l PIC Micr_ocontrollers

50 Projects for Beginners and Experts

Bert van Dam elektor

PIC Microcontrollers
50 Projects for Beginners and Experts

Author: Bert van Dam

This hands-on book covers a series of exciting and fun projects, such as:

e silent alarm e people sensor

e radar e night buzzer

e clock ¢ VU meter

e RGB fader e serial network

e poetry box ® sound super-compression

You can use it as projects book and build more than 50 projects for your own use.
The clear explanations, schematics, and pictures of each project on a breadboard
make this a fun activity.

You can also use it as a study guide. The technical background information in each
project explains why the project is set up the way it is, including the use of datasheets.
This way you'll learn a lot about the project and the microcontroller being used, and
you can expand the project to suit your own needs...making it ideal for use in schools
and colleges.

This book can also be used as a reference guide. The explanation of the JAL program-
ming language and all of the expansion libraries used is unique and found nowhere
else. Using the index, you can easily locate projects that serve as examples for the
main commands. But even after you’'ve built all the projects it will still be a valuable
reference guide to keep next to your PC.

Four microcontrollers are discussed, the 12f675, 16f628, 16f876A, and 16877,
as well as how to migrate programs from one microcontroller to another.

All software used in this book can be downloaded for free, including all of the source
code, a program editor, and the JAL open source programming language. This powerful
and yet easy to learn language is used by hobbyists and professionals worldwide.

A hardware kit is also available for purchase separately that contains all the parts to

get you started, including a few microcontrollers. There is even a free support website
with additional information, FAQ, and links.

ISBN: 978-0-905705-70-5

Elektor Electronics e |ekt0r

www.elektor-electronics.co.uk

PIC™ Microcontrollers

Bert van Dam

Elektor International Media BV
Postbus 11
6114 ZG Susteren

All rights reserved. No part of this book may be reproduced in any material form, including
photocopying, or storing in any medium by electronic means and whether or not transiently or
incidentally to some other use of this publication, without the written permission of the copyright
holder except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or
under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court
Road, London, England W 1P 9HE. Applications for the copyright holder’s written permission to
reproduce any part of this publication should be addressed to the publishers.

The publishers have used their best efforts in ensuring the correctness of the information contained
in this book. They do not assume, and hereby disclaim, any liability to any party for any loss or
damage caused by errors or omissions in this book, whether such errors or omissions result from
negligence, accident or any other cause.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 978-0-905705-70-5
NUR 980

Translation: Bert van Dam

Prepress production: Autronic, Blaricum

Design cover: D-Vision, Oss

First published in the United Kingdom 2007
Second edition November 2008

Printed in the Netherlands by Wilco, Amersfoort
© Elektor International Media BV 2007

069016/UK

Content

INTRODUCTION 8
1 WHAT IS A PIC™ MICROCONTROLLER? 9
2 WHAT YOU WILL NEED 11
2.1 NECESSARY ITEMS 11
2.2 OPTIONAL JITEMS (NICE TO HAVE) 20
3TUTORIAL PROJECT 25
3.1 THE HARDWARE 25
3.2 THE SOFTWARE 37
3.3 COMPILING AND DOWNLOADING 36
3.4 DEBUGGING 37
3.5 DoNE! 39
3.6 OTHER RESULTS 39
4 SWITCHES 42 .
4.1 TIMER 42
4.2 TWO-WAY SWITCH 50
4.3 DICE 53
4.4 SECRET DOORBELL 57
5 A/D CONVERSION 73
5.1 VARIABLE SPEED FLLASHING LED 74
5.2 DARK ACTIVATED SWITCH 78
5.3 VOLTMETER L0
5.4 PHOTOMETER WITH LCD DISPLAY 83
5.5 SAMPLING 91
6 RS232 COMMUNICATION 97
6.1 SERIAL COUNTER 98
6.2 SILENT ALARM 101
6.3 IN-CIRCUIT DEBUGGING 105
6.4 SERIAL HARDWARE 114
7 ELECTRIC MOTOR 120
7.1 ELECTRIC MOTOR CONTROL 120
7.2 PULSE WIDTH MODULATION CONTROL OF AN ELECTRIC MOTOR 126
7.3 CONSTANT MOTOR SPEED THROUGH FEEDBACK 136

7.4 TACHOMETER 146

8 SENSORS

8.1 INFRARED OBJECT DETECTION
8.2 ULTRASONIC SENSOR

8.3 PEOPLE SENSOR

8.4 TILT SENSOR

9 SOUND

9.1 BEEP

9.2 NIGHT BUZZER

9.3 FREQUENCY GENERATOR
9.4 A SIMPLE MELODY

9.5 RECORDING SOUNDS

9.6 SOUND SUPER-COMPRESSION

10 MEMORY

10.1 FLASH PROGRAM MEMORY
10.2 RAM

10.3 EEPROM

10.4 EXTERNAL EEPROM wITH 12C

11 MULTIPLE PIC™ MICROCONTROLLERS

11.1 TwO RS232 CONNECTIONS
11.2 SERIAL SYNCHRONIZATION
11.3 A SERIAL NETWORK

12 MISCELLANEOUS PROJECTS

12.1 TIMERO INTERRUPT

12.2 PORT B INTERRUPT

12.3 PICTURES OF LIGHT

12.4 DIGITAL CLOCK

12.5 SCROLLING DISPLAY WITH ANIMATION
12.6 ULTRASONIC RADAR

12.7 HANDLING LARGER CURRENTS
12.7.1 Transistor

12.7.2 TC4427A MOSFET driver
12.7.3 Relay

12.8 THE POETRY BOX

12.9 BOOTLOADER

13 OTHER PIC™ MICROCONTROLLERS

13.1 THE 12F675
13.1.2 12F675_bert library
13.1.3 Demo program

152

153
156
162
167

172

173
177
179
184
189
203

222

222
228
232
241

250

251
255
260

267

268
284
290
297
303
312
322
323
326
328
329
333

341

342
343
3438

13.1.4 Railroad crossing

13.1.5 RGB fader

13.2 THE 16F628

13.2.2 16F'628 bert library
13.2.3 Demo program

13.2.4 Electric candle

13.2.5 Adjustable clock frequency
13.2.6 Upgrade using HEXview
13.3 THE 16F876A

13.3.2 16F876A_bert library
13.3.3 Demo program

13.3.4 VU meter

13.3.5 Infrared RS232

13.4 PORTABILITY

14 APPENDIX

14.1 JAL

14.1.1 General

14.1.2 Syntax

14.2 16F877_BERT LIBRARY

14.3 OTHER LIBRARIES

14.4 PROGRAMMER PASS-THROUGH

14.4.1 MICterm communication program
14.4.2 DIY software in Visual Basic
14.4.3 Terminal program using a batch file

14.5 TRANSISTOR DATA

14.6 CONTENTS OF THE DOWNLOAD PACKAGE

14.7 HEX FILES
14.8 TIPS AND TRICKS

Index

351
354
359
362
363
366
369
373
374
376
377
380
382
388

391

391
391
392
407
417
420
421
422
426
428
432
437
439
442

Introduction

This book covers a series of exciting and fun projects such as a silent alarm, a people
sensor, radar, a night buzzer, a clock, a VU meter, an RGB fader, a serial network, and a
poetry box.

You can use it as projects book and build more than 50 projects for your own use. The
clear explanations, schematics, and pictures of each project on a breadboard make this a
fun activity.

You can also use it as a study guide. The technical background information in each
project explains why the project is set up the way it is, including the use of datasheets.
This way you’ll learn a lot about the project and the microcontroller being used, and you
can expand the project to suit your own needs. For this reason most of the projects use the
same microcontroller, the PIC™ 16F877.

In Chapter 13, three other microcontrollers are discussed, the 12F675, 16F628 and
16F876A. Also explained is how to migrate programs from one microcontroller to
another.

Apart from that the book can be used as a reference guide. The explanation of the JAL
programming language and all of the expansion libraries used in the book is unique and
nowhere else to be found. Using the index, you can easily locate projects that serve as
examples for the main commands. Even after you've built all the projects in this book it
will still be a valuable reference guide to keep next to your PC.

At this point | would like to thank Stef Mientki and Wouter van Ooijen for their help with
the technical editing of this book, and also for their support many years ago when T first
got my feet wet in the exciting world of microcontrollers. For the English version I would
like to thank Mike Kerna and Kyle York for their help with the final editing,

Bert van Dam

1 What is a PIC™ microcontroller?

PIC™ is a trademark of the Microchip Corporation.' It’s not quite clear whether this is
just a name or an abbreviation. On the Internet names like Peripheral Interface Controller
or Programmable Integrated Controller are occasionally used, but on the website of the
manufacturer PIC™ is used as if it is a normal name which just happens to be spelled in
capitals.

A PIC™ is actually a complete mini computer on a chip. As opposed to a computer, such
as a PC (which is an abbreviation and stands for Personal Computer), a PIC™ is not
designed to work with people but with machines.” This means there is no simple way to
connect it to a keyboard or a terminal. There are however many ways to connect it to
machines or parts of them, such as switches, LEDs, variable resistors, temperature
sensors, infrared sensors, or even other PIC™ microcontrollers.

Figure 1. PIC™ microcontroller (16F877)

Because they can be programmed PIC™ microcontrollers can be used in many different
ways. You can find PIC™ microcontrollers in VCRs, remote control units, vending
machines...they control motors and heaters, decipher remote control signals, measure
temperatures, and much more. It is this reason of being found inside machines that
microcontrollers are often called “embedded systems™.

You can even design and build applications like these embedded systems yourself. With a
few simple parts and the instructions in this book you can build some very interesting
projects. Each project comes with a clear and complete explanation of both the software
and hardware. Perhaps even more important is that for each project the technical

' Officially, PIC™ is a trademark or registered trademark of Microchip Technology Inc.

? There is another important but very technical difference. In a PC both program and data occupy
the same memory. This is called the von Neumann architecture. The advantage is that there is a
flexible relationship between the available memory for the program and the data. In a PIC™
separate memory is used for the program and the data, the so called Harvard architecture. The
advantage is that program and memory can be accessed at the same time, which significantly
improves the processing speed.

1 What is g PICTM microcontroller?

background is explained in detail. This allows you to understand how and why these
projects work, so that you can easily adapt them to your own needs and ideas.

The book starts very simply with a tutorial project and step-by-step instructions. As you
go along the projects increase in difficulty and only the new concepts are explained. By
the end of the book you will no longer be a beginner!

Chapter 14 contains a complete and unique overview of all of the commands of the JAL
programming language and the expansion libraries used. You won’t find this anywhere
else! You can use it as reference guide, but also to find fun and useful commands and
options.

All of the software used in the book is explained and shown. To avoid having to type in
the programs yourself, they are included along with the other software needed in a
complete package, which you can download for free at http://www .boekinfo.tk.

To get started quickly, a hardware kit is also available. It contains all of the parts needed
for the first few projects. The kit is designed for your convenience, but of course you can
also obtain and use your own parts. More information on ordering and international
shipping can be found at http://www boekinfo.tk.

All of the projects in this book are built on a breadboard. This allows you to easily build
and expand them before you design a printed circuit board. It is more fun to see the
projects in this book as a starting point for something that suits your own needs rather
than finished projects.

Okay, enough talk... let’s get started with our first PIC™ microcontroller project!

10

2 What you will need

This chapter covers all of the materials needed to start with this fascinating hobby. And
there are many different options to choose from. Other choices may work just as well as
the ones chosen here. What’s important is that the selected materials work together
perfectly. The Wisp628 programmer, Xwisp2, JALedit IDE, JAL v2 and the 16F877 bert
library are just such a combination; a perfect fit, giving you many hours of fun.

Of course you also need this book - preferably your own copy - so you can make notes
and even write in the book. Your own experiences and notes about the parts that you use
will make this book even more valuable. Writing in a new book for the first time may not
be easy, but it gets easier in time.

A lot of the software (at least the most important software) can be downloaded from the
website http://www.boekinfo.tk in the section “download packet”. You’ll also find
information on a hardware kit that you can buy, links to suppliers, and lots of other
information.

2.1 Necessary items
Breadboard
Unless you're the type that goes for the soldering iron immediately it is a wise idea to use

a breadboard. This will allow you to build and modify projects quickly, making it ideal
for prototyping.

PrOGrammer /44 i,
i)

Figure 2. Breadboard with decoupling capacitors.

To prevent power issues, decoupling capacitors of 0.1 uF are inserted on the power strips
at the corners. In one of the corners a stabilizing capacitor of 22 uF is used, as well as a
small LED (reverse mounted), which serves as a limited safety diode against an
accidental reversed power connection.

11

2 What you will need

Depending on what you want to build you will need electronic parts. If possible try to get
parts that fit into a breadboard. Some parts may have wires that are too thick. Don’t force
them into the breadboard, but solder small wires to them instead.

Many suppliers sell small bags of mixed parts (resistors, LEDs, capacitors). This may be
a good way to start your parts collection.

Long breadboards such as the one in Figure 2 have a power rail that is split into two parts.
They are not necessarily internally connected. The top and bottom rails are almost never
internally connected. So, before you start a project it’s best to prepare the breadboard by
connecting all the power rails and inserting the parts described. You wouldn’t be the first
to wonder why a project doesn’t work only to find out later that part of the power rail you
used was not connected to the power source.

Power source (UA7805)
All PIC™ microcontrollers use 5 volts, and that has to be rather accurate, especially

during programming. Use a good stabilized power source with a UA7805 (or similar’)
active stabilizer, connected according to the schematic below.

UA 7805
+ 5 volt 3 1 J|Q—
2 feed 1
1000 uF/ N
35 volt
0.1 uF T feed 2
ground (0) DI—-

1

4 x 1N4007

Figure 3. Stabilized 5V power supply.

A transformer is connected to feed 1 and feed 2. This may very well be a wallwart power
supply, as long as the voltage is high enough. Preferably 9 to 24 volts if the transformer is
alternating current (AC), or 9 to 32 volts if the transformer is direct current (DC).

It doesn’t make any difference how you connect a DC transformer, since the current is
still rectified by the four diodes. Of course the transformer needs to have sufficient
capacity.

? For example the LM7805 manufactured by Fairchild Semiconductor. This power regulator can
handle 1 Amp max, while the UA7805 manufactured by Texas Instruments can handle 1.5 Amp.

12

2.1 Necessary items

How much “sufficient” is depends on your project. Several hundred milliamps is usually
enough. If you use more power it is advisable to equip the UA7805 with a heat sink to
provide cooling.

Programmer (Wisp628)

Once you have written a program it needs to be transferred into the PIC™. This is the
task of a programmer. Some programmers can program a PIC™ while it is still in the
circuit on the breadboard. This is called “in-circuit programming”. Trust me, you really,
really, REALLY want this feature. It gets annoying very quickly when you have to
wriggle the PIC™ off the breadboard each time you forgot a comma in your program.

We’ll be using the Wisp628, an intelligent programmer than can handle a wide array of
different PIC™ microcontrollers. The intelligence of this programmer is, by the way,
contained in its own PIC™; so you can make your own updated version of the program
software if needed. Also important is that this programmer has a pass-through feature.
Without touching as much as a single wire you can communicate from your PC directly
with the PIC™. This makes it ideal for debugging your software.

Figure 4. The Wispé28 in-circuit programmer.
PIC™ (16F877)

Which PIC™ to choose is a difficult question. There are dozens of different types, each
with different options and cost. For the majority of the projects in this book the 16F877 is
used.

This 16F877 is loaded with possibilities and features, and has many pins. This is an
advantage because it means fewer combined pins are used, which is always a difficulty
for starting programmers. Besides, it’s a popular microcontroller, which means a lot of
information (and thus help) is available on the Web. A disadvantage is that this PIC™ is
relatively expensive, US$ 7 to US$ 11.

13

2 What you will need

Figure 5. The 16F877 with 40 pins.

At this point the specifications probably don’t mean too much yet:

Item Specification
Program memory 8192 words (14 bit)
RAM size 368 bytes
EEPROM size 256 byte

I/0 pins 33

Analog inputs 8 (10 bit each)
USART Yes (c6/c7)

Speed 5 mips

Cost US$ 7to 11

12C yes (c3/c4)

When you order this microcontroller you will need to know which package you want.
This doesn’t refer to the box the microcontroller is shipped to you in, but to the external
connections of the chip. For instance, whether the PIC™ should have long pins that fit
into a breadboard or printed circuit board, or small pins for surface mounting. The
package shown in Figure 5 is called PDIP (or Plastic DIP), and this is what we’ll be
using.

14

2.1 Necessary items

Programming language (JAL)

Many different languages for programming PIC™ microcontrollers exist on the market.
The most commonly used language is arguably assembler (ASM) - a very powerful but
extremely cumbersome language. Even the simplest program in assembler contains a long
list of commands. ..definitely not suitable for beginners.

This book uses JAL (Just Another Language), a Pascal-like high-level language. It is the
only advanced language that is completely free, and has a large international and very
active user base. JAL is configurable and expandable using libraries, and can even be
combined with assembler. This allows you to incorporate ASM snippets* found on the
Internet.

This is an example of a JAL program that flashes an LED connected to pin 23 (c4):

--JAL2.04
include 16F877 bert

-- define variables
var bit flag

-- define direction of the signal of this pin
pin_c4_direction = output

forever loop
-- change pin 23 status
flag =" flag
pin_c4 = flag

-- wait 100 milliseconds
delay 100ms(1)

end loop

The address of the JAL usergroup is listed on the website, www.boekinfo.tk.

* Small pieces of program that do something "convenient" and are exchanged between users.

15

2 What you will need

Library (16F877_bert)

Libraries contain additional functionality that can be added to JAL. You can, for example,
make serial connections, read an analog signal, and much more.

In this book, the standard library 16F877_bert’ is used. It is basically a combination of the
most used libraries off the Tnternet,® that all fit together perfectly, and is included as part
of the download package. By using this standard library a lot of additional functionality is
made available:

Functionality (with the standard library) 16F877
Serial communication - hardware v
Serial communication - software
Pulse Width Modulation (PWM)
A/D conversion

Program memory

EEPROM memory

ASCI

Delay

Registers and variables

U NI U N N NEEN

Random numbers

Because part of the library functionality is automatically loaded, a few of the pins are
assigned by default. If you want to use these pins for another purpose you will need to
modify the standard library. This will rarely be necessary.

> A silly name for a library. When | made the first one many years ago | called it _bert to
distinquish it from the libraries [got off the Internet. The library became much more popular than |
imagined, and since they are so well know | can’t get rid of the name anymore!

® Mainly written by JAL expert Stef Mientki.

16

This is the default configuration:

16F877 pins
13 and 14
16
17
25
26
39
40
2to5and 7to 10

other pins

2.1 Necessary items

Function
crystal
PWM(2)
PWM(1)
RS232 hardware TX
RS232 hardware RX
RS232 software RX
RS5232 software TX
analog in {(adaptable)

digital in/out

The analog pins 2 to 10 can be switched to digital using a command from the library (sce
section 14.2).

Editor (JALedit)

You can use JAL from the command line, but an editor is much more convenient. The
recommended editor is JALedit. This freeware editor has a number of unique advantages:

JAL commands are color coded
Overview of variables, constants, and
Block comment add or remove

One click compile and download

procedures used in a program

Built in ASCII table, calculator, and terminal

Source export to html (for publication
Automatic backup

Compiler output in a separate window
Load multiple files at the same time

on a website)

Jump to offending program line on error

17

2 What you will need

(Fle Edt Seach Vew Comple Tock e

Dla - l>ctl§ﬁﬂ‘,ﬁ el 0] plele] s m|

—vmwlmmwl

Prsss F5 1o Astiesh __L_i

se00000

i

i

byte 1877_cepB al o
byte polirue.

yle B77_coplaler | o

85 var volatile brte fariai B in butfer in _pore_b_shadew

B6 var volatile bit Seriai_S¥_in_direction is pin_bé_direction
87 include Serial Sofcware

o8

105 var Byte 1877_cepril e cepril
. [106 var myea 1977 ceprzi e ccprzi

107
108 var Byte polltrus

109 Procesurs F877_serial_recaive (byte owt data | is begin
110 Seriai HW_read (dava)

1L wna

1z

113 Procedure 7877_sarial_tramsmit (byte in daca | is begin
114 Serial_w_Write(dsta)

115 wnd procadure

1
Li7 procssure 7077_tacial 3oll { brte out duca) s begin
118 policrus =

R rpig el O

Figure 6. JALedit.

This beautiful editor is part of the download package.

Terminal software (MICterm)

A serial connection to the PC is used in many projects to display data. It also can be a

convenient tool for debugging.

You could use a standard terminal program, but a much easier way is to use something
written especially for microcontrollers: MICterm. This freeware program has a number of

unique features:

Switches the programmer automatically to pass-through’

Data can be shown raw, in hex or in ASCII.

Data can be displayed in any combination of numbers, binary, on a dial or in a graph

(with average).

e Separate window for send and receive

e Optionally send files to, or receive files from, the PIC™

7 For Wisp628 only.

18

2.1 Necessary items

Microprocessor Communications

Fle Help
(- Bert van Dam [c]2006- = =5 = = ey T e e e
; MiCterm microcontroller terminal
~Connect to PIC sk Communications — e o e T e - e T -
| Process
e 115115115115 115115116115 115115115115 116115 & fEretes, W7 Enable Restat
s 115115115115 115115116 115115115115 11394 6746 &b |
o |
40424851 55 g1 85 85 5 85 86 A , :
A i ‘ | [108119129141 154 164173180 189 199 210 224 232 235 ‘ ! ‘ i dearsend | | | i
b | 1234226221 215211 203198 196 191 183176 168 158 148 Hex '
PotonPC————— | |140131122118123 133 141 150 156 164 168172183 131 , Cor |
|| |o00202 195 178162150 133 134 133 135 144 162 160 171 i 5] H |
| & com1 ¢ Com3 179781 179171161 155148144 141 140 140141 145160 |~ — ;
i % | 162169173175 175 168 161 150 141 140 140 140 145 155 |~ Binaty— L
| Com2 € Cmd || HEULIBUMSITIVIMEE IS 19 816 15 5 Ve | s,
e N | o | |
15815 71271 9 183 [l |
FAC comm speed - 163163163 163163 163 163163168 180188199200 200 | ‘| st Mt | | Average [T7% _Reset | |
| BEnammanmmmenn 021 il
1200 14| 931931331931 93193193
|| [193183193193193132 192 192 132 184 163 153 144 143 | ~Gage—————————— [~ Fileliansfer- - g
Coun C1%2 | 131118 105 102 102 103102 94 90 82 73 66 60 60 60 61 61 (1717 Endie gase H \
Foae i B mggmsmmmmmmmmmmsmmm || || m SendFie l Aborll ‘
| 61 & | |
; = — B { | i IKpicdev\trrp\cunveniaI |
AR 4 i l | !
(c) 2006 Bert van Dam ‘: oom Recawaﬁbl Abort I |
Version 3.2 | ‘ | | i_c:\picdev‘\lmp\rece‘we.bcl

Figure 7. MICterm.

MICterm is part of the download package.

19

2 What you will need

2.2 Optional items (nice to have)

The following items are not necessary to work with PIC™ microcontrollers, but they are
very convenient.

Development software on the PC (Visual Basic)

Since the PIC™ can communicate with the PC it’s fun to write special software for this.

It is not necessary, since you can do all the projects in this book with the supplied
software in the download package.

If you own Visual Basic, for example, you could write beautiful applications for your
projects such as a voltmeter, several graphs on one page, and visualization of
measurements. Many PC applications in the download package have been written in
Visual Basic, and in many cases the source code is included. You can of course use
another language if you want.

| voltmeter

=:0=
-
an 3 ;
[Dusmy = DoEvents ()
6o Qe o
o 1 Vokege | HSCome1.Break = Falss
& ~ :
BE o ‘switch to programmer speed
+ 1 = "18200,n,8,17
) through command
: mcmm Output = "0000p"
= mit £o make sure the command is processed by
The s
bty i buration! = Timer + 0.1
communicason to PIC Do Uneil Timer > buration!
S Dummy = DoEvents (]
¢ Loop
R) he
> < itch to microcontroller speed
B EaCounl. Settings = 1100 m, 8110

End It

Mame)
Returs the rame used 008 to kertly sn
et

Figure 8. Visual Basic.

Visual Basic® is commercial software, so it's not part of the free download’.

¥ Visual Basic is supplied by Microsoft. See http://www.microsoft.com
® For free PC development software try http://www.thefreecountry.com.

20

2.2 Optional items (nice to have)

Oscilloscope (Software)

For power spikes and ripples, and projects with inexplicable behavior, sometimes it’s
very convenient to have a simple oscilloscope.

Oscilloscope 2.51 f::l [g|
File Edit Options Help

T Y S

TEITERE

Y1 7.44
- |f2003 fi.] -
_.[Sweep = B
= | 1974ms
Delay S b ol
- T T
0.00 ms s B
7| |oo0ms

i o 10.00 ms
: :-[TiglLev
- - Yz 23 - -
= 14T |

Y1 Y2 Pos T T delay Tig

e~ 71=47.15ms vi-88

wave |

Figure 9. Software Oscilloscope.

The software oscilloscope uses the soundcard of a PC to convert the signals. One of its
limitations is that you need to make a small interface to protect the soundcard.

I

3 >
common right left =
measuring
pens
left or right = =
-
= S &
MIC in &
a
common

Figure 10. Interface for mic or line input of a soundcard on a PC.

21

2 What you will need

The interface in Figure 10 is used to reduce the maximum voltage on the microphone, or
line input of the soundcard, from 5 volts to 0.9 volts. The maximum frequency is also
limited, but the price is right (the program is freeware).

Resistor and capacitor codes

Resistors and capacitors usually have a (color) code to indicate their value. This value can
be found in tables, but you didn’t buy a PC to fiddle around with paper tables. Two small
programs can do the job for you:

Resistor colour codes

unit
n - e [5%
& K

[E127E24 M

Figure 11. Resistor color-coding.

Capacitor Coder QRPHB Series

o

= Wi

Figure 12. Capacitor coding.

22

2.2 Optional items (nice to have)

Programmer dongle

For some PIC™ microcontrollers the pin that is used to switch the PIC™ to programming
mode can also be used for other purposes. If that is the case, the power must be brought to
ground during the switchover to programming mode. This is the case with the tiny
12F675. In these situations you need a special dongle. For the 16F877 the dongle is not
needed.

I i
':_'5'470“ TIP120|
| SO |
Wisp628 1k Target
(3
g l 110
9 d 02 L1 23 g 9
10{ O = 10
11 DDB 1n4148 3:||_—_]11
O |4 4|10
12| O (12
O 5 S4i=1 O
13| O 13
O (6 6| O
14 O 14
0y 710 O
1510 g [g sl — |15
L AR s

Figure 13.The schematic of the dongle.

Figure 14. The finished dongle.

23

2 What you will need

Frequency counter (Software)

When you are working with interrupts or sound a frequency counter can be very
convenient. The frequency counter uses the soundcard of the PC, and requires the same
interface as the software oscilloscope.

Frequency Counter 1.01

Figure 15. Software frequency counter.

24

3 Tutorial project

Now that all of the materials have been acquired it’s finally time to get started! The
purpose of this tutorial project is to build a flashing light. In preparation it may be
convenient to read Chapters 1 and 2, but if you’d like to move right along that’s no
problem.

In this tutorial it is assumed that you have downloaded and properly installed the free
software package from the website http://www.boekinfo.tk. The package contains the
JAL programming language and the libraries, so you cannot continue without installing
these first.

The package also contains an editor (JALedit) specifically designed for use with JAL.
You can use your own editor (and if you don’t have Windows on your PC you may even
have to), but you’ll need to follow the instructions that came with it. You might miss
certain features such as syntax color-coding, single click compile and download, library
view, and the procedure/function overview.

It is also assumed that you use the recommended programmer Wisp628. You can use any
other programmer (that can program a 16F877), however you must also follow the
instructions that came with it. And, again, you might not be able to use all of the
functionality assumed in the book, such as in-circuit programming and RS232 pass-
through.

3.1 The hardware

First of all, a PIC™ must be selected. Normally that would be the smallest and cheapest
PIC™ that just meets all of the demands. For this project, however, we will select an easy
PIC™, which can be used to build most of the projects in the book (even the most
complicated ones): the 16F877 from Microchip. It is an easy to use PIC™ with many
features, but with a price of US$ 7 to US$ 11.

The 16F877 has 40 pins. What these pins can do is listed in its datasheet.'” Don’t let the
word “datasheet” fool you; it’s more like a book of over 200 pages!

19 you can download the datasheet for free from Microchip at http://www.microchip.com. The
datasheet name will resemble 16F87X, since similar chips are often combined into a single
document.

25

3 Tutorial project

In the datasheet you’ll find the following drawing of the configuration:

U 40 [] -+— RB7/PGD
39 [] «— RB6/PGC
38 |] «=— RB5

37 [] «—— RB4

36 [_] «— RB3/PGM
35|] «-— RB2

34 [| «+—» RB1

33 |] =— RBO/INT
32 [] -—— VDD

31 [] «+— Vss

30 [] «— RD7/PSP7

29 [] -— RD6/PSP6
28 |] «+— RD5/PSP5

27] «—» RD4/PSP4

MCLR/VPp — [
RAO/ANO <«— [

RA1/AN1 <—[]
RA2/AN2/VREF- <—[]
RA3/AN3/VREF+ <—[]

RA4/TOCKI <—[]
RA5/AN4/SS <— [
REO/RD/AN5 <—[_
RE1/WR/AN6 <—]
RE2/CS/AN7 <— [

VDD —— [

VSS — [}
OSC1/CLKIN ——[]

OSCRCLKOUT |]

Lo J -« I MRS S T ST N R

S
o

e il
W N

PIC16F877/874

RCO/T10SO/T1CKI <«—[] 15 26 [] «— RC7/RX/DT
RC1/T10SI/CCP2 +—[] 16 25 [] +—» RCB/TX/CK
RC2/CCP1 «—»[] 17 24 [] «—» RC5/SDO
RC3/SCK/SCL <+—[] 18 23 [] =— RC4/SDI/SDA
RDO/PSP0 <«—[] 19 22 [[] «—» RD3/PSP3
RD1/PSP1 <«— [20 21 [] «— RD2/PSP2

Figure 16. Pin layout for 16F877.

Shockingly complex, but perhaps adding a few words will simplify matters a bit.

26

analog input
(port A)

RA2/AN2/VREF- <a—[]
RA3/AN3/NREF+ <— [

analog
input
(port E)

VDD ——»
power < =
Vss — [

crystal (O

RCO/T10SO/T1CK| <t— [
C1/T10SI/CCP2 <—[]

digital

input/output RC3/SCK/SCL 4—-[:

(port C)

digital
input/output
(port D)

MCLR/Vpp —]
RAQ/ANO <—[]

RA1/AN1 <—]

RA4/TOCKI| <«— [
RA5/AN4/SS <—[]
REO/RD/AN5 <— [
RE1/WR/ANG <+— |
RE2/CS/AN7 <—[]

OSC1/CLKIN — []
SC2/CLKOUT «——[]

RC2/CCP1 «—[_

© o ~No o R ®WN

B . S N .
Yoo s wN=O

40
39
38
37
36
35
34
33
32
31
30
29
28
27

Z 25
24

C16F877/874

RDO/PSP0 <— [
RD1/PSP1 <—]

e 0
©

23
22
21

] «—— VDD
] «—— Vss

3.1 The hardware

RB7/PGD

RB6/PGC \ digital

ut
RBS —7 | (oot B
RB4
RB3/PGM
RB2
RB1
RBO/INT

> power

RD7/PSP7

RD6/PSP6

RD5/PSP5

RD4/PSP4 ;
serial

RCTIRXIDT7 connection

RCB/TX/CK

RC5/SDO

RC4/SDI/SDA

RD3/PSP3

RD2/PSP2

Figure 17. Pin layout for 16F877 with explanation.

27

3 Tutorial project

What this all means:

* Analog input means that these pins can accept an analog signal anywhere between 0
and 5 volts (for example, 3.56 volts).

* Digital in-/output means that these pins can process a digital signal.. either 0 or 5V,
but nothing in between. Since they are also outputs the pins can be made 0 or 5V by
the PIC™ itself.""

» Power is obvious (Vss = 0V or ground, Vdd = +5V). Beware that all power pins must
be connected!

¢ Crystal is where the crystal (with a few capacitors) must be connected. The crystal
takes care of a very stable (electrical) vibration, which is used to accurately control
the speed of the PIC™, This is called the (external) clock. Al PIC™ microcontrollers
can do without a crystal, but the speed will be lower and may be not accurate enough
for communications with another PIC™ or a PC.

¢ Serial connection means that with these pins a serial (also called RS232) connection
to another PIC™ or a PC can be made.

* [2C is a network protocol that can be used to conmect multiple PICT™
microcontrollers together, or to connect peripheral devices to a PIC™.

A lot of pins have multiple abbreviations listed next to them. This means that they have
multiple uses. Some of these uses will be addressed in this book. For the time being it’s
enough to remember which pins are analog and which are digital.

Now that we know what the pins are for the hardware can be built. If you purchased the
hardware kit you can start immediately. Otherwise, you’ll have to shop for parts. On the
website http://www.boekinfo.tk you'll find an overview of the parts needed for ecach
project. Since this is a tutorial project the parts for this project are listed here as well.

"' The actual value of a digital signal is a bit more complex. For example, 4.8 volts is still regarded
as "on" and 0.5 volts is still regarded as "off™.

28

3.1 The hardware

For this project you need the following parts:

Part Type and number
pIC™ 16F877
resistors 2 x 330 ohm (orange-orange—brown)Iz

1 x 10 k ohm (brown-black-orange)
1 x 33 k ohm (orange-orange-orange)

LED 2 pieces
capacitors 2 x 20 pF (code 20)

5 x 100 uF (code 104)
crystal 1 x 20 MHz

miscellancous breadboard
programmer
wire (22 gauge or 0.5 mm’ Cu)
stabilized 5V power supply

Pins 1, 11, 12, 31, and 32 must always be connected, regardless of the project you are
making. When a crystal is being used, pins 13 and 14 must also always be connected.

The only thing we need to choose for this project is where to connect the LEDs. And
since we can choose any pins of ports B, C or D, we’ll just pick two at random: 22 (d3)
and 23 (c4).

The components on pin | are mandatory for programming the PIC™. In older circuits
you may find just a 33k resistor on this pin. This appears to work fine, but the
manufacturer now recommends the setup used in this book. The crystal is also required
and is connected with two capacitors to pin 13 and 14.

"2 In resistor and capacitor values you often find letters. These have the following meaning:
k=1,000; m=1/1,000; u=1/1,000,000; p=1/1,000,000,000. The location of the letter is also
important. For example, 22k means a resistor of 22,000 ohms, but 2k2 means a resistor of 2,200
ohms. Sometimes the letter R is used for a decimal point: 4R7 would indicate 4.7 ohms.

29

3 Tutorial project

11/32

E 4
8 161877
1 12/ 13 14 22 23
10k I:l = =
Sobne Vil 1™ 1|
. & = &
LR]
8 I \/ : N/ g LED
(green) (blue) =

Figure 18. Schematic of the tutorial project.

In this example the LEDs are blue' and green. But the color is not important. The resistor
in series with each LED, however, is very important. It limits the current through the
LED. Without this resistor the PIC™ or the LED would break down - and it’s usually the
most expensive component that breaks first.

Figure 19. Hardware tutorial project.

Place all of the components on the breadboard. Be certain that all wires are actually
inserted into the holes, and that all 40 pins of the 16F877 are in the holes as well and not
bent underneath the PIC™. On one end of the PIC™ you’ll see what looks like a half
moon; this is where pins 1 and 40 are located. Often, there is also a small circle to
indicate pin 1. Follow the schematic exactly, and use the picture in Figure 19 to verify

" Blue LEDs are very expensive. You’ll find one in the hardware kit, because of the RGB fader
project in section 13.1.5. If you didn’t purchase the hardware kit you can replace the blue LEDs in
this and other projects with red ones (except, of course, in the RGB fader).

30

3.1 The hardware

that you understand the schematic correctly. On the left hand side you can see the wires
that connect the top and bottom power rail, and the long wires from the programmer.
These are never in the schematic, but you need to connect them anyway.

On the top right hand side of the breadboard are the wires from the 5V power supply. The
power supply must be sufficiently stabilized (for example, with a UA7805). On each of
the four corners of the breadboard is a 0.1 uF (which is the same as 100 nF) capacitor.
(Note that in the picture only two corners can be seen.) These take care of power ripples.

The long wires leaving the picture on the left are from the programmer. If you use the
Wisp628 in-circuit programmer the connections must be made as follows:

Color Connection
yellow pin 1

blue pin 40
green pin 39
white pin 36

red +5V

black ground

A number of parts, such as LEDs, have a positive and negative side." If you look
carefully inside the LED you’ll see that one of the pins appears to be wider. This is the
negative side and needs to be connected to the lower voltage. (Usually this wire is also
shorter than the other side.) In the schematic, the symbol of an LED looks like an arrow.
An easy rule to remember is that the arrow always points to the negative side.

+ -

Figure 20. The positive and negative sides of a LED.

' The actual name for the positive side is the anode, and the negative side is the cathode.

31

3 Tutorial project

Check all parts and connections twice before turning on the power. Then switch the
power off again.

3.2 The software

The program is written using an editor: JALedit. Of course any other editor could be
used, but this one has special features that make is very well suited for use with JAL.
Once the editor has started up you’ll see an empty page; this is where you’ll enter the
program.

File Edit Search View Compile Tools Help

0| - W] %] & f_l_uh,@l AR

blﬁal@] s | [m W] |

Code Explorer 2 x
PressF5toRefiesh . | . | 1FJa1 vz
2 include 16£877_bert

Includes 3 include conversion_bert
Procedures 4
Functions 5 -~ definities

; Constants 6 pin_c4_direction = Output

Variables 7 pin_d3_direction = OQutput

8
9 forever loop
10

11 == LEDs in stand 1
12 pin_d3 = high

13 pin cd4 = low

14 delay_ls(l)

15

16 -- LEDs omgewisseld
3 B g pin _d3 = low

18 pin c4 = high

19 delay_ls(l)

20

21 end loop

2z

Figure 21. JALedit with tutorial program.

A program consists of a series of commands. These commands tell the 16F877 what it
needs to do. The commands are processed starting at the top of the page and going down
(some commands will cause it to jump to different parts). The JAL programming
language is not very particular about how you space the commands over the page. But
you need to be able to understand it yourself, so we’ll make a few rules for ourselves:

1. Each line will have only one command.
2. Short comments will be used to explain what the program does.
3. At loops and conditional commands we indent.

The meaning of rule three will become clear later. To make the program easier to read

JALedit will color-code everything you enter. This has no impact on the functionality of
the program.

32

3.2 The software

The very first step in the program is to load a library. A library contains additional
commands, which usually cannot be part of the JAL language itself because they may
differ for each type of microcontroller. As a programmer you don’t want to know about
this stuff so it’s hidden away in a library. The only thing you need to do is use the library
that goes with the microcontroller. Since we are witing a program for the 16F877, the
16F877 bert library is loaded. The commands contained in this library are explained in
Chapter 14, but as you read through the book you will encounter most of them, with a
clear explanation.

Loading the library is done with the following command. It is a good idea, by the way, to
wait before entering the program until all parts have been discussed, because this doesn’t
necessarily take place in the right order. At the end of this section you’ll find the
complete program.

--JAL 2.0.4
include 16F877 bert

The standard JAL commands are recognized by the editor and color-coded. Variables and
commands from a library are in blue. The first line starts with two hyphens to indicate a
comment only meant for the user (you); the microcontroller will do nothing with it. The
second line starts with include and then the name of the library. Everything that this
library contains is inserted at this point (without you ever seeing it).

Since the digital pins on the 16F877 can be either input or output we need to define the
directions of the pins that we intend to use. For this program we want them both to be
outputs, because we want to switch LEDs on and off with these pins.

pin_c4 direction = output
pin_d3 direction = output

OSUT/ULKIN ——=| | 13
0SC2/CLKOUT «—1[] 14 -
o
RCO/T10SOT1CKI «—[] 15
RC1/T10SI/CCP2 +—[] 18
RC2/CCP1 w—=[] 17
CKISCL <+—=[] 18
RDO/PSP0 «+—[] 19
RD1/PSP1 <—s[] 20

Figure 22. This is where you'll find the pin names.

33

3 Tutorial project

The pin names can be found in Figure 22. A good idea would be to look for this figure in
the datasheet of the 16F877 (on the website of Microchip: http://www.microchip.com)
and print it out. You can keep it handy when building projects (this is what [do).

You must indicate the direction of a pin for every pin you use. This can easily be
forgotten.

Lighting an LED is done by applying power to the pin that the LED is connected to."
This is done by making the pin high. We turn the power off by making the pin low,

pin_d3 = high
pin_c4 = low

After these commands are executed the LED on pin d3 is on, and the LED on pin ¢4 is
off. Since we want to make the [LEDs flash, the next step has to be the reverse.

pin_d3 =low
pin_c4 = high

In between a pause must be inserted. Otherwise, the flashing will be too fast to see. The
pause we’ll use 18 a one second delay:

delay 1s(1)

The number between the parenthesis specifies how many times the program should wait
one second. Had we used, for example, delay 1s(3) then the program would wait 3 x 1 =
3 seconds.

'* Because the other side of the LED is connected to the ground.

34

3.2 The software

With the commands used so far the LEDs will only flash once, but a real flashing light
doesn’t stop. So our commands need to be repeated continuously, in fact, “forever™

forever loop
end loop

Here's what the entire program looks like:

—JAL 2.0.4
include 16F877 bert

-- definitions
pin ¢4 direction = output
pin_d3 direction = output

forever loop

-- LEDs in starting state
pin_d3 = high

pin_c4 = low

delay 1s(1)

-- LEDs switched
pin_d3 = low
pin c4 = high
delay 1s(1)

end loop
You see that the loop, which is repeated forever, is indented. This makes it very clear
where the loop starts and where it ends. Remember, this was the third rule we made about
program entry: “At loops and conditional commands we indent.”
Now is a good time to enter the program into the editor and save it. In the file menu select
“Save as” and enter a good name for this program, such as “tutorial”. Don’t enter a file

extension, it will be added automatically.

It may be a good idea to use a separate directory for each project that you build. This way
everything that has to do with the project is neatly grouped together.

35

3 Tutorial project

3.3 Compiling and downloading

The first check is to see if the program has been entered correctly. Click on the button
with the green triangle (compile active JAL file), or press F9.

Jolf] pgle] Alsle
NS

Figure23. Compiling the active JAL file.

You can open multiple files at the same time, but only one of them is the “active” file.
For this file the tab at the top is blue. If you followed the instructions you only have one
file open (the one you just entered) so this is automatically the active file.

A small window will briefly appear, and then in the “compile results” window at the
bottom a message is displayed. Hopefully it starts with:

jal 2.0.4 (compiled Aug 16 2006)'®
0 errors, 0 warnings

Following these two lines are many others, but they’re not important at this point. No
errors, by the way, doesn’t mean your program will do what you want, or even work. It
simply means you haven’t made any syntax errors. Let’s assume, for example, that you
accidentally entered ouput instead of output you would immediately get an error message
like this:

jal 2.0.4 (compiled Aug 16 2006)
[Error] (tutorial.jal) [Line 6] "ouput" not defined
1 errors, 0 warnings

The compiler reports that the error has been made on line 6.

Assuming you have made no errors the program can be downloaded to the PIC™. The
hardware discussed in the previous section needs to be completed and connected to the
programmer and power supply. Switch on the power'” and on the PC click on the button
with the integrated circuit and the green arrow (compile + program), or press Ctrl-F9.

'® If a more recent version of JAL is used this line will show a different number and date. This has
no impact on the results.

36

3.4 Debugging

Figure 24. Compile and Program.

The compile window appears again, but this time it is followed by a window with a black
background. This second window belongs to the software of your programmer, in this
case the Xwisp2 software.

e+ C:\PICdevixwis p 2 \xwisp 2w. exe

Figure 25. Programmer software Xwisp2 in action.

You can observe the progress of the download in the black window. After downloading
the program the PIC™, the program is automatically checked to confirm that
downloading was successful. If everything is OK the LEDs will start flashing and the
window will close.

3.4 Debugging

If everything went well you can skip this section and go straight to section 3.5. If it didn’t
go as planned look for your symptom in the table below and follow the instructions.

" Note: these instructions only apply if you use the recommended programmer, Wisp628. If you
use another programmer you need to modify the settings of JALedit to suit that programmer.
Wisp628 is an in-circuit programmer. If yours isn’t, then the PIC must be removed from the
breadboard (with the power switched off) and then follow the instructions that came with your
programmer.

37

3 Tutorial project

Symptom
The window with the black
background doesn’t come
up.

The window with the black
background shows a lot of
complicated text and then
disappears.

38

Remedy

There are errors in the program. Check the window at
the bottom (compile results) for error messages.

You didn’t instalt the downloaded software package
correctly. Some software is missing or cannot be
found, particularly the programmer software (xwisp2).
Carefully read the instructions of the download
package and follow them exactly.

You have installed the software to a ditferent location
than instructed. Go to “environment options” in the
“compile” menu, select the “programmer” tab and
enter the correct location. Note that spaces are not
permitted in directory or file names.

You have connected the programmer to another
comport than port 1. Go to “environment options” in
the “compile” menu, select the “programmer” tab and
add port x to the line that contains "go", where x is the
comport number that you are using. So if you use com
4 this line would become "port 4 go %F"

The programmer is not connected or not connected
correctly. Switch off the power and connect the
programmer correctly (all wires!).

The power is off. Switch it on and retry. If you use a
breadboard make sure the top and bottom power rails
(and segmented rails) are connected.

Another program is using the same serial port as the
programmer, possibly a terminal program. Close the
program and try again. You may need to restart the PC
if the program doesn’t release the port.

Your power supply isn’t stabile enough. Make sure
you use a stabilized power supply where the voltage is
maintained at the proper level with, for example, a
UA7805. Make sure the voltage of the transformer
used to feed the power supply is high enough. (See
section 2.2 for the requirements.} Do not forget the 0.1
uF capacitors on the four corners of the breadboard.
The voltage of the power supply is not 5V. Even
though you can sometimes program at 4.7V, this
usually doesn’t work.

3.5 Done!

The program is downloaded | The | EDs are connected backwards. Insert them in the
but the LEDs aren’t opposite direction.
flashing. 2. The LEDs are connected to the incorrect pins. Switch
off the power and check all connections.
3. The LEDs do flash, but extremely fast. Check if both
delay statements have been entered into the program.

The program and the hardware schematic contain no errors. If despite the instructions
above the program still won’t work check everything again and again. Perhaps it’s best to
call it a day and check again tomorrow. Sometimes a good night’s sleeps does wonders.

If you're still convinced that you've done everything right then meet us in the JAL
usergroup at Yahoo (see http://www.boekinfo.tk for the correct address and post your
question). Note that this is an international group with users all over the world, so the
mandatory language is English.

3.5 Done!

Congratulations. You’ve just made your first microcontroller program! In the upcoming
chapters it is assumed that you will remember what you have learned in this tutorial
project. In those projects you will just be shown a schematic and a breadboard
photograph, and we will assume you’ve built it, including the power rail connectors, and
the capacitors on the corners. We’ll also assume that you can identity resistors and
capacitors using the handy programs in the download package, so that you are capable of
figuring out what the different value resistors look like.

The program itself will be shown and we will assume you’ve entered it into JALedit,
connected the programmer, and downloaded the program into the PIC™. Use this tutorial
as a reference if you forget how to do any of these steps.

3.6 Other results

Apart from compiling and downloading, a few additional files have appeared in the
program directory on your PC with the extensions of .asm and .hex. It’s not necessary to
know what these are for, so if you want you can skip this section and continue with the
projects in Chapter 4.

39

3 Tutorial project

The hex file

This is the file that is actually sent to the programmer to load into the PIC™. It contains
the compiled program in hexcode'®. Here is a fragment of it:

:10001000840AA00B07280800A0018313263084005F
:100020000330042083132B308400063004201E2864
:100030002708870008002808880008008312A30109
:100040008B014528 AF01B0013C2883120313F23025
:10005000A0000A30A1002830A2000A128A11A20BC7

The asm (assembler} file

This is an extra file generated so that you can use your program with tools that were
specifically designed to use assembler, such as the free editor/simulator offered by the
manufacturer Microchip."”

If you look at this file you’ll immediately understand why JAL is such a popular
language. Each line of JAL code is shown with the assembler translation below it.

;13 pin_d3 =high
datalo_clrv__port d_shadow
bsf v port d shadow, 3
call 1 port d flush

; 14 pin ¢4 =low
datalo clrv_ port_c_shadow 83
bef v__port ¢_shadow, 4
cali 1 _port_c_flush

; 15 delay 1s(1)
movlw |
call 1 delay 1s

'® Read more about hex files in section 14.7.

' This program is called MPLAB® and can be downloaded for free from
http://www.microchip.com. Search for MPLAB" EDI. There are paid versions as well, but the free
version will do just fine.

40

3.6 Other results

Sharing your knowledge

If you have written an interesting program or discovered a useful trick you might want to
post it on the Internet. That way other people can learn from your experience. And if you
write your page in English you can get in touch with hobbyists from all over the world.
As a result of my website I have friends in many different countries!

On the website http://www .boekinfo.tk you’ll find a few of those links to JAL pages.

11

4 Switches

This chapter will cover projects that deal with a switch. It’s not a very complicated topic,
especially after having completed the tutorial in Chapter 3. But these projects are a good
next step before the more difficult projects later on.

Project

Timer

Two way switch

Dice

Secret doorbell

4.1 Timer

Description

Also known as a monostable multivibrator
(or a one-shot multivibrator). You press the
push button once and the LED remains on
for a fixed amount of time.

Use a push button to switch an LED on and
off. Also known as a bistable multivibrator.

Electronic dice; an application for a
debounced switch.,

A doorbell that only rings when a secret
code is entered on a keypad. Includes an
explanation of how procedures and JAL
libraries are made.

The timer illustrated in this project is also known as a monostable multivibrator; you
press the push button once and the LED remains on for a fixed amount of time.

Technical background

A pin that is in use {(meaning the microcontroller is “looking™at this pin) is never allowed
to float - it must always be connected to either 5V or ground. This means you have two

ways to connect a switch:

42

4.1 Timer

+5v oV

to PIC pin

to PIC pin

a
¢
o

10k

Figure 26. Connecting a switch.

In the situation on the left, the pin is normally at 5V. This is called “17”, “true”or “high”.
As soon the switch is closed the voltage on the pin drops to zero. This is called *“0”,
“false”or “low”™. At that point, a current of 0.5 mA will flow through the resistor.” It’s
not much current, but it gives us a reason to use a switch that is normally open and only
closed when needed. With this setup a “low”’signal is created when the switch is closed.
This is called “active low™.

The schematic on the right side of Figure 26 works the other way around. This is how to
create a “high”signal. It doesn’t matter which solution you select, but the one on the right
(active high) seems a more natural way of thinking, since closing the switch applies
power to the pin.

In theory, the switch can be connected to any pin of the 16F877 (except, of course, the
power pins). The 16F877 has different types of pins (as you have already seen in the
tutorial project). It’s important to remember that ports A and E are analog inputs. These
poris measure the voltage on their pins. You could connect a switch to them, but each
time you wanted to know whether the switch is open or closed you would need to
measure the voltage, or you would need to change the pins from analog to digital first. It
is much easier just to use the regular digital pins, ports B, C' and D.

* Ohm’s law is used to calculate this: V=I*R, voltage is current times resistance. In this case the
voltage is 5V and the resistance is 10,000 ohms, so the current is 0.0005 Amps (0.5 mA).

*! The 16F877 bert library assigns pins ¢6 and c7 to hardware serial (see section 11.1}, so you
can’t use these,

43

4 Switches

If pin d1 (pin 20) is used with the schematic on the right (active high), the program can
determine the position of the switch like this:

if pin_dl == I then
-- switch on
else
-- switch off
end if

For the circuit on the left side, this would work the other way around.

6&17‘)

For a computer *“17and “true”are the same thing, so a easier way to write this would be:
if pin_d1 then
-- switch on
else
-- switch off
end if

The switch will be used to switch on an LED using the PIC™, This LED needs a series
resistor to limit the current. The LEDs I use need at least 4.8 mA, but others may need
more. To cover all normal types | have chosen to supply a bit more current, at 15 mA.
This means you need a 330 ohm’” resistor. If power is scarce (perhaps because you are on
battery power) you can use a 680 ohm resistor.

The software

The idea is that an LED will remain on even after the switch is released. The easiest way
to do this is to use a delay statement (in section 14.2 you’ll find an overview of the
possible delay statements you can chose from). If you want the LED to stay on for three
seconds you can use the one-second delay statement:

delay 1s(3)

This gives vou get a delay of 3 times 1, or 3 seconds. The program looks like this:

22 Ohm’s law: V=I*R, voltage is current times resistance. In this case, the voltage is 5V and the
resistance is 330 ohms, so the current is 0.015 Amps (15 mA). In reality, the voltage at the resistor
is a bit lower, because both the LED and PIC have a small voltage drop.

44

4.1 Timer

if pin_d1 then
-- switch on
pin_d2 = high
delay 1s(3)
pin_d2 = low
end if

At the beginning of the program you need to define the direction of each pin used:

pin_d1 direction = mput
pin d2 direction = output

The switch is on pin d1, so that is an input™. The LED is on pin d2, so that is an output.
Here 1s the completed program:

- JAL 2.0.4
include 16F877 bert

-- define pins
pin_d1 direction = input
pin_d2_direction = output

forever loop

if pin_dl then
-- switch is on
pin_d2 = high
delay 1s(3)
pin_d2 = low
end 1f

end loop

23 Input means going into the microcontroller.

45

4 Switches

You may have noticed three special items in this program:

-JAL2.04 This is a comment line. The compiler will
not do anything with it; it is meant for
humans. It is a good idea to note the JAL
version you used because not all versions are
interchangeable.

include 16F877 bert Before the program can be downloaded into
the microcontroller the compiler needs to
know which type it is. This information is in
a separate file called a library. The standard
library used in all projects in this book is
called 16F877 bert. Apart from type
dependant information it contains a whole
range of additional command that you can
use in your program. These command are
described in section 14.2. So each program
starts with this line.

English comments Even in the non-English versions of this
book English comments are used in the
source code. This will facilitate exchanging
programs and information with other users,
since the primary language in international
user groups is English.

Tt is rather inconvenient to have to remember what is connected to which pin. You can
simplify matters considerably by naming the pins in your program, like this:

var bit switch is pin_dl
var bit led is pin_d2

This says that “switch”means the same as “pin_d1”, and that “led” means the same as

“pin_d2”. You already know that, for the compiler, “on” means the same as “high”and
“off” means the same as “low”. So you could now write the program as:

46

4.1 Timer

if switch then
-- switch is on

led = on

delay 1s(3)

led = off
end if

Yes, that’s much better. And you’ll find that both techniques are used in the real world,
and also in this book. For small, simple programs one usually doesn’t take the trouble to
define the pins, but in larger, more complex programs it is a great way to reduce errors.

So the “readable”version looks like this:

- JAL 2.0.4
include 16F877 bert

var bit switch is pin_dl
var bit led is pin_d?2

-- define pins
pin_d1_direction = input
pin d2 direction = output

forever loop

if switch then
-- switch is on

led = on
delay 1s(3)
led = off
end if
end loop

47

4 Switches

The hardware

As discussed in the tutorial project a number of pins are required. This is the same for
each project, so after this project it will no longer be mentioned.

Pin Name Description

1 MCLR/Vpp Master Clear pin and programmer
voltage input. This needs two
resistors and a capacitor.”

11 Voo Power, +5V*
12 Vg Power, ground
13 OSCI/CLKIN Crystal®

14 OSCZ/CLKOUT Crystal
3l Vs Power, ground

32 Voo Power, +5V

Apart from that, the switch and the LED need to be connected to the same pins that the
program is expecting:

Pin Description

20 switch

21 LED

“ It can be done with just one 33k resistor to the positive supply. You may find this in older
circuits, Nowadays, Microchip recommends using the two resistors and one capacitor combo.

= All power pins (11, 12, 31, 32) must be connected.

*® A crystal is not mandatory, since the 16F877 can do without, but it’ll be slower (at 4 MHz). In
this book all projects use high speed and a crystal, and this information is recorded in the library.

48

4.1 Timer

The circuit looks like this:

+5V
11132 '
" S
2 166877
20
11231 13 14 21
10k 0 -
(=]
w w 2 2
L = N o
_ < = &
= b=
s [T T =
' -*

Figure 27. Timer.

You’ll notice that the 16F877 is represented by a rectangle, and that only the pins in use
have been drawn. This makes the schematic easier to read. Pins not drawn are not in use.

With each project a picture will be shown of the circuit on a breadboard. Sometimes it’s
convenient to see how the components are connected in real life. The pictures are made of
actual working projects.

Figure 28. Timer.

49

4 Switches

4.2 Two-way switch

In this project a push button switch is used to turn an LED on and off. This two-way
switch is also known as a bistable multivibrator .

Technical background

The plan is to press a button and turn an LED on if it happens to be off, or turn it off if it
happens to be on. If this were a computer program the difficulty would be to know if the
LED is currently on or off. Fortunately, this is a PIC™, so we can simply check the state
of the pin, and then change it!

We will use the NOT (or Complement) operator’” to do this. The NOT operator turns a |
into a 0 and a 0 into a 1, and is written as an exclamation mark (1). To illustrate what an
operator does we use a truth table:
Input Qutput =! Input
1 0
0 1

Since a digital pin can only be in one of two states (0 or 1), we can change its state like
this:

pin_d2 =!pin d2
Or, when using names instead of pins:
led =" led

So with this little piece of code the LED will turn on and off each time the switch is
pressed:

if switch then
led=11led
end if

* See section 14.1 fora complete overview of all available operators.

50

4.2 Two-way switch

This program will work, but you won’t se¢ it work the way we want it to. Before you
even take your finger off the switch the LED turns on and off thousands of times, and it’s
anybody’s guess which position it ends up in. So the program needs to wait for you to
take your finger off the switch before doing anything. A small loop is used where the
program will circle around until the switch is no longer pressed:

while switch loop
end loop

The only remaining problem is bouncing. When you press the switch the metal contacts
inside approach and then glide over each other. During this time contact is made and lost,
back and forth many times. You won’t see any of this, but the microcontrolier will. It will
see this as a series of on/off switching. A short delay is enough to fix this. Here’s what
the entire code looks like:

if switch then
led ="!led
while switch loop
delay _10ms(1)
end loop
end if

Using led = ! led (or pin_d2 = ! pin_d2) involves a small risk. In order to make this work
the program first needs to know what the current state of the pin is. Let’s assume you
make the pin high. On the pin is a Jarge capacitor, which has to charge first before the pin
is actually high (this loading capacitor “draws”the voltage down). [f, at this moment, the
microcontroller were to check the state of the pin it would find it low until the capacitor is
charged. If the load is heavy enough the pin may never reach the high state!

Obviously the taster the pin changes state the more acute this problem becomes. With a
visible switched LED it won’t be much of a problem and we can safely using the elegant
technique above. When the frequency 1s higher, however, or when a load is on the pin

such as a capacitor or coil (like a loudspeaker), it’s better to use an intermediate variable.

flag =! flag
pin_d2 = flag

You are now “independent”of the real world.

51

4 Switches

Of course, you need to define the variable Hag first;
var bit flag

The software

When the project is switched on we must make sure the LED is turned off:
led = off

The definitions can be copied from the program in section 4.1 (it’s the same switch and
LED on the same pins). So the complete program is:

-~ JAL 2.0.4
include 16F877 bert

var bit switch is pin_d1
var bit led is pin_d2

-- define pins
pin_d1_direction = input
pin_d2_direction = output
led = off

forever loop

if switch then
led =1 led
while switch loop
delay 10ms(1)
end loop
end if

end loop

The hardware is identical to the project from section 4.1.

52

4.3 Dice

4.3 Dice

This project is a fun application of a debounced switch.
Technical background

To make an electronic die you need to generate random numbers. Strictly speaking this 1s
impossible for any computer. All steps to get to the random number must be programmed
and thus described, which means they are not random at all. What usually happens is that
accidental counter positions or remains of prior calculations are used.

In the 16F877 bert library you will find a few of those “random”commands:

Command Explanation

number = random_word Chose a random number in the
range 0 1o 65,536.

number = random_byte Chose a random number in the
range () to 255.

number = dice Chose a random number in the
range | to 6 (specifically meant
for dice)

Drawing a random number is now very simple:
value = dice

Depending on the results, | to 6 LEDs need to be switched on. The simplest way 1s to use
a series of if...then statements:

if value >= 1 then ied] = on else led1 = off end it
if value >= 2 then led? = on else led2 = off end if
if value >= 3 then led3 = on else led3 = off end if
if value >= 4 then led4 = on else led4 = off end if
if value >= 5 then led5 = on else led5 = off end if
if value >= 6 then led6 = on else led6 = off end if

™ Very experienced programmers might write: led] = value >= | which does exactly the same. It
would be a bit advanced for this book however.

53

4 Switches

To make it interesting, we can simulate the effect of rolling dice by generating a random
number several times, and then briefly show each result:

for 200 loop
value = dice
if value >= 1 then led]l = on else led] = off end if
if value >= 2 then led2 = on else led? = off end if
if value >= 3 then led3 = on else led3 = off end if
if value >= 4 then led4 = on else led4 = off end if
if value >= 5 then led5 = on else ledS = off end if
if value >= 6 then led6 = on else led6 = off end if
delay 10ms(1)

end loop

Each value is displayed for 10 ms, and then the final value will remain visible until the
button is pressed again...thus rolling the dice again.

How to avoid bouncing of the switch contacts is discussed in the previous section:

-- switch is on

while switch loop

delay 10ms(1)

end loop
The 6 LEDs can be connected to any of the digital pins with the exception of ¢6 and c7.
The 16F877 bert library has these pins set up for a hardware serial connection (sec
Chapter 11).

The software

Our program is nearly complete; we just have to define the pins, name the switch and the
LEDs, and load the standard library.

After adding those things the final program is:

--JAL 2.0.4
mclude 16F877 bert

54

4.3 Dice

var bit switch is pin_d1
var bit ledl is pin_d2
var bit led2 is pin_d3
var bit led3 is pin_c4
var bit led4 is pin_c5
var bit led5 is pin_d4
var bit led6 is pin_d5

var byte value

-- define pins
pin_d1_direction = input
pin_d2_direction = output
pin_d3_direction = output
pin_c4 direction = output
pin_c5 direction = output
pin_d4_direction = output
pin_d5 direction = output

pin d2=0
pin d3=0
pin c4=0
pin_¢5=10
pin d4 =10
pin d5=0

forever loop

if switch then
-- switch is on
while switch loop
delay 10ms(1)

end loop

for 200 loop
value = dice
if value >= 1 then led1 = on else ledl = off end if
if value >= 2 then led2 = on else led2 = off end if
if value >= 3 then led3 = on else led3 = oft end if
if value >= 4 then led4 = on else led4 = off” end if
if value >= 5 then led5 = on else led5 = oft end if
if value >= 6 then led6 = on else led6 = off end if
delay 10ms(1)

55

4 Switches

end loop
end if

end loop

The hardware

After adding the five LEDs we now have our 6 LED dice.

