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Data, data, data. You can’t have escaped the headlines, reports, white papers, and 

even television coverage on the rise of Big Data and data science. The push is to 

learn, synthesize, and act upon all the data that comes out of social media, our 

phones, our hardware devices (otherwise known as “The Internet of Things”), 

sensors, and basically anything that can generate data.

The emphasis of most of this marketing is about data volumes and the velocity 

at which it arrives. Prophets of the data fl ood tell us we can’t process this data 

fast enough, and the marketing machine will continue to hawk the services we 

need to buy to achieve all such speed. To some degree they are right, but it’s 

worth stopping for a second and having a proper think about the task at hand.

Data mining and machine learning have been around for a number of years 

already, and the huge media push surrounding Big Data has to do with data 

volume. When you look at it closely, the machine learning algorithms that are 

being applied aren’t any different from what they were years ago; what is new 

is how they are applied at scale. When you look at the number of organiza-

tions that are creating the data, it’s really, in my opinion, the minority. Google, 

Facebook, Twitter, Netfl ix, and a small handful of others are the ones getting 

the majority of mentions in the headlines with a mixture of algorithmic learn-

ing and tools that enable them to scale. So, the real question you should ask is, 

“How does all this apply to the rest of us?” 

I admit there will be times in this book when I look at the Big Data side of 

machine learning—it’s a subject I can’t ignore—but it’s only a small factor in 

the overall picture of how to get insight from the available data. It is important 

to remember that I am talking about tools, and the key is fi guring out which 

tools are right for the job you are trying to complete. Although the “tech press” 

Introduction



xx Introduction

fl ast.indd 10:2:51:AM  10/06/2014 Page xx

might want Hadoop stories, Hadoop is not always the right tool to use for the 

task you are trying to complete.

Aims of This Book

This book is about machine learning and not about Big Data. It’s about the vari-

ous techniques used to gain insight from your data. By the end of the book, 

you will have seen how various methods of machine learning work, and you 

will also have had some practical explanations on how the code is put together, 

leaving you with a good idea of how you could apply the right machine learning 

techniques to your own problems.

There’s no right or wrong way to use this book. You can start at the begin-

ning and work your way through, or you can just dip in and out of the parts 

you need to know at the time you need to know them. 

“Hands-On” Means Hands-On

Many books on the subject of machine learning that I’ve read in the past have 

been very heavy on theory. That’s not a bad thing. If you’re looking for in-depth 

theory with really complex looking equations, I applaud your rigor. Me? I’m 

more hands-on with my approach to learning and to projects. My philosophy 

is quite simple:

 ■ Start with a question in mind.

 ■ Find the theory I need to learn.

 ■ Find lots of examples I can learn from.

 ■ Put them to work in my own projects.

As a software developer, I personally like to see lots of examples. As a teacher, 

I like to get as much hands-on development time as possible but also get the 

message across to students as simply as possible. There’s something about fi n-

gers on keys, coding away on your IDE, and getting things to work that’s rather 

appealing, and it’s something that I want to convey in the book. 

Everyone has his or her own learning styles. I believe this book covers the 

most common methods, so everybody will benefi t. 

“What About the Math?”

Like arguing that your favorite football team is better than another, or try-

ing to figure out whether Jimmy Page is a better guitarist than Jeff Beck 
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(I prefer Beck), there are some things that will be debated forever and a day. 

One such debate is how much math you need to know before you can start to 

do machine learning.

Doing machine learning and learning the theory of machine learning are 

two very different subjects. To learn the theory, a good grounding in math is 

required. This book discusses a hands-on approach to machine learning. With 

the number of machine learning tools available for developers now, the empha-

sis is not so much on how these tools work but how you can make these tools 

work for you. The hard work has been done, and those who did it deserve to 

be credited and applauded.

“But You Need a PhD!”

There’s nothing like a statement from a peer to stop you dead in your tracks. A 

long-running debate rages about the level of knowledge you need before you 

can start doing analysis on data or claim that you are a “data scientist.” (I’ll 

rip that term apart in a moment.) Personally, I believe that if you’d like to take 

a number of years completing a degree, then pursuing the likes of a master’s 

degree and then a PhD, you should feel free to go that route. I’m a little more 

pragmatic about things and like to get reading and start doing. 

Academia is great; and with the large number of online courses, papers, 

websites, and books on the subject of math, statistics, and data mining, there’s 

enough to keep the most eager of minds occupied. I dip in and out of these 

resources a lot. 

For me, though, there’s nothing like getting my hands dirty, grabbing some 

data, trying out some methods, and looking at the results. If you need to brush 

up on linear regression theory, then let me reassure you now, there’s plenty out 

there to read, and I’ll also cover that in this book. 

Lastly, can one gentleman or lady ever be a “data scientist?” I think it’s more 

likely for a team of people to bring the various skills needed for machine learn-

ing into an organization. I talk about this some more in Chapter 2. 

So, while others in the offi ce are arguing whether to bring some PhD brains 

in on a project, you can be coding up a decision tree to see if it’s viable. 

What Will You Have Learned by the End?

Assuming that you’re reading the book from start to fi nish, you’ll learn the 

common uses for machine learning, different methods of machine learning, 

and how to apply real-time and batch processing. 

There’s also nothing wrong with referencing a specifi c section that you want 

to learn. The chapters and examples were created in such a way that there’s no 

dependency to learn one chapter over another.
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The aim is to cover the common machine learning concepts in a practical 

manner. Using the existing free tools and libraries that are available to you, 

there’s little stopping you from starting to gain insight from the existing data 

that you have.

Balancing Theory and Hands-On Learning

There are many books on machine learning and data mining available, and 

fi nding the balance of theory and practical examples is hard. When planning 

this book I stressed the importance of practical and easy-to-use examples, 

providing step-by-step instruction, so you can see how things are put together. 

I’m not saying that the theory is light, because it’s not. Understanding what 

you want to learn or, more importantly, how you want to learn, will determine 

how you read this book.

The fi rst two chapters focus on defi ning machine learning and data mining, 

using the tools and their results in the real world, and planning for machine 

learning. The main chapters (3 through 8) concentrate on the theory of different 

types of machine learning, using walkthrough tutorials, code fragments with 

explanations, and other handy things to ensure that you learn and retain the 

information presented.

Finally, you’ll look at real-time and batch processing application methods 

and how they can integrate with each other. Then you’ll look at Apache Spark 

and R, which is the language rooted in statistics.

Outline of the Chapters

Chapter 1 considers the question, “What is machine learning?” and looks at the 

defi nition of machine learning, where it is used, and what type of algorithmic 

challenges you’ll encounter. I also talk about the human side of machine learn-

ing and the need for future proofi ng your models and work.

Before any real coding can take place, you need to plan. Chapter 2, “How to 

Plan for Machine Learning,” concentrates on planning for machine learning. 

Planning includes engaging with data science teams, processing, defi ning storage 

requirements, protecting data privacy, cleaning data, and understanding that 

there is rarely one solution that fi ts all elements of your task. In Chapter 2 you 

also work through some handy Linux commands that will help you maintain 

the data before it goes for processing. 

A decision tree is a common machine learning practice. Using results or 

observed behaviors and various input data (signals, features) in models, you can 

predict outcomes when presented with new data. Chapter 3 looks at designing 

decision tree learning with data and coding an example using Weka. 
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Bayesian networks represent conditional dependencies against a set of random 

variables. In Chapter 4 you construct some simple examples to show you how 

Bayesian networks work and then look at some code to use. 

Inspired by the workings of the central nervous system, neural network mod-

els are still used in deep learning systems. Chapter 5 looks at how this branch 

of machine learning works and shows you an example with inputs feeding 

information into a network. 

If you are into basket analysis, then you’ll like Chapter 6 on association rule 

learning and fi nding relations within large datasets. You’ll have a close look at 

the Apriori algorithm and how it’s used within the supermarket industry today. 

Support vector machines are a supervised learning method to analyze data 

and recognize patterns. In Chapter 7 you look at text classifi cation and other 

examples to see how it works.

Chapter 8 covers clustering—grouping objects—which is perfect for the likes 

of segmentation analysis in marketing. This approach is the best method of 

machine learning for attempting some trial-and-error suggestions during the 

initial learning phases.

Chapters 9 and 10 are walkthrough tutorials. The example in Chapter 9 con-

cerns real-time processing. You use Spring XD, a “data ingesting engine,” and 

the streaming Twitter API to gather tweets as they happen. 

In Chapter 10, you look at machine learning as a batch process. With the data 

acquired in Chapter 9, you set up a Hadoop cluster and run various jobs. You 

also look at the common issue of acquiring data from databases with Sqoop, 

performing customer recommendations with Mahout, and analyzing annual 

customer data with Hadoop and Pig.

Chapter 11 covers one of the newer entrants to the machine learning arena. 

The chapter looks at Apache Spark and also introduces you to the Scala language 

and performing SQL-like queries with in-memory data. 

For a long time the R language has been used by statistics people the world 

over. Chapter 12 examines at the R language. With it you perform some of the 

machine learning algorithms covered in the previous chapters.

Source Code for This Book

All the code that is explained in the chapters of the book has been saved on a 

Github repository for you to download and try. The address for the repository 

is https://github.com/jasebell/mlbook. You can also fi nd it on the Wiley 

website at www.wiley.com/go/machinelearning.

The examples are all in Java. If you want to extend your knowledge into 

other languages, then a search around the Github site might lead you to some 

interesting examples.

https://github.com/jasebell/mlbook
http://www.wiley.com/go/machinelearning
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Code has been separated by chapter; there’s a folder in the repository for 

each of the chapters. If any extra libraries are required, there will be a note in 

the README fi le. 

Using Git

Git is a version-control system that is widely used in business and the open 

source software community. If you are working in teams, it becomes very useful 

because you can create branches of codebase to work on then merge changes 

afterwards.

The uses for Git in this book are limited, but you need it for “cloning” the 

repository of examples if you want to use them.

To clone the examples for this book, use the following commands:

$mkdir mlbookexamples
$cd mlbookexamples
$git clone https://github.com/jasebell/mlbook.git

You see the progress of the cloning and, when it’s fi nished, you’re able to 

change directory to the newly downloaded folder and look at the code samples. 

https://github.com/jasebell/mlbook.git


1

c01.indd 05:8:14:PM  10/06/2014 Page 1

Let’s start at the beginning, looking at what machine learning actually is, its 

history, and where it is used in industry. This chapter also describes some of 

the software used throughout the book so you can have everything installed 

and be ready to get working on the practical things. 

History of Machine Learning

So, what is the defi nition of machine learning? Over the last six decades, several 

pioneers of the industry have worked to steer us in the right direction. 

Alan Turing

In his 1950 paper, “Computing Machinery and Intelligence,” Alan Turing asked, 

“Can machines think?” (See www.csee.umbc.edu/courses/471/papers/turing

.pdf for the full paper.) The paper describes the “Imitation Game,” which involves 

three participants—a human acting as a judge, another human, and a computer 

that is attempting to convince the judge that it is human. The judge would type 

into a terminal program to “talk” to the other two participants. Both the human 

and the computer would respond, and the judge would decide which response 

came from the computer. If the judge couldn’t consistently tell the difference 

between the human and computer responses then the computer won the game.

C H A P T E R 
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The test continues today in the form of the Loebner Prize, an annual compe-

tition in artifi cial intelligence. The aim is simple enough: Convince the judges 

that they are chatting to a human instead of a computer chat bot program. 

Arthur Samuel

In 1959, Arthur Samuel defi ned machine learning as, “[A] Field of study that gives 

computers the ability to learn without being explicitly programmed.” Samuel is 

credited with creating one of the self-learning computer programs with his work 

at IBM. He focused on games as a way of getting the computer to learn things. 

The game of choice for Samuel was checkers because it is a simple game but 

requires strategy from which the program could learn. With the use of alpha-

beta evaluation pruning (eliminating nodes that do not need evaluating) and 

minimax (minimizing the loss for the worst case) strategies, the program would 

discount moves and thus improve costly memory performance of the program.

Samuel is widely known for his work in artifi cial intelligence, but he was also 

noted for being one of the fi rst programmers to use hash tables, and he certainly 

made a big impact at IBM.

Tom M. Mitchell

Tom M. Mitchell is the Chair of Machine Learning at Carnegie Mellon University. 

As author of the book Machine Learning (McGraw-Hill, 1997), his defi nition of 

machine learning is often quoted: 

A computer program is said to learn from experience E with respect to 

some class of tasks T and performance measure P, if its performance at 

tasks in T, as measured by P, improves with the experience E.

The important thing here is that you now have a set of objects to defi ne 

machine learning:

 ■ Task (T), either one or more

 ■ Experience (E)

 ■ Performance (P)

So, with a computer running a set of tasks, the experience should be leading 

to performance increases.

Summary Defi nition

Machine learning is a branch of artifi cial intelligence. Using computing, we design 

systems that can learn from data in a manner of being trained. The systems 

might learn and improve with experience, and with time, refi ne a model that 

can be used to predict outcomes of questions based on the previous learning.
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Algorithm Types for Machine Learning

There are a number of different algorithms that you can employ in machine 

learning. The required output is what decides which to use. As you work through 

the chapters, you’ll see the different algorithm types being put to work. Machine 

learning algorithms characteristically fall into one of two learning types: super-

vised or unsupervised learning.

Supervised Learning

Supervised learning refers to working with a set of labeled training data. For every 

example in the training data you have an input object and an output object. An 

example would be classifying Twitter data. (Twitter data is used a lot in the later 

chapters of the book.) Assume you have the following data from Twitter; these 

would be your input data objects:

Really loving the new St Vincent album! 
#fashion I'm selling my Louboutins! Who's interested? #louboutins
I've got my Hadoop cluster working on a load of data. #data

In order for your supervised learning classifi er to know the outcome result 

of each tweet, you have to manually enter the answers; for clarity, I’ve added 

the resulting output object at the start of each line.

music    Really loving the new St Vincent album! 

clothing    #fashion I'm selling my Louboutins! Who's interested? #louboutins
bigdata    I've got my Hadoop cluster working on a load of data. #data

Obviously, for the classifi er to make any sense of the data, when run properly, 

you have to work manually on a lot more input data. What you have, though, 

is a training set that can be used for later classifi cation of data.

There are issues with supervised learning that must be taken into account. 

The bias-variance dilemma is one of them: how the machine learning model 

performs accurately using different training sets. High bias models contain 

restricted learning sets, whereas high variance models learn with complex-

ity against noisy training data. There’s a trade-off between the two models. 

The key is where to settle with the trade-off and when to apply which type 

of model.

Unsupervised Learning

On the opposite end of this spectrum is unsupervised learning, where you let 

the algorithm fi nd a hidden pattern in a load of data. With unsupervised learn-

ing there is no right or wrong answer; it’s just a case of running the machine 

learning algorithm and seeing what patterns and outcomes occur. 
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Unsupervised learning might be more a case of data mining than of actual 

learning. If you’re looking at clustering data, then there’s a good chance you’re 

going to spend a lot of time with unsupervised learning in comparison to 

something like artifi cial neural networks, which are trained prior to being used.

The Human Touch

Outcomes will change, data will change, and requirements will change. Machine 

learning cannot be seen as a write-it-once solution to problems. Also, it requires 

human hands and intuition to write these algorithms. Remember that Arthur 

Samuel’s checkers program basically improved on what the human had already 

taught it. The computer needed a human to get it started, and then it built on 

that basic knowledge. It’s important that you remember that. 

Throughout this book I talk about the importance of knowing what question 

you are trying to answer. The question is the cornerstone of any data project, 

and it starts with having open discussions and planning. (Read more about this 

in Chapter 2, “Planning for Machine Learning.”)

It’s only in rare circumstances that you can throw data at a machine learning 

routine and have it start to provide insight immediately.

Uses for Machine Learning

So, what can you do with machine learning? Quite a lot, really. This section breaks 

things down and describes how machine learning is being used at the moment. 

Software

Machine learning is widely used in software to enable an improved experience 

with the user. With some packages, the software is learning about the user’s 

behavior after its fi rst use. After the software has been in use for a period of 

time it begins to predict what the user wants to do.

Spam Detection

For all the junk mail that gets caught, there’s a good chance a Bayesian classifi -

cation fi lter is doing the work to catch it. Since the early days of SpamAssassin 

to Google’s work in Google Mail, there’s been some form of learning to fi gure 

out whether a message is good or bad. 

Spam detection is one of the classic uses of machine learning, and over time 

the algorithms have gotten better and better. Think about the e-mail program 

http://www.allitebooks.org
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that you use. When it sees a message it thinks is junk, it asks you to confi rm 

whether it is junk or isn’t. If you decide that the message is spam, the system 

learns from that message and from the experience. Future messages will, hope-

fully, be treated correctly from then on.

Voice Recognition

Apple’s Siri service that is on many iOS devices is another example of software 

machine learning. You ask Siri a question, and it works out what you want to do. 

The result might be sending a tweet or a text message, or it could be setting a 

calendar appointment. If Siri can’t work out what you’re asking of it, it performs 

a Google search on the phrase you said. 

Siri is an impressive service that uses a device and cloud-based statistical 

model to analyze your phrase and the order of the words in it to come up with 

a resulting action for the device to perform. 

Stock Trading

There are lots of platforms that aim to help users make better stock trades. 

These platforms have to do a large amount of analysis and computation to make 

recommendations. From a machine learning perspective, decisions are being 

made for you on whether to buy or sell a stock at the current price. It takes into 

account the historical opening and closing prices and the buy and sell volumes 

of that stock. 

With four pieces of information (the low and high prices plus the daily open-

ing and closing prices) a machine learning algorithm can learn trends for the 

stock. Apply this with all stocks in your portfolio, and you have a system to aid 

you in the decision whether to buy or sell.

Bitcoins are a good example of algorithmic trading at work; the virtual coins 

are bought and sold based on the price the market is willing to pay and the 

price at which existing coin owners are willing to sell. 

The media is interested in the high-speed variety of algorithmic trading. The 

ability to perform many thousands of trades each second based on algorithmic 

prediction is a very compelling story. A huge amount of money is poured into 

these systems and how close they can get the machinery to the main stock 

trading exchanges. Milliseconds of network latency can cost the trading house 

millions in trades if they aren’t placed in time.

About 70 percent of trades are performed by machine and not by humans 

on the trading fl oor. This is all very well when things are going fi ne, but when 

a problem occurs it can be minutes before the fault is noticed, by which time 

many trades have happened. The fl ash crash in May 2010, when the Dow Jones 
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industrial average dove 600 points, is a good example of when this problem 

occurred. 

Robotics

Using machine learning, robots can acquire skills or learn to adapt to the envi-

ronment in which they are working. Robots can acquire skills such as object 

placement, grasping objects, and locomotion skills through either automated 

learning or learning via human intervention.

With the increasing amount of sensors within robotics, other algorithms could 

be employed outside of the robot for further analysis. 

Medicine and Healthcare

The race is on for machine learning to be used in healthcare analytics. A number 

of startups are looking at the advantages of using machine learning with Big 

Data to provide healthcare professionals with better-informed data to enable 

them to make better decisions. 

IBM’s famed Watson supercomputer, once used to win the television quiz 

program Jeopardy against two human contestants, is being used to help doctors. 

Using Watson as a service on the cloud, doctors can access learning on millions 

of pages of medical research and hundreds of thousands of pieces of informa-

tion on medical evidence. 

With the number of consumers using smartphones and the related devices 

for collating a range of health information—such as weight, heart rate, pulse, 

pedometers, blood pressure, and even blood glucose levels—it’s now possible 

to track and trace user health regularly and see patterns in dates and times. 

Machine learning systems can recommend healthier alternatives to the user 

via the device.

Although it’s easy enough to analyze data, protecting the privacy of user 

health data is another story. Obviously, some users are more concerned about 

how their data is used, especially in the case of it being sold to third-party com-

panies. The increased volume of analytics in healthcare and medicine is new, 

but the privacy debate will be the deciding factor about how the algorithms 

will ultimately be used.

Advertising

For as long as products have been manufactured and services have been offered, 

companies have been trying to infl uence people to buy their products. Since 

1995, the Internet has given marketers the chance to advertise directly to our 

screens without needing television or large print campaigns. Remember the 
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thought of cookies being on our computers with the potential to track us? The 

race to disable cookies from browsers and control who saw our habits was big 

news at the time.

Log fi le analysis is another tactic that advertisers use to see the things that 

interest us. They are able to cluster results and segment user groups accord-

ing to who may be interested in specifi c types of products. Couple that with 

mobile location awareness and you have highly targeted advertisements sent 

directly to you. 

There was a time when this type of advertising was considered a huge inva-

sion of privacy, but we’ve gradually gotten use to the idea, and some people 

are even happy to “check in” at a location and announce their arrival. If you’re 

thinking your friends are the only ones watching, think again. In fact, plenty 

of companies are learning from your activity. With some learning and analysis, 

advertisers can do a very good job of fi guring out where you’ll be on a given 

day and attempt to push offers your way.

Retail and E-Commerce

Machine learning is heavily used in retail, both in e-commerce and bricks-and-

mortar retail. At a high level, the obvious use case is the loyalty card. Retailers 

that issue loyalty cards often struggle to make sense of the data that’s coming 

back to them. Because I worked with one company that analyzes this data, I 

know the pain that supermarkets go through to get insight. 

UK supermarket giant Tesco is the leader when it comes to customer loyalty 

programs. The Tesco Clubcard is used heavily by customers and gives Tesco a 

great view of customer purchasing decisions. Data is collected from the point of 

sale (POS) and fed back to a data warehouse. In the early days of the Clubcard, 

the data couldn’t be mined fast enough; there was just too much. As process-

ing methods improved over the years, Tesco and marketing company Dunn 

Humby have developed a good strategy for understanding customer behavior 

and shopping habits and encouraging customers to try products similar to their 

usual choices.

An American equivalent is Target, which runs a similar sort of program that 

tracks every customer engagement with the brand, including mailings, website 

visits, and even in-store visits. From the data warehouse, Target can fi ne-tune 

how to get the right communication method to the right customers in order for 

them to react to the brand. Target learned that not every customer wants an 

e-mail or an SMS message; some still prefer receiving mail via the postal service.

The uses for machine learning in retail are obvious: Mining baskets and 

segmenting users are key processes for communicating the right message to 

the customer. On the other hand, it can be too accurate and cause headaches. 

Target’s “baby club” story, which was widely cited in the press as a huge privacy 
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danger in Big Data, showed us that machine learning can easily determine that 

we’re creatures of habit, and when those habits change they will get noticed. 

TARGET’S PRIVACY ISSUE

Target’s statistician, Andrew Pole, analyzed basket data to see whether he could 

determine when a customer was pregnant. A select number of products started to 

show up in the analysis, and Target developed a pregnancy prediction score. Coupons 

were sent to customers who were predicted to be pregnant according to the newly 

mined score. That was all very well until the father of a teenage girl contacted his local 

store to complain about the baby coupons that were being sent to his daughter. It 

turned out that Target predicted the girl’s pregnancy before she had told her father 

that she was pregnant.

For all the positive uses of machine learning, there are some urban myths, 

too. For example, you might have heard the “beer and diapers” story associ-

ated with Walmart and other large retailers. The idea is that the sales of beer 

and diapers both increase on Fridays, suggesting that mothers were going out 

and dads would stock up on beer for themelves and diapers for the little ones 

they were looking after. It turned out to be a myth, but this still doesn’t stop 

marketing companies from wheeling out the story (and believing it’s true) to 

organizations who want to learn from their data.

Another myth is that the heavy metal band Iron Maiden would mine bit-

torrent data to fi gure out which countries were illegally downloading their 

songs and then fl y to those locations to play concerts. That story got the mar-

keters and media very excited about Big Data and machine learning, but sadly 

it’s untrue. That’s not to say that these things can’t happen someday; they just 

haven’t happened yet.

Gaming Analytics

We’ve already established that checkers is a good candidate for machine learn-

ing. Do you remember those old chess computer games with the real plastic 

pieces? The human player made a move and then the computer made a move. 

Well, that’s a case of machine learning planning algorithms in action. Fast-

forward a few decades (the chess computer still feels like yesterday to me) to 

today when the console market is pumping out analytics data every time you 

play your favorite game.

Microsoft has spent time studying the data from Halo 3 to see how players 

perform on certain levels and also to fi gure out when players are using cheats. 

Fixes have been created based on the analysis of data coming back from the 

consoles. 
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Microsoft also worked on Drivatar, which is incorporated into the driving 

game Forza Motorsport. When you fi rst play the game, it knows nothing about 

your driving style. Over a period of practice laps the system learns your style, 

consistency, exit speeds on corners, and your positioning on the track. The 

sampling happens over three laps, which is enough time to see how your profi le 

behaves. As time progresses the system continues to learn from your driving 

patterns. After you’ve let the game learn your driving style the game opens 

up new levels and lets you compete with other drivers and even your friends.

If you have children, you might have seen the likes of Nintendogs (or cats), a 

game in which a person is tasked with looking after an on-screen pet. (Think 

Tamagotchi, but on a larger scale.) Algorithms can work out when the pet needs 

to play, how to react to the owner, and how hungry the pet is. 

It’s still the early days of game companies putting machine learning into 

infrastructure to make the games better. With more and more games appear-

ing on small devices, such as those with the iOS and Android platforms, the 

real learning is in how to make players come back and play more and more. 

Analysis can be performed about the “stickiness” of the game—do players return 

to play again or do they drop off over a period of time in favor of something 

else? Ultimately there’s a trade-off between the level of machine learning and 

gaming performance, especially in smaller devices. Higher levels of machine 

learning require more memory within the device. Sometimes you have to factor 

in the limit of what you can learn from within the game. 

The Internet of Things

Connected devices that can collate all manner of data are sprouting up all over 

the place. Device-to-device communication is hardly new, but it hadn’t really 

hit the public minds until fairly recently. With the low cost of manufacture and 

distribution, now devices are being used in the home just as much as they are 

in industry. 

Uses include home automation, shopping, and smart meters for measuring 

energy consumption. These things are in their infancy, and there’s still a lot of 

concern on the security aspects of these devices. In the same way mobile device 

location is a concern, companies can pinpoint devices by their unique IDs and 

eventually associate them to a user. 

On the plus side, the data is so rich that there’s plenty of opportunity to put 

machine learning in the heart of the data and learn from the devices’ output. 

This may be as simple as monitoring a house to sense ambient temperature—for 

example, is it too hot or too cold? 

It’s very early days for the Internet of things, but there’s a lot of groundwork 

happening that is leading to some interesting outcomes. With the likes of Arduino 

and Raspberry Pi computers, it’s relatively cheap to get started measuring the 
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likes of motion, temperature, and sound and then extracting the data for analysis, 

either after it’s been collated or in real time.  

Languages for Machine Learning

This book uses the Java programming language for the working examples. The 

reasons are simple: It’s a widely used language, and the libraries are well sup-

ported. Java isn’t the only language to be used for machine learning—far from 

it. If you’re working for an existing organization, you may be restricted to the 

languages used within it. 

With most languages, there is a lot of crossover in functionality. With the 

languages that access the Java Virtual Machine (JVM) there’s a good chance that 

you’ll be accessing Java-based libraries. There’s no such thing as one language 

being “better” than another. It’s a case of picking the right tool for the job. The 

following sections describe some of the other languages that you can use for 

machine learning.

Python

The Python language has increased in usage, because it’s easy to learn and easy 

to read. It also has some good machine learning libraries, such as scikit-learn, 

PyML, and pybrain. Jython was developed as a Python interpreter for the JVM, 

which may be worth investigating.

R

R is an open source statistical programming language. The syntax is not the 

easiest to learn, but I do encourage you to have a look at it. It also has a large 

number of machine learning packages and visualization tools. The RJava proj-

ect allows Java programmers to access R functions from Java code. For a basic 

introduction to R, have a look at Chapter 12.

Matlab

The Matlab language is used widely within academia for technical computing 

and algorithm creation. Like R, it also has a facility for plotting visualizations 

and graphs.

Scala

A new breed of languages is emerging that takes advantage of Java’s runtime 

environment, which potentially increases performance, based on the threading 
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architecture of the platform. Scala (which is an acronym for Scalable Language) 

is one of these, and it is being widely used by a number of startups. 

There are machine learning libraries, such as ScalaNLP, but Scala can access 

Java jar fi les, and it can also implement the likes of Classifi er4J and Mahout, 

which are covered in this book. It’s also core to the Apache Spark project, which 

is covered in Chapter 11.

Clojure

Another JVM-based language, Clojure, is based on the Lisp programming 

language. It’s designed for concurrency, which makes it a great candidate for 

machine learning applications on large sets of data. 

Ruby

Many people know about the Ruby language by association with the Ruby On 

Rails web development framework, but it’s also used as a standalone language. 

The best way to integrate machine learning frameworks is to look at JRuby, 

which is a JVM-based alternative that enables you to access the Java machine 

learning libraries.

Software Used in This Book

The hands-on elements in the book use a number of programs and packages to 

get the algorithms and machine learning working. 

To keep things easy, I strongly advise that you create a directory on your 

system to install all these packages. I’m going to call mine mlbook:

$mkdir ~/mlbook
$cd ~/mlbook

Checking the Java Version

As the programs used in the book rely on Java, you need to quickly check the 

version of Java that you’re using. The programs require Java 1.6 or later. To check 

your version, open a terminal window and run the following:

$ java -version
java version "1.7.0_40"
Java(TM) SE Runtime Environment (build 1.7.0_40-b43)
Java HotSpot(TM) 64-Bit Server VM (build 24.0-b56, mixed mode)

If you are running a version older than 1.6, then you need to upgrade your 

Java version. You can download the current version from www.oracle.com/

technetwork/java/javase/downloads/index.html.

http://www.oracle.com
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Weka Toolkit

Weka (Waikato Environment for Knowledge Acquisition) is a machine learn-

ing and data mining toolkit written in Java by the University of Waikato in 

New Zealand. It provides a suite of tools for learning and visualization via the 

supplied workbench program or the command line. Weka also enables you to 

retrieve data from existing data sources that have a JDBC driver. With Weka 

you can do the following:

 ■ Preprocessing data

 ■ Clustering

 ■ Classifi cation

 ■ Regression

 ■ Association rules 

The Weka toolkit is widely used and now supports the Big Data aspects by 

interfacing with Hadoop for clustered data mining.

You can download Weka from the University of Waikato website at 

www.cs.waikato.ac.nz/ml/weka/downloading.html. There are versions of Weka 

available for Linux, Mac OSX, and Windows. To install Weka on Linux, you 

just need to unzip the supplied fi le to a directory. On Mac OSX and Windows, 

an installer program is supplied that will unzip all the required fi les for you. 

Mahout

The Mahout machine learning libraries are an open source project that are 

part of the Apache project. The key feature of Mahout is its scalability; it works 

either on a single node or a cluster of machines. It has tight integration with the 

Hadoop Map/Reduce paradigm to enable large-scale processing. 

Mahout supports a number of algorithms including

 ■ Naive Bayes Classifi er

 ■ K Means Clustering

 ■ Recommendation Engines

 ■ Random Forest Decision Trees

 ■ Logistic Regression Classifi er

There’s no workbench in Mahout like there is in the Weka toolkit, but the 

emphasis is on integrating machine learning library code within your projects. 

There are a wealth of examples and ready-to-run programs that can be used 

with your existing data. 

http://www.cs.waikato.ac.nz/ml/weka/downloading.html


 Chapter 1 ■ What Is Machine Learning? 13

c01.indd 05:8:14:PM  10/06/2014 Page 13

You can download Mahout from www.apache.org/dyn/closer.cgi/maho ut/. 

As Mahout is platform independent, there’s one download that covers all the 

operating systems. To install the download, all you have to do is unzip Mahout 

into a directory and update your path to fi nd the executable fi les.

SpringXD

Whereas Weka and Mahout concentrate on algorithms and producing the 

knowledge you need, you must also think about acquiring and processing data. 

Spring XD is a “data ingestion engine” that reads in, processes, and stores 

raw data. It’s highly customizable with the ability to create processing units. It 

also integrates with all the other tools mentioned in this chapter. 

Spring XD is relatively new, but it’s certainly useful. It not only relates to 

Internet-based data, it can also ingest network and system messages across a 

cluster of machines.

You can download the Spring XD distribution from http://projects.spring

.io/spring-xd/. The link for the zip fi le is in the Quick Start section. 

After the zip fi le has downloaded you need to unzip the distribution into 

a directory. For a detailed walkthrough of using Spring XD, read Chapter 9, 

“Machine Learning in Real Time with Spring XD.”

Hadoop

Unless you’ve been living on some secluded island without power and an 

Internet connection, you will have heard about the savior of Big Data: Hadoop. 

Hadoop is very good for processing Big Data, but it’s not a required tool. In this 

book, it comes into play in Chapter 10, “Machine Learning as a Batch Process.”

Hadoop is a framework for processing data in parallel. It does this using the 

MapReduce pattern, where work is divided into blocks and is distributed across 

a cluster of machines. You can use Hadoop on a single machine with success; 

that’s what this book covers.

There are two versions of Hadoop. This book uses version 1.2.1. 

The Apache Foundation runs a series of mirror download servers and refers 

you to the ones relevant to your location. The main download page is at www

.apache.org/dyn/closer.cgi/hadoop/common/. 

After you have picked your mirror site, navigate your way to hadoop-1.2.1 

releases and download hadoop-1.2.1-bin.tar.gz. Unzip and untar the dis-

tribution to a directory. 

If you are running a Red Hat or Debian server, you can download the 

respective .rpm or .deb fi les and install them via the package installer for your 

operating system. If preferred, Debian and Ubuntu users can install Hadoop 

with the apt-get or yum command.

http://www.apache.org/dyn/closer.cgi/maho
http://projects.spring.io/spring-xd/
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Using an IDE

Some discussions seem to spark furious debate in certain circles—for example, 

favorite actor/actress, best football team, and best integrated development 

environment (IDE). 

I’m an Eclipse user. I’m also an IDEA user, and I have NetBeans as well. 

Basically, I use all three. There’s no hard rule that IDE you should use, as they all 

do the same thing very well. The examples in this book use Eclipse (Juno release). 

Data Repositories

One question that comes up again and again in my classes is “Where can I get 

data?” There are a few answers to this question, but the best answer depends 

on what you are trying to learn. 

Data comes in all shapes and sizes, which is something discussed further in 

the next chapter. I strongly suggest that you take some time to hunt around the 

Internet for different data sets and look through them. You’ll get a feel for how 

these things are put together. Sometimes you’ll fi nd comma separated variable 

(CSV) data, or you might fi nd JSON or XML data. 

Remember, some of the best learning comes from playing with the data. 

Having a question in mind that you are trying to answer with the data is a 

good start (and something you will see me refer to a number of times in this 

book), but learning comes from experimentation and improvement on results. 

So, I’m all for playing around with the data fi rst and seeing what works. I hail 

from a very pragmatic background when it comes to development and learning. 

Although the majority of publications about machine learning have come from 

people with academic backgrounds—and I fully endorse and support them—we 

shouldn’t discourage learning by doing. 

The following sections describe some places where you can get plenty of data 

with which to play.

UC Irvine Machine Learning Repository

This machine learning repository consists of more than 270 data sets. Included 

in these sets are notes on the variable name, instances, and tasks the data would 

be associated with. You can fi nd this repository at http://archive.ics.uci

.edu/ml/datasets.

Infochimps

The data marketplace at Infochimps has been around for a few years. Although 

the company has expanded to cloud-based offerings, the data is still available 

to download at www.infochimps.com/datasets.

http://archive.ics.uci.edu/ml/datasets
http://www.infochimps.com/datasets
http://www.allitebooks.org
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Kaggle

The competitions that Kaggle run have gained a lot of interest over the last 

couple of years. The 101 section on the site offers some data sets with which to 

experiment. You can fi nd them at www.kaggle.com/competitions.

Summa ry

This chapter looked at what machine learning is, how it can be applied to dif-

ferent areas of business, and what tools you need to follow along with the 

remainder of the book. 

Chapter 2 introduces you to planning for machine learning. It covers data 

science teams, cleaning, and different methods of processing data.

http://www.kaggle.com/competitions
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This chapter looks at planning your machine learning projects, storage types, 

processing options and data input. The chapter also covers data quality and 

methods to validate and clean data before you do any analysis.

The Machine Learning Cycle

A machine learning project is basically a cycle of actions that need to be 

performed. (See Figure 2-1.)

Acquisition

Prepare

Process

Report
• Present the results

• Run machine tools

• Data cleaning and quality

• Collate the data

Figure 2-1:  The machine learning process

C H A P T E R 

2

Planning for Machine Learning
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You can acquire data from many sources; it might be data that’s held by your 

organization or open data from the Internet. There might be one dataset, or 

there could be ten or more. 

You must come to accept that data will need to be cleaned and checked for 

quality before any processing can take place. These processes occur during the 

prepare phase.

The processing phase is where the work gets done. The machine learning 

routines that you have created perform this phase.

Finally, the results are presented. Reporting can happen in a variety of ways, 

such as reinvesting the data back into a data store or reporting the results as a 

spreadsheet or report.

It All Starts with a Question

There seems to be a misconception that machine learning, like Big Data, is 

a case of throwing enough data at the problem that the answers magically 

appear. As much as I’d like to say this happens all the time, it doesn’t. Machine 

learning projects start with a question or a hunch that needs investigating. I’ve 

encountered this quite a few times in speaking to people about their companies’ 

data ambitions and what they are looking to achieve with the likes of machine 

learning and Hadoop.

Using a whiteboard, sticky notes, or even a sheet of paper, start asking ques-

tions like the following:

 ■ Is there a correlation between our sales and the weather?

 ■ Do sales on Saturday and Sunday generate the majority of revenue to the 

business compared to the other fi ve days of the week?

 ■ Can we plan what fashions to stock in the next three months by looking 

at Twitter data for popular hashtags?

 ■ Can we tell when our customers become pregnant?

All these examples are reasonable questions, and they also provide the basis 

for proper discussion. Stakeholders will usually come up with the questions, 

and then the data project team (which might be one person—you!) can spin 

into action.

Without knowing the question, it’s diffi cult to know where to start. Anyone 

who thinks the answers just pop out of thin air needs a polite, but fi rm, expla-

nation of what has to happen for the answers to be discovered. 
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I Don’t Have Data!

This sounds like a silly statement when you have a book on machine learning 

in your hands, but sometimes people just don’t have the data. 

In an ideal world, we expect companies to have well-groomed customer 

relationship management (CRM) systems and neat repositories of data that 

could be retrieved on a whim and copied nicely into a Hadoop fi lesystem, so 

countless MapReduce jobs could run (read more about Hadoop and MapReduce 

in Chapter 10, “Machine Learning as a Batch Process”).

Data comes from a variety of sources. Plenty of open data initiatives are avail-

able, so you have a good chance of being able to fi nd some data to work with.

Starting Local

Perhaps you could make a difference in your local community; see what data 

they have open with which you can experiment. New York City has a whole 

portal of open data with more than 1,100 datasets for citizens to download and 

learn from. Hackathons and competitions to encourage people to get involved 

and give back to the community. The results of the hackathons make a differ-

ence, because insights about how the local community is run are fed back to 

the event organizers. If you can’t fi nd the dataset you want then you are also 

encouraged to request it.

Competitions

If you fancy a real challenge, then think about entering competitions. One of 

the most famous was the Netfl ix Prize, which was a competition to improve 

the recommendation algorithm for the Netfl ix fi lm service.

Teams who were competing downloaded sample sets of user data and worked 

on an algorithm to improve the predictions of movies that customers would 

like. The winning team was the one that improved the results by 10 percent. In 

2009, the $1 million prize was awarded to “BellKor’s Pragmatic Chaos.” This 

triggered a new wave of competitions, letting the data out into the open so col-

laborative teams could improve things.

In 2010, Anthony Goldbloom founded Kaggle.com, which is a platform for 

predictive modeling and analytics competitions. Each competition posted has 

sample datasets and a brief of the desired outcome. Either teams or individuals 

can enter, and the most effective algorithms, very similar to the Netfl ix Prize, 

decided the winner.
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Is competition effective? It seems to be. Kaggle has more than 100,000 data 

scientists registered from across the world. Organizations such as Facebook, 

NASA, GE, Wikipedia, and AllState have used the service to improve their 

products and even head-hunt top talent.

One Solution Fits All?

Machine learning is built up from a varying set of tools, languages, and tech-

niques. It’s fair to say that there is no one solution that fi ts most projects. As you 

will fi nd in this chapter and throughout the book, I’ll refer to various tools to get 

certain aspects of the job done. For example, there might be data in a relational 

database that needs extracting to a fi le before you can process. 

