications means that data can simultaneously be sent
and received between nodes. This is strictly possible because each node’s
UART or USART is controlled by its own MCU.

Often, it is important to assess the state of a given node that it is able to
actively participate in a communications link. It can happen that a receiving
node’s MCU is temporarily blocked for some reason and while a remote
node’s UART can send data, the receiving node may not be able to process it.
For this reason, there are protocol control lines that are provided in UART
and USART hardware to ensure that data is sent and received when allowed.
The two primary control lines are request-to-send (RTS) and clear-to-send
(CTS). A node that desires to transmit data would first raise or set the RTS
line. The receiving node would then raise or set the CTS line indicating that it
is okay to send the data. This process is also known as request/acknowledge
and is commonly used in full-duplex communications links. However, this
protocol is really not required for the book projects because the project board
MCU will never be blocked and the receiving node will typically be a PC,
which will also never be blocked.

There are two USARTs in the STM32F302R8 MCU use in the project

board. These are logically referred to as USART1 and USART2. They are the
primary means by which the MCU can send and receive data other than by
processing data bits through the GPIO ports or by using one of the other
communication protocols, such as the I2C and SPI bit-serial interfaces. The
latter two are used mainly for sensor data, although there is a very nice I2C
peripheral that can display text messages. Later in the chapter, I will discuss
how to set up the USART2 USART to communicate with a PC terminal
program. However, I now need to discuss how to initially configure a
USART.

NOTE The software to initialize and configure UARTs and USARTs is
identical. Do not worry that a USART is being discussed, while the
function or typedef has UART in the name.

USART Configuration
STM USARTs are configured in a similar manner as GPIO pins, interrupts,
and timers that I have previously discussed. STM USARTs are initialized
using a C struct named UART_HandleTypeDef. It is configured using a C
struct named UART_InitTypeDef. I will first discuss the
UART_HandleTypeDef, which contains the following members:

Some of the more important members of this struct are discussed below:

• Instance: This is the pointer to the USART descriptor. For example,
USART2 is the descriptor of the UART associated to the ST-LINK
interface.

• Init: This is an instance of the C struct UART_InitTypeDef, which is
used to configure the UART interface.

• AdvancedInit: Used to configure more advanced UART features like
the automatic BaudRate detection and TX/RX pin swaps.

• pTxBuffPtr: Points to the transmit buffer used as the data source for
transmitted bytes.

• TxXferCount: Holds the count of transmitted bytes.

• pRxBuffPtr: Points to the receive buffer where incoming bytes will be
stored.

• RxXferCount: Holds the count of received bytes.

• Lock: This field is used internally by the HAL to lock concurrent
accesses to UART interfaces.

The C struct UART_InitTypeDef contains the following members:

These struct members represent the following USART parameters and
settings:

Baudrate: This parameter is the connection speed in bits per second. Table
8-1 shows a chart of standard and nonstandard baud rates that are available
with the STM USART peripheral.

Table 8-1 Baud Rate Chart

• WordLength: This value specifies the number of data bits transmitted or
received in a frame. This field can assume one of the following defines:

• UART_WORDLENGTH_8B

• UART_WORDLENGTH_9B

• StopBits: This field specifies the number of stop bits transmitted. This
field can assume one of the following defines:

• UART_STOPBITS_1

• UART_STOPBITS_2

• Parity: This value indicates the parity mode. This field can assume one
of the following defines:

• UART_PARITY_NONE

• UART_PARITY_EVEN

• UART_PARITY_ODD

• Mode: This value specifies whether the RX and/or TX mode is enabled

or disabled. This field can assume one of the following defines:

• UART_MODE_RX

• UART_MODE_TX

• UART_MODE_TX_RX

• HwFlowCtl :This value specifies whether the RS2326 Hardware Flow
Control mode is enabled or disabled. This field can assume one of the
following defines:

• UART_HWCONTROL_NONE

• UART_HWCONTROL_RTS

• UART_HWCONTROL_CTS

• UART_HWCONTROL_RTS_CTS

OverSampling: This value helps discriminate noise from true signal levels.
The selected oversampling rate is a tradeoff between noise immunity and
maximum possible communication speed. This field can assume one of the
following defines:

• UART_OVERSAMPLING_8

• UART_OVERSAMPLING_16

The above discussion details how a USART can be initialized and
configured, but I still need to explain how to set up a communication link
between the project board and a remote node, which will be the PC connected
to the board.

Windows Terminal Program
You will need a terminal program installed in order to display the text
messages being transmitted from the demonstration board. There are a
number of terminal programs that are free and readily available to download.
I chose a program named Realterm that is available from
https://sourceforge.net/projects/realterm/. It is full-featured terminal program
that I found very easy to configure and run. Figure 8-4 shows the Realterm
screen after I clicked on the Port tab.

https://sourceforge.net/projects/realterm/

Figure 8-4 Realterm Port screen.

Note that I selected the following parameters to match those configured in
the STM program:

• Baud—9600

• Parity— None

• Data Bits—8

• Stop Bits—1

• Hardware Flow Control—None

• Port—6

The last parameter named Port deserves some further explanation. This
value refers to the virtual com port number that was created when I installed
the ST-LINK Virtual COM Port USB driver into the host computer. In
Windows 10, I had to use the following lengthy sequence just to find the port

number:
Control Panel → Hardware and Sound → Devices and Printers → Device

Manager → Ports (COM & LPT)
Figure 8-5 shows the screen that appeared when I clicked on the Ports

(COM & LPT) selection.

Figure 8-5 Ports screen.

The USART2 peripheral is connected to the ST-LINK circuit, as shown in
the Figure 8-6 schematic.

Figure 8-6 USART2 connection to ST-LINK schematic.

GPIO pins PA2 and PA3 are connected as USART_TX and USART_RX,
respectively. It is also possible to use these pins as an external USART by
shorting the solder bridges SB62 and SB63. The pins would then be available
on both the Arduino and Morpho connectors, as discussed in a previous
chapter.

The Realterm program will be all set to display the USART output when
the program is run. However, there is an additional step that is required for
the USART to work as desired. This is described in the next section.

Enabling USART2
Up until this program, I have not had to use the IP tree pane view in the
CubeMX application to configure a peripheral. That has been done for me by
the application because I was only using GPIO pins for a program and not
any alternative functions. However, I will now need to enable the USART2
alternative function in order to have the communications link work. You
configure USART2 when creating a new project, and the Pinout window is
shown. Figure 8-7 shows how USART2 is configured by selecting
Asynchronous from the Mode dropdown menu.

Figure 8-7 Configuring USART2.

The CubeMX application will automatically insert an initialization method
static void MX_USART2_UART_Init(void) in the main.c file when the
USART2 function is enabled.

You need to set the appropriate communications parameters in this method
as shown in the following code snippet:

At this point, all the prerequisites have been introduced that are needed for

an actual USART demonstration program.

USART Transmit Demonstration Program
The following program will display a continuously varying value in a
terminal window. The purpose of this demonstration is to show how the
USART can transmit data to a terminal program.

A small amount of functional code has been placed in the forever loop.
The following code snippet shows this code with an explanation following
the listing.

The sprintf statement causes the double variable value to be converted
to a string with a carriage return and line feed concatenated to the value. The
next statement HAL_UART_Transmit(&huart2, (uint8_t*) msg, 10, 100);
performs the actual transmission of the data from the MCU to the terminal
program. The four arguments are as follow:

The next statement HAL_Delay(200); introduces a short delay between
displaying the value string. The last statement just slightly changes the value
variable to help with the display.

Test Run
The program was then built and downloaded into the project board. I then
started the Realterm terminal program to display the communication stream
from the board. Figure 8-8 shows the terminal output for the UART transmit
program.

Figure 8-8 Terminal output for the UART transmit program.

This program will also be used as a template for other book projects that
only need a terminal output.

USART Receive Demonstration Program
The following program will accept alphanumeric characters from a terminal
program and will also display those characters. It will also detect a specific
character sequence and light the user LED once it is detected. The purpose of
this demonstration is to show how the USART can both receive and transmit
data to/from a terminal program.

Because any received character will also trigger an interrupt, it is critical
that the USART2 global interrupt should be enabled. This is done by clicking
on the USART2 icon in the Configuration tab of the CubeMX program.
Please follow the same procedure that was used in the timer interrupt
example except you will be activating the USART2 global interrupt instead
of the TIM2 timer interrupt. Enabling the USART2 interrupt will also cause
the CubeMX application to automatically generate the associated callback

function where all the required interrupt handling statements will be placed.
All received characters are added to a data buffer within the callback
function.

Test Run
The program was then built and downloaded into the project board. I then
started the Realterm terminal program to display the communication stream
from the board. Figure 8-9 shows the terminal output for the UART
receive/transmit program.

Figure 8-9 Terminal output for the UART receive/transmit program.

I did note that the user LED did light when the phrase “LD2 on” was
entered. The LED went off when the next character was entered as was
expected.

This program will also be used as a template for other book projects that
need both terminal input and output.

Summary
I began the chapter with an explanation of both the universal asynchronous
receiver transmitter (UART) and the universal synchronous/asynchronous
receiver/transmitter (USART) internal peripherals. This discussion also
included how the data transfer protocol worked.

A discussion on how to configure a USART followed. The configuration
procedure used two C structs to configure and initialize the USART. I also
explained all the elements in both C structs.

I next showed how to install a terminal program, which is required to
display alphanumeric data sent out by the USART. I selected the open-source
terminal program named Realterm.

An explanation followed on how to enable the USART2 peripheral using
the CubeMX application. The USART2 selection was configured in the
CubeMX tree pane view. I also went through the procedure on how to
configure the device using the C struct.

A demonstration program was next shown, which displayed a numeric
variable that was continuously being updated.

The final demonstration displayed manually entered terminal data as well
as lighting an LED when a trigger phrase was entered.

9
Analog-to-Digital Conversion

This chapter covers a very important topic of analog-to-digital
conversion. The devices that actually do the conversions are called analog-to-
digital converters (ADCs). The STM line of MCU has a good variety of
ADCs; however, they all operate and are programmed in a similar manner.
There is a single ADC used in the project board STM32F302R8 MCU.
However, it can accept analog inputs from any 1 of 15 separate external lines.
There is a sixteenth ADC input, but it is permanently connected to an internal
temperature sensor and is not available for any other use.

Beginners in the embedded development sometimes question the need for
an ADC peripheral. The answer is that measurements in the real world are
taken typically using analog sensors that provide a continuous range of
voltages that are proportional to the environmental parameter that is being
monitored. For instance, the Analog Devices TMP36 temperature sensor,
shown in Figure 9-1, provides a range of voltages from approximately 0.1 to
2.0 V that is directly proportional to a range of temperatures roughly from –
40°C to 150°C. This analog voltage must be converted to an equivalent
digital number before being able to be processed by the MCU. That is the
role of an ADC.

Figure 9-1 Analog Devices TMP36 temperature sensor.

The following discussion provides a detailed explanation of how a STM
ADC functions.

ADC Functions
The technique used in STM ADCs is known as successive–approximation
register (SAR). The architecture for a SAR ADC is fairly simple as may be
seen in the block diagram, as shown in Figure 9-2.

Figure 9-2 SAR ADC block diagram.

An analog voltage is first inputted to a track/hold circuit. This circuit is
also commonly called a sample/hold circuit, which takes an instantaneous
sample of the varying analog voltage and uses that sample as the value to be
converted into a digital number. The N-BIT REGISTER block, shown in
Figure 9-2, is set at a mid-scale value. This value depends upon the number
of bits created in the final conversion. For this discussion, I will use only 4
bits for the conversion, which will be adequate to explain the conversion
process. In reality, the real STM ADC uses 12 bits. Getting back to the
register will mean a mid-scale value of 1000 will be preset in the register.
This value will therefore force the digital-to-analog converter (DAC) shown
in the figure as N-BIT DAC to output a voltage equal to VREF/2. VREF is a
reference voltage used by the ADC and is often the same as the supply or
power rail voltage. That would be 3.3 V for most STM MCUs.

A comparison between the sampled analog voltage held by the
TRACK/HOLD (VIN) module and the DAC output (VDAC) is then
accomplished by a COMPARATOR module shown in the upper right-hand
portion of Figure 9-2. The COMPARATOR will output a 1 if VIN is greater
than VDAC, otherwise it will output a 0. If a 1 is output, the most significant
bit in the N-BIT REGISTER will be retained, otherwise it will be reset to 0.

The SAR LOGIC module will then shift 1 bit to the right and repeat the
comparison process. This sequence is repeated until the least significant bit
(LSB) position is reached and processed. Once that point has been done, the
N-BIT REGISTER will then contain the complete digital equivalent to the
sampled analog input voltage. The SAR LOGIC module will then allow the
fully converted digital value to be released either in a parallel or serial format.

Figure 9-3 shows a complete 4-bit conversion sequence.

Figure 9-3 Four-bit conversion sequence.

The vertical axis represents the VDAC voltage and the horizontal axis
represents time. The result of the first conversion is to set the MSB to 0
because VIN is less than VREF/2. The SAR LOGIC module will then reset the
VDAC to VREF/4 before the next comparison. In this case, VIN is greater than
VREF/4 and the bit one position to the right of the MSB will be set to 1. Next,
the SAR LOGIC module will split the difference between VREF/2 and
VREF/4, which is 3VREF/8. This new comparison results in a 0 being output
from the COMPARATOR module. In actuality, the SAR LOGIC module
changes the VDAC voltage in some multiple of VREF/24 or VREF/16 for each
comparison operation. This results in the converging step-like waveform, as
shown in Figure 9-3. Some multiples of the step value are either added to or

subtracted from VDAC depending upon the result of the previous bit
comparison. In this case the resulting digital value held by the N-BIT
REGISTER is 0101, which is 5 in a decimal format. This all makes sense if
you equate VREF to 16 where each step in the VREF range is 1. The VIN line in
the figure would then be approximately at the 5 level.

I believe you can see that the SAR process converges fairly rapidly to a
final value. In this case, it took four comparisons, while a 12-bit ADC would
take 12 comparisons. The good news is the SAR LOGIC module operations
are all done in firmware with no MCU instructions required other than to start
the conversion.

ADC Module with HAL
The HAL framework uses a similar C struct to declare ADC peripherals, as
has been noted earlier when discussing GPIO pins and timer peripherals. The
following C struct is defined for an ADC. Each struct member will separately
be discussed after the struct definition.

