

Mastering BeagleBone
Robotics

Master the power of the BeagleBone Black
to maximize your robot-building skills and
create awesome projects

Richard Grimmett

BIRMINGHAM - MUMBAI

Mastering BeagleBone Robotics

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014

Production reference: 1161214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-890-7

www.packtpub.com

www.packtpub.com

Credits

Author
Richard Grimmett

Reviewers
Shantanu Bhadoria

Marcelo Boá

Chris J Daly

Daniel Frenzel

Brian C. Tomlinson

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Sam Wood

Content Development Editor
Prachi Bisht

Technical Editor
Humera Shaikh

Copy Editor
Vikrant Phadkay

Project Coordinator
Sageer Parkar

Proofreaders
Maria Gould

Clyde Jenkins

Elinor Perry-Smith

Indexer
Rekha Nair

Graphics
Sheetal Aute

Valentina D'silva

Abhinash Sahu

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Author

Richard Grimmett has always been fascinated by computers and electronics
from his very first programming project that used Fortran on punch cards. He has a
Bachelor's and a Master's degree in Electrical Engineering and a PhD in Leadership
Studies. He also has 26 years of experience in electronics and computers and has
one of the original brick phones and a Google Glass. He currently teaches computer
science and electrical engineering at Brigham Young University, Idaho, where his
office is filled with many of his robotic projects. He recently completed a book on
using the Arduino for robotic projects, and another on the Raspberry PI.

I would certainly like to thank my wife, Jeanne, and family for
providing me with a wonderful, supportive environment that
encourages me to take up projects like this one. I would also like
to thank my students who have shown me that amazing things
can be accomplished by those who are unaware of the barriers.

About the Reviewers

Shantanu Bhadoria is an avid traveler, Perl expert, and CPAN author based in
Singapore. He has traveled to more than 30 countries around the world. When in
Singapore, he works on paging and building control systems for skyscrapers and large
campuses in Singapore, Hong Kong, and Macau. He has authored many libraries in
Perl for control of gyroscopes, magnetometers, accelerometers, altimeters, PWM wave
generators, and many other sensors and controllers.

He is also the author of Device::SMBus, a Perl library that is used to talk to devices
over the I2C bus, and Math::KalmanFilter, a Perl library that implements the Kalman
Filter sensor fusion algorithm.

His Perl code can be accessed at https://metacpan.org/author/SHANTANU, and his
GitHub repositories are available at https://github.com/shantanubhadoria.

https://metacpan.org/author/SHANTANU
https://github.com/shantanubhadoria

Marcelo Boá is an electronics technician who has a Bachelor's degree in Information
Systems. He has worked for 10 years in the field of electronic maintenance. He has also
worked on Java development, Oracle PL/SQL, PHP, ZK Framework, Shell scripts,
HTML, JavaScript, Ajax, Linux, Arduíno, and BeagleBone.

He started as a PL/SQL trainee at the Federal Technological University of Paraná,
Brazil. When the electronics technical department was formed, he worked for
some companies on many different kinds of electronic circuits, thereby gaining
technical assistance from Sony, Aiwa, and Gradiente. Ten years later, he returned
to Java development with the ZK Framework, developing software for call centers
in Curitiba's Software Park. He is currently working as a systems analyst in the
warehouse management systems and industrial automation department at SSI
SCHAEFER. He is an Arduíno and BeagleBone lover.

This was my first experience as a reviewer and the experience was
very good. The book is amazing. There are a lot of skills to learn
from it.
I would like to thank God for everything. I would also like to thank
Sageer and Prachi for the invitation to join the book as a reviewer,
and my family for allowing my training.

Chris J Daly lives near Portland, Oregon. During the day, he works as a software
engineer, and in the evening, he spends time on hacking the Internet of Things projects,
which can be found on his GitHub page at https://github.com/cjdaly.

Daniel Frenzel is a biochemist and biophysicist, and was working as a
research associate at Forschungszentrum Jülich. Recently, he got a job offer
from the EMBL in Heidelberg, where he will participate in the development
of microfluidic systems. Daniel has experience in parallelization with OpenMP
and CUDA under supercomputing conditions. He developed a C++ library for
simulation of large-scale networks (code.google.com/p/annetgpgpu). Besides,
Daniel maintains a quadcopter project based on the ArduPilot library, which
allows him to control a quadcopter via WiFi (code.google.com/p/rpicopter).

https://github.com/cjdaly
code.google.com/p/annetgpgpu
code.google.com/p/rpicopter

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents
Preface	 1
Chapter 1: Preparing the BeagleBone Black	 7

Unpacking and powering up	 8
Installing an operating system	 9
Connecting to an external computer	 10
Installing a Windows manager	 11

Installing additional core software packages	 12
Installing a vision library	 16
Installing sound capability	 19
Creating and recording sound	 20

Making your BeagleBone Black speak	 23
Installing speech recognition	 23
Improving speech recognition accuracy	 27
Responding to voice commands	 29

Adding additional hardware and software for a fully functional
core system	 31
Summary	 31

Chapter 2: Building a Basic Tracked Vehicle	 33
Choosing the tracked platform	 33
Connecting a motor controller to control the speed of your
tracked platform	 34

Choosing the battery	 35
Connecting the motor controller	 37
Connecting the motor controller system	 39

Controlling your mobile platform programmatically using
the BeagleBone Black and Python	 42

Adding program arguments to control your platform	 45

Table of Contents

[ii]

Accessing motor control via voice commands	 47
Summary	 50

Chapter 3: Adding Sensors to Your Tracked Vehicle	 51
Basics of sensors	 51
Adding distance sensors	 51

Sonar sensors	 52
Adding an array of inexpensive sonar sensors to the project	 53

IR sensors	 56
Dynamic path planning for your robot	 60

Basic path planning	 61
Avoiding obstacles	 64

Summary	 69
Chapter 4: Vision and Image Processing	 71

Connecting a webcam to the BeagleBone Black	 71
Using OpenCV	 75
Finding colored objects in your vision system	 77
Following colored objects with your vision system	 81
Finding movement in your vision system	 83
Following movement with your robot	 89
Summary	 91

Chapter 5: Building a Robot that Can Walk	 93
Building robots that can walk	 93
Working of servomotors	 94
Building the quadruped platform	 95
Using a servo controller to control the servos	 99
Communicating with the servo controller via a PC	 101
Connecting the servo controller to the BeagleBone Black	 103
Creating a program on Linux to control your quadruped	 106
Issuing voice commands to your quadruped	 110
Summary	 111

Chapter 6: A Robot that Can Sail	 113
The BeagleBone Black and robots that can sail	 113

Building the sailboat platform	 114
Controlling servos with the BeagleBone Black	 115
Controlling the servos on the sailboat from a program	 118

Remote control of the sailboat	 119
A ZigBee tutorial	 120

Summary	 128

Table of Contents

[iii]

Chapter 7: Using GPS for Navigation	 129
Beginning with a GPS tutorial	 129
Connecting GPS to the BeagleBone Black	 132

Communicating with the GPS	 134
Parsing the GPS information	 139
Calculating distance and bearing	 141
Summary	 144

Chapter 8: Measuring Wind Speed – Integrating
Analog Sensors	 145

Connecting an analog wind speed sensor	 146
Getting sensor data from the wind speed sensor	 148
Some basics of sailing	 151
Summary	 156

Chapter 9: An Underwater Remotely Operated Vehicle	 157
Building the hardware for the ROV	 157
Controlling brushless DC motors using the BeagleBone Black	 160
Program to control DC motors using the BeagleBone Black	 162
Connecting to the BeagleBone Black via a long LAN	 172
Accessing a camera for your project	 175
Summary	 176

Chapter 10: A Quadcopter	 177
Basics of quadcopter flight	 177
Building the quadcopter	 180
Connecting the BeagleBone Black to the quadcopter	 181
Controlling the quadcopter using the BeagleBone Black	 183
Summary	 194

Chapter 11: An Autonomous Quadcopter	 195
Controlling quadcopter flight wirelessly	 195
Adding a game controller to your system	 197
Adding a webcam for autonomous flight	 205
Adding GPS for autonomous flight	 212
Summary	 212

Index	 213

Preface
Robotics, the art and science of building machines that can perform some of the same
functions as humans or animals, has been a part of human creative ambition since
the time of the Greeks, who conceived Talos—a warrior made entirely of bronze
that protected their lands and people. Leonardo da Vinci designed a mechanical
knight that could sit, stand, and raise its visor. The first modern robots emerged in
the 1920s—robots that could perform the same sort of simple motions as da Vinci's
mechanical man through the use of electrical motors and signals.

In recent times, advances in technology have pushed the development of robots to
the point of reality. Most of these projects have been created in defense department
laboratories and university research facilities. However, new developments in
inexpensive hardware and open source software have created opportunities for
almost anyone to construct and experiment with automated machines.

The purpose of this book is not only to facilitate but also inspire these kinds of efforts.
Robotics is no longer reserved for the PhD or even the trained engineer. You—yes,
you—can construct machines that can roll, walk, swim, and even fly with the kind of
functionality that is normally associated with intelligent life. I often tell my students
that while they laugh at me because I once had to wash dishes by hand, their children
will laugh at them because they had to load and unload the dishwasher by hand.

So, off to building the next great robotic breakthrough!

Preface

[2]

What this book covers
Chapter 1, Preparing the BeagleBone Black, teaches you how to unbox, power up,
and load the BeagleBone Black with all of the necessary software to build the
projects described in this book.

Chapter 2, Building a Basic Tracked Vehicle, describes your first project, that is, a tracked
vehicle. You'll learn how to construct the platform so that you can control the speed
and direction of your robot.

Chapter 3, Adding Sensors to Your Tracked Vehicle, explains how, after creating a platform
that is mobile, you'll add sensors to help your robot avoid, or find, objects.

Chapter 4, Vision and Image Processing, shows that your robot is maneuverable, but now
you'll add the capability to not only sense but also see the world around it.

Chapter 5, Building a Robot that Can Walk, teaches you to build a robot that can walk—a
quadruped robot controlled by the BeagleBone Black.

Chapter 6, A Robot that Can Sail, proves that while a robot that can roll or walk is
impressive, one that can sail is even more amazing. You'll build a robot that can
sail under the control of the BeagleBone Black.

Chapter 7, Using GPS for Navigation, shows that sailing your sailboat is easy if a human
is controlling it. You can give your sailboat autonomy by giving it a sense of where it
is and where it is going. The GPS system provides this feature and you'll learn how to
use it to sail.

Chapter 8, Measuring Wind Speed – Integrating Analog Sensors, teaches you that to sail
your sailboat, you'll need to know the wind direction. You'll learn how to use an
anemometer (wind sensor) to sail your boat.

Chapter 9, An Underwater Remotely Operated Vehicle, demonstrates the construction
of a vessel that can be controlled from the surface while it explores the environment
under the water.

Chapter 10, A Quadcopter, shows that, now that you've explored the earth and the
water, there is only one more place left to go—the air. You'll learn how to construct
one of the most stable and maneuverable flying platforms—the quadcopter.

Chapter 11, An Autonomous Quadcopter, covers the final step in exploring the heavens,
that is, providing your quadcopter with the capability of flying itself.

Preface

[3]

What you need for this book
Generally, each chapter will detail the hardware and software needed for that chapter.
However, before you get started, you'll need a BeagleBone Black, a host computer
(Windows, Linux, or Mac), and an Internet connection for your BeagleBone Black,
probably through some sort of LAN cable.

Who this book is for
If you want a simple guide to building complex robots, then this book is for you.
You'll need some programming knowledge, and experience of working with
mechanical systems.

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Since the make system already knows how to build the pocketsphinx_continuous
program, any time you make a change to the continuous.c file, it will rebuild the
application."

Any command-line input or output is written as follows:

storage = cv.CreateMemStorage(0)

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Go to the
WIFI Adapters section to see some devices that others have successfully used."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/8907OS_Graphics.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/8907OS_Graphics.pdf
https://www.packtpub.com/sites/default/files/downloads/8907OS_Graphics.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Preparing the
BeagleBone Black

The BeagleBone Black, with its low cost and amazing package of functionalities,
provides an excellent set of core functionalities to build robotic projects. In this
book, you'll build three robotics projects, each with a differing array of fascinating
functionalities. Hopefully, these will inform and inspire you so that you'll feel
comfortable creating your own dream projects in robotics.

But let's not get ahead of ourselves. In this book, I'm going to assume quite a bit of
knowledge of not only the BeagleBone Black, but also programming in general and
specifically Linux. If you're truly a beginner, you'll have to start with my other book
on the BeagleBone Black, BeagleBone Robotic Projects, Packt Publishing. However, I'm
not going to assume that you've read the other book, so this first chapter will lead
you through, in an accelerated way, the steps you'll need to follow from unpacking
to having a BeagleBone Black that is configured to be successful in building complex
robotics projects. To understand this book, you'll also need a bit more knowledge
of how to connect electronic devices. You'll use the General-Purpose Input/Output
(GPIO) pins and even a soldering iron to build these robots.

In this chapter, you will learn about the following:

•	 Installing an operating system
•	 Installing a vision library and sound capabilities
•	 Creating and recording sounds
•	 Making your BeagleBone speak
•	 Installing speech recognition
•	 Improving accuracy of speech recognition
•	 Adding additional hardware and software for a fully functional core system

Preparing the BeagleBone Black

[8]

So let's start with unpacking our BeagleBone Black. For this chapter, you'll need the
following hardware:

•	 A BeagleBone Black board
•	 A BeagleBone Black USB power cable
•	 A LAN cable
•	 A USB sound device that has a plug for a microphone and a speaker
•	 A microphone
•	 A speaker
•	 A USB Wi-Fi dongle (this is optional; needed if you want to communicate

with the BeagleBone Black via a wireless LAN).

Unpacking and powering up
Let's unpack the single-board computer hardware device. Your BeagleBone Black
will come in a box—in a static protection bag, with a USB cable that can power the
unit from a USB connection. It should look somewhat like this:

The USB connection not only supplies power to the host computer, but also provides
a simple, yet fairly limited, way to communicate with the board. You'll use this USB
cable for power, but that's about it.

Chapter 1

[9]

You can also choose to power the BeagleBone Black using the 5
V barrel jack. One that works well is from Adafruit, available at
https://www.adafruit.com/products/276.

If you've never worked with the BeagleBone Black before, the beagleboard.org
site can lead you through the first few steps, from powering on to making sure your
board is up and working, and to some initial communications with the board.

You must know that there are several versions of the board now. The latest, at the time
of the writing of this book, is version C. The most significant change from Version B
to Version C is that Version C has a 4 GB eMMC disk. Even this might be a bit small
for your projects, and you're going to use an 8 GB to 16 GB micro SD card anyway,
so either version should be fine.

Installing an operating system
The first thing you need to do is install a useful operating system into an 8 GB, 16
GB, or 32 GB micro SD card—just a little background for this. Initially, the default
operating system on the internal memory was a version of Linux called Ångström.
Version C is now shipped with a version of Debian. You're going to move to a
different operating system called Ubuntu, a close relative of Debian, but with a
larger feature set and community of support. It'll make the projects you are about
to tackle much easier.

Now the BeagleBone Black is getting popular enough, so you can buy a micro SD
card that already has Ubuntu installed. Nevertheless, you can easily download it
and then install it on the card. If you're going to download a distribution, you'll
need to make sure you're getting the latest version of Ubuntu.

The easiest way to download is to go to one of the several sites that
have an image you can put on your card. One is at www.armhf.com/
boards/beaglebone-black/#saucy and another is at elinux.
org/Beagleboard:Ubuntu_On_BeagleBone_Black.

Both of these sites come with instructions for building a card with the image on
it. You'll need to use the username and password of the image you downloaded.
Unfortunately, they are not the same for all images, but you should be able to
easily find them in the same place where you found your image.

https://www.adafruit.com/products/276
http://www.beagleboard.org
www.armhf.com/boards/beaglebone-black/#saucy
www.armhf.com/boards/beaglebone-black/#saucy
elinux.org/Beagleboard:Ubuntu_On_BeagleBone_Black
elinux.org/Beagleboard:Ubuntu_On_BeagleBone_Black

Preparing the BeagleBone Black

[10]

Connecting to an external computer
In this book, I'm going to assume that you'll be developing your code on an external
computer while you create your projects. I'll primarily be using a Windows PC for
development, but everything I'll be doing will also be available if you are using a
Linux machine as the host computer. Whenever there are any significant differences
between the two, I'll try to include details for both.

To do this development remotely, you'll need access to the BeagleBone Black
via some type of LAN connection. To establish this connection, simply connect a
LAN cable from a router or switch to the BeagleBone board, plug it into the LAN
connector, and restart the BeagleBone.

You can also use an FTDI console cable like the ones sold at
https://www.adafruit.com/products/954, which are
connected to the BeagleBone Black's J1 console UART pins.
Refer the following link for details about setup: http://elinux.
org/Beagleboard:BeagleBone_Black_Accessories

You'll need to know the IP address of your BeagleBone Black. You can certainly get
this by adding a display and keyboard to the device, logging in, and typing ifconfig
in the prompt. However, if you want to do this without rounding up the additional
hardware, then you can use an IP scan tool to scan for the address of the BeagleBone
Black. I used a tool called Advanced IP Scanner, but there are others available too.
If you're using Linux as a host machine, you can try the nmap command in Linux.
For example, you can type sudo nmap –PR –sP 192.168.1.0/24.

These will explore your network and then print the address where there are devices,
the BeagleBone Black being one of those devices. Generally, there are two types of
IP addresses that your board can be assigned: one is called static and the other is
called dynamic.

In the static case, you will always be assigned the same address. In the dynamic
case, the address might change each time the system boots, as it asks the system
for an address, which it then uses for that session. Most systems are configured
for the dynamic case. However, if your system isn't changing the address, you will
most likely get the same address each time you power on and log in to the system.

https://www.adafruit.com/products/954
http://elinux.org/Beagleboard:BeagleBone_Black_Accessories
http://elinux.org/Beagleboard:BeagleBone_Black_Accessories

Chapter 1

[11]

To learn more about DHCP, visit www.teracomtraining.com/
tutorials/teracom-tutorial-dynamic-IP-addresses-
and-DHCP.htm.

Once you have the address, you should create an SSH connection to the BeagleBone
Black. An SSH terminal is a Secure Shell Hyperterminal connection, which simply
means that you'll be able to access your board and type commands in the prompt,
just like you have done without the Windows system. In order to do this, you need
to have a terminal emulator on your remote computer. For Microsoft Windows, I
would suggest you to use an application called PuTTY. It is free and does a very
good job by allowing you to save your configuration, so you don't have to type it
every time. You can go to www.putty.org for details on how to download and use
PuTTY.

If you want to do this from a Linux machine, the process is even simpler. Open a
terminal window and then type ssh ubuntu@157.201.194.187 –p 22. This will
then bring you to the login screen of your BeagleBone Black.

SSH is an excellent way to communicate with your BeagleBone Black. However,
you'll sometimes need a graphical look at your system. You can get this by installing
a graphical interface on the BeagleBone Black and then using an application called
VNC server.

Installing a Windows manager
First, let's install the Windows manager on your BeagleBone Black. Ubuntu generally
comes with a very full-featured Windows system. However, it uses a good deal of
memory and can interfere with the performance you might need later. So you should
install a light Windows system at the top of your Ubuntu distribution. There are
several choices, of which I like using Xfce. It is stable, seems to work well, and offers
a fairly complete set of capabilities while not overwhelming your system resources.
Before getting started, first type sudo apt-get update. This will update all the
latest information about installation. To install the Windows manager, type sudo
apt-get install xfce4. Again, the system will prompt you for your password
and then start the installation. For large installations, the Linux system will ask
you if you want to proceed. If you don't always want to type in y to this, you can
use apt-get –y to automatically answer with a yes. This installation will take a
significant amount of time as it has to install not only the Windows system, but
also a number of packages the windowing system depends on.

www.teracomtraining.com/tutorials/teracom-tutorial-dynamic-IP-addresses-and-DHCP.htm
www.teracomtraining.com/tutorials/teracom-tutorial-dynamic-IP-addresses-and-DHCP.htm
www.teracomtraining.com/tutorials/teracom-tutorial-dynamic-IP-addresses-and-DHCP.htm
www.putty.org

Preparing the BeagleBone Black

[12]

Now that you have a graphical interface, you'll need to install a version of VNC server
on your BeagleBone Black by typing sudo apt-get install tightvncserver in a
terminal window on your BeagleBone Black. The TightVNC server is an application
that will allow you to remotely view your complete Windows system. Once you have
it installed, you'll need to start the server by typing vncserver in a terminal window
on the BeagleBone Black. You will then be prompted for a password. This can, and
preferably should, be a different password than the password using which you access
your BeagleBone Black. This will be the password your remote system will send to
access the VNC server running on the board. Select a password and your VNC server
will be running. You only need to set this password once. Besides, you don't need to
set the password for the view-only capability.

You'll need a VNC viewer application for your remote computer. On my
Windows system, I used an application called Real VNC. Go to www.realvnc.com
for information on how to set up and use this application. You can now access all
the capabilities of your system. However they might be slower if you are doing
graphics-intensive data transfers. You'll see this as you work through your projects.
VNC viewer is also available via Linux.

You now have a basic BeagleBone Black configuration, so you can add some additional
core packages you'll be using in the projects.

Installing additional core software
packages
The two packages that you'll add here are a core vision package called OpenCV and
a core voice recognition package called pocketsphinx. It's up to you whether to use
them or not, but allowing your robot to see, hear, and speak seems like it should be
a part of any robotics project, so adding them now will make them easier to use later.
Let's start with OpenCV.

First, when you created your SD card, you copied an image to your card. So now,
your card thinks it is only the size of the image that you copied, no matter what size
it really is. You'll need to reclaim this space.

To do this, you'll need to issue some fairly cryptic commands, but fortunately,
you'll be able to use the defaults, so it will be straightforward. First, open a terminal
window. The card I am using is an 8 GB card, so if your card is of a different size,
don't be worried if you don't see the exact numbers as you see here. Fortunately, you'll
be using default values throughout the process, so you won't need to know anything
special about your card. To begin with, type sudo su and enter your password.

www.realvnc.com

Chapter 1

[13]

Then follow the following steps:

1.	 Type ll /dev/mmcblk* and you should see something like this:

2.	 Now you are going to make changes to the mmcblk0 device.
Type fdisk /dev/mmcblk0.

3.	 Enter the p command and you should see something like this:

Preparing the BeagleBone Black

[14]

4.	 You're now going to expand the second device, /dev/mmcblk0p2. To do this,
delete the partition and create a new partition. The information that exists on
your SD card should, however, be preserved during this process. Enter d in
the prompt and enter 2 for the second partition. Now enter p again and you
should see something like this:

5.	 You will now create a new partition using defaults so that the partition takes
up the entire card. In the command prompt, type n, then p, then 2, and then
hit Enter through each choice that the programs request. Your device should
now appear like this:

Notice that the second partition is now much larger than the original.

Chapter 1

[15]

6.	 Type w to commit your changes. Now you need to reboot, so type reboot.
7.	 The final step will expand the filesystem. After the system reboots,

type sudo su and enter your password. Now type df. You should
see something like this:

8.	 It's the /dev/mmcblk0p2 device that you want to resize. Type resize2fs /
dev/mmcblk0p2 and then enter df. You should see the following:

Now that you have installed your operating system and expanded your storage
device, your BeagleBone Black is ready to use.

Preparing the BeagleBone Black

[16]

Installing a vision library
Now you'll install OpenCV, an open source library of image processing and a web
camera that provides access capabilities you'll use on these projects.

First, you'll need to download a set of libraries and the OpenCV itself. There are
several possible steps; I'm going to suggest one that I followed to install it on my
system. Once you have booted the system and opened a terminal window, type
the following commands in the same order as they have been explained:

1.	 sudo apt-get install build-essential: You are going to need this
library as it provides a set of essential build tools.

2.	 sudo apt-get install libavformat-dev: This library provides a way to
code and decode audio and video streams.

3.	 sudo apt-get install libcv2.4 libcvaux2.4 libhighgui2.4: These
are the basic OpenCV libraries. Note the number at the end of each of these
library specifications; this will almost certainly change as new versions of
OpenCV become available. If Version 2.4 does not work, go to opencv.org
to find the latest version of OpenCV.