Over the last few years, I’ve seen managers and developers with faces of 

complete joy and happiness when a data project is assigned. It’s new, it’s hip 

and, dare I say it, funky to be working on data projects. Then after the scale of 

the project comes into focus, I’ve seen the color drain from their faces. Usually 

this happens after the managers and developers see how many different ele-

ments are required to get things working for the project to succeed. And, like 

any major project, the specifi cation from the stakeholders will change things 

along the way.

Defi ning the Process

Making anything comes down to process, whether that’s baking a cake, brew-

ing a cup of coffee, or planning a machine learning project. Processes can be 

refi ned as time goes on, but if you’ve never developed one before, then you can 

use the following process as a template. 

Planning

During the late 1980s, I wrote many assignments and papers on the upcoming 

trend of the paperless offi ce and how computers would one day transform the 

way day-to-day operations would be performed. Even without the Internet, it 

was easy to see that computers were changing how things were being done. 

Skip ahead to the present day and you’ll see that my desk is littered with 

paper, notebooks, sticky notes, and other scraps of information. The paperless 

offi ce didn’t quite make the changes I was expecting, and you need no more 

evidence than the state of my desk. I would show you a photograph, but it might 

prove embarrassing. 
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What I have found is that all projects start on paper. For me, it doesn’t work 

to jump in and code; I fi nd that method haphazard and error prone. I need to 

plan fi rst. I use A5 Moleskin notebooks for notes and A4 and A3 artist drawing 

pads for large diagrams. They’re on my desk, in my bag, and in my jacket pocket. 

Whiteboards are good, too. Whiteboards hold lots of ideas and diagrams, but 

I fi nd they can get out of control and messy after a while. There was once an 

offi ce wall in Santa Clara that I covered in sticky notes. (I did take them down 

once I was fi nished. The team thought I was mad.) 

Planning might take into account where the data is coming from, if it needs 

to be cleaned, what learning methods to use and what the output is going to 

look like. The main point is that these things can be changed at any time—the 

earlier in the process they change, the better. So it’s worth taking the time to 

sit around a table with stakeholders and the team and fi gure out what you are 

trying achieve.

Developing

This process might involve algorithm development or code development. The 

more iterations you perform on the code the better it will be. Agile development 

processes work best; in agile development, you only work on what needs to be 

done without trying to future-proof the software as you go along. It’s worth 

using some form of code repository site like Github or BitBucket to keep all 

your work private; it also means you can roll back to earlier versions if you’re 

not happy with the way things are going.

Testing

In this case, testing means testing with data. You might use a random sample 

of the data or the full set. The important thing is to remind yourself that you’re 

testing the process, so it’s okay for things to not go as planned. If you push 

things straight to production, then you won’t really know what’s going to hap-

pen. With testing you can get an idea of the pain points. You might fi nd data-

loading issues, data-processing issues, or answers that just don’t make sense. 

When you test, you have time to change things.

Reporting

Sit down with the stakeholders and discuss the test results. Do the results make 

sense? The developers and mathematicians might want to amend algorithms 

or the code. Stakeholders might have a new question to ask (this happens a lot), 

or perhaps you want to introduce some new data to get another angle on the 
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answers. Regardless of the situation, make sure the original people from the 

planning phase are back around the table again.

Refi ning

When everyone is happy with the way the process is going it’s time to refi ne 

code and, if possible, the algorithms. With huge volumes of data, squeeze every 

ounce of performance you can from your code and the quicker the overall pro-

cessing time will be. Think of a bobsled run; a slower start converts to a much 

slower fi nish.

Production

When all is tested, reviewed, and refi ned by the team, moving to production 

shouldn’t be a big job. Be sure to give consideration to when this project will 

be run—is it an hourly/daily/weekly/monthly job? Will the data change wildly 

between the project going in to production and the next run? 

Make sure the team reviews the fi rst few production runs to ensure the results 

are as expected, and then look at the project as a whole and see if it’s meeting 

the criteria of the stakeholders. Things might need to be refi ned. As you prob-

ably already know, software is rarely fi nished.

Building a Data Team

A data scientist is someone who can bring the facets of data processing, analytics, 

statistics, programming, and visualization to a project. With so many skill sets 

in action, even for the smallest of projects, it’s a lot to ask for one person to have 

all the necessary skills. In fact, I’d go as far to say that such a person might not 

exist—or is at least extremely rare. A data science team might touch on some, 

or all, of the following areas of expertise.

Mathematics and Statistics

Someone on the team needs to have a good head for mathematics—someone 

who isn’t going to fl inch when the words “linear regression” are mentioned in 

the interview. I’m not saying there’s a minimum level of statistics you should 

know before embarking on any project, but knowledge of descriptive statistics 

(the mean, the mode, and the median), distributions, and outliers will give you 

a good grounding to start. 

The debate will rage on about the level of mathematics needed in any machine 

learning project, but my opinion is that every project comes with its own set of 

complications. If new information needs to be learned, then there are plenty of 

sources out there from which you can learn.
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If you have access to talented mathematicians, then your data team is a blessed 

group indeed.

Programming

Good programming talent is hard to come by, but I’m assuming that if you 

have this book in your hand then there’s a good chance you’re a programmer 

already. Taking algorithms and being able to transfer that to workable code can 

take time and planning. It’s also worth knowing some of the Big Data tools, 

such as the Hadoop framework and Spring XD. (Read Chapters 9 and 10 for a 

comprehensive walkthrough on both technologies.)

Graphic Design

Visualizing data is important; it tells the story of your fi ndings to the stake-

holders or end users. Although much emphasis has been placed on the web for 

presentation with technologies such as D3 and Processing, don’t forget the likes 

of BIRT, Jasper Reports, and Crystal Reports. 

This book doesn’t touch on visualization, but Appendix D, “Further Reading,” 

includes some titles that will point you in the right direction.

Domain Knowledge

If, for example, you are working with medical data, then it would be benefi cial 

to have someone who knows the medical fi eld well. The same goes for retail; 

there’s not much point trawling through rows of transactions if no one knows 

how to interpret how customers behave. Domain experts are the vital heroes in 

guiding the team through a project. There are some decisions that the domain 

expert will instinctively know. 

Think of a border crossing with passport control. There might be many per-

mutations of rules that are given depending on nationality, immigration rules, 

and so on. A domain expert would have this knowledge in place and make 

your life as the developer much easier and would help to get a solution up and 

running more quickly.

There’s a notion that we don’t need domain experts. I’m of the mind that we 

do, even if you only sit down and have coffee with someone who knows the 

domain. Always take a notebook and keep notes.  

Data Processing

After you have a team in place and a rough idea of how all of this is going to 

get put together, it’s time to turn your attention to what is going to do all the 

work for you. You must give thought to the frequency of the data process jobs 



24 Machine Learning

c02.indd 09:59:55:AM  10/06/2014 Page 24

that will take place. If it will occur only once in a while, then it might be false 

economy investing in hardware over the long term. It makes more sense to start 

with what you have in hand and then add as you go along and as you notice 

growth in processing times and frequency.

Using Your Computer

Yes, you can use your own machine, either a desktop or a laptop. I do my devel-

opment on an Apple MacBook Pro. I run the likes of Hadoop on this machine 

as it’s pretty fast, and I’m not using terabytes of data. There’s nothing to stop 

you from using your own machine; it’s available and it saves fi nancial outlay to 

get more machines. Obviously, there can be limitations. Processing a heavy job 

might mean you have to turn your attention to less processor-intensive things, 

but never rule out the option of using your own machine.

Operating systems like Linux and Mac OSX tend to be preferred over Windows, 

especially for Big Data–based operations. The best choice comes down to what 

you know best and what suits the project best in order to get the job done effi -

ciently. I don’t believe there’s only one right way to do things.

A Cluster of Machines

Eventually you’ll come across a scenario that requires you to use a cluster of 

machines to do the work. Frameworks like Hadoop are designed for use over 

clusters of machines, which make it possible for the distribution of work to be 

done in parallel. Ideally the machines should be on the same network to reduce 

network traffi c latency.  

At this point in time, it’s also worthwhile to add a good system administra-

tor to the data science team. Any performance that can be improved over the 

cluster will bring marked performance against the whole project.

Cloud-Based Services

If the thought of maintaining and paying for your own hardware does not 

appeal, then consider using some form of cloud-based service. Vendors such as 

Amazon, Rackspace, and others provide scalable servers where you can increase, 

or decrease, the number of machines and amount of power that you require. 

The advantage of these services is that they are “turn on/turn off” technology, 

enabling you to use only what you need.

Keep a close eye on the cost of cloud-based services, as they can sometimes 

prove more expensive than just using a standard hosting option over longer time 

periods. Some companies provide dedicated Big Data services if you require the 

likes of Hadoop to do your processing. With cloud-based services, it’s always 

http://www.allitebooks.org
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important to turn the instance off, otherwise you’ll be charged for the usage 

while the instance is active.

Data Storage

There are some decisions to make on how the data is going to be stored. This 

might be on a physical disc or deployed on a cloud-based solution.

Physical Discs

The most common form of storage is the one that you will more than likely 

have in your computer to start off with. The hard disc is adequate for testing 

and small jobs. You will notice a difference in performance between physical 

discs and solid state drives (SSD); the latter provides much faster performance. 

External drives are cheap, too, and provide a good storage solution for when 

data volumes increase. 

Cloud-Based Storage

Plenty of cloud-based storage facilities are available to store your data as required. 

If you are looking at cloud-based processing, then you’ll more than likely be 

purchasing some form of cloud-based storage to go with it. For example, if you 

use Amazon’s Elastic Map Reduce (EMR) system, then you would be using it 

alongside the S3 storage solution.

Like cloud processing, storage based on the cloud will cost you on a monthly 

or annual basis. You also have to think about the bandwidth implications of 

moving large volumes of data from your offi ce location to the cloud system, 

which is another cost to keep in mind.

Data Privacy

Data is power and with it comes an awful lot of responsibility. The privacy 

issue will always rage on in the hearts and minds of the users and the general 

public. Everyone has an opinion on the matter, and often people err on the side 

of caution.

Cultural Norms

Cultural expectations are diffi cult to measure. As the World Wide Web has pro-

gressed since the mid-1990s, there has been a privacy battle about everything 
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from how cookies were stored on your computer to how a multitude of compa-

nies are tracking locations, social interactions, ratings, and purchasing decisions 

through your mobile devices. 

If you’re collecting data via a website or mobile application, then there’s an 

expectation that you will be giving something in return for user information. 

When you collect that information, it’s only right to tell the user what you intend 

to do with the data. 

Supermarket loyalty card schemes are a simple data-collecting exercise. 

For every basket that goes through the checkout, there’s the potential that the 

customer has a loyalty card. In associating that customer with that basket of 

products you can start to apply machine learning. Over time you will be able 

to see the shopping habits of that customer—her average spend, the day of the 

week she shops—and the customer expects some form of discount promotion 

for telling you all this information.

So, how do you keep cultural norms onside? By giving customers a very clear 

opt-in or opt-out strategy. 

Generational Expectations

During sessions of my iPhone development class, I open up with a discussion 

about personal data. I can watch the room divide instantly, and I can easily see 

the deciding factor: age. 

Some people are more than happy to share with their friends, and the rest of 

the world, their location, what they are doing, and with whom. These people 

post pictures of their activities and tag them so they could be easily searched, 

rated, and commented on. They use Facebook, Instagram, Foursquare, Twitter, 

and other apps as a normal, everyday part of their lives.

The other group of people, who were older, were not comfortable with the 

concept of handing over personal information. Some of them thought that no 

one in their right minds would be interested in such information. Most couldn’t 

see the point.

Although the generation gap might be closing and there is a steady relaxation 

of what people are willing to put on the Internet, developers have a responsibil-

ity to the suppliers of the information. You have to consider whether the results 

you generate will cause a concern to them or enhance their lives.

The Anonymity of User Data

You can learn from data, but users get touchy when their names are attached 

to it. Creating hashes of important data is a starting point, but it’s certainly not 
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the end game. Consider my name as an MD5 hash. Using the Linux md5sum 

command I can fi nd it out very easily, as shown here:

$ printf '%s' "Jason Bell" | md5sum 
a7b19ed2ca59f8e94121b54f9f26333c  -

Now, I have a hash value, which is a good start, but it’s still not really protect-

ing my identity. You now know it and what it would possibly relate to if it were 

used as a user key in a machine learning process. It wouldn’t take much time 

for a decent programmer with a list of fi rst and last names to generate all the 

md5 values for all the combinations. 

Using a salt value is a better solution. A salt value is random data that’s used 

with the piece of data to make it more secure and harder to crack. 

Let’s assume the salt value is the number of nanoseconds from the 1st January 

1970. You take that and the string you’re looking to hash:

$ printf '%s' "Jason Bell $(date +%sN)" | md5sum 
40e46b48a873c30c80469dbbefaa5e16  -

There are different ways of handling the input string. You might want to 

remove spaces but the concept remains the same. The security of these hashes 

has to be maintained by you, so when the time comes to interpret the answers, 

you’ll know which customers are doing the actions you are seeking. Hashes 

aren’t just restricted to usernames or customer names; they can be applied to 

any data. Anything that you consider private information (known as person-

ally identifi able information or PII)—something that you don’t want any third 

party to see—must be hashed.

Don’t Cross “The Creepy Line”

Be careful not to make the customer freak out by crossing the line in the sand 

that I call “the creepy line.” It’s the point where the horrifi ed customer would 

shriek, “How did they know that?” For an example of a company and what they 

know about you visit the settings pages of your Google account (https://www

.google.com/settings/dashboard) and have a look your web search history 

or your location history. 

One near-legendary example in data science, Big Data, and machine learn-

ing circles is the story of Target and pregnant mothers, which was widely cited 

on the Internet because of Charles Duhigg’s book The Power of Habit (Random 

House, 2011). What readers of the Internet forgot to realize was that Target had 

been using the same practice for years; the concept was originally run in 2002 

as an exercise to see if there was a correlation between two things.

https://www.google.com/settings/dashboard
https://www.google.com/settings/dashboard
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Good mathematics and item matching isolated a number of items that mothers-

to-be started to buy. Target has enough data to predict what trimester of the 

pregnancy the mother is in. With an opt-in to the baby club this might have 

all passed without problem. But when an angry father rolls up to the store to 

enquire why his teenage daughter is receiving baby promotions and coupons, 

well, that’s a different matter. 

What does this example highlight? Well, apart from freaking out the customer, 

it causes undue pressure on the in-store staff. Everyone in the organization 

needs to be aware of the work that’s going on. Also, the data team needs to be 

acutely aware of the social effect of their learning. 

The UK supermarket chain Tesco started the Clubcard loyalty scheme in 1995; 

it holds more data than some governments on customer purchasing behavior, 

social classes, and income bracket. The store’s data processing power is controlled 

by a marketing company, Dunn Humby, which runs the Clubcard and analyzes 

the data. What is the upside for the customer? Four times a year Clubcard mem-

bers receive coupons for money off and incentives to buy items they normally 

purchase. The offers resemble the customers’ typical shopping patterns, but 

other items are thrown in so it doesn’t look like they’ve been stalked.

Mining the baskets is hardly a new idea (you’ll be reading about other tech-

niques in later chapters), but when the supermarket becomes large and the 

volumes of data are huge, the insight that can be gained becomes an enormous 

commercial advantage. The cost of this advantage is appearing to know the 

intimate shopping details of the customer even when they’ve not overtly given 

permission for you to send offers.

Data Quality and Cleaning

In an ideal world, you’d receive data and put it straight into the system for 

processing. Then your favorite actor or actress would hand you your favorite 

drink and pat you on the back for a job well done.

In the real world, data is messy, usually unclean, and error prone. The fol-

lowing sections offer some basic checks you should do, and I’ve included some 

sample data so you can see clearly what to look for.

The example data is a simple address book with a fi rst name, last name, 

e-mail address, and age.

Presence Checks

First things fi rst, check that data has been entered at all. Within web-based 

businesses, registration usually involves at least an e-mail address, fi rst name, 

and last name. It’s amazing how many times users will try to avoid putting in 

their names. 
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The presence check is simple enough. If the fi eld length is empty or null, and 

that piece of data is important in the analysis, then you can’t use records from 

which the data is missing.

FIRSTNAME LASTNAME EMAIL AGE

Correct Jason Bell me@domain.com 42

Incorrect Bell 42

The fi rst name and e-mail are missing from the example, so the record should 

really be fi xed or rejected. In theory, the data could be used if knowing the 

customer was not important.

Type Checks

With relational databases you have schemas created, so there’s already an 

expectation of what type of data is going where. If incorrect data is written to 

a fi eld of a different data type, then the database engine will throw an error 

and complain at you.

In text data, such as CSV fi les, that’s not the case, so it’s worth looking at each 

fi eld and ensuring that what you’re expecting to see is valid.

#firstname, lastname, email, age
Jason,Bell,me@domain.com,42
42,Bell,me@domain.com,Jason

From the example, you can see that the fi rst row of data is correct, but the 

second is wrong because the firstname fi eld has a number in it and not a 

string type. There are a couple of things you could do here. The fi rst option is 

to ignore the record, as it doesn’t fi t the data-quality check. The other option is 

to see if any other records have the same e-mail address and check the name 

against those records.

Length Checks

Field lengths must be checked, too; once again, relational databases exercise a 

certain amount of control, but textual data can be error-prone if people don’t 

go with the general rules of the schema.

FIELD LENGTH GOOD BAD

Firstname 10 Jason Mr Jason Bell

Email 20 me@domain.com jason.bell@thing.domain.com

mailto:me@domain.com
mailto:me@domain.com
mailto:me@domain.com
mailto:me@domain.com
mailto:bell@thing.domain.com
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Range Checks

Range or reasonableness checks are used with numeric or date ranges. Age 

ranges are the main talking point here. Until there are advances in scientifi c 

medicine to prolong life, you can make a fairly good assumption that the upper 

lifespan of someone is about 120. You can even play it safe and extend the upper 

range to 150; anyone who is older than that is lying or just trying to put a false 

value in to trip up the system. 

FIELD LOWER RANGE UPPER RANGE

Age 0 120

Month 1 12

Format Checks

When you know that certain data must follow a given format then it’s always 

good to check it. Regular expression knowledge is a big advantage here if you 

know it. E-mail addresses can be used and abused in web forms and database 

tables, so it’s always a good idea to validate what you can at source.

There’s much discussion in the developer world about what a correct e-mail 

regular expression actually is. The offi cial standard for the e-mail address 

specifi cation is RFC 5322. Correctly matching the e-mail address as a regular 

expression is a huge pattern. What you’re looking for is something that will 

catch the majority of e-mail addresses:

 [a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*@ (?:[a-
z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?

The main thing to do is create a run of test cases with all the eventualities of 

an e-mail address you think you will come across. Don’t just test it once; keep 

retesting it over time. 

Postcodes and Zip codes are another source of formatting woe—especially 

UK postcodes. Regular expressions also help in this case, but sometimes an odd 

one slips through the testing. At the end of the day, this sort of thing is better 

left to specialized software or expert services.

The Britney Dilemma

Users being users will input all sorts of things, and it’s really up to us to make 

sure that our software catches what it can. Although search strings aren’t spe-

cifi c to machine learning, it is, however, a very interesting case of how different 

names can really mess up the results.



 Chapter 2 ■ Planning for Machine Learning 31

c02.indd 09:59:55:AM  10/06/2014 Page 31

For instance, take the variations of the search term “Britney Spears” in a well-

known search engine. In an ideal and slightly utopian vision, everyone would 

type her name perfectly into a text fi eld box:

britney spears 

Life rarely goes as planned, and users type what they think is right, such as 

the following:

brittany spears  
brittney spears  
britany spears   
britny spears   
briteny spears   
britteny spears   
briney spears   
brittny spears   
brintey spears   
britanny spears   
britiny spears   
britnet spears   
britiney spears    
britaney spears    
britnay spears    
brithney spears    
brtiney spears    
birtney spears    
brintney spears    
briteney spears    
bitney spears    
brinty spears    
brittaney spears    
brittnay spears    
britey spears    
brittiny spears

If you were to put that through a Hadoop cluster looking for unique singer 

search terms, you’d be in a bit of a mess, as each of these would register a new 

result count. 

What you want is something to weigh each term and see what it resembles. 

The simplest approach is to use a classifi er to weigh each search term as it comes 

in. You know the correct term, so it’s a case of running the incoming terms 

against the correct one and seeing what the confi dence scoring is.

package chapter2;

import java.util.ArrayList;
import java.util.List;

import net.sf.classifier4J.ClassifierException;



32 Machine Learning

c02.indd 09:59:55:AM  10/06/2014 Page 32

import net.sf.classifier4J.vector.HashMapTermVectorStorage;
import net.sf.classifier4J.vector.TermVectorStorage;
import net.sf.classifier4J.vector.VectorClassifier;

public class BritneyDilemma {

    public BritneyDilemma() {
        List<String> terms = new ArrayList<String>();
        terms.add("brittany spears");
        terms.add("brittney spears");
        terms.add("britany spears");
        terms.add("britny spears");
        terms.add("briteny spears");
        terms.add("britteny spears");
        terms.add("briney spears");
        terms.add("brittny spears");
        terms.add("brintey spears");
        terms.add("britanny spears");
        terms.add("britiny spears");
        terms.add("britnet spears");
        terms.add("britiney spears");
        terms.add("christina aguilera");

        TermVectorStorage storage = new HashMapTermVectorStorage();
        VectorClassifier vc = new VectorClassifier(storage);
        String correctString = "britney spears";

        for (String term : terms) {
          try {
            vc.teachMatch("sterm", correctString);
            double result = vc.classify("sterm", term);
            System.out.println(term + " = " + result);
          } catch (ClassifierException e) {
            e.printStackTrace();
          }
        }
    }

    public static void main(String[] args) {
        BritneyDilemma bd = new BritneyDilemma();
    }
}

This code sample uses the Classifer4J library to run a basic vector space search 

on the incoming spellings of Britney; it then ranks them against the correct 

string. When this code is run, you get the following output:

brittany spears = 0.7071067811865475
brittney spears = 0.7071067811865475
britany spears = 0.7071067811865475
britny spears = 0.7071067811865475
briteny spears = 0.7071067811865475
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britteny spears = 0.7071067811865475
briney spears = 0.7071067811865475
brittny spears = 0.7071067811865475
brintey spears = 0.7071067811865475
britanny spears = 0.7071067811865475
britiny spears = 0.7071067811865475
britnet spears = 0.7071067811865475
britiney spears = 0.7071067811865475
britaney spears = 0.7071067811865475
britnay spears = 0.7071067811865475
brithney spears = 0.7071067811865475
brtiney spears = 0.7071067811865475
birtney spears = 0.7071067811865475
brintney spears = 0.7071067811865475
briteney spears = 0.7071067811865475
bitney spears = 0.7071067811865475
brinty spears = 0.7071067811865475
brittaney spears = 0.7071067811865475
brittnay spears = 0.7071067811865475
britey spears = 0.7071067811865475
brittiny spears = 0.7071067811865475
christina aguilera = 0.0

The confi dence is always a number between 0 and 0.9999. Just to prove that, 

putting the correct spelling in the list and running the program again would 

generate a positive score.

britney spears = 0.9999999999999998

Obviously, there’s some preparation required, as you need to know the correct 

spellings of the search terms before you can run the classifi er. This example 

just proves the point.

What’s in a Country Name?

Data cleaning needs to be done in a variety of circumstances, but the most com-

mon reason is too many options were given in the fi rst place.

A few years ago I was looking at a database for a hotel. Its data was gathered 

via a web-based enquiry form, but instead of offering a selection of countries 

from a drop-down list of countries, there was just an open text fi eld. (Always 

remember that freedom of input, where it can be avoided, should be avoided.)

Let’s consider this for a moment. If you take a country like Ireland then you 

might have the following entries for country name:

 ■ Ireland

 ■ Republic of Ireland

 ■ Eire
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 ■ EIR

 ■ Rep. of Ireland

All these are essentially the same place; the only exception would be Northern 

Ireland, which is still part of the United Kingdom. 

What you have is a huge job to clean up the country fi eld of a database. To 

fi x this, you would have to fi nd all the distinct names in the country fi eld and 

associate them with a two-letter country code. So, Ireland and all the other names 

that were associated with Ireland become IE. You would have to do this for all 

the countries. Where possible, it’s better to have tight control of the input data, 

as this will make things a lot easier when it comes to processing.

In programming terms, you could make each of the distinct countries a key in 

a HashMap and add a method to get the value of the corresponding input name.

package chapter2;

import java.util.HashMap;
import java.util.Map;

public class CountryHashMap {

    private Map<String, String> countries = new HashMap<String, 
String>();

    public CountryHashMap() {
        countries.put("Ireland", "IE");
        countries.put("Eire", "IE");
        countries.put("Republic of Ireland", "IE");
        countries.put("Northern Ireland", "UK");
        countries.put("England", "UK");
        // you could add more or generate from a database.
    }

    public String getCountryCode(String country) {
        return countries.get(country);
    }

    public static void main(String[] args) {
        CountryHashMap chm = new CountryHashMap();
        System.out.println(chm.getCountryCode("Ireland"));
        System.out.println(chm.getCountryCode("Northern Ireland"));
    }
}

The preceding example is a basic piece of code that would automate the clean-

ing process in a short amount of time. However, you are strongly advised to look 

http://www.allitebooks.org
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at the source of the problem and refactor the input. If no change is made, then 

the same cost to the business will occur, as you’ll have to clean the data again.

Ideally, to avoid having to do this sort of cleaning, you would employ veri-

fi cation strategies at the input stage. So, for example, if you’re using web forms 

you should use JavaScript to validate the input before it’s saved to the database. 

Other times you inherit data and occasionally have to employ such methods.

Dates and Times

For time series processing, you must ensure that you have a consistent set of 

dates to read. The format you choose is really up to you. International Standard 

ISO 8601 lays out the specifi cation for date and time representations in a numeri-

cal format. The issue with the ISO 8601 standard is that it’s not immune to the 

Y10K bug when timestamps will be incorrect after 19th January 2038. The Temps 

Atomique International (TAI) standard takes into account these issues.

Regardless of the language you are using, make yourself aware of how 

the date formatting and parsing routines work. For Java, have a look at the 

SimpleDateFormat API, which gives you a rundown on all the settings along 

with some useful examples. Use caution when running code on distributed 

systems and also with different time zones.

Table 2-1 shows some of the commonly used date/time formats.

Table 2-1:  Commonly Used Date/Time Formats

DATE/TIME 

FORMAT SIMPLEDATEFORMAT REPRESENTATION

2014-01-01 Yyyy-MM-dd

2014-01-01 

11:59:00

Yyyy-MM-dd hh:mm:ss

1388577540 (Unix timestamps are like long variable types but with nano seconds 

added.)

I’ve seen many a database table with different date formats that have been 

saved as string types. Things have gotten better, but it’s still something I keep 

in mind. 

Final Thoughts on Data Cleaning

Data cleaning is a big deal, because it increases the chances of getting better 

results. For some Big Data projects, 80 percent of the project time is spent on 



36 Machine Learning

c02.indd 09:59:55:AM  10/06/2014 Page 36

data cleaning before the actual analysis starts. It’s important to keep this step 

high up in the project plan and manage time accordingly. 

Thinking about Input Data

With any machine learning project, you need to think about the incoming data, 

what format it’s in, and how it will be accessed by the code that’s being built.

Data comes in all sorts of forms, so it’s a good idea to know what you’re deal-

ing with before you start crafting any code. The following sections describe 

some of the more common data formats. 

Raw Text

Basic raw text fi les are used in many publications. If you look at the likes of the 

Guttenberg Project, you’ll see that you can download works in a raw text fi le. The 

data is unstructured, so it rarely has a proper form with which you can work. 

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse 
eget metus quis erat tempor hendrerit. Vestibulum turpis ante, bibendum 
vitae nisi non, euismod blandit dui. Maecenas tristique consectetur est 
nec elementum. Maecenas porttitor, arcu sed gravida tempus, purus tellus 
lacinia erat, dapibus euismod felis enim eget nisl. Nunc mollis volutpat 
ligula. Etiam interdum porttitor nulla non lobortis.

Common formats for text fi les are Unicode, ASCII, or UTF-8. If there’s any 

international encoding required, UTF-8 or Unicode are most common. Note that 

PDF documents, Rich Text Format fi les, and Word documents are not raw text 

fi les. Microsoft Offi ce documents (such as Word fi les) are particularly trouble-

some because of “smart quotes” and other non-text extraneous characters that 

wreak havoc in Java programs.

Comma Separated Variables

The CSV format is widely used across the data landscape. The comma char-

acter is used between each fi eld of data. You might fi nd that other delimiters 

are used, such as tabulation (TSV) and the pipe (|) symbol (PSV). Delimiters 

are not limited to one character either. If you look at something like the USDA 

Food Database you’ll see ~^~ used as a delimiter. The following CSV fi le is 

generated from a fake name generator site. (It’s always good to use fake data 

when you’re testing things.)

1,male,Mr.,Joe,L,Perry,50 Park Row,EDERN,,LL53 2SQ,GB,United 
Kingdom,JoePerry@einrot.com,Annever,eiThahph9Ah,077 6473 7650,Fry,
7/4/1991,Visa,4539148712302735,342,2/2018,YB 20 98 60 A,1Z 23F 389 

mailto:JoePerry@einrot.com
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61 4167 727 1,Blue,Nephrology nurse,Friendly Advice,1999 Alfa Romeo 
145,BadProtection.co.uk,O+,169.4,77.0,5' 10",177,a617f840-6e42-4146-
b743-090ee59c2c9f,52.806493,-4.72918

2,male,Mr.,Daniel,J,Carpenter,51 Guildford Rd,EAST 
DRAYTON,,DN22 3GT,GB,United Kingdom,DanielCarpenter@teleworm.
us,Reste1990,Eich1Kiegie,079 2890 2948,Harris,3/26/1990,MasterCard
,5353722386063326,717,7/2018,KL 50 03 59 C,1Z 895 362 50 0377 620 
2,Blue,Corporate administrative assistant,Hit or Miss,2000 Jeep Grand 
Cherokee,BiologyConvention.co.uk,AB+,175.3,79.7,5' 7",169,ac907a59-a091-
4ba2-9b0f-a1276b3b5ada,52.801024,-0.719021

3,male,Mr.,Harvey,A,Hawkins,37 Shore Street,STOKE TALMAGE,,OX9 
4FY,GB,United Kingdom,HarveyHawkins@armyspy.com,Spicionly,UcheeGh9xoh,077 
7965 0825,Rees,3/1/1974,MasterCard,5131613608666799,523,7/2017,SS 81 32 
33 C,1Z Y11 884 19 7792 722 8,Black,Education planner,Monsource,1999 BMW 
740,LightingShadows.co.uk,A-,224.8,102.2,6' 1",185,6cf865fb-81ae-42af-
9a9d-5b86d5da7ce9,51.573674,-1.179834

4,male,Mr.,Kyle,E,Patel,97 Cloch Rd,ST MARTIN,,TR12 6LT,GB,United 
Kingdom,KylePatel@superrito.com,Wilvear,de2EeJew,079 2879 6351,Hancoc
k,6/7/1978,Visa,4916480323599950,960,4/2016,MH 93 02 76 D,1Z 590 692 
15 4564 674 8,Blue,Interior decorator,Grade A Investment,2002 Proton 
Juara,ConsumerMenu.co.uk,AB+,189.2,86.0,5' 10",179,e977c58e-ba61-406e-
a1d1-2904807be365,49.957435,-5.258628

5,male,Mr.,Dylan,A,Willis,66 Temple Way,WINWICK,,WA2 5HE,GB,United 
Kingdom,DylanWillis@cuvox.de,Hishound,shael7Foo,077 1105 4178,Kelly,
8/16/1948,Visa,4485311140499796,423,11/2016,WG 24 10 62 D,1Z 538 4E0 
39 8247 102 7,Black,Community health educator,Mr. Steak,2002 Nissan 
X-Trail,FakeRomance.co.uk,A+,170.1,77.3,5' 9",175,335c2508-71be-43ad-
9760-4f5c186ec029,53.443749,-2.631634

6,female,Mrs.,Courtney,R,Jordan,42 Kendell Street,SHARLSTON,,WF4 
1PZ,GB,United Kingdom,CourtneyJordan@fleckens.
hu,Ponforsittle,Hi2oteel1,070 3469 5710,Payne,2/23/1982,MasterCa
rd,5570815007804057,456,12/2019,CJ 87 95 98 D,1Z 853 489 84 8609 
859 3,Blue,Mechanical inspector,Olson Electronics,2000 Chrysler 
LHS,LandscapeCovers.co.uk,B+,143.9,65.4,5' 3",161,27d229b0-6106-4700-
8533-5edc2661a0bf,53.645118,-1.563952

People might refer to fi les as CSV fi les even though they are not comma 

separated. The best way to fi nd out if something is really a CSV fi le is to open 

up the data and have a look.

JSON

JavaScript Object Notation (JSON) is a commonly used data format that uti-

lizes key/value pairs to communicate data between machines and the web. It 

mailto:HarveyHawkins@armyspy.com
mailto:KylePatel@superrito.com
mailto:DylanWillis@cuvox.de
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was designed as an alternative to XML. Don’t be fooled by the use of the word 

JavaScript; you don’t need JavaScript in order to use this data format. There are 

JSON parsers for various languages. The earlier CSV example used fake name 

data; here’s the fi rst entry of the CSV in JSON notation:

[
  {
    "Number":1,
    "Gender":"male",
    "Title":"Mr.",
    "GivenName":"Joe",
    "MiddleInitial":"L",
    "Surname":"Perry",
    "StreetAddress":"50 Park Row",
    "City":"EDERN",
    "State":"",
    "ZipCode":"LL53 2SQ",
    "Country":"GB",
    "CountryFull":"United Kingdom",
    "EmailAddress":"JoePerry@einrot.com",
    "Username":"Annever",
    "Password":"eiThahph9Ah",
    "TelephoneNumber":"077 6473 7650",
    "MothersMaiden":"Fry",
    "Birthday":"7/4/1991",
    "CCType":"Visa",
    "CCNumber":4539148712302735,
    "CVV2":342,
    "CCExpires":"2/2018",
    "NationalID":"YB 20 98 60 A",
    "UPS":"1Z 23F 389 61 4167 727 1",
    "Color":"Blue",
    "Occupation":"Nephrology nurse",
    "Company":"Friendly Advice",
    "Vehicle":"1999 Alfa Romeo 145",
    "Domain":"BadProtection.co.uk",
    "BloodType":"O+",
    "Pounds":169.4,
    "Kilograms":77.0,
    "FeetInches":"5' 10\"",
    "Centimeters":177,
    "GUID":"a617f840-6e42-4146-b743-090ee59c2c9f",
    "Latitude":52.806493,
    "Longitude":-4.72918
  }
]

Many application-programming interfaces (APIs) use JSON to send response 

data back to the requesting program. Some parsers might take the JSON data 

mailto:JoePerry@einrot.com
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and represent it as an object. Others might be able to create a hash map of the 

data for you to access.

YAML

Whereas JSON is a document markup format, YAML (meaning “YAML Ain’t 

Markup Language”) is most certainly a data format. It’s not as widely used as 

JSON but from a distance looks very similar. 

date   : 2014-01-02
bill-to: &id001
    given  : Jason
    family : Bell
    address:
        lines: |
            458 Some Street Somewhere
            In Some Suburb
        city    : MyCity
        state   : CA
        postal  : 55555

XML

The extensible markup language (XML) followed on from the popular use of 

Standard Generalized Markup Language (SGML) for document markup. The 

idea was for XML to be easily read by humans and also by machines. On fi rst 

inspection, XML is like Hypertext Markup Language (HTML); later versions 

of HTML use strict XML formatting types.

XML gets criticism for its complexity, especially when reading large struc-

tures. That’s one reason it’s popular for web-based APIs to use JSON data as 

its response. There are a large number of APIs delivering XML response data, 

so it’s worthwhile to look at how it works:

<?xml version="1.0" encoding="UTF-8" ?>
    <Customer>
        <Number>1</Number>
        <Gender>male</Gender>
        <Title>Mr.</Title>
        <GivenName>Joe</GivenName>
        <MiddleInitial>L</MiddleInitial>
        <Surname>Perry</Surname>
        <StreetAddress>50 Park Row</StreetAddress>
        <City>EDERN</City>
        <State></State>
        <ZipCode>LL53 2SQ</ZipCode>
        <Country>GB</Country>
        <CountryFull>United Kingdom</CountryFull>
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        <EmailAddress>JoePerry@einrot.com</EmailAddress>
        <Username>Annever</Username>
        <Password>eiThahph9Ah</Password>
        <TelephoneNumber>077 6473 7650</TelephoneNumber>
        <MothersMaiden>Fry</MothersMaiden>
        <Birthday>7/4/1991</Birthday>
        <CCType>Visa</CCType>
        <CCNumber>4539148712302735</CCNumber>
        <CVV2>342</CVV2>
        <CCExpires>2/2018</CCExpires>
        <NationalID>YB 20 98 60 A</NationalID>
        <UPS>1Z 23F 389 61 4167 727 1</UPS>
        <Color>Blue</Color>
        <Occupation>Nephrology nurse</Occupation>
        <Company>Friendly Advice</Company>
        <Vehicle>1999 Alfa Romeo 145</Vehicle>
        <Domain>BadProtection.co.uk</Domain>
        <BloodType>O+</BloodType>
        <Pounds>169.4</Pounds>
        <Kilograms>77</Kilograms>
        <FeetInches>5' 10&quot;</FeetInches>
        <Centimeters>177</Centimeters>
        <GUID>a617f840-6e42-4146-b743-090ee59c2c9f</GUID>
        <Latitude>52.806493</Latitude>
        <Longitude>-4.72918</Longitude>
    </Customer> 

Most of the common languages have XML parsers available using either a 

document object model (DOM) parser or the Simple API for XML (SAX) parser. 

Both types come with advantages and disadvantages depending on the size and 

complexity of the XML document with which you are working.

Spreadsheets

Talk to any fi nance person in your organization, and you’ll discover that their 

entire world revolves around spreadsheets. Programmers have a tendency to 

shun spreadsheets in favor of data formats that make their lives easier. You can’t 

totally ignore them, though. Spreadsheets are the lifeblood of an organization, 

and they probably hold most of the organization’s data.

There are lots of different spreadsheet programs, but the most commonly used 

applications are Microsoft Excel, Google Docs Spreadsheet, and LibreOffi ce. 

Fortunately there are programming APIs that you can use to extract the 

data from spreadsheets directly, which saves a lot of work in converting 
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the spreadsheet to the likes of CSV fi les. It’s worth studying the formulas in the 

spreadsheets, because there might be some algorithms lurking there that are 

worth their weight in gold.

If you want your fi nance person to be supportive of the project, tell that 

person that the results will be in a spreadsheet and you’ll have a friend for a 

long time after.

The Java programming language has a few APIs to choose from that will 

enable you to read and write spreadsheets. The Apache POI project and JExcel 

API are the two most popular. 

Databases

If you’ve been brought up with web programming, then you might have had 

some exposure to databases and database tables. Common ones are MySQL, 

Postgres, Microsoft SQL Server, and Oracle. 

Recently, there’s been an explosion of NoSQL (meaning Not Only SQL), such 

as MongoDB, CouchDB, Cassandra, Redis, and HBase, which all bring their own 

fl avors to data storage. These document and key/value stores move away from 

the rigid table-like structures of traditional databases.

In addition, there are graph databases such as Apache Giraph and Neo4J and 

in-memory systems such as Spark, memcached, and Storm. Chapter 11 is an 

introduction to Spark.

In my opinion, all databases have their place and are worth investigating. 

There’s nothing wrong with having a relational, document and graph database 

running concurrently for the project. Each has its advantages to the project 

that you might not have considered. As with all these things, there might be a 

learning curve that you need to factor in to your project time.

Images

The common data formats previously mentioned mainly deal with text or num-

bers in different shades, but you can’t discount images. There are a number of 

things you can learn from images. Whether you’re trying to use facial recogni-

tion or emotion tracking or you’re trying to determine whether an image is a 

cat or dog (yes, it has been done), there are several APIs that will help.

The most popular formats are the portable network graphics (PNG) and 

JPEG images; these are regularly used on the web. If processing power is freely 

available then TIFF or BMP are much larger fi les, but they contain more image 

information.
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Thinking about Output Data

Now it’s time to turn your attention to the output data. This is where the stake-

holders might have a say in how things are going to be done, because ultimately 

it will be those people who deal with the results.

The primary question about the output of machine learning data is, “Who 

is the intended audience?” Depending on the answer to that question, your 

output will vary. You might need a spreadsheet for the fi nancial folks to see 

the results. If the audience is comprised of website users, then it makes sense to 

put the data back into a database table. The machine learning results could be 

merged with other data to defi ne more learning. It really comes down to what 

was defi ned in the project.