+5V
& I(i R) s g
%
R 11 32 =
20
1 10k
e 16877
= 28
100 nF ==
1l
13
i
é 20 MHz
[l
I " o o3

330
330

IVARVANT::]

Figure 29. Electronic dice.

Which looks like this on the breadboard. A fun exercise would be to arrange the LEDs

like the eyes on a die, and see what changes need to be made to the program to light the
correct LEDs for each number.

Figure 30. Electronic dice.

56

4.4 Secret doorbell

4.4 Secret doorbell

Here we have a doorbell that only rings when a secret code has been entered on a keypad.
So now you get to choose who can ring your doorbell. In this project we will also explain
how to design and build procedures and even create your own library.

Technical hackground

A keypad is simply a collection of push buttons. Tn this project, a 4x3 keypad (12 buttons)
is used. These are numbered 0 to 9 and include the signs # and *. You might expect 24
connections for 12 push buttons, or maybe even 13 if they have one common lead, but
when the buttons are arranged smartly only seven connections are required...as you can
see in Figure 31.

Figure 31. Key arrangement on the keypad.

With this keypad, when the number 0 is pressed, pins 3 and 6 are connected with each
other. So the only thing the program needs to do is check if any pins are connected to
each other. Here's how we do it...

The three rows are connected to pins of the microcontroller that are defined as inputs, and
those pins are then connected through a resistor to ground. So the PIC™ will see each of

these rows as ground (low).

The columns are connected to microcontroller pins defined as outputs. All of these
outputs are set to low.

57

4 Switches

Now, the PIC™ sets the keypad column connected to pin 3 to high. If none of the push
buttons is pressed none of the inputs will show a signal. If, for example, the user presses
“07, then the row connected to pin 6 will be high. This situation is shown in Figure 32.

high (+5 V)

pressed pin &

pin 3 pin5 pin 7

high (+ & volts) =
Figure 32. Push buffon 0 is pressed.

With a column connected to pin d0 and a row connected to pin c3, we could write our
JAL code like this:

pin_d0 = high

it pin_c3 = high then
key =0
debounce (3)

end if

pin_do0 = low

You see that the number of the key being pressed is stored in the variable key. If this
variable is 0, it is unclear whether the “0” key has been pressed, or no key at all. So we
set the variable to 255 at the beginning of the program. This is a good value for “nothing
pressed”, since there is no such key as “255”.

--initialize key pressed
key =255

58

4.4 Secret doorbell

Obviously, all rows need to be checked, not just pin ¢3. And once this is done the whole
thing needs to be repeated for all columns.

I’'m sure you noticed the command debounce (3) in the code fragment. This 1s thecalltoa
procedure, which looks like this:

procedure debounce (byte in pinnr) is
if pinnr == 0 then
while pin_c0 == high loop
delay 10ms(1)
end loop
end if
if pinnr == 1 then
while pin ¢l == high loop
delay_10ms(1)
end loop
end if
if pinnr == 2 then
while pin_c2 == high loop
delay 10ms(1)
end loop
end 1f
if pinnr == 3 then
while pin ¢3 == high loop
delay 10ms(1)
end loop
end if
end procedure

There are four loops, which you might recognize from section 4.2 as a way to eliminate
switch bouncing. The procedure is called with a value of 3, which means that this part of
the procedure is executed:

if pinnr == 3 then
while pin_c3 == high loop
delay 10ms(1)
end loop
end if

Why use a separate procedure when it could be written into the main program? Well, in

total 12 buttons need to be debounced, so each row is looked at three times. That would
mean that this part of the program would have to be entered three times. It’s possible, but

59

4 Switches

it doesn’t look very good. And if it turns out the debounce loop need to be changed we
would have to do that 12 times. That’s a recipe for mistakes. For that reason, it is better to
use a procedure.

Making a procedure is very easy to do. You start with the outside:

procedure debounce is
end procedure

Now you need to figure out which data the procedure needs in order to function. In this
case it’s a number to indicate which pin to debounce. We’ll call the variable pinnr for
“pin number”. And since there are only four possible pins a byte is large enough. The
variable goes into the procedure like this:

procedure debounce (byte in pinnr) is
end procedure

No data needs to be returned (out), so we can start writing the body of the procedure. This
is handled exactly the same way as regular programming. The code to debounce pin 3
would look like this:

if pinnr == 3 then
while pin_¢3 == high loop
delay 10ms(1)
end loop
end if

So we can add it to our procedure;

procedure debounce (byte in pinnr) is
if pinnr == 3 then
while pin_¢3 = high loop
delay 10ms(1)
end loop
end if
end procedure

Now all you need to do is add the debouncing routines for the other pins. We decide at
this point that the other rows of the keypad are connected to pins ¢0, ¢, and ¢2.

60

4.4 Secret doorbell

Before we were distracted by debouncing the pins it was clear that not just pin ¢3 needs to
be looked at, but also the other rows. We also need to process all of the columns. Here’s
how it looks in JAL:

procedure read keypad (byte out key) is
--default settings

pin_d0 = low

pin_dl = low

pin_d2 = low

--initialize key pressed

key =255

pin_d0 = high

if pin_cO == high then
key =9
debounce (0)

end if

if pin_c1 == high then
key=6
debounce (1)

end if

if pin_c2 == high then
key=3
debounce (2)

end if

if pin_¢3 == high then
key=10
debounce (3)

end if

pin_d0 = low

pin_d1 = high

if pin_¢0 == high then
key=10
debounce (0)

end if

if pin_c1 == high then
key =7
debounce (1)

end if

if pin_c2 == high then

61

4 Switches

key=4
debounce (2)

end if

if pin_c3 == high then
key=1
debounce (3)

end if

pin_dl = low

pin_d2 = high

if pin_c0 == high then
key =11
debounce (0)

end if

if pin_cl == high then
key =8
debounce (1)

end if

if pin_c2 == high then
key=25
debounce (2)

end if

if pin_c3 == high then
key =2
debounce (3)

end if

pin_d2 = low

end procedure

You’ll notice that I've used a procedure again. It seems that it’s not needed or even
useful. The reason for using it is simple: If you have a keypad you may want to use it in
other projects. And in each project, you’ll probably want to read and debounce the
buttons. So rather than re-inventing the wheel multiple times we can put our newly found
knowledge into a library, and in a library it has to be written as a procedure,

For a good library we need two important parts. First, a definition of the pins used. It’s

best to put this in the library; otherwise the next time you use it you won’t remember
which pin goes where.

62

4.4 Secret doorbell

-- define pins

pin c0 direction =input --row 9#*
pin_cl_direction =input --row 678
pin c¢2_direction =input --row 343
pin_¢3_direction = input --row 012

pin_d0_direction = output -- column 03 69
pin_dl direction = output -- column 147 #

pin d2_direction = output -- column2 58 *

[t makes no ditference which pins we use, as long as we use the same pins when building
the hardware.”

The second important part is the section where you explain what the library does, give ita
revision number and a date, and mention the copyrights.

-- <Title Library for use with a 4 x 3 keypad

-- <License

- COPYRIGHT: This library and the ideas, software, models, pictures contained
- herein are Copyright (c) 1995-2006 Bert van Dam, and are distributed under
-- the Free Software Foundation General Public License version 2.0. See the

-- FSF GPL page for more information.

-- It is explicitly forbidden to use any of the copyrighted materials for

-- commercial purposes including but not limited to books.

-- <Description

-- Library for use with a 4 x 3 keypad

- <Version: 1.0 07 Oct 2006, Bert van Dam
- - original release JAL version 2.x

It is customary to keep ownership of the rights of the library, but release it for use by
others. My libraries all have a limitation that they may not be used commercially.
Everyone can use my work, but if you want to make money off of it you need to contact

** Another option is to put the definitions as remarks in the library. In that case you are supposed
to copy the remarks to your main program and adapt them to your needs. This is more flexible for
the user, so if you wish you can use that technique.

63

4 Switches

me, If you make changes to an existing library you should add your own name, date and
revision number. The part about the rights cannot be changed, and the name(s) of the
original authors must be left in the library.

So the completed library looks like this:

64

-- <{itle Library for use with a 4 x 3 keypad

-- <License

-- COPYRIGHT: This library and the ideas, software, models, pictures contained
-- herein are Copyright (c) 1995-2006 Bert van Dam, and are distributed under
- the Free Software Foundation General Public License version 2.0. See the

-- FSF GPL page for move information.

-- 1t is explicitly forbidden to use any of the copyrighted materials for

-- commercial purposes including but not limited to books.

-- <Description

-- Library for use with a 4 x 3 keypad

-- <Version: 1.0 07 oct 2006, Bert van Dam
-- - original release JAL version 2.x

-- define pins

pin_cO_direction = input -- row 9 # *
pin_cl_direction = input -—-row 678§
pin_c2_direction = input --row 345
pin_c3_direction = input —-row 072

pin_d0 direction = output -- column 03 6 9
pin_dl_direction = output -- column 1 4 7 #
pin_d2_direction = output -- column 2 5 8 *

-~ debounce the switches
procedure debounce (byte in pinnr) is
if pinnr == 0 then
while pin_c0 = high loop
delay_10ms(1)
end loop
end if

if pinnr == 1 then
while pin_c¢1 == high loop
delay_10ms(1)
end loop
end if
if pinnr == 2 then
while pin_¢2 == high loop
delay 10ms(1)
end loop
end if
if pinnr == 3 then
while pin_c3 == high loop
delay _10ms(1)
end loop
end if
end procedure

-- determine key pressed
procedure read _keypad (byte out key) is
--default settings

pin_d0 = low

pin_dl = low

pin_d2 = low

--initialize key pressed

key = 255

pin d0 = high

if pin_¢0 == high then
key =9
debounce (0)

end if

if pin ¢l == high then
key =6
debounce (1)

end if

if pin_¢2 == high then
key=3
debounce (2)

end if

if pin_e3 == high then
key =0

4.4 Secret doorbell

65

4 Switches

66

debounce (3)
end if
pin_d0 = low

pin_dl = high
if pin_c0 == high then
key =10

debounce ()

end if

if pin ¢l == high then
key=7
debounce (1)

end if

if pin_c2 == high then
key =4
debounce (2)

end if

if pin_c3 == high then
key =1
debounce (3)

end if

pin_d1 = low

pin_d2 = high
if pin_c0 == high then
key =11

debounce (0)

end if

if pin ¢l == high then
key=8
debounce (1)

end if

if pin_¢2 == high then
key =15
debounce (2)

end if

if pin_c3 == high then
key =2
debounce (3)

end if

pin d2 = low

4.4 Secret doorbell

end procedure

Please note that the button with the # has been assigned the number 10 and the * has been
assigned the number 11.

Okay, now open a new file in JALedit, and enter the library. Select a good name so you’ll
be able to recognize the library in the future and know what it is for. We’ll use the name
keypad4x3 (the JAL extension is added automatically) and save the library in the same
directory as the other libraries. If you downloaded the free software package this library is
already in your library directory.

And now that you have seen how to create a procedure and a library, let’s get back to the
secret doorbell project!

The software

We now have all software components needed to reliably detect which button has been
pressed. In this project we will assume a four-digit code, where all digits have to be in the
correct order. First, we will define two arrays: one for the digits being entered on the
keypad, and one for the secret code. For our secret code we will choose 3-3-7-8.

var byte doorbell[4]
var byte code[4]={5,5,7,8}

You have undoubtedly noticed that each variable in JAL has a name. In an array all
variables have the same name. So we have to use an index with that name to indicate
which variable in the array we want. For example, code[2] would have the value 7.
(Notice that the array index starts at). So code[0] has the value 5.)

We won’t give any visual or audio indication if a wrong button is pressed. This way the
unwanted visitor doesn’t know which keys are wrong, or even how many digits are in the
secret code.

In fact, we’il put all entered numbers in a row and simply wait until the four correct digits
appear in the correct order.

read keypad (number)
-- see If the correct sequence has been entered
if number '= 255 then

correct =0
doorbell[0] = doorbell[1]

67

4 Switches

if doorbell[0] == code[0] then correct = correct + 1 end if
doorbell[1] = doorbell[2]

if doorbell[1] == code[1] then correct = correct + 1 end if
doorbell[2]= doorbetl[3]

if doorbell|2] == code[2] then correct = correct + 1 end if
doorbell[3]= number

if doorbell[3] == code[3] then correct = correct + 1 end if

end if

The first step we take is to call the procedure read keypad (in the library we just made) to
see which key has been pressed. If the answer is 255 then no key was pressed, so nothing
needs to be done. When a key is pressed the value 1s put into the doorbell array at the
very end, and all previous numbers move one position to the left. At the same time we
check if this number is the correct number for this position. If it is the variable correct is
increased by one.

Let’s suppose someone enters 3-6-7-5, and then enters an 8. At first the array looks like
this:

doorbell|0] | doorbell|l] | doorbell{2] | doorbell[3]
3 6 7 5

Then the 8 is added, so everything shifts one position to the left to make room. The 3 at
the far left “falls out of the array”.

doorbell[0] | doorbell[1] | doorbell[2] | doorbell[3]
6 7 5 8

Comparing it with the correct sequence results in one correct answer:

68

code[(] code[l1] code{2] code[3]
5 5 7 8
wrong wrong wrong correct

4.4 Secret doorbell

When all of the numbers are correct the bell will ring, or in this case the buzzer will buzz.
The buzzer is connected to pin b5 and is switched on for | second.

-- i the code was correct then ring the bell
if correct = 4 then

pin_b5 = high

delay_1s(1)

pin_b5 = low

correct =0
end if

Let’s not forget to include our new library. The complete program looks like this:

~JAL 2.0.6
include 16F877 bert
include keypad4x3

var byte doorbell[4]

var byte codef4]=45,5,7,8}
var byte number, correct
pin_b5 direction = output
pin_b5 = low

forever loop
read keypad (number)

-- see if the correct sequence has been entered

if number != 255 then
correct =0
doorbell[0] = doorbell[1]
if doorbell[0] == code[0] then correct = correct + 1 end if
doorbell[1] = doorbell[2]
if doorbell[1] == code[1] then correct = correct + 1 end if
doorbell[2]= doorbell[3]
it doorbell[2] == code[2] then correct = correct + 1 end if
doorbell[3]= number
if doorbell[3] == code[3] then correct = correct + 1 end if

end 1f

69

4 Switches

-- if the code was correct then ring the bell
if correct == 4 then

pin_b5 = high
delay 1s(1)
pin_b5 = low
correct =0
end if
end loop

The hardware

In the schematic you will recognize the connections between the keypad and the PIC™
with the row of 10 k resistors to ground - just like the way other switches are connected.
The buzzer contains a coil and can’t be directly connected to a PIC, so a TC4427A
MOSFET driver has been used. In sections 7.1 and 12.7 this device is discussed in detail.
For the time being, we will take for granted that this adequately drives the buzzer.

keypad [+V
d1 1" x
e #rieg 8
51— 20
33 19 1H 10k
6 18
4 17
2 16 TC4427A
1 d 15 a
16f877 : 6 volt
20p 100 nfF —— buzzer
K3 R o £
ol |le| o o 13 5 -
=] =|FE][F 38 2
= 20 MHz
: +
14 12 7
20p 21 3 0.1uF
4

Figure 33. Schematic of the secret doorbell.

On the breadboard you can see the completed project. If you look closely you’ll notice
that the keypad has 10, not 7, connections. That’s because it is an old telephone keypad
with the keys rearranged. The green wires next to the connector correct for this by
connecting wires 1 with 10, and 3 with 8 and 9.

70

4.4 Secret doorbell

If diodes d1, d2, and d3 are present in the keypad you do not need to add them.
Otherwise, you can use 1N4007 diodes. These diodes ensure that you won’t get a short
circuit on the PIC pins if someone pushes two buttons at the same time.”’

Figure 34. Secret doorbell with buzzer.

Option 1

Instead of a buzzer you could connect an electronic lock. In combination with a decent
keypad you now have a code lock. Obviously the electronics should not be mounted in
the same box as the keypad; otherwise it would be extremely easy for a burglar. And
because there is no visual or audio indication of a wrong code the burglar has no idea
which numbers are correct, or how long the code is. Nevertheless, this is still a toy and by
no means burglar proof.

Option 2

If you have already read Chapter 5, and especially section 6.2, the thought might have hit
you that by adding a few well-chosen resistors to the push buttons you only need one
connection to the PIC™ instead of 7. This then becomes an analog input, where the
voltage on the input indicates which key is pressed.

** You can also solve this without diodes by changing pins d0, d1, and d2 to inputs when they are
not needed as outputs. In section 14.8 this very elegant, but seldom used, technique is discussed.

71

4 Switches

In theory this is correct, but in practice unfortunately not.”' Each key of a keypad consists
of a conductive pad that is held away from the contacts by a springy material. When you
press the button the pad touches two metal contacts on the printed circuit board, thus
connecting them. If you press lightly there is only a small amount of contact and thus a
high resistance, but if you press firmly there is much more contact and thus a lower
resistance. So the harder you press the lower the resistance, which means any meaningful
measurement of this analog value is impossible.

*! Someone once wrote that the difference between theory and practice is that in theory there is no
difference, but in practice there is.

72

5 A/D conversion

Several pins of the 16F877 are capable of converting an analog signal to a digital one. In
our case, an analog signal means any voltage between 0 and +5 volts. If you connect a
voltage divider to one of these pins the values of the resistors will determine the voltage
at the pin. So, indirectly, you are also measuring resistance.

Measuring a simple resistor is not very exciting. Electronic parts where the resistance is
influenced by certain conditions, however, can be much more interesting. Such as, the
turning of a knob (a variable resistor, or potmeter), the amount of light falling on a
particular spot (an LDR™), or changes in temperature (an NTC thermistor™). In this
chapter you’ll find projects that use this analog-to-digital concept.

Project Description

Variable speed flashing LED Analog-to-digital conversion is used
to control the speed of a flashing

LED.

Dark activated switch Switch an LED on automatically
when it gets dark.

Voltmeter Turn your PC into a graphing
voltmeter.

Photometer with LCD display A simple light-measuring device
that displays the measured value on
an LCD screen.

Sampling Long-term temperature sampling for
display on a PC.

*? Light Dependent Resistor.
** Negative Temperature Coefficient resistor.

73

5 A/D conversion

5.1 Variable speed flashing LED

In this project the resistance™ of a variable resistor is measured. Based on the result the
speed of a flashing LED is adjusted.

Technical background

Most of the pins on port A and all of the pins on port E of the 16F877 are capable of
analog-to-digital conversion. To enable this a few registers must first be set up. The
standard library 16F877 bert takes care of this, but you may want other settings for your
project. So we’ll be taking a closer look at the inner workings of this library.

The most complicated task is to determine which pins are used for A/D ("a" for analog in
the table), because it’s not always apparent.

pin Al Al A2 A3 AS EO0 E1l E2
ANO AN1 AN2 AN3 ANd4 ANS5S AN6 AN7
0 channels
I channel a
3 channels a a a
5 channels a a a a a
6 channeis a a a a a a
8 channels a a a a a a a a

Please note that pin a4 has no A/D converter and that a6, a7, and a8 do not exist (port A is
only 6 bits wide). A/D converter (or "channel") ANO is connected to pin a0. But,
confusingly enough, AN4 is connected to pin a5, and AN7 is connected to pin e2. So take
care when developing programs; mistakes are easily made.

Also note the strange configuration when three analog channels are selected. Against ail
expectations pin a2 is switched to digital and pin a3 is switched to analog.

In JAL we set the required number of channels like this:

const ADC _hardware Nchan = &

* In reality, we are not measuring the resistance, but the voltage, because the variable resistor is
connected as a voltage divider. You might also say that we are measuring the rotation of the knob
on the variable resistor. If this variable resistor was built into a robotic arm we could determine the
arm’s position.

74

5.1 Variable speed flashing LED

The other settings are just as simple:

const ADC_hardware NVref =0
const ADC hardware Rsource = 10_000%
const ADC hardware high resolution = true

We aren’t using a reference voltage (everything will be measured against the +3V
power), so NVref = 0. If you want to measure very small voltages you may consider

using a reference voltage to make better use of the available resolution.

The maximum resistance that will be connected to the pins is 10k ohm™, so Rsource =
10_000.

The resolution (accuracy) is set to 10 bits (high resolution).

Once these settings have been made a whole series of A/D related commands are
available as part of the 16F877 bert library:

ADC mit Initialize the A/D converter.

no ADC=X Set the number of A/D channels you want to
use (see the table).

ADC on Switch A/D on (on the selected channels).

ADC off Switch A/D off (so all pins become digital).

ADC read (ADC chan) Read the analog value on a channel® in a
word.

ADC read_bytes(ADC chan, Read the analog value on a chammel®” into
ADC _Hbyte, ADC Lbyte) two separate bytes,

ADC read_low_res Read the analog value on a channel’’ in one
(ADC chan) byte, so with low resolution (max value:
255).

¥ In JAL, underscores within numbers have no meaning and are only used for easier reading. So
10_000 is the same as [0000.

*® The datasheet recommends this as the maximum value.

" Channel is the AN number in the table on the previous page.

75

5 A/D conversion

The software

After the variables and pin directions have been defined we can take a measurement in

low resolution:

We’ll connect the variable resistor to pin a3 (A/D channel AN3). Note that resis? has been
defined as a byte, so it cannot hold a value higher than 255.

To get a flash frequency ranging between 30 and 157 ms resist will have to be adjusted.
Division is without a remainder™ (so 255/2 will equal 127).

Now all we need to do is alternate the pin between high and low and wait a bit in

resist = ADC_read low res(3)

-- convert to a suitable range

resist = (resist /2) + 30

between:

-- and flash
delay 1ms(resist)
pin_d0 = low
delay 1ms(resist)
pin_d0 = high

Putting it all together gives us this:

- JAL 2.0.4
melude 16F877 bert

-- define the pins
pin_a3_direction = input

pin_d{¢ direction = output

-- general variable
var byte resist

forever loop

** See the explanation about operators in section 14.1.

76

5.1 Variable speed flashing LED

-- take a sample
resist = ADC read low res(3)

-- convert to a suitable range
resist = (resist /2) + 30

-- and flash
delay 1ms(resist)
pin_d0 = low
delay Ims(resist)
pin_dO = high

end loop
The hardware
The 10k variable resistor is connected to pin a3. The value of 10k has been selected
because in the settings section we entered that as the maximum resistance for the A/D

converter’. On pin 19 (d0) an LED with a limiting resistor is connected.

Our circuit looks like this:

+5V

11/32

33k

16877

(4.}
10k LIN

1 12131 13 14 19

10k

=]
™
™

‘l_ T :LED

|

=

20 pF
20MHz 3

20 pF

100 nF

-

Figure 35. Variable speed flashing LED.

3 This setting applies to the A/D converter, and thus to all A/D channels at the same time.

77

5 A/D conversion

Which looks like this on the breadboard:

Figure 36. Variable speed flashing LED.

5.2 Dark activated switch

In this project an LED is switched on when it gets dark. In section 12.7 you can see how
this technique can be used to switch on a house light, or even the street lights in case you
find a small LED not impressive enough.

Technical background

The amount of light can be measured using an LDR™. This is a resistor whose value is
dependent on the amount of light that hits it. The relationship between the resistance and
the amount of light is not linear and is usually something like this:

R (in k ohm) =500/ L (in Lux)
To get a feel for the meaning of Lux*":

direct sunlight 100,000 lux
cloudy day 10,000 lux
room with light bulb 350 lux

room with candle 50 lux

“ LDR = Light Degendant Resistor.
' Lux = lumen/m’, where a lumen is the amount of light from one candle.

78

5.2 Dork activated switch

Even “identical’LDRs can easily differ as much as 50%, so you’ll need to calibrate it or
use a variable resistor for fine adjustment. Keep in mind that the more light falling on the
LDR the lower its resistance.

An LDR will normally consume about 50 to 80 mW of power, which at 5 volts equals a
current of 10 to 16 mA. This means the LDR can be connected directly to the PIC™
without damage.

The software
The program will continually measure the resistance on pin a3.* If the measurement
exceeds a certain threshold value the LED will switch on, Below the threshold value the

LED will switch off.

- JAL 2.0.4
include 16F877_bert

-- define the pins
pin_a3_direction = input

pin_d0_direction = cutput

-- general variable
var byte resist

forever loop

-- take a sample
resist = ADC _read low_res(3)

-- and switch
if resist > 200 then
pin d0 = high
else
pin_d0 =low
end 1f
end loop

2 In reality, the voltage is measured and not the resistance.

79

5 A/D conversion

The hardware

The hardware is virtually identical to the previous project. Across the lower half of the
variable resistor an LDR is connected. This way the variable resistor can be used to adjust
the level of darkness at which the LED will switch on.

+5V

a3

Figure 37. Connecting the LDR across the variable resistor.

5.3 Volimeter

In this project the A/D converter is used to make a voltmeter.
Technical background

In the previous projects we didn’t pay much attention to the actual measurements, but this
time we’ll have to take a closer look. We had mentioned that the resistance was being
measured, but in actuality this is not quite true. The variable resistor was connected
across the full power voltage with the center terminal connected to the PIC™. In this
setup the center terminal carries a voltage that varies with the position of the dial. So, in
fact, the variable resistor is used as a voltage divider.

The measurement takes place in 8 bits over a range of 5 volts. This means that the
resolution is 5/255, or 0.01961 volts. This assumes, of course, that the power supply is
indeed 5 volts and remains stable.

Please be aware that this voltage meter can only measure voltages between 0 and +5 V. If
you want to go any higher you’ll need to add a voltage divider, which is technically not
very complicated. Figure 38 shows how you can apply this voltage divider to measure in
the 0 to +10 V range. (This will, of course, cause the resolution will go down.)

80

Gto 10V
input

Figure 38. Voltage divider.

The software

The program continuously measures the voltage on AN3:
resist = ADC read low res(3)

And sends that measurement to the PC:
serial sw_write(resist)

The complete program looks like this:

- JAL 2.0.4
include 16F877_bert

-- define the pins
pin_a3_direction = input
pin_d0_direction = output

-- general variable
var byte resist

forever loop

-- take a sample
resist = ADC_read_low_res(3)

-- and switch
serial_sw_write(resist)
delay 100ms(1)

5.3 Volimeter

81

5 A/D conversion

end loop
The PC can convert this value to our measured voltage simply by multiplying by the
resolution (0.01961).

It is quite easy to add a small graph to show the actual measurement and the average
value, as you can see in Figure 39. The red line is the actual measurement (as shown on
the dial) and the purple line i is the average. | have included the voltmeter software as part
of the free download package.”

% Voltmeter IT_@HE

r Bert van Dam [c)2006————

voltmeter ‘

<

Voltage [34

—ConnecttoPIC——————
=g

! start l stop |

| FrataRE————"" |
[!

& Com1 (Com3
" Com2 (Com4

Figure 39. Voltmeter on the PC.

* Check out http://www.boekinfo.tk for a ready to run application, as well as source code for
Visual Basic.

82

5.4 Photometer with LCD display

The hardware

The hardware is basically identical to project 5.1, except that the variable resistor is
removed and replaced by a single wire to serve as the “measuring probe”.If you want to
measure parts that are connected to a different power supply you need to connect the
ground wire with the ground of the voltmeter hardware.

+5V

11/32
4
2 16877
5 \/\

1 1231 13 14 19 measuring pen

10k

(=1
@
@

20MHz &3

__| 20 pF

]
\/ ¥ Leo

100 nF
=
20 pF
__|

Figure 40. Voltmeter.

5.4 Photometer with LCD display

This project is a very simple photometer, which shows the amount of light measured on
an LCD display.

Technical background
The basis for this project is the dark activated switch of project 5.2. In this case, however,
the amount of light is measured continuously without switching anything. The

measurement is shown on an LCD display as both a number and a bar graph.

The LCD screen is manufactured by Emerging Display Technologies Corporation** and
has two lines of 16 characters each. Before you grab your soldering iron to start making

“ Model number 162A0 (led types). The datasheet and other information can be found on the
manufacturer’s website at http://www.edtc.com. You’ll probably find it more useful, however, to
have the datasheet of the standard display, HiTachi hd47780, from http://www.hitachi-
ds.com/en/download/brochures/.

83

5 A/D conversion

connections you should know that the connections are on the topside of the display, and
that pins 7, 8, 9 and 10 are normally not used.

The 16F877 bert library doesn’t have any commands for LCD displays so we will have
to load an additional library called lcd_44780%. The type code doesn’t match the one on
our display, but the 44780 is an industry standard; so most displays will be able to use

this library.*®

Library led_44780 adds a range of useful commands:

LCD _init

LCD clear line (line)

LCD char pos (character,
position)

LCD_char line pos (character,
line, position)

LCD_num_pos (byte, position)

LCD num_line pos (byte, line,
position)

LCD num_pos_ldec (byte,
position)

LCD_high_low line pos (hbyte,
Ibyte, line, position)

LCD_progress (byte, line)

* Written by Stef Mientki and Bert van Dam.

Prepare the LCD display for use
(this command is automatically
called when you load this library),

Clear line (note: the first line is
number 0).

Print a character at the position
indicated (note: the first position
1s 0).

Print a character at the position
and line indicated.

Print a number (0 to 255) at the
position indicated,

Print a number (0 to 255) at the
position and line indicated.

Print a number (0 to 255) at the
position indicated with one
decimal digit (so 255 will be
printed as 25.5).

Print a number {0 to 65535) at the
position and line indicated.

Display a bar graph with length
byte (maximum 16).

*If you want to buy an LCD display make absolutely sure it is compatible with the 44780
standard. Otherwise, you will have to write your own library, and the support on the Internet will

be minimal.

84

LCD shift_right

LCD shift left
LCD_cursor_pos = position
LCD_cursor = off

LCD blink = on

LCD display = off

L.CD_custom (memory
address)

CharData[]

LCD clock_line_pos (byte, line,
position)

5.4 Photometer with LCD display

Move the entire display (both
lines) to the right.

Move the entire display (both
lines) to the left.

Place the cursor at the position
indicated.

Switch the cursor off ("on”turns it
back on).

Switch cursor blinking on {or
“off").

Switch the entire display off (or
Gionll .

Put a custom character in the
LCD memory {use only addresses
0to7).

Array to define the custom
character. Send to the LCD
memory one character at a ime.

Print a number (00 to 99) at the
indicated position, uses a leading
zero if less than 10.

In this project we will only use a few of these commands. Most of the others will be used
in projects later in the book. Let’s start by printing some text on the LCD display. We do

this using our new command:

LCD char line pos (character, line, position)

Note that both the line and the column numbers start at 0.

85

5 A/D conversion

Line Position
0 Gl1 12134567819 ./10/11/12113]14]15
] O[T (213 |4 /5]|6|7|8|9]|10|11|12)13]|14]15

The first character (at the upper left) is on line 0, position 0. To print the word
“Light”on the display the first command will be:

LCD_char_line pos ("L", 0, 0)

This can be repeated for every letter, but it is easier to use an array. An array is a row of
variables which all have the same name.

Var byte DemO[S]:{"L""‘i”,"g“,"h","t”}48

This array is named Demo. So each letter”” in the array is also named Demo, but referred

to with a number to indicate its position in the array. Demo/2], therefore, is the letter g
(you can see that we start counting at 0).

We will use a small loop to get all 5 letters on the display:

counter = (

for 5 loop
LCD char_line_pos(Demo[counter),0,counter)
counter = counter + |

end loop

Counter 1s used to keep track of the letter that needs to be printed. The cursor is an
annoying flashing line that we will switch off:

LCD_cursor = off

The light is continuously measured like we have done before, Sending each measurement
to the dispiay is possible, however the constant rewriting may cause it to flicker. So we

“’ The highest position is 15. You can go higher, such as LCD_num_pos (byte, 18), but it will print
outside the visible display and you won’t see it. If you increase the position even further you will
eventually end up on line 2. The column position at which this wraparound occurs depends on the
display used. In this book we assume 40, but displays with 80 also exist.

e you only use letters you can write them as one word: Demo[] = "Light"

" You can mix letters and numbers, a very nice feature of JAL.

86

5.4 Photometer with LCD display

will only write the measurement when it has changed. That is, the resistance is not equal
to the previous resistance measured. In JAL, we write “not equal” as “1="

if resist != history then

Now we need to print the measurement on the display. The word “Light” has 5 letters,
and we also want a space after it. That means the measurement should be placed at
position 6. You can count this out on the display shown on the previous page to see that it
is correct. The command for this is:

LCD num_line pos(resist,0,6)
In the led 44780 library you’ll find a convenient command to display a value as a bar. It
is a bit crude because there are only 16 blocks, but still it’s nice to quickly see an
approximation of the amount of light measured. We divide the resistance by 16 and show
the bar on the second line (because the word “Light” and the measurement are on the first
line). The second line is line number 1, remember? So our next command is:

LCD progress(resist/ 16, 1)

The software

The rest of the program is not very complicated. At the start of the program both libraries
are included:

include 16F877 bert
include lcd_44780

The next step is to declare the variables. The array is also declared and immediately
filled. This is not mandatory; you could also declare the array first and fill it later.

As soon as a measurement has been displayed we need to remember it so it doesn’t have
to be displayed again:

history = resist
Putting it all together yields this program:
- JAL 2.0.4

include 16F877 _bert
include lcd_44780

87

5 A/D conversion

-- define variables
var byte resist, history, counter

-- sel text

var byte Demo[5]={"L","i","g" ,"h","t"}

counter =0

for 5 loop
LCD_char_line pos(Demo[counter],0,counter)
counter = counter + 1

end loop

-- make history unequal to resist for first measurement
history = resist + 1

-- switch the cursor off
LCD cursor = off
forever loop

-- convert analog on a4 to digital
resist = ADC read low res(4)

-- check if the light intensity has changed
if resist != history then

-~ display value (0 - 255)
LCD_num_line pos(resist,0,6)

-- show bar on second line
LCD_progress(resist / 16,1)

-- remember the current value
history = resist

end if

end loop

88

5.4 Photometer with LCD display

The hardware

If you bought the LCD display used in this book you need to solder wires to it in order to
connect it to the breadboard (or anything else for that matter). Notice that the connections
are on the top of the display, and that connections 7, 8, 9 and 10 are not used.

Pin 3 of the LCD screen is used to control the brightness with a variable resistor.
According to the datasheet the voltage on this pin is not allowed to drop below 1.5 volts.
Using a 10k resistor between the variable resistor and the ground lead gives us a
minimum possible voltage of 2.5 V, way above the recommended minimum. (I feel the
optimum voltage is about 4.35 V.) If you switch on the project and you don’t see
anything (or only black blocks) try adjusting this variable resistor.

Pins 15 and 16 control the background lighting. According to the datasheet a 6 to 15
ohms resistor must be used. In the schematic, 10 ohms is used.

Please note that on the 16F877 pin b3 has been skipped. This is the programming pin and,
if it is not strictly necessary for your project, it’s much better to leave it unused.

; +5V

L

=

2 =

A

S o

2x16 LCD 162A0 s

Lw a8
4 6111213 14 1/5/16 o
N
23 24 33 34 35 37 N
NE
11/32 16f877 N
e - 4
e L) R 14 Tk 5
s
10k 0
w .
® g £ |=
3 T I
+

Figure 41. Photometer with LCD screen.

89

5 A/D conversion

A few interesting observations:

e The LCD display is connected in 4-bit mode. That means 4 wires are used to send
data from the 16F877 to the display. An 8-bit mode is also available, which will be
faster, but you need much more pins on the 16F877. The library we use only supports
4-bit mode, since this is more commonly used.

® The “read/write select”pin (5) of the LCD display has been connected to ground,
because no data are read from the display (in any of the projects in this book). |

For both variable resistors I have used the trimpot versions, because once they are set |

correctly you never use them again. The variable resistor next to the LDR can be used to

fine adjust the measurements to the quantity of light you want to measure.

Figure 42. Photometer with LCD display.

90

5.5 Sampling

5.5 Sampling

This project is a long-term temperature sampler, used 1o take temperature measurements
with an NTC thermistor over an extended period of time. The results are displayed on the
PC. This is a great way to monitor your fridge, or the temperature of the room.

Technical background

The purpose of this project is to sample the temperature at regular intervals over an
extended period of time. The amount of time between each sample can be as short as 10
milliseconds, as long as 24 hrs...you can even sample every 4000 hours, if you want. The
number of samples that can be stored in memory is 7000, so if you take a sample every
4000 hours you won’t live to see the day that the memory is full.

The first problem to solve is where to store the measurements. We're going to use the
program memory. The details of memory are discussed in Chapter 10. It’s not necessary
to read that chapter in order to complete this project, but if you intend to modify or
expand the program I would certainly advise you read it first.

The memory storage part of the program looks like this:

-- take a sample
data= ADC read low_res(0)

-- and store
program_eeprom_write(address,data)

counter = counter + 1
address = address + 1

if address > 7000 then
address = 7000
counter = counter -1
end if

The collected data need to be sent to the PC when requested by the user. If the memory is
full the program should not stop, because in that case the stored data would no longer be
available. The simplest way to solve this is to overwrite the data on memory location
7000 when there is no more room available.

91

5 A/D conversion

The variable counter keeps track of the number of measurements (samples) that have
been recorded. This is necessary so that we know how many samples to transfer to the
PC:

if pin_d2 then

while pin_d2 loop end loop

delay 10ms(1)

sendcounter = ()

for counter loop
program_eeprom_read(startaddress+sendcounter,data)
serial sw_write(data)
sendcounter=sendcounter+1

end loop

end if

A switch is connected to pin d2. In the program code you should recognize the
debouncing technique discussed in section 4.2. The switch starts the retrieval of the
samples from memory, and sends them to the PC. Afterwards, the program will continue
sampling. So you can use the switch to get an idea of the current status without disrupting
sampling. During transfer, however, no samples will be taken!

The samples are not taken during every loop, but only as needed:

samplecounter = samplecounter + 1
if samplecounter = 60000 then

The variable samplecounter is increased by 1ms (because of the delay Ims(1) command
in the sample loop, which is explained on the next page). In the section above, every
60000 ms (1 minute) a sample is recorded. Since this counter is declared as a word it can
contain a maximum value of 65535, And since 7000 measurements can be recorded there
is room for 127 hours of data,

If you need a longer period the delay statement can be changed. The disadvantage is that
it also takes longer for the program to notice that the user has pressed the switch. If you
change the delay to one hour (about a year before you run out of memory), the user may
have to wait an hour before the program checks the switch status. The solution would be
to use the port B interrupt, but that won’t be discussed until section 12.2. So, for the time
being, we’ll stick with a [-millisecond delay.

92

5.5 Sampling

The temperature is recorded using an NTC thermistor.™ This resistor changes its
resistance based on the temperature, typically according to this formula:

R=a*e™D

Where @ and » are constants that differ for each type of NTC. The following table is an
example of a typical NTC:

Temperature ("C) Resistance (ohm)

-20 22,000
0 7,500
20 2,800
40 1,200
60 600

The software
Adding all the pieces together yields this program:

—~J4L 2.0.4
include 16F877_bert

-- define the pins

pin_af _direction = input
pin_dl direction = output
pin_d2_direction = input

-- general variable

var byte data

var word address, startaddress, sendaddress, sendcounter
var word samplecounter, counter

startaddress = 1000
samplecounter = 0
counter =10

address = startaddress

forever loop

50 Negative Temperature Coefficient resistor.

93

5 A/D conversion

-- wait a bit
delay 1ms(1)

-- send data to PC
if pin_d2 then
while pin_d2 loop end loop :
delay 10ms(1) |
sendcounter = 0 :
for counter loop |
program_eeprom_read(startaddress+sendcounter,data) |
serial sw write(data)
sendcounter=sendcounter+1
end loop
end if

samplecounter = samplecounter + 1
if samplecounter == 60000 then -- sample every minute
samplecounter =0

-- take a sample
data = ADC _read_low_res(0)

-- and store
program_eeprom_write(address,data)

counter = counter + 1
address = address + 1

if address > 7000 then
address = 7000
counter = counter -1
end if

- and flash to show that we're still alive’’
pin_dl = !pin_dl

end if

end loop

*! Using pin_d1 = tpin_d1 is elegant, but involves a risk. See section 4.2 for an explanation.

94

5.5 Sampling

Once the program has run for a while you can request the sampled data by pressing the
button (after setting up an RS232 connection to the PC). If you use the Wisp628
programmer, you must disconnect the yellow wire before you start MICterm, otherwise
the PIC™ will be reset and you will lose all of the data. In section 6.1 you can find more
information on RS232 connections with a PC.

-ocontroller terminal

~—— Graph
ﬂ [V Enable
|
ace r 1
Speed 4 | | bI
Average | a5
—ly o B BT ...__I.l Macat I

Figure 43. Temperature sampling (3 hour run).
If you enable the graph in MICterm you will get a nice overview of all the collected data.
In Figure 43 you can see that the temperature rose in the morning and then stayed
constant, except for the moment I touched the NTC.

The hardware

The NTC is connected as a voltage divider with a 2k2 resistor on pin 2.

95

5 A/D conversion

+5V
11/32 S
[&]
ot E
s 16f877 21 Z
2
1 1231 13 14 20
10k
A O LR = g
r £ 5 o - o~
. & = &
& oy 8
S] \/ ¥ LED
2 N
+

Figure 44. Sampling.

The gray blob on the bottom left side is the NTC thermistor. The blue and green wires are
from the Wisp628 programmer. Note that the yellow wire is not connected, so that the
programmer can be switched to pass-through without resetting the PIC™. [f you want to
reprogram the PIC™ you’ll need to reconnect the yellow wire (and the white one, which
isn’t shown on the photograph).

Figure 45. Sampling.

96

6 RS232 communication

In this chapter we will discuss a few projects that make use of a serial connection
between a PIC™ and a PC. Serial connections are ones in which the data are sent one bit
at a time, We will be using the standard protocol for short distances called R$232.”

On the PC the received data can be processed and used in other applications. This
is very convenient for home automation projects where you have multiple
modules (PIC™’s) connected to one PC. The settings and measurements of these
different modules can then be handled centrally, When the PC is switched off all
of the modules will continue working. A simple example of this is the silent alarm in
section 6.2.

All of the projects in this book use the pass-through capabilities of the Wisp628
programmer (see section 14.4). This allows you to set up a serial connection with the
PIC™ when not in programming mode, without the need for additional hardware. If you
use a programmer without this capability you won’t be able to do the examples in this
book unless you add the hardware discussed in section 6.4.

Project Description

Serial counter An example of serial communication
between a PIC™ and a PC.

Silent alarm A silent alarm using a single wire loop
through the house.

In-circuit debugging A great tool to keep PIC™ programs
under control and make debugging
much easier.

Sernial hardware If you don’t want to use the pass-
through capabilities of the Wisp628 (or
if you simply don’t have one) you need
this additional hardware.

%2 Recommended Standard 232 was originally designed for distances of 15 meters or less.

97

6 RS232 communication

6.1 Serial counter

The purpose of this project is to set up an RS232 connection to send data from a PIC™ to
a PC. To keep it simple the value of a counter is transmitted, but it could be anything.

Technical background

The PIC™ that we use in this project, the 16F877, is equipped with a standard module for
RS232 communication (see section 11). We will not be using it however, because it
requires pins ¢6 and c7. Since we want to use the passthrough feature of the Wisp628
programmer it would be much more convenient if the RS232 communications took place
over the programming pins b6 and b7. That way we don’t need to change any wires.

Since we aren’t using the PIC™’s serial module we need to write a program that can
emulate the RS232 protocol. Fortunately, this software already exists in the
serial software library, which is part of the standard library, 16F877 bert. By using this
library the following commands become available:

Serial sw_baudrate Set the baudrate (communication speed)
for the RS232 connection.

Serial sw_invert Invert the signal.

Serial sw_write_init Prepare to send data from the PIC™ over
the RS232 connection.

Serial sw read init Prepare to receive data over the RS232
connection.

Serial sw_read{data) Receive data and put into the variable
data.

Serial sw_write (data) Send the contents of the variable data.

Let’s take a closer look at the settings used in the 16F877_bert.jal library, in case you
want to change anything (such as the baud rate).

The library is very flexible and can be used on any pin you want, and at any speed (baud
rate). Because the communication has to pass through the programmer the maximum
speed is limited. Also, T want to use the same speed for all PIC™’s that 1 use, even the
slower ones. Therefore, we’ll use a speed of only 1200 baud, even tough the library itself
can handle speeds up to 115.200 baud.

const Serial sw_baudrate = 1200
const Serial_sw_invert = false

98

6.1 Serial counter

Next, the pins need to be defined. During programming b7 is the output and b6 the input,
so we need to match that in our pin settings:

var volatile bit Serial sw_out_pin is pin_b7

var volatile byte Serial sw_out port is portb

const Serial sw out nr = 7

var volatile byte Serial sw out_buffer is _port b shadow
var volatile bit Serial_sw_out_direction is pin_b7_direction
var volatile bit Serial_sw_in_pin is pin_b6

var volatile byte Serial sw_in_port is portb

const Serial sw in_nr = 6

var volatile byte Serial sw_in buffer is _port_b_shadow
var volatile bit Serial sw_in_direction is pin_b6_direction

These are the only settings to be made in the library.
The software

The program consists of a simple loop that increases a counter on each pass, and sends
that value to the PC. Since the counter is defined as a byte it will rollover after 255.

- JAL 2.0.4
include 16F877 bert

-- define variables
var byte counter

forever loop

counter = counter + 1
serial_sw_write(counter)

end loop

99

6 RS232 communication

The hardware

The circuit is extremely simple since no extra parts are required for using the RS232 pass-
through feature of the Wisp628 programmer. This makes it ideal for debugging, as you’ll
see in section 6.3.

+5V
11
e to PC
-
a 16877 0w
9 —=<
1 1231 13 14
10k 0
21 8 |&
P o~ = ~
& == K
o
g 4 F

I

Figure 46. Serial counter.

The long wires on the left hand side on the breadboard are from the programmer, the
green and blue wires are used for RS232 communications:

Figure 47. Serial counter on the breadboard.

100

6.2 Silent alarm

6.2 Silent alarm

This project is a silent alarm with just a single wire running through the house. The PC is
used to display the location of the security breach.

Technical background

The silent alarm is based on measuring the resistance of a loop of wire. At three different
locations switches have been installed that open the loop when a door or window is
opened. A resistor is mounted across each switch so that if the switch opens the current
will have to go through the resistor instead of the switch, thus increasing the resistance of
the wire loop. Since all resistors are different a simple resistance measurement of the wire
can easily pinpoint which switch (if any) has been opened.

Figure 48. Magnetic switch on a sliding door.

Because the PIC™ can easily measure voltages, the resistors are connected as a voltage
divider .

330 33k 10k

+5V
$1 s2 S3

to the PIC

10k

Figure 49. Voltage divider.

101

6 RS232 communication

If switch S2 is open the voltage divider will consist of 10k to ground and 33k to 5 V. The
voltage at the PIC™ pin can be calculated as follows:

10k
33k + 10k *5V =114V (58 as A/D signal)

A similar calculation can be made for all switches.

Switch Voltage Expected A/D value

none 5.00 255
S1 4.84 247
S2 1.14 58
S3 2.50 128

The PIC™ is basically only collecting data "from the field" and relaying it to the PC
where the information is displayed. The PIC™ itself only lights an LED in the event of a
security breach, to signal that not all of the switches are closed.

-- signal broken contact
if resist 1= 255 then

pin d2 = high
else

pin d2 = low
end 1if

The PC compares the measured values with the values in the table above. We will do this
comparison loosely, by using a range, since the resistors will not be completely accurate
and temperature and aging may also affect the resistance. It doesn’t have to be too
accurate; if' 4.5 V is measured it is safe to assume that switch S1 is open.

The software

Apart from lighting an LED when something is wrong, the voltage on pin a0 is measured
continuously and sent to the PC:

102

6.2 Silent alarm
- JAL 2.0.4

include 16F877 bert

-- define variables
var byte resist

-- define the pins
pin_a0_direction = input
pin d2 direction = output
pin_d2 = low

forever loop

-- convert analog on al to digital
resist = ADC_read_low_res(0)

-- send resistance to PC
serial sw_write(resist)
delay_100ms(1}

-- signal broken contact
if resist =255 then

pin d2 = high
else
pin_d2 = low
end if
end loop

Of course it would be nice to have a program on the PC to display the measurements. In
the download package you’ll find a simple program written in Visual Basic (including the
source code). It shows a simple map of a living room with two windows and a door. In
the middle of the room the alarms are logged. Figure 50 shows a screenshot of the
program in action. Window 1 is red (indicating that the switch is open) and the alarm has
been logged at 18:45 on September 12th, 2006. If Window 1 is closed again the color
will change back to green, but the log will of course remain. If there are a lot of alarms
the scroll bar can be used to view the history.

* American date format is shown in the screenshot.

103

6 RS232 communication

= Bert van Dam (c)2006

Voltage W clear I

window 1 door
- Connectto FIC————— Porton PC-
| | meuaesi =y | [| |
[[| & Coml (Com3 |
| start | stop | 1
| - || € Com2 ¢ Com4
| v ‘wispb28

Figure 50. Security breach at Window 1 in the living room.
The hardware

The hardware is located in a central place with a single wire running in a loop around all
objects that need to be secured. Switches S1, S2, and S3 could be magnetic door switches,
window switches, or even doormat contacts. If you want to secure more objects just
expand the loop, or use additional loops. You have, after all, room for seven more loops.

The alarm makes no sound (hence the name "silent alarm"). If you want to make some
noise you can replace the LED with a buzzer or siren. Section 12.7 explains how high-
power parts like that can be connected to a PIC™. If the siren can be heard outside local
law may require that you restrict the amount of time that the alarm sounds.

104

6.3 In-circuit debugging

e e

$1 s2 53

11/32

2
x
] 161877

40

1 123 13 14 21 39 -
to PC

)y

330

100 nF
I
20 pF
20MHz 23
20 pF

1 T T ¥y

IE
Figure 51. Silent alarm with a single wire loop.

The breadboard shows an example with three switches mounted on the breadboard. The
LED is on, because the voltage on pin 1 dropped below 5 volts due to one of the switches
opening.

Figure 52. Silent alarm in action.

6.3 In-circuit debugging

Debugging refers to locating bugs in a program (and preferably solving them). We are not
talking about syntax errors - JALedit will catch those for you - but logical errors. This
means the program works, but doesn’t do what you want it to do. There are several
different methods that can be used to locate these errors. Which one is most appropriate
depends on your needs and the project you are working on.

105

6 RS232 communication

Debugging Method When to use

Switch on an LED. The program gets stuck at a certain location,
gets stuck in a loop, or never seems to reach a
particutar part of the program. You have a free
pin available to connect an LED.

At a certain place in the program you insert a command to switch on an LED. If the LED
turns on it means that this part of the program has actually run. By moving the command
to different locations in the program you can determine where the program gets stuck.

Start at the beginning of the program, by defining the LED and switching it off:

pin_d3 direction = Output
pin_d3 = low

And at a well-chosen location you switch it on:
pin_d3 = high

Then, if the LED doesn’t light up the error is in the part of the program before this
command.

Debugging Method When to use
serial_sw_write() to display The program gets stuck at a certain location,
processing flags. gets stuck in a loop, or never seems to reach a

particular part of the program. You can setup
an RS8232 connection.

Here, instead of an LED, you insert a command to send a number over a serial
connection. On the terminal program on the PC you can see which numbers are sent, and
that way keep track of the progress of the program in the microcontroller. For example:

serial_sw_write(1)™
[other commands]
serial sw write(2)

* In MICterm use "raw" as the display type so that you’ll actually get to see the number. If you
use another terminal program you’ll need to start counting at 48, the ASCII value of the character
" 1 II'

106

6.3 In-circuit debugging

If the PC receives a 1, but not a 2, you’ll know the program gets stuck somewhere in
between.

Debugging Method When to use
serial_sw_write() to return The program runs, but gives the wrong results.
processing results. You can setup an RS232 connection.

If your program runs but simply gives the wrong results you can send intermediate results
of calculations or measurements to the PC for evaluation. If you use MICterm as a
terminal program you can graph the data, or even display the values as binary.

Suppose your program needs to do something based on a measurement with the A/D
module on ANO. You could use the following loop to determine if this particular value
actually occurs:

forever loop
resist = ADC read low_res(0)
serial sw_write(resist)

end loop
Debugging Method When to use
data_eeprom_write(Address,Data) The program gets stuck at a certain location,
to store processing flags. gets stuck in a loop, or never seems to reach

a particular part of the program. You can’t
use an RS232 connection.

If you can’t use an RS232 connection {perhaps the program uses the connection for other
purposes) an alternative would be to put the debug data in EEPROM. If you erase
EEPROM at the start of the program and write numbers to it as the program progresses
you can stop the program after it has run for a while and use HEXview to see which
numbers have been written.

At the start of the program you write zeros to the part of EEPROM you intend to use,
such as addresses 0, 1, and 2:

Data_eeprom_write (0,0)

Data_eeprom_write (1,0)
Data_ceprom_write (2,0)

107

6 RS232 communication

At certain points in your program you write the flags to EEPROM:

Data eeprom_write (0,1)
[other commands }
Data eeprom_write (1,1)
[other commands]
Data eeprom_write (2,1)

After a while you can use HEXview to look at the EEPROM memory (see section 10.3
for a detailed explanation of how to do this). In our example, if you find the numbers
1,1,0 it means the program got stuck after the second Data_eeprom_write command.

EEPROM memory is retained even after the power is switched off.”* So don’t forget to
fill the memory with zeros at the start of your program, or you may be looking at data
from a previous run.

Debugging Method When to use
Data_eeprom_write The program runs, but give the wrong results,
(Address,Data) to store and you can’t use an RS232 connection.

processing results.

[f your program runs but simply gives the wrong results you can store intermediate results
of calculations or measurements in EEPROM. A disadvantage is that you have to stop the
program to look at EEPROM memory, and then restart it.

If, for example, your program needs to do something based on a measurement with the
A/D module on ANO you could use the following loop to determine if this particular
value actually occurs®:

forever loop
resist = ADC _read_low res(0)
Data eeprom write (0, resist)
end loop

Stop the program at the moment that the correct measurement should have been reached
and check with HEXview to see if this is indeed the case, which means that the correct
value is at address 0,

** Reprogramming also erases EEPROM memory.
*® See section 10.3.

108

6.3 In-circuit debugging

Debugging Method When to use

Check register value and change You are not certain of the correct register
on the fly. settings, or would like to try different settings.

In several programs you will be using registers. These are special memory locations that
control the behavior of the PIC™. In Chapter 7 this will be discussed in detail.

If your program runs but you suspect you get the wrong results because of incorrect
register settings you can use REGedit to check the contents of these registers and change
them on the fly from your PC while the PIC*™ is still running. This is a handy tool! You
can, for example, change interrupt frequencies, change pulse width modulation (PWM)
settings, or change pins from analog to digital.

The explanation of this program, along with examples of its use, can be found at the end
of section 12.1.

Debugging Method When to use

. 57 In situations where you don’t use many parts,

Use a simulator .

and especially no unusual parts.

An alternative is to run the program in a simulator. This will give you a quick insight into
all internal variables so that you can easily see what went wrong. This method has two
major disadvantages that have caused me to stop using it:

1. It is not always clear if the program doesn’t work because of a logical error (which is
something the simulator could find). It may very well be that the program waits for a
condition that you expect to happen, but in real life simply never takes place. For
example, you measure the analog value on ANO, and switch on a LED if this value is
larger than 200. If this value cannot be that large (perhaps you’re using a voltage divider
that limits the maximum value to 127) your program "doesn’t work" in real life but it will
work just fine in the simulator.

2. If the program doesn’t work in the simulator it is not always clear whether this is
because the program doesn’t work or the simulator needs to be set up differently.
Auxiliary parts such as LEDs and switches can cause problems. It is questionable whether
setting up and checking the simulator is more time consuming than simply trying the
program in real life and using other ways of debugging.

5" There are several JAL simulators available such as JALss (a new Python based version s being
worked on) and PICshell. Alternatively, you can use MPLAB® from Microchip; you’ll just need to
compile the program first and use the .asm file in the simulator.

109

6 RS232 communication

Debugging Method When to use

The program runs, but gives the wrong results.
The results depend on multiple variables, and
you can setup an RS232 connection to a PC.

Multiple serial_sw_write()
commands at one place.

It tends to get complicated when your program doesn’t work like it should, and is
dependent on multiple variables. When you send them all to the PC the terminal program
will not be able to group them together and will therefore simply display them all in one
long list. In this project a method is discussed to display multiple values at the same time,
and even control the speed of the PIC™ from your PC so you get enough time to evaluate
the results.

Technical background
It is not very complicated to send data from a PIC™ to the PC. To get the value from the
variable demo onto the PC it’s just a matter of switching the programmer to pass-through
mode®® and using this command:

Serial_sw_write(demo)
The beauty is that it is possible to stop the PIC™ until it gets a signal back from the PC.
Once the PIC™ encounters the Serial sw_read command AND there is an actual open
RS232 connection the program will simply wait to receive the signal.

The software

As a demonstration we will use the program of section 5.1, the variable speed flashing
light.

The command
Serial sw read (dummy)

is added in order to wait for the PC. Note that the actual value received from the PC is not
used for anything, hence the name dummy.

Also added is a command to send data to the PC that appears interesting, in this case that
might be the value of the A/D conversion of pin a5 and the situation of the LED on pin

™ This technique can also be used if you do not use the Wisp628 programmer. In that case you
need to use the method from Chapter 11 to set up a separate serial connection to the PC.

110

6.3 In-circuit debugging

d0. In the program, the LED is always on when the resistance is measured, which would
be a bit boring from a debugging point of view, so we will change this:

-- and flash
delay_lms(resist)
pin_d0 = low
delay 1ms(resist)
pin_d0 = high

to this:

- and flash
delay Ims(resist)
pin_d0="! pin_d0

This changes the status of the LED at each loop, because it is flipped by the NOT
operator. So on becomes off and off becomes on”

This is the completed program:

- JAL 2.0.4
include 16F877 bert

-- define the pins
pin_aS_ direction = input
pin d0 direction = output

-- general variable
var byte resist, dummy

forever loop

-- take a sample

resist = ADC read low res(3)
Serial sw_read{dummy)

serial sw_write(resist)

serial sw_write(pin_d0)

-- convert to a suitable range
resist = (resist /2) + 30

** The use of pin d0 = !pin_dO is elegant, but has its drawbacks. See section 4.2 for an
explanation,

111

6 RS232 communication

-- and flash
delay 1ms(resist)
pin_d0 = ! pin_d0

end loop

When the program is downloaded to the PIC™ it will run as it normally would. The LED
will flash and you can control the speed with the variable resistor. This is because an
RS232 connection has not been enabled, so there is nothing to wait for. But as soon as the
PC program sets up an RS232 connection the PIC™ program will immediately stop at the
Serial sw_read command. When the Visual Basic program sends something, anything,
the PIC™ program will resume until it encounters the Serial sw_read command again.
This way the PC can control the speed of the PIC™. On the PC, a Visual Basic program

collects the data sent by the PIC™ and displays it on the screen.

112

w Bert van Dam (c)2006

debugger
PINa5 B3 | 16F877 PINdOf

[
poll delay 10
Ennnect R
start | stopl il |
| & wispb2s ‘
PoRenPC—————
|

‘ & Com1 € Com3
| € Com2 Comd |

ets e

Figure 53. Debugger controlled by the PC.

6.3 In-circuit debugging

Debugger operation:

Start Send a trigger signal to the PIC™ and collect data. How
often the trigger is sent (and thus how fast the PIC™
runs) is determined by the "poll delay” control.

Stop Stop the communication (and therefore the PIC™).

Step Send a single trigger signal to the PIC™, resulting in a
single loop through the program.

Poll delay Control the speed at which the program in the PIC™
receives trigger signals.

The hardware

The hardware is identical to the project in section 5.1. Just remember that this very
helpful debugging method can be used with any program, in any setting, as long as you
have a live connection to a PC.

+5V
11/32
L3
3 161877 z
)
5 £ 3
=
1 1231 13 14 19
10k 0
'S "33 %
a E a
. 8| = |[&
: T T ¥
<

Figure 54. Variable speed flashing light.

113

6 RS232 communication

The circuit on the breadboard:

Figure 55. Variable speed flashing light.

You’ll need to modify the program on the PC for each PIC™ program you want to
debug, but using Visual Basic to add a few pins to the display is very easy. By showing
all relevant data on the screen you can study the behavior of your PIC™ program at your
leisure. The source code for the Visual Basic 5.0 program is included in the download
package. Check out section 14.4.2 if you need help using the communication module in
Visual Basic.

6.4 Serial hardware

If you use the Wisp68 programmer you can use the pass-through function to make an
RS232 connection between the PC and the PIC™. The required hardware is built into the
programmer, so you don’t need anything else.

But there can be a number of reasons for you to make an additional connection with
separate hardware:

l. You don’t have a Wisp628 programmer. You may have opted for another
programmer, or a bootloader®.

2. You have built the project on a circuit board in a box and want to have an RS232
connection without having to use the programmer.

3. You want to use pins c6/c7 for a hardware RS232 connection to a PC.%!

4. You want to communicate with multiple PCs from just one PIC™,

% See section 12.9 for more information on bootloaders.
®! See section 11.1 for more information on using the hardware serial capabilities of the 16F877.

114

6.4 Serial hardware

Technical background

It is not possible to generate a true RS232 signal with a PIC™. According to the protocol,
a "0" is represented by a signal between +3 V and ~12 V, and a "1" by a signal between
-3 V and -12 V. Negative voltages are, of course, impossible for a pIc™.

In reality, many (but not all) PCs have a rather relaxed implementation of this protocol.
On the Internet you will find many schematics that use just a few simple parts to create
the connection between PIC™ and PC. Apart from their low price and simplicity all have
one thing in common: they work on some PCs, but not on others.

We won't bother ourselves with this and instead opt for a robust solution that works
according to the official protocol. And it only costs just few dollars in parts.

The chip we will use is the MAX202E by Dallas Semiconductors.”™ This is the pin layout:

.
C1- E e
vz 15 GHD
- [3] amaxama la ot
coe[a] MaxozE [us] B

co- 5] [12] Riout
v 5] [+1] TN
T200T 7] [10] T2

rein [6] o] RacuT

Figure 56. Pin layout of the MAX202.

2More information and the datasheet of this chip can be found on their website,
http://www.maxim-ic.com.

115

6 RS232 communication

The function of these pins is as follows:

Pin Description

| thru 6 Connections for capacitors
7,14 RS232 output

8,13 RS232 input

9,12 Output to PIC

10,11 Input from PIC

15 Ground (0 V)

16 Vdd (+5 V)

This gives you the ability to set up two RS232 connections with just one MAX202. In
total five capacitors are needed to generate the +10 V and -10 V for the signals.

In some applications the signal is inverted, which means the "0" and "1" are switched.
The MAX202 uses such an inverted signal, but the Wisp programmer doesn’t. If you
want to use the MAX202 instead of the Wisp pass-through you’ll need to make a
modification to the 16F877 bert library. The best way to do it is to follow these steps:

1. Copy the 16F877 bert jal library from the library directory ® on your hard disk to the
directory where you keep the files that belong to this project, such as the JAL
source®™.