The ADC_InitTypeDef struct members are defined in the following list:

uint32_t ClockPrescaler;—This defines the ADC clock speed
(ADCCLK) used in the ADC. This clock rate indirectly sets the maximum
sample rate possible with the ADC. The ADC prescaler has preset divider
rates starting at one and progressing at multiples of 2, that is, 2, 4, 6, or 8.
The ADC clock rate affects all MCU ADCs. This parameter can be any value
of the following ADC_ClockPrescaler defines:

uint32_t Resolution;—This value sets the ADC resolution. This parameter
can be any value of the following ADC_Resolution defines:

There is a definite relationship between the resolution and maximum

possible conversions that can be accomplished per second. This rule is the
greater the resolution, the lower the maximum conversion rate.

uint32_t DataAlign;—This value establishes how the bits in the N-Bit
register are aligned. This parameter can be any value of the following
ADC_DATAALIGN defines:

uint32_t ScanConvMode;—This value specifies the ADC mode. It is either
single or continuous. This parameter can be either value of the following
ADC_SCAN defines:

uint32_t EOCSelection;—This value sets the flag type indicating an end of
a conversion (EOC). The flag type value also depends upon the ADC mode,
which may be single or continuous. This parameter can be set to either of the
following ADC_EOC defines:

uint32_t ContinuousConvMode—Specifies whether the conversion is
performed in single mode (one conversion) or continuous mode for regular
group, after the selected trigger occurred (software start or external trigger).
This parameter can be set to ENABLE or DISABLE.

uint32_t NbrOfConversion;—This value specifies the number of ranks or
channels that will be converted within the regular group sequencer. To use
regular group sequencer and convert several ranks, parameter
‘ScanConvMode’ must be enabled. This parameter must be a number
between Min_Data = 1 and Max_Data = 16.

uint32_t DiscontinuousConvMode;—This value specifies whether the
conversion sequence of regular group is performed in Complete

sequence/Discontinuous sequence (main sequence subdivided in successive
parts). Discontinuous mode is used only if sequencer is enabled (parameter
‘ScanConvMode’). If sequencer is disabled, this parameter is discarded.
Discontinuous mode can be enabled only if continuous mode is disabled. If
continuous mode is enabled, this parameter setting is discarded. This
parameter can be set to ENABLE or DISABLE.

uint32_t NbrOfDiscConversion;—This value specifies the number of
discontinuous conversions in which the main sequence of regular group
(parameter NbrOfConversion) will be subdivided. If parameter
‘DiscontinuousConvMode’ is disabled, this parameter is discarded. This
parameter must be a number between Min_Data = 1 and Max_Data = 8.

uint32_t ExternalTrigConv;—This value selects the external event used to
trigger the conversion start of regular group. If set to
ADC_SOFTWARE_START, external triggers are disabled. If set to external
trigger source, triggering is on event-rising edge by default. This parameter
can be a value in the format of ADC_External_trigger_Source_Regular and is
one of the following defines:

uint32_t ExternalTrigConvEdge;—This value selects the external trigger
edge of regular group. If trigger is set to ADC_SOFTWARE_START, this
parameter is discarded. This parameter can be a value in the format of
ADC_External_trigger_edge_Regular and is one of the following defines:

uint32_t DMAContinuousRequests;—This value specifies whether the
DMA requests are performed in one shot mode (DMA transfer stop when
number of conversions is reached) or in continuous mode (DMA transfer
unlimited, whatever number of conversions). Note: In continuous mode,
DMA must be configured in circular mode. Otherwise, an overrun will be
triggered when DMA buffer maximum pointer is reached. Note: This
parameter must be modified when no conversion is ongoing on both regular
and injected groups (ADC disabled, or ADC enabled without continuous
mode or external trigger that could launch a conversion). This parameter can
be set to ENABLE or DISABLE.

Don’t be too discouraged by the extent of the above listings. The actual
declaration and configuration of a STM ADC peripheral is straightforward
and reasonably easy to understand as you will shortly realize by examining a
demonstration. However, I still need to cover some remaining ADC topics
before proceeding to a real demonstration.

ADC Conversion Modes
There are few common ways to use one or more input channels with an ADC.
These ways are known as conversion modes and I will cover the most
popular conversion modes next.

Single Channel/Single Conversion
This is the absolute simplest mode. Figure 9-4 shows a block diagram for this
mode.

Figure 9-4 Single channel/single conversion ADC mode block diagram.

In this mode, the ADC takes or more accurately samples the analog
voltage present on a selected input line or channel and converts that voltage
to a digital number. The number is then read from the ADC and used in any
application that requires it.

Multi-channel Scan/Single Conversion
This mode is a little more complex than the previous one. In this mode,
multiple input analog lines are sampled and the sampled voltage levels are
then converted into digital numbers. The block diagram for this mode is
shown in Figure 9-5.

Figure 9-5 Multi-channel scan/single conversion ADC mode block diagram.

One of the exceptionally nice features for this mode is that each channel is
independent and may be configured to have different sample rates, trigger
sources, and other custom items. This feature is implemented by using a

ranks object. By using ranks, the MCU does not have to stop and reconfigure
each channel for its custom configuration. This mode only does one scan and
the result numbers are often directly stored in a memory using a direct
memory access (DMA).

Single Channel/Continuous Conversion
In this mode, a single channel is continuously being sampled and the
resulting digital numbers are continuously being stored in memory. This
mode almost always uses DMA to alleviate excessive load on the MCU. This
mode is ordinarily use for real-time monitoring of sensors or other
environmental devices.

Multi-Channel Scan/Continuous Conversion
In this mode, multiple channels are being continuously sampled and the
resulting digital numbers are stored in memory. This mode demands that
DMA be used to alleviate an intolerable computation load on the MCU. This
mode is ordinarily used for comprehensive real-time monitoring of sensors or
other environmental devices.

Channels, Groups, and Ranks
The number of channels that can be converted varies with the particular STM
MCU being used. That number is set at 16 for the STM32F302R8 MCU used
in the Nucleo project board. Sequences of channel conversions may be set up
within independent collections known as groups. Channels may be arranged
in any order within a specific group.

Input channels are hardware based and thus fixed and linked to specific
MCU pins, that is, IN0 is the first channel, IN1 the second, and so on. They
can, however, be logically reordered to form a custom sampling sequence
within a group. The reordering of channels is done by assigning the input
channel to an index ranging from 1 to 16. This index is called rank in the
HAL.

Figure 9-6 shows this concept. Although the IN3 channel in the figure is
fixed, for example, it is connected to PA3 pin in an STM32F302R8 MCU, it
can be assigned to the rank 1 to make it the first channel to be sampled.

Figure 9-6 ADC diagram showing channels and ranks.

The following C struct is defined for an ADC_ChannelConfTypeDef. Each
struct member will separately be discussed after the struct definition.

The ADC_ChannelConfTypeDef struct members are defined in the
following list:

uint32_t Channel;—This value specifies the channel to configure into
ADC regular group. This parameter can be any value of the following
ADC_CHANNEL defines:

uint32_t Rank;—This value specifies the rank in the regular group
sequencer. This parameter must be a number between Min_Data = 1 and
Max_Data = 16: This parameter can be any value of the following
ADC_REGULAR_RANK defines:

uint32_t SamplingTime;—The sampling time value to be set for the
selected channel in units of ADC clock cycles. The total conversion time is
the addition of sampling time and processing time (12 ADC clock cycles at
ADC resolution 12 bits, 11 cycles at 10 bits, 9 cycles at 8 bits, 7 cycles at 6
bits). This parameter can be any value of the following ADC_SAMPLETIME
defines:

CAUTION: This parameter updates the parameter property of the channel,
which can be used into regular and/or injected groups. If this same
channel has been previously configured in the other group
(regular/injected), it will be updated to last setting. In case of usage of
internal measurement channels (VrefInt/Vbat/TempSensor), sampling time
constraints must be respected (sampling time can be adjusted in function
of ADC clock frequency and sampling time setting).

uint32_t Offset;—Reserved for future use, can be set to 0.

ADC Demonstration
The ADC, like many STM peripherals, can be controlled using one of three
methods:

• Polling

• Interrupt

• DMA

This first demonstration will use polling as the control approach because it
is the simplest and will allow the focus to be mainly on the ADC process.

The initial step is to create a reference to a ADC_HandleTypeDef struct and
then assign the appropriate values to struct members that will define the ADC
instance to be implemented. This new instance will next be configured using
the ADC_InitTypeDef struct, which requires a reference to the now defined
ADC_HandleTypeDef struct. It will time to initialize and start the ADC once
all the ADC_InitTypeDef struct members have been defined. The initialize
and start commands are accomplished using these calls:

The ADC will then either do one conversion if the single mode was
selected or continue with a stream of conversions if the continuous mode was
selected. In the case of the single mode, the HAL_ADC_Stop() method must
first be called to stop the ADC thread and then the HAL_ADC_Start() method
must be called again to do another conversion.

Any application desiring access to the converted data must use the
following method when using polling to determine when an ADC conversion
has finished and the data is available:

The argument methods are a pointer to the ADC_HandleTypeDef struct and
an integer named Timeout representing the maximum number of milliseconds
to wait for data to be available from the ADC register. It is also possible to
use the define HAL_MAX_DELAY for the Timeout value, which will cause
the system to wait indefinitely for data. I would not recommend that approach
because it has the potential to “hang” the system without any apparent
symptom.

You must use the following method to actually transfer the data from the
ADC register to any user application:

It is now appropriate to discuss the Analog Devices TMP36 temperature
sensor, which I introduced at the chapter’s start. This sensor will be the
analog voltage source used for the ADC demonstration.

Analog Devices TMP36 Temperature Sensor
An image of this sensor has been shown in Figure 9-1. It is housed in a
regular TO-92 plastic case with three leads as shown in the figure. It does,
however, contain quite a bit of internal components that allow it to output a
DC voltage that is proportional to the ambient temperature surrounding its
case. This sensor is also very inexpensive and is readily available from a
number of online sources. The sensor specifications are listed below:

• Size: TO-92 package (about 0.2″ × 0.2″ × 0.2″) with three leads

• Temperature range: –40°C to 150°C/–40°F to 302°F

• Output range: 0.1V (–40°C) to 2.0 V (150°C) (decreasing accuracy
after 125°C)

• Power supply: 2.7 V to 5.5 V only, with a typical 0.05-mA current draw

Figure 9-7 shows to what each lead should be connected.

Figure 9-7 TMP36 lead connections.

The leads should be connected to the Arduino protoboard, as detailed in
Table 9-1.

The temperature is very easy to calculate using the following equation:

°C = [(Vout in mV) – 500] /10

The equivalent temperature in °F is also easily calculated using this
conversion equation:

°F = (9 * °C/5) + 32

It is now time to discuss the main.c file as all the precursor items have
been introduced and explained.

Enabling ADC1
I will now need to enable the ADC1 alternative function in order to have the
analog-to-digital conversion function. You configure ADC1 when creating a
new project and the Pinout window is displayed. Figure 9-8 shows how the
ADC1 peripheral is enabled by selecting IN1 Single-ended from the ADC1
IN1 dropdown menu.

Figure 9-8 Enabling the IN1 channel in ADC1.

The CubeMX application will automatically insert an initialization method
static void MX_ADC1_Init(void) in the main.c file when the ADC1
functionality is enabled.

The appropriate ADC parameters are automatically set for you based upon
the parameters you set in the ADC1 IP tree view, as shown in the following
code snippet:

Connecting ADC1 to the TMP36 Sensor
Figure 9-9 shows how I connected the TMP36 temperature sensor to the
ADC1 internal peripheral using a solderless breadboard, jumper leads, and
the Arduino protoboard.

Figure 9-9 Interconnections between the TMP36 sensor and the Arduino protoboard.

The TMP36 lead connections have been previously detailed in Table 9-1.
You will need three jumper leads to connect the sensor to the Arduino

protoboard.

Table 9-1 TMP36 Lead Connections

At this point, all the prerequisites have been introduced that are needed to
demonstrate an actual ADC program.

ADC Demonstration Software
The following program is based on the USART program shown in the
previous chapter. This step was taken because the processed ADC output is
required to be displayed in a terminal window. The main.c file now has a new
method that configures and initializes the ADC1 internal peripheral.

There is also new functional code that runs within the forever loop. This
code is shown in the following code snippet with detailed explanations
following the listing:

All the statements within the code snippet are discussed below:

• HAL_ADC_Start(&hadc1);—Starts the ADC1 internal peripheral.

• HAL_ADC_PollForConversion(&hadc1, 100);—Waits for an end-of-
conversion (EOC) signal before proceeding to the next instruction. The
100 value is the maximum time in milliseconds to wait for the EOC
signal. This is a blocking type instruction.

• raw = (double) HAL_ADC_GetValue(&hadc1);—Transfer the value
from the adc output register to the raw variable. This is a 12-bit value
with a maximum numerical value of 4095, which is roughly equivalent
to 5 V. The value is also cast to a double format.

• raw = raw * 0.452;—Conversion from a raw count to an absolute
mV output. The scaling factor 0.452 was determined using a precision
voltage measurement.

• value = (raw - 500.0)/10;—The raw mV value is converted to a °C
temperature using the TMP36 equation.

• value = (9*value)/5 + 32;—Classic equation to convert from °C to
°F.

• sprintf(msg, “%f\r\n”, value);—Causes the double variable value
to be converted to a string with a carriage return and line feed
concatenated to the value.

• HAL_UART_Transmit(&huart2, (uint8_t*) msg, 20, 100);—
Performs the actual transmission of the data from the MCU to the
terminal program

• HAL_Delay(1000);—Inserts a one second delay between samples.

The complete main.c program is listed below:

Test Run
The program was then built and downloaded into the project board. I then
started the Realterm terminal program to display the communication stream
from the board. Figure 9-10 shows the terminal output.

Figure 9-10 Terminal output.

I tried cooling and heating the sensor and saw the sensor reacting
according to the ambient temperature.

Summary
Analog-to digital conversion (ADC) was the chapter’s topic. There was an
explanation of how the 16-channel, 12-bit ADC works within the MCU. It
uses a successive approximation technique to acquire precise numerical
samples of a continuously varying analog input.

The discussion next turned to how the HAL framework supports the ADC
function. I went through the two C structs that both configure and initialize
the ADC peripheral. The discussion also included the various conversion
modes, channels, groups, and ranks.

A full-scale ADC demonstration closed out the chapter. A TMP36
temperature sensor was used as an analog voltage source to the ADC. The
program used the USART2 peripheral to stream out continuous temperature
readings to a terminal window.