4.	 sudo apt-get install python-opencv: This is the Python development
kit for OpenCV. It is needed as you are going to use some Python code; it's
the easiest language to use with this functionality.

5.	 sudo apt-get install opencv-doc: This is the documentation for OpenCV,
just in case you need it.

6.	 sudo apt-get install libcv-dev: This provides a set of header files used
to compile OpenCV.

7.	 sudo apt-get install libcvaux-dev: This provides a translator for certain
tool sets.

8.	 sudo apt-get install libhighgui-dev: This provides a set of header files
used to compile OpenCV, especially the GUI.

9.	 cp -r /usr/share/doc/opencv-doc/examples: Execute this command in
your home directory; this will copy all the examples to your home directory.

http://www.opencv.org

Chapter 1

[17]

Now you're ready to try out the OpenCV library. I prefer to use Python when
programming simple tasks, so I used the Python examples. If you prefer the C
examples, feel free to explore. In order to use the Python examples, you'll need
one more library. So type sudo apt-get install python-numpy as you will
need this to manipulate the matrices that OpenCV uses to hold the images you
will get from your webcam.

Now that you have those, you can try one of the Python examples. Change the
current directory to that of the Python examples by typing cd /home/ubuntu/
examples/python. In this directory, you will find a number of useful examples;
you only need to look at the most basic example, called camera.py. You can
try running this example, but you'll need to connect a USB web camera, reboot,
bring up a VNC server connection, bring up a terminal window, and type python
camera.py. You should see something like this:

Preparing the BeagleBone Black

[18]

In my case, the camera window eventually turned black and did not show the output
from the camera. I realized that I needed to change the resolution of the image to
one that is supported by the camera and OpenCV. To do this, you need to edit the
camera.py file, adding two lines like this:

These two lines, cv.SetCaptureProperty(capture, 3, 360) and
cv.SetCaptureProperty(capture, 4, 240), change the resolution of the captured
image to 360 x 240 pixels. Now run camera.py and you should see this:

Chapter 1

[19]

Your project can now see! You will use this capability to do a number of impressive
tasks that will use this video input.

Installing sound capability
The second piece of open source infrastructure that you'll add now is the voice
recognition software—pocketsphinx. To make it work, you'll need to purchase a USB
sound card, as the BeagleBone Black does not have an audio in/out provision. You'll
also need to purchase a microphone and speaker to attach to your USB sound card.
Connect these, and reboot the system. You're now ready to install the software.

You can do this over the LAN connection via an SSH terminal window, so as soon
as your board flashes that it has power (look out for the heartbeat LED), open up an
SSH terminal window using PuTTY or some similar terminal emulator. Once the
terminal window comes up, log in with your username and password. Now type
cat /proc/asound/cards. You should see the following response:

Notice that the system thinks there are two possible audio devices. The first is the
HDMI sound device and the second is your USB audio card. Now you can use the
USB card to both create and record sound.

Preparing the BeagleBone Black

[20]

Creating and recording sound
First, let's get some music going. This will let you know that your USB sound device
is working. You'll need to first configure your system to look for your USB card and
play and record some sounds from there as default. To do this, you'll need to add a
couple of libraries to your system:

1.	 The first are some ALSA libraries. ALSA stands for Advanced Linux Sound
Architecture, but all you really need to know is that it enables your sound
system on the BeagleBone Black. First, install two libraries associated with
ALSA by typing sudo apt-get install alsa-base alsa-utils.

2.	 Then also install the library include files by typing sudo apt-get install
libasound2-dev. This will install the basic capability that you need.

Just a note
Your system might already contain these libraries. If it does,
then it won't hurt to try and install them; Linux will simply
tell you that they are already installed.

3.	 Now you can use an application called alsamixer to control the volume
of both the input and the output of your USB sound card. Type sudo
alsamixer in the prompt. You should see a screen like this:

Chapter 1

[21]

4.	 Press F6, and select your USB sound device using the arrow keys. The screen
should now appear like this:

5.	 You can use the arrow keys to set the volume for both the speakers and
the mic. Make sure you use the M key to unmute the microphone.

6.	 Now make sure that your system knows about your USB sound device.
In the prompt, type sudo aplay –l. You should see the following:

Preparing the BeagleBone Black

[22]

7.	 Once you have added the libraries, add a file to your home directory by
the name .asoundrc. This will be read by your system and used to set your
default configuration. Using your favorite editor, create the .asoundrc file
and insert the following in it:

8.	 The line to be added is pcm.!default sysdefault:Device. This will tell
the system to use our USB device as a default.

9.	 Once you have completed this, reboot your system.
10.	 Now that your system is ready, record some sound and play it. To do this,

use the arecord program. In the prompt, type arecord -d 5 -r 48000
test.wav. This will record 5 seconds of a sound at a 48,000 sample rate.

11.	 Once you've typed the command, then either speak into the microphone or
make some other recognizable sound. After 5 seconds, you should be able
to play the sound.

12.	 Type aplay test.wav, and you should hear the recording of your voice.

If you can't hear your recording, check alsamixer to make sure your speakers and
microphone are both unmuted.

Chapter 1

[23]

Making your BeagleBone Black speak
Now that you can get sounds both in and out of your BeagleBone Black, let's start
doing something useful with this capability. Start by enabling Espeak, an open source
application that provides you with a computer voice with a bit of personality. To get
this functionality, download the Espeak library by typing sudo apt-get install
espeak. You'll probably have to accept the additional size that the application requires,
but this is fine based on your SD card size. This might take a bit of time to download,
but the prompt will reappear when it is done.

Now let's see if your BeagleBone Black has a voice. Type the sudo espeak "hello"
command. The speaker should emit a computer-voiced "hello." If it does not, make
sure that the speaker is on and its volume is high enough to be heard. Now that
you have a computer voice, you can customize it. Espeak offers a fairly complete
set of customization features, including a large number of languages, voices, and
other options.

Now your project can speak. Simply type espeak, followed by the text you want
it to speak in quotes, and out comes your speech! If you want to read an entire text
file, you can do that as well, using the –f option and then typing the name of the
file. Try this by using your editor to create a text file called speak, then type this
command: sudo espeak -f speak.txt.

Installing speech recognition
Now that your projects can speak, you will want them to listen as well. This isn't nearly
as simple as the speaking part, but thankfully you have some significant help. You will
download a set of capabilities called pocketsphinx, and using these capabilities, you
will provide your project with the ability to listen to your commands.

The first step is to download the pocketsphinx capability. Unfortunately, this is not as
user friendly as the Espeak process, so follow the steps carefully. First, go to the Sphinx
website, hosted by Carnegie Mellon University at http://cmusphinx.sourceforge.
net/. This is an open source project that provides you with the speech recognition
software you will need. With your smaller embedded system, you will be using the
pocketsphinx version of this code. You will need to download two pieces of software,
sphinxbase and pocketsphinx. Download these by selecting the Download section at
the top of the page, and then find the latest version of both the packages. Download
the .tar.gz versions of these and move them to the /usr/ubuntu directory of your
BeagleBone Black. However, before you build these, you'll need another library.

This library is called bison. It's a general purpose, open source parser that will be
used by pocketsphinx. To get this package, type sudo apt-get install bison.

http://cmusphinx.sourceforge.net/
http://cmusphinx.sourceforge.net/

Preparing the BeagleBone Black

[24]

If everything explained so far is installed and downloaded, you can build
pocketsphinx as follows:

1.	 Start by unpacking and building the sphinxbase. Type tar –xzvf sphinx-
base-0.x.tar.gz where x is the version number. This should unpack all the
files from your archive into a directory called sphinxbase-0.x. Now change
to that directory.

2.	 Now you will build the application. Start by issuing the ./configure
--enable-fixed command. This will first check to make sure everything
is ok with the system, then configure a build. When I first attempted this
command, I got the following error:

3.	 This highlighted an interesting problem. The time and date on my BeagleBone
Black was not set to the current time and date. If you need to set the current
date and time, do that by issuing the sudo date nnddhhmmyyyy.ss command
where nn is the month, dd is the day, hh is the hour, mm are the minutes, yyyy
is the year, and ss is the second. This will set the date to the desired date.
Now you can reissue the ./configure --enable-fixed command.

4.	 You can also install python-dev using sudo apt-get install python-dev
and Cython using sudo apt-get install cython. Both of these will be
useful later if you are going to use your pocketsphinx capability with Python
as a coding language. You can also choose to install pkg-config, a utility
that can sometimes help when you are trying to do complex compilations.
Install it using sudo apt-get install pkg-config.

Chapter 1

[25]

Now you are ready to actually build the sphinxbase code base. This is a two-step
process. First type make, and the system will build all the executable files. Then type
sudo make install and it will install all the executables on the system.

Now make the second part of the system, the pocketsphinx code itself, as follows:

1.	 Go to the home directory and unarchive the code by typing tar -xzvf
pocketsphinx-0.x.tar.gz, where x is the version number of pocketsphinx.
The files should now be unarchived, and you can now build the code. Follow
similar steps for these files, first cd to the pocketSphinx directory, then type
./configure to see if you're ready to build the files. Then type make, wait for
everything to build, then type sudo make install.

2.	 Once you have completed the installation, you need to let the system know
where your files are. To do this, edit the /etc/ld.so.conf file as root. Add
the last line to the file, so it should now look like this:

3.	 Type sudo /sbin/ldconfig and the system will now be aware of your
pocketsphinx libraries.

Preparing the BeagleBone Black

[26]

4.	 Once everything is installed, you can try your speech recognition. Change your
directory to the /home/ubuntu//pocketsphinx-0.8/src/programs directory
and try a demo program by typing sudo ./pocketsphinx_continuous. This
program takes an input from the mic and turns it into a speech. After running
the command, you'll get all kinds of information that won't have much
meaning for you, and then get to this point:

5.	 Even though the warning message states that it can't find a mic or a capture
element, it can find your mic element or a capture element. If you have set
things up as previously described, you should be ready to give it a command.
Say "hello" into the mic. When it senses that you have stopped speaking, it will
process your speech, again giving us all kinds of interesting information that
has no meaning for us, but should eventually showing this screen:

Chapter 1

[27]

Notice the 000000001: hello line. It recognized your speech! You can try other
words and phrases. The system is very sensitive, so it might also pick up background
noise. You are also going to find out that it is not very accurate. There are two ways
to make it more accurate. One is to train the system to understand your voice more
accurately. I'm not going to detail that process here. It's a bit complex, and if you want
to know more, feel free to go to the CMU pocketsphinx website at http://cmusphinx.
sourceforge.net/.

Improving speech recognition accuracy
The second way to improve accuracy is to limit the number of words that your
system can use to determine what you are saying. The default has literally thousands
of words that are possible, so if two words are close, it might choose the wrong word
as opposed to the word you spoke. In order to make the system more accurate, you
are going to restrict the words it has to choose from. You can do this by making your
own grammar.

The first step is to create a file with the words or phrases you want the system to
recognize. Then you use a web tool to create two files that the system will use to
define your grammar:

1.	 Create a file called grammar.txt and insert the following text in it:

http://cmusphinx.sourceforge.net/
http://cmusphinx.sourceforge.net/

Preparing the BeagleBone Black

[28]

2.	 Now you must use the CMU web browser tool to turn this file into two files
that the system can use to define its dictionary. Open a web browser window
and go to www.speech.cs.cmu.edu/tools/lmtool-new.html. If you click
on the Choose File button, you can then find and select your file. It should
look something like this:

3.	 Open the grammer.txt file and on the web page, select COMPILE
KNOWLEDGE BASE. The following window should pop up:

www.speech.cs.cmu.edu/tools/lmtool-new.html

Chapter 1

[29]

4.	 Now you need to download the .tgz file, that is, the tool created. In this case,
it's the TAR1565.tgz file.

5.	 Move it to the /home/ubuntu/pocketsphinx-0.8/src/programs directory
and unarchive it using tar –xzvf and the filename.

6.	 Now you can invoke the pocketsphinx_continuous program to use this
dictionary by typing sudo ./pocketsphinx_continuous -lm 1565.lm
-dict 1565.dic.

It will now look up that directory as it tries to find matches to your commands.

Responding to voice commands
Now that your system can both hear and speak, you would want to provide the
capability to respond to your speech, and perhaps even execute some commands
based on the speech input. Now you're going to configure the system to respond
to your simple commands.

In order to respond, you're going to edit the continuous.c code in the /home/
ubuntu/pocketsphinx-0.8/src/programs directory. You can create your own
.c file, but this file is already set up in the makefile system, and will serve as an
excellent starting spot. You will need to edit the continuous.c file. It's very long,
and a bit complicated, but you should be specifically looking out for the following
section in the code:

Preparing the BeagleBone Black

[30]

In this section of the code, the word has already been decoded, and is held in the
hyp variable. You can add some code here to make your system do things based
on the value associated with the word you have decoded. First, let's try adding the
capability to respond to hello and goodbye, and see if you can get the program to
stop. Make the following changes to the code:

Now you need to rebuild your code. Since the make system already knows how to
build the pocketsphinx_continuous program, any time you make a change to the
continuous.c file, it will rebuild the application. Simply type make. The file will
compile and create a new version of pocketsphinx_continuous. To run your new
version, type sudo ./pocketsphinx_continuous. Make sure you type ./ at the
start of pocketsphinx_continuous. If you don't, the system has another version
of pocketsphinx_continuous in the library and it will run that.

If everything is set correctly, saying hello should result in a response of hello from
your BeagleBone Black. Saying goodbye should elicit a response of goodbye, as well
as shutting down the program. Note that the system command can be used to actually
run any program that you might run with a command line. You can now use this to
have your program started and run other programs based on the voice commands.

Chapter 1

[31]

Adding additional hardware and software
for a fully functional core system
The final step in making your BeagleBone Black really useful is to add a wireless LAN
interface. This will allow you to control your robotic projects remotely without having
a wired LAN cable. It is very straightforward, but there is one slight challenge. Adding
a WLAN device might cause your BeagleBone Black to draw in more current than a
USB power supply can provide, and your board will stop, that is, the blue light will
no longer flash like a heartbeat.

To avoid this problem and provide additional capability to add more devices,
you'll need to add a powered USB hub to your BeagleBone Black. This is a USB
hub that is powered by an external power supply, not the BeagleBone.

Once you have this device connected to a power supply and to your BeagleBone
Black, you can now connect your WLAN device. There are many different WLAN
devices; you'll have to follow the instructions for your specific device. See elinux.
org/Beagleboard:BeagleBoneBlack. Go to the WIFI Adapters section to see some
devices that others have successfully used. I personally have had good luck with the
Edimax device, and the instructions are very simple. To get this device connected,
follow the instructions at groups.google.com/forum/#!topic/beaglebone/
Q92uD9F1us8. Once you are connected via LAN, you can access the BeagleBone
Black wirelessly via SSH and VNC viewer, controlling your robotic projects without
limiting their movement.

Summary
This chapter has been a bit long and a bit involving, but if you've followed everything,
you should have a solid system that you can now use as the basis of your robotic
projects. Your first project will be a fairly simple tracked robot. You'll add the speed
and direction control, and then some sensing, and finally some commands and controls
to make your device autonomous. So let's get building!

elinux.org/Beagleboard:BeagleBoneBlack
elinux.org/Beagleboard:BeagleBoneBlack
groups.google.com/forum/#!topic/beaglebone/Q92uD9F1us8
groups.google.com/forum/#!topic/beaglebone/Q92uD9F1us8

Building a Basic
Tracked Vehicle

Now you will add the capability to move the entire project using wheels. Perhaps
the easiest way to make your project mobile is to use a vehicle with two tank tracks.
In this chapter, you will be introduced to the basics of controlling DC motors and use
the BeagleBone Black to control the speed and direction of your tracked platform.

In this chapter, you will be doing the following:

•	 Using a motor controller to control the speed of your tracked vehicle
•	 Controlling your mobile platform programmatically using the

BeagleBone Black
•	 Using voice commands to control your tracked vehicle

Choosing the tracked platform
The first step in building your mobile robot is to pick your tracked vehicle platform.
There are several manufacturers that make preassembled, tracked units. Here's an
image of a preassembled, inexpensive tracked platform, made by Dagu. It's called
the Dagu Rover 5 Tracked Chassis.

Building a Basic Tracked Vehicle

[34]

Once you have chosen your mobile platform, you'll need to hook up a motor
controller, a battery, and the BeagleBone Black.

Connecting a motor controller to control
the speed of your tracked platform
The first step to make the platform mobile is adding a motor controller. This
allows us to control the speed of each wheel (or track) independently. Before you
get started, let's spend some time understanding the basics of motor control. The
unit moves by engaging the motors. If the desired direction is straight, the motors
are run at the same speed. If you want to turn the unit, the motors are run at
different speeds. The unit can turn in a circle if you run one motor forward and
one backwards.

DC motors are fairly straightforward devices. The speed and direction of this motor
are controlled by the magnitude and polarity of the voltage applied to its terminals.
The higher the voltage, the faster the motor will turn. If you reverse the polarity of
the voltage, you can reverse the direction in which the motor is turning.

The magnitude and polarity of the voltage are not the only important factors when
you think about controlling the motors. The power that your motor can apply to
move your platform is also determined by the voltage and the current supplied
at its terminals.

There are GPIO pins on the BeagleBone Black. If you'd like to learn more about
the specific capabilities of these pins, go to http://beagleboard.org/Support/
bone101. In this project, you'll use them to create the control voltage and drive your
motors. These pins provide direct access to some of the control lines available from
the processor itself. However, the unit cannot source enough current, and your
motors might not be able to generate enough power to move your mobile platform.
You might also cause physical damage to your BeagleBone Black board. That is why
you need to use the motor controller, as it will provide both voltage and current
so that your platform can move reliably. In this case, I have chosen to hook up the
motor controller via USB, making the connections and programming much simpler.

http://beagleboard.org/Support/bone101
http://beagleboard.org/Support/bone101

Chapter 2

[35]

There are numerous possibilities for the motor controller. However, I'm going to
suggest one that requires no internal programming and allows you to talk over USB
to control the motors. You'll want one that can also control the two motors. The one
I prefer is the Pololu TReX Jr Dual Motor Controller DMC02 from Pololu, orderable
from www.pololu.com at http://www.pololu.com/product/767. Here is an image:

This piece of hardware will convert the USB commands to voltage that controls
your motors.

Choosing the battery
The first step in making your project mobile is connecting the motor controller to the
platform. There are three connections you need to make:

•	 First, you need to connect a battery to the controller
•	 Second, you need to connect the motor controller to the motors themselves
•	 Third, you need to connect the motor controller to the BeagleBone Black

There are a couple of choices with respect to batteries. One choice is to use the
battery holder that came with the platform. It should look like this:

www.pololu.com
http://www.pololu.com/product/767

Building a Basic Tracked Vehicle

[36]

Another choice is to use a Li Po Poly RC battery; these carry a much longer charge.
If you are going to do this, choose a 2S version, which is 2 cells in series. Here is an
image of an RC battery, with connectors to make it easy to disconnect and charge:

You'll also need a battery to power the BeagleBone Black. One easy choice is a cell
phone battery that has a USB output. Here is an image of one such device:

This battery will provide more than enough power for your BeagleBone Black. If you
chose one with two USB outputs, you'll be able to power a powered USB hub as well,
which you will use later in this and in other projects.

Chapter 2

[37]

Connecting the motor controller
Once you've chosen your battery, you'll need to connect the motor controller to the
battery and motor. Follow these steps:

1.	 On the back of the motor controller, notice the labels VIN, A M1 B, A M2 B,
and GND:

2.	 Once you have the battery pack ready, insert the wires into the motor
controller in the blue connectors marked VIN and GND. VIN is the constant
DC voltage in from your batteries, and GND is the ground connection from
your batteries. A and B are the control signals to your DC motors. You'll
notice that on the battery connector, one of the wires is red. Insert it into
the VIN connector, and then tighten the screw connector. On the battery
connector, you'll notice that the other wire is black. Insert that wire into the
connector marked GND and tighten the screw connector. The connections
will look like this:

Building a Basic Tracked Vehicle

[38]

3.	 Now connect one of the motors to the motor controller by connecting the red
and black wires with male connectors to the two outer blue screw connectors,
the red one to A and the black one to B using the male to male jumper wires.
The connection to the motor controller should look like this:

After performing all the preceding steps, the connections to the motor should now
look like this:

Now your controller is connected to the battery and motor. The next step is to make
sure that the controller works, by connecting it to a remote computer.

Chapter 2

[39]

Here I would insert a complete layout to connect/power the boards:

•	 USB hub
•	 BeagleBoard
•	 Might be the battery for BeagleBoard

Connecting the motor controller system
You can now connect the DC motor controller to the USB cable. Here are the steps:

1.	 The motor controller is going to need a serial input, but you'll find it easiest
to talk over USB. The USB-to-TTL serial cable is available at amazon.com and
a number of other suppliers. Here is an image:

2.	 To do so, connect the TTL end of the cable to the serial connector on the board.
On the underside of the board, you will see the following labels:

http://www.amazon.com

Building a Basic Tracked Vehicle

[40]

3.	 Now connect the green cable to the SI connection, the white cable to the SO
connection, and the black cable to the G connection. Here is an image of
what it should look like:

4.	 Now, there's one more step before you connect the board to the BeagleBone
Black. Remove the jumper at the top of the board so that the board will
accept serial commands. Here's an image of the jumper, and I like to just
turn it sideways so that I don't lose the jumper:

You should supply the unit with power by making sure you have batteries in the
battery holder. Now that you have your basic motor controller functionality up and
running, you need to connect the motor controller to the BeagleBone Black. Plug the
USB cable that you just connected to the motor controller to the BeagleBone Black.

Chapter 2

[41]

Here is an image of all the pieces of hardware that you have connected:

You might want to configure all of the hardware on top of the mobile platform
like this:

Your platform is now assembled The next step will be to control this movement
using the BeagleBone Black.

Building a Basic Tracked Vehicle

[42]

Controlling your mobile platform
programmatically using the BeagleBone
Black and Python
Now that you have your motor running, your next step is to programmatically
control the motor controller using the BeagleBone Black. If you are going to do this
remotely, log in through PuTTY. If you are doing this directly on a monitor, simply
log in.

I suggest you use Python in your initial attempts to control the motor. It is very
straightforward to write, run, and debug your code in Python. I am going to
include the directions here for Python; you can also go to the Pololu.com website
at www.pololu.com/ and find instructions for how to access the capabilities in the
C programming language.

The first Python program you are going to create is shown here:

www.pololu.com/

Chapter 2

[43]

To create this program, create a directory called track in your home directory
by typing mkdir track, and then type cd track. You should now be in the track
directory. Now open the file by typing emacs dcmotor.py. If you are using the nano
editor, open a new file using nano dcmotor.py. Now enter the program. Let's go
through the program:

•	 #!/usr/bin/python: The first line allows your program to be run outside of
the Python environment. You'll use it later when you want to execute your
code using voice commands.

•	 import serial: The next line imports the serial library. You need this to
talk to your motor controllers. In order to run this program, you'll need the
serial library. Install it by typing sudo apt-get install python-serial
in the prompt. You'll then need to add yourself to the dialout group by
typing sudo adduser ubuntu dialout. Then do a sudo reboot to enable
all these changes.

•	 import time: This line imports the time library, you'll need this to add some
delays in your code. You don't have to download this library, it's available
with the standard Python programming framework.

•	 def setSpeed(ser, motor, direction, speed): This function sets the
speed and direction of one of your two motors. Since you are going to control
the motors throughout your program, it is easier if you put this functionality
in a function:
if motor == 0 and direction == 0:

•	 sendByte = chr(0xC2): This sets the address if you are going to send data
to motor 1 in the forward direction. The hexadecimal characters are base
16 values that send specific bit patterns to the controller to set it to specific
modes. See the documentation at http://www.pololu.com/file/0J12/
TReXJr_Commands_v1.2.pdf for specifics on the commands accepted by
the motor controller:
if motor == 1 and direction == 0:

•	 sendByte = chr(0xCA): This sets the address if you want to send data to
motor 2 in the forward direction:
if motor == 0 and direction == 1:

•	 sendByte = chr(0xC1): This sets the address if you want to send data to
motor 1 in the reverse direction:
if motor == 0 and direction == 1:

http://www.pololu.com/file/0J12/TReXJr_Commands_v1.2.pdf
http://www.pololu.com/file/0J12/TReXJr_Commands_v1.2.pdf

Building a Basic Tracked Vehicle

[44]

•	 sendByte = chr(0xC9): This sets the address if you are going to send data
to motor 2 in the reverse direction.

