

DIGITAL SIGNAL
PROCESSING USING THE
ARM® CORTEX®-M4

DIGITAL SIGNAL
PROCESSING USING THE
ARM® CORTEX®-M4

DONALD S. REAY
Heriot-Watt University

Copyright © 2016 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights
reserved.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/ trademarks for a
list of additional trademarks. The MathWorks Publisher Logo identifies books that contain MATLAB® content. Used
with Permission. The book’s or downloadable software’s use of discussion of MATLAB® software or related products
does not constitute endorsement or sponsorship by the MathWorks of a particular use of the MATLAB® software or
related products.

For MATLAB® product information, or information on other related products, please contact:

The MathWorks, Inc., 3 Apple Hill Drive, Natick. MA 01760-2098 USA, Tel: 508-647-7000,
Fax: 508-647-7001, E-mail: info@mathworks.com, Web: www.mathworks.com, How to buy:
www.mathworks.com/store

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive,
Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this
book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this
book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty
may be created or extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317)
572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Reay, Donald (Donald S.), author.
Digital signal processing using the ARM Cortex-M4 / Donald Reay.

pages cm
Includes bibliographical references and index.
ISBN 978-1-118-85904-9 (pbk.)
1. Signal processing–Digital techniques. 2. ARM microprocessors. I. Title.
TK5102.9.R4326 2015
621.382′2–dc23

2015024771

Typeset in 10/12pt TimesLTStd by SPi Global, Chennai, India

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

1 2016

http://www.mathworks.com/
mailto:info@mathworks.com
http://www.mathworks.com
http://www.mathworks.com/store
http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com

To Reiko

CONTENTS

Preface xi

1 ARM® CORTEX® - M4 Development Systems 1

1.1 Introduction, 1
1.1.1 Audio Interfaces, 2
1.1.2 Texas Instruments TM4C123 LaunchPad and STM32F407

Discovery Development Kits, 2
1.1.3 Hardware and Software Tools, 6
Reference, 7

2 Analog Input and Output 9

2.1 Introduction, 9
2.1.1 Sampling, Reconstruction, and Aliasing, 9

2.2 TLV320AIC3104 (AIC3104) Stereo Codec for Audio Input and
Output, 10

2.3 WM5102 Audio Hub Codec for Audio Input and Output, 12
2.4 Programming Examples, 12
2.5 Real-Time Input and Output Using Polling, Interrupts, and Direct

Memory Access (DMA), 12
2.5.1 I2S Emulation on the TM4C123, 15
2.5.2 Program Operation, 15
2.5.3 Running the Program, 16
2.5.4 Changing the Input Connection to LINE IN, 16
2.5.5 Changing the Sampling Frequency, 16

viii CONTENTS

2.5.6 Using the Digital MEMS Microphone on the Wolfson Audio
Card, 20

2.5.7 Running the Program, 21
2.5.8 Running the Program, 23
2.5.9 DMA in the TM4C123 Processor, 26
2.5.10 Running the Program, 30
2.5.11 Monitoring Program Execution, 30
2.5.12 Measuring the Delay Introduced by DMA-Based I/O, 30
2.5.13 DMA in the STM32F407 Processor, 34
2.5.14 Running the Program, 35
2.5.15 Measuring the Delay Introduced by DMA-Based I/O, 35
2.5.16 Running the Program, 46

2.6 Real-Time Waveform Generation, 46
2.6.1 Running the Program, 49
2.6.2 Out-of-Band Noise in the Output of the AIC3104 Codec

(tm4c123_sine48_intr.c)., 49
2.6.3 Running the Program, 53
2.6.4 Running the Program, 62
2.6.5 Running the Program, 69

2.7 Identifying the Frequency Response of the DAC Using Pseudorandom
Noise, 70
2.7.1 Programmable De-Emphasis in the AIC3104 Codec, 72
2.7.2 Programmable Digital Effects Filters in the AIC3104 Codec, 72

2.8 Aliasing, 78
2.8.1 Running the Program, 83

2.9 Identifying the Frequency Response of the DAC Using An Adaptive
Filter, 83
2.9.1 Running the Program, 84

2.10 Analog Output Using the STM32F407’S 12-BIT DAC, 91
References, 96

3 Finite Impulse Response Filters 97

3.1 Introduction to Digital Filters, 97
3.1.1 The FIR Filter, 97
3.1.2 Introduction to the z-Transform, 99
3.1.3 Definition of the z-Transform, 100
3.1.4 Properties of the z-Transform, 108
3.1.5 z-Transfer Functions, 111
3.1.6 Mapping from the s-Plane to the z-Plane, 111
3.1.7 Difference Equations, 112
3.1.8 Frequency Response and the z-Transform, 113
3.1.9 The Inverse z-Transform, 114

3.2 Ideal Filter Response Classifications: LP, HP, BP, BS, 114
3.2.1 Window Method of FIR Filter Design, 114

CONTENTS ix

3.2.2 Window Functions, 116
3.2.3 Design of Ideal High-Pass, Band-Pass, and Band-Stop FIR Filters

Using the Window Method, 120
3.3 Programming Examples, 123

3.3.1 Altering the Coefficients of the Moving Average Filter, 132
3.3.2 Generating FIR Filter Coefficient Header Files Using

MATLAB, 137

4 Infinite Impulse Response Filters 163

4.1 Introduction, 163
4.2 IIR Filter Structures, 164

4.2.1 Direct Form I Structure, 164
4.2.2 Direct Form II Structure, 165
4.2.3 Direct Form II Transpose, 166
4.2.4 Cascade Structure, 168
4.2.5 Parallel Form Structure, 169

4.3 Impulse Invariance, 171
4.4 Bilinear Transformation, 171

4.4.1 Bilinear Transform Design Procedure, 172
4.5 Programming Examples, 173

4.5.1 Design of a Simple IIR Low-Pass Filter, 173
Reference, 216

5 Fast Fourier Transform 217

5.1 Introduction, 217
5.2 Development of the FFT Algorithm with RADIX-2, 218
5.3 Decimation-in-Frequency FFT Algorithm with RADIX-2, 219
5.4 Decimation-in-Time FFT Algorithm with RADIX-2, 222

5.4.1 Reordered Sequences in the Radix-2 FFT and Bit-Reversed
Addressing, 224

5.5 Decimation-in-Frequency FFT Algorithm with RADIX-4, 226
5.6 Inverse Fast Fourier Transform, 227
5.7 Programming Examples, 228

5.7.1 Twiddle Factors, 233
5.8 Frame- or Block-Based Programming, 239

5.8.1 Running the Program, 242
5.8.2 Spectral Leakage, 244

5.9 Fast Convolution, 252
5.9.1 Running the Program, 256
5.9.2 Execution Time of Fast Convolution Method of FIR Filter

Implementation, 256
Reference, 261

x CONTENTS

6 Adaptive Filters 263

6.1 Introduction, 263
6.2 Adaptive Filter Configurations, 264

6.2.1 Adaptive Prediction, 264
6.2.2 System Identification or Direct Modeling, 265
6.2.3 Noise Cancellation, 265
6.2.4 Equalization, 266

6.3 Performance Function, 267
6.3.1 Visualizing the Performance Function, 269

6.4 Searching for the Minimum, 270
6.5 Least Mean Squares Algorithm, 270

6.5.1 LMS Variants, 272
6.5.2 Normalized LMS Algorithm, 272

6.6 Programming Examples, 273
6.6.1 Using CMSIS DSP Function arm_lms_f32(), 280

Index 299

PREFACE

This book continues the series started in 1990 by Rulph Chassaing and Darrell Horn-
ing’s Digital Signal Processing with the TMS320C25, which tracked the develop-
ment of successive generations of digital signal processors by Texas Instruments.
More specifically, each book in the series up until now has complemented a differ-
ent inexpensive DSP development kit promoted for teaching purposes by the Texas
Instruments University Program. A consistent theme in the books has been the provi-
sion of a large number of simple example programs illustrating DSP concepts in real
time, in an electrical engineering laboratory setting.

It was Rulph Chassaing’s belief, and this author continues to believe, that hands-on
teaching of DSP, using hardware development kits and laboratory test equipment to
process analog audio frequency signals, is a valuable and effective way of reinforcing
the theory taught in lectures.

The contents of the books, insofar as they concern fundamental concepts of digi-
tal signal processing such as analog-to-digital and digital-to-analog conversion, finite
impulse response (FIR) and infinite impulse response (IIR) filtering, the Fourier trans-
form, and adaptive filtering, have changed little. Every academic year brings another
cohort of students wanting to study this material. However, each book has featured a
different DSP development kit.

In 2013, Robert Owen suggested to me that hands-on DSP teaching could be
implemented using an inexpensive ARM® Cortex-M4® microcontroller. I pointed
out that a Texas Instruments C674x processor was very significantly more computa-
tionally powerful than an ARM Cortex-M4. But I also went ahead and purchased a
Texas Instruments Stellaris LaunchPad. I constructed an audio interface using a Wolf-
son WM8731 codec and successfully ported the program examples from my previous
book to that hardware platform.

xii PREFACE

This book is aimed at senior undergraduateand postgraduate electrical engineering
students who have some knowledge of C programming and linear systems theory, but
it is intended, and hoped, that it may serve as a useful resource for anyone involved
in teaching or learning DSP and as a starting point for teaching or learning more.

I am grateful to Robert Owen for first making me aware of the ARM Cortex-M4;
to Khaled Benkrid at the ARM University Program and to the Royal Academy of
Engineering for making possible a six-month Industrial Secondment to ARM dur-
ing which teaching materials for the STM32f01 platform were developed; to Gordon
McLeod and Scott Hendry at Wolfson Microelectronics for their help in getting the
Wolfson Pi audio card to work with the STM32f01 Discovery; to Sean Hong, Karthik
Shivashankar, and Robert Iannello at ARM for all their help; to Joan Teixidor Buixeda
for helping to debug the program examples; to Cathy Wicks at the TI University Pro-
gram and Hieu Duong at CircuitCo for developing the audio booster pack; and to Kari
Capone and Brett Kurzman at Wiley for their patience. But above all, I thank Rulph
Chassaing for inspiring me to get involved in teaching hands-on DSP.

Donald S. Reay

Edinburgh
2015

1
ARM® CORTEX®-M4 DEVELOPMENT
SYSTEMS

1.1 INTRODUCTION

Traditionally, real-time digital signal processing (DSP) has been implemented using
specialized and relatively expensive hardware, for example, digital signal proces-
sors or field-programmable gate arrays (FPGAs). The ARM® Cortex®-M4 processor
makes it possible to process audio in real time (for teaching purposes, at least) using
significantly less expensive, and simpler, microcontrollers.

The ARM Cortex-M4 is a 32-bit microcontroller. Essentially, it is an ARM
Cortex-M3 microcontroller that has been enhanced by the addition of DSP and
single instruction multiple data (SIMD) instructions and (optionally) a hardware
floating-point unit (FPU). Although its computational power is a fraction of that of a
floating-point digital signal processor, for example, the Texas Instruments C674x, it
is quite capable of implementing DSP algorithms, for example, FIR and IIR filters
and fast Fourier transforms for audio signals in real-time.

A number of semiconductor manufacturers have developed microcontrollers
that are based on the ARM Cortex-M4 processor and that incorporate proprietary
peripheral interfaces and other IP blocks. Many of these semiconductor manufac-
turers make available very-low-cost evaluation boards for their ARM Cortex-M4
microcontrollers. Implementing real-time audio frequency example programs on
these platforms, rather than on more conventional DSP development kits, constitutes
a reduction of an order of magnitude in the hardware cost of implementing hands-on

Digital Signal Processing Using the ARM® Cortex® -M4, First Edition. Donald S. Reay.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

2 ARM® CORTEX®-M4 DEVELOPMENT SYSTEMS

DSP teaching. For the first time, students might realistically be expected to own a
hardware platform that is useful not only for general microcontroller/microprocessor
programming and interfacing activities but also for implementation of real-time DSP.

1.1.1 Audio Interfaces

At the time that the program examples presented in this book were being developed,
there were no commercially available low-cost ARM Cortex-M4 development
boards that incorporated high-quality audio input and output. The STMicroelec-
tronics STM32F407 Discovery board features a high-quality audio digital-to-analog
converter (DAC) but not a corresponding analog-to-digital converter (ADC). Many
ARM Cortex-M4 devices, including both the STMicroelectronics STM32F407
and the Texas Instruments TM4C123, feature multichannel instrumentation-quality
ADCs. But without additional external circuitry, these are not suitable for the
applications discussed in this book.

The examples in this book require the addition (to an inexpensive ARM Cortex-M4
development board) of an (inexpensive) audio interface.

In the case of the STMicroelectronics STM32F407 Discovery board and of the
Texas Instruments TM4C123 LaunchPad, compatible and inexpensive audio inter-
faces are provided by the Wolfson Pi audio card and the CircuitCo audio booster pack,
respectively. The low-level interfacing details and the precise performance character-
istics and extra features of the two audio interfaces are subtly different. However,
each facilitates the input and output of high-quality audio signals to and from an
ARM Cortex-M4 processor on which DSP algorithms may be implemented.

Almost all of the program examples presented in the subsequent chapters
of this book are provided, in only very slightly different form, for both the
STM32F407 Discovery and the TM4C123 LaunchPad, on the partner website
http://www.wiley.com/go/Reay/ARMcortexM4.

However, in most cases, program examples are described in detail, and program
listings are presented, only for one or other hardware platform. Notable exceptions
are that, in Chapter 2, low-level i/o mechanisms (implemented slightly differently in
the two devices) are described in detail for both hardware platforms and that a handful
of example programs use features unique to one or other processor/audio interface.

This book does not describe the internal architecture or features of the ARM
Cortex-M4 processor in detail. An excellent text on that subject, including details
of its DSP-related capabilities, is The Definitive Guide to ARM® Cortex®-M3 and
Cortex®-M4 Processors by Yiu [1].

1.1.2 Texas Instruments TM4C123 LaunchPad and STM32F407 Discovery
Development Kits

The Texas Instruments and STMicroelectronics ARM Cortex-M4 processor boards
used in this book are shown in Figures 1.1 and 1.2. The program examples presented
in this book assume the use of the Keil MDK-ARM development environment, which
is compatible with both development kits. An alternative development environment,

ftp://ftp.wiley.com

INTRODUCTION 3

Figure 1.1 Texas Instruments TM4C123 LaunchPad.

Texas Instruments’ Code Composer Studio, is available for the TM4C123 Launch-
Pad and the program examples have been tested using this. Versions of the program
examples compatible with Code Composer Studio version 6 are provided on the part-
ner website http://www.wiley.com/go/Reay/ARMcortexM4.

The CircuitCo audio booster pack (for the TM4C123 LaunchPad) and the Wolfson
Pi audio card (for the STM32F407 Discovery) are shown in Figures 1.3 and 1.4. The
audio booster pack and the launchpad plug together, whereas the Wolfson audio card,
which was designed for use with a Raspberry Pi computer, must be connected to the
Discovery using a custom ribbon cable (available from distributor Farnell).

Rather than presenting detailed instructions here that may be obsolete as soon
as the next version of MDK-ARM is released, the reader is directed to the “get-
ting started” guide at the partner website http://www.wiley.com/go/Reay
/ARMcortexM4 and before progressing to the next chapter of this book will need to
install MDK-ARM, including the “packs” appropriate to the hardware platform being
used and including the CMSIS DSP library, download the program examples from
the website, and become familiar with how to open a project in MDK-ARM, add and

ftp://ftp.wiley.com
ftp://ftp.wiley.com

4 ARM® CORTEX®-M4 DEVELOPMENT SYSTEMS

Figure 1.2 STMicroelectronics STM32F407 Discovery.

remove files from a project, build a project, start and stop a debug session, and run
and halt a program running on the ARM Cortex-M4 processor.

Some of the example programs implement DSP algorithms straightforwardly,
and with a view to transparency and understandability rather than computational
efficiency or elegance. In several cases, ARM’s CMSIS DSP library functions are
used. These are available for both the STMicroelectronics and Texas Instruments
processors as part of the MDK-ARM development environment. In appropriate
circumstances, these library functions are particularly computationally efficient.

INTRODUCTION 5

Figure 1.3 AIC3104 audio booster pack.

Figure 1.4 Wolfson Pi audio card.

6 ARM® CORTEX®-M4 DEVELOPMENT SYSTEMS

This is useful in some of the program examples where the demands of running in
real-time approach the limits of what is achievable with the ARM Cortex-M4. One
difference between the two devices used in this book is that STM32F407 uses a
processor clock speed of 168 MHz, whereas the TM4C123 clock speed is 84 MHz.
As presented in the book, all of the program examples will run in real time on either
device. However, if the parameter values used are changed, for example, if the
number of coefficients in an FIR filter is increased, it is likely that the limits of the
slower device will be reached more readily than those of the faster one.

All of the program examples have been tested using the free, code size-limited,
version of MDK-ARM. The aim of hands-on DSP teaching, and the intention of this
book, is not to teach about the architecture of the ARM Cortex-M4. The device is used
because it provides a capable and inexpensive platform. Nor is it the aim of hands-on
DSP teaching, or the intention of this book, to teach about the use of MDK-ARM. The
aim of hands-on DSP teaching is to reinforce DSP theory taught in lectures through
the use of illustrative examples involving the real-time processing of audio signals in
an electrical engineering laboratory environment. That is to say where test equipment
such as oscilloscopes, signal generators, and connecting cables are available.

1.1.3 Hardware and Software Tools

To perform the experiments described in this book, a number of software and hard-
ware resources are required.

1. An ARM Cortex-M4 development board and audio interface. Either a Texas
Instruments TM4C123 LaunchPad and a CircuitCo audio booster pack or an
STMicroelectronics STM32F407 Discovery board and a Wolfson Microelec-
tronics Pi audio card are suitable hardware platforms.

2. A host PC running an integrated development environment (IDE) and with a
spare USB connection. The program examples described in this book were
developed and tested using the Keil MDK-ARM development environment.
However, versions of the program examples for the TM4C123 LaunchPad and
project files compatible with Texas Instruments Code Composer Studio IDE
are provided on the partner website http://www.wiley.com/go/Reay
/ARMcortexM4.

3. The TM4C123 LaunchPad and the STM32F407 Discovery board use slightly
different USB cables to connect to the host PC. The launchpad is supplied with
a USB cable, while the STM32F407 Discovery is not.

4. Whereas the audio booster pack and the launchpad plug together, the Wolfson
Pi audio card does not plug onto the STM32F407 Discovery board. Connec-
tions between the two can be made using a custom ribbon cable, available from
distributor Farnell.

5. An oscilloscope, a signal generator, a microphone, headphones, and various
connecting cables. Several of these items will be found in almost any electrical
engineering laboratory. If you are using the STM32F407 Discovery and Wolf-
son Pi audio card, then a microphone is unnecessary. The audio card has built-in

ftp://ftp.wiley.com

REFERENCE 7

digital MEMS microphones. The Wolfson Pi audio card is also compatible with
combined microphone and headphone headsets (including those supplied with
Apple and Samsung smartphones). Stereo 3.5 mm jack plug to 3.5 mm jack
plug cables and stereo 3.5 mm jack plug to (two) RCA (phono) plugs and RCA
to BNC adapters are the specific cables required.

6. Project and example program files from the partner website http://www
.wiley.com/go/Reay/ARMcortexM4.

REFERENCE

1. Yiu, J., “The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Processors”, Third
Edition, Elsevier Inc., 2014.

ftp://ftp

ANALOG INPUT AND OUTPUT

2.1 INTRODUCTION

A basic DSP system, suitable for processing audio frequency signals, comprises a
digital signal processor (DSP) and analog interfaces as shown in Figure 2.1. The
Texas Instruments TM4C123 LaunchPad and audio booster pack provide such a
system, using a TM4C123 ARM® Cortex®-M4 processor and a TLV320AIC3104
(AIC3104) codec [1]. The STMicro STM32F407 Discovery and the Wolfson audio
card provide such a system, using an STM32407 ARM® Cortex®-M4 processor
and a WM5102 codec [2]. The term codec refers to the coding of analog waveforms
as digital signals and the decoding of digital signals as analog waveforms. The
AIC3104 and WM5102 codecs perform both the analog-to-digital conversion (ADC)
and digital-to-analog conversion (DAC) functions shown in Figure 2.1.

Both the AIC3104 and WM5102 codecs communicate with their associated pro-
cessors (TM4C123 and STM32F407) using I2C bus for control (writing to the codec’s
control registers) and I2S for (audio) data transfer.

2.1.1 Sampling, Reconstruction, and Aliasing

Within DSPs, signals are represented as sequences of discrete sample values, and
whenever signals are sampled, the possibility of aliasing arises. Later in this chapter,
the phenomenon of aliasing is explored in more detail. Suffice to say at this stage
that aliasing is undesirable and that it may be avoided by the use of an antialiasing
filter placed at the input to the system shown in Figure 2.1 and by suitable design

10 ANALOG INPUT AND OUTPUT

Analog
input
signal

Analog
output
signal

ADC DAC
Digital
signal

processor

Figure 2.1 Basic digital signal processing system.

of the DAC. In a low-pass system, an effective antialiasing filter is one that allows
frequency components at frequencies below half the sampling frequency to pass but
that attenuates greatly, or stops, frequency components at frequencies greater than or
equal to half the sampling frequency. A suitable DAC for a low-pass system is itself
a low-pass filter having characteristics similar to the aforementioned antialiasing fil-
ter. The term DAC commonly refers to an electronic device that converts discrete
sample values represented in digital hardware into a continuous analogue electrical
signal. When viewed purely from a signal processing perspective, a DAC acts as a
reconstruction filter. Although they differ in a number of respects, both the AIC3104
and WM5102 codecs contain both digital and analog antialiasing and reconstruction
filters and therefore do not require additional external filters.

2.2 TLV320AIC3104 (AIC3104) STEREO CODEC FOR AUDIO INPUT
AND OUTPUT

The audio booster pack makes use of a TLV320AIC3104 (AIC3104) codec for
analog input and output (see Figures 2.2 and 2.3). The AIC3104 is a low-power stereo

LINE1L

Register 17

(mute or
0 dB to −12 dB)

Register 15
(ADC_L PGA

gain control
0 dB to 59.5 dB)

ADC HPF

Register 107
(default or programmable

filter coefficients)

Register 12
(select/enable)

DOUTL

Σ

MIC2L

to DAC side

Analog
line input Register 19

Other mixer
inputs not shown

PGA

LINE1LP

PGA_L

Serial data out
to TM4C123

Analog side Digital side

Figure 2.2 Simplified block diagram representation of input side of AIC3104 codec showing
selected blocks and signal paths used by the example programs in this book (left channel only).

TLV320AIC3104 (AIC3104) STEREO CODEC FOR AUDIO INPUT AND OUTPUT 11

DINL

PGA_L

LINE1LP

DAC_L1

PGA_L

Analog side

LEFT_LOPMDAC_L

From ADC side

Other mixer
inputs not shown

Register 47
Register 46

(volume control
and mixing

0 dB to −78.3 dB)

HPLOUT

DINL

programmable
digital effects

and
de-emphasis

DAC_ATTEN

Register 43
(digital DAC_L

volume
0 dB to −63.5 dB)

Register 82
Register 81

(volume control
and mixing

0 dB to −78.3 dB)

Digital side

Register 12
(audio codec
digital filter

control)

Register 108
Passive analog signal bypass

during powerdown

Serial data in
from TM4C123

Register 86
(DAC

output gain
0 dB to 9 dB)

Analog
line output

Register 51
(DAC

output gain
0 dB to 9 dB)

Analog
headphone

output

Figure 2.3 Simplified block diagram representation of output side of AIC3104 codec show-
ing selected blocks and signal paths used by the example programs in this book (left channel
only).

audio codec, based on sigma-delta technology, and designed for use in portable
battery-powered applications. It features a number of microphone and line-level
inputs, configurable for single-ended or differential connection. On its output side, a
number of differential and high-power outputs are provided. The high-power outputs
are capable of driving headphones. A number of different sampling rates ranging
from 8 to 96 kHz are supported by the device. The analog-to-digital converter
(ADC), or coder, part of the codec converts an analog input signal into a sequence of
(16-bit, 24-bit, or 32-bit signed integer) sample values to be processed by the DSP.
The digital-to-analog converter (DAC), or decoder, part of the codec reconstructs
an analog output signal from a sequence of (16-bit, 24-bit, or 32-bit signed integer)
sample values that have been processed by the DSP and written to the DAC.

Also contained in the device are several programmable digital filters and gain
blocks. The codec is configured using a number of control registers, offering so
many options that it is beyond the scope of this text to describe them fully. However,
choices of sampling frequency, input connection, and ADC PGA gain are made
available in the example programs through the parameters passed to function
tm4c123_aic3104_init(). In addition, it is possible to write to any of the
codec control registers using function I2CRegWrite().

Later in this chapter, examples of enabling some of the internal digital filter blocks
by writing to the control registers of the AIC3104 are described. In Chapter 4, the
characteristics of the programmable digital filters within the AIC3104 are examined
in greater detail.

12 ANALOG INPUT AND OUTPUT

Data is passed to and from the AIC3104 via its I2S serial interface. MIC IN (pink),
LINE IN (blue), LINE OUT (green), and HP OUT (black) connections are made
available via four 3.5 mm jack sockets on the audio booster pack, and these are con-
nected to the AIC3104 as shown in Figure 2.4. In addition, for reasons explained
later in this chapter, jumpers J6 and J7 on the audio booster pack allow connection of
first-order low-pass filters and scope hook test points TP2 and TP3 to LINE OUT on
the AIC3104.

2.3 WM5102 AUDIO HUB CODEC FOR AUDIO INPUT AND OUTPUT

The Wolfson audio card makes use of a WM5102 audio hub for analog input and
output. The WM5102 features a low-power, high-performance audio codec.

Data is passed to and from the WM5102 via its I2S serial interface, and the device
is configured by writing to its control registers via an I2C interface. In addition
to a number of configurable filter and gain blocks, the WM5102 codec contains a
programmable DSP. However, use of this proprietary DSP is beyond the scope of
this book.

LINE IN (pink), LINE OUT (green), and combined MIC IN and HP OUT
(black) connections are made available via three 3.5 mm jack sockets on the Wolfson
audio card.

2.4 PROGRAMMING EXAMPLES

The following examples illustrate analog input and output using either the TM4C123
LaunchPad and audio booster pack or the STM32F407 Discovery and Wolfson audio
card. The program examples are available for either platform, although in most cases,
only one platform is mentioned per example. A small number of example programs
in this chapter concern programming the internal digital filters in the AIC3104 codec
and are therefore applicable only to the Texas Instruments hardware platform. A
small number of example programs concern use of the 12-bit DAC built in to the
STM32F407 processor and are therefore applicable only to the STMicroelectronics
hardware platform.

The example programs demonstrate some important concepts associated with
analog-to-digital and digital-to-analog conversion, including sampling, reconstruc-
tion, and aliasing. In addition, they illustrate the use of polling-, interrupt-, and
DMA-based i/o in order to implement real-time applications. Many of the concepts
and techniques described in this chapter are revisited in subsequent chapters.

2.5 REAL-TIME INPUT AND OUTPUT USING POLLING, INTERRUPTS,
AND DIRECT MEMORY ACCESS (DMA)

Three basic forms of real-time i/o are demonstrated in the following examples.
Polling- and interrupt-based i/o methods work on a sample-by-sample basis, and

REAL-TIME INPUT AND OUTPUT 13

R6

R3

R2
C6

D8

D4

D2

D4
R25

TP2

PINK

2k2 Ω

5k6 Ω

5k6 Ω

100 Ω

0 Ω

33 Ω

20 kΩ

0.1 uF

47 uF

0.1 uF

0.22 uFC8

10 uF

R27

R23

C31

R28

C1

47 pF

AGND

AGND

AGND

AGND

GREEN

BLUE

C12

C8

47 pF
C4

MIC_BIAS

MIC_L

LINEIN_L

LINEOUT_L BLACK

J7

HPOUT_L

Figure 2.4 Analog input and output connections on the AIC3104 audio booster pack.

14 ANALOG INPUT AND OUTPUT

processing consists of executing a similar set of program statements at each sampling
instant. DMA-based i/o deals with blocks, or frames, of input and output samples
and is inherently more efficient in terms of computer processing requirements.
Processing consists of executing a similar set of program statements after each
DMA transfer. Block- or frame-based processing is closely linked to, but not
restricted to, use with frequency-domain processing (using the FFT) as described in
Chapter 5.

The following examples illustrate the use of the three different i/o mechanisms in
order to implement a simple talk-through function. Throughout the rest of this book,
use is made primarily of interrupt- and DMA-based methods. Compared to polling-
and interrupt-based methods, there is a greater time delay between a signal entering
the digital signal processing system and leaving it introduced by the DMA-based
method. It is possible to make use of the DMA mechanism with a frame size of just
one sample, but this rather defeats the purpose of using DMA-based i/o.

Example 2.1 Basic Input and Output Using Polling (tm4c123_loop_poll.c).

Listing 2.1 Program tm4c123_loop_poll.c.

1 // tm4c123_loop_poll.c
2

3 #include “tm4c123_aic3104_init.h”
4

5 void SSI_interrupt_routine(void){while(1){}}
6

7 int main(void)
8 {
9 AIC3104_data_type sample_data;

10 float32_t input_left, input_right;
11

12 tm4c123_aic3104_init(FS_48000_HZ,
13 AIC3104_MIC_IN,
14 IO_METHOD_POLL,
15 PGA_GAIN_6_DB);
16 while(1)
17 {
18 SSIDataGet(SSI1_BASE,&sample_data.bit32);
19 input_left = (float32_t)(sample_data.bit16[0]);
20 SSIDataGet(SSI0_BASE,&sample_data.bit32);
21 input_right = (float32_t)(sample_data.bit16[0]);
22

23 sample_data.bit32 = ((int16_t)(input_left));
24 SSIDataPut(SSI1_BASE,sample_data.bit32);
25 sample_data.bit32 = ((int16_t)(input_right));
26 SSIDataPut(SSI0_BASE,sample_data.bit32);
27 }
28 }

REAL-TIME INPUT AND OUTPUT 15

The C language source file for program, tm4c123_loop_poll.c, which sim-
ply copies input samples read from the AIC3104 codec ADC to the AIC3104 codec
DAC as output samples, is shown in Listing 2.1. Effectively, the MIC IN input socket
is connected straight through to the LINE OUT and HP OUT output sockets on the
audio booster pack via the AIC3104 codec and the TM4C123 processor. Function
tm4c123_aic3104_init(), called by program tm4c123_loop_poll.c,
is defined in support file tm4c123_aic3104_init.c. In this way, the
C source file tm4c123_loop_poll.c is kept as short as possible and
potentially distracting low-level detail is hidden. The implementation details
of function tm4c123_aic3104_init() and other functions defined in
tm4c123_aic3104_init.c need not be studied in detail in order to use the
examples presented in this book.

2.5.1 I2S Emulation on the TM4C123

The TM4C123 processor does not feature an I2S interface. Instead, two synchronous
serial interface (SSI) interfaces, SSI0 and SSI1, are used to emulate a bidirectional
stereo I2S interface and to pass audio data to and from the AIC3104 codec. One SSI
interface handles the left channel and the other handles the right channel. Details of
the I2S emulation are described in application note SPMA042 [3].

2.5.2 Program Operation

Following the call to function tm4c123_aic3104_init(), program
tm4c123_loop_poll.c enters an endless while loop and repeatedly copies
left and right channel input sample values into variables input_left and
input_right, using function SSIDataGet(), before writing these sample
values to the AIC3104 DAC, using function SSIDataPut(). Function SSI-
DataGet() waits until there is data in the receive FIFO of the specified SSI
peripheral, SSI0_BASE or SSI1_BASE, and function SSIDataPut() waits
until there is space available in the transmit FIFO of the specified SSI peripheral.
In this way, the real-time operation of the program is controlled by the timing of
the I2S interface, which, in turn, is determined by the AIC3104 codec (acting as
I2S master). Functions SSIDataGet() and SSIDataPut() are defined in the
TM4C123 device family pack (DFP) installed as part of the MDK-ARM development
environment. Although the AIC3104 is configured to use 16-bit sample values,
function SSIDataGet() returns a 32-bit value and function SSIDataPut() is
passed a 32-bit value.

Function SSI_interrupt_routine() is not used by program tm4c123_
loop_poll.c but has been defined here as a trap for unexpected SSI peripheral
interrupts.

In this simple example, it is not strictly necessary to convert the 16-bit sample
values read from the AIC3104 ADC by function SSIDataGet() into 32-bit
floating-point values. However, in subsequent program examples, DSP algorithms
are implemented using floating-point arithmetic and input sample values are

16 ANALOG INPUT AND OUTPUT

converted into type float32_t. Processing of the floating-point sample values
could be implemented by adding program statements between

input_right = (float32_t)(sample_data.bit16[0]);

and

sample_data.bit32 = ((int16_t)(input_left));

2.5.3 Running the Program

Connect a microphone to the (pink) MIC IN socket on the audio booster card and
headphones to the (green) HP OUT socket. Run the program and verify that the input
to the microphone can be heard in the headphones.

2.5.4 Changing the Input Connection to LINE IN

Change the program statement

tm4c123_aic3104_init(FS_48000_HZ,
AIC3104_MIC_IN,
IO_METHOD_POLL,
PGA_GAIN_6_DB);

to read

tm4c123_aic3104_init(FS_48000_HZ,
AIC3104_LINE_IN,
IO_METHOD_POLL,
PGA_GAIN_6_DB);

Rebuild the project and run the program again using a signal from a sound card, a
signal generator, or an MP3 player connected to the (blue) LINE IN socket as input.

2.5.5 Changing the Sampling Frequency

Change the sampling frequency used by passing parameter value FS_8000_HZ
rather than FS_48000_HZ to the codec initialization function, that is, by changing
the program statement

tm4c123_aic3104_init(FS_48000_HZ,
AIC3104_LINE_IN,
IO_METHOD_POLL,
PGA_GAIN_6_DB);

to read

tm4c123_aic3104_init(FS_8000_HZ,
AIC3104_LINE_IN,
IO_METHOD_POLL,
PGA_GAIN_6_DB);

REAL-TIME INPUT AND OUTPUT 17

Rebuild the project and run the program again. Signals passed through the system
should sound less bright than previously due to the lower sampling rate and corre-
spondingly reduced system bandwidth.

Valid parameter values (constants) that may be passed to function tm4c123_
AIC3104_init() are

FS_48000_HZ
FS_44100_HZ
FS_32000_HZ
FS_24000_HZ
FS_22050_HZ
FS_16000_HZ
FS_11025_HZ
FS_8000_HZ

which set the sampling rate,

IO_METHOD_POLL
IO_METHOD_INTR
IO_METHOD_DMA

which set the i/o method,

AIC3104_MIC_IN
AIC3104_LINE_IN

which set the input connection used, and

PGA_GAIN_0_DB
PGA_GAIN_1_DB
PGA_GAIN_2_DB
PGA_GAIN_3_DB
PGA_GAIN_4_DB
PGA_GAIN_5_DB
PGA_GAIN_6_DB
PGA_GAIN_7_DB
PGA_GAIN_8_DB
PGA_GAIN_9_DB
PGA_GAIN_10_DB
PGA_GAIN_11_DB
PGA_GAIN_12_DB

which set the gain of the PGA that precedes the ADC (shown in Figure 2.2). Parameter
value PGA_GAIN_6_DB is used by default in order to compensate for the potential
divider circuits between the LINE IN socket on the audio booster pack and LINEIN_L
and LINEIN_R on the AIC3104 (as shown in Figure 2.4).

Example 2.2 Basic Input and Output Using Polling (stm32f4_loop_poll.c).

Programstm32f4_loop_poll.c, shown in Listing 2.2, is functionally equiv-
alent to programtm4c123_loop_poll.cbut runs on the STM32F407 Discovery.

18 ANALOG INPUT AND OUTPUT

Full duplex I2S communication between the WM5102 codec and the STM32F407
processor is implemented on the STM32F407 using two I2S instances SPI/I2S2 and
I2S2_ext. SPI/I2S2 is configured as a receiver and I2S2_ext as a transmitter. The
WM5102 codec, which operates in master mode, generates the I2S word and bit
clock signals (WCLK and BCLK), and the STM32F407 I2S peripheral operates in
slave mode.

Following the call to function stm32f4_wm5102_init(), program
stm32f4_loop_poll.c enters an endless while loop.

Status flag SPI_I2S_FLAG_RXNE in SPI/I2S2 is repeatedly tested using
function SPI_I2S_GetFlagStatus() until it is set, indicating that the
SPI/I2S2 receive buffer is not empty. Then, status flag I2S_FLAG_CHSIDE is
tested. This indicates whether the data received corresponds to the left or the right
channel.

If the value of I2S_FLAG_CHSIDE indicates that a left channel sample value has
been received, function SPI_I2S_ReceiveData() is used to read that sample
from SPI/I2S2 into the int16_tvariable input_left, and after waiting for
status flag SPI_I2S_FLAG_TXE to be set, the value of variable input_left is
written to I2S2_ext.

If the value of I2S_FLAG_CHSIDE indicates that a right channel sample value
has been received, function SPI_I2S_ReceiveData() is used to read that sam-
ple from SPI/I2S2 into the int16_t variable input_right, and after waiting for
status flag SPI_I2S_FLAG_TXE to be set, the value of variable input_right is
written to I2S2_ext.

The endless while loop then returns to testing status flag SPI_I2S_FLAG_RXNE
in SPI/I2S2. In this way, the real-time operation of the program is controlled by the
timing of the I2S interface, which, in turn, is determined by the WM5102 codec (act-
ing as I2S master).

In this simple talk-through example, it is not strictly necessary to test whether
received samples correspond to the left or right channel. However, the program has
been written so that processing of the signals on either or both channels could easily
be added between, for example, program statements.

left_in_sample = SPI_I2S_ReceiveData(I2Sx);

and

while(SPI_I2S_GetFlagStatus(I2Sxext,

Listing 2.2 Program stm32f4_loop_poll.c.

1 // stm32f4_loop_poll.c
2

3 #include “stm32f4_wm5102_init.h”
4

5 int main(void)
6 {

REAL-TIME INPUT AND OUTPUT 19

7 int16_t left_out_sample, right_out_sample;
8 int16_t left_in_sample, right_in_sample;
9

10 stm32_wm5102_init(FS_48000_HZ,
11 WM5102_DMIC_IN,
12 IO_METHOD_POLL);
13 while(1)
14 {
15 while(SPI_I2S_GetFlagStatus(I2Sx,
16 SPI_I2S_FLAG_RXNE) != SET){}
17 if (SPI_I2S_GetFlagStatus(I2Sx, I2S_FLAG_CHSIDE) SET)
18 {
19 left_in_sample = SPI_I2S_ReceiveData(I2Sx);
20 left_out_sample = left_in_sample;
21 while(SPI_I2S_GetFlagStatus(I2Sxext,
22 SPI_I2S_FLAG_TXE) != SET){}
23 SPI_I2S_SendData(I2Sxext, left_out_sample);
24 }
25 else
26 {
27 right_in_sample = SPI_I2S_ReceiveData(I2Sx);
28 right_out_sample = right_in_sample;
29 while(SPI_I2S_GetFlagStatus(I2Sxext,
30 SPI_I2S_FLAG_TXE) != SET){}
31 SPI_I2S_SendData(I2Sxext, right_out_sample);
32 }
33 }
34 }

Valid parameter values (constants) that may be passed to function stm32_
wm5102_init() are

FS_48000_HZ
FS_44100_HZ
FS_32000_HZ
FS_24000_HZ
FS_22050_HZ
FS_16000_HZ
FS_11025_HZ
FS_8000_HZ

which set the sampling rate,

IO_METHOD_POLL
IO_METHOD_INTR
IO_METHOD_DMA

which set the i/o method, and

WM5102_MIC_IN
WM5102_DMIC_IN
WM5102_LINE_IN

which set the input connection used.

20 ANALOG INPUT AND OUTPUT

2.5.6 Using the Digital MEMS Microphone on the Wolfson Audio Card

Unlike the audio booster pack for the TM4C123 LaunchPad, which has separate MIC
IN and HP OUT sockets, the Wolfson audio card has a single HEADSET socket
(shown in Figure 2.5) that may be used for a combined microphone and earphone
headset, conventional stereo headphones, an electret microphone that uses a four-pole
(TRRS) 3.5 mm jack plug. In addition, the Wolfson audio card features high-quality
stereo digital MEMS microphones that may be selected by passing parameter value
WM5102_DMIC_IN to function stm32_wm5102_init().

LINE IN IN3LP60ohm@100MHz

ferrite (EMI) suppression bead

D5

ESD0402V05C05
(ESD) overvoltage
protection diode

L7

R56

10k Ω
C32

100pF
R58

12k Ω

C59

1uF

MICBIAS1

IN1RP

HPOUT1L

R64

2k2Ω
C26

1uF

R4

0Ω

R21

0Ω
RV3-A

HEADSETMIC

HPL1

5

6

1

4

ceramic transient
voltage suppressor

CA04F2FT5AUD010G

ceramic transient
voltage suppressor

CA04F2FT5AUD010G

RV4-B

680pF

16Ω

R29

R63

1kΩ
C18

LINE OUTHPOUT2L

2

3

4

Figure 2.5 Analog input and output connections on the Wolfson audio card.

REAL-TIME INPUT AND OUTPUT 21

2.5.7 Running the Program

As provided, program stm32f4_loop_poll.c accepts input from the digital
MEMS microphones on the audio card and routes this to the (green) LINE OUT
and (black) HEADSET sockets. If you want to use a sound card, signal generator, or
MP3 player to supply a line-level input signal to the (pink) LINE IN socket, change
program statement.

stm32f4_wm5102_init(FS_48000_HZ,
WM5102_DMIC_IN,
IO_METHOD_INTR);

to read

stm32f4_wm5102_init(FS_48000_HZ,
WM5102_LINE_IN,
IO_METHOD_INTR);

Polling-based i/o is not computationally efficient and is used in very few of the
example programs in this book.

Example 2.3 Basic Input and Output Using Interrupts (tm4c123_loop_
intr.c).

Viewed in terms of analog input and output signals, program tm4c123_loop_
intr.c, shown in Listing 2.3, is functionally equivalent to program tm4c123_
loop_poll.c but uses interrupt-based i/o.

Listing 2.3 Program tm4c123_loop_intr.c.

1 // tm4c123_loop_intr.c
2

3 #include “tm4c123_aic3104_init.h”
4

5 void SSI_interrupt_routine(void)
6 {
7 AIC3104_data_type sample_data;
8 float32_t input_left, input_right;
9

10 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
11

12 SSIDataGet(SSI1_BASE,&sample_data.bit32);
13 input_left = (float32_t)(sample_data.bit16[0]);
14 SSIDataGet(SSI0_BASE,&sample_data.bit32);
15 input_right = (float32_t)(sample_data.bit16[0]);
16

22 ANALOG INPUT AND OUTPUT

17 sample_data.bit32 = ((int16_t)(input_left));
18 SSIDataPut(SSI1_BASE,sample_data.bit32);
19 sample_data.bit32 = ((int16_t)(input_right));
20 SSIDataPut(SSI0_BASE,sample_data.bit32);
21

22 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
23

24 SSIIntClear(SSI0_BASE,SSI_RXFF);
25 }
26

27 int main(void)
28 {
29 tm4c123_aic3104_init(FS_48000_HZ,
30 AIC3104_MIC_IN,
31 IO_METHOD_INTR,
32 PGA_GAIN_6_DB);
33 while(1){}
34 }

This simple program is important because many of the example programs in this
book use interrupt-based i/o and are structured similarly. Instead of simply copying
the sequence of sample values read from the ADC to the DAC, a digital filtering
operation could be performed each time a new input sample is received, that is,
a sample-by-sample processing algorithm could be inserted between the program
statements.

input_right = (float32_t)(sample_dat.bit16[0]);

and

sample_dat.bit16[0] = (int16_t)(input_left);

For this reason, it is worth taking time to ensure that you understand how program
tm4c123_loop_intr.cworks.

Strictly speaking, it is not good practice to carry out digital signal processing
operations within a hardware interrupt service routine, for example, function
SSI_interrupt_routine(). However, in the program examples in this book,
there are no other tasks being carried out by the processor, and, in most cases, the
algorithms being demonstrated have been placed within the interrupt service routine
function(s).

In function main(), parameter value IO_METHOD_INTR is passed to initializa-
tion function tm4c123_aic3104_init(). This selects the use, by the program,
of interrupt-based i/o.

tm4c123_aic3104_init(FS_48000_HZ,
AIC3104_MIC_IN,

REAL-TIME INPUT AND OUTPUT 23

IO_METHOD_INTR,
PGA_GAIN_6_DB);

Following initialization, function main() enters an endless, and empty, while loop,
effectively doing nothing but waiting for interrupts.

SSI0 receive FIFO interrupts (SSI_RXFF), which occur at the sampling rate
(48 kHz), are handled by interrupt service routine function SSI_interrupt_
routine(). In this function, left- and right-channel 16-bit sample values are
read from the SSI1 and SSI0 receive FIFOs, respectively. These are converted into
float32_t values input_left and input_right. Strictly speaking, type
conversions are unnecessary in this simple talk-through program since the values
of input_left and input_right are subsequently converted back to type
int16_t and written to SSI1 and SSI0 transmit FIFOs, respectively.

2.5.8 Running the Program

As provided, program tm4c123_loop_intr.c accepts input from the (pink)
MIC IN socket on the audio booster card and routes this to both the (black) LINE
OUT and (green) HP OUT sockets. If you want to use a sound card, signal generator
or MP3 player to supply a line-level input signal, change program statement.

tm4c123_aic3104_init(FS_48000_HZ,
AIC3104_MIC_IN,
IO_METHOD_INTR,
PGA_GAIN_6_DB);

to read

tm4c123_aic3104_init(FS_48000_HZ,
AIC3104_LINE_IN,
IO_METHOD_INTR,
PGA_GAIN_6_DB);

GPIO pin PE2 is set high at the start, and reset low near the end, of function
SSI_interrupt_routine(). This signal is accessible via the J3 connector on
the TM4C123 LaunchPad.

Example 2.4 Basic Input and Output Using Interrupts (stm32f4_loop_
intr.c).

Program stm32f4_loop_intr.c is shown in Listing 2.4. In terms
of analog input and output signals, it is functionally equivalent to program
tm4c123_loop_intr.c but is written for the STM32F407 Discovery and
Wolfson audio card. Because the WM5012 and AIC3104 codecs differ and
because, unlike the TM4C123 processor, the STM32F407 features an I2S interface,
there are subtle differences between programs stm32f4_loop_intr.c and
tm4c123_loop_intr.c.

24 ANALOG INPUT AND OUTPUT

Listing 2.4 Program stm32f4_loop_intr.c.

1 // stm32f4_loop_intr.c
2

3 #include “stm32f4_wm5102_init.h”
4

5 void SPI2_IRQHandler()
6 {
7 int16_t left_out_sample, right_out_sample;
8 int16_t left_in_sample, right_in_sample;
9

10 if (SPI_I2S_GetFlagStatus(I2Sx, I2S_FLAG_CHSIDE) SET)
11 {
12 left_in_sample = SPI_I2S_ReceiveData(I2Sx);
13 left_out_sample = left_in_sample;
14 while(SPI_I2S_GetFlagStatus(I2Sxext,
15 SPI_I2S_FLAG_TXE) != SET){}
16 SPI_I2S_SendData(I2Sxext, left_out_sample);
17 }
18 else
19 {
20 right_in_sample = SPI_I2S_ReceiveData(I2Sx);
21 right_out_sample = right_in_sample;
22 while(SPI_I2S_GetFlagStatus(I2Sxext,
23 SPI_I2S_FLAG_TXE) != SET){}
24 SPI_I2S_SendData(I2Sxext, right_out_sample);
25 }
26 GPIO_ToggleBits(GPIOD, GPIO_Pin_15);
27 }
28

29 int main(void)
30 {
31 stm32_wm5102_init(FS_48000_HZ,
32 WM5102_DMIC_IN,
33 IO_METHOD_INTR);
34 while(1){}
35 }

Following a call to initialization function stm32_wm5102_init(), function
main() enters an endless, and empty, while loop, effectively doing nothing but wait-
ing for interrupts.

The I2S peripheral in the STM32F407 processor is configured for full-duplex slave
mode, using PCM standard audio protocol, with 16-bit data packed into 32-bit frames.
Receive buffer not empty (RXNE) interrupts are generated by I2S instance SPI/I2S2
when data is received from the WM5102 codec. These interrupts, which occur at
the sampling rate (48 kHz) for both left- and right-channel samples, are handled
by function SPI2_IRQHandler(). This tests the status flag CHSIDE in order to
determine whether a left- or right-channel sample has been received. If a left-channel
sample has been received (CHSIDE 1), then that value is read from SPI/I2S2
into the variable input_left by function SPI_I2S_ReceiveData(I2Sx).

REAL-TIME INPUT AND OUTPUT 25

It is then copied to variable output_left and written to I2S2_ext using function
SPI_I2S_SendData(). Finally, GPIO pin PD15 is toggled. This pin is accessible
via J2 on the STM32F407 Discovery and may be monitored using an oscilloscope.
On the STM32F407 Discovery, GPIO pin PD15 drives a blue LED, and, hence, its
duty cycle is discernible from the apparent brightness of the blue LED. In this pro-
gram example, since interrupts occur twice per sampling period (once each for left
and right channels), GPIO pin PD15 should output a 48-kHz square wave and the
blue LED should emit light with medium intensity.

Example 2.5 Basic Input and Output Using DMA (tm4c123_loop_dma.c).

In terms of analog input and output signals, program tm4c123_loop_dma.c,
shown in Listing 2.5, is functionally equivalent to the preceding program examples
but makes use of direct memory access (DMA). DMA-based i/o moves blocks or
frames of data (samples) between codec and processor memory without CPU involve-
ment, allowing the CPU to carry out other tasks at the same time, and is therefore more
computationally efficient than polling- or interrupt-based i/o methods.

Listing 2.5 Program tm4c123_loop_dma.c.

1 // tm4c123_loop_dma.c
2

3 #include “tm4c123_aic3104_init.h”
4

5 extern int16_t LpingIN[BUFSIZE], LpingOUT[BUFSIZE];
6 extern int16_t LpongIN[BUFSIZE], LpongOUT[BUFSIZE];
7 extern int16_t RpingIN[BUFSIZE], RpingOUT[BUFSIZE];
8 extern int16_t RpongIN[BUFSIZE], RpongOUT[BUFSIZE];
9 extern int16_t Lprocbuffer, Rprocbuffer;

10 extern volatile int16_t LTxcomplete, LRxcomplete;
11 extern volatile int16_t RTxcomplete, RRxcomplete;
12

13 void Lprocess_buffer(void)
14 {
15 int16_t *inBuf, *outBuf;
16 int16_t i;
17

18 if (Lprocbuffer PING)
19 { inBuf = LpingIN; outBuf = LpingOUT; }
20 if (Lprocbuffer PONG)
21 { inBuf = LpongIN; outBuf = LpongOUT; }
22 for (i = 0; i < (BUFSIZE) ; i++)
23 {
24 *outBuf++ = *inBuf++;
25 }
26 LTxcomplete = 0;
27 LRxcomplete = 0;
28 return;
29 }
30

26 ANALOG INPUT AND OUTPUT

31 void Rprocess_buffer(void)
32 {
33 int16_t *inBuf, *outBuf;
34 int16_t i;
35

36 if (Rprocbuffer PING)
37 { inBuf = RpingIN; outBuf = RpingOUT; }
38 if (Rprocbuffer PONG)
39 { inBuf = RpongIN; outBuf = RpongOUT; }
40 for (i = 0; i < (BUFSIZE) ; i++)
41 {
42 *outBuf++ = *inBuf++;
43 }
44 RTxcomplete = 0;
45 RRxcomplete = 0;
46 return;
47 }
48

49 void SSI_interrupt_routine(void){while(1){}}
50

51 int main(void)
52 {
53 tm4c123_aic3104_init(FS_48000_HZ,
54 AIC3104_LINE_IN,
55 IO_METHOD_DMA,
56 PGA_GAIN_6_DB);
57 while(1)
58 {
59 while((!RTxcomplete)|(!RRxcomplete));
60 Rprocess_buffer();
61 while((!LTxcomplete)|(!LRxcomplete));
62 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
63 Lprocess_buffer();
64 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
65 }
66 }}

2.5.9 DMA in the TM4C123 Processor

The TM4C123 DMA controller has 32 channels, each of which may be assigned
to one of up to five different peripherals (each peripheral device in the TM4C123
processor is associated with a specific DMA controller channel). Each channel can
operate in basic, ping-pong, or scatter-gather mode. DMA transfers are made up of up
to 1024 × 8-, 16-, or 32-bit elements. An I2S interface is emulated on the TM4C123
using two separate SSI peripherals (SSI0 and SSI1), SSI1 for the left channel and
SSI0 for the right channel. The SSI0 peripheral is set up to trigger on the positive
edge of the I2S frame clock, WCLK (generated by the AIC3104 codec), and the SSI1
peripheral is set up to trigger on the negative edge of the I2S frame clock (strictly
speaking, the positive edge of the inverted I2S frame clock). The AIC3104 codec on
the audio booster pack acts as I2S master and supplies frame and bit clock signals
(WCLK and BCLK).

REAL-TIME INPUT AND OUTPUT 27

DMA channel control is implemented using a table (aligned on a 1024-byte bound-
ary in memory) of control structures. Associated with each channel are two con-
trol structures (primary (PRI) and alternative (ALT)) and both of these are used in
ping-pong mode.

Each control structure includes a source address pointer (SRC), a destination
address pointer (DST), and a control word specifying SRC and DST data element
sizes, SRC and DST address increments, the total number of elements to transfer,
and the transfer mode (basic, ping-pong, or scatter-gather). The SRC and DST
address pointers in the control table must be initialized before a DMA transfer starts,
and according to the SRC and DST address increments, they are updated as the
transfer progresses.

In ping-pong mode, as soon as one DMA transfer (PRI or ALT) has been com-
pleted, another transfer (ALT or PRI) on the same channel starts. When a DMA
transfer is completed, an interrupt may be generated and this signals an opportunity, in
ping-pong mode, not only to process the block of input data most recently transferred,
but also to reinitialize the currently inactive (PRI or ALT) control structure.

In the example programs in this book, I2S protocol bidirectional stereo audio data
transfer makes use of four unidirectional DMA channels, associated with SSI0TX,
SSI0RX, SSI1TX, and SSI1RX.

Transfers specified by the SSI0TX primary (PRI) control structure (from array
RpingOUT to SSI0 transmit FIFO) alternate with those specified by the SSI0TX
alternative (ALT) control structure (from array RpongOUT to SSI0 transmit FIFO).
Each time either transfer is completed, an interrupt is generated and handled by func-
tion SSI0IntHandler(). Following completion of an SSI0TX PRI DMA transfer
(from array RpingOUT to SSI0), the SSI0 interrupt service routine must reinitialize
the SSI0TX PRI control structure (principally by resetting SRC and DST addresses).
At that point in time, the SSI0TX ALT DMA transfer (from array RpongOUT to
SSI0) should be in progress.

SSI0RX DMA transfers (PRI from SSI0 receive FIFO to arrayRpingIN and ALT
from SSI0 receive FIFO to array RLpongIN) take place in parallel with the SSI0TX
transfers, and completion of either of these transfers generates interrupts also handled
by SSI0IntHandler().

Interrupt service routine SSI0IntHandler() must therefore determine
which of four possible different DMA transfers has completed and reinitialize
the corresponding control structure. This is summarized in Table 2.1. Function
SSI0IntHandler() is shown in Listing 2.6. Its functions are

1. Determine which one of four possible DMA transfers has completed (and gen-
erated an SSI0IRQ interrupt).

2. Reinitialize the corresponding control structure resetting the SRC or DST
(memory) address pointers.

3. Set the value of flag RprocBuffer to either PING or PONG.

4. If the completed transfer was from memory to the SSI0 transmit FIFO, set flag
RTxcomplete.

28 ANALOG INPUT AND OUTPUT

TABLE 2.1 Summary of DMA Control Structures Used and Flags Set in Interrupt
Service Routines SSI0IntHandler() and SSI1IntHandler() in Program
tm4c123_loop_dma.c

Channel Option SRC DST Flags Set

SSI0RX PRI SSI0RX RpingIN RRxcomplete
Rprocbuffer = PING

SSI0RX ALT SSI0RX RpongIN RRxcomplete
Rprocbuffer = PONG

SSI0TX PRI RpingOUT SSI0TX RTxcomplete
Rprocbuffer = PING

SSI0TX ALT RpongOUT SSI0TX RTxcomplete
Rprocbuffer = PONG

SSI1RX PRI SSI1RX LpingIN LRxcomplete
Lprocbuffer = PING

SSI1RX ALT SSI1RX LpongIN LRxcomplete
Lprocbuffer = PONG

SSI1TX PRI LpingOUT SSI1TX LTxcomplete
Lprocbuffer = PING

SSI1TX ALT LpongOUT SSI1TX LTxcomplete
Lprocbuffer = PONG

5. If the completed transfer was from the SSI0 receive FIFO to memory, set flag
RRxcomplete.

In parallel with these DMA transfers, a corresponding set of DMA transfers
take place between memory and the SSI1 peripheral. These deal with left channel
audio data.

In function main(), an endless while() loop waits until both RTxcomplete
and RRxcomplete are set before calling function RprocessBuffer() This
function uses the value of RprocBuffer to decide whether to process the
contents of array RpingIN or RpongIN. It also resets flags RTxcomplete and
RRxcomplete.

Function main() then waits until both LTxcomplete and LRxcomplete are
set before calling function LprocessBuffer().

Interrupts generated on completion of transfers are handled by the inter-
rupt service routines associated with the peripheral involved, that is, either
SSI0IntHandler() or SSI1IntHandler(), and these are defined in file
tm4c123_aic3104_init.c.

Each DMA transfer is of BUFSIZE 16-bit sample values, corresponding to BUF-
SIZE sampling instants. The value of the constantBUFSIZE is defined in header
file tm4c123_aic3104_init.h. Function SSI_interrupt_routine() is
not used by program tm4c123_loop_dma.c but has been defined here as a trap
for unexpected SSI peripheral interrupts.

REAL-TIME INPUT AND OUTPUT 29

Listing 2.6 Function SSI0IntHandler(), defined in file
tm4c123_aic3104_init.c.

1 void SSI0IntHandler(void)
2 {
3 unsigned long ulModeTXPRI,ulModeTXALT;
4 unsigned long ulModeRXPRI,ulModeRXALT;
5

6 ulModeTXPRI = ROM_uDMAChannelModeGet(UDMA_CHANNEL_SSI0TX |
7 UDMA_PRI_SELECT);
8 ulModeTXALT = ROM_uDMAChannelModeGet(UDMA_CHANNEL_SSI0TX |
9 UDMA_ALT_SELECT);

10 ulModeRXPRI = ROM_uDMAChannelModeGet(UDMA_CHANNEL_SSI0RX |
11 UDMA_PRI_SELECT);
12 ulModeRXALT = ROM_uDMAChannelModeGet(UDMA_CHANNEL_SSI0RX |
13 UDMA_ALT_SELECT);
14 if(ulModeTXPRI UDMA_MODE_STOP)
15 {
16 Rprocbuffer = PING;
17 ROM_uDMAChannelTransferSet(UDMA_CHANNEL_SSI0TX |
18 UDMA_PRI_SELECT,
19 UDMA_MODE_PINGPONG,
20 RpingOUT,
21 (void *)(SSI0_BASE + 0x008),
22 BUFSIZE);
23 RTxcomplete = 1;
24 {
25 if(ulModeTXALT UDMA_MODE_STOP)
26 {
27 Rprocbuffer = PONG;
28 ROM_uDMAChannelTransferSet(UDMA_CHANNEL_SSI0TX |
29 UDMA_ALT_SELECT,
30 UDMA_MODE_PINGPONG,
31 RpongOUT,
32 (void *)(SSI0_BASE + 0x008),
33 BUFSIZE);
34 RTxcomplete = 1;
35 }
36 if(ulModeRXPRI UDMA_MODE_STOP)
37 {
38 Rprocbuffer = PING;
39 ROM_uDMAChannelTransferSet(UDMA_CHANNEL_SSI0RX |
40 UDMA_PRI_SELECT,
41 UDMA_MODE_PINGPONG,
42 (void *)(SSI0_BASE + 0x008),
43 RpingIN,
44 BUFSIZE);
45 RRxcomplete = 1;
46 }
47 if(ulModeRXALT UDMA_MODE_STOP)
48 {
49 Rprocbuffer = PONG;
50 ROM_uDMAChannelTransferSet(UDMA_CHANNEL_SSI0RX |

30 ANALOG INPUT AND OUTPUT

51 UDMA_ALT_SELECT,
52 UDMA_MODE_PINGPONG,
53 (void *)(SSI0_BASE + 0x008),
54 RpongIN,
55 BUFSIZE);
56 RRxcomplete = 1;
57 }
58 }

2.5.10 Running the Program

Build and run program tm4c123_loop_dma.c and verify its operation. As sup-
plied, the program uses the (blue) LINE IN connection for input. If you wish to use a
microphone connected to the (pink) MIC IN connection as an input device, you will
have to change the parameters passed to function tm4c123_aic3104_init()
to

tm4c123_aic3104_init(FS_48000_HZ,
AIC3104_MIC_IN,
IO_METHOD_DMA
PGA_GAIN_6_DB);

2.5.11 Monitoring Program Execution

GPIO pin PE2 is set just before, and reset just after, the call to function Lpro-
cessbuffer. Hence, the signal on that pin is a rectangular pulse, the duration
of which indicates the time taken to execute function Lprocessbuffer. In this
example, the duration of the pulse is very short since no significant processing takes
place in the function. The rectangular pulse is repeated with a period equal to the
time between consecutive DMA transfers, that is, BUFSIZE sampling periods. An
example of the pulse output on GPIO pin PE2 by programtm4c123_loop_dma.c
is shown in Figure 2.6. In this case, the value of the constant BUFSIZE is 256, the
sampling rate is 48 kHz, and hence, the time between consecutive pulses is equal to
256∕48, 000 = 5.33 ms.