10
Pulse Width Modulation (PWM)

This chapter concerns pulse width modulation (PWM), which is a digital
signal easily generated by a MCU for a variety of purposes. These purposes
commonly include controlling the following:

• A standard servo motor’s position

• The rotational speed of a continuous rotation servo

• The luminescence of a light emitter

• The rotation speed of a standard electric motor with external driver
circuitry

• A photovoltaic solar battery charger

• The maximum power-point track

• An output waveform such as sine, triangle, or square

• An acoustic sound generator

This chapter’s projects will demonstrate how to control the luminescence
(light intensity) of a normal LED, the color and luminescence of a tricolor
LED, and the positioning of a standard servo motor.

It is wise to first discuss the nature and properties of a PWM signal before
proceeding to show how to generate that using the STM project board. Figure
10-1 is a typical PWM signal with various properties annotated in the figure.

Figure 10-1 Typical PWM signal.

The first thing to note is that the signal is repetitive with a frequency
around 50 Hz or an equivalent 20 ms period. This frequency is very common
in servo control and it will be what I will use for the chapter projects.
However, there is nothing limiting about this frequency and you can use any
value up to the limit of what the MCU can support.

The second important feature is the duty cycle, which is a percentage of
the amount of time the signal is in a high state to the total period, which is the
sum of the high and low times. Duty cycle is often considered the primary
property for a PWM signal, for it solely determines the servo position and
LED luminescence.

It turns out that each type of device being controlled by PWM acts
differently with the signal. I will describe each specific interaction when I go
through the device demonstration.

General-Purpose Timer PWM Signal Generation
PWM signals are generated only by using either an advanced or a general
purpose (GP) timer. This section describes the process on how this is done.

The signal generation is relatively simple and involves using a timer in an
upcounting mode. The top portion of Figure 10-2 shows a timer counting up
from 0 to a maximum 16-bit count equal to 65535.

Figure 10-2 PWM signal generation.

Each GP timer has a series of registers known as compare capture registers
(CCRx), which store a number. When the upcounting reaches that number, an
event is generated that depends on the timer mode. If the timer is set for a
direct output as is the case for this PWM mode, then the event will be to turn
on the channel associated with the CCRx register. In Figure 10-2, channel 1
is switched high when the count reaches 52428. The channel remains high
until the timer counter reaches the maximum count (MAX) and overflows or
resets as shown in the top waveform. The net result of this action is that a
repetitive pulse is emitted from the channel 1 line with a 20% duty cycle. The
following equation relates the timer count with the duty cycle (DC):

This equation may be rearranged to find the CCRx value given a desired
duty cycle:

In Figure 10-2, I have also shown an additional channel output with a
desired 60% duty cycle but no specific count shown for the CCRx register. I
will use the second form of the equation to solve for T2, which is the count
value to be stored in register CCR2:

Therefore, storing a value of 26214 in CCR2 will cause a 60% duty cycle
pulse train to be generated from TIM2’s channel 2 output. Please note that
the numbers I used for this calculation are relative in the sense that the actual
CCRx numbers stored depend upon the real timer clock rate. You will shortly
see that the numbers are much smaller, but the principle to figure them out is
the same.

The TIM2 GP timer I used for PWM generation has a maximum of four
output channels, meaning that it is possible to simultaneously generate four
synchronized PWM signals using a single GP timer. One of the following
demonstrations uses three channels, which is ample to demonstrate this
capability.

Timer Hardware Architecture
Figure 10-3 is a portion of the GP timer block diagram highlighting the multi-
channel outputs and associated CCRx registers.

Figure 10-3 GP timer block diagram with four output channels.

The architecture is very straightforward, showing that each CCRx register
has an input from the common timer counter (CNT) register as well as its
own prescaled clock-rate input. This arrangement enables a very flexible
PWM pulse train output to be implemented.

It is now time to describe how the HAL software enables PWM signal
generation.

PWM Signals with HAL
The HAL framework uses a C struct named TIM_MasterConfigTypeDef to
configure the timer peripheral generating a PWM signal. Each member will
separately be discussed after the struct definition.

The TIM_MasterConfigTypeDef struct members are briefly defined in the
following list:

uint32_t MasterOutputTrigger;—This value specifies the behavior of the
trigger output (TRGO). This parameter can be any value of the following

defines:

uint32_t MasterSlaveMode;—This is used to enable/disable the
master/slave mode of a timer. This parameter can be one of the two values of
the following defines:

A PWM timer configured using the TIM_MasterConfigTypeDef struct
must further be initialized using the TIM_OC_InitTypeDef C struct, which is
defined as follows:

The TIM_OC_InitTypeDef struct members are briefly defined in the
following list:

uint32_t OCMode;—Specifies the output compare mode. This parameter can
be any value of the following defines:

TIM_OCMODE_TIMING—The comparison between the output compare register
(CCRx) and the timer counter (CNT) has no effect on the output, which is
known as a frozen mode.

TIM_OCMODE_ACTIVE—Set the channel output to active level on CCRx match.

TIM_OCMODE_INACTIVE—Set channel output to inactive level on CCRx match.

TIM_OCMODE_TOGGLE—Toggle channel output when the timer counter (CNT)

matches the CCRx.

TIM_OCMODE_FORCED_ACTIVE—Force channel output high independently from
the timer counter (CNT) value.

TIM_OCMODE_FORCED_INACTIVE—Force channel output low independently
from the timer counter (CNT) value.

NOTE PWM Mode 1: When the timer is upcounting, the channel will be
active for as long as the Period is less than the Pulse, otherwise it is
inactive. In a downcounting mode, the channel is inactive for as long as
the Period is greater than the Pulse, otherwise it is active.

PWM Mode 2: When the timer is upcounting, the channel will be inactive
as long as the Period is less than the Pulse, otherwise it is active. In
downcounting mode, the channel is active for as long as the Period is greater
than the Pulse, otherwise it is inactive.

uint32_t Pulse;—This value be stored inside the CCRx register and it
establishes when the output is triggered.

uint32_t OCPolarity;—Define the output channel polarity when the CCRx
registers matches with the CNT. This parameter can be one of the two values
of the following defines:

uint32_t OCNPolarity;—Define the complementary output polarity. It is a
mode available only in TIM1 and TIM8 advanced timers, which allow two
additional dedicated channels to generate complementary signals, i.e., when
the channel 1 is HIGH then channel 1N is LOW and vice versa. This feature
is especially useful for motor control applications. This parameter can be one
of the two values of the following defines:

uint32_t OCFastMode;—Specifies the fast mode state. This parameter is
valid only in PWM1 and PWM2 mode. This parameter can be one of the two
values of the following defines:

uint32_t OCIdleState;—Specifies the state of the channel output compare
pin during the timer idle state. This parameter can be one of the two values of
the following defines:

NOTE This parameter is available only in TIM1 and TIM8 advanced timers.

uint32_t OCNIdleState;—Specifies the state of the complimentary channel
output compare pin during the timer idle state. This parameter can be one of
the two values of the following defines:

NOTE This parameter is available only in TIM1 and TIM8 advanced timers.

Enabling the PWM Function
You now need to enable the PWM alternative function in order to have the
pulse width modulation function. The timer TIM2 is initially configured
when creating the new project and having the Pinout window displayed.
Figure 10-4 shows how TIM2 peripheral with PWM functionality is enabled
in the Pinout view by selecting PWM direct output for channel 1 in TIM2.
The PA1 pin is the channel 1 output.

Figure 10-4 Enabling timer TIM2 with PWM output on channel 1.

The CubeMX application will automatically insert an initialization method
static void MX_TIM2_Init(void) in the main.c file when the TIM2 PWM
function is enabled. Some additional parameters should also be set in the
TIM2 object using the CubeMX Configuration tab, as shown in Figure 10-5.

Figure 10-5 Configuration menu settings.

All of the initial PWM parameters are automatically set for you in the C
code based upon the parameters you set in the TIM2 PWM IP tree view and
the Configuration menu as shown in the following code snippet:

PWM Demonstration Software
The newly generated main.c file now has a method that configures and
initializes the TIM2 internal peripheral with a PWM output on its channel 1.
There is no functional code running within the forever loop. The PWM signal

generation is all done automatically in the background. This code is shown in
the following code listing:

You should note that I set the prescaler to a 655 value. This meant that the
TIM2 clock input would be at a frequency approximately equal to 977 kHz
with a period of 10.23 µs. This value ensured that the timer resolution would
allow for setting very precise pulse widths.

Demonstration One

This demonstration uses the values set during the initial configuration to
generate a 50% duty cycle waveform. The program was first built and then
downloaded into the project board. I used a USB oscilloscope to observe the
PWM signal generated from the TIM2, channel 1 output, which is emitted
from pin PA1. Figure 10-6 shows this waveform.

Figure 10-6 Fifty percent duty-cycle PWM waveform.

You should be able to see that the period of the over signal is 20 ms and
the high time for the pulse is 10 ms, which creates the 50% duty cycle as
expected. This waveform used a prescaler value equal to 655, which caused
each timer count to be 10.23 µs as discussed above. The Period value was set
at 1960, which means the actual period time is 1960 times 10.23 µs or
20050.8 µs, equivalent to 20.0508 ms. That was close enough for my
purposes. The CCR1 register held a value of 980, which meant the output
switched at 980 times 10.23 µs or 10025.4 µs, equivalent to 10.0254 ms. This
is extremely close to a 50% duty cycle for all practical purposes. This
demonstration proved that the PWM generation was working as desired.

Table 10-1 is provided as a handy reference showing a series of CCRx
values that will generate a respective duty cycle given that value. Note that
the small duty cycles shown at the table’s beginning are important for the
servo control demonstration. This table is based upon a 50 Hz or 20 ms
period PWM signal.

Table 10-1 CCRx Values and Corresponding Duty Cycles and Pulse High Times

Demonstration Two
This demonstration controls the intensity or luminescence of a single, red
LED, using a PWM output as shown in the previous demonstration. The only
parameter to be varied is the CCRx value assigned in the main method by this
statement:

I chose to vary this value by editing the main.c file and then quickly
rebuilding it. This process was very fast and not cumbersome at all. You
could also set up an OpenOCD session and adjust the value in a dynamic
fashion, but I found the edit, build, and download process to be very
convenient without the bother of creating a telnet session. I would suggest
you try both approaches and use whichever you find useful and productive.

Connecting Channel 1 PWM Output to an
LED/Resistor
Figure 10-7 shows the connections for the same LED/resistor combination,
which I earlier used for the project demonstration in Chapter 5. The

LED/resistor is connected between PA1 and ground using the Arduino
protoboard.

Figure 10-7 LED/resistor connected on the Arduino protoboard.

Test Results
I observed that the LED luminescence did vary considerably with the duty
cycle of the applied PWM signal. You should realize one important
distinction between dimming an incandescent bulb and an LED. The
incandescent bulb intensity corresponds to the average voltage applied to it,
while the LED luminescence depends on your eye’s integrative response. By
this, I mean the voltage applied to the LED is at a constant level, but the time

interval applied varies with the duty cycle. The human eye will tend to
integrate or average out the LED light intensity and thus perceive different
intensities for varying duty cycles. The eye also has a nonlinear relationship
between actual luminance and perceived brightness, as shown in Figure 10-8.

Figure 10-8 Human eye brightness perception.

What this all means is that the eye will more easily recognize different
LED luminescence at small duty cycles but will not perceive any significant
differences as the duty cycle increases. There are equations that model the
eye brightness to luminance relationship quite well and have been codified as
the CIE1931 lightness formula. White light LED manufacturers have
modified their products using this relationship to make their commercial
LEDs have a linear dimming property. I have not done this with this single
LED demonstration, but it is quite doable and you would put the code into the
main.c forever loop.

I did try to capture the intensity difference between 100% and 10% duty
cycles. Figure 10-9 is a composite photograph with the 100% PWM on the
left and the 10% PWM on the right.

Figure 10-9 100% and 10% PWM signal-duty cycles applied to a red LED.

The camera shutter speed that was required for these images was fairly
long, which tended to make the 10% image much brighter than it actually
was. I guess you will just have to duplicate this demonstration and see the
actual duty cycle versus perceived luminance for yourself.

Demonstration Three
In this demonstration I will be controlling a RGB LED that has three input
lines, one for each color. GP timer TIM2 will be reconfigured to have three
PWM outputs connected to each of the LED’s lines. The PWM lines will
control both the LED color and luminescence based on the duty cycle set on
each line.

The first step is to create a new CubeMX project to handle the additional
PWM lines. Figure 10-10 shows the Pinout view where I have configured
TIM2 for four channel outputs, of which I will use the first three to control
the RGB LED.

Figure 10-10 Enabling timer TIM2 with PWM output on channels 1 to 4.

The configuration menu is exactly the same as previously shown in Figure
10-5.

Connecting Channel PWM Outputs to a RGB LED
Figure 10-11 is a schematic showing the connections between the RGB LED
and the timer GPIO pins as connected on the Arduino protoboard. Note that
each LED line has a series current limiting resistor to protect both the GPIO
pin and the RGB LED.

Figure 10-11 RGB to Arduino protoboard connection schematic.

The timer TIM2 channel outputs are on the following pins:

• Channel 1—PA0

• Channel 2—PA1

• Channel 3—PB10

• Channel 4—PB11

Figure 10-12 shows the physical setup for a RGB LED connected to an
Arduino protoboard.

Figure 10-12 Physical RGB LED connections to an Arduino protoboard.

Software Modifications
A modified MX_TIM2_Init method will be added to the main.c file based on
the additional channel outputs. This new method is listed below:

There is also some new code that must be entered into the main method.
This new code is listed below:

Note that each of the RGB channels was initialized at a 50% duty cycle.

Test Results
The RGB LED initially showed a bright white light, which was expected
because all the individual LED components had the same duty cycle. I then
reset the individual CCRx registers to separately test each color and
confirmed that they were operating properly. I also tried varying the duty
cycles to create different colors with little success because of the way the
RGB LED was constructed. It did not merge the light from each colored LED
and therefore did not properly create an alternate color, which you can do if
you were mixing paint. I believe I would have been successful if I had used a
more expensive RGB LED with some built-in optics, but unfortunately all I
had was a very inexpensive RGB LED. In any case, the objective for this
demonstration was to show you how to create and use multiple PWM
outputs, which I believe was achieved.

Demonstration Four
This last demonstration will focus on using a single PWM signal to control a

hobby-grade servo motor. I will be using the same program that was used for
the first two demonstrations and no code modifications are required. I will
start the demonstration by reviewing some basic facts regarding how analog
servos are controlled.