•	 ser.write(sendByte): This writes sendByte to the motor controller, which
sets which motor moves and in which direction.

•	 ser.write(chr(speed)): This writes the speed to the motor controller,
setting the speed.

•	 ser = serial.Serial('/dev/ttyUSB0'ttyUSB0', 19200, timeout = 1):
This opens a serial port. The name of this serial port depends on the type of
cable you connect to the device, and other devices that might be connected.
In this case, you are connected through the USB port and have only one
device connected, so it will be named ttyUSB0.

•	 setSpeed(ser, 0, 1, 100): This calls the function and sets the speed of
the motor from 1 to 100.

•	 setSpeed(ser, 1, 1, 100): This calls the function and sets the speed of
the motor from 2 to 100. Note that you have to have this motor go in the
opposite direction if you want the platform to move forward.

•	 time.sleep(1): This allows the motor to wait for 1 second.
•	 setSpeed(ser, 0, 0, 0): This calls the function and sets the speed of the

motor from 1 to 0.
•	 setSpeed(ser, 1, 0, 0): This calls the function and sets the speed of the

motor from 2 to 0.
•	 time.sleep(1): This allows the motor to wait for 1 second.
•	 ser.close(): This closes the serial port.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

With this installed, you can run your program. To do this, type python dcmotor.py.
Your motor should run for 1 second and then stop. You can now control the motor
through Python! Additionally, you'll want to make this program available to run
from the command line. Type chmod +x dcmotor.py. If you now type ls, that is,
list all programs, you'll see that your program is now green, which means you can
execute it directly. Now you can type ./dcmotor.py.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 2

[45]

Now that you know the basics of commanding your mobile platform, feel free
to add even more setSpeed commands to make your mobile platform move.
Running just one motor will make the platform turn, as will running both motors
in opposite directions.

Adding program arguments to control
your platform
Let's also add the capability to send the program arguments, including which
motors you want to run and for how long. Then you'll be able to call this program
from other programs.

You'll make two modifications to the program. This first will look like this:

Building a Basic Tracked Vehicle

[46]

In the top section, you'll add import sys. This brings in a library so that you can
access the arguments when you actually execute your program. The main changes
are in the body of the program. It will now look like this:

The addition is the if int(sys.argv[1]) == 1 and subsequent clauses. The
program checks the value of sys.argv[1], or the first argument given to it. In this
case, you'll use two arguments. The first will tell the program which motors to run
and in which direction (1 for forward, 2 for backward, 3 for turn right, and 4 for turn
left) and the second will tell the program how long to run the motor.

Chapter 2

[47]

Now when you run the program, you'll want to include two numbers when you
call the program. For example, if you want the unit to go forward for 1 second,
type ./dcmotor.py 1 1. If you want the unit to turn right for 2 seconds, type ./
dcmotor.py 3 2.

Accessing motor control via voice commands
You can now run this program from your remote computer using SSH and your unit
will execute your command. But it would also be interesting to add voice control
to your tracked project, so that you can give it voice commands and it will respond.
To do this, you'll add some code to the pocketsphinx code that you installed in
Chapter 1, Preparing the BeagleBone Black.

You'll first want to follow the directions from the previous chapter to create a
dictionary with the commands for your robot. Here's an example of a text file
dictionary for your robot:

Building a Basic Tracked Vehicle

[48]

You'll also need to modify your voice recognition program so that it will run your
Python program when it gets a voice command. You are going to make a simple
modification to the continuous.c program in /home/ubuntu/pocketsphinx-0.8/
src/programs. To do this, type cd /home/ubuntu/ pocketsphinx-0.8/src/
programs and then type emacs continuous.c. The changes will come in the same
section as your other voice commands, and will look like this:

The additions are pretty straightforward. Let's walk through them:

•	 else if (strcmp(hyp, "FORWARD") == 0): This checks the word as
recognized by your voice command program. If it corresponds with the word
FORWARD, it will execute everything inside the if statement. You use { } to
group and tell the system which commands go with this else if clause.

•	 system("espeak \"moving robot\""): This executes espeak, which should
tell you that you are about to run your robot program. By the way, you need to
type \" because the " character is a special character in Linux, and if you want
the actual " character, you need to precede it with the \ character.

Chapter 2

[49]

•	 system("/home/ubuntu/track/dcmotor.py 1 1 "): This is the program
you will execute. In this case, your mobile platform will do whatever the
dcmotor.py program tells it to do with the two arguments. In this case, you
will move forward for 1 second.

After doing this, you will need to recompile the program, so type make and the
pocketsphinx_continuous executable will be created. Run the program by typing
sudo ./pocketsphinx_continuous –lm YourDict.lm –dict YourDict.dic
where YourDict is replaced by the number the pocketsphinx process created when
you created your dictionary. Disconnect the LAN cable, and the mobile platform will
now take the forward voice command and execute your program.

You can then add the additional commands to go backwards, to turn right or left,
and to stop, as shown here:

Building a Basic Tracked Vehicle

[50]

You now have a complete mobile platform! When you execute your program, the
mobile platform can now move around according to what you have programmed it
to do. You can adjust the time settings so that your right and left turns are precise,
and you can run forward or backward as long as you like.

Summary
Now you have a basic tracked, mobile platform. You can control the unit remotely
or give it voice commands. In the next chapter, you'll add some sonar and IR sensors
so that you can avoid or track objects. This will allow your tracked vehicle to move
around without hitting barriers.

Adding Sensors to Your
Tracked Vehicle

Now that your platform can move around, you'd want to add some sensors to avoid or
track barriers or other objects. Sensors can also tell you the direction in which you are
going. Adding sensors will give a sense of direction and intelligence to your robot.

In this chapter, you will learn the following:

•	 Using sonar sensors to find the distance to an object
•	 Using Infrared (IR) sensors to find distance to an object
•	 Some basic path planning techniques for your robot

Basics of sensors
There are many different kinds of sensors. There are sensors that measure distance,
temperature, wind strength, and direction. The list is almost endless. In almost every
case, the sensor will take some sort of measurement and then turn it into a voltage
that the BeagleBone Black can measure and programmatically respond to. There are
many different interfaces for these measurement devices; over the next few chapters,
you'll explore many of them. But to start, you'll learn how to measure distance using
sonar and IR sensors.

Adding distance sensors
If your robot is to appear intelligent, gathering information about the world around
it will be crucial. So, let's add some sensors that can provide you information about
the distance and location of barriers.

Adding Sensors to Your Tracked Vehicle

[52]

There are basically two kinds of distance sensors, IR and sonar sensors. Both send
out a signal and then measure a response to calculate the distance of the object from
themselves. You can use either sensor, so you'll learn how to add both to your project.
Let's cover sonar sensors first.

Sonar sensors
A sonar sensor uses ultrasonic sound to calculate the distance of an object. The sound
wave travels out from the sensor, as illustrated here:

Sonar sensor

The device sends out a sound wave 10 times a second. If an object is in the path of
these waves, then the waves reflect off the object, sending waves that return to the
sensor, as shown here:

Sonar sensor

The sensor then measures return of waves, if any. It then uses the time difference
between when the sound wave was sent out and when it returns to measure the
distance to the object.

Chapter 3

[53]

There are several types of sonar sensors, including some that connect directly to the
BeagleBone Black using a USB port. The following is an image of this type of sensor,
the USB-ProxSonar-EZ, available at www.maxbotix.com/Ultrasonic_Sensors.
htm#HRUSB-EZ:

Adding an array of inexpensive sonar sensors to
the project
The sensor is quite easy to add but a bit expensive. In this project, you'll want to use
three sensors, one to sense what is in front of your robot, and one on each corner so
that you can decide which direction to turn to avoid the obstacle. In order to do this
without adding significantly more hardware, you have to build an array of three
inexpensive sensors. Here is an image of an inexpensive sonar sensor available at
most of the online electronics outlets:

This particular sensor does not have a USB interface but only four pins, one each
for 5V, GND, Trig which sends a sonar pulse, and echo which receives the sonar
pulse. One alternative is to connect your sensors to the BeagleBone Black since it
has GPIO pins.

www.maxbotix.com/Ultrasonic_Sensors.htm#HRUSB-EZ
www.maxbotix.com/Ultrasonic_Sensors.htm#HRUSB-EZ

Adding Sensors to Your Tracked Vehicle

[54]

There are two issues with connecting this device directly to the BeagleBone Black:

•	 The first is that the device wants to send and receive 5-volt signals, but the
BeagleBone Black does not want to send and receive 5-volt signals. Rather,
a signal that is no larger than 3.3 volts. This can be solved by using a level
shifter. This does add more hardware however. You can buy these types
of level shifters from places such as adafruit.com. Here is an image of a
level shifter:

The website at www.adafruit.com shows you how to use these level shifters
to communicate with devices that require 5 V. Here is a link for the details
from Adafruit:
https://www.adafruit.com/products/1875

•	 The second issue—one that is a bit more difficult to solve—is the non-real-time
nature of the Linux operating system that runs on the BeagleBone Black. This
particular issue requires that you send an output signal, and then calculate
the time difference between this output signal and another input signal. In
theory, this works fine. However, Linux does not provide real-time control.
That means that if the system is busy doing something else, this time can be
incorrect or is not reported at all. This is particularly true if the BeagleBone
is off doing something processor intensive, such as video processing.

To solve these problems in a fairly inexpensive and reliable fashion, you're going
to use an Arduino, and inexpensive real-time processor, to get the data and then
communicate it to the BeagleBone Black.

http://www.adafruit.com
www.adafruit.com
https://www.adafruit.com/products/1875

Chapter 3

[55]

For a much more advanced solution, you can use the BeagleBone
Black Programmable Real-time Unit (PRU) and control the
sensor. For information on this solution, see http://hackaday.
com/2014/06/22/an-introduction-to-the-beaglebone-
pru/ or http://www.element14.com/community/
community/designcenter/single-board-computers/
next-gen_beaglebone/blog/2013/05/22/bbb--working-
with-the-pru-icssprussv2.

To sense distance, you'll use an Arduino to capture the data and its USB port to
communicate the data to the BeagleBone Black. For instructions on how to interface
the Arduino with the sonar sensor, see https://code.google.com/p/arduino-
new-ping/ or http://www.instructables.com/id/Ultrasonic-Range-detector-
using-Arduino-and-the-SR/. The Arduino will output the sensor data to the USB
port. Connect the Arduino to the BeagleBone Black via the USB port. Create a Python
program on the BeagleBone Black that can read the values. The code will look like this:

http://hackaday.com/2014/06/22/an-introduction-to-the-beaglebone-pru/
http://hackaday.com/2014/06/22/an-introduction-to-the-beaglebone-pru/
http://hackaday.com/2014/06/22/an-introduction-to-the-beaglebone-pru/
http://www.element14.com/community/community/designcenter/single-board-computers/next-gen_beaglebone/blog/2013/05/22/bbb--working-with-the-pru-icssprussv2
http://www.element14.com/community/community/designcenter/single-board-computers/next-gen_beaglebone/blog/2013/05/22/bbb--working-with-the-pru-icssprussv2
http://www.element14.com/community/community/designcenter/single-board-computers/next-gen_beaglebone/blog/2013/05/22/bbb--working-with-the-pru-icssprussv2
http://www.element14.com/community/community/designcenter/single-board-computers/next-gen_beaglebone/blog/2013/05/22/bbb--working-with-the-pru-icssprussv2
https://code.google.com/p/arduino-new-ping/
https://code.google.com/p/arduino-new-ping/
http://www.instructables.com/id/Ultrasonic-Range-detector-using-Arduino-and-the-SR/
http://www.instructables.com/id/Ultrasonic-Range-detector-using-Arduino-and-the-SR/

Adding Sensors to Your Tracked Vehicle

[56]

You can use three sensors, one for the front of the tracked vehicle, and one for each
side, and interface them all with the same Arduino. When you run the program with
the sonar sensor, you'll see the three readings like this:

Now you can use the sonar sensors to detect objects both in front and on each side of
your robot.

IR sensors
Another type of sensor that can make your project sense objects is the IR sensor.
In this section, you'll learn the basics of IR sensing using the BeagleBone Black.
First, let's have a little tutorial on IR sensors. The sensor you will be using will
have a transmitter and a receiver. The transmitter part of the sensor sends a narrow
beam of light, and the receiver part receives this beam of light. The difference in
transit ends up as an angle measurement at the sensor, as shown here:

Transmitter Receiver Transmitter Receiver

Angle1 Angle2

Chapter 3

[57]

The different angles give you an indication of the distance to the object. Unfortunately,
the relationship between the output of the sensor and the distance is not linear, so
you'll need to do some calibration to predict the actual distance and its relationship to
the output of the sensor. You'll learn more on that later.

There are several IR sensors that you can use to connect to the BeagleBone Black.
A common sensor is the sharp IR sensor, and it comes in several different distance
specifications. Here is an image of the 20 x 150 cm version:

There are two ways to connect the IR sensor to the BeagleBone Black. The first is to
use a USB interface designed to connect the IR sensor to any standard USB interface,
for example, the one from phidgets.com. This board is really amazing. It takes the
analog signals, turns them into digital signals, and then makes them available so
that they can be read from the USB port. The model number of this board is 1011_0
- PhidgetInterfaceKit 2/2/2 and its details can be found at http://www.phidgets.
com/products.php?category=0&product_id=1011_0. Here is an image:

The details for connecting this can be found on the www.phidgets.com website.

You can also connect this sensor to the BeagleBone Black and use the BeagleBone
Black's internal A/D converter. You won't have the real-time constraints of the
sonar sensor, so finding the distance can be as easy as reading the voltage from
the device and then translating it to a distance. The sensor will need 5V and GND
from the BeagleBone Black, and will supply an analog input between 0 and 5 volts
that indicates the distance.

http://www.phidgets.com
http://www.phidgets.com/products.php?category=0&product_id=1011_0
http://www.phidgets.com/products.php?category=0&product_id=1011_0
www.phidgets.com

Adding Sensors to Your Tracked Vehicle

[58]

The BeagleBone Black cannot take in this analog input directly, as the maximum
voltage it can handle is 1.8 volts. So you'll need to add a level shifter like the one
shown earlier in this chapter. You'll connect the output of the sensor to one side
of the level shifter, and the output of the other side of the level shifter will go to
the GPIO pins on the BeagleBone Black. There are two expansion connectors on
the BeagleBone Black, one on each side of the board. They are labeled P8 and P9.
Here is an image with the pinout:

Connect the 5V of the sensor to the P9_3 on the BeagleBone Black, and the GND to
P9_1 on the BeagleBone Black. Connect the Vo on the sensor to the hv side of your
level shifter, and the lv side of the level shifter to one of the ADC inputs, for example,
P9_39 on the BeagleBone Black. Connect the GND on the level shifter to P9_2.

Now you'll need to add a library that will allow you to talk to the GPIO pins via
Python. Follow these steps:

1.	 Install the following packages: sudo apt-get install build-essential
python-dev python-setuptools python-pip python-smbus –y

2.	 Type the following: sudo easy_install -U distribute
3.	 Now type sudo pip install Adafruit_BBIO. This will install the Adafruit

library for talking via the GPIO pins.

Chapter 3

[59]

4.	 To test your installation, type sudo python -c "import Adafruit_BBIO.
GPIO as GPIO; print GPIO". You should see this:

Now you are ready to write some Python code to read the ADC input. Here is the code:

Adding Sensors to Your Tracked Vehicle

[60]

And here is a sample output when the program is executed. When you run this
program, you'll need to type sudo python irsensor.py.

You'll notice that the values are returned in voltages; you can use this voltage as
a trigger. When a certain voltage is reached, you can sense that you are close to a
barrier. You can also turn the voltage into distance, although this is difficult as the
sensor is not linear. See davstott.me.uk/index.php/2013/06/02/raspberry-pi-
sharp-infrared/ for a tutorial on turning the output of the sensor to an equation
that you can use to find the distance using the voltage out from the sensor. You can
easily see that adding two more IR sensors will create a three sensor array, much like
you did in the Sonar sensors section.

Now that you have sensors, you can use them to avoid obstacles and do route planning.

Dynamic path planning for your robot
Now that you can see barriers, you'll want to do dynamic path planning. Dynamic
path planning simply means that you don't have knowledge of the entire world with
all the possible barriers before you encounter them. This can be a complex topic, but
there are some basics that you can start to understand and apply as you ask your
robot to move around its environment. Let's start with the idea of planning a path
without barriers, and then add barriers.

davstott.me.uk/index.php/2013/06/02/raspberry-pi-sharp-infrared/
davstott.me.uk/index.php/2013/06/02/raspberry-pi-sharp-infrared/

Chapter 3

[61]

Basic path planning
In order to talk about dynamic path planning, you'll need a framework to both
understand where your robot is and determine the location of the goal. The most
commonly used framework is an x-y grid. Here is a diagram of such a grid:

Reference

point 0, 0

Goal

point 6, 4

Robot

3, 1

There are three key locations or points in the grid:

•	 The first point is a fixed reference position. All other positions will be
measured with respect to this position.

•	 The second point is the location of your robot. Your robot will keep track
of its location using its x coordinate, or position with respect to some fixed
reference position in the x direction; and its y coordinate, or its position with
respect to some fixed reference position in the y direction to the goal. When
you first place your robot on the grid, you must place it facing a known
direction, for example, the front facing the positive x direction, so that you
can calculate how to turn your robot to the desired angle.

•	 The third point is the position of the goal, also given in x and y coordinates
with respect to the fixed reference position. If you know these three points
and the starting angle of your robot, you can plan an optimum—or shortest
distance—path to the goal. To do this, you can use the goal location and the
robot location and some fairly simple math to calculate the distance and
angle from the robot to the goal.

Adding Sensors to Your Tracked Vehicle

[62]

To calculate the distance, use the following equation:

() ()()2 2d X goal X goal Y goal Y robot= − + −

You'll use this equation to tell your robot how far to travel to the goal. A second
equation will tell your robot the angle it needs to travel:

arctan Y goal Y robot
X goal X robot

θ
 −

=  − 

Here is a graphical representation of these two pieces of information:

Reference

point 0, 0

Goal

point 6, 4

Robot

3, 1

d

q

Chapter 3

[63]

Now that you have the goal angle and distance, you can program your robot to move.
To do this, you will write a program to do path planning, and access the dcmotor.py
program you wrote in Chapter 2, Building a Basic Tracked Vehicle. However, you will
need to know the distance that your robot travels in a given length of time so that you
can tell your robot how far to travel using time units instead of distance units. The
best way to do this is to run the dcmotor.py program for 1 second and measure the
distance. This will be a scaling factor you can use to translate between the distances
that you calculate with your path planning program and the arguments that you will
send to your dcmotor.py program.

You'll also need to be able to translate the seconds that you command your robot to
run in the dcmotor.py program to the change in the angle that will occur in degrees/
seconds. With these two pieces of information, you can move your robot to the goal.

You can also use a gyroscope and an accelerometer for your project
to measure the actual distance and direction. As with the sonar
sensor, the easiest way to do this is to interface the device directly to
an Arduino and then use a USB connection to read the values to the
BeagleBone Black. See http://www.instructables.com/id/
Use-an-Accelerometer-and-Gyroscope-with-Arduino/ for
more details. For instructions on how to connect the accelerometer
directly to the BeagleBone Black, see http://beagleboard.org/
Support/BoneScript/accelerometer/.

Here are the steps you will perform:

1.	 Calculate the distance in units that your robot will need to travel to
reach the goal. Convert this to seconds that your motors will run to
achieve this distance.

2.	 Calculate the angle that your robot will need to travel to reach the goal.
Convert this in both a turn direction and seconds that your motors will
need to run to achieve this angle.

3.	 Call the dcmotor.py program with the proper direction and seconds
argument to move your robot to the correct angle.

4.	 Call the dcmotor.py program with the proper direction and seconds
argument to move your robot to the correct distance. Note that you can
choose between moving your robot in the forward direction or backward
direction, which will change your angle setting calculated previously by
180 degrees.

http://www.instructables.com/id/Use-an-Accelerometer-and-Gyroscope-with-Arduino/
http://www.instructables.com/id/Use-an-Accelerometer-and-Gyroscope-with-Arduino/
http://beagleboard.org/Support/BoneScript/accelerometer/
http://beagleboard.org/Support/BoneScript/accelerometer/

Adding Sensors to Your Tracked Vehicle

[64]

That's it! Here is some Python code that executes the preceding steps. The user enters
the robot's current location, starting angle, and goal location, and the robot moves to
the goal.

Avoiding obstacles
Planning paths without obstacles is, as has been shown, quite easy. However,
it becomes a bit more challenging when your robot needs to avoid obstacles.
Let's look at the case where there is an obstacle in the path you calculated
previously. It might look like this:

Reference

point 0, 0

Goal

point 6, 4

Robot

3, 1

Chapter 3

[65]

You can use the same path planning algorithm to find the starting angle. However,
you'll now need to use your sonar sensors to detect the obstacle. When your sonar
sensors detect the obstacle, you'll need to stop and recalculate the desired path. Now
you can look down on the problem and see that in this case, the robot should turn
right by 90 degrees, go until the obstacle ends, and then recalculate the optimum
path. However, your robot cannot know how big the obstacle is, so it will need a way
to navigate in the presence of an obstacle of unknown size and position.

There are a lot of different possibilities, but in order to keep your robot simple,
let's have your robot turn to the right by 90 degrees when it encounters an obstacle,
and move forward till a given distance. This will move the robot to a new x and y
location. Then have the robot recalculate the optimum path to the goal based on the
new robot x and y locations, and then have it try to move to the goal using the new
angle and distance. If it encounters another obstacle, it will repeat the process until it
reaches the goal. In this case, using these rules, the robot will travel the following path:

Reference

point 0, 0

Goal

point 6, 4

Robot

3, 1

New

robot

6, 1

Adding Sensors to Your Tracked Vehicle

[66]

And here is the first part of the Python code when utilizing only the front sonar
sensor on the sonar sensor array:

Chapter 3

[67]

The second part of the Python code is shown in the following screenshot:

Adding Sensors to Your Tracked Vehicle

[68]

Here is the final part of the code:

The final step would be to have the robot move forward until the sensor on the
side with the barrier reports that the barrier is no longer there. Then have the robot
calculate its new location, then the optimum path to the goal.

As noted, there are a number of different algorithms for path planning, each with
different degrees of complexity. You might want to explore the environment before
deciding which way to turn. These more complex algorithms can be explored using
the basic functionality that you have built in this chapter.

Chapter 3

[69]

Summary
In this chapter, you added to your robot an array of sensors to avoid obstacles, and a
digital compass so that you can plan your route. You also learned some simple route
planning techniques so that your robot can reach a goal location.

In the next chapter, we'll add vision to your robot, so you can know even more about
your surrounding. You'll learn to how to detect not only color but also motion; these
can be used to provide control of your robot as it moves.

Vision and Image Processing
Now that your tracked platform can move around, you'll want to add a more complex
sensor to provide information to it—the webcam. Using a webcam, you can allow your
robot to see its environment. You'll learn how to use a powerful open source software
platform called OpenCV to add powerful vision algorithms to your robotic platform.

In this chapter, you will be doing the following:

•	 Connecting a webcam
•	 Learning image processing using OpenCV
•	 Discovering edge detection for barrier finding
•	 Adding color and motion detection for targeting

Connecting a webcam to the
BeagleBone Black
In order to enable computer vision, you'll need to connect a USB web camera
to the USB port. Most standard USB webcams will work. This example uses a
Logitech HD 720.

Vision and Image Processing

[72]

Here are the steps:

1.	 Check if your USB webcam is connected. You'll do this using a program
called guvcview. Install this by typing sudo apt-get install guvcview.

2.	 Connect your USB camera and power up the BeagleBone Black. After the
system is booted, go to the /dev directory and type ls. You should see the
following screenshot:

3.	 The video0 device is the USB webcam. If you see its entry in the directory,
then it means the system can access your camera.