2.5.12 Measuring the Delay Introduced by DMA-Based I/O

The extra delay between analog input and output, of 2*BUFSIZE sampling peri-
ods, introduced by DMA-based i/o using ping-pong buffering as implemented on the
TM4C123, may be measured using a signal generator and oscilloscope.

Connect the signal generator output to both the left channel of the (blue)
LINE IN socket on the audio booster pack and one channel of the oscilloscope,
and connect an oscilloscope probe from another channel on the oscilloscope to
the left channel scope hook (TP2) on the audio booster pack. Scope selector
jumper J6 should be fitted. Figure 2.7 shows a delay of approximately 11.7 ms
introduced by the program to a rectangular pulse of duration 1.0 ms. In contrast,

REAL-TIME INPUT AND OUTPUT 31

Figure 2.6 Pulse output on GPIO pin PE2 by program tm4c123_loop_dma.c.

Figure 2.7 Delay introduced by use of DMA-based i/o in program tm4c123_loop_
dma.c. Upper trace shows rectangular pulse of duration 1 ms applied to LINE IN, lower trace
shows output from LINE OUT. BUFSIZE = 256, sampling rate 48 kHz.

program tm4c123_loop_intr.c introduces a delay of approximately 1.0 ms,
as shown in Figure 2.8. The additional delay introduced by the use of DMA-based
i/o is equal to approximately 10.7 ms. At a sampling rate of 48 kHz, ping-pong
mode DMA transfers of BUFSIZE = 256 samples correspond to a delay of
2 * 256/48,000 = 10.67 ms. The value of constant BUFSIZE is defined in file
tm4c123_aic3104_init.h.

32 ANALOG INPUT AND OUTPUT

Figure 2.8 Delay introduced by use of interrupt-based i/o in program tm4c123_loop_
intr.c. Upper trace shows rectangular pulse of duration 1 ms applied to LINE IN, lower
trace shows output from LINE OUT. Sampling rate 48 kHz.

Example 2.6 Basic Input and Output Using DMA (stm32f4_loop_dma.c).

ARM Cortex-M4 processors from different manufacturers implement DMA
slightly differently (although the underlying principles are similar). Program
stm32f4_loop_dma.c, shown in Listing 2.7, is functionally equivalent to
program tm4c123_loop_dma.c but differs slightly because of the differences
between the DMA peripherals in the TM4C123 and STM32F407 processors.

Listing 2.7 Program stm32f4_loop_dma.c.

1 // stm32f4_loop_dma.c
2

3 #include “stm32f4_wm5102_init.h”
4

5 extern uint16_t pingIN[BUFSIZE], pingOUT[BUFSIZE];
6 extern uint16_t pongIN[BUFSIZE], pongOUT[BUFSIZE];
7 int rx_proc_buffer, tx_proc_buffer;
8 volatile int RX_buffer_full = 0;
9 volatile int TX_buffer_empty = 0;

10

11 void DMA1_Stream3_IRQHandler()
12 {
13 if(DMA_GetITStatus(DMA1_Stream3,DMA_IT_TCIF3))
14 {
15 DMA_ClearITPendingBit(DMA1_Stream3,DMA_IT_TCIF3);
16 if(DMA_GetCurrentMemoryTarget(DMA1_Stream3))
17 rx_proc_buffer = PING;
18 else
19 rx_proc_buffer = PONG;

REAL-TIME INPUT AND OUTPUT 33

20 RX_buffer_full = 1;
21 }
22 }
23

24 void DMA1_Stream4_IRQHandler()
25 {
26 if(DMA_GetITStatus(DMA1_Stream4,DMA_IT_TCIF4))
27 {
28 DMA_ClearITPendingBit(DMA1_Stream4,DMA_IT_TCIF4);
29 if(DMA_GetCurrentMemoryTarget(DMA1_Stream4))
30 tx_proc_buffer = PING;
31 else
32 tx_proc_buffer = PONG;
33 TX_buffer_empty = 1;
34 }
35 }
36

37 void process_buffer()
38 {
39 uint16_t *rxbuf, *txbuf;
40 int16_t i;
41

42 if (rx_proc_buffer PING)
43 rxbuf = pingIN;
44 else
45 rxbuf = pongIN;
46 if (tx_proc_buffer PING)
47 txbuf = pingOUT;
48 else
49 txbuf = pongOUT;
50

51 for (i=0 ; i<(BUFSIZE/2) ; i++)
52 {
53 *txbuf++ = *rxbuf++;
54 *txbuf++ = *rxbuf++;
55 }
56 TX_buffer_empty = 0;
57 RX_buffer_full = 0;
58 }
59

60 int main(void)
61 {
62 stm32_wm5102_init(FS_48000_HZ,
63 WM5102_LINE_IN,
64 IO_METHOD_DMA);
65 while(1)
66 {
67 while (!(RX_buffer_full && TX_buffer_empty)){}
68 GPIO_SetBits(GPIOD, GPIO_Pin_15);
69 process_buffer();
70 GPIO_ResetBits(GPIOD, GPIO_Pin_15);
71 }
72 }

34 ANALOG INPUT AND OUTPUT

2.5.13 DMA in the STM32F407 Processor

DMA in the STM32F407 processor is organized into unidirectional streams. Two
DMA controllers have eight streams each, and streams are subdivided into eight
channels. Individual channels are associated with specific peripheral devices. Bidirec-
tional I2S on the STM32F407 is implemented using the SPI/I2S2 and I2Sext periph-
eral devices. Program stm32f4_loop_dma.cmakes use of the inbuilt ping-pong
mode of buffering possible on the STM32F407. DMA-based i/o is selected by passing
parameter value IO_METHOD_DMA to function stm32_wm5102_init().

In function stm32_wm5102_init(), stream 3 channel #0 is configured to
make DMA transfers between the I2S peripheral and input buffers (arrays) in mem-
ory (alternately pingIN and pongIN). It generates an interrupt when a transfer of
BUFSIZE 16-bit samples has completed. (Those 16-bit samples correspond alter-
nately to L and R audio channels and so a transfer of BUFSIZE samples corresponds
to BUFSIZE/2 sampling instants.)

Stream 4 channel #2 is configured to make DMA transfers between output buffers
in memory (alternately pingOUT and pongOUT) and the I2S peripheral. It too gen-
erates an interrupt when a transfer ofBUFSIZE 16-bit samples has completed. (Those
16-bit samples correspond alternately to L and R audio channels and so a transfer of
BUFSIZE samples corresponds to BUFSIZE/2 sampling instants.) Two separate
interrupt service routines are used; one for each of the aforementioned DMA pro-
cesses. The actions carried out in these routines are simply to assign to variables
rx_proc_buffer and tx_proc_buffer the values PING or PONG and to set
flags RX_buffer_full and TX_buffer_empty. These variables are used in
function process_buffer().

Switching between buffers pingIN, pongIN, pingOUT, and pongOUT
is handled automatically by the STM32F4’s DMA mechanism. If, for example,
rx_proc_buffer is equal to PING, this indicates that the most recently com-
pleted stream 3 DMA transfer has filled buffer pingIN and this data is available
to be processed. If tx_proc_buffer is equal to PING, this indicates that the
most recently completed stream 4 DMA transfer has written the contents of buffer
pingOUT to the I2S peripheral and this buffer is available to be filled with new data.

Functionmain() simply waits until bothRX_buffer_full andTX_buffer_
empty flags are set, that is, until both DMA transfers have completed, before calling
function process_buffer().

In program stm32f4_loop_dma.c, function process_buffer() simply
copies the contents of the most recently filled input buffer (pingIN or pongIN) to
the most recently emptied output buffer (pingOUT or pongOUT), according to the
values of variables rx_proc_buffer and tx_proc_buffer.

Frame-based processing may be carried out in function process_buffer()
using the contents of the most recently filled input buffer as input and writing
output sample values to the most recently emptied output buffer. DMA transfers
will complete, and function proc_buffer() will be called, every BUFSIZE/2

REAL-TIME INPUT AND OUTPUT 35

sampling instants and therefore any processing must be completed within BUF-
SIZE/(2*fs) seconds (or, more strictly speaking, before the next DMA transfer
completion).

2.5.14 Running the Program

Run program stm32f4_loop_dma.c and verify its operation using a signal
source and oscilloscope or headphones. As supplied, the program reads input from
the (green) LINE IN socket on the audio card and outputs to the (pink) LINE OUT
and (black) HEADSET connections.

2.5.15 Measuring the Delay Introduced by DMA-Based I/O

The extra delay between analog input and output, of BUFSIZE sampling periods,
introduced by DMA-based i/o as implemented on the STM32F407, may be measured
using a signal generator and oscilloscope.

Connect the signal generator output to both the left channel of the (green) LINE
IN socket on the Wolfson audio card and one channel of the oscilloscope, and con-
nect another channel on the oscilloscope to the left channel of the (pink) LINE OUT
socket on the Wolfson audio card. Figure 2.9 shows a delay of approximately 5.9 ms
introduced by the program to a rectangular pulse of duration 1.0 ms. In contrast, pro-
gram stm32f4_loop_intr.c introduces a delay of approximately 560 μs, as
shown in Figure 2.10. The additional delay introduced by the use of DMA-based
i/o is equal to approximately 5.3 ms. At a sampling rate of 48 kHz, ping-pong mode
DMA transfers of BUFSIZE = 256 samples (128 samples per channel) correspond

Figure 2.9 Delay introduced by use of DMA-based i/o in program stm32f4_loop_
dma.c. Upper trace shows rectangular pulse of duration 1 ms applied to LINE IN, lower trace
shows output from LINE OUT. BUFSIZE = 256, sampling rate 48 kHz.

36 ANALOG INPUT AND OUTPUT

Figure 2.10 Delay introduced by use of interrupt-based i/o in program stm32f4_loop_
intr.c. Upper trace shows rectangular pulse of duration 1 ms applied to LINE IN, lower
trace shows output from LINE OUT. Sampling rate 48 kHz.

to a delay of 256/48,000= 5.33 ms. The value of constant BUFSIZE is defined in file
stm32f4_aic3104_init.h.

Example 2.7 Modifying Program tm4c123_loop_intr.c to create a delay
(tm4c123_delay_intr.c).

Some simple, yet striking, effects can be achieved simply by delaying the sam-
ple values as they pass from input to output. Program tm4c123_delay_intr.c,
shown in Listing 2.8, demonstrates this.

Listing 2.8 Program tm4c123_delay_intr.c.

1 // tm4c123_delay_intr.c
2

3 #include “tm4c123_aic3104_init.h”
4

5 #define BUFFER_SIZE 2000
6

7 float32_t buffer[BUFFER_SIZE];
8 int16_t buf_ptr = 0;
9

10 void SSI_interrupt_routine(void)
11 {
12 AIC3104_data_type sample_data;
13 float32_t input_left, input_right, delayed;
14

15 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);

REAL-TIME INPUT AND OUTPUT 37

16

17 SSIDataGet(SSI1_BASE,&sample_data.bit32);
18 input_left = (float32_t)(sample_data.bit16[0]);
19 SSIDataGet(SSI0_BASE,&sample_data.bit32);
20 input_right = (float32_t)(sample_data.bit16[0]);
21

22 delayed = buffer[buf_ptr] + input_left;
23 buffer[buf_ptr] = input_left;
24 buf_ptr = (buf_ptr+1)% BUFFER_SIZE;
25

26 sample_data.bit32 = ((int16_t)(delayed));
27 SSIDataPut(SSI1_BASE,sample_data.bit32);
28 sample_data.bit32 = ((int16_t)(0));
29 SSIDataPut(SSI0_BASE,sample_data.bit32);
30

31 SSIIntClear(SSI0_BASE,SSI_RXFF);
32

33 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
34 }
35

36 int main(void)
37 {
38 tm4c123_aic3104_init(FS_8000_HZ,
39 AIC3104_MIC_IN,
40 IO_METHOD_INTR,
41 PGA_GAIN_6_DB);
42 while(1){}
43 }

A delay line is implemented using the array buffer to store samples as they are
read from the ADC. Once the array is full, the program overwrites the oldest stored
input sample with the current, or newest, input sample. Just prior to overwriting the
oldest stored input sample in buffer, that sample value is retrieved, added to the
current input sample, and written to the DAC. Figure 2.11 shows a block diagram rep-
resentation of the operation of program tm4c123_delay_intr.c in which the
block labeled T represents a delay of T seconds. The value of T is equal to the num-
ber of samples stored in buffer multiplied by the sampling period. Run program
tm4c123_delay_intr.c, using a microphone connected to the (pink) MIC IN
socket on the audio booster pack as an input device.

Input Output
T

+ +

Figure 2.11 Block diagram representation of program tm4c123_delay_intr.c.

38 ANALOG INPUT AND OUTPUT

Example 2.8 Modifying Program tm4c123_loop_intr.c to create an echo
(tm4c123_echo_intr.c).

By feeding back a fraction of the output of the delay line to its input, a fading echo
effect can be realized. Program tm4c123_echo_intr.c, shown in Listing 2.9
and represented in block diagram form in Figure 2.12, does this.

Listing 2.9 Program tm4c123_echo_intr.c.

1 // tm4c123_echo_intr.c
2

3 #include “tm4c123_aic3104_init.h”
4

5 #define BUFFER_SIZE 2000
6 #define GAIN 0.6f
7

8 float32_t buffer[BUFFER_SIZE];
9 int16_t buf_ptr = 0;

10

11 void SSI_interrupt_routine(void)
12 {
13 AIC3104_data_type sample_data;
14 float32_t input_left, input_right, delayed;
15

16 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
17

18 SSIDataGet(SSI1_BASE,&sample_data.bit32);
19 input_left = (float32_t)(sample_data.bit16[0]);
20 SSIDataGet(SSI0_BASE,&sample_data.bit32);
21 input_right = (float32_t)(sample_data.bit16[0]);
22

23 delayed = buffer[buf_ptr];
24 buffer[buf_ptr] = input_left + delayed * GAIN;
25 buf_ptr = (buf_ptr+1) % BUFFER_SIZE;
26

27 sample_data.bit32 = ((int16_t)(delayed));
28 SSIDataPut(SSI1_BASE,sample_data.bit32);
29 sample_data.bit32 = ((int16_t)(0));
30 SSIDataPut(SSI0_BASE,sample_data.bit32);
31

32 SSIIntClear(SSI0_BASE,SSI_RXFF);
33

34 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
35 }
36

37 int main(void)
38 {
39 tm4c123_aic3104_init(FS_8000_HZ,
40 AIC3104_MIC_IN,
41 IO_METHOD_INTR,
42 PGA_GAIN_6_DB);

REAL-TIME INPUT AND OUTPUT 39

43 while(1){}
44 }

The value of the constantBUFFER_SIZE in programtm4c123_echo_intr.c
determines the number of samples stored in the arraybuffer and hence the duration
of the delay implemented. The value of the constant GAIN determines the fraction
of the output that is fed back into the delay line and hence the rate at which the echo
effect fades away. Setting the value of GAIN equal to, or greater than, 1 will cause
instability. Build and run this program. Experiment with different values of GAIN
(between 0.0 and 1.0) and BUFFER_SIZE (between 100 and 8000). Source file
tm4c123_echo_intr.c must be edited and the project rebuilt in order to make
these changes.

Example 2.9 Modifying Program tm4c123_loop_intr.c to create a flang-
ing effect (tm4c123_flanger_intr.c).

Flanging is an audio effect used in recording studios (and live performances)
that, depending on its parameter settings, can add a whooshing sound not unlike a
jet aircraft passing overhead. It is a delay-based effect and can therefore be imple-
mented as an extension of the previous two examples. The flanging effect is shown
in block diagram form in Figure 2.13. The addition of a delayed and attenuated
version of the input signal to itself creates a comb-like frequency response. If the

Gain

T
+ ++

+

OutputInput

Figure 2.12 Block diagram representation of program tm4c123_echo_intr.c.

T

Input Output+

+

Alpha

Figure 2.13 Block diagram representation of program tm4c123_flanger_intr.c.

40 ANALOG INPUT AND OUTPUT

frequency of the input signal is such that an integer multiple of its period is equal
to the delay T, adding the delayed input signal will cancel out the input signal and
this corresponds to a notch in the frequency response. The notches in the magnitude
frequency response will therefore be spaced at regular intervals in frequency equal
to 1∕T Hz with the first notch located at frequency 1∕2T Hz. If the length of the
delay is varied slowly, then the positions of the notches in the magnitude frequency
response will vary accordingly to produce the flanging effect. As implemented in pro-
gram tm4c123_flanger_intr.c (Listing 2.10), the delay T varies sinusoidally
between 200 and 1800μs at a frequency of 0.1 Hz. Applied to music containing sig-
nificant high-frequency content (e.g., drum sounds), the characteristic “jet aircraft
passing overhead” type sound can be heard. Increasing the rate of change of delay to,
for example, 3 Hz gives an effect closer to that produced by a Leslie rotating speaker.

Listing 2.10 Program tm4c123_flanger_intr.c.

1 // tm4c123_flanger_intr.c
2

3 #include “tm4c123_aic3104_init.h”
4

5 #define TS 0.000020833333f // sampling rate 48 kHz
6 #define PERIOD 10.0f // period of delay modulation
7 #define MEAN_DELAY 0.001f // mean delay in seconds
8 #define MODULATION_MAG 0.0008f // delay modulation magnitude
9 #define BUFFER_SIZE 2048

10 #define ALPHA 0.9f
11

12 uint16_t in_ptr = 0; // pointers into buffers
13 uint16_t out_ptr;
14 float32_t buffer[BUFFER_SIZE];
15 float32_t t = 0.0f;
16 float32_t Rxn, Lxn, Ryn, Lyn, delay_in_seconds;
17 uint16_t delay_in_samples;
18 float32_t theta;
19

20 void SSI_interrupt_routine(void)
21 {
22 AIC3104_data_type sample_data;
23

24 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
25

26 SSIDataGet(SSI1_BASE,&sample_data.bit32);
27 Lxn = (float32_t)(sample_data.bit16[0]);
28 SSIDataGet(SSI0_BASE,&sample_data.bit32);
29 Rxn = (float32_t)(sample_data.bit16[0]);
30

31 buffer[in_ptr] = Lxn;
32 in_ptr = (in_ptr + 1)
33 t = t + TS;
34 theta = (float32_t)((2*PI/PERIOD)*t);
35 delay_in_seconds = MEAN_DELAY

REAL-TIME INPUT AND OUTPUT 41

36 + MODULATION_MAG * arm_sin_f32(theta);
37 delay_in_samples = (uint16_t)(delay_in_seconds
38 * 48000.0);
39 out_ptr = (in_ptr + BUFFER_SIZE
40 - delay_in_samples) % BUFFER_SIZE;
41 Lyn = Lxn + buffer[out_ptr]*ALPHA;
42

43 sample_data.bit32 = ((int16_t)(Lyn));
44 SSIDataPut(SSI1_BASE,sample_data.bit32);
45 sample_data.bit32 = ((int16_t)(Lyn));
46 SSIDataPut(SSI0_BASE,sample_data.bit32);
47

48 SSIIntClear(SSI0_BASE,SSI_RXFF);
49

50 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
51 }
52

53 int main(void)
54 {
55 tm4c123_aic3104_init(FS_48000_HZ,
56 AIC3104_MIC_IN,
57 IO_METHOD_INTR,
58 PGA_GAIN_6_DB);
59 while(1){}
60 }

If the delayed signal is subtracted from, rather than added to, the input signal, then
the first notch in the magnitude frequency response will be located at 0 Hz, giving rise
to a high-pass (very little bass response) effect overall. To subtract, rather than add,
the delayed signal, change the statement in programtm4c123_flanger_intr.c
that reads

Lyn = Lxn + buffer[out_ptr]*ALPHA;

to read

Lyn = Lxn - buffer[out_ptr]*ALPHA;

Figures 2.14 and 2.15 show experimentally measured examples of the instantaneous
impulse and magnitude frequency responses of the flanger program for the two cases
described. Details of how these results were obtained are given later in this chapter.

The time-varying delay implemented by the flanger may be illustrated using
program tm4c123_flanger_dimpulse_intr.c and an oscilloscope.
In this program, input samples are generated within the program rather than
being read from the ADC. The sequence of input samples used is one nonzero
value followed by 2047 zero values, and this sequence is repeated periodically.
The effect is to excite the flanger with a sequence of discrete-time impulses
separated by 2048 sampling periods or 42.67 ms. The output from program
tm4c123_flanger_dimpulse_intr.c comprises the input (which

42 ANALOG INPUT AND OUTPUT

0 0.5 1 1.5 2 2.5
× 10−3

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

(a)

(b)

Sa
m

pl
e

va
lu

e

0 0.5 1 1.5 2 2.5
× 104

−35

−30

−25

−20

−15

−10

−5

0

5

10

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Figure 2.14 (a) impulse response and (b) magnitude frequency response of flanger imple-
mented using program tm4c123_flanger_intr.c at an instant when delay T is equal
to 104.2 μs. The notches in the magnitude frequency response are at frequencies 4800 and
14,400 Hz.

passes straight through) plus a delayed and attenuated version of the input.
Figure 2.16 shows an example of the output from the program captured using
a Rigol DS1052E oscilloscope. The pulse in the centre of the screen corre-
sponds to the input pulse and the pulse to the right corresponds to the delayed
pulse. At the instant of capture shown in Figure 2.21, the delay is equal to

REAL-TIME INPUT AND OUTPUT 43

0 0.5 1 1.5 2 2.5
× 10−3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

(a)

(b)

Sa
m

pl
e

va
lu

e

0 0.5 1 1.5 2 2.5
× 104

−60

−50

−40

−30

−20

−10

0

10

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Figure 2.15 (a) Impulse response and (b) magnitude frequency response of modified flanger
implemented using program tm4c123_flanger_intr.c at an instant when delay T is
equal to 208.3 μs. The notches in the magnitude frequency response are at frequencies 0, 4800,
9600, 14,400, and 19,200 Hz.

approximately 400μs. When the program is running, you should see the delay
between the pulses varying slowly. The shape of the pulses in Figure 2.21 is
explained in Example 2.15.

The time-varying magnitude frequency response of the flanger is illustrated in
Figure 2.17, which shows the output of program tm4c123_flanger_intr.c,

44 ANALOG INPUT AND OUTPUT

Figure 2.16 Output waveform produced using program tm4c123_flanger_
dimpulse_intr.c at an instant when delay T is equal to approximately 400 μs.

Figure 2.17 Spectrum and spectrogram of flanger output for pseudorandom noise input. In
the spectrogram, the x-axis represents time in seconds and the y-axis represents frequency
in Hz.

REAL-TIME INPUT AND OUTPUT 45

modified so that the input signal is a pseudorandom binary sequence, displayed as
a spectrogram (frequency vs. time) using Goldwave. The dark bands in the spectro-
gram correspond to the notches in the magnitude frequency responses. An effective
alternative to pseudorandom noise as an input signal is to blow gently on the micro-
phone.

Example 2.10 Loop Program with Input Data Stored in a Buffer (stm32f4_
loop_buf_intr.c).

Program stm32f4_loop_buf_intr.c, shown in Listing 2.11, is similar to
program stm32f4_loop_intr.c except that it implements circular buffers in
arrays lbuffer and rbuffer, each containing the BUFFER_SIZE most recent
input sample values on one or other channel. Consequently, it is possible to examine
this data after halting the program.

Listing 2.11 Program stm32f4_loop_buf_intr.c.

1 // stm32f4_loop_buf_intr.c
2

3 #include “stm32f4_wm5102_init.h”
4

5 #define BUFFER_SIZE 256
6

7 float32_t rbuffer[BUFFER_SIZE];
8 int16_t rbufptr = 0;
9 float32_t lbuffer[BUFFER_SIZE];

10 int16_t lbufptr = 0;
11

12 void SPI2_IRQHandler()
13 {
14 int16_t left_out_sample, right_out_sample;
15 int16_t left_in_sample, right_in_sample;
16

17 if (SPI_I2S_GetFlagStatus(I2Sx, I2S_FLAG_CHSIDE) SET)
18 {
19 left_in_sample = SPI_I2S_ReceiveData(I2Sx);
20 left_out_sample = left_in_sample;
21 lbuffer[lbufptr] = (float32_t)(left_in_sample);
22 lbufptr = (lbufptr+1)
23 while(SPI_I2S_GetFlagStatus(I2Sxext,
24 SPI_I2S_FLAG_TXE) != SET){}
25 SPI_I2S_SendData(I2Sxext, left_out_sample);
26 }
27 else
28 {
29 right_in_sample = SPI_I2S_ReceiveData(I2Sx);
30 right_out_sample = right_in_sample;
31 rbuffer[rbufptr] = (float32_t)(right_in_sample);

46 ANALOG INPUT AND OUTPUT

32 rbufptr = (rbufptr+1) % BUFFER_SIZE;
33 while(SPI_I2S_GetFlagStatus(I2Sxext,
34 SPI_I2S_FLAG_TXE) != SET){}
35 SPI_I2S_SendData(I2Sxext, right_out_sample);
36 }
37 GPIO_ToggleBits(GPIOD, GPIO_Pin_15);
38 }
39

40 int main(void)
41 {
42 stm32_wm5102_init(FS_8000_HZ,
43 WM5102_LINE_IN,
44 IO_METHOD_INTR);
45 while(1){}
46 }

2.5.16 Running the Program

Build and run the program. Use a signal generator connected to the (pink) LINE
IN socket on the Wolfson audio card to input a sinusoidal signal with a frequency
between 100 and 3500 Hz. Halt the program after a short time and save the contents
of the array rbuffer or lbuffer to a data file by typing

save <filename> <start address>, <start address + 0x400>

at the Command line in the MDK-ARM debugger, where start address is the
address of array rbuffer or lbuffer (and which may be determined using Watch
and Memory functions in the MDK-ARM debugger.

The contents of the data file can be plotted using MATLAB® function
stm32f4_logfft(). Figure 2.18 shows an example of the contents of array
lbuffer when the frequency of the input signal was 350 Hz. The discontinuity in
the waveform at time t = 16 ms corresponds to the value of the index lbufptr into
the array when program execution was halted. Recall that array lbuffer is used as
a circular buffer in which older sample values are overwritten continually by newer
ones. Program stm32f4_loop_buf_intr.c is used again later in this chapter
in order to highlight the characteristics of the codec’s antialiasing filter.

2.6 REAL-TIME WAVEFORM GENERATION

The following examples are concerned with the generation of a variety of different
analog output waveforms, including sinusoids of different frequencies, by writing
different sequences of sample values to the DACs in the WM5102 and AIC3104
codecs. In this way, the detailed characteristics of the DACs are revealed and the con-
cepts of sampling, reconstruction, and aliasing are illustrated. In addition, the use of
the Goldwave shareware application is introduced. This virtual instrument is a useful
alternative to an oscilloscope or spectrum analyzer and is used again in later chapters.

REAL-TIME WAVEFORM GENERATION 47

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
−1.5

−1

−0.5

0

0.5

1

1.5 × 104

Time (s)

(a)

(b)

Sa
m

pl
e

va
lu

e

0 500 1000 1500 2000 2500 3000 3500 4000
70

80

90

100

110

120

130

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Figure 2.18 Sample values stored in array lbuffer by program
stm32f4_loop_buf_intr.c plotted using MATLAB function stm32f4_logftt().
Input signal frequency was 350 Hz.

Example 2.11 Sine Wave Generation Using a Lookup Table (stm32f4_
sine48_intr.c).

Program stm32f4_sine48_intr.c, shown in Listing 2.12, generates
a sinusoidal output signal using interrupt-based i/o and a table lookup method

48 ANALOG INPUT AND OUTPUT

(Figure 2.18). Its operation is as follows. A 48-point lookup table is initialized in the
array sine_table such that the value of sine_table[i] is equal to

10, 000 sin(2𝜋i∕48), for i = 0, 1, 2, · · · , 47. (2.1)

Array sine_table therefore contains 48 samples of exactly one cycle of a sinu-
soid. In this example, a sampling rate of 48 kHz is used, and therefore, interrupts will
occur every 20.833μs. Within interrupt service routine SPI2_IRQHandler(), the
most important program statements are executed. Every 20.833μs, a sample value
read from the array sine_table is written to the DAC and the index variable
sine_ptr is incremented to point to the next value in the array. If the incremented
value of sine_ptr is greater than, or equal to, the number of sample values in the
table (LOOPLENGTH), it is reset to zero. The 1 kHz frequency of the sinusoidal output
signal corresponds to the 48 samples per cycle output at a rate of 48 kHz.

Listing 2.12 Program stm32f4_sine48_intr.c.

1 // stm32f4_sine48_intr.c
2

3 #include “stm32f4_wm5102_init.h”
4

5 #define LOOPLENGTH 48
6 int16_t sine_table[LOOPLENGTH] = {0, 1305, 2588, 3827,
7 5000, 6088, 7071, 7934, 8660, 9239, 9659, 9914, 10000,
8 9914, 9659, 9239, 8660, 7934, 7071, 6088, 5000, 3827,
9 2588, 1305, 0, -1305, -2588, -3827, -5000, -6088, -7071,

10 -7934, -8660, -9239, -9659, -9914, -10000, -9914, -9659,
11 -9239, -8660, -7934, -7071, -6088, -5000, -3827, -2588,
12 -1305};
13 int16_t sine_ptr = 0; // pointer into lookup table
14

15 void SPI2_IRQHandler()
16 {
17 int16_t left_out_sample, right_out_sample;
18 int16_t left_in_sample, right_in_sample;
19

20 if (SPI_I2S_GetFlagStatus(I2Sx, I2S_FLAG_CHSIDE) SET)
21 {
22 left_in_sample = SPI_I2S_ReceiveData(I2Sx);
23 left_out_sample = sine_table[sine_ptr];
24 sine_ptr = (sine_ptr+1)%LOOPLENGTH;
25 while(SPI_I2S_GetFlagStatus(I2Sxext,
26 SPI_I2S_FLAG_TXE) != SET){}
27 SPI_I2S_SendData(I2Sxext, left_out_sample);
28 }
29 else
30 {
31 right_in_sample = SPI_I2S_ReceiveData(I2Sx);
32 right_out_sample = 0;
33 while(SPI_I2S_GetFlagStatus(I2Sxext,

REAL-TIME WAVEFORM GENERATION 49

34 SPI_I2S_FLAG_TXE) != SET){}
35 SPI_I2S_SendData(I2Sxext, right_out_sample);
36 }
37 GPIO_ToggleBits(GPIOD, GPIO_Pin_15);
38 }
39

40 int main(void)
41 {
42 stm32_wm5102_init(FS_48000_HZ,
43 WM5102_LINE_IN,
44 IO_METHOD_INTR);
45 while(1){}
46 }

The DAC in the WM5102 codec reconstructs a sinusoidal analogue output signal
from the output sample values.

2.6.1 Running the Program

Build and run the program and verify a 1 kHz output tone on the (green) LINE OUT
and (black) HEADSET connections on the Wolfson audio card.

Program stm32f4_sine8_intr.c is similar to program stm32f4_
sine48_intr.c in that it generates a sinusoidal analog output waveform with
a frequency of 1 kHz from a lookup table of sample values. However, it uses a
sampling rate of 8 kHz and a lookup table containing just eight sample values,
that is,

#define LOOPLENGTH 8
int16_t sine_table[LOOPLENGTH] = {

0, 7071, 10000, 7071, 0, -7071, -10000, -7071};

2.6.2 Out-of-Band Noise in the Output of the AIC3104 Codec
(tm4c123_sine48_intr.c).

While performing essentially similar functions, the codecs used in the two different
hardware platforms differ subtly in their characteristics and functionality. If you
are using the TM4C123 LaunchPad and AIC3104 audio booster pack rather
than the STM32F407 Discovery and Wolfson audio card, connect an oscillo-
scope to the (black) LINE OUT socket on the audio booster pack. Run program
tm4c123_sine48_intr.c and you should see a waveform similar to that shown
in Figure 2.19. There is a significant level of noise superimposed on the 1-kHz sine
wave, and this reveals something about the characteristics of the AIC3104 DAC. It is
an oversampling sigma-delta DAC that deliberately moves noise out of the (audio)
frequency band. The out-of-band-noise present in the DAC output can be observed
in the frequency domain using a spectrum analyzer or an FFT function on a digital
oscilloscope.

The plot shown in Figure 2.19 was obtained using a Rigol DS1052E digital
oscilloscope to capture the output waveform and then the magnitude of the FFT

50 ANALOG INPUT AND OUTPUT

102 103 104 105 106
0

20

40

60

80

100

Frequency (Hz)

(b)

(a)

M
ag

ni
tu

de
 (

dB
)

Figure 2.19 (a) 1-kHz sinusoid generated using program tm4c123_sine48_intr.c
viewed using Rigol DS1052E oscilloscope connected to (black) LINE OUT connection on
audio booster pack. (b) Magnitude of FFT of signal plotted using MATLAB.

of the data was plotted using MATLAB. It shows clearly both the 1-kHz tone and
the out-of-band-noise above 100 kHz. The out-of-band-noise is not a problem for
listening to audio signals because headphones or loudspeakers will not usually have
frequency responses that extend that high and neither does the human ear. However,
in order to see clearly the in-band detail of audio signals generated by the AIC3104
codec using an oscilloscope, it is useful to add a first-order low-pass filter comprising

REAL-TIME WAVEFORM GENERATION 51

(a)

102 103 104 105 106
0

20

40

60

80

100

Frequency (Hz)

(b)

M
ag

ni
tu

de
 (

dB
)

Figure 2.20 (a) 1-kHz sinusoid generated using program tm4c123_sine48_intr.c
viewed using Rigol DS1052E oscilloscope connected to scope hook on audio booster pack.
(b) Magnitude of FFT of signal plotted using MATLAB.

a capacitor and a resistor to the LINE OUT signal path. This can be done by fitting
jumper J6 or J7 and looking at the output signals on the scope hooks, TP2 and TP3,
on the audio booster pack. Figure 2.20 shows the filtered output signal from the
program in both time and frequency domains for comparison with Figure 2.19.

In any examples in this book, in which an oscilloscope is used to view an output
signal from the AIC3104 codec, it is recommended that the oscilloscope probe is

52 ANALOG INPUT AND OUTPUT

connected to one of the scope hooks on the audio booster pack (TP2 or TP3) and the
corresponding jumper J6 or J7 is fitted.

In contrast, the analog signals output by the WM5102 codec via the LINE OUT
connection on the Wolfson audio card do not contain out-of-band-noise as described
here and connections may be made directly from the (green) LINE OUT connection
on the Wolfson audio card to an oscilloscope (using a 3.5-mm jack plug to RCA plug
cable and an RCA to BNC adapter).

Example 2.12 Sine wave generation using a sinf() function call (stm32f4_
sine_intr.c).

Sine waves of different frequencies can be generated using the table lookup
method employed by programs stm32f4_sine48_intr.c and stm32f4_
sine8_intr.c. For example, a 3-kHz sine wave can be generated using program
stm32f4_sine8_intr.c by changing the program statement that reads

int16_t sine_table[LOOPLENGTH] = {
0, 7071, 10000, 7071, 0, -7071, -10000, -7071};

to read

int16_t sine_table[LOOPLENGTH] = {
0, 7071, -10000, 7071, 0, -7071, 10000, -7071};

However, changing the contents and/or size of the lookup table is not a particularly
flexible way of generating sinusoids of arbitrary frequencies (Example 2.13 demon-
strates how different frequency sinusoids may be generated from a fixed lookup table).

Program stm32f4_sine_intr.c, shown in Listing 2.13, takes a different
approach. At each sampling instant, that is, in function SPI2_IRQHandler(),
a new output sample value is calculated using a call to the math library func-
tion sinf(). The floating point parameter, theta, passed to that function
is incremented at each sampling instant by the value theta_increment =
2*PI*frequency/SAMPLING_FREQ, and when the value of theta exceeds
2𝜋, the value 2𝜋 is subtracted from it.

Listing 2.13 Program stm32f4_sine_intr.c.

1 // stm32f4_sine_intr.c
2

3 #include “stm32f4_wm5102_init.h”
4

5 #define SAMPLING_FREQ 8000
6

7 float32_t frequency = 1000.0;
8 float32_t amplitude = 10000.0;
9 float32_t theta_increment;

10 float32_t theta = 0.0;

REAL-TIME WAVEFORM GENERATION 53

11

12 void SPI2_IRQHandler()
13 {
14 int16_t left_out_sample, right_out_sample;
15 int16_t left_in_sample, right_in_sample;
16

17 if (SPI_I2S_GetFlagStatus(I2Sx, I2S_FLAG_CHSIDE) SET)
18 {
19 left_in_sample = SPI_I2S_ReceiveData(I2Sx);
20 theta_increment = 2*PI*frequency/SAMPLING_FREQ;
21 theta += theta_increment;
22 if (theta > 2*PI) theta -= 2*PI;
23 GPIO_SetBits(GPIOD, GPIO_Pin_15);
24 left_out_sample = (int16_t)(amplitude*sinf(theta));
25 GPIO_ResetBits(GPIOD, GPIO_Pin_15);
26 while(SPI_I2S_GetFlagStatus(I2Sxext,
27 SPI_I2S_FLAG_TXE) != SET){}
28 SPI_I2S_SendData(I2Sxext, left_out_sample);
29 }
30 else
31 {
32 right_in_sample = SPI_I2S_ReceiveData(I2Sx);
33 right_out_sample = 0;
34 while(SPI_I2S_GetFlagStatus(I2Sxext,
35 SPI_I2S_FLAG_TXE) != SET){}
36 SPI_I2S_SendData(I2Sxext, right_out_sample);
37 }
38 }
39

40 int main(void)
41 {
42 stm32_wm5102_init(FS_8000_HZ,
43 WM5102_LINE_IN,
44 IO_METHOD_INTR);
45 while(1){}
46 }

While program stm32f4_sine_intr.c has the advantage of flexibility, it
also has the disadvantage, relative to program stm32f4_sine48_intr.c, that it
requires greater computational effort. This is an important consideration in real-time
applications.

2.6.3 Running the Program

Build and run this program and experiment by changing the value assigned to the vari-
able frequency in the range from 100.0–3800.0 (editing the program and rebuild-
ing the project each time). The sampling frequency used by this program is 8 kHz.
Program stm32f4_sine_intr.c uses GPIO pin PD15 to indicate the time taken
to execute interrupt service routine SPI2_IRQHandler(). GPIO pin PD15 is set
high by program statement

54 ANALOG INPUT AND OUTPUT

GPIO_SetBits(GPIOD, GPIO_Pin_15);

at the start of the interrupt service routine SPI2_IRQHandler() and reset low by
program statement

GPIO_ResetBits(GPIOD, GPIO_Pin_15);

at the end of the interrupt service routine SPI2_IRQHandler(). In other words,
it outputs a rectangular pulse on PD15 every 125μs and the duration of that pulse is
indicative of the time taken to compute each new output sample value. That time is
determined primarily by the time taken to execute program statement

left_out_sample = (int16_t)(amplitude*sinf(theta));

Figure 2.21 shows the waveform output on GPIO pin PD15. The duration of the
pulses is approximately 680 ns. Functionsinf() is used because functionsin() is
computationally too expensive to be used in this application. A slightly more efficient
alternative is provided by function arm_sin_f32(), defined in the CMSIS DSP
library. Edit the program, replacing the program statement

left_out_sample = (int16_t)(amplitude*sinf(theta));

with

left_out_sample = (int16_t)(amplitude*arm_sin_f32(theta));

Figure 2.21 Rectangular pulse output on GPIO pin PD15 by program
stm32f4_sine_intr.c.

REAL-TIME WAVEFORM GENERATION 55

and you should find that the duration of the pulse output on PD15 is reduced to
approximately 400 ns. In general, calls to trigonometrical functions defined in stan-
dard math libraries should be avoided in real-time DSP applications.

Example 2.13 Swept Sinusoid Using Table with 8000 Points (stm32f4_
sweep_intr.c).

This example illustrates the use of a fixed lookup table of sample values
in order to generate sinusoidal analog output waveforms of arbitrary fre-
quency (without changing the sampling frequency). Listing 2.14 is of program
stm32f4_sweep_intr.c, which generates a swept frequency sinusoidal
signal using a lookup table containing 8000 sample values. This is a method of
waveform generation commonly used in laboratory signal generators. The header
file sine8000_table.h, generated using the MATLAB command

>> x = 1000*sin(2*pi*[0:7999]/8000);

contains 8000 sample values that represent exactly one cycle of a sine wave. List-
ing 2.15 is a partial listing of the file sine8000_table.h.

Listing 2.14 Program stm32f4_sweep_intr.c.

1 // stm32f4_sweep_intr.c
2

3 #include “stm32f4_wm5102_init.h”
4

5 #include “sine8000_table.h” //one cycle with 8000 points
6

7 #define SAMPLING_FREQ 8000.0
8 #define N 8000
9 #define START_FREQ 500.0

10 #define STOP_FREQ 3800.0
11 #define START_INCR START_FREQ*N/SAMPLING_FREQ
12 #define STOP_INCR STOP_FREQ*N/SAMPLING_FREQ
13 #define SWEEPTIME 4
14 #define DELTA_INCR (STOP_INCR - START_INCR)/(N*SWEEPTIME)
15

16 int16_t amplitude = 10;
17 float32_t float_index = 0.0;
18 float32_t float_incr = START_INCR;
19 int16_t i;
20

21 void SPI2_IRQHandler()
22 {
23 int16_t left_out_sample, right_out_sample;
24 int16_t left_in_sample, right_in_sample;
25

26 if (SPI_I2S_GetFlagStatus(I2Sx, I2S_FLAG_CHSIDE) SET)
27 {

56 ANALOG INPUT AND OUTPUT

28 left_in_sample = SPI_I2S_ReceiveData(I2Sx);
29 GPIO_SetBits(GPIOD, GPIO_Pin_15);
30 float_incr += DELTA_INCR;
31 if (float_incr > STOP_INCR) float_incr = START_INCR;
32 float_index += float_incr;
33 if (float_index > N) float_index -= N;
34 i = (int16_t)(float_index);
35 left_out_sample = (amplitude*sine8000[i]);
36 GPIO_ResetBits(GPIOD, GPIO_Pin_15);
37 while(SPI_I2S_GetFlagStatus(I2Sxext,
38 SPI_I2S_FLAG_TXE) != SET){}
39 SPI_I2S_SendData(I2Sxext, left_out_sample);
40 }
41 else
42 {
43 right_in_sample = SPI_I2S_ReceiveData(I2Sx);
44 right_out_sample = 0;
45 while(SPI_I2S_GetFlagStatus(I2Sxext,
46 SPI_I2S_FLAG_TXE) != SET){}
47 SPI_I2S_SendData(I2Sxext, right_out_sample);
48 }
49 }
50

51 int main(void)
52 {
53 stm32_wm5102_init(FS_8000_HZ,
54 WM5102_LINE_IN,
55 IO_METHOD_INTR);
56 while(1){}
57 }

Listing 2.15 Partial listing of header file sine8000_table.h.

1 //sine8000_table.h Sine table with 8000 points
2

3 short sine8000[8000]=
4 {0, 1, 2, 2, 3, 4, 5, 5,
5 6, 7, 8, 9, 9, 10, 11, 12,
6 13, 13, 14, 15, 16, 16, 17, 18,
7 19, 20, 20, 21, 22, 23, 24, 24,
8 25, 26, 27, 27, 28, 29, 30, 31,
9 31, 32, 33, 34, 35, 35, 36, 37,

10 38, 38, 39, 40, 41, 42, 42, 43,
11 44, 45, 46, 46, 47, 48, 49, 49,
12 50, 51, 52, 53, 53, 54, 55, 56,
13 57, 57, 58, 59, 60, 60, 61, 62,
14 63, 64, 64, 65, 66, 67, 67, 68,
15 69, 70, 71, 71, 72, 73, 74, 75,
16 .
17 .
18 .
19 -19, -18, -17, -16, -16, -15, -14, -13,

REAL-TIME WAVEFORM GENERATION 57

20 -13, -12, -11, -10, -9, -9, -8, -7,
21 -6, -5, -5, -4, -3, -2, -2, -1}

At each sampling instant, program stm32f4_sweep_intr.c reads an output
sample value from the array sine8000, using the float32_t value of variable
float_index, converted to type int16_t, as an index, and increments the
value of float_index by the value float_incr. With N points in the lookup
table representing one cycle of a sinusoid, the frequency of the output waveform
is equal to SAMPLING_FREQ*float_incr/N. A fixed value of float_incr
would result in a fixed output frequency. In program stm32f4_sweep_intr.c,
the value of float_incr itself is incremented at each sampling instant by the
value DELTA_INCR and hence the frequency of the output waveform increases
gradually from START_FREQ to STOP_FREQ. The output waveform generated by
the program can be altered by changing the values of the constants START_FREQ,
STOP_FREQ, and SWEEPTIME, from which the value of DELTA_INCR is
calculated. Build and run this program. Verify the output to be a sinusoid
taking SWEEPTIME seconds to increase in frequency from START_FREQ to
STOP_FREQ.

Example 2.14 Generation of DTMF Tones Using a Lookup Table (tm4c123_
sineDTMF_intr.c).

Program tm4c123_sineDTMF_intr.c, listed in Listing 2.16, uses a lookup
table containing 512 samples of a single cycle of a sinusoid together with two inde-
pendent pointers to generate a dual-tone multifrequency (DTMF) waveform. DTMF
waveforms comprising the sum of two sinusoids of different frequencies are used
in telephone networks to indicate key presses. A total of 16 different combinations
of frequencies each comprising one of four low-frequency components (697, 770,
852, or 941 Hz) and one of four high-frequency components (1209, 1336, 1477, or
1633 Hz) are used. Programtm4c123_sineDTMF_intr.cuses two independent
pointers into a single lookup table, each updated at the same rate (16 kHz) but each
stepping through the values in the table using different step sizes.

Listing 2.16 Program tm4c123_sineDTMF_intr.c.

1 // tm4c123_sineDTMF_intr.c
2

3 #include “tm4c123_aic3104_init.h”
4

5 #define TABLESIZE 512 // size of look up table
6 #define SAMPLING_FREQ 16000
7 #define STEP_770 (float32_t)(770 * TABLESIZE)/SAMPLING_FREQ
8 #define STEP_1336 (float32_t)(1336 * TABLESIZE)/SAMPLING_FREQ
9 #define STEP_697 (float32_t)(697 * TABLESIZE)/SAMPLING_FREQ

10 #define STEP_852 (float32_t)(852 * TABLESIZE)/SAMPLING_FREQ
11 #define STEP_941 (float32_t)(941 * TABLESIZE)/SAMPLING_FREQ

58 ANALOG INPUT AND OUTPUT

12 #define STEP_1209 (float32_t)(1209 * TABLESIZE)/SAMPLING_FREQ
13 #define STEP_1477 (float32_t)(1477 * TABLESIZE)/SAMPLING_FREQ
14 #define STEP_1633 (float32_t)(1633 * TABLESIZE)/SAMPLING_FREQ
15

16 int16_t sine_table[TABLESIZE];
17 float32_t loopindexlow = 0.0;
18 float32_t loopindexhigh = 0.0;
19 int16_t output;
20

21 void SSI_interrupt_routine(void)
22 {
23 AIC3104_data_type sample_data;
24 float32_t input_left, input_right;
25

26 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
27

28 SSIDataGet(SSI1_BASE,&sample_data.bit32);
29 input_left = (float32_t)(sample_data.bit16[0]);
30 SSIDataGet(SSI0_BASE,&sample_data.bit32);
31 input_right = (float32_t)(sample_data.bit16[0]);
32

33 output = (sine_table[(int16_t)loopindexlow]
34 + sine_table[(int16_t)loopindexhigh]);
35 loopindexlow += STEP_770;
36 if (loopindexlow > (float32_t)TABLESIZE)
37 loopindexlow -= (float32_t)TABLESIZE;
38 loopindexhigh += STEP_1477;
39 if (loopindexhigh > (float32_t)TABLESIZE)
40 loopindexhigh -= (float32_t)TABLESIZE;
41

42 sample_data.bit32 = ((int16_t)(output));
43 SSIDataPut(SSI1_BASE,sample_data.bit32);
44 sample_data.bit32 = ((int16_t)(output));
45 SSIDataPut(SSI0_BASE,sample_data.bit32);
46

47 SSIIntClear(SSI0_BASE,SSI_RXFF);
48

49 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
50 }
51

52 int main(void)
53 {
54 int16_t i;
55

56 tm4c123_aic3104_init(FS_16000_HZ,
57 AIC3104_LINE_IN,
58 IO_METHOD_INTR,
59 PGA_GAIN_6_DB);
60 for (i=0 ; i< TABLESIZE ; i++)
61 sine_table[i] = (int16_t)(10000.0*sin(2*PI*i/TABLESIZE));
62 while(1){}
63 }

REAL-TIME WAVEFORM GENERATION 59

A pointer that stepped through every single one of the TABLESIZE samples
stored in the lookup table at a sampling rate of 16 kHz would generate a sinu-
soidal tone with a frequency equal to (16000/TABLESIZE). A pointer that
stepped through the samples stored in the lookup table, incremented by a value
STEP, would generate a sinusoidal tone with a frequency equal to (16000 *
STEP/TABLESIZE). From this, it is possible to calculate the required step size for
any desired frequency. For example, in order to generate a sinusoid with frequency
770 Hz, the required step size is STEP = TABLESIZE * 770/16000 =
24.64. In other words, at each sampling instant, the pointer into the lookup table
should be incremented by 24.64. The pointer value, or index, into the lookup table
must be an integer value ((int16_t)(loopindexlow)) but a floating-point
value of the pointer, or index, (loopindexlow) is maintained by the program and
incremented by 24.64 at each sampling instant and wrapping around to 0.0 when its
value exceeds 512.0 using the statements

loopindexlow += 24.64;
if(loopindexlow>(float32_t)TABLESIZE)loopindexlow-=(float32_t)TABLESIZE;

In programtm4c123_sineDTMF_intr.c, the floating point values by which the
table lookup indices are incremented are predefined using, for example,

#define STEP_770 (float32_t)(770 * TABLESIZE) / SAMPLING_FREQ

In order to change the DTMF tone generated and simulate a different key press, edit
program tm4c123_sineDTMF_intr.c and change the program statements.

loopindexlow += STEP_697;
loopindexhi += STEP_1477;

to, for example

loopindexlow += STEP_770;
loopindexhi += STEP_1209;

An example of the output generated by program tm4c123_sineDTMF_intr.c
is shown in Figure 2.22.

Example 2.15 Signal Reconstruction, Aliasing, and the Properties of the
WM5102 Codec (stm32f4_sine_intr.c).

Generating analog output signals using, for example, programstm32f4_sine_
intr.c is a useful means of investigating the characteristics of the WM5102 codec.
If you are using the TM4C123 LaunchPad and AIC3104 audio booster pack, program
tm4c123_sine_intr.c and others are useful means of investigating the slightly
different characteristics of the AIC3104 codec.

60 ANALOG INPUT AND OUTPUT

Figure 2.22 Output from program tm4c123_sineDTMF_intr.c viewed using Rigol
DS1052 oscilloscope.

Change the value of the variable frequency in program stm32f4_sine_
intr.c to an arbitrary value between 100.0 and 3500.0, and you should find that
a sine wave of that frequency (in Hz) is generated. Change the value of the variable
frequency to 7000.0, however, and you will find that a 1000 Hz sine wave is gener-
ated. The same is true if the value of frequency is changed to 9000.0 or 15000.0.
A value of frequency equal to 5000.0 will result in an output waveform with a
frequency of 3000 Hz. These effects are related to the phenomenon of aliasing. Since
the reconstruction (DAC) process that creates a continuous-time analog waveform
from discrete-time samples is one of low-pass filtering, it follows that the bandwidth
of signals output by the codec is limited (to less than half the sampling frequency).
This can be demonstrated in a number of different ways.

For example, run program stm32f4_sine_intr.cwith the value of the vari-
able frequency set to 3500.0 and verify that the output waveform generated has a
frequency of 3500 Hz. Change the value of the variable frequency to 4500.0. The
frequency of the output waveform should again be equal to 3500 Hz. Try any value for
the variable frequency. You should find that it is impossible to generate an analog
output waveform with a frequency greater than or equal to 4000 Hz (assuming a sam-
pling frequency of 8000 Hz). This is consistent with viewing the DAC as a low-pass
filter with a cutoff frequency equal to slightly less than half its sampling frequency.

The following examples demonstrate a number of alternative approaches to
observing the low-pass characteristic of the DAC.

Example 2.16 Square wave generation using a lookup table (stm32f4_
square_intr.c).

Program stm32f4_square_intr.c, shown in Listing 2.17, differs from pro-
gram stm32f4_sine8_intr.c only in that it uses a lookup table containing 64

REAL-TIME WAVEFORM GENERATION 61

samples of one cycle of a square wave of frequency 125 Hz rather than 48 samples of
one cycle of a sine wave of frequency 1 kHz.

Listing 2.17 Program stm32f4_square_intr.c.

1 // stm32f4_square_intr.c
2

3 #include “stm32f4_wm5102_init.h”
4

5 #define LOOP_SIZE 64
6

7 int16_t square_table[LOOP_SIZE] = {
8 10000, 10000, 10000, 10000,
9 10000, 10000, 10000, 10000,

10 10000, 10000, 10000, 10000,
11 10000, 10000, 10000, 10000,
12 10000, 10000, 10000, 10000,
13 10000, 10000, 10000, 10000,
14 10000, 10000, 10000, 10000,
15 10000, 10000, 10000, 10000,
16 -10000, -10000, -10000, -10000,
17 -10000, -10000, -10000, -10000,
18 -10000, -10000, -10000, -10000,
19 -10000, -10000, -10000, -10000,
20 -10000, -10000, -10000, -10000,
21 -10000, -10000, -10000, -10000,
22 -10000, -10000, -10000, -10000,
23 -10000, -10000, -10000, -10000};
24 static int square_ptr = 0;
25

26 void SPI2_IRQHandler()
27 {
28 int16_t left_out_sample, right_out_sample;
29 int16_t left_in_sample, right_in_sample;
30

31 if (SPI_I2S_GetFlagStatus(I2Sx, I2S_FLAG_CHSIDE) SET)
32 {
33 left_in_sample = SPI_I2S_ReceiveData(I2Sx);
34 left_out_sample = square_table[square_ptr];
35 square_ptr = (square_ptr+1)%LOOP_SIZE;
36 while(SPI_I2S_GetFlagStatus(I2Sxext,
37 SPI_I2S_FLAG_TXE) != SET){}
38 SPI_I2S_SendData(I2Sxext, left_out_sample);
39 }
40 else
41 {
42 right_in_sample = SPI_I2S_ReceiveData(I2Sx);
43 right_out_sample = 0;
44 while(SPI_I2S_GetFlagStatus(I2Sxext,
45 SPI_I2S_FLAG_TXE) != SET){}
46 SPI_I2S_SendData(I2Sxext, right_out_sample);
47 }
48 }

62 ANALOG INPUT AND OUTPUT

49

50 int main(void)
51 {
52 stm32_wm5102_init(FS_8000_HZ,
53 WM5102_LINE_IN,
54 IO_METHOD_INTR);
55 while(1){}
56 }

2.6.4 Running the Program

Build and run the program, and using an oscilloscope connected to the (green) LINE
OUT socket on the audio card, you should see an output waveform similar to that
shown in Figure 2.23. This waveform is equivalent to a square wave (represented
by the samples in the lookup table) passed through a low-pass filter (the DAC). The
ringing that follows each transition in the waveform is indicative of the specific
characteristics of the reconstruction filter implemented by the WM5102 DAC.
The low-pass characteristic of the reconstruction filter can further be highlighted
by looking at the frequency content of the output waveform. While the Fourier
series representation of a square wave is the sum of an infinite series of harmonic
components, only harmonic components with frequencies below 3.8 kHz are present
in the analog output waveform as shown in the lower trace of Figure 2.24.

Example 2.17 Square Wave Generation Using a Look Up Table (tm4c123_
square_intr.c).

Program tm4c123_square_intr.c is an equivalent (to stm32f4_
square_intr.c) program that runs on the TM4C123 LaunchPad. The output

Figure 2.23 Output from program stm32f4_square_intr.c viewed using Rigol
DS1052 oscilloscope.

REAL-TIME WAVEFORM GENERATION 63

Figure 2.24 Output from program stm32f4_square_intr.c viewed in both time and
frequency domains using Rigol DS1052 oscilloscope.

Figure 2.25 Output from program tm4c123_square_intr.c viewed using Rigol
DS1052 oscilloscope.

waveform, as it appears on the scope hook connections on the audio booster pack
and as shown in Figure 2.25, is subtly different to that shown in Figure 2.23. In
this case, ringing precedes as well as follows transitions in the waveform. This
suggests strongly that the reconstruction filter in the AIC3104 DAC is implemented
as a digital FIR filter (at a higher sampling frequency than that at which sample
values are written to the DAC by program tm4c123_square_intr.c). Viewed
in the frequency domain (Figure 2.26), it is apparent that once again the analog

64 ANALOG INPUT AND OUTPUT

Figure 2.26 Output from program tm4c123_square_intr.c viewed in both time and
frequency domains using Rigol DS1052 oscilloscope.

output waveform contains only the harmonic components of a 125 Hz square wave
at frequencies lower than 3.8 kHz.

A further demonstration of the low-pass characteristic of the reconstruction filter
is given by program tm4c123_square_1khz_intr.c. Here, the sequence of
sample values written to the DAC at a sampling frequency of 8 kHz is given by

#define LOOPLENGTH 8
int16_t square_table[LOOPLENGTH] = {

10000, 10000, 10000, 10000,
-10000, -10000, -10000, -10000};

Ostensibly, these sample values represent one cycle of a 1-kHz square wave. How-
ever, the output waveform generated contains only the first two harmonic components
of a 1-kHz square wave (at 1 and 3 kHz), that is, only the harmonic components of
a 1-kHz square wave with frequencies lower than 3.8 kHz, the cutoff frequency of
the DAC. The analog output waveform is shown in Figure 2.27 and is clearly not a
square wave.

Example 2.18 Impulse Response of the WM5102 DAC Reconstruction Filter
(stm32f4_dimpulse_intr.c).

Each transition in the waveform generated by program stm32f4_square_
intr.c may be considered as representative of the step response of the reconstruc-
tion filter in the WM5102 DAC. From this, the impulse response of the filter may be
surmised.

That impulse response is of interest since, in accordance with linear systems
theory, it characterizes the filter. Specifically, the impulse response of the WM5102
DAC is equal to the time derivative of its step response, and by inspection of

REAL-TIME WAVEFORM GENERATION 65

Figure 2.27 Output from program tm4c123_square_1khz_intr.c viewed using
Rigol DS1052 oscilloscope.

Figure 2.23, it is apparent that the impulse response will have the form of a
(relatively) slowly (exponentially) decaying oscillation. The impulse response can
be illustrated more directly by running program stm32f4_dimpulse_intr.c.
This program replaces the samples of a square wave in the lookup table used by pro-
gram stm32f4_square_intr.c with a discrete impulse sequence. Figure 2.28
shows the output waveform generated by stm32f4_dimpulse_intr.c and
its magnitude FFT calculated using a Rigol DS1052E oscilloscope. The Fourier

Figure 2.28 Output from program stm32f4_dimpulse_intr.c viewed in time and
frequency domains using Rigol DS1052 oscilloscope.

66 ANALOG INPUT AND OUTPUT

transform of the impulse response of a linear time-invariant system is equal to its
frequency response.

Example 2.19 Impulse Response of the AIC3104 DAC Reconstruction Filter
(tm4c123_dimpulse_intr.c).

This program illustrates the impulse response of the AIC3104 DAC. As suggested
by the output waveform generated using program tm4c123_square_intr.c in
the previous example, the corresponding impulse response is subtly different from
that of the WM5102 DAC. The two different impulse responses, each of which cor-
responds to a near-ideal low-pass frequency response, are representative of those
found in the majority of audio codecs. That of the WM5102 is termed a low-latency
response. It is perhaps tempting to view the impulse response of the AIC3104 codec
as noncausal and think of the central peak of the pulse shown in Figure 2.29 as cor-
responding to the same time as that of the impulse causing it. This, of course, is
impossible in practice. Without knowing the detailed workings of the AIC3104 DAC,
it is nonetheless apparent that the impulse causing the response shown in Figure 2.29
must have occurred before any of the ripples evident in that pulse and hence approx-
imately 1 ms before its peak. In contrast, the impulse causing the impulse response
of the WM5102 DAC shown in Figure 2.28 probably occurred approximately 300μs
before the peak.

Example 2.20 Ramp Generation (tm4c123_ramp_intr.c).

Listing 2.18 is of program tm4c123_ramp_intr.c, which generates a ramp,
or sawtooth, output waveform. The value of the output sample output_left is

Figure 2.29 Output from program tm4c123_dimpulse_intr.c viewed using Rigol
DS1052 oscilloscope.

REAL-TIME WAVEFORM GENERATION 67

incremented by 2000 every sampling instant until it reaches the value 30,000, at which
point it is reset to the value −30,000. Build and run this program. Figure 2.30 shows
the analog output waveform captured using an oscilloscope. The output comprises
harmonic components at frequencies less than 4 kHz.

Listing 2.18 Program tm4c123_ramp_intr.c.