Analog Servo Control
An analog servo is essentially an electric motor that has a built-in electronic
circuit that converts specific pulse widths into a proportional rotation. The
specifications for hobby-grade analog servos are fairly “relaxed” meaning
that there are loose tolerances relating pulse width to physical rotation. This
is mainly due to the use of very low cost components in both the electrical
and mechanical components that comprise the servo. Table 10-2 details pulse
width and expected rotation.

Table 10-2 Pulse Width and Servo Rotation

An analog servo should not move from its neutral position when it is sent
a repetitive 1.5-ms pulse signal. A 1.0-ms pulse train will cause it to rotate its
main shaft counter-clockwise 60°if viewed from head-on. Similarly, a 2.0-ms
pulse train will cause it to rotate clockwise 60°. However, loose tolerances
come into play and often the degree of rotation can be 10° to 15°, more or
less.

In all cases, the pulse train frequency is set at a nominal 50 Hz or 20 ms
period.

Figure 10-13 shows the hobby-grade servo I used for this demonstration. It
is a Hitec model HS-311, which is a reliable, well-built servo.

Figure 10-13 Hitec model HS-311 analog servo.

This servo takes quite a bit of current to operate, somewhat in excess of
what the STM project board can provide. Consequently, I used a separate
supply for it as may be seen in the Figure 10-14 connection schematic.

Figure 10-14 Servo connection schematic.

The servo control signal from the PWM output only requires several
milliamperes, which is well within the GPIO pin drive capabilities.

Figure 10-15 shows the waveform for the 1.5-ms neutral position signal. It
is a nice, clean signal with sharp rise and fall times, which are important for
proper servo control.

Figure 10-15 1.5-ms servo control signal.

The 1.0-ms and 2.0-ms waveforms are very similar except for the pulse
width.

Figure 10-16 shows the physical setup with the analog servo connected to
a solderless breadboard, which in turn is connected to the Arduino protoboard
with jumper wires.

Figure 10-16 Servo test setup.

Test Results
I first changed the CCR1 value to 148, which causes a 1.5-ms pulse width to

be generated. The servo immediately moved to its neutral position after the
program was downloaded into the project board. I repeated the previous step
with a CCR1 equal to 98, which generates a 1.0-ms pulse width. The servo
responded by moving its main shaft 60° counter-clockwise. Finally, I
changed CCR1 to 196, which generates a 2.0-ms pulse width. The servo’s
main shaft rotated clockwise 120° as expected.

The servo performed flawlessly and showed no signs of jitter or vibration,
which sometimes occurs with using hobby-grade servos.

I next added some functional code and placed it in the forever loop to
continuously exercise the servo, thus eliminating the need to edit, rebuild,
and download the controlling program.

Adding Functional Test Code
The following C code was placed within the main.c file in order to
continuously control the servo. This code caused the servo main shaft to
slowly oscillate between the ±60° end points.

Test Results
I observed the servo main shaft to slowly oscillate between the end points as
expected after the modified code was downloaded into the project board.

This final demonstration concludes the chapter. I believe I have provided
you with a sufficient background that will enable you to successfully use
servos with a STM Nucleo board.

Summary
I started this chapter on pulse width modulation (PWM) by explaining what

makes up a PWM signal and detailing certain key properties of that signal.
This was followed by a brief discussion of how the STM timer hardware
generates a PWM signal.

Next came a discussion on how the HAL framework is used to both
configure and initialize a general purpose (GP) timer to emit a PWM signal.

A complete C code listing was shown that generated a PWM signal with a
50% duty cycle and a 50-Hz output frequency.

Next followed the first of four PWM demonstrations. The first PWM
demonstration just output the 50% duty cycle waveform that was generated
by the project board after the code was built and downloaded into the board.

The second demonstration used a varying duty-cycle waveform to dim and
brighten a red LED.

The third demonstration used multi-channel PWM waveforms to control
both the color and intensity of a RGB LED.

The fourth and final demonstration illustrated how to control a standard
analog servo using PWM signals.

11
Direct Memory Access (DMA) and

the Digital-to-Analog Converter
(DAC)

This chapter content is carefully chosen to explain direct memory access
(DMA) and the very useful digital-to-analog converter (DAC) peripheral,
which takes advantage of efficient DMA data transfers. There are also several
demonstration projects shown in the chapter, which show both DMA and
DAC operations. The last one shows how to use DMA with the DAC
peripheral

DMA
Data is normally transferred by using instructions executed by the Cortex-M
core processor. This data is normally sent to or from internal memories and
peripherals. This data transfer process consumes valuable processor cycles
that could otherwise be put to use within a constrained embedded system.
This is the reason why the DMA controller was designed. It can assume the
data transfer process in many cases and allow the core processor to take on
other critical embedded system processes.

Technically, the DMA controller can be considered a peripheral device;
however, I prefer to think of it as more like a co-processor than a peripheral.
Unlike any other peripheral, the DMA controller can take on the role of being
a bus master, which is not allowed for any other device other than the core
processor itself. In fact, thinking of the DMA controller as more of a bus

controller is a good way to view this device.
Figure 11-1 is a block diagram for the DMA controller used in the project

board’s STM32F302R8 MCU. This figure will be very useful in explaining
how the DMA controller works.

Figure 11-1 DMA block diagram.

NOTE DMA2, SPI1, TIM3, TIM4, UART4, UART5, and ADC2 are not
available in the STM32F302R8 MCU.

It would be worthwhile to consider some of the basics of data transfers
before going into the specifics of DMA operations.

Basic Data Transfer Concepts
Figure 11-2 is a simplified system block diagram where all the DMA
components have been removed from Figure 11-1. The purpose of this
diagram is to focus on how data transfers happen between the core processor
and all remaining system peripherals.

Figure 11-2 Data transfers between the core processor and system peripherals.

You should clearly see that all data transfers between the core Cortex-M
processor and any peripheral or internal memory must go through either the
Bus Matrix or FLITF blocks. There is simply no other way that data can
reach the processor. Every data transfer requires some amount of processor
cycles to complete. For example, the processor must handle all data sent by
an external device connected to a UART peripheral where that data is to be
designated to be stored in SRAM. It is important to realize that the processor
does not modify or change the data in any way, but simply sends it along to
the proper memory storage locations. This requirement for core processor
involvement ties up precious cycles that otherwise could be utilized for more

efficient operations. A somewhat analogous model is where data is
represented by cars and the processor by a city. Cross-country drivers
wanting to go to a distant location are forced to go through a city with all its
traffic lights and congested streets. It would be much better for the drivers if a
bypass highway were available, allowing them to avoid going through the
city. The DMA controller plays the role of the bypass.

Returning to Figure 11-1, you should be able to see that DMA1 controller,
in the case of the STM32F302R8 MCU, connects directly to the Bus Matrix.
This controller, as I earlier mentioned, is set up to be a bus controller or
master and thus is able to configure the Bus Matrix to directly connect data
between peripherals and internal memory, memory to memory, or even to
another peripheral. These configurations are naturally named as follows:

• Peripheral-to-memory transfers

• Memory-to-peripheral transfers

• Peripheral-to-peripheral transfers

• Memory-to-memory transfers

The Bus Matrix controls the access of both the core processor and the
DMA controller to various data busses, memory, and peripherals. It
implements this control with a Round Robin algorithm, which ensures
equitable access to both controllers. Figure 11-3 is a block diagram
illustrating how the Bus Matrix is connected with all the system components.

Figure 11-3 Bus Matrix block diagram.

The Bus Matrix is a complex circuit that interconnects the following
master and slave devices:

• Core Cortex-M processor (master)

• DMA controller(s) (master)

• Flash memory interface (FLITF) using the ICODE (slave)

• Flash memory interface (FLITF) using the DCODE buss (slave)

• Direct connection to SRAM (slave)

• Advanced High-Speed Bus 1 (AHB1), which connects to the Advanced
Peripheral Busses (AHB1 and AHP2) through bridge circuits (Bridge 1
and Bridge 2) (slave)

• Advanced Peripheral Bus (APB) connected to the GPIO pins (slave)

• Direct connection to the ADC1 peripheral (slave)

DMA Controller Details
Every STM32 DMA controller contains two master ports, one named the
memory port, which connects to internal memory such as SRAM and flash.
The other is named the peripheral port and it connects to the Advanced High-
Performance Bus (AHB). The AHB in turn connects with the slave
peripherals. In the STM32F302R8 DMA controller, the peripheral port can
also connect to a memory control circuit permitting memory-to-memory
transfers.

STM32 DMA controllers also have one slave port connected to the AHB
bus. This allows the DMA controller to be programmed from the other
master, that is, the core processor.

The STM32F302R8 DMA controller has seven independent and
programmable channels, which are each connected to separate hardware
lines. These are how the slave peripherals can request a response from the
DMA controller. The exact nature and type of request is configured during
the MCU hardware design phase. Different STM MCUs will have a varying
numbers of channels as well as different request types depending upon the
MCU design requirements.

There is also a priority assignment hardware unit, which allows different
priorities to be assigned to the seven DMA request channels. Higher priorities
will normally be assigned to fast peripherals needing immediate DMA
response as well as to any memory accesses.

Figure 11-4 shows all seven DMA channels along with their respective
peripheral request signals that are bound to them during the MCU design
phase.

Figure 11-4 DMA channel block diagram.

Figure 11-4 is an important figure because it will be your ready reference
to use when trying to determine which DMA channel to use for a given
peripheral DMA request. It is very important to note that only one peripheral
can be active on a given peripheral request line.

Notice in Figure 11-4 that the DMA channels have default priorities,
which are fixed in hardware with channel 1 being the highest and progressing
to channel 7 as the lowest. However, these default priorities may be
overridden with user-assigned priorities, designed to determine which
peripherals have preference when accessing the AHB. DMA channel lines are
normally trigged through hardware signals from selected peripherals but they
can also be activated by software. Software triggering is the means by which
memory-to-memory transfers are activated.

Using HAL with DMA
The HAL framework uses a C struct named DMA_HandleTypeDef to configure
the DMA controller. Each member will separately be discussed after the
struct definition.

The DMA_HandleTypeDef struct members are briefly defined in the
following list:

• DMA_Channel_TypeDef *Instance;—This is the pointer to the
DMA/Channel pair descriptor which will be used. For example,
DMA1_Channel5 indicates the fifth channel of DMA1. Recall that
these designations are bound to peripherals during the MCU design.

Refer to Figure 11-4 to see the channel-to-peripheral designations.

• DMA_InitTypeDef Init;—This is an instance of the C struct
DMA_InitTypeDef, which is used to configure the DMA/Channel pair.
This value will be further explained below.

• HAL_LockTypeDef Lock;—DMA locking object.

• __IO HAL_DMA_StateTypeDef State;—DMA transfer state.

• void *Parent;—This is a pointer used to keep track of the peripheral
handlers associated with the current DMA/Channel. For example, if we
are using a UART in DMA mode, this field will point to an instance of
UART_HandleTypeDef.

• void (* XferCpltCallback)(struct __DMA_HandleTypeDef *hdma);
—This is a pointer to a callback function, which is used to signal user
code that a DMA transfer is completed. It is automatically called by the
HAL when a DMA interrupt is paired, by the function
HAL_DMA_IRQHandler().

• void (* XferHalfCpltCallback)(struct __DMA_HandleTypeDef
*hdma);—This is a pointer to a callback function, which is used to
signal user code that a DMA transfer is completed, half-completed, or
an error occurred. It is automatically called by the HAL when a DMA
interrupt is paired by the function HAL_DMA_IRQHandler().

• void (* XferErrorCallback)(struct __DMA_HandleTypeDef
*hdma);—This is a pointer to a callback function, which is used to
signal user code that a DMA transfer has an error. It is automatically
called by the HAL when a DMA interrupt is paired by the function
HAL_DMA_IRQHandler().

• __IO uint32_t ErrorCode;—DMA error code.

The HAL framework uses a C struct named DMA_InitTypeDef to initialize
the DMA controller. Each member will separately be discussed after the
struct definition.

The DMA_InitTypeDef struct members are briefly defined in the following
list:

• uint32_t Direction;—This value defines the DMA transfer direction.
This parameter can be any value of the following defines:

• DMA_PERIPH_TO_MEMORY

• DMA_MEMORY_TO_PERIPH

• DMA_MEMORY_TO_MEMORY

• uint32_t PeriphInc;—This value can automatically increment the
peripheral register holding the data address to be transferred. This
parameter can be one of the two values of the following defines:

• DMA_PINC_ENABLE

• DMA_PINC_DISABLE

• uint32_t MemInc;—This value can automatically increment the
memory port register holding the memory data address to be
transferred. This parameter can be one of the two values of the
following defines:

• DMA_MINC_ENABLE

• DMA_MINC_DISABLE

• uint32_t PeriphDataAlignment;—This value set the sizes of the
peripheral data elements to be transferred. This parameter can be any
value of the following defines:

• DMA_PDATAALIGN_BYTE

• DMA_PDATAALIGN_HALFWORD

• DMA_PDATAALIGN_WORD

• uint32_t MemDataAlignment;—This value set the sizes of the memory
data elements to be transferred. This parameter can be any value of the
following defines:

• DMA_MDATAALIGN_BYTE

• DMA_MDATAALIGN_HALFWORD

• DMA_MDATAALIGN_WORD

• uint32_t Mode;—This value sets the DMA mode. In the normal mode,
the DMA controller sends the specified amount of data from the source
port to the destination port and then stops. The controller must be
rearmed for another transfer. In the circular mode, the DMA controller
sends the content of the source data buffer, resets to the first byte in
source data buffer, and starts sending the buffer again. In the
transmission interim, the peripheral will have had a chance to refill the
source buffer so there will be fresh data in the source buffer. In this
case, the source buffer is also called a ring buffer. The DMA circular
mode is also called the continuous mode for obvious reasons. This
parameter can be one of the two values of the following defines:

• DMA_NORMAL

• DMA_CIRCULAR

• uint32_t Priority;—Use this value to assign a priority to a DMA
channel. This parameter can be any value of the following defines:

• DMA_PRIORITY_LOW

• DMA_PRIORITY_MEDIUM

• DMA_PRIORITY_HIGH

• DMA_PRIORITY_VERY_HIGH

Final Steps in Setting Up a DMA Transfer

There are just a few more steps required in order to configure a DMA transfer
over a selected channel. These are as follows:

1. Set up appropriate memory and/or peripheral port addresses

2. Establish the size of the data transfer

3. Arm the DMA controller

4. Enable the DMA mode on the selected peripheral

The HAL framework abstracts the first three steps with the following
statement:

The fourth step is dependent on the selected peripheral. You will normally
consult the STM data sheet, which describes the selected peripheral in order
to determine how to enable the DMA transfer and to find out the exact
channel it has been preassigned. Remember from the earlier discussion that
peripherals have been preassigned channel numbers during the MCU design
phase. In the following example, I will be demonstrating how to use
USART2 peripheral in the DMA mode.