Chapter 4

[73]

Now you can use guvcview to see images from the camera. Since these are graphic
images, you'll need to use either a monitor connected directly to the BeagleBone
Black or the remote graphics connection VNC server. If you want to use the remote
connection, make sure you start the server on the BeagleBone Black by typing
vncserver via SSH. Then start VNC viewer as described in Chapter 1, Preparing the
BeagleBone Black. Once you have a VNC viewer window, then open a terminal and
type sudo guvcview. You should see an output similar to the following screenshot:

Vision and Image Processing

[74]

The video window displays the webcam images and the GUVCViewer Controls
window controls the output from the camera. The default settings may work fine
for your USB webcam. However, if you get a black display for the camera images,
you will need to adjust the settings. Select the GUVCViewer Controls window and
then the Video & Files tab. You will see a set of selections where you can adjust the
settings for your camera:

The setting that will affect your image the most is the Resolution setting. If you cannot
see an image, then adjust the resolution down; often this will resolve the issue. The
Resolution selection will tell you what resolutions are supported for your camera. If
you want to display the frame rate, you can do it by checking the Show box at the right
of the Frame Rate setting. Beware that the VNC viewer will also affect the refresh rate,
so if you are doing this through the VNC viewer, your frame rate will be much slower
than if you're using the BeagleBone Black and a monitor directly.

With your camera up and running and a desired resolution set, you can now start
using OpenCV to process the image.

Chapter 4

[75]

Using OpenCV
With your camera connected, you can access amazing vision capabilities that have
been provided by the open source community. One of the most powerful capabilities
is OpenCV.

You already installed OpenCV in Chapter 1, Preparing the BeagleBone Black. If you'd like a
good overview on OpenCV and more documentation, see http://docs.opencv.org/.

Now you can try OpenCV. It is easiest to use Python when programming simple tasks,
so let's start with the Python examples. If you prefer the C examples, they are also
available. In order to use the Python examples, you'll need the python-numpy library.
Type sudo apt-get install python-numpy. You will need this to manipulate the
matrices that OpenCV uses to hold the images.

Start with one of the Python examples. You can access the Python examples by typing
cd /home/ubuntu/examples/python. There are a number of useful examples; you'll
start with the most basic. It is called camera.py. To run this example, you'll either need
to have a display connected to the BeagleBone Black, or you can do this over the VNC
server connection. Bring up a terminal window and type python camera.py. You
should see an output similar to this screenshot:

http://docs.opencv.org/

Vision and Image Processing

[76]

When I first did this, the camera window eventually turned black and did not
show the output from the camera. To actually see the image, I needed to change
the resolution of the image captured by the USB webcam to one supported by the
camera and OpenCV. To do this, you need to edit the camera.py file by adding
two lines like this:

These two lines change the resolution of the captured image to 360 x 240 pixels.
Now run camera.py and you should be able to see the following screenshot:

Chapter 4

[77]

You should now have vision capability! You will use it to do a number of impressive
tasks. You may want to vary the resolution to find the optimum for your application.
Larger resolution images give you a more detailed view of the world, but they also
take up significantly more memory and processing power. An image that is twice the
size (width/height) will involve four times more memory and processing power.

Finding colored objects in your vision
system
OpenCV can be used to track objects. As an example, let's build a system that tracks
and follows a colored ball. OpenCV makes this activity amazingly simple; here are
the steps:

1.	 Create a directory to hold your image-based work. Once you have created
the directory, go there and begin with your camera.py file.

2.	 Now edit the file until it looks similar to the following screenshot:

Vision and Image Processing

[78]

Let's look specifically at the changes you need to make to camera.py.
The first three lines you add are as follows:
cv.Smooth(img,img,cv.CV_BLUR,3)
hue_img = cv.CreateImage(cv.GetSize(img), 8, 3)
cv.CvtColor(img,hue_img, cv.CV_BGR2HSV)

We are going to use the OpenCV library to first smooth the image, taking out
any large deviations. The next two lines create a new image that stores the
image in values of Hue (color), Saturation, and Value (HSV) instead of the
Red, Green, and Blue (RGB) pixel values of the original image. Converting
to HSV focuses your processing more on the color as opposed to the amount
of light hitting it.

3.	 Then add the following lines of code:
#Remove all the pixels that don't match
threshold_img = cv.CreateImage(cv.GetSize(hue_img), 8, 1)
 cv.InRangeS(hue_img, (10,120, 60), (20, 255, 255),
 threshold_img)

You are going to create one more image, this time a black-and-white binary
image that is black for any pixel which is not between two certain color values.
The (10, 160, 60), (20, 255, 255) parameter determines the range of
colors. In this case, I have an orange ball and I want to detect the color orange.

Now run the program. You can either have a display, keyboard, and mouse connected
to the board, or you can run it remotely using VNC. Run the program by typing sudo
python camera.py. You should see a single black image, but when you move this
window, you will expose the original image window as well. Now take your target
(I used my orange ball) and move it to the front of the frame. You should see an
output similar to the following screenshot:

Chapter 4

[79]

Notice the white pixels in your threshold image showing where the ball is located. You
can add more OpenCV code that gives the actual location of the ball. You can actually
draw a rectangle around the ball in your original image file as an indicator of the
location of the ball. Edit the camera.py file to look like the following screenshot:

First, add these lines:

storage = cv.CreateMemStorage(0)
contour = cv.FindContours(threshold_img, storage, cv.CV_
RETR_CCOMP, cv.CV_CHAIN_APPROX_SIMPLE)

These lines find all the areas on your image that are within the threshold. There might
be more than one; so you'll want to capture them all. Now add a while loop that will
let you step through all the possible contours:

points = []
while contour:

Vision and Image Processing

[80]

It is important to note that if there is another larger orange blob in the background,
you will find that location. Just to keep it simple, you'll assume your orange ball to
be unique. The next few lines will then get the information for each of your contours.
Now you have to identify the corners. Then you can check to see if the area is big
enough to be of concern. If it is, you will add a rectangle to your original image
identifying where you think it is:

rect = cv.BoundingRect(list(contour))
contour = contour.h_next()
size = (rect[2] * rect[3])
if size > 100:
 pt1 = (rect[0], rect[1])
 pt2 = (rect[0] + rect[2], rect[1] + rect[3])
 #Add a rectangle to the initial image
 cv.Rectangle(img, pt1, pt2, (38, 160, 60))

Now that the code is ready, you can run it. You should see an output similar to the
following screenshot:

You can now track your object. Now that you have the code, you can modify the
color or add more colors. You also have the location of your object, so now you
can attempt to follow the object or manipulate it in some way.

Chapter 4

[81]

Following colored objects with your
vision system
Now that your robot can sense colored objects, let's take this a step forward and use
this capability to actually guide your robot. If you look at the code from the last section,
you'll notice two variables, pt1 and pt2. These variables hold the x and y coordinates
of the color that your robot found. We can use these with our dcmotor.py program to
move the robot so that when the color reaches the edge of the viewing area, the robot
will move to put the colored object back into the middle of the viewing area. Here is
the code:

Vision and Image Processing

[82]

When your robot finds a color, it also finds the x boundaries of that color. These
are held in the rect[0] and rect[2] variables. Each time through the loop, your
program checks to see if the left side is smaller than 20 or the right side is larger than
310. In either case, your program will call the dcmotor.py program you wrote earlier
and move the robot in a turn either to the right or left. As you move the target, the
robot should turn with the object. The time_start and time_now variables allow
you to slow the response of your robot. Otherwise, it will overturn. You might want
to comment out the cvShowImage statement if your robot is struggling to keep up
with the movement, as this statement does take some time.

You can also use the size of the color ball to decide how far the ball is, and then
move the robot forward or backwards based on this size. Here is the while loop
for that code, and it is the only part of the code you'll need to change:

Chapter 4

[83]

The changes are simple. You will check the value of rect[2] which is the size of the
color rectangle. If it is large enough, you move backward. If it is small enough, you
will move forward.

Finding movement in your vision system
Another interesting behavior of your tracked robot is the ability to find motion.
Here is the first part of the code to use the OpenCV library and your webcam to
follow motion:

Vision and Image Processing

[84]

The following is the second part of the code to use the OpenCV library and your
webcam to follow motion:

It is useful to look at the code in detail. This first section of the code is very similar to
the setup code you used in the colored object section:

•	 #!/usr/bin/env python: This line allows the program to be executed as a
regular program.

•	 import cv: This line imports the OpenCV library.
•	 capture = cv.CaptureFromCAM(0): This opens the connection to webcam(0).
•	 cv.NamedWindow("Target", 1): This creates a window on the display with

the name as Target.

Chapter 4

[85]

•	 frame = cv.QueryFrame(capture): This grabs an image from the webcam
and sticks it in the variable frame.

•	 frame_size = cv.GetSize(frame): This returns the frame size of the image
as a tuple (set of two numbers) of width and height.

•	 color_image = cv.CreateImage(cv.GetSize(frame), 8, 3): This
creates a color image from the frame and puts it into the color_image
variable. You can use it later to display the image.

•	 grey_image = cv.CreateImage(cv.GetSize(frame), cv.IPL_DEPTH_8U,
1): This creates a grey-scale image of the frame and puts it into the grey_
image variable. You'll use this image to detect changes in the image.

•	 moving_average = cv.CreateImage(cv.GetSize(frame), cv.IPL_
DEPTH_32F, 3): This creates an image of the frame using just the real values
and puts it into the moving_average variable. You'll use this image to detect
changes in the image.

•	 first = True: This sets the variable first to True, as in this is the first image.

The second section enters a loop and looks for changes in the images:

•	 while True: This is an infinite loop.
•	 color_image = cv.QueryFrame(capture): This grabs an image from the

webcam and sticks it in the variable frame.
•	 cv.Smooth(color_image, color_image, cv.CV_GAUSSIAN, 3, 0):

This smoothens the image using a Gaussian filter, taking out large color
deviations in the image.

•	 if first: This checks whether the image is the first image.
•	 difference = cv.CloneImage(color_image): This creates another variable

called difference and stores a copy of color_image into that variable.
•	 temp = cv.CloneImage(color_image): This creates another variable

called temp and stores a copy of color_image into that variable.
•	 cv.ConvertScale(color_image, moving_average, 1.0, 0.0):

This makes sure that the sizes of color_image and moving_average
are of the same scale.

•	 first = False: This is set to False since this is no longer the first time
through the loop.

•	 else: This states that if this is not the first image, you can actually do a
running average on the video stream.

Vision and Image Processing

[86]

•	 cv.RunningAvg(color_image, moving_average, 0.020, None):
The RunningAvg function adds the color_image frame into a moving
average. This creates a composite frame that looks at a set of frames as
an average of the individual frames.

•	 cv.ConvertScale(moving_average, temp, 1.0, 0.0): This makes sure
that the sizes of color_image and moving_average are of the same scale.

•	 cv.AbsDiff(color_image, temp, difference): This calculates the
absolute difference between color_image and temp and stores this
difference in the difference variable.

•	 cv.CvtColor(difference, grey_image, cv.CV_RGB2GRAY):
This converts the color difference image into a black and white image
and stores it in grey_image.

•	 cv.Threshold(grey_image, grey_image, 70, 255, cv.CV_THRESH_
BINARY): This highlights the areas of the display that are significantly
different by turning on only those pixels that are above a certain threshold
of white.

•	 cv.Dilate(grey_image, grey_image, None, 18): This dilates the
grey image, emphasizing the areas where there is a white area.

•	 cv.Erode(grey_image, grey_image, None, 10): This erodes the
black-and-white image, again emphasizing the areas of change. For more
information on dilation and erosion, see http://docs.opencv.org/doc/
tutorials/imgproc/erosion_dilatation/erosion_dilatation.html.

•	 storage = cv.CreateMemStorage(0): This creates a storage area so that
you can identify the areas of a color.

•	 contour = cv.FindContours(grey_image, storage, cv.CV_RETR_
CCOMP, cv.CV_CHAIN_APPROX_SIMPLE); This is a contour that finds those
areas of the image that have groups of pixels that indicate change.

•	 points = []: This creates an array where you can put the location of the
areas of pixel that indicate change.

•	 while contour: This walks through each contour, locating the areas of
the movement.

•	 bound_rect = cv.BoundingRect(list(contour)): This holds the values
of the bounding rectangle around the contour of movement. It has four
points: bound_rect[0] holds the x value of the rectangle that contains
the area of movement, bound_rect[1] holds the y value of the rectangle
that contains the area of movement, bound_rect[2] holds the width of
a rectangle that contains the area of movement, and bound_rect[3] holds
the height of the rectangle that contains the area of movement.

http://docs.opencv.org/doc/tutorials/imgproc/erosion_dilatation/erosion_dilatation.html
http://docs.opencv.org/doc/tutorials/imgproc/erosion_dilatation/erosion_dilatation.html

Chapter 4

[87]

•	 contour = contour.h_next(): This prepares the program to process the
next contour that indicates the movement.

•	 pt1 = (bound_rect[0], bound_rect[1]): This creates a pt1 variable
that holds the x and y values of the upper-left corner of the contour.

•	 pt2 = (bound_rect[0] + bound_rect[2], bound_rect[1] + bound_
rect[3]): This creates a pt2 variable that holds the x and y values of the
lower-right corner of the contour.

•	 points.append(pt1): This puts the points of this rectangle's x and y
upper-left values on the array of points.

•	 points.append(pt2): This puts the points of this rectangle's x and y
lower-right values on the array of points.

•	 cv.Rectangle(color_image, pt1, pt2, cv.CV_RGB(255,0,0), 1):
This draws a rectangle on the original image of this particular rectangle
of movement.

•	 if len(points): If there are any rectangles, then perform this set of
instructions.

•	 center_point = reduce(lambda a, b: ((a[0] + b[0]) / 2, (a[1] +
b[1]) / 2), points): This finds the center point for all of the rectangles in
this list. It also finds all of the movement rectangles and calculates the center
point for all of the movement rectangles.

•	 cv.Circle(color_image, center_point, 40, cv.CV_RGB(255, 255,
255), 1): This draws a circle on the original image with a radius of 40,
to indicate the center of the movement.

•	 cv.Circle(color_image, center_point, 30, cv.CV_RGB(255, 100,
0), 1): This draws a circle on the original image with a radius of 30,
to indicate the center of the movement.

•	 cv.Circle(color_image, center_point, 20, cv.CV_RGB(255, 255,
255), 1): This draws a circle on the original image with a radius of 20,
to indicate the center of the movement.

•	 cv.Circle(color_image, center_point, 10, cv.CV_RGB(255, 100,
0), 1): This draws a circle on the original image with a radius of 10, to
indicate the center of the movement.

•	 cv.ShowImage("Target", color_image): This draws the original image,
with the movement rectangles and the center of the movement circles on
the screen.

•	 # Listen for ESC key: This is a comment to listen for the ESC key.

Vision and Image Processing

[88]

•	 c = cv.WaitKey(7) % 0x100: This listens for the Esc key, and stops
the program if it is selected. This is also required if you want to display
your image.

•	 if c == 27: This checks whether the ESC key (key 27) is pressed or not.
•	 break: This stops the program.

If you run the code and supply some movement, you should see something like this:

Now that you can sense movement, you can also program your robot to follow it.
As with the previous program, each time through the loop, your program checks
to see if the movement is with 20 pixels on the right or left side. In either case, your
program will call the dcmotor.py program you wrote earlier and move the robot in
a turn either to the right or left. Again, as before, you might want to comment out
the cvShowImage line and the print statements if your robot is struggling to keep
up with the movement, as these statements do take some time.

Chapter 4

[89]

Following movement with your robot
To follow the movement, you will do something very similar to the previous section
on following color. Your program will hold the center of the movement in the center_
point variable, which will hold and the x and y value. You can then use it to move
your robot if it is on either edge of the vision field. The first additions you'll need to
add to your program are the import time and import os lines at the top of the file,
to include these libraries. Here are the changes:

Vision and Image Processing

[90]

Here are the main additions at the bottom of the program on motion detection:

These lines should look almost exactly like the lines you added to move your robot
when tracking color. The timing statements prevent our robot from overreacting to
the movement. Now your robot should be able to follow movement within its field
of vision.

Chapter 4

[91]

Summary
In this chapter, your robot added a video camera and video processing so that it
can really see its environment. Now that your robot can move and fully sense its
environment, feel free to explore, literally. In the next chapter, you'll start on a new
robot. You'll build a robot that can walk on four legs; a quadruped that will walk
instead of rolling. You'll learn how to control multiple servos to make your robot
walk, wave, and dance.

Building a Robot
that Can Walk

You've built robots that can navigate using tracks. Now let's build one that can walk.
Walking robots are interesting as they can go to terrains where wheeled or tracked
vehicles can't go. They also perform advanced functions where they can utilize their
legs for uses other than walking.

In this chapter, you will build the basic platform of a quadruped. To do this, you will
learn the following:

•	 The working of servos
•	 Using the BeagleBone Black to control a large number of servos with the

help of a servo controller
•	 Creating complex movements out of simple servo commands

Building robots that can walk
In this chapter, you'll build a quadruped, that is, a robot with four legs. You'll be
using 12 servos so that each leg has three points that can move, or three Degrees
of Freedom (DOF). In Chapter 6, A Robot that Can Sail, you'll learn how to control
servomotors directly using the GPIO pins of the BeagleBone Black. In this project,
you'll control 12 servos at the same time, so it will make more sense to use an
external servo controller that can supply the control signals and supply voltages
for all the 12 servos.

Since servos are the main component of this project, it is perhaps useful to go through
a tutorial on servos and how to control them.

Building a Robot that Can Walk

[94]

Working of servomotors
Servomotors are somewhat similar to DC motors; however, there is an important
difference. While DC motors are generally designed to move in a continuous way—
rotating 360 degrees at a given speed—servos are generally designed to move
within a limited set of angles.

In other words, in the case of a DC motor, you would generally want your motors to
spin with continuous rotation speed that you control. But in the case of a servomotor,
you would want your motor to move to a specific position that you control. This is
done by sending a Pulse-Width-Modulated (PWM) signal to the control connector
of the servo. PWM simply means that you are going to change the length of each
pulse of electrical energy in order to control something. In this case, the length of
this pulse will control the angle of the servo, as shown in the following diagram:

90 degrees

1 msec 1.25 msec 1.5 msec 1.75 msec 2.00 msec

0 degress 180 degrees

These pulses are sent out with a repetition rate of 60 Hz. You can position the servo
to any angle by setting the correct control pulse.

Chapter 5

[95]

Building the quadruped platform
You'll first need some parts so that you can build your quadruped robot.
There are several kit possibilities out there, including the one available at www.
trossenrobotics.com/p/PhantomX-AX-12-Quadruped.aspx. However, such
kits can be expensive, so for this example, you'll create your own kit using a set
of Lynxmotion parts. These are available from several online retailers such as
robotshop.com. To build this quadruped, you'll need four legs, each leg requires
two Lynxmotion parts. Here are the parts with their Robotshop part numbers:

Quantity Description
1 Lynxmotion symmetric quadruped body kit: Mini QBK-02
2 Lynxmotion 3'' aluminum femur pair
2 Lynxmotion Robot Leg "A" pair (No servo) RL-01
4 Lynxmotion aluminum multi-purpose servo bracket Two

Pack ASB-04
2 Ball bearing with flange: 3mm ID (pair)

Product code: RB-Lyn-317

This last part a bearing you'll need to connect the leg to the body.

You'll also need 12 servos of a standard size. There are several possible choices,
but I personally like the Hitec servos. They are very inexpensive and you can get
them from most hobby shops and online electronic retailers. Now, for a moment
on the model of servo: Servos come in different model numbers, primarily based
on the amount of torque they can generate.

Torque is the force that the servo can exert to move the part connected to it. In
this case, your servos will need to lift and move the weight associated with your
quadruped, so you'll need a servo with enough torque to do this. I suggest that you use
eight Hitec model HS-485HB servos. You'll use these for the servos attached to the end
of the leg and for the body. Then you'll use four Hitec model HS-645MG servos for the
middle of the leg; this is the servo that will require the highest amount of torque. You
can use the 12 Hitec model HS-645MG servos instead, but they are more expensive
than the HS-485 servos, so using two different servos will be less expensive.

www.trossenrobotics.com/p/PhantomX-AX-12-Quadruped.aspx
www.trossenrobotics.com/p/PhantomX-AX-12-Quadruped.aspx
http://www.robotshop.com

Building a Robot that Can Walk

[96]

Here are the steps required to assemble the quadruped:

1.	 Put the two parts of the lower right leg together and insert the servo with the
servo mounting screws. It should look like this:

2.	 Now connect this assembly to the interconnect part, like this:

3.	 Complete the leg by connecting two of the servo brackets together at right
angles, mounting the HS-645MG on one of the brackets, and then connecting
this servo to the interconnect piece, like this:

Chapter 5

[97]

4.	 Put another right leg together.
5.	 Now put two left legs together following the same preceding steps, but in left

leg configuration. They look like this:

6.	 The next step is to build the body kit. There are some instructions given at
www.lynxmotion.com/images/html/sq3u-assembly.htm, but it should be
like the following image:

www.lynxmotion.com/images/html/sq3u-assembly.htm

Building a Robot that Can Walk

[98]

7.	 Then connect each leg to the body kit. First connect the empty servo bracket
to the body using the bearing, as shown in the following image:

8.	 Now connect the other servo to the empty servo bracket and the body, like this:

After performing all the preceding steps, your quadruped should now look like this:

Now that you have the basic hardware assembled, you can turn your attention to
the electronics.

Chapter 5

[99]

Using a servo controller to control
the servos
To make your quadruped walk, you will first need to connect the servomotor
controller to the servos. The servo controller you are going to use for this project
is a simple servomotor controller utilizing USB from Pololu (Pololu item number
1354, available at pololu.com) that can control 18 servomotors. Here is an image
of the unit:

Make sure that you order the assembled version. This piece of hardware will
turn USB commands from the BeagleBone Black into signals that control your
servomotors. Pololu makes a number of different versions of this controller, each
able to control a certain number of servos. In this case, you may want to choose the
18-servo version, so you can control all 12 servos with one controller and also add
an additional servo to control the direction of a camera or sensor. You could also
choose the 12-servo version. One advantage of the 18-servo controller is the ease
of connecting power to the unit via screw-type connectors.

There are two connections you'll need to make to the servo controller to get started:
the first is to the servomotors and the second is to a battery.

First, connect the servos to the controller. In order to be consistent, let's connect
your 12 servos to the connections marked 0 through 11 on the controller using the
configuration shown in the following table:

Servo Connector Servo
0 Right front lower leg

1 Right front middle leg

2 Right front upper leg

3 Right rear lower leg

4 Right rear middle leg

http://www.pololu.com

Building a Robot that Can Walk

[100]

Servo Connector Servo
5 Right rear upper leg

6 Left front lower leg

7 Left front middle leg

8 Left front upper leg

9 Left rear lower leg

10 Left rear middle leg

11 Left rear upper leg

Here is an image of the back of the controller. This will tell us where to connect
our servos:

Now you need to connect the servomotor controller to your battery. For this project,
you can use a 2S RC LiPo battery. The 2S means that the battery will have two cells,
with an output voltage of 7.2 volts. It will supply the voltage and current needed by
your servos, which can be of the order of 2 amperes. Here is an image of the battery:

Chapter 5

[101]

This battery will come with two connectors: one with large gauge wires for normal
usage and a smaller connector used to connect to the battery recharger. You'll want to
build connectors that can connect to the screw-type connectors of the servo controller.
I purchased some XT60 connector pairs, soldered some wires to the mating connector
of the battery, and screwed these into the servo controller.

Your system is now functional. Now you'll connect the motor controller to your
personal computer to check if you can communicate with it. To do this, connect
a mini USB cable between the servo controller and your personal computer.