2. Start JALedit and open the library (File — Open...)

3. Search for the command const Serial sw_invert = false. Change the word Jalse to
true, so that the command looks like this: const Serial sw invert = true.

4. Save the file (Ctrl-S).

When the JAL compiler searches for included libraries it first checks the directory
containing the JAL program. Here it would find the modified library. Tf the library is not
found it then checks the library directory. A library that is stored with the JAL program is
called the "local copy". You can change these local copies to your liking and it won’t
have any effect on the other programs on your computer (because the library in the library
directory is not changed).

* If you have installed the software package according to the instructions your library directory is
c:\picdevyjal\libraries.
™ This is the directory where you store your PIC™ program.

116

6.4 Serial hardware

You can now transfer RS232 data with any communications package on the PC, because
you don’t need to use the pass-through option. If you use MICterm you can remove the
checkmark for "Wisp 628"

The software

To demonstrate that the hardware works this program is used to send the position of a
variable resistor to the PC:

--JAL 2.0.6
include 16F877 bert

-- define variables
var byte resist

-- define the pins
pin_a0_direction = input

forever loop

-- convert analog on a0 to digital
resist = ADC read low res(()

-- send resistance fo PC
serial sw_write(resist)
delay_100ms(1)

end loop
Remember to make the changes to the library as discussed in the technical background.
The hardware
The value of the capacitors for the MAX202E is not critical. The manufacturer
recommends a minimum of 0.1 uF and a maximum of 10 uF. The capacitor across the
power supply pins should be at least the same capacity as the other four. This is to take

care of noise on the power line, which could interfere with the proper operation of the
PIC™ % In this project 1 uF capacitors rated at 25 V are used. The positive and negative

% The MAXZ202E has to increase the voltage from 5 volts to 10 volts. The mechanism used to do
this, a charge pump, can easily cause nasty spikes on the power line. The capacitor prevents this. If

117

6 RS232 communication

leads of the capacitors on pins 2 and 6 are displayed correctly in the schematic; they have
to be mounted in reverse.

i +5V
1uF
% 2 16
12 Je . s 1132
—3
1uF MAX202E " —p—T—40 16f877 2 z
T, . o
[=]
] —
5 i & 1 1231 13 14
1uF E C1uF
¢ r 10k 0
o o 8 ‘s N =
1 8 =8
= W7 o
‘,,—I_—” uF 100 nF T N —I—
L
to RS232 on PC
pin 5
pin 2
pin 3

Figure 57. Connection of the MAX202.

On the PC side you only need to connect three wires. The numbers in the schematic refer
to the pins on the (female) plug that you need to use. You will find these numbers on the
inside of the plug.

you build this project on a circuit board don’t forget the small capacitors in the power line close to
the PIC™.

118

6.4 Serial hardware

Figure 58. MAX202 (right hand side).
If you need the MAX202 often (for example because you don’t have a Wisp628) I would
recommend you build this on a circuit board. Building it on the breadboard every time
you need it can get boring real quick.

You only get strange characters on the PC

This means you forgot to modify the library as discussed in the technical background
section.

119

7 Electric motor

This chapter contains projects that use an electric motor. The specific problems that you
will encounter when using electric motors, such as different supply voltage, high power
requirements, and speed control, are all discussed.

Project Description
Electric motor control Basic control of a small 9 V electric
motor,

Pulse Width Modulation Control the speed of a small 9 V motor.

Constant motor speed Maintain an electric motor at a constant

through feedback speed, even when the load on the motor
varies.

Tachometer Create a tachometer using the PIC™’s

TIMER1 interrupt.

7.1 Electric motor control

The purpose of this project is to demonstrate basic control of a small 9 V electric motor
from a PICT™,

Technical background

The motor used in this project is the 71427° by the Lego Company, but in principle you
could use any small electric motor. This particular motor operates at 9 V and consumes
00 much power to connect it directly to a PIC™.*” One solution is to use the TC4427A
MOSFET driver IC from Microchip.*

% Technical data: max. 360 rpm, 3.5 mA power consumption without load, 360 mA stalled power
consumption and 6 Nem stalled torque, according to measurements made by Philippe (Philo)
Hurbain: http://www.philohome.com.

" The PIC™ can deliver 25 mA per pin, with a maximum of 200 mA per port.

% Download the datasheet TC4426A-27A-28A from http://www.micrachip.com.,

120

7.1 Electric motor control

It has the following specifications:

Peak output current 1.5A

Voltage 45-18V
Delay 30 ns
Reverse current max. 500 mA

This chip is a MOSFET driver, but the specs are more than enough for our motor so we
don’t even need the MOSFETSs themselves. The high allowable reverse current means we
don’t need diodes to protect the chip.

TC4427A

NC[Tle = [BINC
INAZ] 7] OUT A
GND [3] 5] Voo
IN B 4] 5] OUT B

Figure 59. Pin layout of the TC4427A.

From the pin layout you can see that pin 2 (/N 4) connects to pin 7 (OUT A). Since pin 2
is connected to the PICT™ it will switch between 0 V and 5 V. The voltage at pin 7
depends on the power supply voltage of the TC4427 (Vdd, pin 6). The maximum is 18 V,
s0 once pin 2 has been made high pin 7 will be at 18 V.

The same applics to pins 4 and 5. Pin 3 (GND) is connected to the ground (0 V) of the
power supply. Note that when you run the TC4427 on a voltage different than your
microcontroller the ground leads of both power supplies must be connected. Pins | and 8
are not in use (NC = not connected). So at least the following pins need to be connected:

Pin Name Description

3 GND Connect to the ground (0 V) of the power supply.
Note that when you run the TC4427 on a different
voltage than your microcontroller the ground leads of
both power supplies must be connected to each other.

6 Voo Motor power supply (4.5 to 18 V)

121

7 Electric motor

The software

The control of a motor has basically three functions: stop, forward and reverse. We will

use a variable resistor to do the controlling:

Resistance LED1

<50 0
50-150 1
150 - 200 0

> 200 1

LED2

0
0
1
1

Action
stop
forward
reverse

stop

When both contacts of the motor driver chip carry the same signal the motor is stopped
and braked. This means rotating it manually takes effort. Coast (stopped without braking)
would be a fourth motor option, but is not possible with this setup.

After the definition of the pins and variables the program starts by measuring the

. 9
resistance®:

-- take a sample of pin a0 (analog 0)
resist = ADC_read low_res(0)

Nested if...then...else statements determine which action is to be taken based on the

resistance measured:

if resist < 50 then
LEDO = low
LEDI = low
else if
resist > 200 then
LEDQ = high
LEDI = high
else if
resist < 150 then
LEDO = high
LEDI = low
else
LEDO = low
LEDI = high

* See Chapter 5 for more information on this subject.

122

7.1 Electric motor control

end if
end if
end if

Since both LEDs are connected to the same pins as the TC4427, switching on the LEDs
also switches on the motor.

Not required, but fun anyway, is to send the data to the PC over an RS232 connection
using the programmer pass-through (see Chapter 6):

-- and send to PC
serial sw_write(resist)
serial_sw_write(LED()
serial_sw_write(LED1)

You can use the Visual Basic debugger software from section 6.3; just remember to add
the relevant pins.

Putting it all together yields this program:

- JAL 2.0.4
include 16F877 _bert

-- define the pins
pin_a0_direction = input
pin_c4 _direction = output
pin_c5_direction = output

-- general variable
var byte resist

var bit LEDO is pin_c4
var bit LED is pin_c5

forever loop

-- take a sample of pin a@) (analog ()
resist = ADC read_low_res(0)

if resist < 50 then

LEDO = low
LEDI = low

123

7 Electric motor

else 1f
resist > 200 then
LEDO = high
LEDI1 = high
else if
resist < 150 then
LEDO = high
LEDI = low
else
LEDO = low
LED1 = high
end if
end if
end if
-- and send to PC

serial_sw write(resist)
serial_sw_write(LEDO)
serial sw_write(LED1)

-- give the computer time to react
delay 100ms(1)

end loop
The hardware
Since the TC4427A has to drive the 9 V electric motor, it has to be connected to a 9 V
power supply. We will get the 5 'V power supply for PIC™ and the other parts of the

project from the same supply, using a UA7805 with a 0.1 uF stabilizing capacitor.

The motor can be directly connected to the MOSFET driver IC, along with a small 0.1 uF
noise reduction capacitor across the motor leads.”™

" The Lego motor has an internat PTC to protect it against overheating. So an overheating motor
will run slower.

124

7.1 Electric motor control

ua7805 | +
1 = 2
- © 9 volt
10K s battery
LIN 2 ——
1 10 k 0.1 uF
= 161877 el
= 0>
i 4
S 39 —<
== 6
100 nF TC4427A
20 pF
2 5
L — “ =
0 20 MHz 24 4
J— :
20 pF 12 3 2 2 3| 09 4F
LED 2 « LED
(red) \/ bl Vi “ (green)

Figure 60. Connecting an electric motor to a PIC™.

The next figure shows the circuit on the breadboard. The top power rail is 9 volts and the
bottom power rail is 5 volts. Conversion between the rails is handled by the UA7805 on
the right hand side. The long wires on the left side belong to the programmer and are used
to send data to the PC.

Figure 61. Connecting an electric motor to a PIC™.

The power supply wires are soldered to the inside of the Lego battery box to prevent
accidental power reversal when engaging battery power.

125

7 Electric motor

Upon closer inspection you may notice a diode in the ground lead between the 9 V and 5
V rail. This turned out to have no useful contribution so it has been left out in later
projects. In the schematic, the diode is not shown and you do not need to use it.

7.2 Pulse Width Modulation control of an electric motor

The purpose of this project is to control the speed of a small 9 V electric motor between
and 100%. In order to supply the power and higher voltage a TC4427A MOSFET motor
driver chip will be used.

Technical background

The simplest way to control the speed of an electric motor would be to vary the voltage
between 0 and 9 volts. Unfortunately this doesn’t work. First of all, the motor needs a
minimum voltage to get started, so it will immediately go from off to fast. Secondly, the
torque at low speeds is extremely low. The solution is to keep the voltage constant at 9
volts - which eliminates starting problems - and simply switch the power on and off. If
you do that quickly enough the motor will run very smoothly, even at low revolutions.

Two different methods can be used:

I. Increase the on-off pulses to make the motor go faster. The length of the pulses
remains the same, but the frequency increases. This is technically the simplest
solution, but smooth low-speed operation is difficult to attain,

2. Keep the number of pulses constant, but vary the duration of the pulse. This is
technically more difficult, but produces much better results.

We will use method 2, which is called Pulse Width Modulation (PWM). The next figure
shows how PWM works. In the top graph the width of the pulses is 10% of the period
(the time between the start of two consecutive pulses). This is called the duty cycle, and is
the part of the period where power is actually delivered.

In the middle graph the duty cycle is 50%. The bottom graph shows 100%. The latter, of
course, means that the power is always on and the motor runs at full speed.

126

7.2 Pulse Width Modulation control of an electric motor

- J

duty cycle

€«

50 o”‘D \U—U_|—|_|_5_|_|—_1—|_l\

—>

pericd

100% [

Figure 62. PWM duty cycles.

The PIC™ |6F877 is equipped with two Pulse Width Modulation modules, which are
connected to pins ¢l and c2. Note that module 1 is connected to pin c2 and module 2 is
connected to pin c¢1. Once connected, the only thing that needs to be done is to initialize
the PWM modules and apply the proper values to them.

For standard values the 16F877 bert library can be used, since it contains the
pwm_hardware library. However, we may need to use different settings for other projects
(PWM has many uses), so we will set the PWM module manually here as a learning
experience.

Since all of the variables we are using are 8 bits (max. value 255) it would be convenient
if we could use this directly in the PWM module. That would mean we get 256 different
speeds (stopped is also a speed), which would appear to be enough.

The PWM module can handle 10-bit speed control, with the two lowest bits being in a
different register (CCP1CON). So if we want to use 8-bit speeds we need to split the
speed up and spread it over two registers with two bits in CCP1CON and the remaining 6
bits in CCPRIL. That would be rather inconvenient, and the question is how useful would
it be?

Let’s assume we simply ignore the two lowest bits and just set them to 0. This would
mean that any value less than 4 couldn’t be selected. A value of 4 would be a duty cycle
of 1.6%. This is such a small value that it would be no problem to "jump” right from 0%
to 1.6% as the first step.

So if we ignore the lowest two bits we can use the 10-bit setting after all. The lowest two
bits in CCP1CON can be set to 0, and the highest 8 bits in CCPR1L will be used for the
speed. Looking at the datasheet, the table shows that the highest frequency at 10-bit
resolution is 19.53 kHz.

127

7 Electric motor

TABLE 8-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency 1.22 kHz | 4.88 kHz | 19.53 kHz | 78.12kHz | 156.3 kHz | 208.3 kHz
Timer Prescaler (1, 4, 16) 16 4 1 1 1 1
PR2 Value 0xFFh OxFFh 0OxFFh 0x3Fh 0x1Fh 0x17h
Maximum Resolution (bits) 10 10 10 2] 7 55

Figure 63. PWM frequencies.

This can easily be verified. According to the datasheet the PWM period can be calculated
with the following formula:

(PR2 + 1) * 4 * Tosc * TMR2Zprescaler
where:

PR2 =FF =255
Tosc=1/20 MHz = 50 ns
TMR2prescaler = 1

So the period is 0.0000512, which is a frequency of 19.531 kHz.

This frequency is a bit high for a PWM application, but in this case it works like a charm
and the electric motor (a Lego motor type 71427 ”') runs exceptionally smooth. Should
your motor not run smoothly or make a lot of noise it is best to reduce the frequency. This
is not a problem, because at 10-bit resolution 4.88 kHz and 1.22 kHz are also available.

To get our frequency of 19.53 kHz the TIMER2 prescaler must be set to 1 and PR2 must
be set to OxFFh. PR2 is the TIMER2 period register; the timer will count up to this
number and then start at 0 again. It can be assigned like this:

PR2 = OxFF

The clock signal 1s divided by the prescaler and results in a longer period, since it will
now take longer before the preset value is reached. The prescaler is hidden in the T2ZCON
register:

! Technical data; max. 360 rpm, 3.5 mA power consumption without load, 360 mA stalled power
consumption and 6 Nem stalled torque according to measurements made by Philippe (Philo)
Hurbain: http://www philohome.com.

128

7.2 Pulse Width Modulation control of an electric motor

T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

U0 RW-0 RW-0O RWO RWO0 RW-0 RW-0 RWO
[— [routrsa[TouTtPs2|TouTPs1ITOUTPS0] TMR2ON [T2CKPSt | T2CKPSO

hit 7 bit ¢
bit 7 Unimplemented: Read as "0’
bit 6-3 TOUTPS3: TOUTPSO: Timer2 QOutput Postscale Select bits

0000 = 1.1 Postscale
0001 = 1:2 Postscale
o010 = 1:3 Postscale

1111 = 1:16 Postscale
bit 2 TMR2ON: Timer2 On bit

1 = Timer2 is on
0 = Timer2 is off

bit 1-C T2CKPS1:T2CKPS4: Timer2 Clock Prescale Selact bits

00 = Prescaleris 1
01 = Prescaleris 4
1x = Prescaleris 16

Figure 64. T2CON Register.

To set the prescaler to a value of 1 bits 0 and 1 of T2CON must be set to 0. This is, of
course, only useful if the timer is actually switched on, so bit 2 must be set to 1. The
postscaler is not needed, so these bits will remain 0. The result is:

T2CON = 0b000_0100

The only thing we need to do now is send the signal to pin c¢2 (CCP1). This pin has many
functions, as can be seen in figure 65. To put it into PWM mode bits 2 and 3 of
CCPICON must be set to 1 (the other bits are irrelevant).

Since we opted not to use the two lowest bits of resolution we need to set them to 0.
Otherwise, we won't be able to stop the motor (bits 4 and 5 of CCP1CON).

CCPICON = 0x0F

129

7 Electric motor

CCP1CON REGISTER/CCP2CON REGISTER (ADDRESS: 17h/1Dh)

u-o u-0 R/W-0 R/W-0 R/W-0 RIW-0 R/wW-0 R/W-0
— | —] ooPxx | ccPxy | ccPxM3 [CCPxM2 | CCPxM1 [CCPxMO
bit 7 bit 0
bit 7-6 Unimplemented: Read as 'O’
bit 5-4 CCPxX:CCPxY: PWM Least Significant bits
Cagpture mode:
Unused
Compare made:
Unused
PWM mode:
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.
bit 3-0 CCPxM3:CCPxM0; CCPx Mode Select bits

0000 = Capture/Compare/PWM disabled (resets CCPx module)

0100 = Capture mode, every falling edge

0101 = Capture mode, every rising edge

0110 = Capture mode, every dth rising edge

0111 = Capture mode, every 16th rising edge

1000 = Compare mode, set output on match (CCPxIF bit is set)

1001 = Compare mode, clear output on match (CCPxIF bit is set)

1010 = Compare mode, generate software interrupt on match {CCPxIF bit is set, CCPx pin is
unaffected)

1011 = Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected); CCP1
resets TMR1; CCPZ resets TMR1 and starts an A/D conversion {if A/D module is
enabled)

11xx = PWM mode

Figure 65. CCP1CON register.
Putting the settings together we have:
PR2 = 0xFF
T2CON = 0b000_0100
CCPICON = 0x0F
And obviously the pin must be defined as an output.

pin_¢2_direction = output -- actual PWM output pin

Because we use JAL we can accomplish the same thing using simple JAL statements,
even though you do need knowledge of the datasheet in order to know what to enter.

130

7.2 Pulse Width Modulation control of an electric motor

The relevant commands are:

const pwm_frequency = number This sets the PWM frequency. You
can only chose the frequencies listed
in the datasheet and as you have seen
this has consequences for the
available resolution.

const pwmi_dutycycle = numberl If you use frequency modulation (FM)

const pwm?2_dutycycle = number2 instead of PWM this is where you set
the desired duty cycle. In later
sections we will see that this is a fun
way to make sounds.

PWM_init_frequency (boolean, Engage the PWM modules.
boolean)
PWM set_dutycycle (var, var) Set the duty cycle. When using PWM

this is the variable that controls the
power output (if an electric motor is
used this controls the speed).

The software

We are using a variable resistor to control the speed of the motor. Since we have opted
for 8-bit resolution the duty cycle for the motor can be copied directly from the
measurement of the A/D converter. Notice that variable resisz needs to be defined as a
byte to hold the 8-bit value:

-- convert analog on a(} to digital
resist = ADC read_low_res(()

-- set actual PWM duty cycle
PWM_set_dutycycle (resist, resist)

The PIC™ cannot deliver enongh power to directly drive any kind of motor. Our motor
also needs 9 volts, which the PIC™ is unable to provide. For these reasons a TC4427
MOSFET motor driver chip is used, just like in the previous project.

The motor driver chip has two inputs. One will be used for the speed (this is where the

PWM signal will be fed into) and the other is for the rotation direction, Unfortunately, if
you switch direction you also switch speed. If the duty cycle is 20% with the motor

131

7 Electric motor

running forward, then changing the direction to reverse will change the duty cycle to 80%
(this is due to the inner workings of the TC4427, the 16F877 of course doesn’t change).
So whenever the direction is reversed the duty cycle also needs to be "reversed”. We do
this by simply "reversing" the measured resistance.

-- if the switch is pressed reverse direction
if pin_c7 == high then
pin_c4 = high
-- and reverse reading to maintain speed
resist = 255 - resist
else
pin_c4 = low
end if

Putting this all together yields this program:

- JAL 2.04
include 16F877 bert

-~ define variables
var byte resist

-- define the pins
pin_a0_direction = input -- variable resistor (speed)
pin ¢7 direction = input - forward/reverse switch

-- enable pulse width modulation
PWM init frequency (true, true)

pin_c4_direction = output
var bit directionl is pin_c4 = true

forever loop

-- convert analog on a0 to digital
resist = ADC read_low_res(0)

-- send resistance to PC

serial sw write(resist)
delay 100ms(1)

132

7.2 Pulse Width Modulation control of an electric motor

-- if the switch is pressed reverse direction

if pin_c7 == high then
pin_c4 = high
-- and reverse reading to maintain speed
resist = 255 - resist

else
pin_c4 = low
end if
-- set actual PWM duty cycle

PWM set dutycycle (resist, resist)
end loop

The hardware

| 3 1
ua7805] &
Rk 32 g 2
10k 2 9 volt
(i 2 " 5 battery
1 10k 0.1 uF
g 16877 to PC
26 40 ﬁ
E 39 _—é
o= 6
100 nF TC4427A
20 pF
5
G s i 1 4
= 20 MHz 17 I 4
”—I—__ 14 7
o (=}
20 pF 12 3 3 2 3 0.1 uF
LED N N LED
(red) \/ w v (green)

Figure 66. PWM project schematic.

The schematic is identical to the previous project, except that a switch has been added to
reverse the direction of the motor and the B input of the 4427 is now connected to the
CCP1 output of the 16F877.

The next figure shows the breadboarded circuit. The top power rail is 9 V and the bottom
power rail is 5 V. Conversion between the rails is handled by the UA7805 on the right
side. The long wires on the left belong to the programmer and are used to send data to the
PC.

133

7 Electric motor

Even at the lowest setting (just 1.6% duty cycle) the motor runs and needs a whopping 14
seconds to make one rotation. Impressive! The Lego motor has a built in gearbox with a
ratio of 14:1, so internally the motor makes one revolution per second.

Figure é7. Pulse Width Modulation.

When in-circuit programming with the Wisp628 the motor (and everything else) can
remain connected. It may make a strange sound and small movements, but these do not
affect the programming in any way.

134

7.2 Pulse Width Modulation control of an electric motor

An option

If you want you can display the PWM data on a PC. It has no impact of the functionality;
it’s just for fun. If you’re not interested the commands:

-- send resistance to PC
serial sw write(resist)

delay 100ms(1)

can be removed from the program.

= Bert van Dam (c)2006

pulse width modulation

16F877

r Connect to PIC

[29=t s tiaimns
start :bapl
¥ Wispb28
f—PottonPl:—-———k—(
@& Com1 (Com3
" Com2 (Com4

Figure 68. VB program
After powering up the project, start communications by clicking the "start" button. The

term "motor power" really means the value being sent to the PWM module. The
"percentage power" on the dial is the duty cycle that varies between 0 and 100%.

135

7 Electric motor

7.3 Constant motor speed through feedback

The purpose of this project is to maintain an electric motor at a constant speed, even when
the load on the motor changes.

Technical background

The speed of an electric motor is measured. Based on that measurement the power to the
motor is varied using the PWM module. If the motor slows down for some reason (such
as when you pinch the axle between your fingers) the PIC™ will detect this and increase
the power until the measured speed matches the desired speed again.

The motor we’ll be using is the Lego 714277, but any small motor could be used. It may
be convenient to build the motor frame and support out of Lego as well. But first we need
to generate some sort of feedback signal so the PIC™ knows the speed of the motor.

We start with a small circle of paper that is black on one half and glued to a Lego wheel.
A black marker works well, but as you can see a black pencil works just fine too.

e

Figure 69. Pulse wheel.

We’ll use a sensor to determine the difference between the black and white halves. By
measuring how long it takes for one color to pass the sensor the speed can be calculated.

The Fairchild QRB134 infrared photo reflector is used as the sensor. It comes equipped
with a daylight filter to eliminate the influence of stray light as much a possible. It also
has a built-in infrared LED (and the price is quite agreeable). The datasheet is not quite
clear on whether current limiting resistors are built in. The answer is "no" as I found out
when I fried the first one.

72 Technical data: max. 360 rpm, 3.5 mA power consumption without load, 360 mA stalled power
consumption and 6 Ncm stalled torque according to measurements made by Philippe (Philo)
Hurbain: http://www.philohome.com.

136

7.3 Constant motor speed through feedback

+5V

220
10k

signal

orange white

3

= N

2| M E

o
g

green blue

1

Figure 70. Connecting the QRB1134.

The sensor needs to be mounted at a distance of about 2 to 4 mm (5/64 to 5/32 in.) from
the pulse wheel. Figure 71 shows how that can be done using standard Lego parts. The
sensor is about 2/3 of a Lego brick high; so two angled 1/3 bricks hold it in place.

Figure 71. Sensor construction.

Now we need to measure how long it takes for the sensor to "see" a color change. The
16F877 is equipped with a timer for purposes such as this: 7TMER1". This timer can be
controlled using TICON, the TIMERI1 control register. The only thing we need to do is

switch it on
T1CON = 0b_0000_0001

This way we also set bit 1 to zero, which indicates that the internal clock is used.

73 You may recall that there is also a TIMERZ2, but it is being used for the PWM module.

137

7 Electric motor

T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

u-0 u-0 RAW-0 RW-0 RAW-0 RW-0 RW-0 RW-0
— | —]rickps1]TicKkPse| TtGSCEN |T1SYNG|TMR1CS|TMRION
bit 7 bit O

bit 7-6 Unimplemented: Read as 'O

bit 5-4 T1CKPS1:T1ICKPS0: Timer1 Input Clock Prescale Select bits
11 = 1:8 Prescale value
10 = 1:4 Prescale value
01 = 1:2 Prescale value
00 = 1.1 Prescale value
bit 3 T10SCEN: Timer1 Osciltator Enable Control bit
1 = Oscillator is enabled
0 = Oscillator is shut-off (the oscillator inverter is turned off to eliminate power drain)
bit 2 TASYNC: Timer1 External Clock Input Synchronization Control bit
When TMR1CS = 1:
1 = Do not synchronize external clock input
0 = Synchronize external clock input

When TMRICS =0
This bit is ignored. Timer? uses the internal clock when TMR1CS = 0.

bit 1 TMR1CS: Timer1 Clock Source Select bit
= om pin RCO/T10S0/T1CKI (on the rising edge)
0 = Internal clock {Fosc/.
bit 0 TMR1ON: Timer1 On bit

1 = Erables Timert
0 = Stops Timer1

Figure 72. TIMER1 control register

Note that the external oscillator controls this internal clock, with the frequency being that
of the external oscillator divided by four. This is overlooked quite easily, hence the red
circle.

The 16F877 is connected to an external crystal of 20 MHz. The clock frequency (Fosc) is
20 MHz, so one "tick” takes 50 ns’®. Since the timer only counts one in every four ticks a
timer tick takes 200 ns. The maximum number of ticks this timer can hold 1s 256 for the
high byte and 256 for the low byte so in total 256 * 256 = 65,535 ticks. At 200 ns per tick
this takes just 0.0131 second. Not enough by a long shot. It’s incredible how fast these
microcontrollers are!

If we add an extra byte (the eXtra High byte) the maximum time would increase to 3.35
seconds (256 x 0,013 seconds). Just for fun we will add yet another byte, the eXtra eXtra
High byte resulting in a maximum time of 858 seconds, which is enough for even the
slowest motors!

Pm=10"u=10° n=10", p=10" so 1 second is 10 ns, or 1.000.000.000 ns.

138

7.3 Constant motor speed through feedback

In JAL it looks like this:

if TMR1H == 255 then
if counterXH == 255 then
counterXXH = counterXXH + 1
end 1f
counterXH = counterXH + |
while TMRI1H == 255 loop end loop
end if

When the high byte of the timer is 255 the program needs to take action. At the next
increment the high byte will rollover to again.” This is a good place to increment the
eXtra High byte (counterXH) by one.

if TMR1H == 255 then
counterXH = counterXH + 1

This will have to be done only once so we will wait until the high byte has indeed rolled

over,
while TMRI1H == 255 loop end loop

In fact, the eXtra High byte counts a bit too early; specifically when the high byte of the
timer is 255 instead of when it actually rolls over. You won’t really notice this because
the loop above will correct for it. Unless of course the process is stopped (because the
sensor color changes) right at this very moment. That would cause an error of 1 tick of
the high byte, which is 0.051 ms. 1 think we can live with that.

When the eXtra High byte rolls over the eXtra eXtra High byte needs to be increased by
one:
if counterXH == 255 then
counterXXH = counterXXH + 1
end if
counterXH = counterXH + 1

Now all we need to do is start and stop counting at the right moment, when the sensor
detects a color change on the pulse wheel. We will stop the program until the pin that is
connected to the sensor (inputpin) drops from high to low™:

> A byte can hold a maximum value of 255. If you add 1 it will start at zero again, so 255+1=0.
This is called a rollover.

" Note that it makes no difference whether the color changed from white to black or black to
white since they both have the same length.

139

7 Electric motor

while inputpin loop end loop
When that happens TIMER is reset by setting the high and low bytes to zero:

TMRI1H = 0x00
TMRIL = 0x00

The counter loop runs as long as the color of the pulse wheel remains the same:
while ! inputpin loop

Now that we know how long it took for the motor to make half of a tum we need to add a
feedback mechanism. Here’s where we need a reality check. We are talking about a toy

electric motor with a hand drawn pulse wheel. It is completely useless to measure speed |

to hundredths of a second. The TIMER1 low byte can thus be completely 1gn0red
Whether the high byte is of use could be a matter of discussion, but in this project we
assume that the eXtra High byte is the lowest meaningful value.

As an example, the setpoint for the speed in this project is 10 for the eXtra High byte,
Which means one color takes (10/256)*3.35 = 0.13 seconds to pass the sensor. So one
complete revolution would take 0.26 seconds, which is equivalent to 231 revolutions per
minute,’

The most essential part of the software - which uses the measured speed to adjust the
power to the motor - has now become quite simple.

1f the motor runs too slowly (the counter value is too high) the PWM setting is increased
by five. If the motor runs too fast the PWM setting is reduced by five.

if counterXH < 10 then
CCPRIL =CCPRIL-5
end if
if counterXH > 10 then
CCPRIL = CCPRIL +5
end if

" In this project the setpoint is a fixed value. You can make the setpoint a variable by connecting a
variable resistor to the PIC™ and using the measurement to control the speed. If you divide the
measurement by 10 you will get a nice control range. Please be aware that if you stop the motor
you won’t get it started again because the program wiil wait for a pulse which will never come,
The solution is to add a timeout to the waiting loop to limit the maximum waiting time.

140

7.3 Constant motor speed through feedback

The software

It is not necessary (but really quite interesting) to graph the data from the PIC™ on a PC.
Try pinching the motor axle to feel the power increase, and then see the readings on the
PC change accordingly.

The red line in the graph of Figure 73 represents the power sent to the motor. You can see
that I pinched the motor axle at two different times. The PIC™ immediately increased the
power to the motor (the red line went up) until the speed was correct again. When I
released the axle the motor ran too fast so the PIC™ corrected for this by reducing motor
power.

The actual motor power is shown on the dial and in numbers below. The contents of all
counters are also shown.

This Visual Basic program is part of the free download package, and includes the source
code.

= Bert van Dam (c)2006 E ‘Ell;(‘

16F877

Figure 73. Pinching the motor axle.

141

7 Electric motor

In order to display these data we do need to actually send them. To keep them separate on
the PC side they are preceded by a number.

Prefix Data content

1 TIMERI low byte’™

2 TIMERI high byte

3 eXtra high byte

4 eXtra eXtra high byte

5 PWM module pulse length

in JAL this is handled as follows:

serial sw_write("1")

serial sw_write(counterL)
detay 1ms(10)

serial sw_write("2")

serial sw write(counterH)
delay 1ms(10)

serial sw_write("3")

serial sw_write{counterXH)
delay 1ms(10)

serial sw_write("4")

serial sw_write(counterXXH)
delay_1ms(10)

serial sw_write("5")
serial_sw_write(CCPRIL)

All important parts of the software are now complete and can be put together:

- JAL 2.0.4
include 16F877 bert

-- define variables
var byte counterl, counterH, counterXH, counterXXH
pin_d2_direction = input - motor feedback pulse

™ This is, of course, TMR1L. But between the moment it is measured and the moment it is sent to
the PC the counter changes value, and so does TMRIL. So right after the measurement the value is
put into a separate variable {counterL) to preserve it. The same applies to TMRIH.

142

var bit directionl is pin_c4 =

pin_c4 direction = output
var bit inputpin is pin_d2

pin_d3 direction = output
var bit yellowled is pin_d3

7.3 Constant motor speed through feedback

false -- motor direction

-- signal from the photo reflector
-- vellow led

-- enable pulse width modulation
PWM _init_frequency (true, true)

CCPRIL =138

T1CON =0b_0000_0001

forever loop

-- set actual PWM duty cycle to 138

-- TIMER! enabled

while inputpin loop end loop -- wait for high to low transition

TMRI1H = 0x00

TMRIL = 0x00
yellowled = high
while ! inputpin loop

if TMRI1H == 255 then

-- initialize TIMER !

-- high pulse turns led on
-- waif for low to high transition

-- meanwhile count overflows

if counterXH == 255 then
counterXXH = counterXXH + 1

end if

counterXH = counterXH + 1
while TMR1H == 255 loop end loop

end if
end loop

-- counting completed
counterH = TMR1H
counterl. = TMRIL
yvellowled = low

-- adjust the power to the motor if needed

if counterXH < 10 then
CCPRIL =CCPRIL -5

end if

if counterXH > 10 then
CCPRIL =CCPRIL +5

143

7 Electric motor

end if

-- send data to the PC (for information purposes only)
serial_sw_write("1")
serial_sw_write(counterL)
delay 1ms(10)
serial_sw_write("2")

serial _sw_write(counterH)
delay 1ms(10)

serial sw_write("3")

serial sw_write(counterXH)
delay 1ms(10)

scrial sw_write("4")

serial sw_write(counterXXH)
delay 1ms{(10)
serial sw write("5")

serial sw_write(f877 CCPRI1L)

-- reset all counters
counterk. =0
counterH =0
counterXH=10
counterXXH =

end loop
The hardware

The circuit looks a lot like the PWM project of section 7.2, The Fairchild QRB1134
infrared photo reflector needs to be added of course. If you compare the schematic with
the breadboard photograph you will notice a few small differences. The setup on the
breadboard works perfectly, however in applications where power is scarce and voltage is
lower than anticipated (such as battery applications) the set up in the schematic will
function better (such as in battery powered robots).

The diode in the ground lead between the 5 V and 9 V power rails is removed, and the
resistor between the PIC™ and the MOSFET driver chip is relocated to the LED (which
was what they were meant for in the first place). These changes have been incorporated
into the circuit in Figure 74.

The long wires on the left side of the breadboard are from the Wisp628 in-circuit
programmer,

144

7.3 Constant motor speed through feedback

3 1
[ua7805 I+
2
i 3z ot r 9 volt
S i = battery
o~ -
1 Hoox] 0.1 uF 3
. - 161877 P
QRB1134 0 —>
g b ® —<
_l e 6
100 nF TC4427A
20 pF
1l y 23 2 5 .
Il 3
= 20 MHz 17 1 4
Il
I " 2 7 |
20 pF 49 a N N 5 |01uF
3 3
LED
N v LED
\/ 2 \/ ¥

Figure 74. Constant speed with feedback.

Figure 75. Constant speed with feedback.

145

7 Electric motor

7.4 Tachometer

In this project a tachometer is made, based on the previous project, but with accurate
timing by use of the TIMER1 overflow bit.

Technical background

In the previous project the feedback on the motor speed was based on counters. By
dividing the sensor count by the time needed to reach this value the speed of the motor
can be calculated.

Counter Time (per "tick")”
counterL 200 nS

counterH 51uS

counterXH 13 mS

counterXXH 3.35 sec

In that project it was important that the speed remain constant, but the exact value of the
speed was irrelevant. For a tachometer, however, the exact value is important so
measuring the time that has passed must be done much more accurately.

This is the loop that was used to measure time:

if TMRIH = 255 then
if counterXH == 2535 then
counterXXH = counterXXH + |
end if
counterXH = counterXH + 1
while TMR1H = 255 loop end loop
end if

The first line, §f TMRIH == 255 then, only works if TMRIH is indeed 255 at the exact
moment that this test is performed. The counters are always running - even when other
commands are being executed - so chances are that TMR/H reaches 255 while a different
command 1s executed. This means the rollover goes unnoticed and counterXH and
counterXXH are not incremented. The result is that with short measuring times (high

Tm=10"u=10% n=10",p= 10"

146

7.4 Tachometer

pms) the measurement seriously deviates from the true value by as much as a factor of 2.
Since this deviation is constant it didn’t matter in the previous project.

t does matter now, however, so we will use a different counting mechanism. The
[IMERI register contains a variable that is set to 1 each time TMRIH rolls over to 0,
which is called TMRIIF. If we use this in the counting loop the TAR/H rollover will
never be missed:

if TMRI1TF then
- clear TMRIIF
TMRI1IF =0
if counterXH == 255 then
counterXXH = counterXXH + 1
end 1f
counterXH = counterXH + 1
end if

Each time the loop is executed a rollover that has already passed can still be counted
because TMRIIF is still set. To prevent the rollover from being counted twice the variable
is reset to 0 after processing.

Since we are focused on working accurately this would be a good time to reset the timer
the official way, meaning we will stop the timer first, set it to 0, and then restart,

Like this:
T1CON = 0b_0000_0000 -- timer off
TMRIL = 0x00
TMRI1H = 0x00
T1CON = 0b_0000_0001] -- timer on again

So the complete counting loop looks like this:

while inputpin loop end loop
TICON = 0b_0000_0000
TMRIL = 0x00

TMRI1H = 0x00

TICON = 0b_0000_0001

147

7 Eleciric motor

while ! inputpin loop
if TMRI1IF then
-- clear TMRIIF
TMRIIF =0
if counterXH == 255 then
counterXXH = counterXXH + 1
end if
counterXH = counterXH + |
end if
end loop

counterH = TMR1H
counterL = TMRIL

This way we will get an accurate time measurement.

The software

The program is much simpler than the previous project, because only the measuring part
is required. Which means you can mount the pulse wheel on basically any axle to

measure the rpms.
Putting it all together yields this program:

-~ JAL 2.0.4
include 16F877 bert

-- define variables

var byte counterL, counterH, counterXH, counterXXH

pin_d2_direction = input

var bit inputpin is pin_d2 -- signal from the photo reflector

forever loop

while inputpin loop end loop
TICON = 0b_0000 0000
TMRI1L = 0x00

TMRI1H = 0x00

TICON = 0b_0000_0001

while ! inputpin loop
if TMRIIF then

148

7.4 Tachomeiter

TMRIIF=0
if counterXH == 255 then
counterXXH = counterXXH + |
end if
counterXH = counterXH + 1
end if
end loop

counterH = TMR1H
counterL = TMRIL

-- send data to the PC
serial sw write("1") delay_1ms(10)
serial_sw_write(counterL)
delay 1ms(10)

serial sw_write("2")
serial_sw_write(counterH)
delay 1ms(10)

serial sw_write("3")

serial sw_write(counterXH)
delay 1ms(10)
serial sw write("4")
serial_sw_write(counterXXH)

-- reset all counters

counterL =0

counterH = 0

counterXH = 0

counterXXH =0
end loop

On the PC, the data are received and, with a simple formula, the total time elapsed 1is
calculated:

time = counter.*200 10™ + counterH*51 10 + counterXH*13 107 + counterXXH*3.35

149

7 Electric motor

The number of revolutions per minute then becomes:

60
revolutions per minute = time

Which is displayed like this:

= B van Dam (c)2006 |- B¢

tachometer

Counter L
Counter H
Counter XH
Counter3H [~ 0
Toeten(pm) [71

i

Jd

s

s i
r ConnedloPIC————
| — ‘
? start | stop

| wips2s
L - -

rPotonPC——
@ Com1 Com3
© Com2 (Comd |

Figure 76. Tachometer.

150

7.4 Tachometer

The Hardware

A lot of parts can be removed, making it much simpler:

] I +5V
1 32 ™~
[vd
o x =,
& =
1
W TR to PC
QRB1134 40 —>
i b 0| —<
1000F |
20 pF
T
= 20 MHz
Il
I 14
20pF 12 31
[| 1

Figure 77. Tachometer.

On the breadboard you can see that the sensor is now connected using a plug, but that
doesn’t have any impact on the functionality.

Figure 78. Tachometer.

151

8 Sensors

In this chapter you will find a series of projects with different kinds of sensors that can be
connected to a PIC™,

Sensor

GP2Y0D340K
infrared object
detector

Infrared

SRFO04 Ultrasonic Ultrasonic

Range Finder

Byte Craft Limited
touch sensor design

People

Sharp GP1S036HEL Tilt
tilt sensor

Mechanism Purpose

Used to detect objects, but incapable
of determining their distance.

Used to detect objects and their
distance from the sensor.

Used to detect people or other
conductive objects without touch.

Used to determine an object’s
position relative to the horizontal
plane, i.e. the tilt of an object.

These are not the only sensors discussed in this book; several of them have already been
discussed in other sections.

152

Sensor Mechanism
LDR light
Fairchild QRB134 Infrared
infrared photo

reflector

Switch Contact

Purpose Section
Used to determine the 52,92
quantity or presence of

visible light.

Used to detect color 73,74
changes, such as on a code

wheel or line follower,

A bizarre use of this sensor 13.3.5
in an infrared RS232

connection,

Used to detect the 4

proximity of objects.

8.1 Infrared object detection

Sensor Mechanism Purpose Section

NTC Temperature Used to measure 55
temperature.

Keypad Contacts Used to enter data, in this 4.4

case numbers.

8.1 Infrared object detection

In this project a Sharp GP2Y0D340K infrared object detector is used to detect objects.
Technical background
Infrared light is invisible to humans, but is reflected by objects just like visible (regular)

light. By measuring reflected infrared light the presence of an object in front of the sensor
can be determined.

Figure 79. Sharp infrared detector.

The drawback to using this sensor is obvious: an object with good reflective properties
appears to be closer than an object with poor reflective properties. In one test, a black
shiny object was detected at 23 ¢cm (9 in.) while an identical non-shiny white object was
detected at 59 cm (23 in.). The price of the sensor, however, is very attractive.*

% Approximately US$ 6

153

8 Sensors

The software

The sensor is basically a switch that is turned off (yes, off) when an object is detected. By
inverting the signal and adding a single LED a working project can be made:

-- check sensor
greenled = ! sensor

A second LED is used to show that the system is active. Aside from that the program
mainly consists of pin definitions:

- JAL 2.0.4
include 16F877 bert

-- define variables

var bit blueled is pin c4 -- blue led
var bit greenled is pin_d3 -- green led
var bit sensor is pin d2 -- SEnSOr

pin_c4_direction = output
pin_d3_direction = output
pin_d2_direction = input

- turn blue led on
blueled = high

forever loop

-- check sensor
greenled = ! sensor

-- flash blue led

blueled = ! blueled

delay _100ms(1)
end loop

The hardware

The infrared sensor must be equipped with a small resistor and capacttor. The value of the
resistor is not an error; 1.5 ohm is the correct value.

154

8.1 Infrared object detection

+5V

11132 1
J GP2Y0D340K

16877
21 3 46 —T
2

33k

15

1 123 13 14 2 23
10k &
§ =2

(green) (blue)

20MHz &3

__l 20 pF

100 nF
-
20 pF
_‘

|||—

Figure 80. Infrared sensor.

And here is the breadboarded circuit:

Figure 81. Infrared sensor.

The long wires on the left hand side are from the Wisp628 programmer. The green LED
is on, so the infrared sensor has detected the photographer!

Complications

During the construction of a large subsumption robot equipped with a series of these
sensors the accompanying small resistors and capacitors were soldered directly to the
sensors. The sensors themselves were connected by long wires to the PIC™. As a result,
the PIC™ stopped running immediately. The (software) oscilloscope®’ showed that the
sensors caused so much noise on the power line that the PIC™ couldn’t run anymore.

#1 Oscilloscope for Windows v. 2.51 written by Konstantin Zeldovich.

155

8 Sensors

Te47.15ms |Y1=8.8

Figure 82. Noise on the power line.

A 100 uF capacitor across the power lines of each sensor solved this problem. In the
schematic you will not find this capacitor since the problem only occurs when using long
wires.

8.2 Ultrasonic sensor

The purpose of this project is to demonstrate the use of a Devantech SRF04 Ultrasonic
Range Finder to measure the distance to various objects. In section 12.6 this sensor is
modified and used as ultrasonic radar.

Technical background

The SRF04 is a relatively cheap™ ultrasonic sensor that uses sound waves to measure the
distance of objects. The detection cycle is started by the PIC™ with a pulse of 10 uS or
more on the "pulse trigger" line. As soon as this line goes low again the ultrasonic module
sends a burst of 8 pulses of 40 kHz sound. To avoid direct coupling between transmitter
and receiver the unit waits a bit and then sets the "echo line" to high. This is the signal for
the PIC™ to start a time measurement. The first ultrasonic echo to be received switches
the "echo line" back to low again. The distance can be calculated based on the elapsed
time.

52 About US$ 18.

156

8.2 Ultrasonic sensor

SRF04 Timing Diagram

trigger pulse

10 uS minimum
trigger input
to module
8 cycle
sonic burst allow 10 mS from
end of echo to next
sonic burst trigger pulse
from module
echo pulse output S note: Bd"“g%“*s;
S 0 pulse is approx. 36 m
to user timing circuit 100 4S to 1B M if no object detected

Figure 83. How the ultrasonic sensor works.®

[he next Figure shows some measurements done with this sensor. You can see that the
yraph is a perfectly straight line with a minimum detection range of about 1 cm (3/8 in.).
A moving pencil can be detected as far away as 50 cm (20 in.). Very impressive!

Devantech SFR04 Ultrasonic Range Finder

measured distance (cm)

a 20 40 60 80 100 120 140
real distance (cm)

Figure 84. Measurements with the ultrasonic sensor.

® This diagram is copyrighted by Daventech. The company doesn’t have it’s own website, but
echnical information can be found at http://www.robot-electronics.co.uk/htm/srf05tech.htm.

157

8 Sensors

Based on the ¢lapsed time measured by the PIC™ the distance can be easily calculated.
The speed of sound through the air at room temperature is about 342 m/s (765 mph).**

-- wait for echo pulse (line will go low)
while echo loop
distance = distance + 1
delay 10uS{4)
end loop

At a distance of 10 cm the measured "distance” is 15 program loops. Since each loop
takes 4 times 10 uS this means 600 uS elapsed time At the speed of sound this translates
to a distance of 0.205 meters. Since the sound has to go to the object and back the
distance to the object is half of the distance measured, or 0.103 meter (10 ¢cm). Incredibly
accurate!

The software
First the pins need to be defined:

-- define variables
var byte distance

-- define pins
var bit pulse is pin d0 -- pulse trigger
var bit echo is pin_dl -- echo signal

pin_d0_direction = output
pin_dl_direction = input

Then we follow the steps from the manual as closely as possible. The first step is to
submit a pulse of at least 10 uS to the pulse trigger line, so we opt for 40 uS, which
should be long enough:

-- send pulse
pulse = high
delay_10uS(4)
pulse = low

¥ 1 conserve energy: the temperature in my office is about 19 degrees C. The formula is ¢ = 20 #
square rool(T) where T is the air temperature (in Kelvin) and ¢ is the estimated speed of sound at
that temperature. Note that degrees Kelvin can be calculated by adding 273.15 to the temperature
in degrees C.

158

8.2 Ultrasonic sensor

As soon as the echo line is high a counter must be started until the line is low again:

-- wait for echo circuitry to switch on
while ! echo loop
end loop

- wait for echo pulse (line will go low)
while echo loop
distance = distance + |
delay 10uS{4)
end loop

The measured value is sent to the PC for processing. Then we wait a while (1 second) for
any stray signals to disappear before everything is repeated.

-- send distance to PC
delay _100ms(10)
serial_sw_write(distance)

Putting everything together yields:

- JAL 2.0.4
include 16F877_bert

-- define variables
var byte distance

-- define pins
var bit pulse is pin_d0 -- pulse trigger
var bit echo is pin_dl -- echo signal

pin_d0_direction = output
pin dl_direction = input

pulse = low
forever loop

-- resel distance
distance =0

-- send pulse
pulse = high

159

8 Sensors

delay 10uS(4)
pulse = low

-- wait for echo circuitry to switch on
while ! echo loop
end loop

-- wait for echo pulse (line will go low)
while echo loop

distance = distance + 1

delay 10uS(4)
end loop

-- send distance to PC
delay 100ms(10)
serial sw_write(distance)

end loop

A Visual Basic program on the PC will use the data to calculate the distance.

w Bert van Dam (c)2006

ultrasonic range finder

Measurement [7
Elapsed time fz?u micio sec

Distance [004 meter

~ Connect to PIC

[Wisp628

:—Pﬂllm —— T‘

|
| @ Coml (" Com3 |
| € Com2 € Comd |

Figure 85. Ultrasonic range finder on the PC.

160

8.2 Ultrasonic sensor

You can see the measured value, the elapsed time to the first echo, and the calculated
distance. The maximum distance that can be measured is 1.74 m (because the distance

variable has a maximum value of 255).

The hardware

+5V

i +5V
trigger
SRF04
echo
gnd

11/32
. 19
a 161877
20
1 1231 13 14
10k 0
w (7'
(=% N [=%
o o
R - & = &
= | a
o
g T

Figure 86. Ultrasonic sensor.

With actual parts it looks like this:

Figure 87. Ultrasonic sensor in action.

i

161

8 Sensors

The sensor is pointed straight at the photographer. During operation the sensor makes a
soft clicking sound (each time a radar burst is emitted), so you can hear whether it is
working or not.

The ultrasonic sensor needs to be connected as shown in the accompanying instruction
booklet. This is very simple and the instructions are quite clear, with the exception that
the drawing shows a bottom view. I missed that and connected it with the power reversed.
It did survive, but just be careful,

The power consumption of the entire unit is approximately 24.2 mA, which is good to
know if you intend to use battery power.

8.3 People sensor

In Byte Craft Limited®, Walter Banks wrote an interesting article in which he described a
touch sensor based on a capacitor. He used a small touch pad, but if the sensor is made
larger it will react as soon as somebody gets near it, even without touching it. This makes
it a contact-free people sensor that reacts to anything that conducts electricity.

Technical background

The technique is very interesting. Two pins of a PIC™ are connected together with a
large resistor of, say, 470k ohms. One of them is connected to a piece of metal with an
insulating layer, such as a piece of aluminum foil in a plastic bag.

470k

B

sensorpad
approx. 2 x 2inch

Figure 88. Principle schematic of the people sensor.

¥ The website is http:/www.bytecraft.com, and Walter Banks article can be found at
http://www .bytecraft.com/touchsw.html.

162

8.3 People sensor

This insulated piece of metal is, in fact, one half of a capacitor. When someone holds his
hand near the insulated metal his hand becomes the other side of the capacitor. The hand
is the conductor and the air is the insulator.

Charging a capacitor takes a certain amount of time, depending on the capacity. Without
a person near it the charging will be fast. But when a body is present, a true capacitor is
formed and charging takes much longer (here “much longer” means longer than 3 ms).

The sensitivity of the sensor depends on the size of the metal foil, the length of the wire,
and also on the PIC™ itself. In this project the pin combination d1/d2 is used, but in some
cases different combinations work better (such as c¢6/dl). If the sensor lacks sensitivity
you might try different pin combinations.

The use of this sensor can be dangerous (to the PIC™, not to you). Should you
accidentaily be statically charged when your hand gets near the foil a spark may jump
across. These sparks always destroy the most expensive component in sight, which in this
case is the PIC™. It hasn’t happened to me, but use it at your own risk.

The software
The program has to execute the following steps:

e Make pin 1 {in Figure 88) low, to discharge the capacitor
o Waitabit

¢ Charge the capacitor by making pin 1 high again

* Wait4to5ms

¢ Check if pin 2 is high

If pin 2 is high the charge of the capacitor is small (loading was fast) so no person was
near it. If the pin is still low it means the charge is much greater, so a person (or other
conductive object) is close by. Note that pins 1 and 2 refer to the pins in Figure 88 and
not the 16F877.

Here’s what the test looks like:

TOUCHOUT = low
delay _Ims(1)
TOUCHOUT = high
delay 4us

if TOUCHIN == high then
LEDO = low

163

8 Sensors

else
LEDO = high
end if

Rather than waiting a fixed time you could simply measure the amount of time it takes to
charge the capacitor, and base your conclusions on that. Unfortunately, those
measurements vary wildly so the fixed waiting period is advisable. The program looks
like this:

- JAL 2.0.4
include 16F877 bert

-- define the pins
pin_c4_direction = output
pin_d2 direction = output
pin_dl_direction = input

-- general variables

var bit LEDG is pin_c4

var bit TOUCHOUT is pin_d2
var bit TOUCHIN is pin_dl

forever loop

TOUCHOUT = fow
delay 1ms(1)
TOUCHOUT = high
delay_4us

if TOUCHIN == high then
LEDO = low

else
LEDO = high

end if

- and send to PC
serial_sw_write(LEDO)
delay_100ms(1)

end loop

164

8.3 People sensor

The use of this sensor would be well suited for alarms (just remember the static electricity
warning). A small Visual Basic program could be used on the PC to display the result of
the measurement. This program is part of the download package.

= Microprocessor Com... \:H§|[z|

r Bert van Dam [c)2006

People Sensor

JALERT: Human detected

Connect to PIC
==

start | stop I
: [V Wispb28
Gl e S OREN, aaa
‘ GRS

 Com3

" Com2 (Com4
|
o |

Figure 89. People sensor on the PC.
The hardware

The schematic is rather simple.

+5V
11/32 2
et -
a 16f877 o
5
1 12/31 13 14 23 20
10k D -
w w 2 sensorpad
& T = approx. 2 x 2 inch
] N ~ = ~
3 —_— o
= ~ \
8 | \/ y LED

e
Figure 90. Schematic of the people sensor.

165

8 Sensors

Be careful to connect the sensor to the correct side of the resistor, at pin 20 (the input).

The sensor itself is shown in Figure 91. It is placed inside a sturdy plastic sleeve, such as
used by card collectors. The sensitivity can be controlled by changing the size of the
aluminum foil.

Figure 91. Sensor.

And here is the sensor in action. Note that the LED is already on while the hand is still
centimeters away from the aluminum foil!

Figure 92. The people sensor in action.

166

8.4 Tilt sensor

8.4 Tilt sensor

The purpose of this project is to demonstrate the use of a Sharp GP1S036HEL tilt sensor.
Technical background

The GP1S036HEL tilt sensor has a tiny ball inside. On one side of the ball is an LED and
on the other side are four light sensitive sensors. When you move the tilt sensor the little
ball moves, thereby blocking {(or rather, interrupting) the light to one or more of the
internal sensors. For that reason Sharp calls this device the "Photointerrupter for
Detecting Tilt Direction”.

This sensor can also be used to detect vibration, assuming the vibrations are a bit "wild".
An ideal application 1s a battery powered bicycle light that remains switched on as long as
the bicycle is moving.*

“ Real vibration controlled bicycle lights are also equipped with a light sensor which allows them
to only switch the light on when the bicycle is being used in the dark.

167

8 Sensors

Internal connection diagram

Top View @ @
! PT
el @o-T, ~N
i 17 a PT,
O _ ® @

| (1 Anode @ Emitter1

% @) Cathode & Collector
Qor {1 show GATE Position @ Emitter2

4.5 4.6

O
=
5.0

+3.35 L | w127

® - @ # Unspecified tolerance : £0.2mm
Jdg -1 | #+ The dimensions indicated by = refer to
@
® | ® those measured from the lead base.
o 0o s+ Burr is not included in the dimensions.
! Burr's dimensions : 0.15MAX.

Figure 93. Datasheet for the tilt sensor, bottom view.

Connecting the sensor is easy with the only exception being that the datasheet diagram
says "top view’, but should read "bottom view". So pay attention when soldering.

Make sure the sensor doesn’t get too hot while soldering; otherwise the little ball inside
will melt and destroy the sensor.

168

8.4 Tilt sensor

The software

The software is very simple, because this is a static sensor. All you need to do is keep an
eye on the pins that are connected to the sensor and relay its status to a couple of LEDs.

forever loop

pin_d4 = pin_d!
pin_d5 = pin_d0

end loop

And the program with the pin definitions:

- JAL 2.04

include 16F877 _bert

pin di direction = input -- sensor
pin_d0 direction =input -- sensor

pin d4 direction = output -- green LED
pin_d5_direction = output -- red LED

forever loop

pin_d4 = pin_dl
pin_d5 = pin_d0

end loop
The hardware
According to the datasheet the sensor can handle a maximum current of 100 mA. At 5 V
this translates to a current limiting resistor of 100 ohms. To be on the safe side a 330 ohm

resistor is used. The output collector has a maximum current of 20 mA, which would
require a 250 ohm resistor. We will use a | k resistor.

169

8 Sensors

+5V
(=]
11/32 8
£
2 161877
19 3 it 5
1 1231 13 14 27 28 20 1 4
GP1S036HEL
2
10k 0 - - s o
w » w 2 2 = e
i Q = I
== B
o "] N
e e oo Yt Y
L

(green) (red)
Figure 94. Tilt sensor schematic.

This is what the breadboard looks like:

Figure 95. Tilt sensor.

The tilt sensor can detect four directions. Unfortunately, these are not forward, reverse,
left and right, but are just a rotation in one plane.

170

8.4 Tilt sensor

The LEDs display the different positions the sensor can detect as shown in the table:

Sensor position Red Green
LED LED
Level, in front of you (connections facing down) 0 0
Rotated 90 degrees to the right (connections facing left) 0 1
Rotated 180 degrees (connections facing up) 1 1
Rotated 270 degrees (connections facing right) 1 0

In addition to determining its position the sensor can also indicate acceleration . The little
ball inside is flung to one of the sides if the sensor is accelerated (or decelerated).

Acceleration Red LED Green LED
To the right 1 0
To the left 0 |

171

9 Sound

Sound consists of vibrations in the air that our ears can detect. In this chapter a number of
different techniques are used to generate or record sound.

Project Description
Beep A simple beep made using the PWM module.
Night buzzer A small project to really annoy someone with

nightly noises

Frequency generator Flipping a pin continuously between high and
low in a simple program loop.

A simple melady Music made using the TIMERO interrupt.*’

Recording sounds Convert the sound of a cricket and store it in
program memory.

Super compression A special technique to store 8 times more sound
in a PIC™ with an acceptable sound quality.

Sound is also discussed at other places in the book:

Project Description Section

Frequency generator Flipping a pin continuously between 12.1
high and low, controlled by the
TIMERO interrupt.

VU meter An 8§ LED VU meter to display 13.34
sound volume using a 16I'876A.

¥ 1t is advisable to read section 12.1 first, otherwise the technical background may be hard to
understand. Besides, it will also show you a nice frequency generator.

172

9.1 Beep

9.1 Beep

In this project the PWM module (introduced in section 7.2) is used to generate a beep.
Technical background

A beep consists of a single audio frequency. This means that a speaker must receive a
voltage that fluctuates to that frequency. An obvious way to achieve this is to use the
PWM module. This module works independently of the rest of the program. So once the
proper conditions for the beep are set the program doesn’t have to concern itself with it
anymore; it will just continue to beep all by itself. This can be a major advantage in large
or complicated programs.

The most complicated part of this project is to select and set the proper frequency. The

audible frequency range is between 20 Hz and 20 kHz.* The sensitivity of our ears is
highly frequency dependent, as you can see in the next figure.

Ll

80

60

sound pressure (dB)

50

40

30
20

20 50 100 200 500 1000 2000 5000 10000
Fraquency (Hz)

Figure 96. 1SO226 equal loudness contour {approximation).
All frequencies on this line sound equally loud to the human ear. The highest sensitivity
1s therefore in the area between 500 to 6000 Hz, assuming you were careful with your

headphone volume.

The standard library has the PWM frequency set to 19.53 kHz, which is much too high.

% James Boyk has shown in his May 2004 article "There's Life Above 20 Kilohertz! A Survey of
Musical Instrument Spectra to 102.4 kHz" that people react to sounds above 26 kHz even if they
can’t consciously hear them,

173

9 Sound

TABLE 8-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency 1.22kHz | 4.88kHz | 19.53 kHz | 78.12kHz | 156.3 kHz | 208.3 kHz
Timer Prescaler (1, 4, 16) 16 4 1 1 1 1
PR2 Value OxFFh OxFFh OxFFh Ox3Fh 0x1Fh Ox17h
Maximum Resolution (bits) 10 10 10 8 7 5.5

Figure 97. Available PWM frequencies.

The datasheet shows that two frequencies are conveniently located within the desired
range. We opt for 1.22 kHz. To get this frequency the timer prescaler must be set to 16.

T2CON: TIMER2 CONTROL REGISTER {ADDRESS 12h)

U-0 RW-0 RW-O RW-0 RWO0 RWO0 RWI RWO
[— JTouTPsa][T0UTPS2[TOUTPS1| TOUTPS0[TMR2ON | T2CKPS1 | T2CKPS0

hit 7 bit ¢
bit 7 Unimplemented: Read as '0'
hit 6-3 TOUTPS3: TOUTPSO: Timer2 Cutput Postscale Select hits

0000 = 1.1 Postscale
0001 = 1.2 Postscale
0910 = 1.3 Postscale

1111 = 1:16 Postscale

bit 2 TMR20ON: Timer2 On bit
1 =Timer2 is cn
0 =Timer2 is off

bit 1-0 T2CKPS1:T2CKPSO0: Timer2 Clock Prescale Select bits

00 = Prescaler is 1
01 = Prescaler is 4
1x = Prescaler is 16

Figure 98. TIMER2 control register.
The timer prescaler is located in the TIMER2 control register, in bits 0 and 1, and will
need to be set to 1 to achieve a prescaler of 16. In the 16F877 bert library this timer has
already been switched on (otherwise the PWM module wouldn’t work}, so we must avoid
switching it off accidentally. Therefore bit 2 also needs to be set to 1, like this:

T2CON = 0b000_0111

174

9.1 Beep

The software

A pulsating beep is a bit more interesting than a constant beep, so the PWM module is
alternated between 0% and 59% duty cycle (values of 0 and 150):

- turn beep on and off
if alternate then
PWM set_dutycycle (0,0)
else
PWM _set_dutycycle (150,150)
end if

Putting it all together yields the following program:

--JAL 2.0.4
include 16F877 bert

-- define variable
var bit alternate

-- start PWM module
PWM init frequency (true, true)

-- set an audible frequency
T2CON = 0b000 0111

forever loop

-- waitl a bit

delay 100ms(2)

-- turn beep on and off
if alternate then
PWM set dutycycle (0,0)
else
PWM set dutycycle (150,150)
end 1f

-- invert control variable
alternate = ! alternate

end loop

175

9 Sound

The hardware

The speaker is scavenged from an old headphones set. It only uses about 1.54 mA, so it
can be connected directly to the PIC™, If your speaker consumes more power you’ll need
to be careful; the coil in the speaker can cause a reverse current that damages the pin. In
that case a current limiting resistor of 100 ohms in series with the speaker is I
recommended. In this project this resistor is not used. A 1 k variable resistor takes care of
volume control. |

+8§V
11/32
i
3 16877
1 1213 13 14 17
10k D
5§ |% LS
et & = &
= S 1k
S T —|— (volume)
| e

Figure 99. Beep.

On the breadboard it looks like this (the wires on the left belong to the Wisp628
programmer).

Figure 100. Beep.

176

9.2 Night buzzer

9.2 Night buzzer

On the Internet [found a small project by a guy who calls himself Zach the Terrible, and
with reason as you are about to find out. The purpose of this project is to really annoy
someone with nightly noises.”