Demonstration One
This first demonstration will involve sending a string using the USART2
peripheral operating in the normal DMA mode. There are just a few steps
necessary to configure this demonstration:

1. First configure the USART2 peripheral using the Pinout view in the
CubeMX application as has been done several times in previous
demonstrations.

2. Set the DMA1 channel as follows (STM32F302R8 MCU) for the
USART2 peripheral for a memory-to-peripheral transfer:

a. USART2_TX = DMA1/CH7

b. USART2_RX = DMA1/CH6

The following statement sets the USART2 peripheral DMA1, channel
7 to output characters to a terminal program:

It must be put in the main method. In addition, there is no need to
instantiate DMA1, channel 6 because no characters will be received
from the terminal program in this demonstration.

3. Enable the USART2 peripheral for DMA operations and arm the
appropriate channel to execute the transfer.

The following statement enables the USART2 peripheral for DMA
operations:

It must be put in the main method.

Program Listing
The following is the code listing for this demonstration. I have also provided
some additional discussion regarding pertinent code segments following the
listing.

I have first configured and initialized all the appropriate DMA setting in
the main method. Some DMA_InitTypeDef struct members were not set
because they are not needed in this demonstration and their values are not
read during this particular DMA operation. The first three steps in the DMA
preoperation sequence are as follows:

1. Set up appropriate memory and/or peripheral port addresses.

2. Establish the size of the data transfer.

3. Arm the DMA controller.

These steps were all accomplished using the following statement:

The fourth and the final step is to start the DMA operation for the selected
peripheral. This was accomplished by the following statement:

The seventh bit in the USART2 control register CR3 is named DMAT and
is set to commence normal DMA operations for this peripheral.

The core processor has also been set up to poll to determine when the

DMA operation has been completed. This operation was accomplished by the
following statement:

Polling for completion is completely appropriate for this demonstration
simply because it is a “one-shot” occurrence and does not impede, nor
conflict with any other MCU operations.

Finally, the USART2 peripheral is disarmed from further DMA operations
by using the following statement:

Test Results
I observed that the user LED did light after the hex file was downloaded into
the project board. However, I desired a better indication that the DMA
operation did run successfully. To do this, I started the Realterm application
and monitored the virtual communications port that is logically connected to
the USART2 peripheral. Figure 11-5 shows the screen capture displaying the
data message sent out from the peripheral.

Figure 11-5 Realterm screen display.

This absolutely confirmed that the USART2 peripheral transmitted the
data message to memory via DMA.

This demonstration should now have convinced you of the DMA
usefulness. It is time to introduce the DAC peripheral and really demonstrate
how DMA can significantly improve MCU operations.

DAC Peripheral
I will first explain the principles behind the DAC peripherals in order for you
to understand how it requires rapid data transfers to operate efficiently.

DAC Principles
The DAC design used in STM MCUs is based on a R-2R resistor ladder
network concept. This concept is easily explained by referring to Figure 11-6.

Figure 11-6 R-2R design concept.

The resistive network acts like a programmable voltage divider between a
reference voltage and ground. The usual reference voltage (Vref) for the STM
DAC is the main 3.3-V supply. There is a 3-bit DAC, shown Figure 11-6,
which makes it easy to discuss. In reality the DAC used in the project board
has a 12-bit input.

The binary inputs shown in Figure 11-6 are switched between 0 V and Vref
or 3.3 V. If a bit is high, it will cause its voltage input to weighted in the
summed voltage output according to its bit position.

The output voltage (Vout) for the 3 bit (N = 3) example for a given digit
binary input (Value) is determined by the following equation:

Therefore, if the maximum value equals 7 or in binary terms 111, the
maximum Vout will be:

This result happens because the step size is 3.3/8 or 0.4125. This is a
rather large error and only happens in this case due to the small number of
bits involved. For the real 12-bit STM DAC, the step size would only be
3.3/4096 or 0.00080566 V or roughly 0.8 mV. That step size will provide an
excellent analog voltage representation for a digital number. Returning to the
digital example, I have calculated all eight analog voltage outputs for all the
possible binary combinations. These are shown in Table 11-1.

Table 11-1 Binary Input vs Analog Voltage Output—3-bit DAC Example

Figure 11-7 shows the analog voltage output in more start terms where it
becomes very apparent that there is no smooth transition between binary
input values due to the limited number of bits.

Figure 11-7 Bar chart showing analog voltage outputs.

Table 11-1 and Figure 11-7 provide more than ample proof that a
sufficient number of bits must be present to have a somewhat smooth and
continuous voltage output from a DAC. However, there will still be a small
noise present even with a high number of bits present due to the inherent
switching that is constantly happening with the DAC. This noise may be
easily filtered out using an active low-pass analog filter. However, I will
demonstrate that the DAC output is very clean and can be directly used as is
without additional filtering.

A STM DAC also has the option of switching in a buffer output amplifier.
This device will lower the DAC’s output impedance and provide additional
drive current without the need to add an external output operational amplifier
for this purpose.

It is now time to discuss the HAL software that can configure and
initialize the STM DAC peripheral.

HAL Software for the DAC
The HAL framework uses a C struct named DAC_HandleTypeDef to configure
the DAC peripheral. Each member will separately be discussed after the
struct definition.

The DAC_HandleTypeDef struct members are briefly defined in the
following list:

• DAC_TypeDef *Instance;—This is a pointer to the DAC descriptor
which will be used. For example, DAC1 is the descriptor for the first
DAC peripheral.

• __IO HAL_DAC_StateTypeDef State;—This value represents the DAC
communication state.

• HAL_LockTypeDef Lock;—This value is a DAC-locking object.

• DMA_HandleTypeDef *DMA_Handle1;—This is a pointer to a DMA
handler configured to perform digital-to-analog conversions in DMA
mode.

• DMA_HandleTypeDef *DMA_Handle2;—This is a pointer to a DMA
handler configured to perform digital-to-analog conversions in DMA
mode.

• __IO uint32_t ErrorCode;—This is a value representing the DAC
error code.

The DAC_HandleTypeDef struct differs from all the other similar structs in
that it does not have an Init member, but instead relies on a different type of
C struct to initialize the DAC at the channel level. This C sruct is named
DAC_ChannelConfTypeDef and has the following definition. As before, each
member will separately be discussed after the struct definition.

The DAC_ChannelConfTypeDef struct members are briefly defined in the
following list:

• uint32_t DAC_Trigger;—This value specifies the source used to
trigger the DAC conversion. This parameter can be any value of the
following defines:

• DAC_TRIGGER_NONE—Used for a manual trigger.

• DAC_TRIGGER_SOFTWARE—Used when DAC is in a DMA mode
without a timer.

• DAC_TRIGGER_Tx_TRGO—Used when DAC is driven by a dedicated
timer.

• uint32_t DAC_OutputBuffer;—Specifies whether the DAC channel
output buffer is enabled or disabled.

Demonstration Two
In this demonstration I will be manually triggering the DAC to output a
repetitive voltage ramp.

Program Listing
The following is the code listing for this demonstration. I have also provided
some additional discussions regarding pertinent code segments following the
listing.

The significant addition to this basic code is the DAC Init function
MX_DAC_Init. The CubeMX application generated this code when the DAC
peripheral was enabled during the project creation process. There is really
nothing remarkable that is happening in this function other than the output
buffer is enabled and any DAC trigger is disabled.

The functional code that produces an output waveform is located in the
forever loop of the main method. This code segment is relisted below to
allow for an easier reference:

There are two while loops within the forever loop, one which counts up
and outputs a slowly increasing voltage and other counts down and outputs a
slowly decreasing voltage. The waveform period is determined by the delay
value, which in this demonstration has been set to 1 ms between each digital
incremental value. The HAL_DAC_SetValue method causes the DAC to output
on DAC channel 1 an analog voltage based on the 12-bit, right endian
justified value for the index i.

Test Results
Figure 11-8 is a screen shot from a USB oscilloscope connected to PA4,
which is the DAC channel 1 output for the STM32F302R8 MCU.

Figure 11-8 DAC output.

You can see that it is relatively clean triangular waveform with a 1.626-ms
period or an approximate frequency equal to 615 Hz. The peak-to-peak
amplitude varies between approximately 1.6 and 3.3 V. These particular
voltages are a result of using the values 2000 and 4000 as the DAC input
limits, respectively.

I am reasonably sure that you can also increase the waveform frequency
by decreasing the delay in the code as described above. Readers should try
experimenting to determine the ultimate frequency limit.

Demonstration Three
In this last demonstration I will be operating the DAC in a DMA mode to
output a sine wave that is synthesized by the application. Generating an
analog signal is a common task assigned to a DAC. DMA is the preferred
operational method because it frees up the core processor to attend to higher

priority tasks rather than focusing on generating binary input for the DAC.
The following generalized statement both starts the DAC and performs a
DMA data transfer from memory to the peripheral:

In this demonstration, only one DAC channel named DAC_CHANNEL_1 is
available. The argument uint32_t* pData is a data pointer, which in this case
will point to the beginning of the 200 element SINE array. The uint32_t
Length argument is the number of data elements to be transferred, which is
the NSAMP constant with value 200. Finally, the uint32_t Alignment
argument specifies the data element bit size and whether the data is right or
left justified. In this case, the define DAC_ALIGN_12B_R shows the data is 12-
bit and is aligned to the right, meaning that the least significant data bit is
also the rightmost bit.

Synthesizing a sine wave requires setting the number of increments or
steps that will go into making up a single cycle waveform. In this example,
the number was set at 200, which is a good trade-off between having a
representative sample and minimizing the total steps that need to be
constantly handled. The resulting equation used to synthesize a 12-bit sine
wave is as follows:

This equation was used to synthesize a single sine wave cycle with the i
step ranging from 0 to 199.

I next arbitrarily selected a period of 15 ms for the DAC sine wave output
or an equivalent frequency of 66.67 Hz. This means that the conversion rate
must be set at 66.67 * 200 or 13,334.

The timer TIM6 is used as trigger for the DAC’s TRGO line and its period
must then be set to 13,334. The high-speed external clock (HSE) input into
TIM6 was set at 64 MHz with no prescaling. This all means the timer period
value must be set to 64 MHz/13.33 KHz or approximately 4800. The actual
period value was set at 4799 to account for the added 1 that goes into to the
timer frequency calculation.

Program Listing
The following is the code listing for this demonstration. I have also provided
some additional discussions regarding pertinent code segments following the
listing.

Test Results
Figure 11-9 is a screen shot from a USB oscilloscope connected to PA4,
which is the DAC channel 1 output for the STM32F302R8 MCU.

Figure 11-9 DAC output.

You can see that it is a relatively clean sine waveform with a 15-ms period
or an approximate frequency equal to 66.67 Hz. The peak-to-peak amplitude
varies between approximately 0 and 3.3 V. This waveform is exactly what
was programmed.

Figure 11-10 is an averaged spectrum display, which shows the main
frequency components in the DAC sine wave output signal.

Figure 11-10 Sine wave spectrum display.

The average total harmonic distortion (THD) was measured at only
1.372%, which is very low for this type of signal generation. The third
harmonic at 200 Hz was the highest distortion component and was measured
at –42 dBu, which is less than one-hundredth of the primary frequency’s
amplitude.

I also experimented by changing the timer TIM6 period to determine the
highest possible output frequency. I determined that a minimum period value
of 105 created a sine wave frequency slightly over 3 kHz. Any value lower
than that period value simply caused the DAC to remain at steady high level.

The last point I will make, which is the same one that I have often
repeated, is that the core Cortex-M processor is not involved with this signal
generation once it has been configured, initialized, and started. Notice that the
forever loop in the main method is completely devoid of any functional code
because the signal generation is completely being accomplished by a
combination of hardware and firmware. This approach is the essence of
efficient and effective embedded design.

Summary
This is a combination chapter that explains both direct memory access

(DMA) and the digital-to-analog converter (DAC). I chose this combination
because the DAC is an ideal peripheral to use with DMA operations.

The first section explains the theory behind DMA and how a DMA
controller effectively implements this operational mode.

The next discussion focuses on how to use the HAL framework to both
configure and initialize the MCU for DMA operations. I presented a detailed
discussion concerning two C structs that are critical for setting up the DMA
mode.

The first demonstration simply has the USART2 peripheral sending a
character string to memory using the DMA mode. A complete program
listing was provided with all the important details concerning DMA
operations highlighted.

The next section introduces the DAC and provides a brief background on
how it functions. This is followed by a section on how to use the HAL
framework to configure and initialize this peripheral.

The second demonstration illustrates how to have the DAC generate a
triangular waveform using functional code placed in the main method’s
forever loop. This demonstration was purposefully designed to be
computationally “heavy” in anticipation of the next demonstration.

The third and final demonstration shows how the DAC could generate a
relatively “pure” sine wave using a DMA mode and then being periodically
triggered by a timer. The initial signal was set at a 66-Hz frequency, but I
eventually was able to generate sine wave signals slightly exceeding 3 kHz.
The signal waveforms were generated without any core processor
involvement other than the initial configuration.

INDEX

Please note that index links point to page beginnings from the print edition.
Locations are approximate in e-readers, and you may need to page down one
or more times after clicking a link to get to the indexed material.