Communicating with the servo controller
via a PC
Now that the hardware is connected, you can use some software provided by Pololu
to control the servos. Let's do this using your personal computer. First download the
Pololu software from www.pololu.com/docs/0J40/3.a and install it according to
the instructions on the website. Once it is installed, run the software, and you should
see something like the following screenshot:

www.pololu.com/docs/0J40/3.a

Building a Robot that Can Walk

[102]

You will first need to change the configuration of the serial settings, so select the
Serial Settings tab and you should see this:

Make sure that USB Chained is selected; this will allow you to communicate with and
control the motor controller over USB. Now go back to the main screen by selecting the
Status tab, and now you can actually turn on the 12 servos. The screen should look like
this screenshot:

Chapter 5

[103]

Now you can use the sliders to actually control the servos. Check that servo 0 moves
the right front lower servo, servo 1 moves the right front middle servo, servo 2 moves
the right front upper servo, and so on. You can also use this to center the servos. Set all
the servos such that the slider is in the middle. Now unscrew the servo horn on each
servo until the servos are centered at this location. At the zero degree location of all
servos, your quadruped should look like this:

Your quadruped is now ready to actually do something. Now you'll need to send the
servos the electronic signals they need to move your quadruped.

Connecting the servo controller to the
BeagleBone Black
You've checked the servomotor controller and the servos. You'll now connect the
motor controller to the BeagleBone Black and make sure you can control the servos
from it. Remove the USB cable from the PC and connect it to the BeagleBone Black.
The entire system will look like this:

Building a Robot that Can Walk

[104]

Let's now talk to the motor controller by downloading the Linux code from
Pololu at www.pololu.com/docs/0J40/3.b. Perhaps the best way is to log in
to your BeagleBone Black using PuTTY, then type wget http://www.pololu.
com/file/download/maestro-linux-100507.tar.gz?file_id=0J315. Then
move the file by typing mv maestro-linux-100507.tar.gz\?file_id\=0J315
maestro-linux-100507.tar.gz. Unpack the file by typing tar –xzfv maestro_
linux_011507.tar.gz. This will create a directory called maestro_linux. Go to
that directory by typing cd maestro_linux and then type ls. You should see
something like this:

The README.txt document will give you explicit instructions on how to install the
software. Unfortunately, you can't run MaestroControlCenter on your BeagleBone
Black. Your version of Windows doesn't support the graphics, but you can control
your servos using the UscCmd command-line application to ensure that they are
connected and working correctly. First, type ./UscCmd --list and you should
see something like the following screenshot:

www.pololu.com/docs/0J40/3.b

Chapter 5

[105]

The unit sees our servo controller. By just typing ./UscCmd, you can see all the
commands that you can send to your controller, as shown in the following screenshot:

Building a Robot that Can Walk

[106]

Note that although you can send a servo a specific target angle, the target is not in
angle values, so it makes it a bit difficult to know where you are sending your servo.
Try typing ./UscCmd --servo 0, 10. The servo will move to its maximum angle
position. Type ./UscCmd – servo 0, 0 and it will prevent the servo from trying
to move. In the next section, you'll write some Python code that will translate your
angles to the commands that the servo controller will want to receive to move it to
specific angle locations.

If you didn't run the Windows version of Maestro Controller and set
the Serial Settings to USB Chained, your motor controller might not
respond. Rerun the Maestro Controller code and set the Serial Settings
to USB Chained.

Creating a program on Linux to control
your quadruped
You now know that you can talk to your servomotor controller, and move your
servos. In this section, you'll create a Python program that will let you talk to your
servos to move them to specific angles.

Let's start with a simple program that will make your legged mobile robot's servos
go to 90 degrees (the middle of the 0 to 180 degrees you can set). This particular
controller uses bytes of information, so the code will translate the input of the
channel and angle to numbers that the controller can understand. For more details,
see http://www.pololu.com/docs/0J40. Here is the code to move all the connected
servos to the 90 degree point:

http://www.pololu.com/docs/0J40

Chapter 5

[107]

Here is an explanation of the code:

•	 #! /usr/bin/python: This first line allows you to make this Python file
executable from the command line.

•	 import serial: This line imports the serial library. You need the serial
library to talk to your unit via USB.

•	 def setAngle(ser, channel, angle): This function converts your
desired setting of servo and angle into the serial command that the
servomotor controller needs.

•	 ser = serial.Serial("/dev/ttyACM0", 9600): This opens the serial
port connection to your servo controller.

•	 for i in range(0, 15): This is for all 16 servo possibilities.
•	 setAngle(ser, i, 90): This allows you to set each servo to the middle

(home) position. The default would be to set each servo to 90 degrees.
If the legs of your robot aren't in their middle position, you can adjust
them by adjusting the position of the servo horns on each servo.

Building a Robot that Can Walk

[108]

To access the serial port, you'll need to make sure that you have the Python serial
library. If you don't, then type sudo apt-get install python-serial. After you
have installed the serial library, you can run your program by typing sudo python
quad.py.

Once you have the basic home position set, you can now ask your robot to do some
things. Let's start by making your quadruped wave an arm. Here is the Python code
that waves the arm:

In this case, you are using the setAngle command to set your servos to manipulate
your robot's front-right arm. The middle servo raises the arm, and the lower servo
then goes back and forth between angle 100 and 130.

Chapter 5

[109]

One of the most basic actions you'll want your robot to do is to walk forward. Here is
an example of how to manipulate the legs to make this happen:

This program lifts and moves each leg forward one at a time, and then moves all the
legs to home position, which moves the robot forward. Not the most elegant motion,
but it does work. There are more sophisticated algorithms to make your quadruped
walk as shown at http://letsmakerobots.com/node/35354 and https://www.
youtube.com/watch?v=jWP3RnYa_tw. Once you have the program working, you'll
want to package all of your hardware onto the mobile robot.

You can make your robot do many amazing things: walk forward, walk backward,
dance, turn around—any kinds of movements are possible. The best way to learn is
to try new and different positions with the servos.

http://letsmakerobots.com/node/35354
https://www.youtube.com/watch?v=jWP3RnYa_tw
https://www.youtube.com/watch?v=jWP3RnYa_tw

Building a Robot that Can Walk

[110]

Issuing voice commands to your
quadruped
You should now have a mobile platform that you can program to move in any number
of ways. Unfortunately, you still have your LAN cable connected, so the platform isn't
completely mobile. And once you have begun the program, you can't alter the behavior
of your program. In this section, you will use the principles from Chapter 1, Preparing
the BeagleBone Black, to issue voice commands to initiate movement.

You'll need to modify your voice recognition program so that it can run your Python
program when it gets a voice command. You have to make a simple modification to
the continuous.c program in /home/ubuntu/pocketsphinx-0.8/src/programs.
To do this, type cd /home/ubuntu/ pocketsphinx-0.8/src/programs, and then
type emacs continuous.c. The changes will occur in the same section as your other
voice commands and will look like this:

Chapter 5

[111]

The additions are pretty straightforward. Let's walk through them:

•	 else if (strcmp(word, "FORWARD") == 0): This checks the word as
recognized by your voice command program. If it corresponds with the word
FORWARD, it will execute everything inside the if statement. We use { } to tell
the system which commands go with this else if clause.

•	 system("/home/ubuntu/maestro_linux/robot.py"): This is the program
we will execute. In this case, our mobile platform will do whatever the
robot.py program tells it to do.

After doing this, you will need to recompile the program, so type make and the
pocketSphinx_continuous executable will be created. Run the program by typing
./pocketSphinx_continuous. Don't forget the ./ at the start of this command or
you'll run a different version of the program. When the program is running, you can
disconnect the LAN cable, and the mobile platform will now take the forward voice
command and execute your program.

Summary
You now have a robot than can walk! You can also add other sensors, like the ones
you discovered for your tracked robot, sensors that can watch for barriers, or even
a webcam.

In the next chapter, you'll start on a new robot. You'll build a robot that can sail
under your control or autonomously. You'll start by adding some basic control,
then you'll learn how to add a device to sense the wind and a GPS to add direction.

A Robot that Can Sail
You've built robots that can navigate on land; now let's look at some amazingly cool
possibilities for utilizing the tools to build some robots that dazzle the imagination.
You don't want to limit your robotic possibilities to just walking or rolling. You
might want your robot to sail. In this chapter, you'll see how to build a robot that can
sail the open sea, or at least your local park's pond.

In this chapter, you will build the basic sailing platform. To do this, you will learn
the following:

•	 Using the BeagleBone Black to control servos directly
•	 Communicating with your platform via long range RF signals so that you

can retain control of your robotic sailboat

The BeagleBone Black and robots that
can sail
Now that you've discovered that the BeagleBone Black can guide platforms that can
move on land, let's turn to a completely different type of mobile platform, one that
can sail. In this section, you'll discover how to add the BeagleBone Black to a sailing
platform and utilize it to control your sailboat.

A Robot that Can Sail

[114]

Building the sailboat platform
Fortunately, sailing in water is about as simple as walking on land. First, however,
you need a sailing platform. Here is an image of an RC sailing platform that can be
modified to accept control from the BeagleBone Black:

Chapter 6

[115]

In fact, many RC controller boats can be modified to add the BeagleBone Black.
All you need is space to put the processor, the battery, and any additional control
circuitry that you might need. In this case, the sailing platform has basically two
controls: a rudder that is controlled by a servo and a second servo that controls the
position of the sail. These are shown here:

You'll use your BeagleBone Black to control these two servos that will control both
the rudder and the sail position, so let's start by connecting these two servos to
the BeagleBone Black. You'll drive the two servomotor control signals from the
BeagleBone Black GPIO pins, but you'll supply the DC power from a battery.

Controlling servos with the BeagleBone Black
Once you have assembled your sailboat, you'll want to hook up the BeagleBone Black
to the servos on the boat. In order to connect this servomotor to your BeagleBone
Black, you'll need some male-to-male jumper cables. You'll notice that there are three
wires coming from the servo. Two of these supply the voltage and current to the servo.
The third provides a control signal that tells the servo where and how to move.

A Robot that Can Sail

[116]

The best way to connect the servo is to connect the power wires to a battery that will
supply power to the servos. The servos will want something more than 6 volts; a
2-cell 7.4 volt LiPo RC battery is an excellent choice. Here is an image of one of these:

You'll also need a USB battery to supply the BeagleBone Black with power. You can
connect the servos to the power of this LiPo battery by using male-to-male solderless
wires. The red wire output of the LiPo battery will be 7.4 volts, and the black wire
output will be GND. Here is an image of these connections:

You will connect the control signal of the servos to the GPIO pins of the BeagleBone
Black. There are two GPIO pin connectors on the BeagleBone Black, one on each side
of the board. They are labeled P8 and P9, but just in case you again need an image
with the pin-out, it is here:

Chapter 6

[117]

Connect the control wire connection on each servo, normally a yellow wire, to one
of the GPIO pins on the BeagleBone Black that supports PWM output. For example,
connect P8_13 and P9_14 on the BeagleBone Black. You can use P8_13 and P9_14 for
the two servos in this project. Here is an image of the connections:

When you have the electrical connections made, you'll need to write some code for
the BeagleBone Black.

A Robot that Can Sail

[118]

Controlling the servos on the sailboat from
a program
In order to control the servos with a Python script, if you have not done it previously,
you'll need to add a library that will allow you to talk to the GPIO pins via Python.
Follow these steps:

1.	 Install the sudo apt-get install build-essential python-dev
python-setuptools python-pip python-smbus packages.

2.	 Type sudo easy_install -U distribute. This will install easy_install,
a utility that will help manage Python packages.

3.	 Now type sudo pip install Adafruit_BBIO. This will install the Adafruit
library for talking via the GPIO pins.

4.	 To test your installation, type sudo python -c "import Adafruit_BBIO.
GPIO as GPIO; print GPIO", and you should see a screen like this:

Chapter 6

[119]

When you have installed the library, create this program to give you basic control
over the two servos:

When you run the program, you should be able to enter the servo number you
wish to control and the desired angle so that the servos can move to that angle.
If you need more information on servo control using the BeagleBone Black, look
at https://learn.adafruit.com/controlling-a-servo-with-a-beaglebone-
black?view=all. Now you can sail your boat, but you'll need to add the ability
to talk to it remotely.

Remote control of the sailboat
To sail the boat, you'll want to be able to send it commands from quite a distance.
One possible solution is wireless LAN. Unfortunately, most lakes or ponds won't
have an open wireless network available. You could create your own WLAN access
point, but the range will still be somewhat limited. The best possible solution is to
use ZigBee wireless devices to connect your sailboat to a computer.

https://learn.adafruit.com/controlling-a-servo-with-a-beaglebone-black?view=all
https://learn.adafruit.com/controlling-a-servo-with-a-beaglebone-black?view=all

A Robot that Can Sail

[120]

A ZigBee tutorial
The ZigBee standard is built upon the IEEE 802.15.4 standard, a standard that was
created to allow a set of devices to communicate with each other to enable low
data rate coordination of multiple devices. The ZigBee part of the standard ensures
interoperability between vendors of these low-rate devices. The IEEE 802.15.4 part
of the standard specifies the physical interface and the ZigBee part of the standard
defines the network and applications interface. Since we are only interested in the
physical interface working together, you can buy IEEE 802.15.4 devices, but ZigBee
devices are a bit more prevalent and are a superset of the IEEE 802.15.4 and are also
quite inexpensive.

The other standard that you might see as you try to purchase or use devices like these
is XBee. This is a specific company's implementation, Digi, of several different wireless
standards with standard hardware modules that can connect in many different ways
to different embedded systems. Their website is available at http://www.digi.com/
xbee/. They make some devices that support ZigBee; here is an image of this type of
device attached to a shield that provides a USB port:

The advantage of using this device is that it is configured to make it very easy to
create and manage a simple link between two XBee series #1 devices. Make sure that
you have an XBee device that supports ZigBee series #1. You'll also need to purchase
a shield that provides a USB port connection to the device. Note that some USB XBee
shields require a special driver to talk to the device; check yours when you purchase
the device.

http://www.digi.com/xbee/
http://www.digi.com/xbee/

Chapter 6

[121]

Now, let's get started by configuring your two devices to talk. Plug one of the devices
into your personal computer. Your computer should find the latest drivers for the
device. You should see your device when you select the Devices and Printers section
from the Start menu, like this:

The device is now available to communicate with via the IEEE 802.15.4 wireless
interface. We could set up a full ZigBee-compliant network, but we're just going to
communicate from one device to another directly, so we'll just use the device as a
serial port connection. Double-click on the device, and then select the Hardware tab.
You should see this:

A Robot that Can Sail

[122]

Note that the device is connected to the COM20 serial port. We'll use this to
communicate with the device and configure it. You can use any terminal emulator
program; I like to use PuTTY, which is already on my computer. It is free and available
at http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html.

Perform the following steps to configure the device:

1.	 Open PuTTY. Select the Serial option and (in this case) the COM20 port.
Here is how to fill in the PuTTY window to do this:

2.	 Configure the terminal window with the following parameters (the Serial
option on the Category option set): insert 9600 in the Speed (baud) field,
insert 8 in the Data bits field, select None from the Parity drop-down menu,
and insert 1 in the Stop bits field.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Chapter 6

[123]

3.	 Select the Terminal option on the left-hand side of the window. Make sure
that you also select Force On for Local Echo, and check the Implicit CR in
every LF and Implicit LF in every CR checkboxes:

A Robot that Can Sail

[124]

4.	 Connect to the device by selecting Open.
5.	 Enter the following commands in the device through the terminal window:

The OK response comes back from the device as you enter each command.
Now plug the other device into the PC. Note that it might choose a different COM
port. Go to the Devices and Printers section, double-click on the device, and select
the Hardware tab to find the COM port. Follow the same steps to configure the
second device, except that there will be two changes. Here is the terminal window
for these commands:

Chapter 6

[125]

The devices are now ready to talk to each other. Plug one of the devices into the
BeagleBone Black USB port. Using a terminal window, show that the devices are
connected by typing ls /dev/tty*. It will look something like this:

Notice that the device appears at /dev/ttyUSB0. Now you'll need to create a
Python program that will read this input. But before you do that, you'll need
to download serial communication capability through Python. To do this, type
sudo apt-get install python-serial. When the download is complete,
add your user to the dialout group so that you can use the serial port by typing
sudoadduserubuntudialout.

A Robot that Can Sail

[126]

Once you have this capability configured, here is a listing of a simple program to
communicate via a serial port:

Here is what the code does:

•	 #!/usr/bin/python: This allows your program to be executed without
invoking Python on the command line.

•	 import serial: This imports the serial port library.
•	 Ser = serial.Serial('/dev/ttyUSB0', 9600, timeout = 1000):

This opens a serial port pointing to the /dev/ttyUSB1 port, with a baud
rate of 9600 and a timeout of 1000 seconds.

•	 x = 'n': This defines a character variable and initializes it to 'n', so we
go through the loop at least once.

•	 while x != 'q': This is a while loop; you'll go through this until the
user enters the q character.

•	 x = ser.read(1): This reads one byte from the serial port.
•	 print x: This prints out the value.

Chapter 6

[127]

Now run readData.py in a terminal window on the BeagleBone Black. Run the
PuTTY program on your personal computer connected to the other XBee module,
but set the flow control to XON/XOFF. You should see the characters that you type
on the personal computer terminal window comes out on the terminal window
running on the BeagleBone Black. Here are the two screens, side by side:

Connecting this functionality to your sailboat is very easy. Start with the servo.
py program that you created earlier in this chapter. Copy it into a new program by
typing cp servo.py sail.py. Now let's remove some of the code—parts that you
don't need—and add a bit that will accept the character input from the XBee module.
Here is a listing of the code:

A Robot that Can Sail

[128]

There are really only three changes:

•	 import serial: This imports the serial library.
•	 serInput = serial.Serial('/dev/ttyUSB0', 9600, timeout = 1000):

This line sets up a serial port, getting input from the XBee device. It is
important to note that the USB0 and USB1 settings might be different in your
specific configuration, based on whether the XBee serial device or the motor
controller serial device configures first.

•	 servo = int(ser.read(1)) and angle = int(ser.read(3)): Instead
of getting the input from the user via the keyboard, you will be reading the
character from the XBee device. The first number will tell which servo you
are going to control, 1 or 2; and the next three characters will set the angle
to move to, for example, setting the servo to 0 and the angle to 020 would
move servo 0 to angle 20.

That's it. Now your sailboat should respond to commands sent from your terminal
window on your personal computer. In this case, the first character will determine
the servo to move, and the next three will determine the angle for that servo. You
could also create an application on the personal computer that could turn mouse
movement or some other input into proper commands for your robot.

Summary
After completing this chapter, you should have a working sailboat where your
BeagleBone Black can control the two servos to control the positions of the rudder
and the sail. You should also be able to do this remotely at quite a distance using
your XBee devices.

In the next chapter, you'll add a GPS device to your sailing platform. That way,
you will not only know where you are but can also plan your bearing so that you
can sail in an automated way to a new waypoint.

Using GPS for Navigation
Your sailboat can sail, but you might want it to sail to a specific location. One of the
coolest devices that you can connect to your robot is a GPS location device. It will
allow your sailboat to know where it is, and then you can also know the bearing
and distance to a new location.

In this chapter, you will be doing the following things:

•	 Connecting the BeagleBone Black of your sailboat to a GPS device so that
it can know where it is

•	 Accessing the GPS programmatically so that you can use this position to
determine the bearing and distance to a new location

Beginning with a GPS tutorial
Before you get started, let's start with a brief tutorial on GPS. GPS, which stands for
Global Positioning System, is a system of satellites that transmits signals. GPS devices
use these signals to calculate a position. There are a total of 24 satellites transmitting
signals all around the earth at any given moment, but your device can only see the
signal from a much smaller set of satellites.

Using GPS for Navigation

[130]

Each of these satellites transmits a very accurate time signal that your device can
receive and interpret. It receives the time signal from each of these satellites, and then
based on the delay—the time it takes the signal to reach the device—it calculates the
position of the receiver based on a procedure called triangulation. The following two
diagrams illustrate how the device uses the delay differences from three satellites to
calculate its position. The system can use more than three satellites, but for the sake of
simplicity, let's look at how your device can use three satellites to determine location.

T1

T2

T3

GPS Device

The GPS device receives three signals from T1, T2, and T3, each coded with the
time at which the signal was sent. The device then detects three signals. It compares
each signal with the current time and determines the time delays associated with
receiving these signals. It can then calculate the distance associated with the time the
signal took to travel to the device. In the next diagram, the device is at a different
location, and the time delays associated with the three signals have changed:

T1 T2

T3

GPS Device

Chapter 7

[131]

The time delays of the signals T1, T2, and T3 can provide the GPS with an absolute
position using a mathematical process called triangulation. Since the position of the
satellites is known, the amount of time that the signal takes to reach the GPS device
is a measure of the distance between that satellite and the GPS device. To simplify,
let's show an example in two dimensions. If the GPS device knows the distance
from itself to one satellite based on the amount of time delay, we could draw a
circle around the satellite at that distance and know that our GPS device is on
that sphere, as shown in this diagram:

T1=distance to edge

of circle

If you have two satellites that send signals and you know the distance between the
two, you can draw two circles, as shown in the following diagram:

T1=distance

to edge of

circle

T2=distance

to edge of

circle

Using GPS for Navigation

[132]

However, you know that since you can only be at points on the circle, you must
be at one of the two points that are on both circles. Adding an additional satellite
would eliminate one of these two points, providing you with an exact location. You
will need more satellites if you are going to do this in all three dimensions. For more
information on how GPS works, see http://www.trimble.com/gps_tutorial/.

Now that you know how GPS works, you can connect one to your BeagleBone Black.

Connecting GPS to the BeagleBone Black
First, you'll need to obtain a GPS unit. There are many that are available, with different
interfaces. Connecting a device that has a USB interface is very straightforward.
When you plug the USB device into the BeagleBone Black, it will automatically try to
recognize the new device and install the driver for it. The advantage of this approach
is that it is very easy and you won't need to update any driver files. The problem with
this approach is that you will need to add a powered USB hub.

Another possible choice that won't require an additional USB hub is a GPS that
can connect to the RX/TX GPIO pins of the BeagleBone Black. The VPN1513 GPS
Receiver w/ Antenna, marketed by Parallax and available on their online store,
is an example of this choice. Here is an image of the device:

You should also purchase an antenna that can connect to the RF (gold) connector
on the board. This is type SMA; these are available from electronic online retailers.
Here is an image of a possible antenna:

http://www.trimble.com/gps_tutorial/

Chapter 7

[133]

This particular device uses a standard RX/TX (UART) interface, one that your
BeagleBone Black supports. In order to connect the device, you'll need to connect
to the pins on the board. Here is an image of those pins:

You'll connect your BeagleBone Black using the male-to-female solderless jumper
cables. Here are the connections on the BeagleBone Black:

BeagleBone Black pin GPS cable pin
P9_3 VCC
P9_1 GND
P9_26 TX
P9_24 RX

Now that the two devices are connected, you can access the device via the
BeagleBone Black.

Using GPS for Navigation

[134]

Communicating with the GPS
The GPS device will be talking over the RX/TX interface, so you'll need to use the
Adafruit libraries that you installed in Chapter 6, A Robot that Can Sail. Now you
are going to create a simple Python program that will read the location string from
your GPS device. Before you do this however, you may need to add some additional
software drivers so that your BeagleBone Black can talk via the RX/TX interface.
To find out if you need to add them, type ls /dev/tty* in the prompt. You will
be looking for the /dev/tty01 listing. This will be available in some releases, but in
many it will not. If it is not available, then do the following:

1.	 Go to www.armhf.com/beaglebone-black-serial-uart-device-tree-
overlays-for-ubuntu-and-debian-wheezy-tty01-tty02-tty04-tty05-
dtbo-files/ and download the ttyO1_armhf.com-00A0.dtbo file. This
is an overlay file that defines a hardware interface. The web page has more
information on overlay files, how they are created, and why they are important.

2.	 Copy this file to the /lib/firmware directory.
3.	 Become the root user by typing sudo su and the appropriate passwords.
4.	 Now you'll need to issue the echo ttyO1_armhf.com > /sys/devices/

bone_capemgr*/slots command.

If you've done these steps correctly, you can type in ls /dev/tty* and you should
now see the /dev/tty01 device. Unfortunately, you'll need to type the command
listed in step 3 and step 4 every time you boot to enable the device. You can type
it in a .*sh script file to be executed at each startup. See http://askubuntu.com/
questions/814/how-to-run-scripts-on-start-up for several ways to do this.