There are a number of paid and free reporting tools available. Some are full-

blown systems, such as Jasper Reports, BIRT, and Tableau. If you are reporting 

to a web-based audience, then the likes of D3 and Processing might be of help 

to you.

Don’t Be Afraid to Experiment

It’s safe to say that there is no “one solution fi ts all.” There are many components, 

formats, tools, and considerations to ponder on any project. In effect, every 

machine learning project starts with a clean sheet, and communication among 

all involved, from stakeholders all the way through to visualization. Tools and 

scripts can be reused, but every case is going to be different, so things need 

minor adjustments as you go along. Don’t be afraid to play around with data 

as you acquire it; see if there’s anything you can glean from it. 

It’s also worth taking time to grab some open data and make your own scenarios 

and ask your own questions. It’s like a musician practicing an instrument; it’s 

worth putting in the hours, so you are ready for the day when the big gig arrives.

The machine learning community is large, and there are plenty of blog posts, 

articles, videos, and books produced by the community. Forums are the perfect 

place to swap stories and experiences, too. As with most things, the more you 

put in, the more you will get out of it.

Over the years, I’ve found that people are more than willing to help contrib-

ute to a solution if you’re stuck on a problem . If you’ve not looked at the likes 

of http://stackoverflow.com, a collaborative question and answer platform 

for software developers, then have a search around. Chances are that someone 

will have encountered the same problem as you. 

http://stackoverflow.com
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Summary

 As with any project, planning is a key and essential part of machine learning 

and shouldn’t be taken lightly. This chapter covered many aspects of plan-

ning, including processing, storage, privacy, and data cleaning. You were also 

introduced to some useful tools and commands that will help in the cleaning 

phases and some validation checks.

The planning phase is a constantly evolving process, and the more machine 

learning projects you and the team perform, the more you will learn from 

previous mistakes.

The key is to start small. Take a snapshot of the data and take a random sample 

with a size of 10 percent of the total. Get the team to inspect the data. Can you 

work with it? Do you anticipate any problems with the processing of this data? 

Cleaning the data might take the most time of the project; the actual process-

ing might consume only a fraction of the overall project time. If you can supply 

clean data, then your results will be refi ned. 

Regardless of whether you are working on a ten-man team or on your own, 

be aware of your network of contacts; some might have domain knowledge that 

will be useful. Ask lots of questions, too. You’d be surprised how many folks 

are willing to answer questions in order to see you succeed.

The next few chapters examine some different machine learning techniques 

and put some sample code together, so you can start to apply them to your own 

projects. 



http://www.allitebooks.org
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Do not be deceived by the decision tree; at fi rst glance it might look like a simple 

concept, but within the simplicity lies the power. This chapter shows you how 

decision trees work. The examples use Weka to create a working decision tree 

that will also create the Java code for you.

The Basics of Decision Trees

The aim with any decision tree is to create a workable model that will predict 

the value of a target variable based on the set of input variables. This section 

explains where decision trees are used along with some of the advantages and 

limitations of decision trees. In this section you also fi nd out how a decision 

tree is calculated manually so you can see the math involved.

Uses for Decision Trees 

Think about how you select different options within an automated telephone 

call. The options are essentially decisions that are being made for you to get 

to the desired department. These decision trees are used effectively in many 

industry areas.

C H A P T E R 

3

Working with Decision Trees
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Financial institutions use decision trees. One of the fundamental use cases is 

in option pricing, where a binary-like decision tree is used to predict the price 

of an option in either a bull or bear market. 

Marketers use decision trees to establish customers by type and predict 

whether a customer will buy a specifi c type of product. 

In the medical fi eld, decision tree models have been designed to diagnose 

blood infections or even predict heart attack outcomes in chest pain patients. 

Variables in the decision tree include diagnosis, treatment, and patient data.

The gaming industry now uses multiple decision trees in movement recogni-

tion and facial recognition. The Microsoft Kinect platform uses this method to 

track body movement. The Kinect team used one million images and trained 

three trees. Within one day, and using a 1,000-core cluster, the decision trees 

were classifying specifi c body parts across the screen. 

Advantages of Decision Trees

There are some good reasons to use decision trees. For one thing, they are easy 

to read. After a model is generated, it’s easy to report back to others regard-

ing how the tree works. Also, with decision trees you can handle numerical 

or categorized information. Later, this chapter demonstrates how to manually 

work through an algorithm with category values; the example walkthrough 

uses numerical data.

In terms of data preparation, there’s little to do. As long as the data is formal-

ized in something like comma separated variables, then you can create a working 

model. This also makes it easy to validate the model using various tests. With 

decision trees you use white-box testing—meaning the internal workings can 

be observed but not changed; you can view the steps that are being used when 

the tree is being modeled. 

Decision trees perform well with reasonable amounts of computing power. 

If you have a large set of data, then decision tree learning will handle it well. 

Limitations of Decision Trees

With every set of advantages there’s usually a set of disadvantages sitting in 

the background. One of the main issues of decision trees is that they can create 

overly complex models, depending on the data presented in the training set. 

To avoid the machine learning algorithm’s over-fi tting the data, it’s sometimes 

worth reviewing the training data and pruning the values to categories, which 

will produce a more refi ned and better-tuned model.

Some of the decision tree concepts can be hard to learn because the model cannot 

express them easily. This shortcoming sometimes results in a larger-than-normal 
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model. You might be required to change the model or look at different methods 

of machine learning.

Diff erent Algorithm Types

Over the years, there have been various algorithms developed for decision tree 

analysis. Some of the more common ones are listed here.

ID3

The ID3 (Iterative Dichotomiser 3) algorithm was invented by Ross Quinlan to 

create trees from datasets. By calculating the entropy for every attribute in the 

dataset, this could be split into subsets based on the minimum entropy value. 

After the set had a decision tree node created, all that was required was to 

recursively go through the remaining attributes in the set.

ID3 uses the method of information gain—the measure of difference in entropy 

before and after an attribute is split—to decide on the root node (the node with 

the highest information gain).  

ID3 suffered from over-fi tting on training data, and the algorithm was better 

suited to smaller trees than large ones. The ID3 algorithm is used less these 

days in favor of the C4.5 algorithm, which is outlined next.

C4.5

Quinlan came back for an encore with the C4.5 algorithm. It’s also based on the 

information gain method, but it enables the trees to be used for classifi cation. 

This is a widely used algorithm in that many users run in Weka with the open 

source Java version of C4.5, the J48 algorithm. 

There are notable improvements in C4.5 over the original ID3 algorithm. With 

the ability to work on continuous attributes, the C4.5 method will calculate a 

threshold point for the split to occur. For example, with a list of values like the 

following:

85,80,83,70,68,65,64,72,69,75,75,72,81,71

C4.5 will work out a split point for the attribute (a) and give a simple decision 

criterion of:

a <= 80 or a > 80

C4.5 has the ability to work despite missing attribute values. The missing 

values are marked with a question mark (?). The gain and entropy calculations 

are simply skipped when there is no data available.
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Trees created with C4.5 are pruned after creation; the algorithm will revisit 

the nodes and decide if a node is contributing to the result in the tree. If it isn’t, 

then it’s replaced with a leaf node. 

CHAID

The CHAID (Chi-squared Automatic Interaction Detection) technique was developed 

by Gordon V. Kass in 1980. The main use of it was within marketing, but it was 

also used within medical and psychiatric research.

MARS

For numerical data, it might be worth investigating the MARS (multivariate 

adaptive regression splines) algorithm. You might see this as an open source alter-

native called “Earth,” as MARS is trademarked by Salford Systems.

How Decision Trees Work

Every tree is comprised of nodes. Each node is associated with one of the input 

variables. The edges coming from that node are the total possible values of 

that node. A leaf represents the value based on the values given from the input 

variable in the path running from the root node to the leaf. Because a picture 

paints a thousand words, see Figure 3-1 for an example.

AGE

Home Owner?

Loan LoanNo Loan No Loan

Good Credit?

Y YN N

<55 >55

Figure 3-1:  A decision tree

Decision trees always start with a root node and end on a leaf. Notice that 

the trees don’t converge at any point; they split their way out as the nodes are 

processed. 
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Figure 3-1 shows a decision tree that classifi es a loan decision. The root node is 

“Age” and has two branches that come from it, whether the customer is younger 

than 55 years old or older. 

The age of the client determines what happens next. If the person is younger 

than 55, then the tree prompts you to fi nd out if he or she is a student. If the 

client is older than 55 then you are prompted to check his or her credit rating.  

With this type of machine learning, you are using supervised learning to 

deduce the optimal method to make a prediction; what I mean by “supervised 

learning” is that you give the classifi er data with the outcomes. The real ques-

tion is, “What’s the best node to start with as the root node?” The next section 

examines how that calculation is done.

Building a Decision Tree

Decision trees are built around the basic concept of this algorithm.

 ■ Check the model for the base cases. 

 ■ Iterate through all the attributes (attr).

 ■ Get the normalized information gain from splitting on attr.

 ■ Let best_attr be the attribute with the highest information gain.

 ■ Create a decision node that splits on the best_attr attribute.

 ■ Work on the sublists that are obtained by splitting on best_attr and add 

those nodes as child nodes.

That’s the basic outline of what happens when you build a decision tree. 

Depending on the algorithm type, like the ones previously mentioned, there 

might be subtle differences in the way things are done. 

Manually Walking Through an Example

If you are interested in the basic mechanics of how the algorithm works and 

want to follow along, this section walks through the basics of calculating entropy 

and information gain. If you want to get to the hands-on part of the chapter, 

then you can skip this section. 

The method of using information gain based on pre- and post-attribute entropy 

is the key method used within the ID3 and C4.5 algorithms. As these are the 

commonly used algorithms, this section concentrates on that basic method of 

fi nding out how the decision tree is built.

With machine learning–based decision trees, you can get the algorithm to 

do all the work for you. It will fi gure out which is the best node to use as the 

root node. This requires fi nding out the purity of each node. Consider Table 
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3-1, which includes only true/false values, of some user purchases through an 

e-commerce store.

Table 3-1: Users’ Purchase History

HAS CREDIT 

ACCOUNT?

READ 

REVIEWS

PREVIOUS 

CUSTOMER? DID PURCHASE?

User A N Y Y Y

User B Y Y Y Y

User C N N Y N

User D Y N N Y

User E Y Y Y Y

There are four nodes in the table:

 ■ Does the customer have an account?

 ■ Did the customer read previous product reviews?

 ■ Is the customer a returning customer?

 ■ Did the customer purchase the product?

At the start of calculating the decision tree there is no awareness of the node 

that will give the best result. You’re looking for the node that can best predict 

the outcome. This requires some calculation. Enter entropy. 

Calculating Entropy

Entropy is a measure of uncertainty and is measured in bits and comes as 

a number between zero and 1 (entropy bits are not the same bits as used in 

computing terminology). Basically, you are looking for the unpredictability in 

a random variable. 

You need to calculate the gain for the positive and negative cases. I’ve written 

a quick Java program to do the calculating:

package chapter3;

public class InformationGain {
    
    private double calcLog2(double value) {
        if(value <= 0.) {
            return 0.;
        }
        return Math.log10(value) / Math.log10(2.);
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    }
    
    public double calcGain(double positive, double negative) {
        double sum = positive + negative;
        double gain = positive * calcLog2(positive/sum)/sum + negative * 
calcLog2(negative/sum)/sum;
        return -gain;
    }
    
    public static void main(String[] args) {
        InformationGain ig = new InformationGain();
        System.out.println(ig.calcGain(2, 3));
    }

}

Looking back at the table of customers with credit accounts there are three 

with and two without. So calculating the gain with these variables you get the 

following result:

Gain(3,2)  = (3/5)*log2(3/5) + (2/5)*log2(2/5)

  = 0.97

log2() refers to the calculation in the calcLog2() method in the code snippet. If 

you don’t want to type or compile the code listing, then try copying and pasting 

the gain equation into www.wolframalpha.com and you’ll see the answer there. 

The outcomes of the variables in the reads reviews attribute linking back to 

the accounts attribute are the following:

Reads reviews = [Y, Y, N]

Does not read reviews = [N, Y]

You can now calculate the entropy with the split based on the fi rst attribute:

Gain(2,1)  = (2/3)*log2(2/3) + (1/3)*log2(1/3)

  = 0.91

Gain(1,1) = (1/2)*log2(1/2) + (1/2)*log2(1/2)

  = 1

The net gain is fi nally calculated:

Net gain(attribute = has credit account)

= (2/5) * 0.91 + (3/5) * 1 

= 0.96

So, you have two gains: one before the split (0.97) and one after the split (0.96).

You’re nearly done on this attribute. You just have to calculate the informa-

tion gain.

http://www.wolframalpha.com
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Information Gain

When you know the gain before and after the split in the attribute, you can 

calculate the information gain. With the attribute to see if the customer has a 

credit account, your calculation will be the following:

InformationGain = Gain(before the split) – Gain(after the split)

    = 0.97 – 0.96

    = 0.01

So, the information gain on the has credit account attribute is 0.01. 

Rinse and Repeat

The previous two sections covered the calculation of information gain for one 

attribute, Has Credit Account. You need to work on the other two attributes 

to fi nd their information gain. 

Reads Reviews:
Gain(3,2) = 0.97
Net Gain = 0.4
Information Gain =  0.57

Previous Customer:
Gain(4,1) = 0.72
Net Gain = 0.486
Information Gain = 0.234

With the values of information gain for all the attributes, you can now make 

a decision on which node to start with in the tree. 

ATTRIBUTE INFORMATION GAIN

Has Credit Account 0.01

Reads Reviews 0.57

Is Previous Customer 0.234

Now things are becoming clearer; the Reads Reviews attribute has the highest 

information gain and therefore should be the root node in the tree, then comes 

the Is Previous Customer node followed by Has Credit Account.

The order of information gain determines where the node will appear in the 

decision tree model. The node with the highest gain becomes the root node. 

That’s enough of the basic theory of how decision trees work. The best way 

to learn is to get something working, which is described in the next section. 
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Decision Trees in Weka

In this section, you’ll use the Weka data-mining tool to work through some train-

ing data of the optimum sales of Lady Gaga’s CDs depending on specifi c factors 

within the store. I explain the factors in question as you walk though that data.

The Requirement

The requirement is to create a model that will be able to predict a customer sale 

on Lady Gaga CDs depending on the CDs’ placement within the store. You’ve 

been given some data by the record store about where the product was placed, 

whether it was at eye level or not, and whether the customer actually purchased 

the CD or put it back on the shelf.

The client wants to be able to run other sets of data through the model to 

determine how sales of a product will fare. 

Working through this methodically, you need to do the following:

 1. Run through the training data supplied and turn it into a defi nition fi le 

for Weka.

 2. Use the Weka workbench to build the decision tree for you and plot an 

output graph.

 3. Export some generated Java code with the new decision tree classifi er.

 4. Test the code against some test data.

 5. Think about future iterations of the classifi er.

It feels like there’s a lot to do, but after you get into the routine, it’s quite simple 

to do with the tools at hand. First look at the training data.

Training Data

Before anything else happens, you need some training data. The client has 

given you some in a .csv fi le, but it would be nice to formalize this. This is 

what you received:

Placement,prominence, pricing, eye_level, customer_purchase
end_rack,85,85,FALSE,yes
end_rack,80,90,TRUE,yes
cd_spec,83,86,FALSE,no
std_rack,70,96,FALSE,no
std_rack,68,80,FALSE,no
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std_rack,65,70,TRUE,yes
cd_spec,64,65,TRUE,yes
end_rack,72,95,FALSE,yes
end_rack,69,70,FALSE,yes
std_rack,75,80,FALSE,no
end_rack,75,70,TRUE,no
cd_spec,72,90,TRUE,no
cd_spec,81,75,FALSE,yes
std_rack,71,91,TRUE,yes

Weka saves the fi le as a .arff fi le to set up the attributes and let you give it 

some data from which to train. The .arff fi le is a text fi le that outlines the data 

model you are going to use:

@relation ladygaga

@attribute placement {end_rack, cd_spec, std_rack}
@attribute prominence numeric
@attribute pricing numeric
@attribute eye_level {TRUE, FALSE}
@attribute customer_purchase {yes, no}

@data
end_rack,85,85,FALSE,yes
end_rack,80,90,TRUE,yes
cd_spec,83,86,FALSE,no
std_rack,70,96,FALSE,no
std_rack,68,80,FALSE,no
std_rack,65,70,TRUE,yes
cd_spec,64,65,TRUE,yes
end_rack,72,95,FALSE,yes
end_rack,69,70,FALSE,no
std_rack,75,80,FALSE,no
end_rack,75,70,TRUE,no
cd_spec,72,90,TRUE,no
cd_spec,81,75,FALSE,yes
std_rack,71,91,TRUE,yes

The data fi le has a few elements to it, so let’s look through it one section at 

a time. 

Relation

The @relation tag is the name of the dataset you are using. In this instance it’s 

Lady Gaga’s CDs, so I’ve called it ladygaga. 

http://www.allitebooks.org
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Attributes

Next, you have the attributes that are used within your data model. There are 

fi ve attributes in this set that are the top line of raw CSV data that you received 

from the client.

 ■ Placement: What type of stand the CD is displayed on: an end rack, special 

offer bucket, or a standard rack?

 ■ Prominence: What percentage of the CDs on display are Lady Gaga CDs?

 ■ Pricing: What percentage of the full price was the CD at the time of pur-

chase? Very rarely is a CD sold at full price, unless it is an old, back 

catalog title.

 ■ Eye Level: Was the product displayed at eye level position? The majority 

of sales will happen when a product is displayed at eye level.

 ■ Customer Purchase: What was the outcome? Did the customer purchase?

The Prominence and Pricing attributes are both numeric values. The other 

three are given the nominal values that are to be expected when the algorithm is 

being run. Placement has three: end_rack, cd_spec, or std_rack. The Eye Level 

attribute is either true or false, and the Customer Purchase attribute has two 

nominal values of either yes or no to show that the customer bought the product.

Data

Finally, you have the data. It’s comma separated in the order of the attri-

butes (Placement, Prominence, Pricing, Eye Level, and Customer Purchase). 

In this sample, you know the outcomes—whether a customer purchased 

or not; this model is about using regression to get your predictions in tune 

for new data coming in. 

You can fi nd all the code for this chapter on the book’s companion website 

at www.wiley.com/go/machinelearning.

Using Weka to Create a Decision Tree

Now that you have your data model in place, you can get started. When you 

open the Weka program you are presented with a small opening screen (see 

Figure 3-2) with four buttons: Explorer, Experimenter, KnowledgeFlow, and 

Simple CLI. Click the Explorer button.

http://www.wiley.com/go/machinelearning
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Figure 3-2:  The Weka GUI Chooser

When the Explorer opens, you will be confronted with another window with 

a number of sections and an array of buttons (see Figure 3-3). Don’t worry if it all 

looks confusing right now; this walkthrough takes you through it step by step. 

Figure 3-3:  The basic Explorer window
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Click the Open File button and select the data fi le called ladygaga.arff. Weka 

parses the data model and preprocesses the data. Within no time you’re already 

getting information based on the preprocessing of the data model and the data. 

The Select Attribute pane on the right side of the Explorer window in Figure 

3-4 shows the three distinct nominal values of the customer_purchase attribute. 

Weka has also noticed that you have 14 instance rows and the fi ve attributes.

After preprocessing comes classifi cation. Click the Classify button in the top 

row of buttons. You’re going to use the C4.5 classifi cation algorithm; within Weka 

this is called the J48 algorithm. In the Classifi er pane (see Figure 3-5), click the 

Choose button and select the J48 option under the Trees menu heading. The 

selection pane closes automatically, and you see that the name of the classifi er 

has changed from the default ZeroR to J48 –C 0.25 –M 2. (See Figure 3-5.)

Figure 3-4:  The preprocess pane with data
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Figure 3-5:  Selecting the classifier

The option fl ags used in the default J48 classifi er are setting the pruning 

confi dence (the –C fl ag) and the minimum number of instances (-M). 

To run the classifi er, click the Start button and watch the Classifi er output 

window (see Figure 3-6). You see the information on the run appear. The run 

information tells you about the scheme used and gives a run-down on the model 

on which Weka has worked. 

Interesting data starts to emerge. The J48 pruned tree gives results on, in this 

case, the placement, as it has the highest information gain:

J48 pruned tree
------------------

placement = end_rack: yes (5.0/1.0)
placement = cd_spec
|   pricing <= 80: yes (2.0)
|   pricing > 80: no (2.0)
placement = std_rack
|   eye_level = TRUE: yes (2.0)
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|   eye_level = FALSE: no (3.0)

Number of Leaves  :       5

Size of the tree :  8

Time taken to build model: 0 seconds 

Figure 3-6:  Classifier with output

It appears that placing product on the end rack is good for sales. For the 

special offer rack, it seems that pricing plays a part; if the product is too cheap 

customers walk away. On the standard racks, the placement of the product is a 

factor for sales; it sells if it’s at eye level. 

Finally you want to plot the visualization of the tree for the management team 

to look at because pictures speak louder than words. On the Results List pane 

on the bottom left of the Explorer window you can see the time and algorithm 

that was run. Right-click (use Alt + click if you are using an OSX machine) and 

select the Visualize Tree option to see the tree in its visual representation, as 

shown in Figure 3-7.
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Figure 3-7:  J48 visualization

It’s usually at this point where everyone pats each other on the back and says, 

“Job well done,” but you’re not fi nished yet. You don’t want to have to run the 

Weka Explorer every time you have data to run. What you want is some code 

that you can reuse.

Creating Java Code from the Classifi cation

As mentioned in Chapter 2, there is no one tool that really fi ts all. Weka is 

excellent, but you want code that you can safely run in an existing codebase. 

Perhaps you want to hook your newly created classifi cation to a Hadoop job, if 

the incoming volume of data was suffi cient to do so. 

With the existing classifi er, click the More Options button and a new window 

opens with the options for the current evaluator. (See Figure 3-8.)

The last option is to output to source code. By default, the class name will be 

WekaClassifi er. It won’t save your Java code, but it will output in the Classifi er 

output window.
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Figure 3-8:  Evaluation options pane

Start the classifi er again, and in the output window you see the Java code at 

the end of the output information:

package weka.classifiers;

import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionUtils;
import weka.classifiers.Classifier;

public class WekaWrapper
  extends Classifier {

  /**
   * Returns only the toString() method.
   *
   * @return a string describing the classifier
   */
  public String globalInfo() {
    return toString();
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  }

  /**
   * Returns the capabilities of this classifier.
   *
   * @return the capabilities
   */
  public Capabilities getCapabilities() {
    weka.core.Capabilities result = new weka.core.Capabilities(this);

    result.enable(weka.core.Capabilities.Capability.NOMINAL_ATTRIBUTES);
    result.enable(weka.core.Capabilities.Capability.NUMERIC_ATTRIBUTES);
    result.enable(weka.core.Capabilities.Capability.DATE_ATTRIBUTES);
    result.enable(weka.core.Capabilities.Capability.MISSING_VALUES);
    result.enable(weka.core.Capabilities.Capability.NOMINAL_CLASS);
    result.enable(weka.core.Capabilities.Capability.MISSING_CLASS_
VALUES);

    result.setMinimumNumberInstances(0);

    return result;
  }

  /**
   * only checks the data against its capabilities.
   *
   * @param i the training data
   */
  public void buildClassifier(Instances i) throws Exception {
    // can classifier handle the data?
    getCapabilities().testWithFail(i);
  }

  /**
   * Classifies the given instance.
   *
   * @param i the instance to classify
   * @return the classification result
   */
  public double classifyInstance(Instance i) throws Exception {
    Object[] s = new Object[i.numAttributes()];
    
    for (int j = 0; j < s.length; j++) {
      if (!i.isMissing(j)) {
        if (i.attribute(j).isNominal())
          s[j] = new String(i.stringValue(j));
        else if (i.attribute(j).isNumeric())
          s[j] = new Double(i.value(j));
      }
    }
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    // set class value to missing
    s[i.classIndex()] = null;
    
    return WekaClassifier.classify(s);
  }

  /**
   * Returns the revision string.
   * 
   * @return        the revision
   */
  public String getRevision() {
    return RevisionUtils.extract("1.0");
  }

  /**
   * Returns only the classnames and what classifier it is based on.
   *
   * @return a short description
   */
  public String toString() {
    return "Auto-generated classifier wrapper, based on weka.
classifiers.trees.J48 (generated with Weka 3.6.10).\n" + this.
getClass().getName() + "/WekaClassifier";
  }

  /**
   * Runs the classfier from commandline.
   *
   * @param args the commandline arguments
   */
  public static void main(String args[]) {
    runClassifier(new WekaWrapper(), args);
  }
}

class WekaClassifier {

  public static double classify(Object[] i)
    throws Exception {

    double p = Double.NaN;
    p = WekaClassifier.N32ec89882(i);
    return p;
  }
  static double N32ec89882(Object []i) {
    double p = Double.NaN;
    if (i[0] == null) {
      p = 0;
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    } else if (i[0].equals("end_rack")) {
      p = 0;
    } else if (i[0].equals("cd_spec")) {
    p = WekaClassifier.N473959d63(i);
    } else if (i[0].equals("std_rack")) {
    p = WekaClassifier.N63915224(i);
    } 
    return p;
  }
  static double N473959d63(Object []i) {
    double p = Double.NaN;
    if (i[2] == null) {
      p = 0;
    } else if (((Double) i[2]).doubleValue() <= 80.0) {
      p = 0;
    } else if (((Double) i[2]).doubleValue() > 80.0) {
      p = 1;
    } 
    return p;
  }
  static double N63915224(Object []i) {
    double p = Double.NaN;
    if (i[3] == null) {
      p = 0;
    } else if (i[3].equals("TRUE")) {
      p = 0;
    } else if (i[3].equals("FALSE")) {
      p = 1;
    } 
    return p;
  }
} 

Open your text editor of choice and then copy and paste the Java code. Save 

the fi le as WekaClassifier.java (or the name of the class you specifi ed in the 

options pane).

In the source code, there are actually two classes. A wrapper class that Weka 

generates and a main method from which to run. The core of the classifi er is in 

the second class, WekaClassifier. This is basically a set of if/then statements 

based on the classifi ed tree. 

Testing the Classifi er Code

Make a copy of the .arff fi le to test your coded classifi er. Where the outcomes 

are yes or no, replace them with question marks (?). This means you want the 

classifi er to work out the answer for you: 

end_rack,85,85,FALSE,?
end_rack,80,90,TRUE,?
cd_spec,83,86,FALSE,?

http://www.allitebooks.org
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std_rack,70,96,FALSE,?
std_rack,68,80,FALSE,?
std_rack,65,70,TRUE,?
cd_spec,64,65,TRUE,?
end_rack,72,95,FALSE,?
end_rack,69,70,FALSE,?
std_rack,75,80,FALSE,?
end_rack,75,70,TRUE,?
cd_spec,72,90,TRUE,?
cd_spec,81,75,FALSE,?
std_rack,71,91,TRUE,?

You need to write a new class to load in your test data and run each instance 

against the coded classifi er:

package chapter3;

import java.io.BufferedReader;
import java.io.FileReader;

import weka.core.Instances;

public class TestClassifier {
    public static void main(String[] args) {
        WekaWrapper ww = new WekaWrapper();
        try {
            Instances unlabeled = new Instances(new 
BufferedReader(
                    new FileReader("lg2.arff")));

            unlabeled.setClassIndex(unlabeled.numAttributes() - 
1);
            
            for (int i = 0; i < unlabeled.numInstances(); i++) {
                double clsLabel =    
ww.classifyInstance(unlabeled.instance(i));
                System.out.println(clsLabel + " -> " + 
unlabeled.classAttribute().value((int) clsLabel));
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

}

The instances are loaded in and then the for loop iterates and uses the gener-

ated classifyInstance() method to get the scoring from the classifi er. In this 

example, you’re looking for the decision of whether a sale will happen or not. 

Because the classifyInstance() returns the value as a double data type, 

you reference that against the class attribute array position. In this case, the 
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customer_purchase attribute has only two elements “yes” and “no.” The fi rst 

element in the array (0) points to “yes,” and the second element (1) points to “no.”

Running this example generates the following output:

0.0 -> yes
0.0 -> yes
1.0 -> no
1.0 -> no
1.0 -> no
0.0 -> yes
0.0 -> yes
0.0 -> yes
0.0 -> yes
1.0 -> no
0.0 -> yes
1.0 -> no
0.0 -> yes
0.0 -> yes

You could develop this basic code further to pull the required information 

from a database via Java Database Connectivity (JDBC) and then store the results 

again. You could even dump the results into a text fi le by making a copy of the 

instances fi rst and updating them in the for loop. 

Instances unlabeled = new Instances(new BufferedReader(
                    new FileReader("lg2.arff")));
unlabeled.setClassIndex(unlabeled.numAttributes() - 1);
Instances trained = new Instances(unlabeled);
            
for (int i = 0; i < unlabeled.numInstances(); i++) {
    double clsLabel = ww.classifyInstance(unlabeled.instance(i));
    trained.instance(i).setClassValue(clsLabel);
    System.out.println(clsLabel + " -> " +     unlabeled.
classAttribute().value((int) clsLabel));
}

The changes required are labeled in bold. This would be useful if you were 

to output the changes of the instances to a text fi le, for example.

In terms of the actual work, you’re done. You can deliver some solid code. 

Thinking about Future Iterations

This chapter covers a lot of ground in a short space of time: putting an .arff 

fi le together to creating a classifi er, and generating the Java code with Weka 

and testing it with more unclassifi ed data. 

The test data you had was small, which is fi ne for getting everything working. 

In the real world, though, you’d be processing much more data. The question 
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is this: How much data should you retain for training? As a guide, I use 10 

percent of the total data as a starting point and work from there. It’s also worth 

thinking about the seasonality of data, especially if you are working in retail. 

Creating models for certain seasonal periods can boost the information gain 

in your training sets. 

Time waits for no one and the same applies here. Data changes; trends change; 

and so do management decisions and so on. It’s important to keep the classifi er up 

to date by means of running new test data and seeing if the model can improve. 

Summary

 You’ve seen how decision trees work and the different algorithm types that are 

available. At a hands-on level, you’ve worked on a full project to create a work-

ing classifi er based on the C4.5 (J48, which is the Java open source implementa-

tion as used in Weka) algorithm to predict customer purchasing behavior on 

products determined by placement, prominence, and pricing. Although many 

people perceive decision trees as simple, do not underestimate their uses. They 

are easy to understand and don’t need a huge amount of preparation. They are 

often useful regardless of whether you have category or numerical data. 
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You might hear the Bayesian Network referred to by a few different names: 

probabilistic directed acyclic graphical model, Bayes Network, Belief Network, 

or Bayesian Model. Based on a set of variables or parameters, it’s possible to 

predict outcomes based on probabilities. These variables are connected in such a 

way that the resulting value of one variable will infl uence the output probability 

of another, hence the use of networked nodes. A Bayesian Network manages 

to combine probability theory with graph theory and provides a very handy 

method for dealing with complexity and uncertainty. 

This chapter covers simple Bayesian Networks and how they are used in 

industry. After you have mastered the simple concepts, then you can expand 

your study in this area. 

Pilots to Paperclips

Bayesian Networks are found all over the place where uncertainty is in play, which 

turns out to be a lot of places. Where there is uncertainty, there is probability.

Weather forecasting and stock option predictions are examples. The fi nancial 

industry uses Bayesian Networks a lot to make reasonable predictions even 

when the data is not complete. Bayesian Networks are the perfect tool for the 

likes of the insurance, banking, and investment industries. The following are 

a couple of specifi c examples of places that Bayesian Networks are being used:

C H A P T E R 

4

Bayesian Networks
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 ■ The College of Civil Aviation at Nanjing University in China has a Bayesian 

Network for measuring safety risk as a result of delayed fl ights based on 

a large set of nodes.  

 ■ The Lumiere Project was born out of a Microsoft research project in 1993 

with the goal of developing a platform to help users as they worked. It 

was later used in a pilot information system in commercial aviation, data 

displays to fl ight engineers at NASA, and that paperclip that comes up in 

Microsoft’s Offi ce Assistant. (Yes, Clippy is a Bayesian Network.)

N O T E  The name “Bayesian Network” was initially coined by Judea Pearl to empha-

size the aspects of a network that could rely on Bayes’ Theorem for updating informa-

tion in causal networks—things that are directly related to each other. 

To get started with implementing your own Bayesian Networks, you fi rst 

need to come to grips with graphs, probability, and Thomas Bayes. Then you 

can put it all together.

A Little Graph Theory

Graph theory seems to invoke the fear of spiritual beings when it’s mentioned, 

but after you get the basics it’s not that diffi cult. I think a lot of confusion is 

borne from the defi nitions. 

Math folk call what’s shown in Figure 4-1 a vertex, but I prefer to call it a node. 

Node 1

Figure 4-1:  A node (or vertex)

The nodes can signify anything you want. It could be rock bands, actors, 

fi lms, or proteins. 

You can have as many nodes as you want, but you need to fi nd a way of con-

necting them together; that’s where the edge (a line that connects the nodes, 

not the guitarist from U2) comes in, as shown in Figure 4-2. 
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Node 1 Node 2

Figure 4-2:  Two nodes (or vertices) and an edge

You now know there’s a relationship between two nodes. 

When you need to manipulate and traverse a lot of edges in a graph quickly, 

it’s worth looking at using large-scale graph databases such as Neo4J, Apache 

Giraph, or Spark. If you are interested in a language to query the nodes, then 

have a look at any reference to the Cypher language, which is very similar to 

the following example graph.   

MATCH (actress)-[:acted_in]->(film)

Conceptual graphs are used in computer science and support a relationship 

between the nodes. The relationship is defi ned in the edge like the previous 

example in Figure 4-2. 

When you add direct arrows to the edges, you have a directed graph. These 

can sometimes be called arcs or directed edges. The relationship is defi ned by 

the connection and the direction of the arrow. Figure 4-3 shows an example.

Node 1 Node 2

Node 3

Figure 4-3:  Directed and undirected graphs

For the purpose of explaining Bayesian Networks, this simple notation will 

suffi ce for now in terms of the theory. Next you need to turn your attention to 

some probability. 



72 Machine  Learning

c04.indd 11:37:32:AM  10/07/2014 Page 72

A Little Probability Theory

Okay, hands up if you’re having fl ashbacks to learning probability theory at 

school. Do you feel a little panicked? There is no need to fret over such things. 

Probability is, quite simply, the measure of the likeliness that an event will occur. 

The question of interest will be something along the lines of “What will the 

result of the next coin toss be?” You use a value between 0 and 1 as your unit of 

measurement; the higher the probability that the event will happen, the higher 

the value of the number given. 

Coin Flips

For a coin toss you know there are two possible outcomes—either heads or 

tails—with a 50 percent chance of either event occurring. There is a notation for 

describing probability. For the coin toss outcomes you would write the following: 

p(Coin toss will be heads) = 0.5 (or ½ or 50%)

p(Coin toss will be tails) = 0.5 (or ½ or 50%)

Now that’s just for one coin toss. The answer to the question “What are the 

chances of the next coin toss being heads?” is ½. There can only be two possible 

outcomes. 

Conditional Probability

So far, this chapter has concentrated on fairly mundane and highly improbable (but 

not impossible) day-to-day events. What about completely unconnected events? 

Well, you can apply conditional probability to events that have just occurred. 

Take a look at the coin fl ips again. You’ve already covered one coin fl ip has 

two possible outcomes: heads or tails. What are the chances that two heads 

show up in two coin fl ips? 

You have a series of events:

Coin fl ip 1. (A)

Coin fl ip 2. (B)

The probability is shown like so:

p(A|B)

You know that with one coin there is ½ chance of turning up heads. The pos-

sible outcomes for two coins are ½ x ½, which is ¼. You’re simply multiplying 

the number of coin fl ips (2) by the probability of heads showing per coin fl ip 

(½). It’s time to move on to a more realistic, everyday example.
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Winning the Lottery

Coin fl ips are helpful and in some forms of gambling the game with two coin 

fl ips is still played. But these days the lottery is a more common game of prob-

ability. Everyone wants to win the lottery, right? 

In the UK, the National Lottery has 49 balls. To win the jackpot prize you 

have to correctly guess all six numbers. With six predictions and 49 balls, what 

are the chances that you will win the lottery? 

When the fi rst ball is picked, there are six chances to pick one of the chosen 

numbers with 49 balls from which to choose. Next time there are 48 balls and 

fi ve chances, and so on until all six numbers are picked. This results in the fol-

lowing mathematical equation:

6

49

5

48

4

47

3

46

2

45

1

44

720

10 068 347 520
× × × × × =

, , ,

The number on the bottom line is basically just more than 10 billion. So, dear 

reader, there is a 720 in 10,068,347,520 chance of winning the lottery jackpot, or 

1 in 13,983,816. 

Depending on what country you live in, there are various lotteries with dif-

ferent possible outcomes. The Euromillons, for example, is played in a number 

of European countries, so the jackpot is usually higher. The downside is that, 

because you are looking for seven numbers (fi ve from the main set of numbers 

1–50 and two “lucky stars” numbered 1–11), the probability to win the jackpot 

is 1 in 116,531,800. Other lotteries play six numbers from 44 balls, some from 

39 balls. Regardless of how you look at it, the chances of winning are slim but 

not impossible.

I’m going to park probability there; I only wanted to cover what you need to 

know in terms of Bayesian Networks. You’ve marveled at how graphs work, 

rolled a six-sided die some number of times to calculate probability, and even 

played the lottery once or twice in the name of research. Now you can delve 

into a little bit of background about a gentleman named Thomas and a theorem 

named after him: Bayes’ Theorem.

Bayes’ Theorem

If there’s one aspect of machine learning you’ll hear talked about, it’s the appli-

cation of Bayes’ Theorem. You might also hear the terms Bayes’ Law or Bayes’ 

Rule used, but all three are essentially the same thing. 

Thomas Bayes was born in 1701 and died in 1761. As well as being a Presbyterian 

minister, he was a philosopher and statistician. His theorem wasn’t named after 
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him until after his death in 1763 when his essay, “An Essay Towards Solving a 

Problem in the Doctrine of Chances,” was cited by Richard Price to help prove 

the existence of God. 

The important part of Bayes’ Theorem is the observation of previous events, 

or your degree of belief that something will occur. If you have a degree of belief 

of one event happening, you can apply it to new data and make an informed 

calculation to its probability. There are plenty of examples of the application of 

Bayes’ Theorem to determine the result of more coin fl ips, the spread of disease, 

or the potential gender of offspring. I’m going to avoid all the clichéd examples 

and demonstrate with my own about country music.

DIAGNOSING COUNTRY MUSIC

For the record, I do like country music—well, certain types of it. Please don’t judge me, 

but for the purpose of explaining Bayes’ Theorem, I’m going to use country music to 

get the point across.

The test for diagnosing whether or not a person likes country music is conducted 

by playing a mixture of Nanci Griffi  th, Mary Chapin Carpenter, Garth Brooks, and Lyle 

Lovett to the listener. Based on various brain responses, you can deduce a negative or 

positive response from the test.

We know a positive test is 95 percent accurate; the listener likes country music. 

The test is 99 percent successful in diagnosing those who do not like country music. 

People in the know will call this 98 percent sensitivity and 99 percent specifi city. If 

you call the test T and whether a person likes Country music C, you have the following 

probability outcomes:

C likes country

~C does not like country

T tests positive for liking country

~T tests negative for liking country

The probabilities are listed for sensitivity as

p(T|C) = 0.95

For specifi city you get

p(~T|~C) = 0.99

And fi nally, you assume that 2 percent of the population will like country music:

p(D) = 0.02

Although it’s all well and good to run these experiments, you also know that false 

positives can creep in. There is a chance that someone will test positive for liking 

country music but doesn’t actually like it. There are also false negatives to take into 

account—someone who in fact does like country music but tests negative. 
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With Bayes’ Theorem, you can calculate the probability with all the previously 

defi ned information. In scary math books, it looks like this:

p( | )
( | ) ( )

( | ) ( ) ( | ) ( )
C T

T C C
p T C p p T C p C

=
+

p p
C ∼ ∼

It looks complicated, doesn’t it? It reads easier after you get the values in the equa-

tion. What you are really saying is this:

p( | )
. .

( . . ) ( . . )

.

. .
C T =

+
= =

0 95 0 02

0 95 0 02 0 02 0 98

0 019

0 019 0 0184

×

× × ×
00 51.

There’s still a 51 percent chance that a test will return a false positive result. All that 

excellent music will be wasted on those subjects, as they don’t really like it that much. 

Those are the three building blocks of graph theory, probability, and Bayes 

Theorem explained in the simplest way possible. Now you can return to the actual 

Bayesian Network to see how it is put together.

How Bayesian Networks Work

Now that you have a basic grasp of graphs, probability, and Bayes’ Theorem, 

look at how the network is put together. 

Consider the graph shown in Figure 4-4.