/ /, 96
/* ... */, 96
#, 96
{ }, 96, 97

0-ohm resistors, 8
0x, 103
0x0, 148
0xffff, 148
0xffff ffff, 148
3.3-V external power supply input, 26, 26t
10x high impedance probe settings, 127
19.4-MHz bandwidth, 127
32-bit STM address range, 103, 104f
50% duty cycle waveform, 227–228, 229t
70-MHz bandwidth, 127

acknowledgment instruction, 133
ADC. See analog-to-digital converter (ADC)
ADC clock speed, 194
ADC conversion modes, 197–198
ADC resolution, 194
ADC_CHANNEL_0 to ADC_CHANNEL_15, 199–200
ADC_ChannelConfTypeDef 199

ADC_CHANNEL_VBAT, 199–200
ADC_CHANNEL_VREFINT, 199–200
ADC_CLOCK_PCLK DIV1, 194
ADC_CLOCK_PCLK DIV2, 194
ADC_CLOCK_PCLK DIV4, 194
ADC_CLOCK_PCLK DIV6, 194
ADC_CLOCK_PCLK DIV8, 194
ADC_DATAALIGN_LEFT, 194
ADC_DATAALIGN_RIGHT, 194
ADC_EOC_SEQ_CONV, 195
ADC_EOC_SINGLE_CONV, 195
ADC_EXTERNALTRIGCONVEDGE_FALLING, 196
ADC_EXTERNALTRIGCONVEDGE_NONE, 196
ADC_EXTERNALTRIGCONVEDGE_RISING, 196
ADC_EXTERNALTRIGCONVEDGE_RISINGFALLING, 196
ADC_EXTERNALTRIGCONV_EXT_IT11, 196
ADC_EXTERNALTRIGCONV_T1_CC1, 196
ADC_EXTERNALTRIGCONV_T1_CC2, 196
ADC_EXTERNALTRIGCONV_T1_CC3, 196
ADC_EXTERNALTRIGCONV_T2_CC2, 196
ADC_EXTERNALTRIGCONV_T3_CC4, 196
ADC_EXTERNALTRIGCONV_T4_CC4, 196
ADC_EXTERNALTRIGCONV_T1_TRGO, 196
ADC_EXTERNALTRIGCONV_T1_TRGO2, 196
ADC_EXTERNALTRIGCONV_T2_TRGO, 196
ADC_EXTERNALTRIGCONV_T4_TRGO, 196
ADC_EXTERNALTRIGCONV_T5_TRGO, 196
ADC_EXTERNALTRIGCONV_T6_TRGO, 196
ADC_EXTERNALTRIGCONV_T8_TRGO, 196
ADC_EXTERNALTRIGCONV_T8_TRGO2, 196
ADC_HandleTypeDef, 192–193
ADC_InitTypeDef C struct, 193–194
ADC_InitTypeDef Init, 192, 193
ADC_REGULAR_RANK_1 to ADC_REGULAR_RANK_16, 199–200

ADC_RESOLUTION_6B, 194
ADC_RESOLUTION_12B, 194
ADC_SAMPLINGTIME_3CYCLES, 200
ADC_SAMPLINGTIME_15CYCLES, 200
ADC_SAMPLINGTIME_28CYCLES, 200
ADC_SAMPLINGTIME_56CYCLES, 200
ADC_SAMPLINGTIME_84CYCLES, 200
ADC_SAMPLINGTIME_112CYCLES, 200
ADC_SAMPLINGTIME_144CYCLES, 200
ADC_SAMPLINGTIME_480CYCLES, 200
ADC_SCAN_DISABLE, 194
ADC_SCAN_ENABLE, 194
ADC_SOFTWARE START, 196
ADC_TypeDef *Instance, 192, 193
advanced control timer (TIM1), 17, 17t, 146, 147t
AdvancedInit, 170
AHB, 244f
AHB1, 101, 106f
AHB2, 106f
AHB3, 106f
aliased memory, 105t
Analog Devices TMP36 temperature sensor, 189, 190f, 202–205
analog servo, 235–236, 236f
analog-to-digital conversion, 189–212

ADC, 16, 189
ADC clock speed, 194
ADC conversion modes, 197–198
ADC functions, 190–192
ADC resolution, 194
channels, groups, and ranks, 198–200
demonstration program, 200–212
discontinuous/continuous mode, 195
DMA requests, 196
end of conversion (EOC), 195

group, 198
HAL framework, 192–197
multi-channel scan/ continuous conversion, 198
multi-channel scan/single conversion, 197–198, 198f
polling, 200, 201
rank, 199, 199f
single channel/continuous conversion, 198
single channel/single conversion, 197, 197f
successive-approximation register (SAR), 190, 191f
TMP36 temperature sensor, 189, 190f, 202–205

analog-to-digital converter (ADC), 16, 189
analog voltage outputs, 260, 260t, 261f
analog voltage reference (AREF), 12
APB1 peripheral allocations, 107, 108f
APB2, 106f
Application/MDK-ARM, 70f, 80
Application/User, 70f, 80
Arduino connectors, 10–12, 114f
Arduino IDE, 32
Arduino prototype board, 112, 114f
AREF. See analog voltage reference (AREF)
ARM, 78
ARM Cortex M-4 block diagram, 5f
ARM Cortex Microcontroller Interface Standard (CMSIS), 78–85

axf format, 82
Build process log, 81, 81f
compiling and downloading the project, 80–82
components, 79
CubeMX-generated C code, 80, 80f
downloading the hex code, 82–86
Keil IDE build icon, 81, 81f
ST-LINK, 82–86

arming/disarming, 131
asynchronous event, 129

axf format, 82

B1 USER, 22
B2 RESET, 22
background thread/foreground thread, 132
Bare metal development, 30
BASEPRI register, 131–132
basic timer (TIM6), 17t, 18, 146, 147t
baud rate chart, 171f
Baudrate, 171
binary code, 34
binary divider (prescaler), 145, 147–148
bit serial communications, 167–188

clear-to-send (CTS) line, 169
data transfer protocol, 168–169, 188
enabling USART2, 175–176
full-duplex communications, 168, 169f
protocol control lines, 168–169
Realterm terminal program, 172–175
request/acknowledge, 169
request-to-send (RTS) line, 169
UART block diagram, 167f
UART vs. USART, 167, 168
USART block diagram, 168f
USART configuration, 170–172
USART2 global interrupt, 182
USART receive demonstration program, 182–188
USART transmit demonstration program, 176–181
Windows terminal program, 172–175

bit serial ports, 19–21
I2C, 19–20
I2S, 21
SPI, 20–21
USART, 19

Board Selector dialog screen shot, 55, 57f
BOOT, 58f, 59
BOOT0 input pin, 13
braces { }, 96, 97
buffer output amplifier, 260
bugs, 34
Build process log, 81, 81f
bus controller, 241, 244
bus matrix, 244, 244f, 245
bus matrix block diagram, 244f

C/C++ language projects. See STM project development
CCRx register. See compare capture registers (CCRx)
CIE1931 lightness formula, 231
clear-to-send (CTS) line, 169
Clock Configuration gui, 62f
Clock Configuration tab, 62–63
clock skew, 124–125, 128
clock speed, 124
clock speed demonstration, 124–127
ClockDivision, 148
CMSIS. See ARM Cortex Microcontroller Interface Standard (CMSIS)
CMSIS-CORE, 79
CMSIS-DAP, 79
CMSIS-Driver, 79
CMSIS-DSP, 79
CMSIS-Pack, 79
CMSIS-RTOS, 79
CMSIS-SVD, 79
CN5 connector pinout, 11, 12t
CN6 connector pinout, 10f, 11t
CN7 connector pinout, 13, 13t
CN8 connector pinout, 11, 11t
CN9 connector pinout, 12, 12t

CN10 connector pinout, 13, 13t
CNT counter, 216, 217f
Code Generation dialog box, 68, 69f
Code Generator screen, 68, 69f
coding trade-off (simpler code vs. compact, complex code), 165
comments, 96
commercial proprietary software, 29–30
COMPARATOR module, 191, 191f
compare capture registers (CCRx), 214, 216, 217f
complete 32-bit STM address range, 103, 104f
Configuration View icons, 64f
Configuration View tab, 63–64
Configure Flash Tools, 82
context switch, 132
core memory address ranges, 105t
core memory addresses, 103–105
Cortex M-4 processor, 4, 5f
Cortex Microcontroller Interface Standard (CMSIS). See ARM Cortex

Microcontroller Interface Standard (CMSIS)
CounterMode, 148
counters, 16–19. See also timers
cross-compiler, 30, 34
CTS. See clear-to-send (CTS) line
CubeMX, 37–40, 53–86

ARM CMSIS. See ARM Cortex Microcontroller Interface Standard
(CMSIS)

Board Selector dialog screen shot, 55, 57f
Clock Configuration tab, 62–63
Configuration View tab, 63–64
features, 53–54
Help document, 54–55, 56f
IP tree pane, 61–62
Load Project, 54, 55f
MCU alternative functions, 60–61

MCU-centric utility, 53
New Project. See New Project (CubeMX)
NUCLEO-F302R8 board selection, 55, 57f
opening screen, 37f, 54f
PC13 alternative pin mappings, 60f
Pinout tab, 58–60
Power Consumption Calculator View tab, 65
purpose, 86
RCC pin configurations, 63

DAC. See digital-to-analog converter (DAC)
DAC clock source. See digital-to-analog converter (DAC) clock source
DAC_ALIGN_12B_R, 270
DAC_ChannelConfTypeDef, 262
DAC_HandleTypeDef, 261
DAC_TRIGGER_NONE, 262
DAC_TRIGGER_SOFTWARE, 262
DAC_TRIGGER_Tx_TRGO, 262
DAC_TypeDef *Instance, 261
daemon, 44
DAP. See debug access port (DAP)
data transfer, 241
data transfer concepts, 242–245
data transfer process, 241
data transfer protocol, 168–169, 188
dead time generator, 146
dead time insertions, 146
debug access port (DAP), 79
debugging, 34
debugging tool. See OpenOCD15
decrementing counter, 145
define statements, 99, 122
Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors (Yiu), 4
Device Database menu selection, 71, 71f

Device not found dialog box, 71, 71f
Dhrystone million instructions per second (DMIPS), 65
digital-to-analog converter (DAC), 241, 259–278

analog voltage outputs, 260, 260t, 261f
buffer output amplifier, 260
HAL framework, 261–262
noise, 260
R-2R resistor ladder network, 259, 259f
sine wave signals, 269–278
triangular waveform, 263–269

digital-to-analog converter (DAC) clock source, 146
direct memory access (DMA), 241–258

analogy (bypass highway), 243
bus controller, 241, 244
bus matrix, 244, 244f, 245
data transfer concepts, 242–245
DMA block diagram, 242f
DMA channels, 245, 247f
DMA controller details, 245–246
final steps in setting up DMA transfer, 250–251
HAL framework, 246–250
memory port, 245
peripheral port, 245
priority assignment hardware unit, 245
Round Robin algorithm, 244
slave port, 245
software triggering, 245
USART2 sending character string to memory, 251–258

direct X1 probe settings, 127
DisableInterrupts () 131
disclaimer, 72, 73f
DMA. See direct memory access (DMA)
DMA block diagram, 242f
DMA channel block diagram, 247f

DMA channels, 245, 247f
DMA_Channel_TypeDef *Instance, 246
DMA_CIRCULAR, 250
DMA_HandleTypeDef, 246
DMA_HandleTypeDef *DMA_Handle, 192, 193
DMA_HandleTypeDef *DMA_Handle1 261, 262
DMA_HandleTypeDef *DMA_Handle2 261, 262
DMA_InitTypeDef, 248
DMA_InitTypeDef Init, 246, 248
DMA_MDATAALIGN_BYTE, 249
DMA_MDATAALIGN_HALFWORD, 249
DMA_MDATAALIGN_WORD, 249
DMA_MEMORY_TO_MEMORY, 249
DMA_MEMORY_TO_PERIPH, 249
DMA_NORMAL, 250
DMA_PDATAALIGN_BYTE, 249
DMA_PDATAALIGN_HALFWORD, 249
DMA_PDATAALIGN_WORD, 249
DMA_PERIPH_TO_MEMORY, 249
DMA_PINC_DISABLE, 249
DMA_PINC_ENABLE, 249
DMA_PRIORITY_HIGH, 250
DMA_PRIORITY_LOW, 250
DMA_PRIORITY_MEDIUM, 250
DMA_PRIORITY_VERY_HIGH, 250
DMIPS. See Dhrystone million instructions per second (DMIPS)
Drivers/CMSIS, 70f, 80
Drivers/STM32F3xx_HAL_Driver, 70f, 80
duty cycle, 214

EEPROM, 31
EnableInterrupts (), 131
en.stsw-link004, 41
en.stsw-link009, 41

error dialog, 90–91, 92f
E5V external power supply, 25, 25t, 26
exceptions, 129. See also interrupt
external interrupt, 134–135
external interrupt controller (EXTI), 16, 134
external power supply output, 26
EXTI. See external interrupt controller (EXTI)
EXTI block diagram, 135f
EXTI line [15:10] interrupt, 143
EXTI15_10_IRQ, 135

first microcontroller (TMS1000), 30
flash memory, 105t
floating, 111
floating point unit (FPU), 132
forever loop, 78, 97, 98
FPU. See floating point unit (FPU)
full-duplex communications, 168, 169f

GDB. See GNU Project Debugger (GDB)
general purpose (GP) timers, 17–18, 17t, 146, 147t
general purpose input-output (GPIO), 16

CubeMX, 58–60
HAL. See GPIO pins and hardware abstract layer (HAL)
interrupt, 134–135, 136f

general-purpose timer PWM signal generation, 214–216
generic toolchain workflow, 33f, 34
GNU Project Debugger (GDB), 44–45
gnuarmeclipse-openocd-win64-0.10.0-201701241841-setup.exe, 43, 44f
GP timer. See general purpose (GP) timers
GPIO. See general purpose input-output (GPIO)
GPIO clock speed, 124–127
GPIO_InitStruct.Mode = GPIO_MODE_IT-RISING, 141
GPIO_Instruct, 117
GPIO_Instruct C data structures, 125–126

GPIO_Instruct to GPIO Register Equivalence, 117f
GPIO_Instruct.Mode, 117f
GPIO_Instruct.Pin, 117f
GPIO_Instruct.Pull, 117f
GPIO_Instruct.Speed, 117f
GPIO pin hardware, 109–111
GPIO pin signal waveforms, 126, 126f
GPIO pins and hardware abstract layer (HAL), 101–128

core memory addresses, 103–105
HAL_GPIO. See HAL_GPIO module
memory-mapped peripherals, 103
peripheral memory addresses, 105–108

GPIO port mode register, 111f
GPIO port pin block diagram/schematic, 109f
GPIO registers, 111, 112f, 113f
GPIO signal skew, 124–125, 128
GPIOA_MODER, 112f
GPIOA_OSPEEDER, 112f
GPIOA_PUPDR, 113f
GPIOB_MODER, 112f
GPIOB_OSPEEDER, 112f
GPIOB_PUPDR, 113f
GPIOx_AFRH, 113f
GPIOx_AFRL, 113f
GPIOx_BSRR, 113f
GPIOx_IDR, 113f
GPIOx_LCKR, 113f
GPIOx_MODER, 110, 112f, 117f
GPIOx_ODR, 113f
GPIOx_OSPEEDER, 112f, 117f
GPIOx_OTYPER, 112f, 117f
GPIOx_PUPDR, 113f, 117f
group, 198