1 // tm4c123_ramp_intr.c
2

3 #include “tm4c123_aic3104_init.h”
4

5

6 int16_t output = 0;
7

8 void SSI_interrupt_routine(void)
9 {

10 AIC3104_data_type sample_data;
11 float32_t input_left, input_right;
12

13 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
14

15 SSIDataGet(SSI1_BASE,&sample_data.bit32);
16 input_left = (float32_t)(sample_data.bit16[0]);
17 SSIDataGet(SSI0_BASE,&sample_data.bit32);
18 input_right = (float32_t)(sample_data.bit16[0]);
19

20 output += 2000;
21 if (output >= 30000)
22 output = -30000;
23

24 sample_data.bit32 = ((int16_t)(output));
25 SSIDataPut(SSI1_BASE,sample_data.bit32);
26 sample_data.bit32 = ((int16_t)(output));
27 SSIDataPut(SSI0_BASE,sample_data.bit32);
28

29 SSIIntClear(SSI0_BASE,SSI_RXFF);
30

31 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
32 }
33

34 int main(void)
35 {
36 tm4c123_aic3104_init(FS_8000_HZ,
37 AIC3104_LINE_IN,
38 IO_METHOD_INTR,
39 PGA_GAIN_6_DB);
40 while(1){}
41 }

68 ANALOG INPUT AND OUTPUT

Figure 2.30 Output waveform generated by program tm4c123_ramp_intr.c.

Example 2.21 Amplitude Modulation (tm4c123_am_poll.c).

This example illustrates the basic principles of amplitude modulation (AM). List-
ing 2.19 is of programtm4c123_am_poll.c, which generates an AM signal. The
array baseband holds 20 samples of one cycle of a cosine waveform with a fre-
quency of fs/20 = 400 Hz (sampling frequency, fs = 8000 Hz). The array carrier
holds 20 samples of five cycles of a sinusoidal carrier signal with a frequency of
5fs/20 = 2000 Hz. Output sample values are calculated by multiplying the baseband
signal baseband by the carrier signal carrier. In this way, the baseband signal
modulates the carrier signal. The variable amp is used to set the modulation index.

Listing 2.19 Program tm4c123_am_poll.c.

1 // tm4c123_am poll.c
2

3 #include “tm4c123_aic3104_init.h”
4

5 short amp = 20; //index for modulation
6

7 void SSI_interrupt_routine(void){while(1){}}
8

9 int main(void)
10 {
11 AIC3104_data_type sample_data;
12 float32_t input_left, input_right;
13 int16_t baseband[20] = {1000,951,809,587,309,0,-309,
14 -587,-809,-951,-1000,-951,-809,
15 -587,-309,0,309,587,809,951}; // 400 Hz
16 int16_t carrier[20] = {1000,0,-1000,0,1000,0,-1000,
17 0,1000,0,-1000,0,1000,0,-1000,

REAL-TIME WAVEFORM GENERATION 69

18 0,1000,0,-1000,0}; // 2 kHz
19 int16_t output[20];
20 int16_t k;
21

22 tm4c123_aic3104_init(FS_8000_HZ,
23 AIC3104_LINE_IN,
24 IO_METHOD_POLL,
25 PGA_GAIN_6_DB);
26 while(1)
27 {
28 for (k=0; k<20; k++)
29 {
30 output[k]= carrier[k] + ((amp*baseband[k]*carrier[k]/10)>>12);
31 SSIDataGet(SSI1_BASE,&sample_data.bit32);
32 input_left = (float32_t)(sample_data.bit16[0]);
33 SSIDataGet(SSI0_BASE,&sample_data.bit32);
34 input_right = (float32_t)(sample_data.bit16[0]);
35

36 sample_data.bit32 = ((int16_t)(20*output[k]));
37

38 SSIDataPut(SSI1_BASE,sample_data.bit32);
39 SSIDataPut(SSI0_BASE,sample_data.bit32);
40 }
41 }
42 }

2.6.5 Running the Program

Build and run this program. Verify that the output consists of the 2-kHz carrier signal
and two sideband signals as shown in Figure 2.31. The sideband signals are at the

Figure 2.31 Output waveform generated by program tm4c123_am_intr.c.

70 ANALOG INPUT AND OUTPUT

frequency of the carrier signal, +/− the frequency of the baseband signal, or at 1600
and 2400 Hz. The magnitude of the sidebands relative to the carrier signal may be
altered by changing the value of the variable amp in the source file. The project will
need to be rebuilt for such a change to take effect.

2.7 IDENTIFYING THE FREQUENCY RESPONSE OF THE DAC USING
PSEUDORANDOM NOISE

Example 2.22 Frequency Response of the AIC3104 DAC Reconstruction Filter
Using a Pseudorandom Binary Sequence (tm4c123_prbs_intr.c).

Program tm4c123_prbs_intr.c, shown in Listing 2.20, generates a pseu-
dorandom binary sequence (PRBS) and writes this to the AIC3104 DAC. Function
prbs(), defined in file tm4c123_aic3104_init.c, and shown in Listing 2.21,
uses a 16-bit linear feedback shift register (LFSR) to generate a maximal-length
pseudorandom binary sequence. The least significant bit of the register is used to
determine whether function prbs() returns either the value noise_level or the
value -noise_level, where noise_level is a 16-bit integer value passed to
the function. The value of the LFSR (lfsr) is initialized to 0x0001. Each time
function prbs() is called, a feedback value (fb) is formed by the modulo-2 sum of
bits 15, 14, 3, and 1 in lfsr. The contents of the LFSR are shifted left by one bit
and the value of bit 0 is assigned the feedback value fb. If the value of fb is equal to
zero, then the function returns the value -noise_level. Otherwise, it returns the
value noise_level.

Listing 2.20 Program tm4c123_prbs_intr.c.

1 // tm4c123_prbs_intr.c
2

3 #include “tm4c123_aic3104_init.h”
4

5 void SSI_interrupt_routine(void)
6 {
7 AIC3104_data_type sample_data;
8 float32_t input_left, input_right;
9 float32_t output_left, output_right;

10

11 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
12

13 SSIDataGet(SSI1_BASE,&sample_data.bit32);
14 input_left = (float32_t)(sample_data.bit16[0]);
15 SSIDataGet(SSI0_BASE,&sample_data.bit32);
16 input_right = (float32_t)(sample_data.bit16[0]);
17

18 output_left = (float32_t)(prbs(8000));
19 output_right = output_left;
20

IDENTIFYING THE FREQUENCY RESPONSE 71

21 sample_data.bit32 = ((int16_t)(output_left));
22 SSIDataPut(SSI1_BASE,sample_data.bit32);
23 sample_data.bit32 = ((int16_t)(output_right));
24 SSIDataPut(SSI0_BASE,sample_data.bit32);
25

26 SSIIntClear(SSI0_BASE,SSI_RXFF);
27

28 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
29 }
30

31 int main(void)
32 {
33 tm4c123_aic3104_init(FS_8000_HZ,
34 AIC3104_LINE_IN,
35 IO_METHOD_INTR,
36 PGA_GAIN_6_DB);
37 while(1){}
38 }

Listing 2.21 Definition of function prbs(), defined in file
tm4c123_aic3104_init.c.

1 typedef union
2 {
3 uint16_t value;
4 struct
5 {
6 unsigned char bit0 : 1;
7 unsigned char bit1 : 1;
8 unsigned char bit2 : 1;
9 unsigned char bit3 : 1;

10 unsigned char bit4 : 1;
11 unsigned char bit5 : 1;
12 unsigned char bit6 : 1;
13 unsigned char bit7 : 1;
14 unsigned char bit8 : 1;
15 unsigned char bit9 : 1;
16 unsigned char bit10 : 1;
17 unsigned char bit11 : 1;
18 unsigned char bit12 : 1;
19 unsigned char bit13 : 1;
20 unsigned char bit14 : 1;
21 unsigned char bit15 : 1;
22 } bits;
23 } shift_register;
24

25 shift_register sreg = {0x0001};
26

27 short prbs(int16_t noise_level)
28 {
29 char fb;

72 ANALOG INPUT AND OUTPUT

30

31 fb =((sreg.bits.bit15)+(sreg.bits.bit14)+(sreg.bits.bit3)
32 +(sreg.bits.bit1))%2
33 sreg.value = sreg.value << 1;
34 sreg.bits.bit0 = fb;
35 if(fb 0)
36 return(-noise_level);
37 else
38 return(noise_level);
39 }

Figure 2.32 shows the analog output signal generated by the program displayed
using an oscilloscope and using Goldwave. The theoretical power spectral density
of a PRBS is constant across all frequencies. When a PRBS is written to a DAC,
the spectral content of the signal output by the DAC is indicative of the magnitude
frequency response of the DAC. In this case, the magnitude frequency response is
flat, or constant, at frequencies up to the cutoff frequency of the DAC’s reconstruction
filter just below half its sampling frequency.

2.7.1 Programmable De-Emphasis in the AIC3104 Codec

The AIC3104 codec features a programmable first-order de-emphasis filter that
may optionally be switched into the signal path just before the DAC. Program
tm4c123_prbs_deemph_intr.c demonstrates its use (see Figure 2.33). User
switch SW1 on the TM4C123 LaunchPad may be used to enable or disable the
de-emphasis function. The de-emphasis filters are enabled and disabled by writing
to bits 0 (right channel) and 2 (left channel) in page 0 control register 12 (Audio
Codec Digital Filter Control Register) using function I2CRegWrite().

The coefficients of the de-emphasis filter can be reprogrammed in order to imple-
ment a different first-order IIR filter. In program tm4c123_prbs_hpf_intr.c,
a high-pass filter has been implemented and its characteristics are apparent in
Figure 2.34.

2.7.2 Programmable Digital Effects Filters in the AIC3104 Codec

The AIC3104 codec also features two fourth-order IIR filters that may optionally be
switched into the left and right channel signal paths just before the DAC. Program
tm4c123_prbs_biquad_intr.cdemonstrates how the characteristics of these
filters can be programmed by writing filter coefficients to AIC3104 page 1 control reg-
isters 1 through 20 (left channel) and 27 through 46 (right channel). In this example,
a fourth-order elliptic low-pass filter is implemented. Figure 2.35 shows the filtered
PRBS signal viewed using an oscilloscope and using Goldwave. The IIR filters are
enabled and disabled by writing to bits 1 (right channel) and 3 (left channel) in page 0
control register 12 (Audio Codec Digital Filter Control Register). The characteristics
of these filters and how to program them are described in greater detail in Chapter 4.

IDENTIFYING THE FREQUENCY RESPONSE 73

Figure 2.32 Output from program tm4c123_prbs_intr.c viewed using Rigol DS1052
oscilloscope and Goldwave.

Example 2.23 Frequency response of the DAC reconstruction filter using pseu-
dorandom noise (tm4c123_prandom_intr.c).

Program tm4c123_prandom_intr.c is similar to program tm4c123_
prbs_intr.c except that it uses a Parks–Miller algorithm to generate a pseudoran-
dom noise sequence. This may be used as an alternative to PRBS in some applications.

74 ANALOG INPUT AND OUTPUT

Figure 2.33 Output from program tm4c123_prbs_deemph_intr.c viewed using
Rigol DS1052 oscilloscope and Goldwave.

Function prand() (Listing 2.22) is defined in file tm4c123_aic3104_init.c
and returns pseudorandom values in the range +/− noise_level, where
noise_level is a 16-bit integer value passed to the function. Figure 2.36 shows
the waveform output by program tm4c123_prandom_intr.c displayed using

IDENTIFYING THE FREQUENCY RESPONSE 75

Figure 2.34 Output from program tm4c123_prbs_hpf_intr.c viewed using Rigol
DS1052 oscilloscope and Goldwave.

an oscilloscope. Compare this with the output waveform generated by program
tm4c123_prbs_intr.c, shown in Figure 2.32.

Overall, the use of pseudorandom noise as an input signal is a simple and useful
technique for assessing the magnitude frequency response of a system.

76 ANALOG INPUT AND OUTPUT

Figure 2.35 Output from program tm4c123_prbs_biquad_intr.c viewed using
Rigol DS1052 oscilloscope and Goldwave.

Listing 2.22 Definition of function prand(), defined in file
tm4c123_aic3104_init.c

1 uint32_t prand_seed = 1; // used in function prand()
2

3 uint32_t rand31_next()
4 {
5 uint32_t hi, lo;
6

7 lo = 16807 * (prand_seed & 0xFFFF);
8 hi = 16807 * (prand_seed >> 16);
9

10 lo += (hi & 0x7FFF) << 16;

IDENTIFYING THE FREQUENCY RESPONSE 77

11 lo += hi >> 15;
12

13 if (lo > 0x7FFFFFFF) lo -= 0x7FFFFFFF;
14

15 return(prand_seed = (uint32_t)lo);
16 }
17

18 int16_t prand(void)
19 {
20 return ((int16_t)(rand31_next()>>18)-4096);
21 }

Figure 2.36 Output from program tm4c123_prandom_intr.c viewed using Rigol
DS1052 oscilloscope.

78 ANALOG INPUT AND OUTPUT

2.8 ALIASING

The preceding examples demonstrate that neither the AIC3104 codec nor the
WM5102 codec can generate signal components that have frequencies greater than
half their sampling frequency. It follows that it is inadvisable to allow analog input
signal components that have frequencies greater than half the sampling frequency to
be sampled at the input to the DSP system. This can be prevented by passing analog
input signals through a low-pass antialiasing filter prior to sampling. Antialiasing
filters with characteristics similar to those of the reconstruction filters in the DACs
of the AIC3104 and WM5102 codecs are incorporated into these devices.

Example 2.24 Step response of the WM5102 codec antialiasing filter
(stm32f4_loop_buf_intr.c).

In order to investigate the step response of the antialiasing filter on the
WM5102, connect a signal generator to the left channel of the (pink) LINE IN
socket on the Wolfson audio card. Adjust the signal generator to give a square
wave output of frequency 270 Hz and amplitude 500 mV. Build and run program
stm32f4_loop_buf_intr.c, halting the program after a few seconds. View
the most recent input sample values by saving the contents of array lbuffer to a
data file by typing

save <filename> <start address>, <start address + 0x400>

at the Command line in the MDK-ARM debugger, where start address is
the address of array lbuffer, and plotting the contents of the data file using
MATLAB function stm32f4_plot_real(). You should see something similar
to that shown in Figure 2.38. Figure 2.37 shows the square wave input signal
corresponding to the sample values shown in Figure 2.38. The ringing that follows
each transition in the waveform represented by the samples is due to the antialias-
ing filter. Figure 2.39 shows the corresponding result obtained using program
tm4c123_loop_buf_intr.c. The antialiasing filters in each of the codecs
have characteristics similar to those of their corresponding reconstruction filters.
Compare Figures 2.38 and 2.39 with Figures 2.23 and 2.25. The ac coupling of the
LINE IN connections on both the Wolfson audio card and the audio booster pack
is evident from the drooping of the signal level between transitions in Figures 2.38
and 2.39.

Example 2.25 Demonstration of the Characteristics of the AIC3104 Codec
Antialiasing Filter (tm4c123_sine48_loop_intr.c).

Program tm4c123_sine48_loop_intr.c is similar to program
tm4c123_sine48_intr.c in that it generates a 1-kHz sine wave output
using sample values read from a lookup table. It differs in that it reads input samples
from the ADC and stores the 128 most recent in array buffer. Connect the (black)

ALIASING 79

Figure 2.37 Square wave input signal used with program stm32f4_loop_buf_intr.c.

70 80 90 100 110 120
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
× 104

n

R
ea

l

Figure 2.38 Sample values read from the WM5102 ADC and stored in array lbuffer by
program stm32f4_loop_buf_intr.c.

LINE OUT connection on the audio booster card to the (blue) LINE IN connection
using a 3.5-mm jack plug to 3.5-mm jack plug cable and run the program for a short
length of time. Halt the program and save the contents of array buffer to a data
file by typing

save <filename> <start address>, <start address + 0x200>

80 ANALOG INPUT AND OUTPUT

20
−1.5

1.5
× 104

−0.5

0.5

R
ea

l

0

−1

1

30 40 50 60

n

70 80

Figure 2.39 Sample values read from the WM5102 ADC and stored in array lbuffer by
program tm4c123_loop_buf_intr.c.

at the Command line in the MDK-ARM debugger, where start address is the
address of array buffer. Plot the contents of the data file using MATLAB function
tm4c123_plot_real(). You should see something similar to the plot shown in
Figure 2.40. The discontinuity at time t = 5.8 ms corresponds to the value of the
index variable bufptr when the program was halted. At first sight, this figure may
appear unremarkable. However, when you consider that the analog waveform output
by the AIC3104 codec contains out-of-band-noise (readily visible on an oscilloscope
as shown in Figure 2.19), it is apparent that the samples stored in array buffer are
of a low-pass filtered version of that signal. That low-pass filtering operation has been
carried out by the antialiasing filter in the codec.

Example 2.26 Demonstration of Aliasing (tm4c123_aliasing_intr.c).

The analog and digital antialiasing filters in the AIC3104 and WM5120 codecs
cannot be bypassed or disabled. However, aliasing can be demonstrated within a
program by downsampling a digital signal without taking appropriate antialiasing
measures. Program tm4c123_aliasing_intr.c, shown in Listing 2.23 uses a
sampling rate of 16 kHz for the codec but then resamples the sequence of samples
produced by the ADC at the lower rate of 8 kHz (downsampling). The sequence of
samples generated at a rate of 16 kHz by the ADC may contain frequency components
at frequencies greater than 4 kHz, and therefore, if that sample sequence is downsam-
pled to a rate of 8 kHz simply by discarding every second sample, aliasing maybreak
occur.

ALIASING 81

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
−8000

−6000

−4000

−2000

0

2000

4000

6000

8000

10000

Time (s)

Sa
m

pl
e

va
lu

e

Figure 2.40 Sample values read from the AIC3104 ADC and stored in array buffer by
program tm4c123_sine48_loop_intr.c.

To avoid aliasing, the 16 kHz sample sequence output by the ADC must
be passed through a digital antialiasing filter before downsampling. Program
tm4c123_aliasing_intr.c uses an FIR filter with 65 coefficients defined
in header file lp6545.h for this task. For the purposes of this example, it is
unnecessary to understand the operation of the FIR filter. It is sufficient to consider
simply that the program demonstrates the effect of sampling at a frequency of 8 kHz
with and without using an antialiasing filter.

Listing 2.23 Program tm4c123_aliasing_intr.c.

1 // tm4c123_aliasing_intr.c
2

3 #include “tm4c123_aic3104_init.h”
4

5 #include “lp6545.h”
6

7 #define DISCARD 0
8 #define SAMPLE 1
9 #define BLOCKSIZE 1

10

11 volatile int16_t flag = DISCARD;
12 int16_t antialiasing = 0;
13 float32_t xin[BLOCKSIZE], yin[BLOCKSIZE];
14 float32_t xout[BLOCKSIZE], yout[BLOCKSIZE];
15 float32_t stateout[N+BLOCKSIZE-1];
16 float32_t statein[N+BLOCKSIZE-1];
17

18 arm_fir_instance_f32 Sin, Sout;

82 ANALOG INPUT AND OUTPUT

19

20 void SSI_interrupt_routine(void)
21 {
22 AIC3104_data_type sample_data;
23 float32_t input_left, input_right;
24

25 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
26

27 SSIDataGet(SSI1_BASE,&sample_data.bit32);
28 input_left = (float32_t)(sample_data.bit16[0]);
29 SSIDataGet(SSI0_BASE,&sample_data.bit32);
30 input_right = (float32_t)(sample_data.bit16[0]);
31

32 xin[0] = input_left;
33 arm_fir_f32(&Sin, xin, yin, BLOCKSIZE);
34 if (flag DISCARD)
35 {
36 flag = SAMPLE;
37 xout[0] = 0.0f;
38 }
39 else
40 {
41 flag = DISCARD;
42 if (antialiasing 0)
43 xout[0] = yin[0];
44 else
45 xout[0] = input_left;
46 }
47 arm_fir_f32(&Sout, xout, yout, BLOCKSIZE);
48 sample_data.bit32 = ((int16_t)(yout[0]));
49 SSIDataPut(SSI1_BASE,sample_data.bit32);
50 sample_data.bit32 = ((int16_t)(0));
51 SSIDataPut(SSI0_BASE,sample_data.bit32);
52

53 SSIIntClear(SSI0_BASE,SSI_RXFF);
54

55 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
56 }
57

58 int main(void)
59 {
60 arm_fir_init_f32(&Sin, N, h, statein, BLOCKSIZE);
61 arm_fir_init_f32(&Sout, N, h, stateout, BLOCKSIZE);
62 tm4c123_aic3104_init(FS_16000_HZ,
63 AIC3104_LINE_IN,
64 IO_METHOD_INTR,
65 PGA_GAIN_6_DB);
66 while(1)
67 {
68 ROM_SysCtlDelay(10000);
69 if (!GPIOPinRead(GPIO_PORTF_BASE, GPIO_PIN_4))
70 {
71 ROM_SysCtlDelay(10000);
72 antialiasing = (antialiasing+1)

IDENTIFYING THE FREQUENCY RESPONSE OF THE DAC USING AN ADAPTIVE FILTER 83

73 while (!GPIOPinRead(GPIO_PORTF_BASE, GPIO_PIN_4)){}
74 }
75 }
76 }

2.8.1 Running the Program

Build, load, and run program tm4c123_aliasing_intr.c. Connect a signal
generator to the (blue) LINE IN socket on the audio booster pack and either connect
an oscilloscope to one of the scope hooks on the audio booster pack or use GoldWave
via the (black) LINE OUT socket. Vary the frequency of a sinusoidal input signal
between 0 and 8 kHz. Press user switch SW1 on the TM4C123 LaunchPad to switch
the antialiasing filter implemented by the program on and off.

With the antialiasing filter enabled, signals with frequencies greater than 4 kHz do
not pass from LINE IN to LINE OUT. But with the antialiasing filter disabled, and by
varying the frequency of the input signal, you should be able to verify that sinusoids
with frequencies between 4 and 8 kHz are “folded back” into the frequency range
0–4 kHz.

2.9 IDENTIFYING THE FREQUENCY RESPONSE OF THE DAC USING
AN ADAPTIVE FILTER

Example 2.27 Identification of AIC3104 codec bandwidth using an adaptive
filter (tm4c123_sysid_CMSIS_intr.c).

Another way of observing the limited bandwidth of the codec is to measure its
magnitude frequency response using programtm4c123_sysid_CMSIS_intr.c.
This program, shown in Listing 2.24 uses an adaptive FIR filter and is described in
more detail in Chapter 6. However, you need not understand exactly how program
tm4c123_sysid_CMSIS_intr.c works in order to use it. Effectively, it
identifies the characteristics of the path between its discrete-time output and its
discrete-time input (points A and B in Figure 2.41).

Listing 2.24 Program tm4c123_sysid_CMSIS_intr.c.

1 // tm4c123_sysid_CMSIS_intr.c
2

3 #include “tm4c123_aic3104_init.h”
4

5 #define BETA 1E-11
6 #define NUM_TAPS 128
7

8 #define BLOCK_SIZE 1
9

10 float32_t firStateF32[BLOCK_SIZE + NUM_TAPS -1];
11 float32_t firCoeffs32[NUM_TAPS] = {0.0};

84 ANALOG INPUT AND OUTPUT

12 arm_lms_instance_f32 S;
13

14 void SSI_interrupt_routine(void)
15 {
16 AIC3104_data_type sample_data;
17 float32_t adapt_in, adapt_out, desired;
18 float32_t error, input_left, input_right;
19

20 SSIDataGet(SSI1_BASE,&sample_data.bit32);
21 input_left = (float32_t)(sample_data.bit16[0]);
22 SSIDataGet(SSI0_BASE,&sample_data.bit32);
23 input_right = (float32_t)(sample_data.bit16[0]);
24

25 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
26

27 adapt_in = (float32_t)(prbs(8000));
28 desired = input_left;
29 arm_lms_f32(&S, &adapt_in, &desired,
30 &adapt_out, &error, 1);
31

32 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
33

34 sample_data.bit32 = ((int16_t)(adapt_in));
35 SSIDataPut(SSI1_BASE,sample_data.bit32);
36 sample_data.bit32 = ((int16_t)(adapt_in));
37 SSIDataPut(SSI0_BASE,sample_data.bit32);
38

39 SSIIntClear(SSI0_BASE,SSI_RXFF);
40 }
41

42 int main()
43 {
44 arm_lms_init_f32(&S, NUM_TAPS, firCoeffs32,
45 firStateF32, BETA, BLOCK_SIZE);
46 tm4c123_aic3104_init(FS_8000_HZ,
47 AIC3104_LINE_IN,
48 IO_METHOD_INTR,
49 PGA_GAIN_6_DB);
50 while(1){}
51 }

2.9.1 Running the Program

Connect the (black) LINE OUT socket on the audio booster pack to the (blue) LINE
IN socket input using a 3.5 mm jack plug to 3.5 mm jack plug cable as shown in
Figure 2.41. The signal path that will be identified by the program comprises the series
combination of the DAC and ADC and the ac-coupling circuits between the convert-
ers and the jack socket connections on the audio booster pack. Run the program for
a few seconds and then halt it and plot the values of the weights of the adaptive

IDENTIFYING THE FREQUENCY RESPONSE OF THE DAC USING AN ADAPTIVE FILTER 85

3.5 mm jack
to

3.5 mm
jack cable

LINE IN

LINE OUT

DAC

ADC
B +

−

A
PRBS

Program
tm4c123_sysid_CMSIS_intr.c

Adaptive
filter

TM4C123 launchpad and
audio booster pack

Figure 2.41 Connection diagram for program tm4c123_sysid_CMSIS_intr.c.

filter (the identified impulse response of the signal path) by saving the 128 adap-
tive filter coefficients, stored in array firCoeffs32, and using MATLAB function
tm4c123_logfft().

Type

save <filename> <start address>, <start address + 0x200>

at the Command line in the MDK-ARM debugger, where start address
is the address of array firCoeffs32, and plot using MATLAB function
tm4c123_logfft().

The adaptive filter coefficients used by the CMSIS function arm_lms_f32()
are stored in memory in reverse order relative to the sense in which they repre-
sent the impulse response of the filter, and therefore, when using MATLAB function
stm32f4_logfft(), respond to the prompt

forward (0) or reverse (1) order of time-domain samples?

by entering the value 1.
The roll-off of the frequency response at very low frequencies evident in

Figure 2.42 is due to the ac coupling between the codec and the 3.5 mm LINE IN and
LINE OUT jack sockets. The roll-off of the frequency response at frequencies greater
than 3200 Hz is due to the antialiasing and reconstruction filters in the AIC3104 ADC
and DAC. A gain of approximately −6 dB due to the potential divider comprising
two 5k6 ohm resistors (shown in Figure 2.4) between the (blue) LINE IN socket and
LINEIN_L the codec is compensated for by the gain of +6 dB programmed into the
PGA that immediately precedes the ADC in the AIC3014 (by passing parameter
value PGA_GAIN_6_DB to function tm4c123_aic3104_init()).

86 ANALOG INPUT AND OUTPUT

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

(a)

Sa
m

pl
e

va
lu

e

0 500 1000 1500 2000 2500 3000 3500 4000
−25

−20

−15

−10

−5

0

Frequency (Hz)

(b)

M
ag

ni
tu

de
 (

dB
)

Figure 2.42 The impulse response and magnitude frequency identified using program
tm4c123_sysid_CMSIS_intr.c with connections as shown in Figure 2.41, dis-
played using MATLAB function tm4c123_logfft(). Sampling frequency 8000 Hz,
128-coefficient adaptive filter.

Program tm4c123_sysid_CMSIS_intr.c may be used to identify the
characteristics of another system (as opposed to just a connecting cable) connected
between LINE OUT and LINE IN on the audio booster pack. Figure 2.43 shows the
result when a first-order low-pass analog filter comprising a capacitor and resistor
was used.

IDENTIFYING THE FREQUENCY RESPONSE OF THE DAC USING AN ADAPTIVE FILTER 87

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (s)

(a)

Sa
m

pl
e

va
lu

e

0 500 1000 1500 2000 2500 3000 3500 4000
−35

−30

−25

−20

−15

−10

−5

0

5

Frequency (Hz)

(b)

M
ag

ni
tu

de
 (

dB
)

Figure 2.43 The impulse response and magnitude frequency identified using pro-
gram tm4c123_sysid_CMSIS_intr.c with a first-order low-pass analog filter con-
nected between LINE IN and LINE OUT sockets, displayed using MATLAB function
tm4c123_logfft(). Sampling frequency 8000 Hz, 128-coefficient adaptive filter.

Program tm4c123_sysid_deemph_CMSIS_intr.c is similar to
tm4c123_sysid_CMSIS_intr.c but enables the digital de-emphasis filter
located just before the DAC in the AIC3104 as in Example 2.22. Figure 2.44 shows
the result of running the program. Compare this with Figure 2.33.

Figure 2.45 shows the result of running program stm32f4_sysid_CMSIS_
intr.c on the STM32F407 Discovery with a sampling frequency of 8 kHz.

88 ANALOG INPUT AND OUTPUT

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (s)

(a)

Sa
m

pl
e

va
lu

e

(b)

−30
0 500 1000 1500 2000

Frequency (Hz)

2500 35003000 4000

−25

−20

−10

−5

0

−15

M
ag

ni
tu

de
 (

dB
)

Figure 2.44 The impulse response and magnitude frequency identified using program
tm4c123_sysid_CMSIS_intr.c with connections as shown in Figure 2.41 and
de-emphasis enabled, displayed using MATLAB function tm4c123_logfft(). Sampling
frequency 8000 Hz, 128-coefficient adaptive filter.

The plots illustrating examples of the instantaneous frequency response of
program tm4c123_flanger_intr.c in Example 2.9 were obtained using
program tm4c123_sysid_flange_intr.c, a slightly modified version of
program tm4c123_sysid_intr.c that includes a flanger (Figure 2.13) with a
fixed delay in the signal path identified.

IDENTIFYING THE FREQUENCY RESPONSE OF THE DAC USING AN ADAPTIVE FILTER 89

0 500 1000 1500 2000 2500 3000 3500 4000
−25

−20

−15

−10

−5

0

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

(a)

(b)

Sa
m

pl
e

va
lu

e

Figure 2.45 The impulse response and magnitude frequency identified using program
stm32f4_sysid_CMSIS_intr.c with LINE OUT connected directly to LINE OUT,
displayed using MATLAB function stm32f4_logfft(). Sampling frequency 8000 Hz,
128-coefficient adaptive filter.

Example 2.28 Identification of AIC3104 Codec Bandwidth Using Two Audio
Booster Packs (tm4c123_sysid_CMSIS_intr.c).

Program tm4c123_sysid_CMSIS_intr.c can identify frequency response
characteristics in the range 0 to half its sampling frequency (in the previous example,

90 ANALOG INPUT AND OUTPUT

the sampling frequency was equal to 8 kHz) but the antialiasing and reconstruction fil-
ters in the codec have a bandwidth only slightly less than this. Hence, in Figures 2.42
through 2.45, only the passbands of those filters are displayed. The following example
uses two sets of TM4C123 LaunchPads and audio booster packs, one running pro-
gram tm4c123_loop_intr.cwith a sampling frequency of 8 kHz and the other
running program tm4c123_sysid_CMSIS_intr.cusing a sampling frequency
of 16 kHz. This allows it to identify frequency response characteristics in the range
0–8 kHz and to give a better idea of the passband, stopband, and transition band of
the antialiasing and reconstruction filters on the system sampling at 8 kHz. In order
to set the sampling frequency in program tm4c123_sysid_CMSIS_intr.c to
16 kHz, change the program statement that reads

tm4c123_aic3104_init(FS_8000_HZ,
AIC3104_LINE_IN,
IO_METHOD_INTR
PGA_GAIN_6_DB);

to read

tm4c123_aic3104_init(FS_16000_HZ,
AIC3104_LINE_IN,
IO_METHOD_INTR
PGA_GAIN_6_DB);

Additionally, change the number of adaptive filter coefficients used from 256 to 192
by changing the program statement that reads

#define NUM_TAPS 128

to read

#define NUM_TAPS 192

This is necessary due to the increased delay through two systems. Connect the two
audio booster packs together as shown in Figure 2.46. Make sure that program
tm4c123_loop_intr.c is running on one launchpad before running program
tm4c123_sysid_CMSIS_intr.c for a short time on the other. Also, make sure
that program tm4c123_loop_intr.c is using LINE IN (as opposed to MIC IN)
as its input. After running and halting the program, save the 192 adaptive filter coef-
ficients firCoeffs32 used by program tm4c123_sysid_CMSIS_intr.c to
a data file by typing

save filename <start address>, <start address + 0x300>

at the Command line in the MDK-ARM debugger, where start address is the
address of array firCoeffs32, and plot using MATLAB function tm4c123_
logfft(). You should see something similar to the plots shown in Figure 2.47.

ANALOG OUTPUT USING THE STM32F407’S 12-BIT DAC 91

TM4C123 LaunchPad and
audio booster pack

LINE OUT

LINE OUT
DAC

DAC

ADC

ADC

PRBS
A

Adaptive
filter

B +

−

3.5 mm jack
to

3.5 mm jack
cableProgram

tm4c123_loop_intr.c
Program

tm4c123_sysid_CMSIS_intr.c

3.5 mm jack
to

3.5 mm jack
cable

LINE IN

LINE IN

TM4C123 LaunchPad and
audio booster pack

Figure 2.46 Connection diagram for program tm4c123_sysid_CMSIS_intr.c.

The delay in the signal path identified (9 ms) is greater than that in Figure 2.42
(6 ms). This is consistent with the delay observed using program tm4c123_loop_
intr.c in Example 2.3. Using 192 filter coefficients, the adaptive filter is
able to identify an impulse response up to 192/16,000 = 12 ms long. Imple-
menting a 192-coefficient adaptive filter at a sampling frequency of 16 kHz
is just possible using a TM4C123 processor with a clock frequency of
84 MHz. This is evident from the oscilloscope trace shown in Figure 2.48,
which shows the rectangular pulse output on GPIO pin PE2 by program
tm4c123_sysid_CMSIS_intr.c. GPIO pin PE2 is held high during interrupt
service routine function SSI_interrupt_routine().

2.10 ANALOG OUTPUT USING THE STM32F407’S 12-BIT DAC

Example 2.29 Analog Waveform Generation Using a 12-Bit Instrumentation
DAC (stm32f4_sine8_DAC12_intr.c).

The STM32F407 processor features two 12-bit DACs that allow a comparison to
be made with the DACs in the AIC3104 and WM5102 audio codecs. The analog
output from one of the 12-bit DACs is routed to GPIO pin PA5 on the STM32F407
Discovery.

Programs stm32f4_sine8_DAC12_intr.c, stm32f4_dimpulse_
DAC12_intr.c,stm32f4_prbs_DAC12_intr.c, andstm32f4_square_
DAC12_intr.c are functionally equivalent to programs stm32f4_sine8_
intr.c, stm32f4_dimpulse_intr.c, stm32f4_prbs_intr.c, and
stm32f4_square_intr.c except in that they use the STM32F407’s 12-bit
DAC in place of that in the WM5102 codec. The resultant output waveforms are

92 ANALOG INPUT AND OUTPUT

0 0.002 0.004 0.006 0.008 0.01 0.012
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

(a)

Sa
m

pl
e

va
lu

e

0 1000 2000 3000 4000 5000 6000 7000 8000
−50

−40

−30

−20

−10

0

10

Frequency (Hz)

(b)

M
ag

ni
tu

de
 (

dB
)

Figure 2.47 The impulse response and magnitude frequency identified using program
tm4c123_sysid_CMSIS_intr.c with connections as shown in Figure 2.46, dis-
played using MATLAB function tm4c123_logfft(). Sampling frequency 16,000 Hz,
192-coefficient adaptive filter.

shown in Figures 2.49 through 2.52. Figure 2.49 shows the analog output signal
generated by program stm32f4_sine8_DAC12_intr.c (Listing 2.25) writing eight
sample values representing one cycle of a sinusoid to the 12-bit DAC. The frequency
domain clearly shows frequency components at 1 kHz, 7 kHz, 9 kHz, 15 kHz,
23 kHz, and 25 kHz. The magnitudes of these components are modulated by a

ANALOG OUTPUT USING THE STM32F407’S 12-BIT DAC 93

Figure 2.48 Pulse output on GPIO pin PE2 by program tm4c123_sysid_CMSIS_
intr.c running at a sampling rate of 16 kHz and using 192 adaptive filter coefficients.

Figure 2.49 Output from program stm32f4_sine8_dac12_intr.c viewed using
Rigol DS1052 oscilloscope.

sinc function with nulls at integer multiples of 8 kHz, corresponding to the 125 μs
duration, rectangular impulse response of the DAC. Note that the frequency-domain
representation of a 1 kHz sinusoid sampled at a rate of 8 kHz is an infinite sequence
of components of equal magnitudes at frequencies (8n ± 1) kHz, where n is an
integer −∞ < n < ∞.

The sinc function modulating the magnitudes of the discrete frequency compo-
nents in Figure 2.49 is illustrated clearly in Figures 2.50 and 2.51. Compare the

94 ANALOG INPUT AND OUTPUT

Figure 2.50 Output from program stm32f4_dimpulse_dac12_intr.cviewed using
Rigol DS1052 oscilloscope.

Figure 2.51 Output from program stm32f4_prbs_dac12_intr.cviewed using Rigol
DS1052 oscilloscope.

impulse response shown in Figure 2.50 with that in Figure 2.28 and the pseudorandom
signal shown in Figure 2.51 with that in Figure 2.32. Both the DAC in the WM5102
codec and the DAC in the AIC3104 codec are close to ideal low-pass filters with cut-
off frequencies of fs/2 (4 kHz). The low-pass characteristic of the 12-bit DAC in the
STM32F407 is significantly less pronounced. Finally, compare the output waveform
shown in Figure 2.52 with that in Figure 2.24. For comparison, the sample values
written to the 12-bit DAC are written also to the WM5102 codec. Its analog output

ANALOG OUTPUT USING THE STM32F407'S 12-BIT DAC 95

Figure 2.52 Output from program stm32f4_square_dac12_intr.c viewed using
Rigol DS1052 oscilloscope.

may be observed by connecting an oscilloscope to the (green) LINE OUT socket on
the audio card.

Listing 2.25 Program stm32f4_sine8_DAC12bit_intr.c.

1 // stm32f4_sine8_DAC12bit_intr.c
2

3 #include “stm32f4_wm5102_init.h”
4

5 #define LOOP_SIZE 8
6 int16_t sine_table[LOOP_SIZE] = {0, 7071, 10000, 7071,
7 0, -7071, -10000, -7071};
8

9 static int sine_ptr = 0;
10

11 void init_DAC12bit(void)
12 {
13 // enable clock for DAC module and GPIO port A
14 RCC->AHB1ENR|=RCC_AHB1ENR_GPIOAEN;
15 RCC->APB1ENR|=RCC_APB1ENR_DACEN;
16 // configure GPIO pin PA5 as DAC output
17 GPIOA->MODER|=GPIO_MODER_MODER5;
18 GPIOA->PUPDR&=∼(GPIO_PUPDR_PUPDR5);
19 // enable DAC
20 DAC->CR|=DAC_CR_EN2;
21 // zero DAC output
22 DAC->DHR12R2=0;
23 }
24

96 ANALOG INPUT AND OUTPUT

25 void SPI2_IRQHandler()
26 {
27 int16_t left_out_sample, left_in_sample;
28 int16_t right_out_sample, right_in_sample;
29

30 if (SPI_I2S_GetFlagStatus(I2Sx, I2S_FLAG_CHSIDE) SET)
31 {
32 left_in_sample = SPI_I2S_ReceiveData(I2Sx);
33 left_out_sample = sine_table[sine_ptr];
34 sine_ptr = (sine_ptr+1)
35

36 DAC->DHR12R2=(left_out_sample+10000)/7;
37

38 while (SPI_I2S_GetFlagStatus(I2Sxext,
39 SPI_I2S_FLAG_TXE) != SET){}
40 SPI_I2S_SendData(I2Sxext, left_out_sample);
41 }
42 else
43 {
44 right_in_sample = SPI_I2S_ReceiveData(I2Sx);
45 right_out_sample = 0;
46 while (SPI_I2S_GetFlagStatus(I2Sxext,
47 SPI_I2S_FLAG_TXE) != SET){}
48 SPI_I2S_SendData(I2Sxext, right_out_sample);
49 }
50 }
51

52 int main(void)
53 {
54 stm32_wm5102_init(FS_8000_HZ,
55 WM5102_LINE_IN,
56 IO_METHOD_INTR);
57 init_DAC12bit();
58 while(1){}
59 }

REFERENCES

1. Texas Instruments, Inc., “TLV320AIC3104 Low-Power Stereo Audio Codec for Portable
Audio and Telephony”, Literature no. SLAS510D, 2014.

2. Wolfson Microelectronics plc., “Audio Hub Codec with Voice Processor DSP”, 2013.

3. Texas Instruments, Inc., “Dual-SPI Emulating I2S on TivaTM TM4C123x MCUs”, Litera-
ture no. SPMA042B, 2013.

3
FINITE IMPULSE RESPONSE FILTERS

3.1 INTRODUCTION TO DIGITAL FILTERS

Filtering is fundamental to digital signal processing. Commonly, it refers to pro-
cessing a sequence of samples representing a time-domain signal so as to alter its
frequency-domain characteristics, and often this consists of attenuating or filtering
out selected frequency components. Digital filters are classified according to their
structure as either nonrecursive, finite impulse response (FIR) filters, or as recursive,
infinite impulse response (IIR) filters. This chapter is concerned with FIR filters. IIR
filters are described in Chapter 4.

3.1.1 The FIR Filter

A generic FIR filter is shown in block diagram form in Figure 3.1. The component
parts of the filter are follows:

1. A delay line, or buffer, in which a number of previous input samples x(n − k)
are stored. At each sampling instant, the contents of the delay line are updated
such that samples are shifted one position (to the right in the diagram) and a
new input sample x(n) is introduced at the start of the delay line.

Digital Signal Processing Using the ARM® Cortex® -M4, First Edition. Donald S. Reay.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

98 FINITE IMPULSE RESPONSE FILTERS

x(n - N + 1)x(n)

z−1 z−1z−1

h(0)x(n)

h(0) h(1)

x(n − 1)

h(1)x(n−1) h(N − 1)x(n − N + 1)

y(n) = ∑ h(k)x(n−k)
k = 0

N − 1

h(N − 1)

∑

Figure 3.1 Block diagram representation of a generic FIR filter.

2. A number of blocks (multipliers) that multiply the samples stored in the delay
line by a set of filter coefficients, h(k).

3. A summing junction that sums the multiplier outputs to form the current filter
output sample y(n).

In Figure 3.1, the delay line is represented by a series of blocks, each acting as
a delay of one sampling period, that is, the output of each block in the delay line is
its input, delayed by one sampling period. The z-transfer function of a delay of one
sample is z−1. The multipliers and filter coefficients are represented by blocks, the
outputs of which are their inputs multiplied by the filter coefficient with which they
are labeled. At the nth sampling instant, the samples stored in the delay line are x(n),
x(n − 1) , x(n − 2), … , x(n − N + 1) and the output of the filter, y(n) is described by
the difference equation

y(n) =
N−1∑
k=0

h(k)x(n − k). (3.1)

This equation is an example of a convolution sum representing the input-output
relationship of a discrete-time, linear time-invariant (LTI) system having an FIR h(n)
of length N samples. The output of any LTI system (continuous- or discrete-time) is
formed by convolving its input signal with its impulse response. For continuous-time
LTI systems, there exists a corresponding convolution integral.

3.1.1.1 Equivalence of FIR Filter Coefficients and Impulse Response The
impulse response of an FIR filter is equal to its coefficients. This is straightforward to
visualize using the block diagram representation of the filter. Consider a unit impulse

INTRODUCTION TO DIGITAL FILTERS 99

input sequence, that is, a sequence containing just one nonzero (unit) sample. That
sample enters the delay line on the left-hand side of the block diagram shown in
Figure 3.1 and is shifted right at each sampling instant. At any particular sampling
instant, the output of the filter will comprise the unit sample multiplied by just one of
the filter coefficients. All other filter coefficients will be multiplied by zero sample
values from the delay line and will contribute nothing to the output at that sampling
instant. Hence, the output sequence y(n) (the unit impulse response of the filter) will
comprise the filter coefficients h(n).

3.1.1.2 Advantages and Disadvantages of FIR Filters Although it is possible for
FIR filters to approximate the characteristics of continuous-time analog filters, one
of their advantages is that they may be used to implement arbitrary filter character-
istics that are impossible to implement using analog circuits. For this reason, and
unlike the IIR filters described in Chapter 4, their design is not based on the theory
of analog filters. A disadvantage of FIR filters is that their implementation may be
computationally expensive. Obtaining an arbitrary filter characteristic to the required
accuracy may require a large number of filter coefficients.

3.1.1.3 FIR Filter Implementation The structure and operation of an FIR filter are
simple (and are a fundamental part of many DSP applications). Typically, the inter-
nal architecture of a digital signal processor is optimized (single instruction cycle
multiply-accumulate units) for efficient computation of a sum of products or a con-
volution sum. For the convolution sum of Equation (3.1) to be computed directly,
a DSP must have sufficient memory to store N previous input samples and N filter
coefficients and have sufficient computational power to execute the required num-
ber of multiplications and additions within one sampling period. For large N, the
use of FFT-based fast convolution (described in Chapter 5) is computationally more
efficient.

3.1.2 Introduction to the z-Transform

The z-transform is an important tool in the design and analysis of digital filters. It is the
discrete-time counterpart of the Laplace transform. In the sense that the Laplace trans-
form is a generalization of the continuous-time Fourier transform, the z-transform is
a generalization of the discrete-time Fourier transform (DTFT).

The Laplace transform is used to solve continuous-time, linear differential
equations, representing them as algebraic expressions in the complex Laplace
variable s, and to represent continuous-time LTI systems as s-transfer functions. The
Laplace variable, s, may also be viewed as an operator, representing differentiation
with respect to time.

The z-transform is used to solve discrete-time difference equations, representing
them as algebraic expressions in the complex variable z, and to represent discrete-time
LTI systems as z-transfer functions. The variable z may also be viewed as an operator,
representing a shift of one sample position in a sequence.

100 FINITE IMPULSE RESPONSE FILTERS

3.1.3 Definition of the z-Transform

The z-transform X(z) of a (discrete-time) sequence x(n) is defined as

{x(n)} = X(z) =
∞∑

n=−∞
x(n)z−n, (3.2)

where z is a complex variable. This form of the z-transform, applicable to a two-
sided (noncausal) sequence, and hence also to left-sided (anticausal) and right-sided
(causal) sequences, is referred to as the two-sided or bilateral z-transform.

X(z) is a power series in z containing as many terms as there are sample values in
the sequence x(n). For each term in X(z), the coefficient corresponding to z−n is equal
to the nth sample value in the sequence x(n). In a discrete-time system, z−n corre-
sponds to the time t = nT, where T is the sampling period. X(z) exists only for values
of z for which the power series converges, that is, values of z for which |X(z)| < ∞.

3.1.3.1 Relationship to the Discrete-Time Fourier Transform The DTFT is the
form of Fourier analysis applicable to a discrete-time sequence x(n) that is aperiodic
and for which −∞ < n < ∞. The continuous, periodic representation of that signal
in the frequency domain is given by

X(�̂�) =
∞∑

n=−∞
x(n)e−jn�̂�. (3.3)

Sometimes, X(�̂�) is represented as X(ej�̂�), emphasizing that it is evaluated for differ-
ent values of the complex quantity e−j�̂�, where �̂� = 𝜔T.

Representing the complex variable z in polar form z = rej�̂�, where |z| = r and
∠z = �̂�, and substituting for z in Equation (3.2)

X(rej�̂�) =
∞∑

n=−∞
x(n)(rej�̂�)−n

=
∞∑

n=−∞
(x(n)r−n)e−jn�̂� (3.4)

it is apparent that X(z) = X(rej�̂�) is the DTFT of x(n)r−n = x(n)|z|−n. If r = |z| = 1
(corresponding to a unit circle in the z-plane), then the z-transform of x(n) is equiva-
lent to the DTFT of x(n).

It is also apparent that the existence, or convergence, of X(z) is dependent upon the
value of r = |z|, that is, the magnitude of z. If X(z) converges for a particular value
of z, it also converges for all other values of z that lie on a circle of radius |z| in the
complex z-plane.

INTRODUCTION TO DIGITAL FILTERS 101

Example 3.1 z-Transform of Finite Sequence x(n) = {𝟑
↑
, 𝟐, 𝟕,−𝟒}.

From the definition of the z-transform, the z-transform of the right-sided (causal)
sequence x(n) = {3

↑
, 2, 7,−4} is

X(z) =
∞∑

n=−∞
x(n)z−n

= 3 + 2z−1 + 7z−2 − 4z−3
. (3.5)

X(z) exists (converges) for all values of z except z = 0.

Example 3.2 z-Transform of Finite Sequence x(n) = {𝟑, 𝟐
↑
, 𝟕,−𝟒}.

From the definition of the z-transform, the z-transform of the two-sided (non-
causal) sequence x(n) = {3, 2

↑
, 7,−4} is

X(z) = 3z + 2 + 7z−1 − 4z−2. (3.6)

X(z) exists (converges) for all values of z except z = 0 and z = ∞.

Example 3.3 z-Transform of a Discrete Impulse Sequence x(n) = 𝛿(n).

The z-transform of the right-sided (causal) Kronecker delta sequence x(n) = 𝛿(n) is

X(z) =
∞∑

n=−∞
x(n)z−n

= 𝛿(0)z−0

= 1. (3.7)

X(z) exists (converges) for all values of z.

Example 3.4 z-Transform of a Time-Shifted Discrete Impulse Sequence
x(n) = 𝛿(n + k), k > 𝟎.

A time-shifted Kronecker delta sequence is described by

𝛿(n + k) =

{
1, n = −k,

0, n ≠ −k.
(3.8)

102 FINITE IMPULSE RESPONSE FILTERS

This is a left-sided (anticausal) sequence. From the definition of the z-transform

X(z) =
∞∑

n=−∞
𝛿(n − k)z−n

= 𝛿(−k)zk

= zk
. (3.9)

X(z) exists (converges) for all values of z except z = ∞.

Example 3.5 z-Transform of Exponential Function x(n) = anu(n).

The z-transform of the right-sided (causal) sequence x(n) = anu(n), where u(n) is
the unit step sequence, is

X(z) =
∞∑

n=−∞
anu(n)z−n =

∞∑
n=0

(az−1)n. (3.10)

Comparing this to the power series summation

∞∑
n=0

pn = 1
1 − p

, for |p| < 1. (3.11)

Equation (3.10) may be written as

X(z) = 1
1 − az−1

= z
z − a

, for |z| > |a|. (3.12)

The inequality |z| > |a| describes the range of values of z for which X(z) exists,
that is, its region of convergence (ROC). In this particular case, |z| > |a| describes
the part of the z-plane that lies outside a circle of radius a. X(z) exists (converges) for|z| > |a|.
Example 3.6 z-Transform of Exponential Function x(n) = −anu(−n − 1).

This is a left-sided (anticausal) sequence that may appear to be of academic interest
only but is included in order to make an important point. In this case,

X(z) = −
∞∑

n=−∞
anu(−n − 1)z−n =

−1∑
n=−∞

anz−1. (3.13)

Letting m = −n

X(z) = −
∞∑

n=−1

a−mzm

INTRODUCTION TO DIGITAL FILTERS 103

= 1 −
∞∑

n=0

(za−1)m

= 1 − 1
1 − a−1z

= 1
1 − az−1

= z
z − a

, for |z| < |a|. (3.14)

The inequality |z| < |a| describes the range of values of z for which X(z) exists, that
is, its ROC. In this particular case, |z| < |a| describes the part of the z-plane that lies
inside a circle of radius a. X(z) exists (converges) for |z| > |a|.

Comparing (3.14) with (3.12), it is apparent that a similar algebraic expression
for X(z) corresponds to two different sequences x(n). Corresponding to each of these
different sequences is a different ROC. The ROC is therefore an integral part of the
representation of a signal in the z-domain. In order to uniquely specify x(n) from X(z),
we must know its ROC.

Example 3.7 z-Transform of the Unit Step Function x(n) = u(n).

The unit step function may be viewed as an instance of Example 3.5, where a = 1,
and hence, X(z) exists (converges) for |z| > 1.

X(z) = 1
1 − z−1

= z
z − 1

, for |z| > 1. (3.15)

The inequality |z| > 1 describes the range of values of z for which X(z) exists, that
is, its ROC. In this particular case, |z| > 1 describes the part of the z-plane that lies
outside a circle of radius 1.

Example 3.8 z-Transform of a Sinusoidal Function x(n) = sin(n𝜔T)u(n).

This function is right-sided or causal. A sinusoidal function may be represented
by complex exponentials according to Euler’s formula ej𝜃 = cos(𝜃) + j sin(𝜃), that is,

sin(n𝜔T) = ejn𝜔T

2j
− e−jn𝜔T

2j
(3.16)

and hence, the z-transform of the sequence sin(n𝜔T)u(n) is given by

X(z) = 1
2j

∞∑
n=0

(ejn𝜔Tz−n − e−jn𝜔Tz−n)

= 1
2j

∞∑
n=0

ejn𝜔Tz−n − 1
2j

∞∑
n=0

e−jn𝜔Tz−n
. (3.17)

104 FINITE IMPULSE RESPONSE FILTERS

Using the result for x(n) = anu(n) with a = ej𝜔T ,

X(z) = 1
2j

(
z

z − ej𝜔T
− z

z − e−j𝜔T

)
= 1

2j

(
z2 − ze−j𝜔T − z2 + zej𝜔T

z2 − z(e−j𝜔T + ej𝜔T) + 1

)
= z sin(𝜔T)

z2 − 2z cos(𝜔T) + 1
, for |z| > 1. (3.18)

X(z) exists (converges) for |z| > |1|.
In the z-plane, this function has a zero at the origin and two complex conjugate

poles on the unit circle at angles +∕− 𝜔T. Its ROC is the entire z-plane outside of,
but not including, the unit circle.

Similarly, using Euler’s formula to express cos(n𝜔T) as the sum of two
complex exponentials, it can be shown that the z-transform of the sequence
x(n) = cos(n𝜔T)u(n) is given by

X(z) = z2 − z cos(𝜔T)
z2 − 2z cos(𝜔T) + 1

, for |z| > 1. (3.19)

3.1.3.2 Regions of Convergence The preceding examples illustrate some impor-
tant properties of the z-transform. Examples 3.5 and 3.6, for example, demonstrate
that for a given z-transform X(z), more than one ROC may be possible, corresponding
to more than one different time-domain sequence x(n). In order to transform from the
z-domain back to the time domain, it is necessary to consider the ROC.

It is instructive to represent the poles and zeros of X(z) and the ROCs in
Examples 3.5 and 3.6 graphically, as shown in Figures 3.2 and 3.3. In each case,
X(z) has a zero at the origin and a pole at z = a.

The two different ROCs for the z-transform X(z) = z∕(z − a) shown in the figures
are consistent with the following ROC properties.

• An ROC is a single, connected region of the z-plane.

• Since convergence of X(z) is dependent on the magnitude of z, the boundaries
of an ROC are circles centered on the origin of the z-plane.

• Since regions of convergence correspond to |X(z)| < ∞, the poles of X(z) do not
lie within its ROC.

• Right-sided (causal) sequences x(n) correspond to ROCs that extend outward
from a circle drawn through the outermost pole of X(z), that is, the pole with the
greatest magnitude.

• Left-sided (anticausal) sequences x(n) correspond to ROCs that extend inward
from a circle drawn through the innermost pole of X(z), that is, the pole with the
smallest magnitude.

• Two-sided (noncausal) sequences x(n) correspond to annular ROCs.

INTRODUCTION TO DIGITAL FILTERS 105

Re

Imz-plane

ROC

a

Figure 3.2 Poles and zeros and region of convergence for causal sequence x(n) = anu(n),
X(z) = z∕(z − a), plotted in the z-plane.

Re

Imz-plane

ROC

a

Figure 3.3 Poles and zeros and region of convergence for anticausal sequence
x(n) = −anu(−n − 1), X(z) = z∕(z − a), plotted in the z-plane.

Examples 3.1 through 3.4 illustrate the property that if x(n) is finite in duration, then
its ROC is the entire z-plane except possibly z = 0 or z = ∞.

In Examples 3.5 and 3.6, X(z) has only one pole (at z = a) and, hence, the two pos-
sible ROCs (corresponding to causal and anticausal x(n)) extend outward and inward
from a circle of radius a.

Figures 3.4 through 3.6 illustrate the case of a z-transform X(z) that has more than
one pole and for which more than two different ROCs, consistent with the properties
listed earlier, are possible.

3.1.3.3 Regions of Convergence and Stability An LTI system characterized by an
impulse response h(n) is BIBO stable if h(n) is absolutely summable, that is, if

∞∑
n=−∞

|h(n)| < ∞. (3.20)

106 FINITE IMPULSE RESPONSE FILTERS

Re

Imz-plane

ROC

Figure 3.4 Possible region of convergence, plotted in the z-plane, corresponding to a
right-sided causal sequence x(n) for a system with two real-valued poles.

Re

ROC

Imz-plane

Figure 3.5 Possible region of convergence, plotted in the z-plane, corresponding to a
left-sided anticausal sequence x(n) for a system with two real-valued poles.

Re

ROC

Imz-plane

Figure 3.6 Possible region of convergence, plotted in the z-plane, corresponding to a
two-sided noncausal sequence x(n) for a system with two real-valued poles.

INTRODUCTION TO DIGITAL FILTERS 107

Given that the z-transform of h(n) exists if

∞∑
n=−∞

|h(n)z−n| < ∞, (3.21)

if H(z) exists for |z| = 1, then the DTFT of h(n) exists and the system is BIBO stable.
In other words, if its ROC includes the unit circle, then the system represented by
H(z) and h(n) is BIBO stable.

Consider again the example of the right-sided (causal) sequence x(n) = anu(n) for
which the z-transform X(z) = z∕(z − a) converges if |z| > |a|. Figures 3.7 through 3.9
show possible regions of convergence and corresponding sequences x(n) for a < 1,
a = 1, and a > 1.

For the left-sided (anticausal) sequence x(n) = −anu(−n − 1), the z-transform
X(z) = z∕(z − a) converges if |z| < |a|. Figures 3.10 through 3.12 show possible
regions of convergence and corresponding sequences x(n) for a > 1, a = 1, and
a < 1.

Re1

x(n)

n

1

Imz-plane

ROC

a

Figure 3.7 Poles and zeros and region of convergence for X(z) = z∕(z − a) plotted in the
z-plane, for |a| < 1. Corresponding sequence x(n)anu(n) is causal and stable.

Re1

x(n)

n

1

Imz-plane

ROC

a

Figure 3.8 Poles and zeros and region of convergence for X(z) = z∕(z − a) plotted in the
z-plane, for |a| = 1. Corresponding sequence x(n)anu(n) is causal and unstable.

108 FINITE IMPULSE RESPONSE FILTERS

Re1

x(n)

n

1

Imz-plane

ROC

a

Figure 3.9 Poles and zeros and region of convergence for X(z) = z∕(z − a) plotted in the
z-plane, for |a| > 1. Corresponding sequence x(n) = anu(n) is causal and unstable.

Re1

x(n)

n

1

Imz-plane

ROC

a

Figure 3.10 Poles and zeros and region of convergence for X(z) = z∕(z − a) plotted in the
z-plane, for |a| < 1. Corresponding sequence x(n) = −anu(−n − 1) is anticausal and stable.

3.1.3.4 Poles and Zeros In the case of LTI causal systems, X(z) may be expressed
as a ratio of polynomials in z and as such has poles and zeros (values of z for which
X(z) is equal to zero or ∞). The poles and zeros of X(z) are related to the region(s) of
convergence of X(z). In fact, we can deduce possible ROCs from the poles and zeros
of X(z) according to the rules listed earlier. In most engineering applications, we are
concerned with, and will encounter, causal sequences.

3.1.4 Properties of the z-Transform

3.1.4.1 Linearity The z-transform obeys the laws of superposition.
If {x(n)} = X(z) and {y(n)} = Y(z) then {ax(n) + by(n)} = aX(z) + bY(z),

where x(n) and y(n) are arbitrary sequences and a and b are arbitrary constants.

3.1.4.2 Shifting For a time-shifted sequence x(n − m) where m is any integer

{x(n − m)} = z−mX(z). (3.22)

INTRODUCTION TO DIGITAL FILTERS 109

Re1

x(n)

n

1

Imz-plane

ROC

a

Figure 3.11 Poles and zeros and region of convergence for X(z) = z∕(z − a) plotted in the
z-plane, for |a| = 1. Corresponding sequence x(n) = −anu(−n − 1) is anticausal and unstable.

Re1

x(n)

n

1

Imz-plane

ROC

a

Figure 3.12 Poles and zeros and region of convergence for X(z) = z∕(z − a) plotted in the
z-plane, for |a| > 1. Corresponding sequence x(n) = −anu(−n − 1) is anticausal and unstable.

From the definition of the z-transform,

{x(n − m)} =
∞∑

n=−∞
x(n − m)z−n. (3.23)

Substituting l = (n − m),

{x(n − m)} =
∞∑

l=−∞
x(l)z−(l+m)

=
∞∑

l=−∞
x(l)z−lz−m

= z−m
∞∑

l=−∞
x(l)z−l

, (3.24)

which is recognizable as
{x(n − m)} = z−mX(z). (3.25)

110 FINITE IMPULSE RESPONSE FILTERS

3.1.4.3 Time Delay Quantity z−n in the z-domain corresponds to a shift of n sam-
pling instants in the time domain. This is also known as the unit delay property of the
z-transform.