Rain YardWet

Hose

Figure 4-4:  A basic Bayesian Network

In the classic “Is my backyard wet?” graph (or “Is the grass wet” graph) shown 

in Figure 4-4, you can see there are three nodes: Yard Wet, Rain, and Hose. 

There are two events that would cause the yard to be wet; either the owner had 
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hosed it or it has been raining. In any normal circumstance, you wouldn’t hose 

the yard while it was raining.

For each node you can assign true/false values:

Y = Yard wet (True or False)

R = Raining (True or False)

H = Someone using the hose (True or False)

The joint probability would be written as

p(Y,R,H) = p(Y|R,H) p(R|H) p(R)

With these variables in hand, you can start asking some questions—for example, 

what’s the probability that it’s raining when the yard is wet? 

Assigning Probabilities

As mentioned earlier in the chapter, probability values are between 0 and 1. As 

the nodes are all either true or false, you can start to assign some basic outcomes 

to the nodes. First is the node Rain. Because it doesn’t have any parent nodes, 

it is easy to assign a probability to it.

RAIN

True False

0.2 0.8

Next, look at the Hose node; it uses the Rain node as a parent node, so you 

need to assign probabilities for each of the outcomes of the parent node. The 

outcomes table for Hose looks like the following:

HOSE

Value of Rain Node True False

False 0.4 0.6

True 0.01 0.99

The main thing to note is that the values always add up to 1. If you’ve gone 

over that amount, then you need to correct it. 

The last node is Yard, which has two parents: Rain and Hose. You need to 

ensure that all the outcomes are taken into account. 

YARD

Hose Rain True False

False False 0.0 1.0

False True 0.8 0.2
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YARD

True False 0.9 0.1

True True 0.99 0.01

The Yard node includes all the outcomes that are related to it. Once again, all 

the probabilities add up to 1. 

You have three variables, each with two possible values and all the prob-

abilities assigned. Now you can calculate some results.

Calculating Results

As with all good data analysis, you should start with a question. In this case, the 

question is “Given that the yard is wet, what’s the probability that it’s raining?”

Start with what you know. The clues are in the question: the yard is wet (True), 

and we want to know if it’s raining (True). The only variable you’re not certain 

about is the state of the hose; it could be true or false as it stands. 

The joint probability function written at the start gives you the relationship 

of the nodes and their parents from a probability point of view. What you’re 

basically saying is

p(Y=True, H=True, R=True) 

p(Y=True|H=True, R=True) × p(H=True|R=True) × 

p(R=True)

I’ll break that down a little, as it might be confusing if you’re not used to 

reading it. What is being said is this:

Multiply the values of the wet Yard probability, where the values for Hose and 

Rain are also true, by the probability of Hose being true with the value of Rain 

being true, by the probability of Rain being true.

So, the values you need are

0.99 (Y=T, H=T, R=T) × 0.01 (H=T, R=T) × 0.2 (R=T) = 0.00198

Next, you work out the value of the probability if the hose was false. This is 

the variable you don’t know, so it’s important to work out the probability for it.

p(Y=True|H=False, R=True) × p(H=False|R=True) × 

p(R=True)

0.8 × 0.99 × 0.2 = 0.1584

This part of the calculation is for the upper part of the equation (the numerator); 

now you can plug in values for the lower part (the denominator). 

All that happens is a repeat of the earlier equation but for the other outcomes 

of the yard being wet. 

T,T,T = we know is 0.00198

T,F,T = we know is 0.1584
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T,T,F = 0.9 ×  0.4 ×  0.8 = 0.288

T,F,F = 0.0 ×  0.6 ×  0.8 = 0.0

So the fi nal equation looks like this:

0 00198 0 1584

0 00198 0 288 0 1584 0 0

. .

. . . .

+
+ + +

The top divided by the bottom results in 0.3576876, but just round it up to 

0.3577. As a percentage, that’s 35.77 percent. 

Node Counts

Bayesian Networks depend on a lot of counting. The more nodes you have, the 

more counting the network has to do. The earlier example has three nodes. Each 

node has only two probability variables. So you can compute the counts easily.

2 × 2 × 2 = 8 counts

If you had a network with 12 nodes, 7 of which had three variables and the 

other 5 had six variables, you would have a calculation of:

3 × 3 × 3 × 3 × 3 × 3 × 3 × 6 × 6 × 6 × 6 × 6 = 17,006,112 counts

You have to be aware that as you add nodes with n number of variables, the 

performance needs of your computing will rise dramatically. It will take longer 

to gain results in the fi rst instance when the computing of the network is done.

Bayesian Networks can run into memory problems as well, so keep that in 

mind while you are developing your programs.

Using Domain Experts

One thing you might be wondering reading this chapter and the “How Bayesian 

Networks Work” section is “Who’s dictating the initial probabilities?” Well, 

in this instance I decided on the probabilities by way of illustrating how the 

network is put together. In a real-world context it will be, more than likely, a 

domain expert.

Software developers are great at developing software; that’s what they do. 

However, they’re not always good at knowing the rest of the business domain. 

If you ask them the question “Why do our customers always buy this product?” 

chances are they won’t have the answers. Someone who knows the retail domain 

and how customers think will have a better understanding than they do.
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It’s important to sit down with the domain experts from the start and gather 

as much information as you can to get the network in a good working order to 

give reasonable answers. You will refi ne these things later on; as the algorithm 

gets used more and more, the results will get better after you share the output 

with the domain expert and the rest of the team and they update the values.

A Bayesian Network Walkthrough

There are a number of libraries you can use for creating and running Bayesian 

Networks. Weka has its own support for them and incorporates the K2 algorithm 

for learning. The emphasis on many tools, such as OpenMarkov and Weka, is the 

use of a graphical user interface (GUI) to enable you (and the domain experts) 

to create the graphs and assign the probabilities. For this walkthrough I will 

use the JavaBayes API.

Java APIs for Bayesian Networks

Because this book uses Java for the core of the work, it would be nice to use a Java 

API that creates nodes, their edges, and their probabilities. Netica (https://www

.norsys.com/netica.html) is one, but it is a commercial application (meaning 

you have to pay for it) and it relies on native libraries of the operating system 

on which you are working. 

Another library is Jayes (https://github.com/kutschkem/Jayes) and it’s used 

within Eclipse for code completion algorithms. It’s open source; its build process 

is tied to Maven; and it is not the easiest to get going easily. It’s certainly worth 

a look, though; so put it on your to-do list for when you have time. 

Lastly, there’s JavaBayes. To give you an idea how old it is, it was originally 

written for Java 1.0.2, so it goes back quite a while. On the plus side, Joe Schweitzer 

at Dataworks has updated it on Github, so you can download it and use it fairly 

quickly.

For the walkthrough, I’ve added the helper classes from Joe’s original code 

samples so they are in one complete library. If you want to complete the tutorial, 

then you need to download the jar fi le from https://github.com/jasebell/

JavaBayesAPI.

Planning the Network

Before you start any coding, you have to think about what needs to be done. 

You’re creating a simple Bayesian Network in Java, and this section describes 

the plan.

https://www.norsys.com/netica.html
https://www.norsys.com/netica.html
https://github.com/kutschkem/Jayes
https://github.com/jasebell
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The best place to plan these sorts of things is on paper; it’s also handy to grab 

your nearest domain expert who’s well versed in the domain you are working 

in. You’ll use a real-world example that would require an expert, as it’s fair to 

say most people already know what causes our yards and lawns to be wet.

Cervical Spondylotic Myelopathy (CSM) is a spine disease and is one of the 

most common spinal cord dysfunctions in patients over 55 years old. Symptoms 

include, but are not limited to, impaired gait leading to issues walking, numb-

ness of hands, and weakness in general. Surgical procedures are available and 

performed when the CSM progresses to mild or severe symptoms. 

You’re going to design a Bayesian Network with some given information and 

calculate the surgical outcome based on what you know. First, you walkthrough 

what you need to prepare and then transfer it to code.

Determining Nodes

Every node needs to be created. This example requires a bit more involved 

version of a Bayesian Network that has a few more nodes than the explanation 

previously covered. For CSM we’re going to look at the following nodes:

 ■ Age of patient (A)

 ■ Does the patient smoke? (S)

 ■ Duration of symptoms (D)

 ■ Surgical outcome success (SS)

This walkthrough keeps it simple; for the aim of this tutorial there are a 

range of other things that you could have measured and made nodes from; 

they would potentially give you a more refi ned network. For the present, this 

is a good starting point.

Assigning Probabilities

You must assign all probabilities for all nodes including the probabilities in the 

parent nodes. If this sounds a little confusing, try rereading the Yard/Hose/

Rain example earlier in the chapter.

For each of the nodes, you have the following probabilities:

AGE A

<55 >55

0.8 0.2
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SMOKER S

Value of (A) Smokes Does Not Smoke

<55 0.4 0.6

>55 0.8 0.2

DURATION OF SYMPTOMS D

< 2 Years > 2 Years

0.9 0.1

SURGICAL OUTCOME SUCCESS SS

(S) (D) Positive Negative

Smoker <2Y 0.1 0.9

Smoker >2Y 0.01 0.99

Non smoker <2Y 0.8 0.2

Non smoker >2Y 0.58 0.42

The tables are similar to the ones earlier in the chapter: an exhaustive list of 

probabilities and conditional probabilities wherever they are required, which 

give the basis of the outcomes of the network when it’s run. 

With this information from the expert you can now assign the probabilities 

in code. 

Coding Up the Network

You have down on paper (sort of) what you are looking to do. The next step is 

to create some code. You’re going to work through a complete project from start 

to fi nish. I’m using Eclipse for this project, but you can easily substitute your 

own integrated development environment (IDE).

Creating the Project

First, create a clean project with which to work. Click File ➪ New ➪ Java Project. 

Call this project BayesNetDemo, as shown in Figure 4-5.
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Figure 4-5:  Creating a new project

Adding the JavaBayes Library

You need the JavaBayes library to complete the demo, so if you haven’t done 

so already, get the precompiled jar fi le from the Github repository at https://

github.com/jasebell/JavaBayesAPI.

Create a new directory on your fi lesystem and via the command line type 

the following (see Figure 4-6):

git clone https://github.com/jasebell/JavaBayesAPI

Back in your IDE, you need to add the jar fi le to your build properties so your 

code can see the library. In Eclipse you do this by clicking the name of the project 

in the project chooser window. Right-click and you see the Properties option. 

Click Java Build Path and then click Add External JARs, as shown in Figure 4-7. 

Find the fi le location of the jar fi le and click Open. 

https://github.com/jasebell/JavaBayesAPI
https://github.com/jasebell/JavaBayesAPI
https://github.com/jasebell/JavaBayesAPI
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Figure 4-6:  Cloning the Git repository

Figure 4-7:  Project properties
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Creating the Base Graph

With the library added, you can start to put some code in place. Create a new 

Java class called BayesNetExample.java. In Eclipse, select File ➪ New ➪ Class, as 

shown in Figure 4-8. Make sure you have a main method to run the code as well.

Figure 4-8:  Creating a new class

Create the constructor and add an InferenceGraph class. This is your graph 

network; you’ll use this class to do the belief calculations at the end. 

import javabayes.Helpers.BayesNetHelper;
import javabayes.InferenceGraphs.InferenceGraph;
import javabayes.InferenceGraphs.InferenceGraphNode;
public class BayesNetExample {
    public BayesNetExample() {
        InferenceGraph inferenceGraph = new InferenceGraph();
        
        
    }
    
    public static void main(String[] args) {
        BayesNetExample bne = new BayesNetExample();
    }
}

I’ve added the line in the main method to ensure that the program runs. 
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Adding the Nodes

You  have four nodes: the age of the patient, the patient’s smoking status, the 

duration of the condition, and the surgical outcome. What’s required code-wise 

is the creation of each node connected to the graph. First, here is a Java code 

representation of the age node:

InferenceGraphNode age = BayesNetHelper.createNode(inferenceGraph,"under
55", "<55", ">55");

The InferenceGraphNode assigns the node to the graph class you created; you 

also give it a name "under55" and then the names of the two outcomes, "<55" and 

">55". These are the true/false states of the node. You’ll assign values to these 

shortly. To create the nodes you’re using a helper class called BayesnNetHelper, 

which has a createNode() method that does the work for you.

One node down, three to go; here is the Java code to represent the other three 

nodes: 

InferenceGraphNode smoker = BayesNetHelper.createNode(inferenceGraph, 
"smoker", "smokes", "doesnotsmoke");
InferenceGraphNode duration = BayesNetHelper.createNode(inferenceGraph, 
"duration", "<2Y", ">2Y");
InferenceGraphNode surgical = BayesNetHelper.createNode(inferenceGraph, 
"surgicalOutcome", "positive", "negative");

Right now the nodes don’t know each other; there are no edges set to connect 

the nodes together. That’s covered in the next section.

Connecting the Nodes

Now that you have nodes, you can connect them. Remember from the yard 

example earlier in this chapter that certain nodes were parents of others. For 

this CSM model, the age node is the parent of the smoker node, which in turn 

is the parent of the surgical outcome node. Also, the duration node is the parent 

of the surgical outcome node. 

In the code, you connect the nodes (called arcs in the syntax of the Java 

code, but still graph edges to me) with the create_arc() function. It takes the 

following syntax.

graph.create_arc(parent_node, child_node);

The following are your newly created InferenceGraphNodes; you can now 

create the arcs that connect them.

inferenceGraph.create_arc(age, smoker);
inferenceGraph.create_arc(smoker, surgical);
inferenceGraph.create_arc(duration, surgical); 
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If you were to draw the graph, you’d have something along the lines of what’s 

shown in Figure 4-9.

Age (A)

0.80 0.20

<55 >55

Smoker (S)

<55 0.40

A Smokes Does Not Smoke

>55 0.80

0.60

0.20

Surgical Outcomes (SS)

Smoker <2YR

S D Positive

Smoker >2YR

0.10

0.01

Non Smoker <2YR

Non Smoker >2YR

0.80

0.52

Negative

0.90

0.99

0.20

0.42

Duration (D) of
Symptoms

0.90 0.10

<2YR >2YR

Figure 4-9:  The CSM graph

With the nodes connected, it’s time to turn your attention to the probabilities.

Assigning Probabilities

The BayesNetHelper class enables you to set the probability values while 

taking away the complexity. Start with the conditional probabilities. The 

smoker node is conditional with the age of the patient. In pseudocode, 

it would look like this:

if age < 55 then smoker(smokes) = 0.4, smoker(doesnotsmoke) = 0.6
if age > 55 then smoker(smokes) = 0.8, smoker(doesnotsmoke) = 0.2

In the Java class, you add the values with the helper class:

BayesNetHelper.setProbabilityValues(smoker, "<55", 0.4, 0.6);
BayesNetHelper.setProbabilityValues(smoker, ">55", 0.8, 0.2);

Next you set the probability values for the surgical outcome node; this one 

has two conditional probabilities connected to it, so you have to look at all the 

possible conditions and assign the probabilities accordingly:

if smokes and duration < 2Y then surgical(positive) = 0.1, surgical(negative) = 0.9
if smokes and duration > 2Y then surgical(positive) = 0.01, surgical(negative) = 0.99
if does not smoke and duration < 2Y then surgical(positive) = 0.8, surgical(negative) = 0.2
if does not smoke and duration > 2Y then surgical(positive) = 0.58, surgical(negative) = 0.42
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In the code, you again add the probabilities with the helper class. Notice this 

time you use parent and the secondary parent conditions.

BayesNetHelper.setProbabilityValues(surgical, "smokes", "<2Y", 
0.1, 0.9);
BayesNetHelper.setProbabilityValues(surgical, "smokes", ">2Y", 
0.01, 0.99);
BayesNetHelper.setProbabilityValues(surgical, "doesnotsmoke", 
"<2Y",0.8 , 0.2);
BayesNetHelper.setProbabilityValues(surgical, "doesnotsmoke", ">2Y", 
0.58, 0.42);

The last two nodes are called leaf nodes because they don’t have any 

parents connected to them. All you have to do with these is add the true/

false values via the helper. You set one for the duration node and another 

for the age node.

BayesNetHelper.setProbabilityValues(duration, 0.9, 0.1);
BayesNetHelper.setProbabilityValues(age, 0.8, 0.2);

With nodes created, edges defi ned, and probabilities set, you can now start 

getting some results from the code. Make sure you have saved your work before 

running it. 

Testing the Belief Network

To get the percentage belief of the network, you have to use the helper class 

again. It has a method called getBelief() and it takes the graph and the node 

for which you want to get the belief value. First off, look at the predicted prob-

ability of a surgery’s success when you have no other conditions assigned to it: 

double belief = BayesNetHelper.getBelief(inferenceGraph, surgical);
System.out.println("The probability of surgery being positive: " + 
belief);

You will see the output in the console window:

The probability of surgery being positive: 0.44823999999999997

The model’s predicted probability of a surgery’s being successful is 44.8 

percent; remember this calculation is made without any other conditions. 

When you know more information about the patient, you’ll run the program 

again and see how the model’s predicted probability for a successful surgery 

changes for the patient. Remember that the model is based on the predicted 

probabilities based on the expert’s recommendation. There’s no assurance 

that the surgery is going to be successful; only the model’s predicted result. 

The more times the surgery is performed should validate the model’s accu-

racy in the long term.
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Testing the Belief Network with a Condition

You now have some information about the patient so you can add this infor-

mation to the program and see how the chances for a successful surgery look.

The age of the patient is less than 55. You can set the observation within the 

age node itself and then run the belief calculation again.

age.set_observation_value("<55");
belief = BayesNetHelper.getBelief(inferenceGraph, surgical);
System.out.println("The probability of surgery being positive and 
patient is younger than 55 : " + belief);

Run the program again and the model’s prediction of the patient’s chances 

improves.

The probability of surgery being positive and patient is younger than 55 
: 0.5032

If the patient smokes, it would have an impact on the result from the model. 

Adding another observation to the node you now have the following to compute:

smoker.set_observation_value("smokes");
belief = BayesNetHelper.getBelief(inferenceGraph, surgical);
System.out.println("The probability of surgery being positive for a 
smoker, younger than 55: " + belief);

Adding this last datum changes things drastically for the patient! While being 

younger than 55 is a good indicator for successful surgery, the fact he or she 

smokes causes the predicted probability from the network to decrease drastically.

The probability of surgery being positive for a smoker, younger than 55: 
0.09100000000000001

The experts know that because of the location of the issue—the neck—surgery 

will affect the throat area, so there’s a high probability the surgery will fail; 

many patients who desire surgery are refused on that basis alone.

Lastly add the duration the patient has had the symptoms. In this patient’s 

case it’s been more than two years. 

duration.set_observation_value(">2Y");
belief = BayesNetHelper.getBelief(inferenceGraph, surgical);
System.out.println("The probability of surgery being positive for a 
smoker, younger than 55 with symptoms over 2 years: " + belief);

Once again this decreases the chance of successful surgery.

The probability of surgery being positive for a smoker, younger than 55 
with symptoms for over 2 years: 0.01
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You’ve created a Bayesian Network to calculate the probability of successful 

surgery of CSM. With the conditional parameters, you see that the probability 

varies enormously, especially when the age and smoking factors are taken into 

account.

The following is the full code listing for the Bayes Network class created in 

this chapter.

Listing 4-1: Bayes Network class

import javabayes.Helpers.BayesNetHelper;
import javabayes.InferenceGraphs.InferenceGraph;
import javabayes.InferenceGraphs.InferenceGraphNode;

public class BayesNetExample {
    public BayesNetExample() {
        InferenceGraph inferenceGraph = new InferenceGraph();
        
        InferenceGraphNode age = BayesNetHelper.createNode(inferenceGraph,"
under55", "<55", ">55");
        InferenceGraphNode smoker = BayesNetHelper.
createNode(inferenceGraph, "smoker", "smokes", "doesnotsmoke");
        InferenceGraphNode duration = BayesNetHelper.
createNode(inferenceGraph, "duration", "<2Y", ">2Y");
        InferenceGraphNode surgical = BayesNetHelper.
createNode(inferenceGraph, "surgicalOutcome", "positive", "negative");
        
        inferenceGraph.create_arc(age, smoker);
        inferenceGraph.create_arc(smoker, surgical);
        inferenceGraph.create_arc(duration, surgical);
        
        
        BayesNetHelper.setProbabilityValues(smoker, "<55", 0.4, 0.6);
        BayesNetHelper.setProbabilityValues(smoker, ">55", 0.8, 0.2);
        
        BayesNetHelper.setProbabilityValues(surgical, "smokes", "<2Y", 0.1, 
0.9);
        BayesNetHelper.setProbabilityValues(surgical, "smokes", ">2Y", 
0.01, 0.99);
        BayesNetHelper.setProbabilityValues(surgical, "doesnotsmoke", 
"<2Y",0.8 , 0.2);
        BayesNetHelper.setProbabilityValues(surgical, "doesnotsmoke", 
">2Y", 0.58, 0.42);

        BayesNetHelper.setProbabilityValues(duration, 0.9, 0.1);

        BayesNetHelper.setProbabilityValues(age, 0.8, 0.2);
        
        double belief = BayesNetHelper.getBelief(inferenceGraph, surgical);
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        System.out.println("The probabilty of surgery being postive: " + 
belief);
        
        age.set_observation_value("<55");
        belief = BayesNetHelper.getBelief(inferenceGraph, surgical);
        System.out.println("The probability of surgery being postive and 
patient is younger than 55 : " + belief);
        
        
        smoker.set_observation_value("smokes");
        belief = BayesNetHelper.getBelief(inferenceGraph, surgical);
        System.out.println("The probability of surgery being postive for a 
smoker, younger than 55: " + belief);
        
        duration.set_observation_value(">2Y");
        belief = BayesNetHelper.getBelief(inferenceGraph, surgical);
        System.out.println("The probability of surgery being postive for a 
smoker, younger than 55 with symptoms over 2 years: " + belief);
        
        
        
    }
    
    public static void main(String[] args) {
        BayesNetExample bne = new BayesNetExample();
    }
}

N O T E  The probabilities in the walkthrough are just base values used for demon-

stration; they are not connected to any study or informed by any expert. They are 

merely there to illustrate how Bayesian Networks can be formulated.

Summar y

This chapter covered a lot of ground, including simple graph theory, probability, 

and Bayes’ Theorem. The Bayesian Network examples show that it’s straightfor-

ward to create a network, create the nodes and connect them, and then assign 

probabilities and conditional probabilities. After you apply existing observations, 

your overall results change due to the nature of the graph. 

Coding these things can be diffi cult and require some proper planning on 

paper. Wherever you can, try to enlist a domain expert to help with the initial 

values of the probabilities, because this will make your fi nal prediction output 

more accurat e.
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There’s something about gathering knowledge about the human brain that makes 

people tick. Many people think that if we can mimic how the brain works, we’ll 

be able to make better decisions. 

In this chapter, you look at how artifi cial neural networks work and how they 

are applied in the machine learning arena.

What Is a Neural Network?

Artifi cial neural networks are essentially modeled on the parallel architecture of 

animal brains, not necessarily human ones. The network is based on a simple 

form of inputs and outputs.

...a computing system made up of a number of simple, highly interconnected 

processing elements, which process information by their dynamic state 

response to external inputs.

Dr. Robert Hecht-Nielson as quoted in 

“Neural Network Primer: Part I” by 

Maureen Caudill, AI Expert, Feb. 1989

In biology terms, a neuron is a cell that can transmit and process chemical 

or electrical signals. The neuron is connected with other neurons to create a 

C H A P T E R 

5

Artifi cial Neural Networks
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network; picture the notion of graph theory with nodes and edges, and then 

you’re picturing a neural network. 

Within humans, there are a huge number of neurons interconnected with 

each other—tens of billions of interconnected structures. Every neuron has an 

input (called the dendrite), a cell body, and an output (called the axon), as shown 

in Figure 5-1.

Dendrites
Cell Body

Axon

Figure 5-1: The neuron structure

Outputs connect to inputs of other neurons and the network develops. 

Biologically, neurons can have 10,000 different inputs, but their complexity is 

much greater than the artifi cial ones I’m talking about here. 

Neurons are activated when the electrochemical signal is sent through the 

axon. The cell body determines the weight of the signal, and, if a threshold is 

passed, the fi ring continues through the output, along the dendrite.

Artifi cial Neural Network Uses

Artifi cial neural networks thrive on data volume and speed, so they are used 

within real-time or very near real-time scenarios. The following sections describe 

some typical use cases where artifi cial neural networks are used. 

High-Frequency Trading

With the way artifi cial neural networks mimic the brain but with a much increased 

speed factor, they are perfect for high-speed trading. Because HFT can make 

decisions far faster than a human can—thousands of transactions can be done 
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in the same time it takes a human to make one—it’s obvious why the majority 

of stock market systems have gone to the automated trading side.

High-frequency trading is usually done on a supervised learning method; 

there is a lot of training data available from which to learn. The artifi cial neural 

network is looking for entropy from the incoming data. 

Credit Applications

Although many examples of credit applications are performed with decision 

trees, they are often run with artifi cial neural networks. With the variety of 

application data available, it’s a fairly straightforward task to train the model 

to spot good and bad credit factors.

Data Center Management

Google uses neural networks for data center management. With incoming data 

on loads, operating temperatures, network equipment usage, and outside air 

temperatures, Google can calculate effi ciency of the data center and be able to 

adjust the settings on monitoring and cooling equipment.

Jim Gao started this exercise as a Google 20 percent project (a program in 

which Google employees are encouraged to use 20% of their work time on their 

own projects) and, over time, has trained the model to be 99.6 percent accurate. 

If you are interested in reading more on this check out Google’s blog post on the 

subject at http://googleblog.blogspot.ca/2014/05/better-data-centers-

through-machine.html.

Robotics

Artifi cial intelligence has been used in robotics for several years. Some artifi cial 

intelligence requires pattern recognition, and some requires huge amounts of 

sensor data to be fed into a neural network to determine what movement or 

action to take.

Training models in robotics takes an awful long time to create, mainly because 

there are potentially so many different inputs and output variables to process 

and learn from. For example, developers of autonomous driving vehicles need 

hundreds of hours of previous driving data to make a model that can handle 

many road conditions. (Personally, I still prefer my hands on the wheel.)

Medical Monitoring

Medical machinery can be monitored via artifi cial neural networks, which involves 

the constant updating of many variables, such as heart rate, blood pressure, and so on. 

http://googleblog.blogspot.ca/2014/05/better-data-centers-through-c05.indd
http://googleblog.blogspot.ca/2014/05/better-data-centers-through-c05.indd
http://googleblog.blogspot.ca/2014/05/better-data-centers-through-c05.indd
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Conditions that have multiple variations and trigger symptoms can be calcu-

lated and monitored, and staff can be alerted when the variables go over certain 

thresholds. 

Breaking Down the Artifi cial Neural Network

One of the keys to understanding the artifi cial neural network is knowing that 

the application of the model implies you’re not exactly sure of the relationship 

of the input and output nodes. You might have a hunch, but you don’t know for 

sure. The simple fact of the matter is, if you did know this, then you’d be using 

another machine learning algorithm.

Before you jump into data and examples, have a look at the components in 

a neural network.

Perceptrons

The basis for a neural network is the perceptron. Its role is quite simple. It receives 

an input signal and then passes the value through some form of function. It 

outputs the result of the function. (See Figure 5-2.)

Input

2.5 1.5

Output

Figure 5-2: A simple perceptron

Perceptrons deal with numbers when a number or vector of numbers is 

passed to the input. It is then passed to a function that calculates the outgoing 

value; this is called the activation function. The node can handle any number of 

inputs—Figure 5-3 shows two inputs passing in to the function—and it takes 

the weighted sum of all the inputs. 

Assuming the input is a vector Z, you’d end up with something like this:

Z 1 = 2

Z 2 = 5

Z 3 = 1

Or (2,5,1)

The weighted sum of all the inputs is calculated as follows:

wiZi
i

∑
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In other words, “add it all up.” So for the likes of me, who is not used to too 

much math notation, it looks like the following:

2 5 12 3w55 w+5 255

The outgoing part of the node has a set threshold. If the summed value is 

over the threshold, then the output, denoted by the y variable, is 1, and if it’s 

below the threshold, then y is 0 (zero). 

You end up with the following equation:

if wiZi t th y

else y
i

≥ =t then y

=

∑ 1

0

1.5 0.2

0.2

1 0.5
0.5

Figure 5-3: Perceptron with two inputs

The weight of the perceptron can be zero or any other value. If the weight value 

is zero, then it does not alter the input node value coming into the perceptron. 

Likewise, inputs can be positive or negative numbers. The key to the output is 

based on the weighted sum against the threshold. 

That’s the basis of a single-node perceptron. When you strip the components 

apart, it’s quite basic in composition. 

Activation Functions

The activation function is the processing that happens after the input is passed 

into the neuron. The result of this function determines whether the value is 

passed to the output axon and onto the next neuron in the network. 

Commonly, the Sigmoid function (see Figure 5-4) and the hyperbolic tangent 

are used as activation functions to calculate the output. 

The Sigmoid function only outputs one of two values: 0 and 1. For the 

programmers, the function is written as

return 1.0 / (1.0 + Math.exp(-x));
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0

0.5

1

1−1

Figure 5-4: Sigmoid function

The sharpness of the curve could also be altered if required, but for most 

applications a straight function is fi ne.

Multilayer Perceptrons

The problem with single-layer perceptrons is that they are linearly separable. 

The output is either one value or another. 

If you think of an AND gate in logic theory, there is only one outcome if you 

have two inputs, as shown in Table 5-1.

Table 5-1: AND Gate Output Table

INPUT OUTPUT

Off  and On Off 

On and Off Off 

Off  and Off Off 

On and On On

The perceptron would be fashioned as shown in Figure 5-5.

W0 = 0.5

W1 = 0.5

I0

I1

T > 0

Figure 5-5: AND gate perceptron
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The network output equation would be the following:

Output
if

=
+⎧
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⎪⎪

⎩⎪
⎨⎨
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⎫
⎬
⎪⎫⎫⎪⎬⎬
⎪⎪

⎭⎪
⎬⎬
⎪⎭⎭⎪⎪

1 +++( )W II00 0 ( )W I0WWW 1I > 0

0 Otherwise....

So far, I’ve covered the processing of one perceptron. Artifi cial neural net-

works have many interconnected neurons, each with its own input, output, and 

activation function. 

For most machine learning functions, artifi cial neural networks are used for 

solving problems of a nonlinear fashion. Many problems cannot be solved in a 

purely linear fashion, so using a single-layer perceptron for this kind of problem 

solving was never worth considering. If you think of an XOR gate (Exclusive OR) 

with the input types shown in Table 5-2, you could easily think of the network 

shown in Figure 5-6.

Table 5-2: Exclusive OR Output Table

INPUT OUTPUT

Off  and On On

On and Off On

Off  and Off Off 

On and On Off 

0.5

0.5

1

1

1

1
1

−1
1.5

Figure 5-6: XOR gate network

Multilayer perceptrons have one or more layers between the input nodes 

and the eventual output nodes. The XOR example has a middle layer, called a 

hidden layer, between the input and the output (see Figure 5-7). Although you 

and I know what the outputs of an XOR gate would be (I’ve just outlined them 

in the table), and we could defi ne the middle layer ourselves, a truly automated 

learning platform would take some time.
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Figure 5-7: Multilayer perceptron with one hidden layer

The question is, what happens in the hidden layer? Going back to the XOR 

example for a moment, you can see the two input nodes with their values. These 

would then be fed to the hidden layer, and the input is dependent on the output 

of the input layer.

This is where the neural network becomes useful. You can train the network 

for classifi cation and pattern recognition, but it does require training. You can 

train an artifi cial neural network by unsupervised or supervised means. 

The issue is that you don’t know what the weight values should be for the 

hidden layer. By changing the bias in the Sigmoid function, you can vary the 

output layer, an error function can be applied, and the aim is to get the value 

of the error function to a minimum value. 

I described the threshold function within the perceptron previously in the 

chapter, but this isn’t suitable for your needs. You need something that is con-

tinuous and differentiable. With the bias option implemented in the Sigmoid 

function, each run of the network refi nes the output and the error function. This 

leads to a better-trained network and more reliable answers. 

Back Propagation

Within the multilayer perceptron is the concept of back propagation, short for the 

“backward propagation of errors.” Back propagation calculates the gradients 

and maps the correct inputs to the correct outputs. 

There are two steps to back propagation: the propagation phase and the 

updating of the weight. This would occur for all the neurons in the network. 

If you were to look at this as pseudocode—assuming an input layer, single 

hidden layer, and an output layer—it would look like this:

initialize weights in network (random values)

while(examples to process)
  for each example x 
    prediction = neural_output(network, x)
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    actual = trained-output(x)
    error is (prediction – actual) on output nodes

backwardpass:
  compute weights from hidden layer to the output layer
  compute weights from input layer to hidden layer
  update network weights
  until all classified correctly against training data
  return finalized network

Propagation happens, and the training is input through the network and 

generates the activations of the output. It then backward propagates the out-

put activations and generates deltas of all the output and hidden layers of the 

network based on the target of the training pattern.

In the second phase, the weight update is calculated by multiplying the output 

delta and input activation. This gives you the gradient weight. The percentage 

ratio is then subtracted from the weight. The second part is done for all the 

weight axons in the network. 

The percentage ratio is called the learning rate. The higher the ratio, the faster 

the learning. With a lower ratio you know the accuracy of the learning is good. 

N O T E  I appreciate that it’s diffi  cult to grasp mathematical concepts on neural net-

works in a book that focuses on the practical aspects of getting machine learning up 

and running quickly. This overview gives a very general idea of how they work. The 

main concepts of input and output layers, perceptrons, and the notion of forward and 

backward propagation provide a good, although simple, grounding in the thought 

process. 

Data Preparation for Artifi cial Neural Networks

For creating an artifi cial neural network, it’s worth using a supervised learning 

method. However, this requires some thought about the data that you are going 

to use to train the network.

Artifi cial neural networks work only with numerical data values. So, if there are 

normalized things with text values, they need to be converted. This isn’t so much 

an issue with the likes of gender, where the common output would be Male = 0 

and Female = 1, for example. Raw text wouldn’t be suitable, so it will either 

need to be tidied up, hashed to numeric values, or removed from the test data.

As with all data strategies, it’s a case of thinking about what’s important and 

what data you can live without. 

As more variables increase in your data for classifi cation, you will come 

across the phenomenon called “the curse of dimensionality.” This is when added 

variables increase the total volume of training data required to get reasonable 
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results and insight. So, when you are thinking of adding another variable, make 

sure that you have enough training data to cover eventualities across all the 

other variables.

Although neural networks are pretty tolerant to noisy data, it’s worth try-

ing to ensure that there aren’t large outliers that could potentially cause issue 

with the results. Either fi nd and remove the wayward digits or turn them into 

missing values.

Artifi cial Neural Networks with Weka

The Weka framework supports a multilayer perceptron and trains it with the 

back propagation technique I just described. In this walkthrough, you create 

some data and then generate a neural network.

Generating a Dataset

My dataset is going to contain classifi cations for different types of vehicles. I’m 

fi rst going to create a Java program that generates some random, but weighted, 

data to give us four types of vehicles: bike, car, bus, and truck.

Here’s the code listing:

import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
import java.util.Random;

public class MLPData {

    private String[] classtype = new String[] { "Bike", "Car", "Bus", 
"Truck" };

    public MLPData() {

        Random rand = new Random(System.nanoTime());

        try {
            BufferedWriter out = new BufferedWriter(new FileWriter(
                    "vehicledata.csv"));
    out.write("wheels,chassis,pax,vtype\n");
            for (int i = 0; i < 100; i++) {
                StringBuilder sb = new StringBuilder();
                switch (rand.nextInt(3)) {
                case 0:
                    sb.append((rand.nextInt(1) + 1) + ","); // num of 
wheels
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                    sb.append((rand.nextInt(1) + 1) + ","); // chassis 
length
                    sb.append((rand.nextInt(1) + 1) + ","); // passenger 
number
                    sb.append(classtype[0] + "\n");
                    break;
                case 1:
                    sb.append((rand.nextInt(2) + 4) + ","); // num of 
wheels
                    sb.append((rand.nextInt(4) + 1) + ","); // chassis 
length
                    sb.append((rand.nextInt(4) + 1) + ","); // passenger 
number
                    sb.append(classtype[1] + "\n");
                    break;
                case 2:
                    sb.append((rand.nextInt(6) + 4) + ","); // num of 
wheels
                    sb.append((rand.nextInt(12) + 12) + ","); // chassis 
length
sb.append((rand.nextInt(30) + 10) + ","); // passenger number

                                                                 
                    sb.append(classtype[2] + "\n");
                    break;
                case 3:
                    sb.append("18,"); // num of wheels
                    sb.append((rand.nextInt(10) + 20) + ","); // chassis 
length
                    sb.append((rand.nextInt(2) + 1) + ","); // passenger 
number
                    sb.append(classtype[3] + "\n");
                    break;
                default:
                    break;
                }
                out.write(sb.toString());

            }
            out.close();
        } catch (IOException e) {
            e.printStackTrace();
        }

    }

    public static void main(String[] args) {
        MLPData mlp = new MLPData();

    }

}
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When run, the preceding code creates a CSV fi le called vehicledata.csv. 

Start by creating 100 rows of output:

4,2,4,Car
9,20,25,Bus
5,14,18,Bus
5,2,1,Car
9,17,25,Bus
1,1,1,Bike
4,4,2,Car
9,15,36,Bus
1,1,1,Bike
5,1,4,Car
4,2,1,Car

As discussed previously, you need to perform a fair amount of training to 

make the neural network accurate in its predictions.

Loading the Data into Weka

Open the Weka toolkit and select the Explorer function to display the Explorer 

shown in Figure 5-8.

Figure 5-8: Weka Explorer



 Chapter 5 ■ Artificial Neural Networks 103

c05.indd 05:49:59:PM  10/06/2014 Page 103

You’re going to import the CSV fi le that’s been created. Make sure that the 

Preprocess window is selected and then click the Open File button and select 

the vehicledata.csv fi le. Don’t forget to change the File Format drop-down 

menu from .arff to .csv, as shown in Figure 5-9. 

Figure 5-9: Weka File dialog box

You see the data loaded with the basic representation of the relation and 

attribute information.

Confi guring the Multilayer Perceptron

The neural network function of Weka comes with its own graphic user interface. 

When run, you can see the graphical representation of the neural network. 

Click the Classify panel. Where the default classifi er is ZeroR, click Choose 

and change it to MultilayerPerceptron (see Figure 5-10), which is in the Functions 

branch of the tree listing.

You see the classifi er change to MultilayerPerceptron with a lot of options next 

to it. If you click that line, a window of options opens, as shown in Figure 5-11.
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Figure 5-10: Changing the classifier

Figure 5-11: Options dialog box for MultilayerPerceptron
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Change the GUI setting to True. This setting makes the neural network 

display in a graphic form; the display is also interactive, and you can change 

the network. If the GUI setting is set to False, then Weka generates the network 

for you without your intervention. 

Although this version of the MultilayerPerceptron converts and handles your 

nominal values for you, it’s still prudent to take the time to ensure that your data 

is prepared properly. The network autobuilds by default. If you want to create 

your own, then you can turn this off and craft the network by hand.

There are a few values that are worth keeping an eye on before you let the 

network do its training.

Learning Rate

The amount the weights are updated is defaulted at 0.3. If that seems a little 

heavy or too light, then you can adjust as desired.

Hidden Layers

You can defi ne how many hidden layers the neural network will have. By default, 

Weka builds four (attributes and classes/2) (set to “a”), but you can also have just 

the attributes (“i”), the classes (“o”) and the attributes and classes complete (“t”). 

Training Time

The number of epochs through which Weka iterates during training is set to 

500. The higher the number, the lower the error rate will be. As you’ll see in a 

moment, this can give varying results in the output.

When you are happy with the options, you can click OK and go back to the 

Classify window.

Training the Network

You have to do a few runs of neural networks to fi nd the sweet spot where the 

network is coming up with good classifi cations. With 100 rows of data, you’re 

not going to be solving much of any worth; regardless, it gives you an idea of 

how it works.

Make sure the test options are set to use the whole training set. The cross-

validation is fi ne, but it ends up running the training through all ten folds, and 

that can get time consuming when you just want to test. Click Start, and the 

neural network window shown in Figure 5-12 displays.
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Figure 5-12: Neural network GUI window

Click Start, and you see the epoch count rise and the error rate decrease. If 

you click Accept by accident, then no data will have been classifi ed and the 

results will be wrong. 

After the neural network has run, click the Accept button and you will be 

returned to the classifi cation output screen.

The full classifi er output gives the output for the hidden layer nodes. Nodes 

0, 1, 2, and 3 and the four nodes on the right side of Figure 5-12 are the output 

connections are the output connections. The class attributes for classifi cation are 

shown as bike, car, bus, or truck on the right hand side of the neural network 

output (refer to Figure 5-12).