Technical background

You hide this little apparatus in the bedroom of your victim. Once it has been dark for a
while the apparatus will make soft noises. As soon as your victim turns on the light to see
where these strange buzzing noises are coming from they immediately stop. Your victim
will think it was just his imagination and turn off the light, which triggers the apparatus to
start its noises again. Hence the name, night buzzer.

The Software

Once the power is switched on the amount of light is measured. If this drops below a
certain threshold (apparently it is dark), a noise is made. If the light measurement is above
the threshold value the noise is switched off and the program will wait 30 seconds:

-- turn beep on and off
if resist < 100 then
PWM _set_dutycycle (150,150)
else
PWM _set dutycycle (0,0)
delay_1s(30)
end if

This means that depending on the moment that the victim switches off the light the beep
will start after 0 to 30 seconds. You can modify this time period, but if you make it too
long your victim may fall asleep before the beeping starts.

The program itself is quite simple and uses the PWM technique to make sound, as
discussed in the previous section.

7ach didn’t use a PIC™ microcontroller, so the electronics and sofiware design are mine; | just
used his idea for this annoying device.

177

9 Sound

- JAL 2.0.4
include 16F877 bert

-- define variables
var byte resist

-- define the pins
pin_a0_direction = input

-- enable pulse width modulation
PWM init frequency (true, true)

-- set an audible frequency
T2CON = 0b000 0111

forever loop

-- convert analog on af to digital
resist = ADC read low res(0)

-- turn beep on and off
if resist < 100 then
PWM set dutycycle (150,150)
else
PWM set dutyeycle (0,0)
delay 1s(30)
end if

end loop
The hardware
The amount of light is measured with an LDR. The 10k variable resistor connected across
the LDR enables you to adjust the threshold so it will not switch on until it is dark

cnough.

The 1k variable resistor controls the volume of the beep. It should be set low enough so
that it is only just audible. If it is too foud the device can easily be located.

The speaker is scavenged from an old headset and makes enough noise for this purpose.

178

9.3 Frequency generator

+5V
A
Sl
\
11132 b
E 4
8 161877 2 10k
(adjust)
1 1231 13 14 17
10k D
t w » w LS
- & = (8]
e T 2 1K
2 _]_ T (volume)
1

Figure 101. Night buzzer.

This is the setup on the breadboard:

e

Figure 102. Night buzzer.

9.3 Frequency generator

This frequency (tone) generator arguably uses the simplest method to make a sound:
switching a pin between high and low in a continuous loop (see section 12.1 for a similar
program using an interrupt).

179

9 Sound

Technical background

Switching a pin between high and low generates the tone. The PIC™ can do this so
quickly that you wouldn’t hear a thing. So we will use a delay statement to slow things
down a bit:

forever loop
delay_[something]us([something else])
pin_dl =!pin dl

end loop

In section 4.2 it was shown that pin_dI = ! pin_dI will cause problems if a "slow" load is
connected to the pin, such as a capacitor or a coil. The little speaker we use in this project
has a very tiny coil, but it is a coil nonetheless. So instead of changing the pin directly we
will use an intermediate variable called flag:

flag =! flag
pin_d1 = flag

Now back to our sound loop. The question is what we need to use instead of "something"
and "something else" in the delay statement to generate certain frequencies. Of course we
can calculate for each delay what the resulting frequency would be. This will however not
be correct, because the program has to do other things as well, such as running the loop.
The easiest way to find out is to simply fill in values and measure the result with a
frequency counter *°.

Frequency Counter 1.01

Figure 103. Frequency counter.

% This simple frequency counter is included in the download package.

180

9.3 Frequency generator

Delay 50 uS
Value in delay Frequency (Hz)
command
Calculated Measured
17 20000 7824
10 2000 982
50 400 213
100 200 108
255 78 44

Except for value = 1, the relationship between calculated and measured frequency is
rather linear. So now the program overhead can be taken into account:

actual frequency = 5.93 + calculated frequency * 0.49 (deviation is less than 6%)

And the calculated frequency is determined using this formula:™

i
calculated frequency = total delay time

For delay_20uS the same table can be gencrated:

Delay 20 uS
Value in delay Frequency (Hz)
command
Calculated Measured

1 50000 17214
10 5000 2408
50 1000 529
100 500 269
255 196 105

*I S0 this would be defay_50us(1), in the next table it would be delay_20uS(1)
Zm=10"u=10%n=10% p=10"
181

9 Sound

Which yields the exact same formula, again with the exception of a value of I.

If we use a variable resistor to control the frequency the time required to measure an
analog signal (20 u8) should be added to the total delay time. The formula remains
exactly the same, except that 20 uS needs to be added to the total delay time. '

Total Analog

Delay(u$) time (uS) value Frequency (Hz)
Calculated Measured
50 70 1 14286 4530
50 70 50 286 208
50 70 255 55 44

Based on this you could add a scale to the knob of the variable resistor that controls the
frequency (the one connected to pin a0).

The software

The program is very simple. After measuring the variable resistor this value is used in a
delay statement. The operating range is a sound frequency between 44 and 4530 Hz.

--JAL 2.0.4
include 16F877 bert

var byte resist
var bit flag

pin dl direction = output
forever loop

resist = ADC read low res(()
delay 50us(resist)

flag =! flag
pin_dl =flag
end loop

182

9.3 Frequency generator

The result is a very nice square wave. The deformation is caused by the capacitor in the
input circuit of the PC soundcard:

Oscilloscope 2.51 ‘;‘ El
[ffwnd [l 1] (o] [1]
A S
-1 - | 15
o R e e Y
-l - -.[Sweep
- 5 72’?50]1“
S Foal
Delay =
’| {200 ms ‘|
[0.00ms
‘[[000ms 1
b Tig Lev
ve |12
et 1d1 Tt
Y1 ¥2 Pos T dely Tig
HOLD ~ [r=449ms vi=837 | iwave |

Figure 104. Result of the frequency generator on a software oscilloscope.

The hardware

+5V
11/32 2 10k
> (frequency)
3 161877
11231 13 14 20
10k 0
5 n |4 L
A gl § |8
e ==] 1
=4 T —l_ (volume)
+

Figure 105. Frequency generator.

183

9 Sound -

In the breadboard, the variable resistor on the left side controls the frequency and the one
on the right side controls the volume.

Figure 106. Frequency generator.

9.4 A simple melody

Here we use the microcontroller to play a simple melody. You can use this technique for
a Christmas decoration or a door chime (in the latter case you will have to add an
amplifier). |

Technical background

Before you start reading the technical background it is advisable (or even necessary) to
read section 12.1 first. That project explains the TIMERO interrupt, and the description
here continues where that one leaves off. |

You have seen that changing the TIMERO starting point changes the frequency of the
sound. What frequency that will be can easily be calculated. Normally the interrupt will
occur after 256 increments of the TIMERO counter, and each increment takes 0.2 uS. As
in section 12.1 we will set the prescaler to 2, which means that it will take eight times as
long before the interrupt occurs. So in total it takes 256 * 0.2 * 8 = 409.6 uS, which
equals a frequency of 2441 Hz.

So, when the starting point of the TIMERO counter is 50, the interrupt will occur after
(256 - 50) * 0.2 * 8 =329.6 uS, which is a frequency of 3034 Hz.

This is the formula:

1.000.000
frequency =(256-x)*0.2*8

184

9.4 A simple melody
f we rearrange the formula a bit it will be more useful, because we can calculate the
tarting point for the TIMERO counter for the desired frequency:

1,000,000
starting point = 256 - frequency * 0.2 * 8

[here is one small catch, though. The calculated frequency is the frequency of the
nterrupt itself, For each interrupt the pin only changes once (high to low, or low to high):

flag = ! flag
pin_d1 =flag

This is only half a sound wave. Which means the sound frequency is half of the
calculated frequency.

The frequency we need depends on the tuning system being used.” In this project we use
the Equally Tempered Scale, which is designed especially for keyboards.

In the following table™ the TIMERO starting pint is calculated for each note:

Note Frequency TIMERGO start
- 1220 0
D*/E" 1244.51 5
Eq 1318.51 19
Fe 1396.91 32
F'o/G 1479.98 45
Gs 1567.98 57
G/ A 1661.22 68
Ag 1760 78
A¥o/B% 1864.66 8
Bs 1975.53 98

* For example, the Pythagorean scale, the Mean-tone scale, Werckmeister scale, Equally
Tempered Scale.

5 The left two columns were made by professor Bryan H. Suits of the Physics Department of
MTU (Michigan Tech University) using A4 = 440 Hz with C4 as middle C. The right hand column
is calculated with the formula.

185

9 Sound

Note Frequency TIMERD start
C, 2093 107
C*/D% 2217.46 115
D; 234932 123
D*2/E, 2489.02 130
E- 2637.02 137
F, 2793.83 144
F*/GY, 2959.96 150
G, 3135.96 156
G*/AY 3322.44 162
A; 3520 167
A",/B, 372931 172
B, 3951.07 177
Cy 4186.01 181
C*a/D% 4434.92 186
Dy 4698.64 189
D*s/E" 4978.03 193

Using an array the notes can be put into the program:

var byte notes[26] = {0, 5, 19, 32, 45, 57, 68, 78, 88, 98, 107, 115, 123, 130, 137, 144,
150, 156,162, 167,172, 177, 181, 186, 189, 193}

Now we are ready to write our song (remember the array starts counting at 0). In addition
to a note we also need the duration of the note, which we will do in 50mS intervals.

So, to produce 1397 Hz for 1/2 second it would be:

note index 3
duration 10

We'll put all of the data into two separate arrays. The first containing all of the song notes
and the second containing the durations of the notes. The following arrays contain the
children’s song "Brother John":

var byte songnotes[32] = {3,5,7,3,3,5,7,3,7,8,10,7,8, 10,10, 12, 10,8, 7, 3, 10, 12,
10,8,7,3,3,0,3,3,0, 3}

186

9.4 A simple melody
ar byte songdurations[32] = {10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 20, 10, 10, 20, 5, 5, 5,
, 10, 10, 5, 5,5, 5, 10, 15,15 ,15,15,15 ,15}

Che song is interrupt controlled. So if we want a small pause at the end before the song
estarls a delay statement will only work if the interrupt is temporarily switched off. In
ection 12.1 you can see that the INTCON register is used for this:

interrupt off: INTCON = 0b_0010_0000
interrupt back on: INTCON = 0b_1010_0000

I'he Software
n the main loop of the program the right note must be pulled from the array:
note = songnotes{index]

Based on that the TIMERO starting point must be pulled from the notes atray. We will do
this in the interrupt procedure so that the value can be put into the index right away:

TMRO = notes[note]

Once the song is completed, a one second delay is inserted with the interrupt temporarily
disabled:

INTCON = 0b_0010 0000
delay_1s(1)
INTCON = 0b_1010 0000

How the interrupt procedure works and why it looks like this is explained in section 12.1.

This is the completed program:

- JAL 2.0.4
include 16F877 bert

var bit flag

var byte note

var byte index = 0

pin_dl direction = output

var byte notes[26] = {0.5,19,32,45,57,6%,78,88,98,107,1 15,123,130,137,
144,150,156,162,167,172,177,181,186,189,193}

187

9 Sound

var byte songnotes[32] =
{3,5,7,3,3,5,7,3,7,8,10,7,8,10,10,12,10,8,7,3,10,12,10,8,7,3,3,0,3,3,0,3}
var byte songdurations[32] =
110,10,10,10,10,10,10,10,10,10,20,10,10,20,5,5,5,5,10,10,5,5.5,5,10,
15,15,15,15,15,15}

-- the actual interrupt routine
procedure make a sound is
pragma interrupt
if TOIF then
-- switch pin to make sound
flag = ! flag
pin_dl = flag

-- use correct frequency
TMRO = notes[note]

-- clear TOIF to re-enable timer interrupts
TOIF=0
end if

end procedure

- enable timer
OPTION_REG= 0b_0000 0010

-- enable interrupts
INTCON = 0b_1010_0000
forever loop

-- get the next note from the array
note = songnotes{index]

-- wait as specified in the duration array
delay 50ms(songdurations[index])

-- increase index
index = index +1

188

9.5 Recording sounds

-- if the end of the song has been reached
if index > 31 then

-- reset index
index =0

-- disable interrupts
INTCON = Ob_0010_0000

-- pause between songs
delay_1s(1)

-- enable interrupts
INTCON = 0b_1010_0000

end if

end loop

The hardware for this project is identical to that of section 9.1, except the speaker needs
o be connected to pin 20 instead of pin 17. .

9.5 Recording sounds

In this project the sound of a cricket is converted to a digital format and stored in the
program memory of the PIC™,

Technical background

The principle of this program is really simple. A short sound that has been recorded onto
the PC as a WAV file, is stored in the PIC™ and played back using the PWM module.”
For storage, we will use program memory, which is discussed more thoroughly in section
10.2. The TIMERQ interrupt also plays a major role here, and is covered in section 12.1
due to the complexity. Neither of these features will be given much explanation in this
project, but are assumed to exist and be functioning; so read those sections first if you
want more information.

** The maximum storage is approximately 0.8 seconds at a 9766 Hz bit rate.

189

i
9 Sound :
|
|

Sound can be stored on the PC in many different formats. The best known at the momenti
is undoubtedly MP3*, because it is heavily compressed to take up less space, making for,
quicker downloads and room for more music on your portable player. We will be using aé
different well-known format, however, the WAV file” A WAV file is made by
converting sound from analog to digital using an A/D converter (just like the one in a
PIC™). So a WAY file just consists of a long row of numbers. These can be made analog:
(and thus audible) again using the PWM module of a PIC™.

Sound takes up a lot of space. The only place that we could possibly have enough room
for sound is in program memory®®. The designers of the microcontroller never envisioned
anyone wanting to store data in program memory, so writing is relatively slow - too slow,
in fact, to record a sound directly into it. A good alternative is to record the sound on a PC
and then send it over an RS232 connection to the PIC™ at a more convenient pace.

Playback has to be done at a consistent rate; you will be able to hear the tiniest deviation.
The best way to achieve this is to use the TIMERO interrupt™. The faster you can send
data to the PWM module the better the sound quality, but also the more room you need
(per second of sound you need more data). As a compromise we have opted for 9766 Hz,
a frequency that can be easily realized with the TIMERO interrupt. This frequency is
called the bit rate.

So now we need to record a sound on the PC and store it in a WAV file, with a bit rate of
9766 Hz. Unfortunately, this is much more complicated than it sounds. Many programs
can record at this bit rate (sampling rate), but when they store the file they automatically
use a more standard bit rate. The sound program Cool Edit can handle this, but it’s not
exactly freeware.'” The download package inciudes a WAV file you can use, so that you
don’t need additional software to complete this project.

To convert the WAV file to data that can be sent to the PIC™ the WAVconvert program
is used. This Visual Basic program is also included in the download package.

% Formally named MPEG-] Audio Layer 3, after the Moving Picture Experts Group, for
developing compression techniques to transfer sound and video over the Internet. Strangety
enough they didn’t develop MP3, which was actually done by European engineers working on the
Eureka project. MP3 is a highly compressed audio file, where all frequencies inaudible to the
human ear have been removed. It also uses a variable bit rate, which makes it a bit too complex for
this book.

*” Windows Wave, the standard sound format used by Microsoft Windows.

% See section 10.1

" See section12. 1

' Cool Edit was purchased by Adobe and has become five times as expensive (from 69 to 349
dollars). Perhaps you can find an old version on the Internet, or another program that is capable of
custom bit rates.

190

9.5 Recording sounds

= WAVconvert E“E‘Fz‘
File About

Bert van Dam (c)2005- 2006 Version 2.8

~ WAVconvert

hacd bET [Encoding] Output file——————— Output options | - Convert 10 Progress ———
Bitrate 9766 | & w BTe=8 || [. .
View Channels 1 e - | ' & Program memoty & Standard { AT} |l o
Bits/sample 8 C BTe=2 BTc=18 | | ~ Longtable {1 Eortinn - | i
| 1157

;lc]\plc!w\cﬂrwalwav Blc=4 ¢ Blc=32 Excelfie | Abort

Figure 107. WAVconvert.

At the bottom left you enter the name of the WAV file (including the path). Click "view"
to display the file. It will also display the bit rate, so if you made the file yourself this 1s a
good time to check if the software you used actually stored the file at 9766 Hz. The
length of the file is displayed at the bottom right corner.'"'

Note that there is only room for 7000 bytes; the cricket sound we are using only takes up
1157 bytes. Be sure to use the following settings:

Encoding Wav
Output file Program memory
Output Options Standard

The other options will be discussed in later projects. When you click "go" the convert
light will turn green and in the "progress" section the progress is shown. When the
program is done a new file is created in the same directory where the original WAV file is
located, with the extension of .prg. This is the file that needs to be loaded into the PIC™.

You can load the file using MICterm.

"' In the progress section it says "0 of 1157" where 1157 is the length of the file. If you loaded a
different file you will of course see a different length.

191

9 Sound

Microprocessor Communications

File Help

1~ Bert van Dam (c]2006
|

MICtenn mlcrocontroller terminal |

Ravect OGRS eSS = ,'D-‘a.-:w Graph]
— | 1}:11:1}:11;11:11511511511:11;115115115115 R il . I | ¥ Enable Restat | |
115115115115115115115115115115115113 94 67 Fs .
|] o 1800000000000¢ 500000 ‘;‘q.?gum |t o |
i e 106 T18 120161 194 164 172160 188 198 210 226 232 235 it e d“'"""l ‘
——————' | |234226221 215211 203198 1% 191 183 176 168158 148 e he |
[PoronPC— | |140131 122118123133 141 150156 164 168172183181 || " Add space
| 200202195178 162150139134 133 135 144 182180171 || | L |
oo romd)RR RN R e |
|| rBinay
} " Com2 (" Comd 163171176 179180177 171 164155 148 143138 138135 | { e | 3
ol = g ol 13‘135!53151$1g1551§1571?21?517?177175171 | ¥ View binary | | Speed I[‘ i
165158 151 142136132127 127 129135144 154 161 163 | | e
[PIC com spoed—— | 162163163 163163 169163163 160 160 198 18 2020 |3 | S EEEAYY i Aveiage Resst
; 200 200 200 200 200 200 200 B LU B P o |
| G120 ¢ e 200 700 200 200193 199 199 190190 193 199 13398 | | > B
roum P R e ey | || ok
2400 ¢ 192
\ | |616151 6151 61 61 61 51 61 61 61 61 6161 6161616161 | || [Ereblegawe [| = s.-dn-i o |
| C e o 616161 s | |
- =5 | =4 120 | | Jc\picdevtmp\convertjo
R e | 80 I
{c) 2006 Bert van Dam ' {“* i m Hmﬁe] Abottl [
vioknaz | | Lo i mocese i

Figure 108. MICterm.

At the bottom right, just below the Send File button, you enter the name of the file
including the path and the .prg extension. Then you connect to the PIC™ (remove the
checkmark next to "Wisp628" if you do not use this programmer) and click on "Send
File". In the "send" display you will see all the bytes of the file. This will take a while
because we want to give the PIC™ sufficient time to store the data. The PIC™ will echo
all of the data back, so in the "receive" display you should see the same numbers appear.

We are actually going a bit too fast, because we haven’t even written a PIC™ program
yet! So let’s do that now.

192

9.5 Recording sounds

The first question is how much data will be sent from the PC. WAVconvert has recorded
this information at the beginning of the file with the sound data (the prg file):

Byte position in file Value Meaning

1 4 high byte

2 97 low byte

3 128 data

4 123 data
etc.

The first step is to receive two bytes:

Serial_sw_read (hi)
Serial_sw_read(lo)

Then we can calculate how much data will have to be stored. We will also need this
information during playback, so let’s store it in program memory too.

-- calculate file length, echo and store
length =256 * hi + lo

Program_eeprom_write(999, lo)
Program_eeprom_ write(998, hi)

All of the data will be stored in the same memory that our program is. If you want to
change this program please read section 10.1 first to see how you can prevent your
program from being overwritten by data. If you don’t change the program you don’t need
to worry about this. We will start writing in memory location 998 with the file size, and
the data will start at location 1000, well clear of our program.

Now all that is needed is a simple loop to read the data coming in over the R5232
connection and store it in program memory:

for length + 1 loop
Serial sw read (data)
address = address + |
Program_eeprom write(Address, Data)
end loop

193

9 Sound

Perhaps you noticed that the loop is executed once more than calculated. That 1s because
the computer starts counting at 0 and we don’t. So if you count to three that would be
three numbers for humans (1, 2, 3) but four for computers (0, 1, 2, 3).

Playback of the sound is done by reading the data from memory and then sending it to the
PWM module (see section 7.2 for an explanation of this module).

address = startaddress
for length +1 loop

Program_ceprom_read(Address, Data)
address = address + 1

while ! interrupted loop
end loop
interrupted = false

CCPRIL = data
end loop

The original WAV file was recorded with a bitrate of 9766 Hz, so play back needs to be
done at the same speed. We will use the TIMERO interrupt to achieve this. Each time a
number has been retrieved from program memory using program_eeprom read the
program will wait for an interrupt to occur:

while ! interrupted loop
end loop
interrupted = false

These interrupts have a frequency of 9766 Hz, so it’s exactly the right speed. The
interrupt routine sets the variable interrupted to true. As long as the interrupt hasn’t
occurred, the variable will remain false and the program will wait in the loop. Once the
interrupt occurs the program can escape from the loop. It will set the interrupted flag
back to false in preparation for the next loop and send the data to the PWM module.

In the source code you can see the interrupt routine. It is described in detail in section
12.1, so at this point we will simply take it at face value.

This all sounds terribly complicated, but it’s really not that bad.

194

9.5 Recording sounds

The Software

If we were to put all of the parts together like this you would have to load the sound file
into the PTC™ each time you switch it on. Of course this is not necessary because once
the sound file is in program memory it will remain there even when the PIC™ is switched
off (just like the program itself is retained). So we will add two push buttons, one for
"recording” sound for when you use the program for the first time or want to change the
sound, and one for playback.

A simple loop at the beginning of the program watches these two switches and awaits
your choice:

while oke == 0 loop
if record then oke = 1 end if
if play then oke =2 end if
end loop

The variable oke is used to check if a button has been pressed. As long as no buttons have
been pressed (oke = 0) the program will remain in the loop. Further down in this section
the steps you need to take to actually use this program are shown in a table.

The sound file in this project is that of a cricket. These animals don’t chirp continuously,
only every once in a while with (seemingly) random pauses...so we will do the same.

pause = random_byte
if pause > 200 then
delay 1s(2)
else
delay Ims(random_byte)
end if

We draw a random value between 0 and 255. If it is smaller than 200 then that will be the
time in milliseconds that we will wait before playing the sound again. If the value drawn
is larger than 200 (22% of the draws) we will wait 2 seconds. This way the cricket sounds
quite realistic! Play with these numbers to see for yourself.

To indicate that the PIC™ is ready for recording (which means you can start the file

transfer on MICterm) an LED will be switched on once you have pressed the record push
button. You only need to press it momentarily,

195

9 Sound

|
|

All of the data received from the PC is send back to the PC so any errors can be spotted. |
Sending back the same data is called echo. This is done by using a serial_sw_wrife
command after each serial sw_read. |
This is the complete program:

196

—JAL 2.0.4
include 16F877 bert

-- define variables

var byte data , pause, oke

var word length, startaddress, address, hi, lo
var bit interrupted

pin_d1_direction = output
pin_d2_direction = input
pin_c4_direction = input

var bit led is pin_d1
var bit play is pin_d2
var bit record 1s pin_c4

- the interrupt routine
procedure make _a_sound is
pragma interrupt

if TOIF then

-- signal that the interrupt has occurred
interrupted = true

-- clear TOIF to ve-enable timer interrupts
TOIF=0
end if

end procedure

-- init PWM
PWM init_frequency (true, true)

- record or play?
oke =0

9.5 Recording sounds

led = low

-- compilation memory length was 431
startaddress = 1000
address = startaddress

while oke == 0 loop
if record then oke = 1 end if
if play then oke =2 end if
end loop

if oke == 1 then
- record
led = high

- wait till character received, echo
Serial sw read (hi)

Serial sw_write (hi)
Serial sw read(lo)

Serial sw_write (lo)

-- calculate the amount of data
length = 256 * hi + fo

-- remember length of data
Program_eeprom_write(999, lo)
Program_eeprom_write(998, hi)

-- read data and store
for length + 1 loop
Serial sw_read(data)
Serial_sw_write (data)
address = address + 1
Program_eeprom_write(Address, Data)
end loop

led = low
end if

if oke == 2 then
-- play

197

9 Sound

-- retrieve length of data
Program_ceprom_read(999, lo)
Program_eeprom_read(998, hi)
length =256 * hi+ lo

end if

-- enable TIMERO
OPTION _REG=0b_0000 0000

-- enable interrupls
INTCON = 0b_1010_0000

forever loop
address = startaddress
for length +1 loop

Program_eeprom_read(Address, Data)
address = address + 1

-- wait for the interrupt before playing the next sound value
while ! interrupted loop

end loop

interrupted = false

-- send value to PWM module
CCPRI1L = data

end loop

-- insert random pause
pause = random_byte
if pause > 200 then

delay 1s(2)
else

delay Ims(random_byte)
end if

end loop

198

9.5 Recording sounds

The Hardware

The circuit is basically identical to the Beep project in section 9.1, which also uses the
PWM module for sound. New are the two switches to allow record and play, and an LED
to indicate "recording in progress".

play

11132 21 et
x
a 16877
2 d
1 1231 13 14 17 20 [—‘j E‘}
I 2 I8

[=]
LS 8

T

20MHz B3

I 20 pF

1k
(volume) v : LED

20 pF
__4

100 nF

i

Figure 109. Recording brief sounds.

On the left side of the picture you can see the wires of the Wisp628 in-circuit
programmer. These are the same wires used to transfer the data to the PIC™. So if you
use this programmer you can leave the wires connected.

The two push button switches in the middle are for recording the sound file (left), in fact
receiving a file from the PC, and for playback (right).

Figure 110. Recording brief sounds.

199

9 Sound

Using the device

Now we will discuss the steps you need to take to get this project to work once the
hardware is built. There are three sets of instructions:

Quick start Get the project working as quickly as
possible with the ready-made files in
the download package.

Do the conversion Go through all the steps using the
basic files in the download package.

Record your own Record and use your own sound.

Quick start

This gets the project working with a minimum of fuss, by using the sound files from the
download package.

1.

2.

Connect the programmer and download the program from section 9.5 into the
PIC™ (0905 jal from the download package).

Start MICterm on the PC and enter the name of the converted file from the
download package (with the .prg extension) into the box at the lower left hand
comer (cricket.prg). Make sure you use the correct path to the file.

Connect to the PIC™ by clicking on the "start” button on the top left hand side.
You will see a few numbers appear in the receive window, but this is normal.
Momentarily press the left push button on your project. The LED will now switch
on.

Send the file to the PIC™ by clicking on the "Send File” button on MICterm. In
the "send" display (the bottom display) you will see the data from the file which
is being sent. You should see the same numbers (with a short delay) appear in the
top display as they are being echoed back. If this doesn’t happen there is no
connection with the PIC™; check the wiring and start over.

Once the LED turns off the transfer is complete and the sound is now stored in
the PIC™. It will start automatically.

If you want you can now switch the PIC™ off. Turn it back on, and if you want to hear
the stored sound again press the push button on the right.

200

9.5 Recording sounds

Doing the sound file conversion

Using the basic files in the download package to generate the data file, this requires just a
bit more work.

L.

Start the WAVconvert program on the PC and enter the name of the sound file
from the download package into the window at the bottom left hand side
(cricket.wav). Make sure you use the correct path.

Click on the "view" button to view the file.

Use the following settings:

Encoding Wav
Output File Program memory
QOutput Options Standard

Click on "Go!" and wait for the green rectangle above the button to turn red
again.

Connect the programmer and download the program from section 9.5 into the
PIC™ (0905 jal from the download package).

Start MICterm on the PC and enter the name of the converted file from the
download package (with the .prg extension) into the box at the lower left hand
corner (cricket.prg). Make sure you use the correct path to the file.

Connect to the PIC™ by clicking on the "start" button on the top left hand side.
You will see a few numbers appear in the receive window, but this is normal.
Momentarily press the left push button on your project. The LED will now switch
on.

Send the file to the PIC™ by clicking on the "Send File" button on MICterm. In
the "send” display (the bottom display) you will see the data from the file which
is being sent. You should see the same numbers (with a short delay) appear in the
top display as they are being echoed back. If this doesn’t happen there is no
connection with the PIC™; check the wiring and start over.

10. Once the LED turns off the transfer is complete and the sound is now stored in

the PIC™. Tt will start automatically.

If you want you can now switch the PIC™ off. Tumn it back on, and if you want to hear
the stored sound again press the push button on the right.

201

9 Sound

Recording your own sound

[f you want to use a sound of your own just follow these steps:

1.

11.

12.

13.

202

The sound is being played back multiple times and at irregular intervals (to
emulate the behavior of a cricket). If that is your intention you can leave the
software as it is. If you want something else (such as playing the file just once
when the playback button is pressed) you need to change the PIC™ software.
Record a sound with a bit rate (sometimes called sampling rate) of 9766 Hz, or
use an existing sound file and convert to this bit rate, There is room in the PIC™
for a sound of slightly less than one second (in section 9.6 a technique is
discussed for longer sounds, though at a lower quality). Save the file as a WAV
file. :

Start the WAVconvert program on the PC and enter the name of the sound file in
the window at the bottom left hand side. Make sure you use the correct path.
Click on the "view" button to view the file. If you don’t see anything your sound
file is not in order. If you do see the graphical display check the bit rate (left
side). Also check if the total length is less than 7000 (bottom right hand side).
Note that many programs will record at any bit rate but insist on writing at a more
standard bit rate.

Use these settings:

Encoding Wav
Output File Program memory
Output Options Standard

Click on "Go!" and wait for the green rectangle above the button to turn red
again.

Connect the programmer and download the program from section 9.5 into the
PIC™ (0905 jal from the download package), or the version that you modified. .
Start MICterm on the PC and enter the name of the converted file from the
download package into the box at the lower left hand corner. It is the same name
and path as your sound file, but with the .prg extension. Make sure you use the
correct path to the file.

Connect to the PIC™ by clicking on the "start” button on the top left hand side.
You will see a few numbers appear in the receive window, but this is normal.
Momentarily press the left push button on your project. The LED will now switch
on.

Send the file to the PIC™ by clicking on the "Send File™ button on MICterm. In
the "send" display (the bottom display) you will see the data from the file which
is being sent. You should see the same numbers (with a short delay) appear in the

9.6 Sound super-compression

top display as they are being echoed back. If this doesn’t happen there is no
connection with the PIC™; check the wiring and start over.

14. Once the LED turns off the transfer is complete and the sound is now stored in
the PIC™. It will start automatically.

Jf you want you can now switch the PIC™ off. Turn it back on, and if you want to
hear the stored sound again press the push button on the right.

9.6 Sound super-compression

Here is a special technique to get eight times more sound into a PIC™, and with quite
reasonable quality. It isn’t suited for music but there is room for about 11 seconds of
speech.

Technical background

Storing sound takes a lot of memory, which is why external memory is usually used. In
section 9.5 a WAV file was stored in a PIC™ and even with the low bit rate of 9766 Hz
there was room for just 0.8 seconds. Mind you, the cricket sound only lasted 0.12

seconds, so there is still a lot you can do with that 0.8 seconds!

In this project we will use a little known but very smart and yet simple technique that
only takes 1/8 of the room, and stil! has a quite acceptable intelligibility: BTcg.

Storage mechanism Bytes needed per second Time in 16F877 flash'®

WAV 9766 Hz 9766 0.8 sec
BTc8 9766 Hz 1221 11.0 sec
BTc8 19531 Hz 2442 5.6 sec

In the table you can see that the available time with BTc8 is more than 8 times the
available time with the WAV file. That is because the WAV file in the previous project
was stored in 8-bit numbers. Program memory, however, is 14 bits wide. With BTc8 the
entire memory width can be used which results in an additional 75% capacity.

This technique was first described by Roman Black and called the BTc (Binary Time

constant) methodology'”.

12 Based on a JAL program of 500 bytes with the rest of program memory available for sound.
19 Roman Black, December 2001, http:\\www.romanblack.com

203

9 Sound

[n a WAV file each point of the sound wave is accurately described by an 8-bit number.
All of these numbers in a row describe the entire sound wave, When using the BT¢8
method, however, this is not the case.

This is the concept: an RC network is connected to a pin of the PIC™. When the pin is
for example changed from high to low the RC network is incapable of following this
behavior immediately, so the signal will be lower but not completely low {ground). What
does happen at the exit of the RC network can be predicted mathematically. By flipping
the pin from high to low in a certain way the output of the RC network will mimic the
shape of the original sound file.

16f877
3k3 signal

220 nF

Figure 111. The RC network.

If the bit rate is high enough this can result in good sound quality. But the interesting
thing is that even with a low bit rate the quality is still very reasonable. It's good enough,
anyway, for simple speech, such as "You pressed button one". In this project we will push
the BTc& technique to its limits by choosing a very low bit rate. This will have guite an
impact on the quality, of course, but it does show how much sound can be stored in a
16F877.

Writing the code is the hard part, because a row of zeros and ones must be selected which
mimics the sound file as closely as possible. The difficulty is that the voltage at the output
of the RC network doesn’t always change by the same amount at every zero or one
transition of the pin.

204

9.6 Sound super-compression

The behavior can be predicted using a simple formula:
Te=RC

where R = resistance
C = capacitor
Tc = time constant

The time constant is the amount of time needed to charge the capacitor through the
resistor to 63.2%.'™ By choosing a convenient time constant (or rather a resistor and
capacitor combination), the voltage on the capacitor - and thus the output of the RC
network - will increase exactly 1/8 of the maximum possible voltage increase during the
time that the pin is high. This convenient time constant is called the "binary time
constant" 8, or BTc8.

Of course that also means that the sound curve can never rise faster than 1/8 of the
maximum possible rise per bit. Should you choose BTc2 (where the voltage increases 1/2
of the maximum possible increase) the more subtle wave fluctuations cannot be followed.
So there is an optimum combination of the type of sound you want to encode, the BTc
value you choose, and the bit rate (in this case, the frequency with which you can set the
pin high or low). For the best results you will need to experiment a little.

These are the time constants as calculated by Roman Black:

BTc2 =0.6931 x Tc
BTcd =0.2877x Tc
BTc8=0.1393 x T¢
BTcl6=0.0645x Tc
BTc32=0.0317x Tc¢
BTcod =0.0157 x Tc

Encoding is handled by the WAVconvert program, which was also used in the previous
section, Tt supports BTc2 to BTc32 and uses a series of steps to encode the signal.

% Or discharge to 36.8%, depending on whether the pin is set high or Jow.

205

9 Sound

1. The model for the voltage on the output of the RC network has to start somewhere. It
is logical to start in the middle of the curve since most sound files begin with silence.
In Visua! Basic'® this is handled as follows:

'set voltages (where 255 = 5 volts)
Vmax = 255

Vmin=10

'start at the middle of the model
Vmodel ={Vmax - Vmin) / 2

2. In order to determine the next value we need to predict what would happen if the pin
is made high, and what would happen if the pin is made low. From these two values
we pick the one closest to the original value in the WAV file.

a. The maximum increase the voltage can make is the difference between the
current {model) voltage and the maximum voltage (5 V). This number is divided
by 8 (because we use BTc8) and the result is added to the model voltage. This
becomes the new model value for when the pin is made high.

b. For the maximum decrease that the voltage can make the same calculation is
made, but now using the difference between the current (model) voltage and the
minimum voltage (ground). Note that the maximum possible increase and
decrease are not the same (unless the model is at exactly 2.5 V). This is the new
value of the model for when the pin is made low.

3. Now we compare both model values with the real value in the WAV file. The closest
one is selected as the new model value. The corresponding pin status (high or low) is
recorded.

In the next table this has been calculated for 6 values of a WAV file as an example. In the
first line the voltage is 4 V. The mode! starts at 2.5 V. We see that if the pin is made high
the new model voltage would be 2.8125 V. if the pin is made low the new model value
would be 2.1875 V. The value for making the pin high is closest to the actual value, so
this one is selected and in the last column a "1" is added.

95 WA Vconvert is written in Visual Basic. If you don’t own Visual Basic and you want to write
yolur own program you can use the code bits discussed in this section. The download package also
contains the executable version if you simply want to follow the book without Visual Basic.

206

9.6 Sound super-compression

Voltage Pin BTc8
Actual Model High Low Code
4.000 25000 2.8125 21875 1
4.000 2.8125 3.0859 24610 1
4.000 3.0859 3.3250 2.8470 1
3.525 3.5250 3.7094 3.0840
3.000 3.7094 3.8707 3.2457 0
2990 3.2457 34650 2.8400 0

o R T A
P

It sounds more complicated than it is. In Visual Basic it would be handled like this:

‘calculate High (Bhi) and Low bit (Blo)
Bhi = ((Vmax - Vmodel) / BTc) + Vmodel
Blo = Vmodel - ((Vmodel - Vmin) / BTc¢)

‘find closest one and use it
If Abs(Vact - Bhi) < Abs(Vact - Blo) Then
'Hi bit was closest
Vmodel = Bhi
Boutput =1
Else
‘Lo bit was closest
Vmeodel = Blo
Boutput =10
End If

The question of course is how closely this resembles the original WAV file. The next

Figure shows a part of the original file and the BTc8 conversion, both at a bit rate of
9766 Hz.

207

9 Sound

Voltage (255 = 5V)
g g

8

TETr~o0 22 JRRFABIVEIHIYBCIBRAEREEBBS IS B
Sample

Figure 112. Comparing actual and BTc8 model at a 9766 Hz bit rate.

You can see that the model follows the original sound file quite reasonably when the
voltage swings are low, but at higher voltage swings it completely loses track. This is to
be expected, because the maximum possible change in voltage is only 1/8 of the possible

change while the real sound file has no limitations. The bottom line, of course, is how this
will sound.

Just like in the previous project we will use a bit rate of 9766 Hz.'" From this we know
how long a pin will be high:

1
9766 Hz = 1.02 10

In order to calculate the time constant fot BTc8 it needs to be divided by 0.1393.

So Te=1.0210%/0.1393 =7.35 10™

1% With the combined knowledge of sections 9.4 and 10.1 you should be capable of using almost
any bit rate you want.

208

9.6 Sound super-compression

Now we just have to find a combination of resistor and capacitor values that obeys:
R*C=73510"
In the table below the resistor values are calculated for a number of capacitors from my

parts box. Unfortunately, not all resistors actually exist, so In a separate column the
closest commercially available value is shown, along with the calculated error.

Capacitor (C) Resistor (R) Error

Value inF Value closest %
available

220nF 22107 3341 3k3 1.22
0.1uF 1107 7350 7k5 2.04
47nF 4710% 15.638 15k 4.07
22nF 2.2 10" 33.409 33k 1.23
10nF 110° 73.500 75k 2.04

InF 1107 735.000 750k 2.04
470pF 4710 1.563.830 1mé6 2.31

The combination T chose is a capacitor of 220nF with a resistor of 3k3. The resulting error
is just 1.2 %. The RC network will only behave as predicted when it carries no load and,
of course, a speaker is considered a load. So we will need to use an amplifier that follows
the voltage and can supply power to a speaker, without loading the RC network. The 741
Operational Amplifier (Opamp'”’y will work well, since it has a very high input
impedance (“resistance”) resulting in almost no current being drawn from the RC
network.

197 Opamps were originally developed for carrying out calculations ("operations”) in analog
computers. Modern computers are digital and don't use Opamps anymore. Opamps have found use
in places where signals have to be amplified and are very low in price.

209

9 Sound

166877 L signal
3k3

220 nF

Figure 113. The 741 Opomp as a non-inverting voltage follower.

This setup with the Opamp is only useful at higher bit rates and higher BTc's, such as a
bit rate of 32kHz and BTc32. At low values - like in this project - you can connect the pin
directly to the speaker since the sound quality is so bad that it will not make much
difference.

The software
The program is roughly identical to the previous project with a few significant changes.

WAVconvert has generated a file with a series of numbers. Contrary to a WAV file these
numbers have no meaning; they are just individual bits that happen to be grouped in sets
of 8 in order to be transferable using MICterm.

The data are stored in the 16F877 in 14-bit numbers, because we are not using the
"normal” data memory but the 14-bits-wide program memory instead (although it was
never meant for data). In order not to waste any space all incoming bits are re-grouped
into sets of 14 and stored:

for length + 1 loop
Serial sw read(data)

for 8 loop
-- store data bit by bit in value
value = value << |
value = value + inbit
data = data << |
outcount = outcount + |

if outcount == 14 then

210

9.6 Sound super-compression

-- outgoing word completed write 1o memory
address = address + 1
Program_eeprom_write(Address, value)
outcount = 0
end if
end loop

-- show empty data to PC
Serial sw_write (data)

end loop

The variable value will eventually be put into memory and the variable data has just
arrived from the PC. The variable inbir is defined as:

var byte data
var bit inbit at data : 7

__Which makes it the 7th {leftmost) bit of the incoming number dafa. We start by
shifting all bits in value one position to the left:

value = value << 1
Then we add inbit:
value = value + inbit

Since inbit is only one bit long this addition only changes the rightmost bit of value. So
value now contains the leftmost bit of data. We then repeat for the next bit of data:

data = data << |
Continuing this way all bits from data are put into value one by one. When we finish all 8
bits in data a new number is read from the PC. And when value contains 14 bits of data it

is written to memory.

If after the PC is done sending data there are still empty memory bits left over they will
be filled with zeros and written to memory as well:

211

9 Sound |

if outcount != 0 then
-- last byte read, complete word and write 10 memory
value = value << (14 - outcount)
address = address + 1
Program_eeprom write(Address, value)
end if

Playback is also a bit different. The bits must be played from left to right because we
have just stored them that way. By defining the variable codec like this:

var word value
var bit codec at value ; 13

...1t contains the leftmost bit of value, the variable that was pulled from memory. Before
an interrupt takes place value is shifted one position to the left so the next bit ends up in
codec:

value = value << 1

In the interrupt routine, codec is send to the output pin:

-- send signal to pin
sound = codec

Which means it will change status in exactly the right rhythm. The completed program is
shown below:

--JAL 2.0.4
include 16F877 bert

-- define variables

var byte pause, outcount

var word startaddress, address , hi, lo
var bit interrupted

var byte data
var bit inbit at data : 7

var word value
var bit codec at value : 13

var word length

212

var byte leng[2] at length

pin_c2 direction = output
pin_dl direction = output
pin_d2_direction = input
pin _c4 direction = input

var bit led is pin_dl
var bit play is pin_d2
var bit record is pin_c4
var bit sound is pin_¢2

-- the interrupt routine
procedure make a_sound is
pragma interrupt

if TOIF then

-- send signal to pin
sound = codec

-- signal that the interrupt has occurred
interrupted = true

-- clear TOIF to re-enable timer interrupts
TOIF =0
end if

end procedure

- record or play?
led = low

-- program length at compilation 673
startaddress = 1000
address = startaddress

forever loop

if record then

9.6 Sound super-compression

213

9 Sound

while record loop
delay 10ms(1)
end loop

-- disable interrupts
INTCON = 0b_0000_0000

-- record
led = high

-- wait till character received, echo inverted
Serial sw read (hi)

Serial sw_write (hi)

Serial sw_read(lo)

Serial sw_write (lo)

-- calculate the amount of data
length =256 * hi + lo

-- read data and store
for length + 1 loop
Serial sw_read(data)

for & loop
-- store data bit by bit in value
value = value << 1
value = value + inbit
data = data << |
outcount = outcount + 1

if outcount == 14 then
-- outgoing word completed write to memory
address = address + 1
Program eeprom write(Address, value)
outcount =0
end if
end loop

-- show empty data to PC

Serial sw write (data)
end loop

214

9.6 Sound super-compression

if outcount != 0 then
-- last byte read, complete word and write to memory
value = value << (14 - outcount)
address = address + 1
Program_eeprom_write(Address, value)
end if

length = address - startaddress

-- remember length of data
Program_eeprom_write(999, leng[1])
Program_eeprom_write(998, leng[0])
Serial sw_write (leng[1])
Serial_sw_write (leng[0])

-- done switch led off
led = low

end 1if

if play then
-- play

-- enable timer ()
OPTION_REG= 0b_0000_0000

-~ enable interrupts

INTCON = 0b_1010_0000

-- retreive length of data
Program_eeprom_read(999, hi)
Program eeprom_read{ 998, lo)
length =256 * hi+ lo

address = startaddress

for length + 1 loop
-- retrieve values from memory
Program eeprom_read{ Address, Value)

address = address + 1
for 14 loop

215

9 Sound

-- wait for the interrupt before playing the next sound value
while ! interrupted loop

end loop

interrupted = false

-- prepare next value
value = value << |

end loop
end loop

end if
end loop

You may have noticed that the main loop is a bit different than usual. At playback the
sound is only played once. The loop has been modified so that the push button remains
enabled; so you can playback whenever you want.

The hardware

In the schematic you can see the RC network connected to the LM741 Opamp. As
always, pins not shown in the schematic are not in use. The volume control variable
resistor is not really necessary, because the sound is not very loud. Between the Opamp
and the variable resistor a capacitor is connected to block DC from going to the speaker.

| +5V

play

11132
21— record
= 161877 u

23—

1 1231 13 14 20
Ly s

1k
(volume)
220 nF
o~
&
T°'T ¥Yew .

Figure 114. Super compression.

330

20 pF
0 MHz O3
0 pF

100 nF
—

||}—

216

9.6 Sound super-compression

This setup with the Opamp is only useful at higher bit rates and higher BTc's, such as a
it rate of 32kHz and BTc32. At low values, like in this project, you can connect pin 17
directly to the speaker since the sound quality is so bad that it will not make much
difference.

The circuit on the breadboard:

Figure 115. Super compression.

The left push button is for recording from the PC and the right push button is for
playback. The long wires on the left hand side are from the Wisp628 in-circuit
programmer, which is also used (in pass-through mode) to send the sound data to the
16F877 using MICterm. For transfer you only need the green and blue wires, but the
others can remain connected.

Figure 116. Cardboard sounding board.

217

9 Sound

The sound is significantly improved when a simple piece of cardboard is used as a
sounding board for the speaker. The intelligibility is very much improved, as is the
warmth of the sound.

The beep

Buried in the sound you can hear a soft beep or whistle, which is particularly noticeable
during silent parts.

B T A R o P T Y ., |

D@E JBE - p PODS ensten 1an 5

Figure 117. Whistle during a silent part.

In Figure 117 you see a strong magnification of a silent part of the file, with the whistle
clearly visible. The frequency is around 5 kHz, which is the highest possible frequency
you can make with an interrupt at 9766 Hz. Apparently this is a row of alternating zeros
and ones. It appears that the coding mechanism has a problem with coding a constant
voltage. Since it is a row of 01010 the best solution would be to suppress rows like this
during conversion. WAVconvert has a special function for this that you can enable by
checking "Fix Beep" in the output options.

Considering the technology used the sound quality is quite reasonable once the whistle is
removed and a cardboard sounding board is used. Perhaps could be even better with a
quality speaker!

Using the device

Now we will discuss the steps you need to take to get this project to work once the
hardware is built. There are three sets of instructions:

218

9.6 Sound super-compression

Quick start Get the project working as quickly as
possible with the ready-made files in
the download package.

Do the conversion Go through all the steps using the
basic files in the download package.

Record your own Record and use your own sound.

Quick start

This gets the project working with a minimum of fuss, by using the sound files from the
download package.

1.

2.

6.

7.

Connect the programmer and download the program from section 9.6 into the
PIC™ (0906 jal from the download package).

Start MICterm on the PC and enter the name of the converted file from the
download package (blonde9766.prg) into the box at the lower left hand corner.
Make sure you use the correct path to the file.

Connect to the PICT™™ by clicking on the "start" button on the top left hand side.
You will see a few numbers appear in the receive window, but this is normal.
Momentarily press the left push button on your project. The LED will now switch
on.

Send the file to the PIC™ by clicking on the "Send File” button on MICterm. In
the "send" display (the bottom display) you will see the data from the file which
is being sent. You should see numbers (with a short delay) appear in the top
display. If this doesn’t happen there is no connection with the PIC™; check the
wiring and start over.

Once the LED turns off the transfer is complete and the sound is now stored in
the PIC™.

Press the push button on the right to start the playback.

If you want you can now switch the PIC™ off. Turn it back on, and if you want to hear
the stored sound again press the push button on the right.

Doing the sound file conversion

Using the basic files in the download package to generate the data file, this requires just a
bit more work.

219

9 Sound

1. Start the WAVconvert program on the PC and enter the name of the sound file
from the download package into the window at the bottom left hand side
(blonde9766.wav). Make sure you use the correct path.

2. Click on the "view" button to view the file.

3. Use the following settings:

Encoding BTc8
Output File Program memory
Output Options Fix Beep

4. Click on "Go!" and wait for the green rectangle above the button to turn red
again.

5. Connect the programmer and download the program from section 9.6 into the
PIC™ (0906.jal from the download package).

6. Start MICterm on the PC and enter the name of the converted file (with the .prg
extension) into the box at the lower left hand corner (blonde9766.prg). Make sure
you use the correct path to the file.

7. Connect to the PIC™ by clicking on the "start" button on the top left hand side.
You will see a few numbers appear in the receive window, but this is normal.

8. Momentarily press the left push button on your project. The LED will now switch
on,

9. Send the file to the PIC™ by clicking on the "Send File" button on MICterm. In
the "send" display (the bottom display) you will see the data from the file which
is being sent. You should see numbers (with a short delay) appear in the top
display. If this doesn’t happen there is no connection with the PIC™: check the
wiring and start over.

10. Once the LED turns off the transfer is complete and the sound is now stored in
the PIC™,

11. Press the push button on the right to start the playback.

If you want you can now switch the PIC™ off. Turn it back on, and if you want to hear
the stored sound again press the push button on the right.

Recording your own sound
If you want to use a sound of your own just follow these steps:
1. Record a sound with a bit rate (sampling rate) of 9766 Hz, or use an existing

sound file and convert to this bit rate. There is room in the PIC™ for a sound of
about 11 seconds. Save the file as a WAV file.

220

11.

12.

9.6 Sound super-compression

Start the WAVconvert program on the PC and enter the name of the sound file
into the window at the bottom left hand side. Make sure you use the right path.
Click on the "view" button to view the file. If you don’t see anything your sound
file is not in order. If you do see the graphical display check the bit rate (left
side). Also check if the total length is less than 13000 (bottom right hand side).
Note that many programs will record at any bit rate but insist on writing at a more
standard bit rate.

Use these settings:

Encoding BTc8
Output File Program memory
QOutput Options Fix Beep

Click on "Go!" and wait for the green rectangle above the button to turn red
again.

Connect the programmer and download the program from section 9.6 into the
PIC™ (0906.jal from the download package), or the version that you modified.
Start MICterm on the PC and enter the name of the converted file from the
download package into the box at the lower left hand corner. It is the same name
and path as your sound file, but with the .prg extension. Make sure you use the
correct path to the file.

Connect to the PIC™ by clicking on the "start" button on the top left hand side.
You will see a few numbers appear in the receive window, but this is normal.
Momentarily press the left push button on your project. The LED will now switch
on.

. Send the file to the PIC™ by clicking on the "Send File" button on MICterm. In

the "send” display (the bottom display) you will see the data from the file which
is being sent. You should see numbers (with a short delay) appear in the top
display. If this doesn’t happen there is no connection with the PIC™; check the
wiring and start over.

Once the LED turns off the transfer is complete and the sound is now in the
PIC™,

Press the push button on the right to start the playback.

If you want you can now switch the PIC™ off. Turn it back on, and if you want to
hear the stored sound again press the push button on the right.

221

10 Memory

The 16F877 has three different types of memory available:

Memory

Program memory
(FLASH)

RAM

EEPROM

Quantity
8192 words (14 bits)

368 bytes (8 bits)

256 bytes (8 bits)

Purpose

This is where the program is
stored.

This is where all the variables of
the program are stored.

This is where the programmer
{you) can store data.

In this chapter we will discuss how to use each type of memory. We will also discuss
external EEPROM, which will allow you to increase the available memory almost

without limit.

Memory

External EEPROM
with 12C

Quantity
64k bytes, 8 bits

10.1 FLASH program memory

Purpose

In this project two EEPROM
chips are connected to a PIC™
using the 12C serial protocol. A
software 12C library is used.

We will start with the most difficult type of memory, because this is just about the last
place where you are supposed to store your data. Also take a look at section 12.8 where
JAL shows it's true power with the long table - a unique way to store data in program

memory.

Technical background

Program memory is the largest memory the 16F877 has available, so it is a very attractive
location for your data. This is alse the memory that contains your program, so how much
room is actually available remains to be seen and depends on the size of your program.

222

10.1 FLASH program memory

Which means that

1. We don’t have the total memory capacity available.
2. We should avoid writing over the program itself.

Sortunately, this is easier than it would appear. According to the datasheet of the 16F877
he memory map is organized as follows:

| PC<12:0> |
CALL, RETURN 13
FPETFIE, RETLW 7
Stack Level 1
Stack Level 2
[]
[
.
Stack Level 8
RESET Vector wiaouh
-
- <:
.
Interrupt Vector ¢024h
B
GinSh
Page 0
07FFh
oBOoh
Page 1
On-Chip <
OFFFh
Pregram
Memory 10¢0h
Page 2
17FFh
180Ch
Page 3
\ 1FFFh

Figure 118. Memory map of the 16F877.

A total of 8192 14-bit words'® are available. If you use an address higher than this the
counter will rollover to zero and you will end up in the middle of your program, which is
not a good idea.

1% A 14-bit word consists of a low byte of & bits and a high byte of 6 bits. So the highest value that
the high byte can hold is 63 (0b1 15111 = 63).

223

10 Memory

There is also a lower limit. Once the program has been compiled with JALedit the size is
shown. In Figure 20 you can see that this particular program has a size of 269 words (this
is the "code area"). In the memory map you can see that a program is stored starting at
address 5h. So the total memory usage of this program is 5h + 269 = 274 words.

&9 program eepr¢
30 serial sw_wr:
3 address = ad
32 end loop

33

34 end loop

Compile Resu

Sofitware stack available: 96 bytes

Figure 119. Compiler result.

In this situation you can use all memory between addresses 274 and 8192 without any
danger to the program.'”

If you want to use program memory you should take the following steps:

1. Write the program.
2. Compile it and note the amount of space used (code area).
3. Add five to this number.
4. Use this value in your program as the lower limit
(and 8192 as the upper limit).

The standard library contains a few commands for the use of program memory.""’ The
details of how these commands work are very complicated and outside the scope of this
book.""" So we will just limit ourselves to their use:

"9 1f you use a bootloader (see section 12.9) you also have to take into account the amount of
memory used by the bootloader.

" Standard JAL also contains a command for the use of program memory: the long table (see
section 12.8).

""" The library is pic_program_eeprom by Stef Mientki, part of the 16F877 bert standard library.

224

10.1 FLASH program memory

program_eeprom_read({ address. data) Read the program memory address
and store the result in daa. The
command is safe; you could even
write a program that reads itself.

data = program_eeprom(address) A different way to achieve the same
result.
program_ecprom_write(address, data } Write the value in data to program

memory location address. You can
accidentally overwrite your program
with this command.'"?

Che software

Now that the upper and lower limits of the available program memory have been
etermined the program itself is perhaps not very exciting. Right above the program in
nemory, a row of numbers is stored;

address = 274

for 255 loop
program_eeprom_write {address,data)
data = data + 1
address = address + 1

end {oop

\nd subsequently read back:

address = 274

for 255 loop
program eeprom read (address,data)
serial sw_write(data)
address = address + |

end loop

"o prove that it works the results are sent to the PC. As you can see the numbers arrive
ntact and the program keeps working so we have indeed succeeded in avoiding
wverwriting the program.

" You can also overwrite your program on purpose, which would be a self-modifying program.

225

10 Memory

~Communications--tm-—o—————————————————
|
[

Figure 120. The result in MICterm.

Just for fun you could use a value lower than 274 and see what happens if you write in the
middle of your program. Don’t worry, it’s just software; you won’t break anything.

This is the completed program:

--JAL 2.0.4
include 16F877_bert

var byte data
var word address

forever loop

data=0
address =274
for 255 loop

program_eeprom_write (address,data)
data = data + 1
address = address + 1

end loop

address = 274

for 255 loop
program_eeprom_read (address,data)
serial sw_write(data)
address = address + 1

226

end loop
end loop

The hardware

10.1 FLASH program memory

This application only uses the internal 16F877 memory so the required hardware is
minimal. We only need the parts that are required to run the PIC™:

100 nF

33k

||

+5V

11/32 o

161877 40 >

39 —=<

1 1231 13 14

% I =
Sl B 48
T°T

Figure 121. FLASH memory test.

227

10 Memory

Which looks like this on the breadboard.

Figure 122. Memory test.

10.2 RAM

RAM is the simplest memory to use, because it is specifically meant for data storage.
Technical background
With the simple command

demo =5

the number 5 is stored in RAM with "demo" as the name of that address. It gets a bit
more exciting when arrays are used.

Normally a variable has only one value. With an array a variable can be given a whole
range of values. In the following example the array demo is assigned a row of five

values.'?

var byte demo[5] = {11,12,13,14,15}

'3 If you declare the array along with the contents you don’t need to enter the length, because the
compiler can figure it out. So this is a valid declaration: var byte demo[] = {11,12,13,14,15}. As
well as: var byte demo[5] where you add the values later.

228

10.2 RAM

To get a value out of the array the number between square brackets indicates the position
that you want. Remember that computers start counting at 0, so the first position in the
array is 0. This means that demo[0] is 11.

The next command selects the fourth number in the array, which contains the value 14.
a = demo[3]

Adding a value to an array (or modifying one) is done in a similar manner. With the next
command the fourth position in the array is assigned the value in variable a:

demo[3]=a
Your program can use the count statement to determine the length of an array:
a = count(demo)

But there is a limitation. The RAM memory of the 16F877 is divided into four different
parts, called banks. Each of these banks contains special variables called registers that
control the behavior of the PIC™. In section 7.2, for example, we have used the T2CON
register to set the PWM'" module. Each bank has some empty space that is used as
RAM, as shown in the Register File Map of the datasheet:

"4 PWM Pulse Width Modulation

229

10 Memory

PIC16F877/876 REGISTER FILE MAP

File File File File
Address Address Address Address
Indirect addr.") | 00h Indirect addr.{") 80h Indirect addr.! | 100h Indirect addr.(?| 180h
TMRO 01h OPTION_REG | 81h TMRO 101h OPTION_REG| 181h
PCL 02h PCL 82h PCL 102h PCL 182h
STATUS 03h STATUS 83h STATUS 103h STATUS 183h
FSR 04h FSR 84h FSR 104h FSR 184h
PORTA 05h TRISA 85h 105h 185h
PORTB 06h TRISB 86h PORTB 106h TRISB 186h
PORTC 07h TRISC 87h 107h 187h
porTD!" [08h TRISD!Y | 88h 108h 188h
porTE" | 09h TRISE® | 89h 10%h 189h
PCLATH 0Ah PCLATH 8Ah PCLATH 10Ah PCLATH 18Ah
INTCON 0Bh INTCON 8Bh INTCON 10Bh INTCON 18Bh
PIR1 0Ch PIE1 8Ch EEDATA 10Ch EECON1 18Ch
PIR2 0Dh PIE2 8Dh EEADR 10Dh EECONZ2 18Dh
TMR1L OEh PCON 8Eh EEDATH | 10Eh Reserved® | 18Eh
TMR1H OFh 8Fh EEADRH | 10Fh Reserved?® | 18Fh
T1CON 10h 90h 110h 190h
TMR2 11h SSPCON2 | 91h 111h 191h
T2CON 12h PR2 92h 112h 192h
SSPBUF 13h SSPADD 93h 113h 193h
SSPCON 14h SSPSTAT 94h 114h 194h
CCPR1L 15h 95h 115h 195h
CCPR1H 16h 96h 116h 196h
CCPICON | 17h 97h g‘ﬁnifsa; 117h S;?:Z{:; 197h
RCSTA | 18h TXSTA 98h Register | 1181 Register | 198h
TXREG 19h SPBRG 9%h 16 Bytes 119h 16 Bytes 199h
RCREG 1Ah 9Ah 11Ah 19Ah
CCPR2L 1Bh 9Bh 11Bh 19Bh
CCPR2H 1Ch 9Ch 11Ch 19Ch
CCP2CON | 1Dh 9Dh 11Dh 19Dh
ADRESH 1Eh ADRESL 9Eh 11Eh 19Eh
ADCONO | 1Fh ADCON1 9Fh 11Fh 19Fh
20h AOh 120h 1A0h
General General General General
Purpose Purpose Purpose Purpose
Register Register Register Register
96 Bytes 80 Bytes EEh 80 Bytes ABER 80 Bytes 1EER
accesses FOh accesses 170h accesses 1FOh
70h-7Fh 70h-7Fh 70h - 7Fh
7Fh FFh 17Fh 1FFh
Bank 0 Bank 1 Bank 2 Bank 3

Figure 123. Register File Map of the 16F877.

230

10.2 RAM

An array should fit into a single bank. Which means you have the following space
available for arrays:

e 2x16bytes
¢ 3 x 80 bytes
e | x96bytes

So an array can never be longer than 96 bytes, otherwise you will have to split it.''> And
if you want to use all of the RAM you need to use (at least) six arrays.

The software

As a demonstration we will write a small program that sends a few letters over a serial
connection to a PC. First, we declare the array:

Val‘ byte demo[] = {"B","e","l"‘,"t"}

Then we read the data and send it to the PC. Since we don’t want to count the length of
the array oursefves we let JAL take care of it with the count(demo) command.

index =0
for count(demo) loop

data = demo[index]
serial sw_write(data)
delay_100ms(1)
index = index + 1

end loop
6

Please note that the counter (index) starts at zero.'*

This is what the completed program looks like:

"% 1f you need more space you can use the longtable, see section 12.8.
'® After all of these warnings, can you guess how many times I’ve made a mistake with this?

231

10 Memory

—JAL 2.0.4
include 16F877 bert

var byte data, index
Va[‘ byte demo[] = {"B","e","]’","t"}

forever loop

index =0
for count(demo) loop

data = demo[index]
serial sw_write(data)
delay 100ms{l)
index = index + 1

end loop
end loop

The hardware for this project is identical to project 10.1.

10.3 EEPROM

Just like RAM, EEPROM was designed to store data, but it is a bit more complicated.
The advantage of EEPROM is that any data stored in it will stay there even if the PICT™™’
is switched off. To demonstrate this we will store a two-dimensional array.

Technical background

EEPROM is an abbreviation for Electronically Erasable Programmable Read Only
Memory, which is of course a contradiction. If it is "read only" it means you cannot write
to it, let alone erase it. So basically it is an erasable unerasable memory.

In principle only two types of memory exist. ROM (read only memory) can only be
written once. After that you cannot change it, but the data is retained even after the
power is removed. The other type of memory is RAM (Random Access Memory). You
can read and write to this memory an "infinite” number of times, but the data is lost when
the power is removed. Other memory types are derived from this, even though the name
wasn’t always logical. EEPROM is derived from EPROM (Erasable Programmable Read
Only Memory), which in fact means the chip can only be programmed once. Because

232

10.3 EEPROM

once isn’t very often this chip could be erased by exposing it to UV light, but this wasn’t
very convenient. EEPROM does not need UV light and can be erased electronically,
hence the extra "E” in the name.