3.1.4.4 Convolution The forced output y(n) of an LTI system having impulse
response h(n) and input x(n) is (as implemented explicitly by an FIR filter)

y(n) =
∞∑

m=0

h(m)x(n − m). (3.26)

This is the convolution sum. Taking its z-transform

{y(n)} ={
∞∑

m=−∞
h(m)x(n − m)},

Y(z) =
∞∑

n=−∞

[∞∑
m=−∞

h(m)x(n − m)

]
z−n

. (3.27)

Changing the order of summation

Y(z) =
∞∑

m=−∞

[∞∑
n=−∞

h(m)x(n − m)

]
z−n

=
∞∑

m=−∞
h(m)

[∞∑
n=−∞

x(n − m)

]
z−n

. (3.28)

Letting l = n − m,

Y(z) =
∞∑

m=−∞
h(m)

∞∑
n=−∞

x(l)z−lz − m

=
∞∑

m=−∞
h(m)z−m

∞∑
n=−∞

x(l)z−l

= H(z)X(z). (3.29)

Hence,
{h(n) ∗ x(n)} = H(z)X(z) (3.30)

that is, the z-transform of the linear convolution of sequences h(n) and x(n) is equiv-
alent to the product of the z-transforms, H(z) and X(z), of h(n) and x(n) (as shown in
Figure 3.13).

INTRODUCTION TO DIGITAL FILTERS 111

y(n) = x(n) ∗ h(n)x(n)

X(z)

H(z)

Y(z) = X(z)H(z)

h(n)

Figure 3.13 Time-domain and z-domain block diagram representations of a discrete-time
LTI system.

3.1.5 z-Transfer Functions

The convolution property of the z-transform is closely related to the concept of the
z-transfer function. The z-transfer function H(z) of a discrete-time LTI system is
defined as the ratio of the z-transform of its output sequence, Y(z), to the z-transform
of its input sequence, X(z). The z-transform of a system output sequence is there-
fore the z-transform of its input sequence multiplied by its z-transfer function, that is,
Y(z) = X(z)H(z). Since the z-transform of a unit impulse sequence is equal to unity,
the z-transfer function of a system is equal to the z-transform of its impulse response.

3.1.6 Mapping from the s-Plane to the z-Plane

Consider the Laplace transform that is generally applied to causal systems. The
Laplace transform can be used to determine the stability of a causal continuous-time,
LTI system. If the poles of a system are to the left of the imaginary axis in the
s-plane, they correspond to exponentially decaying components of that system’s
response in the time domain and hence correspond to stability. Poles located in the
right-hand half of the s-plane correspond to components of that system’s response
in the time domain that increase exponentially and hence correspond to instability.
Purely imaginary poles correspond to oscillatory (sinusoidal) system response
components. The relationship between the s-plane and the z-plane is represented by
the equation z = esT . Substituting for s according to s = 𝜎 + j𝜔,

z = e𝜎Tej𝜔T . (3.31)

The magnitude of z is given by |e𝜎T | and its phase by𝜔 . Consider the three regions
of the s-plane that determine system stability.

3.1.6.1 𝝈 < 0 The left-hand half of the s-plane represents values of s that have
negative real parts, and this corresponds to values of z that have magnitudes less than
unity (|e𝜎T | < 1). In other words, the left-hand half of the s-plane maps to a region

112 FINITE IMPULSE RESPONSE FILTERS

Imaginary
axis

Imaginary
axis

Real axis Real axis

z

z

z> 1 = 1

< 1

s-plane z-plane

σ = 0

σ < 0
σ > 0

Figure 3.14 Mapping from the s-plane to the z-plane.

of the complex z-plane inside the unit circle as shown in Figure 3.3. If the poles of a
z-transfer function lie inside that unit circle, then a causal system represented by that
z-transfer function will be stable.

3.1.6.2 𝝈 > 0 The right-hand half of the s-plane represents values of s that have
positive real parts, and this corresponds to values of z that have magnitudes greater
than unity (|e𝜎T| > 1). In other words, the right-hand half of the s-plane maps to
a region of the complex z-plane outside the unit circle as shown in Figure 3.14. If
the poles of a z-transfer function lie outside that unit circle, then a causal system
represented by that z-transfer function will be unstable.

3.1.6.3 𝝈 = 0 The imaginary axis in the s-plane maps to the unit circle in the
z-plane. If the poles of a z-transfer function lie on the unit circle in the z-plane, then a
causal system represented by that z-transfer function will have an oscillatory response
and is not considered stable.

This view of the relationship between the location of system poles in the z-plane
and system stability is, of course, consistent with consideration of whether or not
the ROC includes the unit circle as described earlier. For causal systems, the ROC
extends outward from the outermost pole, and for stability, the ROC must include the
unit circle.

3.1.7 Difference Equations

A digital filter is represented by a difference equation in a way similar to that in which
an analog filter is represented by a differential equation. A differential equation may
be solved using Laplace transforms, whereas a difference equation may be solved
using z-transforms. In order to do this, the z-transforms of a term x(n − k), which
corresponds to the kth derivative with respect to time dkx(t)∕dtk of analog signal x(t),
must be found. From its definition, the z-transform of a right-sided, causal sequence

INTRODUCTION TO DIGITAL FILTERS 113

is

X(z) =
∞∑

n=0

x(n)z−n = x(0) + x(1)z−1 + x(2)z−2 + · · · (3.32)

The z-transform of x(n − 1), which corresponds to a first-order derivative dx(t)∕dt, is

{x(n − 1)} =
∞∑

n=0

x(n − 1)z−n

= x(−1) + x(0)z−1 + x(1)z−2 + x(2)z−3 + · · ·

= x(−1) + z−1[x(0) + x(1)z−1 + x(2)z−2 + · · ·]

= x(−1) + z−1X(z), (3.33)

where x(−1) represents the initial condition associated with a first-order difference
equation. Similarly, the z-transform of (n − 2), which corresponds to a second-order
derivative d2x(t)∕dt2, is

{x(n − 2)} =
∞∑

n=0

x(n − 2)z−n

= x(−2) + x(−1)z−1 + x(0)z−2 + x(1)z−3 + · · ·

= x(−2) + x(−1)z−1 + z−2[x(0) + x(1)z−1 + x(2)z−2 + · · ·]

= x(−2) + x(−1)z−1 + z−2X(z), (3.34)

where x(−2) and x(−1) represent the two initial conditions associated with a
second-order difference equation. In general,

{x(n − k)} = z−k
k∑

m=1

x(−m)zm + z−kX(z). (3.35)

If the initial conditions are all zero, then x(−m) = 0 for m = 1, 2, · · · , k and
Equation (3.35) reduces to

{x(n − k)} = z−kX(z). (3.36)

3.1.8 Frequency Response and the z-Transform

The frequency response of a discrete-time system can be found by evaluating its
z-transfer function for z = ej𝜔T , where 𝜔 represents frequency in radians per second
and T represents sampling period in seconds. In other words, the frequency response
of a system is found by evaluating of its z-transfer function for values of z that lie on
the unit circle in the z-plane and the result will be periodic in 𝜔T. It is common to
express the frequency response of a discrete-time system as a function of normalized

114 FINITE IMPULSE RESPONSE FILTERS

frequency �̂� = 𝜔T over a range of 2𝜋 radians. Evaluating a z-transform for z = ej𝜔T ,
that is, around the unit circle in the z-plane corresponds to evaluating a Laplace trans-
form for s = j𝜔, that is, along the imaginary axis in the s-plane. This was considered
earlier where it was stated that the frequency response of a discrete-time system may
be found by evaluating the DTFT of its impulse response. If H(z) represents the
z-transfer function of a discrete-time LTI system having an FIR of length N, then
evaluation of that expression using z = ej�̂� yields the system’s frequency response.

H(�̂�) =
N−1∑
n=0

h(n)e−jn�̂�. (3.37)

3.1.9 The Inverse z-Transform

In practice, the inverse z-transform is best evaluated using tables of transform pairs,
where first decomposed a complicated X(z) by partial fraction expansion (PFE).

3.2 IDEAL FILTER RESPONSE CLASSIFICATIONS: LP, HP, BP, BS

Shown in Figure 3.15 are the magnitude frequency responses of ideal low-pass,
high-pass, band-pass, and band-stop filters. These are some of the most common
filter characteristics used in a range of applications.

3.2.1 Window Method of FIR Filter Design

The window, or Fourier series, approach to FIR filter design comprises three basic
steps.

1. Specify a desired frequency response.

2. Use inverse Fourier transformation to obtain a corresponding (discrete) impulse
response.

3. Multiply that impulse response by a finite, tapered window function to obtain
the FIR filter coefficients.

If the desired frequency response of the filter is specified as a continuous
(periodic) function of frequency, the form of inverse Fourier analysis that will yield
the discrete-time impulse response of the filter is the inverse discrete-time Fourier
transform (IDTFT). In general, the inverse DTFT applied to a continuous frequency
response will yield an infinite sequence in the time domain. Multiplication by a
finite window function will truncate that sequence. A symmetrical tapered window
function will reduce ripple (gain variation) in the resulting frequency response.
Since the impulse response of an FIR filter is discrete, its frequency response will be
periodic and therefore its desired frequency response needs to be specified over just
one period (2𝜋 radians of normalized frequency �̂�).

IDEAL FILTER RESPONSE CLASSIFICATIONS: LP, HP, BP, BS 115

H(ω)

H(ω)

H(ω)

H(ω)

ωc

ω

ω

ω

ω

−π π

ωc−π π

−π π

−π π
(d)

(c)

(b)

(a)

Figure 3.15 Ideal filter magnitude frequency responses. (a) Low-pass (LP). (b) High-pass
(HP). (c) Band-pass (BP). (d) Band-stop (BS).

116 FINITE IMPULSE RESPONSE FILTERS

Application of the inverse DTFT is relatively straightforward for some analytic
frequency responses (expressed as algebraic functions of �̂�) including the ideal filter
characteristics shown in Figure 3.15, but for arbitrary frequency responses, applying
the inverse DTFT may be problematic. In such cases, it is more practical to specify
the desired frequency response of a filter as a discrete function of frequency and to
compute a finite set of FIR filter coefficients using the inverse DFT.

3.2.2 Window Functions

A number of different tapered window functions are used in FIR filter design. All have
the effect of reducing the magnitude of gain variations in the filter frequency response
at the expense of a less sharp transition between pass and stop bands. These effects
are related to the difference in magnitude between the peak and the first sidelobe, and
the width of the central lobe, of the DTFT of the (discrete) window function itself.

3.2.2.1 Indexing of Filter Coefficients In a computer program, it is likely that
FIR filter coefficients h(n) and window functions w(n) will be indexed 0 ≤ n < N.
Alternatively, index n may be considered over the range −L ≤ n ≤ L. The following
examples involve type 1 FIR filters, that is, FIR filters having N coefficients where
N is odd, −L ≤ n ≤ L, h(n) = h(−n), and L = (N − 1)∕2. The order of such a filter is
(N − 1).

3.2.2.2 Common Window Functions The window functions described in what
follows are among the most commonly used. A rectangular window simply truncates
an IIR to yield a finite set of FIR filter coefficients.

Rectangular Window The rectangular window function is

wRECT(n) =

{
1, −L ≤ n ≤ L,

0, otherwise.
(3.38)

Compared with other window functions, a rectangular window has a narrow central
lobe (corresponding to a sharp transition between pass and stop bands), but its first
sidelobe is only 13 dB less than the peak of its central main lobe.

Hamming Window The Hamming window function is

wHAMM(n) =

{
0.54 + 0.46 cos(n𝜋∕L), −L ≤ n ≤ L,

0, otherwise.
(3.39)

The magnitude of the first sidelobe is approximately 43 dB less than that of the
main lobe.

IDEAL FILTER RESPONSE CLASSIFICATIONS: LP, HP, BP, BS 117

Hanning Window The Hanning window function is

wHANN(n) =

{
0.5 + 0.5 cos(n𝜋∕L), −L ≤ n ≤ L,

0, otherwise.
(3.40)

The magnitude of the first sidelobe is approximately 31 dB less than that of the
main lobe.

Blackman Window The Blackman window function is

wBLACK(n) =

{
0.42 + 0.5 cos(n𝜋∕L) + 0.08 cos(2n𝜋∕L), −L ≤ n ≤ L,

0, otherwise.
(3.41)

The magnitude of the first sidelobe is approximately 58 dB less than that of the
main lobe. Although the Blackman window produces a greater reduction in sidelobe
magnitude than does the Hamming or the Hanning window, it has a significantly
wider main lobe. Used in the design of a filter, the Blackman window will reduce the
ripple in the magnitude frequency response significantly but will result in a relatively
gradual transition from pass band to stop band.

Kaiser Window The Kaiser window is very popular for use in FIR filter design. It
has a variable parameter to control the size of the sidelobe relative to the main lobe.
The Kaiser window function is

wKAISER(n) =

{
I0(b)∕I0(a), |n| ≤ L,

0, otherwise,
(3.42)

where a is an empirically determined variable and b = a[1 − (n∕L)2]0.5. I0(x) is a
modified Bessel function of the first kind defined by

I0(x) = 1 + 0.25x2

(1!)2
+ (0.25x2)2

(2!)2
+ · · · = 1 +

∞∑
n=1

[
(x∕2)n

n!

]2

, (3.43)

which converges rapidly. A trade-off between the magnitude of the sidelobe and the
width of the main lobe can be achieved by changing the length of the window, n, and
the value of the parameter a.

The use of windows to reduce spectral leakage is discussed in Chapter 5.

Example 3.9 Design of an Ideal Low-Pass FIR Filter Using the Window
Method.

The ideal low-pass filter characteristic shown in Figure 3.16 is described by

H(�̂�) =

{
1, |�̂�| < �̂�c,

0, otherwise,
(3.44)

118 FINITE IMPULSE RESPONSE FILTERS

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

Frequency

M
ag

ni
tu

de

Figure 3.16 Ideal low-pass frequency response defined over normalized frequency range
−𝜋 ≤ �̂� ≤ 𝜋.

and the inverse DTFT of Equation (3.44) is

h(n) =
⎧⎪⎨⎪⎩

sin(�̂�cn)
n𝜋

, n ≠ 0,

�̂�c

𝜋
, n = 0,

(3.45)

for −L ≤ n ≤ L.
This result is illustrated in Figure 3.17, for �̂�c = 𝜋∕4, over the range −30 ≤ n

≤ 30. In order to implement an FIR filter, impulse response h(n) must be truncated
by multiplication with a window function of finite extent. Figure 3.18 shows the result
of truncation using a rectangular window of length N = 33 (−16 ≤ n ≤ 16). This has
the effect of introducing gain variations (ripple) into the corresponding frequency
response as shown in Figure 3.19. This continuous (periodic) frequency response is
found by taking the (forward) DTFT of the truncated impulse response shown in
Figure 3.18.

Multiplying the impulse response of Figure 3.17 by a tapered window function has
the effect of reducing the ripple in the magnitude frequency response at the expense
of making the transition from pass band to stop band less sharp. Figures 3.20–3.22
show a 33-point Hanning window function, the result of multiplying the impulse
response (filter coefficients) of Figure 3.19 by that window function, and the magni-
tude frequency response corresponding to the filter coefficients shown in Figure 3.21,
respectively.

Figure 3.23 shows the magnitude frequency responses of Figures 3.19 and 3.22
plotted together on a logarithmic scale. This emphasizes the wider main lobe and
suppressed sidelobes associated with the Hanning window.

IDEAL FILTER RESPONSE CLASSIFICATIONS: LP, HP, BP, BS 119

−30 −20 −10 0 10 20 30
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

n

h(
n)

Figure 3.17 Sixty-one of the infinite number of values in the discrete-time impulse response
obtained by taking the inverse DTFT of the ideal low-pass frequency response of Figure 3.16.

−30 −20 −10 0 10 20 30
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

n

h(
n)

Figure 3.18 The discrete-time impulse response of Figure 3.17 truncated to N = 33 values.

Finally, it is necessary to shift the time-domain filter coefficients. The preceding
figures show magnitude frequency responses that are even functions of frequency
and for which zero phase shift is specified. These correspond to real-valued filter
coefficients that are even functions of time but are noncausal. This can be changed by
introducing a delay and indexing the coefficients from 0 to 32 rather than from −16
to 16. This has no effect on the magnitude but introduces a linear phase shift to the
frequency response of the filter.

120 FINITE IMPULSE RESPONSE FILTERS

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

Frequency

M
ag

ni
tu

de

Figure 3.19 The continuous, periodic magnitude frequency response obtained by taking the
DTFT of the truncated impulse response shown in Figure 3.18 (plotted against normalized
frequency �̂�).

−30 −20 −10 0 10 20 30
0

0.5

1

1.5

n

h(
n)

Figure 3.20 A 33-point Hanning window.

3.2.3 Design of Ideal High-Pass, Band-Pass, and Band-Stop FIR Filters Using
the Window Method

3.2.3.1 Ideal High-Pass Filter The ideal high-pass filter characteristic shown in
Figure 3.24 is described by

H(�̂�) =

{
0, |�̂�| < �̂�c,

1, otherwise,
(3.46)

in the range −𝜋 < �̂� < 𝜋.

IDEAL FILTER RESPONSE CLASSIFICATIONS: LP, HP, BP, BS 121

−30 −20 −10 0 10 20 30
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

n

h(
n)

Figure 3.21 The filter coefficients of Figure 3.17 multiplied by the Hanning window of
Figure 3.20.

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

Frequency

M
ag

ni
tu

de

Figure 3.22 The magnitude frequency response corresponding to the filter coefficients of
Figure 3.21 (plotted against normalized frequency �̂�).

and the inverse DTFT of Equation (3.46) is

h(n) =
⎧⎪⎨⎪⎩
− sin(�̂�cn)

n𝜋
, n ≠ 0,

1 −
�̂�c

𝜋
, n = 0,

(3.47)

for −L ≤ n ≤ L.

122 FINITE IMPULSE RESPONSE FILTERS

−3 −2 −1 0 1 2 3
−80

−70

−60

−50

−40

−30

−20

−10

0

10

Frequency

M
ag

ni
tu

de
 (

dB
)

Figure 3.23 The magnitude frequency responses of Figures 3.19 and 3.22 plotted on a loga-
rithmic scale, against normalized frequency �̂�.

H (ω)

ωc

ω
−π π

Figure 3.24 Ideal high-pass filter magnitude frequency response.

3.2.3.2 Ideal Band-Pass Filter The ideal band-pass filter characteristic shown in
Figure 3.25 is described by

H(�̂�) =
⎧⎪⎨⎪⎩

0, |�̂�| < �̂�c1,

1, �̂�c1 ≤ |�̂�| ≤ �̂�c2,

0, |�̂�| > �̂�c2,

(3.48)

in the range −𝜋 < �̂� < 𝜋.
and the inverse DTFT of equation (3.48) is

h(n) =
⎧⎪⎨⎪⎩

sin(�̂�c2n) − sin(�̂�c1n)
n𝜋

, n ≠ 0,

�̂�c2 − �̂�c1

𝜋
, n = 0,

(3.49)

for −L ≤ n ≤ L.

PROGRAMMING EXAMPLES 123

−π π
ω

H (ω)

Figure 3.25 Ideal band-pass filter magnitude frequency response.

H (ω)

ω
−π π

Figure 3.26 Ideal band-stop filter magnitude frequency response.

3.2.3.3 Ideal band-stop filter The ideal band-stop filter characteristic shown in
Figure 3.26 is described by

H(�̂�) =
⎧⎪⎨⎪⎩

1, |�̂�| < �̂�c1,

0, �̂�c1 ≤ |�̂�| ≤ �̂�c2,

1, |�̂�| > �̂�c2,

(3.50)

in the range −𝜋 < �̂� < 𝜋.
and the inverse DTFT of Equation (3.50) is

h(n) =
⎧⎪⎨⎪⎩

sin(�̂�c1n) − sin(�̂�c2n)
n𝜋

, n ≠ 0

1 −
�̂�c2 − �̂�c1

𝜋
, n = 0

(3.51)

for −L ≤ n ≤ L.
High-pass, band-pass, and band-stop filters may be designed using the window

method described for the low-pass filter, but substituting Equations (3.47), (3.49), or
(3.51) for Equation (3.45).

3.3 PROGRAMMING EXAMPLES

The following examples illustrate the real-time implementation of FIR filters using
C and functions from the CMSIS DSP library for the ARM Cortex-M4 processor.

124 FINITE IMPULSE RESPONSE FILTERS

Several different methods of assessing the magnitude frequency response of a filter
are presented.

Example 3.10 Moving Average Filter (stm32f4_average_intr.c).

The moving average filter is widely used in DSP and arguably is the easiest of all
digital filters to understand. It is particularly effective at removing (high-frequency)
random noise from a signal or at smoothing a signal.

The moving average filter operates by taking the arithmetic mean of a number of
past input samples in order to produce each output sample. This may be represented
by the equation

y(n) = 1
N

N−1∑
i=0

x(n − i), (3.52)

where x(n) represents the nth sample of an input signal and y(n) the nth sample of
the filter output. The moving average filter is an example of convolution using a very
simple filter kernel, or impulse response, comprising N coefficients each of which
is equal to 1∕N. Equation (3.52) may be thought of as a particularly simple case of
the more general convolution sum implemented by an FIR filter and introduced in
Section 3.1, that is,

y(n) =
N−1∑
i=0

h(i)x(n − i), (3.53)

where the FIR filter coefficients h(i) are samples of the filter impulse response, and in
the case of the moving average filter, each is equal to 1∕N. As far as implementation
is concerned, at the nth sampling instant, we could either

1. multiply N past input samples individually by 1∕N and sum the N products,

2. sum N past input samples and multiply the sum by 1∕N, or

3. maintain a moving average by adding a new input sample (multiplied by 1∕N)
to and subtracting the (n − N + 1)th input sample (multiplied by 1∕N) from a
running total.

The third method of implementation is recursive, that is, calculation of the output
y(n) makes use of a previous output value y(n − 1). The recursive expression

y(n) = 1
N

x(n) − 1
N

x(n − N) + y(n − 1) (3.54)

is an instance of the general expression for a recursive or IIR filter

y(n) =
M∑

k=0

bkx(n − k) −
N∑

l=1

aly(n − l). (3.55)

PROGRAMMING EXAMPLES 125

Program stm32f4_average_intr.c, shown in Listing 3.1, uses the first of
these options, even though it may not be the most computationally efficient. The value
of N defined near the start of the source file determines the number of previous input
samples to be averaged.

Listing 3.1 Program stm32f4_average_intr.c.

1 // stm32f4_average_intr.c
2

3 #include “stm32f4_wm5102_init.h”
4

5 #define N 5
6

7 float32_t h[N];
8 float32_t x[N];
9

10 void SPI2_IRQHandler()
11 {
12 int16_t left_out_sample, right_out_sample;
13 int16_t left_in_sample, right_in_sample;
14 int16_t i;
15 float32_t yn = 0.0;
16

17 if (SPI_I2S_GetFlagStatus(I2Sx, I2S_FLAG_CHSIDE) SET)
18 {
19 left_in_sample = SPI_I2S_ReceiveData(I2Sx);
20 x[0] = (float32_t)(left_in_sample);
21 for (i=0 ; i<N ; i++) yn += h[i]*x[i];
22 for (i=(N-1) ; i>0 ; i–) x[i] = x[i-1];
23 left_out_sample = (int16_t)(yn);
24 while(SPI_I2S_GetFlagStatus(I2Sxext,
25 SPI_I2S_FLAG_TXE) != SET){}
26 SPI_I2S_SendData(I2Sxext, left_out_sample);
27 }
28 else
29 {
30 right_in_sample = SPI_I2S_ReceiveData(I2Sx);
31 right_out_sample = 0;
32 while(SPI_I2S_GetFlagStatus(I2Sxext,
33 SPI_I2S_FLAG_TXE) != SET){}
34 SPI_I2S_SendData(I2Sxext, right_out_sample);
35 }
36 }
37

38 int main(void)
39 {
40 int i;
41

42 for (i=0 ; i<N ; i++) h[i] = 1.0/N;
43 stm32_wm5102_init(FS_8000_HZ,
44 WM5102_LINE_IN,
45 IO_METHOD_INTR);

126 FINITE IMPULSE RESPONSE FILTERS

46 while(1);
47 }

Several different methods exist by which the characteristics of the five-point mov-
ing average filter may be demonstrated. A test file mefsin.wav contains a recording
of speech corrupted by the addition of a sinusoidal tone. Listen to this file using Gold-
wave, Windows Media Player, or similar. Then connect the PC soundcard line output
to the (green) LINE IN socket on the Wolfson audio card and listen to the filtered
test signal. With program stm32f4_average_intr.c running, you should find
that the sinusoidal tone has been blocked and that the speech sounds muffled. Both
observations are consistent with the filter having a low-pass frequency response.

A more rigorous method of assessing the magnitude frequency response of the
filter is to use a signal generator and an oscilloscope or spectrum analyzer to measure
its gain at different individual frequencies. Using this method, it is straightforward to
identify two distinct notches in the magnitude frequency response at 1600 Hz (corre-
sponding to the tone in test file mefsin.wav) and at 3200 Hz.

The theoretical frequency response of the filter can be found by taking the
discrete-time Fourier transform (DTFT) of its coefficients.

H(�̂�) =
N−1∑
n=0

h(n)e−j�̂�n. (3.56)

Evaluated over the frequency range −𝜋 < �̂� < 𝜋, where �̂� = 𝜔Ts, 𝜔 is frequency in
radians per second, and Ts is the sampling period in seconds. In this case,

H(�̂�) =
4∑

n=0

0.2e−j�̂�n

= 0.2(1 + e−j�̂� + e−j2�̂� + e−j3�̂� + e−j4�̂�)

= 0.2e−j2�̂�(ej2�̂� + ej�̂� + 1 + e−j�̂� + e−j2�̂�) (3.57)

and hence |H(�̂�)| = |0.2(1 + 2 cos(�̂�) + 2 cos(2�̂�))|. (3.58)

The theoretical magnitude frequency response of the filter is illustrated in
Figure 3.27. This is the magnitude of a Dirichlet, or periodic sinc, function.

Example 3.11 Moving Average Filter with Internally Generated Pseudoran-
dom Noise as Input (stm32f4_average_prbs_intr.c).

An alternative method of assessing the magnitude frequency response of a filter is
to use wideband noise as an input signal.

PROGRAMMING EXAMPLES 127

0 500 1000 1500 2000 2500 3000 3500 4000
−60

−50

−40

−30

−20

−10

10

0

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Figure 3.27 Theoretical magnitude frequency response of the five-point moving average
filter (sampling rate 8 kHz).

Program stm32f4_average_prbs_intr.c demonstrates this technique. A
pseudorandom binary sequence (PRBS) is generated within the program (see pro-
gram tm4c123_prbs_intr.c in Chapter 2) and used as an input to the filter in
lieu of samples read from the ADC. The filtered noise can be viewed on a spectrum
analyzer, and whereas the frequency content of the PRBS input is uniform across
all frequencies, the frequency content of the filtered noise corresponds to the mag-
nitude frequency response of the filter. Figure 3.28 shows the output of program
stm32f4_average_prbs_intr.c displayed using the FFT function of a Rigol
DS1052E oscilloscope and using Goldwave. Compare these plots with the theoretical
magnitude frequency response shown in Figure 3.27.

Example 3.12 Identification of Moving Average Filter Frequency Response
Using an Adaptive Filter (tm4c123_sysid_CMSIS_intr.c)).

In Chapter 2, program tm4c123_sysid_CMSIS_intr.c was used to iden-
tify the characteristics of the antialiasing and reconstruction filters of a codec. Here,
the same program is used to identify the characteristics of a moving average fil-
ter. For this example, two sets of hardware connected as shown in Figure 3.29 are
required. On one of the launchpads, run program tm4c123_average_intr.c,
and on the other, run program tm4c123_sysid_CMSIS_intr.c. After pro-
gram tm4c123_sysid_CMSIS_intr.c has run for a few seconds, halt the pro-
gram and save the values of the 256 adaptive filter coefficients firCoeffs32 to a
file by typing

128 FINITE IMPULSE RESPONSE FILTERS

(b)

(a)

Figure 3.28 Magnitude frequency response of the five-point moving average filter demon-
strated using program stm32f4_average_prbs_intr.c and displayed using (a) Rigol
DS1052E oscilloscope (lower trace) and (b) Goldwave.

save <filename.dat> <start address>, <start address + 0x400>

at the Command line in the MDK-ARM debugger, where start address is
the address of array firCoeffs32, and plot them using MATLAB® function
tm4c123_logfft().

The number of adaptive filter coefficients used by the program is set by the
preprocessor command

#define NUM_TAPS 256

PROGRAMMING EXAMPLES 129

LINE IN

LINE OUT

3.5 mm jack
to

3.5 mm jack

Adaptive
filter

+

−

PRBS

Program
tm4c123_average_intr.c

LINE IN

LINE OUT

3.5 mm jack
to

3.5 mm jack

Program
tm4c123_sysid_CMSIS_intr.c

Moving
average

filter

ADC

DAC

DAC

ADC

TM4C123 launchpad and
audio booster pack

TM4C123 launchpad and
audio booster pack

Figure 3.29 Connection diagram for use of program tm4c123_sysid_CMSIS_intr.c
to identify the characteristics of a moving average filter implemented using two sets of
hardware.

You should see something similar to what is shown in Figures 3.30 and 3.31, that
is, the impulse response and magnitude frequency response identified by the adaptive
filter.

The impulse response shown in Figure 3.30 differs from the theoretical (rectangu-
lar) impulse response of the moving average filter because it combines that with the
responses of the reconstruction and antialiasing filters in two AIC3104 codecs and
the ac coupling of the LINE IN and LINE OUT connections on the audio booster
packs. The oscillations before and after transitions in the waveform are similar to
those identified in Example 2.28 and shown in Figure 2.47.

In the magnitude frequency response shown in Figure 3.31, the discrepancies
between theoretical and measured responses at frequencies greater than 3.5 kHz and
at very low frequencies correspond to the characteristics of the antialiasing and recon-
struction filters in the two AIC3104 codecs and to the ac coupling of the LINE IN
and LINE OUT connections on the audio booster packs, respectively.

Example 3.13 Identification of Moving Average Filter Frequency Response
Using a Single Audio Booster Pack (tm4c123_sysid_average_CMSIS
_intr.c).

Program tm4c123_sysid_average_CMSIS_intr.c, shown in
Listing 3.2, collapses the signal path considered in the previous example onto
just one set of hardware, as shown in Figure 3.32. Build and run the program,
save the 256 adaptive filter coefficients firCoeffs32 to a file, and plot them
using MATLAB function tm4c123_logfft(). The results should differ only
subtly from those shown in Figures 3.30 and 3.31, because the identified signal path

130 FINITE IMPULSE RESPONSE FILTERS

0 0.0060.0040.002 0.008 0.01 0.012 0.014 0.016 0.018 0.02
−0.1

−0.05

0.25

0.2

0.15

0.1

0.05

0

Time (s)

Sa
m

pl
e

va
lu

e

Figure 3.30 Impulse response of the five-point moving average filter identified using
two launchpads and booster packs and programs tm4c123_sysid_CMSIS_intr.c and
tm4c123_average_intr.c.

0 500 1000 1500 2000 2500 3000 3500 4000
−60

−50

−40

−30

−20

−10

0

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Figure 3.31 Magnitude frequency response of the five-point moving average filter
identified using two sets of hardware and programs tm4c123_sysid_CMSIS_intr.cand
tm4c123_average_intr.c.

PROGRAMMING EXAMPLES 131

LINE IN

LINE OUT

Program tm4c123_sysid_average_CMSIS_intr.c

Adaptive
filter

+

−

PRBS

3.5 mm jack
to

3.5 mm jack

Moving
average

filter

TM4C123 launchpad and
audio booster pack

DAC

ADC

Figure 3.32 Connection diagram for program tm4c123_sysid_average_CMSIS_
intr.c.

contains just one antialiasing filter and one reconstruction filter (as opposed to two of
each). However, the delay before the peak in the impulse response identified should
be shorter than the 12 ms apparent in Figure 3.30.

Listing 3.2 Program tm4c123_sysid_average_CMSIS_intr.c.,

1 // tm4c123_sysid_average_CMSIS_intr.c
2

3 #include "tm4c123_aic3104_init.h"
4

5 #define BETA 1E-11
6 #define NUM_TAPS 256
7

8 #define BLOCK_SIZE 1
9

10 #define N 5
11 float32_t x[N];
12 float32_t h[N];
13

14 float32_t firStateF32[BLOCK_SIZE + NUM_TAPS -1];
15 float32_t firCoeffs32[NUM_TAPS] = {0.0};
16 arm_lms_instance_f32 S;
17

18 void SSI_interrupt_routine(void)
19 {
20 AIC3104_data_type sample_data;
21 float32_t adapt_in, adapt_out, desired;
22 float32_t error, input_left, input_right;
23 float32_t yn = 0.0f;
24 int16_t i;
25

132 FINITE IMPULSE RESPONSE FILTERS

26 SSIDataGet(SSI1_BASE,&sample_data.bit32);
27 input_left = (float32_t)(sample_data.bit16[0]);
28 SSIDataGet(SSI0_BASE,&sample_data.bit32);
29 input_right = (float32_t)(sample_data.bit16[0]);
30

31 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
32

33 adapt_in = (float32_t)(prbs(8000));
34 arm_lms_f32(&S, &adapt_in, &input_left, &adapt_out,
35 &error, BLOCK_SIZE);
36 x[0] = adapt_in;
37 for (i=0 ; i<N ; i++) yn += h[i]*x[i];
38 for (i=(N-1) ; i>0 ; i–) x[i] = x[i-1];
39

40 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
41

42 sample_data.bit32 = ((int16_t)(yn));
43 SSIDataPut(SSI1_BASE,sample_data.bit32);
44 SSIDataPut(SSI0_BASE,sample_data.bit32);
45

46 SSIIntClear(SSI0_BASE,SSI_RXFF);
47 }
48

49 int main()
50 {
51 int16_t i;
52

53 for(i=0 ; i<N ; i++) h[i] = 1.0/N;
54 arm_lms_init_f32(&S, NUM_TAPS, firCoeffs32,
55 firStateF32, BETA, BLOCK_SIZE);
56 tm4c123_aic3104_init(FS_8000_HZ,
57 AIC3104_LINE_IN,
58 IO_METHOD_INTR,
59 PGA_GAIN_6_DB);
60 while(1);
61 }

3.3.1 Altering the Coefficients of the Moving Average Filter

The frequency response of the moving average filter can be changed by alter-
ing the number of previous input samples that are averaged. Modify program
tm4c123_average_prbs_intr.c so that it implements an eleven-point
moving average filter, by changing the preprocessor command that reads

#define N 5

to read

#define N 11

PROGRAMMING EXAMPLES 133

Build and run the program and verify that the frequency response of the
filter has changed to that shown in Figure 3.33. Alternatively, you can make a
similar change to the number of points in the moving average filter in program
tm4c123_sysid_average_CMSIS_intr.c.

The frequency response of the eleven-point moving average filter has the same
form as that of the five-point moving average filter but the notches in the frequency
response occur at integer multiples of (8000/11)Hz, that is at 727, 1455, 2182, and
2909 Hz.

The frequency response of the filter can also be changed by altering the relative
values of the coefficients. Modify program tm4c123_sysid_average_CMSIS
_intr.c again, changing the preprocessor command and program statements that
read

#define N 11
float h[N];

to read

#define N 5
float h[N] = {0.0833, 0.2500, 0.3333. 0.2500, 0.0833};

and comment out the following program statement

for (i=0 ; i<N ; i++) h[i] = 1.0/N;

Figure 3.33 Magnitude frequency response of an eleven-point moving average filter
implemented using program tm4c123_average_prbs_intr.c and displayed using
Goldwave.

134 FINITE IMPULSE RESPONSE FILTERS

Figure 3.34 Magnitude frequency response of a five-point moving average filter with
Hanning window implemented using program stm32f4_average_prbs_intr.c and
displayed using Goldwave.

Build and run the program and observe the frequency response of the filter using
Goldwave (in the case of program tm4c123_average_prbs_intr.c) or
by saving and plotting filter coefficients firCoeffs32 (in the case of program
tm4c123_sysid_average_CMSIS_intr.c). You should find that the
high-frequency components of the input signal (pseudorandom noise) have been
attenuated more than before and also that the notches at 1600 and 3200 Hz have
disappeared as shown in Figure 3.34. You have effectively applied a Hanning
window to the coefficients of the five-point moving average filter.

The N-point Hanning window is described by the equation

w(n) = 0.5
(

1 − cos
(

2𝜋
n

N − 1

))
, 0 ≤ n < N (3.59)

and hence, for n = 0 and n = N, w(n) = 0. Since there is no point in including
two zero-value coefficients in the FIR filtering operation, in this example, the five
nonzero values of a seven-point Hanning window function, rather than the five val-
ues, including two zero values, of a five-point Hanning window function, have been
used.

The important, if rather obvious, point illustrated by this example, however, is
that a five-coefficient FIR filter may exhibit different frequency response characteris-
tics, depending on the values of its coefficients. The theoretical magnitude frequency

PROGRAMMING EXAMPLES 135

response of the filter may be found by taking the DTFT of its coefficients.

H(�̂�) =
4∑

n=0

h(n)e−j�̂�n

= 0.0833 + 0.25ej�̂� + 0.3333ej2�̂� + 0.25ej3�̂� + 0.0833ej4�̂�

= e−j2�̂�(0.0833e−j2�̂� + 0.25e−j�̂� + 0.3333 + 0.25ej�̂� + 0.0833ej2�̂�)).

(3.60)

Hence, |H(�̂�)| = |0.3333+ 0.5 cos(�̂�) + 0.1666 cos(2�̂�)|. (3.61)

The measured frequency responses of the five-point moving average filter and of
its windowed version may be interpreted as demonstrating the frequency-domain
characteristics of rectangular and Hanning windows as discussed in Section 3.2.2.
Specifically, the Hanning window has a wider main lobe and relatively smaller side-
lobes than a rectangular window.

Example 3.14 FIR Filter with Filter Coefficients Specified in Separate Header
Files (stm32f4_fir_intr.c and tm4c123_fir_intr.c).

The algorithm used by programs stm32f4_fir_intr.c and tm4c123_fir
_intr.c to calculate each output sample are identical to those employed by pro-
grams stm32f4_average_intr.c and tm4c123_average_intr.c. The
interrupt service routine functions SPI2_IRQHandler() and SSI_interrupt
_routine() have exactly the same definitions in each program. However, pro-
grams stm32f4_average_intr.c and tm4c123_average_intr.c calcu-
lated the values of their filter coefficients in function main(), whereas programs
stm32f4_fir_intr.c (shown in Listing 3.3) and tm4c123_fir_intr.c
read the values of their filter coefficients from separate header files.

Listing 3.3 Program stm32f4_fir_intr.c.

1 // stm32f4_fir_intr.c
2

3 #include “stm32f4_wm5102_init.h”
4 #include “maf5.h”
5

6 float32_t x[N];
7

8 void SPI2_IRQHandler()
9 {

10 int16_t left_out_sample, right_out_sample;
11 int16_t left_in_sample, right_in_sample;
12 int16_t i;
13 float32_t yn = 0.0;

136 FINITE IMPULSE RESPONSE FILTERS

14

15 if (SPI_I2S_GetFlagStatus(I2Sx, I2S_FLAG_CHSIDE) SET)
16 {
17 left_in_sample = SPI_I2S_ReceiveData(I2Sx);
18 x[0] = (float32_t)(prbs(8000));
19 for (i=0 ; i<N ; i++) yn += h[i]*x[i];
20 for (i=(N-1) ; i>0 ; i–) x[i] = x[i-1];
21 left_out_sample = (int16_t)(yn);
22 while(SPI_I2S_GetFlagStatus(I2Sxext,
23 SPI_I2S_FLAG_TXE) != SET){}
24 SPI_I2S_SendData(I2Sxext, left_out_sample);
25 }
26 else
27 {
28 right_in_sample = SPI_I2S_ReceiveData(I2Sx);
29 right_out_sample = 0;
30 while(SPI_I2S_GetFlagStatus(I2Sxext,
31 SPI_I2S_FLAG_TXE) != SET){}
32 SPI_I2S_SendData(I2Sxext, right_out_sample);
33 }
34 }
35

36 int main(void)
37 {
38 stm32_wm5102_init(FS_8000_HZ,
39 WM5102_LINE_IN,
40 IO_METHOD_INTR);
41 while(1){}
42 }

3.3.1.1 Five-Point Moving Average (maf5.h). Coefficient file maf5.h is
shown in Listing 3.4. Using that header file, programs stm32f4_fir_intr.c
and tm4c123_fir_intr.c implement the same five-point moving average filter
implemented by program stm32f4_average_intr.c in Example 3.10. The
number of filter coefficients is specified by the value of the constant N, defined in
the header file, and the coefficients are specified as the initial values in an N element
array, h, of type float32_t. Build and run program stm32f4_fir_intr.c
and verify that it implements a five-point moving average filter.

Listing 3.4 Coefficient header file maf5.h.

1 // maf5.h
2 // this file was generated using function stm32f4_fir_coeffs.m
3

4 #define N 5
5

6 float32_t h[N] = {
7 2.0000E-001,2.0000E-001,2.0000E-001,2.0000E-001,2.0000E-001
8 };

PROGRAMMING EXAMPLES 137

3.3.1.2 Low-Pass Filter, Cutoff at 2000 Hz (lp55.h) Edit source file
stm32f4_fir_intr.cor tm4c123_fir_intr.c, changing the preprocessor
command that reads

#include ave5.h

to read

#include lp55.h

Build and run the program. Use a signal generator connected to the (pink) LINE IN
socket on the Wolfson audio card to input a sinusoidal signal and verify that this is
attenuated significantly at the (green) LINE OUT socket if its frequency is greater
than 2 kHz.

3.3.1.3 Band-Stop Filter, Centered at 2700 Hz (bs2700.h) Edit source file
stm32f4_fir_intr.c, changing the line that reads

#include ave5.h

to read

#include bs2700.h

Build and run program stm32f4_fir_intr.c or tm4c123_fir_intr.c.
Input a sinusoidal signal and vary the input frequency slightly below and above
2700 Hz. Verify that the magnitude of the output is a minimum at 2700 Hz. The
values of the coefficients for this filter were calculated using the MATLAB filter
design and analysis tool, fdatool, as shown in Figure 3.35.

3.3.1.4 Band-Pass Filter, Centered at 1750 Hz (bp1750.h) Edit source file
stm32f4_fir_intr.c or tm4c123_fir_intr.c again to include the
coefficient file bp1750.h in place of bs2700.h. File bp1750.h represents an
FIR band-pass filter (81 coefficients) centered at 1750 Hz, as shown in Figure 3.36.
Again, this filter was designed using fdatool. Build and run the program again
and verify that it implements a band-pass filter centered at 1750 Hz.

3.3.2 Generating FIR Filter Coefficient Header Files Using MATLAB

If the number of filter coefficients is small, the coefficient header file may be
edited by hand. To be compatible with programs stm32f4_fir_intr.c and
tm4c123_fir_intr.c, a coefficient file must define constant N and declare and
initialize the contents of an array h, containing N floating point values. For larger
numbers of coefficients, the MATLAB function stm32f4_fir_coeffs(),
supplied as file stm32f4_fir_coeffs.m, or the MATLAB function
tm4c123_fir_coeffs(), supplied as file tm4c123_fir_coeffs.m,

138 FINITE IMPULSE RESPONSE FILTERS

Figure 3.35 MATLAB fdatool window corresponding to design the of an FIR band-stop
filter centered at 2700 Hz.

Figure 3.36 MATLAB fdatool window corresponding to design of FIR band-pass filter
centered at 1750 Hz.

PROGRAMMING EXAMPLES 139

can be used. Function stm32f4_fir_coeffs(), shown in Listing 3.5, should
be passed a MATLAB vector of coefficient values and will prompt the user for an
output filename. For example, the coefficient file maf5.h, shown in Listing 3.4,
was created by typing the following at the MATLAB command prompt:

>> x = [0.2, 0.2, 0.2, 0.2, 0.2];
>> stm32f4_fir_coeffs(x)
enter filename for coefficients maf5.h

Note that the coefficient filename must be entered in full, including the suffix .h.
Alternatively, the MATLAB filter design and analysis tool fdatool can be used
to calculate FIR filter coefficients and to export them to the MATLAB workspace.
Then function stm32f4_fir_coeffs() or tm4c123_fir_coeffs()
can be used to create a coefficient header file compatible with programs
stm32f4_fir_intr.c and tm4c123_fir_intr.c.

Listing 3.5 MATLAB m-file stm32f4_fir_coeffs.m.

1 % STM32F4_FIR_COEFFS.M
2 % MATLAB function to write FIR filter coefficients
3 % in format suitable for use in STM32F407 Discovery programs
4 % stm32f4_fir_intr.c and stm32f4_fir_prbs_intr.c
5 % written by Donald Reay
6 %
7

8 function stm32f4_fir_coeffs(coeff)
9

10 coefflen=length(coeff);
11 fname = input(’enter filename for coefficients ’,’s’);
12 fid = fopen(fname,’wt’);
13 fprintf(fid,’// %s\n’,fname);
14 fprintf(fid,’// this file was generated using ’);
15 fprintf(fid,’function stm32f4_fir_coeffs.m\n’);
16 fprintf(fid,’\n#define N %d\n’,coefflen);
17 % j is used to count coefficients written to current line
18 % in output file
19 fprintf(fid,’\nfloat32_t h[N] = { \n’);
20 j=0;
21 % i is used to count through coefficients
22 for i=1:coefflen
23 % if six coeffs have been written to current line
24 % then start new line
25 if j>5
26 j=0;
27 fprintf(fid,’\n’);
28 end
29 % if this is the last coefficient then simply write
30 % its value to the current line
31 % else write coefficient value, followed by comma
32 if i coefflen

140 FINITE IMPULSE RESPONSE FILTERS

33 fprintf(fid,’%2.4E’,coeff(i));
34 else
35 fprintf(fid,’%2.4E,’,coeff(i))
36 j=j+1;
37 end
38 end
39 fprintf(fid,’\n};\n’);
40 fclose(fid);
41 }

Example 3.15 FIR Implementation with Pseudorandom Noise as Input
(tm4c123_fir_prbs_intr.c).

Program tm4c123_fir_prbs_intr.c, shown in Listing 3.6, implements an
FIR filter and uses an internally generated pseudorandom noise sequence as input. In
all other respects, it is similar to program tm4c123_fir_intr.c. The coefficient
file bs2700.h is used initially.

Listing 3.6 Program tm4c123_fir_prbs_intr.c.

1 // tm4c123_fir_prbs_intr.c
2

3 #include "tm4c123_aic3104_init.h"
4

5 #include "bs2700.h"
6

7 float32_t x[N];
8

9 void SSI_interrupt_routine(void)
10 {
11 AIC3104_data_type sample_data;
12 float32_t input_left, input_right;
13 int16_t i;
14 float32_t yn = 0.0f;
15

16 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
17

18 SSIDataGet(SSI1_BASE,&sample_data.bit32);
19 input_left = (float32_t)(sample_data.bit16[0]);
20 SSIDataGet(SSI0_BASE,&sample_data.bit32);
21 input_right = (float32_t)(sample_data.bit16[0]);
22

23 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
24

25 x[0] = (float32_t)(prbs(8000));
26 for (i=0 ; i<N ; i++) yn += h[i]*x[i];
27 for (i=N-1 ; i>0 ; i–) x[i] = x[i-1];

PROGRAMMING EXAMPLES 141

28

29 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
30

31 sample_data.bit32 = ((int16_t)(yn));
32 SSIDataPut(SSI1_BASE,sample_data.bit32);
33 SSIDataPut(SSI0_BASE,sample_data.bit32);
34

35 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
36

37 SSIIntClear(SSI0_BASE,SSI_RXFF);
38 }
39

40 int main(void)
41 {
42 tm4c123_aic3104_init(FS_8000_HZ,
43 AIC3104_LINE_IN,
44 IO_METHOD_INTR,
45 PGA_GAIN_6_DB);
46 while(1){}
47 }

3.3.2.1 Running the Program Build and run the program and verify that the
output signal is pseudorandom noise filtered by an FIR band-stop filter centered at
2700 Hz. This output signal is shown using GoldWave and using the FFT function
of a Rigol DS1052E oscilloscope in Figure 3.37.

Testing Different FIR Filters Edit the C source filetm4c123_fir_prbs_intr.c
to include and test different coefficient files representing different FIR filters. Each
of the following coefficient files, except comb14.h, contains 55 coefficients.

1. bp55.h: band-pass with center frequency fs∕4

2. bs55.h: band-stop with center frequency fs∕4

3. lp55.h: low-pass with cutoff frequency fs∕4

4. hp55.h: high-pass with cutoff frequency fs∕4

5. pass2b.h: band-pass with two pass bands

6. pass3b.h: band-pass with three pass bands

7. pass4b.h: band-pass with four pass bands

8. comb14.h: multiple notches (comb filter)

Figure 3.38(a) shows the filtered noise output by an FIR filter with two pass bands,
using the coefficient file pass2b.h. Figure 3.38(b) shows the filtered noise output
by a high-pass FIR filter using the coefficient file hp55.h. In the cases of high-pass
and band-stop filters in particular, the low-pass characteristic of the reconstruction
filter in the AIC3104 codec is apparent.

142 FINITE IMPULSE RESPONSE FILTERS

(b)

(a)

Figure 3.37 Output generated using program tm4c123_fir_prbs_intr.c and
coefficient file bs2700.h displayed using (a) Rigol DS1052E oscilloscope and
(b) GoldWave.

Example 3.16 FIR Filter with Internally Generated Pseudorandom Noise as
Input and Output Stored in Memory (stm32f4_fir_prbs_buf_intr.c).

This example extends the previous one by storing the 256 most recent output
samples in memory. Program stm32f4_fir_prbs_buf_intr.c is shown in
Listing 3.7. The coefficient file bp1750.h represents an 81-coefficient FIR
band-pass filter centered at 1750 Hz.

PROGRAMMING EXAMPLES 143

(b)

(a)

Figure 3.38 Output generated using program tm4c123_fir_prbs_intr.c using
coefficient files (a) pass2b.h and (b) hp55.h.

Listing 3.7 Program stm32f4_fir_prbs_buf_intr.c.

1 // stm32f4_fir_prbs_buf_intr.c
2

3 #include "stm32f4_wm5102_init.h"
4 #include "bp1750.h"

144 FINITE IMPULSE RESPONSE FILTERS

5

6 #define YNBUFLENGTH 256
7

8 float32_t ynbuffer[YNBUFLENGTH];
9 int16_t ynbufptr = 0;

10 float32_t x[N];
11

12 void SPI2_IRQHandler()
13 {
14 int16_t left_out_sample, right_out_sample;
15 int16_t left_in_sample, right_in_sample;
16 int16_t i;
17 float32_t yn = 0.0;
18

19 if (SPI_I2S_GetFlagStatus(I2Sx, I2S_FLAG_CHSIDE) SET)
20 {
21 left_in_sample = SPI_I2S_ReceiveData(I2Sx);
22 x[0] = (float32_t)(prbs(8000));
23 for (i=0 ; i<N ; i++) yn += h[i]*x[i];
24 for (i=(N-1) ; i>0 ; i–) x[i] = x[i-1];
25 left_out_sample = (int16_t)(yn);
26 ynbuffer[ynbufptr] = yn;
27 ynbufptr = (ynbufptr+1) % YNBUFLENGTH;
28 while(SPI_I2S_GetFlagStatus(I2Sxext,
29 SPI_I2S_FLAG_TXE) != SET){}
30 SPI_I2S_SendData(I2Sxext, left_out_sample);
31 }
32 else
33 {
34 right_in_sample = SPI_I2S_ReceiveData(I2Sx);
35 right_out_sample = 0;
36 while(SPI_I2S_GetFlagStatus(I2Sxext,
37 SPI_I2S_FLAG_TXE) != SET){}
38 SPI_I2S_SendData(I2Sxext, right_out_sample);
39 }
40 }
41

42 int main(void)
43 {
44 stm32_wm5102_init(FS_8000_HZ,
45 WM5102_LINE_IN,
46 IO_METHOD_INTR);
47 while(1){}
48 }

3.3.2.2 Running the Program Build and run the program. Verify that the output
signal is bandlimited noise. Then halt the program and save the contents of array
ynbuffer to a data file by typing

save <filename.dat> <start address>, <start address + 0x400>

PROGRAMMING EXAMPLES 145

where start address is the address of array ynbuffer. Use MATLAB function
stm32f4_logfft() in order to display the frequency content of the 256 stored
output samples, as shown in Figure 3.39 (Figure 3.40).

Figure 3.41 shows the magnitude of the FFT of the bp1750.h filter coefficients
for comparison.

Program stm32f4_fir_prbs_buf_intr.c allows the user to switch the
signal written to the WM5102 DAC between filtered and unfiltered noise so as to
emphasize the action of the filter. The filter is toggled on and off by pressing the
(blue) user pushbutton on the Discovery board.

Example 3.17 Effects on Voice or Music Using Three FIR Low-Pass Filters
(tm4c123_fir3lp_intr.c).

Listing 3.8 show program stm32f4_fir3lp_intr.c, which implements
three different FIR low-pass filters with cutoff frequencies at 600, 1500, and 3000 Hz.
Filter coefficients designed using MATLAB are read from file fir3lp_coeffs.h
and, during initialization, copied into a single, two-dimensional array h. While the
program is running, variable FIR_number selects the desired low-pass filter to
be implemented. For example, if FIR_number is set to 0, h[0][i] is set equal
to hlp600[i], that is, the set of coefficients representing a low-pass filter with a
cutoff frequency of 600 Hz. The value of FIR_number can be cycled through the
values 0 through 2 to implement the 600, 1500, or 3000 Hz low pass filter, using
switch SW1 on the launchpad while the program is running.

0
−40

−30

30

−20

20

−10

10

0

M
ag

ni
tu

de
 (

dB
)

500 1000 1500 2000

Frequency (Hz)

2500 3000 40003500

Figure 3.39 Magnitude of the FFT of the output from program stm32f4_fir_
prbs_buf_intr.c using coefficient header file bp1750.h.

146 FINITE IMPULSE RESPONSE FILTERS

0
−0.2

−0.15

0.15

−0.1

0.1

−0.05

0.05

0

Sa
m

pl
e

va
lu

e

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Time (s)

Figure 3.40 Filter coefficients used in program stm32f4_fir_prbs_buf_intr.c
(bp1750.h).

0
−100

−80

−60

−40

−20

0

20

500 1000 1500 2000

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

2500 3000 40003500

Figure 3.41 Magnitude of the FFT of the filter coefficients used in program
stm32f4_fir_prbs_buf_intr.c.

Listing 3.8 Program tm4c123_fir3lp_intr.c.

1 // tm4c123_fir3lp_intr.c
2

3 #include "tm4c123_aic3104_init.h"
4

PROGRAMMING EXAMPLES 147

5 #include "L138_fir3lp_coeffs.h"
6 float32_t x[N];
7 float32_t h[3][N];
8

9 int16_t FIR_number = 0;
10

11 void SSI_interrupt_routine(void)
12 {
13 AIC3104_data_type sample_data;
14 float32_t input_left, input_right;
15 int16_t i;
16 float32_t yn = 0.0f;
17

18 SSIDataGet(SSI1_BASE,&sample_data.bit32);
19 input_left = (float32_t)(sample_data.bit16[0]);
20 SSIDataGet(SSI0_BASE,&sample_data.bit32);
21 input_right = (float32_t)(sample_data.bit16[0]);
22

23 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
24

25 x[0] = input_left;
26 for (i=0 ; i<N ; i++) yn += h[FIR_number][i]*x[i];
27 for (i=(N-1) ; i>0 ; i–) x[i] = x[i-1];
28

29 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
30

31 sample_data.bit32 = ((int16_t)(yn));
32 SSIDataPut(SSI1_BASE,sample_data.bit32);
33 SSIDataPut(SSI0_BASE,sample_data.bit32);
34

35 SSIIntClear(SSI0_BASE,SSI_RXFF);
36 }
37

38 int main(void)
39 {
40 int16_t i;
41

42 for (i=0; i<N; i++)
43 {
44 x[i] = 0.0;
45 h[0][i] = hlp600[i];
46 h[1][i] = hlp1500[i];
47 h[2][i] = hlp3000[i];
48 }
49 tm4c123_aic3104_init(FS_8000_HZ,
50 AIC3104_LINE_IN,
51 IO_METHOD_INTR,
52 PGA_GAIN_6_DB);
53 while(1)
54 }
55 ROM_SysCtlDelay(10000);
56 if (!GPIOPinRead(GPIO_PORTF_BASE, GPIO_PIN_4))
57 {
58 ROM_SysCtlDelay(10000);

148 FINITE IMPULSE RESPONSE FILTERS

59 FIR_number = (FIR_number+1) % 3;
60 while (!GPIOPinRead(GPIO_PORTF_BASE, GPIO_PIN_4)){}
61 }
62 }
63 }

As supplied, the program configures the AIC3104 codec to accept input from the
(blue) LINE IN socket on the audio booster pack. In order to test the effect of the
filters using a microphone as an input device, change the program statement that
reads

tm4c123_aic3104_init(FS_8000_HZ,
AIC3104_LINE_IN,
IO_METHOD_INTR,
PGA_GAIN_6_DB);

to read

tm4c123_aic3104_init(FS_8000_HZ,
AIC3104_MIC_IN,
IO_METHOD_INTR,
PGA_GAIN_6_DB);

The effect of the filters is particularly striking if applied to musical input. Alter-
natively, the effects of the filters can be illustrated using an oscilloscope and a signal
generator. Figure 3.42 shows a 200 Hz square wave that has been passed through the
three different low-pass filters. The slope on the sections of the waveforms between
transitions is due to the ac coupling of the LINE OUT and LINE IN connections on
the audio booster pack.

The magnitude frequency response of the three different filters may be observed
using Goldwave and by changing the program statement that reads

x[0] = input_left;

to read

x[0] = (float32_t)(prbs(8000));

or, alternatively, by blowing gently on the microphone.

Example 3.18 Implementation of Four Different Filters: Low-Pass, High-Pass,
Band-Pass, and Band-Stop (tm4c123_fir4types_intr.c).

This example is very similar to the previous one but illustrates the effects of
low-pass, high-pass, band-pass, and band-stop FIR filters. The filter type may be

PROGRAMMING EXAMPLES 149

Figure 3.42 A 200 Hz square wave passed through three different low-pass filters imple-
mented using program tm4c123_fir3lp_intr.c.

changed while program tm4c123_fir4types_intr.c is running using switch
SW1 on the launchpad. All four 81-coefficient filters were designed using MATLAB.
They are

1. Low-pass filter, with bandwidth of 1500 Hz.

2. High-pass filter, with bandwidth of 2200 Hz.

3. Band-pass filter, with center frequency at 1750 Hz.

4. Band-stop filter, with center frequency at 790 Hz.

150 FINITE IMPULSE RESPONSE FILTERS

As in the previous example, the effects of the four different filters on musical input
are particularly striking. Figure 3.43 shows the magnitude frequency response of the
FIR band stop filter centered at 790 Hz, tested using the file stereonoise.wav
played through a PC sound card as input.

Example 3.19 Two Notch Filters to Recover a Corrupted Speech Recording
(tm4c123_notch2_intr.c).

This example illustrates the use of two notch (band-stop) FIR filters in series to
recover a speech recording corrupted by the addition of two sinusoidal signals at
frequencies of 900 and 2700 Hz. Program tm4c123_notch2_intr.c is shown
in Listing 3.9. Header file notch2_coeffs.h contains the coefficients for two FIR
notch (band-stop) filters in arrays h900 and h2700. The output of the first notch
filter, centered at 900 Hz, is used as the input to the second notch filter, centered at
2700 Hz. Build and run the program. The file corrupt.wav contains a recording
of speech corrupted by the addition of 900 and 2700 Hz sinusoidal tones. Listen to
this file using GoldWave, Windows Media Player, or similar. Then connect the PC
sound card output to the (blue) LINE IN socket on the audio booster pack and listen
to the filtered test signal on (black) LINE OUT or (green) HP OUT connections.
Switch SW1 on the launchpad can be used to select the output of either the first or the
second of the notch filters. Compare the results of this example with those obtained
in Example 3.10 in which a notch in the magnitude frequency response of a moving

Figure 3.43 Output generated using program tm4c123_fir_4types_intr.c.

PROGRAMMING EXAMPLES 151

average filter was exploited in order to filter out an unwanted sinusoidal tone. In this
case, the filtered speech may sound brighter because the notch filters used here do
not have an overall low-pass characteristic. Figure 3.44 shows the output of the filter
using pseudorandom noise as an input signal.

Figure 3.44 Pseudorandom noise filtered using program tm4c123_notch2_intr.c.

Listing 3.9 Program tm4c123_notch2_intr.c.

1 // tm4c123_notch2_intr.c
2

3 #include “tm4c123_aic3104_init.h”
4 #include “notch2_coeffs.h”
5

6 float32_t x[N][2]; // filter delay lines
7

8 int16_t out_type = 0;
9

10 AIC3104_data_type sample_data;
11

12 void SSI_interrupt_routine(void)
13 {
14 float32_t input_left, input_right;
15 int16_t i;
16 float32_t yn[2];
17

18 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);

152 FINITE IMPULSE RESPONSE FILTERS

19

20 SSIDataGet(SSI1_BASE,&sample_data.bit32);
21 input_left = (float32_t)(sample_data.bit16[0]);
22 SSIDataGet(SSI0_BASE,&sample_data.bit32);
23 input_right = (float32_t)(sample_data.bit16[0]);
24

25 x[0][0] = input_left;
26 yn[0] = 0.0; // compute filter 1 output
27 for (i = 0; i< N; i++) yn[0] += h900[i]*x[i][0];
28 x[0][1] = (yn[0]);
29 yn[1] = 0.0; // compute filter 2 output
30 for (i = 0; i< N; i++) yn[1] += h2700[i]*x[i][1];
31 for (i = N-1; i > 0; i–) // shift delay lines
32 {
33 x[i][0] = x[i-1][0];
34 x[i][1] = x[i-1][1];
35 }
36 sample_data.bit32 = ((int16_t)(yn[out_type]));
37 SSIDataPut(SSI0_BASE,sample_data.bit32);
38 SSIDataPut(SSI1_BASE,sample_data.bit32);
39

40 SSIIntClear(SSI0_BASE,SSI_RXFF);
41 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
42 }
43

44 int main(void)
45 {
46 tm4c123_aic3104_init(FS_8000_HZ,
47 AIC3104_LINE_IN,
48 IO_METHOD_INTR,
49 PGA_GAIN_6_DB);
50 while(1)
51 {
52 ROM_SysCtlDelay(10000);
53 if (!GPIOPinRead(GPIO_PORTF_BASE, GPIO_PIN_4))
54 {
55 ROM_SysCtlDelay(10000);
56 out_type = (out_type+1) %2;
57 while (!GPIOPinRead(GPIO_PORTF_BASE, GPIO_PIN_4)){}
58 }
59 }
60 }

Example 3.20 Voice Scrambling Using Filtering and Modulation (tm4c123_
scrambler_intr.c).