Now that your BeagleBone Black can talk via the RX/TX interface, you'll create a
program to communicate with the GPS unit. To do this, if you are using Emacs as
an editor, type emacs measgps.py. A new file called measgps.py will be created.
Then type the following code:

www.armhf.com/beaglebone-black-serial-uart-device-tree-overlays-for-ubuntu-and-debian-wheezy-tty01-tty02-tty04-tty05-dtbo-files/
www.armhf.com/beaglebone-black-serial-uart-device-tree-overlays-for-ubuntu-and-debian-wheezy-tty01-tty02-tty04-tty05-dtbo-files/
www.armhf.com/beaglebone-black-serial-uart-device-tree-overlays-for-ubuntu-and-debian-wheezy-tty01-tty02-tty04-tty05-dtbo-files/
http://askubuntu.com/questions/814/how-to-run-scripts-on-start-up
http://askubuntu.com/questions/814/how-to-run-scripts-on-start-up

Chapter 7

[135]

Let's go through the code to see what's happening:

•	 #!/usr/bin/python: As before, the first line simply makes this file available
for you to execute from the command line.

•	 import Adafruit_BBIO.UART as UART: You'll import the Adafruit UART
library. This will allow us to interface with the BeagleBone Black's GPIO pins.

•	 import serial: This allows you to import the serial library to interface with
the RX/TX port.

•	 UART.setup("UART2"): This initializes the interface to the tty01 device.
•	 ser = serial.Serial(port = "/dev/ttyO1", baudrate=9600):

This command sets up the serial port to use the /dev/ttyO1 device,
which is our GPS sensor, using a baud rate of 9600.

•	 x = ser.read(1200): This is the next command that reads a set of values
from the RX/TX port. In this case, you read 1200 values that will include
a full set of GPS data.

•	 print x: This is the final command that prints the value.
•	 ser.close(): This command closes the serial port.
•	 UART.clearup(): This cleans up the UART port.

Using GPS for Navigation

[136]

Once this file has been created, you can run the program and talk to the device.
Do this by typing sudo python measgps.py and the program will run. You should
see something like the following screenshot:

The device is providing raw readings back to you, which is a good sign. Unfortunately
there isn't much good data here as the unit is inside. How do you know this? Look at
one of the lines that start with $GPRMC. This line should tell you your current latitude
and longitude values. The GPS is reporting the following command:

$GPRMC,160119.170,V,,,,,,,011013,,,N*

Chapter 7

[137]

This line of data should show results similar to the following, with each field separated
by a comma:

0 $GPRMC

1 220516

2 A

3 5133.82

4 N

5 00042.24

6 W

7 173.8

8 231.8

9 130694

10 004.2

11 W

12 *70

The following is the explanation of each of these fields:

Field Value Explanation
1 220516 Timestamp
2 A Validity—A (OK), V (Invalid)
3 5133.82 Current latitude
4 N North or south
5 00042.24 Current longitude
6 W East or west
7 173.8 Speed in knots you are moving
8 231.8 Course—the angle direction in

which you are moving
9 130694 Date stamp
10 0004.2 Magnetic variation—variation from

magnetic and true North
11 W East or West
12 *70 Checksum

Using GPS for Navigation

[138]

In this case, field number 2 reports V, which means the unit cannot find enough
satellites to get a position. Taking the unit outside, you should get something like
this with your measgps.py file:

Notice that the $GPRMC line now reads this:

$GPRMC,020740.000,A,4349.1426,N,11146.1064,W,1.82,214.11,021013,,,A*7B

The field values are now as follows:

Field Value Explanation
1 020740.000 Timestamp
2 A Validity—A (OK), V (Invalid)
3 4349.1426 Current latitude
4 N North or south
5 11146.1064 Current longitude
6 W East or west
7 1.82 Speed in knots you are moving
8 214.11 Course—the angle direction in which

you are moving
9 021013 Date stamp
10 Magnetic variation—variation from

magnetic north to true north

Chapter 7

[139]

Field Value Explanation
11 East or west
12 *7B Checksum

Now you know where you are. However, it is in the raw form. In the next section,
you will learn how to do something with these readings.

Parsing the GPS information
Your project will now have the GPS connected and also have access to querying the
data via serial port. In this section, you will create a program to use this data to find
where you are, and then you can determine what to do with that information.

If you have completed the last section, you should be able to receive the raw data
from the GPS unit. Now you will be able to take this data and do something with it.
For example, you can find your current latitude, longitude, and altitude, and then
decide if your goal location is to the east or west, and to the north or south.

The first thing you'll need to do is parse the information out of the raw data.
As noted previously, your position and speed are in the $GPMRC output of our
GPS. First, you will write a program to simply parse out a couple of pieces of
information from that data. Create a new file that looks like this screenshot:

Using GPS for Navigation

[140]

Here are the details of the code shown in the preceding screenshot:

•	 #!/usr/bin/python: As always, the first line simply makes this file available
for you to execute from the command line.

•	 import serial: This line allows you to import the serial library to interface
with the RX/TX port.

•	 UART.setup("UART2"): This initializes the interface to the tty01 device.
•	 ser = serial.Serial(port = "/dev/ttyO1", baudrate=9600):

This command sets up the serial port to use the /dev/ttyO1 device,
which is your GPS sensor, using a baud rate of 9600.

•	 x = ser.read(1200): This is the next command that reads a set of values
from the RX/TX port. In this case, you read 1200 values, which will include
a full set of GPS data.

•	 pos1 = x.find("$GPRMC"): This will find the first occurrence of $GPRMC
and set the value of pos1 to that position. In this case, you want to isolate
the $GPRMC response line.

•	 pos2 = x.find("\n", pos1): This will find the pos1 string variable.
•	 loc = x[pos1:pos2]: The loc variable will now hold the line with all

the information you are interested in.
•	 data = loc.split(','): This will take your comma-separated line

and break it into an array of values.
•	 if data[2] == 'V': You now check to see if the data is valid. If not,

the next line simply prints that you did not find a valid location.
•	 else: If the data is valid, the next few lines will print the various pieces

of data.

Chapter 7

[141]

Here is a screenshot showing the results when my device was able to find its location:

Now you have the information about your current location.

Calculating distance and bearing
Now that you have the data, you can do some interesting things with it. For your
sailboat, you'll need to use your current location and a desired new location to give
your sailboat a distance and a bearing.

Longitude from your GPS device is a measure of where you are on the earth with
respect to east/west. Latitude is a measure of where you are with respect to north/
south. These readings are normally given in degrees (considering the fact that the
globe is round, so the readings start at 0 degrees and end at 360 degrees.) Since the
earth is very large, the readings also include minutes and seconds, where a single
degree is divided into 60 minutes and each minute is divided into 60 seconds.

In order to calculate distance and bearing, you're going to start with longitudinal
and latitudinal positions on the earth's surface in the degrees.minutes.seconds
format. You'll then translate these values into a digital degree format and use the
haversine formula to calculate distance and bearing.

Using GPS for Navigation

[142]

To understand the details of how the haversine formula works, refer
to http://en.wikipedia.org/wiki/Haversine_formula.
The website at http://www.movable-type.co.uk/scripts/
latlong.html shows how the formula can be used to calculate
distance and bearing.

Here is the Python code that shows the functions that convert the degree.minutes.
seconds format to the digital degrees format, a function that calculates distance using
the haversine formula, and another function to calculate the bearing to a new location:

http://en.wikipedia.org/wiki/Haversine_formula
http://www.movable-type.co.uk/scripts/latlong.html
http://www.movable-type.co.uk/scripts/latlong.html

Chapter 7

[143]

The following is the code that illustrates how to call these functions:

The first step in the code is to set up the UART to receive the GPS data. Then you'll
set the desired new location in terms of its longitude and latitude, each in the deg.
min.sec format. Then the program will get the GPS data, and you can extract the
latitude and longitude data from it and convert them to the digital degree format,
as mentioned earlier. Then you can call both the distance and the bearing functions,
and print both the distance and the bearing to the new point.

Using GPS for Navigation

[144]

Summary
Now your sailboat has the ability to sail using the control of the rudder and the
sail. It also has the ability to both know where it is, and calculate the distance and
direction of a new waypoint. However, there is one additional capability that you'll
need, that is, information about the wind so that you can actually sail your boat.
You'll learn that in the next chapter, and you'll have a complete sailing robot.

Measuring Wind Speed –
Integrating Analog Sensors

Now your sailboat knows where it is, and you can control the rudder and sail; you'll
now want to do some actual sailing. But because you don't have an onboard power
source, you're going to rely on the wind for your power. To do this, you'll need some
way of sensing both the direction as well as the strength of the wind.

In this chapter, you'll learn the following things:

•	 Connecting an analog wind sensor to the BeagleBone Black
•	 Using the BeagleBone Black analog-to-digital converter to read the value

of the wind speed
•	 Some of the basics of sailing so that you can sail in almost any direction

Measuring Wind Speed – Integrating Analog Sensors

[146]

Connecting an analog wind speed sensor
Since you are going to use wind as your power source, you'll need to know both the
direction and strength of the wind. You can do this with an analog wind sensor. Here
is an image of a wind sensor that is fairly inexpensive, from www.moderndevices.com:

You can mount it to the mast if you'd like. You can perhaps use a small piece of
heavy-duty tape and mount it to the top of the mast. However, as you'll see a bit
later, it will be useful to be able to turn the sensor in order to do a complete sensing
of the wind, so it is useful to mount the sensor to a servo.

In order for the BeagleBone Black to talk with this device, you'll need to connect it to
the GPIO pins. Here is a close-up of the connections that the wind sensor requires:

You'll need a GND and +V connection. The +V pin will be connected to the 5-volt
connection of the BeagleBone Black, P9_5 of the GPIO set, and the GND pin will be
connected to the ground connection of the BeagleBone Black ADC, P9_34. The TMP
pin on this sensor is a temperature measurement—you won't use it in this project.

www.moderndevices.com

Chapter 8

[147]

There are two connections on the wind sensor that you could use to sense wind. The
Out pin is an output that you can actually calibrate using the small potentiometer on
the device. The RV pin is the raw voltage output of the sensor. Here is a graph, from
the manufacturer's website, of two different outputs at different values temperature
and wind speed:

You'll use the Out connection, and you'll connect it to one of the ADC inputs on the
BeagleBone Black, P9_40. However, you can't connect this input directly to the pin,
as the upper limit of the ADC is 1.8 volts, whereas this input can come in at up to 5
volts. You'll need to build a voltage divider circuit to translate the 0- to 5-volt signal
to one that has a range from 0 to 1.8 volts, and a calculator to allow you to decide
on the resistor values. A voltage divider is a simple circuit that uses two resistors of
correct values to scale the voltage. See https://learn.sparkfun.com/tutorials/
voltage-dividers for details on the principles behind the voltage divider. In this
case, you will need to reduce the voltage by a factor of 1.8/5 or 0.36. If you choose
a 1-kilo-ohm resistor for R2, then you'll want a 1.8-kilo-ohm resistor for R1.

https://learn.sparkfun.com/tutorials/voltage-dividers
https://learn.sparkfun.com/tutorials/voltage-dividers

Measuring Wind Speed – Integrating Analog Sensors

[148]

Choosing these resistor values also makes sure that the resistors you choose are not
so large that the device cannot drive them with enough current for the BeagleBone
Black to sense the voltage. They must also not be too small, lest the device drives the
BeagleBone Black with too much current. The choices of these two resistor values
meets these requirements for this device. Here is a circuit diagram showing how to
connect the device using the resistors:

Now that the hardware is connected, you'll want to read the values from the wind
sensor programmatically.

Getting sensor data from the wind speed
sensor
You'll use the same Adafruit library that you used in the previous chapters. If you
have not installed this library, then install it and follow the instructions in Chapter 6,
A Robot that Can Sail. Then create the following program:

Chapter 8

[149]

When you run the program, you will see the output of the wind sensor in volts.
You can put the wind sensor near a fan and you should see the value change,
as shown in the following screenshot:

Note that this will give you an indication of the strength
of the wind, but the reading is not calibrated.

Measuring Wind Speed – Integrating Analog Sensors

[150]

In this case, you won't need a calibrated reading but just a relative indication of
strength; you'll then use it to gauge the direction of the wind. As noted earlier, you'll
want to mount the wind sensor on a servo. This can give you a better indication of
the direction of the wind with respect to the sailboat. To do this, connect the servo as
noted in Chapter 6, A Robot that Can Sail. Connect the control wire connection on this
servo to P9_16 on the BeagleBone Black. You had used pins P8_13 and P9_14 for two
other servos in this project.

Now you can add the servo control to your windsensor.py script to scan and record
the strength of the wind with respect to the orientation of your sailboat. Here is a
program that does this:

Most of this code should look familiar. You'll first import the Adafruit libraries
that will allow you to access the GPIO pins for the ADC and for the servo control.
Then you'll set up the ADC and the servo control. The loop will then go through the
angles of 0 degrees, 45 degrees, 90 degrees, 135 degrees, and 180 degrees, giving you
the wind sensor reading.

The last section of code simply searches for the maximum value of wind speed at
these angles and then returns the angle of the maximum. This will give you the
wind direction with respect to the boat's bow.

Chapter 8

[151]

Here are some sample results of angles and speeds:

Now you have a way to tell the wind direction.

One of the challenges of this method is that you will not be able
to tell the absolute direction of the wind, as the wind sensor won't
know if it is coming or going. You'll need to use the results of the
force of the wind on your sailboat to determine whether you are
sailing with or against the wind.

Some basics of sailing
Now that you have set up everything, pack up your electronics in any sort of
water-resistant plastic case, and your sailboat should be ready to sail.

One word of caution
Electronics and water normally do not mix well. Make sure
that your BeagleBone Black and all the associated circuitry
is well buttoned up in as watertight a container as possible.
Use a silicon sealant or some other waterproof sealant from
where your wires enter or leave the enclosure.

Measuring Wind Speed – Integrating Analog Sensors

[152]

Your sailboat can now sense wind, control the rudder and sail, know where it is and
what speed and angle it is moving at, and calculate the bearing and distance to a
new destination. In order to complete your robot, you'll need a bit of information on
how to sail. First, as a word of caution, this is not coming from an expert sailor, but
there are many excellent tutorials on sailing. Try www.simpleeditions.com/61001/
how-to-sail for more information on the details of sailing. Also, you'll find a very
interesting interactive tutorial on sailing at www.sailx.com.

But, perhaps, some basics are in order. To keep it simple, you need to concern
yourself with five things—three inputs and two settings. The first input is the
current location, direction, and speed. These will all be available from the GPS
unit. The second input is the desired destination location—something that you'll
need to program your sailboat to understand. The third input is the wind direction,
which will come from the wind sensor.

The first of the two settings is the rudder setting. The rudder is set by controlling
the servo attached to it, and it can be straight with the boat, or pointed to the left at
some angle, or pointed to the right at an angle. To turn the boat, you will simply set
the rudder to the correct position to create a turn. Here is a diagram of the rudder
positions for a right and left turn:

The final setting is the sail setting. This setting can be either in, that is, the sail is
pulled tightly so that it is in line with the boat, or out, that is, it can swing out to
the side of the boat.

www.simpleeditions.com/61001/how-to-sail
www.simpleeditions.com/61001/how-to-sail
www.sailx.com

Chapter 8

[153]

Now let's understand how to sail your boat both with and against the wind. Here is a
diagram that will help you understand the concepts of sailing:

In this case, the diagram shows that the sail is in, and your rudder is in line with the
boat. Now let's introduce some wind. If you want to sail with the wind, your boat's
rudder and sail should be configured like this:

Measuring Wind Speed – Integrating Analog Sensors

[154]

To sail directly with the wind, your rudder should be in line with the boat, but
the sail should be all the way out, thus allowing maximum area of the sail to get
exposed to the wind. Now it would be wonderful if the wind is always behind your
sailboat, but that won't be the case. There will be times when you will want to sail
perpendicular to the wind, and even times when you will want to sail against the
direction of the wind. So let's look at how to set up your sailboat for these cases.

For the case where you want to sail perpendicular to the wind, you'll need to
configure your boat like this:

This is called a beam reach, and once you have made any turn, you'll adjust your
rudder to be straight behind the boat again. The sail will be out at about 45 degrees,
or half way between in line with the bow and stern, and all the way to the side.

Now let's cover the case where you want to sail into the wind. First, you need to
realize that you cannot sail directly into the wind. This is called irons. However,
if you point your boat at least 60 degrees from the direction of the wind, you can
sail in that direction. Here is a diagram of this orientation:

Chapter 8

[155]

The problem with this is, if you sail in this direction, you cannot reach a destination
that is less than 60 degrees in the wind direction. To reach destinations in this
area, you'll need to do a manoeuvre called a tack. To tack is simply to use a set of
manoeuvres, crossing back and forth at a 60 degree angle into the wind, so that you
can arrive at a destination that is directly against the direction of the wind. Here is a
diagram of tacking:

You now have all of the information you need to construct your sailing program.

Measuring Wind Speed – Integrating Analog Sensors

[156]

Summary
Now you have all the tools to create a program to sail your boat autonomously.
It knows where it is and where it is going, and can sense the wind to use that to
sail towards a specific destination. The next few chapters will introduce an entirely
new application of the BeagleBone Black—and underwater ROV to explore things
under the surface of water.

An Underwater Remotely
Operated Vehicle

Now you know how to build a rolling robot, and a sailboat, but what about all the
amazing discoveries under the surface of the water? In this chapter, you'll build an
underwater Remotely Operated Vehicle (ROV). This will allow you to explore the
depths without getting wet.

In this chapter, you'll learn the following:

•	 Constructing the ROV mechanical system
•	 Controlling DC motors that can go both ways to power your

underwater vehicle

An underwater ROV offers an entirely different way of using the BeagleBone Black
to explore a new world. This project is a bit different in two ways. Firstly, there is
quite a bit of mechanical work to do, and secondly, it is almost impossible to send
wireless signals through water, so you are going to use a tethered control line to
give directions to your robot.

Building the hardware for the ROV
There are several possible approaches to build your ROV. The mechanical design
at openrov.com/page/openrov-2-0 is quite elegant and available for purchase as
a complete kit or as component parts. At openrov.com/page/open-rov-designs-1,
there is a simpler yet similar design. At www.instructables.com/id/Underwater-
ROV/, there is another design that is very different from the first. All of these designs
could certainly use the BeagleBone Black as the embedded controller.

openrov.com/page/openrov-2-0
openrov.com/page/open-rov-designs-1
www.instructables.com/id/Underwater-ROV/
www.instructables.com/id/Underwater-ROV/

An Underwater Remotely Operated Vehicle

[158]

My physical design is based more on the latter design, using mostly plastic PVC
piping as shown in the following image:

This hardware design was done using standard PVC for the main chamber and the
two chambers that hold the ballast. The main chamber is 12 inches long and 6 inches
in diameter. The two smaller chambers are made from two PVC pipes that are 20
inches long and 2 inches in diameter. These small chambers are capped at both ends
and hold the weight required to make your ROV neutrally buoyant. Be prepared to
add significant weight to your ROV. I had to add 25 pounds of lead to mine to get it
to do anything but a bob on top of the surface!

At the rear of the ROV, you'll want some way to be able to gain access to the main
chamber while also making it watertight when you want to try your ROV. For this
purpose, I used a CHERNE Model # 271578 6-inch Econo-Grip Plug. This is available
at most plumbing stores and also online. Here is an image of the CHERNE pipe plug:

The concept of the plug is quite simple. As you tighten the nut, the rubber seal spreads
and seals the PVC pipe.

Chapter 9

[159]

One of the most important components of your ROV is the clear plastic front casing,
as you'll need to be able to use a camera to see the world under the water. Here you
have two choices. You can go for a flat piece of clear acrylic. Here is an image of the
ROV with a flat piece of acrylic:

You can also choose a rounded dome of clear acrylic, as shown in the following
image. This came from a company called EZ Tops, and it can be ordered online at
www.eztopsworldwide.com/smalldomes.htm. You will put it on the end of your
ROV, assembled with a gasket and some small bolts. This clear plastic gives you
a good view of the underwater world and reduces the drag when moving in the
forward direction.

The final piece of hardware that is important is the light. I chose a Cree LED work light,
as it is waterproof and provides a significant amount of light while using only 18 watts.
It operates from 9 to 12 volts, so I added a 3S RC LiPo battery to power the light.

www.eztopsworldwide.com/smalldomes.htm

An Underwater Remotely Operated Vehicle

[160]

You'll need three batteries for your project. One 3S RC LiPo battery to power the
DC brushless motors, another 3S RC LiPo battery to power the LED light, and a
5 V battery to power the BeagleBone Black. I like to use a simple cell phone charge
battery. Here is an image of such a battery:

The motor mounts and offsets are 3D printed in my model, but they can just as
easily be constructed out of PVC material available at the local hardware store.
The connections between the three PVC parts are made by long bolts inside
aluminum rods.

Make sure you use either rubber washers or silicon caulking at
every hole in the main compartment to ensure you don't have
any water leaks.

Controlling brushless DC motors using
the BeagleBone Black
Whichever physical design you choose, you'll need to control the motors, and the
BeagleBone Black can do this task. In this case, I chose fairly standard brushless
DC motors, four Turnigy D2836 9 950KV Brushless Outrunner Motors available at
hobbyking.com, and then fitted them with RC boat propellers, the Traxxas Propeller
Left 4.0mm Villain EX TRA1584 available at rcplanet.com. These motors work just
fine when underwater and are easy to control with radio-controlled Electronic Speed
Controllers (ESC).

For this project, you'll need four brushless DC motors, and four ESC controllers.
You'll need to make sure that the ESCs will be able to control the motors to go both
forward and backwards. Here is an image of one such unit:

http://www.hobbyking.com
http://www.rcplanet.com

Chapter 9

[161]

This particular unit is a Turnigy Trackstart 25A ESC, made normally for an RC car,
and is available at many retail and online RC outlets. The connections on this unit
are straightforward. The red and black wires with plugs go to an RC battery, in this
case, a 3S 11.1 volt LiPo RC battery. The other three connections go to the motor.
This particular ESC comes with a switch—you won't use it in this particular project.
The last connection is a three wire connector similar to a servo connection. You'll
connect this to the BeagleBone Black. Here is an image of the connections:

An Underwater Remotely Operated Vehicle

[162]

For details on the ESC-to-brushless-DC-motor connection, check the
ESC documentation at http://www.hobbyking.com/hobbyking/store/
uploads/981860436X852229X19.pdf. You'll connect the four motors to the
BeagleBone Black, but you'll want to connect the two motors that are pointing
forward to two different control pins on the BeagleBone Black, in this case, P8_13
and P9_14. This will allow you to use these two motors to steer the ROV, as you
can then move these motors forward and backward separately. You'll connect the
motors that are pointing up and down to P9_21 and P9_42.

In order to make this arrangement sturdy, I added a prototyping cape to the
BeagleBone Black and solder connectors to facilitate the connections. These
bare capes are available online at most retailers that sell the BeagleBone Black.
Here is an image of the cape connected to the BeagleBone Black:

Now the connections are available, so you can control the motors programmatically.

Program to control DC motors using the
BeagleBone Black
Now that you've connected your motor, here is a simple Python program to control
one of the motors:

http://www.hobbyking.com/hobbyking/store/uploads/981860436X852229X19.pdf
http://www.hobbyking.com/hobbyking/store/uploads/981860436X852229X19.pdf

Chapter 9

[163]

Let's look at the details. Here are the individual command statements:

•	 #!/usr/bin/python: As noted earlier, this command sets up the program
to be executed without invoking Python

•	 import Adafruit_BBIO.PWM as PWM: This library is used to communicate
with the GPIO pins

•	 motor1 = "P8_13": This sets the motor to PWM control P8_13—the 13th
pin on the 8th connector

•	 duty_stop = 9: This sets the duty cycle of the PWM that is needed to stop
the motor

•	 duty_forward = 12 # 12 max: This sets the duty cycle of the PWM signal
on the control pin that is needed to make the motor go in the forward
direction at the maximum speed

An Underwater Remotely Operated Vehicle

[164]

•	 duty_back = 6 # 6 min: This sets the duty cycle of the PWM signal on
the control pin that is needed to make the motor go in the backward direction
at the maximum speed

•	 PWM.start(motor1, duty_stop, 60.0): This sets the PWM signal to stop
the motor before you start the program

•	 print "Ready": This prints Ready to the screen
•	 key = '0': This initializes the key to be a character with a value of '0'
•	 while key != 'q': This keeps the loop going until 'q' is entered
•	 key = raw_input(">"): This gets a single character and uses the '>'

character as a prompt
•	 print key: This prints the character entered
•	 if key == '1': # Forward: If the key is a 1, then you'll set the

motor to go forward
•	 PWM.set_duty_cycle(motor1, duty_forward): This sets the PWM signal

to full power forward
•	 elif key == '2': # Backward – If the key is a 2, then you'll set

the motor to go backward
•	 PWM.set_duty_cycle(motor1, duty_back): This sets the PWM signal to

full power backward
•	 elif key == '3': # Stop: If the key is 3, then you'll set the motor

to stop
•	 PWM.set_duty_cycle(motor1, duty_stop): This sets the PWM signal

to stop
•	 elif key == '4': # Shutdown: If the key is 4, then this shuts the

motor down
•	 PWM.stop(motor1): This disables the control signal connected to motor1
•	 PWM.cleanup() # stop all signals: This cleans up all the control signals

throughout the library

Running this program should cause motor1, which is connected to the P8_13 GPIO
pin, to run forward, backward, and stop. You can check all four motors using this
code by changing the motor1 = "P8_13" statement and placing P9_21, P9_14, or
P9_42 inside the quotes. This will allow you to check the state of all four motors.