Sigmoid Node 0
    Inputs    Weights
    Threshold    0.018993883149676594
    Node 4    -0.04038638643499096
    Node 5    0.0065483634965212145
    Node 6    -0.03873854654480489
Sigmoid Node 1
    Inputs    Weights
    Threshold    -0.0451840582741909
    Node 4    -0.002851224687941599
    Node 5    -0.012455737520358182
    Node 6    -0.0491382673800735
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Sigmoid Node 2
    Inputs    Weights
    Threshold    -0.010479295335213488
    Node 4    0.02129170595398988
    Node 5    0.02877248387280648
    Node 6    -0.001813155428890656
Sigmoid Node 3
    Inputs    Weights
    Threshold    0.02680212410425596
    Node 4    0.006810392393573984
    Node 5    -0.04968676115705444
    Node 6    -0.015015642691489917

Nodes 4, 5, and 6 comprise the hidden layer that takes the input from the 

input attributes for wheels, chassis, and passenger count.

Sigmoid Node 4
    Inputs    Weights
    Threshold    0.011850776365702677
    Attrib wheels    0.0429940506718635
    Attrib chassis    -0.035625493582980464
    Attrib pax    -0.021284810000068835
Sigmoid Node 5
    Inputs    Weights
    Threshold    0.011165074786232076
    Attrib wheels    -0.018370069737576836
    Attrib chassis    -0.030938315802372954
    Attrib pax    0.01567513412449774
Sigmoid Node 6
    Inputs    Weights
    Threshold    -0.04753959806853169
    Attrib wheels    -0.00211881373779247
    Attrib chassis    0.040431974347463484
    Attrib pax    -0.017943250444400316

Each node has the input type and the weight values of the corresponding 

input node. 

The summary shows how many instances have been correctly classifi ed, 

along with other values for the error data if it has occurred. 

In the last section, you can see how the classifi cation counts added up in the 

Confusion Matrix.

=== Confusion Matrix ===

  a  b  c  d   <-- classified as
 33  0  0  0 |  a = Bus
  0 27  0  0 |  b = Car
  0  0 20  0 |  c = Bike
  0  0  0 20 |  d = Truck
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Altering the Network

With the GUI option set to True, you can add nodes and also remove input paths 

to parts of the hidden layer. If you make any changes you need to retrain the 

neural network; the updated network will display in the GUI.

Which Bit Is Which?

Working from left to right on the GUI, you see the raw input nodes as labels in 

the yellow boxes. Red dots are the hidden layer nodes, and the orange dots are 

the output nodes. The orange labels are the classes with which the orange dot 

nodes are associated.

Adding Nodes

You can add a new node by clicking the GUI. The red dot appears to signify a 

hidden layer node. It won’t be connected to anything, unless you have already 

selected nodes in the GUI. 

Connecting Nodes

With the node selected, you can click on another node to see the connection 

being made. 

Removing Connections

To remove a connection, select one of the connected nodes and then right-click 

the other connected node. The connecting line disappears. 

Removing Nodes

Right-clicking a node removes it and all the connections to it. Be careful to 

make sure that there aren’t any other selected nodes, otherwise they, and their 

connections, will be removed, too.

Increasing the Test Data Size

Within the for loop of the MLPData.java program you created earlier in the 

chapter, change the loop count from 100 rows to 100,000 rows. Go back to the 

Preprocess window and load the new CSV fi le. It might take some time to load. 
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Now, go back to the Classify window and rerun the neural network. When the 

GUI window opens, you see the network looks the same as before in terms of the 

hidden layers. Where you had 500 epochs running against the 100 rows of data, 

you now have the same epoch number against all 100,000 rows of training data.

Click Start and the training begins. You’ll notice a difference in response 

time from the GUI as it trains all 100,000 rows. The main thing to look at is the 

errors per epoch; the number keeps reducing to the point where you get minute 

changes per 100 to 200 epochs. By the time the training has fi nished, you will 

have a very accurate training model.

All this comes at a price of memory, though. My training set took more than 

two minutes:

Time taken to build model: 124.52 seconds

Two minutes isn’t a huge amount of time in the grand scheme of things, but as 

I previously mentioned in regard to gathering data for neural networks, adding 

more variables gives the curse of dimensionality. 

The more rows you can use for training, the better the prediction results 

will be. There is a point in time to fi gure out when there’s too much training 

data against the errors per epoch. It takes some practice (and everyone’s data is 

different, so there’s no hard or fast rule), and it’s a case of experiment, measure, 

and try again.

Implementing a Neural Network in Java

With the Weka API, you can build a neural network with the same multilayer 

perceptron that Weka uses within the GUI. 

Create the Project

Select File ➪ New ➪ Java Project and call it MLPProcessor, as shown in Figure 5-13. 

You need to tell Eclipse where the Weka API is; it’s called weka.jar. On Mac 

OS X machines, Weka is usually installed within the Applications directory. 

The location on Windows machines varies depending on the specifi c operating 

system and Weka installation. In most cases it will be /Program Files (x86)/

Weka-3-6/weka.jar.

With the WekaCluster project selected, select File ➪ Properties and look for 

the Java Build Path. Then click the Libraries tab. Add the external jar fi le by 

clicking Add External JARs, then in the fi le dialog box fi nd the weka.jar fi le, 

as shown in Figure 5-14.
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Figure 5-13: Eclipse New Project dialog box

Figure 5-14: Adding external jars 
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The last thing to do is create a new class called MLPProcessor.java (using 

File ➪ New ➪ Class), as shown in Figure 5-15.

Figure 5-15: Creating a new class file

The Code

The actual Java is straightforward. You’re going to do the following:

 ■ Open the training data .arff fi le.

 ■ Create a MultilayerPerceptron and set the same options as the Weka GUI 

example.

 ■ Build the classifi er.

 ■ Load in some test data.

 ■ Run an evaluation test with the test data against the trained data.

You need to create a small test data fi le to test against the model. In a text fi le 

called testdata.arff enter the following:

@relation vehicledata

@attribute wheels numeric
@attribute chassis numeric
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@attribute pax numeric
@attribute vtype {Bus,Car,Truck,Bike}

@data
18,25,2,Truck
8,21,24,Bus
18,27,2,Truck
1,1,1,Bike
7,23,21,Bus
18,20,1,Truck
8,16,30,Bus
18,28,2,Truck
7,18,36,Bus
8,21,27,Bus
5,2,4,Car
18,28,1,Truck
5,1,1,Car
1,1,1,Bike
18,27,1,Truck
5,1,1,Car
6,15,38,Bus
7,21,38,Bus
18,20,2,Truck
1,1,1,Bike
18,28,2,Truck
18,24,2,Truck
18,20,1,Truck
1,1,1,Bike
5,17,18,Bus
18,27,1,Truck
4,4,3,Car
18,21,1,Truck
5,2,3,Car
4,3,3,Car
18,23,1,Truck
5,20,30,Bus
5,3,3,Car
18,28,1,Truck
5,3,1,Car
9,13,19,Bus
1,1,1,Bike
18,26,2,Truck

After you’ve created the test fi le, use the following code:

import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;

import weka.classifiers.Evaluation;
import weka.classifiers.functions.MultilayerPerceptron;
import weka.core.Instances;
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import weka.core.Utils;

public class MLPProcessor {

    public MLPProcessor() {
        try {
            FileReader fr = new FileReader("vehicledata.arff");
            
            Instances training = new Instances(fr);
            
            training.setClassIndex(training.numAttributes() -1);
            
            MultilayerPerceptron mlp = new MultilayerPerceptron();
            mlp.setOptions(Utils.splitOptions(“-L 0.3 -M 0.2 -N 500 -V 0 
-S 0 -E 20 -H 4”)); 

            mlp.buildClassifier(training); 

            FileReader tr = new FileReader(“testdata.arff”);
            Instances testdata = new Instances(tr);
            testdata.setClassIndex(testdata.numAttributes() -1);
            
            Evaluation eval = new Evaluation(training); 
            eval.evaluateModel(mlp, testdata); 

System.out.println(eval.toSummaryString(“\nResults\n*******\n”, false)); 
            
            tr.close();
            fr.close();
            
        } catch (FileNotFoundException e) {
            e.printStackTrace();
        } catch (IOException e) {
            e.printStackTrace();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    
    public static void main(String[] args) {
        MLPProcessor mlp = new MLPProcessor();
    }

}

The actual neural network is taken care of within three lines of code. 

Create the MultilayerPerceptron, set which class you want to determine, and 

then build the classifi er. The rest of the code is loading the training and test 

data in. 
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Converting from CSV to Arff 

CSV fi les don’t contain the data that Weka needs. You could implement the 

CSVLoader class, but I prefer to know that the .arff data is ready for use. It also 

makes it easier for others to decode the data model if they need to.

From the command line, you can convert the data from a .csv fi le to .arff 

in one command.

java -cp /Applications/weka-3-6-10/weka.jar weka.core.converters.
CSVLoader vehicledata.csv > vehicledata.arff

If you inspect the .arff fi le, you see the attribute information set up for you.

@relation vehicledata

@attribute wheels numeric
@attribute chassis numeric
@attribute pax numeric
@attribute vtype {Bus,Car,Truck,Bike}

@data
6,20,39,Bus
8,23,11,Bus
5,3,1,Car
4,3,4,Car
5,3,1,Car
4,18,37,Bus
18,23,2,Truck

Running the Neural Network

The code listing doesn’t include any output messages while it’s running, with 

the exception of the output of the evaluation. I say this because the training data 

could have 100,000 rows in it, and it’s going take a few minutes to run.

Run the class with Run ➪ Run from Eclipse, and it starts to generate the 

model. After a while, you see the output from the evaluation.

Results
======

Correctly Classified Instances          38              100      %
Incorrectly Classified Instances         0                0      %
Kappa statistic                          1     
Mean absolute error                      0.0003
Root mean squared error                  0.0004
Relative absolute error                  0.0795 %
Root relative squared error              0.0949 %
Total Number of Instances               38 
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Instances can be easily classified by using the multilayer perceptron 

classifyInstance() method, which takes in a single Instance class and outputs 

a numeric representation of the result. This result corresponds to your output 

class in the .arff training fi le.

Summary

Perhaps it’s my English nature, but I fi nd it slightly ironic that I could spend 

so few pages on a subject so massive. It’s about the brain, neurons, and all that 

kind of stuff!

Seriously though, this chapter should have given you a basic grounding on 

how neural networks work, including a couple of examples in Weka and Java. 

The key to a successful neural network project comes down to the data prepa-

ration. Too little preparation and the network won’t predict right; too much and 

you hit memory issues. It’s about fi nding the right set of data, the right quantity, 

and the right training method.
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Among the machine learning methods available, association rules learning is 

probably the most used. From point-of-sale systems to web page usage mining, 

this method is employed frequently to examine transactions. It fi nds out the 

interesting connections among elements of the data and the sequence (behaviors) 

that led up to some correlated result.

This chapter describes how association rules learning methods work and 

also goes through an example using Apache Mahout for mining baskets of 

purchases. This chapter also touches on the myth, the reality, and the legend 

of using this type of machine learning. 

Where Is Association Rules Learning Used?

The retail industry is tripping over itself to give you, the customer, offers on 

merchandise it thinks you will buy. In order to do that, though, it needs to know 

what you’ve bought previously and what other customers, similar to you, have 

bought. Brands such as Tesco and Target thrive on basket analysis to see what 

you’ve purchased previously. If you think the amount of content that Twitter 

produces is big, then just think about point-of-sale data; it’s another world. Some 

 C H A P T E R 
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Association Rules Learning
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supermarkets fail to adopt this technology and never look into baskets, much 

to their competitive disadvantage. If you can analyze baskets and act on the 

results, then you can see how to increase bottom-line revenue.

Association rules learning isn’t only for retail and supermarkets, though. In 

the fi eld of web analytics, association rules learning is used to track, learn, and 

predict user behavior on websites. 

There are huge amounts of biological data that are being mined to gain 

knowledge. Bioinformatics uses association rules learning for protein and gene 

sequencing. It’s on a smaller scale compared to something like computational 

biology, as it homes in on specifi cs compared to something like DNA. So, studies 

on mutations of genomes are part of a branch of bioinformatics that’s probably 

working with it.

Web Usage Mining

Knowing which pages a user is looking at and then suggesting which pages 

might be of interest to the user is commonplace to keep a website more com-

pelling and “sticky.” For this type of mining, you require a mechanism for 

knowing which user is looking at which pages; the user could be identifi ed by 

a user session, a cookie ID, or a previous user log in where sites require users 

to log in to see the information.

If you have access to your website log fi les then there is opportunity for you 

to mine the information. Many companies use the likes of Google Analytics 

as it saves them mining logs themselves, but it’s worthwhile doing your own 

analysis if you can.

The basic log fi le, for example, has information against which you could run 

some basic association rules learning. Looking at the Apache Common Log 

Format (CLF) you can see the IP address of the request and the fi le it was try-

ing to access:

86.78.88.189 - thisuserid [10/May/2014:13:55:59 -0700] "GET /
myinterestingarticle.html HTTP/1.0" 200 2326

By extracting the URL and the IP address, the association rules could eventu-

ally suggest related content on your site that would be of interest to the user. 

Beer and Diapers

It is written on parchment dating back many years, the parable of the beer and 

the diapers (or nappies, as I will always call them).
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Tis written on this day that the American male of the species would frequent the 
larger markets of super the day prior to the Sabbath. Newly attired with sleeping eyes 
and new child, said American male would buy device of child’s dropping catching 
of cloth and safety pin, when, lo, he spotteth the beer of delights full appreciating he 
shall not make it to the inn after evensong, such be his newly acquired fatherly role. 
And Mart of Wal did look upon this repeated behavior and move the aisles accord-
ing to the scriptures of the product of placement, thus increasing the bottom line.

This story has been preached by marketing departments the world over 

(possibly not in the style presented here), and it’s been used in everything from 

keynotes to short talks, from hackathons to late night codejams. However, it’s a 

case of fact mixed with myth.

When he was CEO of a company called Mindmeld, Thomas Blischok was 

also on the panel of a webcast on the past, present, and future of data mining 

and had managed the study on data that spawned the beer and nappies story. 

The study went back to the early 1990s when his team was looking at the basket 

data for Osco Drug. They did see a correlation on basket purchases between 

5:00 and 7:00 p.m. and presented the fi ndings to their client.

After that point, there’s some confusion about where the story actually goes. 

Many versions are basically myth and legend, they’ve generated great chat and 

debate around the water cooler for years and will continue to do so. 

The myth has now been superseded by the privacy-fearing consumer story 

known as the “Target can predict whether I’m pregnant or not” scenario. I, for 

one, have two reasons why Target could never predict my outcome: I’ve never 

shopped there, and it’s biologically impossible. You don’t need a two-node deci-

sion tree to fi gure that out. (Read Chapter 3, “Working with Decision Trees” for 

more information on that subject.)

N O T E  For the full story on the Beer and Diapers legend, have a look at D.J. 

Power’s article from November 2002 at http://www.dssresources.com/

newsletters/66.php. The myth will live on forever, I’m sure (especially if you’re 

in marketing), and it makes for good reading.

How Association Rules Learning Works

The basket analysis scenario is a good example to explain with, so I’ll continue 

with it. Consider the following table of transactions:

http://www.dssresources.com
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TRANSACTIONID PRODUCT1 PRODUCT2 PRODUCT3 PRODUCT4

1 True True False False

2 False False True False

3 False False False True

4 True True True False

5 False True False False

This is essentially an item set of transactions with a transaction ID and the 

products (could be milk, nappies, beer, and beans, for example). 

Ultimately you’re looking for associations in the products. For example if a 

customer buys products 1 and 2, he is likely to buy product 4.  

So a set of items:

I={product1,product2,product3,product4}

And a set of transactions:

T={product1,product2,product4}

Each transaction must have a unique ID for the rule to glean any information. 

Also, it’s worth noting that this sort of rule needs hundreds of transactions before 

it starts to generate anything of any value to you. The larger the transaction set, 

the better the statistical output will be and the better the predictions will be.

The rule is defi ned as an implication, what you’re looking at is the following:

X Y I, ⊆ , where X Y∩ = (/)

In plain English, what you’re saying is X and Y are a subset of the item set in 

the intersection of X and Y.

They take on the form of a set as items denoted as X and Y. In scary math 

books, it will look like this:

X Y⇒

The X denotes the items set before (or left of) the rule, called the antecedent, 
and the Y is the item set after (or right of) the rule, called the consequent. 

Getting back to the products in the basic item set: 

I = {product1,product2,product3,product4}

The true/false statements show whether the item is in that basket transac-

tion or not. 
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To get the true picture of how the rules work, you need to investigate a little 

further into the concepts of support, confi dence, lift, and conviction.

Support

Support is defi ned as the proportion of items in the data that contain the item 

set. It’s written like so:

Supp( )
_ _

_ _ _
X

transactions containing X
total number of transacti

=
oons

If you were to take transaction number 1, as an example, you’d have the fol-

lowing equation:

supp( )
{ , }

.X = =
product product1 2

5
0 2

The item set appears only once in the transaction log, and there are fi ve 

transactions, so the support is 1/5, which is 0.2.

Confi dence

Confi dence in the rule is measured as 

conf X Y X Y X( ) ( )/ ( )⇒ = ∪supp supp

What you’re defi ning here is the proportion of transactions containing set 

X, which also contain Y. This can be interpreted as the probability of fi nding 

the right-hand side of transactions under the condition of fi nding them on the 

left-hand side. 

To use an analogy, think of parimutuel betting. All bets are placed together 

in a pool, and after the race has fi nished the payout is calculated based on the 

total pool (minus the commission to the agent). For example, assume there are 

fi ve horses racing and bets have been placed against each one:

HORSE NUMBER BET

1 $40.00

2 $150.00

3 $25.00

4 $40.00

5 $30.00
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The total pool comes to $285, and after the event is run and the winner is 

confi rmed the payout can be calculated. Assuming that horse number 4 was 

the winner the calculation would be

Pool size after commission = $285 x (1 – 0.15) = $242.25.

Payout per $1 on outcome 4 = $6.05 per $1 wagered.

Lift

Lift is defi ned as the ratio of the observed if the X and Y item sets were inde-

pendent. It’s written as

Lift X Y
X Y

X Y
( )

( )

( ) ( )
⇒ =

∪
×

supp

supp supp

Conviction

Finally there’s conviction, which is defi ned as the ratio of the expected frequency 

that X occurs without Y:

conv X
conf X

( )
( )

⇒ =
−

− ⇒
Y

Y
Y

1 supp( )

1

Defi ning the Process

Association rules are defi ned to satisfy two user-defi ned criteria, a minimum 

support value and a minimum confi dence. The rules generation is done in two 

parts.

Firstly the minimum support is applied to all the frequent item sets in the 

database (or fi le or data source). The frequent item sets along with the minimum 

confi dence are used to form the rules.

Finding frequent item sets can be hard; it involves trawling through all the 

possible item combinations in the item sets. The number of possible item sets 

is the “power set” over the item set.

For example, if you have the following:

I = {p1,p2,p3}

then the power set of I would be this:

{{p1}, {p2}, {p3}, {p1,p2}, {p1,p3}, {p2,p3}, {p1,p2,p3}}

Notice that the empty set ({}) is omitted in the power set; this formulation 

gives you a size of 2n-1, where n is the number of items. A small increase in 

the number of items causes the size of the power set to increase enormously; 
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therefore this method is quite hungry in memory when using something like 

the Apriori algorithm. Obviously, the power set of all combinations of baskets 

does not occur, and the calculation will be based only on those basket combina-

tions that do. Nonetheless, it is still very expensive in time and memory to run 

calculations based on this method.

Algorithms

There are several algorithms used in association rule learning that you’ll come 

across; the two described in this section are the most prevalent.

Apriori

Using a bottom-up approach, the Apriori algorithm works through item sets 

one at a time. Candidate groups are tested against the data; when no exten-

sions to the set are found, the algorithm will stop. The support threshold for 

the example is 3.

If you consider the following item set:

{1,2,3,4}

{1,3,4}

{1,2}

{2,3,4}

{3,4}

{2,4}

First, it counts the support of each item:

{1} = 3

{2} = 5

{3} = 4

{4} = 5

The next step is to look at the pairs:

{1,2} = 2

{1,3} = 2

{1,4} = 2

{2,3} = 2

{2,4} = 3

{3,4} = 4



124 Machine  Learning

c06.indd 11:36:54:AM  10/07/2014 Page 124

As {1,2}, {1,3},{1,4}, and {2,3} are under the chosen support threshold you can 

reject them from the triples that are in the database. In the example, there is 

only one triple:

{2,3,4} = 1 (we’ve discounted one from the {1,2} group). 

From that deduction, you have the frequent item sets.

FP-Growth

The Frequent Pattern Growth algorithm (FP-Growth) works as a tree structure 

(called an FP-Tree). It creates the tree by counting the occurrences of the items 

in the database and storing them in a header table. 

In a  second pass, the tree is built by inserting the instances it sees in the data 

as it goes along the header table. Items that don’t meet the minimum support 

threshold are discarded; otherwise they are listed in descending order. 

You can think of the FP-Growth algorithm like a graph, as is covered in the 

chapter about Bayesian Networks (Chapter 4). With a reduced dataset in a tree 

formation, the FP-Growth algorithm starts at the bottom—the place with the 

longest branches—and fi nds all instances of the given condition. When no more 

single items match the attribute’s support threshold, the growth ends and then 

it works on the next part of the FP Tree. 

Mining the Baskets—A Walkthrough

This walkthrough uses Mahout to work on the data using the Apriori algorithm 

and to get a set of results based on the historical basket contents. 

The nice thing about this sort of project is that it can be easily ported to your 

own e-commerce platform if you’re operating one. The keys are to manage how 

to get the data out of the database for processing and then craft a way of getting 

the insight back in. 

Downloading the Raw Data

Instead of using precious time to create data, I’ve used a dataset from Dr. Tariq 

Mahmood’s website, which contains a test data fi le for basket analysis.

You can download the CSV fi le from his site: https://sites.google.com/

a/nu.edu.pk/tariq-mahmood/teaching-1/fall-12---dm/marketbasket

.csv?attredirects=0&d=1.

https://sites.google.com/a/nu.edu.pk/tariq-mahmood/teaching-1/fall-12---dm/marketbasket.csv?attredirects=0&d=1
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Eac h column represents a product type and each row represents a basket 

transaction from the store. 

ASPIRIN

 SWEET 

POTATOES

 CANNED 

TOMATOES

 CHUNKY 

PEANUT BUTTER

 WOOD 

POLISH

 false  false  false  false  false

 false  false  false  false  false

 false  false  false  false  false

 false  false  false  false  false

 false  false  false  false  false

 false  false  false  false  false

 false  false  false  false  false

 false  false  false  false  false

 false  false  false  false  false

 false  false  false  false  false

 false  false  false  false  false

 false  false  false  false  false

 false  true  false  false  false

 false  true  false  false  true

 false  false  false  false  false

 false  false  false  false  false

The data comprises 1,361 transactions against 302 products, which equals 

more than 411,000 transactions to mine through. Notice there are no quanti-

ties to deal with—just a notifi cation of whether the item was purchased or not 

(true or false). 

Setting Up the Project in Eclipse

There are a few classes you need to create in order to get association rules 

learning to work from a code point of view. It’s not so much a case of creating 

MapReduce functions or anything specifi c for Mahout to work from; it is more 

a matter of data preparation and being able to read the output after the mining 

has taken place.
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Create a new project called ARLearning in Eclipse using the File ➪ New ➪ 

Java Project option as shown in Figure 6-1.

Figure 6-1:  A new Java project

Within the project properties you need to add the locations for the core Hadoop 

library, the MySQL JDBC driver, and the core Mahout library, as shown in 

Figure 6-2.

N O T E  If you don’t have the MySQL JDBC driver, you can download it from http://

dev.mysql.com/downloads/connector/j/.

Setting Up the Items Data File

I’m going to store the product data (the column names) in a database table; you’ll 

need to refer to these later when you have some results from Mahout.

From the command line, type in the following MySQL commands:

mysqladmin -u root create apriori
mysql -u root apriori

http://dev.mysql.com/downloads/connector/j
http://dev.mysql.com/downloads/connector/j
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The table will only have two fi elds: one for the id and another for the product 

name:

mysql> create table products(
    -> id int(11) not null default -1,
    -> productname varchar(100) not null default "");

Figure 6-2:  Adding the required JAR files

The next task is to import the product titles into the database. I’ve written a 

small Java program to read in the .csv fi le and extract the fi rst line only, iterat-

ing each column and adding the product name into the database table. It’s a 

very straightforward piece of code, and it works for this example. Use the fol-

lowing code, changing the fi le path to the place you downloaded or prepared 

the rawdata.csv fi le:

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement; 
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import java.sql.SQLException;

public class ExtractProductNames {

    static {
        try {
            Class.forName("com.mysql.jdbc.Driver");
        } catch (ClassNotFoundException e) {
            e.printStackTrace();
        }
    }
    
    public ExtractProductNames() {
        try {
            Connection con = DriverManager.getConnection("jdbc:mysql://
localhost/apriori","root","");
            PreparedStatement pstmt = con.prepareStatement("INSERT INTO 
products (id, productname) VALUES (?,?)");
            
            BufferedReader csvfile = new BufferedReader(new 
FileReader("/path/to/your/data/rawdata.csv"));
            String productsLine = csvfile.readLine();
            String[] products = productsLine.split(",");

            for(int i = 0; i < products.length; i++) {
                pstmt.clearParameters();
                pstmt.setInt(1, i);
                pstmt.setString(2, products[i].trim());
                pstmt.execute();
                System.out.println("Added: " + products[i] + " into db");
            }
            pstmt.close();
            con.close();
        } catch (FileNotFoundException e) {
            e.printStackTrace();
        } catch (IOException e) {
            e.printStackTrace();
        } catch(SQLException e) {
            e.printStackTrace();
        }
    }
    
    public static void main(String[] args) {
        ExtractProductNames epn = new ExtractProductNames();
    }

}

mysql://localhost/apriori
mysql://localhost/apriori
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When you run the program, you see the output of the lines as they are added 

into the database table:

Added:  Salt into db
Added:  Green Beans into db
Added:  Flavored Ice into db
Added:  Imported Beer into db
Added:  Grits into db
Added:  Apple Jelly into db
Added:  Beef Jerky into db
Added:  Potatoes into db
Added:  Small Eggs into db
Added:  Silver Cleaner into db

Now it’s time to look at the actual data.

Setting Up the Data

The raw .csv fi le has the values for a customer purchase as true or false, but 

you need to convert it to a format that Mahout is happy to process. Mahout 

prefers the item ID in a comma-separated format. Now that you have item IDs 

set up in the database, you can use those in a data fi le so Mahout has the item 

IDs for each basket. 

Create a new Java class called DataConverter (File ➪ New ➪ Class). The fol-

lowing Java code reads in the remaining lines of the .csv fi le and converts the 

true fi elds into the respective ID of the product that you saved in the database:

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.FileWriter;

public class DataConverter {

    public DataConverter() {
        try {
            FileWriter outputWriter = new FileWriter(
                    "/path/to/your/data/output.dat");
            int txcount = 0;

            BufferedReader csvReader = new BufferedReader(new FileReader(
                    "/path/to/your/data/rawdata.csv"));

            // read the first line in but do nothing with it.
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            String thisLine = csvReader.readLine();
            String[] tokens = thisLine.split(",");
            //
            int i;
            while (true) {
                thisLine = csvReader.readLine();
                if (thisLine == null) {
                    break;
                }

                tokens = thisLine.split(",");
                i = 0;
                boolean firstElementInRow = true;
                for (String token : tokens) {
                    if (token.trim().equals("true")) {
                        if (firstElementInRow) {
                            firstElementInRow = false;
                        } else {
                            outputWriter.append(",");
                        }
                        outputWriter.append(Integer.toString(i));
                    }
                    i++;
                }
                outputWriter.append("\n");
                txcount++;
            }
            outputWriter.close();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    public static void main(String[] args) {
        DataConverter dc = new DataConverter();

    }
}

After you run the program, you see that a new fi le called output.dat has 

been created. It now contains the product IDs in each basket.

6,7,12,53,64,89,93,109,123,151,163,182,202,207,210,243,259,287
5,7,18,23,111,127,142,155,163,202,218,244,276,279,287,290
17
1,179,213
225
286
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33
89,224,271
228
93

That’s all you need to do in preparation. Now, you can move on to Mahout 

and mining the data with association rules learning.

Running Mahout

You have a couple of options here: You can run Mahout standalone without 

Hadoop, or you can run Mahout as a map reduce job in Hadoop. Note that you 

will require Mahout version 0.7, which you can download from http://archive

.apache.org/dist/mahout/0.7/ and install to a directory.

Mahout in Standalone Mode

In the directory with the raw data fi le, you run the following command:

/your/path/to/mahout/bin/mahout fpg -i output.dat -o patterns -k 10 -s 2

Take a look at those command-line options:

 ■ fpg: You’re using the Frequent Pattern Growth algorithm.

 ■ -i: This is the input fi le you’re using.

 ■ -k: For every item you’re mining, you want to fi nd 10 associated items. 

The highest number of item associations in the basket is what you’re 

looking for.

 ■ -s: You only consider items that appear in more than two of the transac-

tions you’re working with.

Depending on the machine, it can take Mahout a few seconds to show any-

thing onscreen from the terminal. If nothing seems to be happening, be patient. 

The output will look like the following: 

14/04/29 20:15:15 INFO fpgrowth.FPGrowth: Found 3 Patterns with Least 
Support 149
14/04/29 20:15:15 INFO fpgrowth.FPGrowth: Mining FTree Tree for all 
patterns with 1
14/04/29 20:15:15 INFO fpgrowth.FPGrowth: Found 5 Patterns with Least 
Support 162
14/04/29 20:15:15 INFO fpgrowth.FPGrowth: Mining FTree Tree for all 
patterns with 0

http://archive.apache.org/dist/mahout/0.7/
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14/04/29 20:15:15 INFO fpgrowth.FPGrowth: Found 4 Patterns with Least 
Support 167
14/04/29 20:15:15 INFO fpgrowth.FPGrowth: Tree Cache: First Level: Cache 
hits=1180 Cache Misses=21972

When Mahout has fi nished, it dumps the results into a fi le called patterns 

with no fi le extension. If you attempt to read the fi le as-is, then it won’t make 

much sense. You need to use Mahout again to read the sequence fi le. You use 

the sequence dumper function that’s supplied with Mahout:

/your/path/to/mahout/bin/mahout seqdumper -i patterns

Then you see the actual mined output:

Key class: class org.apache.hadoop.io.Text Value Class: class org.
apache.mahout.fpm.pfpgrowth.convertors.string.TopKStringPatterns
Key: 91: Value: ([91],7), ([133, 233, 286, 91],5), ([111, 270, 91],5), 
([177, 91],5), ([179, 91],5), ([133, 142, 91],4), ([133, 17, 91],4), 
([125, 91],4), ([133, 142, 17, 91],3), ([125, 133, 142, 91],3), ([142, 
5, 91],3)
Key: 136: Value: ([136],7), ([136, 142, 176, 253, 286],5), ([125, 
136],5), ([136, 231],5), ([125, 133, 136, 142],4), ([136, 142, 17],4), 
([125, 133, 136, 142, 17],3), ([136, 142, 17, 5],3), ([136, 301, 5],3), 
([125, 133, 136, 142, 17, 5],2)
Key: 57: Value: ([57],8), ([125, 57],6), ([125, 301, 57],4), ([125, 142, 
301, 57],3), ([125, 133, 301, 57],3), ([125, 17, 5, 57],3), ([239, 301, 
57],3), ([111, 57],3)
Key: 30: Value: ([30],8), ([125, 30],6), ([133, 142, 30],5), ([17, 
30],5), ([133, 142, 17, 30],4), ([125, 133, 142, 30],4), ([125, 17, 
30],4), ([125, 133, 142, 17, 30],3), ([125, 17, 30, 5],3), ([111, 125, 
30, 5],3)
Key: 275: Value: ([275],8), ([133, 275],5), ([125, 275],5), ([125, 142, 
17, 275],4), ([125, 133, 142, 17, 275],3), ([125, 17, 275, 5],3), ([125, 
142, 275, 5],3), ([125, 133, 17, 275],3), ([133, 275, 5],3)

The “Inspecting the Results” section makes more sense of the results. This 

method does not give us the whole story, as the frequent list fi le isn’t produced, 

only the patterns. To get the proper results you need Hadoop to do the work for 

you. If you want to use Hadoop, then read the “Mahout Using Hadoop” section. 

Mahout Using Hadoop

Assuming that the NameNode is formatted and ready to use (Chapter 10, “Machine 

Learning as a Batch Process,” has a very quick run-through), then it’s just a case 

of copying the output.dat fi le to the Hadoop Distributed File System (HDFS):

hadoop fs –put output.dat output.dat
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Then you run Mahout in the same way described in the preceding section, 

but this time you’re adding the –method fl ag in the command:

mahout fpg –i output.dat –o patterns –k 10 –method mapreduce –s 2

Mahout will use its MapReduce methods in Hadoop using the data stored in 

HDFS, which is great when there’s a lot of data to process.

When the task is complete, you see a directory called patterns and within 

that directory there will be four fi les:

jason@myserver:~/mahoutdemo/patterns$ ls -l
total 20
-rwxrwxrwx 1 jason jason 6098 May  1 00:06 fList
drwxrwxr-x 2 jason jason 4096 May  1 00:06 fpgrowth
drwxrwxr-x 2 jason jason 4096 May  1 00:06 frequentpatterns
drwxrwxr-x 2 jason jason 4096 May  1 00:06 parallelcounting
jason@myserver:~/mahoutdemo/patterns$

The output fi les are specifi c to Mahout. You need to write some code to inter-

pret the results. 

Inspecting the Results

The results are in a raw format that Mahout can understand. There is a sequence 

dumper that’s available, though, so you can have a look.

jason@bigdatagames:~/mahoutdemo$ /usr/local/mahout/bin/mahout seqdumper 
-i patterns/frequentpatterns/part-r-00000 
MAHOUT_LOCAL is set, so we don't add HADOOP_CONF_DIR to classpath.
MAHOUT_LOCAL is set, running locally
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/local/mahout-distribution-0.8/
mahout-examples-0.8-job.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/local/mahout-distribution-0.8/
lib/slf4j-jcl-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an 
explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.JCLLoggerFactory]
May 01, 2014 1:50:45 PM org.slf4j.impl.JCLLoggerAdapter info
INFO: Command line arguments: {--endPhase=[2147483647], 
--input=[patterns/frequentpatterns/part-r-00000], --startPhase=[0], 
--tempDir=[temp]}
Input Path: patterns/frequentpatterns/part-r-00000
Key class: class org.apache.hadoop.io.Text Value Class: class org.
apache.mahout.fpm.pfpgrowth.convertors.string.TopKStringPatterns
Key: 1: Value: ([1],80), ([142, 1],42), ([133, 1],42), ([125, 1],39), 
([133, 142, 1],30), ([142, 125, 1],29), ([133, 125, 1],29), ([133, 142, 

http://www.slf4j.org/codes.html#multiple_bindings
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125, 1],22), ([133, 142, 154, 1],20), ([133, 142, 125, 154, 1],15)
Key: 10: Value: ([10],39), ([133, 10],22), ([142, 10],21), ([125, 
10],21), ([142, 125, 10],15), ([133, 142, 10],15), ([133, 125, 10],14), 
([133, 142, 176, 10],12), ([133, 142, 125, 10],11), ([133, 142, 125, 
176, 10],10)
Key: 100: Value: ([100],35), ([17, 100],22), ([142, 100],22), ([133, 
100],20), ([142, 17, 100],18), ([133, 17, 100],17), ([133, 142, 
100],15), ([133, 142, 17, 100],14), ([133, 125, 100],14), ([133, 142, 
125, 17, 100],12)

The product item number (Key) is listed along with the top 10 associations. 

So, for example, product 1 appears in 80 transactions, and it also appears 42 

times along with items 142 and 133, and so on. Code-wise it’s quite long, so I’ve 

provided the edited highlights. You can see the full code listing in the code 

examples for this book, and you can download them from http://www.wiley

.com/go/machinelearning. 

There are two fi les you have to load in: the frequency fi le and the frequency 

patterns fi le. You read more about the latter shortly; here’s the method for load-

ing in the frequency fi le:

public static Map<Integer, Long> readFrequencyFile(Configuration 
configuration, String fileName) throws Exception {
        FileSystem fs = FileSystem.get(configuration);
        org.apache.hadoop.io.SequenceFile.Reader frequencyReader = new 
org.apache.hadoop.io.SequenceFile.Reader(fs, 
                new Path(fileName), configuration);
        Map<Integer, Long> frequency = new HashMap<Integer, Long>();
        Text key = new Text();
        LongWritable value = new LongWritable();
        while(frequencyReader.next(key, value)) {
            frequency.put(Integer.parseInt(key.toString()), value.
get());
        }
        return frequency;
    }

This part is straightforward, but you’re using Hadoop’s sequence fi le reader 

and not a normal fi le class to read in the data. After it’s opened, you iterate 

through the keys and the values adding them to the HashMap. 

The products are still in your MySQL database, so you need a method to 

store those in a Map, too.

public static Map<Integer, String> loadItems() {
        Map<Integer, String> products = new HashMap<Integer, String>();
        try {
            Connection con = DriverManager.getConnection("jdbc:mysql://
localhost/apriori","root","");

http://www.wiley
mysql://localhost/apriori
mysql://localhost/apriori
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            PreparedStatement pstmt = con.prepareStatement("SELECT * 
FROM products");
            ResultSet rs = pstmt.executeQuery();
            while(rs.next()) {
                products.put(new Integer(rs.getInt("id")), 
rs.getString("productname"));
            }
            rs.close();
            pstmt.close();
            con.close();
        } catch(Exception e) {
            e.printStackTrace();
        }
        return products;
    }

Next, you execute the methods to calculate the lift and conviction of the results 

and the main method to start everything off. 

private static double calcLift(double occurrence, int transcationcount, 
long firstfreq, long otheritemoccurences) {
        return ((double)occurrence * transcationcount) / (firstfreq * 
otheritemoccurences);
    }
    
    private static double calcConviction(double confidence, int 
transactioncount, double otheroccurrences) {
        return (1.0 - otheroccurrences / transactioncount) / (1.0 - 
confidence);
    }
    
    public static void main(String[] args)  throws Exception{
        Configuration configuration = new Configuration();
        processResults(configuration,loadItems());
    }

The fi nal part is the processResults method; it’s quite a long routine that reads 

in the frequency patterns fi le and then processes the data. Finally, it prints out the 

item and the associated item with the support, confi dence, lift, and conviction. 

Putting It All Together

You need to extract the results from HDFS before you can process them, so 

you need to run the following two lines from the command line:

hadoop fs –getmerge patterns/frequentpatterns fpatters.seq
hadoop fs –get patterns/fList flist.seq
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Now, you can run the DataReader program to work through the results. When 

the program is run, you’ll see the following output:

White Bread >> 2pct. Milk: support=0.051, conf=0.470, lift=3.947, 
conviction=1.662
Potato Chips >> 2pct. Milk: support=0.045, conf=0.409, lift=4.189, 
conviction=1.528
White Bread >> Tomatoes: support=0.040, conf=0.611, lift=5.134, 
conviction=2.265
White Bread >> Eggs: support=0.055, conf=0.449, lift=3.773, 
conviction=1.599
2pct. Milk >> Eggs: support=0.052, conf=0.425, lift=3.883, 
conviction=1.549 

Mahout doesn’t handle multiple item sets, which might be a drawback to you. 

For many of us, though, it’s a good starting point.

Further Development

The boilerplate code offers a brief introduction on how to get association rules 

learning up and running in Java. By extending your use of the MySQL database, 

you can set up another table of the rules output.

mysql> create table associations( 
    -> id int(11) not null primary key auto_increment,
    -> productid int(11) not null default -1,
    -> associationproductid int(11) not null default -1,
    -> support_value double, 
    -> lift_value double,
    -> confidence_value double,
    -> conviction_value double);
Query OK, 0 rows affected (0.26 sec)

mysql> 

The processResults method can be changed so that instead of printing to the 

console, it can save data to this table instead. This makes retrieving information, 

especially in a web context, much easier. 

It’s also worth varying the minimum support and confi dence values, because 

you might see some small changes in the output that can work to your advantage.
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Summar y

Association rules learning is very domain specifi c, so the case for how it will 

work in your organization will vary from case to case. This chapter offered a 

brief overview and a working demo with Mahout either in a standalone run 

or in Hadoop. 