The 16F877 is equipped with 256 bytes of EEPROM. And the standard library contains a
few commands to use it:

data_eeprom_write(address, data) Write the value in data to the address
memory location in EEPROM.

data_eeprom_read(address, data) Read the address memory loction in
EEPROM and put the contents into the
data variable.

data = data_eeprom(address) The same as above, but written as a
function.

You see that you need to provide an address as the location of your data. You cannot
overwrite your program (which is in a different memory), but you can overwrite your
own data so care should be taken. The first usable address is location 0.

If you know what you want to store in EEPROM during programming you can let the
JAL compiler worry about assigning the proper address by using the following
commands:

pragma eedata datal, data2, etc. Let the compiler store data such as
datal, data? in EEPROM. No need to
mess with addresses and you can fit a
lot of data on a single line.

data eeprom read(address, data) Read EEPROM data. The address is
obtained by a count of the pragma data
(just remember to start at 0).

This project has two software sections, the second one demonstrating the use of pragma
eedata.

233

10 Memory

Although we intend to store a two-dimensional array, JAL can only handle one-
dimensional arrays by default (see section 10.2). A two-dimensional array is usually
depicted as a matrix, but in memory the data is all in a single row.'”

yl 2 3 4 5
x1 1 2 3 4 5
2 6 7 (2,3)or8 9 10
3 11 12 13 14 15
4 16 17 18 19 20

So, position (2,3) in the matrix is the same as position 8 in the row in memory. The
formula to calculate the position in memory is:

position in memory = (row -1)*maxcolumn + column + startingpoint
where:

maxcolumn = the number of columns in the matrix

column = the y-position

row = the x-position

startingpoint = the first position in memory''*

If you want to store the number 250 in the matrix at location (2,3) it would translate to
position in memory &:

(2-H*5+3+0=8
The command will be
data_eeprom_write(8,250)
The software (1)

In this program an index going from 0 to 255 is stored in position (2,3) of a two-
dimensional array. It is then retrieved and sent to the PC for verification.

"7 With a bit of mathematics you can store a two-dimensional array in a one-dimensional JAL
array. This is just as simple (or complicated) as the method described here. This will allow you to
store a matrix in RAM.

"' The starting point will allow you to place multiple matrices in memeory behind each other.

234

10.3 EEPROM

First we will define the array:

maxcolumn = 5
startingpoint = 0

set the position of the number to be stored:

column = 2
row =3

and store the number:
data_eeprom write((column-1)*maxcolumn+column+startingpoint, counter)

In the next step we retrieve the stored number using a different name for the variable.
That way we can be sure the value was actually stored and retrieved successfully.

data eeprom read({column-1)*maxcolumn-+column-+startingpoint, answer)

As a final step the answer is sent to the PC and the loop is repeated indefinitely. On the
PC you will see a repeating row from 0 to 255.

And this is the complete program:

- JAL 2.0.4
include 16F877_bert

-- declare variables
var byte column, row, maxcolumn, startingpoint, counter, answer

-- define the two dimensional array
maxcolumn =5
startingpoint = 0
forever loop
-- position in the array

column = 2
row =3

235

10 Memory

- calculate the memory position and store
data_eeprom_write((column-1)*maxcolumn-+column+startingpoint, counter)

-- calculate the memory position and retrieve
data_eeprom_read((column-1)*maxcolumn+column+startingpoint, answer)

-- send result to the PC
serial_sw_write(answer)

counter = counter +]
end loop
The hardware for this project is identical to project 10.1.
The software (2)

If you already know which data you want to store in EEPROM at the moment of
programming you can store it with the pragma eedata command:

pragma eedata "L","E","D"
With this command the letters "L’, "E’, and "D" are stored in memory in a row, where L
is stored in memory position 0. In addition to letters you can also store numbers or control
tokens.'"”

The most important control tokens are:

const byte ascii_If =10 Line Feed (if): go to a new line.

const byte ascii_cr =13 Carriage Return'*” (cr): go to the first
position of the line.

In section 14.2 you will find an overview of all ASCII values.

"% 1n reality the program stores binary values.

120 Carriage Return comes from the days when typewriters were in use. The paper was on a rubber
roll, and moved left after each letter. At the end of the line the rubber roll with paper (the carriage)
had to be pushed back to the right. Line Feed originated from those same days and really means
that the rubber roll must be rotated upwards.

236

10.3 EEPROM

We could use this technique to make a virtual flashing light - a project in which a non-
existent LED is flashing. It wouldn’t surprise me if | were the only person who thinks this
is funny.

Anyway, first we store the data in EEPROM:

pragma eedata "L","E","D"" "
pragma eedata "o","n"," ",ascii_cr,ascii_If
pragma eedata "L","E","D"," "
pragma eedata "o","f","f",ascii_cr,ascii_If

Then we read it back in groups of nine (note that after the word "on" a space has been
added. You can do without this, but then you would need to first read a group of 8 and
then a group of 9).

for 9 loop
data_eeprom read (counter, data)
serial_sw_write (data)
counter = counter +1

end loop

Once all positions have been read we start over.
if counter == 18 then counter = 0 end if
The completed program looks like this:

- JAL 2.0.4
include 16F877_bert

-- data to be stored

pragma eedata "L","E","D",
pragma cedata "o","n"," ",ascti_cr,ascii_If
pragma eedata "L"’"Ell’IFD"," "

pragma eedata "o","{","{" ascii_cr,ascii_If

nn

var byte counter, data

counter = 0
forever loop

237

10 Memory

-- show a dataset

for 9 loop
data_eeprom read (counter, data)
serial sw_write (data)
counter = counter +1

end loop

-- wait a bit
delay 100ms(10)

-- out of data so start anew
if counter == 18 then counter = 0 end if

end loop

And this is what you get on the PC:

Figure 124. Virtual flashing LED.

To save you time in converting long text to pragma eedata statements the download
package contains the PEconverter program to do this for you.

238

10.3 EEPROM

= PEconverter

— Data converter i

Enter your text here:

LED

Then convert and copy to clipboard
pragma eedata "L"."E", D", "

Convertto... ‘ & pragma Copy to clipboard ,

Copyright (c]2006 Bert van Dam

Figure 125. Generate pragma EEPROM statements.

Enter your text in the top window. When you click on "Convert" a pragma eedata
statement will be generated (if you selected "pragma") and shown in the lower window."*!
With the "Copy to clipboard" button you copy the entire statement and then paste the
statement into JALedit (or any other editor) with the Edit-Paste or Control-V command.

The hardware for this project is identical to project 10.1.
HEXview
With the HEXview program and a Wisp628 programmer you can download the PIC™’s

program and EEPROM data for viewing. This is particularly useful when you want to
upgrade the programmer as discussed in section 13.2.6.

12 The other options will be discussed in section 12.5.

239

10 Memory

You can use HEXview to look at the contents of the PIC™’s EEPROM by following

these steps:

1. Connect the programmer to the PIC™,

2. Load and run the program from Software (2).

3. Start HEXview.

4. Enter a path and filename in the lower panel where the retrieved data will be
stored.

5. Click the "Read EEPROM" button. A black window is displayed in which you
can observe the progress, while data is being retrieved from the PIC™ and stored

= HEXview =19
r~Bert van Dam (c] 2006 —— T S =)
1 HEleewi
retanPe = et 4200 A
q = READ file
R Datatype 00 5 _Feois |
‘ " Com2 e | VIEWte |
| € Com3 P |
| ERASE
| w1 § i
| SRS n
GO file
[~ Programmer speed-| oo .—I
| 14ké | |omset 4210 READ
| eeprom
| @ ee . [Datape 00 Lo
(o o ¥ ANALYSE fle
[has | Fe—— IR INE RS NN Ot R
Version 1.3 J |;D'I' [c:\picdevemisp2\ File [6.hex | | W lgnore 00

Figure 126. HEXview with EEPROM data.

in the file.

6. Click "Analyze File" and the data will be shown, translated to ASCII if relevant,
otherwise in hex. If you want to see the untranslated file click "View File".

In this example all letters are shown on a new line. The tokens carriage return (ascii_cr)
and line feed (ascii_If) are shown in hex (000D and 000A). You will also see where in
memory the data was stored (offset ...) and what kind of data it is (in EEPROM memory

this is always datatype 00).

You can use this technique to debug programs by storing data in EEPROM at certain
locations and using HEXview to see the data. See section 6.3 for more information on this

method and on debugging in general.

Note that you cannot use HEXview simultaneously with a pass-through RS232
connection. More information on HEXview and the structure of EEPROM data files can

be found in section 14.7.

240

10.4 External EEPROM with 12C

10.4 External EEPROM with 12C

In this project two EEPROM chips are connected to a PIC™ using the [2C protocol. This
will give us 64k of additional memory.

Technical background

Microcontrollers can communicate in many different ways with other chips (see also
section 11). One of those ways is the [2C protocol developed by Philips. The real name is
Inter-1C bus, abbreviated to 12C because of the double 1 at the beginning (in fact it should
be spelled as I°C but on the Internet the ? is not always easy to make). In every 2C
network a single PIC™ has control and is called the master.'”* The master controls traffic
over the 12C bus by deciding who gets to taik and when. Every other device on the bus is
called a slave.

In this project we will build a bus with one 16F877 master and two EEPROM chips as
slaves.

i2c databus

master slave 1 slave 2

Figure 127. Schematic view of an 12C bus.

The 16F877 uses the bus to communicate with the EEPROM chips to store and retrieve
data.

We will use 24LC256 EEPROM chips manufactured by Microchip. These chips have
their own datasheet, and it is a good idea to download them from the Microchip
website'>. Each chip contains 256 kbit of memory, which amounts to 32 kB (a byte is 8
bits)'**.

122 Technically it is possible to have multiple masters on a single bus, but that is rather complicated
and outside the scope of this book.

1%} hitp://www.microchip.com

12 This can be confusing, because memory chips are normally referred to by their capacity in
bytes, not bits. Microchip is by the way notorious for their confusing name conventions.

24

10 Memory

The [2C bus consists of just two wires. One wire is called SCL and is used as a clock. The
master switches this wire high and low at the speed necessary to send and receive data,
The other wire is called SDA, or data line, and is the wire that the data is transmitted

over,

[2C is a very smart system. If there is a pulse on the clock line but not on the data line
then the data is a 0. If there is a pulse on the clock line and also on the data line then the
data is a 1. Both lines are connected to the power line through a resistor. A chip has to
actively pull the line low, or release it (which would cause the line to go high

automatically.

Each chip needs its own address. For the EEPROMs this is taken care off by making one

or more of the pins A0, Al or A2 high.

A0 [|1
A1[]2
A2[]3

Vss [|4

N
8] vee
g 7] WP
E 6] SCL
5[] SDA

Figure 128. Pin configuration.

These pins have the following functions:

pin name

1,23 ADto A2
4 Vs

SDA
SLC
wp

oo -1 Oy un

VCC

242

description

Address of the EEPROM chip

Power, ground
[2C data line
12C clock line
Write protect

Power, +5V

10.4 External EEPROM with 12C

You will need to connect at least pins 4, 5, 6, and 8. To keep it simple, one EEPROM will
have none of the address lines pulled high, and the other EEPROM will have just pin AO,
the least significant bit, pulled high'>*:

A2 Al A0 address
0 0 1 001

So the addresses we’ll be using are 000 and 001.

If you took a sneak peek at the source code you may have noticed this command:
chipaddress = 0b_0101_0000

Which may surprise you because you just selected three-bit addresses for the EEPROMs.

But this is caused by a rather awkward terminology in the datasheet. In fact, the three-bit

address is not an address but a "chip select code’. The complete (7-bit!) address on an

EEPROM is the chip select code preceded by a control code.

Control Byte

vol1]o|B|5| 8 RW
L il |
Control Chip
Code Select
Bits

Figure 129. Control byte.

The first seven bits are the address and together with the 8th bit (a read/write flag) they
comprise the control byte. At this point we are only interested in the address part of the
control byte, which we reference like this:

chipaddress = 0b_0101_0000
or
chipaddress = 0b_0101_0001

125 The address pins comprise a three-bit number. With pins A2 and AQ pulled high the address
would be thus be 5. This aliows you to have 8 of these EEPROM s on a single 12C bus.

243

10 Memory

When a read or write command needs to be given by the 12C library all it needs to do is
add the read/write bit at the right.'”® All bits then move one position to the left which
yield:

chipaddress = 0b_1010_000x
or
chipaddress =0b 1010 _001x

which is the correct address with "x" as the read/write bit.

Although the 16F877 is equipped with a standard 12C module we will not be using it.
First of all, these pins can be used for other protocols as well. So it is convenient to use
software 12C which will leave you free in your choice of pins.'”’ Perhaps even more
important is that using a software [2C library allows you to use 12C with a PIC™ that
doesn’t have built-in support for it, such as the 12F675.

The standard library 16F877_bert does not contain 12C software routines. So we will use
an additional set of libraries (i2c_sw) that are included in the download package.'”

There are three commands available to work with external memory:

i2¢_sw_write(chipaddress,addressH, Write value to addressH,
addressL, value) addressL of the EEPROM having
an address of chipaddress.

i2¢_sw_read(chipaddress,addressH, Read the contents (value) of

addressL., value) addressH, addressl. of the
EEPROM having an address of
chipaddress.

i2c_sw_ackpoll(chipaddress) Wait for an acknowledgement
from the EEPROM having an
address of chipaddress.

The program itself is not very useful. It just fills the entire EEPROM, reads it back, and
sends it to the PC over the serial pass-through connection.

'8 This is done like this: new address = { address << 1) + Ob_0000_0001 so shift the address left
one bit and add one. This means the bit is set to "read".

" You can modify this in the file called i2cp.jal, which you can find in the library directory. If
you change it you need to copy this file to the same directory where your program is so that the
original remains intact and useable for other programs.

128 This library set consists of three interlinked libraries written by Wouter van Ooijen, Dave Ellis
and Bert van Dam,

244

10.4 External EEPROM with 12C

This takes a long time, by the way. Complete filling an EEPROM with data takes 4
minutes and 8 seconds! That means one write operation (including calculations, loops,
and acknowledgement polling) takes 4:08/32768 = 7.57 msec. The datasheet mentions a
maximum of 5 ms for just the EEPROM, so that matches nicely.

Reading is even slower - in excess of 10 minutes - because the data is also sent to the PC.
During reading and writing an LED flashes to tell that the program is still running.

The software
First we need to load the [2C library:
include i2c sw

Basically there are two loops. The first one fills the EEPROM with incrementing
numbers. The EEPROM is 256 kbit which means 32768 bytes. The maximum value for
the high address byte is, thus, 127 (and for the low byte, obviously, 255):

greenled = high
addressH =10
address. =0
for 127 loop
addressH = addressH + 1
greenled = ! greenled
for 255 loop
addressL = addressL. + |
value = addressL
i2¢_sw_write(chipaddress, addressH, addressL, value)
i2¢_sw_ackpoll{chipaddress)
end loop
end loop
greenled = low

The green LED flashes at a rather low frequency. It takes about four minutes before
something happens on the PC. At that point the second loop starts to read the data:

-- now read it back and send to the PC
blueled = high

addressH =10
addressL =0
for 127 loop

addressH = addressH + 1

245

10 Memory

blueled = ! blueled
for 255 loop
addressl. = addressL + |
12¢_sw_read(chipaddress, addressH, addressL., value)
serial sw write{value)
end loop
end loop
blueled = low

This time the blue LED flashes. Both loops are then repeated for the second EEPROM.
The entire program looks like this:

- JAL 2.0.4
include 16F877 bert
inctude i2¢_sw

-- define variables

var bit blueled is pin_d2 -- blue led

var bit greenled is pin_d3 -- green led

var byte chipaddress, addressL, addressH, value

-- enable i2c
sspcon =0b_0011 0110

-- define the pins
pin_d2_direction = output
pin_d3 direction = output

- turn the leds off
blueted = low
greenled = low

-- start data

addressH = 0

addressL =0

valuge=10

chipaddress = 0b_0101 0000

for 2 loop

246

10.4 External EEPROM with 12C

- fill the memory with sequential numbers
greenled = high

addressH =10
addressL = 0
for 127 loop

addressH = addressH + 1
greenled = ! greenled
for 255 loop
addressL = addressL + 1
value = addressL
i2¢ sw_write(chipaddress, addressH, addressL., value)
i2c_sw_ackpoll(chipaddress)
end loop
end loop
greenled = low

— now read it back and send to the PC
blueled = high

addressH =0
addressl. =0
for 127 loop

addressH = addressH + 1
blueled = ! blueled
for 255 loop
addressl. = addressL + 1
i2¢ sw read(chipaddress, addressH, addressL, value)
serial_sw_write(value)
end loop
end loop
blueled = low

-- next chip
chipaddress = chipaddress + 1

end loop

247

10 Memory

The hardware

izc databus

5 6 5 6
> 9
& & 241c256 | 241c256
8 4 ’> 8 4
T [| -

11/32 23 18
S
a 16877

1 121 13 14 21 22
10k D = &
% » |& |®] |®
A]| = (&
L (=1
8 s \WATAVA
: T T ¥¥¥iw
(green) (blue) J,—

Figure 130. I12C with two EEPROMs.

The 12C bus consists of two wires that are connected to the plus using 2k2 resistors. This
means that the lines are normally high, and are pulled low by the chips. Because software
I2C routines are used you are free to choose the pins. The library assumes c3/c4, but you
can change this in the i2cp.jal file in the library directory. It is advisable to copy the file
beforehand to the same directory as the program in order to maintain the original library
for other projects.

The left EEPROM has chipselect 0, where none of the three address pins is pulled high.
The right EEPROM has chipselect 1.

248

10.4 External EEPROM with 12C

Figure 131. 12C with two EEPROMs.

On the breadboard the upper rail is used for 12C. Beneath the programmer wires on the
left hand side you can just barely see the two resistors.

249

11 Multiple PIC™ microcontrollers

In this chapter we will discuss a few techniques to connect multiple PIC™
microcontrollers to each other. This way you can have more inputs or outputs available or
even parallel processing power. Of course the PIC™ microcontrollers don’t have to be
next to each other. If you have, for example, twenty remote sensors you can use twenty-
one wires'* or add a remote PICT™ and Jjust use four wires (two for the power and two for
the communications).

Project Purpese
Two serial R§232 Two PIC™ microcontrollers are
connections (and a small connected using a RS232 serial
game) connection. One of the PIC™
microcontrollers is also connected
to a PC.
Serial synchronization Two PIC™ microcontrollers that

"know" each other’s status based on
smart messages. As a result they can
synchronize. One of the PIC™
microcontrollers is also connected
toa PC.

A serial network A very neat way to connect three or
more PIC™ microcontrollers to
each other using a serial network
with a master and multiple slaves,

A serial connection doesn’t necessarily need wires as you can see in this project:

Project Purpese
An infrared A serial connection between two
transmitter/receiver PICs using infrared in section
13.3.5.

1% Twenty for the signals and one for the ground. Sensors with 12C capability can simply be
connected to a bus, just like the EEPROM chips in section 10.4,

250

11.1 Two R$232 connections

11.1 Two RS232 connections

Two PIC™ microcontrollers are connected to each other using a serial connection. One
of the PLC™ microcontrollers is also connected to the PC. Both PIC™ microcontrollers
are equipped with a switch. Pressing any of the switches sends a signal to the PC. This
allows a small game to be played.

Technical background

If you haven’t read the introduction of Chapter 6 now would be a good time so that you
get some background information on RS232 signals and connections.

The 16F877 is equipped with an USART port on pins c6 and ¢7 (25 and 26)."%" Tt can be
set to two different protocols: RS232 of SPL. In this project we will use the RS232 option
(which is the default for the 16F877_bert library).

By connecting the PICT™ microcontrollers with the wires crossed the "transmit" of one
becomes the "receive” of the other and, thus, they can communicate with each other.
Since the functionality is built into the hardware this is referred to as hardware serial port.
In the standard library the following commands are available:

USART_hw_Serial Set the correct protocol: true =
RS232, false = SPI (default is
true)

Serial hw_baudrate Communication speed is set to

19k2 by default but 1200 or 115k
baud is also possible.

Serial hw_read(data) Receive something and store it in
the variable data.

Serial hw_write(data) Send the content of the variable
data.

Serial hw_data = data The same as above, but written as
a function.

The first two commands are used to establish the correct settings (RS232 or 19k2 baud).

130 USART Addressable Universal Synchronous Asynchronous Receiver Transmitter

251

11 Multiple PIC™ microcontrollers

The programs in both PIC™ microcontrollers are identical (except for the letter A or B)
and do two things in their main loop. First, any signal that comes in on the hardware
serial port is relayed to the software serial port, which is only useful for the PIC™ that is
actually connected with its software serial port to the PC. We could write separate
programs for each PIC™ (and we will in upcoming sections), but then you would have to
remember which program goes where.

if Serial hw read(mydata) then
Serial sw_write(mydata)
end if

When you press the switch a letter is sent to the other PIC and to the PC. One PIC will
send the letter A and the other the letter B.

if switch then
Serial_sw_write("A")
Serial hw_write("A")
end if

Pressing the switches will result in something like this in your PC’s terminal program:

Communications -

Figure 132. The switches as seen on the PC.
A simple game for two
Whether you realized it or not you have just created a simple game for two. Each person
gets to push his/her own button as short as possible. The one with the fewest letters on the

PC wins this game.

My best score was 5.

252

11.1 Two RS232 connections

The software

When all the parts are put together this is the resulting program. Use the letter "A" in one
PIC™ and the letter "B"in the other one.

- JAL 2.0.4
include 16F877 bert

var byte mydata

-- define the pins
pin_b1_direction = input
var bit switch is pin_bl

forever loop

-- get byte from serial PIC

if Serial hw_read(mydata) then
-- echo to PC
Serial_sw_write(mydata)

end if

-- if switch is pressed send A
if switch then
Serial sw write("A") -- send to PC
Serial_hw_write("A") -- send to other PIC
end if
end loop
The hardware

The hardware serial connections are as follows:

Pin number Pin name Function Description

25 chb X transmit
26 c7 RX receive

To connect two of them together means that pins 25 and 26 of both PIC™
microcontrollers must be connected crossed over, which means that the TX pin from one

253

11 Multiple PIC™ microcontrollers

PIC™ is connected to the RX pin of the other. The speed between the two PIC™
microcontrollers is 19k2 baud and the speed between the PIC™ and the PC is 1200 baud.

Each PIC™ needs it’s own switch.

+5V
[I
s S
& 11/32 : e 11/32
38 : : B/’
16877 25 _’DC_ 25 161877 39 y—f‘——<: serial
26 | . 126 e = to PC
. 40 —
112731 13 14 : : 112/31 13 14]
10k e : 10k x
TR o E e ; w = = =
A =] C | L5 &l = |8
T _IT*T I IT°T
L

Figure 133. Hardware and software serial connection.

The dotted lines indicate the two units. This is strictly informational; it does not represent
wiring or anything else. The two units can theoretically be placed a maximum of 15
meters apart. In practice this is highly dependent on interference from the environment. In
your living room you may be able to place the units further apart than in an industrial
setting. This is what it looks like on the breadboard:

Figure 134. Hardware and software serial connection.

The blue and green wires are from the Wisp628 in-circuit programmer and make the
connection to the PC.

254

11.2 Serial synchronization

Infrared

Take a look at section 13.3.5 where the communication is done using infrared signals
instead of wires.

11.2 Serial synchronization

Two PIC™ microcontrollers that "know" each others status based on smart messages. As
a result they can synchronize.

Technical background

When two microcontrollers need to do certain things together (such as process part of a
problem in parallel to speed up the process) they need to be synchronized with each other.
There are many complicated ways to achieve this, but using the hardware RS$232 buffers
is a surprisingly simple and effective one.

When a PIC™ receives a message on the (hardware) serial port, but doesn’t have time to
process it yet the message is put into a buffer.”" Let us assume that both programs have
synchronization points where they wait for each other. Tf the program reaches that
particular point it sends a signal to the other PIC™ and waits for a reply. If the other
PIC™ had already arrived at the synchronization point this reply will arrive immediately
(from the buffer). If the other PIC™ hasn’t arrived at the synchronization point the
program will wait until an answer arrives (this time direct instead of from the buffer).

In this project the programs have three synchronization points. One of the programs is
significantly slower than the other, because it has one-second delays between each
synchronization point. So the fast program needs to wait for the slow one.

131 Don’t get your hopes up too high: the buffer can hold just two bytes. It is called RCREG in case
you want to look for the relevant data in the datasheet.

255

11 Multiple PIC™ microcontrollers

This is what a synchronization point looks like, with both programs next to each other:

mydata = "Q"
Serial hw_write("B")
while mydata '="A" loop

Serial hw read(mydata)

end loop

mydata = "0"

Serial hw_write("A")

while mydata != "B" loop
Serial hw read(mydata)

end loop

The software

The programs in both PHC™ microcontrollers are basically identical, but differ at a few
important points:

PIC™ 1 (left, in the schematic)

At a synchronization point send

an "A" and wait for a "B".

Fast program

PIC™ 2 (right, in the schematic)

Send a "B" and wait for an "A".

Slow program: wait for 1 second
between each synchronization point.

Send the actual location in the
program (0, 1, 2 or 3) to the PC.

The programs start up with a one-second delay. The PIC™ microcontrollers need a bit of
time to start up, and during that period the buffers are not active. If one happens to be
faster than the other synchronization can not start.

Perhaps it is interesting to view both completed programs next to each other:

Program for the PIC™ that is
connected to the PC:

- JAL 2.0.4
include 16F877_bert

var byte mydata
-- define the pins

pin bl direction = output
var bit led 1s pin_bl

Program for the other PIC™:
- JAL 2.0.4
include 16F877_bert
var byte mydata
-- define the pins

pin_bl direction = output
var bit led is pin_bl

256

11.2 Serial synchronization

-~ give other pic time to start up
delay Is (1)

forever loop

-- send current position to the PC
Serial sw write("0")

- first synch

mydata = "0"

Serial hw_write("B")

while mydata !="A" loop
Serial_hw_read(mydata)

end loop

-- send current position to the PC
Serial sw_write("1")

-- wait a bit
delay 1s(1)

-- second synch

mydata = "0"

Serial_hw_write("B")

while mydata 1="A" loop
Serial hw_read(mydata)

end loop

-- switch yellow led on
led = high

-~ send current position to the PC
Serial sw_write("2")

-- wait a bir

delay_1s (1)

-- third synch

mydata = "0"

Serial_hw_write("B")

while mydata '="A" loop
Serial hw_read(mydata)

-- give other pic time to start up
delay 1s (1)

forever loop

-- switch yellow led on
led = high

-- first synch

mydata = "0"

Serial_hw_write("A")

while mydata !="B" loop
Serial hw read(mydata)

end loop

-- switch yellow led off
led = low

-- second synch
mydata = "0"
Serial_hw_write("A")
while mydata !="B" loop
Serial hw_read(mydata)
end loop

-- switch yellow led on
led = high

-- third synch
mydata = "0"
Serial _hw_write("A")
while mydata !="B" loop
Serial hw read{mydata)

257

11 Mubtiple PIC™ microcontrollers

end loop end loop
-- switch yellow led off -- switch yeltow led off
led = low led = low

-- send current position to the PC
Serial_sw_write("3")

-- wait a bit
delay 1s(1)

end loop
end loop

If you use the Wisp628 pass-through feature make sure to disconnect the yellow wire OR
connect pin 1 of both PIC™ microcontrollers together. If you enable the pass-through
function the programmer uses the yellow wire to reset the PIC™, If you reset one
program but not the other synchronization will be lost. So you have to either disconnect
the yellow wire (none of the PICs restart) or connect pin 1 of both PICs together (both
PICs resct).

The hardware
Please note that the wires between the PICT™ microcontrollers are connected crossed over

and that the LED is on a different pin of each PIC™ microcontroller. The dotted lines
indicate the two different units and have no other purpose.

258

11.2 Serial synchronization

33k

11/32

112131 13

16877

-

Ok

100 nF

20 MHz &3

S
11/32 4
25 16877 39
26
1.12/31 13 14 34 %
0 2
&l ¥ |5 |°
&l = |8
S
AL

10k

serial
to PC

Figure 135. Synchronization.

Figure 136. Synchronization.

Be certain to disconnect the yellow wire OR connect pin 1 of both PIC™

microcontrollers together.

259

11 Multiple PIC™ microcontrollers

11.3 A serial network

Here we have a project to connect three (or more) PLC™ microcontrollers to each other
using a serial network with one master and multiple slaves.

Technical background

The output of a PIC™ can easily be connected to multiple inputs of other PI1Cs. So if the
transmit pin (TX) of the standard RS232 module is connected to the receive pins (RX) of
two other PIC™ microcontrollers then both will receive the same message.

The other way around is a bit more difficult, because connecting the transmit pins
together can cause trouble. The solution is simple: add a diode and a resistor. The resistor
pulls the line high so that it doesn’t float and the diode blocks the transmit signals.

161877
(master)

+5Y

16877

[>|. {slave)
tx

rx

16f877
(slave)

N/

tx

Figure 137. The R5232 pins connected.
In this network the master is the only one sending unsolicited messages. The slaves

receive all messages, check to see if any of these messages are addressed to them, and
then respond if necessary.

260

11.3 A serial network

The software

[n this system the master sends commands to the slaves, which then reply. The messages
sent by the master have the following structure:

bit 7| bit6 |bitS |bit4 [bit3 |bit2 [bit1 |bit0

Command Address

So both the address and the command are four-bit variables.'”” Suppose command 10 is to
be sent to a slave with address 2, the message would be coded like this:

bit 7 [bit 6 | bit 5 |bit4 [bit3 | bit2 |bit 1 | bit0
| 0 1 0 0 0 1 0

Command Address

Since we will need this particular piece of software often we may as well turn it into a
procedure.

We expect to call this procedure with two variables (address and command) and indicate
that these will each be 4 bits long;

procedure serial net_write(bit*4 in address, bit*4 in command) is

The variable that will be sent is a regular byte:

var byte dataZsend
First, the command must be put into the variable that will be sent:

dataZsend = command
[t is true that the command is only 4 bits long and dataZsend is 8 bits long, but that
loesn’t matter. The 4 lowest bits of dataZsend are replaced by the 4 bits of command, and
he 4 highest bits of dataZsend remain what they were before. To get the command bits

on the high side of data2send we shift everything 4 bits to the left:

data2send = dataZsend << 4

2 S0 you can use a maximum of 16 different addresses and 16 different commands.

261

11 Multiple PIC™ microcontrollers

Now we can add address. This is also a 4-bit variable, which now fits nicely because after
the left shift the 4 lowest bits of dafa2send are empty:
data?send = dataZsend + address

Now all we need to do is send the data and end the procedure:

serial_hw_write(data2send)
end procedure

When you call the procedure you don’t need to worry about the fact that address and
command are only 4 bits. If you call the procedure with bytes the highest 4 bits will
simply be deleted.

The slaves need to decode the message to see if it is meant for them. They don’t need to
continually watch the RS232 pin, because incoming data is put in the buffer (the first two
bytes anyway).

First, we define the variables for the slaves. This time we take care to define them as 4
bits for easier decoding:

var byte myaddress, data
var bii*4 address, command

As soon as a message comes in we will check whom it is for:
if Serial hw read(data) then

address = data

if myaddress == address then
You see that we put the 8-bit long data into the 4 bit long address. Only the lowest 4 bits
will actually fit, and that happens to be the address. Surely no coincidence. 1f this address
matches the PIC™ address the command needs to be extracted. We shift all bits in data to
the right, which causes the address to fall out and the lowest 4 bits are now the command.

command = data >> 4

We can now see what the command is that the PIC™ is expected to do.

262

11.3 A serial network

In this sample program only three commands are in use:

Command Action to take
0 switch LED off
1 switch LED on
2 send a number

Using the procedure that we have just written we can tell the PIC™ with address 1 to
switch off its LED (command 0) like this:

serial_net write(1,0)

1t is a bit complicated with the 4 bits, 8 bits, and shifts. If you lose track it is a good idea
to write the numbers on paper in binary and try out all the things we have done. Once you
are used to it you’ll see it is much easier than you thought.

Time to put all the commands together:
The master sofiware:

- JAL 2.0.4
include 16F877 bert

-- define variables
var byte data

-- serial network write procedure
procedure serial net write (bit*4 in address, bit*4 in command) is
var byte data2send
dataZsend = command
data2send = data2send << 4
dataZsend = data2send + address
serial hw write{data2send)
end procedure

forever loop

263

11 Multiple PIC™ microcontrollers

--switch both remote leds on
serial net write(1,1)
serial net write(2,1)

--wait a bit
delay 100ms(3)

-- switch both remote leds off
serial net write(1,0)
serial_net write(2,0)

-- wait a bit
delay 100ms(3)

-- get a number from the remote pic |
serial_net write(1,2)

serial hw_read(data)

-- and send to PC to check
serial sw write(data)

-- get the number from the remote pic 2
serial net write(2,2)
serial_hw_read(data)
-- and send to PC to check
serial sw_write(data)

end loop

The slave software:

-~ JAL 2.0.4
include 16F877_bert

var byte myaddress, data
var bit*4 address, command
pin dl direction = output
var bit led is pin d1 = false
myaddress = 1

forever loop

264

11.3 A serial network

if Serial_hw_read(data) then
address = data
if myaddress == address then
command = data >> 4
serial sw_write(address)
serial_sw_write(command)
if command == 1 then

led = high
else

led = low
end if

if command == 2 then
serial_hw_write(100)
end if
end if
end if

end loop
Obviously you need to give all slaves a different address.
You may have noticed that messages sent back by the slaves are not coded. That is
because the slaves cannot see each other’s messages. Only the master can read them, and
since the master knows to whom he asked the question it also knows what this incoming

data is and whom it is from.

There is no reason to use the same software in every slave; you could have them do
totally different things!

The hardware
On the breadboard in Figure 139 the junction of the serial wires (yellow and purple} is

clearly visible. At the left top hand side the green and blue wires of the software serial
connection to the PC are just visible.

265

11 Multiple PIC™ microcontrollers

k

5 AP
ABE: 1/32 - |3 ni32
1N4007 : 25
: 161877 25 : 26 16877 39
: ‘ 3 . toPC
: 26 |- 1 ; Apb—
: 112031 13 14 38 | : 11231 13 14 :
| I - [= | o :
g ' TS [: w . :
5 i a B -1 o : w g ¥ g ;
: __g 2 = K ! ; & E N
[T | T Ty T 7T
; T Te¥y || T T
i T T T T e e e TR e -L-
x
& 11132 :
161877 25 _._A_|<]_
26 F———
112/31 13 fiidag | [ANOD7
10k D o
(]
" Sl ' |5 |7
c o s o
. ~N ™~
=4 o
= o \/
it T Te¥s

Figure 138. Serial network with 3 PIC™ microcontrollers.

266

Figure 139. Serial network with 3 PIC™ microcontrollers.

12 Miscellaneous Projects

In this final chapter on the 16F877 we discuss a number of projects that don’t quite fit in
any category.

Project Description
Timer 0 interrupt If something needs to happen with
regularity the TIMERO interrupt is a
good choice.
Port B interrupt Catch any signal on port B even when

the program is doing something else.

Pictures of light Our eyes see a fast moving light as a
stripe. By flashing lights in a certain
rhythm while they move our eyes sec a

picture.

Digital clock A digital clock with LCD display and
three buttons to adjust the time.

Scrolling display with A scrolling display on an LCD panel

animation with homemade animation.

Ultrasonic radar A Devantech SRF(04 Ultrasonic Range
Finder is modified to serve as ultrasonic
radar.

Handling larger currents Three ways to control larger currents
with a PICT™,

The poetry box Playful use of the bizarre long table
command to display a poem on an LCD
screen.

Bootloader A bootloader is a way to load programs
into a PIC™ without using a
programmer.

267

12 Miscellaneous Projects

12.1 TIMERO interrupt

[f something needs to happen with regularity the TIMERO interrupt is a good choice.

Please note that some processes may not be interrupted. If for example serial transmission
would be interrupted this would certainly cause a transmission failure'>. Writers of such
routines routinely switch off interrupts before their routine starts and switch it back on at
the end. Of course this destroys vour "regularity”. So when writing programs that use an
interrupt you still need to consider which other parts of the chip you are using. A good
suggestion (for any software development) is to write in small chunks and test regularly.

Technical background

TIMERQ can stop a program in progress in order to run a small procedure. How often this
takes place depends on the settings of the OPTION REG register.

133 R R . R
“ Interrupts will not cause transmission failures when using hardware serial communication.

268

12.1 TIMERO interrupt

OPTION_REG REGISTER

RW-1 RW-1 RW-1 RW- RAW-1 RIW-1 RW-1 RW-1
RBPU | INTEDG | TOCS | TOSE PSA PS2 PS1 PSO
bit 7 bit 0

bit 7 RBPU

bit 6 INTEDG

bit 5 TGCS: TMRO Clock Source Select bit

1 = Transition on TOCKI pin

0 = Internal instruction cycle clock (CLKOUT)
bit 4 TOSE: TMRO Source Edge Select bit

1 = Increment on high-to-low transition on TOCK! pin

0 = Increment on low-to-high transition on TOCKI pin
bit 3 PSA: Prescaler Assignment bit

1 = Prescaler is assigned to the WDT

0 = Prescaler is assigned to the TimerQ module

bit 2-0 PS2:PS0: Prescaler Rate Select bits
Bit Value TMRC Rate WDT Rate

o0 1:2 1:1

001 1:4 1:2

010 1:8 1:4

011 1:186 1:8

100 1:32 1:16
101 1:64 1:32
110 1:128 1:64
111 1:256 1:128

Figure 140. OPTION_REGregister.

This register can also be used to generate interupts on port B. The RBPU (port B pull-up
enable) and INTEDG (interrupt edge select) bits are meant for this purpose (see section
12.2).

TOCS (TIMERO clock source) indicates whether the clock is internally or externally
controlied. We are using a crystal so "externally” would be an obvious answer. In this
case, however, "external” refers to pin TOCK1 (pin a6), so we need to choose "internally”.

The other bits (PS0, PS1, PS2 and PSA) determine how often the interrupt needs to occur.
A bit of mathematics: the crystal has a frequency of 20 MHz. Every fourth pulse TIMERO
is incremented by 1 (because each instruction takes four clock pulses to execute). An
interrupt is generated when TIMERO rolls over, after 256 increments. This means the
standard interrupt frequency is

20.000.000 /4 /256 =19.531 Hz

269

12 Miscellaneous Projects

That might be a bit quick, so a prescaler can be used to make the interrupt occur less
frequently. This prescaler can be assigned to the WDT (watch dog timer) or the TIMERO
module. The impact of all this is shown in the following interrupt frequency table.

Interrupt frequency TMRO WTD
assignment assignment
Prescaler Frequency (Hz) Frequency (Hz)
0 9.766 19.531
1 4.883 9.766
2 2.441 4.883
3 1.221 2.441
4 610 1.221
5 305 610
6 153 305
7 76 153

So if you set the prescaler to 2 and assign the result to TMRO (which results in an
OPTION_REG value of 0b_0000 0010) the interrupt frequency will be 2.441 Hz.

It is also possible to increase the frequency. Normally speaking TIMERO starts counting
at 0, but you can also make it start at another value. This means the rollover point will be
reached sooner. If you start TIMER® at 50 instead of ¢ the rollover time becomes (256 -
50) * 0.2 uS, which creates a theoretical interrupt frequency of 24.272 Hz.

If you make the interrupt frequency too high the program itself will not have time to do
anything. If you make TIMERO start at 200, for example, only 56 instructions are left
over for your entire program to use, including the interrupt routine itself. So for the higher
starting values the following table is more theory than reality.

270

12.1 TIMERO interrupt

Interrupt WTD assignment,
frequency prescaler =0
TMRO start Frequency (Hz)
0 (do nothing) 19.531

50 24272
100 32.051
150 47170
200 89.286

The procedure that is called during an interrupt is almost identical to a normal procedure,
with a few small exceptions:

1.

LS]

The very first line of the procedure is pragma interrupt (a instruction to the JAL
compiler to turn this into an interrupt routine). You can make as many interrupt
routines as you like; the JAL compiter will notice this and neatly put them together. A
very powerfull feature!

Interrupt procedures may not be called from the main program or any other
procedure.

Check to see if it is "your" interrupt calling the procedure.

Keep the procedure short.

It is considered good programming practice not to read or write pins during an
interrupt.

We will get back to rule three later. A typical interrupt procedure would look like this:

procedure myInterruptProc is
pragma interrupt

[this is where the commands go]

end procedure

271

12 Miscellaneous Projects

Now that we have an interrupt procedure and a desired frequency all that is left to do is to
switch it on. This is done in the INTCON register'*’. Let’s see what the datasheet has to
say about this register:

bit 7

hit 6

bit 5

bit 4

bit 3

bit 2

bit 1

bit O

INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh}

RW-0 RW-D RMW-0 RW-0 RIW-C RW-0 RW-0 RWx
GIE PEE | TOIE INTE RBIE | TOIF | INTF | RBIF |
bit 7 bit 0

GIE: Global Interrupt Enabrle bit

1 = Enables all unmasked interrupts
0 = Disables all interrupts

PEIE: Peripheral Interrupt Enable bit

1 = Enables all unmasked peripheral interrupts
2 = Disables all peripheral interrupts

TOIE: TMRO Overflow Interrupt Enable bit

1 = Enables the TMRO interrupt

0 = Disables the TMRO interrupt

INTE: RBU/INT External Interrupt Enable bit

1 = Enables the RBU/INT external interrupt

0 = Disables the RBO/INT external interrupt

RBIE: RB Port Change Interrupt Enable bit

1 = Enables the RB port change interrupt

0 = Disables the RB port change interrupt

TOIF: TMRO Overflow Interrupt Flag bit

1 = TMRQO register has overflowed (must be cleared in software)
0 = TMRO register did not overflow

INTF: RBO/INT External Interrupt Flag bit

1 = The RBO/INT external interrupt occurred (must be cleared in software)
o = The RBU/INT external interrupt did not occur

RBIF: RB Port Change Interrupt Flag bit

1 = At least one of the RB7:RB4 pins changed state; a mismatch condition will continue to set
the bit. Reading PORTB will end the mismatch condition and aflow the bit to be cleared
{must be cleared in software).

2 = None of the RB7:RB4 pins have changed state

Figure 141. INTCON register.

% you can use this register also to temporarily switch off interrupts for parts of the program that
should not be interrupted (such as those dealing with communications). Manipulating this switch
will, of course, alter the expected frequency.

272

12.1 TIMERO interrupt

This register is very important. It contains both settings and vital information. For us bits
7.5, and 2 are interesting. Bit 7 is used to switch on interrupts in general (like a main
switch if you like), and with bit 5 the the TIMERQ interrupt is switched on, like this:

INTCON = 0b 1010_0000

You may have noticed that interrupts can be generated by many different souces, not Jjust
TIMERQ. To be sure that "our" interrupt is actually taking place bit 2 can be used. If this
bit (TOIF) is 1 at the moment that an interrupt occurs it means the interrupt is caused by
TIMERO. So your interrupt procedure should check for this condition, and reset itto O
afterwards, like this:

procedure mylnterruptProc is
pragma interrupt

if TOLF then
[this is where the commands go]

TOIF =0
end if

end procedure

This was rule three from the interrupt rules: Check to see if it is "yowr" interrupt calling
the procedure.

The software

Now that we've thoroughly covered using an interrupt we need to put it to good use. So
what could we do with a frequency of 2.441 Hz? Make a sound! If we use the interrupt to
toggle a pin high and low we have a sound (in combination with a speaker).

The interrupt routine would look like this:

procedure make a sound is
pragma interrupt

if TOIF then
-- switch pin to make sound
flag =1 flag
pin_d1 = flag

273

12 Miscellaneous Projects

-- clear TOIF to re-enable timer interrupts
TOIF =0
end if

end procedure

After checking if this was a call caused by the TIMERO interrupt the state of pin dl is

switched. Of course that means that each interrupt we only make half of a sound wave. |

This pin will go up or down each time, but not both.

1

|

So even though the procedure is called at 2.441 Hz the actual sound will have a frequency -
that is half of that: 1220 Hz. The frequency counter in Figure 143 shows this to be

correct..

Frequency Counter 1.01

Figure 142. The actual sound frequency.
The main program looks a bit bizarre because nothing happens:

forever loop
end loop

You do need it, however, because without the loop the program will stop and disable the
interrupts.

Putting it all together yields this program:

--JAL 2.0.4
include 16F877 bert

pin_d1_direction = output
var bit flag

274

12.1 TIMERO interrupt

- the actual interrupt rouline
procedure make_a_sound is
pragma interrupt

if TOIF then
-- switch pin to make sound
flag =1 flag
pin_dI = flag

-- clear TOIF to re-enable timer inferrupts
TOIF =0
end if

end procedure

-- enable timer 0
OPTION REG=0b 0000_0010

-- enable interrupts
INTCON = 0b_1010_0000

forever loop
end loop

You may have noticed that I violated rule 5 because I changed pin status in the middle of
an interrupt call. A good exercise for you would be to rewrite the program without
violating this rule.

The hardware

The hardware is very simple. A basic setup of the 16F877 with just two extra parts: a
speaker and a variable resistor for volume control.

275

12 Miscellaneous Projects

+5V
11/32
2
a3 16f877
1 1231 13 14 20
10k D
w U LS
a N a
(=] < (=]
b —— ~ = ~
— = 1k
=] | T (volume)

Figure 143. TIMERO whistle.

Which looks like this in real life:

Figure 144. TIMERO whistle on the breadboard.

Optional
Surely you have wondered by now what would happen to the whistle if TIMERO would
not start counting at zero but a another value. The explanation in the technical

background section indicates that the frequency should go up.

It is fun to add a variable resistor to set the starting point of TIMERO. This way you get a
frequency generator (or tone generator) with a variable frequency!

276

12.1 TIMERO interrupt

[n the interrupt routine we add the following line:
TMRO = resist

Afier each interrupt the timer will not start at zero but at the value of the variable resistor.
The resistance is measured in the main program (Rule 4: Keep the procedure short)'*:

resist = ADC read low res(0)
The complete program looks like this:

- JAL 2.0.4
include 16F877 _bert

var byte resist
var bit flag
pin_d1 direction = output

-- the actual interrupt routine
procedure make a sound is
pragma interrupt

if TOIF then
-- switch pin to make sound
flag =! flag
pin_d} =flag

-- modify frequency
TMRO = resist

-- clear TOIF to re-enable timer inferrupts
TOLF =0
end if

end procedure

-- enable timer 0

OPTION REG= 0b_0000_0010

"5 Try moving the resist = ADC read low_res(0) statement from the main program to the
interrupt procedure. Slowly increase the frequency and see what happens. Due to the slowness of
this command some sort of maximum frequency occurs.

277

12 Miscellaneous Projects

-- enable interrupts

INTCON = 0b 1010 0000

forever loop

resist = ADC read low res(0)

end loop

Of course you need to add the extra variable resistor to the project:

33k |
{38k |

11132

2 10k
(frequency)
16f877

100 nF
=

1 2131 13 14 20
5] & |& L
& - TR
I 1k

T T (volume)

Figure 145. The exira variable resistor is added.

278

—_— -

Figure 146. The extra variable resistor is added.

-

12.1 TIMERO interrupt

n section 9.4 you can play a simple melody with this technique and perhaps use it as a
{oorbell or christmas decoration.

Debugging with REGedit

Several times in this book you have used registers - special memory locations which
nfluence the behavior of the PIC™. Whenever you doubt the correct setting you can
simply try them all and see what happens in the program.

There is a much simpler way to do this, though, by using the REGedit program. With this
program, in combination with a special library you can see the register values on your PC
and even modify them while the program in the PIC™ is running!

As an example we will take a look at the OPTION REG register of the first program of
this section and then change it in the running PIC™ program.

To start with we will need to add a switch to pin d2. This switch will be used to sidetrack
the main program and allow communication with the PC.

+5V
REGedit
11/32
[«{l ‘ 16877 21 |
1 12131 13 14 20 ™
e
10k 0
w w LS
a g [=%
4 & = &
= Q 1k
s [T T |
L

Figure 147. The additional switch.
The program needs to be modified as well. First, the switch is declared:
pin_d2_direction = input
The special regedit library is included:

--JAL 2.0.6

279

12 Miscellaneous Projects

include 16F877 bert
include regedit

And a call to the library is added to the main loop of the program:
forever loop

-- press switch to edit

if pin_d2 then
register_debug

end if

end loop
With only these minor changes here is the completed program:

- JAL 2.0.6
include 16F&77 bert
include regedit

pin_d1_direction = output
pin_d2_direction = output

var bit flag

-- the actual interrupt routine
procedure make a sound is
pragma interrupt

if TOIF then
-- switch pin to make sound
flag =1 flag
pin_dl = flag

-- clear TOIF to re-enable timer interrupts
TOIF =0
end if

end procedure

280

-- enable interrupts
INTCON = 0b_1010_0000
OPTION_REG= 0b_0000_0010

forever loop
-- press switch to edit
if pin_d2 then
register_debug
end if

end loop

12.1 TIMERO interrupt

When you run the program you hear the whistle, as normal. In the free software download
package you will find the program REGedit. Connect the Wisp 628 programmer (or at
least the black, red, green, and blue wires) and start REGedit:

w REGISTER editor

—Bert van Dam [c) 2006 REGedit**
rEonnecituPID——— ~ Register
E— Name [16i877 option_reg v|
start | stop
——-‘——I Number |31 Dec ‘123
v Wispb28
r gt |rbpu I~ bit7 m
PotonPC———— W [~ Bits m |
& Com1 ¢ Com3]l[}cs [~ BitG W
L('“ Com2 (" Comd |tDse [~ Bitd W
‘r' PIC comm speed — {psa [T Bit3 m
| [ps2 [Bit2 m
& 1200 14ké4
[ps1 ¥ Bit1 m
2400 ¢ 192
psl) [~ BitD m
| (4800 (" 38k4 [|
L s e rea Ehn) B BRI A 3 AR 8 SR e]
-~ Communication 1 About——
‘ send J receiveJ |1191232 i Version 1.0 ‘

Figure 148. The register editor REGedit.

281

12 Miscellaneous Projects

Now let’s change the frequency of the whistle by changing the settings of the
OPTION_REG register:

L.

@

Start the connection by clicking on the "Start" button. The status bar above the
buttons turns green (if needed select another COM port). If you haven’t made any
changes to the 16F877 bert library the speed is correct by default (1200 baud).
Select in the combo box the name of the register, in this case "16F877
option_reg". If all is well this name is already selected when you start the
program,

First let’s check what the current setting of this register is. Press the switch on the
breadboard. The program is directed to a side loop and the whistle stops.

Click on the "Receive" button. The whistle resumes and to the right of the "bit 0,
bit 1..." column the bits that are currently turned on in this register have become
blue. In this case the only blue square is next to bit 1, as is to be expected, for the
program contains the command:

OPTION_REG = 0b_0000_0010

[n the light blue window a few numbers appear, but you can ignore them.

On the other side of the "bit 0, bit 1..." column place a checkmark next to bit 0.
Press the switch on the breadboard and the whistle stops.

Click on the "Send" button. The whistle starts again, but this time the pitch is
much higher. The blue square next to bit 0 is now blue, so that means this bit is
indeed switched on (note that bit 1 is switched off because you didn’t put a
checkmark next to it, just next to bit 0). The current setting is:

OPTION_REG = 0b_0000_0001

This means you have just set the prescaler to 0 (see Figure 140). This results in a
frequency of 9766 Hz, and a sound frequnency of 4883 Hz.

You can use this program to change the register as much as you like. Other registers can
be changed too. You can select those by clicking on the little triangle after the name box.
Also fun is to disable the interrupt altogether (of course then you won’t have a whistle
any meore) and then switch it back on.

If you found a value you fancy you need to add it to your program for the PIC™. With
REGedit you only change the register values, not the program itself. This is very
fortunate, because you could change registers in such a way that the program won’t run
anymore. In which case all you need to do is switch the power off and back on and
everything is restored.

282

12.1 TIMERO interrupt

)f course you can use this technique with any program you like. All you need to do is
ollow these steps:

1. Add a pushbutton switch to a free pin.
2. Make these changes to the PIC™ program:
e Add the special regedit library using include regedit
¢ Define the pin that the switch is connected to. For example:
pin_d2 direction = input
e Add the loop to start the editing process. For example:
-- press switch to edit
if pin_d2 then
register_debug
end if
3. Start the program REGedit.

All registers used in this book are included in the Visual Basic program REGedit. If you
want Lo use other registers you can add them yourself in just two easy steps (assuming
you have Visual Basic).

1. In the Private Sub Combol Click() module add the names of the registers, and the
names of the bits in the registers. Some registers may have the same name in different
PIC™ microcontrollers but with a different address and possibly different contents.
So you also have to add the name of the PIC™, like in the example below of the
OPTION REG register of the 16F877. Enter the bits from high to low; so in
Texi3(0). Text you enter bit 7. And don’t forget to add the final field, Text3(8). Text,
with the address of the register as found in the datasheet, but in decimal.

If Combol.Text = "16F877 option_reg" Then
Text3(0).Text = "rbpu”
Text3(1). Text = "intedg"
Text3(2). Text = "tOcs™
Text3(3). Text = "t0se”
Text3(4). Text = "psa”
Text3(5).Text = "ps2"
Text3(6).Text ="ps1"
Text3(7). Text = "ps0"
Text3(8). Text = 129

End If

2 Then add the exact same name in Private Sub Form_Load() as you had entered in
Combol. Text, like in this example:

283

12 Miscellaneous Projects

Combol.List(0) = "16F877 option_reg"
Obviously, instead of 0 you would select the first available number.

When you start the program this register is now also available.
12.2 Port B interrupt

In this project the port B interrupt is used to count pulses on a pin while the main program
is executing a delay statement.

Technical background

When a program is processing commands, such as a delay statement, signals on pins can
go unnoticed. A few pins of port B, however, can be connected to an interrupt routine. At
the moment a change takes place on one of these pins (high-to-low as well as low-to-

high) an interrupt is generated and the interrupt procedure is executed.

First, two registers need to be set, just like for the TIMERO interrupt, namely
OPTION_REG and INTCON.

284

12.2 Port B interrupt

OPTION_REG REGISTER

RW-1 RMW-1 RW-1 RMW-1 RAW-1 RW-1 RW-1 RW-1
RBPU [INTEDG | TOCS | TOSE PSA PS2 PS1 PSO
bit 7 bit 0

bit 7 RBPU

bit INTEDG

bit 5 TOCS: TMRO Clock Source Sefect bit

1 = Transition on TOCKI pin
0 = Internal instruction cycie clock (CLKCQUT)

bit 4 TOSE: TMRO Source Edge Select bit
1 = Increment on high-to-low transition on TOCKI pin
0 = Increment on low-to-high transition on TOCKI pin

bit 3 PSA: Prescaler Assignment bit
1 = Prescaler is assigned o the WDT
0 = Prescaler is assigned to the TimerQ module

bit 2-0 PS2:PS0: Prescaler Rate Select hits
Bit Value TMRO Rate WDT Rate

000 1:2 1:1
001 1:4 1:2
010 1:8 1:4
011 1:16 1:8
100 1:32 1:16
101 1:64 1:32
110 1.128 1.64
111 1:256 1:128

Figure 149. OPTION_REGregister.

Only the higest bit in this register is of importance. We will connect a switch to a pin and
ake care of our own pull-down'*® resistor. An internal pull-up resistor is nice, but I find it
difficult to remember that 0 means that the switch is closed. Strangely enough this bit has
o be set to 1 if you do not want the pull up.

OPTION_REG = 0b_1000_0000

Of course interrupts in general must be enabled in the INTCON register (bit 7). Switching
on the "interrupt on port B change” is done with bit 3.

INTCON = 0b 1000 1000

13 A pull-down resistor is connected to ground, thus making the pin normally low ("down") and a
switch connected to the power supply voltage can make it high when closed. A pull-up resistor is
connected to the power supply voltage. To have both at the same time would be useless.

285

12 Miscellaneous Projects

This interrupt doesn’t work on all pins of port B, just pins b4, b5, b6 and b7. And since
b6 and b7 are already used for the serial communication through the programmer there
are only two pins left over.

Pin b0 can also be used with an interrupt, but it works a bit differently. For this pin you
have to choose whether you want an interrupt when the pin goes from low to high or

when is goes from high to low.

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2

bit 1

bit 0

137

INTCON REGISTER (ADDRESS OBh, 8Bh, 10Bh, 18Bh)

RW-0 RW-0 RW-0 RW-O RW-0 RWO RW-0 RW-x
| Ge | PpEE | TOE | mNTE | RBIE | TOF | INTF | RBF
bit 7 bit 0

GIE: Global Interrupt Enable bit

1 = Enables all unmasked interrupts

7 = Disables all interrupts

PEIE: Peripheral Interrupt Enable bit

1 = Enables all unmasked peripheral interrupts
9 = Disables all peripheral interrupts

TOIE: TMRO Overflow Interrupt Enable bit

1 = Enables the TMRO interrupt

0 = Disables the TMRO interrupt

INTE: RBO/INT External Interrupt Enable bit

1 = Enables the RBU/INT external interrupt

0 = Disables the RBU/INT external interrupt
RBIE: RB Port Change Interrupt Enable bit

1 = Enables the RB port change interrupt

0 = Disables the RB port change interrupt

TOIF: TMRO Overflow Interrupt Flag bit

1 = TMRO register has overflowed {must be cleared in software)
0 = TMRO register did not overflow

INTF: RBC/INT External Interrupt Fiag bit

1 = The RBOY/INT extarnal interrupt occurred (must be cleared in software)
3 = The RBUINT external interrupt did not occur
RBIF: RB Port Change Interrupt Flag bit

1 = At least one of the RB7:RB4 pins changed state; a mismatch condition will continue to set
the bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared
{must be cleared in software).

0 = None of the RB7:RB4 pins have changed state

Figure 150. INTCON register.

"7 If you want to use this interrupt you need 1o set bit 6 (intedg) to 1 (low-to-high) or 0t (high-to-
low) in OPTION _REG , and in INTCON you need to set bit 4 (inte) to 1.

286

12.2 Port B interrupt

The software

When the interrupt routine is called we must first check to see if this is indeed a port B
generated interrupt. This can be done with RBIF."* If this variable is high the next step is
to determine which pin is involved. Since the serial connection is also on this port the
interrupt might also be caused by signals coming in on those pins.

The switch is connected to pin b5 and is likely to cause bouncing . With a small loop we
can wait for the pin to go low again and then another 1 ms to catch the remainder of the
bouncing.

It is not a very elegant program (we did say interrupt routines should be as short as
possible), but it does work.

So like this:

procedure detect_a_pin is
pragma interrupt

if RBIF then
if pin b5 ==1 then
counter = counter + 1
end if
while pin_b5 loop
end loop
delay lms(1)

-- clear RBIF to re-enable timer interrupts
RBIF =0

end if
end procedure

In the main program an LED flashes at a leisurely pace of 5 seconds on and 1 second off.
The idea of this project is that you press the switch on the breadboard a number of times
while the LED is on. Invisible to you the interrupt routine counts this number. When the
LED is turned off the result of the count is sent to the PC and the counter is reset to zero.

1% Bit 0 in the OPTION_REG register.

287

12 Miscellaneous Projects

if counter != 0 then
serial_sw_write(counter)
counter = {

end if

Note that an interrupt is generated when this pin goes from low to high (when the switch
is pressed), but also from high to low (when the switch is released). When you push the
switch just once and release it the counter on the PC will show 2,

The entire program looks like this:

- JAL 2.0.4
include 16F877 bert

pin_b4 direction = input
pin_b5_direction = input
pin dl direction = output

var bit led is pin_dl1
var byte counter
counter =0

-- the actual interrupt routine
procedure detect_a_pin is
pragma interrupt

if RBIF then
if pin_b5 ==1 then
counter = counter + 1
end if
while pin_b5 loop
end loop
delay 1ms(1)

-- clear RBIF to re-enable poort B interrupts
RBIF =0

end if
end procedure

288

12.2 Port B interrupt
- disable pull-up
OPTION REG= 0b_1000_0000

-- enable interrupts
INTCON = 0b_1000 1000

forever loop
-- start test
led = high

delay 1s(5)
led = low

-- show test results

if counter !'= 0 then
serial sw_write(counter)
counter =0

end if

-- short break
delay 1s(1)

end loop
The hardware

The hardware is simple, just the normal 16F877 setup with one switch and an LED.

289

12 Miscellaneous Projects

+5V
to PC 11/32
- 40 S /
@ 16877
>— 39 38
1 121 13 14 20
0 .
o
W w 8 =
a E a
g & s ||
E T R
: T°T e
L

Figure 151. Port B interrupt.

e U el B B et

Figure 152. Port B interrupt on the breadboard.

12.3 Pictures of light

Our eyes see a fast moving light as a stripe. By flashing lights in a certain rhythm while
they move our eyes see a picture: a picture of light..

290

12.3 Pictures of light

Figure 153. A picture of light.

Technical background

The purpose of this project is to have a row of LEDs flash in such a way that a picture can
be seen when the LEDs are moved about quickly. It sounds much more complicated than
it is in reality.

t1] | | 5

1111111

<] ..
000100H1

12 NI 0 I =
00001 1.0

Figure 154. From letters to binary strips.
In the figure above you see the letter "b". The 7 LEDs are aligned in a column. At time t1

all of the LEDs are lit, displaying the first column of the figure, which is the back line of
the "b". (A yellow square means that a LED at that position is switched on). A very short

291

12 Miscellaneous Projects

time later, at time t2, the LEDs have moved slightly to the right and are lit to display the
second column of the "b" up (the first and fourth from the bottom). Two "very short
times" later at t4 the last column of the "b" is shown. The slowness of our eyes ensures
we can still see the entire "b’even though it is no longer there (and if fact it never even
was there in the first place).

Every colored square represents one LED that is switched on. If we connect all LEDs to a
single port we can set them all in the correct position (on or off) in one go, like this:

portd = 0b_0001_1100

Using square ruled paper you can draw a picture and program it column by column. This
gets boring real quick, however, so you can simply use the SkyWriter program. When
you start the program you see what looks like square ruled paper. Each square represents
a single LED. By clicking with the mouse on the squares you can switch them on or off,
and make a drawing. When you are done you put a checkmark under every column that is
part of the drawing and should be put into the program.

Before you continue you need to enter the name of the JAL program you want to create in
the white box on the lower left hand comner, including a path (such as
¢i\piedevitmpisky.jal). Next, click on the "Start new JAL program” button (the square
next to the file name turns green). Then click on "Add marked columns”. The field next
to the file name (Selected) shows how many columns are currently in the program.

292

12.3 Pictures of light

w Skywriter Textmaker V1.2 IZHEIE‘

r~ Bert van Dam [c)2005/2006

Skywriter textmaker

— Sky text WESna

6]

I |

 Column Select e
Vv¥vVVIVVIVVVVVVVIVVVVVVVVIVI

~ Controls

Start new JAL program Add marked columns Finish JAL program

. Ic:\pictmp\skj,l‘ial Selsctad 23 Clear Screen |

Figure 155. Skywriter in action.
Now you can choose:

1. The screen was too small for your picture. Erase the picture by clicking on the "Clear
Screen" button and draw the next part of your drawing just like you drew the first
part. When you are done click on "Add marked columns" again. Repeat as needed.