This example illustrates a voice scrambling and descrambling scheme. The
approach makes use of basic algorithms for filtering and modulation. Modulation
was introduced in the AM example in Chapter 2. With voice as input, the resulting
output is scrambled voice. The original descrambled voice is recovered when the

PROGRAMMING EXAMPLES 153

scrambled voice is used as the input to a second system running the same program.
The scrambling method used is commonly referred to as frequency inversion. It
takes an audio range, in this case 300 Hz to 3 kHz, and “folds” it about a 3.3 kHz
carrier signal. The frequency inversion is achieved by multiplying (modulating) the
audio input by a carrier signal, causing a shift in the frequency spectrum with upper
and lower sidebands. In the lower sideband, which represents the audible speech
range, the low tones are high tones, and vice versa.

Figure 3.45 shows a block diagram of the scrambling scheme. At point A,
the input signal has been bandlimited (low pass filtered) to 3 kHz. At point B,
a double-sideband signal with suppressed carrier has been formed. At point
C, the upper sideband and the section of the lower sideband between 3 and
3.3 kHz are filtered out. The scheme is attractive because of its simplicity. Only
simple DSP algorithms, namely filtering, sine wave generation and amplitude
modulation are required for its implementation. Listing 3.10 is of program
tm4c123_scrambler_intr.c, which operates at a sampling rate of 16 kHz.
The input signal is first low-pass filtered using an FIR filter with 65 coefficients,
stored in array h, and defined in the file lp3k64.h. The filtering algorithm used
is identical to that used in, for example, programs tm4c123_fir_intr.c and
stm32f4_fir_intr.c. The filter delay line is implemented using array x1 and
the output is assigned to variable yn1. The filter output (at point A in Figure 3.45)
is multiplied (modulated) by a 3.3 kHz sinusoid stored as 160 samples (exactly 33
cycles) in array sine160 (read from file sine160.h) . Finally, the modulated
signal (at point B) is low-pass filtered again, using the same set of filter coefficients
h (lp3k64.h) but a different filter delay line implemented using array x2 and
the output variable yn2. The output is a scrambled signal (at point C). Using this
scrambled signal as the input to a second system running the same algorithm, the
original descrambled input may be recovered.

3.3.2.3 Running the Program Build and run the program. First, test the program
using a 2 kHz sine wave as input. The resulting output is a lower sideband signal at
1.3 kHz. The upper sideband signal at 5.3 kHz is filtered out by the second low-pass
filter. By varying the frequency of the sinusoidal input, you should be able to verify
that input frequencies in the range 300–3000 Hz appear as output frequencies in the
inverted range 3000–300 Hz.

Input
Multiplier

3.3 kHz
sine

generator

A B C
3 kHz

LP filter
3 kHz

LP filter

Output

Figure 3.45 Block diagram representation of scrambler implemented using program
tm4c123_scrambler_intr.c.

154 FINITE IMPULSE RESPONSE FILTERS

Listing 3.10 Program tm4c123_scrambler_intr.c.

1 // tm4c123_scrambler_intr.c
2

3 #include “tm4c123_aic3104_init.h”
4

5 #include “sine160.h” // 3300 Hz sinusoid
6 #include “lp3k64.cof” // low-pass filter coefficients
7

8 float xa[N],xb[N]; // filter delay lines
9 int sine_ptr = 0; // pointer to sinusoid samples

10

11 AIC3104_data_type sample_data;
12

13 void SSI_interrupt_routine(void)
14 {
15 float32_t input_left, input_right;
16 float32_t yn;
17 int16_t i;
18

19 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
20

21 SSIDataGet(SSI0_BASE,&sample_data.bit32);
22 input_left = (float32_t)(sample_data.bit16[0]);
23 SSIDataGet(SSI1_BASE,&sample_data.bit32);
24 input_right = (float32_t)(sample_data.bit16[0]);
25

26 xa[0] = (input_left); // filter a
27 yn = 0.0;
28 for (i=0 ; i<N ; i++) yn += h[i]*xa[i];
29 for (i=(N-1) ; i>0 ; i–) xa[i] = xa[i-1];
30 yn *= sine160[sine_ptr]; // mix with 3300 Hz
31 sine_ptr = (sine_ptr+1) % NSINE;
32 xb[0] = yn; // filter b
33 yn = 0.0;
34 for (i=0 ; i<N ; i++) yn += h[i]*xb[i];
35 for (i=(N-1) ; i>0 ; i–) xb[i] = xb[i-1];
36

37 sample_data.bit32 = ((int16_t)(yn));
38 SSIDataPut(SSI0_BASE,sample_data.bit32);
39 SSIDataPut(SSI1_BASE,sample_data.bit32);
40

41 SSIIntClear(SSI0_BASE,SSI_RXFF);
42 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
43 }
44

45 int main(void)
46 {
47 tm4c123_aic3104_init(FS_8000_HZ,
48 AIC3104_LINE_IN,
49 IO_METHOD_INTR,
50 PGA_GAIN_6_DB);
51 while(1){}
52 }

PROGRAMMING EXAMPLES 155

A second hardware system running the same program can be used to recover the
original signal (simulating the receiving end). Use the output of the first audio card as
the input to the second. In order to test the scrambler and descrambler using speech
from a microphone as the input, change the program statement that reads

tm4c123_aic3104_init(FS_8000_HZ,
AIC3104_LINE_IN,
IO_METHOD_INTR,
PGA_GAIN_6_DB);

to read

tm4c123_aic3104_init(FS_8000_HZ,
AIC3104_MIC_IN,
IO_METHOD_INTR,
PGA_GAIN_6_DB);

at the transmitting end.
Connect LINE OUT (black) on the transmitting end system (scrambler) to LINE

IN (blue) on the receiving end system (descrambler). Interception and descrambling
of the scrambled speech signal could be made more difficult by changing the mod-
ulation frequency dynamically and by including (or omitting) the carrier frequency
according to a predefined sequence.

Example 3.21 FIR filter implemented using DMA-based i/o (tm4c123_fir
_dma.c and stm32f4_fir_dma.c).

Programs tm4c123_fir_dma.c, stm32f4_fir_dma.c, tm4c123_fir
_prbs_dma.c and stm32f4_fir_prbs_dma.c have similar function-
ality to programs tm4c123_fir_intr.c, stm32f4_fir_intr.c,
tm4c123_fir_prbs_intr.c and stm32f4_fir_prbs_intr.c but
use DMA-based as opposed to interrupt-based i/o (as illustrated previously in
Examples 2.5 and 2.6). As supplied, they implement band-pass filters centered on
1750 Hz. The filter characteristics implemented by the programs can be changed by
including different coefficient header files.

Example 3.22 FIR Filter Implemented Using a CMSIS DSP Library Function
(tm4c123_fir_prbs_CMSIS_dma.c and stm32f4_fir_prbs_CMSIS
_dma.c).

Function arm_fir_f32() supplied as part of the CMSIS DSP library
is an optimized floating-point implementation of an FIR filter. The func-
tion is passed a block of input samples and computes a corresponding block
of output samples, and hence, it is suited to DMA-based i/o (although it is
possible to set the size of the block of samples to one and to call the func-
tion in a program using interrupt-based i/o). Apart from using the CMSIS

156 FINITE IMPULSE RESPONSE FILTERS

DSP library function, programs tm4c123_fir_prbs_CMSIS_dma.c and
stm32f4_fir_prbs_CMSIS_dma.c (shown in Listing 3.11) are similar to
programs tm4c123_fir_prbs_dma.c and stm32f4_fir_prbs_dma.c.

3.3.2.4 Number of Sample Values in Each DMA Transfer The number of sample
values in each DMA transfer is set in header files stm32f4_wm5102_init.h and
tm4c123_aic3104_init.h by the value of the constant BUFSIZE. However,
in the example programs in this book and as described in Chapter 2, whereas the
TM4C123 is configured so that four DMA transfers take place concurrently (one in
each direction for each of the two audio channels L and R), whereas STM32F4 is
configured so that two DMA transfers take place concurrently (one in each direction,
but each one transferring both L and R channel sample values). In each case, the
value of the constant BUFSIZE determines the number of 16-bit values per DMA
transfer.

In the case of TM4C123, each DMA transfer block processed by function Lpro-
cess_buffer() contains BUFSIZE 16-bit L channel samples and one call to
function arm_fir_f32() processes these BUFSIZE sample values.

In the case of STM32F4, each DMA transfer block processed by function pro-
cess_buffer() containsBUFSIZE/2 16-bit L channel samples interleaved with
BUFSIZE/2 16-bit R channel samples and one call to function arm_fir_f32()
is used to process BUFSIZE/2 L channel sample values.

Listing 3.11 Program stm32f4_fir_prbs_CMSIS_dma.c.

1 // stm32f4_fir_prbs_CMSIS_dma.c
2

3 #include “stm32f4_wm5102_init.h”
4

5 #include “bp1750.h”
6

7 extern uint16_t pingIN[BUFSIZE], pingOUT[BUFSIZE];
8 extern uint16_t pongIN[BUFSIZE], pongOUT[BUFSIZE];
9 int rx_proc_buffer, tx_proc_buffer;

10 volatile int RX_buffer_full = 0;
11 volatile int TX_buffer_empty = 0;
12

13 float32_t x[BUFSIZE/2], y[BUFSIZE/2], state[N+(BUFSIZE/2)-1];
14

15 arm_fir_instance_f32 S;
16

17 void DMA1_Stream3_IRQHandler()
18 {
19 if(DMA_GetITStatus(DMA1_Stream3,DMA_IT_TCIF3))
20 {
21 DMA_ClearITPendingBit(DMA1_Stream3,DMA_IT_TCIF3);
22 if(DMA_GetCurrentMemoryTarget(DMA1_Stream3))
23 rx_proc_buffer = PING;
24 else
25 rx_proc_buffer = PONG;

PROGRAMMING EXAMPLES 157

26 RX_buffer_full = 1;
27 }
28 }
29

30 void DMA1_Stream4_IRQHandler()
31 {
32 if(DMA_GetITStatus(DMA1_Stream4,DMA_IT_TCIF4))
33 {
34 DMA_ClearITPendingBit(DMA1_Stream4,DMA_IT_TCIF4);
35 if(DMA_GetCurrentMemoryTarget(DMA1_Stream4))
36 tx_proc_buffer = PING;
37 else
38 tx_proc_buffer = PONG;
39 TX_buffer_empty = 1;
40 }
41 }
42

43 void process_buffer()
44 {
45 int i;
46 uint16_t *rxbuf, *txbuf;
47

48 if (rx_proc_buffer PING)
49 rxbuf = pingIN;
50 else
51 rxbuf = pongIN;
52 if (tx_proc_buffer PING)
53 txbuf = pingOUT;
54 else
55 txbuf = pongOUT;
56

57 // place BUFSIZE/2 prbs values in x[]
58 for (i=0 ; i<(BUFSIZE/2) ; i++)
59 {
60 x[i] = (float32_t)(prbs(8000));
61 }
62 // compute BUFSIZE/2 filter output values in y[]
63 arm_fir_f32(&S,x,y,BUFSIZE/2);
64 // write BUFSIZE/2 samples to output channels
65 for (i=0 ; i<(BUFSIZE/2) ; i++)
66 {
67 *txbuf++ = (int16_t)(y[i]);
68 *txbuf++ = (int16_t)(y[i]);
69 }
70 TX_buffer_empty = 0;
71 RX_buffer_full = 0;
72 }
73

74 int main(void)
75 {
76 arm_fir_init_f32(&S, N, h, state, BUFSIZE/2);
77 stm32_wm5102_init(FS_8000_HZ,
78 WM5102_LINE_IN,
79 IO_METHOD_DMA);

158 FINITE IMPULSE RESPONSE FILTERS

80 while(1)
81 {
82 while (!(RX_buffer_full && TX_buffer_empty)){}
83 GPIO_SetBits(GPIOD, GPIO_Pin_15);
84 process_buffer();
85 GPIO_ResetBits(GPIOD, GPIO_Pin_15);
86 }
87 }

Example 3.23 Comparison of Execution Times for Three Different FIR Filter
Implementations (tm4c123_fir3ways_intr.c).

A straightforward method of measuring the time taken to compute each FIR filter
output sample is to toggle a GPIO output pin setting it high in a program state-
ment immediately preceding computation and resetting it low in a program statement
immediately following computation. Most of the example programs in this chapter
do this. On the TM4C123 Launchpad, GPIO pin PE2 is used, and on the STM32F407
Discovery, GPIO pin PD15 is used.

Figure 3.46 shows the signal output by programtm4c123_fir_prbs_intr.c
on GPIO pin PE2. This program uses interrupt-based i/o and the rectangular pulse is
repeated every 125 𝜇s, reflecting the 8-kHz sampling frequency. The duration of the
pulse, that is 13.6 𝜇s, indicates that the program takes that time in order to compute
the value of each output sample value. The higher the order of the FIR implemented
by this program (as determined by the coefficient header file used), the longer it will
take to compute each output sample value. In order for the program to work, that
computation time must be less than the sampling period.

The duration of the pulses output on GPIO pin PE2 by program tm4c123_fir_
prbs_dma.c, which uses DMA-based i/o, indicates the time taken to compute a
block of BUFSIZE output sample values. These pulses are repeated every BUF-
SIZE*125 μs. The higher the order of the FIR implemented by this program (as
determined by the coefficient header file used), the longer it will take to compute
BUFSIZE output sample values. In order for the program to work, that computa-
tion time must be less than BUFSIZE times the sampling period. The duration of the
pulse shown in Figure 3.46 is 3.52 ms, which, given that the value of BUFSIZE in
this example was equal to 256, represents a time of 13.7 𝜇s to compute the value of
each output sample.

The program statements used to implement the FIR filtering operation affect its
execution time. Program tm4c123_fir3ways_intr.c, shown in Listing 3.12,
gives the user the option of switching between different FIR filter implementations
while the program is running. Using user switch SW1 on the TM4C123 LaunchPad,
the user can cycle through three alternatives.

PROGRAMMING EXAMPLES 159

Figure 3.46 Pulses output on GPIO pin PE2 by programs tm4c123_fir_prbs_intr.c
and tm4c123_fir_prbs_dma.c.

Listing 3.12 Program tm4c123_fir3ways_intr.c.

1 // tm4c123_fir3ways_intr.c
2

3 #include "tm4c123_aic3104_init.h"
4

5 #include "bp1750.h"
6

7 #define NUM_METHODS 3

160 FINITE IMPULSE RESPONSE FILTERS

8

9 float32_t x[2*N];
10 int16_t k = 0;
11 int16_t METHOD_number = 0;
12

13 AIC3104_data_type sample_data;
14

15 float32_t inputl, inputr;
16

17 void SSI_interrupt_routine(void)
18 {
19 int16_t i;
20 float32_t yn = 0.0;
21

22 SSIDataGet(SSI1_BASE,&sample_data.bit32);
23 inputl = (float32_t)(sample_data.bit16[0]);
24 SSIDataGet(SSI0_BASE,&sample_data.bit32);
25 inputr = (float32_t)(sample_data.bit16[0]);
26

27 switch(METHOD_number)
28 {
29 case 0:
30 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
31 x[0] = (float32_t)(prbs(8000));
32 for (i=0 ; i<N ; i++) yn += h[i]*x[i];
33 for (i=N-1 ; i>0 ; i–) x[i] = x[i-1];
34 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
35 break;
36 case 1:
37 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
38 x[k++] = (float32_t)(prbs(8000));
39 if (k >= N) k = 0;
40 for (i=0 ; i<N ; i++)
41 {
42 yn += h[i]*x[k++];
43 if (k >= N) k = 0;
44 }
45 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
46 break;
47 case 2:
48 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
49 x[k] = (float32_t)(prbs(8000));
50 x[k+N] = x[k];
51 k = (k+1) % N;
52 for (i=0 ; i<N ; i++) yn += h[i]*x[k+i];
53 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
54 break;
55 }
56 sample_data.bit32 = ((int16_t)(yn));
57 SSIDataPut(SSI0_BASE,sample_data.bit32);
58 SSIDataPut(SSI1_BASE,sample_data.bit32);
59 SSIIntClear(SSI0_BASE,SSI_RXFF);
60 }
61

PROGRAMMING EXAMPLES 161

62 int main(void)
63 }
64 tm4c123_aic3104_init(FS_8000_HZ,
65 AIC3104_LINE_IN,
66 IO_METHOD_INTR,
67 PGA_GAIN_6_DB);
68 while(1)
69 {
70 ROM_SysCtlDelay(10000);
71 if (!GPIOPinRead(GPIO_PORTF_BASE, GPIO_PIN_4))
72 {
73 ROM_SysCtlDelay(10000);
74 METHOD_number = (METHOD_number+1) % NUM_METHODS;
75 while (!GPIOPinRead(GPIO_PORTF_BASE, GPIO_PIN_4)){}
76 }
77 }
78 }

The first implementation method is straightforward and uses two separate loops.
The first loop

for (i=0 ; i< N ; i++) yn += h[i]*x[i];

is used in order to compute the convolution sum of the N previous input samples
stored in the filter delay line x and its N filter coefficients h, placing the result in yn.
The second loop

for (i=N-1 ; i>0 ; i–) x[i] = x[i-1];

is used to shift the contents of the filter delay linex by one. Intuitively, it is wasteful of
computational effort to repeatedly move each input sample from one memory location
to another. On the other hand, the computational effort involved in that straightfor-
ward operation is unlikely to be great.

The second implementation method

for (i=0 ; i<N ; i++)
{

yn += h[i]*x[k++];
if (k >= N) k = 0;

}

involves treating array x as a circular buffer in which to store input sample values.
Once a sample has been stored in array x, it is not moved. Variable k is used to keep
track of where in array x the most recent input sample is stored. The value of k is
incremented once per sampling instant. Each time the value of k is incremented, its
value is tested, and if greater than or equal toN, it is reset to zero. The value ofk is also
incrementedN times during computation of the convolution sum returning to the same
value it started at (before computation of the convolution sum). This implementation
method uses just one loop but requires that the value of k is tested (N+1) times in
total.

162 FINITE IMPULSE RESPONSE FILTERS

The third implementation method

for (i=0 ; i<N ; i++) yn += h[i]*x[k+i];

eliminates the need to test the value of k (N times) during computation of the convolu-
tion sum, at the expense of requiring twice as much memory to store input sample val-
ues. Each input sample value is stored in two different locations, x[k] and x[k+N],
in an array x of length 2. Effectively, this is an alternative method of implementing
circular buffering.

3.3.2.5 Running the Program Build and run the program and observe the pulses
output on GPIO pin PE2 using an oscilloscope. Press user switch SW1 on the launch-
pad to cycle through the three different implementation methods. In the case of an
81-coefficient FIR filter, defined in header file bp1750.h, the three different imple-
mentation methods take 13.7, 16.0, and 10.2 𝜇s to compute each output sample value.

Example 3.24 Comparison of Execution Times for FIR Filters Implemented in
C and Using CMSIS DSP library function arm_fir_f32().

CMSIS DSP library function arm_fir_f32() is an efficient method of imple-
menting an FIR filter and was demonstrated in Example 3.22. The duration of the
pulse output on GPIO pin PE2 by programtm4c123_fir_prbs_CMSIS_dma.c
is 936 μs (BUFSIZE = 256), indicating that it takes approximately 3.6 μs to
compute the value of each output sample. It is most computationally efficient to
implement an FIR filter using DMA-based i/o to provide blocks of input data to the
CMSIS library function arm_fir_f32(). However, this approach incurs a greater
real-time delay (latency) than a sample-by-sample interrupt-based approach.

4
INFINITE IMPULSE RESPONSE
FILTERS

The FIR filter discussed in Chapter 3 has no analog counterpart. In this chapter, we
discuss the infinite impulse response (IIR) filter that, typically, makes use of the vast
knowledge that exists concerning analog filters. The design procedure described in
this chapter involves the conversion of an analog filter into an equivalent discrete
filter. Either the impulse invariance or bilinear transformation (BLT) technique may
be used to effect that conversion. Both procedures convert the transfer function of an
analog filter in the s-domain into an equivalent discrete-time transfer function in the
z-domain.

4.1 INTRODUCTION

Consider a general input–output equation of the form

y(n) =
M∑

k=0

bkx(n − k) −
N∑

l=1

aly(n − l) (4.1)

or, equivalently,

y(n) = b0x(n) + b1x(n − 1) + b2x(n − 2) + · · · + bMx(n − M)

−a1y(n − 1) − a2y(n − 2) − · · · − aNy(n − N). (4.2)

Digital Signal Processing Using the ARM® Cortex® -M4, First Edition. Donald S. Reay.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

164 INFINITE IMPULSE RESPONSE FILTERS

This recursive difference equation represents an IIR filter. The output y(n), at
instant n, depends not only on the current input x(n), at instant n, and on past inputs
x(n − 1), x(n − 2), … , x(n − M), but also on past outputs y(n − 1), y(n − 2),… , y(n −
N). If we assume all initial conditions to be zero in Equation (4.2), its z-transform is

Y(z) = (b0 + b1z−1 + b2z−2 + · · · + bMz−M)X(z)

−(a1z−1 + a2z−2 + · · · + aNz−N)Y(z). (4.3)

Letting M = N in (4.3), the transfer function H(z) of the IIR filter is

H(z) = X(z)
Y(z)

=
b0 + b1z−1 + b2z−2 + · · · + bNz−N

1 + a1z−1 + a2z−2 + · · · + aNz−N
= N(z)

D(z)
, (4.4)

where N(z) and D(z) represent the numerator and denominator polynomials, respec-
tively. Multiplying and dividing by zN , H(z) becomes

H(z) =
b0zN + b1zN−1 + b2zN−2 + · · · + bN

zN + a1zN−1 + a2zN−2 + · · · + aN
= C

N∏
i=1

z − zi

z − pi
, (4.5)

where C is a constant is a transfer function with N zeros and N poles. If all of the
coefficients al in Equation (4.5) are equal to zero, this transfer function reduces to a
transfer function with N poles at the origin in the z-plane representing the FIR filter
discussed in Chapter 3. For a causal discrete-time system to be stable, all the poles of
its z-transfer function must lie inside the unit circle, as discussed in Chapter 3. Hence,
for an IIR filter to be stable, the magnitude of each of its poles must be less than 1, or

1. If |pi| < 1, then h(n) → 0, as n → ∞, yielding a stable system.

2. If |pi| > 1, then h(n) → ∞, as n → ∞, yielding an unstable system.

3. If |pi| = 1, the system is marginally stable, yielding an oscillatory response.

4.2 IIR FILTER STRUCTURES

Several different structures may be used to represent an IIR filter.

4.2.1 Direct Form I Structure

Using the direct form I structure shown in Figure 4.1, the filter in Equation (4.2) can
be realized. For an Nth-order filter, this structure contains 2N delay elements, each
represented by a block labeled z−1. For example, a second-order filter with N = 2 will
contain four delay elements.

IIR FILTER STRUCTURES 165

x(n) y(n)

y(n − 2)

y(n − 1)x(n − 1)

+

+

+

+

+ +

+ +

b0

z−1

b1 −a1

−a2b2

z−1 z−1

z−1

x(n − 2)
+

+

+

+

−aN y(n − N)bN
x(n − N)

Figure 4.1 Direct form I IIR filter structure.

4.2.2 Direct Form II Structure

The direct form II structure shown in Figure 4.2 is one of the structures most com-
monly used to represent an IIR filter. It requires half as many delay elements as direct
form I. For example, a second-order filter requires two delay elements, as opposed to
four with the direct form I structure. From the block diagram of Figure 4.2, it can be
seen that

w(n) = x(n) − a1w(n − 1) − a2w(n − 2) − · · · − aNw(n − N) (4.6)

and that

y(n) = b0w(n) + b1w(n − 1) + b2w(n − 2) + · · · + bNw(n − N). (4.7)

Taking z-transforms of Equations (4.6) and (4.7)

W(z) = X(z) − a1z−1W(z) − a2z−2W(z) − · · · − aNz−NW(z) (4.8)

and hence,
X(z) = (1 + a1z−1 + a2z−2 + · · · + aNz−N)W(z) (4.9)

and
Y(z) = (b0 + b1z−1 + b2z−2 + · · · + bNz−N)W(z). (4.10)

166 INFINITE IMPULSE RESPONSE FILTERS

x(n) y(n)

w(n − 1)

w(n − 2)

w(n)+

+

+

+

++

+ +

b0

z−1

z−1

b1−a1

−a2 b2

−aN bN

w(n − N)

z−1

Figure 4.2 Direct form II IIR filter structure.

Thus

H(z) = X(z)
Y(z)

=
b0 + b1z−1 + b2z−2 + · · · + bNz−N

1 + a1z−1 + a2z−2 + · · · + aNz−N
, (4.11)

which is similar to Equation (4.5).
The direct form II structure can be represented by difference Equations (4.6) and

(4.7) taking the place of Equation (4.2). Equations (4.6) and (4.7) may be used to
implement an IIR filter in a computer program. Initially, w(n),w(n − 1),w(n − 2), …
are set to zero. At instant n, a new sample x(n) is acquired. Equation (4.6) is used to
solve for w(n) and then the output y(n) is calculated using Equation (4.7).

4.2.3 Direct Form II Transpose

The direct form II transpose structure shown in Figure 4.3 is a modified version of
the direct form II structure and requires the same number of delay elements.

From inspection of the block diagram, it is apparent that the filter output can be
computed using

y(n) = b0x(n) + w0(n − 1). (4.12)

IIR FILTER STRUCTURES 167

x(n) y(n)

w0(n)

w1(n)

wN-1(n)

+

+

+

+

+

+

+

+

b0

b1 −a1

−a2b2

bN

z−1

z−1

z−1

+ +
−aN

Figure 4.3 Direct form II transpose IIR filter structure.

Subsequently, the contents of the delay line can be updated using

w0(n) = b1x(n) + w1(n − 1) − a1y(n), (4.13)

and
w1(n) = b2x(n) + w2(n − 1) − a2y(n), (4.14)

and so on until finally
wN−1(n) = bNx(n) − aNy(n), (4.15)

Using Equation (4.13) to find w0(n − 1),

w0(n − 1) = b1x(n − 1) + w1(n − 2) − a1y(n − 1), (4.16)

Equation (4.12) becomes

y(n) = b0x(n) + [b1x(n − 1) + w1(n − 2) − a1y(n − 1)]. (4.17)

Similarly, using Equation (4.14) to find w1(n − 2),

w1(n − 2) = b2x(n − 2) + w2(n − 3) − a2y(n − 3), (4.18)

168 INFINITE IMPULSE RESPONSE FILTERS

Equation (4.12) becomes

y(n) = b0x(n) + [b1x(n − 1) + [b2x(n − 2) + w2(n − 3) − a2y(n − 2)] − a1y(n − 1)].
(4.19)

Continuing this procedure until Equation (4.15) has been used, it can be shown that
Equation (4.12) is equivalent to Equation (4.2) and hence that the block diagram of
Figure 4.3 is equivalent to those of Figures 4.1 and 4.2. The transposed structure
implements the zeros of the filter first and then the poles, whereas the direct form II
structure implements the poles first.

4.2.4 Cascade Structure

The transfer function in Equation (4.5) can be factorized as

H(z) = CH1(z)H2(z) · · ·Hr(z), (4.20)

in terms of first- or second-order transfer functions, Hi(z). This cascade (or series)
structure is shown in Figure 4.4. An overall transfer function can be represented with
cascaded transfer functions. For each section, either the direct form II structure or its
transpose version can be used. Figure 4.5 shows a fourth-order IIR structure in terms
of two direct form II second-order sections in cascade. The transfer function H(z), in
terms of cascaded second-order transfer functions, can in this case be written as

H(z) =
N∕2∏
i=1

b0i + b1iz
−1 + b2iz

−2

1 + a1iz−1 + a2iz−2
, (4.21)

H1(z)
x(n) y(n)

H2(z) H3(z) Hr(z)

Figure 4.4 Cascade form IIR filter structure.

x(n) y1(n)

w1(n − 1) w2(n − 1)

w2(n − 2)w1(n − 2)

w1(n)+

+

+

+

++

+ +

z−1

z−1

b11

b01

−a11

−a21

y(n)w2(n)+

+

+

+

++

+ +

b21

z−1

z−1

−a12

−a22

b12

b22

b02

Figure 4.5 Fourth-order IIR filter with two direct form II sections in cascade.

IIR FILTER STRUCTURES 169

where the constant C in Equation (4.20) is incorporated into the coefficients. For
example, if N = 4 for a fourth-order transfer function, then Equation (4.18) becomes

H(z) =
(b01 + b11z−1 + b21z−2)(b02 + b12z−1 + b22z−2)
(1 + a11z−1 + a21z−2)(1 + a12z−1 + a22z−2)

, (4.22)

as can be verified in Figure 4.5. From a mathematical standpoint, proper ordering of
the numerator and denominator factors does not affect the output result. However,
from a practical standpoint, proper ordering of each second-order section can mini-
mize quantization noise. Note that the output of the first section, y1(n), becomes the
input to the second section. With an intermediate output result stored in one of the
registers, a premature truncation of the intermediate output becomes negligible. A
programming example later in this chapter will illustrate the implementation of an
IIR filter using cascaded second-order direct form II sections.

4.2.5 Parallel Form Structure

The transfer function in Equation (4.11) can be represented as

H(z) = C + H1(z) + H2(z) + · · · + Hr(z), (4.23)

which can be obtained using a partial fraction expansion (PFE) of Equation (4.11).
This parallel form structure is shown in Figure 4.6. Each of the transfer functions can
be either first- or second-order function.

As with the cascade structure, the parallel form can efficiently be represented in
terms of second-order direct form II structure sections. H(z) can be expressed as

H(z) = C +
N∕2∑
i=1

b0i + b1iz
−1 + b2iz

−2

1 + a1iz−1 + a2iz−2
. (4.24)

x(n) y(n)
+

+

+

+

Hr(z)

H3(z)

H2(z)

H1(z)

C

+

+

+

Figure 4.6 Parallel form IIR filter structure.

170 INFINITE IMPULSE RESPONSE FILTERS

x(n) y1(n)

y2(n)

w1(n − 1)

w2(n − 1)

w2(n − 2)

w1(n − 2)

w1(n)

w2(n)

+

+

+

+

++

+ +

b01

z−1

z−1

−a11

−a21

+

+

+

+

++

+ +

y(n)+ +

+

C

b11

b12

b21

b22

z−1

z−1

−a12

−a22

b02

Figure 4.7 Fourth-order IIR filter with two direct form II sections in parallel.

For example, for a fourth-order transfer function, H(z) in Equation (4.24) becomes

H(z) = C +
b01 + b11z−1 + b21z−2

1 + a11z−1 + a21z−2
+

b02 + b12z−1 + b22z−2

1 + a12z−1 + a22z−2
. (4.25)

This fourth-order parallel structure is represented in terms of two direct form II
sections as shown in Figure 4.7. From that figure, the output y(n) can be expressed
in terms of the output of each section, or

y(n) = Cx(n) +
N∕2∑
i=1

yi(n). (4.26)

Typically, Nth-order IIR filters are implemented as cascaded second-order sections.

BILINEAR TRANSFORMATION 171

4.3 IMPULSE INVARIANCE

This method of IIR filter design is based on the concept of mapping each s-plane
pole of a continuous-time filter to a corresponding z-plane pole using the substitution
(1 − e−pktsz−1) for (s + pk) in H(s). This can be achieved by several different means.
PFE of H(s) and substitution (1 − e−pktsz−1) for (s + pk) can involve a lot of algebraic
manipulation. An equivalent method of making the transformation is to use tables
of Laplace and z-transforms. Generally, tables of Laplace transforms list s-domain
transfer functions and their corresponding impulse responses. Tables of z-transforms
may be used to find the z-transfer function corresponding to an impulse response. The
method is referred to as impulse invariance because of the equivalence of the impulse
responses of the digital filter (described by z-transfer function) and of the analog
prototype (described by s-transfer function). The specific relationship between the
two impulse responses is that one comprises samples of a scaled version of the other.
The performance of the two filters may differ, however, depending on how well the
detail of the continuous impulse response of the analog prototype is represented by
its sampled form. As will be illustrated in Section 4.5, if the sampling rate of the
digital filter is not sufficiently high to capture the detail of continuous-time impulse
response, then the high-frequency characteristics of the prototype filter may not be
reproduced in the digital implementation.

4.4 BILINEAR TRANSFORMATION

The BLT is the most commonly used technique for transforming an analog filter into
a digital filter. It provides one-to-one mapping from the analog s-plane to the digital
z-plane, using the substitution

s = K
(z − 1)
(z + 1)

. (4.27)

The constant K in Equation (4.27) is commonly chosen as K = 2∕T, where T repre-
sents the sampling period in seconds, of the digital filter. Other values for K can be
selected, as described in Section 4.4.1. The BLT allows the following:

1. The left region in the s-plane, corresponding to 𝜎 < 0, maps inside the unit circle
in the z-plane.

2. The right region in the s-plane, corresponding to 𝜎 > 0, maps outside the unit
circle in the z-plane.

3. The imaginary j𝜔 axis in the s-plane maps on the unit circle in the z-plane.

Let 𝜔A and 𝜔D represent analog and digital frequencies, respectively. With s = j𝜔A
and z = ej𝜔DT , Equation (4.27) becomes

j𝜔A = K
(ej𝜔DT − 1)
(ej𝜔DT + 1)

= K
ej𝜔DT∕2(ej𝜔DT∕2 − e−j𝜔DT∕2)
ej𝜔DT∕2(ej𝜔DT∕2 + e−j𝜔DT∕2)

. (4.28)

172 INFINITE IMPULSE RESPONSE FILTERS

0 0.5 1 1.5 2
0.0

0.1

0.2

0.3

0.4

0.5

Normalized analog frequency (ωA/ωS)

N
or

m
al

iz
ed

 d
ig

ita
l f

re
qu

en
cy

 (
ω

D
/ω

S)

Figure 4.8 Relationship between analog and digital frequencies, 𝜔A and𝜔D, due to frequency
warping in the bilinear transform.

Using Euler’s formulae for sine and cosine in terms of complex exponential func-
tions, 𝜔A in Equation (4.28) becomes

𝜔A = K tan

(
𝜔DT

2

)
, (4.29)

which relates the analog frequency 𝜔A to the digital frequency 𝜔D. This relationship
is plotted in Figure 4.8 for positive values of 𝜔A. The nonlinear compression of the
entire analog frequency range into the digital frequency range from zero to 𝜔s∕2 is
referred to as frequency warping (𝜔s = 2𝜋∕T).

4.4.1 Bilinear Transform Design Procedure

The BLT design procedure for transforming an analog filter design expressed as a
transfer function H(s) into a z-transfer function H(z) representing a discrete-time IIR
filter is described by

H(z) = H(s)|
s=K (z−1)

(z+1)
. (4.30)

H(s) can be chosen according to well-documented analog filter design theory,
for example, Butterworth, Chebyshev, Bessel, or elliptic. It is common to choose
K = 2∕T. Alternatively, it is possible to prewarp the analog filter frequency response
in such a way that the bilinear transform maps an analog frequency 𝜔A = 𝜔c, in the

PROGRAMMING EXAMPLES 173

range 0–𝜔s∕2, to exactly the same digital frequency 𝜔D = 𝜔c. This is achieved by
choosing

K =
𝜔c

tan(𝜋𝜔c∕𝜔s)
. (4.31)

4.5 PROGRAMMING EXAMPLES

The examples in this section introduce and illustrate the implementation of IIR fil-
tering. Many different approaches to the design of IIR filters are possible, and most
often, IIR filters are designed with the aid of software tools. Before using such a
design package, and in order to appreciate better what such design packages do, a
simple example will be used to illustrate some of the basic principles of IIR filter
design.

4.5.1 Design of a Simple IIR Low-Pass Filter

Traditionally, IIR filter design is based on the concept of transforming a
continuous-time, or analog, design into the discrete-time domain. Butterworth,
Chebyshev, Bessel, and elliptic classes of analog filters are widely used. In this
example, a second-order, type 1 Chebyshev, low-pass filter with 2 dB of pass-band
ripple and a cutoff frequency of 1500 Hz (9425 rad/s) is used.

The continuous-time transfer function of this filter is

H(s) = 58, 072, 962
s2 + 7576s + 73, 109, 527

, (4.32)

and its frequency response is shown in Figure 4.9.
Using MATLAB®, the coefficients of this s-transfer function may be generated

by typing

>> [b,a] = cheby1(2,2,2*pi*1500,’s’);

at the command line. Our task is to transform this design into the discrete-time
domain. One method of achieving this is the impulse invariance method.

4.5.1.1 Impulse Invariance Method Starting with the filter transfer function of
Equation (4.32), we can make use of the Laplace transform pair

L{Ae−𝛼t sin(𝜔t)} = A𝜔
s2 + 2𝛼s + (𝛼2 + 𝜔2)

(4.33)

(the s-transfer function of the filter is equal to the Laplace transform of its impulse
response) and use the values

𝛼 = 7576∕2 = 2787.9,

174 INFINITE IMPULSE RESPONSE FILTERS

102 103 104
−30

−25

−20

−15

−10

−5

0

5

Frequency (Hz)

102 103 104

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

Ph
as

e
(°

)

(a)

(b)

Figure 4.9 (a) Magnitude frequency response of filter H(s). (b) Phase response of filter H(s).

𝜔 =
√

73, 109, 527 − 3787.92 = 7665.6,

A = 58, 072, 962∕7665.6 = 7575.8.

Hence, the impulse response of the filter in this example is given by

h(t) = 7575.8e−3788t sin(7665.6t) (4.34)

The z-transform pair

{Ae−𝛼t sin(𝜔t)} =
Ae−𝛼ts sin(𝜔ts)z−1

1 − 2(Ae−𝛼ts cos(𝜔ts))z−1 + e−2𝛼ts z−2
(4.35)

PROGRAMMING EXAMPLES 175

yields the following discrete-time transfer function when we substitute for 𝜔, A, 𝛼
and set ts = 0.000125 in Equation (4.35).

H(z) = Y(z)
X(z)

= 0.48255z−1

1 − 0.71624315z − 1 + 0.38791310z−2
. (4.36)

From H(z), the following difference equation may be derived.

y(n) = 0.48255x(n − 1) + 0.71624315y(n − 1) − 0.3879131y(n − 2). (4.37)

With reference to Equation (4.2), we can see that a1 =0.71624315, a2= −0.3879131,
b0 = 0.0000, and b1 = 0.48255.

In order to apply the impulse invariant method using MATLAB, type

>> [b,a] = cheby1(2,2,2*pi*1500,’s’);
>> [bz,az] = impinvar(b,a,8000);

This discrete-time filter has the property that its discrete-time impulse response h(n)
is equal to samples of the continuous-time impulse response h(t), (scaled by the sam-
pling period, ts), as shown in Figure 4.10. Although it is evident from Figure 4.10
that the discrete-time impulse response h(n) decays almost to zero, this sequence is
not finite. It is perhaps worth noting that, counterintuitively, the definition of an IIR
filter is not that its impulse response is infinite in duration but rather that it makes use
of previous output sample values in order to calculate its current output. In theory,
it is possible for an IIR filter to have a finite impulse response. Whereas the impulse

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (ms)

A
m

pl
itu

de

Figure 4.10 Impulse responses h(t) (scaled by sampling period ts) and h(n) of
continuous-time filter H(s) and its impulse-invariant digital implementation.

176 INFINITE IMPULSE RESPONSE FILTERS

response of an FIR filter is given explicitly by its finite set of coefficients, the coeffi-
cients of an IIR filter are used in a recursive equation (4.1) to determine its impulse
response h(n).

Example 4.1 Implementation of an IIR Filter Using Cascaded Second-Order
Direct Form II Sections (stm32f4_iirsos_intr.c).

Program stm32f4_iirsos_intr.c, shown in Listing 4.1, implements a
generic IIR filter using cascaded direct form II second-order sections, and coefficient
values stored in a separate header file. Each section of the filter is implemented using
the following two program statements.

wn = input - a[section][1]*w[section][0]
- a[section][2]*w[section][1];

yn = b[section][0]*wn + b[section][1]*w[section][0]
+ b[section][2]*w[section][1];

which correspond to the equations

w(n) = x(n) − a1w(n − 1) − a2w(n − 2) (4.38)

and
y(n) = b0w(n) + b1w(n − 1) + b2w(n − 2) (4.39)

With reference to Figure 4.5 and to (4.18), the coefficients are stored by the pro-
gram as a[i][0], a[i][1], a[i][2], b[i][0], b[i][1], and b[i][2],
respectively. w[i][0] and w[i][1] correspond to wi(n − 1) and wi(n − 2) in
Equations (4.38) and (4.39).

Listing 4.1 IIR filter program using second-order sections in cascade
(stm32f4_iirsos_intr.c).

1 // stm32f4_iirsos_intr.c
2

3 #include "stm32f4_wm5102_init.h"
4 #include "elliptic.h"
5

6 float w[NUM_SECTIONS][2] = {0};
7

8 void SPI2_IRQHandler()
9 {

10 int16_t left_out_sample, left_in_sample;
11 int16_t right_out_sample, right_in_sample;
12 int16_t section; // second order section number
13 float32_t input; // input to each section
14 float32_t wn, yn; // intermediate and output values
15

16 if (SPI_I2S_GetFlagStatus(I2Sx, I2S_FLAG_CHSIDE) SET)

PROGRAMMING EXAMPLES 177

17 {
18 left_in_sample = SPI_I2S_ReceiveData(I2Sx);
19 input =(float32_t)(left_in_sample);
20 for (section=0 ; section< NUM_SECTIONS ; section++)
21 {
22 wn = input - a[section][1]*w[section][0]
23 - a[section][2]*w[section][1];
24 yn = b[section][0]*wn + b[section][1]*w[section][0]
25 + b[section][2]*w[section][1];
26 w[section][1] = w[section][0];
27 w[section][0] = wn;
28 input = yn;
29 }
30 left_out_sample = (int16_t)(yn);
31 while (SPI_I2S_GetFlagStatus(I2Sxext,
32 SPI_I2S_FLAG_TXE) != SET){}
33 SPI_I2S_SendData(I2Sxext, left_out_sample);
34 }
35 else
36 {
37 right_in_sample = SPI_I2S_ReceiveData(I2Sx);
38 while (SPI_I2S_GetFlagStatus(I2Sxext,
39 SPI_I2S_FLAG_TXE) != SET){}
40 right_out_sample = 0;
41 SPI_I2S_SendData(I2Sxext, right_out_sample);
42 }
43 }
44

45 int main(void)
46 {
47 stm32_wm5102_init(FS_8000_HZ,
48 WM5102_LINE_IN,
49 IO_METHOD_INTR);
50 while(1){}
51 }

The impulse invariant filter may be implemented using program stm32f4_
iirsos_intr.c by including the coefficient header file impinv.h, shown
in Listing 4.2. The number of cascaded second-order sections is defined as
NUM_SECTIONS in that file.

Listing 4.2 Coefficient header file impinv.h.

1 // impinv.h
2 // second-order type 1 Chebyshev LPF with 2 dB pass-band ripple
3 // and cutoff frequency 1500 Hz
4

5 #define NUM_SECTIONS 1
6

7 float b[NUM_SECTIONS][3]={ {0.0, 0.48255, 0.0} };
8 float a[NUM_SECTIONS][3]={ {1.0, -0.71624, 0.387913} };

178 INFINITE IMPULSE RESPONSE FILTERS

Build and run the program. Using a signal generator and oscilloscope to measure
the magnitude frequency response of the filter, you should find that the attenuation
of frequencies above 2500 Hz is not very pronounced. This is due to both the
low order of the filter and the inherent shortcomings of the impulse-invariant
design method. A number of alternative methods of assessing the magnitude
frequency response of the filter will be described in the next few examples. In
common with most of the example programs described in this chapter, program
stm32f4_iirsos_intr.c uses interrupt-based i/o. A DMA-based i/o version
of the program, stm32f4_iirsos_dma.c, is also provided. It can be used by
removing program stm32f4_iirsos_intr.c from the project and adding
program stm32f4_iirsos_dma.c before rebuilding the project.

Example 4.2 Implementation of IIR Filter Using Cascaded Second-Order
Transposed Direct Form II Sections (stm32f4_iirsostr_intr.c).

A transposed direct form II structure can be implemented using program
stm32f4_iirsos_intr.c simply by replacing the program statements

wn = input - a[section][1]*w[section][0]
- a[section][2]*w[section][1];

yn = b[section][0]*wn + b[section][1]*w[section][0]
+ b[section][2]*w[section][1];

w[section][1] = w[section][0];
w[section][0] = wn;

with the following program statements

yn = b[section][0]*input + w[section][0];
w[section][0] = b[section][1]*input + w[section][1]

- a[section][1]*yn;
w[section][1] = b[section][2]*input - a[section][2]*yn;

(variable wn is not required in the latter case).
This substitution has been made already in program stm32f4_iirsostr_

intr.c. You should not notice any difference in the characteristics of
the filters implemented using programs stm32f4_iirsos_intr.c and
stm32f4_iirsostr_intr.c.

Example 4.3 Estimating the Frequency Response of an IIR Filter Using Pseu-
dorandom Noise as Input (tm4c123_iirsos_prbs_intr.c).

Program tm4c123_iirsos_prbs_intr.c is closely related to program
tm4c123_fir_prbs_intr.c, described in Chapter 3. In real time, it generates
a pseudorandom binary sequence and uses this wideband noise signal as the input to
an IIR filter. The output of the filter is written to the DAC in the AIC3104 codec and
the resulting analog signal (filtered noise) may be analyzed using an oscilloscope,
spectrum analyzer, or Goldwave. The frequency content of the filter output gives a

PROGRAMMING EXAMPLES 179

Figure 4.11 Output from program tm4c123_iirsos_prbs_intr.c using coefficient
file impinv.h, viewed using the FFT function of a Rigol DS1052E oscilloscope.

good indication of the filter’s magnitude frequency response. Figures 4.11 and 4.12
show the output of the example filter (using coefficient file impinv.h) displayed
using the FFT function of a Rigol DS1052E oscilloscope and using Goldwave.

In Figure 4.11, the vertical scale is 5 dB per division and the horizontal scale is
625 Hz per division. The low-pass characteristic of the example filter is evident in the
left-hand half of the figures between 0 and 2500 Hz. Between 2500 and 4000 Hz, the
low-pass characteristic is less pronounced and the steeper roll-off beyond 4000 Hz is
due not to the IIR filter but to the reconstruction filter in the AIC3104 codec.

Example 4.4 Estimating the Frequency Response of an IIR Filter Using a
Sequence of Impulses as Input (tm4c123_iirsos_delta_intr.c).

Instead of a pseudorandom binary sequence, program tm4c123_iirsos_
delta_intr.c, shown in Listing 4.3, uses a sequence of discrete-time impulses
as the input to an IIR filter. The resultant output is an approximation to a repetitive
sequence of filter impulse responses. This relies on the filter impulse response
decaying practically to zero within the period between successive input impulses.
The filter output is written to the DAC in the AIC3104 codec and the resulting
analog signal may be analyzed using an oscilloscope, spectrum analyzer, or Gold-
wave. In addition, program tm4c123_iirsos_delta_intr.c stores the
BUFFERSIZE most recent samples of the filter output yn in array response, and
by saving the contents of that array to a data file and using the MATLAB function
tm4c123_logfft(), the response of the filter may be viewed in both time and
frequency domains.

180 INFINITE IMPULSE RESPONSE FILTERS

Figure 4.12 Output from program tm4c123_iirsos_prbs_intr.c using coefficient
file impinv.h, viewed using Goldwave.

Listing 4.3 Program tm4c123_iirsos_delta_intr.c.

1 // tm4c123_iirsos_delta_intr.c
2

3 #include "tm4c123_aic3104_init.h"
4 #include "elliptic.h"
5

6 #define BUFFERSIZE 256
7 #define AMPLITUDE 10000.0f
8

9 float32_t w[NUM_SECTIONS][2] = {0};
10 float32_t dimpulse[BUFFERSIZE];
11 float32_t response[BUFFERSIZE];
12 int16_t bufptr = 0;
13

14 AIC3104_data_type sample_data;
15

16 void SSI_interrupt_routine(void)
17 {
18 float32_t inputl, inputr;
19 int16_t i;
20 int16_t section; // index for section number
21 float32_t input; // input to each section
22 float32_t wn,yn; // intermediate and output values
23

PROGRAMMING EXAMPLES 181

24 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
25

26 SSIDataGet(SSI1_BASE,&sample_data.bit32);
27 inputl = (float32_t)(sample_data.bit16[0]);
28 SSIDataGet(SSI0_BASE,&sample_data.bit32);
29 inputr = (float32_t)(sample_data.bit16[0]);
30

31 input = dimpulse[bufptr];
32 for (section=0 ; section< NUM_SECTIONS ; section++)
33 {
34 wn = input - a[section][1]*w[section][0]
35 - a[section][2]*w[section][1];
36 yn = b[section][0]*wn + b[section][1]*w[section][0]
37 + b[section][2]*w[section][1];
38 w[section][1] = w[section][0];
39 w[section][0] = wn;
40 input = yn;
41 }
42 response[bufptr++] = yn;
43 if (bufptr >= BUFFERSIZE) bufptr = 0;
44

45 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
46 sample_data.bit32 = ((int16_t)(yn*AMPLITUDE));
47 SSIDataPut(SSI0_BASE,sample_data.bit32);
48 SSIDataPut(SSI1_BASE,sample_data.bit32);
49 SSIIntClear(SSI0_BASE,SSI_RXFF);
50 }
51

52 int main(void)
53 {
54 int i;
55

56 for (i=0 ; i< BUFSIZE ; i++) dimpulse[i] = 0.0;
57 dimpulse[0] = 10.0;
58 tm4c123_aic3104_init(FS_8000_HZ,
59 AIC3104_LINE_IN,
60 IO_METHOD_INTR,
61 PGA_GAIN_6_DB);
62 while(1){}
63 }

Figure 4.13 shows the analog output signal generated by the program, captured
using a Rigol DS1052E oscilloscope connected to one of the scope hooks on the audio
booster pack. The upper trace shows the time-domain impulse response of the filter
(500 𝜇s per division) and the lower trace shows the FFT of that impulse response
over a frequency range of 0–12 kHz. The output waveform is shaped both by the IIR
filter and by the AIC3104 codec reconstruction filter. The codec reconstruction filter
is responsible for the steep roll-off of gain at frequencies above 4 kHz. Below that
frequency, but at frequencies higher than 1.5 kHz, less pronounced roll-off of gain
due to the IIR filter is discernible. In the upper trace, the characteristics of the codec
reconstruction filter are evident in the slight ringing that precedes the greater part

182 INFINITE IMPULSE RESPONSE FILTERS

Figure 4.13 Output from program tm4c123_iirsos_delta_intr.cusing coefficient
file impinv.h, viewed using the FFT function of a Rigol DS1052E oscilloscope.

of the impulse response waveform. Halt the program and save the contents of array
response. Figure 4.14 shows the magnitude of the FFT of the contents of that array
plotted using MATLAB function tm4c123_logfft().

4.5.1.2 Aliasing in the Impulse Invariant Method There are significant differ-
ences between the magnitude frequency response of the analog prototype filter used
in this example (Figure 4.9) and that of its impulse-invariant digital implementation
(Figure 4.14). The gain of the analog prototype has a magnitude of−15 dB at 3000 Hz,
whereas, according to Figure 4.14, the gain of the digital filter at that frequency has a
magnitude closer to −11 dB. This difference is due to aliasing. Whenever a signal is
sampled, the problem of aliasing should be addressed, and in order to avoid aliasing,
the signal to be sampled should not contain any frequency components at frequencies
greater than or equal to half the sampling frequency. The impulse invariant trans-
formation yields a discrete-time impulse response equivalent to the continuous-time
impulse response of the analog prototype h(t) at the sampling instants, but this is not
sufficient to ensure that the continuous-time response of a discrete-time implemen-
tation of the filter is equivalent to that of the analog prototype. The impulse invariant
method will be completely free of aliasing effects only if the continuous-time impulse
response h(t) contains no frequency components at frequencies greater than or equal
to half the sampling frequency.

In this example, the magnitude frequency response of the analog prototype filter
will be folded back on itself about the 4000 Hz point, and this can be verified using
MATLAB function freqz(), which assesses the frequency response of a digital
filter. Type

PROGRAMMING EXAMPLES 183

0 500 1000 1500 2000 2500 3000 3500 4000
−40

−30

−20

−10

0

10

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Figure 4.14 The magnitude frequency response of the filter implemented by program
tm4c123_iirsos_delta_intr.c using coefficient file impinv.h, plotted using
MATLAB function tm4c123_logfft().

>> [b,a] = cheby1(2,2,2*pi*1500,’s’);
>> [bz,az] = impinvar(b,a,8000);
>> freqz(bz,az);

at the MATLAB command line in order to view the theoretical frequency response
of the filter, and compare this with Figure 4.14.

An alternative method of transforming an analog filter design to a discrete-time
implementation, which eliminates this effect, is the use of the bilinear transform.

4.5.1.3 Bilinear Transform Method of Digital Filter Implementation The
bilinear transform method of converting an analog filter design into discrete time
is relatively straightforward, often involving less algebraic manipulation than
the impulse invariant method. It is achieved by making the substitution

s = 2(z − 1)
T(z + 1)

(4.40)

in H(s), where T is the sampling period of the digital filter, that is,

H(z) = H(s)|
s= 2(z−1)

T(z+1)
. (4.41)

184 INFINITE IMPULSE RESPONSE FILTERS

Applying this to the s-transfer function of (4.32) results in the following z-transfer
function.

H(z) = Y(z)
X(z)

= 0.12895869+ 0.25791738z−1 + 0.12895869z−2

1 − 0.81226498z − 1 + 0.46166249z−2
. (4.42)

From Equation (4.42), the following difference equation may be derived.

y(n) = 0.1290x(n) + 0.2579x(n − 1) + 0.1290x(n − 2)

+0.8123y(n − 1) − 0.4617y(n − 2). (4.43)

This can be achieved in MATLAB by typing

>> [bd,ad] = bilinear(b,a,8000);

The characteristics of the filter can be examined by changing the coefficient
file used by programs stm32f4_iirsos_intr.c, tm4c123_iirsos_
prbs_intr.c, and tm4c123_iirsos_delta_intr.c from impinv.h to
bilinear.h. In each case, change the line that reads

#include “impinv.h”

to read

#include “bilinear.h”

before building, loading, and running the programs. Figures 4.15 through 4.18
show results obtained using programs tm4c123_iirsos_prbs_intr.c and
tm4c123_iirsos_delta_intr.c with coefficient file bilinear.h. The
attenuation provided by this filter at high frequencies is much greater than in the
impulse invariant case. In fact, the attenuation at frequencies higher than 2000 Hz is
significantly greater than that of the analog prototype filter.

4.5.1.4 Frequency Warping in the Bilinear Transform The concept behind the
bilinear transform is that of compressing the frequency response of an analog filter
design such that its response over the entire range of frequencies from zero to infinity
is mapped into the frequency range from zero to half the sampling frequency of the
digital filter. This may be represented by

fD =
arctan(𝜋fATs)

𝜋Ts
or 𝜔D = 2

Ts
arctan

(
𝜔ATs

2

)
(4.44)

and

fA =
tan(𝜋fDTs)

𝜋Ts
or 𝜔A = 2

Ts
tan

(
𝜔DTs

2

)
, (4.45)

PROGRAMMING EXAMPLES 185

Figure 4.15 Output from program tm4c123_iirsos_prbs_intr.c using coefficient
file bilinear.h, viewed using the FFT function of a Rigol DS1052E oscilloscope.

Figure 4.16 Output from program tm4c123_iirsos_prbs_intr.c using coefficient
file bilinear.h, viewed using Goldwave.

186 INFINITE IMPULSE RESPONSE FILTERS

Figure 4.17 Output from program tm4c123_iirsos_delta_intr.cusing coefficient
file bilinear.h, viewed using the FFT function of a Rigol DS1052E oscilloscope.

0 500 1000 1500 2000 2500 3000 3500 4000
−40

−30

−20

−10

0

10

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Figure 4.18 The magnitude frequency response of the filter implemented by program
tm4c123_iirsos_delta_intr.c using coefficient file bilinear.h, plotted using
MATLAB function tm4c123_logfft().

PROGRAMMING EXAMPLES 187

0 1000 2000 3000 4000 5000 6000 7000 8000
−35

−25

−15

−5

5

Analogue frequency (Hz)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

1000

2000

3000

4000

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00

−3
5

−2
5

−1
5−55

M
ag

ni
tu

de
 (

dB
)

Magnitude (dB)

D
ig

ita
l f

re
qu

en
cy

 (
H

z)

Bilinear transformation of analogue
filter H(s) to digital filter H(z)

Figure 4.19 The effect of the bilinear transform on the magnitude frequency response of the
example filter.

where 𝜔D is the frequency at which the complex gain of the digital filter is equal to
the complex gain of the analog filter at frequency 𝜔A. This relationship between 𝜔D
and 𝜔A is illustrated in Figure 4.19. Consequently, there is no problem with aliasing,
as seen in the case of impulse invariant transformation. However, as a result of the
frequency warping inherent in the bilinear transform, in this example, the cutoff fre-
quency of the discrete-time filter obtained is not 1500 Hz but 1356 Hz. Figure 4.19
also shows that the gain of the analog filter at a frequency of 4500 Hz is equal to the
gain of the digital filter at a frequency of 2428 Hz and that the digital frequency 1500
Hz corresponds to an analog frequency of 1702 Hz. If we had wished to create a digital
filter having a cutoff frequency of 1500 Hz, we could have applied the bilinear trans-
form of Equation (4.35) to an analog prototype having a cutoff frequency of 1702 Hz.

This technique is referred to as prewarping the prototype analog design and is used
by default in the MATLAB filter design and analysis tool fdatool, described in the

188 INFINITE IMPULSE RESPONSE FILTERS

next section. A digital filter with a cutoff frequency of 1500 Hz may be obtained by
applying the bilinear transform to the analog filter.

H(s) = 747, 467, 106
s2 + 8596s + 94, 126, 209

(4.46)

that is

H(z) = H(s)|
s= 2(z−1)

(z+1)

= 0.15325788+ 0.30651556z−1 + 0.15325788z−2

1 − 0.66423178z−1 + 0.43599223z−2
(4.47)

The analog filter represented by Equation (4.46) can be produced using the MATLAB
command

>> [bb,aa] = cheby1(2,2,2*pi*1702,‘s’);

and the BLT applied by typing

>> [bbd,aad] = bilinear(bb,aa,8000);

to yield the result given by Equation (4.47). Alternatively, prewarping of the analog
filter design considered previously can be combined with application of the bilinear
transform by typing

>> [bbd,aad]=bilinear(b,a,8000,1500);

at the MATLAB command line. Coefficient file bilinearw.h contains the coeffi-
cients obtained as described earlier.

4.5.1.5 Using MATLAB’s Filter Design and Analysis Tool MATLAB provides
a filter design and analysis tool, fdatool, which makes the calculation of IIR
filter coefficient values simple. Coefficients can be exported to the MATLAB
workspace in direct form II, second-order section format, and MATLAB function
stm32f4_iirsos_coeffs() or tm4c123_iirsos_coeffs(), supplied
with this book as files stm32f4_iirsos_coeffs.m and tm4c123_iirsos_
coeffs.m can be used to generate coefficient files compatible with the programs
in this chapter.

Example 4.5 Fourth-Order Elliptic Low-Pass IIR Filter Designed Using
fdatool.

To invoke the Filter Design and Analysis Tool window, type

>> fdatool

PROGRAMMING EXAMPLES 189

Figure 4.20 MATLAB fdatool window showing the magnitude frequency response of a
fourth-order elliptic low-pass filter.

in the MATLAB command window. Enter the parameters for a fourth-order
elliptic low-pass IIR filter with a cutoff frequency of 800 Hz, 1 dB of ripple in
the pass band, and 50 dB of stop-band attenuation. Click on Design Filter and
then look at the characteristics of the filter using options from the Analysis menu
(Figure 4.20).

This example illustrates the steep transition from pass to stop bands of an IIR fil-
ter possible even with relatively few filter coefficients. Select Filter Coefficients from
the Analysis menu in order to list the coefficient values designed. fdatool auto-
matically designs filters as cascaded second-order sections. Each section is similar to
those shown in block diagram form in Figure 4.5, and each section is characterized
by six parameter values a0, a1, a2, b0, b1, and b2.

By default, fdatool uses the bilinear transform method of designing a digi-
tal filter starting from an analog prototype. Figure 4.21 shows the use of fdatool
to design the Chebyshev filter considered in the preceding examples. Notice that
the magnitude frequency response decreases more and more rapidly with frequency
approaching half the sampling frequency, and compare this with Figure 4.16. This is
characteristic of filters designed using the bilinear transform.

190 INFINITE IMPULSE RESPONSE FILTERS

Figure 4.21 MATLAB fdatool window showing the magnitude frequency response of a
second-order Chebyshev low-pass filter.