Chapter 10 covers the journey with Hadoop a little deeper. Chapter 7 covers 

support vector machines . 
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With most machine learning tasks, the aim is usually to classify something 

into a group that you can then inspect later. When it’s a couple of class types 

that you’re trying to classify, then it’s a fairly trivial matter to perform the 

classifi cation. When you are dealing with many types of classes, the process 

becomes more of a challenge. Support vector machines help you work through 

the challenging classifi cations.

This chapter looks at support vector machines: how the basic algorithm works 

in a binary classifi cation sense, and then an expanded discussion on the tool. 

What Is a Support Vector Machine?

A support vector machine is essentially a technique for classifying objects. It’s a 

supervised learning method, so the usual route for getting a support vector 

machine set up would be to have some training data and some data to test the 

algorithm. With support vector machines, you have the linear classifi cation—it’s 

either that object, or it’s that object—or non-linear. This chapter looks at both 

types.

There is a lot of comparison of using a support vector machine versus the 

artifi cial neural network, especially as some methods of fi nding minimum 

errors and the Sigmoid function are used in both.

 C H A P T E R 

7

Support Vector Machines
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It’s easy to imagine a support vector machine as either a two- or three-

dimensional plot with each object located within. Essentially, every object is a 

point in that space. If there’s suffi cient distance in the area, then the process of 

classifying is easy enough. 

Where Are Support Vector Machines Used?

Support vector machines are used in a variety of classifi cation scenarios, such 

as image recognition and hand-writing pattern recognition.

Image classifi cation can be greatly improved with the use of support vector 

machines. Being able to classify thousands or millions of images is becoming 

more and more important with the use of smartphones and applications like 

Instagram. Support vector machines can also do text classifi cation on normal 

text or web documents, for instance. 

Medical science has long used support vector machines for protein classifi -

cation. The National Institute of Health has even developed a support vector 

machine protein software library. It’s a web-based tool that classifi es a protein 

into its functional family.

Some people criticize the support vector machine because it can be diffi cult 

to understand, unless you are blessed with a very good mathematician who 

can guide and explain to you what is going on. In some cases you are left with 

a black box implementation of a support vector machine that is taking in input 

data and producing output data, but you have little knowledge in between. 

Machine learning with support vector machines takes the concept of a per-

ceptron (as explained in Chapter 5) a little bit further to maximize the geometric 

margin. It’s one of the reasons why support vector machines and artifi cial neural 

networks are frequently compared in function and performance.

The Basic Classifi cation Principles

For those who’ve not immersed themselves in the way classifi cation works, 

this section offers an abridged version. The next section covers how the sup-

port vector machine works in terms of the classifi cation. I’m keeping the math 

as simple as possible.

Binary and Multiclass Classifi cation

Consider a basic classifi cation problem: You want to fi gure out which objects 

are squares and which are circles. These squares and circles could represent 
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anything you want—cats and dogs, humans and aliens, or something else. 

Figure 7-1 illustrates the two sets of objects.

Figure 7-1: Two objects to classify

This task would be considered a binary classifi cation problem, because there 

are only two outcomes; it’s either one object or the other. Think of it as a 0 or a 1. 

With some supervised learning, you could fi gure out pretty quickly where those 

classes would lie with a reasonable amount of confi dence.

What about when there are more than two classes? For example, you can add 

triangles to the mix, as shown in Figure 7-2.

Figure 7-2: Three objects to classify
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Binary classifi cation isn’t going to work here. You’re now presented with  a 

multiclass classifi cation problem. Because there are more than two classes, you 

have to use an algorithm that can classify these classes accordingly. It’s worth 

noting, though, that some multiclass methods use pair-wise combinations of 

binary classifi ers to get to a prediction.

Linear Classifi ers

To determine in which group an object belongs, you use a linear classifi er to 

establish the locations of the objects and see if there’s a neat dividing line—called 

a hyperplane—in place; there should be a group of objects clearly on one side of 

the line and another group of objects just as clearly on the opposite side. (That’s 

the theory, anyway. Life is rarely like that, which is something that’s covered 

more later in the chapter.) Assume that all your ducks are in a row. . .well, two 

separate groups.

As shown in Figure 7-3, visually it looks straightforward, but you need to 

compute it mathematically. Every object that you classify is called a point, and 

every point has a set of features. 

Figure 7-3: Linear classification with a hyperplane

For each point in the graph, you know there is an x-axis value and there is a 

y-axis value. The classifi cation point is calculated as

sign by( )ax by cby

The values for a, b, and c are the values that defi ne the line; these values 

are ones that you choose, and you’ll need to tweak them along the way until 
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you get a good fi t (clear separation). What you are interested in, though, is the 

result; you want a function that returns +1 if the result of the function is posi-

tive, signifying the point is in one category, and returns -1 when the point is in 

the other category. The function’s resulting value (+1 or -1) must be correct for 

every point that you’re trying to classify.

Don’t forget that you have a training fi le with the correctly classifi ed data 

so that you can judge the function’s correctness; this approach is a supervised 

method of learning. This step has to be done to fi gure out where the line fi ts. 

Points that are further away from the line show more confi dence that they 

belong to a specifi c class. 

Confi dence

You’ve just established that each point has a confi dence based on its distance 

from the hyperplane line. The confi dence can be translated into a probability. 

That gives the equation of

P x
ax by c

[ |l ]
p( ( ))

=
+ exp( + +by

1

1

This is for one point. What you need is the probability for every set of lines; 

these are then assigned to each of the objects in the training data. 

l a by
i

N

i

N

p( ( )ax by cax )
=

∏ ∏P xix[ |li ]
+ −exp( by

1 1i=i

1

1

Probabilities are multiplied because the points have been drawn indepen-

dently. You have an equation for each point that indicates how probable it is 

that a hyperplane is producing the correct categorization. Combining the prob-

abilities for each point produces what is commonly defi ned as the “likelihood 

of the data”; you are looking for a number as close to 1 as possible. 

Remember that probability is based on a value between 0 and 1 (for a recap, 

check out Chapter 4). Within a set of objects, you’re looking for a set of line 

parameters with the highest probability that confi rms the categorization is correct.

Maximizing and Minimizing to Find the Line

Using a log function that is always increasing maximizes values that are above 

the equation. So, you end up with a function written as

− + − + +
=

∑ log( exp( ( )))1

1

l ( x b+ y c+
i

N
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To achieve minimization, you just multiply the equation by -1. It then becomes 

a “cost” or “loss” function. The goal is to fi nd line parameters that minimize 

this function. 

Linear classifi ers are usually fast; they will process even large sets of objects 

with ease. This is a good thing when using them for document classifi cation 

where the word frequencies might require measuring.

How Support Vector Machines Approach Classifi cation

The basic explanation of linear classifi cation is that the hyperplane creates the 

line that classifi es one object and another. Support vector machines take that 

a step further. 

Within the short space available, I outline how support vector machines work 

in both linear and non-linear form. I also show you how to use Weka to do some 

practical work for you.

Using Linear Classifi cation

Look at the set of circle and square objects again. You know how a hyperplane 

divides the objects into either 1 or -1 on the plane. 

Extending that notion further, support vector machines defi ne the maximum 

margin, assuming that the hyperplane is separated in a linear fashion. You can 

see this in Figure 7-4 with the main hyperplane line giving the written notation of

w x b−x = 0

This dot product shows the normal vector, and x is the point of the object. 

There is an offset of the hyperplane that goes from the origin to the normal vector. 

As the objects are linearly separable, you can create another two hyperplanes—

edge hyperplanes—that defi ne the offset on either side of the main hyperplane. 

There are no objects within the region that spans between the main hyperplane 

and the edge hyperplanes.

On one side, there’s the equation

w x b−x = 1

and on the other side there’s

w x b v−x

The objects that lie on the edge hyperplanes are the support vectors. (See 

Figure 7-5.)
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b|| w ||

2|| w ||

X1

X2

Figure 7-4: Support vector machines max margin hyperplane

Support
Vector

Support
Vector

Figure 7-5: The support vectors on the hyperplane edges

When new objects are added to the classifi cation, then the hyperplane and its 

edges might move. The key objective is to ensure a maximum margin between 

the +1 edge hyperplane and the -1 edge hyperplane. 
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If you can manage to keep a big gap between the categories, then there’s an 

increase in confi dence in your predictions. Knowing the values of the hyperplane 

edges gives you a feel for how well your categories are separated.

After minimizing the value w (called ||w|| in mathematical notation), you 

can look at optimizing w by applying the following equation:

1

2
|| ||w 2

Basically, you’re taking half of ||w|| squared instead of using the square 

root of ||w||. Based on Lagrange multipliers, to fi nd the maxima and minima 

in the function, you can now look for a saddle point and discount other points 

that don’t match zero (fi t inside the saddle). 

N O T E  For those that don’t know, a saddle point is a mathematical function where 

you have two variables that meet at a critical point when both function values are 

zero. It’s called a saddle point as that’s the shape it produces in graphic form. You can 

read more about it at this URL http://wikipedia.org/wiki/Saddle_point.

You’re shaping the graph into a multidimensional space and seeing where the 

vectors lie in order to make the category distinctions as big as possible. With 

standard quadratic programming, you then apply the function expressing the 

training vectors as a linear combination

xi iyy x
i

n

=
∑ .

1

Where αi is greater than zero, the xi value is a support vector.

Using Non-Linear Classifi cation

In an ideal world, the objects would lie on one side of the hyperplane or the 

other. Life, unfortunately, is rarely like that. Instead, you see objects straying 

from the hyperplane, as shown in Figure 7-6.

By applying the kernel function (sometimes referred to as “the kernel trick”), 

you can apply an algorithm to fi t the hyperplane’s maximum margin in a feature 

space. The method is very similar to the dot products discussed in the linear 

methods, but this replaces the dot product with a kernel function.

With a radial basis function, you have a few kernel types to choose from: the 

hyperbolic tangent, Gaussian radial basis function (or RBF, which is supported 

in Weka), and two polynomial functions—one homogenous and the other 

inhomogeneous.

The full scope of non-linear classifi cation is beyond the means of the introduc-

tory nature of this book. If you want to try implementing them, then look at the 

radial basis functions in the LibSVM classes when you use Weka. 

http://wikipedia.org/wiki/Saddle_point
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Figure 7-6: Objects rarely go where you want them to.

Now take a look at what Weka can do for you to perform support vector 

machine classifi cation.

Using Support Vector Machines in Weka

Weka can classify objects using the support vector machines algorithm, but the 

implementation isn’t complete and requires a download before you can use it. 

This section shows you how to set it up and run the support vector machines 

algorithm on some test data. 

Installing LibSVM

The LibSVM library is an implementation of the support vector machines algo-

rithm. It was written by Chih-Chung Chang and Chih-Jen Lin from the National 

Taiwan University. The library supports a variety of languages as well as Java 

including C, Python, .NET, MatLab, and R.

Weka LibSVM Installation

You can install LibSVM from Github. You can clone the binary distribution by 

running the following command (assuming you have git installed):

git clone https://github.com/cjlin1/libsvm.git 

The required fi les download into a clean directory. 

https://github.com/cjlin1/libsvm.git
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Y  ou need to copy the libsvm.jar fi le to the same directory as your Weka 

installation directory (usually in the /Applications directory). You can easily 

drag and drop the fi le if desired; I work from the command line most of the time:

cp ./libsvm-3.18/java/libsvm.jar /Applications/weka-3-6-10

With the library in place, you can start Weka. If you are a Windows user just 

start Weka as normal, but if you run Mac OS X or Linux then you have to do it 

from the command line:

java -cp weka.jar:libsvm.jar weka.gui.GUIChooser

If you do not start Weka from the command line, then the classifi er gives you 

an error to let you know that the SVM libraries were not found in the classpath. 

A Classifi cation Walkthrough

You will see the GUI Chooser application open as you would when you open 

Weka by starting the GUI instead of using the command line (see Figure 7-7). 

Choose the Explorer option.

Figure 7-7: GUI Chooser

I’m going to use the 100,000 rows of vehicle data that I created in Chapter 5 for 

the artifi cial neural networks; you can do the same. Find the .csv fi le and open it in 

Weka, as shown in Figure 7-8. Don’t forget to change the fi le type from .arff to .csv.

Setting the Options

Click the Classify tab and then click the Choose button to select a different 

classifi cation algorithm. Within the tree of algorithms, click Functions and then 

select LibSVM, as shown in Figure 7-9.



 Chapter 7 ■ Support Vector Machines 149

c07.indd 10:1:9:AM  10/06/2014 Page 149

Figure 7-8: Loading the .csv file

Figure 7-9: Choosing the LibSVM classifier



150 Machine Learning

c07.indd 10:1:9:AM  10/06/2014 Page 150

There are a couple of changes to make before you set the classifi er off to 

work. First, you want a percentage split of training data against test data. In 

this case, you can be fairly confi dent that the data is not going to be diffi cult 

to classify and it’s not going to be a non-linear classifi cation problem; you can 

train with 10 percent  of the data (10,000 rows) and test with the 90 percent 

 to see how it performs.

Click the Percentage Split option and change the default value of 66 percent  

to 10 percent, as shown in Figure 7-10.

Figure 7-10: Changing the percentage split

You want the results of the test data, the 90 percent to be output to the Weka 

console so you can see how it’s performing. Click the Options button and ensure 

that the Output Predictions checkbox is ticked, as shown in Figure 7-11.

The LibSVM wrapper defaults to a radial basis function for its kernel type. 

Change that to the linear version you’ve been concentrating on by clicking on 

the line with all the LibSVM options. This is located next to the Choose button 

within the Classifer pane.

Change the kernelType drop-down menu from Radial Basis Function to 

Linear. Leave the other options as they are. (See Figure 7-12.)
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Figure 7-11: Classifer Evaluation Options dialog box

Figure 7-12: Changing the kernel type
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Running the Classifi er

With everything set, you can run the classifi er. Click the Start button, and you 

see the output window start to output information on the classifi cation.

First, you have the run information, or all the options that you just set:

=== Run information ===

Scheme:weka.classifiers.functions.LibSVM -S 0 -K 0 -D 3 -G 0.0 -R 0.0 -N 
0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -seed 1
Relation:     v100k
Instances:    100000
Attributes:   4
              wheels
              chassis
              pax
              vtype
Test mode:split 10.0% train, remainder test

Next, you get some general information on the classifi er model:

=== Classifier model (full training set) ===

LibSVM wrapper, original code by Yasser EL-Manzalawy (= WLSVM)

Time taken to build model: 3.08 seconds

On my machine, the classifi er trained on 10,000 instances in just over three 

seconds, which is 3,246 rows per second. 

As you’ve set the output for the predictions to be shown, you get that next:

=== Predictions on test split ===

inst#,    actual, predicted, error, probability distribution
     1     4:Bike     4:Bike          0      0      0     *1    
     2     4:Bike     4:Bike          0      0      0     *1    
     3    3:Truck    3:Truck          0      0     *1      0    
     4      1:Bus      1:Bus         *1      0      0      0    
     5      1:Bus      1:Bus         *1      0      0      0    
     6      2:Car      2:Car          0     *1      0      0    
     7     4:Bike     4:Bike          0      0      0     *1    
     8    3:Truck    3:Truck          0      0     *1      0    
     9    3:Truck    3:Truck          0      0     *1      0    
    10      2:Car      2:Car          0     *1      0      0    
    11     4:Bike     4:Bike          0      0      0     *1    
    12      2:Car      2:Car          0     *1      0      0    
    13    3:Truck    3:Truck          0      0     *1      0    
    14    3:Truck    3:Truck          0      0     *1      0    
    15     4:Bike     4:Bike          0      0      0     *1    
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    16      1:Bus      1:Bus         *1      0      0      0    
    17      1:Bus      1:Bus         *1      0      0      0    
    18      2:Car      2:Car          0     *1      0      0    
    19      1:Bus      1:Bus         *1      0      0      0

Based on the training data of 10,000, you’ve instructed Weka to try and 

predict the remaining 90,000 rows of data. The output window will have all 

90,000 rows there, but the main things to watch out for are the actual and 

predicted results.

You get the evaluation on the test data showing the correct and incorrect 

assignments:

=== Evaluation on test split ===
=== Summary ===

Correctly Classified Instances       90000              100      %
Incorrectly Classified Instances         0                0      %
Kappa statistic                          1     
Mean absolute error                      0     
Root mean squared error                  0     
Relative absolute error                  0      %
Root relative squared error              0      %
Total Number of Instances            90000     

The confusion matrix shows the breakdown of the test data and how it was 

classifi ed:

=== Confusion Matrix ===

     a     b     c     d   <-- classified as
 22486     0     0     0 |     a = Bus
     0 22502     0     0 |     b = Car
     0     0 22604     0 |     c = Truck
     0     0     0 22408 |     d = Bike

Dealing with Errors from LibSVM

There are variations of the LibSVM library around the Internet and also different 

ways the random number generator handles numbers on differing operating 

systems. If you come across an error like the following:

java.lang.NoSuchFieldException: rand
java.lang.Class.getField(Unknown Source)
weka.classifiers.functions.LibSVM.buildClassifier(LibSVM.java:1618)
weka.gui.explorer.ClassifierPanel$16.run(ClassifierPanel.java:1432)
at java.lang.Class.getField(Unknown Source)
at weka.classifiers.functions.LibSVM.buildClassifier(LibSVM.java:1618)
at weka.gui.explorer.ClassifierPanel$16.run(ClassifierPanel.java:1432)
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then it’s worth looking at later versions of Weka with the new package manager 

(version 3.7 and later). 

Saving the Model

You can save the model for this classifi cation. On the result list, you see the date 

and time that the LibSVM classifi cation was run. Right-click (Alt-click if you 

are a Mac user) on functions.LibSVM and select Save Model. Find a safe place 

to save the model for future use.

Implementing LibSVM with Java

Using LibSVM within the Weka toolkit is easy to implement, but there comes 

a time when you’ll want to use it within your own code, so you can integrate 

it within your own systems.

Converting .csv Data to .arff  Format

.csv fi les don’t contain the data that Weka will need. You could implement the 

CSVLoader class, but I prefer to know that the .arff data is ready for use. It also 

makes it easier for others to decode the data model if they need to.

From the command line, you can convert the data from a .csv fi le to .arff 

in one command:

java -cp /Applications/weka-3-6-10/weka.jar weka.core.converters.
CSVLoader v100k.csv > v100k.arff

To ensure that the conversion has worked, you can output the fi rst 20 lines 

with the head command (your output should look like the following sample):

$ head -n 20 v100k.arff 
@relation v100k

@attribute wheels numeric
@attribute chassis numeric
@attribute pax numeric
@attribute vtype {Bus,Car,Truck,Bike}

@data
6,20,39,Bus
8,23,11,Bus
5,3,1,Car
4,3,4,Car
5,3,1,Car
4,18,37,Bus
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With everything looking fi ne, you can now set your attention on the Eclipse 

side of the project.

Setting Up the Project and Libraries

Using the same data, create a coded example with Java using Eclipse to create 

the project. Create a new Java Project (select File ➪ New ➪ Java Project) and call 

it MLLibSVM, as shown in Figure 7-13. 

Figure 7-13: Creating the new Java project

The Weka API and the LibSVM API need to be added to the project. Select 

File ➪ Properties and then select Java Build Path. Click the Add External JARs 

button. When the File dialog box displays, locate the weka.jar and libsvm.jar 

fi les and click Open. (See Figure 7-14.)

You have everything in place, so you can create a new Java class 

(File ➪ New ➪ Class) called MLLibSVMTest.java (see Figure 7-15) and put some 

code in place.



156 Machine Learning

c07.indd 10:1:9:AM  10/06/2014 Page 156

Figure 7-14: Adding the required jar files

Figure 7-15: Creating a new Java class
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The basic code to get a support vector machine working in Weka is a fairly 

easy task. 

public class MLLibSVMTest {
    public MLLibSVMTest(String filepath){
        Instances data;
        try {
            data = DataSource.read(filepath);
            

               if (data.classIndex() == -1)
                 data.setClassIndex(data.numAttributes() - 1);
            LibSVM svm = new LibSVM();
            String[] options = weka.core.Utils.splitOptions("-K 0 -D 3");
            svm.setOptions(options);
                svm.buildClassifier(data);
        } catch (Exception e) {
            e.printStackTrace();
        }
      }
    
    public static void main(String[] args) {
        MLLibSVMTest mllsvm = new MLLibSVMTest("v100k.arff");
    }
}

There are a lot of option settings for the LibSVM library, but the main one I 

want to focus on is the kernel type. As in the Weka workbench, the default is 

the radial basis function: In the options, the number 2 designates this. For the 

linear kernel function, you change that to zero.

To run the code from Eclipse, select Run ➪ Run. This takes the training data 

and makes the model. It won’t do anything else just yet.

Zero Weights processed. Default weights will be used
*
optimization finished, #iter = 9
nu = 7.999320068325541E-7
obj = -0.019999999949535163, rho = 2.1200468836658968
nSV = 4, nBSV = 0
*
optimization finished, #iter = 9
nu = 5.508757892156424E-7
obj = -0.013793103448275858, rho = -1.013793103448276
nSV = 5, nBSV = 0
*
optimization finished, #iter = 3
nu = 3.801428938130698E-7
obj = -0.009478672985781991, rho = 1.2180094786729856
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nSV = 2, nBSV = 0
*
optimization finished, #iter = 5
nu = 1.8774340639289764E-7
obj = -0.004705882352941176, rho = -1.6070588235294119
nSV = 4, nBSV = 0
*
optimization finished, #iter = 6
nu = 8.90259889118131E-6
obj = -0.22222222222222227, rho = 1.6666666666666679
nSV = 3, nBSV = 0
*
optimization finished, #iter = 3
nu = 1.2308677001852457E-7
obj = -0.003076923076923077, rho = 1.1107692307692307
nSV = 2, nBSV = 0
Total nSV = 14

The output looks confusing, but what it is telling you is the number of sup-

port vectors (nSV), the number of bound support vectors (nBSV), and obj is the 

optimum objective value of the dual support vector machine.

Training and Predicting with the Existing Data

So far, you’ve trained with the full 100,000 lines of data from the .arff fi le. I 

want to train with 10 percent and then predict the remaining 90 percent in the 

same way as the workbench walkthrough.

The Weka API lets you add the options as you would in the workbench, so 

where you split the data for training, you can do the same within the code.

Amend the options line and add the training split percentage like so

String[] options = weka.core.Utils.splitOptions("-K 0 -D 3");

and it now becomes

String[] options = weka.core.Utils.splitOptions("-K 0 -D 3 -split-
percentage 10");

To show the predictions of the data, add a new method that iterates 

through the instance data:

public void showInstanceClassifications(LibSVM svm, Instances data) {
         try {
             for (int i = 0; i < data.numInstances(); i++) {
                 System.out.println("Instance " + i + " is classified as 
a "
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                         + 
             data.classAttribute().value((int)svm.classifyInstance(data.
             instance(i))));             
            }
         } catch (Exception e) {
             e.printStackTrace();
         }
     }

The classifi er always returns a numerical value as its result; it’s up to you to 

turn that number into an integer and run it past the class attribute value to fi nd 

out whether it’s a bike, car, bus, or truck.

When you run the code again, you see the classifi er generate as before with 

10 percent of the training data, and then it classifi es the whole data set.

Instance 99991 is classified as a Truck
Instance 99992 is classified as a Bus
Instance 99993 is classified as a Car
Instance 99994 is classified as a Truck
Instance 99995 is classified as a Car
Instance 99996 is classified as a Bus
Instance 99997 is classified as a Bike
Instance 99998 is classified as a Truck
Instance 99999 is classified as a Bike

Summar y

This chapter was a whistle stop tour of support vector machines. Whole books 

have been written on the subject, going deep into the intricacies of the vector 

machine and its kernel methods. 

From a developer’s point of view, treat this chapter as a launch pad for further 

investigation. In a practical scenario, you might gloss over the heavy theory and 

make Weka do the heavy lifting on a sample or subset of your data.

Before you continue your journey, I think it’s only fair that you reward your-

self with your beverage of choice and a short rest before you continue into the 

next chapter on clustering dat a.
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One of the more common machine learning strands you’ll come across is 

clustering, mainly because it’s very useful. For example, marketing compa-

nies love it because they can group customers into segments. This chapter 

describes the details of clustering and illustrates how clusters work and where 

they are used.

N O T E  Please don’t confuse machine learning clustering with clusters of machines 

in a networking sense; we’re talking about something very diff erent here.

What Is Clustering?

If you boil down all the defi nitions of clustering out there, you get “organizing 

a group of objects that share similar characteristics.” It’s classed as an unsuper-

vised learning method, which means there’s no prior training data from which 

to learn. In Figure 8-1 you see there are three distinct groupings of data; each 

one of those groups is a cluster.

C H A P T E R 

8

Clustering
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In Red Dots Blue Dots

Green Dots

Figure 8-1:  A graph representation of a cluster

The main aim is to fi nd structure within a given set of data. Because there 

are a lot of algorithms to choose from, clustering casts a wide net. This is where 

experimentation comes in handy; which algorithm is the right choice? Sometimes 

you just need to put some code together and play with it. You’ll do that shortly.

Where Is Clustering Used?

Clustering is a widely-used machine learning approach. Although it might 

seem simple, do not underestimate the importance of grouping multivariate 

data into refi ned groupings.

The Internet

Social media network analysis uses clustering to determine communities of users. 

With so many users on Facebook, for example, using these sorts of techniques 

can refi ne advertising so that certain ads go to specifi c groups of customers. 

If you’ve ever searched on one of many mapping websites, you might have 

seen clustering at work when there are a lot of interest pins built up in a given 

location. Instead of showing all the pins, which would provide a bad user expe-

rience, clustering is used to defi ne the group of pins within the given location.

Website logs and search results are often clustered to show more relevant 

search result groups. A number of companies are using clustering to refi ne 

search engine queries.
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Business and Retail

Market research companies use clustering a lot. With surveys that contain 

many variables, a multivariate system like clustering gives marketers better 

defi nition of groups of customers in relation to the answers given in the sur-

vey. This might be broken down by population, location, and previous buy-

ing habits, for example. With the clusters defi ned, the marketing companies 

can try to develop new products or think about testing products for certain 

clusters in the results.

Along with association rules learning (discussed in Chapter 6), clustering is 

also used for basket analysis. Certain auction sites use clustering because there 

is no defi ned stock number in the listings. It’s easier to run clustering and group 

items and preferences than use association rules.

Law Enforcement

Crimes are logged with all the aspects of the felony listed. Police depart-

ments are running clustering and other machine learning algorithms 

to predict when and where future crimes will happen. The result of this 

might be that patrol cars are deployed to certain problem areas at certain 

times, or specialist help is sent to areas where certain sorts of crimes show 

high numbers.

Computing

With the rise of the “Internet of Things,” we are now collecting more data from 

sensors than ever before. Clustering can be used to group the results of the 

sensors. For example, thinking of a temperature sensor, you might cluster date 

and time against the temperature. Another example would be motion detection; 

a number of passive infrared sensors could be generating data on movement 

within a location. Is a certain location a hotspot at a specifi c time? This informa-

tion can be easily clustered and inspected.

Course work in the education sector, especially with the advent of large-

scale learning online, can be clustered into student groups and results. For 

example, do certain clusters of students excel at courses compared to other 

students?

Clustering is used often in digital imaging. When large groups of images 

need to be segmented, it’s usually a cluster algorithm that works on the set 

and defi nes the clusters. Algorithms can be trained to recognize faces, specifi c 

objects, or borders, for example.
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Clustering Models

As previously mentioned, the goal of clustering is to segment data into specifi c 

groups. There are many different clustering algorithms for the simple fact that 

there is really only one common denominator among all clusters—that you’re 

trying to fi nd groups of objects.

For example, there are distribution models that use multivariate distributions 

for their modeling. Graph models can show cluster-like properties when the 

nodes start showing as small subsets connected with one main edge as shown 

in Figure 8-2. 

Figure 8-2:  Nodes and edges as clusters

You can also approach simple clustering with groups in the same way you 

group in a structured query language.

One of the more commonly used cluster models is the centroid model, which 

is where the k-means algorithm comes in. The k-means algorithm is basically 

vector quantization. This chapter concentrates on the k-means algorithm and 

creates a basis of the walkthrough later in the chapter.

How the K-Means Works

If you have a group of objects, the idea of the k-means algorithm is to defi ne a 

number of clusters. What’s important is that it’s up to you to defi ne how many 

clusters you want. For example, say I have 1000 objects and I want to fi nd 4 clusters: 

n (objects) = 1000

k (clusters) = 4

Each one of the clusters has a centroid (sometimes called the mean, hence the 

name “k-means”), a point where the distance of the objects will be calculated. 

The clusters are defi ned by an iterative process on the distances of the objects to 
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calculate which are nearest to the centroid. This is all done unsupervised; you 

just have to let the algorithm do its processing and inspect the results. After the 

iterations have taken place to the point where the objects don’t move to different 

centroids then it’s assumed that the k-means clustering is complete.

The following pseudocode describes what’s happening:

calculate inital values for means m[1],m[2],m[3],m[4]

assign object to nearest center

while(there are changes in the mean position) {
    estimate the means to classify into clusters
    for(i in 1 to k) {
        m[i] = mean of the samples for cluster i
    }
}

Initialization

First, the algorithm must initialize by assigning a cluster to every observation 

made. The random partition method places the cluster points toward the center of 

the dataset. Another initialization method is the Forgy method, which spreads 

out the randomness of the initial location of the cluster.

After the initial cluster observations are assigned, you can look at the assign-

ment and updating of the algorithm.

Assignments

Each observed object is assigned to the clusterl; to fi nd out which cluster cen-

troid it’s assigned to, the algorithm uses a Euclidean distance measurement. 

The sum of squares is then calculated by squaring the Euclidean distances to 

each cluster centroid, and the one with the smallest value is the cluster which 

the object is assigned to. 

To calculate the Euclidean distance is quite simple and requires only some 

entry-level math; if you can remember how to do Pythagoras’ theorem, then 

you are already there.

Assume a basic grid of six positions on the X-axis (horizontal) and four posi-

tions on the Y-axis (vertical). The center point of my cluster is currently at 1,6 

and the object is located at 3,1, as shown in Figure 8-3.

The distance is 3-1 = 2 on the vertical side and 6-1 = 5 on the horizontal axis. 

Using Pythagoras’ theorem, the squared distance is

2 ̂  2 + 5 ̂  2 = 4 + 25 = 29

The square root of 29 is 5.38. This carries on for all the objects in the dataset 

that are assigned to the clusters. 
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Figure 8-3:  Euclidean distances

Update

In the update step, you assign the object values to the cluster. The recalculation 

of the center points of the cluster (the centroids) is taken as the average of the 

values of the objects that are part of the cluster. This process carries on as a loop 

until the entities in each group no longer change. 

The k-means algorithm is very effective, but it’s not without its problems. 

It can take a few runs with the data to get a decent fi t of clusters. When you 

choose too few, objects can easily spill into the incorrect cluster over a period 

of time during the processing.

Calculating the Number of Clusters in a Dataset

When presented with a dataset, it can be hard to defi ne the number of clus-

ters that you want to classify against. Sometimes this number will already be 

determined by a stakeholder. For example, in a marketing initiative you might 

have the following:

 ■ Low Frequency, Low Value Customers

 ■ Low Frequency, High Value Customers

 ■ High Frequency, Low Value Customers

 ■ High Frequency, High Value Customers

There are times when this information is not available, and you have to fi nd 

a balance for making your decisions. There are a number of methods for cal-

culating the optimum.
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The Rule of Thumb Method

Nothing beats wetting your fi nger and sticking it in the air to see which way 

the wind is blowing. There’s a simple calculation that is roughly the equivalent 

for clusters: The number of clusters (k) is equal to the square root of the number 

of objects divided by two. 

k objects= /2

If you have 250 objects, then half of that is 125, and the square root of 125 

is 11.18—so, there are 11 clusters. This can obviously be tested and reapplied 

depending on how the trial runs go.

The Elbow Method 

You can calculate the variance of the dataset as a percentage and plot against 

the number of clusters. There’s a point at which the clusters are at an opti-

mum—that point after which adding more clusters will not make a huge 

difference to the fi nal classifi cations. You can see in Figure 8-4 how the elbow 

method shows the optimum number of clusters is four, which has classifi ed 

80 percent of the data.

1

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 3 4 5 6 7 8

Figure 8-4:  The elbow method graph
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The Cross-Validation Method

By splitting the dataset into separate partitions, you can apply the analysis on 

the dataset and then on the remaining partitions. By averaging the results of 

the sum of squares, you can determine the number of clusters to use.

Weka supports cross-validation with the weka.clusterers.MakeDensity

BasedClusterer class. This class is covered in more detail in the command-

line-based walkthrough later in the chapter.

The Silhouette Method

Peter J. Rousseeuw fi rst described the silhouette method in 1986. It is a method for 

suggesting a way of validating where the objects lay within a cluster.

For any object, you can calculate how similar an object is with another object 

within the same cluster. By calculating the averages of objects that connect to 

a cluster and then evaluating how dissimilar they are in relation to the other 

clusters, you can determine an average score. The main aim is to measure the 

grouping of the objects in the cluster—the lower the number the better. When 

comparing the averages for each cluster, they are expected to be similar. When 

silhouettes are very narrow and others are large, it might point to the fact that 

not enough clusters have been defi ned when the computation process began.

K-Means Clustering with Weka

The Weka machine learning application comes with an algorithm for processing 

k-means clusters, a class called SimpleKMeans. In this walkthrough, you’ll work 

with three approaches: one from the workbench application, one that works 

directly from the command line, and fi nally one that’s a Java coded example. 

The aim is to take some marketing data and use the k-means to generate 

some segmentation of the customers; this will potentially give the marketing 

department an increase in successful transactions in the long run.

Before you get into the three walkthroughs, you need to prepare some data 

with which to work.

Preparing the Data

The following Java code generates 75 instances of random numbers for two 

integer variables, x and y. You import the saved fi le (kmeansdata.csv) into Weka 

and also load it in programmatically. 

import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;
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import java.util.Random;

public class DataSet3D {
    public static void main(String[] args) {
        Random r = new Random(System.nanoTime());
        try {
            BufferedWriter out = new BufferedWriter(new 
FileWriter("kmeansdata.csv"));
            out.write("x,y\n");
            for(int count = 0; count < 75; count++) {
                out.write(r.nextInt(125) + "," + r.nextInt(150) + "\n");
            }
            out.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
        
    }
}

The output looks something like this:

x,y
78,29
0,55
101,19
52,146
49,140
44,97
65,45
41,49
66,141
111,100
23,128
101,1
1,113
88,100

If you want to create more instances you can do so by adjusting the 

number of iterations in the for loop of the code. I’ve set it to 75 as a start-

ing point. The upper limit is really based on the amount of memory your 

computer has.

Have a look at the Weka workbench method fi rst. 

The Workbench Method

The workbench method uses the Weka user interface to load, cluster, and then visual-

ize the data. There’s no actual programming involved, but it’s useful to see what 

Weka is doing before you progress on to the command-line and coded samples.
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Loading Data

The process for the workbench is very similar to other examples you’ve run 

though. The fi rst thing you need to do is load in the CSV data. 

Click the Open File button and select the kmeansdata.csv fi le that you created 

earlier. Ensure that the fi le format drop-down menu shows CSV and not ARFF 

(see Figure 8-5); otherwise you won’t be able to open the fi le.

Figure 8-5:  Loading CSV data into Weka

When the data has loaded, the explorer shows various pieces of information. 

The Current Relation pane shows that there are two attributes and 75 instances. 

(See Figure 8-6.) The attribute information shows the two attributes: x and y. 

On the right-hand panel, the Selected Attribute pane shows some statistics of 

the data that’s been loaded, which includes the minimum and maximum values 

along with the mean and the standard deviation. Finally, there’s a graph of the 

distribution of the values and the frequency of them.

Clustering the Data

Click the Cluster tab at the top to select the clustering method. By default, 

the Weka clusterer uses the Simple EM method (expectation maximization). 
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Clicking the Choose button displays a tree of other cluster algorithms that you 

can use. For this example, select SimpleKMeans and then click Close; fi nally 

click Start to run the algorithm, as shown in Figure 8-7.

Figure 8-6:  The Preprocess window

The clusterer line in the Clusterer output pane has updated and shows the 

new cluster algorithm you’ll be using:

SimpleKMeans –N 2 –A "weka.core.EuclideanDistance –R first –last" –l 500 
–S 10

There are a few fl ags that need a little explanation.

 ■ -N determines the number of clusters that the SimpleKMeans is going to 

create.

 ■ -A is the distance function used. It defaults to Euclidean distance and 

uses the entire range of values as its range to act on (-R first –last).

 ■ The –l fl ag defi nes the number of iterations the k-means does to defi ne 

the cluster. 

 ■ -S is a random number seed. It can be any value you want.
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Figure 8-7:  Selecting SimpleKMeans

Clicking the line with all the command options shown next to the Choose 

button displays a pop-up window where you can alter the values. In the 

numClusters fi eld, change the number from 2 to 4. (See Figure 8-8.) You’re going 

to create four clusters with this data. Click OK to close the window.

Figure 8-8:  Changing the SimpleKMeans options
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Start the clustering process by clicking the Start button. For long periods of processing, 

it’s worth keeping an eye on the status in the bottom-left corner of the explorer. 

When the process is complete, you see the output appear in the Clusterer 

Output window. The following sections describe the output.

Run Information

The fi rst block of information gives the settings of the data and the algorithm selected. 

Scheme:weka.clusterers.SimpleKMeans -N 4 -A "weka.core.EuclideanDistance 
-R first-last" -I 500 -S 10
Relation:     td
Instances:    75
Attributes:   2
              x
              y
Test mode:evaluate on training data

K-Means

The k-means output shows the actual work that Weka did to reach the results. 

This includes the number of iterations that were performed on the data and the 

sum of squared errors.

Number of iterations: 3
Within cluster sum of squared errors: 0.8072960323968902
Missing values globally replaced with mean/mode

Cluster centroids:
                         Cluster#
Attribute    Full Data          0          1          2          3
                  (75)       (15)       (23)       (17)       (20)
==================================================================
x                54.88    68.9333     43.913    98.1765      20.15
y              92.0267       19.4   146.0435   114.8824      64.95

The cluster centroid data information is shown in relation to the instance data, 

showing the fi nal value locations of the centroids for each cluster.

Clustered Instances

Finally, the percentage of the data within each cluster is shown. It gives you an 

idea of how the data is distributed.

Clustered Instances

0      15 ( 20%)
1      23 ( 31%)
2      17 ( 23%)
3      20 ( 27%)
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Visualizing the Data

The last thing to do is look at the visualization of the clustering. In the explorer 

window, you see the result list on the bottom left. Right-clicking (or Alt + clicking on 

the Mac) the SimpleKMeans brings up the visualize window, as shown in Figure 8-9. 

Figure 8-9:  Visualize window

Each cluster has its own color scheme, and the plot shows values. Along the 

top of the visualization window are two, drop-down menus. To alter the plot, 

select a value from each drop-down menu. To show the x and y instance values, 

select the X: x(Num) and Y: y(Num) values, and you see the plot update.

Using the workbench method gives you a quick route to some insight, and 

it is very useful if you want to get a grasp on where the clusters lie. To start 

automating the process, you need to look at the other two approaches, starting 

with the command-line method.

The Command-Line Method

The command-line method is very similar to the workbench method but it gives 

you a little more fl exibility in terms of running within cron jobs. This means 

that you can collate more data and rerun the analysis on a regular basis.

Converting CSV File to ARFF

Weka uses the .arff format to determine object types and have data ready for 

processing. The GUI enables you to import .csv fi les directly, but it’s nice to 

have a tool that converts fi les for you.

You can use the CVSLoader class on the command line to convert .csv fi les 

to .arff. For example, the .csv fi le you created in the previous walkthrough 
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was kmeansdata.csv. Use the converter by running the following from the 

terminal command line:

java –cp weka.jar weka.core.converters.CSVLoader kmeansdata.csv > 
kmeansdata.arff

N O T E  If you’re using the Windows operating system then you can omit the 

–cp weka.jar from the java command. 

The command-line output might give some warnings about database drivers 

not being available, but there’s no need to worry about that. The main thing is 

that in the .arff fi le you have the proper defi nition.

Do a quick inspection to see the following defi nition:

@relation kmeansdata

@attribute x numeric
@attribute y numeric

@data

The First Run

Test out the command-line methods by starting with just running the SimpleKMeans 

class as- is on the .arff fi le. This is your training fi le:

java -cp /path/to/weka.jar weka.clusterers.SimpleKMeans -t kmeandata.arff

The –t fl ag gives you the name of the training fi le that Weka is attempting 

to cluster. Running this as-is gives the following output:

kMeans
======

Number of iterations: 3
Within cluster sum of squared errors: 5.839457872519278
Missing values globally replaced with mean/mode

Cluster centroids:
                         Cluster#
Attribute    Full Data          0          1
                  (75)       (35)       (40)
============================================
x                54.88    41.0571     66.975
y              92.0267    45.4286      132.8
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=== Clustering stats for training data ===

Clustered Instances
0      35 ( 47%)
1      40 ( 53%)

That works okay, but it’s only two clusters and there’s a good chance there 

are more. 