HAL. See GPIO pins and hardware abstract layer (HAL); HAL framework
HAL framework

analog-to-digital conversion, 192–197
digital-to-analog converter (DAC), 261–262
direct memory access (DMA), 246–250
pulse-width modulation (PWM), 216–220

HAL_ADC_Init(), 201
HAL_ADC_PollForConversion (&hadcl, 100), 206
HAL_ADC_Start (), 201
HAL_ADC_Start (&hadc1), 206
HAL_ADC_Stop (), 201
HAL_DAC_SetValue, 268
HAL_Delay 200, 180, 181
HAL_Delay 500, 98, 99
HAL_Delay 1000, 206, 207
HAL_DMA_IRQHandler (), 248
HAL_GPIO module, 107–124

clock speed demonstration, 124–127
GPIO pin hardware, 109–111
GPIO port mode register, 111f
GPIO registers, 111, 112f, 113f
main.c code listing, 117–121
modification (enabling multiple LED outputs), 122–123
push button test demonstration, 123–124, 128
simple LED test demonstration, 111–122, 128

HAL_GPIO_TogglePin (LD2_GPIO_Port, LD2_Pin), 98, 99
HAL_Init (), 78
HAL_LockTypeDef Lock, 192, 193, 246, 248, 261, 262
HAL_NVIC_EnableIRQ (EXTI15_10_IRQn), 141
HAL_NVIC_EnableIRQ (TIM2_IRQn), 156
HAL_NVIC_SetPriority (ETXTI15_10_IRQn, 0, 0), 141
HAL_NVIC_SetPriority (TIM2_IRQn, 0, 0), 156
HAL_StatusTypeDef_HAL_ADC_PollForConversion (ADC_Handle_TypeDef*

hadc, uint32_t Timeout), 201
HAL_StatusTypeDef_HAL_DAC_Start_DMA (DAC_HandleTypeDef *hdac,

uint32_t Channel, uint32_t* pData, uint32_t Length, uint32_t

Alignment), 269
HAL_StatusTypeDef_HAL_DMA_Start (DMA_HandleTypeDef *hdma,

uint32_t SrcAddress, uint32_t Dst Address, uint32_t

DataLength), 250
halt command, 51, 51f
HAL_TIM_Base_Start_IT (&htim2), 156
HAL_UART_Transmit (&huart2, (uint8_t*) msg, 10, 100), 180, 181
HAL_UART_Transmit (&huart2, (uint8_t*) msg, 20, 100), 206, 207
hardware, 1–28. See also microcontroller (MCU); Nucleo-64 board options
hardware abstract layer. See GPIO pins and hardware abstract layer (HAL)
hardware timers. See timers
Harvard architecture, 5
header file, 97
Hello World program. See STM project development
hex code download, 82–86
high-resolution timers, 146
high-speed external clock (HSE), 23–24, 62–63, 270
historical overview, 30–31
Hitec model HS-311 analog servo, 236f, 237
hobby-grade servo motor, 235–239
HRTIM1, 146
HSE. See high-speed external clock (HSE)
human eye brightness perception, 229, 230f
HwFlowCtl, 172

I2C, 19–20
I2C block diagram, 20f
I2C signal lines, 20f
I2S, 21
I2S2, 21
I2S3, 21
I/O pin, 109, 109f
IDE. See integrated development environment (IDE)
IDE download Web page, 36f

if/else statement, 99, 100
IN0, 198, 199f
IN1, 198, 199f
#include “main.h”, 92, 96–97
infinite loop, 97. See also forever loop
Init, 170
Instance, 170
int, 97
integrated development environment (IDE), 32
integrated peripheral (IP) tree pane, 61–62
Intel 805x family of MCUs, 31
Intel 8048, 30
Intel 8052, 31, 32t
Intel 8751, 31, 31f
inter-integrated circuit. See I2C
inter-integrated sound. See I2S
interrupt, 129–144

acknowledgment instruction, 133
arming/disarming, 131
asynchronous event, 129
background thread/foreground thread, 132
BASEPRI register, 131–132
context switch, 132
defined, 14, 129
demonstration/test run, 135–144
enabling/disabling, 131
external, 134–135
EXTI line [15:10], 143
EXTI15_10_IRQ, 135
GPIO pins, external interrupt controller, and NVIC IRQs, 134–135, 136f
main.c file listing, 137–141
maskable, 131
MX_GPIO_Init method, 138, 141
NVIC, 130–131

overflow, 145
pending interrupt request, 133
polling, 133–134
preconditions, 132
priority level, 15, 131
processing sequence, 132, 133f
RCC global, 142–143
stm32f3xx_it.c file listing, 142
System tick timer, 142
SysTick, 131, 133
USART2 global, 182
users, 129
vector table, 133
what happens when interrupt is recognized, 132, 133f

interrupt channel, 130, 131
interrupt-driven blink LED timer, 155–157
interrupt flow diagram, 14f
interrupt handler, 129
interrupt processing sequence, 132, 133f
interrupt request (IRQ), 15, 130, 130f
interrupt service routine (ISR), 14, 132–134, 143
_IO HAL_DAC_StateTypeDef State, 261, 262
_IO HAL_DMA_StateTypeDef State, 246, 248
_IO uint32_t, 192, 193
_IO uint32_t ErrorCode, 193, 246, 248, 261, 262
_IO uint32_t State, 193
I/O pin, 109, 109f
Ionescu, Liviu, 43
IOREF pin, 11
IP tree pane. See integrated peripheral (IP) tree pane
IRQ. See interrupt request (IRQ)
ISR. See interrupt service routine (ISR)

JP1, 25

JP1 configuration table, 25t
JP5 jumper positions, 26t
JP6, 23

Keil IDE, 30, 32, 35–36, 52, 90, 92f
Keil IDE build icon, 81, 81f
Keil IDE v4.74 icon, 36f
Keil registration form, 35f

LD1, 22
LD2, 22
LD3, 22
leading edge delay, 124
leading edge rise time, 127
LED

color/luminescence of tricolor LED, 231–235
interrupt-driven blink LED timer, 155–157
LED states, 22
linear dimming property, 231
luminescence of normal LED, 228–231
multi-rate interrupt-driven blink LED timer, 157–164, 166
non-interrupt blink LED timer, 149–155
Nucleo-64 board options, 22
polled blink LED timer, 149–155

light-emitting diode. See LED
loader, 34
Lock, 170
low-ass analog filter, 260
low clock speed, 127
low power timers, 147
low-speed external clock (LSE), 24, 62–63
LR register, 132
LSE. See low-speed external clock (LSE)

maskable interrupt, 131

master clock, 145
master clock output (MCO), 23
Mastering STM32 (Noviello), 53
maximum ambient temperature (TAMAX), 65
MCO. See master clock output (MCO)
MCU. See microcontroller (MCU)
MCU pinout diagram, 40, 40f
MCU toolchain, 32–52

debugging tool. See OpenOCD15
integrated development environment (IDE), 32
Keil IDE, 35–36
ST-LINK, 40–43
STMCubeMX, 37–40
toolchain workflow, 33f, 34

mdb command, 52, 52f
mdh command, 52, 52f
MDK-ARM subdirectory, 82
MDK-ARM V4, 88
MDK474.exe, 36
mdw command, 52, 52f
memory, 5–6
memory management unit (MMU), 103
memory-mapped peripherals, 103
memory mapping, 103
memory port, 245
memory protection unit (MPU), 105
memory-to-memory transfer, 244
memory-to-peripheral transfer, 244
microcomputer, 1
microcontroller (MCU)

analog-to-digital converter (ADC), 16
bit serial ports, 19–21
components, 3–21
defined, 1

external interrupt/event controller (EXTI), 16
general purpose input-outputs (GPIOs), 16
historical overview, 30–31
I2C serial protocol, 19–20
inter-integrated sound (I2S) interface, 21
memory, 5–6
microprocessor, compared, 1
nested vector interrupt controller (NVIC), 14–16
peripherals, 6–13
processor, 3–5
SPI serial protocol, 20–21
timers and counters, 16–19
USART serial protocol, 19

microprocessor, 1
MiddleWares, 58
MMU. See memory management unit (MMU)
Mode, 172
MODER, 111
modulus operator, 165
Morpho connectors, 13, 114f
MPU. See memory protection unit (MPU)
multi-channel oscilloscope, 125
multi-channel scan/ continuous conversion, 198
multi-channel scan/single conversion, 197–198, 198f
multi-rate interrupt-driven blink LED timer, 157–164, 166
multiple brace pairs, 97
MX_GPIO_Init ()

CubeMX, 78
interrupt, 138, 141
STM project development, 93, 97
timers, 155

N-BIT REGISTER, 190–192
nested vector interrupt controller (NVIC), 14–16, 129, 130–131
nesting, 97

New C/C++ Project dialog box, 88f
New Project (CubeMX), 55, 66–78

Application/MDK-ARM, 70f
Application/User, 70f
Code Generation dialog box, 68, 69f
Code Generator screen, 68, 69f
Device Database menu selection, 71, 71f
Device not found dialog box, 71, 71f
Drivers/CMSIS, 70f
Drivers/STM32F3xx_HAL_Driver, 70f
HAL_Init (), 78
main.c code listing, 72–78
MX_GPIO_Init (), 78
Open Project button, 68
opening screen, 66f
Project dropdown menu, 66, 67f
Project Settings screen, 67–68, 67f
Project Settings submenu, 68
STM disclaimer, 72, 73f
STM32F302RB selection, 72, 72f
STM32Nucleo_F302 project directories, 68, 70f
SystemClock_Config (), 78
while (1) statement, 78

New Project opening screen, 66f
NMI. See non-maskable interrupt (NMI)
noise, 260
non-interrupt blink LED timer, 149–155
non-maskable interrupt (NMI), 130, 130f
Noviello, Carmine, 53
NRST, 11, 58f, 59
Nucleo board user manual, 113
Nucleo boards, 2–3
Nucleo-32 board, 3f
Nucleo-64 block diagram, 7f

Nucleo-64 board, 3, 3f
Nucleo-64 board layout, 6–13
Nucleo-64 board options, 22–27

JP6, 23
LEDs, 22
OSC 32-kHz clock supply, 24
OSC clock, 23–24
power supply and power selection, 24–27
push buttons, 22–23

Nucleo-64 NUCLEO-F302R8 board, 39, 39f
Nucleo-64 pinout diagram, 10f
Nucleo-144 board, 3f
NUCLEO-F302R8 board, 39, 39f
NUCLEO-F302R8 board selection, 55, 57f
NUCLEO-F411RE development board, 58
NVIC. See nested vector interrupt controller (NVIC)
NVIC BASEPRI register, 131–132
NVIC block diagram, 130f

Open On-Chip Debugger, 43. See also OpenOCD15
Open Project button, 68
Open-source vs. commercial proprietary software, 29–30
opening and closing braces { }, 96, 97
OpenOCD15, 43–52

accessing the program, 44
finish screen, 45f
GNU Project Debugger (GDB), 44–45
gnuarmeclipse-openocd-win64-0.10.0-201701241841-setup.exe, 43, 44f
help request, 49, 49f
memory content display commands, 51–52, 52f
opening screen, 45f
reg command after a halt, 51, 51f
reg command after a reset, 50f, 51
service or background program, 44

starting OpenOCD service, 47f
Telnet link, 46–48
user guide, 49–50
versions, 43, 44f
Zadig utility, 47–48

OpenOCD15 downloads, 44f
OpenOCD15 finish screen, 45f
OpenOCD15 opening screen, 45f
OpenOCD15 user guide, 49–50
OSC 32-kHz clock supply, 24
OSC clock, 23–24
output capture, 17, 146
overclocking, 63
overflow interrupt, 145
OverSampling, 172

PA2, 19, 58f, 59, 174
PA3, 19, 58f, 59, 174
PA6, 122
PA10, 115, 117, 122
Parity, 172
PB13, 58f, 59
PC. See program counter (PC)
PC13, 58f, 59
PC13 alternative pin mappings, 60f
PC register, 132
PCC. See power consumption calculator (PCC)
PDSC, 79
pending interrupt request, 133
peripheral memory addresses, 105–108
peripheral port, 245
peripheral-to-memory transfer, 244
peripheral-to-peripheral transfer, 244
peripherals, 6–13

phase-locked loop (PLL), 145
Picoscope USB oscilloscope, 125
pin clock speeds, 125–126
pinout diagram, 40, 40f
Pinout tab, 58–60
PLL. See phase-locked loop (PLL)
polled blink LED timer, 149–155
polling

analog-to-digital conversion, 201–212
interrupts, 133–134

Port, 173
Ports (COM & LPT), 173, 174
power consumption calculator (PCC), 65f
Power Consumption Calculator View tab, 65
power-on sequence procedure, 27
power supply and power selection, 24–27
preemption and interrupt nesting, 15f
prescaler, 145, 147–148
prioritized interrupt, 15, 131
priority assignment hardware unit, 245
processor, 3–5
Program and Verify dialog box, 85f
program counter (PC), 14
project build, 100. See also STM project development
Project dropdown menu, 66, 67f, 88, 89f
Project pinout screen, 88, 89f
Project Settings/Code Generator dialog box, 89–90, 91f
Project Settings dialog box, 88–89, 90f
Project Settings screen, 67–68, 67f
Project Settings submenu, 68
pRxBuffPtr, 170
pTxBuffPtr, 170
pulse-width modulation (PWM), 213–240

50% duty cycle waveform, 227–228, 229t

CIE1931 lightness formula, 231
color and luminescence of tricolor LED, 231–235
duty cycle, 214
enabling PWM function, 220–222
frequency, 213–214
general-purpose timer PWM signal generation, 214–216
HAL framework, 216–220
hobby-grade servo motor, 235–239
human eye brightness perception, 229, 230f
luminescence of normal LED, 228–231
purposes, 213
PWM demonstration software, 222–227
timer hardware architecture, 216, 217f
typical PWM signal, 214f

push button test demonstration, 123–124, 128
push buttons, 22–23
push pins, 61
PWM. See pulse-width modulation (PWM)