2. You have completed the picture. Click on "Finish JAL program". The square next to
the file name turns red again. The JAL program is now completed.

The software

The result of your artistic skills in SkyWriter is a ready-to-run program that can be sent to
the PIC™ as it is. At the beginning you will find the variable "watch" that indicates how
long the program needs to wait between each port command. This represents the speed at
which you need to wave the LEDs about. If you feel you need to move too fast (or too
slow) modify the value of "watch".

293

12 Miscellaneous Projects

294

- JAL 2.04
include 16F877 bert

var byte watch
watch = 50

pin_d0_direction = output
pin_d!_direction = output
pin_d2_direction = output
pin_d3_direction = output
pin_d4 direction = output
pin_d5_direction = output
pin_dé_direction = output
pin d7_direction = output

forever loop

-- sweep forward

portd = 0b_0000_0000
delay_100us{watch)
portd=0b 1111 1110
delay 100us(watch)
portd = 0b_0001_0010
delay 100us(watch)
portd = 0b_0001_0010
delay 100us(watch)
portd = 0b_0000 1100
delay 100us(watch)
portd = 0b_0000_0000
delay 100us(watch)
portd = 0b_0001_1100
delay_100us{watch)
portd = 0b_0010_1010
delay 100us(watch)
portd = 0b_0010_1010
delay_100us(watch}
portd = 0b_0001_1010
delay 100us(watch)
portd = Ob_0000_0000
delay 100us(watch)
portd = 0b_0000_0000

12.3 Pictures of light

delay 100us(watch)
portd =0b_0011_1110
delay 100us(watch)
portd = 0b_0001_0000
delay 100us(watch)
portd = 0b_0010_0000
delay 100us(watch)
portd = 0b_0011_0000
delay 100us{watch)
portd = 0b_0000 0000
delay 100us({watch)
portd = 0b_0000_0000
delay 100us{watch)
portd=0b_1111_1100
delay 100us{watch)
portd =0b_0001 0010
delay 100us{watch)
portd =0b_0001 0010
delay 100us(watch)
portd = 0b_0000_0100
delay 100us(watch)
portd = 0b_0000_0000
delay_100us(watch)

-- sweep back
for { 23 * watch) loop
delay 100us(1)
end loop

end loop

The return pass (with the LEDs off) takes exactly as long as the forward pass. So try to
use an even rhythm.

The hardware

This project runs on battery power to prevent problems with short power leads. A voltage
regulator is used (the 7805), which runs off of a small 9 volt battery.

295

12 Miscellaneous Projects

UAT7805

| .
l 2
11/32 9V
-
8 161877 —IH-1 uF
12/31

I|+

|

1 13 14 19 20 21 22 27 28 29
10k [=] o
O (BB (8] 1B 1B 1B |B
|_u. = 3 Q
Ts P N N SN /AN
Y]]
TE T°T PR R e U NN E NSV

Figure 156. Pictures in light.

By now you have probably questioned why seven LEDs have been used when eight
might have been more logical. Using just seven LEDs allows you to borrow designs from
an LCD screen, because that also uses seven lines (the 8th is for the cursor); see section
12.5. The eighth pin is configured as an output so that we can set the entire port at once.

Figure 157. Pictures in light with battery power.

The instructions are very simple. Hold the breadboard at the battery side and wave it back
and forth, preferrably in the dark. Look at the letters and adjust your swinging motion as
needed. It takes a bit of practice to get it right, but the result is absolutely amazing: a
picture of light out of nowhere!

Keep a firm grip on the battery and don’t remove your fingers from it. Otherwise the

battery will immediately be launched in the direction of the most expensive object; that
tiny rubberband isn’t going to hold it in place.

296

12.4 Digital clock

12.4 Digital clock

A digital clock with an LCD display.
Technical background

In principle this program consists of two interlocking loops

Main loop 1. Wait 1 second.
(select =0) 2. Increment the relevant counters.
3. Seeif any button has been pushed.
4. Return to step 1.
Secondary loop Skip the "wait 1 second” statement.
(select 1= 0) Do not increment the counters.

1

2.

3. Seeif any button has been pushed,

4. Display the text that goes with the selected
function.

5. Make sure the up/down buttons modify the
correct counters,

6. Return to step 1.

The 16F877 bert library doesn’t have LCD commands so we will load the extra library,
led 44780. The commands to put numbers and letters on the LCD display have already
been discussed in section 5.4.

This, however, is a new command:

LCD clock line pos(number, line, position)
This is a special command for clock applications. The number is displayed on two
positions with preceding zeros. That means it will display the number 4 as "04" It also
means that any number higher than 99 will only show the last two positions (so 255
would be displayed as "55™), but for a clock that is not relevant.
The software
The switches in this project are push buttons, and every time you press them they should
give just one pulse (this is done by the debouncing technique discussed in section 4.3).

The hours are displayed from 0 o 23. If you want to display the hours in the American
format you'll have to modify the program, and add "am" and "pm".

297

12 Miscellaneous Projects

This piece of the program may surprise you:

if hour == 0 then hour =24 end if
hour = hour - 1

It would seem more appropriate to write:

hour = hour - 1
if hour < 0 then hour =23 end if

But howr has been defined as a byte, so it can never be smaller than 0. And declaring hour
as an sbyte (which does allow negative numbers) is not possible either, because the LCD
library cannot handle it.

The rest of the program contains no surprises:

-~ JAL 2.04
include 16F877 bert
include led 44780

-~ define variables
var byte second =0
var byte minute = 0
var byte hour = 0
var byte counter = 0
var byte selected=0

-- define switches

var bit select is pin_d2
var bit up is pin_dl
var bit down is pin_d0

-- define texts

var byte TimeText[4]={"T","i","m","¢"}

var byte HOurTeXt[lz] {HAII Ildll IIJH’H "’" “,"t"," " llhl‘ "O","u" !lrI! "S

var byte MlnuteTeXt 14] {HAH Hdl‘ l'.]",H "’"‘ Il,lltl‘l," ","m","1","1’]","]_]","':","e","S"}

298

-- set text line O

counter = 0

for 4 loop
LCD char _line pos(TimeText[counter],0,counter)
counter = counter + |

end loop

-- switch the cursor off
LCD cursor = off

forever loop

if selected == then
- only run if not adjusting fime
delay 1s(1)
second = second + 1
if second == 60 then
second =0
minute = minute + 1
if minute == 60 then
minute =0
hour = hour +1
if hour == 24 then
hour = 0
end if
end if
end if
end if

-~ display time

LCD clock _line pos(hour, 0,6)
LCD clock line_pos(minute, 0,9)
LCD_clock_line pos(second, 0,12)
LCD_char_line_pos(™:",0,8)
LCD_char_line_pos(™:",0,11)

12.4 Digital clock

299

12 Miscellaneous Projects

-- function select
if select then
while select loop
delay 10ms(1)
end loop
selected = selected + 1
end if

-- adjusting hours
if selected == 1 then
counter = {
for 12 loop
LCD char_line_pos(HourText[counter],1,counter)
counter = counter + 1
end loop
end if
if up & selected == | then
while up loop
delay 10ms(1)
end loop
hour = hour + |
if hour > 23 then hour = 0 end if
end if
if down & selected == 1 then
while down loop
delay 10ms(1)
end loop
if hour == 0 then hour = 24 end 1f
hour =hour - 1
end if

-- adjusting minutes
if selected == 2 then
counter =0
for 14 loop
LCD_char_line_pos(MinuteText[counter],1,counter)
counter = counter + 1
end loop
end if

300

12.4 Digital clock

if up & selected == 2 then
while up loop
delay 10ms(1)
end loop
minute = minute + 1
if minute > 60 then minute = 0 end if
end if
if down & selected = 2 then
while down loop
delay 10ms(1)
end loop
if minute == 0 then minute = 60 end if
minute = minute - 1
end if

-- done adjusting
if selected == 3 then
counter = ()
for 14 loop
LCD char line pos(" ",1,counter)
counter = counter + 1
end loop
selected = 0
end if

end loop
The hardware

The variable resistor on pin 3 is used to adjust the brightness of the display. If you run
this project and you don’t see anything on the display (or just black blocks) try adjusting
this variable resistor.

T'he regular switch is just to light the display. This uses quite a bit of power. In the next
table you see an estimate how long the clock can run using 1.5 volt AA batteries:

Display Power consumption Battery life'*’

off 8.4 mA 200 hours
on 51.6 mA 40 hours

139

Predicted battery life using Duracell AA MN1500 alkaline batteries.

301

12 Miscellaneous Projects

+5V
H Z
2 N e I 2 | brightness
i =
- 2x16 LCD 162A0
backlight ™
4 61112 13 14 1/5/16 =
23 24 33 34 35 37 £ /a/3%
(=] 3 =
19— 3
11/32
16f877 %
o A
3 1 1231 13 14 21—
EIN 0 s [gus
s N s e o) g
= & = |8
Tk T°T
+

Figure 158. Digital clock.

Figure 159. The digital clock is operational.

302

12.5 Scrolling display with animation

The operation is very simple. Connect the power to the project. The display will show
"Time 00:00:00', where the seconds start running immediately. Press the "select” push
button (the left one on the breadboard). Press it long enough to see one second pass (you
need to get beyond the delay [s(I) statement) and then release it. On the bottom line the
words "Adjust hours" are displayed and the clock will stop running. Use the other two
push buttons to increase (middle button) or decrease (right button) the hours. Once the
hours are correct press "select” again. This time the delay 1s(1) command is not in the
toop so you don’t have to wait. Now the words "Adjust minutes" are displayed. Set the
correct minutes similarly to the way you adjusted the hours. When you are done press
"select" again. The lower line on the display will clear and the clock will start running.

12.5 Scrolling display with animation

A scrolling display with custom animation.
Technical background

A scrolling display consists of letters that appear on the right side of the LCD screen,
scroll to the left, and then disappear off the left side. In section 5.4 it was briefly
mentioned that you can print outside the visible area of the LCD screen. In this project
we will make good use of this technique, since it allows us to shift a row of 40 characters
back and forth past the display while only the sixteen characters "in" the display area are
actually visible.The rest protrudes off the sides and is invisible. This means we can write
all of the characters right next to the display in one go and then shift them left one
character at a time to get a scrolling motion.

Pr‘_ . NS O

H._._

outside display area

visible part
of the display

Figure 160. Character appearing from the right side.

What disappears on the left while shifting eventually shows up on the right again. So if
we simply keep on scrolling left the same characters will dispiay endlessly.

A convenient way to store the text vou want to display is in an array. You can make such

an array with the same program that we used in section 10.3 to make pragma commands.
Except this time you select "array" instead of "pragma”,

303

12 Miscellaneous Projects

e —

r— Data converter

Enter your text here: |
LED |

Then convert and copy to clipboard
Dragma eedata "L E" D" "

Convertto ... | & pragma Copy to clipboard
" amnay

annghl [c)2006 Bert van Dam

Figure 161. Making arrays with PEconvertor.

The result is a ready-made array called "Demo". You can rename it if you want and turn
it into a declaration, like this:
|'l III")"CII,II n "_" nn IIM" ‘"i‘l "C","r",“0“,“0“,“0”,“““,"t","r“’

9 ?] b ?

var byte news[22] =

{"P
"0N "1" ||1ll |l nn Il n ll}

The entire content of this array is now placed to the right of the LCD screen, starting at
position 17 (remember the display only has 16 positions):

counter = ()

for 22 loop
LCD char line pos(news[counter],0,counter+17)
counter = counter + |

end loop

If we scroll left continuously in the main loop all of the text will scroll through the visible
area of the LCD:

delay 100ms(4)
LCD_shift_left

304

12.5 Scrolling display with animation

The command LCD _shift left is part of the led_44780 library. What’s confusing is that
the position numbers also shift left. That means position 0, the leftmost position on the
screen when the project starts, becomes position 1 after one left shift. So when you write
something to position 0 you won’t see it. You can restore the entire LCD screen to the
starting position by re-initiallizing it with the LCD_init command.

During scrolling you need to add a short delay, otherwise it will go much too fast for you
to read. And while this scrolling is fun, it would be even more interesting if it would stop
every once in a while and show a small animation, such as a spinning clock.

In the datasheet'*‘of the 44780 you can sec that a number of positions in the character
memory of the LCD screen are empty. The first eight {circled red in Figure 162) can be
used to store custom characters.

140 This is considered the LCD standard, which is also applicable to the display used in this book.
You can download the datasheet of the industry standard, Hitachi hd47780, from
hitp://www hitachi-ds.com/en/download/brochures/

305

12 Miscellaneous Projects

Upper 4
Low~7552! 0000 0001 | 0010

(=]
(=]
-
-
(=]
et
(=]
o
o
ey
o
—

0110 | 0111 1000 | 1001 | 1010 | 1011 | 1100

-
-
(=4
-
-
-
=
o

1111

", g T

xxxx0000 R(c'?(;d F' i~ X l_:l: P

x0x0001 | (2) I = i T.' a'_ 5 ':I
]|

i

"
e
J.'l

xxxx0010 | (3)

=

xxxx0011 | (4)

-

CH
.

xxxx0100 | (5)

xxxx0101 | (B)

A |

oy [a0 00 =] T (Gl) e

xxxx0110 | (7) E-:

= < OO = U AT ST

e R RSO T b | B (T N o B il T
o L SR iy | [N nf TT

xxxx0111 | (8)

A MO

o
—
-
. |
-
s

xxxx1000 | (1)

s

e 3k 5l 1 R

I-
1

xxxx1001 | (2)

"

L 3 T

[

1
xxxx1010 | (3) S

+

waln
..I I-

xxxx1011 | (4)

L
=

<=k A DT
.-_|.-|
P =
J

xxx1100 | (5) =

- B o HC

!
Il
—

-

xxxx1101 | (8)

el L= SE A BHE R B

=1]

z
d
I

M+
3
“

xxxx1110 | (7) = _::' I-" I'-l) '.-I
xxxx1111 | (8) -"'. -:'I I_I — |:| mnj I:_.I . |:|

Figure 162. Character set of the LCD screen.

You can design the custom characters by hand, but you can also use the CHARmaker
program which is in the free download package.

306

12.5 Scrolling display with animation

w CHARmaker V1.0

~ Bert van Dam [c] 2006

L L CHARMaKer

Character————————

CharDatal 0] = 0b_000_011101 ‘
CharDatal 1] = 0b_000_10101 | 1
CharData[2] = 0b_000_10101 1 |
ChaDatal 3] = 0b_000_111011 .
CharDatal 4] = Ob_000_10001 | |
CharDatal 5] = 0b_000_10001 | I
CharData(6] = 0b_000_011101
CharData] 7] = Ob_000_00000 |

j"tﬂﬂtfﬂ'S" e i i 1) M TR L SN SRV SA N AT

!_ Convert | Clear Screen Copy to clipboard | |

Figure 163. Design of a clock in CHARmaker.

The program works as follows: on the left you can design your character by clicking the
squares on and off with your mouse. Then you click the "Convert" button to turn your
design into an array. With "Copy to clipboard" the array is copied, which you can then
paste into your program editor with the Edit-Paste (or Control-V) command. In your Jal
program it will look like this:

CharData[0] =0b_000_01110
CharData[1] =0b_000_10101
CharData[2] = 0b_000_10101
CharData[3] = 0b_000_11101
CharData[4] = 0b_000_10001
CharData[5] = 0b_000_10001
CharData[6] =0b_000_01110
CharData[7] = 0b_000_00000

You don’t need to declare this array, this has already been taken care of in the LCD
library. IMPORTANT: you cannot give the array another name!

Now we can transfer the entire array to the LCD memory:

LCD_custom(3)

307

12 Miscellaneous Projects

In this case the custom character is put at the fouth memory location from the top (the
counter starts at (). This memory is permanent; when you switch off the display the
character is retained and can be used again when you switch the display back on. If you
want to change the character to something else simply overwrite it with your new design.

There are five columns and eight rows available for your design. If yvou look at the
existing character set you will notice that the bottom line is always empty. This is because
the cursor flashes on the bottom line. It is best to keep this line empty on your designs as
well, unless you are certain that you will not be using the cursor.

The software

One clock is not much of an animation so we will make four custom characters, each with
different minute hand positions.

The show starts by displaying the animation. It is shown three times (the Jfor 3 loop) and
consists of four different custom characters (the for 4 loop). By playing with the counters
a bit we can display eight animated clocks on the screen at the same time, each turning
three times around.

for 3 loop
counter =0
for 4 toop
counter2 =0
for 8 loop
LCD_char_line pos (counter,0,counter2)
counter2 = counter2 + 2
end loop
delay 100ms(4)
counter = counter + |
end loop
end loop

After that the scrolling of the text starts. This has to stop at exactly the right moment. One
reason is that otherwise there would be no room for the animations. But more importantly
we want the first position on the screen to be zero again so the whole text scrolling can
start over. Since there are 40 characters in the scrol-marquee we shift left 40 times:

for 40 loop
delay 100ms(4)
LCD shift_left
end loop

308

12.5 Scrolling display with animation

>erhaps good to note is that the new characters must be in the array CharData[]. You are
1ot allowed to change that name, That means every custom character has to be stored in
he 1.CD memory before you can define a new character. Otherwise the arrays would
yverwrite each other.

This is the completed program:

- J4L 2.0.4
include 16F877_bert
include lcd_44780

var byte counter, counter2
Va[’ byt€ newS[zz] — {HPH,IFIII’IIC"’" ","-H!ll ||’IIM|l’”i","C"’"rll’l‘O"’"C"’llOll
’IFnll’lltll,"rll’IION,"l"’Hlﬂ’ﬂell’"r",llsn}

- switch the cursor off
LCD_cursor = off

- write character, also outside display area
counter =0
for 22 loop
LCD char line pos(news|counter],0,counter+17)
counter = counter + 1
end loop

-- custom character
CharData[0] =0b _000_01110
CharData[1]1=0b_000_10101
CharData[2] = 0b_000_10101
CharDataf 3] = 0b_000_10101
CharData[4] = 0b_000 10001
CharData[5] =0b_000_10001
CharDataf 6] =0b_000 01110
CharData[7] = 0b_000_00000
- load custom character in LCD memory location 0
LCD custom{0)

-- custom character

CharData[0]=0b 000_01}110
CharDataf 1]=0b_000_10101
CharData[2] = 0b_000 10101

309

12 Miscellaneous Projects

CharData[3] =0b 000 _10111

CharData[4] = 0b_000_10001

CharData[5] = 0b_000 10001

CharData[6] = 0b_000 01110

CharData[7] = 0b_000_ 00000

-- load custom character in LCD memory location]
LCD custom(l)

-- custom character
CharData[0] =0b_000 01110
CharData[1] =0b_000_10101
CharData[2] = 0b_000_10101
CharData[3] =0b_000_10101
CharData[4] = 0b_000_10101
CharData[5] = 0b_000_10101
CharData[6] = 0b_000_01110
CharData[7] = 0b_000_00000
-- load custom character in LCD memory location 2
LCD custom(2)

-- custom character
CharData[0] = 0b 000 01110
CharData[1] =0b_000_10101
CharData[2] = 0b_000_10101
CharData[3] =0b_000_11101
CharData[4] = 0b_000_10001
CharData[5] = 0b_000_10001
CharData[6] =0b 000 01110
CharData{ 7] = {b_000 00000
-- load custom character in LCD memory location 3
LCD custom(3)

forever loop
-- show clock 4 frame animation 3 times
for 3 loop
counter = ()
for 4 laop
counter2 =0
for 8 loop
LCD_char line pos (counter,0,counter2)
counter? = counter2 + 2
end loop

310

delay 100ms(4)
counter = counter + 1
end loop
end loop

12.5 Scrolling display with animation

-- move left continuously, will wrap around

for 40 loop
delay 100ms(4)
LCD_shift_left
end loop

end loop

The hardware

The schematic is more or less identical to the one from section

switches.

12.4, but without the

[2x16 LCD 162A0
15
backlight
4 61112 13 14 1/5/16
23 24 33 34 35 37
11/32 16877
£ 4
] 1 1231 13 14
10 k

100 nF

L

20MHz 22

—| 20 pF

20 pF
__1

brightness

Figure 164. Scrolling display.

-

In the breadboard picture you can see that the animation has just finished and scrolling

has begun.

311

12 Miscellaneous Projects

Figure 165. Scrolling display with animation.

12.6 Ultrasonic radar

In this project a Devantech SRF04 Ultrasonic Range Finder is modified so it can function
as radar.

Technical background

The Devantech SRF04 Ultrasonic Range Finder measures the distance to the closest
object in its path. Any ultrasonic echoes that arrive later are processed, but subsequently
ignored and not passed to the PIC™.

Time to fire up the soldering iron and adapt the sensor a little bit. We will add a new wire,
the "raw signal line', and we will process any signals on that line ourselves, bypassing the
sensor’s microcontroller.

WARNING: You void the manufacturer’s warranty by modifying the sensor. And you

will be soldering wire to an SMD component. So don’t make the modification unless you
have the skill to do so.

312

12.6 Ultrasonic radar

-
-
-
-
e
-

Figure 166. The yellow wire in the circle is new.

The figure above shows the bottom of the printed circuit board of the sensor. The
yellowish wire needs to be soldered to pin 5 of the 12C508 chip. I have wrapped a piece
of wire around the tip of my soldering iron, and by extending it a little bit I created a very
small tip. Using a magnifying glass I was just able to solder a wire to that pin. The chip
rose up a little bit, but fortunately that had no impact on performance.

On this new wire all incoming ultrasonic echoes are received, not just the first one. So
the 16F877 needs to "listen" to this wire. Since it is normally high it needs to wait for the
line to go low (/radar). We will use a counter called distance to register how long it takes
for an echo to come in.

procedure GetSignal (byte out distance) is begin
distance =0
while radar & distance < 254 loop
distance = distance + 1
delay 10uS(2)
end loop
distance = distance - 1
-- wait until radar is positive again
dummy =0
while ! radar & dummy < 254 loop
dummy = dummy + 1
end loop
end procedure

Since it is possible that there is no echo at all we need a way for this loop to time out.
This will happen as soon as distance exceeds 254.

313

12 Miscellaneous Projects

The same applies for the end of the signal. We need to wait for the signal to finish to
make sure we are not repeatedly counting the same signal. It may, for whatever reason,
never end. So a time out is used here as well.

Of course this is just one signal; there may be others. In fact, we hope there are others of
the modification would have been pointless. So we will call this procedure multiple times
- in this project five times. It’s rare to see more than five signal echoes.

Meanwhile the PC is busy turning the radar unit in the proper direction. We will need to
wait for the unit to be in position before sending a radar pulse. The PC informs the
16F877 about this by sending the letter "s" (for "start").

Procedure GetRadar (byte in angle) is begin
-- wait for the PC to signal a start (s)
dummy = "0"
while dummy !="s" loop

serial_sw_read(dummy)

end loop

-- send pulse

pulse = high

delay 10uS(4)

pulse = low

-- wait for echo circuitry to switch on

while ! echo loop

end loop

GetSignal(distancel)

GetSignal(distance2)

GetSignal(distance3)

GetSignal(distance4)

GetSignal(distance5)

-- send distance to PC

serial_sw_write(angle)

serial sw_write(distancel)

serial_sw_write{distance2)

serial_sw_write(distance3)

serial_sw_write(distance4)

serial sw_write(distance5)
end procedure

As a next step the distances measured are sent to the PC for processing.

314

12.6 Ultrasonic radar

‘he ultrasonic sensor is mounted on a contraption made with Lego Technic and
ontrolled by a motor:

Figure 167. Mounting the sensor.

The pulse wheel is located at the bottom, just like in section 7.3, and with a Fairchild
QRB134 infrared photo reflector to detect the black/white transitions. In this case, a pulse
wheel is used with 16 sections (8 white and 8 black).

Figure 168. Construction of the base unit.

Rotating the unit is done by waiting until the infrared sensor measurement changes,
indicating a different color is now in front of the sensor:

315

12 Miscellaneous Projects

CCPRIL = speed
-- wait for color change on sensor wheel
while rotation loop
yellowled = rotation

end loop R

CCPRIL =0 ;
After 180 degrees the unit must be stopped (otherwise the wires to the ultrasonic sensor
will wrap themselves around the unit). Then the unit will be rotated back 180 degrees to
the starting position:

if rotpulse > 56 then
-- go hack to start otherwise the wire will get entangled
direction = true
CCPRIL =175
for rotpulse / 2 loop
while ! rotation loop
yellowled = rotation
end loop
while rotation loop
yellowled = rotation

end loop
end loop
direction = false
rotpulse =0
end if

The data that is been transmitted to the PC requires some math for it to be useful.

The pulse wheel is divided into 16 sections, so each section the motor rotates translates to
360/16 =22.5 degrees.

The gears from the horizontal axle to the vertical axle have a ratio of 1 to 1, but from the
vertical axle to the plaform is a ratio of 8 teeth to 56 teeth (1 to 7). So the radar unit wiil
rotate 22,5/7 or 3,2 degrees per pulse wheel section. This means 56 pulses from the PC to
rotate (#otpulse) will turn the unit approximately 180 degrees.

The PIC™ will send a rotation angle and a distance to the PC. In order to know where in

the screen the corresponding dot needs to be placed the data must be converted to
horizontal (x) and vertical (y) screen coordinates:

316

12.6 Ultrasonic radar

x = distance * cos (angle)
y = distance * sin(angle)

‘o complicate matters (in case you don’t think it is complicated already), the x = 0
osition of graph paper is at the bottom, but on a computer screen it is at the top. So we
eed to compensate for the size of the screen. And finally, it would be nice if the center of
wur half circle would be in the middle of the screen all the way at the bottom.

n Visual Basic it looks like this:
yt = Form1.Picturel.ScaleHeight - (d * Sin(alpha)) *
(Form1.Picturel.ScaleHeight / range)
xt = (d * Cos(alpha) * Form1.Picturel.ScaleWidth / (range * 2)) +
Forml.Picturel.ScaleWidth / 2

Nothing is ever simple, because Visual Basic works in radians and not in degrees so that
1eeds to be converted as well:

alpha = anglefrompic * 3.2143
alpha = alpha * (3.1415692 / 180)

“ortunately the picture is worth all this trouble:

Cornect to PIC Range Incoming data
===

CX C# Angle Echo2 Echo3 Echod Echo§
186 n a2 -4 m .

Echol

Figure 169. Radar image of my office.

317

12 Miscellaneous Projects

On the ultrasonic radar image of my office 1 have noted what the radar was pointed at
when that particular signal was received. At the top of the screen the measurements
received from the PIC™ are displayed. Apart from that you can select a range (the scale
of the radar image on the PC). The shorter the range the more the image is magnlﬁed
Measurements outside the screen are not shown.

You can see that reading this image is not very ¢asy. Most of the objects in my office are
hard, so stray ultrasonic echoes appear to be bouncing about. For indoor use the decision
of the manufacturer only to process the first incoming echo was a wise one.

The software

Since all of the important parts have already been discussed all that is left is to put them
together:

- JAL 2.0.5
include 16F877 bert

var byte rotpulse, speed , angle, dummy
var byte distancel, distance2, distance3, distanced, distance5

-- define the pins

var bit rotation is pin_c0 -- rofation sensor
var bit direction is pin_¢3 - motor direction
var bit yellowled is pin_c4 -~ rotation sensor led
var bit pulse is pin_d0 -- pulse trigger

var bit echo is pin_d1 -- echo signal

var bit radar 1s pin_d2 -- additional wire

pin_c0_direction = input
pin_c3_direction = output
pin_c4 direction = output
pin_d0_direction = output
pin_d1_direction = input
pin_d2_direction = input

procedure GetSignal (byte out distance) is begin

-- wait for negative (!} signal on the radar line
distance = 0

318

-- while radar & distance < 254 loop

while radar & distance < 254 loop
distance = distance + |
delay 10uS{(2)

end loop

distance = distance - 1

-- wait until radar is positive again

dummy =0

while ! radar & dummy < 254 loop
dummy = dummy + 1

end loop

end procedure

Procedure GetRadar (byte in angle) 1s begin

-- wait for the PC to signal start (s)

dummy ="0"

while dummy !="s" loop

serial_sw_read(dummy)

end loop

-~ send pulse

pulse = high

delay 10uS(4)

pulse = low

- wait for echo circuitry to switch on

while ! echo loop

end loop

GetSignal(distancel)

GetSignal(distance2)

GetSignal(distance3)

GetSignal(distance4)

GetSignal(distance5)

-- send distance to PC

serial sw write(angle)

serial_sw_write(distancel)

serial sw_write(distance2)

serial sw_write(distance3)

serial sw_write(distanced)

serial sw_write{distance5)
end procedure

pulse = low
-- enable pulse width modulation

12.6 Ultrasonic radar

319

12 Miscellaneous Projects

320

PWM _init_frequency (true, true)

rotpulse = 0
direction = false
speed = 100

forever loop

CCPRI1L = speed
- wait for color change on sensor wheel
while ! rotation loop
vellowled = rotation
end loop
CCPRIL=0
rotpulse = rotpulse + 1
GetRadar (rotpulse)
CCPRI1L = speed
-- wait for color change on sensor wheel
while rotation loop
yellowled = rotation
end loop
CCPRIL =0
rotpulse = rotpulse + 1
GetRadar (rotpulse)
-- if half a circle has been made
if rotpulse > 56 then
-- go back to start otherwise the wire will get entangled
direction = true
CCPRIL =175
for rotpulse / 2 loop
while ! rotation loop
yellowled = rotation
end loop
while rotation loop
yellowled = rotation
end loop
end loop
direction = false
rotpulse = 0
end if

end loop

n the download package you will find the Visual Basic radar program for the PC.

'he hardware

12.6 Ulirasonic radar

)n the breadboard you may have noticed the BS170 MOSFET in the ground wire
etween the 5 and 9 volts sections. This part is not necessary and has been omitted from
he schematic.

Figure 170. Ultrasonic radar schematic.

| I 3 1
ua7805 | +
1 2
g é 4 5 9 volt
— battery
21 1 10k 0.1uF -
0 w
16877
QRB1134 to PC
g b 40—
] o -
20 pF
= . - 6
09 20 MHz 100 nF TC4427A
H I 14 23 h 2 5
20 pF 3
P ["sFro4 17 A 4 4 @
: 19
trigger 22 7
—T +5v 0.1uF
echo 20 29 12 3 i " = 3
gnd radar}—] a3 8 b
N N N
VA NAVA
LED LED LED
(yellow) (green) (red)

On the breadboard several capacitors are shown in the power lines. Small ones of 0.1 uF
ind larger ones of 470 uF. These may be required to prevent disturbances to and from the
lifferent sensors. They are not shown in the schematic, because the layout of the
omponents determines how many are needed and where. The right side of the upper rail
s 9 volts, the rest is 5 volts.

321

12 Miscellaneous Projects

Figure 171. Ultrasonic radar on the breadboard.

12.7 Handling larger currents

It will happen periodically that you want to connect something to a PIC™ that consumes
too much power. A siren from a burglar alarm, a 110 V or 240 V light bulb for a darkness
activated switch, or even a simple Lego motor.

A PIC™ can drive a maximum of 25 mA per pin with a maximum of 200 mA per port. If
you need more power (or a higher voltage) you will need to use a transistor, a TC4427A
MOSFET driver, or a relay. In this chapter these three methods are discussed. In the table
below you can see the applications for each method.

Method Reversible Adjustable Handles
power direction power quantity dangerous
voltages or

currents
Transistor X
MOSFET driver X X
Relay X

322

12.7 Handling larger currents

12.7.1 Transistor

Using a transistor is quite simple, but selecting the right type is a bit more complicated.
The method described here was devised by John Hewes'!' of the Kelsey Park Sports
College Electronics Club.

There are two basic types of transistors: NPN and PNP. An NPN transistor will conduct
when a small positive voltage'** is applied to the base, which in microcontroller terms is a
"1". Only a very small current is required, because the transistor can amplify the current.

In addition to switching and amplifying current, you can also increase the voltage to your
device, simply by connecting the transistor to a higher voltage. The ground wires of the
PIC™ and the power source of the transistor must in that case be connected to each other.
NPN is the type you will be using most, because it seems logical to switch the device on
using a "1" from the microcontroller.

The following steps will help select and use the proper NPN transistor:
1. The maximum allowable current through the

collector (I max) must be larger than the
current consumed by the load (1.).

protection diode
(if required)

2. The minimum current amplification (gain) of
the transistor (hgg min,) , must at least be 5
times larger than the collector current (I), ak
devided by the maximum current the PIC™ output
can deliver.

3. Select a transistor from the table in section
14.5 that matches these criteria and make a
note of its properties I max and heg, min.

Figure 172. NPN transistor.
4. Calculate the value for the base resistor, R,
using the formula:

l_ﬂFE min
RB = & Ic.max

141 Used in adapted format with permission from the author. For more information see the website
http://www kpsec.freeuk.com/index.htm

142 Here is an easy to remember rule of thumb applicable to any electronic component: when
conducting, the arrow in the symbol always points to the ground lead.

323

12 Miscellaneous Projects

where V. is the voltage that the PIC™

delivers.

In a simple situation where all voltages are
the same you can use the simplified formula:

RB = 02 X RI_ X hFE,mm

5. Choose the closest available standard value

for Rgp.

6. If the load contains a coil (such as a relay or
motor) you need to use a protective diode.

The PNP type works just the opposite way, where the transistor will conduct when the
base is connected to ground (low in microcontroller terminology). Since this is less
intuitive from the PIC™ point of view (you would expect something to go on when you
make a pin high) you will not use a PNP type very often.

Selecting a PNP transistor is done using the
same steps as above, except it needs to be

connected differently.

chip
output

pratection diode
(if required)

Figure 173. PNP transistor.

To clarify, this let’s take a practical application. We want to run a 6 V 50 mA light bulb
from a microcontroller and use PWM to vary the light intensity. The power consumption
of the light bulb is almost double what the pin can handie so a transistor is required.

1. The light bulb uses 50 mA, so the transistor needs to have an [, of at least 50 mA.

2. The load resistance, Ry, of the light bulb is 100 ohm (5 V / 0.05 A}.

324

7.

12.7 Handling larger currents

The maximum current that the PIC™ can deliver is 25 mA, so the transistor needs a
hgg of at least 10 (5 * 50mA / 25 mA).

The transistor will be connected to the PWM pin so it is probably a good idea to
select a fast one, such as one designed for audio applications.

We choose the BC547B with I n.x = 100 mA and hgg min = 200.
Since both the microcontroller and the light bulb will be run off of 5 volts the
simplified formula can be used to calculate the value of Ry,

R =0.2 * Ry * hpgmin = 0.2 * 100 * 200 = 4000 ohm

A suitable standard value would be 3k3 (orange-orange-red).

The parts must be connected like this:

11/32

16877

1 1231 13

20 pF
e
20MHz OO
_‘ 20 pF ;

Figure 174. Connecting a 50 mA light bulb to a PIC™.

The project works perfectly (no smoke from the PIC™), but the light bulb is not very
bright because it is a 6 V bulb running on 5 V. And the transistor has a typical power drop
of 0.7 volt, so the light bulb only gets 4,3 volt, or 72%, of the design voltage.

325

12 Miscellaneous Projects

Figure 175. Connecting a 50 mA light bulb to a PIC™.

The program is very straightforward:

--JAL 2.0.3
include 16F877_bert

var byte resist
PWM init_frequency(true,true)

forever loop

resist = ADC_read_low_res(0)
CCPRIL = resist

end loop

Another example of the use of a transistor can be found in section 13.2.4.

12.7.2 TC4427A MOSFET driver

The TC4427A MOSFET driver manufactured by Microchip'®* has already been used in
section 7 to drive a Lego motor.

3 Download the TC4426A-27A-28A datasheet on http://www.microchip.com

326

12.7 Handling larger currents

The datasheet shows it has the following specifications:

Peak power out 1.5A
Voltage 45-18V
Delay 30 ns
Reverse current max 500 mA

And that was more than enough for our little motor that had a maximum consumption of
260 mA. The high reverse current resistance means you don’t need to use a protective
diode.

These are the connections:

TC4427A

NS

NC
OUT A

Vbp
OuUT B

NC
IN A
GND
IN B

B N [—
| O] || |0

Figure 176. Connections of the TC4427A.

What it basically boils down to is that pin 2 (IN A) is "connected” with pin 7 (OUT A).
Pin 2 is connected to the PIC™ and will thus carry 5 V. Which voltage is on pin 7
depends on the voltage you use as power for the TC4427, which is the voltage on pin 6
(Vdd). You can use a maximum of 18 V, in which case pin 7 will also carry 18 V,
assuming it has been made high by pin 2.

The same applies to pins 4 and 5. Pin 2 (GND) is connected to the ground of the power
supply just like the PIC. If you use a different voltage for the PIC™ and the TC4427A
vou will need to connect the ground connections together. Pins 1 and 8 are not in use (NC
= not connected). So you need to at least connect the following pins:

327

12 Miscellaneous Projects

Pin Name Description

3 GND Connect to the ground of the power
supply. Both the ground from the PIC™
power supply as well as the ground from
the TC4427 power supply (if these are
not the same) must be connected
together.

6 Voo Power supply: +4,5 Vio 18 V

So in principle the TC4427 is connected as follows:

PIC
control signal TC442TA
— — L
+ 5 vaolt +4.510 18 volt +4.5 to 18 volt
out
<

Figure 177. Connection of a TC4427A to a PIC.
Practical schematics can be found in sections 7.1, 7.2 and 7.3

12.7.3 Relay

The PIC™ can handle a maximum of 25 mA per pin with a maximum of 200 mA per
port. Even though it is possible to find a relay that matches these specifications in most
cases you will need to amplify the current. You can use a transistor as described in
section 12.7.1. And you’ll need to add the diode as described in the text to protect the
transistor and the PIC™ against reverse current.'!

'** The current through a coil is persistent. If the power is removed the current will continue
running for a bit. Since it cannot go anywhere the voltage will rise, easily high enough to destroy
the transistor and the PICT™. The diode ensures that the current can flow away to prevent the
voltage from rising.

328

12.8 The poetry box

Even easier would be to use a TC4427 MOSFET driver to drive the relay. You'll have
ample power available for a huge relay and will not be bothered by reverse currents (you
can still add the diode if you want). A MOSFET driver is more expensive than a simple
transistor, so in a lot of commercial applications you will find a transistor and diode.

The advantage of a relay is that you can switch high voltages such as 110 V or 240 V. Be
extremely careful, though. High voltages like this can kill!

12.8 The poetry box

A very unusual project: here we write a poem to an LCD screen.
Technical background

As one of the final projects in this chapter we will demonstrate one of the most bizarre
commands of the JAL language, the long table, in an even more bizarre program.

In section 5.4 the array was introduced as a means of storing a collection of letters and
numbers in memory. In section 10.2 you saw the limnitations of this, because arrays are
stored in empty blocks of RAM memory, thus limiting the maximum length of arrays
considerably.

An exception to this is the long table. The programmer and designer of JAL version 2,
Kyle York, explained the long table to members of the beta test group as follows: "4 long
table is a constant array which is accessed at least once using a non-constant expression;
whereas an array is non-constant and assigned at least one value."”
If these conditions are met the long table is stored in the program memory (FLASH) of
the 16F&77. Depending on the size of your program (which is also in program memory) a
long table can be a whopping 8000 bytes long!
This is the syntax:

const byte demo[7591] = {"a", 67, "b", 45,56,...}

By definition of the long table these are constants, so this:

{"a","bll’llcll,lld",l‘e"’"fil’"gﬂ,'Ihll}

329

12 Miscellaneous Projects

is identical to this:
{"abcdefgh"}

Don’t make these fragments too long, though, because if JALedit truncates your line you
will get an error as JAL assumes each command to only take one line.

When you can store this much information we can do a playful project, like displaying a
poem. You can mount the poetry box on the wall, or make it part of an Object d'Art.
There is room for multiple poems, but in this project we will use only one,
“Berlin 1975, at the wall”.'¥

Y ou cannot display the entire text in one go, so we will start writing at position 16 (just to
the right of the visible screen). Then we move the entire screen one position to the left
and write again next to the screen.

counter = (

position=16

LCD_char_line_pos (demo[counter],0,position)
delay 100ms(4)

LCD_shift lett

counter = counter + 1

position = position +1

Since the display moves the positions also move. That means position 16, which was
originally next to the screen, 1s now visible. To write to the screen the next time we need
to write to position 17. And to remain next to the screen the write position must be
incremented with each shift.

With this LCD position 40 is not on the first line, but on the second. Which means that
after 40 steps we are back at zero and need to write there as well:

if position == 40 then position =0 end if

Not all displays are the same length. So it is possible that you need to change this value,
in some cases even to 80.

'S From the Dutch book op drifi geraakt (let adrifty by Berf van Dam, page 12, published

http://'www kirja.nl

330

12.8 The poetry box

The software

The entire poem has been converted to an array using the PEconverter program. The array
is renamed to a long table.

This is the completed program:

COHSt byte dem0[572] — {"b" "n.n Il " ||1l|' l! " "1'[”,","," " |l1" |l9ll "7" "5"

" ll,ll "," nn Il," wn N’ll |l," ",ll ll," "," n Ht" "nn "t" ll'h" ll' " "nn l|w all lll"
"]l' n ll,ll ll"ll Il’" "," "," |I,Il H,Il ",ll‘ ll',l! H," ll,l! l',l' |I,N ","1",|‘n"," “,“t" "h"
e"’" " "dtl n “’Ilr" "k" n "’" l!,ll "," ||’|l I'l,ll "," "’" "," nmnnnn l| ",ll ","a"
||n",|f n ntu Hh" lle" llr" nn "W" "0" " “ "l" lld!l "naw " " " " "f“ " " lll" ll'dll‘
I'ISII "nn || TN TN N A nnnnn ll B nnnn

b 3 2 3 b ’ s :) b ’ ? 2 :]] 2 3 b 2 3
nn |lal| l|n" Hd!l nn lII" nn ﬂdll n ll’lln","lll flt" nmn l|kl| l|n" l|0" "w" nn
Flwll "hll n "’" ","I"’" l|,|la","m|l’|l "," ||,|| I',Il ",Il "," "," nmn ||,|I nmn l|,|l |l’
" ","lll,ﬂ " "e" Ilpll nn !I lf

-

ll"ll "," H,H |l,|l ","W","h"’"e"’"n“," “’IIIN,H H’
"’H !I,ll ll’ll l'l,l" "’" ",H !l,!l l|’l| ||’|| ll’ll "," "," "’"W","h"," ",lln"’" n I|I|'|
" "d!l "r"’“ell’llall,"m"‘," ||’|' "’H H,N "’Il ll',ll' l!," "’" "," ||,|l ll," "’ll ll," !l’
n l|,ll ll," |l," "’H " "I" n ","all,"m"’" " "1N "nH Nv" "n; |l l!n“,"c"," n Ilb" Ill'll

mounn_n " LU0 I L L o [L g | B |} nou_nmn rl " ' " " |l muownNnnen
gh 1t ugn Ham ngn B R R e O I Tl T
nmmMmmmmmmnnn l| " H MmN " "mn l! " || n_nmnn ll I'ltll "mn "cll "V"
E] b] 2 b b b b b L] 2 y 2]
L LI o I e | || mn "non; ll n.n ll "nn || n nn,,nmnn !I " |l " n,Mnnn ll nmn
e,y " h RS g s Ty TY, I,)
O T L I O A L 1) Pl TN lf !!tH n I'l "n" "nn HS"
b ? E] 2 ’]] bl b 2 2 L]] » 2 ; *

"naunn " nmugnmnn l| CEOT P [T IO L P [P [I [e [| Do | §
w bl e] t g 3 t] e 2 v 2 e b r :]
Mmoo g n " " (LI T L L T T T T L O A L LA LA A L L " H nrnnnnnn
y h a n d L] 2 s b ’ b b 2 ’] ’ b
mn_n !l MmN N nmn " "yn lf MO g o nnn I‘l n.mn
Mot Mgt 0 NTUR oM k", Mol;"n": " y o 2T
ll Mt gn l| Mo o nen l| " o nmunnrnnmnnnn
,'n","g", d Mt g NMgh mit Mot MAN NN N B
mnmnnnn " CEI L L L L L L L L L LA L LI LI LI L P L B g) " Mmoo g nn
]] k] - 2 2 2 b] - | b 2 a) ; n d I] a
" (LI O (L e LI LI L B L D L L muwnnmnwnn " n ll 1‘ N " H nan
s R R s it B SR U e S g d
LU I L I O L I L L L LB LB L LR LB L} nmmnrnnnn " " mnwonnen
2 L] b] bl - 2 2 s s’ bl ’ 2 2] b 2 :)
(U U T L L L L [I PR LB L] " " nnn LU P L D B | g |} " |'l namnn_nmunmmmnnn
SN SR e gt Y S'm".)"o","","n ,'n g A
L UL L LT L T L (I L L L L L P8 L L S L} " LU L LS L e | | |} ll‘ " l' nnnon_nmn n
? 2 ’ L)] » L] t 2 h] :] -] t b r 2 u ’ h 2 e : } m ?
ORI R R nnn H L L L L L L L L L) l| " H || |l " Ildll’ nn I|IN
g,¢

n
eir, ?s! 2 b kS 2 2 b

nnu_nNn ET ORI L T T T A L L L A A A A LB A LU U L L L T LI | e |}
amb,k,,,,,,,,,a,

M ngmnnmnmn LT T T L L P L LTI L [T I LB L LR LR L PR LR L) PR] " "o onnnn
’d ,w33917t’ ’P5 Qr! 7t’h 3 !nﬂe’

" " " " || |lll|' LU 'll nmn

" I't" nn Hn" "i!l n.n "h" "tll U LI L L T T L L I L LI I LI LI L B AR LB LR L
b L Ly g 9 b ’ 2 2 : s 2 ’ 3 2 bl 2 kd
TR U L U OO L I I L L (I (I L L L L L L L L L L L L L L L LI LI LI LB L) nnmn
2] 2 3 3 ’] ’ ’ s > ’ > 3 s s ’ ’ tl]
U U L T T T (I (I L L A A AN AN LB LB L L L)
? L b 2 ’ 2 2 ’ b 2) 2 2 }

331

12 Miscellaneous Projects

332

- JAL 2.0.6
include 16F877 bert
include led_44780

var byte position
var word counter

forever loop

-- switch the cursor off
LCD _init
LCD cursor = off

counter =0
position=16
for 572 loop

LCD_char_line_pos (demo[counter],(,position)
delay 100ms(4)
LCD shift left
counter = counter + 1
position = position +1
if position == 40 then position =0 end if
end loop
end loop

12.9 Bootloader

The hardware

The hardware is identical to section 12.5. In the picture of the breadboard you can see
part of the poem (the original Dutch version) scroll by and underneath the breadboard a
part of the poetry book is visible.

12.9 Bootloader

A bootloader is a way to load programs into a PIC™ without using a programmer.
Technical background

A bootloader is a small program in the PIC™ memory. As soon as the PIC™ is switched
on this program will wait for a certain amount of time (in our case 1 second) to see if a

hardware serial connection is being made by special program on a PC. If that doesn’t
happen the normal program in the PIC™ is started.

333

12 Miscellaneous Projects

If, however, a hardware connection is made the PC can send a regular PIC™ program
over the hardware serial connection, which will then be stored in the memory of the
PIC™. This unusual way of programming seems quite handy at first, because it doesn’t
require a programmer. But, of course, you do need a programmer to get the bootloader
into the PIC™! '

Also, the bootloader will only work with PIC™ microcontrollers that are capable of
writing to their own program memory. The 16F877 can do this, but many other PIC™
types cannot. The 12F675 and 16F628, which will be discussed in section 13, do not have
this capability. For these types you will always need a programmer.

For home use the bootloader is not very useful: if you can get the bootloader into the
PIC™ surely you can get other programs in there as well. If you sell your projects to
other people, and especially in the professional market, bootloaders are much more
useful. Simply add a MAX202E chip to your printed circuit board and your customers
can install upgrades using a regular PC with some simple software. They don’t need to
buy and operate a programmer.

Since a bootloader is always in the PIC™ memory and doesn’t do anything useful most
of the time it is a good idea to use the smallest one available.'*" In this section we use the
Tiny Bootloader written by Claudiu Chiculita.'*” This one is just 100 words'** long (the
16F877 memory consists of over 8000 words) and has all the capabilities you need.

1% ¥ ou may have other criteria for selecting a bootloader, such as the ability to use certain pins, to
start a bootloader from the PC, or to buy a PICT™ with preloaded bootloader.

7 More information on this bootloader can be found on the website of the author at
http://www.etc.ugal ro/cchiculita/software/picbootloader. him

1#% According to research by the programmer this is the smallest bootloader currently available on
the Tnternet. The next smallest bootloader is double that size. Another advantage is that this
bootloader uses the hardware serial port and thus achieves high programming speed of up to
115k2.

334

12.9 Bootloader

goto start gato bootioader 14 words
user user
interrupt interrupt
SEMVICE service
routing routing
start
start
user user
main main
program program
smpty
space
emply
space goto start
boofticader
without bootloader with boolloader

Figure 179. Memory map with bootloader.’

Bootloaders are located at the very end of program memory, not the beginning. This
means that the regular PIC™ program should not start with a reference to itself (left side
of the Figure above), but instead refer to the bootloader (right side). The JAL compiler
calls this a Jong start. If you execute a program that is compiled with the long siart option
without a bootloader in memory then it will still work. For ease of use JALedit is
configured with a long start.

The bootloader consists of two parts: a small program for the PIC™, and a small program
for the PC. The first thing to do is load the bootloader into the PIC™. Create a simple
hardware setup, such as in section 10.1, and connect your normal programmer. In the
c:\picdevitools\tinyboot directory on the harddrive of your PC you will find a program
with the somewhat threatening name of hurnboot."*’ Switch the power to your project on
and double-click on that program. You will now see the normal black window that you
are used to with JALedit, and the program will transfer to the 16F877. The PIC™ is now
ready to be used in this project.

% Copied with permission from the author, Claudiu Chiculita.

3% 1f you installed the download package in a different location you need to use the directory you
selected at that point. You also need to modify the program burmnboot.bat and enter the proper
directory to the path where you stored the xwisp2w program.

335

12 Miscellaneous Projects

The software

To test the bootloader we will use a small program that reads the posttion of a variable
resistor and sends it to the PC.

- JAL 2.0.6
include 16F877_bert

-~ define variables
var byte resist

-- define the pins
pin_al_direction = input

forever loop

-- convert analog on al) to digital
resist = ADC_read_low_res(0)

- send resistance to PC
serial_hw_write(resist)
delay_100ms(1)

end loop
Enter this program into JALedit in the usual way and store it with an easy to remember
name, such as "demo". Use F9 (or the button with the green arrow) to compile the

program without sending it to the programmer (we are not using our programmer!)."'

Now would be a good time to build the hardware. You have already installed the PIC™
in order to download the bootloader using burnboot, so the rest can be added easily.

The hardware

The bootloader will communicate directly to the RS232 port of the PC so we need some
additional hardware to generate the RS232 signals (see section 6.4 for more information
on this subject).

It is important that the JALedit compiler settings include "-long-start -d”. If you haven’t
touched them after installing the download package you are all set. Otherwise, change them back
using Compile - Environment Options - General - Additional commandline parameters.

336

12.9 Bootloader

The value of the capacitors for the MAX202E is not critical. The manufacturer
recommends a minimum value of 0.1 uF and a maximum value of 10 uF. The capacitor
that is mounted across the power line (to the right of the MAX202E in the schematic)
needs to be at least the same size as the other ones. This capacitor has to eliminate stray
signals on the power lines that could interfere with the proper operation of the PICT™, "2
We will use 1 uF / 25 V capacitors. Note that the positive and negative leads of the
capacitors on pins 2 and 6 are correct; they are mounted differently that you might
perhaps expect!

+5V
1uF —— [
il 16
S e § akd 0g 11132
3 ¥y
1 == | maxeoze M 25 16fe77 5 z
T .
= 2
5 i © 1 12131 13 14
1uF C31uF
T, =
10k D
13 14 15 6 w » w
E = &
o
L PR Tl
-
to RS232 on PC
pin5
pin 2
pin3

Figure 180. Bootloader setup.

You only need to connect three wires on the PC side. The pin numbers in the schematic
are the numbers you will find on the (female) RS232 plug.

152 The MAX202E has to increase the voltage from 5 V to 10 V. The mechanism used to do this (a
charge pump) can easily cause nasty spikes on the power line. The capacitor prevents this. If you
build this project on a circuit board don’t forget the small capacitors in the power line close to the
pIC™

337

12 Miscellaneous Projects

This is the set up on the breadboard:

Figure 181. Bootloader setup.

Using the bootloader

Now that the software and hardware have been completed it is time to try out the
bootloader.

Start the tinybldwin.exe program. You will find this program in the
c:\picdev\tools\tinyboot directory of the download package. You will get this screen:

“< Tiny Bootloader

Browse
Comm—— Leg ithionsI Terminal |
IHSEDJ:J Interface to TinyBootLoader, v1.9.1

contact: claudiu.chiculita®@ugal. o
]CGM‘I 'I | hittp: //wnw, etc. ugal.ro/cchiculita/software/pichootloader. htm
‘Wiite Flash

CheckPIC I

Figure 182. Startup screen tiny bootloader.

The communication speed is set by default to 115k2, which is the correct value (note that
you are communicating with the bootloader and not with a JAL program that uses the
standard library). You may need to change the COM port depending on where you
plugged in the RS232 plug.

Now use the "browse" button to search on your harddrive for the program you have just
compiled using JALedit. You must look for the hex file and not the JAL file (these are in
the same directory). At this point timing is everything. When you switch on the power to

338

12.9 Bootloader

jour project, you have one second to click on the "Write Flash" Button. If you are not
;ary handy with the mouse you can opt to press the "w" key on your keyboard. If you are
oo early you get a "PIC™ not found" error. No problem, just switch the power to your
yroject off and then on and try again. It’s not as difficult as it sounds.

f all goes well you will see the program pass very quickly foliowed by the message
'Write OK". It will go a lot faster than you are used to. The Wisp628 programs at 19k2
ind the Tiny Bootloader at 115k2, so six times faster. The program that you downloaded
s started automatically.

The hootloader program on your PC has a small built-in terminal package that you can
tart by clicking the "Terminal” tab. You need to adjust the speed (this time you are
-ommunicating with the JAL program) and set it to 19k2, the speed of the standard
16F877 bert library used for communication over the hardware serial port. NOTE; do not
forget to reset the speed to 115k if you want to download another program!

Next steps

You can use the bootloader for any program you want. As long as you use the bootloader
to load programs into the PIC™ it will remain in memory. If you use a regular
programmer, such as the Wisp628, the bootloader will be overwritten because it will use
the full memory of the PIC™,

If you intend to use the bootloader you can change the settings of JALedit to make this
the default programmer. Remember that the bootloader cannot program PIC™ types such
as the 12F675 and 16F628, which will be discussed in the following sections.

In JALedit select the "Compile" menu, then "Environment Options’, followed by
"Programmer”. Write down the current settings to make sure you can easily go back to
the Wisp628.'> At the executable path enter:

C:\PICdevitoolsitinybootitinybldWin.exe
And at the command line parameters:

Yo¥

Remember that you will stil] have to start the download within 1 second of powering up
your project. The easiest way is to use F9 to compile the program, then power up the

'3 1 you installed the download package according to the instructions the programmer executable
path is set to "c:ipicdevixwisp2ixwisp2w.exe” and the command line parameters to "go %"

339

12 Miscellaneous Projects

project, and then press Shift-F9. [f you prefer to use the mouse click on the green triangle,
power up the project, and then click on the button with the downward arrow.

Even easier is to let the bootloader control the reset pm of the PTC™, This way the tlmmg
is always correct. Instructions on how to do this are in the download package.

340

13 Other PIC™ microcontrollers

It is important to work with just one microcontroller as much as you can, so that you
really get to know it inside out. For that reason all of the projects we have discussed so far
are built using the 16F877. By now you should have a lot of knowledge and experience
with this PIC. However, it is sometimes convenient to use other types as well, such as
when you have limited space or a limited budget. In this section we will discuss three
other microcontrollers.

PIC™
12F675

16F028

16F876

Description

The 8-pin 12F675 is popular with model train enthusiasts who
have little room available and still want to use a PIC™.

Sample projects:
. Railroad crossing
2. RGB fader

This PIC™ is pin-compatible with the 16F84, an old PIC™ for
which a lot of legacy software is still available. It is popular with
people who want to recreate an old project, even though ali 16F84
software will have to be re-written before it can be used in the
16F628.

Sample projects:
1. Electric candle
2. Adjustable clock frequency
3. Wisp628 programmer upgrade

The little brother of the 16F877. This PIC™ has all the
functionality of the 16F877, but in a 28-pin package and without
ports D and E.

Sample projects;
1. VU meter
2. Infrared RS232

In section 13.5 the portability of programs between these microcontrollers is discussed.
This is where you can see the true power of JAL and the standard libraries.

341

13 Other PIC™ microcontrollers

13.1 The 12F675

13.1.1 Introduction

The 12F675 is one of the smallest PICs available, with only 8 pins, but is still very
powerful. All of the pins have multiple functions and because there are so few pins you’ll
need to know how to switch between the different functions.

VDD —b[

GP5/T1CKI/OSC1/CLKIN =—]]

GP4/AN3/T1G/OSC2ICLKOUT =]
GP3/MCLR/VPP —[

62042101d
[4)] (@)] -J (o]

J+— vss

:IH GPO/ANO/CIN+ICSFPDAT
]*—’ GP1/AN1/CIN-/VREF/ICSPCLK
]-—» GP2/ANZ/TOCKIINT/COUT

Figure 183. Pin layout of the 12F675.

Pay close attention to the bizarre numbering of the pins. For example, ANO (or GP0) is
connected 1o pin 7. These are the properties of this small PIC™:

Item
Program memory

RAM
EEPROM
[/O pins
A/D pins
USART
Speed
Cost
PWM
12C

Integrated oscillator

342

Specification
1024 words (14 bit)

64 bytes

128 bytes

6

4 (of 8 or 10 bits each)
no

5 mips

US$1to?2

no

no

ves

13.1 The 12F675

It may be less impressive than the 16F877, but it also has a smaller size and price.

The following pins must always be connected:

Pin Name Deseription
1 Voo Power supply +5 V
4 MCLR/Vpp Master clear pin and programmer

voltage input. This pin requires a
33k resistorto +5 V.,

8 Vs Power supply ground (0 V)

If you use the Wisp628 programmer the wires must be connected as foilows:

Wire Connects to
yellow pin 4
blue pin 7
green pin 6
white not in use
red +5V
black ground (0 V)

Note that you need the dongle described in section 2.2.

13.1.2 12F675_bert library

The standard library for this microcontroller is 12F675_bert."” This library enables a lot

of the functionality discussed in this book (R$232, A/D conversion, delays, etc.). It will
also set the pins to a default configuration, which is suitable for many applications (note
that without this library for example all A/D converters are switched on, a very
complicated hurdle for the novice programmer).

" ¥ ou will find this file in the library directory; it is part of the download package.

343

13 Other PIC™ microcontrollers

This is the default pin configuration with the 12F675_bert library loaded:

12F675 pin RS232 Analogin Digitalin Digital out

GPO / pin_al X X X
GP1 /pin al X X X
GP2 /pin_a2 X X
GP3 /pin_a3 X

GP4 / pin_ad X X
GP5 / pin_a5 X X

The table indicates the functionality that is switched on after loading the 12F675_bert
library. So, for example, you can use pin a0 for an RS232 connection, an analog input, or
a digital output.

Using pins a0 and al you can make an RS232 connection. Of course it is no coincidence
that these are the pins the programmer is connected to so that the pass-through
functionality of the programmer can be used.

You also have two analog and two digital inputs available, or three digital outputs.
Usually this default setting will do just fine. If not, you can use the disanalog() command
to switch analog pins to digital. Note that analog inputs can be used as digital outputs
without switching them to digital.

Officially the pins are called GPO to GP5. To allow portability between different
microcontrollers we have chosen to call these pins a0 to a5 as if they belong to an
imaginary port A.

An important command that has not been discussed for the 16F877 is disanalog(),
because the larger PIC™Ssg have so many pins that you normally don’t need to change the
analog pin settings.'> For the small 12F675 this is not the case. For many novices setting
the analog pins to digital is a major stumbling block, so lets take a look at the hidden
functionality behind the disanalog() command."®

'*3 It can be done using the [6F877 library, by modifying the pin assignment as a group with

no ADC = X.
"** You can still use this command even if you don’t know how it works. If you are not interested
you can skip the rest of this section.

344

13.1 The 12F675

ANSEL (analog select) is one of two registers involved in making a pin digital:

ANSEL — ANALOG SELECT REGISTER (ADDRESS: 9Fh)

u-0 R/W-0 RAW-0 R/W-0 R/W-1 RAN-1 R/W-1 RAWV-1
—] ADCS2 | ADCST | ADCSO | ANS3 | ANS2 | ANSt | ANSO
bit 7 hit 0
bit 7 Unimplemented: Read as ‘0"
bit 6-4 ADCS<2:0>: A/D Conversion Clock Select bits
000 = Fosci2
001 = Fosc/8
010 = Fosc/32
x2" = FRC (clock derived from a dedicated internal oscillator = 500 kHz max)
100 = Fosci4
101 = Fosci6
110 = Fosc/64
bit 3-0 ANS3:ANSG: Analog Select bits

(Between analog or digital function on pins AN<3:0>, respectively.)
1 = Analog input; pin is assigned as analog inputm
0 = Digital I/0; pin is assigned to port or special function

Note 1: Setting a pin to an analog input automatically disables the digital input circuitry,
wealk pull-ups, and interrupt-on-change. The corresponding TRISIO bit must be set
to Input mode in order to allow external control of the voltage on the pin.

Figure 184. ANSEL register of the 12F675.

Here, bits 0 to 3 are important. The default value for each is 1, and must be set to 0 to
switch off the analog function and make the pin digital. Bits 4 to 6 are used for the A/D
settings so it is better to leave these alone. So, to set AN (on pin a0) to digital you would
use the following command:

ANSEL = ANSEL & Ob_i111 1110
By using the AND operator (&) all bits that are AND-ed with a 1 are not changed. Bits

that are AND-ed with a 0 are flipped from 1 to 0 or 0 to 1, depending on whatever they
were before the command was executed.

345

13 Other PIC™ microcontrollers

You can check this in the AND truth table:

A B Out (A & B)
1 1 1&1=1
1 0 1&0=0
0 1 0&1=0
0 0 0&0=0

The second important register is CMCON (comparator module).