4.5.1.6 Implementing a Filter Designed Using fdatool In order to implement
a filter designed using fdatool, carry out the following steps:

1. Design the IIR filter using fdatool.

2. Click Export in the fdatool File menu.

3. Select Workspace, Coefficients, SOS, and G and click Export.

4. At the MATLAB command line, type either stm32f4_iirsos_
coeffs(SOS,G) or tm4c123_iirsos_coeffs(SOS,G) and enter a
filename, for example, elliptic.h.

Listing 4.4 shows an example of a coefficient file produced using MATLAB func-
tion stm32f4_iirsos_coeffs() (Listing 4.5).

Listing 4.4 Coefficient header file elliptic.h.

1 // elliptic.h
2 // this file was generated automatically using function stm32f4_
iirsos_coeffs.m

PROGRAMMING EXAMPLES 191

3

4 #define NUM_SECTIONS 2
5

6 float b[NUM_SECTIONS][3] = {
7 {3.46359750E-002, 2.72500874E-002, 3.46359750E-002},
8 {2.90182959E-001, -2.25444662E-001, 2.90182959E-001} };
9

10 float a[NUM_SECTIONS][3] = {
11 {1.00000000E+000, -1.52872987E+000, 6.37029381E-001},
12 {1.00000000E+000, -1.51375731E+000, 8.68678568E-001} };

Listing 4.5 MATLAB function stm32f4_iirsos_coeffs().

1 % STM32F4_IIRSOS_COEFFS.M
2 %
3 % MATLAB function to write SOS IIR filter coefficients
4 % in format suitable for use in STM32F4 Discovery programs
5 % including stm32f4_iirsos_intr.c,
6 % stm32f4_iirsos_prbs_intr.c and stm32f4_iirsosdelta_intr.c
7 % assumes that coefficients have been exported from
8 % fdatool as two matrices
9 % first matrix has format

10 % [b10 b11 b12 a10 a11 a12
11 % b20 b21 b22 a20 a21 a22
12 % ...
13 %]
14 % where bij is the bj coefficient in the ith stage
15 % second matrix contains gains for each stage
16 %
17 function STM32F4_iirsos_coeffs(coeff,gain)
18 %
19 num_sections=length(gain)-1;
20 fname = input(’enter filename for coefficients ’,’s’);
21 fid = fopen(fname,’wt’);
22 fprintf(fid,’// %s\n’,fname);
23 fprintf(fid,’// this file was generated using’);
24 fprintf(fid,’\n// function STM32F4_iirsos_coeffs.m\n’,fname);
25 fprintf(fid,’\n#define NUM_SECTIONS %d\n’,num_sections);
26 % first write the numerator coefficients b
27 % i is used to count through sections
28 fprintf(fid,’\nfloat b[NUM_SECTIONS][3] = { \n’);
29 for i=1:num_sections
30 if i num_sections
31 fprintf(fid,’{%2.8E, %2.8E, %2.8E} }\n’,...
32 coeff(i,1)*gain(i),coeff(i,2)*gain(i),coeff(i,3)*gain(i));
33 else
34 fprintf(fid,’{%2.8E, %2.8E, %2.8E},\n’,...
35 coeff(i,1)*gain(i),coeff(i,2)*gain(i),coeff(i,3)*gain(i));
36 end
37 end
38 % then write the denominator coefficients a
39 % i is used to count through sections

192 INFINITE IMPULSE RESPONSE FILTERS

40 fprintf(fid,’\nfloat a[NUM_SECTIONS][3] = { \n’);
41 for i=1:num_sections
42 if i num_sections
43 fprintf(fid,’{%2.8E, %2.8E, %2.8E} };\n’,...
44 coeff(i,4),coeff(i,5),coeff(i,6));
45 else
46 fprintf(fid,’{%2.8E, %2.8E, %2.8E} };\n’,...
47 coeff(i,4),coeff(i,5),coeff(i,6));
48 end
49 end
50 fclose(fid);

Program tm4c123_iirsos_intr.c, introduced in Example 4.1, can be used
to implement the filter. Edit the line in the program that reads

#include “bilinear.h”

to read

#include “elliptic.h”

and build and run the program. The coefficient header file is also compatible with pro-
grams tm4c123_iirsos_prbs_intr.c and tm4c123_iirsos_delta_
intr.c. Figures 4.22 and 4.23 show results obtained using program tm4c123_
iirsos_delta_intr.c and coefficient file elliptic.h.

Example 4.6 Band-Pass Filter Design Using fdatool.

Figure 4.24 shows fdatool used to design an 18th-order Chebyshev
type 2 IIR band-pass filter centered at 2000 Hz. The filter coefficient file
bp2000.h is compatible with programs tm4c123_iirsos_intr.c,
tm4c123_iirsos_delta_intr.c, and tm4c123_iirsos_prbs_intr.
c. Figures 4.25 and 4.26 show the output from program tm4c123_iirsos_
prbs_intr.c using these coefficients.

Example 4.7 Implementation of IIR Filter Using CMSIS Function
arm_biquad_cascade_f32() (stm32f4_iirsos_CMSIS_intr.c).

This example demonstrates the use of the CMSIS DSP library IIR filtering function
arm_biquad_cascade_df1_f32().

Function arm_biquad_cascade_df1_f32() implements a second-order
IIR filter section (a biquad) using single precision (32-bit) floating point arithmetic.

PROGRAMMING EXAMPLES 193

0 1 2 3 4 5 6 7 8

x 10−3

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time (s)

Sa
m

pl
e

va
lu

e

0 500 1000 1500 2000 2500 3000 3500 4000
−80

−70

−60

−50

−40

−30

−20

−10

0

10

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

(a)

(b)

Figure 4.22 Impulse response and magnitude frequency response of the filter implemented
by program tm4c123_iirsos_delta_intr.c, using coefficient file elliptic.h,
plotted using MATLAB function tm4c123_logfft().

As the function name suggests, the filter is implemented as a direct form I structure.
The function processes a block of input samples to produce a corresponding
block of output samples and is therefore suited to the use of DMA-based i/o.
However, program stm32f4_iirsos_CMSIS_intr.c uses sample-by-sample
interrupt-based i/o and a block size of one sample (Listing 4.6).

194 INFINITE IMPULSE RESPONSE FILTERS

Figure 4.23 Output from program tm4c123_iirsos_delta_intr.c, using coeffi-
cient file elliptic.h viewed using a Rigol DS1052E oscilloscope.

Figure 4.24 MATLAB fdatoolwindow showing the magnitude frequency response of an
18th-order band-pass filter centered on 2000 Hz.

PROGRAMMING EXAMPLES 195

Figure 4.25 Output from program tm4c123_iirsos_prbs_intr.c, using coefficient
file bp2000.h viewed using a Rigol DS1052E oscilloscope.

Figure 4.26 Output from program tm4c123_iirsos_prbs_intr.c, using coefficient
file bp2000.h viewed using Goldwave.

Listing 4.6 Program stm32f4_iirsos_CMSIS_intr.c.

1 // stm32f4_iirsos_CMSIS_intr.c
2

3 #include "stm32f4_wm5102_init.h"
4 #include "elliptic.h"
5

196 INFINITE IMPULSE RESPONSE FILTERS

6 float32_t coeffs[5*NUM_SECTIONS] = {0};
7 float32_t state[4*NUM_SECTIONS] = {0};
8

9 arm_biquad_casd_df1_inst_f32 S;
10

11 void SPI2_IRQHandler()
12 {
13 int16_t left_out_sample, left_in_sample;
14 int16_t right_out_sample, right_in_sample;
15 float32_t xn, yn;
16

17 if (SPI_I2S_GetFlagStatus(I2Sx, I2S_FLAG_CHSIDE) SET)
18 {
19 left_in_sample = SPI_I2S_ReceiveData(I2Sx);
20 xn =(float32_t)(left_in_sample);
21 arm_biquad_cascade_df1_f32(&S, &xn, &yn, 1);
22 left_out_sample = (int16_t)(yn);
23 while (SPI_I2S_GetFlagStatus(I2Sxext,
24 SPI_I2S_FLAG_TXE) != SET){}
25 SPI_I2S_SendData(I2Sxext, left_out_sample);
26 }
27 else
28 {
29 right_in_sample = SPI_I2S_ReceiveData(I2Sx);
30 while (SPI_I2S_GetFlagStatus(I2Sxext,
31 SPI_I2S_FLAG_TXE) != SET){}
32 right_out_sample = 0;
33 SPI_I2S_SendData(I2Sxext, right_out_sample);
34 }
35 }
36

37 int main(void)
38 {
39 int i,k;
40

41 k = 0;
42 for (i=0; i<NUM_SECTIONS ; i++)
43 {
44 coeffs[k++] = b[i][0];
45 coeffs[k++] = b[i][1];
46 coeffs[k++] = b[i][2];
47 coeffs[k++] = -a[i][1];
48 coeffs[k++] = -a[i][2];
49 }
50 arm_biquad_cascade_df1_init_f32(&S, NUM_SECTIONS,
51 coeffs, state);
52 stm32_wm5102_init(FS_8000_HZ,
53 WM5102_LINE_IN,
54 IO_METHOD_INTR);
55 while(1){{
56 }

PROGRAMMING EXAMPLES 197

As supplied, the program implements the fourth-order elliptic low-pass filter used
in Example 4.5, reading filter coefficients from the header file elliptic.h.

Within function SPI2_IRQHandler(), the value of a new left channel input
sample is copied to float32_t variable xn.

Function arm_biquad_cascade_df1_f32() is passed pointers to

1. An instance of an IIR filter structure of type arm_biquad_casd_inst_
df1_f32.

2. An array containing a sequence of input sample values of type float32_t.

3. An array in which to place a sequence of output sample values of type
float32_t.

4. The number of input and output sample values.

An IIR filter structure S is declared in program statement

arm_biquad_casd_inst_df1_f32 S;

and, after the filter coefficients specified in header file elliptic.h as
arrays a and b have been copied into the array coeffs used by function
arm_biquad_cascade_df1_f32(), it is initialized in program statement

arm_biquad_cascade_df1_init_f32(&S, NUM_SECTIONS, coeffs, state);

Each second-order stage of a filter is represented by five coefficient values, of type
float32_t, stored in array coeffs in the order b0, b1, b2,−a1,−a2. These values
correspond to a transfer function of the form

H(z) = X(z)
Y(z)

=
b0 + b1z−1 + b2z−2

1 + a1z−1 + a2z−2
. (4.48)

Thearm_biquad_casd_inst_df1_f32filter structure keeps track of the inter-
nal state of each of the NUM_SECTIONS second-order IIR filter stages, that is, it
stores and updates previous input and output sample values x(n − 1), x(n − 2), y(n −
1), and y(n − 2).

4.5.1.7 Testing the Filter Using a Pseudorandom Input Signal In program
stm32f4_iirsos_prbs_CMSIS_intr.c, the statement in program
stm32f4_iirsos_CMSIS_intr.c that reads

xn =(float32_t)(left_in_sample);

is replaced by

xn = (float32_t)(prbs(8000));

198 INFINITE IMPULSE RESPONSE FILTERS

in order to use internally generated pseudorandom noise as an input and enable the
filter characteristics to be observed using an oscilloscope or Goldwave without the
need for an externally applied input signal.

In program stm32f4_iirsos_delta_CMSIS_intr.c, the input signal
applied to the filter is a sequence of discrete impulses read from array dimpulse.

Example 4.8 Implementation of a Fourth-Order IIR Filter Using the AIC3104
Digital Effects Filter (tm4c123_sysid_biquad_intr.c).

The AIC3104 codec contains two fourth-order IIR filters (one for each channel)
just before the DAC. Their coefficients can be programmed using page 1 control
registers 1 through 20 (Left Channel Audio Effects Filter Coefficient Registers) and
27 through 46 (Right Channel Audio Effects Filter Coefficient Registers). They are
enabled by setting bit 3 (left channel) and/or bit 1 (right channel) in page 0 control
register 12 (Audio Codec Digital Filter Control Register). Each filter is implemented
as two second-order (biquad) sections with an overall z-transfer function

H(z) =
(

N0 + 2N1z−1 + N2z−2

32768 − 2D1z−1 − D2z−2

)(
N3 + 2N4z−1 + N5z−2

32768 − 2D4z−1 − D5z−2

)
, (4.49)

where coefficients Ni and Di are 16-bit signed integers. Full details of these filters are
given in the AIC3104 data sheet [1].

Program tm4c123_sysid_biquad_intr.c is almost identical to program
tm4c123_sysid_intr.c, introduced in Chapter 2. It uses an adaptive FIR fil-
ter in order to measure the response of a signal path including the codec. It differs
only in that the codec is programmed to include the fourth-order IIR filter described
earlier.

Function I2CRegWrite() may be used to program the 8-bit control registers
of the AIC3104 and each of the 16-bit coefficients of the filters must therefore be
split into two 8-bit bytes. MATLAB function tm4c123_aic3104_biquad(),
shown in Listing 4.7, has been provided to automate the generation of these program
statements following calculation of filter coefficients using fdatool.

Listing 4.7 MATLAB function tm4c123_aic3104_biquad().

1 % TM4C123_AIC3104_BIQUAD.M
2 %
3 % MATLAB function to write C program statements
4 % to program left and right channel biquads in AIC3104 codec.
5 % Assumes that coefficients of a fourth order IIR filter
6 % have been designed using fdatool and exported to workspace
7 % as two matrices. These are passed to function as coeff and
8 % gain.
9 %

10 % First matrix coeff has format
11 %

PROGRAMMING EXAMPLES 199

12 % [b10 b11 b12 a10 a11 a12
13 % b20 b21 b22 a20 a21 a22
14 %]
15 %
16 % where bij is the bj coefficient in the ith stage.
17 %
18 % Second matrix gain contains gains for the two stages of the
19 % fourth order filter. fdatool generates three gains - one for
20 % each second order stage and an output gain.
21 %
22 % This function calls function tm4c123_make_hex_str() defined in
23 % file TM4C123_MAKE_HEX_STR.M.
24 %
25 % Details of AIC3104 registers in TI document SLAS509E.
26 %
27 function tm4c123_aic310_biquad(coeff,gain)
28 %
29 fname = input(’enter filename for C program statements ’,’s’);
30 fid = fopen(fname,’wt’);
31 fprintf(fid,’// %s\n’,fname);
32 fprintf(fid,’// this file was generated automatically using’);
33 fprintf(fid,’ function tm4c123_aic3104_biquad.m\n’,fname);
34 fn_name = ’I2CRegWrite’;
35 parameters = ’I2C1_BASE, AIC3104_SLAVE_ADDRESS’;
36 fsref divisors% left channel audio effects filter coefficients
37 a = tm4c123_make_hex_str(round(coeff(1,1)*gain(1)*(2 ̂ 15 - 1)));
38 fprintf(fid,’%s(%s, 1,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
39 fprintf(fid,’%s(%s, 2,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
40 a = tm4c123_make_hex_str(round(coeff(1,2)*gain(1)*2 ̂ 14));
41 fprintf(fid,’%s(%s, 3,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
42 fprintf(fid,’%s(%s, 4,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
43 a = tm4c123_make_hex_str(round(coeff(1,3)*gain(1)*(2 ̂ 15 - 1)));
44 fprintf(fid,’%s(%s, 5,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
45 fprintf(fid,’%s(%s, 6,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
46 a = tm4c123_make_hex_str(round(coeff(2,1)*gain(2)*(2 ̂ 15 - 1)));
47 fprintf(fid,’%s(%s, 7,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
48 fprintf(fid,’%s(%s, 8,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
49 a = tm4c123_make_hex_str(round(coeff(2,2)*gain(2)*2 ̂ 14));
50 fprintf(fid,’%s(%s, 9,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
51 fprintf(fid,’%s(%s,10,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
52 a = tm4c123_make_hex_str(round(coeff(2,3)*gain(2)*(2 ̂ 15 - 1)));
53 fprintf(fid,’%s(%s,11,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
54 fprintf(fid,’%s(%s,12,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
55 a = tm4c123_make_hex_str(round(-coeff(1,5)*2 ̂ 14));
56 fprintf(fid,’%s(%s,13,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
57 fprintf(fid,’%s(%s,14,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
58 a = tm4c123_make_hex_str(round(-coeff(1,6)*(2 ̂ 15 - 1)));
59 fprintf(fid,’%s(%s,15,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
60 fprintf(fid,’%s(%s,16,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
61 a = tm4c123_make_hex_str(round(-coeff(2,5)*2 ̂ 14));
62 fprintf(fid,’%s(%s,17,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
63 fprintf(fid,’%s(%s,18,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
64 a = tm4c123_make_hex_str(round(-coeff(2,6)*(2 ̂ 15 - 1)));
65 fprintf(fid,’%s(%s,19,0x%s%s);\n’,fn_name,parameters,a(1),a(2));

200 INFINITE IMPULSE RESPONSE FILTERS

66 fprintf(fid,’%s(%s,20,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
67 % right channel audio effects filter coefficients
68 a = tm4c123_make_hex_str(round(coeff(1,1)*gain(1)*(2 ̂ 15 - 1)));
69 fprintf(fid,’%s(%s,27,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
70 fprintf(fid,’%s(%s,28,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
71 a = tm4c123_make_hex_str(round(coeff(1,2)*gain(1)*2 ̂ 14));
72 fprintf(fid,’%s(%s,29,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
73 fprintf(fid,’%s(%s,30,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
74 a = tm4c123_make_hex_str(round(coeff(1,3)*gain(1)*(2 ̂ 15 - 1)));
75 fprintf(fid,’%s(%s,31,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
76 fprintf(fid,’%s(%s,32,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
77 a = tm4c123_make_hex_str(round(coeff(2,1)*gain(2)*(2 ̂ 15 - 1)));
78 fprintf(fid,’%s(%s,33,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
79 fprintf(fid,’%s(%s,34,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
80 a = tm4c123_make_hex_str(round(coeff(2,2)*gain(2)*2 ̂ 14));
81 fprintf(fid,’%s(%s,35,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
82 fprintf(fid,’%s(%s,36,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
83 a = tm4c123_make_hex_str(round(coeff(2,3)*gain(2)*(2 ̂ 15 - 1)));
84 fprintf(fid,’%s(%s,37,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
85 fprintf(fid,’%s(%s,38,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
86 a = tm4c123_make_hex_str(round(-coeff(1,5)*2 ̂ 14));
87 fprintf(fid,’%s(%s,39,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
88 fprintf(fid,’%s(%s,40,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
89 a = tm4c123_make_hex_str(round(-coeff(1,6)*(2 ̂ 15 - 1)));
90 fprintf(fid,’%s(%s,41,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
91 fprintf(fid,’%s(%s,42,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
92 a = tm4c123_make_hex_str(round(-coeff(2,5)*2 ̂ 14));
93 fprintf(fid,’%s(%s,43,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
94 fprintf(fid,’%s(%s,44,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
95 a = tm4c123_make_hex_str(round(-coeff(2,6)*(2 ̂ 15 - 1)));
96 fprintf(fid,’%s(%s,45,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
97 fprintf(fid,’%s(%s,46,0x%s%s);\n’,fn_name,parameters,a(1),a(2));
98 fclose(fid);

Connect LINE OUT (black) on the audio booster pack to LINE IN (blue) as shown
in Figure 4.27 and build and run the programtm4c123_sysid_biquad_intr.c
as supplied. Initially, the AIC3104 biquad filters are neither programmed nor enabled.
Halt the program after a few seconds and save the 256 adaptive filter coefficients to
a data file by typing

save <filename> start address, (start address + 0x400)

in the Command window of the MDK-ARM debugger, where start address
is the address of array firCoeffs32. Plot the contents of the data file (the
impulse response identified by the adaptive filter) using MATLAB function
tm4c123_logfft(). You should see something similar to the graph shown in
Figure 4.28.

PROGRAMMING EXAMPLES 201

PRBSDAC
LINE OUT

LINE IN

3.5 mm jack
to

3.5 mm jack

ADC

A

B

–

+

TM4C123 launchpad and
audio booster pack

Program

Adaptive
filter

tm4c123_sysid_biquad_intr.c

Figure 4.27 Connection diagram for program tm4c123_sysid_biquad_intr.c.

0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

−25

−20

−15

−10

−5

0

Figure 4.28 Frequency response of signal path through DAC, connecting cable, and ADC
shown in Figure 4.27 with biquad filters disabled.

Listing 4.8 File elliptic_coeffs_biquad.h.

1 // elliptic_coeffs_biquad.h
2 //
3 // this file was generated automatically using m-file
4 // tm4c123_aic3106_biquad.m

202 INFINITE IMPULSE RESPONSE FILTERS

5 //
6 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 1,0x01);
7 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 2,0x49);
8 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 3,0x00);
9 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 4,0x82);

10 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 5,0x01);
11 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 6,0x49);
12 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 7,0x7f);
13 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 8,0xff);
14 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 9,0xce);
15 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 10,0x47);
16 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 11,0x7f);
17 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 12,0xff);
18 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 13,0x61);
19 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 14,0xd7);
20 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 15,0xae);
21 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 16,0x76);
22 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 17,0x60);
23 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 18,0xe1);
24 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 19,0x90);
25 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 20,0xd0);
26 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 27,0x01);
27 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 28,0x49);
28 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 29,0x00);
29 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 30,0x82);
30 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 31,0x01);
31 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 32,0x49);
32 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 33,0x7f);
33 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 34,0xff);
34 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 35,0xce);
35 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 36,0x47);
36 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 37,0x7f);
37 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 38,0xff);
38 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 39,0x61);
39 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 40,0xd7);
40 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 41,0xae);
41 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 42,0x76);
42 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 43,0x60);
43 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 44,0xe1);
44 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 45,0x90);
45 I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 46,0xd0);

Listing 4.8 shows the contents of file elliptic_coeffs_biquad.h. This
file was generated using MATLAB function aic3104_biquad() to process filter
coefficients of a fourth-order elliptic low-pass filter designed using fdatool. Cut
and paste these statements into programtm4c123_sysid_biquad_intr.c just
after the program statement

tm4c123_aic3104_init(FS_8000_HZ,
INPUT_LINE,
IO_METHOD_INTR,
PGA_GAIN_6_DB);

PROGRAMMING EXAMPLES 203

Add the statement

I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 0, 0x01);

immediately preceding the statements cut and pasted from file ellip-
tic_coeffs_biquad.h and add the statements

I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 0, 0x00);
I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 12, 0x0A);

immediately following the previously pasted statements. The last of these statements
will enable the biquad filters on both left- and right-hand channels. Once again, build
and load the program and run it. Halt the program after a few seconds and save the
coefficients and plot using MATLAB. You should now see the magnitude frequency
response of the biquad filter, as shown in Figure 4.29.

4.5.1.8 Changing the Response of the AIC3104 Digital Effects Filter In order to
program an alternative filter response into the digital effects filter,

1. Design an alternative fourth-order IIR filter using fdatool. Figure 4.30 shows
the design of a fourth-order elliptic band pass filter.

2. Export the filter coefficients from fdatool to the MATLAB workspace as
variables SOS and G.

3. At the MATLAB command line, type aic3104_biquad(SOS,G) and enter
a filename, for example, bandpass_coeffs_biquad.h.

4. Cut and paste the statements contained in file bandpass_coeffs_
biquad.h into program tm4c123_sysid_biquad_intr.c (in place of
those used in the previous example) immediately following the call to function
tm4c123_aic3104_init() and immediately preceding the program
statements

I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 0, 0x00);
I2CRegWrite(I2C1_BASE, AIC3104_SLAVE_ADDRESS, 12, 0x0A);

replacing the previous calls to function I2CRegWrite().

5. Build and run the program as before.

6. Observe the response identified using MATLAB function tm4c123_
logfft() to plot the values stored in array firCoeffs32.

Figure 4.31 shows the identified frequency response for the coefficients
contained in file bandpass_coeffs_biquad.h using MATLAB function
tm4c123_logfft().

204 INFINITE IMPULSE RESPONSE FILTERS

0 0.005 0.01 0.015 0.02
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time (s)

Sa
m

pl
e

va
lu

e

0 500 1000 1500 2000 2500 3000 3500 4000
−100

−80

−60

−40

−20

0

20

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Figure 4.29 Frequency response of signal path through DAC, connecting cable, and ADC
shown in Figure 4.27 with biquad filters programmed as a fourth-order elliptic low-pass filter
and enabled.

Example 4.9 Generation of a Sine Wave Using a Difference Equation
(stm32f4_sinegenDE_intr.c).

In Chapter 3, it was shown that the z-transform of a sinusoidal sequence y(n) =
u(n) sin(n𝜔T) is given by

Y(z) = z sin(𝜔T)
z2 − 2 cos(𝜔T)z + 1

. (4.50)

PROGRAMMING EXAMPLES 205

Figure 4.30 fdatool used to design a fourth-order elliptic band-pass filter.

0 500 1000 1500 2000 2500 3000 3500 4000
−80

−70

−60

−50

−40

−30

−20

−10

0

10

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Figure 4.31 Frequency response of signal path through DAC, connecting cable, and ADC
shown in Figure 4.27 with biquad filters programmed as a fourth-order elliptic band-pass filter
and enabled.

206 INFINITE IMPULSE RESPONSE FILTERS

y(n)

x(n − 1)
y(n − 1)

y(n − 2)

+

+

+

+

z−1

z−1

z−1

b1 −a1

−a2

x(n) = δ(n)

Figure 4.32 Block diagram representation of Equation (4.53).

Comparing this with the z-transfer function of the second-order filter of Example 4.1

H(z) = Y(z)
X(z)

=
b1z

z2 + a1z + a2
. (4.51)

It is apparent that by appropriate choice of filter coefficients, we can configure the
filter to act as a sine wave generator, that is, to have a sinusoidal impulse response.
Choosing a2 = 1 and a1 = 2 cos(𝜔T), the denominator of the transfer function
becomes z2 − 2 cos(𝜔T)z + 1, which corresponds to a pair of complex conjugate
poles located on the unit circle in the z-plane. The filter can be set oscillating by
applying an impulse to its input. Rearranging Equation (4.51) and setting x(n) = 𝛿(n),
(X(z) = 1), and b1 = sin(𝜔T)

Y(z) =
X(z)b1z

z2 + a1z + a2
= sin(𝜔T)z

z2 − 2 cos(𝜔T)z + 1
. (4.52)

Equation (4.52) is equivalent to Equation (4.50), implying that the filter impulse
response is y(n) = u(n) sin(n𝜔T). Equation (4.51) corresponds to the difference
equation

y(n) = sin(𝜔T)x(n − 1) + 2 cos(𝜔T)y(n − 1) − y(n − 2), (4.53)

which is illustrated in block diagram form in Figure 4.32.
Since the input, x(n), to the filter is nonzero only at sampling instant n = 0, the

difference equation is equal to

y(n) = 2 cos(𝜔T)y(n − 1) − y(n − 2) (4.54)

PROGRAMMING EXAMPLES 207

y(n)

y(n − 2)

y(n − 1)

+

+

−a2

−a1

z−1

z−1

Figure 4.33 Block diagram representation of Equation (4.54).

for all other n and hence the sine wave generator may be implemented as shown in
Figure 4.33, using no input signal but using nonzero initial values for y(n − 1) and
y(n − 2). These initial values determine the amplitude of the sinusoidal output.

Since the frequency of oscillation 𝜔 is fixed by the choice of a1 = 2 cos(𝜔T) and
a2 = 1, the initial values chosen for y(n − 1) and y(n − 2) represent two samples of a
sinusoid of frequency 𝜔, which are one sampling period, or T seconds, apart in time,
that is,

y(n − 1) = A sin(𝜔t + 𝜙),

y(n − 2) = A sin(𝜔(t + T) + 𝜙).

The initial values of y(n − 1) and y(n − 2) determine the amplitude A of the
sine wave generated. A simple solution to the equations, implemented in program
tm4c123_sinegenDE_intr.c (Listing 4.9), is

y(n − 1) = 0

y(n − 2) = A sin(𝜔T)

Build and run this program as supplied (FREQ = 2000) and verify that the out-
put is a 2000 Hz tone. Change the value of the constant FREQ, build and run the
program, and verify the generation of a tone of the frequency selected.

Listing 4.9 Program stm32f4_sinegenDE_intr.c.

1 // stm32f4_sinegenDE_intr.c
2

208 INFINITE IMPULSE RESPONSE FILTERS

3 #include "stm32f4_wm5102_init.h"
4

5 float32_t y[3]; // filter states - previous output values
6 float32_t a1; // filter coefficient
7

8 const float32_t AMPLITUDE = 8000.0;
9 const float32_t FREQ = 2000.0;

10 const float32_t SAMPLING_FREQ = 8000.0;
11

12 void SPI2_IRQHandler()
13 {
14 int16_t left_out_sample, left_in_sample;
15 int16_t right_out_sample, right_in_sample;
16

17 if (SPI_I2S_GetFlagStatus(I2Sx, I2S_FLAG_CHSIDE) SET)
18 {
19 left_in_sample = (float32_t)(SPI_I2S_ReceiveData(I2Sx));
20 y[0] = -(y[1]*a1)-y[2]; // new y(n)
21 y[2] = y[1]; // update y(n-2)
22 y[1] = y[0]; // update y(n-1)
23 left_out_sample = (int16_t)(y[0]);
24 while (SPI_I2S_GetFlagStatus(I2Sxext,
25 SPI_I2S_FLAG_TXE) != SET){}
26 SPI_I2S_SendData(I2Sxext, left_out_sample);
27 }
28 else
29 {
30 right_in_sample = SPI_I2S_ReceiveData(I2Sx);
31 while (SPI_I2S_GetFlagStatus(I2Sxext,
32 SPI_I2S_FLAG_TXE) != SET){}
33 right_out_sample = 0;
34 SPI_I2S_SendData(I2Sxext, right_out_sample);
35 }
36 }
37

38 int main(void)
39 {
40 y[1] = 0.0;
41 y[2] = AMPLITUDE*sin(2.0*PI*FREQ/SAMPLING_FREQ);
42 a1 = -2.0*cos(2.0*PI*FREQ/SAMPLING_FREQ);
43 stm32_wm5102_init(FS_8000_HZ,
44 WM5102_LINE_IN,
45 IO_METHOD_INTR);
46 while(1){}
47 }

Example 4.10 Generation of DTMF Signal Using Difference Equations
(stm32f4_sinegenDTMF_intr.c).

Program stm32f4_sinegenDTMF_intr.c, shown in Listing 4.10, uses
the same difference equation method as program tm4c123_sinegenDE_intr

PROGRAMMING EXAMPLES 209

to generate two sinusoidal signals of different frequencies, which, added together,
form a DTMF tone (see also Example 2.12, which used a table lookup method). The
program also incorporates a buffer (array out_buffer) that is used to store the
256 most recent output samples. Figure 4.34 shows the contents of that buffer in time
and frequency domains, plotted using MATLAB function stm32f4_logfft()
after halting the program and saving the contents of out_buffer to a file.
Figure 4.35 shows the analog output signal generated by the program captured using
an oscilloscope. Unlike the FFT function in the oscilloscope, MATLAB function
stm32f4_logfft() has not applied a Hamming window to the sample values.

Listing 4.10 Program stm32f4_sinegenDTMF_intr.c.

1 // stm32f4_sinegenDTMF_intr.c
2

3 #include "stm32f4_wm5102_init.h"
4 #define FREQLO 770
5 #define FREQHI 1336
6 #define SAMPLING_FREQ 8000
7 #define AMPLITUDE 6000
8 #define BUFFER_SIZE 256
9

10 float ylo[3];
11 float yhi[3];
12 float a1lo, a1hi;
13 float out_buffer[BUFFER_SIZE];
14 int bufptr = 0;
15

16 void SPI2_IRQHandler()
17 {
18 int16_t left_out_sample, left_in_sample;
19 int16_t right_out_sample, right_in_sample;
20 float32_t output;
21

22 if (SPI_I2S_GetFlagStatus(I2Sx, I2S_FLAG_CHSIDE) SET)
23 {
24 GPIO_SetBits(GPIOD, GPIO_Pin_15);
25 left_in_sample = SPI_I2S_ReceiveData(I2Sx);
26 ylo[0] = -(ylo[1]*a1lo)-ylo[2];
27 ylo[2] = ylo[1]; //update y1(n-2)
28 ylo[1] = ylo[0]; //update y1(n-1)
29 yhi[0] = -(yhi[1]*a1hi)-yhi[2];
30 yhi[2] = yhi[1]; //update y1(n-2)
31 yhi[1] = yhi[0]; //update y1(n-1)
32 output = (yhi[0]+ylo[0]);
33 out_buffer[bufptr++] = output;
34 if (bufptr >= BUFSIZE) bufptr = 0;
35 left_out_sample = (int16_t)(output);
36 while (SPI_I2S_GetFlagStatus(I2Sxext,
37 SPI_I2S_FLAG_TXE) != SET){}
38 SPI_I2S_SendData(I2Sxext, left_out_sample);
39 GPIO_ResetBits(GPIOD, GPIO_Pin_15);

210 INFINITE IMPULSE RESPONSE FILTERS

40 }
41 else
42 {
43 right_out_sample = SPI_I2S_ReceiveData(I2Sx);
44 while (SPI_I2S_GetFlagStatus(I2Sxext,
45 SPI_I2S_FLAG_TXE) != SET){}
46 SPI_I2S_SendData(I2Sxext, right_out_sample);
47 }
48 }
49

50 int main(void)
51 {
52 ylo[1] = 0.0;
53 ylo[2] = AMPLITUDE*sin(2.0*PI*FREQLO/SAMPLING_FREQ);
54 a1lo = -2.0*cos(2.0*PI*FREQLO/SAMPLING_FREQ);
55 yhi[1] = 0.0;
56 yhi[2] = AMPLITUDE*sin(2.0*PI*FREQHI/SAMPLING_FREQ);
57 a1hi = -2.0*cos(2.0*PI*FREQHI/SAMPLING_FREQ);
58 stm32_wm5102_init(FS_8000_HZ,
59 WM5102_LINE_IN,
60 IO_METHOD_INTR);
61 while(1){}
62 }

Example 4.11 Generation of a Swept Sinusoid Using a Difference Equation
(stm32f4_sweepDE_intr.c).

Listing 4.11 is of program stm32f4_sweepDE_intr.c, which generates a
sinusoidal signal, sweeping repeatedly from low to high frequency. The program
implements the difference equation

y(n) = −a1y(n − 1) − y(n − 2), (4.55)

where a1 = −2 cos(𝜔T) and the initial conditions are y(n − 1) = 0 and y(n − 2) =
sin(𝜔T). Example 4.9 illustrated the generation of a sine wave using this difference
equation.

Compared with the lookup table method of Example 2.15, making step changes
in the frequency of the output signal generated using a difference equation is slightly
more problematic. Each time program stm32f4_sweepDE_intr.c changes its
output frequency it reinitializes the stored values of previous output samples y(n − 1)
and y(n − 2). These values determine the amplitude of the sinusoidal output at the new
frequency and must be chosen appropriately. Using the existing values, leftover from
the generation of a sinusoid at the previous frequency might cause the amplitude of the
output sinusoid to change. In order to avoid discontinuities, or glitches, in the output
waveform, a further constraint on the parameters of the program must be observed.
Since at each change in frequency, the output waveform starts at the same phase in
its cycle, it is necessary to ensure that each different frequency segment is output for
an integer number of cycles. This can be achieved by making the number of samples

PROGRAMMING EXAMPLES 211

0 0.005 0.01 0.015 0.02 0.025 0.03
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 104

Time (s)

Sa
m

pl
e

va
lu

e

0 500 1000 1500 2000 2500 3000 3500 4000
60

70

80

90

100

110

120

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Figure 4.34 Output samples generated by program stm32f4_sinegenDTMF_intr.c
plotted using MATLAB function stm32f4_logfft().

output between step changes in frequency equal to the sampling frequency divided
by the frequency increment.

As shown in Listing 4.11, the frequency increment is 20 Hz and the sampling
frequency is 8000 Hz. Hence, the number of samples output at each different fre-
quency is equal to 8000/20 = 400. Different choices for the values of the constants
STEP_FREQ and SWEEP_PERIOD are possible.

Build and run this program. Verify that the output is a swept sinusoidal signal
starting at frequency 200 Hz and taking (SWEEP_PERIOD/SAMPLING_FREQ)*
(MAX_FREQ-MIN_FREQ)/STEP_FREQ seconds to increase in frequency to

212 INFINITE IMPULSE RESPONSE FILTERS

Figure 4.35 Output signal generated by program stm32f4_sinegenDTMF_intr.c
viewed using a Rigol DS1052E oscilloscope.

3800 Hz. Change the values of START_FREQ and STOP_FREQ to 2000 and 3000,
respectively. Build the project again, load and run the program, and verify that the
frequency sweep is from 2000 to 3000 Hz.

Listing 4.11 Program stm32f4_sweepDE_intr.c.

1 // stm32f4_sweepDE_intr.c
2

3 #include "stm32f4_wm5102_init.h"
4

5 #define MIN_FREQ 200
6 #define MAX_FREQ 3800
7 #define STEP_FREQ 20
8 #define SWEEP_PERIOD 400
9 #define SAMPLING_FREQ 8000.0f

10 #define AMPLITUDE 4000.0f
11 #define PI 3.14159265358979f
12

13 float32_t y[3] = {0.0, 0.0, 0.0};
14 float32_t a1;
15 float32_t freq = MIN_FREQ;
16 int16_t sweep_count = 0;
17 ;
18

19 void coeff_gen(float freq)
20 {
21 float32_t kk;
22

23 kk = 2.0*PI*freq/SAMPLING_FREQ;

PROGRAMMING EXAMPLES 213

24 a1 = -2.0*arm_cos_f32(kk);
25 y[0] = 0.0;
26 y[2] = AMPLITUDE*arm_sin_f32(kk);
27 y[1] = 0.0;
28 return;
29 }
30

31 void SPI2_IRQHandler()
32 {
33 int16_t left_out_sample = 0;
34 int16_t right_out_sample = 0
35

36 if (SPI_I2S_GetFlagStatus(I2Sx, I2S_FLAG_CHSIDE) != SET)
37 {
38 GPIO_SetBits(GPIOD, GPIO_Pin_15);
39 left_out_sample = SPI_I2S_ReceiveData(I2Sx);
40 sweep_count++;
41 if (sweep_count >= SWEEP_PERIOD)
42 {
43 if (freq >= MAX_FREQ)
44 freq = MIN_FREQ;
45 else
46 freq += STEP_FREQ;
47 coeff_gen(freq);
48 sweep_count = 0;
49 }
50 y[0] = -(y[1]*a1)-y[2];
51 y[2] = y[1]; // update y1(n-2)
52 y[1] = y[0]; // update y1(n-1)
53 left_out_sample = (int16_t)(y[0]);
54 while (SPI_I2S_GetFlagStatus(I2Sxext,
55 SPI_I2S_FLAG_TXE) != SET){}
56 SPI_I2S_SendData(I2Sxext, left_out_sample);
57 GPIO_ResetBits(GPIOD, GPIO_Pin_15);
58 }
59 else
60 {
61 right_out_sample = SPI_I2S_ReceiveData(I2Sx);
62 while (SPI_I2S_GetFlagStatus(I2Sxext,
63 SPI_I2S_FLAG_TXE) != SET){}
64 SPI_I2S_SendData(I2Sxext, right_out_sample);
65 }
66 }
67

68 int main(void)
69 {
70 coeff_gen(freq);
71 stm32_wm5102_init(FS_8000_HZ,
72 WM5102_LINE_IN,
73 IO_METHOD_INTR);
74 while(1){}
75 }

214 INFINITE IMPULSE RESPONSE FILTERS

Example 4.12 Cascaded Second-Order Notch Filters (tm4c123_
iirsos_intr).

In Chapter 3, two 89-coefficient FIR notch filters were used to remove unwanted
tones from a signal. In this example, the use of simple second-order IIR notch filters
to achieve a similar result is demonstrated. A second-order IIR notch filter has the
form

H(z) = X(z)
Y(z)

=
1 − 2 cos(�̂�n)z−1 + z−2

1 − 2rcos(�̂�n)z−1 + r2z−2
(4.56)

corresponding, in the z-plane, to two complex conjugate zeros on the unit circle at
angles +∕ − �̂�n from the real axis and two complex conjugate poles of magnitude r,
at similar angles. This is illustrated in Figure 4.36.

The magnitude frequency response of this filter contains a deep notch at frequency
�̂�n radians with 3 dB cutoff frequencies spaced r radians apart. In other words, the
parameter r determines the width of the notch shown in Figure 4.37.

Two cascaded second-order IIR notch filters with notches at 900 and 2700 Hz
programs may be implemented using either program tm4c123_iirsos_intr.c
or tmc123_iirsos_prbs_intr.c simply by including the header file
iir_notch_coeffs.h (shown in Listing 4.12).

Re

Imz-plane

1

r

ˆ ωn

Figure 4.36 Pole-zero map for notch filter described by Equation (4.56) for r = 0.8 and �̂� =
𝜋∕4.

PROGRAMMING EXAMPLES 215

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−100

−50

0

50

100

Normalized frequency (×π rad/sample)

Normalized frequency (×π rad/sample)

Ph
as

e
(°

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−15

−10

−5

0

5

M
ag

ni
tu

de
 (

dB
)

Figure 4.37 Frequency response of notch filter described by Equation (4.56) for r = 0.8 and
�̂� = 𝜋∕4.

Listing 4.12 Coefficient header file iir_notch_coeffs.h.

1 // iir_notch_coeffs.h
2 // cascaded second-order notch filters 900 Hz and 2700 Hz
3

4 #define NUM_SECTIONS 2
5

6 float b[NUM_SECTIONS][3] = {
7 {1.00000000, 1.04499713, 1.00000000},
8 {1.00000000, -1.5208, 1.00000000} };
9

10 float a[NUM_SECTIONS][3] = {
11 {1.00000000, 0.94049741, 0.9025},
12 {1.00000000, -1.44476, 0.9025} };

Run program tmc123_iirsos_intr.c using that coefficient header file, and
test its response to the input signal stored in file corrupt.wav. Play the test signal
using Goldwave, Windows Media Player, or similar, and connect the PC sound card
output to the (blue) LINE IN connection on the audio booster card.

Figure 4.38 shows pseudorandom noise filtered by program tmc123_iirsos_
prbs_intr.c using header file iir_notch_coeffs.h.

216 INFINITE IMPULSE RESPONSE FILTERS

Figure 4.38 Pseudorandom noise filtered by program tmc123_iirsos_prbs_intr.c
using header file iir_notch_coeffs.h.

REFERENCE

1. Texas Instruments, Inc., “TLV320AIC3104 Low-Power Stereo Audio Codec for Portable
Audio and Telephony”, Literature no. SLAS510D, 2014.

5
FAST FOURIER TRANSFORM

5.1 INTRODUCTION

Fourier analysis describes the transformations between time- and frequency-domain
representations of signals. Four different forms of Fourier transformation (the Fourier
transform (FT), Fourier Series (FS), Discrete-time Fourier transform (DTFT), and
discrete Fourier transform (DFT)) are applicable to different classes of signal accord-
ing to whether, in either domain, they are discrete or continuous and whether they
are periodic or aperiodic. The DFT is the form of Fourier analysis applicable to sig-
nals that are discrete and periodic in both domains, that is, it transforms a discrete,
periodic, time-domain sequence into a discrete, periodic, frequency-domain repre-
sentation. A periodic signal may be characterized entirely by just one cycle, and if
that signal is discrete, then one cycle comprises a finite number of samples. The DFT
transforms N complex time-domain samples into N complex frequency-domain val-
ues. Hence, both forward and inverse DFTs are described by finite summations as
opposed to either infinite summations or integrals. This is very important in digital
signal processing since it means that it is practical to compute the DFT using a digital
signal processor or digital hardware.

The fast Fourier transform (FFT) is a computationally efficient algorithm for
computing the DFT. It requires fewer multiplications than a more straightforward
programming implementation of the DFT and its relative advantage in this respect
increases with the lengths of the sample sequences involved. The FFT makes use of

Digital Signal Processing Using the ARM® Cortex® -M4, First Edition. Donald S. Reay.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

218 FAST FOURIER TRANSFORM

the periodic nature, and of symmetry, in the twiddle factors used in the DFT. Appli-
cable to spectrum analysis and to filtering, the FFT is one of the most commonly used
operations in digital signal processing. Various, slightly different, versions of the FFT
can be derived from the DFT, and in this chapter, the decimation-in-time (DIT) and
decimation-in-frequency (DIF) radix-2 and radix-4 versions are described in detail.
These versions of the FFT differ in the exact form of the intermediate computations
that make them up. However, ignoring rounding errors, they each produce exactly the
same results as the DFT. In this respect, the terms DFT and FFT are interchangeable.

5.2 DEVELOPMENT OF THE FFT ALGORITHM WITH RADIX-2

The N-point complex DFT of a discrete-time signal x(n) is given by

XN(k) =
N−1∑
n=0

x(n)Wkn
N . (5.1)

The constants W are referred to as twiddle constants or twiddle factors, where

WN = e−j(2𝜋∕N). (5.2)

Computing all N values of XN(k) (0 ≤ k < N) involves the evaluation of N2 product
terms of the form x(n)Wkn

N , each of which (aside from the requirement of computing
Wkn

N) requires a complex multiplication. For larger N, the computational requirements
(N2 complex multiplications) of the DFT can be very great. The FFT algorithm takes
advantage of the periodicity

W(k+N)
N = Wk

N (5.3)

and symmetry
W(k+N∕2)

N = −Wk
N (5.4)

of WN (where N is even).
Figure 5.1 illustrates the twiddle factors Wkn

N for N = 8 plotted as vectors in the
complex plane. Due to the periodicity of Wkn

N , the N2 = 64 different combinations of n
and k used in evaluation of Equation (5.1) result in only N = 8 distinct values for Wkn

N .
The FFT makes use of this small number of precomputed and stored values of Wkn

N
rather than computing each one as it is required. Furthermore, due to the symmetry
of Wkn

N , only N∕2 = 4 distinct numerical values need actually be precomputed and
stored.

A second, important, way in which the radix-2 FFT saves computational effort
is by decomposing an N-point DFT into a combination of N∕2-point DFTs. In the
case of radix-2, that is, where N is an integer power of 2, further decomposition of
N∕2-point DFTs into combinations of N∕4-point DFTs and so on can be carried out
until 2-point DFTs have been reached. Computation of the 2-point DFT does not
involve multiplication since the twiddle factors involved are equal to ±1 yielding
X2(0) = x(0) + x(1) and X2(1) = x(0) − x(1).

DECIMATION-IN-FREQUENCY FFT ALGORITHM WITH RADIX-2 219

W8
0 =W8

8 =K

W8
7
=W8

15
=K

W8
6 =W8

14 =K

W8
1
= W8

9
=K

W8
4
=W8

12
=K

W8
5
= W8

13
=K

W8
3
= W8

11
=K

W8
2 =W8

10 =K

Figure 5.1 Twiddle factors Wkn
N for N = 8 represented as vectors in the complex plane.

5.3 DECIMATION-IN-FREQUENCY FFT ALGORITHM WITH RADIX-2

Consider the N-point DFT

XN(k) =
N−1∑
n=0

x(n)Wkn
N , (5.5)

where
WN = e−j(2𝜋∕N), (5.6)

and let N be an integer power of 2.
Decompose the length N input sequence x(n) into two length N∕2 sequences, one

containing the first N∕2 values x(0), x(1), · · · , x(N∕2 − 1) and the other containing
the remaining N∕2 values x(N∕2), x(N∕2 + 1), · · · , x(N − 1). Splitting the DFT sum-
mation into two parts

XN(k) =
(N∕2)−1∑

n=0

x(n)Wnk
N +

(N∕2)−1∑
n=0

x
(

n + N
2

)
W(n+(N∕2))k

N

=
(N∕2)−1∑

n=0

x(n)Wkn
N + W(N∕2)k

N

(N∕2)−1∑
n=0

x
(

n + N
2

)
Wnk

N . (5.7)

The term W(N∕2)k
N is placed outside the second summation since it is not a function of

n. Making use of
W(N∕2)k

N = e−j𝜋k = (−1)k. (5.8)

Equation (5.7) becomes

XN(k) =
(N∕2)−1∑

n=0

[
x(n) + (−1)kx

(
n + N

2

)]
Wnk

N . (5.9)

220 FAST FOURIER TRANSFORM

Because (−1)k = 1 for even k and (−1)k = −1 for odd k, Equation (5.9) can be split
into two parts. For even k,

XN(k) =
(N∕2)−1∑

n=0

[
x(n) + x

(
n + N

2

)]
Wnk

N , (5.10)

and for odd k,

XN(k) =
(N∕2)−1∑

n=0

[
x(n) − x

(
n + N

2

)]
Wnk

N . (5.11)

For k = 0, 1, · · · , ((N∕2) − 1), that is, for an N∕2-point sequence, and making use of

Wkn
(N∕2) = e−j(2𝜋2nk∕N) = W2nk

N , (5.12)

XN(2k) =
(N∕2)−1∑

n=0

[
x(n) + x

(
n + N

2

)]
W2nk

N

=
(N∕2)−1∑

n=0

[
x(n) + x

(
n + N

2

)]
Wnk

(N∕2) (5.13)

and

XN(2k + 1) =
(N∕2)−1∑

n=0

[
x(n) − x

(
n + N

2

)]
W(2k+1)n

N

=
(N∕2)−1∑

n=0

[
x(n) − x

(
n + N

2

)]
Wnk

(N∕2)W
n
N . (5.14)

Letting

a(n) = x(n) + x
(

n + N
2

)
(5.15)

and
b(n) = x(n) − x

(
n + N

2

)
. (5.16)

Equations (5.13) and (5.14) may be written as

XN(2k) =
(N∕2)−1∑

n=0

a(n)Wnk
(N∕2) (5.17)

and

XN(2k + 1) =
(N∕2)−1∑

n=0

b(n)Wn
NWnk

(N∕2). (5.18)

DECIMATION-IN-FREQUENCY FFT ALGORITHM WITH RADIX-2 221

W8
3 X8(7)

X8(6)

X8(4)

X8(3)

X8(5)

X8(2)

X8(1)

X8(0)x(0)

x(2)

x(4)

x(6)

x(1)

x(3)

x(5)
W8

1

W8
2

+

+

+

+

+

+

+

+

+

–

–

–

–

+

+

+

4-point
DFT

4-point
DFT

W8
0

x(7)

a(0)

a(1)

a(2)

a(3)

b(0)

b(1)

b(2)

b(3)

Figure 5.2 Decomposition of 8-point DFT into two 4-point DFTs using decimation-
in-frequency with radix-2.

In other words, the even elements of XN(k) are given by the N∕2-point DFT of
a(n), where a(n) are combinations of the elements of the N-point input sequence
x(n). The odd elements of XN(k) are given by the N∕2-point DFT of b(n)Wn

N, where
b(n) are different combinations of the elements of the N-point input sequence x(n).
This structure is illustrated graphically, for N = 8, in Figure 5.2.

Consider next that each of the 4-point DFTs in Figure 5.2 may further be decom-
posed into two 2-point DFTs (Figure 5.3). Each of those 2-point DFTs may further
be decomposed into two 1-point DFTs. However, the 1-point DFT of a single value
is equal to that value itself, and for this reason, the 2-point DFT butterfly structure
shown in Figure 5.4 is conventionally treated as the smallest component of the FFT
structure.

X
4
(3)

X
4
(1)

X
4
(2)

X
4
(0)

x(3)

x(0)

x(1)

x(2)

W4
1

2-point
DFT

2-point
DFT

W4
0

+

–

+

+

+

+

+

–

Figure 5.3 Decomposition of 4-point DFT into two 2-point DFTs using decimation-
in-frequency with radix-2.

222 FAST FOURIER TRANSFORM

X2(1)

X2(0)x(0)

x(1)

–

+

+

+

Figure 5.4 2-point FFT butterfly structure.

W8
3 X8(7)

X8(6)

X8(4)

X8(3)

X8(5)

X8(2)

X8(1)

X8(0)x(0)

x(2)

x(4)

x(6)

x(1)

x(3)

x(5)
W8

1

W8
2

+

+

+

+

+

+

+

+

+

–

–

–

–

+

+

+
W8

0

x(7)

a(0)

a(1)

a(2)

a(3)

b(0)

b(1)

b(2)

b(3)
W4

1

W4
0

W4
1

W4
0

+

+

+

–

+

+

+

–

+

+

+

–

+

+

+

–

+

+

+

+

+

–

+

–

+

+

+

+

+

–

+

–

Figure 5.5 Block diagram representation of 8-point FFT using decimation-in-frequency with
radix-2.

The 8-point DFT has thus been decomposed into a structure (Figure 5.5) that com-
prises only a small number of multiplications (by twiddle factors other than ±1).

The FFT is not an approximation of the DFT. It yields the same result as the DFT
with fewer computations required. This reduction becomes more and more important,
and advantageous, with higher order FFTs.

The DIF process may be considered as taking the N-point input sequence x(n) in
sequence and reordering the output sequence XN(k) in pairs, corresponding to the
outputs of the final stage of (N∕2) 2-point DFT blocks.

5.4 DECIMATION-IN-TIME FFT ALGORITHM WITH RADIX-2

The DIF process decomposes the DFT output sequence XN(k) into a set of shorter
subsequences, whereas DIT is a process that decomposes the DFT input sequence
x(n) into a set of shorter subsequences.

DECIMATION-IN-TIME FFT ALGORITHM WITH RADIX-2 223

Consider again the N-point DFT

XN(k) =
N−1∑
n=0

x(n)Wkn
N , (5.19)

where
WN = e−j(2𝜋∕N), (5.20)

and let N be an integer power of 2.
Decompose the length N input sequence into two length N∕2 sequences one con-

taining the even-indexed values x(0), x(2), · · · , x(N − 2) and the other containing the
odd-indexed values x(1), x(3), · · · , x(N − 1). Splitting the DFT summation into two
parts

XN(k) =
(N∕2)−1∑

n=0

x(2n)W2nk
N +

(N∕2)−1∑
n=0

x(2n + 1)W(2n+1)k
N

=
(N∕2)−1∑

n=0

x(2n)Wnk
(N∕2)

+Wk
N

(N∕2)−1∑
n=0

x(2n + 1)Wnk
(N∕2), (5.21)

since
W2nk

N = Wnk
(N∕2) (5.22)

and
W(2n+1)k

N = Wk
NW2nk

N . (5.23)

Letting

C(k) =
(N∕2)−1∑

n=0

x(2n)Wnk
(N∕2) (5.24)

and

D(k) =
(N∕2)−1∑

n=0

x(2n + 1)Wnk
(N∕2) (5.25)

Equation (5.21) may be written as

XN(k) = C(k) + Wk
ND(k). (5.26)

224 FAST FOURIER TRANSFORM

However, (N∕2)-point DFTs C(k) and D(k) are defined only for 0 ≤ k < (N∕2),
whereas N-point DFT XN(k) is defined for 0 ≤ k < N. C(k) and D(k) must be evalu-
ated for 0 ≤ k < (N∕2), and C(k + (N∕2)) and D(k + (N∕2)) must also be evaluated
for 0 ≤ k < (N∕2). Substituting (k + (N∕2)) for k in the definition of C(k)

C(k + (N∕2)) =
(N∕2)−1∑

n=0

x(2n)Wn(k+(N∕2))
(N∕2) . (5.27)

Since
Wn(k+(N∕2))

(N∕2) = Wnk
(N∕2) (5.28)

and
Wn(k+(N∕2))

N = −Wnk
N , (5.29)

Equation (5.26) becomes

XN(k) = C(k) + Wk
ND(k)

XN(k + (N∕2)) = C(k) − Wk
ND(k) (5.30)

evaluated for 0 ≤ k < (N∕2).
In other words, the N-point DFT of input sequence XN(k) is decomposed into two

(N∕2)-point DFTs (C(k) and D(k)), of the even- and odd-indexed elements of x(n),
the results of which are combined in weighted sums to yield N-point output sequence
XN(k). This is illustrated graphically, for N = 8, in Figure 5.6.

Consider next that each of the 4-point DFTs in that figure may further be decom-
posed into two 2-point DFTs (Figure 5.7) and that each of those 2-point DFTs is the
2-point FFT butterfly structure shown in Figure 5.4 and used in the decimation in
frequency approach.

The 8-point DFT has thus been decomposed into a structure (Figure 5.8) that com-
prises only a small number of multiplications (by twiddle factors other than ±1). The
DIT approach may be considered as using pairs of elements from a reordered N-point
input sequence x(n) as inputs to (N∕2) 2-point DFT blocks and producing a correctly
ordered N-point output sequence XN(k).

5.4.1 Reordered Sequences in the Radix-2 FFT and Bit-Reversed Addressing

The reordered input sequence x(n) in the case of the DIT approach and the reordered
output sequence XN(k) in the case of DIF can be described with reference to
bit-reversed addressing.

Taking as an example the reordered length N sequence x(n) in the case of DIT, the
index of each sample may be represented by a log2(N) bit binary number (recall that,
in the foregoing examples, N is an integer power of 2). If the binary representations

DECIMATION-IN-TIME FFT ALGORITHM WITH RADIX-2 225

W8
3

X8(7)

X8(6)

X8(4)

X8(5)

X8(3)

X8(2)

X8(1)

X8(0)

x(7)

x(0)

x(2)

x(4)

x(6)

x(1)

x(3)

x(5)

W8
1

W8
2

+

+

+

+

+

+

+

+

+

-

-

-

-

+

+

+

4-point
DFT

4-point
DFT

W8
0

Figure 5.6 Decomposition of 8-point DFT into two 4-point DFTs using decimation-in-time
with radix-2.

X
4
(3)

X
4
(2)

X
4
(1)

X
4
(0)x(0)

x(2)

x(1)

x(3)
W4

1

2-point
DFT

2-point
DFT

W4
0

+

+

+

+

+

–

+

–

Figure 5.7 Decomposition of 4-point DFT into two 2-point DFTs using decimation-in-time
with radix-2.

of the N index values 0 to (N − 1) have the order of their bits reversed, for example,
001 becomes 100, 110 becomes 011, and so on, then the resulting N values represent
the indices of the input sequence x(n) in the order that they appear at the input to the
FFT structure. In the case of N = 8 (Figure 5.6), the input values x(n) are ordered
x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7). The binary representations of these indices
are 000, 100, 010, 110, 001, 101, 011, 111. These are the bit-reversed versions of the
sequence 000, 001, 010, 011, 100, 101, 110, 111. The bit-reversed interpretation of
the reordering holds for all N (that are integer powers of 2).

226 FAST FOURIER TRANSFORM

W8
3

X8(7)

X8(6)

X8(4)

X8(5)

X8(3)

X8(2)

X8(1)

X8(0)

x(7)

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

W8
1

W4
1

W4
1

W8
2

+

+

+

+

+

++

+

+

+

+

+

+

+

–

–

–

–

–

+

+

+

+ +

+

+

+

+

+

+

+

+

+ +

+

+

+

– –

–

–

–

+

+

+

–

W4
0

W4
0

W8
0

C(0)

C(1)

C(2)

C(3)

D(0)

D(1)

D(2)

D(3)

+

–

Figure 5.8 Block diagram representation of 8-point FFT using decimation-in-time with
radix-2.

5.5 DECIMATION-IN-FREQUENCY FFT ALGORITHM WITH RADIX-4

Radix-4 decomposition of the DFT is possible if N is an integer power of 4. If N = 4M ,
then the decomposition will comprise M stages. The smallest significant DFT block
that will appear in the structure is a 4-point DFT. Both DIF and DIT approaches are
possible.

In the DIF approach, the input sequence and the N-point DFT are split into four
sections such that

XN(k) =
(N∕4)−1∑

n=0

x(n)Wnk
N + W(N∕4)k

N

(N∕4)−1∑
n=0

x
(

n + N
4

)
Wnk

N

= +W(N∕2)k
N

(N∕4)−1∑
n=0

x
(

n + N
2

)
Wnk

N

+W(3N∕4)k
N

(N∕4)−1∑
n=0

x
(

n + 3N
4

)
Wnk

N , (5.31)

which may be interpreted as four (N∕4)-point DFTs. (Compare this with Equation
(5.7) in which an N-point DFT was split into two (N∕2)-point DFTs.) Using

INVERSE FAST FOURIER TRANSFORM 227

W(N∕4)k
N = (e−j2𝜋∕N)(N∕4)k = (e−jk𝜋∕2) = (−j)k,

W(N∕2)k
N = (e−jk𝜋) = (−1)k, and

W(3N∕4)k
N = (j)k,

Equation (5.31) becomes

XN(k) =
(N∕4)−1∑

n=0

[
x(n) + (−j)kx

(
n + N

4

)
+ (−1)kx

(
n + N

2

)
+ (j)kx

(
n + 3N

4

)]
Wnk

N .

(5.32)
Letting W4

N = W(N∕4),

XN(4k) =
(N∕4)−1∑

n=0

[
x(n) + x

(
n + N

4

)
+ x

(
n + N

2

)
+ x

(
n + 3N

4

)]
Wnk

(N∕4). (5.33)

XN(4k + 1) =
(N∕4)−1∑

n=0

[
x(n) − jx

(
n + N

4

)
− x

(
n + N

2

)
+ jx

(
n + 3N

4

)]
Wn

NWnk
(N∕4).

(5.34)

XN(4k + 2) =
(N∕4)−1∑

n=0

[
x(n) − x

(
n + N

4

)
+ x

(
n + N

2

)
− x

(
n + 3N

4

)]
W2n

N Wnk
(N∕4).

(5.35)

XN(4k + 3) =
(N∕4)−1∑

n=0

[
x(n) + jx

(
n + N

4

)
− x

(
n + N

2

)
− jx

(
n + 3N

4

)]
W3n

N Wnk
(N∕4)

(5.36)
for 0 ≤ k < (N∕4) Equations (5.33) through (5.36) represent four (N∕4)-point

DFTs that in combination yield one N-point DFT.

5.6 INVERSE FAST FOURIER TRANSFORM

The inverse discrete Fourier transform (IDFT) converts a discrete frequency-domain
sequence XN(k) into a corresponding discrete time-domain sequence x(n). It is defined
as

x(n) = 1
N

N−1∑
n=0

XN(k)W−kn
N . (5.37)

Comparing this with the DFT Equation (5.5), we see that the forward FFT algo-
rithms described previously can be used to compute the inverse DFT if the following
two changes are made:

228 FAST FOURIER TRANSFORM

1. Replace twiddle factors Wkn
N by their complex conjugates W−kn

N .