Chapter 9

[165]

Controlling the speed and direction of each of these motors will allow you to move
your ROV forward, backward, up, and down, as well as turn your ROV. How much
speed you would apply will depend on both the size of your ROV and the size of
your motors.

The next program controls all the four motors using the keyboard. The following
image shows the first part of this program, with the functions to control the motors
for the different directions:

An Underwater Remotely Operated Vehicle

[166]

There are eight functions in the preceding piece of code. They are described as follows:

•	 shutdown: This function disconnects all the GPIO pins from the control
library. It also closes the library.

•	 stop: This function stops all the motors.
•	 go_forward: This function puts motor1 and motor2 in the forward full speed

state, causing the ROV to move forward.
•	 go_backward: This function puts motor1 and motor2 in the backward full

speed state, causing the ROV to move backward.
•	 go_left: This function puts motor1 in the forward full speed state and

motor2 in the backward full speed state, causing the ROV to turn left.
•	 go_right: This function puts motor1 in the backward full speed state and

motor2 in the forward full speed state, causing the ROV to turn right.
•	 go_up: This function puts motor3 and motor4 in the forward full speed state,

causing the ROV to go up.
•	 go_down: This function puts motor3 and motor4 in the full backward speed

state, causing the ROV to go down.

Chapter 9

[167]

The second part of this program is shown here:

The preceding part of the code first initializes all four motors, puts them all in the
stopped state, then enters a while loop, taking an input from the user, and then
responds by moving the ROV in the programmed way.

An Underwater Remotely Operated Vehicle

[168]

You might want a more intuitive interface on your project. The next program uses
the concepts you have learned, wraps the definitions in the previous program into
a class to make them easier to access, and adds a graphical user interface. To get
the graphical user interface to work, you'll need to add a graphics capability called
Tkinter. I won't go into the details on using this; for a good tutorial, go to zetcode.
com/gui/tkinter/. You get this graphical user interface by typing sudo apt-get
install python-tk.

Once you have that installed the graphical user interface, you'll need to add the
program. Here is the first part of the program, with the Adafruit and Tkinter
includes and the first part of the motor class that has all the capabilities in the
previous program:

zetcode.com/gui/tkinter/
zetcode.com/gui/tkinter/

Chapter 9

[169]

The following screenshot shows the rest of the motor control class that includes the
functions for direction control:

An Underwater Remotely Operated Vehicle

[170]

The following is a screenshot that shows the initialization and widget function of a
class to create the graphics for your program:

These functions create the different buttons that will populate your user interface.
The next part of this class connects these buttons to the functions of your motor class,
as shown in the following screenshot:

Chapter 9

[171]

Finally, the small piece of code that sets up and runs the graphics is in the
following screenshot:

An Underwater Remotely Operated Vehicle

[172]

You'll need to use the VNC viewer capability you installed in Chapter 1, Preparing the
BeagleBone Black, to run this graphical program. So start the VNC server by typing
vncserver in a terminal window on the BeagleBone Black, then go to your host
computer and start a VNC viewer. Open a terminal window in the VNC viewer on
the BeagleBone Black and run the program. You should get something like this:

Now your ROV is maneuverable. To complete your ROV project, you'll need two
additional capabilities. The first is a long LAN connection from the surface to your
BeagleBone Black so that you can control and communicate with your ROV via this
LAN cable. The second is a method of seeing underwater. Let's tackle the control
problem first.

Connecting to the BeagleBone Black via
a long LAN
The ROV will be controlled from a computer on the service through a very
long LAN cable. Fortunately, long LAN cables are readily available at most
online electronic stores. I used a 100-foot cable for my ROV. You'll also need
to be careful how you pass the LAN cable through the main compartment.
I used a 90° Snap Elbow Dome Connector to pass the LAN cable to the main
compartment. Here is an image of this part:

Chapter 9

[173]

I also found it useful to purchase a hose spool from the local hardware store to
organize my LAN cable. The following is an image of a hose spool:

Now you'll need to connect your LAN cable to a computer on the surface so that
you can control your ROV. Since the default setting for the BeagleBone Black is
to DHCP—a dynamic IP address allocation process—if you want to talk without
changing anything, then you'll need a wired router to connect your BeagleBone
Black to your computer. This router will help in providing the BeagleBone Black
its address. These routers are very inexpensive and available at most electronics
stores. Here is an image of a router:

An Underwater Remotely Operated Vehicle

[174]

This does require power, which might be difficult if you want to take your
monitoring station on the water. If you want to connect the BeagleBone Black to
the computer, you'll want to establish a static IP address on the BeagleBone Black.
To do this, follow these steps:

1.	 Issue the following command in a terminal window: cat /etc/network/
interfaces. You should see something like this:

2.	 The line that reads iface eth0 inet dhcp tells you that the DHCP access is
going to try and get a dynamic IP address. You'll need to change this line to
iface eth0 inet static by editing the file with Emacs.

3.	 Edit the file and set the desired static address by editing the lines that read:
iface usb0 inet static
 address 192.168.7.2
 netmask 255.255.255.0
 network 192.168.7.0
 gateway 192.168.7.1

4.	 Now reboot the BeagleBone Black.

Chapter 9

[175]

For more details on dynamic and static IP allocation and the BeagleBone Black,
go to www.mathworks.com/help/simulink/ug/getting-the-beagleboard-ip-
address.html.

That's it! Connect your laptop or a portable computer and you can use the address
defined at the bottom of the /etc/network/interfaces file to access the BeagleBone
Black wirelessly via an SSH connection or VNC server and control your ROV.

Accessing a camera for your project
Now that you have established a connection via a long LAN cable, the second
capability you'll need is to access a camera to see where you are going. You've already
done this as a part of Chapter 4, Vision and Image Processing. You can create a simple
display window for OpenCV using the camera.py demo program that comes with the
open source code. Depending on the camera, you might want to change the resolution
of the image. Here is the program that works with the Logitech C270 webcam:

www.mathworks.com/help/simulink/ug/getting-the-beagleboard-ip-address.html
www.mathworks.com/help/simulink/ug/getting-the-beagleboard-ip-address.html

An Underwater Remotely Operated Vehicle

[176]

Now that you have these two applications, you'll want to run both the GUI and the
camera program so that you can see where you are going and control your ROV.
Do this by again using the VNC server capability. In your VNC viewer window,
you can run both the programs, and you should see something like this:

With the image on the left and the controls on the right, you can now control your
ROV and explore the underwater world. Mount your camera to the front of the ROV.
I used a 3D printed part to mount mine. Then mount your BeagleBone Black into
the ROV. I used Velcro to mount it on top of the main compartment. Connect the
batteries to the BeagleBone Black, motor controllers, and LED light. Then close your
main chamber using the expandable 6-inch plug. You are ready to explore!

This project will require lots of practical tweaking in the water.
You'll need to adjust your ballast to make sure your ROV is
neutrally buoyant. You'll also have to constantly monitor the
watertight nature of your design.

Summary
In this chapter, you tackled a robot that can go under the water. You learned how
to control a project via a LAN connection across a significant distance with the ROV
project. In the next chapter, you will move to projects that can fly.

A Quadcopter
You've built robots that can roll, walk, sail, and even go under the water. In this
chapter, you'll build a robot that can fly. This project will guide you through the
process of creating your own quadcopter based on the BeagleBone Black.

In this chapter, we will learn the following:

•	 Building a quadcopter
•	 Connecting the BeagleBone Black to the quadcopter
•	 Controlling the quadcopter using the BeagleBone Black

Basics of quadcopter flight
Now you'll build robots that can fly by relying on the BeagleBone Black to control
their flight. There are several possible ways to incorporate the BeagleBone Black
into a flying robotic project; in this case, a quadcopter.

Quadcopters are unique flying platforms that have become popular in the last
few years. They are flying platforms that utilize the same vertical lift concept as
helicopters. However, they employ not one but four motor/propeller combinations
to provide an enhanced level of stability. Here is an image of such a platform:

A Quadcopter

[178]

The quadcopter has two sets of counter-rotating propellers, which simply means
that two of the propellers rotate one way and the other two rotate the other way
to provide thrust in the same direction. This provides a platform that is inherently
stable. By controlling the thrust, all the four motors allow you to change pitch, roll,
and yaw the device. Here is a diagram that might be helpful:

Changing thrust equally
on all four motors -
altitude changes

Changing thrust on one
motor - roll/pitch
changes

Changing thrust on two
motor - yaw changes

As you can see, controlling the relative speed of the four motors allows you to
control the various ways the device can change its position. To move forward,
you would want to adjust the pitch so that the quadcopter is tilting forward.
Then you'll add some thrust so that instead of going up, the device would
move forward, as shown in this diagram:

Applying thrust to all
motors, but more on
one motor - roll/pitch
changes and the
platform moves forward

Chapter 10

[179]

In a perfect world, you might know the components you have used to build a
quadcopter and how much control signal to apply to get a certain change in the roll,
pitch, yaw, or altitude of the quadcopter. But there are simply too many aspects of
your device that can vary to control this directly. Instead, this platform uses a series
of measurements of its position—pitch, roll, yaw, and altitude—and then adjusts the
control signals to the motors to achieve the desired result. This is called feedback
control. Here is a diagram of a feedback system:

Desired altitude Change in
motor control+-

Actual altitude

In a feedback system, the desired altitude is compared to the
actual altitude and the amount of difference then drives the
control signals to the motors to change the actual altitude.

As you can see, if your quadcopter is too low, the difference between the Desired
Altitude and the Actual Altitude will be positive, and the motor control will
increase the voltage to the motors, increasing the altitude. If the quadcopter is too
high, the difference between the Desired Altitude and the Actual Altitude will be
negative, and the motor control will decrease the voltage to the motors, decreasing
the altitude. If the Desired Altitude and the Actual Altitude are equal, then the
difference between the two will be zero and the motor control will be held at its
current value. Thus, the system stabilizes even if the components aren't perfect
or if a wind comes along and blows the quadcopter up or down.

One application of the BeagleBone Black in this type of robotic project is to actually
coordinate the measurement and control of the quadcopter's pitch, roll, yaw, and
altitude. However, this is a very complex task and the details of its implementation
are beyond the scope of this book. It is also difficult to do this with a processor that
is running Linux, as Linux is not real time, and it might be off doing something else
when it needs to respond to one of these control signals. This is especially true if the
BeagleBone Black is busy processing images or GPS signals.

Some enterprising developers are working on developing flight
controller code that can run on the BeagleBone Black, but be
forewarned; this work is still very preliminary. This often includes
modifying the Linux kernel, or basic operating system, to add real-time
components. See http://dev.ardupilot.com/wiki/building-
for-beaglebone-black-on-linux/ for more information.

http://dev.ardupilot.com/wiki/building-for-beaglebone-black-on-linux/
http://dev.ardupilot.com/wiki/building-for-beaglebone-black-on-linux/

A Quadcopter

[180]

However, the BeagleBone Black can still be utilized in this type of robotic project. To
do this, you will introduce another embedded processor to do the low-level control.
Then you'll use the BeagleBone Black to manage the high-level tasks. For example,
as in the sailboat example described in Chapter 6, A Robot that Can Sail, you can use
the BeagleBone Black to coordinate GPS tracking, path planning, and long-range
communications via ZigBee or Wireless LAN. This is the type of example that you'll
learn in this chapter.

To do this project, you'll use a simple flight controller—one that focuses on the basics
of flight. In this case, the communication between the BeagleBone Black and the flight
controller is through the RC receiver control signals that are very similar to the servo
control signals you learned about in Chapter 5, Building a Robot that Can Walk.

Building the quadcopter
The first thing you'll need is the quadcopter itself. The most important component
of the quadcopter is the flight controller board. There are several choices that can
work, but this example is based on the Hobby King KK2.1.5 flight control board.
Here is an image of the board:

The flight control board takes its flight inputs via a set of input signals that would
normally come from an RC receiver to control the quadcopter, and then sends
out control signals to the four motor controllers. You'll want a flight controller as
it has built-in flight sensors, so it can handle the feedback control for the motors.
The inputs from the BeagleBone Black will come in as electric commands to turn,
bank, go forward, or increase/decrease the motor speed.

Chapter 10

[181]

You can buy either an assembled quadcopter that uses the HobbyKing 2.1.5 board
from HobbyKing at www.hobbyking.com, or you can buy the parts and assemble
your own.

If you'd like to assemble your own quadcopter, then there are a
number of websites that document how to select the parts and
assemble them. Try http://www.instructables.com/id/
Sturdy-Quadcopter-Build/?ALLSTEPS, http://robot-
kingdom.com/build-your-own-quadcopter-beginner-
guide-part-1/ or http://flitetest.com/articles/Basic_
Quadcopter_Tutorial_Talon_V2_KK2_Board_Plush_ESCs.

The basic manual for this flight controller board is found at www.dronetrest.
com/uploads/db5290/428/769b8acab60b33aa.pdf. Whether you are buying
an assembled unit or building your own, it is a good idea to set up and fly your
quadcopter first with an RC transmitter and receiver. This will give you a basic
understanding of how the RC transmitter and receiver is connected to your
quadcopter and some basic flight dynamics.

Try the reference at http://oddcopter.com/2012/07/24/
setting-up-my-hobbyking-kk2-0-quadcopter-x/ or the
video at https://www.youtube.com/watch?v=qAyxyLMr6vg.

Once you have it up and flying, you can add your BeagleBone Black to your project.

Connecting the BeagleBone Black to the
quadcopter
A nice thing about the KK 2.1.5 flight controller is that it has built-in flight sensors,
so it can handle the feedback control for the motors. The other feature is that it
has a screen and input buttons that will allow you to control the board manually
during setup.

www.hobbyking.com
http://www.instructables.com/id/Sturdy-Quadcopter-Build/?ALLSTEPS
http://www.instructables.com/id/Sturdy-Quadcopter-Build/?ALLSTEPS
http://robot-kingdom.com/build-your-own-quadcopter-beginner-guide-part-1/
http://robot-kingdom.com/build-your-own-quadcopter-beginner-guide-part-1/
http://robot-kingdom.com/build-your-own-quadcopter-beginner-guide-part-1/
http://flitetest.com/articles/Basic_Quadcopter_Tutorial_Talon_V2_KK2_Board_Plush_ESCs
http://flitetest.com/articles/Basic_Quadcopter_Tutorial_Talon_V2_KK2_Board_Plush_ESCs
www.dronetrest.com/uploads/db5290/428/769b8acab60b33aa.pdf
www.dronetrest.com/uploads/db5290/428/769b8acab60b33aa.pdf
http://oddcopter.com/2012/07/24/setting-up-my-hobbyking-kk2-0-quadcopter-x/
http://oddcopter.com/2012/07/24/setting-up-my-hobbyking-kk2-0-quadcopter-x/
https://www.youtube.com/watch?v=qAyxyLMr6vg

A Quadcopter

[182]

The control inputs come in as electric commands to turn, bank, go forward, or
increase the altitude. Normally, these would come from your RC radio receiver.
For this project, you'll disconnect these signals and insert the BeagleBone Black
and the maestro servo controller to send the proper control signals. Here is a
diagram that shows how you have to connect the BeagleBone Black, the servo
controller, and the flight controller:

The following is a close-up image of the connections between the servo controller
and the flight controller board:

Chapter 10

[183]

Note that you need to use the foam that came with the flight controller as this will
dampen the vibrations inherent in the system so that the sensors can make more
accurate readings. Make sure you do not connect power to the servo controller;
it does not need to supply power, it just sends the appropriate signals via the
servo lines to the receiver input.

As noted in Chapter 5, Building a Robot that Can Walk, you
would probably want to put a powered USB hub between
the servo controller and the BeagleBone Black. This will
make the connection more stable and, if you later want to
hook up a webcam and other accessories, provide reliable
USB ports for those accessories.

Controlling the quadcopter using the
BeagleBone Black
Now you will use the BeagleBone Black to send commands to the servo controller,
which will in turn control the flight controller board. To start this procedure, you'll
need to add the RC battery to the quadcopter. This will power up the flight controller
board. Connecting your battery should result in the following power-up screen on
the flight controller board:

For this procedure, you'll start as if you are setting up a new flight controller board.
If you have already set up the flight controller board with your radio, you will be
able to skip down to step 7.

A Quadcopter

[184]

Here are the steps to set up your flight controller board to work with the
BeagleBone Black:

1.	 To start with, you'll need to set up the board to control your four-motor
quadcopter. To do this, press the MENU key, press the DOWN button,
and then the Load Motor Layout configuration button, as shown here:

2.	 Now you'll select the QuadroCopter + mode option, as shown in the
following image:

3.	 After you've selected this, the board will show you the layout of your
motors. Make sure that your motors are configured with the direction
of rotation as shown here:

Chapter 10

[185]

4.	 Now that the basic quadcopter is configured, you can test the sensors by
pressing the BACK button until you get to the main menu. Press the UP
key until you can select Sensor Test, as shown in the following image:

This will show the state of the sensors, which should look like this:

A Quadcopter

[186]

5.	 The next step is to calibrate the level sensors of the flight controller.
From the main menu, select the ACC Calibration option as shown
in the following image:

This will give you the details of the process, like this:

When you press Continue, the unit will calibrate the sensors as level,
and then show you the following results:

Chapter 10

[187]

6.	 Press Continue, and you will return to the main menu.
7.	 Now you can begin to send some signals through the servo controller to the

board. To do this, go to the Receiver Test option of the main menu, as shown
in the following image:

You should see this screen after selecting the Receiver Test option:

A Quadcopter

[188]

8.	 You'll now need to write some BeagleBone Black code to send some
signals to the board. Open a PuTTY window on the BeagleBone Black,
and enter this program:

This program should look familiar if you built the quadruped robot in
Chapter 5, Building a Robot that Can Walk. The setAngle function, in this
case, sets the value out of the servo controller for a single servo channel to
a minimum of 275 and a maximum of 600. The middle of this range is 440.

Chapter 10

[189]

9.	 Now run this program. This should send signals to the servo controller to
center the servos, which in turn will send the signals to the flight controller
board. The Receiver Test screen should now look like this:

As you run the program and change the values of each servo, you should
see that these values also change. For example, if you set the value of servo
0 to 275, the flight controller board should show the aileron set to a value
that would turn it left, like this:

A Quadcopter

[190]

You now have the basic signals prepared to control the flight controller board.
However, it is perhaps useful to have a graphics interface to send these commands
to the flight controller board. Here is the listing of a graphical interface program to
control the flight controller board, in four parts:

Chapter 10

[191]

The first part of the program contains a few includes, mostly for the graphical
interface, but also for delay and serial control. The Example class sets up a simple
interface with four slider bars to control the main four servo controls. It also sets
up a quit command. Here is the listing for the second part of that class:

A Quadcopter

[192]

The next listing shows the servo control functions, this time encapsulated in a class so
as to make them easier to access, and the main function, which initializes everything
and then starts the graphical user interface:

Chapter 10

[193]

To run this program, since it is a graphical program, you'll need to use VNC server,
as detailed in Chapter 1, Preparing the BeagleBone Black. But before that, you'll need to
install a graphics package called python-tk. It allows you to build simple graphical
user interfaces. Install it by typing sudo apt-get install python-tk. After you
have installed the toolkit, run the program. Here is what the program will look like
when it is running:

You can use this interface to control the flight controller board. One thing you will
need to do (if you have not done previously) is using this interface to recalibrate
your ESCs, adjust the stick sensitivity, and the other settings that you might want
to tweak on the flight controller board.

If you need to review the calibration procedure, visit
http://oddcopter.com/2012/07/24/setting-up-my-
hobbyking-kk2-0-quadcopter-x/ or watch the video at
https://www.youtube.com/watch?v=qAyxyLMr6vg.

Now your basic system is functional. You can use the BeagleBone Black to control
the flight controller board and, in turn, your quadcopter.

http://oddcopter.com/2012/07/24/setting-up-my-hobbyking-kk2-0-quadcopter-x/
http://oddcopter.com/2012/07/24/setting-up-my-hobbyking-kk2-0-quadcopter-x/
https://www.youtube.com/watch?v=qAyxyLMr6vg

A Quadcopter

[194]

Summary
Now you have a quadcopter that can be controlled by the BeagleBone Black. However,
your BeagleBone Black is still controlled via wired connection. In the next chapter,
you'll use some of the techniques that you learned in the previous chapters to connect
with the BeagleBone Black wirelessly and fly your quadcopter. Finally, you'll use a
webcam to allow your BeagleBone Black to know about its world so that it can level
and fly itself. You'll also use your knowledge of path planning and a GPS to fly the
quadcopter autonomously.

An Autonomous Quadcopter
You've now built your quadcopter, and you have the basic flight controller configured.
But you'd like your quadcopter to be autonomous, that is, fly itself.

In this chapter you'll learn the following things:

•	 Controlling your quadcopter remotely from a computer using a joystick,
through wireless computer signals

•	 Adding a webcam so that your quadcopter can do basic autonomous flight
•	 Adding a GPS device to make waypoint flights

Through experience, I've learned that you will need to add some
sort of propeller protection, as you'll very likely run into a wall or
some other object more than once, and propellers can be expensive.
There are some available at both amazon.com and ebay.in.

Controlling quadcopter flight wirelessly
You've assembled your quadcopter and you can now control it via the BeagleBone
Black. But there is still a LAN cable connected to your BeagleBone Black, which will
make it difficult to fly very far. This section will show you how to get rid of that cable
so that you can control your quadcopter without any wires.

http://www.amazon.com
http://www.ebay.in

An Autonomous Quadcopter

[196]

One of the easiest ways to do this is to communicate with the BeagleBone Black on
your quadcopter via wireless LAN. If you are using this technique, you'll need to
configure a wireless access point for your BeagleBone Black quadcopter to connect
to. There are several possible choices:

•	 You can use a wireless router as an access point to communicate between a
computer and the BeagleBone Black on your quadcopter. To do this, simply
connect a standard wireless router to the computer, and then configure it as
a wireless access point using the directions for your specific router.

•	 You can configure a laptop computer as an access point to communicate
with the BeagleBone Black on your quadcopter. If you are running Windows
7, try the directions at http://lifehacker.com/5369381/turn-your-
windows-7-pc-into-a-wireless-hotspot or http://www.firewall.cx/
microsoft-knowledgebase/windows-xp-7-8/968-windows-7-access-
point.html. There are similar instructions for Windows 8 and XP; just do
an Internet search. If you have an Ubuntu Linux machine, try http://www.
cyberciti.biz/faq/debian-ubuntu-linux-setting-wireless-access-
point/ or http://www.howtogeek.com/116409/how-to-turn-your-
ubuntu-laptop-into-a-wireless-access-point/.

•	 You can use a second BeagleBone Black configured as an access point to
communicate with the BeagleBone Black on your quadcopter. To use this
method, follow the directions at http://fleshandmachines.wordpress.
com/2012/10/04/wifi-acces-point-on-beaglebone-with-dhcp/.

Just a word of warning
This can be a bit tricky to get to work, and if you use this
configuration and you want to take your quadcopter outside,
you'll need an HDMI or DVI screen for your control computer.