CMCON — COMPARATOR CONTROL REGISTER (ADDRESS: 18h}
u-0 R-0 U-0 RW-0 RW-0 RMWO RW-0 RMO
| — lecour | — Tonw T as T cmz | cM1 | cwmo
bit 7 bit 0

hit 7 Unimplemented: Read as Q'

bit 6 COUT: Comparator Qutput bit
When CINV = 0:
T = ViNt > VIN-
0 = VIN+ < VIN-
When CINV = 1;
1 = VIN+ < VIN-
U = VIN+ > VIN-

bit 5 Unimplemented: Read as "0’
bit 4 CINV: Comparator Output Inversion bit
1 = Qutput inverted
0 = Output not inverted Comparator Off (Lowest power)

bit 3 CIS: Comparator Input Switch bit CM2:CMO =111

1 = VIN- connects to CIN+

P1/CIN- o]
0 = VIN- connects to CIN- ¢ — Off (Read a5 '0)
ead as
bit 2-0 CM2:CMO: Comparator Mode bits GPOCING - D
GPACOUT D —

Figure 185. CMCON register of the 12F675.

In addition to the A/D converters the 12F675 is also equipped with a comparator that uses
the same pins."”” In the datasheet you can see that the comparator can be switched off by
setting each of the lowest three bits to 1 (the other possible configurations are not
relevant):

"*" The comparator can be used to compare different voltages and perform certain actions based on
the difference. Of course this can also be done with an A/D converter, but a comparator is faster.

346

13.1 The 12F675

CMCON = 0x07
Since 7 hexadecimal = 7 decimal = 111 binary. So the procedure should be:

procedure disanalog (byte in x) is
CMCON = 0x07
if x == 0 then ANSEL = ANSEL & 0b 1111_1110end if
if x == 1 then ANSEL = ANSEL & Ob_1111_1101 end if
if x == 2 then ANSEL = ANSEL & 0b_1111_1011 end if
if x = 3 then ANSEL = ANSEL & Ob_1111_0111 end 1f
end procedure

You will find this procedure in the 12F675_bert library. In section 14.2 all of the library
functions are discussed. In this table you can see which library functions are applicable
for the 12F675. If the 12F675 column has an x this means you can use the exact same
command as you do for the 16F877, just with the limitations of the smaller PIC™.

Functionality 16F877 12F675
(using the standard library)

Serial communication - hardware X

Serial communication - software X X
Pulse width modulation PWM X

A/D conversion X X
Program memory X

EEPROM X X
ASCII X X
Delay X X
Registers and variables X X
Setting pins to digital X
Random numbers X X

347

13 Other PIC™ microcontrollers

13.1.3 Demo program

As a demonstration of the capabilities of the 12F675 and the 12F675 bert library a small
sample program is discussed. :

Technical background
This program contains the following functionality:

A/D conversion

RS232 communication
Setting a pin to digital
Reading a digital signal
Writing a digital signal

This program will read the voltage on pin a2 and send it to the PC over a serial
connection.

-- take a sample on AN2 (pin_a2)
resist = ADC read_low_res(2)

-- and send over RS232 to the PC
serial sw_write(resist)

The LED on pin a5 will flash as long as the switch on a4 is pressed.'™

-- flash the led if the switch is pressed
if switch then

led="!led
else

led = low
end if

If you look at the table you can see that pin a4 is set to analog after loading the
12F675 bert library. This means the pin cannot detect a switch being pressed, so it will
have to be set to digital:

58 Using led = ! led is elegant, but does have its risks, as discussed in section 4.2,

348

-- disable analog function of AN3 (pin_a4)

disanalog(3)

The software

13.1 The 12F675

The completed program looks like this. Please note that you need the dongle described in

section 2.2 in order to program this PICTM:

--jal 2.0.6
include 12F675 bert

-- general variables
var byte resist

var bit led is pin_a5
var bit switch is pin_a4

-- disable analog function of AN3 (pin_a4)
disanalog(3)

-- define the pins
pin_a4 direction = input
pin_a5_direction = output

forever loop

-- take a sample on AN2 (pin_a2)
resist = ADC_read_low_res(2)

-- and send over RS232 to the PC
serial sw_write(resist)

-- flash the led if the switch is pressed
if switch then

led =1 led
else

led = low
end if

-- wait a bit otherwise the led flashes a bit fast. .
delay 100ms(1)

end loop

349

13 Other PIC™ microcontrollers

The hardware

Although the 12F675 is capable of running with a 20 MHz crystal it requires two pins (a4
and a5) and there are not very many to start with. So the standard library assumes we will
be using the internal oscillator, at 4 MHz, instead of the crystal. And this is the reason it:

uses a relatively low RS232 speed of 1200 baud.

— kil
[tk LN}
5232

to PC LED
AR
T T 330 >

7 6 5 2
+5V 1 121675 8

33k 4

[0k}

Figure 186. Demo program for the 12F675.

The hardware is rather simple.

Figure 187. Demo program for the 12F675.

350

13.1 The 12F675

This program is almost identical to onc for a 16F877. So you can see that by using the
12F675 bert and 16F877 bert libraries programs can be transferred relatively casy from
one PIC™ to the next, assuming you pay attention to the limitations of each PIC™. This
is an important advantage that you would not have had without JAL and the standard
libraries!

13.1.4 Railroad crossing

Here we have a small project for the model railroad lovers, a Dutch AKL. An AKI
(Automatische Knipperlicht Installatie, or automatic flashing lights installation) is
becoming a bit rare in the Netherlands, because they are all being replaced by crossings
using barriers, for safety reasons.

Technical background

Three lights are mounted on a triangular black board. The top light is white, the lower
two lights are red. The white light is less bright than the red lights.

In the normal situation the white light flashes slowly. This indicates that the installation is
fully functional and it is safe to cross (though at your own risk, since it isn’t a green
light). When a train approaches, the white light is switched off and the two red lights start
flashing alternately at a faster rate. You will also hear a loud bell, which is not part of this
project.

The software

This is the completed program. Please note that you need the dongle described in section
2.2 in order to program this PIC™:

--jal 2.0.6
include 12F675_bert

-- general variables

var bit led0 is pin_a0
var bit led] is pin_al
var bit led? is pin_a5

var bit switch is pin_a4

351

13 Other PIC™ microcontrollers

- disable analog function of AN3 (pin_a4)
disanalog(3)

-- define the pins

pin_a0 direction = output
pin_al_direction = output
pin_a5 direction = output

forever loop
-- flash the led if the switch is pressed

if switch then
-- danger, flash red leds”™’

led0 = ! led0
ledl =! led0
led2 = low
else
-- flash led?2 for all clear signal
led2 = ! led2
led0 = low
led] = low
delay 100ms(6)
end if

-- wait a bit otherwise the led flashes a bit fast...
delay 100ms(3)

end loop
The hardware
The white .LED has a larger resistor to make it dimmer than the red ones. The switch is
actually a rail contact that engages as long as a train is near the railroad crossing.

Alternatively, you could use a contact that is engaged only once as the train approaches
and then use a delay to control the amout of time the red LEDs flash.

k]

"7 Using led = ! led is elegant, but does have its risks, as discussed in section 4.2

352

13.1 The 12F675

AP
330 >t (red)
AP
330 >t (red)
AP
680) (white)
7 6 5
+5V 1 121675 8
33k 4 3
gV IED 10k

Figure 188. AKI with 12F675.

There are so few pins that even the pins used by the programmer are used for the red
LEDs. During programming with the Wips628 programmer they can remain connected,
hey will just flash, but it has no impact on the programming.

There is still one pin available, so you could connect this to a bell if you want. The bell
should ring the entire time that the red LEDs are flashing. The picture shows that this
oroject is very small and could easily be hidden in a guardhouse or under a bush.

Figure 189. AKI with 12F675.

353

13 Other PIC™ microcontrollers

13.1.5 RGB fader

A small program to make your own Object d'Art: an RGB (Red Green Blue) fader. Three
different colored LEDs alternately fade in and out, turning an old box or a camera film
canister into a special lamp.

A fading LED is quite easy to make using the PWM - pulse width modulation - module.
We need three PWM modules, however, and even the big 16F877 doesn’t have that many
onboard. So we will make our own PWM modules in the smallest PIC™ in this book: the
12F675.

In section 7.2 PWM is discussed in detail. In this project we will make the module as
simple as possible by not concerning us with the exact frequency; we will simply make it
"as high as possible”. Instead we will focus on the duty cycle, which is the ratio of "on”
signal to "off" signal.

In order to do this we will make a pin high and start a counter at the same time. By
defining the counter as a byte it will rollover to § again after 256 increments. This will be
our period.

At a certain count we make the pin low and then when the counter resets to zero we make
the pin high again. That is the duty cycle. If we make the pin low when the counter is zero
the duty cycle is 0, because there is no "on" time. But if we do this when the counter is
100 then the duty cycle is 100/255 = 39%.

1,=0 15 =285=0

period

LED on time
{duty cycle)

Figure 190. DIY PWM.

354

13.1 The 12F675

For the three LEDs it looks like this:

procedure fade pwm is
if t0 = 0 then
blueled = 1
redled = |
greenled = 1
end if
if t0 >= tblue then blueled = 0 end if
if t0 >= tred then redled = 0 end if
if t0 >= tgreen then greenled = 0 end if
t0=t0+1
end procedure

The variables blueled, redied and greenled refer to the pins that these LEDs are connected
to. The variables rblue, tred and tgreen refer to the counter positions at which these LEDs
need to be turned off again. In the final program we will turn this into a procedure
{(fade pwm), because we will need this routine often.

In theory, an LED will fade in slowly when the duty cycle goes from 0 to 100%. In
reality, that is not quite true, because an LED will be (at least visually) saturated at a
much lower duty cycle, usually around 78% (for the blue LED it is even lower at around
20%). During the slow fade the PWM module needs to remain in action, so we can’t use a
simple delay statement. We will solve this as follows:

counter = counter + 1
if counter == 500 then
tblue = thlue + 1

counter =0
end if
fade pwm

In the loop a counter is running. At each pass the PWM module is executed. But in only 1
out of 500 calls the brightness of the LEDs is actually adjusted.

You will get the best visual result when one LED fades in while the other one fades out at

the same time. In the following loop the duty cycle of the green LED decreases from 200
to 0 while the duty cycle of blue LED increases from 0 to 50:

355

13 Other PIC™ microcontrollers

tgreen = 200
thlue =0
while tgreen =0 loop
counter = counter + |
it counter == 800 then
tblue = thlue + 1
tgreen = tgreen - 4
counter =0
end if
fade pwm
end loop

The difference between 50 and 200 is caused by the fact that the blue LED is saturated
much sooner. This cycle will repeat until the green time is zero. By using three of these
loops in a row all of the colors can be faded in pairs.

The complete program looks like this. Please note that you need the dongle described in
section 2.2 in order to program this PICT:

- JAL 2.0.6
include 12F675 bert

-- define variables

var byte t0

var word counter

var byte thlue, tred, tgreen

-- define the pins

pin a0 direction = output
pin_al direction = output
pin_a2_direction = output

var bit blueled is pin_a0
var bit greenled is pin_al
var bit redled is pin_a2

procedure fade pwm is
-- set brightness using simple pwm
if t0 == 0 then
blueled = 1
redled =1

greenled = 1

356

end if
if t0 >= tblue then blueled = 0 end if
if t0 >= tred then redled = 0 end if
if t0 >= tgreen then greenled = 0 end if
t0=t0+ 1
end procedure

forever loop

tgreen = 200
tblue =0
while tgreen =0 loop
counter = counter + |
if counter == 800 then
tblue = tblue + 1
tgreen = tgreen - 4
counter =
end if
fade pwm
end loop

thlue =50
tred =0
while tbiue != 0 loop
counter = counter + 1
if counter == 800 then
tblue = tblue - 1
tred = tred + 4
counter = 0
end if
fade pwm
end loop

tgreen =49
tred = 200
while tred '= 0 loop
counter = counter + |
if counter == 800 then
tgreen = tgreen + 4

tred = tred - 4
counter =0
end if

13.1 The 12F675

357

13 Other PIC™ microcontrollers
fade pwm
end loop
end loop
The hardware consists of a 12F675 with three LEDs. The LEDs should be red, green and

blue to get the desired effect.

330 (blue)

A0
>
A7
330 >t (green)
AR
>

330

+5Y 1 121675 8

if

33k 4

Figure 191. RGB fader.

The breadboard:

Figure 192. RGB fader.

You will get the most beautiful effect when you put the LEDs into something opaque,
such as an empty camera film canister. It is not very easy to photograph this; Figure 193
is the best I could do.

358

13.2 The 16F628

Figure 193. The RGB fader.

What the PWM frequency turns out to be depends, of course, on the length of the
program loop. More commands in the loop mean a lower frequency. According to the
frequency meter software (from the download package) we obtained about 60 Hz.

Next steps

Although it is beautiful to watch, the amount of light is very small. It is, after all, just one
LED per color.

An LED with a 330-ohm resistor uses about 15 mA, so you can connect only one of them
to a pin. An alternative is to use three TC4427A driver chips'®. At a capacity of 1.5 A
each this will give you enough power to connect almost 100 LEDs per color; surely
enough make a nice Object d'Art. Check out the website of artist James Clar.'®" With the
knowledge you have gained in this book you can build almost all of his projects!

13.2 The 16F628

13.2.1 Introduction

This is an 18-pin PIC™ that is very popular, because it is pin-compatible with the old
16F84 that you will often see in articles, books, and projects on the Internet. The 16F628
is not completely software compatible, though, so it will take a little time to get old
16F84 software up and running.

"% One for each color.
'' The address of this strange website is http://www.jamesclar.com

359

13 Other PIC™ microcontrollers

q

RAZ/AN2/VREF ~—m
RA3/ANI/CMP1 ~t—[]
RA4/TOCKI/CMP2 ~—]
RAS/MCLRNpp —[]
vss —»[]

RBO/INT ~—[]
RB1/RX/DT -a—[]
RB2/TX/CK -t—[]

RB3/CCP1 ~——[]

C o~ ohwn D
X294910I1d

18[] ~—m RA1/AN1

17[] - RAQ/ANO

16[] -—» RA7/0SC1/CLKIN
15[] -a— RAS/OSC2/CLKOUT
14[] -a—— VoD

13[]-e— RB7/T10SI/PGD
12[]-+—» RB6/T10SO/T1CKIPGC
11[]-a—m= RB5

10[] -4—» RB4/PGM

Figure 194. Pin layout of the 16F628.

Note the bizarre arrangement of the port A pins. The port starts at pin 17, rotates to pin

18, 1, 2, 3. 4, and then back to the other side to pins 15 and 16.

These are the properties of the PIC16F628:

item
Program memory
RAM
EEPROM
170 pins
A/D pins
USART
Speed
Cost
PWM
12C

Integrated oscillator

It may be less impressive than the 16F877, but it still has plenty of possibilities for

exciting projects.

360

Specification
2048 words (14 bit)
224 bytes
128 bytes

16

none

yes (b1/b2)

5 mips
US$3to4
yes {b3)

no

yes

These pins must always be connected:

Pin Name

4 MCLR/Vpp

5 Vss

14 Vpp

15 OSCI/CLKIN
16 OSC2Z/CLKOUT

13.2 The 16F628

Description

Master clear pin and programmer
voltage input. This pin requires a
33k resistor to +5 V.

Power supply ground (0 V)
Power supply +5 V
Crystal'®

Crystal

If you use the Wisp628 the wires need to be connected as follows:

Wire Connects to
yellow pin 4
blue pin 13
green pin 12
white pin 10
red +5V
black ground (0 V)

Interestingly enough the Wisp628 programmer also uses this PIC™ (hence the name).
When a new version of the programmer software becomes available all you need to do is
buy a 16F628, use your programmer to put the new version of the software in the PIC™,
and then swap the chips (full details are in section 13.2.6). You could keep the old one
(better safe than sorry) or use it in a new project.

'%2 A crystal is not mandatory; the 16628 can run without it, but slower (at 4 MHz). In this book a
crystal is used in all projects and this has been set in the 16628 bert library.

361

13 Other PIC™ microcontrollers

Figure 195. The 16F628'%® in the Wisp628 programmer.

13.2.2 16F628_bert library

The standard library for this PIC™ is 16F628 bert.'® This library enables a lot of the
functionality discussed earlier in this book (RS232, PWM, delays). At the same time the
pins are set to a default configuration to enable you to build projects quickly. And the
comparators are all switched off.

This is the default configuration for the 16F628_bert library:

16F628 pins Function

pin_a6 Crystal
pin_a7 Crystal
pin_bl RS232 hardware RX
pin_b2 RS232 hardware TX
pin_b3 Can be used for PWM
pin_b6 RS232 software RX
pin_b7 RS232 software TX

All others Digital input/output

The default configuration enables you to use the pass-through feature of the Wisp628
programmer.

In section 14.2 the standard library functions of the 16F877 are described. This next table
indicates which library functions are also applicable to the 16F628. An x in the 16F628
column indicates that you can use the exact same command as you do for the 16F877, just
with the limitations of the smaller PIC™.

183 The latest version uses a 16f628A.
164 This library is part of the download package.

362

Functionality
(using the standard libraries)

Serial communication - hardware
Serial communication - software
Pulse width modulation (PWM)
A/D conversion

Program memory

EEPROM

ASCII

Delay

Registers and variables

Random numbers

13.2.3 Demo program

16F877

13.2 The 16F628

16F628

As demonstration of the capabilities of the 16F628 and the 16F628 bert library a small
demo program 1s discussed.

Technical background

This program contains the following functionality:

RS232 communication
Reading a digital signal
Writing a digita! signal

It will increment a counter in the main loop and send the value to the PC over a serial
connection.

- increment counter and send to PC

counter = counter + 1
serial sw write{counter)

The yellow LED on pin al flashes and the blue LED on pin a0 will be on as long as the
switch on pin b5 is engaged.

363

13 Other PIC™ microcontrollers

- flash yellow led
yellowled = ! yellowled

-- blue led on if switch is pressed
blueled = switch

The software
This is the completed program:

- JAL 2.0.6
include 16F628_bert

-- define variables
var byte counter

-- define the pins

pin_al direction = output - yellow led
pin_a0 direction =output -- hlue led
pin_ b5 _direction = input -- switch

var bit vellowled is pin_al
var bit blueled is pin_a0
var bit switch is pin_b5

yellowled = low
blueled = low
forever loop

-- increment counter and send to PC
counter = counter + |
serial sw_write(counter)

-- wait a bit

delay _100mS (1)

- flash yellow led'®
yellowled = ! yellowled

13 Using yellowled = ! yellowled is elegant, but cannot be used in all circumstances; see section

4.2

364

13.2 The 16F628

-- blue led on if switch is pressed
blueled = switch

end loop

The hardware

The schematic shows that a 20 MHz crystal is used, just like we do with the 16F877. This
means RS232 communication at a high baudrate is be possible. The 16F628 bert library
uses 1200 baud for software serial and 19k2 for hardware serial to facilitate moving
programs from one microcontroller to another. Higher speeds are possible in case this is a
requirement for your program,

3k l I +5V

161628

5 15 16 17 18

jum|

20 pF
20 MHz
20 pF
330
330

T°T ¥ ¥

{blue} {yellow)

=

Figure 196. Demo project for the T6F628.

Which looks like Figure 197 on the breadboard. The blue and green wires are from the
Wisp628, which is in pass-through mode for the RS232 connection to the PC.

365

13 Other PIC™ microcontrollers

Figure 197. Demo project for the 16F628.

13.2.4 Electric candle

Here we have a small Christmas project using the 16F628.

Technical background

The electric candle is actually a light bulb that constantly changes in brightness, causing a -
candle-like flickering effect. We do this by connecting a small bulb to the PWM pin and

adjusting the duty cycle abruptly at random times. The randomness is created with the
dice command that generates a number from 1 to 6.

In the source code this command is used twice:

if dice == 1 then
These are truly separate program sections. Each time the dice command is called it rolls
again. So even if the first roll is a 1 there is a chance of only 1 in 6 that the next number is
alsoa 1.
The software
If you feel the flickering is too much (or not enough) you can modify the program by

playing with the bright variable, and the statement affecting when the PWM value is
changed.

366

- JAL 2.0.6
include 16F628 bert

-- define variables
var byte bright, time

pin_b3 direction =output -- red led

-- enable pulse width modulation
PWM init_frequency (true, true)

forever loop

- modify brightness based on dice

if dice == 1 then
for 5 loop
bright = 150

PWM set dutycycle (bright, 0)
delay 1ms(15)
bright = 200
PWM_set_dutycycle (bright, 0)
delay Ims(15)
bright = 150
PWM_set_dutycycle (bright, 0)
delay 1ms(15)
end loop
end if
if dice = 1 then
bright = 50
PWM_set_dutycycle (bright, ()
delay 1ms(25)
end if
if dice < 3 then
bright = 200
PWM_ set dutycycle (bright, 0)
delay 1ms(100)
end if
bright = 255
PWM set dutycycle (bright, 0)
delay 100ms(10)

end loop

13.2 The 16F628

367

The hardware

The 16F628 can deliver 25mA per pin, but this is not quite enough for the little light bulb
that uses 30 mA. A 4-volt bulb has been selected here, because a transistor typically has a’
power drop of 0.7 volt, which effectively limits the light bulb to 4.3 volts. Using the
technique discussed in section 12.7.1 a suitable transistor and base resistor can be

13 Other PIC™ microcontrollers
determined. % ;

nk | |
4 14 4V/30mA |
161628 P
9 47 . BC5478
e
5 15 16
0 e
U w b
z| £ |s C
o
L -l
-

Figure 198Electric candle

The breadboard looks very cozy. A good idea would be to use a rolled up piece of paper
as a surrogate candle and mount the bulb on top. The whole thing can be placed into a
Christmas ornament. Be sure that neither the paper candle nor the electronics are
subjected to water!

16 The hgg has to be at least 5 x (30/25) = 6 and the current at least 30 mA. According to the table
in section 14. 5 the BC547 transistor would be a good choice. The resistance of the bulb is 4/0.03
= 133 ohms. The base resistor must therefore be 0.2 x 133 x 200 = 5320 ohms; the nearest
commercial value is 4k7 (yellow-purple-red).

368

13.2 The 16F628

Figure 199. Electric candle.

13.2.5 Adjustable clock frequency

The 16F628 has the bizarre capability of having an infinitely adjustable clock
frequency.'®” Of course, the frequency is not as accurate as with a crystal, and RS232
communication is hampered, but it is quite interesting nevertheless.

Technical background

These are the clock frequencies according to the datasheet:

RESISTANCE AND
FREQUENCY RELATIONSHIP

Resistance Frequency
0 10.4 MHz
1K 10 MHz

10K 7.4 MHz
20K 5.3 MHz
47K 3 MHz
100K 1.6 MHz
220K 800 kHz
470K 300 kHz

™M 200 kHz

Figure 200. Resistance — clock frequency relationship.

167 The A version of this PIC, the 16F628A, does not have this capability.

369

13 Other PIC™ microcontrollers

Apart from normal resistors, as assumed by the table, you can also use a variable resistor.
For this project we will need to change the microcontroller configuration bits. So far this
hasn’t been discussed, because the standard libraries handle this for you. We will limit
ourselves to the clock speed part of the configuration.

The 16F628 bert library assumes that you will be using a crystal, so that part needs to be
changed. The following configuration settings are available with respect to speed:

Configuration Description
XT Crystal
LP Low power crystal

INTRC _NOCLKOUT Internal clock without clock signal on a7
INTRC CLKOUT Internal clock with clock signal on a7

HS High speed ¢rystal

EXTCLK Connected to an external clock
ER_NOCLKOUT External resistor without clock signal on a7
ER CLKOUT External resistor with clock signal on a7

The default setting of the 16F628_bert library is HS (High Speed crystal; in our case 20
MHz). This time, however, we use ER NOCLKOUT.'"" This is the command for the
compiler:

pragma target osc ER_ NOCLKOUT

For this particular setting the compiler uses the last command that it encounters. Which
means we do not have to modify the 16F628_bert library.

The program will flash an LED using a delay statement. By changing the clock frequency
the length of the delay statement is also changed. This is because the length of a delay
statement is determined at the moment the program is compiled, based on the selected
clock frequency. But in this case the clock frequency is changed after the program has

"*¥ When other parts of your project need to work with exactly the same clock frequency of the
16f628 you can generate a clock signal for these parts on pin a7. That signal will have the
frequency of the instruction processing of the PIC (Fosc). For the 16F628, Fosc is equal to one
fourth of the clock frequency. In this project an external signal is not selected; so you can use a7 as
normal.

370

13.2 The 16F628

been compiled, so the compiler cannot correct for this. The effect of all this is a variable
speed flashing LED."

The software
This is the program:

—JAL 2.0.6
include 16F628 _bert

pragma target osc ER_NOCLKOUT
pin_b5_direction = output -- red led
forever loop

pin_b5 = ! pin_b5
delay 100ms(1)

end loop

Since the adjustable frequency may have an impact on programming it is best to use the
following steps:

Build the schematic, but with a crystal,

Program the 16F628 (the program will not run).

Switch off the power.

Remove the crystal and connect the variable resistor.
Switch the power back on (the program now works).
Adjust the flashing speed by adjusting the ¢lock frequency.

e A

' Using pin b3 = Ipin_b3 is elegant, but cannot be used in all circumstances; see section 4.2,

371

13 Other PIC™ microcontrollers

The hardware

It doesn’t get any simpler than this:

+5V 14 161628 5

i~

33k 4 1

330 B

Ny
LED

Figure 201. Infinitely adjustable clock frequency.
Note that one side of the variable resistor is not connected. This is because the variable

resistor is used as a true variable resistor and not as a voltage divider, as in many of the
other projects in this book.

According to the datasheet a 1M variable resistor may be used. The 100k variable resistor
used in this project creates a nice operating range of 1.6 to 10.4 MHz.

This is what it looks like on the breadboard:

Figure 202. Adjustable clock frequency.

372

13.2 The 16F628

13.2.6 Upgrade using HEXview

The 16F628 is used in the Wisp628 programmer (and gave it part of it’s name). This
PIC™ contains the intelligence of the programmer, such as how to program the different
microcontrollers and the pass-through functionality. The software in the programmer is
called "firmware".

Should new versions of the firmware become available you can use this section to
upgrade the programmer yourself. Just be sure to check if the new version has the
capabilities you need, as there are versions available that have no pass-through
functionality and instead have the capability to program other PICs."”" Whether you
consider that an "upgrade’, or perhaps a "downgrade', depends on your own requirements.

Follow these steps to upgrade the Wisp628:

1. Purchase a new 16F628.

2. Download the latest hex file for the programmer. Official versions can be found
on www.voti.nl; alternate versions can be found in different places by searching
for "Wisp628 firmware”. You can even find projects where the 16F628 is
exchanged for another PIC™. How useful this is remains to be seen, so you are
perhaps better off by restricting yourself to the official versions.

3. Build the hardware for this PIC™ according to Figure 196, but without the
switches and LEDs (you can leave them in if you find that more convenient, but
they are not used).

4. Download the hex file into the new 16F628 using HEXview:

e Select the COM port your programmer is connected to.

e Do not change the speed, the default value of 19k2 is correct.

e Enter the name of the new hex file including the path. Remember the
backslash at the end of the path name.

e Click on the "VIEW file" button to verify that you have indeed selected a hex
file. The content is shown in the blue window.

e Click on "GO file". A black window appears that displays the progress; wait
until the window is closed again.

" If you purchased the Wisp628 using the link at http://www.boekinfo.tk then it contains
firmware version 1.09 with pass-through functionality and support for at least the following types:
12F629, 12F675, 16F627(A), 16F628(A), 16F630, 16F648A, 16F676, 16F72, 16F73, 16F74,
16F76, 16F77, 16F818, 16F819, 16C84, 16F84(A), 16F870, 16F871, 16F872, 16F873(A),
16F874(A), 16F876(A), 16F877(A), 16F88, 18F1220, 18F1320, 18F2220, 18F242, 18F248,
18F252, 18F258, 18F4220, 18F4320, 18F442, 18F4439, 18F448, 18F452, 18F458. For all
versions where the /MCLR pin can also be used as an input (such as the 12F675) you will need the
dongle discussed in section 2.2.

373

13 Other PIC™ microcontrollers

= HEXview
Bert van Dam (c] 2006 TR T A oy o -
‘ HEXview
-PoitonPC —
r
| :020000040000FA ~ READ file
(£ M 10000000041 2341104280000A701 AADTABOTACOTE1 Rt |
L -100010004D01AE D1AFD1BOD1AD1 8801 32284F U1E 7 a
i 4 100020008001 23928831 2031 3F 23041 000430420084 3 VEWfe
 Com3 | |11000300028304 300041284 1143081428041 2841167
| |100040004208 1828041 284114108 16284F0AD31 34D = ERASE lugdi
 Comd A 00A30082E02031D 2F 282F 082D 0203181
100060001 2280800501 47289 1 P
P] 1B9F 01 0514851405159
10008000851 58516091 4891 40915342638 2638 2049
| 1 1000900066284D 002D 08031 78D 00831 6801 30C1 4F1 READ eeprom
|ishgs Bl 1 IAE 002E (808004030831 69C
| %2 | |1100080000139300161508005620831 6031 38C1 299 @ ANALYSE e
B AT e Bl e A overflow——
| Version1.3 | | Dt [cApicdevimisp2s Fie [§hex || W lgnoe 00 |

Figure 203. HEXview.

wn

Disconnect the power from the programmer and unplug it.

6. Remove the 16F628 from the programmer and exchange it for the new one you
just made. Keep the old 16F628 until you are absolutely convinced that the new
version works perfectly.

7. If you want you can recycle the old 16F628 (personally, I would keep it as a
backup).

e Connect the 16F628 to the hardware of step 3.
e Enter a name for the file (such as "old hex programmer") and enter a path.

Remember the backslash at the end of the path.

Select the COM port your programmer is connected to.

Use the default speed setting of 19k2.

Click on "READ file" and wait for the black window to disappear. |

Click on "VIEW file" to verify that the hex file has been created. |

Save the hex file in a safe location in case you ever want to go back to the old]

version. |

e You can now use the 16F628 for other projects. |

e @ o o o

You can also use HEXview to look at data in the EEPROM of a PIC™., See section 10.3
for details.

13.3 The 16F876A

13.3.1 Introduction

The 16F876A is the little brother to the 16F877. This PIC™ has all the functionality of
the 16F877, but in a smaller, 28-pin package. Missing are the D and E ports and one of
the power pins for +5 V. In total, 12 pins less than the 16F877, but still a mighty
impressive PIC™ for smaller projects.

374

Here are the properties of the 16F876A:

13.3 The 16F876A

Item Specification

Program memory 8192 words (14 bit)

RAM 368 bytes

EEPROM 256 byte

1/0O pins 22

Analog inputs 6 (each 10 bit)

USART yes (c6/c7)

Speed 5 mips

PWM yes (c1/c2)

Cost Us$sto7

12C yes (c3/c4)
The packaging is, of course, smaller:

MoLrver— []°1 ~ 28[] <= RB7/PGD
RAO/ANC=*+ L] 2 271] = RB6/PGC
RA1/ANT =[] 3 ” 26[] =+ RBS5

RA2/AN2/VREF- <[] 4 e 25| == RB4
RA3/AN3/VReF+ =[] 5 g 240 = RB3/PGM
RA4/TOCKI=+—=L] & ~ 23[] =— RB2

RA5/AN4/SS <[] 7 oo 22] = RB*

ves—=[] 8 7o) 21[J <= RBO/INT

oscrcLkinN—=T] ¢ 5 2000 =— voo

0sczicLKoUT=—L[] 10 o 19[] -— vss
RCOT10SOT1CKI=—] 11 18[] = RC7/RX/DT
RCUT10SKCCP2=+—=[]12 17[] == RCB/TX/CK

RC2/CCP1=—=[]13 16[] =+ RC5/SDO
RC3/SCK/SCL=—=[]14 15[- RC4/SDI/SDA

Figure 204. Pin configuration of the 16F876A.

375

13 Other PIC™ microcontrollers

These pins must always be connected:

Pin Name Description

1 MCLR/Vpp Master clear pin and programmer
voltage input. This pin requires a
33k resistor to +3 V.,

8 Vs Power supply ground (0 V)'"'

9 OSCI/CLKIN Crystal'”

16 OSC2/CLKOUT Crystal

19 Vs Power supply ground (0 V)
20 Voo Power supply +5 V

If you use the Wisp628 the wires need to be connected as follows:

Wire Connects to
yellow pin 1
blue pin 28
green pin 27
white pin 24
red +5V
black ov

13.3.2 16F876A_bert library

The standard library for this PIC™ is 16F876A bert'”. You can read about the
functionality of the 16F&77 library in section 14.2, because all of these functions are also
available for the 16F876A.

Y All power supply connections MUST be used (pins 8, 19, 20).

'™ A crystal is not mandatory: the 16F876A can run without it, but slower {at 4 MHz). In this book
a crystal is used in all projects and this has been set in the 16F876 bert library,

"% This library is part of the download package

376

13.3 The 16F876A

Since some functionality is loaded by default certain pins have been reserved. If you want
{0 use these pins for something else you’ll need to modify the standard library. This is the

default configuration:

16F876A pins Function
Y and 10 Crystal
12 PWM (2)
13 PWM (1)
17 RS232 hardware TX
18 RS232 hardware RX
27 RS232 software RX
28 RS232 software TX
2to 5 plus 7 Analog input (adjustable)
All others Digital input/output

The analog pins 2, 3, 4, 5, and 7 can be switched to digital using the command from the

standard library (se¢e section 14.2).

13.3.3 Demo program

As a demonstration of the capabilities of the 16F876A and the 16F876A bert library a

small demo program is discussed.

Technical background

This program contains the following functionality:

A/D conversion

RS232 communication
Reading a digital signal
Writing a digital signal

This program will read the position of the variable resistor on pin a0 and send it to the PC
over a serial connection. The yellow LED will flash and the blue LED will switch on

when the switch is engaged.

377

13 Other PIC™ microcontrollers

The software

--jal 2.0.6
include 16F876a bert

-- general variables
var byte resist

var bit led0 is pin_c2
var bit led] is pin_¢3
var bit switch is pin_c4

-- define the pins
pin_c2_direction = output
pin_¢3 direction = output
pin_¢4 direction = input

forever loop

-- take a sample on AN2 (pin_a0)
resist = ADC _read_low_res{0)

-~ and send over RS232 ro the PC
serial_sw write(resist)

-- flash the led if the switch is pressed
if switch then

led0 = high
else

led0 = low
end if

-- wait a bit otherwise the led flashes a bit fast...
delay 100ms(1)

- flash led"
ledl =! led|

end loop

" Using led = ! led is elegant but cannot be used in all circumstances; see section 4.2.

378

13.3 The 16F876A

The hardware

The hardware is rather straightforward. Blue LEDs are pretty, but a bit expensive; if you
didn’t buy the hardware kit feel free to use an LED of a different color.

+5V

330
330

20mHz OO

—l 20 pF

ViR

20pF
_‘

L

(yellow) (blue)

Figure 205. Demo program for the 16F876A.

Figure 206. Demo program for the 16F876A.

379

13 Other PIC™ microcontrollers

13.3.4 VU meter

A VU meter which will show the volume of music in an LED bar,'”
Technical background

A sound source is connected to the A/D converter of the PIC™, Depending on the
measured voltage a number of LEDs is switched on. At which voltage this happens
depends on the sound source. In this project a small transistor radio is used. Adjust the
threshold values in the following (and similar) statements if needed:

if resist > 10 then pin_b0 = 1 else pin_b0 =0 end if

Be careful to never apply more than 5 V to any pin of a PIC! Start with the volume of the
sound source off, and then slowly increase it until the LEDs flash.

The software

—jal 2.0.6
include 16F876 bert

-- general variables
var byte resist

-- define the pins

pin_b0 direction = output
pin_bl_direction = output
pin_b2 direction = output
pin_b3_direction = output
pin_b4_direction = output
pin_b5 direction = output
pin_b6_direction = output
pin_b7 direction = output

forever loop

-- sample sound
resist = ADC read low res(0)

' VU means volume unit. Technically, a VU meter measures the average voltage over a certain

(short) period of time.

380

13.3 The 16F876A

-- and display

if resist > 10 then pin_b0 = 1 else pin_b0 = 0 end 1f
if resist > 20 then pin bl =1 else pin_bl = 0 end if
if resist > 30 then pin_b2 = 1 else pin b2 =0 end if
if resist > 40 then pin_b3 = | eise pin_b3 =0 end if
if resist > 50 then pin_b4 = 1 else pin_b4 = 0 end if
if resist > 60 then pin_b5 = 1 else pin_b5 = 0 end if
if resist > 70 then pin_b6 = 1 else pin_b6 = 0 end if
if resist > 80 then pin_b7 =1 else pin b7 =0end if

end loop

During programming you don’t need to remove the LEDs from pins b6 and b7. They will
flash, but it doesn’t affect the programming.

The hardware

33k l 5y
1 20
10k 2
sound in 161876
819 9 10 21 22 23 24 25 26 27 28

20MHz 23

_‘ 20 pF

VARVARVAAVALVARVAJVARVA.

_| 20 pF

Figure 207. VU meter,
On the breadboard you can see the VU meter in action with a simple transistor radio.

Keeping the radio this close to the crystal does not improve reception. Hidden under the
connecting wires to the radio is the 33k resistor on pin 1.

381

13 Other PIC™ microcontrollers

Figure 208. VU meter with transistor radio.

Optional

Although this is a simple VU meter you could use the techniques discussed in section
12.7 to replace the LEDs with large lamps and turn this an Object d'Art, especially if you
use a microphone and amplifier instead of the radio (just remember to keep the input
volume low). Now the light in the room will adjust to the sound level. With a lot of
people in the room it will be brightly lit, but when everyone leaves it will get dark. Take a
look at the website of artist James Clar'’®. With the knowledge you have gained in this
book you can build almost all of his projects!

13.3.5 Infrared RS232

This is a very unusual but interesting project involving infrared RS232 communication
between a 16F877 and a 16F876A.

Technical background
In section 11.1, two PIC™ microcontrollers were connected to each other using a wired
RS232 connection. In this project we will do the same thing, but using infrared instead of

wires!

We will use the Fairchild QRB134 that has already been discussed in sections 7.3 and
7.4, and obviously this time we need two. The disadvantage of this sensor is that it is

176 The website address is http://www.jamesclar.com

382

13.3 The 16F876A

meant for short-range applications.'”” This is because the infrared LED doesn’t produce
much light. A possible solution would be to connect a few together and use a transistor to
switch them on and off.'”® Another solution is to remove the daylight filters. The sensors
are mounted opposite each other in such a way that the LEDs and receivers
(phototransistors) directly face each other, as shown in Figure 209.

Figure 209. Facing each other with daylight filters removed.

The maximum distance you can reach this way is about 8 cm (3 in.) if you line the
sensors up nicely. If you use the sensors with the daylight filters installed the maximum
distance is about 5 mm (0.2 in.). In that case the sensors must face each other "crossed
over’, so that the LED of one sensor faces the phototransistor of the other, not as in
Figure 209."”

The normal communication speed for the hardware serial port is set to 19k2 in the
standard library, but that would be too fast for this infrared setup. We will reduce the
speed to 1200 baud, which means we have to modify the libraries of the 16F877 and the
16F876A.

Follow these steps for modifying the libraries:

1. Copy the 16F877 bert.jal library from the library directory on the harddrive of your
PC to the folder where you keep the files of this project S50

2. Start JALedit and open the library (using File — Open, etc.)

3. Search for the const Serial hw_baudrate = 19200 command and put a semicolon (;)
in front of this line. The line will become gray, because now it is a comment line.

4. Save the file (using Ctrl-S)

Repeat steps 1 to 4 for the 16F876A _bert.jal library.

(¥,

177 According to the datasheet the optimum distance is 0.51 cm (0.2 inch).

T 1 you use a transistor you can reduce the resistor to the LED. This is now 220 ohms, because
the PIC™ can deliver 25 mA max. According to the datasheet the infrared LED can handle 50
mA, which works out to a 100-ohm resistor. This will seriously improve the usable distance.

' In the picture you see that LED is facing LED and phototransistor is facing phototransistor. If
you use the daylight filter the LEDs should face the phototransistors, because the signals cross due
to the short range.

0 If you installed the software package as instructed your library directory is
c:\picdev\jal\libraries. The project directory is where you are storing your PIC™ program.

383

13 Other PIC™ microcontrollers

When JALedit looks for a library, it first looks in the directory where your JAL program
is located. In this case it will find, and use, the modified libraries. If the library is not
found in the JAL program directory JALedit will search for it in the library directory. The
libraries that you keep with the JAL program are called "local copies™.

[f you make changes to libraries it is always a good idea to use local copies. This ensures
that other programs can still use the original libraries. And if your modifications don’t
work out you can go back to the original version by simply deleting the local copy. So it
is very helpful to use a different directory for each project.

The software

Since we commented out the speed of the hardware serial connection we must declare it
in the main program:

const Serial hw_baudrate = 1200

And since the library needs to use this value you’ll need to place this statement before the
library call.

—jal 2.0.6
const Serial hw_ baudrate = 1200
include 16F877 bert

-- general variables
var byte datal, data2

forever loop

-- fetch incoming data
serial_sw_read(datal)

-- relay to 16F876
serial hw write(datal)

-- get byte from serial PIC

if Serial hw_read(data?) then
-- echo to PC
Serial sw_write(data2)

end if

end loop

384

13.3 The 16F876A

Aside from that the programs are basically copies of that in section 11.1, with the
exception of using the 16F876A_bert library:

--jal 2.0.6
const Serial_hw_baudrate = 1200
include 16F876A_bert

-- general variables
var byte data

forever loop

-- get byte from serial PIC

if Serial hw_read(data) then
-- echo
Serial hw_write(data)

end if

end loop

When both programs run you can use the pass-through function of the Wisp628
programmer to connect to the 16F877 using MICterm, or other terminal program.
Everything you enter in the send box (the lower green window) is sent to the 16F877,
then by infrared to the 16F876A, then by infrared back to the 16F877, and from there
back to the PC through wires, where it is visible again in the receive window.

PC

Wisp 628 16877 16f876A

15232 rs232 infrared

Figure 210. Data transfer.

385

13 Other PIC™ microcontrollers

The hardware

In the schematic you can see that both units are almost identical. To make things clearer
the Fairchild QRB1134 is represented by its individual components. In reality, the LED
and phototransistor are contained in the same case. The wire colors refer to that casing.

| Ll | +5V 33k l ol
1 1 20
e white white
' '
€—{40
{szpsé 161877 ¢ 16f876A o
0 blue
>—139 5% blue 8 u
12131 13 14 25 819 9 10 17
P k4
_|DF 8 |:~°—i| _“]i_ 2 l}’jl
w 5 o~ W 'S o~
a £ =L a E o
& = |R & s ||
— = orange =8 e= orange
N N
Tk, VA,
green green

i

L
Figure 211. Infrared serial set up.

And this is what it looks like on the breadboard:

Figure 212. The 16F877 with infrared unit.

386

13.3 The 16F876A

The green and blue wires at the top left corner belong to the Wisp628 programmer, and
allow for communication to the PC through the pass-through connection. The sensor is
soldered to a 4-pin plug, with the wires leaving the picture on the right side.

Figure 213. The 16F876A with separate daylight filter.
The daylight filter is on the left side of the picture, just to show it; it serves no function.
Figure 214 shows that horizontal alignment is very important. If you tilt the sensors just a

little bit the signals will completely miss the receivers. When testing for the maximum
possible distance it doesn’t make any difference whether it is daylight or not.

e S S

Figure 214. Importance of horizontal alignment.
Optional

You can use this project as a code lock. The 16F877 sends a signal and the 16F876A
(built as a portable keychain device) will have to give a certain reply before the lock will
open.

I created this project for a mobile robot that could exchange information with a base
station, without physically connecting to it. It only needs to maneuver itself into the right
location and initialize communications. In any case you need to make sure that horizontal
alignment is in order.

387

13 Other PIC™ microcontrollers

13.4 Portability

Using JAL as the programming language, in combination with the 12F675 bert,
16F628 _bert, 16F876A_bert, and 16F877_bert libraries makes programming a PIC™ a -
lot easier. If this book had used assembler there would have been only a fraction of the
projects, and you would have learned quite a bit less.

There is yet another major advantage to JAL with these libraries: portability. Programs
written for one PIC™ can be quite easily transferred to a different PIC™. Say, for
example, you started programming for the 16F628, but your program got so big that you
expect to run out of memory. With a few simple changes you can port your program to
the big 16F877 and solve your memory problem. Or perhaps you staried on the 16F877,
but then realized that your program is very small and doesn’t need all those inputs and
outputs. Simply port your program to the smaller and cheaper 12F675.

Functionality 16F877 16F876 16F628 12F675
(using the standard library)

Serial communication - hardware X X X

Serial communication - software X X X X
Pulse Width Modulation (PWM) X X X

A/D conversion X X X
Program memory X X

EEPROM X X X X
ASCII X X X X
Delay X X X X
Registers and variables X X X X
Random numbers X X X X
Analog-digital switchable pins sl 18 X

"¥1 1t is possible with the 16F877 library, but you need to set the pin configuration as a group using
no ADC =X,

'82 It is possible with the 16F876A library, but you need to set the pin configuration as a group
using no_ADC = X,

388

13.4 Portability

It is, of course, important to remember the different features of these PICT™
microcontrollers as shown in the previous table. There are physical limitations to consider
as well. The 16F628, for instance, has only one PWM module, while the 16F877 has two.

The 12F675 has analog-to-digital conversion on 4 pins, while the 16F877 has it on 8. And
the 16F628 doesn’t have it at all.

Another thing to take into account is that the standard library settings may differ. Pin a0
of the 12F675 is used for software RS232, while the "same" pin on the 16F877 is used as

an analog-to-digital converter.

The following table maps the limitations:

Function 12F675 16F628 16F876 16F877
Crystal a6 and a7 9and 10 13 and 14
PwM'® b3 clandc2 c¢lande2
R8232 hardware TX b2 ch chb
RS8232 hardware RX bl c7 c7
RS&232 software RX al b6 b6 bo
RS232 software TX a0 b7 b7 b7
Analog in (flexible) a2 and a4'® a0, al, a2, a0,al, a2,

a3, and a5 a3, a5, e,

el, and e2
Digital input/output other others others others
An example

As an example of migrating programs we will compare two programs that read a voltage
on pin a2, make 1t digital, and send it to the PC. One program can run on the big 16F877,
the other on the tiny 12F675. The programs are listed next to each other on the next page.

Perhaps you think this is a hit corny, but it does show the power of JAL and the
12F675 bert and 16F877 bert libraries. The only difference between the programs is the
library include on line 2.

WE_B PWM can be switched on and off, but this is only important for ponting PWM functionality.
" On the 12F675 A/D channel AN3 is on pin a4, but on the 16F877 it is pin a3. On the 16F877
pin a4 doesn’t have an A/D module at all,

389

13 Other PIC™ microconirollers

- jal 2.0.6
include 16FR77_bert

-- general variables
var byte resist

-- define the pins

pin_a2 direction = input

forever loop

-- take a sample on AN2 (pin_a2)
resist = ADC read low_res(2)

- and send over RS232 1o the PC
serial sw_write(resist)

-- wait a bit
defay 10ms(1)

end loop

--jal 2.0.6
include 12F675 bert

-- general variables
var byte resist

-- define the pins
pin_a2_direction = input

forever loop

-- take a sample on AN2 (pin_a2)
resist = ADC read low res(2)

- and send over R5232 to the PC
serial_sw_write(resist)

-~ wait a bit
delay 10ms(1)

end loop

390

14 Appendix

This 1s the reference guide part of the book. It contains a few unique overviews not found
anywhere else. For this reason the book will find its place next to your PC even after the
projects have long been built.

14.1 JAL
14.1.1 General

JAL'™ (Just Another Language) is a frec-format language for programming PIC
microcontrollers. The commands can be spread out over the lines as you please. Tabs,
spaces, and newlines are all considered whitespace. There is no delimiter between
different commands. In theory you could put all commands on one long line. In practice,
however, appropriate whitespace results in easier-to-read programs because any
convention you choose is possible. JAL is the only advanced free language, and has a
large and active international user base. It is configurable and extensible by use of
tibraries and can even be combined with assembler.

A typical JAL program will start with a call to a library that contains relevant details for
the PIC™ for which the program is written.

include 16F877 bert

Then the variables will be declared:
var byte a

Next are the commands:
forever loop

a=a+1
end loop

"5 JAL was originally designed by Wouter van QOoijen as a free high-level language comparable to

Pascal. After a few years JAL continued its life as an open-source program. In 2006, Stef Mientki
initiated the development of a brand new JAL version: V2. Kyle York is the programmer of this
new version, and an international user group (alphabetically: Bert van Dam, Sunish [ssac, Dave
Lagzdin, Javier Martinez, Stef Mientki, Wouter van Ooijen, Michael Reynolds, André Steenveld,
Joep Suijs, Vasile Surducan, and Michael Watterson) took care of beta testing. In this book the
latest version {at the time of writing) was used. The download page contains a link to the latest
version available.

39

14 Appendix
It is a good practice to add comments to your program to indicate what it does and for
which JAL version it is written. So a simple program might look like this: |

- JAL 2.0.4
include 16F877 bert

var byte a

- demo program

forever loop
a=a-+]l

end loop

14.1.2 Syntax

Yariables

Here the power of JAL is immediately clear. Both unsigned (positive) as well as signed
(positive and negative) variables can be used, containing up to 32 bits.

bit 1 bit unsigned boolean value (0 of 1)

byte & bit unsigned value (0 t/m255).

shyte & bit signed value {(-128 t/'m127).

word 16 bit unsigned value (0 t/m 65,535).

sword 16 bit signed value (-32,768 t/m 32,767).

dword 32 bit unsigned value (0 t/m 4,294,967,296).

sdword 32 bit signed value (-2,147,483,648 t/m 2,147,483,647).

You can even define variables with any bit length you want, such as:

var bit*2 demo
Variable demo is now 2 bits long (and can thus contain the values 0, 1, 2 or 3). When a
value is assigned to demo it doesn’t necessarily have to be two bits, but only the lowest

two bits will be put into the variable (the others do not fit)."® So the statement:

demo = 99

"% The compiler will notice and give you a wamning. If you did it intentionally, you can ignore the
warning. If you use the settings in the download package you will not see the warnings, because
they are switched off by default.

392

14.1 JAL

will result in a value of 3 for demo, because the number 99 in binary is 1100011, and the
lowest two bits are set to 1, which equals 3 in decimal.

Besides decimal values you can use other number bases as well. In that case you need to
add a prefix to the number. Possible bases are:

23 decimal
Ox1F hexadecimal
0q07 octal

0b01 binary

And of course you can use letters:
"Hello" string
For readability purposes underscores can be added to numbers in any position you want.
To the compiler the number 10_0 is identical to 100,
Binary value assignments almost always use underscores to make them easier to read:

a=0b_1001 1110

Declaring variables must be done before they can be used. Here are a few possibilities to
do this:

var byte a a is declared as a byte
var byte a = Ox1F a is declared as a byte and assigned a value at the same
time

var byte a at 0x06 « is declared as a byte at memory location 0x06 187

"7t is jmportant to understand what you are doing when you force variables to a certain memory
location. It can also be used as a convenient way to split variables. This example declares an array
in exactly the same memory location as the word variable demo:

var word demo

var byte dem[2] at demo
Demo is a word (two bytes). Since the array dem is also two bytes long, and in the same memory
location, this means that the first item in the array, dem/0], is the low byte and the second item,
dem/[1], is the high byte.

393

14 Appendix

var byte volatilea a is declared as a byte and will not be optimized away by
the compiler'®®

var byteais b a is a synonym or alias for b (b must be declared first)

The final declaration can be used to give pins names that are easier to remember. Lets
suppose that a red LED is connected to pin cl. If you use this command you can refer to
pin cl using the redled alias:

var bit redled is pin_cl
For example, redled = [would make pin cl high and thus turn on the LED. This will
make the program easier to read. But it is also easier if you want to migrate your program
to another PIC. If this PIC™ doesn’t have a pin ¢l all you have to do is change the
declaration to a pin that the PIC™ does have, such as:

var bit redled is pin_al
Mixing different variable types in a calculation is possible, but care should be taken that
intermediate results will be stored in the variable type that the calculation started with. If

you multiply a byte with a byte and put the result in a word, like this:

var byte numl, num?2
var word num3

num3 = num! * num?2

the result will never be larger than 255. This is because mum/! and numZ are multiplied
using bytes and the result is transferred into num3.

You can force the compiler to use a word for intermediate calculations by changing the
multiplication to num3 = word(numl) * wordfnum2).

" The compiler optimizes the program during compiling, and will remove all unused parts.
References to a pin will also be removed since the compiler doesn’t know that pins can change
"from the outside". So, to the compiler the command seems useless. The volatile keyword is used
to prevent this. The compiler will leave a volatile variable alone. The average user will almost
never need the volatile keyword.

394

14.1 JAL

Constants

When you know in advance that a variable will be assigned a value once and will never
change it is not a variable but a constant. This can be declared using const, like this:

const byte demo =5
The advantage of using constants is that a variable uses RAM memory and a constant
doesn’t (the compiler uses the value rather than the constant name). So it is a good idea to
use constants whenever you can. In small programs such as in this book it is not really an
advantage, because we are never even close to running out of memory.
Forever loop
This command ensures that a particular part of the program is executed forever. Many
PIC™ programs use this command since it is a convenient way to make sure the program
never stops.

forever loop

[commands]

end loop
While loop
The while loop executes a series of commands as long as a certain condition is met.
This loop is executed as long as a is smaller than b:

while a < b loop

[commands]

end loop
For loop
The for loop executes a series of commands a fixed number of times.
This loop is executed ten times:

for 10 loop

[commands]
end loop

395

14 Appendix

Normally the compiler will count "internally”, but you can force it to use a certain
variable to count the loops, with the using command. This is very convenient if you want
to know inside your loop how many times it has already been executed. For example,
when you want to determine the position in an array. Note that counter will count from 0
to 9 in this program:

for 10 using counter loop

[commands |

value = demo(counter)
end loop

Procedure

A procedure is a part of program that is needed more than once. Rather than typing it
several times it is put aside and given a name. This particular part of the program is only
executed when it is "called”" by that name. Using procedures usually makes a program
easier to read and maintain,

This is an example procedure demo

procedure demo is
[commands]
end procedure

You can call this procedure simply by using the name as a command. For the procedure
shown above the call would be

demo

In procedures you can use variables just as in any other part of the program. Any variable
declared outside the procedure is also valid inside a procedure. If you define a variable
inside a procedure you can only use it inside that particular procedure. This is called a
"local variable". For example:

procedure demo is
var byte a
[commands]

end procedure

In this example variable a is unknown outside the procedure.

396

14.1 JAL

If you want to give a value to a vanable from outside the procedure you need to "pass” it
to the procedure. The procedure would look like this:

procedure demo (byte in a) is
[commands that use variable a |
end procedure

and a call to this procedure would be like this:
demo (6)

In this same way you can pass variables out of the procedure, but then you need to
declare them as "byte out” instead of "byre in" in the procedure name.

This is a good way to make new commands that you can add to JAL. If you have made
new procedures, for example to control a certain component or function, vou can put
them in a separate file. This file is then called a library and you can use it by "including"
it in your program using the inciude command.

The advantage is that your program becomes much easier to read, and the next time you
need that particular component or function you can simply load your library, and off you

go.

Function

A function is basically the same as a procedure. The main difference is that a function
always returns a value. The returned value needs to be declared using the rerurn
statement,

In this function variable is incremented by one:

function demo (byte in a) return byte is
varbyte b
b=a+1
return b

end function

In the declaration of the function it is indicated that an input is expected (byte in) and that

the answer the function will return is a byte (return byte). Inside the function the "return
b" statement indicates that & will be the value that is returned.

397

14 Appendix

This is an example of a function call:

x = demo(4)
where x will get the value 5 (4 + 1).
Functions are often used to return a status rather than a number, such as frue or false.
In-line assembler
You can use assembler inside your JAL programs. I don’t think this will ever be really
necessary, but perhaps you found a nice snippet on the Internet or want to use an example

from the datasheet.

You can use individual assembler statements using the asm prefix, like this:
asm movlw OxFF

If you need multiple statements it is easier to use an assembler block, like this:

assembler
movlw O0xFF
bsf' 5
movwt pr2
bef 5

end assembler'™

When your program is compiled the JAL compiler generates a HEX file for the PIC™, as
well as an assembler file. You can use this to exchange programs with assembler users or
to use Microchip tools.

All assembler commands ("mnemonics") that you find in the 16F877 datasheet can be
used.

"% Assigning value OxFF to pr2 is quite complicated in assembler, becausce the program executes
from bank 0 and pr2 is in bank 1. In JAL this is totally irrelevant (you don’t even need to know
what banks are); you can simply write pr2 = OxFF.

398

14.1 JAL

Additionally, a few assembler macros that are often used on the Internet can be used too:

OPTION k Copy literal k to the OPTION register '™
TRIS {5,6,7} Copy W to the TRIS {5,6,7} register
MOVFW [Copy fto W (a synonym for MOVF f, W)"”'
SKPC A synonym for BTFSS status, ¢

SKPNC A synonym for BTFSC status, ¢

SKPZ A synonym for BTFSS _status, =z

SKPNZ A synonym for BTFSC _status, _z

If you use variables from the JAL program in your assembler block you cannot be sure
where they are because JAL may store them in any available memory bank. This also
means that at the moment the JAL program is interrupted for your assembler block, you
have no clue where the bank pointers are pointing to. That means you don’t have access
to the registers, even though you do know where they are.

The solution is to ask the compiler to fix the bank pointers for you. You can do this by
adding bank to every line in which you use JAL variables or registers.

procedure register_write(byte in Address, byte in Data) is

assembler
bank movfaddress,w ; move address to working variable w
movwf FSR : move address to file select register
bef irp , make irp zero so we use bank 0 and 1
: (indirect register bank select),) = bank /1
bank movf data,w : move data to w
movw{ indf : move data to indirect file vegister as

; referenced by fsr
end assembler
end procedure

I wrote this fragment for the regedit'” library and you see that the bank statement is used
in all lines containing address and data, because the location of these JAL variables is

" The official explanation is move. However since the original version is retained it is in fact
copy.

"U'W is the working register, f is the register file address. MOVFW myvar puts the value of myvar
in W, MOVLW myvar puts the address of myvar in W,

399

14 Appendix

unknown. The line referring to the registers FSR, IRP and INDF do not have the bank
keyword, because they are accessible from all banks.

Task

Even though a PIC™ can only do one thing at a time you can still do multitasking, just
like on a PC. The different tasks can be defined using the fask commmand. Every time the
program encounters a suspend command the current task is interrupted. The scheduler
then checks to see which task has been waiting for the longest time and hands control
over to that task. This system only works if the tasks are "honest" and use the suspend
comman regularly.

Just like in a procedure, tasks can have their own local variables.

task namel (parameters) is
[commands |

suspend

{ commands |
end task

task name2 (parameters) is
[commands]

suspend

[commands]
end task

start task | (parameter values)
start task2(parameter values)

torever loop
suspend
end loop

Before a task can be run you need to start it using sfart. The task can be stopped using
end task.

"2 This is a library to read and change registers while the program is running, see section 12.1.
The latest version of the library {(contained in the download package) is written in JAL, so the
fragment is no longer used.

400

14.1 JAL

IMPORTANT: If you want to compile a program containing tasks you need to tell the
compiler how many tasks there are. Note that the main program is also counted as a task.
So the previous example should be compiled using -task 3 on the command line.'"

If then else

This command is used to make a choice between two possibilities. /f one condition occurs
then something is done, else something else is done.

In this example b gets the value of 2 when a is equal to 1. [n all other cases b gets 3.

ifa==1 then
b=2

clse
b=3

end if

This command can be nested, like in this example.

ifa==1 then
b=2
else if a == 2 then
b=3
else
b=4
end if
end if

Note that e/se if are two words."” The above program yields the following results:

if then
a=1 b=2
a=2 b=3

a=gsomethingelse b=4

"> If you use JALedit you can enter this at Compile - Environment Option - Additional
Commandline Parameters.
1% The statement elsif is also legal, but it is not used very often.

401

14 Appendix

Case

If you need to make multiple decisions based on the value of a single variable the case
statement is a good alternative to a row of if then else statements. In the following
example b 1s given a value based on the value of a. If ¢ is 3 than & will be 4. If the value
of a 1s not listed then » will get the value 6.

case a of
1. b=20
2. b=13
3:b=4
4: b=39
otherwiseb=6
end case

Contrary to the if then else statement the case block can only have one statement per
choice. So if you want to give 4 the value 13 and aa the value 188 when a is 2 then this is
not possible. You will have to use a procedure, or the block statement.

Block

The block command can be used to group statements together. Variables defined inside a
block can only be used in this block. A block is a program section and will be executed
when it is encountered. In cannot be called form another location.

block
[commands]
end block

This 1s particularly useful in combination with case, for example:

case a of
I: b=20
2: block
b=13
aa =188
end block
3:b=4
4: b=59
otherwise b=46
end case

402

14.1 JAL

Another reason to use block is when you want to use variables locally This may occur
when you are mixing program parts together that use the same variable names for
different purposes.
Array
Normally speaking a variable has only one value. With an array a variable can be given a
whole range of variables. In the following example the demo array is assigned a row of
five values.

var byte demo[5] = {11,12,13,14,15}
To get a value out of the array the number between square brackets indicates the position
that you want. Remember that computers start counting at 0, so the first position in the
array is 0. In our example demo/0] contains the value 11.
This command selects the fourth number in the array (the value 14):

a = demo|[3]

Adding a value to an array (or modifying one) is done in a similar way. In this command
the fourth position in the array is assigned the value in &

demo|3}=a

Your program can use the count statement to determine the length of an array. For
example:

a = count(demo)

Be careful with your array size, since an array has to [it within a single RAM memory
bank (see section 10.2).

Long table

If you need more space that you can fit into an array you can use the long table. This is an
array with just constants. That means you define it once, and afterward you cannot make
changes to its content. This is because even though it is an array, it is not contained in

RAM, but in program (flash) memory.

The long table can be very long indeed; in the 16F877 a whopping 8000 bytes! Of course
the length can never be more than the available program memory. So in a small PIC, or

403

14 Appendix

with a large program, long tables must be shorter. You can check this by compiling the
program with a long table with a length of 1. Based on the resulting program size the
available length for the long table can then be calculated. See section 10.1 for more
information on how to determine the size of a program.

If the long table doesn’t fit the compiler will generate an error, and your program will not 1
be downloaded into the 16F877.

The syntax of the long table is:

const byte demo[2049]1={ 1,2, 3,4, 5, ...}
var word x
var byte y

y = demo[x]
where the above values are just for demonstration purposes.
Operators

JAL has a wide variety of operators. The most important ones are shown below:

Operator Explanation

H Logical. Indicates whether a variable is zero or not.
For example !!5=1,and 110 =0

! Not, or Complement.. Flips 0to 1 and 1 to 0 at the bit

level.
So !5 =250 because '0b_ 0000 0101 =0b 111 1 1010
* Multiply.

/ Divide without remainder.
S09/2=4

% The remainder of the division
S09%2=1

+ Add.
- Subtract.

404

14.1 JAL

Operator Explanation

<< Left shift. Move all bits to the left by one. Note that the
newly created bit is set to 0. When a signed variable is
shifted the sign is retained.

> Right shift. Same as lett shift, but in the other direction.
Less than.
<= Less than or equal to.