2. Scale the result by 1∕N.

Program examples illustrating this technique are presented later in this chapter.

5.7 PROGRAMMING EXAMPLES

Example 5.1 DFT of a Sequence of Complex Numbers with Output Displayed
Using MATLAB® (stm32f4_dft.c).

This example illustrates the implementation of an N-point complex DFT. Program
stm32f4_dft.c, shown in Listing 5.1, calculates the complex DFT described by

XN(k) =
N−1∑
n=0

x(n)e−j(2𝜋kn∕N). (5.38)

Using Euler’s formula to represent a complex exponential, that is,

e−j𝜃 = cos(𝜃) − j sin(𝜃), (5.39)

the real and imaginary parts of X(k) are given by

Re{X(k)} =
N−1∑
n=0

(Re{x(n)} cos(2𝜋kn∕N) + Im{x(n)} sin(2𝜋kn∕N)), (5.40)

and

Im{X(k)} =
N−1∑
n=0

(Im{x(n)} cos(2𝜋kn∕N) − Re{x(n)} sin(2𝜋kn∕N)). (5.41)

Listing 5.1 Program stm32f4_dft.c.

1 // stm32f4_dft.c
2

3 #include <math.h>
4

5 #define PI 3.14159265358979
6 #define N 100
7 #define TESTFREQ 800.0
8 #define SAMPLING_FREQ 8000.0
9

10 typedef struct
11 {
12 float32_t real;

PROGRAMMING EXAMPLES 229

13 float32_t imag;
14 } COMPLEX;
15

16 COMPLEX samples[N];
17

18 void dft(COMPLEX *x)
19 {
20 COMPLEX result[N];
21 int k,n;
22

23 for (k=0 ; k<N ; k++)
24 {
25 result[k].real = 0.0;
26 result[k].imag = 0.0;
27

28 for (n=0 ; n<N ; n++)
29 {
30 result[k].real += x[n].real*cosf(2*PI*k*n/N)
31 + x[n].imag*sinf(2*PI*k*n/N);
32 result[k].imag += x[n].imag*cosf(2*PI*k*n/N)
33 - x[n].real*sinf(2*PI*k*n/N);
34 }
35 }
36 for (k=0 ; k<N ; k++)
37 {
38 x[k] = result[k];
39 }
40 }
41

42 int main()
43 {
44 int n;
45

46 for(n=0 ; n<N ; n++)
47 {
48 samples[n].real = cos(2*PI*TESTFREQ*n/SAMPLING_FREQ);
49 samples[n].imag = 0.0;
50 }
51 dft(samples);
52 while(1){}
53 }

A structured data type COMPLEX, comprising two float32_t values, is used
by the program to represent complex values.

Function dft() has been written so that it replaces the time-domain input sam-
ples x(n), stored in arrayx, with their frequency-domainrepresentation X(k), although
it requires an array, result, of N COMPLEX values for temporary intermediate
storage.

As supplied, the time-domain sequence x(n) consists of exactly 10 cycles of a
real-valued sinusoid. Assuming a sampling frequency of 8 kHz, the frequency of the
sinusoid is 800 Hz. The DFT of this sequence X(k) is equal to 0 for all k except k = 10
and k = 90. These two real values correspond to frequency components at ±800 Hz.

230 FAST FOURIER TRANSFORM

It is good practice to test DFT or FFT functions using simple input sequences
precisely because the results are straightforward to interpret. Different time-domain
input sequences can be used to test function dft(), most readily by changing the
value of the constant TESTFREQ and/or by editing program statements

samples[n].real = cos(2*PI*TESTFREQ*n/SAMPLING_FREQ);
samples[n].imag = 0.0;

In order to test the program, assuming that it has compiled and linked successfully
and that you have launched the debugger,

1. Place breakpoints at the following two program statements

dft(samples);

and

while(1){}

2. Run the program to the first breakpoint. At this point, the array samples
should contain a real-valued time-domain input sequence. The contents of the
array samplesmay be viewed in a Memory window in the MDK-ARM debug-
ger as shown in Figure 5.9.

3. Save the contents of array samples (100 values of type COMPLEX) to a file by
typing

SAVE <filename> <start address>, <end address>

in the MDK-ARM debugger Command window. start address is the
address in memory of array samples, and end address is equal to
(start address + 0x190).

Figure 5.9 Complex contents of array samples (TESTFREQ= 800.0) before calling func-
tion dft(), viewed in a Memory window in the MDK-ARM debugger.

PROGRAMMING EXAMPLES 231

0 5 10 15 20 25 30 35 40 45 50
–1

–0.5

0

0.5

1

n

R
e
a
l

0 5 10 15 20 25 30 35 40 45 50
–1

–0.5

0

0.5

1

n

Im
a
g
in

a
ry

Figure 5.10 Complex contents of array samples (TESTFREQ = 800.0) before calling
function dft(), plotted using MATLAB function stm32f4_plot_complex().

4. The contents of the data file you have created may be viewed using MATLAB
functionstm32f4_plot_complex(). You should see something similar to
Figure 5.10.

5. Run the program again. It should halt at the second breakpoint. At this point,
function dft() has been called, and array samples should contain the com-
plex DFT of the time-domain input sequence.

6. Save the contents of array samples to a second data file and plot the com-
plex frequency-domain data X(k) using MATLAB function stm32f4_plot_
complex(). You should see something similar to Figure 5.11.

Note the very small magnitude of the imaginary part of X(k). Theoretically, this
should be equal to zero, but function dft() introduces small arithmetic rounding
errors.

Change the frequency of the time-domain input sequence x(n) to 900 Hz by editing
the definition of the constant TESTFREQ to read

#define TESTFREQ 900.0

and repeat the previous steps. You should see a number of nonzero values in the
frequency-domain sequence, as shown in Figure 5.12. This effect is referred to as

232 FAST FOURIER TRANSFORM

0 10 20 30 40 50 60 70 80 90
–20

0

20

40

60

n

R
e

a
l

0 10 20 30 40 50 60 70 80 90
–1

–0.5

0

0.5

1
x 10–6

n

Im
a

g
in

a
ry

Figure 5.11 Complex contents of array samples (TESTFREQ = 800.0) after calling
function dft(), plotted using MATLAB function stm32f4_plot_complex().

spectral leakage and is due to the fact that the N-sample time-domain sequence stored
in array samples does not now represent an integer number of cycles of a sinu-
soid. Correspondingly, the frequency of the sinusoid is not exactly equal to one of
the N discrete frequency components, spaced at intervals of (8000.0∕N) Hz in the
frequency-domain representation of X(k).

Change the frequency of the time-domain input sequence x(n) back to 800 Hz and
change the program statement

samples[n].real = cos(2*PI*TESTFREQ*n/SAMPLING_FREQ);

to read

samples[n].real = sin(2*PI*TESTFREQ*n/SAMPLING_FREQ);

Repeat the previous steps and you should see that the frequency-domain representa-
tion of an odd (as opposed to even) real-valued function is purely imaginary.

Whereas the radix-2 FFT is applicable only if N is an integer power of two,
the DFT can be applied to an arbitrary length sequence, as illustrated by program
stm32f4_dft.c (N = 100).

PROGRAMMING EXAMPLES 233

0 10 20 30 40 50 60 70 80 90
–10

0

10

20

30

40

n

R
e
a
l

0 10 20 30 40 50 60 70 80 90
–40

–20

0

20

40

n

Im
a
g
in

a
ry

Figure 5.12 Complex contents of array samples (TESTFREQ = 900.0) after calling
function dft(), plotted using MATLAB function stm32f4_plot_complex().

5.7.1 Twiddle Factors

Part of the efficiency of the FFT is due to the use of precalculated twiddle factors,
stored in a lookup table, rather than the repeated evaluation of sinf() and cosf()
functions as implemented in function dft() in program stm32f4_dft.c. The
use of precalculated twiddle factors can be applied to the functiondft() to give sig-
nificant computational efficiency improvements. In program stm32f4_dftw.c,
shown in Listing 5.2, these function calls are replaced by reading precalculated twid-
dle factors from array twiddle. Build and run program stm32f4_dftw.c and
verify that it gives results similar to those of program stm32f4_dft.c.

Listing 5.2 Program stm32f4_dftw.c.

1 // stm32f4_dftw.c
2

3 #include <math.h>
4

5 #define PI 3.14159265358979
6 #define N 128

234 FAST FOURIER TRANSFORM

7 #define TESTFREQ 800.0
8 #define SAMPLING_FREQ 8000.0
9

10 typedef struct
11 {
12 float32_t real;
13 float32_t imag;
14 } COMPLEX;
15

16 COMPLEX samples[N];
17 COMPLEX twiddle[N];
18

19 void dftw(COMPLEX *x, COMPLEX *w)
20 {
21 COMPLEX result[N];
22 int k,n;
23

24 for (k=0 ; k<N ; k++)
25 {
26 result[k].real=0.0;
27 result[k].imag = 0.0;
28

29 for (n=0 ; n<N ; n++)
30 {
31 result[k].real += x[n].real*w[(n*k)%N].real
32 - x[n].imag*w[(n*k)%N].imag;
33 result[k].imag += x[n].imag*w[(n*k)%N].real
34 + x[n].real*w[(n*k)%N].imag;
35 }
36 }
37 for (k=0 ; k<N ; k++)
38 {
39 x[k] = result[k];
40 }
41 }
42

43 int main()
44 {
45 int n;
46

47 for(n=0 ; n<N ; n++)
48 {
49 twiddle[n].real = cos(2*PI*n/N);
50 twiddle[n].imag = -sin(2*PI*n/N);
51 }
52 for(n=0 ; n<N ; n++)
53 {
54 samples[n].real = cos(2*PI*TESTFREQ*n/SAMPLING_FREQ);
55 samples[n].imag = 0.0;
56 }
57 dftw(samples,twiddle);
58 while(1){}
59 }

PROGRAMMING EXAMPLES 235

Figure 5.13 MDK-ARM Register window showing Sec item.

Example 5.2 Comparing Execution Times for Different DFT Functions
(stm32f4_dft.c, stm32f4_dftw.c, stm32f4_fft.c and stm32f4_
fft_CMSIS.c).

The execution times of different DFT functions can be estimated using the Sec
item in the Register window of the MDK-ARM debugger (Figure 5.13). Edit the pre-
processor command

#define N 100

to read

#define N 128

in programs stm32f4_dft.c and stm32f4_dftw.c so that similar length
input sequences will be passed to functions dft(), dftw(), fft(), and
arm_fft_f32(). The last two functions will work only if the number of points,
N, is equal to an integer power of 2. Function fft() is written in C and is defined in
header file fft.h (Listing 5.4) and shown in Listing. Function arm_fft_f32()
is a CMSIS DSP library function.

Listing 5.3 Program stm32f4_fft.c.

1 // stm32f4_fft.c
2

3 #include <math.h>
4

5 #define PI 3.14159265358979
6 #define N 128
7 #define TESTFREQ 800.0

236 FAST FOURIER TRANSFORM

8 #define SAMPLING_FREQ 8000.0
9

10 typedef struct
11 {
12 float32_t real;
13 float32_t imag;
14 } COMPLEX;
15

16 #include “fft.h”
17

18 COMPLEX samples[N];
19 COMPLEX twiddle[N];
20

21 int main()
22 {
23 int n;
24 for (n=0 ; n< N ; n++)
25 {
26 twiddle[n].real = cos(PI*n/N);
27 twiddle[n].imag = -sin(PI*n/N);
28 }
29 for(n=0 ; n<N ; n++)
30 {
31 samples[n].real = cos(2*PI*TESTFREQ*n/SAMPLING_FREQ);
32 samples[n].imag = 0.0;
33 }
34 fft(samples,N,twiddle);
35 while(1){}
36 }

Listing 5.4 Function fft().

1 //fft.h complex FFT function taken from Rulph’s C31 book
2

3 void fft(COMPLEX *Y, int M, COMPLEX *w)
4 {
5 COMPLEX temp1,temp2;
6 int i,j,k;
7 int upper_leg, lower_leg;
8 int leg_diff;
9 int num_stages=0;

10 int index, step;
11 i=1;
12 do
13 {
14 num_stages+=1;
15 i=i*2;
16 } while (i!=M);
17

18 leg_diff=M/2;
19 step=2;
20 for (i=0;i<num_stages;i++)

PROGRAMMING EXAMPLES 237

21 {
22 index=0;
23 for (j=0;j<leg_diff;j++)
24 {
25 for (upper_leg=j;upper_leg<M;upper_leg+=(2*leg_diff))
26 {
27 lower_leg=upper_leg+leg_diff;
28 temp1.real=(Y[upper_leg]).real + (Y[lower_leg]).real;
29 temp1.imag=(Y[upper_leg]).imag + (Y[lower_leg]).imag;
30 temp2.real=(Y[upper_leg]).real - (Y[lower_leg]).real;
31 temp2.imag=(Y[upper_leg]).imag - (Y[lower_leg]).imag;
32 (Y[lower_leg]).real=temp2.real*(w[index]).real
33 -temp2.imag*(w[index]).imag;
34 (Y[lower_leg]).imag=temp2.real*(w[index]).imag
35 +temp2.imag*(w[index]).real;
36 (Y[upper_leg]).real=temp1.real;
37 (Y[upper_leg]).imag=temp1.imag;
38 }
39 index+=step;
40 }
41 leg_diff=leg_diff/2;
42 step*=2;
43 }
44 j=0;
45 for (i=1;i<(M-1);i++)
46 {
47 k=M/2;
48 while (k<=j)
49 {
50 j=j-k;
51 k=k/2;
52 }
53 j=j+k;
54 if (i<j)
55 {
56 temp1.real=(Y[j]).real;
57 temp1.imag=(Y[j]).imag;
58 (Y[j]).real=(Y[i]).real;
59 (Y[j]).imag=(Y[i]).imag;
60 (Y[i]).real=temp1.real;
61 (Y[i]).imag=temp1.imag;
62 }
63 }
64 return;
65 }

Listing 5.5 Program stm32f4_fft_CMSIS.c.

1 // stm32f4_fft_CMSIS.c
2

3 #define ARM_MATH_CM4
4

238 FAST FOURIER TRANSFORM

5 #include "stm32f4xx.h"
6 #include "arm_math.h"
7 #include "arm_const_structs.h"
8

9 #define N 128
10 #define TESTFREQ 800.0
11 #define SAMPLING_FREQ 8000.0
12

13 float32_t samples[2*N];
14

15 int main()
16 {
17 int n;
18

19 for(n=0 ; n<N ; n++)
20 {
21 samples[2*n] = arm_cos_f32(2*PI*TESTFREQ*n/SAMPLING_FREQ);
22 samples[2*n+1] = 0.0;
23 }
24

25 arm_cfft_f32(&arm_cfft_sR_f32_len128, samples, 0, 1);
26 while(1){}
27 }

Then, carry out the following steps for each of the programs stm32f4_dft.c,
stm32f4_dftw.c, stm32f4_fft.c (Listing 5.3), and stm32f4_cfft_
CMSIS.c (Listing 5.5).

1. Place breakpoints at the program statement calling the DFT function and at the
next program statement, that is, at program statements

dft(samples);
dftw(samples,twiddle);
fft(samples,N,twiddle);

or

arm_cfft_f32(&arm_cfft_sR_f32_len128, samples, 0, 1);

and

while(1){}

2. Run the program to the first breakpoint and record the value of the Sec item.

3. Run the program again. It should halt at the second breakpoint. At this point,
function dft(), dftw(), fft(), or arm_cfft_f32() will have been
executed.

4. Subtract the previous value of the Sec item from its current value. This will tell
you the time in seconds taken to execute function dft(), dftw(), fft(),
or arm_cfft_f32().

FRAME- OR BLOCK-BASED PROGRAMMING 239

TABLE 5.1 Execution Times for Functions dft(), dftw(),
fft() and arm_cfft_f32()

Function Name N Execution Time (ms)

dft() 128 324.79
dftw() 128 3.3307
fft() 128 0.1448
arm_cfft_f32() 128 0.0622

The results that you should see are summarized in Table 5.1.
Even using function sinf() and cosf() in function dft(), the use of

twiddle factors very greatly reduces the computational effort expended computing
the DFT. The FFT is more than an order of magnitude more efficient than the
DFT in this example, and not unexpectedly, the CMSIS DSP library function
arm_cfft_f32() is even more efficient than function fft().

5.8 FRAME- OR BLOCK-BASED PROGRAMMING

Rather than processing one sample at a time, the DFT algorithm is applicable to
blocks, or frames, of samples. Using the DFT in a real-time program, therefore,
requires a slightly different approach to that used for input and output in most of
the previous lab exercises (interrupt-based i/o). It is possible to implement buffering,
and to process blocks of samples, using interrupt-based i/o. However, DMA-based
i/o is a more intuitive method for frame-based processing and will be used here.

DMA-based i/o on the TM4C123 and STM32F4 processors was described in
Chapter 2.

Example 5.3 DFT of a Signal in Real-Time Using a DFT Function with
Precalculated Twiddle Factors (tm4c123_dft128_dma.c).

Program tm4c123_dft128_dma.c, shown in Listing 5.6, combines the DFT
function dftw() from program tm4c123_dftw.c and real-time DMA-based
i/o in order to implement a basic form of spectrum analyzer. In spite of its inef-
ficiency compared with the FFT, the DFT implemented using function dftw()
is capable of execution in real time (for N= 128 and a sampling frequency of
8 kHz) on a TM4C123 LaunchPad with a processor clock frequency of 84 MHz.
The number of samples in a block is set by the constant BUFSIZE, defined in
header file tm4c123_aic3106_init.h. BUFSIZE sets the number of 16-bit
sample values that make up one DMA transfer block. Recall that in the TM4C123
processor, separate DMA transfers are carried out for left and right channels, and
thus, BUFSIZE is equal to the number of sampling instants represented in one
DMA transfer. Function dftw() makes use of a global constant N to represent the
number of samples it processes and so in program tm4c123_dft128_dma.c,
N is set equal to BUFSIZE. In function Lprocess_buffer(), local pointers

240 FAST FOURIER TRANSFORM

inBuf and outBuf are used to point to the LpingIN, LpingOUT, LpongIN,
or LpongOUT buffers as determined by reading the Lprocbuffer flag set in
interrupt service routine SSI1IRQHandler(). Real-valued input samples are
copied into COMPLEX array cbuf before it is passed to function dftw(). The
complex DFT of each block of real-valued input samples is computed using function
dftw() and the magnitude of the frequency-domain representation of that block
of samples is computed using function arm_cmplx_mag_f32(). The magnitude
values are returned by that function in float32_t array outbuffer and are
written to the buffer pointed to by outBuf.

Listing 5.6 Program tm4c123_dft128_dma.c.

1 // tm4c123_dft128_dma.c
2

3 #include "tm4c123_aic3104_init.h"
4

5 extern int16_t LpingIN[BUFSIZE], LpingOUT[BUFSIZE];
6 extern int16_t LpongIN[BUFSIZE], LpongOUT[BUFSIZE];
7 extern int16_t RpingIN[BUFSIZE], RpingOUT[BUFSIZE];
8 extern int16_t RpongIN[BUFSIZE], RpongOUT[BUFSIZE];
9 extern int16_t Lprocbuffer, Rprocbuffer;

10 extern volatile int16_t LTxcomplete, LRxcomplete;
11 extern volatile int16_t RTxcomplete, RRxcomplete;
12

13 #include "hamm128.h"
14

15 #define N BUFSIZE
16 #define TRIGGER 28000
17 #define MAGNITUDE_SCALING_FACTOR 32
18

19 typedef struct
20 {
21 float real;
22 float imag;
23 } COMPLEX;
24

25 COMPLEX twiddle[BUFSIZE];
26 COMPLEX cbuf[BUFSIZE];
27 float32_t outbuffer[BUFSIZE];
28

29 void dftw(COMPLEX *x, COMPLEX *w)
30 {
31 COMPLEX result[N];
32 int k,n;
33

34 for (k=0 ; k<N ; k++)
35 {
36 result[k].real=0.0;
37 result[k].imag = 0.0;
38

39 for (n=0 ; n<N ; n++)

FRAME- OR BLOCK-BASED PROGRAMMING 241

40 {
41 result[k].real += x[n].real*w[(n*k)%N].real
42 - x[n].imag*w[(n*k)%N].imag;
43 result[k].imag += x[n].imag*w[(n*k)%N].real
44 + x[n].real*w[(n*k)%N].imag;
45 }
46 }
47 for (k=0 ; k<N ; k++)
48 {
49 x[k] = result[k];
50 }
51 }
52

53 void Lprocess_buffer(void)
54 {
55 int16_t *inBuf, *outBuf;
56 int16_t i;
57

58 if (Lprocbuffer PING)
59 { inBuf = LpingIN; outBuf = LpingOUT; }
60 if (Lprocbuffer PONG)
61 { inBuf = LpongIN; outBuf = LpongOUT; }
62 for (i = 0; i < (BUFSIZE) ; i++)
63 {
64 cbuf[i].real = (float32_t)(*inBuf++);
65 cbuf[i].imag = 0.0;
66 }
67

68 dftw(cbuf,twiddle);
69 arm_cmplx_mag_f32((float32_t *)(cbuf),outbuffer,BUFSIZE);
70

71 for (i = 0; i < (BUFSIZE) ; i++)
72 {
73 if (i 0)
74 *outBuf++ = TRIGGER;
75 else
76 *outBuf++ = (int16_t)(outbuffer[i]/MAGNITUDE_SCALING_FACTOR);
77 }
78 LTxcomplete = 0;
79 LRxcomplete = 0;
80 return;
81 }
82

83 void Rprocess_buffer(void)
84 {
85 int16_t *inBuf, *outBuf;
86 int16_t i;
87

88 if (Rprocbuffer PING)
89 { inBuf = RpingIN; outBuf = RpingOUT; }
90 if (Rprocbuffer PONG)
91 { inBuf = RpongIN; outBuf = RpongOUT; }
92 for (i = 0; i < (BUFSIZE) ; i++)
93 {

242 FAST FOURIER TRANSFORM

94 *outBuf++ = 0;
95 }
96 RTxcomplete = 0;
97 RRxcomplete = 0;
98 return;
99 }
100

101

102 void SSI_interrupt_routine(void){while(1){}}
103

104 int main(void)
105 {
106 int n;
107 for (n=0 ; n< BUFSIZE ; n++)
108 {
109 twiddle[n].real = cos(2*PI*n/BUFSIZE);
110 twiddle[n].imag = -sin(2*PI*n/BUFSIZE);
111 }
112 tm4c123_aic3104_init(FS_8000_HZ,
113 AIC3104_LINE_IN,
114 IO_METHOD_DMA,
115 PGA_GAIN_6_DB);
116 while(1)
117 {
118 while((!LTxcomplete)|(!LRxcomplete));
119 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
120 Lprocess_buffer();
121 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
122 while((!RTxcomplete)|(!RRxcomplete));
123 Rprocess_buffer();
124 }
125 }

5.8.1 Running the Program

The value of constant BUFSIZE is defined in file tm4c123_aic3104_init.h
and may be edited prior to building a project. Check that the value of BUFSIZE is
equal to 128 for this program example. Build and run the program. Use a signal gen-
erator connected to the left channel of the (blue) LINE IN connector on the audio
booster pack to input a sinusoidal signal with a peak-to-peak magnitude of approx-
imately 200 mV and connect an oscilloscope to the left channel scope hook. Vary
the frequency of the input signal between 100 and 3500 Hz. Figure 5.14 shows an
example of what you should see on the oscilloscope screen. In this case, BUFSIZE
was equal to 128. The two smaller pulses correspond to the magnitudes of the posi-
tive and negative frequency components of the sinusoidal input signal computed using
the DFT. The larger pulses correspond to impulses added to the output signal every
128 samples by program tm4c123_dft128_dma.c, replacing the magnitude of
sample X(0), for the purpose of triggering the oscilloscope.

FRAME- OR BLOCK-BASED PROGRAMMING 243

Figure 5.14 Output signal from program tm4c123_dft128_dma.c viewed using an
oscilloscope.

For comparison, Figure 5.15 shows the corresponding output signal from program
stm32f4_dft128_dma.c. The difference between this and the output from pro-
gram tm4c123_dft128_dma.c is the shape of the pulses, and as explored in
Chapter 2, this is due to subtle differences in the reconstruction filters in the WM5102
and AIC3104 DACs. In this particular application, it is probably true to say that
the results are more readily interpreted using the TMC123 LaunchPad and AIC3104
audio booster pack than using the STM32F407 Discovery and Wolfson audio card.

Figure 5.15 Output signal from program stm32f4_dft128_dma.c viewed using an
oscilloscope.

244 FAST FOURIER TRANSFORM

Figure 5.16 Detail of output signal from program tm4c123_dft128_dma.c for input
sinusoid of frequency 1750 Hz.

The data in the output buffer is ordered such that the first value corresponds to
a frequency of 0 Hz. The next 64 values correspond to frequencies 62.5 Hz (fs/N)
to 4 kHz (fs/2) inclusive in steps of 62.5 Hz. The following 63 values correspond to
frequencies of −3937.5 Hz to −62.5 Hz inclusive, in steps of 62.5 Hz.

Increase the frequency of the input signal and you should see the two smaller
pulses move toward a point halfway between the larger trigger pulses. As the fre-
quency of the input signal approaches 4 kHz, the magnitude of the two smaller pulses
should diminish, ideally reaching zero at a frequency of 4 kHz. In fact, a slight degree
of aliasing may be evident as the input signal frequency is increased past 4 kHz, and
the magnitude of the smaller pulses diminishes, because the magnitude frequency
response of the AIC3104 DAC reconstruction filter is only 3 dB down at half the
sampling frequency.

5.8.2 Spectral Leakage

If the frequency of the sinusoidal input signal is equal to 1750 Hz, then the magni-
tude of the DFT of a frame of 128 input samples should be zero except at two points,
corresponding to frequencies of ±1750 Hz. Each block of data output via the DAC
will contain one other nonzero value – the trigger pulse inserted at X(0). The three
impulses contained in each frame of samples appear on the oscilloscope as three
pulses, each with the form of the impulse response of the DAC reconstruction fil-
ter. Compare the shapes of the pulses shown in Figure 5.14 with the shape of the
pulse shown in Figure 2.45 (output by program tm4c123_dimpulse_intr.c).
Figure 5.17 shows the output signal corresponding to a 1750 Hz input signal in more
detail.

As the frequency of the sinusoidal input signal is changed, the shape and the posi-
tion (relative to the trigger pulses) of the smaller pulses will change. The precise shape

FRAME- OR BLOCK-BASED PROGRAMMING 245

0 5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

7000

8000

n

M
a
g
n
it
u
d
e

Figure 5.17 Partial contents of array outbuffer, plotted using MATLAB function
tm4c123_plot_real(), for input sinusoid of frequency 1750 Hz.

Figure 5.18 Detail of output signal from program tm4c123_dft128_dma.c for input
sinusoid of frequency 1781 Hz.

of the pulses is due to the characteristics of the reconstruction filter in the AIC3104
codec, as discussed in Chapter 2. The fact that the pulse shape changes with input sig-
nal frequency in this example is due to the phenomenon of spectral leakage. Change
the frequency of the input signal to 1781 Hz and you should see an output waveform
similar to that shown in Figure 5.18.

Program tm4c123_dft128_dma.c uses CMSIS DSP library function
arm_cmplx_mag_f32() in order to compute the magnitude of the complex DFT
result returned by function dftw(). This is done because function sqrt() is very

246 FAST FOURIER TRANSFORM

computationally expensive. In addition to copying blocks of data (alternately) to
buffers LpingOUT and LpingOUT, function Lprocess_buffer() copies that
data to buffer outbuffer. This enables the most recent block of output data to be
examined after the program has been halted.

After halting the program, type

SAVE <filename> <start address>, <end address>

in the MDK-ARM debugger Command window. start address is the address
in memory of array outbuffer, and end address is equal to (start
address + 0x100). Plot the contents of the data file using MATLAB function
tm4c123_plot_real().

Figure 5.17 shows the DFT magnitude (output) data corresponding to the oscillo-
scope trace of Figure 5.16. The trigger pulse (not shown in Figure 5.17) added to the
start of the block of data causes the impulse response of the reconstruction filter to
appear on the oscilloscope. It can be deduced from Figure 5.17 that the frequency of
the sinusoidal input signal was exactly equal to 1750 Hz, corresponding to 28 fs∕N,
where fs∕N = 62.5 Hz is the fundamental frequency associated with a block of 128
samples at a sampling rate of 8 kHz. The solitary nonzero frequency-domain value
produces an output pulse shape in Figure 5.16 similar to that of the trigger pulse.

In contrast, it may be deduced from Figure 5.19 that the frequency of the sinu-
soidal input that produced the DFT magnitude data and hence the oscilloscope trace of
Figure 5.18 was in between 28 fs∕N and 29 fs∕N, that is, between 1750 and 1812.5 Hz.
Figure 5.19 illustrates spectral leakage, and Figure 5.18 shows the result of the data
shown in Figure 5.19, regarded as time-domain samples, filtered by the reconstruc-
tion filter in the AIC3104 codec. The shape of the smaller pulse in Figure 5.18 is
different to that of the trigger pulse.

0 5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

7000

8000

n

M
a

g
n

it
u

d
e

Figure 5.19 Partial contents of array outbuffer, plotted using MATLAB function
tm4c123_plot_real(), for input sinusoid of frequency 1781 Hz.

FRAME- OR BLOCK-BASED PROGRAMMING 247

5.8.2.1 Modifying Program tm4c123_dft128_dma.c to Reduce Spectral
Leakage One method of reducing spectral leakage is to multiply the frames of input
samples by a window function prior to computing the DFT. add the preprocessor
command

#include "hamm128.h"

to program tm4c123_dft128_dma.c and alter the program statement that reads

cbuf[i].real = (float32_t)(*inBuf++);

to read

cbuf[i].real = (float32_t)(*inBuf++)*hamming[i];

File hamm128.h contains the declaration of array hamming, initialized
to contain values representing a 128-point Hamming window. In order to run
this program successfully, the value of the constant BUFSIZE, set in file
tm4c123_aic3104_init.h, must be equal to 128. Rebuild and run the
program. Figures 5.20 and 5.21 show the shape of the small pulse you can expect to
see on the oscilloscope, regardless of the frequency of the sinusoidal input signal,
and Figures 5.22 and 5.23 show the corresponding DFT magnitude data. The spectral
leakage evident in these figures is less than that in Figures 5.18 and 5.19.

Example 5.4 FFT of a Real-Time Input Signal Using an FFT Function in C
(tm4c123_fft128_dma.c).

Figure 5.20 Detail of output signal from program tm4c123_dft128_dma.c,modified to
apply a Hamming window to blocks of input samples, for input sinusoid of frequency 1750 Hz.

248 FAST FOURIER TRANSFORM

Figure 5.21 Detail of output signal from program tm4c123_dft128_dma.c, modified to
apply a Hamming window to blocks of input samples, for input sinusoid of frequency 1781 Hz.

0 5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

7000

8000

n

M
a
g
n
it
u
d
e

Figure 5.22 Partial contents of array outbuffer, plotted using MATLAB function
tm4c123_plot_real(), for input sinusoid of frequency 1750 Hz. (Hamming window
applied to blocks of input samples.)

Program tm4c123_fft128_dma.c implements a 128-point FFT in real time
using an external input signal. It calls an FFT function fft() written in C. That
function is defined in the separate header file fft.h (Listing 5.4). The function was
written originally for use with the Texas Instruments C31 DSK and is described in
[1].

Program tm4c123_fft128_dma.c is similar to program tm4c123_dft
128_dma.c in all respects other than its use of function fft() in place of the less
computationally efficient function dftw() and the slightly different computation

FRAME- OR BLOCK-BASED PROGRAMMING 249

0 5 10 15 20 25 30 35 40
0

1000

2000

3000

4000

5000

6000

7000

8000

n

M
a

g
n

it
u

d
e

Figure 5.23 Partial contents of array outbuffer, plotted using MATLAB function
tm4c123_plot_real(), for input sinusoid of frequency 1781 Hz. (Hamming window
applied to blocks of input samples.)

of twiddle factors. Build and run this program. Repeat the experiments carried out in
Example 5.4 and verify that the results obtained are similar.

Example 5.5 FFT of a Real-Time Input Signal Using CMSIS DSP function
arm_cfft_f32() (tm4c123_fft128_CMSIS_dma.c).

Program tm4c123_fft128_CMSIS_dma.c, shown in Listing 5.7 uses the
computationally efficient CMSIS DSP library function arm_cfft_f32() in order
to calculate the FFT of a block of samples. Other than that, it is similar to the pre-
vious two examples and should produce similar results. The twiddle factors used
by function arm_cfft_f32() are provided by a structure defined in header file
arm_const_structs.h and the parameter passed to the function must match the
value of the constant BUFSIZE defined in file tm4c123_aic3104_init.h. For
example, if the value of BUFSIZE is equal to 256, then the address of the structure
arm_cfft_sR_f32_len256 must be passed to function arm_cfft_f32().
Similarly, the header file defining the Hamming window used by the program must
match the value of the constant BUFSIZE. For example, if the value of BUFSIZE is
equal to 64, then the file hamm64.h must be included.

Listing 5.7 Program tm4c123_fft128_CMSIS_dma.c.

1 // tm4c123_fft128_CMSIS_dma.c
2

3 #include "tm4c123_aic3104_init.h"
4 #include "arm_const_structs.h"
5

250 FAST FOURIER TRANSFORM

6 // the following #include must match BUFSIZE
7 // defined in file tm4c123_aic3104_init.h
8 //#include "hamm64.h"
9 #include "hamm128.h"

10 //#include "hamm256.h"
11

12 extern int16_t LpingIN[BUFSIZE], LpingOUT[BUFSIZE];
13 extern int16_t LpongIN[BUFSIZE], LpongOUT[BUFSIZE];
14 extern int16_t RpingIN[BUFSIZE], RpingOUT[BUFSIZE];
15 extern int16_t RpongIN[BUFSIZE], RpongOUT[BUFSIZE];
16 extern int16_t Lprocbuffer, Rprocbuffer;
17 extern volatile int16_t LTxcomplete, LRxcomplete;
18 extern volatile int16_t RTxcomplete, RRxcomplete;
19

20 #define TRIGGER 28000
21 #define MAGNITUDE_SCALING_FACTOR 32
22

23 float32_t cbuf[2*BUFSIZE];
24 float32_t outbuffer[BUFSIZE];
25

26 void Lprocess_buffer(void)
27 {
28 int16_t *inBuf, *outBuf;
29 float32_t *cbufptr;
30 int16_t i;
31

32 if (Lprocbuffer PING)
33 { inBuf = LpingIN; outBuf = LpingOUT; }
34 if (Lprocbuffer PONG)
35 { inBuf = LpongIN; outBuf = LpongOUT; }
36 cbufptr = cbuf;
37 for (i = 0; i < (BUFSIZE) ; i++)
38 {
39 *cbufptr++ = (float32_t)(*inBuf++)*hamming[i];
40 *cbufptr++ = 0.0f;
41 }
42

43 // the following function call must match BUFSIZE
44 // defined in file tm4c123_aic3104_init.h
45 // arm_cfft_f32(&arm_cfft_sR_f32_len64, (float32_t *)(cbuf), 0, 1);
46 arm_cfft_f32(&arm_cfft_sR_f32_len128, (float32_t *)(cbuf), 0, 1);
47 // arm_cfft_f32(&arm_cfft_sR_f32_len256, (float32_t *)(cbuf), 0, 1);
48 arm_cmplx_mag_f32((float32_t *)(cbuf),outbuffer,BUFSIZE);
49

50 for (i = 0; i < (BUFSIZE) ; i++)
51 {
52 if (i 0)
53 *outBuf++ = TRIGGER;
54 else
55 *outBuf++ = (int16_t)(outbuffer[i]/MAGNITUDE_SCALING_FACTOR);
56 }
57 LTxcomplete = 0;
58 LRxcomplete = 0;
59 return;

FRAME- OR BLOCK-BASED PROGRAMMING 251

60 }
61 void Rprocess_buffer(void)
62 {
63 int16_t *inBuf, *outBuf;
64 int16_t i;
65

66 if (Rprocbuffer PING)
67 { inBuf = RpingIN; outBuf = RpingOUT; }
68 if (Rprocbuffer PONG)
69 { inBuf = RpongIN; outBuf = RpongOUT; }
70 for (i = 0; i < (BUFSIZE) ; i++)
71 {
72 *outBuf++ = 0;
73 }
74 RTxcomplete = 0;
75 RRxcomplete = 0;
76 return;
77 }
78

79

80 void SSI_interrupt_routine(void){while(1){}}
81

82 int main(void)
83 {
84 tm4c123_aic3104_init(FS_8000_HZ,
85 AIC3104_LINE_IN,
86 IO_METHOD_DMA,
87 PGA_GAIN_6_DB);
88 while(1)
89 {
90 while((!LTxcomplete)|(!LRxcomplete));
91 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
92 Lprocess_buffer();
93 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
94 while((!RTxcomplete)|(!RRxcomplete));
95 Rprocess_buffer();
96 }
97 }

Example 5.6 Real-Time FFT of a Sinusoidal Signal from a Lookup Table
(tm4c123_fft128_sinetable_dma.c).

This example program adapts programtm4c123_fft128_dma.c to read input
from an array initialized to contain one cycle of a sinusoid. Thus, no signal source
is required in order to view output signals similar to those in the previous examples.
The input signal, read from array sine_table, is output on the right channel of
the AIC3104 codec, allowing both input and output signals to be viewed together on
an oscilloscope as shown in Figure 5.24. Pressing SW1 on the TM4C123 LaunchPad
steps the frequency of the input signal through a range of different values.

252 FAST FOURIER TRANSFORM

Figure 5.24 Output signal generated by program tm4c123_fft128_sinetable_
dma.c, displayed using a Rigol DS1052E oscilloscope.

5.9 FAST CONVOLUTION

Fast convolution is a technique whereby two sequences of (time-domain) samples
are convolved not by direct implementation of the convolution sum but by multiply-
ing together their frequency-domain representations. Computation of the convolution
sum is computationally expensive for large N, transformation between time and fre-
quency domains may be implemented efficiently using the fast Fourier transform. An
important application of fast convolution is the implementation of FIR filters in which
blocks of input samples are convolved with the filter coefficients to produce blocks
of filter output samples.

The steps involved in fast convolution are as follows:

1. Transform a block of input samples into the frequency domain using the FFT.

2. Multiply the frequency-domain representation of the input signal by the
frequency-domain representation of the filter coefficients.

3. Transform the result back into the time domain by using the inverse FFT.

The filter coefficients need to be transformed into the frequency domain only once.
A number of considerations must be taken into account for this technique to be

implemented in practice.

1. The radix-2 FFT is applicable only to blocks of samples where N is an integer
power of 2.

2. In order to multiply them together, the frequency-domain representations of the
input signal and of the filter coefficients must be the same length.

FAST CONVOLUTION 253

3. The result of linearly convolving two sample sequences of lengths N and M is
a sequence of length (N + M − 1). If an input sequence is split into blocks of N
samples, the result of convolving each block with a block of M filter coefficients
will be (N + M − 1) output samples long. In other words, the output due to one
block of N input samples extends beyond the corresponding block of N output
samples and into the next. These blocks cannot simply be concatenated in order
to construct a longer output sequence but must be overlapped and added.

These considerations are addressed by the following:

1. Making N an integer power of 2.

2. Processing length N blocks of input samples and zero-padding both these sam-
ples and the filter coefficients used to length 2N before using a 2N-point FFT.
This requires that the number of filter coefficients is less than or equal to (N + 1).

3. Overlapping and adding the length 2N blocks of output samples obtained using
a 2N-point inverse FFT of the result of multiplying frequency-domain represen-
tations of input samples and filter coefficients.

Example 5.7 Real-Time Fast Convolution (tm4c123_fastconv_dma.c).

Fast convolution is implemented by program tm4c123_fastconv_dma.c,
shown in Listing 5.8.

As described earlier, because multiplication of two signals represented in
the frequency domain corresponds to circular, and not linear, convolution in the
time domain, it is necessary to zero-pad both the blocks of BUFSIZE input
samples and the N FIR filter coefficients to a length greater than (BUFSIZE + N
-1) before transforming into the frequency domain. In this program example, a
(BUFSIZE*2)-point FFT is used and hence the maximum number of FIR filter
coefficients possible is (BUFSIZE+1). Inverse Fourier transformation (DFT) of
the result of the multiplication of two (BUFSIZE*2)-point signal representations
in the frequency domain yields (BUFSIZE*2) time-domain samples. Yet, these
are the result of processing just BUFSIZE time-domain input samples. Blocks
of (BUFSIZE*2) time-domain output samples are overlapped (by BUFSIZE
samples) and added together in order to obtain the overall output of the filter in
blocks of BUFSIZE samples.

Listing 5.8 Program tm4c123_fastconv_dma.c.

1 // tm4c123_fastconv_dma.c
2

3 #include "tm4c123_aic3104_init.h"
4 #include "lp55.h"
5 #include "fft.h"
6

7 extern int16_t LpingIN[BUFSIZE], LpingOUT[BUFSIZE];

254 FAST FOURIER TRANSFORM

8 extern int16_t LpongIN[BUFSIZE], LpongOUT[BUFSIZE];
9 extern int16_t RpingIN[BUFSIZE], RpingOUT[BUFSIZE];

10 extern int16_t RpongIN[BUFSIZE], RpongOUT[BUFSIZE];
11 extern int16_t Lprocbuffer, Rprocbuffer;
12 extern volatile int16_t LTxcomplete, LRxcomplete;
13 extern volatile int16_t RTxcomplete, RRxcomplete;
14

15 COMPLEX procbuf[2*BUFSIZE],coeffs[2*BUFSIZE];
16 COMPLEX twiddle[2*BUFSIZE];
17 float overlap[BUFSIZE];
18 float a,b;
19

20 void Lprocess_buffer(void)
21 {
22 int16_t *inBuf, *outBuf;
23 int16_t i;
24

25 if (Lprocbuffer PING)
26 { inBuf = LpingIN; outBuf = LpingOUT; }
27 if (Lprocbuffer PONG)
28 { inBuf = LpongIN; outBuf = LpongOUT; }
29

30 for (i = 0; i < (2*BUFSIZE) ; i++)
31 {
32 procbuf[i].real = 0.0;
33 procbuf[i].imag = 0.0;
34 }
35 for (i = 0; i < (BUFSIZE) ; i++)
36 {
37 procbuf[i].real = (float32_t)(*inBuf++);
38 }
39 fft(procbuf,2*BUFSIZE,twiddle);
40 for (i=0 ; i<(2*BUFSIZE) ; i++)
41 {
42 a = procbuf[i].real;
43 b = procbuf[i].imag;
44 procbuf[i].real = coeffs[i].real*a
45 - coeffs[i].imag*b;
46 procbuf[i].imag = -(coeffs[i].real*b
47 + coeffs[i].imag*a);
48 }
49 fft(procbuf,2*BUFSIZE,twiddle);
50 for (i=0 ; i<(2*BUFSIZE) ; i++)
51 {
52 procbuf[i].real /= (2*BUFSIZE);
53 }
54 for (i = 0; i < (BUFSIZE) ; i++)
55 {
56 *outBuf++ = (int16_t)(procbuf[i].real + overlap[i]);
57 overlap[i] = procbuf[i+BUFSIZE].real;
58 }
59 LTxcomplete = 0;

FAST CONVOLUTION 255

60 LRxcomplete = 0;
61 return;
62 }
63

64 void Rprocess_buffer(void)
65 {
66 int16_t *inBuf, *outBuf;
67 int16_t i;
68

69 if (Rprocbuffer PING)
70 { inBuf = RpingIN; outBuf = RpingOUT; }
71 if (Rprocbuffer PONG)
72 { inBuf = RpongIN; outBuf = RpongOUT; }
73 for (i = 0; i < (BUFSIZE) ; i++)
74 {
75 *outBuf++ = 0x0000;
76 }
77 RTxcomplete = 0;
78 RRxcomplete = 0;
79 return;
80 }
81

82 void SSI_interrupt_routine(void){while(1){}}
83

84 int main(void)
85 {
86 int i;
87

88 for (i=0 ; i< (2*BUFSIZE) ; i++)
89 {
90 twiddle[i].real = cos(PI*i/(2*BUFSIZE));
91 twiddle[i].imag = -sin(PI*i/(2*BUFSIZE));
92 }
93 for(i=0 ; i<((2*BUFSIZE)) ; i++)
94 { coeffs[i].real = 0.0; coeffs[i].imag = 0.0;}
95 for(i=0 ; i<N ; i++) coeffs[i].real = h[i];
96 fft(coeffs,(2*BUFSIZE),twiddle);
97 tm4c123_aic3104_init(FS_8000_HZ,
98 AIC3104_LINE_IN,
99 IO_METHOD_DMA,

100 PGA_GAIN_6_DB);
101 while(1)
102 {
103 while((!RTxcomplete)|(!RRxcomplete));
104 Rprocess_buffer();
105 while((!LTxcomplete)|(!LRxcomplete));
106 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
107 Lprocess_buffer();
108 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
109 }
110 }

256 FAST FOURIER TRANSFORM

5.9.1 Running the Program

Build and run the program and verify that it implements a low-pass filter, as deter-
mined by the use of filter coefficient header file lp55.h. Functionally, the program
is equivalent to program tm4c123_fir_dma.c, described in Chapter 3, and simi-
larly introduces a delay of BUFSIZE*2 sampling instants to an analog signal passing
through the system. The program has been written so that, just as in the case of pro-
gram tm4c123_fir_dma.c, the FIR filter coefficients are read from a separate
header file specified by a preprocessor command, for example,

#include “lp55.h”

The maximum possible value of N (the number of filter coefficients, defined in the
header file), is (BUFSIZE+1).

5.9.2 Execution Time of Fast Convolution Method of FIR Filter
Implementation

The execution time of the fast convolution algorithm implemented by program may
be estimated by observing the pulse output on GPIO pin PE2 using an oscilloscope.

Example 5.8 Graphic Equalizer (tm4c123_graphicEQ_dma.c).

Listing 5.9 is of program tm4c123_graphicEQ_dma.c, which imple-
ments a three-band graphic equalizer. It uses CMSIS DSP library function
arm_cfft_f32() in order implement the complex FFT calculations.

Listing 5.9 Program tm4c123_graphicEQ_dma.c).

1 // tm4c123_graphicEQ_dma.c
2

3 #include "tm4c123_aic3104_init.h"
4 #include "GraphicEQcoeff.h"
5 #include "fft.h"
6

7 extern int16_t LpingIN[BUFSIZE], LpingOUT[BUFSIZE];
8 extern int16_t LpongIN[BUFSIZE], LpongOUT[BUFSIZE];
9 extern int16_t RpingIN[BUFSIZE], RpingOUT[BUFSIZE];

10 extern int16_t RpongIN[BUFSIZE], RpongOUT[BUFSIZE];
11 extern int16_t Lprocbuffer, Rprocbuffer;
12 extern volatile int16_t LTxcomplete, LRxcomplete;
13 extern volatile int16_t RTxcomplete, RRxcomplete;
14

15 COMPLEX xL[2*BUFSIZE],coeffs[2*BUFSIZE];
16 COMPLEX twiddle[2*BUFSIZE];
17 COMPLEX treble[2*BUFSIZE],bass[2*BUFSIZE];
18 COMPLEX mid[2*BUFSIZE];
19 float overlap[BUFSIZE];

FAST CONVOLUTION 257

20 float a,b;
21 float32_t bass_gain = 0.1;
22 float32_t mid_gain = 1.0;
23 float32_t treble_gain = 0.25;
24

25 int16_t NUMCOEFFS = sizeof(lpcoeff)/sizeof(float);
26

27 void Lprocess_buffer(void)
28 {
29 int16_t *inBuf, *outBuf;
30 int16_t i;
31

32 if (Lprocbuffer PING)
33 { inBuf = LpingIN; outBuf = LpingOUT; }
34 if (Lprocbuffer PONG)
35 { inBuf = LpongIN; outBuf = LpongOUT; }
36

37 for (i = 0; i < (2*BUFSIZE) ; i++)
38 {
39 xL[i].real = 0.0;
40 xL[i].imag = 0.0;
41 }
42 for (i = 0; i < (BUFSIZE) ; i++)
43 {
44 xL[i].real = (float32_t)(*inBuf++);
45 }
46 fft(xL,2*BUFSIZE,twiddle);
47 for (i=0 ; i<BUFSIZE ; i++)
48 {
49 coeffs[i].real = bass[i].real*bass_gain
50 + mid[i].real*mid_gain
51 + treble[i].real*treble_gain;
52 coeffs[i].imag = bass[i].imag*bass_gain
53 + mid[i].imag*mid_gain
54 + treble[i].imag*treble_gain;
55 }
56 for (i=0 ; i<(2*BUFSIZE) ; i++)
57 {
58 a = xL[i].real;
59 b = xL[i].imag;
60 xL[i].real = coeffs[i].real*a - coeffs[i].imag*b;
61 xL[i].imag = -(coeffs[i].real*b + coeffs[i].imag*a);
62 }
63 fft(xL,2*BUFSIZE,twiddle);
64 for (i=0 ; i<(2*BUFSIZE) ; i++)
65 {
66 xL[i].real /= (2*BUFSIZE);
67 }
68 for (i = 0; i < (BUFSIZE) ; i++)
69 {
70 *outBuf++ = (int16_t)(xL[i].real + overlap[i]);
71 overlap[i] = xL[i+BUFSIZE].real;
72 }
73

258 FAST FOURIER TRANSFORM

74 LTxcomplete = 0;
75 LRxcomplete = 0;
76 return;
77 }
78

79 void Rprocess_buffer(void)
80 {
81 int16_t *inBuf, *outBuf;
82 int16_t i;
83

84 if (Rprocbuffer PING)
85 { inBuf = RpingIN; outBuf = RpingOUT; }
86 if (Rprocbuffer PONG)
87 { inBuf = RpongIN; outBuf = RpongOUT; }
88 for (i = 0; i < (BUFSIZE) ; i++)
89 {
90 *outBuf++ = 0x0000;
91 }
92 RTxcomplete = 0;
93 RRxcomplete = 0;
94 return;
95 }
96

97 void SSI_interrupt_routine(void){while(1){}}
98

99 int main(void)
100 {
101 int i;
102

103 for (i=0 ; i< (2*BUFSIZE) ; i++)
104 {
105 twiddle[i].real = cos(PI*i/(2*BUFSIZE));
106 twiddle[i].imag = -sin(PI*i/(2*BUFSIZE));
107 }
108

109 for(i=0 ; i<(BUFSIZE*2) ; i++)
110 {
111 coeffs[i].real = 0.0;
112 coeffs[i].imag = 0.0;
113 bass[i].real = 0.0;
114 mid[i].real = 0.0 ;
115 treble[i].real = 0.0;
116 bass[i].imag = 0.0;
117 mid[i].imag = 0.0 ;
118 treble[i].imag = 0.0;
119 }
120 for(i=0 ; i<(BUFSIZE) ; i++)
121 {
122 overlap[i] = 0.0;
123 }
124 for(i=0 ; i<NUMCOEFFS ; i++)
125 {
126 bass[i].real = lpcoeff[i];
127 mid[i].real = bpcoeff[i];

FAST CONVOLUTION 259

128 treble[i].real = hpcoeff[i];
129 }
130 fft(bass,(2*BUFSIZE),twiddle);
131 fft(mid,(2*BUFSIZE),twiddle);
132 fft(treble,(2*BUFSIZE),twiddle);
133

134 tm4c123_aic3104_init(FS_8000_HZ,
135 AIC3104_LINE_IN,
136 IO_METHOD_DMA,
137 PGA_GAIN_6_DB);
138 while(1)
139 {
140 while((!RTxcomplete)|(!RRxcomplete));
141 Rprocess_buffer();
142 while((!LTxcomplete)|(!LRxcomplete));
143 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
144 Lprocess_buffer();
145 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
146 }
147 }

The coefficient header file graphicEQcoeff.h contains three sets of coeffi-
cients: a low-pass filter with a cutoff frequency of 1.3 kHz, a band-pass filter with
cutoff frequencies at 1.3 and 2.6 kHz, and a high-pass filter with a cutoff frequency
of 2.6 kHz. These filters were designed using the MATLAB function fir1(). The
three sets of filter coefficients are transformed into the frequency domain just once,
and subsequently, linear, weighted sums of their frequency domain representations
are used in the fast convolution process. A similar overlap-add scheme to that used
in the fast convolution example is employed. The gains in the three frequency bands
are set by the program statements

float32_t bass_gain = 0.1;
float32_t mid_gain = 1.0;
float32_t treble_gain = 0.25;

As provided, the program would allow for the values of these gains to be changed
while it is running. The weighted sum of the frequency-domain representations of
the three filters is computed for each block of samples by the following program
statements.

for (i=0 ; i<BUFSIZE ; i++)
{

coeffs[i].real = bass[i].real*bass_gain
+ mid[i].real*mid_gain
+ treble[i].real*treble_gain;

coeffs[i].imag = bass[i].imag*bass_gain
+ mid[i].imag*mid_gain
+ treble[i].imag*treble_gain;

}

260 FAST FOURIER TRANSFORM

Figure 5.25 Output signal from program tm4c123_graphicEQ_CMSIS_dma.c, dis-
played using Goldwave, for a pseudorandom noise input signal. bass_gain = 0.1,
mid_gain = 0.1, treble_gain = 0.25.

However, as it stands, the program does not include a mechanism for altering the
gains.

The magnitude frequency response of the graphic equalizer may be observed using
the FFT function on an oscilloscope or using Goldwave and either by replacing the
programs statement

xL[i].real = (float32_t)(*inBuf++);

with the program statement

xL[i].real = (float32_t)(prbs(8000));

or by using a microphone as an input device and blowing gently on the microphone.
Figure 5.25 shows the frequency content of pseudorandom noise that has been

filtered by the graphic equalizer with the gain settings bass_gain = 0.1,
mid_gain = 0.1, and treble_gain = 0.25.

REFERENCE 261

REFERENCE

1. Chassaing, R., “Digital Signal Processing Laboratory Experiments with C31”, John Wiley
& Sons, Inc., New York, 1999.

6
ADAPTIVE FILTERS

6.1 INTRODUCTION

Adaptive filters are used in situations where the characteristics or statistical properties
of the signals involved are either unknown or time-varying. Typically, a nonadaptive
FIR or IIR filter is designed with reference to particular signal characteristics. But if
the signal characteristics encountered by such a filter are not those for which it was
specifically designed, then its performance may be suboptimal. The coefficients of
an adaptive filter are adjusted in such a way that its performance according to some
measure improves with time and approaches optimum performance. Thus, an adap-
tive filter can be very useful either when there is uncertainty about the characteristics
of a signal or when these characteristics are time-varying.

Adaptive systems have the potential to outperform nonadaptive systems. How-
ever, they are, by definition, nonlinear and more difficult to analyze than linear,
time-invariant systems. This chapter is concerned with linear adaptive systems,
that is, systems that, when adaptation is inhibited, have linear characteristics. More
specifically, the filters considered here are adaptive FIR filters.

At the heart of the adaptive systems considered in this chapter is the structure
shown in block diagram form in Figure 6.1.

Its component parts are an adjustable filter, a mechanism for performance mea-
surement (in this case, a comparator to measure the instantaneous error between
adaptive filter output and desired output) and an adaptation mechanism or algorithm.
In subsequent figures, the adaptation mechanism is incorporated into the adjustable
filter block as shown in Figure 6.2

Digital Signal Processing Using the ARM® Cortex® -M4, First Edition. Donald S. Reay.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

264 ADAPTIVE FILTERS

Adjustable
filter

Adaptive
algorithm

x(n)

Input

Desired
output

Output

Error

+–y(n)

d(n)

e(n)

Figure 6.1 Basic adaptive filter structure.

Adaptive
filter

x(n)

Input

Desired
output

Output

Error

+–y(n)

d(n)

e(n)

Figure 6.2 Simplified block diagram of basic adaptive filter structure.

It is conventional to refer to the coefficients of an adaptive FIR filter as weights,
and the filter coefficients of the adaptive filters in several of the program examples in
this chapter are stored in arrays using the identifier w rather than h as tended to be
used for FIR filters in Chapter 3. The weights of the adaptive FIR filter are adjusted
so as to minimize the mean squared value 𝜉(n) of the error e(n). The mean squared
error 𝜉(n) is defined as the expected value, or hypothetical mean, of the square of the
error, that is,

𝜉(n) = E[e2(n)]. (6.1)

This quantity may also be interpreted as representing the variance, or power, of
the error signal.

6.2 ADAPTIVE FILTER CONFIGURATIONS

Four basic configurations into which the adaptive filter structure of Figure 6.2 may be
incorporated are commonly used. The differences between the configurations concern
the derivation of the desired output signal d(n). Each configuration may be explained
assuming that the adaptation mechanism will adjust the filter weights so as to min-
imize the mean squared value 𝜉(n) of the error signal e(n) but without the need to
understand how the adaptation mechanism works.

6.2.1 Adaptive Prediction

In this configuration (Figure 6.3), a delayed version of the desired signal x(n) =
s(n − k) is input to the adaptive filter, which predicts the current value of the desired

ADAPTIVE FILTER CONFIGURATIONS 265

Adaptive
filter

x(n) +–y(n)

d(n)

e(n)

Delay
s(n)

Figure 6.3 Basic adaptive filter structure configured for prediction.

Adaptive
filter

x(n) +–y(n)

d(n)

e(n)

s(n)

Unknown
plant

Figure 6.4 Basic adaptive filter structure configured for system identification.

signal s(n). In doing this, the filter learns something about the characteristics of the
signal s(n) and/or of the process that generated it. Adaptive prediction is used widely
in signal encoding and noise reduction.

6.2.2 System Identification or Direct Modeling

In this configuration (Figure 6.4), broadband noise s(n) is input both to the adaptive
filter and to an unknown plant or system. If adaptation is successful and the mean
squared error is minimized (to zero in an idealized situation), then it follows that the
outputs of both systems (in response to the same input signal) are similar and that
the characteristics of the systems are equivalent. The adaptive filter has identified the
unknown plant by taking on its characteristics. This configuration was introduced
in Chapter 2 as a means of identifying or measuring the characteristics of an audio
codec and was used again in some of the examples in Chapters 3 and 4. A common
application of this configuration is echo cancellation in communication systems.

6.2.3 Noise Cancellation

This configuration differs from the previous two in that while the mean squared error
is minimized, it is not minimized to zero, even in the ideal case, and it is the error
signal e(n) rather than the adaptive filter output y(n) that is the principal signal of
interest. Consider the system illustrated in Figure 6.5. A primary sensor is positioned

266 ADAPTIVE FILTERS

Adaptive
filter

x(n)

+

–

y(n)

d(n) e(n)
Signal
source

Noise
source

primary
sensor

Reference
sensor

s + n0

n1

Figure 6.5 Basic adaptive filter structure configured for noise cancellation.

so as to pick up signal s. However, this signal is corrupted by uncorrelated additive
noise n0, that is, the primary sensor picks up signal (s + n0). A second reference sensor
is positioned so as to pick up noise from the same source as n0 but without picking
up signal s. This noise signal is represented in Figure 6.5 as n1. Since they originate
from the same source, it may be assumed that noise signals n0 and n1 are strongly
correlated. It is assumed here also that neither noise signal is correlated with signal s.
In practice, the reference sensor may pick up signal s to some degree, and there may be
some correlation between signal and noise, leading to a reduction in the performance
of the noise cancellation system.

The noise cancellation system aims to subtract the additive noise n0 from the pri-
mary sensor output (s + n0). The role of the adaptive filter is therefore to estimate,
or derive, n0 from n1, and intuitively (since the two signals originate from the same
source), this appears feasible.

An alternative representation of the situation described earlier, regarding the sig-
nals detected by the two sensors and the correlation between n0 and n1, is shown in
Figure 6.6. Here, it is emphasized that n0 and n1 have taken different paths from the
same noise source to the primary and reference sensors, respectively. Note the sim-
ilarity between this and the system identification configuration shown in Figure 6.4.
The mean squared error 𝜉(n) may be minimized if the adaptive filter is adjusted to
have similar characteristics to the block shown between signals n1 and n0. In effect,
the adaptive filter learns the difference in the paths between the noise source and the
primary and reference sensors, represented in Figure 6.6 by the block labeled H(z).
The minimized error signal will, in this idealized situation, be equal to the signal s,
that is, a noise-free signal.

6.2.4 Equalization

In this configuration (Figure 6.7), the adaptive filter is used to recover a delayed ver-
sion of signal s(n) from signal x(n) (formed by passing s(n) through an unknown plant
or filter). The delay is included to allow for propagation of signals through the plant
and adaptive filter. After successful adaptation, the adaptive filter takes on the inverse
characteristics of the unknown filter, although there are limitations on the nature of
the unknown plant for this to be achievable. Commonly, the unknown plant is a com-
munication channel and s(n) is the signal being transmitted through that channel. It

PERFORMANCE FUNCTION 267

Adaptive
filterx(n)

+

–

y(n)

d(n) e(n)s + n0

n1

s

n0

+

+

H(z)

Figure 6.6 Alternative representation of basic adaptive filter structure configured for noise
cancellation emphasizing the difference H(z) in paths from a single noise source to primary
and reference sensors.

Adaptive
filter

x(n) +–y(n)

d(n)

e(n)

s(n)
Unknown

plant

Delay

Figure 6.7 Basic adaptive filter structure configured for equalization.

is natural at this point to ask why, if a delayed but unfiltered version of signal s(n) is
available for use as the desired signal d(n) at the receiver, it is necessary to attempt to
derive a delayed but unfiltered version of s(n) from signal x(n). In general, a delayed
version of s(n) is not available at the receiver, but for the purposes of adaptation over
short periods of time, it is effectively made available by transmitting a predetermined
sequence and using a copy of this stored at the receiver as the desired signal. In most
cases, a pseudorandom, broadband signal is used for this purpose.