Refi ning the Optimum Clusters

Working out the optimum with the rule of thumb method described earlier 

in the chapter is easy enough. You can fi nd out the number of object instances 

using the UNIX wc command.

wc kmeansdata.csv 
      75      76     494 kmeansdata.csv

There are 74 lines (excluding the top line, which gives you the data labels 

x and y). A quick calculation of 75 divided by 2 results in 37.5, and the square 

root of that is 6.12.

By altering the command line, you can add that target cluster number 

(using the –N flag) along with a random seed number to work off (using 

the –S flag):

java -cp /path/to/weka.jar weka.clusterers.SimpleKMeans -t kmeansdata.
arff -N 6 -S 42

The output this time gives the same output but with more clusters:

kMeans
======

Number of iterations: 3
Within cluster sum of squared errors: 0.523849925862059
Missing values globally replaced with mean/mode

Cluster centroids:
                         Cluster#
Attribute  Full Data    0         1         2       3       4       5
            (75)      (10)      (12)      (15)     (5)    (10)    (23)
========================================================================
x          54.88      11.8    105.0833   68.9333  81.6    28.5   43.913
y          92.0267    65.9    118.3333   19.4    106.6    64    146.0435
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=== Clustering stats for training data ===

Clustered Instances
0      10 ( 13%)
1      12 ( 16%)
2      15 ( 20%)
3       5 (  7%)
4      10 ( 13%)
5      23 ( 31%)

Now, you have six clusters with a good defi nition of objects going into their 

specifi c clusters. The only problem is that you don’t know to which cluster the 

objects belong.

Name That Cluster

From the command line, the –p fl ag tells Weka to display the assignment of 

each row’s cluster instance. To use this feature, you have to instruct Weka which 

data attribute to use for each row. From the command line, use the following:

 java -cp /path/to/weka.jar weka.clusterers.SimpleKMeans -t kmeansdata.
arff -N 6 -S 42 -p 0

The –p 0 fl ag tells Weka to display the row and cluster based on the row num-

ber of the data. When this is run, you see the following output to the console:

0 0 
1 0 
2 0 
3 0 
4 0 
5 0 
6 0 
7 0 
8 0 
9 0 
10 4 
11 4 
12 4 
13 4 
14 4 
15 4 
16 4 
17 4 
18 4 
19 4
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All that’s being shown is the row number and the numeric identifi er of the 

cluster to which the row belongs. If you set the –p fl ag to 1 or 2, then you’d get 

the value of the x or y positions respectively.

With these workbench and command-line examples, you should now have 

a good idea how all this is put together. Take a look at the Java coded method 

using the Weka application programming interface (API). It demonstrates how 

you can integrate these clustering methods into your own server-side projects.

The Coded Method

The workbench works well, and the command line suits development needs 

better when scheduled jobs need to be done. But, for ultimate fl exibility, there’s 

nothing better than coding your own program using the API to get things done.

The same core Weka classes are used by the workbench, command line, and 

Java coded examples. It’s a case of fi guring out how the data is loaded and the 

clustering done with the options you’ve used in previous examples.

Creating a k-means cluster in Java is actually a fairly trivial matter; it’s a matter of 

knowing what elements go where. You are going to create a simple Java program to 

complete what you’ve done in the previous two walkthroughs. I’ll be using Eclipse.

Create the Project

Select File ➪ New ➪ Java Project and call it WekaCluster, as shown in Figure 8-10. 

There’s only one library to install; that is the weka.jar fi le. On Mac OS X 

machines, Weka is usually installed within the Applications directory. The loca-

tion on Windows machines varies depending on the specifi c operating system.

With the WekaCluster project selected, click File ➪ Properties and look for the Java 

Build Path. Then, click the Libraries tab. Add the external jar fi le by clicking Add 

External JARs. In the File dialog box, fi nd the weka.jar fi le, as shown in Figure 8-11.

The last thing to do is create a new class called WekaCluster.java (use File 

➪ New ➪ Class); see Figure 8-12 for what this should look like.

The Cluster Code

You’re going to do the following actions to get your cluster working:

 ■ Write the main method, passing in the location of the .arff fi le.

 ■ Write a rule of thumb routine to advise the number of clusters you should 

be aiming for.

 ■ Use Weka’s SimpleKMeans class to build the cluster model.

 ■ Print out the location of the centroids of the cluster.

 ■ Print out to which cluster each instance object belongs.
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This sounds like a lot of work, but it’s actually quite simple. The following 

sections break down each individual step.

Figure 8-10:  Eclipse New Java Project dialog box

Figure 8-11:  Adding an external jar
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Figure 8-12:  Creating a new class file

The main Method

The main method is the starting point for the program. It’s simple—just 

one line to create an instance of the constructor and pass in the location of 

the .arff fi le:

public static void main(String[] args) {
    // Pass the arff location and the number of clusters we want
    WekaCluster wc = new WekaCluster("/Users/Jason/kmeandata.arff");
}

Because you’re passing the fi lepath as a string, you need to refl ect that in the 

constructor for the class. I talk more about this in a moment.

Working Out the Cluster Rule of Thumb

Earlier, I established that you could quickly estimate the optimum number of 

clusters to generate. I’ve included a method to give you the number of clusters 

to generate based on the instance rows:

public int calculateRuleOfThumb(int rows) {
    return (int)Math.sqrt(rows/2);
}
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The number of rows is passed in as an integer variable. You return the square 

root of the row count divided by two. If you already know how many clusters 

you want, just hard code that number.

Building the Cluster

The main constructor handles the building of the cluster using the Weka API. 

As in the previous examples, you’re using the SimpleKMeans class to build the 

cluster.

It’s a small block of code. Weka handles things for you, so there’s not a large 

amount of preparation to do.

public WekaCluster(String filepath) {
        try {
            Instances data = DataSource.read(filepath);
            
            int clusters = calculateRuleOfThumb(data.numInstances());
            System.out.println("Rule of Thumb Clusters = " + clusters);
            
            SimpleKMeans kMeans = new SimpleKMeans();
            kMeans.setNumClusters(clusters);
            kMeans.setSeed(42);
            kMeans.buildClusterer(data);
            
            showCentroids(kMeans, data);
            showInstanceInCluster(kMeans, data);
            
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

The data is read in using the DataSource.read() method. This takes the string 

path name (or an InputStream is preferred) and saves the data as instances. 

Next, you calculate the number of clusters to defi ne using the method you 

created earlier with the rule of thumb calculation.

The actual building of the cluster is handled in the next four lines. The 

SimpleKMeans class is the same as the one used in the workbench and command 

line. You set the number of clusters you want to defi ne (setNumClusters()) and 

a random number seed (with setSeed()) and then build the cluster.

Finally, you call two methods: One shows the location of the centroids of 

each cluster, and the second shows in which clusters the instances are located.

Printing the Centroids

Now that the model is built, you can start to show some results from it. First 

you print out the location of each cluster centroid.
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public void showCentroids(SimpleKMeans kMeans, Instances data) {
        Instances centroids = kMeans.getClusterCentroids();
        for (int i = 0; i < centroids.numInstances(); i++) {
            System.out.println("Centroid: " + i + ": " + centroids.
instance(i));
        }
    }

The getClusterCentroids() method returns a set of instances. It’s a case of 

iterating through these and printing the result of each instance. As six clusters 

were created (via the rule of thumb method calculation), there should be six 

instances printed.

Printing the Cluster Information

To show which cluster the instance belongs to, the showInstanceInCluster() 

method takes the k-means model and the assigned instances. The code then 

iterates each of the instances and prints which it is assigned to based on the 

model.

public void showInstanceInCluster(SimpleKMeans kMeans, Instances data) {
        try {
            for (int i = 0; i < data.numInstances(); i++) {
                System.out.println("Instance " + i + " is in cluster "
                        + kMeans.clusterInstance(data.instance(i)));
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

The Final Code Listing

Here’s the code assembled and ready to run:

import java.util.Random;

import weka.clusterers.SimpleKMeans;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.converters.ConverterUtils.DataSource; 
public class WekaCluster {

    public WekaCluster(String filepath) {
        try {
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            Instances data = DataSource.read(filepath);
            
            int clusters = calculateRuleOfThumb(data.numInstances());
            System.out.println("Rule of Thumb Clusters = " + clusters);
            
            SimpleKMeans kMeans = new SimpleKMeans();
            kMeans.setNumClusters(clusters);
            kMeans.setSeed(42);
            kMeans.buildClusterer(data);
            
            showCentroids(kMeans, data);
            showInstanceInCluster(kMeans, data);
            
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
    
    public int calculateRuleOfThumb(int rows) {
        return (int)Math.sqrt(rows/2);
    }

    public void showCentroids(SimpleKMeans kMeans, Instances data) {
        Instances centroids = kMeans.getClusterCentroids();
        for (int i = 0; i < centroids.numInstances(); i++) {
            System.out.println("Centroid: " + i + ": " + centroids.
instance(i));
        }
    }

    public void showInstanceInCluster(SimpleKMeans kMeans, Instances 
data) {
        try {
            for (int i = 0; i < data.numInstances(); i++) {
                System.out.println("Instance " + i + " is in cluster "
                        + kMeans.clusterInstance(data.instance(i)));
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    public static void main(String[] args) {
        // Pass the arff location and the number of clusters we want
        WekaCluster wc = new WekaCluster("/Users/Jason/kmeandata.arff");
    }

}
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Running the Program

With the hard work done, you can run the program and inspect the results. 

From Eclipse select Run ➪ Run and the program will start. The output in the 

console window should look something like this:

Rule of Thumb Clusters = 6
Centroid: 0: 11.8,65.9
Centroid: 1: 105.083333,118.333333
Centroid: 2: 68.933333,19.4
Centroid: 3: 81.6,106.6
Centroid: 4: 28.5,64
Centroid: 5: 43.913043,146.043478
Instance 0 is in cluster 0
Instance 1 is in cluster 0
Instance 2 is in cluster 0
Instance 3 is in cluster 0
Instance 4 is in cluster 0
Instance 5 is in cluster 0
Instance 6 is in cluster 0
Instance 7 is in cluster 0
Instance 8 is in cluster 0
Instance 9 is in cluster 0
Instance 10 is in cluster 4

….

As you can see, the rule of thumb calculation recommended creating six 

clusters. After executing the k-means clustering method, you displayed the 

centroid of each cluster in order to “eyeball” the distances of any data point in 

the cluster from its cluster’s center; fi nally, you displayed cluster membership 

for each element of our original object data. 

Making Predictions

The program so far covers the creation of clusters and reporting the results of 

the instances. What happens when new data comes in? At present, you’re not 

able to predict anything. It would be nice to have a method you can access that 

takes new values and predicts in which cluster the result would be grouped.

Instances can be created within code and then run against the clustering model 

to see where the new values would lie. You need to create another method to 

return the cluster prediction.

public int predictCluster(SimpleKMeans kMeans, double x, double y) {
        int clusterNumber = -1;
        try {
            double[] newdata = new double[] { x, y };
            Instance testInstance = new Instance(1.0, newdata);
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            clusterNumber = kMeans.clusterInstance(testInstance);
        } catch (Exception e) {
            e.printStackTrace();
        }
        return clusterNumber;
    }

You’re passing the model and the values of the x and y variables (in the same 

way the original data was in two attributes). A double array is created and the 

two values are stored.

The Instance class is created. The fi rst value is the weight that is to be assigned 

to the instance. This is a value between 0 and 1. The second value is the double 

array that you’ve just created with the x and y values. 

In the same way that you showed the cluster by using the clusterInstance() 

method, you run the new instance and get the cluster number. This value is 

then returned back to the calling method.

To test this, I’m going to create another method, which will iterate 100 times 

and generate random values. Obviously, in your code you’ll be calling the pre-

dictor as required.

public void testRandomInstances(SimpleKMeans kMeans) {
        Random rand = new Random();
        for (int i = 0; i < 100; i++) {
            double x = rand.nextInt(200);
            double y = rand.nextInt(200);
            System.out.println(x + "/" + y + " test in cluster " + 
predictCluster(kMeans, x, y));
        }
    }

The method is generating random numbers for the x and y values and pass-

ing them to the prediction method. Add this to the main constructor after the 

centroids and clusters are fi rst printed by inserting the line

testRandomInstances(kMeans);

before the catch block is reached in the WekaCluster constructor. When you 

rerun the program, you see the random tests:

146.0/167.0 test in cluster 1
109.0/67.0 test in cluster 1
95.0/80.0 test in cluster 3
29.0/160.0 test in cluster 5
165.0/193.0 test in cluster 1
33.0/167.0 test in cluster 5
108.0/73.0 test in cluster 1
63.0/63.0 test in cluster 2
186.0/176.0 test in cluster 1
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67.0/47.0 test in cluster 2
43.0/5.0 test in cluster 2
85.0/9.0 test in cluster 2
152.0/60.0 test in cluster 1

Further Development

You will discover putting together a basic cluster algorithm with SimpleKMeans 

is a fairly straightforward matter. I’ve covered the main aspects of coding a 

solution. There are obvious developments from this point, such as connecting 

to a database table with Java Database Connectivity (JDBC) and extracting the 

data into instances. 

One thing to remember with Weka is that when huge volumes of data are 

applied, the memory performance can suffer. I suggest that most needs of 

enterprise are still covered using this method and can be developed with scale 

in mind. In particular, sampling the data to fi t in Weka memory will give very 

good results.

Summary 

Clustering will be one of those machine learning techniques that you’ll pull out 

again and again. To that end, it does need some thought before you go building 

clusters and seeing what happens.

You’ve created simple k-means clusters in Weka via the workbench, the com-

mand line, and within code. Obviously, there are plenty of options from this 

point on, but with what you’ve read in this chapter, you’ll be able to get a system 

up and working quickly.

Chapters 3 through 8 have concentrated on specifi c types of machine learning, 

their applications, and some examples in various forms. The following chapters 

discuss some tools that will become useful to you in data collection and process-

ing. I could even go as far as to say you’re about to unlock the door to Big Data.
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Consider the amount of data that is being generated as you read this paragraph. 

Much of that data will be produced, stored, and processed to gain insight and 

value—for example, a temperature monitor within the house that gives constant 

updates or a feed from various social media platforms. There’s an awful lot of 

potential in the data that comes out in real time. Being able to capture, process, 

store, and learn from it can be diffi cult; but with emerging tools it’s becoming 

easier to put solutions together. 

This chapter covers the use of Spring XD for consuming real-time data using 

the Twitter streaming application programming interface (API). The examples 

show you how to write custom processors in Spring XD to perform real-time 

analysis on the incoming Twitter data (tweets).

Capturing the Firehose of Data

Companies that provide continuous streams of data often refer to it as “the 

fi rehose”; the data just fl ows out, and it’s up to recipients to capture the data 

they want and process it as required. Often, some form of agreement with the 

data provider must be signed before the data is made available for consumption. 

C H A P T E R 

9

Machine Learning in Real Time 

with Spring XD
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Considerations of Using Data in Real Time

Before dashing off to your desk and coding up a real-time application that 

scans the entire Twitter fi rehose, it’s worth considering if real time is actually 

the way to go. Just because real-time processing is available doesn’t mean you 

should always use it. 

Financial services companies use real-time processing for applications that 

help subscribers decide whether to perform a trade on a stock; the decision to 

buy or to sell must be computed in milliseconds. In this context, data that’s 

considered “old”—anything longer than 10 or 20 seconds—is not worth process-

ing when you think about how many transactions might have occurred from 

other traders. The price could have changed many times within that duration. 

On the other hand, an e-commerce site using machine learning to generate 

recommendations for customers could batch up several transactions and process 

them periodically every 3, 6, 12, or even 24 hours. Batching up larger volumes 

of transactions has certain advantages. Chapter 10 covers batch processing in 

more detail.

Newer processing systems make use of in-memory processing, which requires 

no slow, traditional secondary data store and obviates the traditional extract, 

transform, and load (ETL) as found in traditional SQL-based business intel-

ligence systems.

Another consideration is storage volume: Is it necessary to store all the data? 

Will storing the processed data suffi ce for your purpose? Or will you need to 

store the origin data for further processing later? It is true that the cost of storage 

is decreasing (Moore’s Law), but storage still has major cost implications that 

you must consider. How will the data be stored? Where will it be stored? If the 

data will be stored on the cloud (on Amazon S3 buckets, for example), then are 

there privacy concerns that you must address? Have you considered the data 

safety (backups and restore service levels) and data security (privacy, secrecy, 

and access control) for the data?

With the increasing speed of computing, the plummeting cost of storage, 

and the many high-performance, low-cost database systems available, there is 

nothing to stop you from using two or three data stores for future processing. 

You can consider a traditional relational database such as MySQL, a column 

store such as HBase, and a graph database such as Neo4J or Apache Giraffe. 

Consider your data lifecycle, use cases, and the strengths/purpose of each 

SQL and NoSQL system within your reach (http://martinfowler.com/books

/nosql.html). 

Potential Uses for a Real-Time System

The applications of a real-time data system are broad and far-reaching. With 

the expanding volume of valuable social media and mobile data, it’s becoming 

increasingly important for real-time systems to enable instant connectivity 

http://martinfowler.com/books/nosql.html
http://martinfowler.com/books/nosql.html
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and recommendations for people wherever they are. Location-based targeted 

advertising is a good candidate for real-time analysis. Such a system must look 

for offers based on the location of the customer’s device in addition to the real-

time context of the customer’s situation (for example, weather, traffi c, time of 

day, day of year, and local, breaking news). 

Financial trading has previously been mentioned as a candidate for real-time 

processing. Companies are investing heavily into real-time algorithms that can 

trade at extremely high speeds (microseconds) using algorithmic trading to com-

pute and perform many thousands of trades per second. There are a number of 

algorithms that can be employed for these calculations. Some systems take into 

account news headlines and Twitter feeds, and then they trade on the sentiment 

of the story. Such systems have varying degrees of success. Payments and fraud 

detection algorithms can analyze transactions in real time and fl ag problematic 

transactions as they happen. As processing power increases, companies can 

embrace more variables such as previous customer transactions, location, and 

purchase behavior between clicks in soft real time. 

In cases where an interactive response to an end user or system is required, 

a real-time system is worth considering. In such cases, keeping data exclusively 

in memory speeds things up considerably. Secondary storage should be used 

only to speed recovery, restarting the memory system, and if more in depth 

training is required over larger data sets. 

Using Spring XD

This chapter uses the Spring XD framework that is designed for real-time 

processing. The goals of Spring XD are to simplify data ingestion, processing, 

and data export.

N O T E  Data ingestion refers to multiple sources of data, so there’s no issue in con-

suming log data, Twitter streams, and RSS feeds at the same time.

Spring XD runs either on a single server or on a cluster of machines in dis-

tributed mode. The examples in this chapter use a single server. The Spring XD 

software is released under the Apache 2 License and is completely open source, 

so you are free to download and use it with no restrictions. Spring has done a 

very good job of including the majority of common use cases in the base release; 

it’s a good starting point to show how real-time analytics can be built quickly 

and with minimum effort. 

If you are aware how the UNIX pipe commands work, then you’ll have an 

easy time understanding how Spring XD functions. If you’re not familiar with 

UNIX pipe commands then please read on; I explain how the basic command 

pipeline and data streaming in UNIX and Spring XD work.
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Spring XD Streams 

The Spring XD system is analogous to UNIX command pipelines, where an 

infi nite stream of text is fi ltered through commands and manipulated in some 

way before passing the stream on to the next command. For example, in UNIX 

if I want to compute the frequency of letters, words, and lines from the contents 

of one or more text fi les, I can run the “concatenate and print” (cat) command 

on the fi les and pipe the stream through the word count (wc) command:

cat *.txt | wc

Taking this concept a step further, I might want to alter the output of the 

resulting word with a label:

cat *.txt | sed 's/^/(lines, words, characters) =/'

Spring XD streams work in a similar way to UNIX command pipelines. The 

server reads input data, processes it in stages, and the resulting output is sent 

to a specifi c destination. The processing stages are optional, but they become 

very useful in processing data for machine learning tasks. A single stream is not 

limited to one processing step; processing can be daisy chained along the stream.

Later in the chapter, there is a full tutorial on how to set up these streams 

and how to process them. First you should understand the core components in 

the pipeline stream and how Spring XD uses them.

Input Sources, Sinks, and Processors

Spring XD streams have three main components: an input source, an optional 

processor, and an output called a sink.

Input Sources

Using the Spring Integration Adaptors, the XD system provides a number 

of ready-to-go input sources. These cover a range of uses from Internet-based 

protocols, internal log output tools, and fi le-processing commands. Table 9-1 

summarizes different types of input sources.

Table 9-1:  Diff erent Types of Input Sources for Spring XD 

INPUT NAME DESCRIPTION

HTTP Reads the input data from the HTTP request—for example, a web page, 

RSS feed, or REST API call.

TCP Handles the output of a raw TCP socket.

Mail Reads incoming mail from an IMAP server.
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INPUT NAME DESCRIPTION

JMS Receives incoming messages from a Java Message Service.

RabbitMQ Subscribes to and receives incoming messages from a RabbitMQ server.

Twitter Stream Uses the Twitter streaming API and reads in the JSON payload of each 

tweet.

Twitter Search Uses the Twitter Search API and reads in the JSON payload of each 

tweet.

File Reads a stream from a fi le. 

Tail Reads the tailed output stream from a given fi le. 

MQTT Connects to an MQTT (Message Queue Telemetry Transport) server; sub-

scribes to and receives telemetry messages.

Time Emits a periodic “heartbeat” time stamp string of the current time as 

perceived by the system on which Spring XD is running, with a defi ned 

duration between heartbeat messages.

Gemfi re Listens to either region events or continuous queries from a Gemfi re 

server.

Each of the input sources comes with an array of confi guration items that 

might be required before use in each source’s stream defi nition. Some of these 

input sources and how to set their confi gurations is covered later in the chapter.  

Sinks

To be useful, a system must produce an output, or sink, of some form. The most 

common output sinks are log fi les or a database table. Although Spring XD 

supports these log fi les and database tables, there are other options available. 

Table 9-2 lists output sinks.

Table 9-2:  Output Sinks in Spring XD

OUTPUT NAME DESCRIPTION

File Output is appended to a text fi le on a fi le system.

Log Using the internal logging function, output messages are written with 

INFO/WARN/ERROR as Log4J style, with rotation and time stamps.

JDBC Saves output data to a relational database. Any database with a JDBC 

driver can be used. Default database is in memory HSQL.

Mail Routes output to an SMTP mail server.

TCP Output is routed to a TCP socket—for example, output could be 

routed to the netcat UNIX command.

Continues
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OUTPUT NAME DESCRIPTION

HDFS Stores output data to the Hadoop Distributed File System. This is cov-

ered in more detail in Chapter 10.

RabbitMQ Outgoing message is sent to a RabbitMQ exchange.

Splunk Server Spring XD converts output to a SplunkEvent and is sent via TCP to a 

Splunk server.

Gemfi re Server Data is written to a running Gemfi re Cache server. This can be to either 

the standard server or the JSON server.

MQTT Output telemetry data is sent to a confi gured MQTT server.

Other sink output channels can be created if they are supported in the Spring 

Integration project. 

Processors

So far, this chapter has covered the input and output data types. You could easily 

create Spring XD streams to read an input source and then pipe the data to an 

output source. Processors sit between the input and output sources and allow 

additional processing, parsing, and analyzing of the data as it passes through. 

Spring XD comes with a set of ready-to-use processors (see Table 9-3); they 

offer some basic fi ltering, data extraction, and string manipulation.

Table 9-3: Spring XD Built-In Processors

PROCESSOR NAME DESCRIPTION

Filters Performs a grep-like expression fi ltering on the stream. The fi lter 

can be either a Spring Expression Language (SpEL) expression or a 

Groovy script.

JSON Field Value Passes message through if the value of a JSON fi eld matches.

JSON Field Extractor Extracts the value of a JSON fi eld and streams the value to the 

output.

Transform Converts the input source message content and sends it on to the 

output.

Split Consumes the message and splits it into a number of messages 

based on an expression.

Aggregator Concatenates message payloads together a number of times to 

create one aggregated message. 

Although Spring XD has comprehensive built-ins, there are plenty of options 

for customization creating new input sources, sinks, and processors.

Table 9-2 (continued)
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Learning from Twitter Data

The remainder of the chapter outlines a solution for analyzing data from 

Twitter. The Twitter streaming API provides plenty of data that can be fi ltered 

down to a reasonable size when you track a tiny subset. It also gives the perfect 

platform for learning how Spring XD works, how to create streams, and how 

to start customizing processors for your own needs.

If you haven’t already installed Spring XD, please refer to the “Software Used 

in This Book” section of Chapter 1. There you can fi nd instructions on where 

to download and how to install Spring XD.

The Development Plan

This section includes step-by-step instructions for building up the full imple-

mentation of learning from the Twitter streaming data. 

Step 1: Basic Streams in Spring XD

The fi rst step in the project is to get each element up and running. When you 

know each element is working and data can be saved to a fi le, then you can 

move forward with fi ltering. The basic concepts are

 ■ Setting up the Twitter API developer application

 ■ Setting up the Spring XD Twitter credentials

 ■ Testing Spring XD with a simple demo stream

 ■ Confi guring the fi rst stream to consume Twitter data 

 ■ Emitting data to a fi le sink

Step 2: Developing a Processing Module

The second step introduces the development of your fi rst processor:

 ■ Writing the processor code

 ■ Writing the XML confi guration item

 ■ Installing the code and confi guration in Spring XD

 ■ Reconfi guring the stream to include the new processor

Step 3: Developing a Sentiment Analysis Module

The last step involves developing a more involved processor to perform senti-

ment analysis on the incoming Twitter stream. You also confi gure Spring XD to 
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preserve the raw Twitter data before it’s processed, in case you want to do further 

analysis after the fact. This step can be broken down into the following tasks:

 ■ Writing the sentiment analysis processor

 ■ Writing the XML confi guration

 ■ Installing the sentiment analysis code and confi guration in Spring XD

 ■ Reconfi guring the stream to hook up the existing processor to the senti-

ment analysis processor

 ■ Confi guring a second channel called a “Tap” enables you to store the 

streaming data while piping it to the sentiment analysis processor.

If the list seems overwhelming, don’t worry; I’ve provided step-by-step instruc-

tions and code samples along the way. The full code and confi guration data are also 

available from the Wiley website http://www.wiley.com/go/machinelearning.

Confi guring the Twitter API Developer Application

Before you can start consuming data from Twitter into Spring XD, you need to 

set up a development account and install the Twitter development environment. 

This setup process uses Twitter’s developer site (http://dev.twitter.com) and 

requires you to have an existing Twitter account. If you don’t have a Twitter 

account, you can sign up for one at http://www.twitter.com. 

The developer website enables users to create keys for their applications to 

access Twitter’s APIs. I’m going step-by-step, assuming you’ve never done it 

before. If you already know how to create Twitter developer access and the 

required credentials, then you can skip the remainder of this section.

 1. Open a web browser and go to http://dev.twitter.com. Log in with 

your Twitter credentials. 

 2. Find your Twitter avatar image at the top right. Hover your mouse pointer 

over the arrow next to it. Click the My Applications link in the drop-down 

menu.

 3. Click the Create a New Application button, as shown in Figure 9-1.

 4. Fill in the required fi elds for the application name, description, and a URL 

for your website (see Figure 9-2). This information is required if Twitter 

users decide to use their accounts with your application. You can leave 

the callback URL blank, because you won’t be using it. 

  You need to agree to Twitter’s terms and conditions as well as fi ll in a 

Captcha code. Click the Create Your Twitter Application button.

http://www.wiley.com/go/machinelearning
http://dev.twitter.com
http://www.twitter.com
http://dev.twitter.com
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Figure 9-1:  Creating a new Twitter application page

Figure 9-2:  Completing the application detail page



196 Machine  Learning

c09.indd 10:1:45:AM  10/06/2014 Page 196

  Assuming that all went well, you are directed to the Details confi guration 

screen of your application. These settings include organization, authoriza-

tion, settings, access keys, and an option to delete the application.

 5. In the OAuth Settings area of the Details tab (see Figure 9-3) is the infor-

mation you require for the Spring XD system to collect Twitter streaming 

data. Make a note of the Consumer Key and the Consumer Secret.

 6. Twitter requires an access token to go with your consumer key and secret. 

The easiest way to get one is to click the Create My Access Token button 

below the OAuth settings. It can take a moment for the access token to 

appear in the Details page. If it takes longer than 30 seconds or if the access 

token remains empty, refresh the page in your browser and the tokens 

appear.

Figure 9-3:  OAuth details

When the process is complete, you see the access token, an access token secret 

key, and the access level. A read-only token is fi ne for your purposes, because 

you’ll be consuming data and not writing new tweets.

Confi guring Spring XD

Now that you have the Twitter API keys set up for your application, you can 

set up Spring XD itself. The XD distribution has a fair number of components. 
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In the main directory you can fi nd directories for Gemfire and Redis. You can 

install these separately; they aren’t required for this walkthrough. 

You’ll be using the server directory xd and the command-line program direc-

tory called shell.

Starting the Spring XD Server

Within the Spring XD server directory called xd is a subdirectory called bin. 

The bin directory contains the scripts used to administer the XD server. For 

the fi rst few examples, you start the server in single or “stand alone” mode. 

This mode confi gures and starts Spring XD to run on one machine. After you 

are more familiar with the framework, you can confi gure it to run on a cluster 

of machines. 

In a UNIX shell, change to the directory where you installed Spring XD and 

descend into the xd/bin subdirectory. Start the server using the xd-singlenode 

shell script:

$ cd spring-xd
$ cd xd/bin
$ ./xd-singlenode

Within the terminal window where you issued the command, you see Spring 

XD emit diagnostic information about starting its required modules. When you 

see the string started container as shown in Figure 9-4, then the Spring XD 

server is ready to accept commands.

Figure 9-4:  Spring XD server startup
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You can stop the server by typing Ctrl + C in the terminal window where the 

server was started. Ctrl+C stops the server if it is not running as a background 

task in the terminal window.

If the Spring XD server process is running in the background, you can send it 

a TERM(inate) signal using the UNIX kill command. First display all springxd 

processes running to identify the process ID of your server, then use the killall 

UNIX command interactively to send the terminate signal to your server process.

$ ps –auxw | grep springxd
$ killall –i –v –TERM java

Creating Sample Data

Before you run the shell you are going to create a stream of data to read in. 

Assume that you want to read the uptime of the machine that you are working 

on. First you would write the contents of the uptime command to a fi le in the 

/tmp directory:

$ while true ; do uptime >> /tmp/xdin ;  sleep 1 ; done &

The output fi le xdin contains the uptime output updated every second.

19:07:47 up 35 days,  7:49,  1 user,  load average: 0.00, 0.00, 0.00
 19:07:48 up 35 days,  7:49,  1 user,  load average: 0.00, 0.00, 0.00
 19:07:49 up 35 days,  7:49,  1 user,  load average: 0.00, 0.00, 0.00
 19:07:50 up 35 days,  7:49,  1 user,  load average: 0.00, 0.00, 0.00

The Spring XD Shell

Now that the server is running you can use the client command-line shell 

program that comes with Spring XD. To run the interactive shell, open another 

terminal window, descend into the directory where you installed Spring XD, 

and run the xd-shell script.

cd /usr/local/springxd/
cd shell/bin
./xd-shell

The Spring XD shell prompt is xd:>. (See Figure 9-5.) From this command-line 

shell, you can issue the server commands as well as create and control streams. 

There are also commands to handle modules, jobs, built-in aggregate counters, 

and even Hadoop. (The next chapter includes more on Hadoop.)
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Figure 9-5:  Spring XD shell

To exit the shell, type exit and press the Enter/Return key. 

Streams 101

This section covers the concept of streams in Spring XD and looks at various 

types of streams that can be used. You fi nd out how to create, delete, and list 

active streams within Spring XD.

Creating Streams

Before you dive in to working with a Twitter stream, try creating a simple 

stream to get comfortable with the concept. Imagine you want to log a series 

of timestamps to a fi le. Within the XD shell, you run the following command:

xd:>stream create -–name myfirststream –-definition "tail –-name=/tmp/
xdin"

I’m going to break this command down in sections. First you’re creating a 

new stream:

stream create
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Each stream requires a name in order to monitor and manage several streams 

at once:

--name myfirststream

The defi nition is the process fl ow; this clause is required and defi nes the actions 

and pipeline of stages. In this instance, you’re executing the Java equivalent of 

the UNIX time command and piping it to Spring XD’s log:

--definition "tail –-name=/tmp/xdin"

When you run the command, the XD shell returns with a response of:

Created new stream 'myfirststream'

Stream names are unique; if you attempt to create a stream with an existing 

name, you receive the following error message:

Command failed org.springframework.xd.rest.client.impl
.SpringXDException: There is already a stream named 'myfirststream'

As soon as the stream is created, the server deploys the stream and starts 

processing. If you switch to the terminal where you started the server, you see 

the log output of the stream on stderr:

17:06:03,961  WARN task-scheduler-8 logger.myfirststream:145 - 2013-12-
26 17:06:03

Note that Spring XD’s default log level is WARN—a warning level of logging to 

the stderr sink. In this case the error output is diagnostic and there is nothing 

to be worried about. Spring XD is processing the stream correctly and logging 

information to the stderr sink.

Listing Streams

To list existing streams, run the following command:

xd:>stream list

A list of the streams, their names, defi nitions, and current status (deployed 

or undeployed) will be displayed as shown in Figure 9-6.

Deploying and Undeploying Streams

Streams in the list can be deployed or undeployed at any time. When streams 

are created, they are deployed by default, and the server starts executing and 

processing the stream. To halt the stream from running, you can undeploy it:

Xd:>stream undeploy –name myfirststream
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Figure 9-6:  Stream XD stream lists

When you list the streams after this undeploy command, the name and 

defi nition are shown but the status is blank. To redeploy the stream and start 

processing it again, run the stream command again:

Xd:>stream deploy –name myfirststream

After you deploy a stream, you can check the server output log to ensure the 

stream is running.

Deleting Streams

When you no longer require a stream, you can safely delete it from Spring XD. 

You do this from the shell with the destroy command.

Xd:>stream destroy –name myfirststream

The stream undeploys itself from the server and then is removed from the 

list. In order for that stream to work again it must be re-created.

Storing Stream Defi nitions

By default, Spring XD stores defi nitions and state information in memory and 

does not persist this data to disk. The information is stored only for the duration 
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of time the server is running. When the server is stopped, any defi nition data 

is lost and must be re-created when the server starts again. You can persist this 

data to disk using the Redis key-value store. Connection and other confi guration 

details for Redis are set in the redis.properties fi le in the server confi guration 

directory. A known-working version of Redis is part of the Spring XD distribu-

tion (for Linux or Mac OS X), but it must be compiled before you can use it. If 

you already have a version of Redis available then you can most likely use that 

version. For this walkthrough, the in-memory storage will suffi ce. In a production 

situation, persisting the streams in Redis is probably the better way to proceed.

Thus far, this chapter has covered streams and how they are created, deployed, 

listed, and deleted. Now you can move on to working with Twitter data streams.

Spring XD and Twitter

One of the more popular uses of real-time processing is to read and analyze 

social media data. The volume of opinion, sentiment, and information broadcasts 

make this kind of data the perfect use for a tool such as Spring XD.

Setting the Twitter Credentials

You need to set up the Twitter credentials in your Spring XD confi guration. 

Locate where you installed Spring XD and go to that directory.

cd /usr/local/springxd

The Twitter confi guration fi le is saved as a template within the xd/config 

directory. You need to make a copy of this fi le (or rename it), so Spring XD 

recognizes it when you start the server.

cp twitter.properties.template twitter.properties

Edit the twitter.properties fi le and add the consumer key, consumer secret, 

access token, and access token secret using their respective key names, as shown 

in Figure 9-7.

Save the fi le and exit your text editor.

The assumption is that Spring XD will be using only one Twitter user to con-

sume all the Twitter data. If you are thinking of letting more than one Twitter 

user retrieve data via the API, then you need to add the credentials while creat-

ing the Spring XD stream. 



 Chapter 9 ■ Machine Learning in Real Time with Spring XD 203

c09.indd 10:1:45:AM  10/06/2014 Page 203

Figure 9-7:  Twitter properties file for Spring XD

Creating Your First Twitter Stream

Creating a Twitter stream is similar to the streams covered in the “Streams 101” 

section. It’s just a case of creating another defi nition.

Streaming Twitter data is based on the public tweets of its users. It’s not the 

complete fi rehose of all tweets; instead it is a very small slice of everything on 

Twitter from the endpoints “sample” and “fi lter.” Be very careful of the amount 

of data the stream produces without fi ltering for specifi c keywords; you will 

consume a huge amount of data in a very short time. 

The Twitter output is in JSON notation and contains a lot of information 

about the date, time, user, the tweet itself, retweets, location (if available), and 

the reply. Unless the intention is to collect, store, and process all the information 

(assuming you have the storage capacity), using the public stream is good. If you 

want to have a certain amount of control of the data coming in, then tracking 

specifi c key terms is a better way to use the stream. 
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Create the Stream Defi nition

To create your fi rst Twitter stream, run the following stream command from 

the shell:

xd:>stream create –-name mytweetstream –-definition "twitterstream 
--track='#fashion' | file"

You should already be familiar with the general stream defi nition. Within the 

defi nition is where the work with the Twitter API happens. The twitterstream 

keyword tells Spring XD that you want to use the Twitter API. The –-track 

fl ag is telling the API what streaming data it wants to receive. This could be a 

hashtag or a specifi c user mention, or, as in this instance, a keyword (for this 

example, the word fashion). 

When the stream is deployed, check the server log to make sure it’s registered 

correctly:

18:49:43,248  INFO http-bio-9393-exec-9 module.SimpleModule:137 - 
initialized module: SimpleModule [name=twitterstream, type=source, 
group=myfirsttwitter, index=0 @60cde43d]
18:49:43,266  INFO http-bio-9393-exec-9 module.ModuleDeployer:231 
- deployed SimpleModule [name=twitterstream, type=source, 
group=myfirsttwitter, index=0 @60cde43d]

If the Twitter credentials are incorrect, the Spring XD displays the error in 

the server’s console and also relays the error response from the Twitter API. It’s 

always worth keeping an eye on the console log output at these early stages.

Twitter Stream Defi nition Flags

I briefl y mentioned the --track fl ag within the defi nition, but Table 9-4 lists a 

few others of which you should take note.

Table 9-4: Streaming API Flags for Spring XD

FLAG NAME DESCRIPTION

--track One or more Twitter “hashtags” to track. If you want to monitor more 

than one hashtag, separate them with commas.

--follow A list of user IDs to track. The stream returns tweets based on matching 

users. To track more than one user, separate usernames with commas.

--locations Tracks tweets within a pair of longitude/latitude points. Note if the 

locations fl ag is used with the track fl ag, matching tweets on 

either fl ag will be returned—that is, tweets matching either one or the 

other, not tweets matching both.
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FLAG NAME DESCRIPTION

--delimited Setting this parameter to the string length indicates that statuses 

should be delimited in the stream, so that clients know how many bytes 

to read before the end of the status message. Statuses are represented 

by a length, in bytes, a newline, and the status text that is exactly length 

bytes. Note that “keep-alive” newlines might be inserted before each 

length. It can also be set to true or false to specify if delimiters are 

desired.

--stall-
Warnings

Sends warning messages to the client if the client risks being 

disconnected. 

--filter-
Level

Sets the level of tweets given back to the user. When set to none, then 

all available tweets are sent back.

The --stallWarnings and --filterLevel fl ags have different parameters when 

accessing the Twitter API directly. It’s worth experimenting with a few streams 

and setting different values for these fl ags to see how the output behaves.

Inspecting the Output

Where the sink output is set to “fi le,” the fi le stream is stored in the /tmp/xd/

output directory. The fi lename is determined by the name of the stream created. 

So, for the Twitter streaming example, the output is

/tmp/xd/output/mytweetstream.out

It’s useful at this point to use the UNIX tail command to see the velocity of 

the output. When developing Spring XD streams, especially for Twitter appli-

cations, I like to have three terminal windows open: one for the server, one for 

the client shell, and another tailing the output in the temporary directory, as 

shown in Figure 9-8.

Where to Go from Here

With regard to the development plan at the start of the chapter, you’ve completed 

Step 1: getting the basics of the Spring XD server and the Twitter credentials 

up and running. You’ve gotten the basic stream up and running and inspected 

the output. 