Once you have the access point configured, use the instructions from Chapter
1, Preparing the BeagleBone Black, to configure the wireless LAN connection on
the BeagleBone Black that is on your quadcopter. You'll then need to mount the
BeagleBone Black, the powered USB hub, and a battery that can supply both
with power onto the quadcopter. You can use two small USB batteries, one for
the BeagleBone Black and one for the powered USB hub, to power both of these
for your quadcopter configuration.

http://lifehacker.com/5369381/turn-your-windows-7-pc-into-a-wireless-hotspot
http://lifehacker.com/5369381/turn-your-windows-7-pc-into-a-wireless-hotspot
http://www.firewall.cx/microsoft-knowledgebase/windows-xp-7-8/968-windows-7-access-point.html
http://www.firewall.cx/microsoft-knowledgebase/windows-xp-7-8/968-windows-7-access-point.html
http://www.firewall.cx/microsoft-knowledgebase/windows-xp-7-8/968-windows-7-access-point.html
http://www.cyberciti.biz/faq/debian-ubuntu-linux-setting-wireless-access-point/
http://www.cyberciti.biz/faq/debian-ubuntu-linux-setting-wireless-access-point/
http://www.cyberciti.biz/faq/debian-ubuntu-linux-setting-wireless-access-point/
http://www.howtogeek.com/116409/how-to-turn-your-ubuntu-laptop-into-a-wireless-access-point/
http://www.howtogeek.com/116409/how-to-turn-your-ubuntu-laptop-into-a-wireless-access-point/
http://fleshandmachines.wordpress.com/2012/10/04/wifi-acces-point-on-beaglebone-with-dhcp/
http://fleshandmachines.wordpress.com/2012/10/04/wifi-acces-point-on-beaglebone-with-dhcp/

Chapter 11

[197]

Once you have all of the previously mentioned equipment configured, you can run
the control program introduced at the end of the last chapter using a VNC server
configuration. Doing this will allow you basic control of the quadcopter wirelessly.
You should be able to actually fly your quadcopter by running this program remotely
using VNC viewer and the keyboard and sliding controls. However, it would be easier
to control your quadcopter using a game controller.

Adding a game controller to your system
The software introduced in the last chapter is functional, but not very practical.
What you will need is a controller that has more immediate control of the different
servos. Perhaps the most practical is a game controller that has two joysticks and
several additional buttons. This will make flying your quadcopter through the
BeagleBone Black much easier.

To add the game controller, you'll need to first find a game controller that can
connect to your computer. If you are using Microsoft Windows as the OS on
the host computer, pretty much any USB controller that can connect to a PC will
work. The same type of controller also works if you are using Linux for the remote
computer. In fact, you can use another BeagleBone Black as the remote computer.

Since the joystick will be connected to the remote computer, you'll need to run
two programs: one on the remote computer and one on the BeagleBone Black
on the quadcopter. You'll also need a way to communicate between them. In the
following example, you'll use the wireless LAN interface and a client-server model
of communication. You'll run the server program on the remote computer, and the
client program on the BeagleBone Black on the quadcopter.

For an excellent tutorial of this type of model and how it is used in a
gaming application, see http://www.raywenderlich.com/38732/
multiplayer-game-programming-for-teens-with-python.

Once you have the controller connected, you'll need to create a Python program on the
BeagleBone Black that will take the signals sent from the client and send the correct
signals to the servo controllers. This is the client program. But before you do that,
you'll need to install the libraries that will allow this program to work. The first is a
library called pygame. Install this library by typing sudo apt-get install python-
pygame. Then you'll need a LAN communication layer library called PodSixNet.
This will allow the two applications to communicate. To install this library, follow
the instructions at http://mccormick.cx/projects/PodSixNet/.

http://www.raywenderlich.com/38732/multiplayer-game-programming-for-teens-with-python
http://www.raywenderlich.com/38732/multiplayer-game-programming-for-teens-with-python
http://mccormick.cx/projects/PodSixNet/

An Autonomous Quadcopter

[198]

Now you are ready to create the client program on the BeagleBone Black on the
quadcopter. Here is the first listing of the program:

The first part of the program is a Python class that sends the commands to the servo
controller. If you built the quadruped robot in Chapter 5, Building a Robot that Can Walk,
this code should look familiar. The following is the second part of this code:

Chapter 11

[199]

In this section, you'll create a class called QuadGame. This class will take the inputs
from the game controller connected to the server and turn them into commands
that will be sent to the servo controller, then to the flight controller to control
your quadcopter.

An Autonomous Quadcopter

[200]

Here is a table of the joystick controls and their corresponding quadcopter controls:

Joystick control Quadcopter control
Button 10 Throttle up
Button 1 Throttle down
Button 5 Rudder right
Button 4 Rudder left
Button 9 All controls to arm position
Button 8 All controls to disarm position
Button 6 Center all controls
Button 7 Center all controls
Joystick 1 Up/Down Aileron right/left
Joystick 2 Up/Down Elevator forward/backward

Here is the second part of the QuadGame class:

Chapter 11

[201]

This class continues the control part of the code, implementing all the different
buttons and joysticks on the controller. The following screenshot shows the final
section of the joystick controller part of the client program:

This final part of the code completes the QuadGame class, implementing the rest of the
button and joystick controls. It also includes the code to initialize the interface layer,
including how the user will specify the server machine.

An Autonomous Quadcopter

[202]

Now here is the final piece of the code:

This final piece of code sets the initial values of the servo controller, and thus
the flight controller, to their center location. Then it initializes the game loop,
which loops while taking the inputs and sends them to the servo controller
and further onto the flight controller.

Chapter 11

[203]

You'll also need a server program running on the remote computer that will take
the signals from the game controller and send them to the client. You'll be writing
this code in Python using Python Version 2.7, which can be installed from here.
Additionally, you'll need to install the pygame library. If you are using Linux on
the remote computer, then type sudo apt-get install python-pygame. If you
are using Microsoft Windows on the remote machine, then follow the instructions
at http://www.pygame.org/download.shtml.

You'll also need the LAN communication layer described previously. You can find
a version that will run on Microsoft Windows or Linux at http://mccormick.cx/
projects/PodSixNet/. The following is a listing of the server code, in two parts:

http://www.pygame.org/download.shtml
http://mccormick.cx/projects/PodSixNet/
http://mccormick.cx/projects/PodSixNet/

An Autonomous Quadcopter

[204]

This first part creates three classes:

•	 The first, ClientChannel, establishes a communication channel for
your project

•	 The second, BoxServer, sets up a server so that you can communicate
the joystick action to the BeagleBone Black on the quadcopter

•	 Finally, the Game class just initializes a game that contains everything
you'll need

Here is the second part of the server code:

Chapter 11

[205]

The preceding part of the code initializes the joystick so that all the controls can be
sent to the quadcopter's BeagleBone Black.

You may want your quadcopter to take flight quite a distance from your controlling
computer. Wireless has a maximum range of 300 feet, so if you are looking for
long flights, you'll need a technology that can extend the wireless connection much
further. In Chapter 6, A Robot that Can Sail, you learned how to implement an XBee
communication link.

By sending characters across the XBee interface, you can create an application on
the host computer that can send commands based on the game controller input.
You'll need to replace the LAN interface code in the previous example with a
serial interface.

Adding a webcam for autonomous flight
At this point, your quadcopter is controlled by you via a wireless interface. However,
you might want to experiment with allowing your quadcopter to control its own
flight. Here you'll learn some basic concepts of Proportional-Integrative-Derivative
(PID) control to begin exploring this space. There won't be complete or explicit
instructions. That would take a book in and of itself. But you can at least get started.

To allow your quadcopter to fly itself, it will need some information about the world
around it. One possible way to provide this is to use a webcam and some markers in
your flight area. If you followed the instructions in Chapter 1, Preparing the BeagleBone
Black, you should have installed all of the software you need in order to add a
webcam and view the world around you.

You'll also need to review the concepts from Chapter 4, Vision and Image Processing, for
your robotic project. In particular, what you'll want to do is control your quadcopter
just as you controlled your wheeled vehicle to follow the colored ball. However, you're
going to use an advanced control technique, utilizing the feedback control technique
used by the flight controller board to allow it to provide stable flight. In this case, you'll
use the webcam and the colored ball to set a position and PID code implemented in
Python on the BeagleBone Black to control the larger up and down movements of the
quadcopter. You can use this same technique to control the forward/backward and
side-to-side position of the quadcopter.

An Autonomous Quadcopter

[206]

To understand PID control, you'll need to recall the basic feedback loop you discovered
in Chapter 10, A Quadcopter. Here is the diagram of the feedback loop from that chapter:

Desired altitude Change in
motor control+-

Actual altitude

In a feedback system, the desired altitude is compared to the
actual altitude and the amount of difference then drives the
control signals to the motors to change the actual altitude.

In this case, the desired altitude will be in the middle of the webcam window that
captures the colored ball. The actual altitude will be in the center of the color blob
in the webcam window. These will be compared and the BeagleBone Black on
the quadcopter will adjust the throttle to either increase or decrease the value to
compensate for the difference. This is well explained in the preceding diagram.

Chapter 11

[207]

Here is the first part of the code that shows how this simple example might work:

An Autonomous Quadcopter

[208]

The first part of the code has the includes needed by the program, and the functions
needed to control the servo controller which in turn will control the flight controller.
Here is the second part of the code:

Chapter 11

[209]

This second part of the program is a while loop that takes an image, then finds out
in which direction the colored ball is. If the ball is below the center of the image, or
in the lower part of the screen, the throttle will be increased by 10. If the ball is in
the upper part of the window, the throttle will be decreased by 10. This value—the
amount by which the throttle is decreased or increased—will establish the stability
of the control. If the value is too large, then the quadcopter will go up and down
violently as it tries to find the ball. If the value is too small, then it will take a very
long time to put the ball on the screen.

This simple adjustment, that is, increasing or decreasing the throttle based on the
position of the ball, is called proportional control. If the value is set correctly, your
quadcopter will level with the ball, but it might take a great deal of time to do this.
There is a more efficient algorithm to more quickly center on the ball. Here is a
diagram of this type of control:

Desired altitude Change in
motor control

PID
controller+-

Actual altitude

Here you take the desired altitude and compare it to the actual altitude, but instead
of setting the change in motor control simply on this difference, you'll include
both the derivative (how fast the change in the value occurs) and the integrative
(how long the change is taking) into account as you adjust the throttle.

To understand more about PID controllers, see the tutorials at
http://www.csimn.com/CSI_pages/PIDforDummies.html
or http://en.wikipedia.org/wiki/PID_controller.

The second tutorial is particularly useful because it discusses not only how the PID
controller works, but also how to tune the setting to get a stable control loop.

http://www.csimn.com/CSI_pages/PIDforDummies.html
http://en.wikipedia.org/wiki/PID_controller

An Autonomous Quadcopter

[210]

Here is the first part of some example code that is similar to the previous code,
apart from the fact that it adds the integrative and derivative control functions
to your program:

In the preceding section of code, the key addition is the updatePID function. This
function takes the current location and the desired location, and calculates an error
value. It then uses the PID concepts to apply a proportional, integrative, and derivative
correction factor. This returns a PID value that will change the set point of the throttle.

Chapter 11

[211]

Here is the second part of the code that implements the PID mechanism:

Just before the while loop, you'll need to initialize the variables associated with the
PID controller. The Kp value sets the amount the proportional value affects the control,
the Ki value sets the amount the integrative value affects the control, and the Kd value
sets the amount the derivative value affects the control. You'll need to tweak these
values based on the performance of your controller. Each time you call updatePID
through the loop, this function will return a new value to change the throttle.

An Autonomous Quadcopter

[212]

Adding GPS for autonomous flight
Another way to introduce autonomy to your quadcopter is to use the GPS capability
you learned in Chapter 7, Using GPS for Navigation, to give direction to your sailboat;
to control your quadcopter autonomously. You can use the GPS to plan new waypoints
and path planning to fly your quadcopter to specific locations. You can use the altitude
from the GPS to control the height of your flight, although this might result in some
rough landings as it rarely gives the kind of resolution to bring your quadcopter down
softly. I often use a sonar sensor, similar to the one covered in Chapter 3, Adding Sensors
to Your Tracked Vehicle, to sense the ground and land the quadcopter softly.

Summary
Well, that's it! You should have lots of different robots now that can do a number
of amazing things. Hopefully this is just the beginning; the rest is left to your
imagination and budget. Feel free to explore, although you will almost certainly
go through a wrecked robot or two. But that is a small price for the kind of
experiences you will have!

Index
A
Actual Altitude 179
Adafruit

URL 9, 54
Advanced IP Scanner 10
Advanced Linux Sound Architecture

(ALSA) 20
alsamixer 20
analog wind speed sensor

connecting 146-148
requirements 146
sensor data, obtaining 148-151

Arduino
URL 55

autonomous quadcopter flight
GPS, adding 212
webcam, adding for 205-211

B
BeagleBone Black

about 7
adding, to sailing platform 113
connecting, to quadcopter 182, 183
connecting, via long LAN 172-175
external computer, connecting to 10
GPS, connecting to 132, 133
IR sensor, connecting to 57
operating system, installing 9
servo controller, connecting to 103-105
servos, controlling with 115-117
speech, enabling 23
speech recognition accuracy,

improving 27-29
speech recognition, installing 23-27

unpacking 8, 9
URL 9, 10
used, for adding wireless LAN interface 31
used, for controlling brushless DC

motors 160-162
used, for controlling DC motors with

Python program 162-172
used, for controlling mobile platform 42-44
used, for controlling quadcopter 183-193
voice commands, responding to 29, 30
webcam, connecting to 71-74
Windows manager, installing 11

beam reach 154
bearing

calculating 141-143
bison library 23
brushless DC motors

controlling, with BeagleBone Black 160-162

C
camera

accessing, for project 175, 176
CMU pocketsphinx website

URL 27
colored objects

finding, in vision system 77-80
following, with vision system 81-83

core software packages
installing 12-15
OpenCV 12
pocketsphinx 12
sound capability, installing 19
sound, creating 20-22
sound, recording 20-22
vision library, installing 16-18

[214]

D
Dagu Rover 5 Tracked Chassis 33
DC motors

about 34
controlling, with Python program 162-172

Debian 9
Degrees of Freedom (DOF) 93
Desired Altitude 179
distance

calculating 141-143
distance sensors

adding 51
IR sensor 56
sonar sensor 52

dynamic IP address 10
dynamic path planning, robot

about 60
obstacles, avoiding 64-68
path planning 61-63
references 63

E
Electronic Speed Controllers (ESC) 160
Espeak 23
external computer

connecting to 10
EZ Tops

URL 159

F
feedback control 179

G
game controller

adding, to system 197-205
General-Purpose Input/Output (GPIO) 7
Global Positioning System. See GPS
GND pin 146
go_backward function 166
go_down function 166
go_forward function 166
go_left function 166
go_right function 166

go_up function 166
GPIO pins

URL 34
GPS

about 129
adding, for autonomous quadcopter

flight 212
communicating with 134-139
connecting, to BeagleBone Black 132, 133
tutorial 129-132

GPS information
parsing 139-141

H
hardware

building, for ROV 157-160
haversine formula

about 141
URL 142

Hitec servos 95
Hue (color), Saturation, and Value (HSV) 78

I
inexpensive sonar sensor

adding 53-56
issues 54

Infrared sensor. See IR sensor
irons 154
IR sensor

about 56-60
connecting, to BeagleBone Black 57

J
joystick controls 200

L
latitude 141
Linux

program, creating for quadruped
control 106-109

longitude 141
long LAN

used, for connecting to BeagleBone
Black 172-175

[215]

M
mobile platform

controlling, BeagleBone Black used 42-44
controlling, Python used 42-44
program arguments, adding 43, 44

motor controller
A M1 B label 37
A M2 B label 37
accessing, via voice commands 47-50
GND label 37
VIN label 37

motor controller connection, for speed
control of tracked platform

about 34-38
battery, selecting 35, 36
DC motor controller, connecting to

USB cable 39-41
movement

finding, in vision system 83-88
following, with robot 89, 90

O
obstacles, dynamic path planning

avoiding 64-68
OpenCV

about 12
URL 75, 86
used, for tracking objects 77-80
using 75-77

operating system
installing 9

Out connection 147
Out pin 147

P
PC

used, for communicating with
servo controller 101

pocketsphinx 12, 23
PodSixNet

URL 197
Pololu

URL 35, 42, 99

program arguments
adding, for mobile platform control 45, 46

Programmable Real-time Unit (PRU)
about 55
URL 55

proportional control 209
Proportional-Integrative-Derivative

(PID)
about 205
URL 209

Pulse-Width-Modulated (PVM) 94
PuTTY

about 11
configuration, performing 122-128
URL 11, 122

pygame library
URL 203

Python
used, for controlling mobile platform 42-44

Python program
used, for controlling DC motors 162-172

python-tk
about 193
URL 193

Q
quadcopter

about 177-179
BeagleBone Black, connecting to 181-183
building 180, 181
controlling, with BeagleBone Black 183-193
feedback system 179
flight basics 177, 178
references 181, 193

quadcopter flight
basics 177-180
controlling, via wireless LAN 195, 196

quadruped
assembling 96-98
controlling, with program

on Linux 106-109
platform, building 95
voice commands, issuing 110, 111

quadruped platform
building 95-98
URL 97

[216]

R
Real VNC

about 12
URL 12

Red, Green, and Blue (RGB) 78
Remotely Operated Vehicle. See ROV
robot

dynamic path planning 60
ROV

about 157
component 159
hardware, building for 157-160

RV pin 147
RX/TX interface 134
RX/TX port 135, 140

S
sailboat platform

building 114, 115
sailing

about 151-155
references 152
rudder setting 152
sail setting 152
URL 152

Secure Shell Hyperterminal (SSH) 11
sensor data

obtaining, from analog wind speed
sensor 148-151

sensors
basics 51

servo controller
communicating, via PC 102, 103
connecting, to BeagleBone Black 103-106
used, for controlling servos 99-101

servomotors
working 94

servos
controlling, from program 118, 119
controlling, with BeagleBone Black 115-117
controlling, with servo controller 99-101

shutdown function 166
sonar sensor

about 52

adding, to project 53
USB-ProxSonar-EZ 53

sound
creating 20-22
installing 19
recording 20-22

speech recognition, BeagleBone Black
accuracy, improving 27-29
installing 23-27
URL 28

sphinxbase 23
static IP address 10
stop function 166

T
tack 155
TightVNC server 12
Tkinter

URL 168
TMP pin 146
torque 95
tracked platform

selecting 33, 34
triangulation 130

U
Ubuntu 9
underwater ROV

URL 157

V
vision library

installing 16-18
vision system

colored objects, finding 77-80
colored objects, following 81-83
movement, finding 83-88

VNC server 11
voice commands

issuing, to quadruped 110, 111
motor control, accessing via 47-50
responding to 29, 30

[217]

W
webcam

adding, for autonomous quadcopter
flight 205-211

connecting, to BeagleBone Black 71-74
Windows manager

installing 11, 12
wireless LAN

quadcopter flight, controlling via 195, 196

X
XBee

about 120
URL 120

Xfce 11

Z
ZigBee

about 119, 120
tutorial 120, 121

Thank you for buying
Mastering BeagleBone Robotics

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

BeagleBone for Secret Agents
ISBN: 978-1-78398-604-0 Paperback: 162 pages

Browse anonymously, communicate secretly,
and create custom security solutions with
open source software, the BeagleBone Black,
and cryptographic hardware

1.	 Interface with cryptographic hardware
to add security to your embedded project,
securing you from external threats.

2.	 Use and build applications with trusted
anonymity and security software such
as Tor and GPG to defend your privacy
and confidentiality.

3.	 Work with low-level I/O on BeagleBone
Black such as I2C, GPIO, and serial interfaces
to create custom hardware applications.

Building a Home Security System
with BeagleBone
ISBN: 978-1-78355-960-2 Paperback: 120 pages

Build your own high-tech alarm system at a fraction
of the cost

1.	 Build your own state-of-the-art security system.

2.	 Monitor your system from any place where you
can receive e-mails.

3.	 Add control of other systems such as sprinklers
and gates.

4.	 Save thousands on monitoring and rental fees.

Please check www.PacktPub.com for information on our titles

BeagleBone Home Automation
ISBN: 978-1-78328-573-0 Paperback: 178 pages

Live your sophisticated dream with home automation
using BeagleBone

1.	 Practical approach to home automation using
BeagleBone; starting from the very basics of
GPIO control and progressing up to building
a complete home automation solution.

2.	 Covers the operating principles of a range
of useful environment sensors, including
their programming and integration to the
server application.

3.	 Easy-to-follow approach with electronics
schematics, wiring diagrams, and controller
code, all broken down into manageable and
easy-to-understand sections.

Rapid BeagleBoard Prototyping
with MATLAB and Simulink
ISBN: 978-1-84969-604-3 Paperback: 152 pages

Leverage the power of BeagleBoard to develop and
deploy practical embedded projects

1.	 Develop and validate your own embedded
audio/video applications rapidly with
BeagleBoard.

2.	 Create embedded Linux applications on a
pure Windows PC.

3.	 Full of illustrations, diagrams, and tips
for rapid BeagleBoard Prototyping with
clear, step-by-step instructions and
hands-on examples.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Preparing the
BeagleBone Black
	Unpacking and powering up
	Installing an operating system
	Connecting to an external computer
	Installing a Windows manager

	Installing additional core software packages
	Installing a vision library
	Installing sound capability
	Creating and recording sound

	Making your BeagleBone Black speak
	Installing speech recognition
	Improving speech recognition accuracy
	Responding to voice commands

	Adding additional hardware and software for a fully functional core system
	Summary

	Chapter 2: Building a Basic
Tracked Vehicle
	Choosing the tracked platform
	Connecting a motor controller to control the speed of your tracked platform
	Choosing the battery
	Connecting the motor controller
	Connecting the motor controller system

	Controlling your mobile platform programmatically using the BeagleBone Black and Python
	Adding program arguments to control
your platform
	Accessing motor control via voice commands

	Summary

	Chapter 3: Adding Sensors to your Tracked Vehicle
	Basics of sensors
	Adding distance sensors
	Sonar sensors
	Adding an array of inexpensive sonar sensors to the project

	IR sensors

	Dynamic path planning for your robot
	Basic path planning
	Avoiding obstacles

	Summary

	Chapter 4: Vision and Image Processing
	Connecting a webcam to the
BeagleBone Black
	Using OpenCV
	Finding colored objects in your vision system
	Following colored objects with your vision system
	Finding movement in your vision system
	Following movement with your robot
	Summary

	Chapter 5: Building a Robot that Can Walk
	Building robots that can walk
	Working of servomotors
	Building the quadruped platform
	Using a servo controller to control
the servos
	Communicating with the servo controller via a PC
	Connecting the servo controller to the BeagleBone Black
	Creating a program on Linux to control your quadruped
	Issuing voice commands to your quadruped
	Summary

	Chapter 6: A Robot that Can Sail
	The BeagleBone Black and robots that can sail
	Building the sailboat platform
	Controlling servos with the BeagleBone Black
	Controlling the servos on the sailboat from a program

	Remote control of the sailboat
	A ZigBee tutorial

	Summary

	Chapter 7: Using GPS for Navigation
	Beginning with a GPS tutorial
	Connecting GPS to the BeagleBone Black
	Communicating with the GPS

	Parsing the GPS information
	Calculating distance and bearing
	Summary

	Chapter 8: Measuring Wind Speed – Integrating Analog Sensors
	Connecting an analog wind speed sensor
	Getting sensor data from the wind speed sensor
	Some basics of sailing
	Summary

	Chapter 9: An Underwater Remote Operated Vehicle
	Building the hardware for the ROV
	Controlling brushless DC motors using the BeagleBone Black
	Program to control DC motors using the BeagleBone Black
	Connecting to the BeagleBone Black via a long LAN
	Accessing a camera for your project
	Summary

	Chapter 10: A Quadcopter
	Basics of quadcopter flight
	Building the quadcopter
	Connecting the BeagleBone Black to the quadcopter
	Controlling the quadcopter using the BeagleBone Black
	Summary

	Chapter 11: An Autonomous Quadcopter
	Controlling quadcopter flight wirelessly
	Adding a game controller to your system
	Adding a webcam for autonomous flight
	Adding GPS for autonomous flight
	Summary

	Index