== Equal to. Note that these are two equal signs in a row.
Accidentally using only one is a very common mistake
(feel free to view this as an understatement)

b= Not equal to.

>= Greater than or equal to.
> Greater than.
& AND comparison at the bit level. The truth table is:
1&1=1
1&0=0
0&1=0
0&0=0

OR comparison at the bit level. The truth table is:

11=1

1]0=1
0]1=1
0]0=0

XOR {(eXclusive OR) comparison at the bit level. The
truth table is:

1~1=0
170=1
0~1=1
070=0

405

14 Appendix

Pragma
Pragma is a command for the compiler. It is a very powerful but complex command. A
detailed explanation would be out of scope for this book, particularly since you will never

(or rarely) use most of the commands.

This table lists the most important pragmas:

pragma eedata Stores data in the EEPROM of the PIC™,
For example pragma eedata "O","K" will store the letters
O and K.

pragma interrupt This can only be used inside a procedure. The result is
that the procedure is added to the interrupt chain, a series
of procedures that is executed when an interrupt occurs.
There is no limit to the number of procedures in the
chain, but the execution order is not defined. Interrupt
procedures may not be calied from the program itself.

Comments

Lines containing comments are preceded by two dashes or a semicolon. You need to do
this for each line, as there is no block comment statement.

; this 1s a comment
-- and this too

Comment lines are used to clarify what a program is for, or why things are done the way
they are done. This is very handy for future reference, or when you want to share
programs over the Internet.

It is good practice to indicate the JAL version on the very first line of your program. That
eliminates a lot of questions!

Good comments are not about what a certain statement does (unless you are writing a
book), because the reader may be expected to know this. They are about why you use the
statement. If you make a library you should use comment lines to explain in detail what
the library is for and how it should be used. Libraries without these comments are
completely useless.

406

14.2 16F877_bernt library

14.2 16F877_bert library

Libraries are used to keep the specific PIC™ settings, registers and variables easily
accessible, and to add extra commands to JAL. Because everyone can write and publish
libraries, not all of them work will together.

With the free download that comes with this book you will find a series of libraries' ™ that
have been combined into one big library for each microcontroller, such as the
16F877 bert library.'”® This library is very popular on the Internet, because it adds a wide
range of extra commands to JAL. Besides, all compatibility problems have been fixed.
The credit for the individual libraries within this pack goes to the individual writers."”’

This combination library (the "standard library") adds commands to JAL that occur in
many different parts of the book, such as analog to digital conversion, serial
communication, reading and writing memory, and much much more. The most important
ones are explained in this section.

Serial communication

These are the commands for the serial hardware port, which is a standard port of the
16F877:

usart_hw_serial Set the right protocol: true =
RS232, false = SPI (default 1s
true).

serial hw_baudrate Set the baudrate (communication

speed) for the RS232 connection.
Hardware communication speed
in the standard library is set to
19k2 by default, but other speeds
such as 1200 or 115k baud are
also possible.

serial hw read(data) Receive serial data and store it in
the variable data.

"% Such as: 16F877 inc all, pic_general, format, delay_any _mc, adc_hardware, pic_data_eeprom,
pic_program_eeprom, pwm_hardware, serial_hardware, random, jascii, extradelay.

" The download package also contains standard libraries for the PICs discussed in Chapter 13:
the 12F675, 16f628, and 16F876A.

197 Stef Mientki, Wouter van Ooijen and Bert van Dam.

407

14 Appendix

serial_hw_write(data)

serial_hw_data = data

Send the contents of the variable
data.

The same as above, but called as
a function.

Software serial communication is also possible, this means RS232 connections can be
made with PIC™'s that have no USART. A very powerfull set of commands! This is the
technique used when the Wisp628 programmer is in pass-through mode:

serial_ sw_baudrate

serial_sw_invert

serial sw write init
serial sw_read init
serial sw_read(data)

serial_sw_write (data)

Set the baudrate (communications speed)
for the RS 232 connection. Software
communication speed in the standard
library is set to 1200 by default, but other
speeds such as 19k2 or 115k baud are also
possible.

Invert the signal.

Prepare to send data from the PIC™ over
the RS232 connection.

Prepare to receive data over the RS232
connection.

Receive data and put it in the variable
data.

Send the contents of the variable data.

Contrary to hardware serial communication, software serial communication does not have
a buffer. If a signal is received at the moment that the PIC™ is not actually waiting for it,
it will be lost. More information on this subject can be found in section 14.4.

408

Pulse Width Modulation (PWM)

14.2 16F877_bert library

The PWM module of the PICT™ is used, so these commands can only be used for PIC™'g

that have a PWM module.

const pwm_{frequency = number

const pwm1_dutycycle = number]
const pwm2_dutycycle = number2

PWM init_frequency
(boolean,boolean)

PWM set dutycycle (var,var)

This sets the PWM frequency. You
can only chose the frequencies listed
in the datasheet and as you have seen
in section 7.2 this has consequences
for the available resolution.

If you use frequency modulation (FM)
instead of PWM this is where you set
the desired duty cycle.

Initialize the PWM modules.

Set the duty cycle. When using PWM
this is the variable that controls the
power output (if an electric motor is
used this controls the speed)

For the 16F628, which only has one PWM module, you can use the same commands.
This makes migration from one PIC™ to another simple. Values for the second PWM
module will be ignored. To allow migration to dual PWM microcontrollers it is best to
use the value 0 for the modules that don’t exist.

PWM init_frequency (boolean,0)

PWM_set dutycycle (var,0)

Initialize PWM module 1.

Set the duty cycle on module 1.
When using PWM this is the
variable that controls the power to
the user (if the user is an electric
motor it controls the speed)

409

14 Appendix

A/D conversion

ADC _init Initialize the A/D converter.

no ADC=X Set the number of A/D channels you want to
use (see the table).

ADC on Switch A/D on (for the selected channels).

ADC off Switch A/D off (all pins become digital).

ADC read (ADC_chan) Read the analog value on a channel into a
word (channel is the AN number in the
tabie).

ADC _read bytes(ADC_chan, Read the analog value on a channel into two
ADC_Hbyte, ADC Lbyte) separate bytes.

ADC read low res Read the analog value on a channel’ into
(ADC chan) one byte, with low resolution (max value:
255).

Using the no_ADC command may be confusing due to the lack of logic. Consult the
following table to see which pin is used for a specific channel.

pin AD Al A2 A3 AS E0 El E2
ANO AN1 AN2 AN3 AN4 ANS AN6 AN7
0 channels
1 channel a
3 channels a a a
5 channels a a a a a
6 channels a a a a a a
8 channels a a a a a a a a

Please note that pin a4 has no A/D converter and that a6, a7, and a8 do not exist (port A is
only 6 bits wide). Channel ANO is connected to pin a0. But, confusingly enough, AN4 is
connected to pin a5, and AN7 is connected to pin ¢2. So take care when developing
programs; mistakes are easily made.

Also note the strange configuration when three analog channels are selected. Against all
expectations pin a2 is switched off and pin a3 is switched on.

410

14.2 16F877_bert library

Program memory

program_eeprom_read (address, data } Read the program memory address
and store the result in dafa. This
command is safe; you could even
wrtite a program that reads itself.

data = program_eepromy(address) A different way to achieve the same
result.
program_eeprom_write(address, data) Writes the value in data to program

memory location address. You can
accidentally overwrite your program
with this command.'*®

EEPROM memory

data eeprom_write(address,data) Write the value in data to the address
memory location in EEPROM,

data_eeprom_read{address,data) Read the address memory location in
EEPROM and put the contents into the
data variable.

data=data_eeprom{address) The same as above, but written as a
function.
pragma EEDATA datal,data2, etc Let the compiler store data in

EEPROM. No need to mess with
addresses, and you can fit a lot of data
on a single line.

ASCIT

Computers use numbers, not letters or other signs. So in order to use these letters and
signs it is agreed upon that they are represented by certain numbers, Which letters and
signs are represented by which numbers is recorded in the so-called ASCIT' table. This
agreement was made back when computers used 7-bit numbers; therefore only 127 signs
were defined. Numbers above 127 can be used, but every manufacturer can make his own
choices. These are often used for language dependent signs such as the euro sign

1% Of course you can also overwrite your program on purpose, which would be a self modifying
program.
199 A merican Standard for Computer Information Interchange.

411

14 Appendix

The control characters (the first 32 ASCII codes) are defined separately in JAL. This -
means instead of using character #10 for a line feed you can simply use ascii /f (an |
example of this can be found in section 10.3). The defined control characters are: |

const byte ASCII_ NULL = 00
const byte ASCII_SOH =01
const byte ASCII_STX =02
const byte ASCIL_ETX =03
const byte ASCII EOT = 04
const byte ASCII ENQ =05
const byte ASCII ACK = 06
const byte ASCIL BEL = (7

const byte ASCII_BS =08 Backspace
const byte ASCII_HT =09

const byte ASCII LF =10 Line Feed
const byte ASCI1 VT =11

const byte ASCIL_FF =12 Form feed
const byte ASCIT CR =13 Carriage return

const byte ASCIT_SO = 14

const byte ASCII SI =15

const byte ASCII DLE =16

const byte ASCIL DC1 =17

const byte ASCII DC2 =18

const byte ASCII DC3 =19

const byte ASCII DC4 =20

const byte ASCII NAK =21

const byte ASCIl_SYN =22

const byte ASCII ETB =23

const byte ASCII CAN =24

const byte ASCIL EM =25

const byte ASCII_SUB =26

const byte ASCII_ESC =27 Escape
const byte ASCIT_FS =28

const byte ASCII GS =29

const byte ASCII_RS =30

const byte ASCII US =31

const byte ASCII_SP =32 Space

The other characters are not defined separately, but you can find them in the next table. If
you want to send the letter A to the PC you can use the command

412

14.2 16F877_bert library

serial_sw_write(63)

In your terminal package on the PC this is translated back to A (if you use MICterm
select ASCII as display method).

JAL knows all of the ASCII codes, so you can also use this command:
serial sw_write("A")

But note that this will still result in sending the number 65 to the PC. Here is the entire
list of ASCII codes :

ASCI1 Character ASCII Character ASCII Character

0 ctl@ 43 + 86 \Y%
I ctlA 44 , 87 W
2 ctiB 45 - 88 X
3 ctlC 46 . 89 Y
4 ctlD 47 / 90 zZ
5 ctlE 48 0 91 [
6 ctlF 49 1 92 \
7 ctlG 50 2 03]
8 ctiH 51 3 94 ~
9 ctll 52 4 95 B
10 ctl] 53 5 96

11 ctlK 54 6 97 a
12 ctlL 55 7 98 b
13 ctlM 56 8 99 C
14 ctIN 57 9 100 d
15 ctlO 58 : 101 e
16 ctlP 59 ; 102 f
17 ctlQ 60 < 103 g
18 ctlR 61 = 104 h
19 ctlS 62 > 105 i
20 ctlT 63 ? 106]
21 ety 64 @ 107 k
22 ctlV 65 A 108 1
23 ctlW 66 B 109 m

413

14 Appendix

ASCII Character ASCII Character ASCII Character

24 ctlX 67 C 110 n
25 ctlY 68 D 111 0
26 ctlZ 6 E 12 p
27 ctl] 70 F 113 q
28 cthy 71 G 114 r
29 ctl] 72 H 115 8
30 ctln 73 | 116 t
31 otl_ 74 117 u
32 Space 75 K 118 v
33 ! 76 L 119 w
34 " 77 M 120 X
35 # 78 N 121 y
36 $ 79 O 122 Z
37 % 80 P 123 {
38 & 8l Q 124 \
39 ' 82 R 125 }
40 (83 8 126 ~
41) 84 T 127 DEL
42 * 85 U

Delays

The following delays are available for your programs. The number indicates how often a
particular delay is executed. Delay 10ims(3) means a delay of 3 x 100 ms =300 ms.

delay lus

delay lusM (byte in N)
delay 2uS

delay 3uS

delay 4uS

delay 5uS

delay 6uS

delay_7uS

delay_8uS

delay 9uS

delay 10uS (byte in N)
delay 20us (byte in N)

414

14.2 16F877_bert library

delay 50us (byte in N)
delay 100us (byte in N)
delay_200us (byte in N)
delay_500us (byte in N)
delay 1ms (byte in N)
delay 2ms (byte in N)
delay Sms (byte in N)
delay 10ms (byte in N)
delay 20ms (byte in N)
delay 50ms (byte in N)
delay 100ms (word in N)
delay 200ms (byte in N}
delay 500ms (byte in N)
delay ls (byte in N)
delay_2s (byte in N)
delay 5s (byte in N)

Random numbers

number = random word Generate a random number in the
range 0 to 65,535,

number = random_byte Generate a random number in the
range 0 to 255.

number = dice Generate a random number in the
range 1 to 6 (specifically meant
for dice).

Registers and variables

The 16F877 contains several registers. Each of these registers ts defined in the library.
This means that any register you encounter in the datasheet can be directly addressed in
your program.”™ The INTCON register, for example, can be set as follows:

INTCON = 0b_1010_0000

0 If you use JAL you'll think this is very normal. Just for fun take a look at the
16F877 inc_alljal file. This is a list of memory locations and banks of all registers and variables.
For the INTCON register this is 0x0B,0x8B,0x10B,0x18B in bank 0. For the GIE variable it is
intcon : 7.

415

14 Appendix

In many cases individual bits in a register have their own name. In the INTCON register
they are GIE, PEIE, TOIE, INTE, RBIE, TOIF, INTF, and RBIF (see Figure 216). These
individual variables are also defined and usable.

So instead of the command;
INTCON = 0b _1010_0000
You could write:

GIE =1
TOIE =1

The difference is that the first option explicitly sets all unused bits to 0, while the second
option leaves the unused bits in whatever status they were before. The individual
variables, therefore, are especially convenient when the entire register is set and you want
to change just one bit,

INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

RWO RMW-0 RW-0 RW-0 RIW-0 RW-0 RW-D RMW-x
[e [PEE | T | NTE | ReiE | ToF | INTF | REIF
bit 7 bit 0
bit 7 GIE: Global Interrupt Enable bit

1 = Enables all unmasked interrupts
7 = Disables all interrupts
bit 6 PEIE: Paripheral Interrupt Enable bit
1 = Enables all unmasked peripheral interrupts
2 = Disables ail peripheral interrupls
bit 5 TOIE: TMRO Overflow Interrupt Enable bit
1 = Enables the TMRO interrupt
2 = Disables the TMROQ interrupt
bit 4 INTE: RBO/INT External interrupt Enable bit
1 = Enables the RBU/INT external interrupt
3 = Disables the RBO/INT external interrupt
bit 3 RBIE: RB Port Change Interrupt Enable bit
1 = Enables the RB port change interrupt
o = Disabies the RB port change interrupt
bit 2 TOIF: TMRO Overflow Interrupt Flag bit
1 = TMRO register has overflowsd {must be cleared in software})
0 = TMRO register did not overflow
bit 1 INTF: RBO/INT External Interrupt Flag bit
1 = The RBOJANT external interrupt occurred (must be clearad in software)
1 = The RBVINT extermal interrupt did not occur
bit 0 RBIF: RB Port Change Interrupt Flag bit
1 = At least one of the RB7:RB4 pins changed state; a mismatch condition will conbnue 1o set
the bit. Reading PCRTE will end the mismatch condition and allow the bit to be cleared
{must be cleared in software)
7 = None of the RB7:RB4 pins have changed slate

Figure 215. Variables in the INTCON register.

416

14.3 Other libraries

In section 12.1 you will find a very interesting technique to look at (and even modify)
registers in a PIC™ program while it is running!

14.3 Other libraries

In this section libraries are discussed that are part of the download package, and are used
in this book. You can use these libraries in vour own programs with the irclude
command. You’ll also need the /6F877 bert standard library. If, for example, you want
to use the i2¢ sw library your program would start with the following lines:

include 16F877 bert
include i2¢_sw

I12C databus

This is a software library, this means it can also be used with PIC'™'s that don't have a

12C module. Commands in the i2¢_sw library:

i2¢_sw_write(chipaddress,addressH, Write value to addressH,
addressL., value) addressL of the EEPROM having
an address of chipaddress.

i2¢_sw_read{chipaddress,addressH, Read the contents (value) of

addressL., value) addressH, addressL of the
EEPROM having an address of
chipaddress.

i2c sw ackpoll(chipaddress) Wait for an acknowledgement
from the EEPROM having an
address of chipaddress.

The pins on which this library will work are defined in the i2¢p.jal file. If you want to use
the library on other pins you will have to change this section:

var volatile bit i2c_clock in is pin ¢3
var volatile bit i2¢_clock_out 1is pin_c3_direction
var volatile bit i2c_data_in is pin_c4
var volatile bit 12¢_data out 1s pin ¢4 direction

417

14 Appendix

LCD display

Commands in the lcd_44780 library:

418

LCD_init

LCD clear_line (line)

LCD char pos (character , position)

LCD char line pos (character, line,

position)

LCD_num_pos (byte, position)

LCD num_line pos (byte, line,
position)

LCD num_pos_ldec (byte, position)

LCD high low_line_pos (hbyte,
Ibyte,line, position)

LCD progress (byte, line)
LCD shift_right
LCD shift_left

LCD_cursor_pos = position

Initialize the LCD display for use
(this command is automatically
called when you load the library).

Clear line (note: the first line is
number 0).

Print a character at the position
indicated (note: the first position
is 0).

Print a character on the position
and line indicated.

Print a number (0 to 255) at the
position indicated.

Print a number (0 to 255) at the
position and line indicated.

Print a number (0 to 255) at the
position indicated with one
decimal digit (so 255 will be
printed as 25.5}.

Print a number (0 to 65535) at the
position and line indicated.

Display a bar graph with length of
byte (maximum 16).

Move the entire display (both
lines) to the right.

Move the entire display (both
lings} to the left.

Place the cursor at the positien
indicated.

LCD cursor = off

LCD blink = on

LCD display = off

14.3 Other libraries

Switch the cursor off (or "on™).

Switch cursor blinking on (or
"off").
Switch the entire display off (or

Honll)

Put a custom character in the
LCD memory (use only addresses
0to 7).

LCD custom{memory address)

CharDatal] Array to define the custom
character. Send to the LCD

memory one character at a time.

LCD clock_line pos (byte, line,
position)

Print a number (00 to 99} at the
indicated position, uses a leading
zero if less than 10.

The layout of the display used in this book is as follows:

Position
0 0|11 2134|567 891011 [12]13]|14]15
! 012131456789 |10/11[12[13[14|15

Line

Note that both line and column numbers start at 0.

The LCD num_pos(byte,18) command writes outside the visible area. This is not a
problem, but you won’t see any of it. If you make the position larger you eventually end
up on the next line. For the display in this book this happens at position 40, but
sometimes you need to go to 80 for it to happen.

View and edit registers

This library is meant for use with the REGedit (register editor) program for the PC.

See section 12.1 for more details on this interesting tool.

419

14 Appendix

Commands in the regedit library:

procedure register write(address, data) Write the data byte to the
register address.

procedure register read(address, data) Read the value of the register
at address and put it into the
data variable.

procedure register _debug Communication procedure for
REGedit, which uses a serial
connection to observe and
modify registers on the fly.

Connection of a 4 x 3 keypad

This library has been discussed in detail in section 4.4. It is meant for connecting a 7 pins
4 x 3 keypad (4 rows, 3 columns). Here are the commands:

procedure debounce (byte in Eliminates bouncing, uses 3 pins
pinnumber) of port c.

procedure read_keypad (byte out key) Check to see which key is pressed
and put its value into key {(where #
=10and *=11).

14.4 Programmer pass-through

The recommended Wisp628 programmer has some unique properties. One of them is that
it can be put in pass-through mode. When you do that, a direct link between the PC and
the PIC™ is established, without the need for additional hardware.

Of course both sides, the PC as well as the PIC™, need to run software to handle the
actual communications. On the PIC™ side the standard library handles this.

On the PC side you have three options:
® You use a special PIC™ communication program

¢ You write your own software
® You use a standard terminal program that you start with a batch file

420

14.4 Programmer pass-through

14.4.1 MICterm communication program

MICterm is a communication package specially designed for use with PIC™
microcontrollers. Special features are:

Can automatically switch the Wisp628 programmer to pass-through mode.””"

Shows data raw, in hex, or in ASCII.

Can show data in a graph, both real time and average. Time axis speed is adjustable.
Shows data on a scale for rapid "gut feeling” measurements.

Shows data in binary - ideal if you are debugging pin positions.

Separate send and receive windows with scrollback.

Optionally space the incoming data for easier reading.

Optionally send files to, or receive files from, the PIC™,

Optionally record all incoming data for future analyses (for example in third party
software such as a spreadsheet).

M2 ER SO N R B e

Microprocessor Communications

Fle Help
- Beit van Dam (c]2006 P W e g £ T
MlCterm mlcrocontroller tennlnal
Connect to PIC [~ Communications — e e - | r Displey** S LT i oo T e
i ;
e 115115115115 115115115115 115 116115 115115115 & | | bz R e R e
ey 15115116115 115115116 115115 116 115 113946746 | | | & Raw | e ‘
_‘_I 160000000000000000000000000141222 ‘ ; * \
2835 39 40 42 48 51 55 85 85 66 85 86 65 57 (1]~ ass {1 1
e L 108119129 141 154 164 173 180 189 198 210 224 232 235 e el 1| ‘
: 234 226 221 215 211 203 198 195 191 183 176 168 158 148 Hex ' :
P 140131 122 118123133 141 150 156 164 168172183 191 (| 7 Addspacs | | ‘
‘ 200 202 195178 162 150139134 133 135 144 152160 171 : |
@ Com1 " Com3 179181 173 171 161 155 148 144 141 140 140 141 145 150 My m TS |
3 5 162169173175 175168 161 160 141 140140 140145 155 ey i
Com2 (" Com4 163171 176179180177 171 164 155148143139 135135 } b
vl |ty A (B i e T —
65158 151 154161163 |
*PIC con s ‘ 153163 163 163 163 163 163 163 168 180 188 139 200 200 . TERETOTY .A"ﬂw’l % _.__IF'Wt
200 200 200 200 200 200 200 200 200 200 200 200 200 200 | |
1200 ¢ 14k4 | |200200200 200200193 193193 193193193193 193193 e e T g T
|| [193193193193193 192 132192132 184 169 153 144 143 Gauge Pl sansle
U0 192 131118 105 102 102 103 102 94 90 62 73 66 60 60 60 61 61 [Encble gouge
|| [ste1616161616161616161616161616161616161 | | !
4800 38k4 £1 61 61 =1h8]
—— = o !
B | ‘ ¢ 120 159\’\‘\ | ‘ l: \picdevitmp\convert jal
| 200 |
{c) 2006 Bett van Dam : ff‘f w\% | = HecuveFIei
Version 3.2 - ~ -lm

This program is part of the free download package.

Figure 216. MICterm communication program.

' If you do not use the Wisp628 un-check the checkmark at the Wisp628 option.

421

14 Appendix

14.4.2 DIY software in Visual Basic

Writing your own software is the most fun, because you can fit it exactly to your own
needs. Any programming language that can communicate with the COM port can be -
used. Microsoft often has special offers where simple versions of their development
software can be downloaded for free.””

All PC programs in this book were written in Microsoft Visual Basic 5.0. A few snippets
of these programs may be of interest to you.

Wisp628 programmer pass-through
To get the programmer into pass-through mode you need to take the following steps:

1. Send a break condition during 0.1 seconds to switch the programmer into
attention mode.

2. Use the programmer speed and settings (19200,n,8,1) to issue the pass-through
command {0000p).

3. Wait for the command to be processed (0.1 seconds).

4. Switch back to PIC™ speed.

In Visual Basic it can be handled like this:

Private Sub Commandl_Click()
'enable communications
MSComm]l.PortOpen = True

'switch Wisp628 programmer to pass-through mode

'Set the Break condition for (.1 seconds to switch the
'programmer to attention mode
MSComml .Break = True
Duration! = Timer + 0.1
Do Until Timer > Duration!
Dummy = DoEvents()
Loop
MSComml.Break = False

202 This website also features free development software http:/www.thefreecountry.com. Of
course you can also simply buy software, new or used.

422

14.4 Programmer pass-through

'switch to programmer speed
MSComml.Settings = "19200,n,8,1"

'send pass-through command
MSComm]1.Output = "0000p"

'wait to make sure the command is processed by the programmer
Duration! = Timer + 0.1
Do Until Timer > Duration!
Dummy = DoEvents()
Loop

'switch to microcontroller speed
MSComm].Settings = "1200,n,8,1"
End Sub

You now have a direct link to the PIC™. Obviously the PIC™ needs to run a program
that communicates too, using sofiware serial.

Everywhere in this book the communication speed between the PIC™ and the PC is set to
1200 baud. It can be done a lot faster - 19k2 would be no problem at all. T also use other
PIC™ microcontrollers, without a crystal (you have seen one with the 12F675 in section
13.1). These can have difficulty at higher speeds. So to allow maximum portability of the
programs between the different microcontrollers I have set all standard libraries to 1200
baud.

You can experiment with higher speeds if you like; if you don’t use the pass-through
function but a direct R§232 link instead, I have been told that even 115k2 is possible!

Read incoming data
Give MSComm the following settings:

MSComm]l.CommPort = |
MSComm1.DTREnable = True
MSComm1.EQFEnable = False
MSComml.InputLen = |
MSComml.InputMode = comInputModeText
MSComm1.NullDiscard = False
MSComm|.ParityReplace = 0
MSComml1.RThreshold = 1
MSComml.RTSEnable = False

423

14 Appendix

MSComm1.SThreshold =0
MSComm/.Settings = "1200,N,8,1"
MSComm/1.ParityReplace = 0
To collect incoming data a special routine is used that is automatically called whenever '
something happens on the COM port. That "something" doesn’t necessarily have to be
new data, so first we check the buffer:
If MSComm | .InBufferCount Then

If there is something in the buffer we will read it character by character. The entire
routine looks like this:

Private Sub MSComm1_OnComm()
I MSCommi l.InBufferCount Then

datapresent = MSComm|.Input
For Counter = 1 To Len(datapresent)

'‘put all data one by one in variable reading
reading = Mid$(datapresent, Counter, 1)

'this is where the rest of your program goes

Next Counter
End If

End Sub
The incoming characters are one by one put into the reading variable, so that you can
process them. This variable is a string and can contain all characters up to ASCII code
255, and includes control characters. If you want to print the received data you must
remove the control characters and replace them with, for example, a star:

If Asc(reading) < 32 Then NewText = "*"
Optionally convert to the ASCII value:

NewText = Asc(reading)

424

14.4 Programmer pass-through

Or to hex:
NewText = Hex(Asc(reading))
Establishing communication

In most cases you will be communicating from the PC to the PIC™ using the pass-
through function. This means that on the PIC™ you use software serial communication,
because the programmer is never connected to the hardware serial pins.

Using software serial communication means that you don’t have a buffer available. So
data sent to the PIC™ at a moment when it isn’t listening are lost. Note that the other way
around, from the PIC™ to the PC, is no problem because the PC does have a buffer. This
means you have to make sure that the PIC™ is ready and waiting before you send
anything. There are three ways to arrange this.

I. You let the user start the communication by having him press a button connected to the
PIC™ and then one on the PC keyboard. The PIC™ program makes sure that the
serial_sw_read(data) command is executed, which means the program will wait for data.
Note that the programmer pass-through must be enabled before the user presses the
buttons.

2. The PIC™ initiates the communication by sending a signal to the PC, such as the letter
*s". The PC does have a buffer and a communication interrupt so it won’t miss any data
n.n

(assuming the buffer doesn’t overflow). As soon as the letter "s" is sent the
serial_sw_read(data} command is executed.

3. You keep track of the communication timing. This is often used in combination with

option one or two. [f you are sending bulk data to the PIC™ and you know how long it
takes to process you simply have the PC send the data at a slightly slower speed.

425

14 Appendix

waiting time PC

—

PC signal | H H |
PIC signal 4|

—

processing fime PIC

Figure 217. Communication with waiting loop.
A waiting loop in the PC takes care of the delay. Visual Basic handles it like this:

Duration! = Timer + (.1

Do Until Timer > Duration!
Dummy = DoEvents()

Loop

The delay in this case is 0.1 seconds. The Dummy = DoEvents() command is a
multitasking command. It allows the PC to take care of other things during this loop, such
as looking at the mouse position. Without this command the PC will ignore everything
(including the mouse and keyboard) as long as the loop is executing.

14.4.3 Terminal program using a batch file

[f you use a batch file to switch the Wisp628 to pass-though mode you can subsequently
start any terminal program you like.

The batch file needs to consist of only two lines. The first switches the programmer to
pass-through mode and the second starts the terminal program. Note that the
communication speed is set in the batch file, so you need to match this in your terminat
program.

426

14.4 Programmer pass-through

An example of a batch file for Serialterm:

c:\picdev\xwisp2\xwisp2w pass 1200
serialterm com1 1200 ascii empty yes

Serialterm is a super simple terminal program with just a black window.™”

ci C:\WINDOWS\System32\cmd.exe

Figure 218. Serialterm started with a batch file.

Regardless of its size it has many possibilities, that can all be called from the command
line, and thus used in a batch file. A snippet from the documentation:

Commandline Serial Terminal - Version 1.1 by A. Schmidt, Oct 2001
Lancaster University - http://www.comp.lancs.ac.uk/~albrecht/

serialterm port [speed] [DisplayMode] [Separator] [Echo][logfilename]
port ::= com] | com2 | com3 | com4 | com3 | com6
speed::= 300 | 4800 | 9600 | 19200 | 38400 | 57600 | 115200 | 230400
DisplayMode::= ascii | hex | decimal
Separator::= empty | space | newline | tab
Echo::=no | yes
logfilename::= <anyname> (if not provided no log is written)

Usage examples:
serialterm com1 115200 hex space no logfile.txt
open the terminal on port com1 with 115200 bit/s, print hex code of
incoming characters, seperate them by space, no local echo, save
output to the file "logfile.txt"

23 This program is part of the download package.

427

14 Appendix

serialterm com2 19200 decimal tab yes
open the terminal on port com2 with 19200 bit/s, print decimal code
of incoming characters, seperate them by tabs, do local echo, no logfile

Also a very nice program to build into your own software!

14.5 Transistor data
NPN types:

Case Ic Vce hgg Piot Category Possible
style max. max. min. max. (typical use)substitute
BC107 NPN TOIS 100mA 45V 110 300mw Audiolow BCIS2

power BC547

General BC108C
BC108 NPN TOI18 100mA 20V 110 300mW purpose, low BCI183
power BC548

Code Type

General
BCI08C NPN TOI8 100mA 20V 420 600mW purpose, low
power
Audio (low BC184
BCI109 NPN TO18 200mA 20V 200 300mW noise), low BC549
power
General BC107
BC182 NPN T092C 100mA 50V 100 350mW purpose, low BCISIL
power
General BC107
BC182L NPN TO92A 100mA 50V 100 350mW purpose, low BO182
power
BC547B NPN TO92C 100mA 45V 200 500mW A“;;‘:\;;f’w BC107B
General
BC548B NPN T092C 100mA 30V 220 500mW purpose, low BC108B
power
Audio (low
BC549B NPN TO092C 100mA 30V 240 625mW noise), low BCI09
power

428

14.5 Transistor data

Case Ic Vee heg Piot Category Possible
style max. max. min. max. (typical use)substitute
General
2N3053 NPN TO39 700mA 40V 50 500mW PUPOsE ppys
medium
power
General
BFYST NPN TO39 1A 30V 40 800mw PYPOS prgag
medium
power
General
BC639 NPN TO92A 1A 80V 40 800mWw PUP9C ppyg
medium
power
General
TIP29A NPN TO220 1A 60V 40 30W purpose, high
power
General
TIP3IA NPN TO220 3A 60V 10 40W purpose, high
power
General
TIP31C NPN TO220 3A 100V 10 40W purpose, high
power
General
TIP41A NPN TO220 6A 60V 15 65W purpose, high
power
General
2N3055 NPN TO3 15A° 60V 20 117W purpose, high

power

Code Type

TIP31C
TIP41A

TIP31A
TIP41A

429

14 Appendix

PNP types:

Case Ic Ve hee | Category Possible
style max. max. min. max. (typical use)substitute
BCI77 PNP TOIS 100mA 45V 125 300mW A“}f;ﬁ;;r"w BC477
General
BC178 PNP TOL18 200mA 25V 120 600mW purpose, low BC478
power
Audio {low
BC179 PNP TOI8 200mA 20V 180 600mW neise), low
power
General
purpose,
switch and
ampl.
Audio, low
power
General
BC478 PNP TO18 150mA 40V 125 360mW purpose, low BCI78
power
General
TIP32A PNP T0220 3A 60V 25 40W purpose, high TIP32C
pOwWer
General
TIP32C PNP TO220 3A 100V 10 40W purpose, high TIP32A

power

Code Type

BC327 PNP TO92B 500mA 45V 100 625mW BC807

BC477 PNP TO18 150mA 80V 125 360mW BC177

Explanation of the columns:

Type
This shows the type of transistor, NPN or PNP. The polarities of the two types are
different, so if you are looking for a substitute it must be the same type.

Case style

There is a diagram showing the leads for some of the most common case styles. Note that
this is a bottom view, with the wires facing vou.

430

14.5 Transistor data

E:Q0.B:; .E.-BGC: CBE

909 (009 (000
@c €9 €9 9
TO18 TO92A TO92B TO92C

TO39 Views are from below with
the leads towards you.

BCE C is the metal case itself
TO218
TO220 TO3

Figure 219. Leads for different case styles.

I max.
Maximum collector current.

Vg max.
Maximum voltage across the collector-emitter junction.

heg

This is the current gain (specifically, the DC current gain). The guaranteed minimum
value is given because the actual value varies from transistor to transistor - even for those
of the same type!

P, max.

Maximum total power that the transistor can handle. Note that a heat sink will be required
to achieve the maximum rating. This rating is important for transistors operating as an
amplifier, where the power is roughly Ic x V¢g. For transistors operating as switches the
maximum collector current (Ic max.) is more important.

Category
This shows the typical use for the transistor.

Possible substitutes

These are transistors with similar electrical properties, which will be suitable substitutes
in most circuits. However, they may have a different case style so you will need to take
care when placing them on the circuit board

431

14 Appendix

14.6 Contents of the download package

The download package is a zipped file of approximately 10 Mb (unzipped it is about 22
Mb so you do need room for this). You can unzip the file using the pkunzip program.
Fallow the instructions on the download website:

hitp://www boekinfo.tk

Download the file to the root directory of drive ¢. Unzip the file while maintaining the
directory structure on drive ¢:\. That way you know for sure that everything will work
because the preset configuration files of the different programs expect to be in the
c:ipicdevi\... directory.

Now run the setup.exe program in the ci\picdevivbS(hsetup directory. It doesn’t make
much ditference which directory you choose to install it; perhaps it is best to accept the
suggested location. The point is that the different DLL and OCX files are installed that
the Visual Basic programs in this book require.

You should have this directory structure on your PC:

<DIR> JAL

<DIR> Compiler
<DIR> Libraries
<DIR> Tools
<DIR> JALedit
<DIR> Projects
<DIR> Progress
<DIR> Completed
<DIR> xwisp2
<DIR> tmp
<DIR> VB30
<DIR> Setup
<DIR> CHARmaker
<DIR> HEXview
<DIR> PEconverter
<DIR> REGedit
<DIR> SKYwriter
<DIR> WAVconvert
<DIR> MICterm

432

<DIR> tools
<DIR>
<DIR>
<DIR>
<DIR>
<DIR>
<DIR>
<DIR>
<DIR>

14.6 Contents of the download package

Resistors
Capacitors
Frequency
Oscilloscope
Datasheets
Freewheel
Terminal
Tinyboot

The main files and programs in this structure are:

<DIR> JAL

CAPICDEVVAL\Compiler This is the directory of the JAL compiler

jalv2.exe

jalopts.txt

<DIR> Projects

with its support files.

This is the JAL compiler. It is called from
JALedit, so normally you don’t need to do
anything with this file. If you want to
work from the command line this would
be the place to do it.

These are the compiler switches, for
reference only.

C:APICDEV\Projects\progress ~ This is the "working” directory, which

contains projects in progress. It s
convenient to use a separate directory for
this, which could also contain modified
local copies of libraries and Visual Basic
source code. In this way the original files
remain intact.

433

14 Appendix

CAPICDEV\Projects\completed Completed projects. All of the programs in

<DIR> xwisp2

CAPICDEV\xwisp2

Xwisp2w.exe

Readme

<DIR> VYB50

CAPICDEVAVBS0

CHARmaker

HEXview

PEconverter

REGedit

SKYwriter

434

the book are in this directory, arranged by
section number, If you want to modify
projects it is perhaps best to copy them to
the working directory so that the originals
remain intact.

For project 9.6 the directory also contains
the sound files to try BTc yourself plus a
recording of BTc8 with a PIC'™.

This directory contains the program that
transters the compiled source (the hex
code) to the programmer.

This is the transfer program itself.

An overview of the commands you can
use In combination with xwisp2, You only
need this if you are not using JALedit.

In this directory you will find all Visual
Basic programs used in this book, mostly
arranged by section.

Program to design your own characters for
use with an LCD display.

Program to read programs from a PIC™
or to look into EEPROM.

Program to convert text to pragma eeprom
or array commands.

A program to observe and modify
registers in a PIC™ while it is running.
Equipped with all registers discussed in
the book, and easily expandable.

Program to convert text and pictures into
port code for use with the "pictures in
light" technique.

14.6 Contents of the download package

WAVconvert Program to convert WAV files to other
formats such as BTc encoding.

MICterm Terminal program with functionality
specially developed for use with PIC™
microcontrollers.

Setup Program to install all dll and ocx files
required by the other Visual Basic
programs in this directory.

<DIR> Tools

CAPICDEVtools A collection of uscful programs that are
used and discussed throughout the book.
All programs are written by third parties
and collected for your convenience.

resistors The colour code.exe program for
decoding resistor color codes. Also
includes a .gif for those who prefer 1o do it

manually.

capacitors A similar program for capacitors:
capcoder.exe

dis-assembler A program to go from hex code back to
assembler,

frequency The Counter.exe program is used to

measure the frequency of pulses. It uses
your soundcard, so you’ll need the special
connections as described in section 2.2
Take care to keep the voltage low so that
you don’t damage your soundcard.

oscilloscope The Winscope.exe program is a simple
software oscilloscope. It uses your
soundcard, so you'll need the special
connections as described in section 2.2.
Take care to keep the voltage low so that
you don’t damage your soundcard.

435

14 Appendix

datasheets

Freewheel

tinyboot

terminal

<DIR> Libraries

CAPICDEVMJAL\Libraries

16F877 bert.jal

16F876A bert.jal
16628 bert. jal
12F675 bert.jal

adc_hardware,
compiler_constants, i2¢_sw,
random, pwm_hardware,
serial software,

pic_program eeprom, regedit,
ranidom, etc,

<DIR> JALedit

CAPICDEVVJALVALedit

436

By request from a few manufacturers,
datasheets are no longer included in order
to ensure that you always use the latest
versions. Check out the website
http:/www boekinfo.tk for download
addresses.

A resident program to use the scroll wheel
of your mouse in Visual Basic 5 (and
other software).

The bootloader as discussed in section
12.9, complete with all support files.

The serialterm.exe terminal program for
connection between the PIC™ and PC.

In this directory you will find an extensive
collection of libraries. Most of them are
discussed in the book, but others are not.
Feel free to browse and experiment!

The standard library for the 16F877. This
is the most important library. .

The standard library for the 16F876A.
The standard library for the 16F628.
The standard library for the 12F675.

These libraries are a valuable addition to
JAL, providing extra commands and
extensions.

In this directory you will find JALedit and
its supporting files.

JALedit.exe This is JALedit. It is perhaps a good idea
to make a link to your desktop, because
this 1s the program you will be using most.

14.7 Hex files

Of course you can also use another editor,
but this one is specially designed for use
with JAL and has convenient features,

such as one-click
downloading.

14.7 Hex files

compiling

and

Using HEXview you can retrieve programs from a PIC™ and store them as a file. In
addition, data from EEPROM can be viewed (see sections 10.3 and 13.2).

Unfortunately the data is in hex. HEXview is capable of decoding the EEPROM, but not
the program itself. In this chapter you will find a short description of the structure of the

hex files.

EEPROM

Evaluating an EEPROM file can be useful for debugging, as you’ve seen in section 10.3.
If you take a look at the file for this section, without decoding in HEXview, it would look

like this:

:104200004C004500440020006FO06E0020000D00ATF
:104210000A004C004500440020006T 006600660064
:044220000D0O00A00E3

:00000001FF

It looks worse than it 1s. This 1s the structure:

Data record structure

10 [4200] 00 [4C [00 | 45 [00 [etc | AF
L E

3
= R
G - O g s S g
15} i~ = o_g 2
2 5,0 ﬂé).c:f 8” =
E |23z § &s 3
g |22/Z22 =2 5

437

14 Appendix

The first data line says LED on followed by a space and a carriage return (the table above
only shows the very first part, LE). Every character is followed by 00. The file format for
this hex file 1s INHX16. Which means that the combination low byte — high byte 18
stored. The high byte is not in use (EEPROM is only 8 bits wide) so it is always 00.
HEXview will ignore all 00 bytes when you click on ANALYSE file unless you uncheck
Ignore 00.

The second and third lines are structurally identical to the first, but the fourth line is
different. That is because it 1s the termination record.

Termination record
00 | 0000 | Ol FF
w
28 = =)
= & = =)
[l] o e =
9 o
$ el < 5 =
= O = w9 - E
= o W Fal = E E
=] S 5| g7 @
o B 2 ol @ 4|
] 2L — uw o — W
—~ e o = - Il 4
= S ol o 8 w ¢
3 235z 3|l a5 &
W o - I o] e 5]

Of course HEXview does all of this work for you automatically.

Program

Y ou will probably never in your life need to look at a program in hex, let alone analyze it.
Just for fun, the Pic-Disasm program can be used to convert hex back to assembler.

Unfortunately it 15 not possible to convert this back to JAL. The program is part of the
download package.”*

™ The latest version can be obtained here: http://www hagi-online.org/picmicro/picdisasm.html

438

14.8 Tips and tricks

¥ PIC-Disasm v1.4

Fie Edi Viw lno File: |C:\PICdev\Projscten\lopenditestB.hex
SH @ 0 HDRA= 0 pciye | N

processor 167877
#include <P16F877.INC>
__config 0x3Fa2

%6F, Ox6E, 0x20, OxOD
%20, 0x6F, Dx66, Ox66

|LRAM 0x21 equ Oxz1
|LRAM Ox22 equ Ox2z
LRAN Ox23 equ Ox23
LRAN_Ox24 equ Ox24
LRAN Ox25 equ 0xZ5
LRAN Ox26 equ Ox26
LRAE_0x27 equ Ox2
|LRAN Ox2h equ Ox2
|LRAM_ 0x2B equ Ox2
|LRAM_Dx2C equ Ox2
LRAM_Ox2D equ Dx2
LRAM_OxZE equ Dx2
LRANM Ox2F equ Ox2
LRAN_0x30 equ 0x30

0w e D

Org 0x0000

BCF PCLATH,
BCF PCLATH,
GOTO LADR_Ox0004
NOP

|LADR_0x0004%

Figure 220. Dis assembly using DisAsm.
14.8 Tips and tricks

This is a small selection of handy tips and tricks.
1. Wait for a pin change
Suppose you want to wait until a switch is no longer engaged.
while switch loop end loop
2. Combine bits to make a byte
When you want to combine a number of bits to a byte you can do that by declaring them
at a certain location of that byte. Lets assume you have a byte called Demo and you want

a bit variable called dPCO to be at the first bit of this byte, you can use this statement:

var volatile bit dPCO at Demo : 0

439

14 Appendix

In this way you could declare the entire byte in bits:

-- clear the variable
var byte Demo

-- show which bit goes where
var volatile bit dPCO at Demo :
var volatile bit dPC1 at Demo :
var volatile bit dPC2 at Demo :
var volatile bit dPC3 at Demo:
var volatile bit dPC4 at Demo :
var volatile bit dPC5 at Demo :
var volatile bit dPC6 at Demo :
var volatile bit dPC7 at Demo:

~1 Sy th W R = O

Now if you set one of the bit variables to 1, like this:
dPCs5=1

Then Demo has gotten the value 0b 0010 0000 or 32 {assuming the other bits were still
0). Of course this also works the other way around; if you give Demo the vaiue 4 dPC2
will be 1.

3. Take a byte apart to bits

You can remove bits from a byte one by one. Declarc a bit variable, such as codec, as the
lefimost bit of a byte, such as value, like this:

var byte value
var bit codec at value : 7

Now shift the byte left by one position 8 times to make codec get all of the bits of value
one by one, starting at the high hit.

for 8 loop

led = codec

value = value << |
end loop

440

14.8 Tips and tricks

4. Input or output pin on the fly

In the beginning of your program you need to declare whether a pin will be an input or an
output. But that doesn’t mean it has to stay that way. While the program is running (on
the fly, so to speak), you can easily change the direction of a pin. For example, when you
are communicating over a single wire:

if pin_a5 then
-- signal from the other pic
-- wait until it's low again
while pin_a5 loop end loop
-- switch to output and make high
pin_a5 direction = output
pin_ a5 = true
-- wait 10 seconds and make low again
delay 1s(10)
pin_a5 = false
-- make the pin input again
-- and wait for the next instruction
pin_a5_direction = input
end if

5. Scroll wheel in Visual Basic

If you use Visual Basic 5 1 am sure you have noticed that the scroll wheel on your mouse
doesn’t work. In the download package you will find a small program called Freewheel
written by Jim Berry that fixes the problem for you.

6. Pin that doesn’t go high

Pin RA4 is a so-called open collector pin. This means it cannot be made high. The best
thing to do is use a pull-up resistor (a 10k resistor to +5 V). That way the pin is always
high, unless you make it low. If you need more power you can reduce the resistor value a

bit.

The 12F675 doesn’t have this problem, because it doesn’t have an RA4 pin. Tt does have
an MCLR pin, which cannot be used as an input.

441

ettt st e 218; 268
120675 e, 351
12675 bert....ocooveveeiceici 353
162A0 i 83
161628 ..o 351; 370
161628 bert........covieeerieren, 372; 374
161876 v 351; 385
161876 _bert........cccvciiieare. 372; 387
TOFBTT oo, 13; 25; 98
161877 _bertjal ..o 98
AATBO i 314
THAZT ot 120
AD 74
A/D conversion.........c....ocoeeeciieenn, 421
A/Dconverter..........ccooeeveveeenn... 74 421
acceleration.......c..coooeeiiiinnin, 175
ADC hardware_high_resolution........ 75
ADC_hardware Nchan 74
ADC_hardware_NVref.................... 75
ADC_hardware_Rsource.......c..coc...... 75
ADC_init oo, 75421
ADC_OfT e, 75; 421
ADC on.iiciiieee, 75; 421
ADC_ead.o.oooveerveeesree. 75; 421
ADC read bytes..........ccooeee, 75421

ADC read_low res75; 79; 88; 103; 184,
188; 286; 336; 346; 358; 388; 421

Adjustable clock frequency 379
AKI 361
Analog input ..., 27
ANIMALION ..o 312
ansel.....oi 354
i1y ¢ R 86; 192;235; 414
E o) | SRR PO 422
ASCH COAES oo iireriis e 424
assembler.................oooil, 40; 409
Backspacecooocvvviveeiieiiccnn 423
bank ..o 238
BAtterY ..o 305
BAUd v 98

BCS4T e, 378
BEED oo 183
binary time constantc..ce....e. 211
bistable multivibrator 50
bit403

bitlength.......cocooooiiiviciiiice e 403
BITAtE. it 196; 210
Block ..o 413
bootloader............ccovoeeieeiiiie 343
bouncing........cccooeieveiicieenin 51; 296
breadboard..........ccooeviiiiiinii 1
BS170 . e, 331
BTCB e, 209
buffer.......cooo, 262
BUEZS o, 105
burnboot ... 345
BYLE .o 403
Byte Craft......coooenieii, 156; 166
byte N, 408
bYLE OUL...ooiiiiiieeeee 408
CAPACITOTS. ..o 22
Carriage return.........ccooceeeeeerenis 243; 423
CaSE oot 413
CCPI e 136
cepleon i, 128; 131
ceprlloi e, 128; 147, 326
CharData[]......cccccoceev e 85; 316; 431
CHARmaker...........cocovveennn.. 316; 446
chip select codeoovveiiciicnn . 250
Christmas.......ccooveevrieeiiieeeeeevceeee, 190
COde area. ..o, 23]
COMIMENT ... e ieaiiiiie et eaia 417
COMPETAtOr......c.ocoiveniirnrieeiri e, 356
compile ..., 36
configurationcccoeeeveeeerveiinennn, 380
CONBE .ottt 406
const byte ASCII CR........................ 243
const byte ASCII LFc.o.ooooon. 243
const Serial hw baudrate................ 394
Constant.........oocooerviieviecice e 406

CoNtrol Code v 250
COOTAINALES 1o veeeeeeereiie s cneevaeeeen e 326
COPYFIZRL oo 63
COUND «oeverervnreeeeeseesieeeeeeenieeaeas 236; 414
CTICKEL oo 195
CIYSTAL e 28
Dalias Semiconductors .cccooceeeevevenn. 115

Data_eeprom_read....240; 242; 244; 422
Data_eeprom write .. 107; 240; 242; 422

Data=Data_eeprom...........co..... 2440, 422
datasheetoovv e 25
de attention mode......c...coccoiiiinine 434
debOUNCe ...t 59; 432
debounCIng.covveiviiinis e 307
debuggingooeiiiiimieneei 37: 105
decoupling capacitor.......ceveeeeneens il
delay ..o 425
delay ImMS ..o 76
delay 1S .o 34
QICE oot 53:376; 426
I8 et er e e 53
digital clock ..o 306
digital in-/OULPUL ..coovirvriieiiiicnnns 28
AISARALOE oo 354; 359
DOEVENtS ...ttt 438
dOngle o 23
door chime ..o 190
duty Cyele. e 364
AWOTA oo 403
BCRO. oo 163; 323
EEPROMoocoivivniienine 229; 239; 449
EEPROM chips...c.ccooconiiiniiinnereeenns 248
EEPROM MEMOIY . ccvovivieviieniemiiinnns 422
electric candle ... 376
BLSIT oo 412
Emerging Display Technologics......... 83
end task ... 411
Equally Tempered Scale.........c......... 191
ER CLKOUT ... 380
ER NOCLKOUT ..o 380
ESCAPE. .ot 423
feedback......ovioe e 139

FOr 100p v 406
Forever 100D oo 406
Form feedoveenieeieiinvinin e 423
FOSC eoeeiii e e srreeee e 142; 380
fIEQUENCY . .eoreeiiiciririere e 177
frequency counter..........oooeenee 24; 186
frequency generator................. 183; 284
FUunction. ... e 408
GAMNE .eooviiinriies e 259
] OO RO RRUTRO PPN PPPPRIOS 427
GPI1SO036HEL ..o 156; 171
GP2YOD340K v 157
hardware serialc.ccooiiivirnieans 418
hardware serial port........ocooeeiienn 258
heXCOdE. .ot 40
HEXview ..o 108; 246; 383, 449
PRttt et 333
HS et 380
human $EnSOT.....ccoveirriiiee e 166
T2C et 248
120 SWoriviicieeininn e 429
I then else ..o 412
IN-CIFCUIT oo 105
INCIUAE v 402
INTTATEd oo 157
infrared LED ..o 394
infrared object detector........c.oovrieene 157
infrared photo reflector.........c...c..oo. 139
infrared RS232 oo 393
In-line assembler ... 469
IMECOIL e ireeveeenee e res e eee e 294; 426
TGO et 281
TIEE 1 eeevieeeesrere e e e e n s e eribaaes 294
IIEAZ e 294
Inter-IC BUS .veervreiinie e 248
FA1151 1 1010] SERUOUROTUR SO ORPP PP 150
interrupt frequencyoooriineeneens 277
interrupt frequenty table 277
JAL oot e 15
JALedit oo 17; 25;32; 449
James Bovk o 177

keypad.......cooii 57
LCD display......cooovovieeene, 83; 339
LCD screen......oovvvveivecivvieceieecnn 312
led 44780 .o, 84; 307, 430
LCD blink...ocooovricriieeincninn, 85; 431

LCD_char line pos84; R5; 308, 317:
340; 430

LCD_char pos.....ccceeevveeieen 84; 430
LCD clear ling...oooccveiieennnnnnne, 84: 430
LCD_clock line pos.......... 85: 307; 431
LCD cursor.....cccovvvveen.n 85;342; 431
LCD cursor pos.........ccceveveeeeee. 85; 430
LCD custom....cc.ccovvvnnnnnnn. 85;317; 431
LCD display.....ocoocooovevioienn. 85,431
LCD high low_line pos............ 84; 430
LCD _init...oceereennne. 84;314; 342 430
LCD num line pos........cccouvenen. 84; 430
LCD_num_pos ..ccoooeeevreeeeee. 84; 430
LCD num_pos ldec.................. 84; 430
LCD progress......ccccceeveeeivviveen, 84; 430
LCD_shift_left....85; 314; 318; 340; 430
LCD shift right ..., 85; 430
LDR oo 78; 156, 184
Left shiftcooooiiiii 416
Lego 71427 e 139
library ..o 62
lmitationsccocovivvvvvveciiciceeie, 400
limiting resistor........cccooceeeeeein s, 44
Line Feed............ooevvoveeneninen. 243: 423
LM74L v, 223
long S1art. ..o, 345
long tablecccococeeiiiin, 339;414
loudspeaker.......cooceeveeune. 182; 184; 283
LUX oot 78
magnetic switch ..o 101
MAX202 e 115; 344

MCLR#THV48; 122; 338; 353; 371;
386

MEMOTY AP ..eceiieeeeieeceiiee e, 230

MICtermI8; 197, 217; 233; 396; 433;
447

444

MPLAB .., 40; 109
MSCOMM ..o, 436
Nightbuzzer ..o 183
no ADC ..., 75421
NOT oo, 50; 111
NPN e 333
NTC e 91
Ohms law ..o 44
op drifi geraakt.................oooveevviinnn. 340
OPAMP (oo 216
OPeratorscco e cvvvrv e 415
OSCI/CLKIN......o.cccennenn.. 48; 371, 386
OSC2/CLKOUT....oovvee 48; 371; 386
0ScilloSCOPe ..o 159
pass through..........c.cvvvvieee, 432
PDIP .o, 14
PEconverter.............. 245; 313; 341; 446
photointerTupter.....cooviveeveveeecrvvennn, 171
PhOtOMEter......vvvee e 83
phototransistor............coeeveviiierveeins 394
Pic-Disasmcocoeeiceciiiiiiiiie, 450
PNP e 333
POEBLTY DOX.ooiiieiec e 339
port B interrupt........ccooovveioncenecnen, 292
portability ..o 399
POt ..o 301
PR2 e 129
Pragma......cccoovmureeieieecee e 417
pragma cedata........... 243; 244; 246; 417
Pragma EEDATA ... 422

pragma interrupt194; 202; 278 283;
285; 417

pragma target 08¢ .vvvvevriicciniieenne, 380
prescaler ..o, 131; 190; 277
procedure.......oovvviee i, 60
Procedure.......cc.ccoooiieiiieciie, 407
Program memorycccveeeeeee. 339; 422
Program_eeprom...................... 232:422
Program eeprom read..... 232; 233, 422

Program_eeprom write199; 218; 232;
422

PULl-dOWDN ... 294
pulsating beepccoooveveenvvcncennen 181
pulse wheel ..., 325
Pulse wheel ..o 139
PWM.. e, 139; 177; 183; 420
PWM module.......ccoooviniiniiciiies 364
PWM modules .o, 128
pwm_frequencyc.ceeeeeeene 134, 420

PWM_init_frequencyl34; 147; 181,
184; 377; 420

PWM set dutycyclel34; 181; 184; 377,
420

pwml dutyeycle.......coooorinnn. 134; 420
pwm2 dutyeyele.....oooooieiin. 134; 420
QRBI34 ... 139; 325; 393; 397
QRB134 infrared photo reflector...... 156
TAAAT 1t 322
RAM .o 229
TANAOM oo 426
random _byte ..o 201; 426
random_ BYTE. ... 53
random Word........ccooeiceeniccnennenn 426
random_ WORD ..., 53
IO 296
FOTCE cuveeveeerieeeieeesbeeerbeeetseeanseenneesnnennns 262
read_keypad........ccoiniii 432
TeEEdIl o, 432
REGedit. ..o, 109; 287; 289
register file map ..., 237
register_debug ... 289;291; 432
register read ..., 432
TEZISLEr WIILE ...eoiiieeni e 432
TELAY cveere v e 338
TESISIOTS ooeeiiir e ee e 22
TESOIULION L.eovvirie e 80
RGB fader......cooooiciiciiiiniciin 364
Right shift ...oooovoveeeieeeeeeeeeee 416
RS232 . 97.98; 115; 435
RX e 260; 267
SBYLE ..o 403
SCL et 249
SDA ot 249

sAdword ... 403

serial networkccovveceiiieicicen 267
Serial hw_baudrate.................. 258; 418
Serial hw data.......cccocceeeee. 258;419
Serial hw_read.258; 263; 269; 395; 418
Serial hw write 258:; 346; 395; 419
serial net write ..o 268; 270
serial _softwarejal ..., 98
Serial_sw_baudrate 98; 419
Serial sw_invert............ 98; 419

Serial sw read98; 199; 324; 395; 419;
437

Serial sw read init............ 98. 419

Serial sw_write98; 103; 106; 124; 146;
153; 233; 238; 244, 263; 271; 299;
324; 358; 374; 388; 395; 419

Serial_sw_write Init.........c......... 08,419
Serialtermcoooeeiiiiniin e 439
SFRO4. ..o 160; 274; 322
Sharp..ceeeceeeee 156; 171
silent alarm ... 101
SIMUALOT . .vieveiii e 109
SKYWIHET cvvveveere e 302; 446
SLC e 249
software [2C libraryccooiviiiienn 429
software oscilloscope ...c.coovevieencns 21
software serial ... 419
sound frequencycoovvervveccnciccieeas 191
speed of sound.......coooiiiiiinn, 162
StArt tasK...ov i 411
static electriCity oo 169
SUSPEN ..ot 411
sw_ackpoll.......oooveiiiinn 251; 429
sW_read......ooooieiiii, 251;429
SW_WTIEE ..oeeereiicenrc e 251; 429
SWIECH cii i 42
SWOT .t 403
synchronization point 262
synchronized............ccoiiiininnn. 262
L4)OO P PP PP 427
T e 194
TOIF ..o 281

14 Appendix

TLCOM oo 140; 151
E2COT uvveeieeiiee s ieenrirrersaersmeeeeeaeannns 130
tachometerocoociiciir e 150
TasK (oo e 411
TCAA2T o 134; 336
TCAA2TA (v 120; 127
T SENSOT vt 156; 171
LIT1€ CONSIADL. .. vvverieiieresinrirrersverenneee 211
TiImer O ..o 275
timer { interrupt........ 190; 195; 274, 275
timer prescaler ..o 178
timerl overflowoooveiiiceeiieiee s 150
Tiny Bootloader.......cccoooveiiniennn. 344
L3014 1 OO 193; 285
tmrlH. 144; 150
190170) SRR UE RS 151
trlL e 144
TMR2prescaler.....o.covveveivnneiencn 129
tONE BENEratorccov e iaeineeas 284
TOSC oo e 129
tranSiStor oo 333; 378
two way sWitch ..o, 50
T X e 260; 267

446

UATBOS e 12; 125
Ultrasonic Range Finder156; 160; 274;
322

ultrasonic SENSOT..........o.ccivieiierenireas 160
USART oo e 258
USART hw Serial.....ccooceenn. 258; 418
variable resistor ..o 77: 80
VDD et 48; 122; 338; 371
VIBLAtION SENSOT .cvvivriervirraeeeeeeneareenes 171
Visval Basic....................... 20; 145; 434
volatile. ..o 405
voltage divider.........c.ocooeen i, 101
VGS ceemrie e 48; 249: 353 386
VU MELET i 391
watch dog timer..........o 277
Wav f1le. o 195
WAVconvert .o..oocennnn... 197: 211, 447
WDT e 277
WISPOZE .o 13
WOT oo 403
WP oo 249
KWISPZW (et rreeeeceeeeeeiiens 446
vellow Wire ..o, 265; 266

	Home

	Content

	Introduction

	1 What is a PIC microcontroller ?

	2 What you will need
	2.1 Necessary items

	2.2 Optional items (nice to have)

	3 Tutorial project

	3.1 The hardware

	3.2 The software

	3.3 Compiling and downloading

	3.4 Debugging

	3.5 Done!

	3.6 Other results

	4 Switches

	4.1 Timer

	4.2 Two-way switch

	4.3 Dice

	4.4 Secret doorbell

	5 A/D conversion

	5.1 Variable speed flashing LED

	5.2 Dark activated switch

	5.3 Voltmeter

	5.4 Photometer with LCD display

	5.5 Sampling

	6 RS232 communication

	6.1 Serial counter

	6.2 Silent alarm

	6.3 In-circuit debugging

	6.4 Serial hardware

	7 Electric motor

	7.1 Electric motor control

	7.2 Pulse Width Modulation control of an electric motor

	7.3 Constant motor speed through feedback

	7.4 Tachometer

	8 Sensors

	8.1 Infrared object detection

	8.2 Ultrasonic sensor

	8.3 People sensor

	8.4 Tilt sensor

	9 Sound

	9.1 Beep

	9.2 Night buzzer

	9.3 Frequency generator

	9.4 A simple melody

	9.5 Recording sounds

	9.6 Sound super-compression

	10 Memory

	10.1 FLASH program memory

	10.2 RAM

	10.3 EEPROM

	10.4 External EEPROM with I2C

	11 Multiple PIC microcontrollers

	11.1 Two RS232 connections

	11.2 Serial synchronization

	11.3 A serial network

	12 Miscellaneous Projects

	12.1 TIMER0 interrupt

	12.2 Port B interrupt

	12.3 Pictures of light

	12.4 Digital clock

	12.5 Scrolling display with animation

	12.6 Ultrasonic radar

	12.7 Handling larger currents

	12.8 The poetry box

	12.9 Bootloader

	13 Other PIC microcontrollers

	13.1 The 12F675

	13.1.1 Introduction

	13.1.2 12F675_bert library

	13.1.3 Demo program

	13.1.4 Railroad crossing

	13.1.5 RGB fader

	13.2 The 16F628

	13.2.1 Introduction

	13.2.2 16F628_bert library

	13.2.3 Demo program

	13.2.4 Electric candle

	13.2.5 Adjustable clock frequency

	13.2.6 Upgrade using HEXview

	13.3 The 16F876A

	13.3.1 Introduction

	13.3.2 16F876A_bert library

	13.3.3 Demo program

	13.3.4 VU meter

	13.3.5 Infrared RS232

	13.4 Portability

	14 Appendix

	14.1 JAL

	14.1.1 General

	14.1.2 Syntax

	14.2 16F877_bert library

	14.3 Other libraries

	14.4 Programmer pass-through

	14.5 Transistor data

	14.6 Contents of the download package

	14.7 Hex files

	14.8 Tips and tricks

	Index