6.3 PERFORMANCE FUNCTION

Consider the block diagram representation of an FIR filter introduced in Chapter 3
and shown again in Figure 6.8.

In the following equations, the filter weights and the input samples stored in the
FIR filter delay line at the nth sampling instant are represented as vectors w(n) and
x(n), respectively, where

w(n) = [w0(n),w1(n), · · · ,wN−1(n)]T (6.2)

268 ADAPTIVE FILTERS

x(n – N + 1)x(n)

z−1 z−1z−1

w
N −1

w
0
x(n)

w
0

w
1

x(n − 1)

w
1
x(n−1) w

N −1 x(n − N +1)

y(n) = w
k
x(n − k)

k= 0

N −1

∑

Figure 6.8 Block diagram representation of FIR filter.

and
x(n) = [x(n), x(n − 1), · · · , x(n − N + 1)]T . (6.3)

Hence, using vector notation, the filter output at the nth sample instant is given by

y(n) = wT (n)x(n) = xT (n)w(n). (6.4)

Instantaneous error is given by

e(n) = d(n) − y(n)

= d(n) − xT (n)w(n) (6.5)

and instantaneous squared error by

e2(n) = d2(n) − 2d(n)xT (n)w(n) + wT (n)x(n)xT (n)w(n). (6.6)

Mean squared error (expected value of squared error) is therefore given by

𝜉(n) = E[e2(n)]

= E[d2(n) − 2d(n)xT (n)w(n) + wT (n)x(n)xT (n)w(n)]. (6.7)

The expected value of a sum of variables is equal to the sum of the expected val-
ues of those variables. However, the expected value of a product of variables is the
product of the expected values of the variables only if those variables are statisti-
cally independent. Signals d(n) and x(n) are generally not statistically independent.

PERFORMANCE FUNCTION 269

If the signals d(n) and x(n) are statistically time-invariant, the expected values of the
products d(n)x(n) and x(n)xT (n) are constants and hence

𝜉(n) = E[d2(n)] + wT (n)E[xT (n)x(n)]w(n) − 2E[d(n)xT (n)]w(n)

= E[d2(n)] + wT (n)Rw(n) − 2pTw(n), (6.8)

where the vector p of cross-correlation between input and desired output is defined
as

p = E[d(n)x(n)] (6.9)

and the input autocorrelation matrix R is defined as

R = E[x(n)xT (n)]. (6.10)

The performance function, or surface, 𝜉(n) is a quadratic function of w(n) and as
such is referred to in the following equations as 𝜉(w). Since it is a quadratic function of
w(n), it has one global minimum corresponding to w(n) = w opt. The optimum value of
the weights, w opt, may be found by equating the gradient of the performance surface
to zero, that is,

𝜕𝜉(w)
𝜕w

= 𝜕

𝜕w
[E[d2(n)] + wT (n)Rw(n) − 2pTw(n)]

= 2Rw − 2p. (6.11)

and hence, in terms of the statistical quantities just described

2Rw opt − 2p = 0 (6.12)

and hence,
w opt = R−1p. (6.13)

In a practical, real-time application, solving Equation (6.13) may not be possible
either because signal statistics are unavailable or simply because of the computational
effort involved in inverting the input autocorrelation matrix R.

6.3.1 Visualizing the Performance Function

If there is just one weight in the adaptive filter, then the performance function will be
a parabolic curve, as shown in Figure 6.9. If there are two weights, the performance
function will be a three-dimensional surface, a paraboloid, and if there are more than
two weights, then the performance function will be a hypersurface (i.e., difficult to
visualize or to represent in a figure). In each case, the role of the adaptation mecha-
nism is to adjust the filter coefficients to those values that correspond to a minimum
in the performance function.

270 ADAPTIVE FILTERS

ξ(w)

wopt

ξmin

w

Figure 6.9 Performance function for single weight case.

6.4 SEARCHING FOR THE MINIMUM

An alternative to solving Equation (6.13) by matrix inversion is to search the perfor-
mance function for w opt, starting with an arbitrary set of weight values and adjusting
these at each sampling instant.

One way of doing this is to use the steepest descent algorithm. At each iteration
(of the algorithm) in a discrete-time implementation, the weights are adjusted in the
direction of the negative gradient of the performance function and by an amount pro-
portional to the magnitude of the gradient, that is,

w(n + 1) = w(n) − 𝛽
𝜕𝜉(w)
𝜕w

|w=w(n), (6.14)

where w(n) represents the value of the weights at the nth iteration and 𝛽 is an arbi-
trary positive constant that determines the rate of adaptation. If 𝛽 is too large, then
instability may ensue. If the statistics of the signals x(n) and d(n) are known, then
it is possible to set a quantitative upper limit on the value of 𝛽, but in practice, it is
usual to set 𝛽 equal to a very low value. One iteration of the steepest descent algo-
rithm described by Equation (6.14) is illustrated for the case of a single weight in
Figure 6.10.

6.5 LEAST MEAN SQUARES ALGORITHM

The steepest descent algorithm requires an estimate of the gradient ∇(n) of the per-
formance surface 𝜉(w) at each step. But since this depends on the statistics of the
signals involved, it may be computationally expensive to obtain. The least mean
squares (LMS) algorithm uses instantaneous error squared e2(n) as an estimate of
mean squared error E[e2(n)] and yields an estimated gradient

LEAST MEAN SQUARES ALGORITHM 271

ξ(w)

wopt

ξmin

β ∂ξ(w)
∂w w =w0

ww0w1

∂ξ(w)
∂w w =w0

Figure 6.10 Steepest descent algorithm illustrated for single weight case.

∇̂(n) =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜕𝜉(n)
𝜕w0(n)
𝜕𝜉(n)
𝜕w1(n)

⋮
𝜕𝜉(n)

𝜕wN−1(n)

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

𝜕e2(n)
𝜕w0(n)
𝜕e2(n)
𝜕w1(n)

⋮
𝜕e2(n)

𝜕wN−1(n)

⎤⎥⎥⎥⎥⎥⎥⎦
(6.15)

or

∇̂(n) = 𝜕𝜉(n)
𝜕w(n)

= 𝜕e2(n)
𝜕w(n)

. (6.16)

Equation (6.6) gave an expression for instantaneous squared error

e2(n) = d2(n) − 2d(n)xT (n)w(n) + wT (n)x(n)xT (n)w(n).

Differentiating this with respect to w(n),

𝜕e2(n)
𝜕w(n)

= 2x(n)xT (n)w(n) − 2d(n)x(n)

= 2x(n)(xT (n)w(n) − d(n))

= −2e(n)x(n). (6.17)

Hence, the steepest descent algorithm, using this gradient estimate, is

w(n + 1) = w(n) − 𝛽∇̂(n)

= w(n) + 2𝛽e(n)x(n). (6.18)

272 ADAPTIVE FILTERS

This is the LMS algorithm. Gradient estimate ∇̂(n) is imperfect, and, therefore, the
LMS adaptive process may be noisy. This is a further motivation for choosing a con-
servatively low value for 𝛽.

The LMS algorithm is well established, computationally inexpensive, and, there-
fore, widely used. Other methods of adaptation include recursive least squares, which
is more computationally expensive but converges faster, and normalized LMS, which
takes explicit account of signal power. Given that in practice the choice of value for 𝛽
is somewhat arbitrary, a number of simpler fixed step size variations are practicable
although, somewhat counterintuitively, these variants may be computationally more
expensive to implement using a digital signal processor with single-cycle multiply
capability than the straightforward LMS algorithm.

6.5.1 LMS Variants

For the sign-error LMS algorithm, Equation (6.18) becomes

w(n + 1) = w(n) + 𝛽 sgn(e(n))x(n), (6.19)

where sgn() is the signum function

sgn(u) =
{

1, if u ≥ 0
−1, if u < 0.

(6.20)

For the sign-data LMS algorithm, Equation (6.18) becomes

w(n + 1) = w(n) + 𝛽sgn(x(n))e(n). (6.21)

For the sign-sign LMS algorithm, Equation (6.18) becomes

w(n + 1) = w(n) + 𝛽sgn(e(n))sgn(x(n)), (6.22)

which reduces to

w(n + 1) =
{

w(n) + 𝛽, if sgn(e(n)) = sgn(x(n))
w(n) − 𝛽, otherwise

(6.23)

and which involves no multiplications.

6.5.2 Normalized LMS Algorithm

The rate of adaptation of the standard LMS algorithm is sensitive to the magnitude
of the input signal x(n). This problem may be ameliorated by using the normalized
LMS algorithm in which the adaptation rate 𝛽 in the LMS algorithm is replaced by

𝛽NLMS = 1
(N−1)∑
n=0

x2(n)
. (6.24)

PROGRAMMING EXAMPLES 273

6.6 PROGRAMMING EXAMPLES

The following program examples illustrate adaptive filtering using the LMS algorithm
applied to an FIR filter.

Example 6.1 Adaptive Filter Using C Code (stm32f4_adaptive.c).

This example implements the LMS algorithm as a C program. It illustrates the
following steps for the adaptation process using the adaptive structure shown in
Figure 6.2.

1. Obtain new samples of the desired signal d(n) and the reference input to the
adaptive filter x(n).

2. Calculate the adaptive FIR filter output y(n), applying Equation (6.4).

3. Calculate the instantaneous error e(n) by applying Equation (6.5).

4. Update the coefficient (weight) vector w by applying the LMS algorithm (6.18).

5. Shift the contents of the adaptive filter delay line, containing previous input
samples, by one.

6. Repeat the adaptive process at the next sampling instant.

Program stm32f4_adaptive.c is shown in Listing 6.1. The desired signal
is chosen to be d(n) = 2 cos()2𝜋n∕8, and the input to the adaptive filter is chosen to
be x(n) = sin()2𝜋n∕8. The adaptation rate 𝛽, filter order N, and number of samples
processed in the program are equal to 0.01, 21, and 60, respectively. The overall
output is the adaptive filter output y(n), which converges to the desired cosine signal
d(n).

Listing 6.1 Program stm32f4_adaptive.c.

1 // stm32f4_adaptive.c
2

3 #include "stm32f4_wm5102_init.h"
4

5 #define BETA 0.01f // learning rate
6 #define N 21 // number of filter coeffs
7 #define NUM_ITERS 60 // number of iterations
8

9 float32_t desired[NUM_ITERS]; // storage for results
10 float32_t y_out[NUM_ITERS];
11 float32_t error[NUM_ITERS];
12 float32_t w[N] = {0.0}; // adaptive filter weights
13 float32_t x[N] = {0.0}; // adaptive filter delay line
14 int i, t;
15 float32_t d, y, e;
16

17 int main()
18 {

274 ADAPTIVE FILTERS

19 for (t = 0; t < NUM_ITERS; t++)
20 {
21 x[0] = sin(2*PI*t/8); // get new input sample
22 d = 2*cos(2*PI*t/8); // get new desired output
23 y = 0; // compute filter output
24 for (i = 0; i <= N; i++)
25 y += (w[i]*x[i]);
26 e = d - y; // compute error
27 for (i = N; i >= 0; i–)
28 {
29 w[i] += (BETA*e*x[i]); // update filter weights
30 if (i != 0)
31 x[i] = x[i-1]; // shift data in delay line
32 }
33 desired[t] = d; // store results
34 y_out[t] = y;
35 error[t] = e;
36 }
37 while(1){}
38 }

Because the program does not use any real-time input or output, it is not necessary
for it to call function stm32f4_wm5102_init(). Figure 6.11 shows plots of the
desired output desired, adaptive filter output y_out, and error error, plotted
using MATLAB® function stm32f4_plot_real() after the contents of those
three arrays have been saved to files by typing

SAVE desired.dat <start address>, <start address + 0xF0>
SAVE y_out.dat <start address>, <start address + 0xF0>
SAVE error.dat <start address>, <start address + 0xF0>

in the Command window in the MDK-ARM debugger, where start address is
the address of arrays desired, y_out, and error. Within 60 sampling instants,
the filter output effectively converges to the desired cosine signal. Change the adap-
tation or convergence rate BETA to 0.02 and verify a faster rate of adaptation and
convergence.

Example 6.2 Adaptive Filter for Noise Cancellation Using Sinusoids as Inputs
(tm4c123_adaptnoise_intr.c).

This example illustrates the use of the LMS algorithm to cancel an undesired sinu-
soidal noise signal. Listing 6.2 shows programtm4c123_adaptnoise_intr.c,
which implements an adaptive FIR filter using the structure shown in Figure 6.5.

Listing 6.2 Program tm4c123_adaptnoise_intr.c.

1

2 // tm4c123_adaptnoise_intr.c
3

4 #include "tm4c123_aic3104_init.h"

PROGRAMMING EXAMPLES 275

5

6 #define SAMPLING_FREQ 8000
7 #define NOISE_FREQ 1200.0
8 #define SIGNAL_FREQ 2500.0
9 #define NOISE_AMPLITUDE 8000.0

10 #define SIGNAL_AMPLITUDE 8000.0
11 #define BETA 4E-12f // adaptive learning rate
12 #define N 10 // number of weights
13

14 float32_t w[N]; // adaptive filter weights
15 float32_t x[N]; // adaptive filter delay line
16

17 float32_t theta_increment_noise;
18 float32_t theta_noise = 0.0;
19 float32_t theta_increment_signal;
20 float32_t theta_signal = 0.0;
21

22 void SSI_interrupt_routine(void)
23 {
24 AIC3104_data_type sample_data;
25 float32_t inputL, inputR;
26 int16_t i;
27 float32_t yn, error, signal, signoise, refnoise, dummy;
28

29 SSIDataGet(SSI0_BASE,&sample_data.bit32);
30 inputL = (float32_t)(sample_data.bit16[0]);
31 SSIDataGet(SSI1_BASE,&sample_data.bit32);
32 inputR = (float32_t)(sample_data.bit16[0]);
33

34 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
35

36 theta_increment_noise = 2*PI*NOISE_FREQ/SAMPLING_FREQ;
37 theta_noise += theta_increment_noise;
38 if (theta_noise > 2*PI) theta_noise -= 2*PI;
39 theta_increment_signal = 2*PI*SIGNAL_FREQ/SAMPLING_FREQ;
40 theta_signal += theta_increment_signal;
41 if (theta_signal > 2*PI) theta_signal -= 2*PI;
42

43 refnoise = (NOISE_AMPLITUDE*arm_cos_f32(theta_noise));
44 signoise = (NOISE_AMPLITUDE*arm_sin_f32(theta_noise));
45 signal = (SIGNAL_AMPLITUDE*arm_sin_f32(theta_signal));
46

47 x[0] = refnoise; // reference input to adaptive filter
48 yn = 0; // compute adaptive filter output
49 for (i = 0; i < N; i++)
50 yn += (w[i] * x[i]);
51

52 error = signal + signoise - yn; // compute error
53

54 for (i = N-1; i >= 0; i–) // update weights
55 { // and delay line
56 dummy = BETA*error;
57 dummy = dummy*x[i];
58 w[i] = w[i] + dummy;

276 ADAPTIVE FILTERS

59 x[i] = x[i-1];
60 }
61

62 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
63

64 sample_data.bit32 = ((int16_t)(error));
65 SSIDataPut(SSI1_BASE,sample_data.bit32);
66 sample_data.bit32 = ((int16_t)(signal + signoise));
67 SSIDataPut(SSI0_BASE,sample_data.bit32);
68

69 SSIIntClear(SSI0_BASE,SSI_RXFF);
70 }
71

72

73 int main()
74 {
75 int16_t i;
76

77 for (i=0 ; i<N ; i++)
78 {
79 w[i] = 0.0;
80 x[i] = 0.0;
81 }
82 tm4c123_aic3104_init(FS_8000_HZ,
83 AIC3104_LINE_IN,
84 IO_METHOD_INTR,
85 PGA_GAIN_6_DB);
86 while(1){}
87 }

A desired sinusoid signal, of frequency SIGNAL_FREQ (2500 Hz), with an
added (undesired) sinusoid signoise, of frequency NOISE_FREQ (1200 Hz),
forms one of two inputs to the noise cancellation structure and represents the signal
plus noise from the primary sensor in Figure 6.12. A sinusoid refnoise, with
a frequency of NOISE_FREQ (1200 Hz), represents the reference noise signal
in Figure 6.12 and is the input to an N-coefficient adaptive FIR filter. The signal
refnoise is strongly correlated with the signal signoise but not with the
desired signal. At each sampling instant, the output of the adaptive FIR filter
is calculated, its N weights are updated, and the contents of the delay line x are
shifted. The error signal is the overall desired output of the adaptive structure. It
comprises the desired signal and additive noise from the primary sensor (signal
+ signoise) from which the adaptive filter output yn has been subtracted. The
input signals used in this example are generated within the program and both the
input signal signal + signoise and the output signal error are output via
the AIC3104 codec on right and left channels, respectively.

Build and run the program and verify the following output result. The undesired
1200-Hz sinusoidal component of the output signal (error) is gradually reduced
(canceled), while the desired 2500-Hz signal remains. A faster rate of adaptation can
be observed by using a larger value of beta. However, if beta is too large, the adap-
tation process may become unstable. Program tm4c213_adaptnoise_intr.c

PROGRAMMING EXAMPLES 277

0
–1

–0.8

–0.6

–0.4

–0.2

10 20 30
n(a)

(b)

(c)

40 50 60

0 10 20 30
n

40 50 60

0 10 20 30
n

40 50 60

0

R
ea

l
0.2

0.4

0.6

0.8

1

–1

–0.8

–0.6

–0.4

–0.2

0

R
ea

l

0.2

0.4

0.6

0.8

1

–1

–0.8

–0.6

–0.4

–0.2

0

R
ea

l

0.2

0.4

0.6

0.8

1

Figure 6.11 Plots of (a) desired output, (b) adaptive filter output, and (c) error gen-
erated using program stm32f4_adaptive.c and displayed using MATLAB function
stm32f4_plot_real().

278 ADAPTIVE FILTERS

Adaptive
filter

+

+

–

+

signal

refnoise

signoise

LINE OUT R

LINE OUT L
error

2500 Hz sine

1200 Hz sine

1200 Hz cosine

Figure 6.12 Block diagram representation of program tm4c213_adaptnoise_
intr.c.

demonstrates real-time adjustments to the coefficients of an FIR filter. The
program makes use of CMSIS DSP library functions arm_sin_f32() and
arm_cos_f32() in order to compute signal and noise signal values. Standard
functions sin() and cos() would be computationally too expensive to use in
real time. The adaptive FIR filter is implemented straightforwardly using program
statements

yn = 0; // compute adaptive filter output
for (i = 0; i < N; i++)
yn += (w[i] * x[i]);

error = signal + signoise - yn; // compute error

for (i = N-1; i >= 0; i–) // update weights
{ // and delay line
dummy = BETA*error;
dummy = dummy*x[i];
w[i] = w[i] + dummy;
x[i] = x[i-1];

}

in which the entire contents of the filter delay line x are shifted at each sampling
instant. Program tm4c123_adaptnoise_CMSIS_intr.c shown in Listing
6.3 makes use of the more computationally efficient CMSIS DSP library function
arm_lms_f32().

Listing 6.3 Program tm4c123_adaptnoise_CMSIS_intr.c).

1

2 // tm4c123_adaptnoise_CMSIS_intr.c
3

4 #include "tm4c123_aic3104_init.h"
5

6 #define SAMPLING_FREQ 8000
7 #define NOISE_FREQ 1200.0f

PROGRAMMING EXAMPLES 279

8 #define SIGNAL_FREQ 2500.0f
9 #define NOISE_AMPLITUDE 8000.0f

10 #define SIGNAL_AMPLITUDE 8000.0f
11

12 #define BETA 1E-13
13 #define NUM_TAPS 10
14 #define BLOCK_SIZE 1
15

16

17 float32_t theta_increment_noise;
18 float32_t theta_noise = 0.0;
19 float32_t theta_increment_signal;
20 float32_t theta_signal = 0.0;
21

22

23 float32_t firStateF32[BLOCK_SIZE + NUM_TAPS -1];
24 float32_t firCoeffs32[NUM_TAPS] = {0.0};
25 arm_lms_instance_f32 S;
26

27 void SSI_interrupt_routine(void)
28 }
29 AIC3104_data_type sample_data;
30 float32_t inputl, inputr;
31 float32_t yout, error, signal, signoise
32 float32_t refnoise, sigplusnoise;
33

34 SSIDataGet(SSI0_BASE,&sample_data.bit32);
35 inputl = (float32_t)(sample_data.bit16[0]);
36 SSIDataGet(SSI1_BASE,&sample_data.bit32);
37 inputr = (float32_t)(sample_data.bit16[0]);
38

39 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
40

41 theta_increment_noise = 2*PI*NOISE_FREQ/SAMPLING_FREQ;
42 theta_noise += theta_increment_noise;
43 if (theta_noise > 2*PI) theta_noise -= 2*PI;
44

45 theta_increment_signal = 2*PI*SIGNAL_FREQ/SAMPLING_FREQ;
46 theta_signal += theta_increment_signal;
47 if (theta_signal > 2*PI) theta_signal -= 2*PI;
48

49 refnoise = (NOISE_AMPLITUDE*arm_cos_f32(theta_noise));
50 signoise = (NOISE_AMPLITUDE*arm_sin_f32(theta_noise));
51 signal = (SIGNAL_AMPLITUDE*arm_sin_f32(theta_signal));
52 sigplusnoise = signoise+signal;
53

54 arm_lms_f32(&S, &refnoise, &sigplusnoise,
55 &yout, &error, 1);
56

57 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
58

59 sample_data.bit32 = ((int16_t)(error));
60 SSIDataPut(SSI0_BASE,sample_data.bit32);
61 sample_data.bit32 = ((int16_t)(sigplusnoise));

280 ADAPTIVE FILTERS

62 SSIDataPut(SSI1_BASE,sample_data.bit32);
63

64 SSIIntClear(SSI0_BASE,SSI_RXFF);
65 }
66

67

68 int main()
69 {
70 arm_lms_init_f32(&S, NUM_TAPS, firCoeffs32,
71 firStateF32, BETA, 1);
72 tm4c123_aic3104_init(FS_8000_HZ,
73 AIC3104_LINE_IN,
74 IO_METHOD_INTR,
75 PGA_GAIN_6_DB);
76 while(1);
77 }

6.6.1 Using CMSIS DSP Function arm_lms_f32()

In order to implement an adaptive FIR filter using CMSIS DSP library function
arm_lms_f32(), as in the previous example, the following variables must be
declared.

1. A structure of type arm_lms_instance_f32

2. A floating-point state variable array firStateF32

3. A floating-point array of filter coefficients firCoeffs32.

The arm_lms_instance_f32 structure comprises an integer value equal to
the number of coefficients, N used by the filter, a floating-point value equal to
the learning rate BETA, and pointers to the array of N floating-point filter coef-
ficients and to the N + BLOCKSIZE - 1 floating-point state variable array.
The state variable array contains current and previous values of the input to
the filter. Before calling function arm_lms_f32(), the structure is initialized
using function arm_lms_init_f32(). This assigns values to the elements
of the structure and initializes the contents of the state variable array to zero.
Function arm_lms_init_f32() does not allocate memory for the filter
coefficient or state variable arrays. They must be declared separately. Function
arm_lms_init_f32() does not initialize or alter the contents of the filter
coefficient array.

Subsequently, function arm_lms_f32() may be called, passing to it pointers
to the arm_lms_instance_f32 structure and to floating-point arrays of input
samples, output samples, desired output samples, and error samples. Each of these
arrays contains BLOCKSIZE samples. Each call to function arm_lms_f32() pro-
cesses BLOCKSIZE samples, and although it is possible to set BLOCKSIZE to one,
the function is optimized according to the architecture of the ARM Cortex-M4 to
operate on at least four samples per call. More details of function arm_lms_f32()
can be found in the CMSIS documentation [1].

PROGRAMMING EXAMPLES 281

Example 6.3 Adaptive FIR Filter for Noise Cancellation Using External Inputs
(stm32f4_noise_cancellation_CMSIS_dma.c).

This example extends the previous one to cancel an undesired noise signal using
external inputs. Program stm32f4_noise_cancellation_CMSIS_dma.c,
shown in Listing 6.4, requires two external inputs, a desired signal, and a refer-
ence noise signal to be input to left and right channels of LINE IN, respectively.
A stereo 3.5-mm jack plug to dual RCA jack plug cable is useful for implementing
this example using two different signal sources. Alternatively, a test input signal is
provided in file speechnoise.wav. This may be played through a PC sound card
and input to the audio card via a stereo 3.5 mm jack plug to 3.5 mm jack plug cable.
speechnoise.wav comprises pseudorandom noise on the left channel and speech
on the right channel.

Listing 6.4 Program stm32f4_noise_cancellation_CMSIS_dma.c.

1 // stm32f4_noise_cancellation_CMSIS_dma.c
2

3 #include "stm32f4_wm5102_init.h"
4 #include "bilinear.h"
5

6 extern uint16_t pingIN[BUFSIZE], pingOUT[BUFSIZE]
7 extern uint16_t pongIN[BUFSIZE], pongOUT[BUFSIZE];
8 int rx_proc_buffer, tx_proc_buffer;
9 volatile int RX_buffer_full = 0;

10 volatile int TX_buffer_empty = 0;
11

12 #define BLOCK_SIZE 1
13 #define NUM_TAPS 32
14

15 float32_t beta = 1e-11;
16

17 float32_t firStateF32[BLOCK_SIZE + NUM_TAPS -1];
18

19 float32_t firCoeffs32[NUM_TAPS] = {0.0};
20

21 arm_lms_instance_f32 S;
22

23 float32_t input, signoise, wn, yn, yout, error;
24

25 float w[NUM_SECTIONS][2] = {0.0f, 0.0f}; // IIR coeffs
26

27 void DMA1_Stream3_IRQHandler()
28 {
29 if(DMA_GetITStatus(DMA1_Stream3,DMA_IT_TCIF3))
30 {
31 DMA_ClearITPendingBit(DMA1_Stream3,DMA_IT_TCIF3);
32 if(DMA_GetCurrentMemoryTarget(DMA1_Stream3))
33 rx_proc_buffer = PING;
34 else
35 rx_proc_buffer = PONG;

282 ADAPTIVE FILTERS

36 RX_buffer_full = 1;
37 }
38 }
39

40 void DMA1_Stream4_IRQHandler()
41 {
42 if(DMA_GetITStatus(DMA1_Stream4,DMA_IT_TCIF4))
43 {
44 DMA_ClearITPendingBit(DMA1_Stream4,DMA_IT_TCIF4);
45 if(DMA_GetCurrentMemoryTarget(DMA1_Stream4))
46 tx_proc_buffer = PING;
47 else
48 tx_proc_buffer = PONG;
49 TX_buffer_empty = 1;
50 }
51 }
52

53 void process_buffer()
54 {
55 int i;
56 uint16_t *rxbuf, *txbuf;
57 float32_t refnoise, signal;
58 int16_t left_in_sample, right_in_sample;
59 int section;
60

61 // determine which buffers to use
62 if (rx_proc_buffer PING) rxbuf = pingIN;
63 else rxbuf = pongIN;
64 if (tx_proc_buffer PING) txbuf = pingOUT;
65 else txbuf = pongOUT;
66

67 for (i=0 ; i<(BUFSIZE/2) ; i++)
68 {
69 right_in_sample = *rxbuf++;
70 left_in_sample = *rxbuf++;
71 refnoise = (float32_t)(right_in_sample);
72 signal = (float32_t)(left_in_sample);
73

74 input = refnoise;
75 for (section=0 ; section<NUM_SECTIONS ; section++)
76 {
77 wn = input - a[section][1]*w[section][0]
78 - a[section][2]*w[section][1];
79 yn = b[section][0]*wn + b[section][1]*w[section][0]
80 + b[section][2]*w[section][1];
81 w[section][1] = w[section][0];
82 w[section][0] = wn;
83 input = yn;
84 }
85 signoise = yn + signal;
86 arm_lms_f32(&S, &refnoise, &signoise,
87 &yout, &error, 1);
88 *txbuf++ = (int16_t)(signoise);
89 *txbuf++ = (int16_t)(error);

PROGRAMMING EXAMPLES 283

90 }
91 TX_buffer_empty = 0;
92 RX_buffer_full = 0;
93 }
94

95 int main()
96 {
97 arm_lms_init_f32(&S, NUM_TAPS, firCoeffs32,
98 firStateF32, beta, 1);
99 stm32_wm5102_init(FS_8000_HZ,

100 WM5102_LINE_IN,
101 IO_METHOD_DMA);
102 while(1)
103 {
104 while (!(RX_buffer_full && TX_buffer_empty)){}
105 GPIO_SetBits(GPIOD, GPIO_Pin_15);
106 process_buffer();
107 GPIO_ResetBits(GPIOD, GPIO_Pin_15);
108 }
109 }

Figure 6.13 shows the program in block diagram. Within the program, a primary
noise signal, correlated to the reference noise signal input on the left channel, is
formed by passing the reference noise through an IIR filter. The primary noise signal
is added to the desired signal (speech) input on the right channel.

Build and run the program and test it using file speechnoise.wav. As adapta-
tion takes place, the output on the left channel of LINE OUT should gradually change
from speech plus noise to speech only. You may need to adjust the volume at which
you play the file speechnoise.wav. If the input signals are too quiet, then adapta-
tion may be very slow. This is an example of the disadvantage of the LMS algorithm
versus the NLMS algorithm. After adaptation has taken place, the 32 coefficients of
the adaptive FIR filter, firCoeffs32, may be saved to a data file by typing

SAVE <filename> <start address>, <end address>

Adaptive
filter

+

+

–

+

signal

refnoise

signoise

IIR
filter

LINE IN R

LINE IN L

LINE OUT R

LINE OUT L
error

Figure 6.13 Block diagram representation of program tm4c123_noise_cancel-
lation_intr.c.

284 ADAPTIVE FILTERS

0 500 1000 1500 2000 2500 3000 3500 4000
–60

–50

–40

–30

–20

–10

0

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10–3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

Sa
m

pl
e

va
lu

e

Figure 6.14 Impulse response and magnitude frequency response of IIR filter identified by
the adaptive filter in program tm4c123_noise_cancellation_intr.c and plotted
using MATLAB function tm4c123_logfft().

in the Command window of the MDK-ARM debugger, where start address
is the address of array firCoeffs32 and end address is equal to start
address + 0x80, and plotted using MATLAB function stm32f4_logfft().
This should reveal the time- and frequency-domain characteristics of the IIR filter
implemented by the program, as identified by the adaptive filter and as shown in
Figure 6.14.

PROGRAMMING EXAMPLES 285

Adaptive
filter

FIR
filter

PRBS

– +

y_lms

y_fir
LINE OUT R
out_flag = 0

LINE OUT R
out_flag = 1

LINE OUT L
error

Figure 6.15 Block diagram representation of program tm4c123_adaptIDFIR_
CMSIS_intr.c.

Example 6.4 Adaptive FIR Filter for System Identification of a Fixed FIR Filter
as the Unknown System tm4c123_adaptIDFIR_CMSIS_intr.c).

Listing 6.5 shows program tm4c123_adaptIDFIR_CMSIS_intr.c, which
uses an adaptive FIR filter to identify an unknown system. A block diagram of the sys-
tem implemented in this example is shown in Figure 6.15. The unknown system to be
identified is a 55-coefficient FIR band-pass filter centered at 2000 Hz. The coefficients
of this fixed FIR filter are read from header file bp55.h, previously used in Example
3.7. A 60-coefficient adaptive FIR filter is used to identify the fixed (unknown) FIR
band-pass filter.

A pseudorandom binary noise sequence, generated within the program, is input
to both the fixed (unknown) and the adaptive FIR filters and an error signal formed
from their outputs. The adaptation process seeks to minimize the variance of that error
signal. It is important to use wideband noise as an input signal in order to identify the
characteristics of the unknown system over the entire frequency range from zero to
half the sampling frequency.

Listing 6.5 Program tm4c123_adaptIDFIR_CMSIS_intr.c.

1

2 // tm4c123_adaptIDFIR_CMSIS_intr.c
3

4 #include "tm4c123_aic3104_init.h"
5 #include "bp55.h"
6

7 #define BETA 5E-13 // adaptive learning rate
8 #define NUM_COEFFS 60
9 #define BLOCK_SIZE 1

10

11 float32_t firStateF32[BLOCK_SIZE + NUM_COEFFS -1];

286 ADAPTIVE FILTERS

12 float32_t firCoeffs32[NUM_COEFFS] = {0.0};
13 arm_lms_instance_f32 S_lms;
14

15 float32_t state[N];
16 arm_fir_instance_f32 S_fir;
17

18 volatile int16_t out_flag = 0; // determines output
19

20 void SSI_interrupt_routine(void)
21 {
22 AIC3104_data_type sample_data;
23 float32_t x_fir, y_fir;
24 float32_t inputl, inputr;
25 float32_t x_lms, y_lms, error;
26

27 SSIDataGet(SSI0_BASE,&sample_data.bit32); // input RIGHT
28 inputl = (float32_t)(sample_data.bit16[0]);
29 SSIDataGet(SSI1_BASE,&sample_data.bit32); // input LEFT
30 inputr = (float32_t)(sample_data.bit16[0]);
31

32 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4); // PE2 high
33

34 x_fir = (float32_t)(prbs(8000));
35 x_lms = x_fir;
36 arm_fir_f32(&S_fir, &x_fir, &y_fir, 1);
37 arm_lms_f32(&S_lms, &x_lms, &y_fir, &y_lms, &error, 1);
38

39 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0); // PE2 low
40

41 if (out_flag 0)
42 sample_data.bit32 = ((int16_t)(y_lms));
43 else
44 sample_data.bit32 = ((int16_t)(y_fir));
45

46 SSIDataPut(SSI0_BASE,sample_data.bit32); // output RIGHT
47 sample_data.bit32 = ((int16_t)(error));
48 SSIDataPut(SSI1_BASE,sample_data.bit32); // output LEFT
49

50 SSIIntClear(SSI0_BASE,SSI_RXFF); // clear interrupt flag
51 }
52

53 int main()
54 {
55 arm_fir_init_f32(&S_fir, N, h, state, 1);
56 arm_lms_init_f32(&S_lms, NUM_COEFFS, firCoeffs32, firStateF32,
57 BETA, 1);
58 tm4c123_aic3104_init(FS_8000_HZ,
59 AIC3104_LINE_IN,
60 IO_METHOD_INTR,
61 PGA_GAIN_6_DB);
62 while(1)
63 {
64 ROM_SysCtlDelay(10000);
65 // test SWI1 closed/pressed

PROGRAMMING EXAMPLES 287

66 if (!GPIOPinRead(GPIO_PORTF_BASE, GPIO_PIN_4))
67 {
68 ROM_SysCtlDelay(10000);
69 out_flag = (out_flag+1)%2; // toggle out_flag
70 // wait until SWI not closed/pressed
71 while (!GPIOPinRead(GPIO_PORTF_BASE, GPIO_PIN_4)){}
72 }
73 }
74 }

Build, load, and run the program. The blue user pushbutton on the Discovery may
be used to toggle the output between y_fir (the output from the fixed (unknown)
FIR filter) and y_lms (the output from the adaptive FIR filter) as the signal written
to the right channel of LINE OUT on the audio card. error (the error signal) is
always written to the left channel of LINE OUT. Verify that the output of the adaptive
FIR filter (y_lms) converges to bandlimited noise similar in frequency content to
the output of the fixed FIR filter (y_fir) and that the variance of the error signal
(error) gradually diminishes as adaptation takes place.

Edit the program to include the coefficient file bs55.h (in place of bp55.h),
which implements a 55-coefficient FIR band-stop filter centered at 2 kHz. Rebuild
and run the program and verify that, after adaptation has taken place, the output
of the adaptive FIR filter is almost identical to that of the FIR band-stop filter.
Figure 6.16 shows the output of the program while adaptation is taking place. The
upper time-domain trace shows the output of the adaptive FIR filter, the lower
time-domain trace shows the error signal, and the magnitude of the FFT of the output
of the adaptive FIR filter is shown below them. Increase (or decrease) the value of
beta by a factor of 10 to observe a faster (or slower) rate of convergence. Change
the number of weights (coefficients) from 60 to 40 and verify a slight degradation
in the identification process. You can examine the adaptive filter coefficients stored
in array firCoeffs32 in this example by saving them to data file and using the
MATLAB function stm32f4_logfft() to plot them in the time and frequency
domains.

Example 6.5 Adaptive FIR Filter for System ID of a Fixed FIR as an
Unknown System with Adaptive Filter Initialized as a Band-Pass Filter
(stm32f4_adaptIDFIR_CMSIS_init_intr.c).

In this example, program stm32f4_adaptIDFIR_CMSIS_intr.chas been
modified slightly in order to create program stm32f4_adaptIDFIR_init_
intr.c. This program initializes the weights, firCoeffs32, of the adaptive FIR
filter using the coefficients of an FIR band-pass filter centered at 3 kHz, rather than
initializing the weights to zero. Both sets of filter coefficients (adaptive and fixed)
are read from file adaptIDFIR_CMSIS_init_coeffs.h. Build, load, and
run the program. Initially, the frequency content of the output of the adaptive FIR
filter is centered at 3 kHz. Then, gradually, as the adaptive filter identifies the fixed
(unknown) FIR band-pass filter, its output changes to bandlimited noise centered on

288 ADAPTIVE FILTERS

Figure 6.16 Output from program stm32f4_adaptIDFIR_CMSIS_intr.c using
coefficient header file bs55.h viewed using Rigol DS1052E oscilloscope.

frequency 2 kHz. The adaptation process is illustrated in Figure 6.17, which shows
the frequency content of the output of the adaptive filter at different stages in the
adaptation process.

As in most of the example programs in this chapter, the rate of adaptation has been
set very low.

Example 6.6 Adaptive FIR for System ID of Fixed IIR as an Unknown System
(tm4c123_iirsosadapt_CMSIS_intr.c).

An adaptive FIR filter can be used to identify the characteristics not only
of other FIR filters but also of IIR filters (provided that the substantial part of
the IIR filter impulse response is shorter than that possible using the adaptive
FIR filter). Program tm4c123_iirsosadapt_CMSIS_intr.c, shown in
Listing 6.6 combines programs tm4c123_iirsos_intr.c (Example 4.1) and
tm4c123_adaptIDFIR_CMSIS_intr.c in order to illustrate this (Figure
6.18). The IIR filter coefficients used are those of a fourth-order low-pass elliptic
filter (see Example 4.4) and are read from file elliptic.h. Build and run the
program and verify that the adaptive filter converges to a state in which the frequency
content of its output matches that of the (unknown) IIR filter. Listening to the
decaying error signal output on the left channel of LINE OUT on the audio booster
pack gives an indication of the progress of the adaptation process. Figures 6.19 and
6.20 show the output of the adaptive filter (displayed using the FFT function of a
Rigol DS1052E oscilloscope) and the magnitude FFT of the coefficients (weights)
of the adaptive FIR filter saved to a data file and displayed using MATLAB function
tm4c123_logfft(). The result of the adaptive system identification procedure
is similar in form to that obtained by recording the impulse response of an elliptic
low-pass filter using programtm4c123_iirsosdelta_intr.c in Example 4.5.

PROGRAMMING EXAMPLES 289

Figure 6.17 Output from adaptive filter in program tm4c123_adaptIDFIR_
CMSIS init intr.c.

290 ADAPTIVE FILTERS

Adaptive
filter

IIR
filterPRBS

– +

adapt_out

LINE OUT R

LINE OUT L
error

Figure 6.18 Block diagram representation of program tm4c123_iirsosadapt_
CMSIS_intr.c.

Figure 6.19 Output from adaptive filter in program tm4c123_iirsosadapt_CMSIS_
intr.c viewed using a Rigol DS1052E oscilloscope.

Listing 6.6 Program tm4c123_iirsosadapt_CMSIS_intr.c.

1 // tm4c123_iirsosadapt_CMSIS_intr.c
2

3 #include "tm4c123_aic3104_init.h"
4 #include "elliptic.h"
5

6 #define BETA 1E-12
7 #define NUM_TAPS 128
8 #define BLOCK_SIZE 1
9

10 float32_t firStateF32[BLOCK_SIZE + NUM_TAPS -1];
11 float32_t firCoeffs32[NUM_TAPS] = {0.0};
12 arm_lms_instance_f32 S;

PROGRAMMING EXAMPLES 291

13

14 float32_t w[NUM_SECTIONS][2] = {0.0f, 0.0f};
15

16 void SSI_interrupt_routine(void)
17 {
18 AIC3104_data_type sample_data;
19 float32_t adapt_in, adapt_out, error;
20 float32_t iir_in, wn, iir_out, input;
21 int16_t section;
22

23 SSIDataGet(SSI0_BASE,&sample_data.bit32);
24 input = (float32_t)(sample_data.bit16[0]);
25 SSIDataGet(SSI1_BASE,&sample_data.bit32);
26 input = (float32_t)(sample_data.bit16[0]);
27

28 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
29

30 iir_in = (float32_t)(prbs(8000));
31 adapt_in = iir_in;
32 for (section=0 ; section<NUM_SECTIONS ; section++)
33 {
34 wn = iir_in - a[section][1]*w[section][0]
35 - a[section][2]*w[section][1];
36 iir_out = b[section][0]*wn
37 + b[section][1]*w[section][0]
38 + b[section][2]*w[section][1];
39 w[section][1] = w[section][0];
40 w[section][0] = wn;
41 iir_in = iir_out;
42 }
43 arm_lms_f32(&S, &adapt_in, &iir_out, &adapt_out,
44 &error, 1);
45

46 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
47

48 sample_data.bit32 = ((int16_t)(adapt_out));
49 SSIDataPut(SSI0_BASE,sample_data.bit32);
50 sample_data.bit32 = ((int16_t)(error));
51 SSIDataPut(SSI1_BASE,sample_data.bit32);
52

53 SSIIntClear(SSI0_BASE,SSI_RXFF);
54 }
55

56 int main()
57 {
58 arm_lms_init_f32(&S, NUM_TAPS, firCoeffs32,
59 firStateF32, BETA, 1);
60 tm4c123_aic3104_init(FS_8000_HZ,
61 AIC3104_LINE_IN,
62 IO_METHOD_INTR,
63 PGA_GAIN_6_DB);
64 while(1);
65 }

292 ADAPTIVE FILTERS

0 500 1000 1500 2000 2500 3000 3500 4000
–80

–70

–60

–50

–40

–30

–20

–10

0

10

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
–0.1

–0.05

0

0.05

0.1

0.15

0.2

0.25

Time (s)

Sa
m

pl
e

va
lu

e

Figure 6.20 Adaptive filter coefficients from program tm4c123_iirsosadapt_
CMSIS_intr.c plotted using MATLAB function tm4c123_logfft().

Example 6.7 Adaptive FIR Filter for System Identification of an External Sys-
tem (tm4c123_sysid_CMSIS_intr.c).

Programtm4c123_sysid_CMSIS_intr.c, introduced in Chapter 2, extends
the previous examples to allow the identification of an external system, connected
between the LINE OUT and LINE IN sockets of the audio booster pack. In Example
3.3, program tm4c123_sysid_CMSIS_intr.cwas used to identify the charac-
teristics of a moving average filter implemented using a second TM4C123 LaunchPad
and audio booster pack. Alternatively, a purely analog system or a filter implemented

PROGRAMMING EXAMPLES 293

LINE IN

LINE OUT

3.5 – 3.5 mm jack

3.5 – 3.5 mm jack

Adaptive
filter

+

–

PRBS

program
tm4c123_iirsos_intr.c

LINE IN

LINE OUT

program
tm4c123_sysid_CMSIS_intr.c

TM4C123 LaunchPad and
audio booster pack

TM4C123 LaunchPad and
audio booster pack

IIR
filter

ADC

DAC

DAC

ADC

Figure 6.21 Connection diagram for program tm4c123_sysid_CMSIS_intr.c in
Example 6.8.

using different DSP hardware can be connected between LINE OUT and LINE IN and
its characteristics identified. Connect two systems as shown in Figure 6.21. Load and
run tm4c123_iirsos_intr.c, including coefficient header file elliptic.h
on the first. Run program tm4c123_sysid_CMSIS_intr.c on the second. Halt
programtm4c123_sysid_CMSIS_intr.c after a few seconds and save the 256
adaptive filter coefficients firCoeffs32 to a data file. You can plot the saved coef-
ficients using MATLAB function tm4c123_logfft(). Figure 6.22 shows typical
results.

A number of features of the plots shown in Figure 6.22 are worthy of com-
ment. Compare the magnitude frequency response in Figure 6.22(b) with that in
Figure 6.20(b). The characteristics of the codec reconstruction and antialiasing filters
and of the ac coupling between codecs and jack sockets on both boards are included
in the signal path identified by program tm4c123_sysid_CMSIS_intr.c in
this example and are apparent in the roll-off of the magnitude frequency response at
frequencies above 3800 Hz and below 100 Hz. There is no roll-off in Figure 6.20(b).
Compare the impulse response in Figure 6.22(b) with that in Figure 6.20(b). Apart
from its slightly different form, corresponding to the roll-off in its magnitude
frequency response, there is an additional delay of approximately 12 ms.

Example 6.8 Adaptive FIR Filter for System Identification of an External Sys-
tem Using DMA-Based I/O (tm4c123_sysid_CMSIS_dma.c).

Functionally, program tm4c123_sysid_CMSIS_dma.c (Listing 6.7)
is similar to program tm4c123_sysid_CMSIS_intr.c. Both programs
use an adaptive FIR filter, implemented using CMSIS DSP library function
arm_lms_f32(), to identify the impulse response of a system connected between
LINE OUT and LINE IN connections to the audio booster pack. However, program

294 ADAPTIVE FILTERS

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
–0.15

–0.1

–0.05

0

0.05

0.1

0.15

0.2

Time (s)

0
–80

–70

–60

–50

–40

–30

–20

–10

10

0

500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

Sa
m

pl
e

va
lu

e
M

ag
ni

tu
de

 (
dB

)

(a)

(b)

Figure 6.22 Adaptive filter coefficients from program tm4c123_sysid_CMSIS_
intr.c plotted using MATLAB function tm4c123_logfft()

tm4c123_sysid_CMSIS_dma.c is more computationally efficient and can run
at higher sampling rates. Because function arm_lms_f32() is optimized to pro-
cess blocks of input data rather than just one sample at a time, it is appropriate to use
DMA-based rather than interrupt-based i/o in this example. However, DMA-based
i/o introduces an extra delay into the signal path identified, and this is evident in
the examples of successfully adapted weights shown in Figure 6.23. In each case,
the adaptive filter used 256 weights. The program has been run successfully using
up to 512 weights at a sampling rate of 8 kHz on the TM4C123 LaunchPad with a
processor clock rate of 84 MHz.

PROGRAMMING EXAMPLES 295

0 0.005 0.01 0.015 0.02 0.025 0.03
–0.2

0

0.2

0.4

0.6

0.8

Time (s)

Sa
m

pl
e

va
lu

e

0 0.005 0.01 0.015 0.02 0.025 0.03
–0.2

0

0.2

0.4

0.6

0.8

Time (s)(a)

(b)

Sa
m

pl
e

va
lu

e

Figure 6.23 Adaptive filter coefficients from program tm4c123_sysid_CMSIS_dma.c
plotted using MATLAB function tm4c123_logfft(). (a) BUFSIZE = 32 (b) BUFSIZE
= 64.

Listing 6.7 Program tm4c123_sysid_CMSIS_dma.c.

1 // tm4c123_sysid_CMSIS_dma.c
2

3 #include "tm4c123_aic3104_init.h"
4

5 extern int16_t LpingIN[BUFSIZE], LpingOUT[BUFSIZE];
6 extern int16_t LpongIN[BUFSIZE], LpongOUT[BUFSIZE];
7 extern int16_t RpingIN[BUFSIZE], RpingOUT[BUFSIZE];
8 extern int16_t RpongIN[BUFSIZE], RpongOUT[BUFSIZE];

296 ADAPTIVE FILTERS

9 extern int16_t Lprocbuffer, Rprocbuffer;
10 extern volatile int16_t Lbuffer_full, Rbuffer_full;
11 extern volatile int16_t LTxcomplete, LRxcomplete,
12 extern volatile int16_t RTxcomplete, RRxcomplete;
13

14 #define BETA 1E-12 // adaptive learning rate
15 #define NUM_TAPS 256
16

17 float32_t firStateF32[BUFSIZE + NUM_TAPS -1];
18 float32_t firCoeffs32[NUM_TAPS] = {0.0};
19 arm_lms_instance_f32 S;
20

21 void Lprocess_buffer(void)
22 {
23 float32_t adapt_in[BUFSIZE], adapt_out[BUFSIZE]
24 float32_t desired[BUFSIZE], error[BUFSIZE];
25 int16_t *inBuf, *outBuf; // temp buffer pointers
26 int i;
27

28 if (Lprocbuffer PING) // use ping or pong buffers
29 { inBuf = LpingIN; outBuf = LpingOUT; }
30 if (Lprocbuffer PONG)
31 { inBuf = LpongIN; outBuf = LpongOUT;}
32 for (i = 0; i < (BUFSIZE) ; i++)
33 {
34 adapt_in[i] = (float32_t)(prbs(8000));
35 desired[i] = (float32_t)(*inBuf++);
36 }
37 arm_lms_f32(&S, adapt_in, desired,
38 adapt_out, error, BUFSIZE);
39 for (i = 0; i < (BUFSIZE) ; i++)
40 {
41 *outBuf++ = (int16_t)(adapt_in[i]);
42 }
43 LTxcomplete = 0;
44 LRxcomplete = 0;
45 return;
46 }
47

48 void Rprocess_buffer(void)
49 {
50 int16_t *inBuf, *outBuf; // temp buffer pointers
51 int i;
52

53 if (Rprocbuffer PING) // use ping or pong buffers
54 { inBuf = RpingIN; outBuf = RpingOUT; }
55 if (Rprocbuffer PONG)
56 { inBuf = RpongIN; outBuf = RpongOUT;}
57 for (i = 0; i < (BUFSIZE) ; i++) *outBuf++ = (int16_t)(0);
58 RTxcomplete = 0;
59 RRxcomplete = 0;
60 return;
61 }
62

PROGRAMMING EXAMPLES 297

63 void SSI_interrupt_routine(void){while(1){}}
64

65 int main(void)
66 {
67 arm_lms_init_f32(&S, NUM_TAPS, firCoeffs32, firStateF32,
68 BETA, BUFSIZE);
69 tm4c123_aic3104_init(FS_8000_HZ,
70 AIC3104_LINE_IN,
71 IO_METHOD_DMA,
72 PGA_GAIN_6_DB);
73 while (1)
74 {
75 while((!RTxcomplete)|(!RRxcomplete));
76 Rprocess_buffer();
77 while((!LTxcomplete)|(!LRxcomplete));
78 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 4);
79 Lprocess_buffer();
80 GPIOPinWrite(GPIO_PORTE_BASE, GPIO_PIN_2, 0);
81 }
82 }

INDEX

Adaptive filters, 263
for channel equalization, 266
for noise cancellation, 266, 281
for prediction, 264
for sinusoidal noise cancellation, 274
for system ID of FIR filter, 285
for system ID of IIR filter, 288
for system ID of moving average filter, 127,

129
AIC3104 codec, 9

ADC gain, 11, 17
de-emphasis, 71–72
identification of bandwidth of, 83
impulse response of, 66
programmable digital effects filter, 72, 198
sampling frequency, 11, 17

Aliasing, 9, 78, 79
in impulse invariance method, 182

Amplitude modulation (AM), 68
Analog-to-digital converter (ADC), 2
Antialiasing filter, 10, 78
arm_biquad_cascade_df1_f32(),

192
arm_cfft_f32(), 238
arm_fir_f32(), 162
arm_lms_f32(), 280

Digital Signal Processing Using the ARM® Cortex® -M4, First Edition. Donald S. Reay.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

Bilinear transformation (BLT), 171, 183
design procedure using, 172
frequency warping in, 172, 184

Bit reversed addressing, 224
Blackman window function, 117
Breakpoints, 230
Butterfly structure, 221

Cascade IIR filter structure, 168
CMSIS DSP library, 4
arm_biquad_cascade_df1_f32(), 192
arm_cfft_f32(), 238
arm_fir_f32(), 162
arm_lms_f32(), 280

Convolution, 98, 252

Decimation-in-frequency (DIF) algorithm, 219,
226

Decimation-in-time (DIT) algorithm, 222
Difference equations, 112

DTMF tone generation using, 208
sine generation using, 204
swept sinusoid generation using, 210

Digital-to-analog converter (DAC), 2
12-bit, 91

Direct form I IIR filter structure, 164

300 INDEX

Direct form II IIR filter structure, 165
Direct form II transpose IIR filter structure, 166
Direct memory access (DMA)

delay introduced by, 30, 35
in STM32F407, 34
in TM4C123, 26

Discrete Fourier transform (DFT), 217
of complex-number sequence, 228
of real-time signal, 239

Discrete-time Fourier Transform (DTFT), 114,
217

DTMF generation
using difference equations, 208
using lookup tables, 57

Fast convolution, 252
Fast Fourier transform (FFT), 217

bit reversed addressing, 224
butterfly structure, 221
decimation-in-frequency algorithm for, 219,

226
decimation-in-time algorithm for, 222
radix-2, 219, 222
radix-4, 226
of real-time input, 249
of a real-time input signal, 249
of a sinusoidal signal, 251

fdatool filter design and analysis tool, 137, 188
Finite impulse response (FIR) filters, 97

window design method, 114
Fourier series (FS), 217
Fourier transform (FT), 217
Frame-based processing, 239
Frequency inversion, scrambling by, 153
Frequency warping, 172, 184

Goldwave, 127
Graphic equalizer, 256

Hamming window function, 116, 247
Hanning window function, 117, 134

Impulse invariance method, 171, 173
Impulse response, 98

of AIC3104 codec, 66
of WM5102 codec, 64

Infinite impulse response (IIR) filters, 163
cascade IIR filter structure, 168
direct form I IIR filter structure, 164
direct form II IIR filter structure, 165
direct form II transpose IIR filter structure, 166
parallel IIR filter structure, 169
second order sections, 168

I/O
DMA-based, 25

interrupt-based, 21
polling-based, 14

Inverse fast Fourier transform (IFFT), 227

Kaiser window function, 117

Least mean squares (LMS) algorithm, 270
sign-data algorithm, 272
sign-error algorithm, 272
sign-sign algorithm, 272

Lookup table
DTMF generation with, 57
impulse generation with, 64
sine wave generation with, 52
square-wave generation with, 60
swept sine wave generation with, 55

MDK-ARM, 2
Memory data, viewing and saving, 46
Moving average filter, 124

Noise cancellation, 265, 279, 281
Notch filters

FIR, 150
IIR, 214

Overlap-add, 253

Parallel form IIR filter structure, 169
Parks-Miller algorithm, 73
Performance function, 267
Ping-pong buffers, 26, 34
PRBS, 70
Prediction, 264
Pseudorandom noise, 70

as input to FIR filter, 140
as input to IIR filter, 178
as input to moving average filter, 129

Radix-2 decimation-in-frequency FFT algorithm,
219

Radix-2 decimation-in-time FFT algorithm, 222
Radix-4 decimation-in-frequency FFT algorithm,

226
Reconstruction filter, 10, 62, 64, 70, 73
Rectangular window function, 116

Sine wave generation
using difference equation, 204
using lookup table, 47
using sinf() function call, 52

Sinusoidal noise cancellation, adaptive filter for,
274

Spectral leakage, 244
Square wave generation, 60, 62
SSI0IntHandler(), 28

INDEX 301

Steepest descent algorithm, 270

stm32f4_adaptIDFIR_CMSIS_
init_intr.c, 287

stm32f4_adaptive.c, 273
stm32f4_average_intr.c, 124
stm32f4_average_prbs_intr.c, 126
stm32f4_dft.c, 228
stm32f4_dftw.c, 233
stm32f4_dimpulse_DAC12_intr.c, 91
stm32f4_dimpulse_intr.c, 64
stm32f4_fft.c, 235
stm32f4_fft_CMSIS.c, 235
stm32f4_fft128_dma.c, 243
stm32f4_fir_coeffs.m, 137
stm32f4_fir_dma.c, 155
stm32f4_fir_intr.c, 135
stm32f4_fir_prbs_buf_intr.c, 142
stm32f4_fir_prbs_CMSIS_dma.c, 155
stm32f4_iirsos_intr.c, 176
stm32f4_iirsostr_intr.c, 178
stm32f4_logfft.m, 46
stm32f4_loop_buf_intr.c, 45, 78
stm32f4_loop_dma.c, 35
stm32f4_loop_intr.c, 23
stm32f4_loop_poll.c, 17
stm32f4_noise_cancellation_

CMSIS_dma.c, 281
stm32f4_plot_complex.m, 231
stm32f4_plot_real.m, 78
stm32f4_prbs_DAC12_intr.c, 91
stm32f4_sine_intr.c, 52, 59
stm32f4_sine48_intr.c, 47
stm32f4_sine8_intr.c, 49
stm32f4_sine8_DAC12_intr.c, 91
stm32f4_sinegenDE_intr.c, 204
stm32f4_sinegenDTMF_intr.c, 208
stm32f4_square_DAC12_intr.c, 91
stm32f4_square_intr.c, 60
stm32f4_sweep_intr.c, 55
stm32f4_sweepDE_intr.c, 210

System identification, 285
of codec antialiasing and reconstruction filters,

78
of FIR filter, 285
of IIR filter, 288
of moving average filter, 127, 129

tm4c123_adaptIDFIR_CMSIS_intr.c,
285

tm4c123_adaptnoise_CMSIS_intr.c,
278

tm4c123_adaptnoise_intr.c, 274
tm4c123_aic3104_biquad.m, 198

tm4c123_aliasing_intr.c, 80
tm4c123_AM_poll.c, 68
tm4c123_delay_intr.c, 36
tm4c123_dft128_dma.c, 239
tm4c123_dimpulse_intr.c, 66
tm4c123_echo_intr.c, 38
tm4c123_fastconv_dma.c, 253
tm4c123_fft128_CMSIS_dma.c, 249
tm4c123_fft128_sinetable_dma.c, 251
tm4c123_fir_dma.c, 155
tm4c123_fir_intr.c, 135
tm4c123_fir_prbs_CMSIS_dma.c, 155
tm4c123_fir_prbs_intr.c, 140
tm4c123_fir3lp_intr.c, 145
tm4c123_fir3ways_intr.c, 158
tm4c123_fir4types_intr.c, 148
tm4c123_fir_coeffs.m, 137
tm4c123_flanger_dimpulse_intr.c, 41
tm4c123_flanger_intr.c, 39
tm4c123_graphicEQ_dma.c, 256
tm4c123_iirsos_CMSIS_intr.c, 192
tm4c123_iirsos_coeffs.m, 191
tm4c123_iirsos_delta_intr.c, 179
tm4c123_iirsos_intr.c, 214
tm4c123_iirsos_prbs_intr.c, 178
tm4c123_iirsosadapt_CMSIS_intr.c,

288
tm4c123_logfft.m, 85, 129
tm4c123_loop_buf_intr.c, 78
tm4c123_loop_dma.c, 25
tm4c123_loop_intr.c, 21, 90
tm4c123_loop_poll.c, 14
tm4c123_notch2_intr.c, 150
tm4c123_prandom_intr.c, 73
tm4c123_prbs_biquad_intr.c, 72
tm4c123_prbs_deemph_intr.c, 72
tm4c123_prbs_prbs_intr.c, 72
tm4c123_prbs_intr.c, 70
tm4c123_ramp_intr.c, 66
tm4c123_scrambler_intr.c, 152
tm4c123_sine48_intr.c, 49
tm4c123_sine48_loop_intr.c, 78
tm4c123_sineDTMF_intr.c, 57
tm4c123_square_1kHz_intr.c, 64
tm4c123_square_intr.c, 62
tm4c123_sysid_average_CMSIS_

intr.c, 129
tm4c123_sysid_biquad_intr.c, 198
tm4c123_sysid_CMSIS_dma.c, 293
tm4c123_sysid_CMSIS_intr.c, 83, 89,

127, 292
tm4c123_sysid_deemph_CMSIS_intr.c,

87
tm4c123_sysid_flange_intr.c, 88

302 INDEX

Twiddle factors, 218, 233

Voice scrambling, using filtering and modulation,
152

Window functions, 116
Blackman, 117
Hamming, 116

Hanning, 117
Kaiser, 117
rectangular, 116

WM5102 codec, 9, 12
impulse response of, 64

Z-transform (ZT), 99
Zero padding, 253

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

Co
py
ri
gh
t
©
 2
01
5.
 W
il
ey
.
Al
l
ri
gh
ts
 r
es
er
ve
d.
 M
ay
 n
ot
 b
e
re
pr
od
uc
ed
 i
n
an
y
fo
rm
 w
it
ho
ut
 p
er
mi
ss
io
n
fr
om
 t
he
 p
ub
li
sh
er
,
ex
ce
pt
 f
ai
r
us
es
 p
er
mi
tt
ed
 u
nd
er
 U
.S
.
or
 a
pp
li
ca
bl
e
co
py
ri
gh
t
la
w.

EBSCO P blishing eBook Collection (EBSCOhost) - printed on 4/11/2016 7 22 AM via BOURNEMOUTH UNIVERSITY

http://www.wiley.com/go/eula

	CONTENTS
	PREFACE
	1 ARM® CORTEX®-M4 DEVELOPMENT SYSTEMS
	2 ANALOG INPUT AND OUTPUT
	3 FINITE IMPULSE RESPONSE FILTERS
	4 INFINITE IMPULSE RESPONSE FILTERS
	5 FAST FOURIER TRANSFORM
	6 ADAPTIVE FILTERS
	INDEX