R-2R resistor ladder network, 259, 259f
rank, 199, 199f
Rath, Dominic, 43
raw = (double) HAL_ADC_GetValue (&hadc1), 206
raw = raw * 0.452, 206
RCC global interrupt, 142–143
RCC pin configurations, 63
real-time operating system (RTOS), 18, 79, 105
Realterm Port screen, 173f
Realterm terminal program, 172–175
reference manual, 101
reg command, 50f, 51, 51f
Reinstall WinUSB driver dialog box, 48f
RepetitionCounter, 148
request/acknowledge, 169

request-to-send (RTS) line, 169
reset command, 50f, 51
Round Robin algorithm, 244
RTOS. See real-time operating system (RTOS)
RTS. See request-to-send (RTS) line
RxXferCount, 170

sample/hold circuit, 190
SAR. See successive-approximation register (SAR)
SAR LOGIC module, 191, 191f
SB13, 19
SB14, 19
SB62, 19, 175
SB63, 19, 175
serial peripheral interface. See SPI
servo motor, 235–239
signal waveforms, 126, 126f
simple 16-bit timer, 17t, 18, 146, 147t
simpler code vs. compact, complex code, 165
sine wave signals, 269–278
single channel/continuous conversion, 198
single channel/single conversion, 197, 197f
slave port, 245
software. See STM MCU software
source code, 34
SPI, 20–21
SPI block diagram, 21f
SPI2 signal lines, 21t
sprintf (msg, “%frn,” value), 180, 206, 207
SRAM, 105t
SSI. See synchronous serial interface (SSI)
ST-LINK, 40–43, 82–86
ST-LINK firmware version display, 43f
ST-LINK/V2 opening screen, 41f

static void MX_ADC1_Init (void), 204
static void MX_TIM2_Init (void), 220, 221
static void MX_USART2_UART_Init (void), 175, 176
stlink_winusb_install, 41
STM. See STMicroelectronics (STM)
STM core memory address ranges, 105t
STM disclaimer, 72, 73f
STM GPIO port pin block diagram/schematic, 109f
STM MCU databases, 2
STM MCU interrupt, 144. See also interrupt
STM MCU software, 29–52

bare metal development, 30
open-source vs. commercial proprietary software, 29–30
toolchain. See MCU toolchain

STM Nucleo board user manual, 113
STM Nucleo boards, 2–3
STM Nucleo-64 microcontroller, 27. See also microcontroller (MCU)
STM project development, 87–100

complex modification of main.c file, 99–100
error dialog, 90–91, 92f
explanation of C/C++ code, 96–97
Keil IDE, 90, 92f
main.c file, 91–97
MDK-ARM V4, 88
New C/C++ Project dialog box, 88f
Project dropdown menu, 88, 89f
Project pinout screen, 88, 89f
Project Settings/Code Generator dialog box, 89–90, 91f
Project Settings dialog box, 88–89, 90f
simple modification of main.c file, 98–99
Successful Code Generation dialog box, 90, 91f

STM timer peripherals, 145–147. See also timers
STM32-ST-LINK Utility V4.0.0 setup application, 41
STM32 toolchain, 33. See also MCU toolchain

STM32CubeMX, 37–40, 53–86. See also CubeMX
STM32CubeMX opening splash screen, 37f, 54f
STM32F302R8 block diagram, 101, 102f
STM32F302R8 datasheet, 101
STM32F302R8 MCU, 6, 27, 32t
STM32F302R8 MCU pinout diagram, 40, 40f
STM32F302R8 reference manual, 101
STM32F302RB selection, 72, 72f
STM32F302R8Tx MCU, 58f
stm32f3xx_it.c file listing, 142
STMicroelectronics (STM), 29
STM32Nucleo_F302 project directories, 68, 70f
STM32Toolchain directory, 37
st_nucleo_f3.cfg, 46, 46t
StopBits, 171
STSW-LINK004, 41
STSW-LINK009, 40
Successful Code Generation dialog box, 90, 91f
successive-approximation register (SAR), 190, 191f
SVD. See System View Description (SVD)
synchronous serial data link, 20
synchronous serial interface (SSI), 20
synthesizing a sine wave, 270
system memory, 105t
System View Description (SVD), 79
SystemClock_Config (), 78, 93, 97
SysTick interrupt, 131, 133
SysTick timer, 18–19

tail-chaining, 15f
TAMAX. See maximum ambient temperature (TAMAX)
Telnet link, 46–48
Telnet scripts, 46t
terminal program, 172–175

THD. See total harmonic distortion (THD)
TIM1. See advanced control timer (TIM1)
TIM2, 17, 17t, 147t
TIM2 clock source selection, 149f
TIM6, 17t, 18, 147t
TIM15, 17, 17t, 147t
TIM16, 17, 17t, 147t
TIM17, 17, 17t, 147t
TIM_CLOCKDIVISION_DIV, 148
TIM_CLOCKDIVISION_DIV2, 148
TIM_CLOCKDIVISION_DIV4, 148
TIM_COUNTERMODE_CENTERALIGNED1, 148
TIM_COUNTERMODE_CENTERALIGNED2, 148
TIM_COUNTERMODE_CENTERALIGNED3, 148
TIM_COUNTERMODE_DOWN, 148
TIM_COUNTERMODE_UP, 148
timer counter (CNT), 216, 217f
timer hardware architecture, 216, 217f
timer update register, 148
timers, 16–19, 145–166

categories, 146–147
configuration, 147–149
counting up/counting down, 145
decrementing counter, 145
definition, 145
hardware architecture, 216, 217f
interrupt-driven blink LED timer, 155–157
manufacturer datasheets, 147
master clock, 145
multi-rate interrupt-driven blink LED timer, 157–164, 166
non-interrupt blink LED timer, 149–155
overflow interrupt, 145
parameters and settings, 147–148
polled blink LED timer, 149–155

STM32F302R8 MCU timers, 17t, 147t
timer update register, 148
trade-off (simpler code vs. compact, complex code), 165
update event calculation, 148–149
uses, 146

TIM_HandleTypeDef, 147, 155
TIM_MasterConfigTypeDef, 216
TIM_MASTERSLAVEMODE_DISABLE, 216
TIM_MASTERSLAVEMODE_ENABLE, 216
TIM_OCIDLESTATE_RESET, 219
TIM_OCIDLESTATE_SET, 219
TIM_OC_InitTypeDef, 218
TIM_OCMODE_ACTIVE, 218
TIM_OCMODE_FORCED_ACTIVE, 218
TIM_OCMODE_FORCED_INACTIVE, 218
TIM_OCMODE_INACTIVE, 218
TIM_OCMODE_PWM1-PWM Mode 1, 218
TIM_OCMODE_PWM2-PWM Mode 2, 218
TIM_OCMODE_TIMING, 218
TIM_OCMODE_TOGGLE, 218
TIM_OCNFAST_DISABLE, 219
TIM_OCNFAST_ENABLE, 219
TIM_OCNIDLESTATE_RESET, 220
TIM_OCNIDLESTATE_SET, 220
TIM_OCNPOLARITY_HIGH, 219
TIM_OCNPOLARITY_LOW, 219
TIM_OCPOLARITY_HIGH, 219
TIM_OCPOLARITY_LOW, 219
TMP36 temperature sensor, 189, 190f, 202–205
TMS1000, 30
toggle method, 165
toolchain, 32. See also MCU toolchain
toolchain workflow, 33f, 34
total harmonic distortion (THD), 277

track/hold circuit, 190
trade-off (simpler code vs. compact, complex code), 165
trailing edge delay, 124
tree pane IP icons, 61f
triangular waveform, 263–269
trivial bug, 34
TxXferCount, 170

UART, 167
UART block diagram, 167f
UART vs. USART, 167, 168
UART_HandleTypeDef, 170
UART_HWCONTROL_CTS, 172
UART_HWCONTROL_NONE, 172
UART_HWCONTROL_RTS, 172
UART_HWCONTROL_RTS_CTS, 172
UART_InitTypeDef, 170, 171
UART_MODE_RX, 172
UART_MODE_TX, 172
UART_MODE_TX_RX, 172
UART_OVERSAMPLING_8, 172
UART_OVERSAMPLING_16, 172
UART_PARITY_EVEN, 172
UART_PARITY_NONE, 172
UART_PARITY_ODD, 172
UART_STOPBITS_1, 171
UART_STOPBITS_2, 171
UART_WORDLENGTH-8B, 171
UART_WORDLENGTH-9B, 171
uint32_t Channel, 199
uint32_t ClockPrescaler, 193, 194
uint32_t ContinuousConvMode, 193, 195
uint32_t DAC_OutputBuffer, 262
uint32_t DAC_Trigger, 262

uint32_t DataAlign, 193, 194
uint32_t Direction, 249
uint32_t DiscontinuousConvMode, 193, 195
uint32_t DMAContinuousRequests, 194, 196
uint32_t EOCSelection, 193, 195
uint32_t ExternalTrigConv, 194, 195–196
uint32_t ExternalTrigConvEdge, 194, 196
uint32_t HAL_ADC_GetValue (ADC_HandleTypeDef* hadc), 201
uint32_t MasterOutputTrigger, 216
uint32_t MasterSlaveMode, 216
uint32_t MemDataAlignment, 249
uint32_t MemInc, 249
uint32_t Mode, 249, 250
uint32_t NbrOfConversion, 193, 195
uint32_t OCFastMode, 218, 219
uint32_t OCIdleState, 218, 219
uint32_t OCMode, 218
uint32_t OCNIdleState, 218, 220
uint32_t OCNPolarity, 218, 219
uint32_t OCPolarity, 218, 219

uint32_t Offset, 199, 200
uint32_t PeriphDataAlignment, 249
uint32_t PeriphInc, 249
uint32_t Priority, 249, 250
uint32_t Pulse, 218, 219
uint32_t Rank, 199–200
uint32_t Resolution, 193, 194
uint32_t SamplingTime, 199, 200
uint32_t ScanConvMode, 193, 194
uint32_t* Alignment, 269, 270
uint32_t* Length, 269, 270
uint32_t* pData, 269, 270
universal synchronous/asynchronous receiver/transmitter. See USART
universal synchronous receiver transmitter. See UART

update event calculation, 148–149
USART, 19, 167, 168, 168f
USART block diagram, 168f
USART configuration, 170–172
USART receive demonstration program, 182–188
USART_RX, 174, 174f
USART transmit demonstration program, 176–181
USART_TX, 174, 174f
USART1, 169
USART2, 19, 169
USART2 global interrupt, 182
USART2 sending character string to memory, 251–258
USART3, 19
USB cable, 42, 42f
USB oscilloscope, 125, 227
USB ST-LINK driver software, 40
U5V, 13
UV EPROM, 31
uVision, 36

value = (raw - 500.0)/10, 206
value = (9*value) /5 + 32, 206
VBAT input, 13
vector interrupt list, 15
very fast clock speed, 127
VIN, 11
VIN external power supply, 25, 25t, 26
void *Parent, 246, 248
void (* XfercpltCallback) (struct _DMA_HandleTypeDef *hdma), 246,

248
void (* XferErrorCallback) (struct _DMA_HandleTypeDef *hdma), 246,

248
void EXTI15_10_IRQHandler (void), 141–142
von Neumann architecture, 5

watchdog timers, 18
while (1) statement, 78, 93, 97, 98
Windows terminal program, 172–175
Wordlength, 171

Zadig utility, 47–48

	Cover
	Title Page
	Copyright Page
	Dedication
	Contents at a Glance
	Contents
	Preface
	1 Introduction to the STMicroelectronics Line of Microcontrollers
	Microcomputer vs Microcontroller
	STM Nucleo Boards
	Principal MCU Components
	Bit Serial Ports
	Nucleo-64 Board Options

	Summary

	2 STM MCU Software
	Open-Source versus Commercial Proprietary Software
	Bare Metal Development
	Brief History of MCU

	The MCU Toolchain
	Configuring a STM32 Toolchain

	Summary

	3 STM32CubeMX Application
	Pinout Tab
	MCU Alternative Functions
	Integrated Peripheral (IP) Tree Pane

	Creating an Example Project using CubeMX
	The main.c Code Listing

	ARM Cortex Microcontroller Software Interface Standard (CMSIS)
	CubeMX-Generated C Code
	Compiling and Downloading the Project
	Downloading the Hex Code

	Summary

	4 STM Project Development
	Hello World Project
	Creating the Hello Nucleo Project
	Adding Functionality to the Program
	Compiling and Executing the Modified Program
	Simple Modification for the main.c Function
	Complex Modification for the main.c File

	Summary

	5 General-Purpose Input Output (GPIO) and the STM Hardware Abstraction Layer (HAL)
	Memory-Mapped Peripherals
	Core Memory Addresses
	Peripheral Memory Addresses
	HAL_GPIO Module
	GPIO Pin Hardware
	LED Test Demonstration
	Enabling Multiple Outputs
	Push-Button Test Demonstration

	Clock Speed Demonstration
	Setting the Pin Clock Speeds

	Summary

	6 Interrupts
	Interrupts
	NVIC Specifications

	Interrupt Process
	External Interrupts
	Interrupt Demonstration

	Summary

	7 Timers
	STM Timer Peripherals
	STM Timer Configuration
	Update Event Calculation

	Polled or Non-interrupt Blink LED Timer Demonstration
	Test Run

	Interrupt-Driven Blink LED Timer Demonstration
	Test Run

	Multi-rate Interrupt-Driven Blink LED Timer Demonstration
	Test Run

	Modification to the Multi-rate Program
	Test Run

	Summary

	8 Bit Serial Communications
	UARTs and USARTs
	USART Configuration
	Windows Terminal Program
	Enabling USART2

	USART Transmit Demonstration Program
	Test Run

	USART Receive Demonstration Program
	Test Run

	Summary

	9 Analog-to-Digital Conversion
	ADC Functions
	ADC Module with HAL
	ADC Conversion Modes
	Channels, Groups, and Ranks
	ADC Demonstration
	ADC Demonstration Software

	Summary

	10 Pulse Width Modulation (PWM)
	General-Purpose Timer PWM Signal Generation
	Timer Hardware Architecture
	PWM Signals with HAL
	Enabling the PWM Function

	PWM Demonstration Software
	Demonstration One
	Demonstration Two
	Demonstration Three
	Demonstration Four
	Adding Functional Test Code
	Test Results

	Summary

	11 Direct Memory Access (DMA) and the Digital-to-Analog Converter (DAC)
	DMA
	Basic Data Transfer Concepts
	DMA Controller Details
	Using HAL with DMA
	Demonstration One

	DAC Peripheral
	DAC Principles
	HAL Software for the DAC
	Demonstration Two
	Demonstration Three

	Summary

	Index