At this stage you’re only consuming data and then choosing a method to 

store the output. Now it’s time to move on to processors and manipulating the 

data in real time.
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Figure 9-8:  JSON output from the Twitter stream

Introducing Processors

So far, Spring XD is consuming the incoming stream of data and saving it to a 

fi le. For some purposes, this step suffi ces to write further software that would 

parse, perform analysis, and mine the data as required. One of the benefi ts of 

Spring XD is that you can extend the stream to process the incoming data with 

processors as it comes in without paying the heavy overhead of fi le I/O. This set 

of features also saves writing a custom program that is external to the system 

and means that most of the work can be performed as Spring XD is handling 

the data, which prevents technical debt and maintenance.

How Processors Work within a Stream

So far when creating streams, you have set an input source and an output type. 

Data enters via Spring XD and can be written or logged depending on the output 

sink you’ve specifi ed.

The processor is another stage in the stream defi nition, so instead of having 

what’s shown in the top half of Figure 9-9, you can add a processor in the stream 

and transform the data as it fl ows, as shown in the bottom half of Figure 9-9.
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Figure 9-9:  The processor information flow

The nice thing about processors is that you can chain many of them together 

in the stream. With built-in processors, you can start transforming the data very 

quickly. For example, if you want to extract only the tweet text from the incom-

ing Twitter stream then you can use Spring XD’s JSON fi eld extractor; pulling 

only the content becomes straightforward:

stream create --name prctest --definition "twitterstream 
--track='BigData' | json-field-extractor --fieldName=location | file"

This is very helpful for selecting single fi elds that you want to extract. If you 

want to take things further, then crafting your own processor is the better way 

to go.

Creating Your Own Processor

This section walks you through creating a processor, building it, and then 

deploying it on Spring XD. At present, you’re consuming far too much Twitter 

data from the stream and it’s using up precious storage space. The JSON fi eld 

extractor is a good start but only extracts one fi eld name and becomes limited 

when extracting huge amounts of JSON data. A processor module to extract the 

required fi elds of the Twitter stream and forward those to the output sink or 

the next stage in the pipeline is the purpose of this example. After this step is 

completed, you’ll extend it further to perform some simple sentiment analysis. 

To understand the steps to create a module and deploy it, I’m going to cover the 

basic data extract fi rst and then refactor the code.

Spring XD expects all modules to be deployed within jar fi les. Ensure that 

the full package structure is saved within the jar fi le, otherwise Spring XD does 

not deploy the processor. The jar fi les are stored under the /lib directory of 

your Spring XD distribution. 

The application context is saved as an XML fi le but not saved within the jar 

fi le. It contains the module details of the incoming and outgoing channels and 
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which Java class to use to perform the processing. The context fi le is saved under 

the /modules/processors directory of your Spring XD distribution.

This walkthrough uses Eclipse to enter the code and confi guration. The 

general concept and steps would be the same if you were using another IDE 

such as Netbeans or IntelliJ IDEA. The complete source code for the Spring XD 

processor modules is on the companion web page for this book.

Creating the Project

Within Eclipse, create a new Java project using File ➪ New ➪ Java Project. It 

will hold all the package information, the code, and a directory for the required 

libraries to read the incoming JSON data.  

Call the project XDTwitterProcessor, as shown in Figure 9-10, and check the 

default settings. When you are happy with them, click the Finish button. Eclipse 

creates the project structure for you.  

Figure 9-10:  Eclipse new project dialog

Next fi nd the location of the Jackson JSON Parser jar fi les and the Spring 

Integration jar fi le. They are usually under xd/lib in the Spring XD distribu-

tion. The XDTwitterProcessor project properties need the locations within the 

Java build path. Otherwise, trying to compile your project results in errors. To 

add these locations to your project’s build path, right-click the project name 

and select Project Properties.
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Click Java Build Path on the left-hand side list of options and then click the 

Add External JARs button, as shown in Figure 9-11. In the dialog box that opens, 

fi nd the location of the required jar fi les and select the following (note the ver-

sion numbers might vary from release to release):

 ■ jackson-core-2.2.2.jar

 ■ jackson-annotations-2.2.2.jar

 ■ jackson-core-asl-1.9.13.jar

 ■ jackson-databind.2.2.2.jar

 ■ jackson-mapper-asl.1.9.13.jar

 ■ spring-integration-core-4.0.0.M1.jar 

 ■ spring-messaging-4.0.0-RC1.jar

Figure 9-11:  Eclipse project Java build properties

After you have selected the required jar fi les, click Open and return to the 

Java Build dialog box. Then click OK to save your selections.

A Note to Maven Users

Developers who use the Maven build tool can add the two dependencies in 

the build fi le:
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<dependency>
    <groupId>org.springframework.integration</groupId>
    <artifactId>spring-integration-core</artifactId>
    <version>2.2.3.RELEASE</version>
</dependency>
<dependency>
    <groupId>com.fasterxml.jackson.core</groupId>
    <artifactId>jackson-databind</artifactId>
    <version>2.2.0</version>
</dependency>

This retrieves the required libraries when you build the project. If you’re not 

familiar with the Maven build tool, you can learn more at http://maven.apache.org.

Writing the Code

Now that the project is set up, you can proceed to writing some code. First of 

all, create a new package in the project (using File ➪ New ➪ Package) and give 

it the name mlbook.chapter9.processor1. 

Next, create a new Java class (using File ➪ New ➪ Class) and give it the name 

TwitterStreamTransform, as shown in Figure 9-12.

Figure 9-12: Eclipse new class dialog box

Eclipse creates the bare template of the class fi le for you with the package 

name and the class defi nition. You can either delete it all and type the follow-

ing code or fi ll in the required segments around the generated template. Don’t 

http://maven.apache.org
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forget to organize the imports (Source ➪ Organize Imports), and Eclipse looks 

after the classes required to import from the external libraries for the project.

package mlbook.chapter9.processor1;

import java.io.IOException;
import java.util.Map;

import org.codehaus.jackson.map.ObjectMapper;
import org.codehaus.jackson.type.TypeReference;
import org.springframework.integration.transformer
.MessageTransformationException;

public class TwitterStreamTransform {
    private ObjectMapper mapper = new ObjectMapper();

    public String transform(String payload) {
        try {
          StringBuilder sb = new StringBuilder();

          Map<String, Object> tweet = mapper.readValue(payload,new 
TypeReference<Map<String, Object>>() {});
          sb.append(tweet.get("created_at").toString());
          sb.append("|");
          sb.append(tweet.get("text").toString());
          return sb.toString(); 
        } catch (IOException e) {
          throw new MessageTransformationException(
          "[MLBook] - Cannot work on this tweet: " + e.getMessage(), e);
        }
    }
}

When the Twitter API sends JSON data to Spring XD, the incoming stream is 

called payload and is defi ned as a string type. The method transform takes the 

incoming stream and uses the Jackson JSON parser API to convert it to a Map. 

The JSON fi eld names now become map keys and the values are Java objects.

For this example you’re concerned only about two elements: the date the tweet 

was created and the actual text of the tweet. 

Using the StringBuilder class, the outgoing string is constructed and uses a 

pipe character (|) to separate the two values; the resulting string is then returned 

to the stream.  

Writing the Application Context

Before you can deploy the processor code, you need to create the application 

context fi le so Spring XD can recognize the class you’ve created. Although 
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the XML fi le isn’t deployed with the fi nal jar fi le, it’s worth creating the XML 

fi le within the project so everything is together while you are working on the 

development.

Create a new fi le (using File ➪ New ➪ File) and call it twitterstreamtransformer

.xml. The fi le should be in the src/mlbook/chapter9/processor1 directory under 

the XDTwitterProcessor project directory.

Add the XML markup and ensure that the start and closing tags are in place. 

Otherwise you’ll have problems later when trying to deploy.

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans xmlns="http://www.springframework.org/schema/
integration"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns:beans="http://www.springframework.org/schema/beans"
  xsi:schemaLocation="http://www.springframework.org/schema/beans
    http://www.springframework.org/schema/beans/spring-beans.xsd
    http://www.springframework.org/schema/integration
    http://www.springframework.org/schema/integration/spring-
integration.xsd">
  <channel id="input"/>

  <transformer input-channel="input" output-channel="output">
    <beans:bean class="mlbook.chapter9.processor1.
TwitterStreamTransform" />
  </transformer>

  <channel id="output"/>
</beans:beans>

Spring XD looks at the XML confi guration and loads the specifi ed bean class 

within the transformer tags. The fi lename of the XML fi le is the name that 

will be used in the stream defi nition. You’ll see how it all fi ts when you test the 

processor module.

Exporting the jar File

The fi nal step in the development process is to export the jar fi le. Within Eclipse 

it’s a straightforward case of exporting the project. To export to a jar fi le, select 

File ➪ Export and you see the Jar File option under the Java folder, as shown 

in Figure 9-13.

Click the Next button, and you see the Jar File Specifi cation panel. Ensure 

that you have the right project selected and that the Export All Output Folders 

for Checked Projects check box is selected. Give the jar fi le a name, such as 

http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beanswww.springframework.org/schema/beans/spring-beans.xsdwww.springframework.org/schema/integrationwww.s
http://www.springframework.org/schema/beanswww.springframework.org/schema/beans/spring-beans.xsdwww.springframework.org/schema/integrationwww.s
http://www.springframework.org/schema/beanswww.springframework.org/schema/beans/spring-beans.xsdwww.springframework.org/schema/integrationwww.s
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XDTwitterProcessor. Finally, select a target destination folder for your jar fi le 

and click Finish. (See Figure 9-14.)

Figure 9-13: Export selection dialog

Figure 9-14: Jar file detail dialog
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The project is now complete. You’ve created a project with the processor 

module code and the required XML confi guration for Spring XD. Next you’ll 

deploy the project into Spring XD and test it.

Deploying the Project into Spring XD

Before you can test your new module, you need to deploy it within Spring XD. If 

your Spring XD server is running, you need to shut it down, deploy the module, 

and then restart for your changes to take effect.

First, copy the twitterstreamtransformer.xml fi le to the processor directory:

cp ./twitterstreamtransformer.xml \ /usr/local/springxd/xd/modules/
processor

Next, copy the jar fi le you exported within Eclipse and copy that to the lib 

directory:

cp ./twitterstreamtransformer.jar /usr/local/springxd/lib

With those two fi les in place, you can restart your Spring XD server. Keep 

a close eye on the output while Spring XD initializes. If you see any exception 

traces, it’s worth checking the XML context to see if it’s well formed and the 

package and class names are correct.

Assuming everything has deployed okay, you can test your new module.

Testing the New Processor Module

Now it’s time to see the fruits of your labor; after the development and the 

deployment comes the testing. The fi rst thing you have to do is open a Spring 

XD shell. You’ll create a new stream but you’re going to include the new proces-

sor in the defi nition.

xd:>stream create -–name ttstest -–definition "twitterstream -–
track='#fashion' | twitterstreamtransformer | file"

Because you named the XML fi le twitterstreamtransformer.xml, that’s 

what Spring XD is expecting as the name of the processor in the stream. After 

the stream is created, go to your output directory and look at the text fi le. 

Sun Dec 29 19:35:54 +0000 2013|Sigue nuestro #blog y entérate de todas 
nuestras promociones y novedades http://t.co/b8v01LOHa8 #fashion #style 
http://t.co/YZfLj9myBf #moda
Sun Dec 29 19:35:55 +0000 2013|Leonardo DiCaprio Talks 
&lt;em&gt;Wolf&lt;/em&gt;'s Craziest Scenes http://t.co/8Si5zL0pMd 
#important #Jordan #movie #fashion
Sun Dec 29 19:35:58 +0000 2013|#fashion #design #styling #denim 
#sweatpants #hat #flannel #plaid #kibwe #sandal #birkenstock… http://t.

http://t.co/b8v01LOHa8
http://t.co/YZfLj9myBf
http://t.co/8Si5zL0pMd
http://t
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co/Ij1ZjfM1Gs
Sun Dec 29 19:36:01 +0000 2013|http://t.co/YH4Z25C2YS Outfit of the Day 
#ootd #style #fashion #ootn #fbloggers http://t.co/mbviiwDUNz
Sun Dec 29 19:36:03 +0000 2013|Photo: #fashion #design #styling #denim 
#sweatpants #hat #flannel #plaid #kibwe #sandal #birkenstock... 
http://t.co/STRlQ4Llqw
Sun Dec 29 19:36:03 +0000 2013| @Argento_Fiore Awesome Silver Gemstone 
&amp; Shablool Jewelry #Fashion #Silver #Gemstone #Jewelry #Shop #eBay 
http://t.co/Ip3w8UQgPT
Sun Dec 29 19:36:06 +0000 2013|Artistic Custom Shoes - Wear Your 
Favorite Video Game Icons on Your Feet with These Video Game... 
http://t.co/zY4G8iN3qu #fashion #trends
Sun Dec 29 19:36:06 +0000 2013|Fabulous Find! It's on my mind &amp; it's 
on @eBay. #Style #Fashion #Deal http://t.co/Cx3Ne4vlm8
Sun Dec 29 19:36:09 +0000 2013|Los mejores #FashionFilm de las marcas de 
#Moda http://t.co/9ZIeG9Jcr8 #Fashion #Video
Sun Dec 29 19:36:10 +0000 2013|CONTEMPORARY ART http://t.co/YbhYv1btoo 
#luxury #home #decor #trending #style #elegant #interior #design 
#fashion #shopping #online #fb #g+
Sun Dec 29 19:36:13 +0000 2013|RT @SUNNIDAYZ: BIG ANNOUNCEMENT Coming 
soon from @athompsonii #Music #Sports #Film #Fashion http://t.co/
cI4w8xelO6

The processor has achieved its aim by generating output for the tweet data 

and the text only. This sort of processor is useful for extracting what you need, 

but in this example you have sacrifi ced a little control in putting the required 

fi elds within the code. 

In the next example you start to add some analytics into the output by mea-

suring the sentiment of the tweet text as it comes through and giving each 

tweet a score.

Real-Time Sentiment Analysis

One of the most common uses of machine learning with volumes of comment 

data is sentiment analysis. Twitter is the perfect platform for this sort of machine 

learning for the simple reason that the data is generated in volume and, depend-

ing on the tracked topics, the velocity can be high. 

There are a number of ways to perform sentiment analysis on text, but this 

second example concentrates on a simple point score on the polarity of the tweet 

by inspecting each word to see if it’s positive or negative.

How the Basic Analysis Works

On its most basic level, sentiment analysis inspects words and, based on a list of 

positive and negative word lists, determines the score of the incoming string. It’s 

http://t.co/YH4Z25C2YS
http://t.co/mbviiwDUNz
http://t.co/STRlQ4Llqw
http://t.co/Ip3w8UQgPT
http://t.co/zY4G8iN3qu
http://t.co/Cx3Ne4vlm8
http://t.co/9ZIeG9Jcr8
http://t.co/YbhYv1btoo
http://t.co
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easy to implement, and for a lot of cases it works well. The longer the sentence 

the more accurate the sentiment score will be, so for very short tweets it might 

not give results.

The word sets I’m using for this demonstration are free to use and were origi-

nally published by Bing Liu and Minqing Hu as part of their work on sentiment 

analysis and opinion mining at the University of Illinois. You can download the 

two data fi les from www.cs.uic.edu/~liub/FBS/sentiment-analysis.html.

Here are two examples of how the sentiment analysis works. Consider the 

following two sentences:

 ■ “This is the best concert I’ve been to!” 

 ■ “That’s bad, really bad, horrible!”

You can easily identify which is a positive statement and which is negative. 

For our two lexicons, you have to iterate the string and for each word see if it 

exists in the two lexicons. If it matches in the positive lexicon, then you add a 

point; likewise, you subtract a point if the word appears in the negative lexicon. 

After the string has been analyzed, the score is returned back.

You can work out the scores for the two sentences:

 ■ “This is the best concert I’ve been to!” = 1 (best)

 ■ “That’s bad, really bad, horrible” = -3 (bad, bad, horrible)

Most of the time this method works out okay, but there are some caveats 

you should keep in mind. Especially with Twitter data, you can never tell if a 

user will abbreviate or compact certain words to save space (a tweet is only 140 

characters, after all). Also, this sort of analysis does not take into account false 

interpretations. In some local colloquialisms, it’s not uncommon for seemingly 

negative words to be used in a positive context, and some tweets are sarcastic.

For example, “That new Rihanna album is bad!” Is that a positive review or 

a negative one? This is where some domain knowledge of the types of subject 

you are dealing with comes in very helpful; you can adjust the lexicons for 

context if required.

A NOTE ABOUT TWITTER DATA

Before you start the next project, it’s worth having a quick discussion about the nature 

of the data you’re going to use. If you use Twitter regularly, you know that there’s no 

easy route to working on tweets. The data quality is poor—”noisy”—and requires 

extensive “cleaning” before simple, straightforward analysis can be performed.

The two lexicons provide positive and negative words in lowercase. The Liu and 

Hu collection includes the most common misspellings of certain words, because mis-

spellings are very common in online media. You might want to add some of your own 

words to the lexicons for your own purposes. 

http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
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For the example given here, I’m removing the hash symbol (#) from tweets, because 

there are no hashtags in the lexicons, and also removing the @ sign from Twitter user-

names. I’m also converting the whole string to lowercase for simpler, direct compari-

son to the list of words in the lexicons. The alternative would be to transform some 

alternatives of words to lowercase for comparison to the words in the lexicon. You 

might want to collapse some variations of a word to a canonical form for sentiment 

word list comparison but not other variations. I’m not adding any “sanity” fi lters or 

other cleanup to the stream. 

Creating a Sentiment Processor

Because you have a project with a processor module created, it makes sense to 

create the new sentiment processor in there. The steps are the same as before; 

create a new Java class and application context fi le.

The process fl ow for this new class is fairly easy to understand. You load 

the positive and negative word lists and then read the incoming payload in 

the same way as the fi rst project extracted the created date and the text of the 

tweet. Then you plug in the new processes, namely cleaning up the tweet text 

the best you can and calculating the sentiment score. Finally, you return the 

date, tweet, and score as a string.

Writing the Code

Before you start, make a careful note of where the two lexicon text fi les are, 

because you’ll be referring to the fi le paths in the code. If Spring XD can’t fi nd 

the text fi les while initializing the processor, then all your sentiment scores will 

be zero. It’s worth keeping a close eye on the server log output while testing.

With that in mind, it’s time to get started. Create a new package and call it 

mlbook.chapter9.processor2 (File ➪ New ➪ Package).

Next, create a new Java class and call it SentimentTweetScore (File ➪ New 

➪ Class). The code will resemble the same structure as the fi rst processor you 

worked on, but this time the sentiment score will be a little more involved.  

Here’s the code:

package mlbook.chapter9.processor2;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;



218 Machine  Learning

c09.indd 10:1:45:AM  10/06/2014 Page 218

import java.util.StringTokenizer;

import org.codehaus.jackson.map.ObjectMapper;
import org.codehaus.jackson.type.TypeReference;
import org.springframework.integration.transformer.
MessageTransformationException;

public class SentimentScoreTransform {
    private Set<String> poswords = new HashSet<String>();
    private Set<String> negwords = new HashSet<String>();
    
    public SentimentScoreTransform() {
        loadWords("/usr/local/springxd/pos-words.txt", poswords);
        loadWords("/usr/local/springxd/neg-words.txt", negwords);
    }
    
    private ObjectMapper mapper = new ObjectMapper();

    public String transform(String payload) {
        try {
            StringBuilder sb = new StringBuilder();
            
            Map<String, Object> tweet = mapper.readValue(payload,new 
TypeReference<Map<String, Object>>() {});
            sb.append(tweet.get("created_at").toString());
            sb.append("|");
            sb.append(tweet.get("text").toString());
            sb.append("|");
            sb.append(scoreTweet(tweet.get("text").toString()));
            return sb.toString(); 
        } catch (IOException e) {
            throw new MessageTransformationException(
                    "[MLBook] - Cannot work on this tweet: " + 
e.getMessage(), e);
        }
    }
    
    private void loadWords(String filepath, Set<String> set) {
        try {
            BufferedReader in = new BufferedReader(new 
FileReader(filepath));
            String str;
            while ((str = in.readLine()) != null) {
                set.add(str);
            }
            in.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
    
    private String cleanTweet(String tweet) {
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        tweet = tweet.replaceAll("#", "");
        tweet = tweet.replaceAll("@", "");
        return tweet.toLowerCase();
    }
    
    private int scoreTweet(String tweet) {
        int score = 0;
        StringTokenizer st = new StringTokenizer(cleanTweet(tweet));
        String thisToken;
        while(st.hasMoreTokens()){
            thisToken = st.nextToken();
            if(poswords.contains(thisToken)) {
                score = score + 1;
            } else if(negwords.contains(thisToken)){
                score = score - 1;
            }
        }
        return score;
    }
 }

When the class is fi rst requested within a stream defi nition, Spring XD loads 

the class and loads the positive and negative word lexicons, storing each in 

its respective HashSet; this is handled by the loadWords method. Once again, 

you’re using the Jackson JSON parser to extract the elements of the tweet you 

require (the date and the tweet text) but adding another part to the outgoing 

string: a sentiment score.

The scoreTweet method takes the tweet text and passes it to the cleanTweet 

method that removes the # and @ symbols. The StringTokenizer class splits up 

the string by using a space as its delimiter. Iterating over each token, you check 

against both lexicons and, if a positive word appears, you increment the score 

by one point; you deduct a point if the word appears in the negative word list.

Finally the score is written to the end of the outgoing string and sent to the 

stream. 

Creating the Application Context

Each processor module requires its own application context, even if the class 

fi les required are in the same jar fi le as the XML confi guration. Create a new 

XML fi le called sentimenttransformer.xml (using File ➪ New ➪ File) and use 

the following XML defi nition:

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans xmlns="http://www.springframework.org/schema/
integration"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration
http://www.w3.org/2001/XMLSchema-instance
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  xmlns:beans="http://www.springframework.org/schema/beans"
  xsi:schemaLocation="http://www.springframework.org/schema/beans
    http://www.springframework.org/schema/beans/spring-beans.xsd
    http://www.springframework.org/schema/integration
    http://www.springframework.org/schema/integration/spring-
integration.xsd">
  <channel id="input"/>

  <transformer input-channel="input" output-channel="output">
    <beans:bean class="mlbook.chapter9.processor2.
SentimentScoreTransform" />
  </transformer>

  <channel id="output"/>
</beans:beans>

The XML content is identical to the fi rst processor you wrote except the pack-

age and class name have changed. 

Packaging, Deploying, and Testing

You have to export the jar fi le again, so it includes the newly created class fi le 

for the sentiment scoring (use File ➪ Export in Eclipse). Copy the jar fi le to 

the lib directory of your Spring XD distribution and also copy the new XML 

application context fi le to the module/processor directory. 

$ cp sentimenttransformer.xml /path/to/springxd/xd/modules/processor
$ cp sentimenttransformer.jar /path/to/springxd/xd/modules/processor

For the new fi les to take effect you have to restart Spring XD. To test the new 

processor, all you have to do is create a new stream with the sentimenttrans-

former declaration:

xd:>stream create --name sentimenttest --definition "twitterstream 
--track='#fashion' | sentimenttransformer | file"

Now have a look at the fi le output (/tmp/xd/output/sentimenttest.out) 

and you see the tweet output and, at the end, the sentiment score based on the 

two lexicons. Though the output tweets are still the originals, your new class 

had cleaned up the text before calculating the score.

Mon Dec 30 14:29:18 +0000 2013|Miley Cyrus and Her Pink Mohawk Cover 
Love http://t.co/Inz6eDxCtG #fashion|1
Mon Dec 30 14:29:26 +0000 2013|RT @PalettePale: In love with my @
Georgeatasda pj bottoms! So cute!  http://t.co/aoIOoJjboH #fbloggers 
#blog #fashion #cute #pjs #pyjamas|2
Mon Dec 30 14:29:28 +0000 2013|#Gossip #CelebrityNews Miley Cyrus 
Dances, Sings Along at Britney Spears' Piece of Me Concert in Las... 

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beanswww.springframework.org/schema/beans/spring-beans.xsdwww.springframework.org/schema/integrationwww.s
http://www.springframework.org/schema/beanswww.springframework.org/schema/beans/spring-beans.xsdwww.springframework.org/schema/integrationwww.s
http://www.springframework.org/schema/beanswww.springframework.org/schema/beans/spring-beans.xsdwww.springframework.org/schema/integrationwww.s
http://t.co/Inz6eDxCtG
http://t.co/aoIOoJjboH
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http://t.co/JmwdvvIsKY #Fashion|-1
Mon Dec 30 14:29:30 +0000 2013|RT @PureLondonShow: Register for FREE now 
to Pure 2014 this February and glam up your business with the latest 
#fashion designs &amp; ideas htt…|2
Mon Dec 30 14:29:33 +0000 2013|#Snap #Farouushe #Nails #Pink #Fashion 
#Love #Girl #French #Lyon #Kiss http://t.co/DzT9HzxfQ8|1
Mon Dec 30 14:29:36 +0000 2013|RT @Fashion_Whipped: Winter fashion items 
you will not want to live without! http://t.co/aTE61gRX6h @toryburch @
SINGER22 @shopbop #fashion …|0
Mon Dec 30 14:29:37 +0000 2013|Well, NYE is tomorrow. What are you 
wearing? #NYE #fashion|0
Mon Dec 30 14:29:38 +0000 2013|Mi copiloto favorito... Él no me chilla 
cuando aparco mal jajaja @GcrGcrshop #moda #bolsos #style #fashion 
#musthave http://t.co/tuJVRGaJ3m|0
Mon Dec 30 14:29:39 +0000 2013|Cute. Ootd.  @hapatime #ootd #ootn 
#fallfashion #tights #booties #purse #fashion #fashionistalovey… 
http://t.co/fjpgoet1lw|0

So far, these two projects consumed the entire JSON payload from the tweet 

and extracted only two elements, namely the create date and the text of the 

tweet. Perhaps there’ll be a time when you want to perform analysis on the rest 

of the data and extract other elements. 

The next section looks at Taps, a feature within Spring XD that enables you 

to intercept the stream and process the information independent of the original 

stream defi nition.

Spring XD Taps

So far with Spring XD, you’ve concentrated on single-stream defi nitions with a 

source, a process transformer, and an output destination. One issue with this 

single-stream pipeline is that when there are large payloads of information, 

anything that’s not passed along from one stage to the next is lost.

Taps enables you to listen to a stream and perform another function on it in 

addition to the processor at that level of the stream defi nition. 

For example, suppose you want to preserve the original tweet data as it comes 

into Spring XD instead of extracting only date and text. Starting with the stream 

you created that does the sentiment scoring:

xd:>stream create --name sentimenttest --definition "twitterstream 
--track='#fashion' | sentimenttransformer | file"

you can create a new stream but with a tap that points to the stream called 

sentimenttest.

xd:>stream create --name mytap --definition "tap:stream:sentimenttest > 
file"

http://t.co/JmwdvvIsKY
http://t.co/DzT9HzxfQ8|1
http://t.co/aTE61gRX6h
http://t.co/tuJVRGaJ3m|0
http://t.co/fjpgoet1lw|0
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In this example, you directed the output to a fi le called mytap.out under /

tmp/xd/output along with the other fi les. If you have a look now, you will see 

that sentimenttest.out contains the date, tweet, and sentiment score separated 

by the pipe character (|), and mytap.out has the entire JSON payload that the 

Twitter streaming API sent you.

Taps are similar to the UNIX pipeline tee command that splits (or T’s) a stream 

into two streams or a fi le and a stream .

Summary

As you’ve seen throughout this chapter, Spring XD provides a good platform 

for processing a variety of data streams. The potential of creating your own 

processing modules means you can start rolling out your own real-time analyt-

ics with relative ease.

The sentiment analysis example, although simple, is used commonly in real 

Twitter sentiment applications, and it’s a handy tool to have when monitoring 

incoming streams of tweet data. The same model could be applied to practically 

any type of social media status data—even customer reviews on e-commerce 

platform sites. 

It’s worth taking some time to become familiar with the APIs before auto-

mating tasks with large systems such as Spring XD. Also, as discussed, take 

into consideration how you are going to store the incoming stream data and 

its processed output. You might want to go back and re-analyze data and learn 

more from it.

I used Spring XD as the main platform for this chapter, because it was simple 

to get usable streams up and running. It’s not alone, though, for a platform to 

consume data. You might want to investigate other systems such as Storm, 

Apache Flume, or RabbitMQ for constructing real-time systems. Just know that 

using them might require a little more planning and programming.

Chapter 10 looks at batch processing information with Hadoop, examines 

how the ecosystem fi ts together, and shows you how to perform analysis with 

MapReduc e and Pig.
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This chapter investigates using batch processing to mine and learn from larger 

amounts of data instead of streaming data. After you’ve considered the size of 

data and what you’re hoping to learn from it, you then look at various tools to 

extract, transform, and then process the data for useful results.

This chapter covers using Hadoop, Sqoop, and Pig for large-scale batch pro-

cessing; these tools enable large data sets to be processed with relative ease. 

The chapter also discusses more traditional methods of creating programs to 

run batch processes on data.

Is It Big Data?

Although this book is about machine learning, I can’t ignore the term “Big Data” 

that is increasingly a topic in business today. The phrase is touted as the savior, 

because it enables companies to see new things in their existing data. The term 

is broad but ultimately reduces down to the concept of a data set that becomes 

so large that it is diffi cult to process with traditional tools.

Depending on whom you ask, you might hear, “It’s not Big Data if it’s not 

working on petabytes of data,” or “When it becomes too big for a traditional 

database, then it’s Big Data.” Both statements are true and valid. Personally, I 

like the term “data” regardless of whether the amount of data is big or small. 

 C H A P T E R 

10

Machine Learning as 

a Batch Process
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As time marches on, the answer to the “What is Big Data?” question will con-

stantly change. The tools will also adapt, improve, and provide different insight. The 

key question for many organizations is “What can we do with the data we have?”

Considerations for Batch Processing Data

As covered in Chapter 9’s discussion about working with real-time data, you 

must give consideration to the data on which you want to work. The following 

sections cover a few key points. I’ll refer to the data we used in the last chapter. 

Volume and Frequency

The Twitter streaming API generates a lot of JSON data. In Chapter 9 you 

used only one aspect of it to perform primitive sentiment analysis on the fl y. 

The rest of the data was basically redundant during the real-time process. 

With batch processing, you can perform more robust and detailed processing 

without the time-pressure and memory constraints of a real-time system. The 

trade-off is that you must store the data on secondary storage; hence, you 

use Spring XD taps to fork the raw data before it is processed and discarded 

in the stream. 

It’s important to forecast storage demand against the amount of data you’ll 

bring into the system to be processed. Coupled with the Big Data paradigm of 

“delete nothing,” you should assume that a lot of data will be stored over time, 

whether you store it in a data warehouse, relational database, NoSQL system, 

or fi les with the idea that, at some time, it can be used.

Consider the size of Twitter data, assuming you’re tracking specifi c hashtags:

 ■ 1 tweet = 2 kb 

 ■ 25 tweets a minute = 50 kb

 ■ 1 hour = 3,000 kb (3 megabytes)

 ■ 1 day = 72,000 kb (72 megabytes)

 ■ 1 week = 504,000 kb (504 megabytes)

 ■ 1 year = 26,208,000 kb (26 gigabytes)

As rough calculations go that makes sense, but in the real world I would 

wager that most people would be tracking more than one hashtag for analysis. 

Frequency is another issue. For example, I created a stream that just stored the 

public Twitter stream to a fi le. Within one minute I’d already stored 8 megabytes 

(8,000 kilobytes) of data. If I want to store a year of data, I’d have 4 terabytes for 

that one hashtag. 4 terabytes of raw, uncompressed text for only one hashtag!

Twitter’s public streaming API accounts for roughly 10 percent of the full fi re-

hose of data, so you can imagine the storage implications if you are to consume 
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the full fi rehose. While storage capacity increases, the costs associated are 

decreasing. This means that creating data warehousing for data is a workable 

reality for many companies, where originally it was out of reach. 

How Much Data? 

Data relevance is often more important than the quantity of data in hand. Have 

you ever wondered why fi nancial websites operate publicly with a 15-minute 

delay? The sole reason is that the data is for a purely historical record and can’t 

be used for establishing trades; it’s too old. There’s nothing wrong with using 

all the available data to process; the question is, will you gain anything from 

it? Sometimes it’s better to look at the last year, the last month, or even the last 

week. There’s nothing stopping you from looking at all three.

Which Process Method?

The current fashion is to unleash Hadoop on data and expect the answers to just 

jump out at you. I’ve run training sessions where someone has said, “I thought 

we put the data in and the answers just came out!” It’s important to create a 

question or a hypothesis to come to some conclusion. For example, you might 

be looking for customers who’ve bought widgets A and B to determine what 

other widgets might be of interest to them.

As you see in this chapter, it’s not all Hadoop; algorithms can be crafted 

and used in a framework or run on their own. It’s a case of planning what 

you’re looking for within the data and defining a process to reach that 

conclusion. 

Practical Examples of Batch Processes

The rest of this chapter is a detailed walkthrough of different approaches to 

batch data processing. As discussed in Chapter 2, there’s no one solution that 

fi ts all for this sort of work; solutions can be comprised of different languages, 

scripts, and commands to get things how you want them. This chapter looks at 

working with the data you gathered with Spring XD from the previous chapter 

and also adds some new ingredients to make it work with some batch processing 

tools. The following sections describe the tools covered in this chapter.

Hadoop 

Hadoop is a framework for the processing and storage of large volumes of data 

either on a single machine (called a single node) or a collection of machines. 

Written almost completely in Java, Hadoop was conceived in 2005 by Doug 

Cutting and Mike Cafarella. 
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The Hadoop system is primarily run on Linux or UNIX-based systems. If you 

use the Windows operating system, then there are some companies, including 

Microsoft and Hortonworks, which provide a distribution for Windows and 

cloud-based Hadoop clusters running Windows.

Instructions on how to install Hadoop are found in Chapter 2. This chapter 

covers how to get a single-node cluster running with the Spring XD data you 

collected in the previous chapter.

Sqoop

For data stored within traditional databases, Sqoop (pronounced scoop, like 

a scoop of ice cream) is a useful tool that extracts tables or selected data and 

outputs it in a form that you can process with Hadoop. Sqoop also creates the 

required Java class fi les for the table structures, so implementing them into 

Hadoop’s MapReduce framework is easier. If your database is supported with a 

Java database (JDBC) driver, then you can implement Sqoop to extract the data 

from your database and stuff it into Hadoop.

Pig

The Apache Pig project is a high-level scripting language for creating MapReduce 

programs. It’s based on the programming language Pig Latin. On the surface it 

looks a lot like Structured Query Language (SQL). User-defi ned functions can 

also be written in Java, Python, JavaScript, Ruby, Groovy, or other Java Virtual 

Machine (JVM) languages.

Mahout

The Apache Mahout project is a collection of scalable machine learning algorithms 

for clustering, collaborative fi ltering, and classifi cation. Later in this chapter, you 

build a basket recommendation system that works with the Mahout algorithms 

that run on Hadoop. Mahout can run independently, but it also implements the 

MapReduce paradigm, so it works within Hadoop and can perform machine 

learning over large data sets on large Hadoop clusters.

Cloud-Based Elastic Map Reduce

If you don’t have the hardware on hand for running Hadoop at a large scale, it’s 

worth looking at some of the cloud-based offerings. Amazon has Elastic Map 

Reduce (Amazon EMR) as part of the Amazon Web Services offering. Google’s 

AppEngine also hosts a MapReduce system. Microsoft offers HDInsight on its 

Windows Azure cloud platform.
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Cloud providers that offer these sorts of processing services have their own 

control panels and processes that are not covered in this chapter. It’s worth taking 

the time to investigate the major available options to see if one of them fi ts your 

needs better than buying, maintaining, and servicing lots of hardware yourself. 

A Note about the Walkthroughs

This chapter has four complete scenarios that walk you through the process of 

mining batched data from start to fi nish.

The fi rst scenario gives you a line-by-line tutorial on how to set up a single-

node Hadoop cluster. This includes formatting a Hadoop Distributed File System 

(HDFS) and running a test job on your batches.

The second scenario takes the work you did in Chapter 9 with Spring XD 

and extends it further to show you Hadoop and Spring XD working together. 

You then move on to recommendations using the machine learning libraries 

in Mahout and the bulk data collection framework Sqoop. 

Last, you look at sales data analysis using Pig scripts and also plain Java 

code, so you can see how the two compare and can become comfortable with 

the abstractions Pig provides.

I’ve divided the tutorials into sections, so you can work through them one at 

a time, making it easier to leave off and come back and do another one when 

you feel you can.

Using the Hadoop Framework

One of the misconceptions about Hadoop is that it processes your data and 

has the answers for you. The notion that you can just throw data at Hadoop 

and it provides untold stories and new facts is fanciful to say the least. There’s 

still a large amount of planning and preparation you have to do before you can 

enable Hadoop to do your work properly. Ultimately, you need to know what 

you’re trying to fi nd out; as I’ve said throughout the book, you need to know 

the question you are trying to answer. 

The misconception aside, Hadoop is very effective at processing huge vol-

umes of data. Even if you are not at the petabytes scale (where Facebook and 

Google are), you can do a lot with the framework. But don’t forget that Hadoop 

is a means to an end, not an end in itself. 

The Hadoop Architecture

Hadoop is built on a number of core components. The Hadoop Common pack-

age supplies the fi le and operating system components, the MapReduce engine 
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(now two versions: MR1, which is MapReduce, or the newer MR2, which is based 

on YARN), and the HDFS. 

There are various distributions of the Hadoop framework available from 

Apache, Cloudera, Hortonworks, and MapR. Each vendor has alterations from 

the core for performance and features, so check them out to fi nd one that suits 

your needs. 

For these exercises I’ve used the older MR1 MapReduce engine from the 

Apache Hadoop distribution, so you can see in code how the systems are put 

together. When you are comfortable with this, then you can easily progress to 

the MR2, if you want. Existing jobs in MR1 usually work with the MR2 engine 

without changes. 

Hadoop Distributed File System (HDFS)

The HDFS is designed to store a large number of large fi les. Files smaller than 

half a gigabyte are stored and managed ineffi ciently in HDFS. Typical sizes 

for collections on HDFS are usually terabytes and frequently petabytes. HDFS 

assumes that it has streaming data access to all other nodes in the cluster, and 

ideally they are within the same local area network. The philosophy of Hadoop 

and MapReduce is that it is easier to move the code to the data on a large, dis-

tributed system than to send all the data to the code. Hadoop uses a master/

slave architecture. MR1 Hadoop implementations have a single node called a 

NameNode to regulate fi le access to the slave nodes and also to manage the 

fi le system namespace of the cluster. Additionally, there are (many) DataNodes, 

normally one per machine in the cluster, that manage the disk storage on each 

machine on which it runs. 

References to blocks of data (usually between 128 MB and 512 MB in size) are 

assigned to DataNodes by the NameNode for processing. A fi le in the NameNode 

keeps a transaction log of all changes that happen within the distributed fi le 

system. DataNodes pass the data blocks around for replication and storage. The 

NameNode never passes data blocks.

Because HDFS is written in Java, each component of Hadoop can be run on any 

platform that has a Java runtime environment. In reality, Hadoop components 

usually run on UNIX-based machines, although Hortonworks does provide a 

Windows-based platform, if that’s what you prefer.

The NameNode on MR1 engines is a single point of failure. If the NameNode 

fails, then the whole cluster fails, and data can’t be processed. This issue was 

partially addressed in Hadoop 2.x (using the MR2 MapReduce engine) where 

federated NameNode service was introduced. Most corporate operations teams 

have implemented operational workarounds to NameNode’s single-point-of-

failure problem by having hardware-level and network-level fail-over. They 

usually use a network fi le system (NFS) volume for NameNode’s data, enabling 

a “cold spare” machine to take NameNode’s role in case of hardware failure.
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In addition, the secondary NameNode acts as an inactive watcher of the trans-

action logs of the primary NameNode. It periodically obtains a snapshot of the 

current state of HDFS metadata. If there’s a failure of the primary NameNode, 

then the new NameNode attempts to use the data stored on the secondary 

NameNode and continues to recover the most recent consistent state of HDFS; 

then, it runs the outstanding transactions to restore the cluster.

Diff erent File System Types

Although most texts talk about the HDFS, it is worth noting there are some other 

back-end storage options you can use when running Hadoop:

 ■ Amazon S3 File System 

 ■ HTTP/HTTPS (working in read-only mode)

 ■ CloudStore, which is also known as the Kosmosfs and has now evolved 

into the Quantcast File System 

 ■ Network File System (NFS) mounted volumes

In addition, FTP enables you to store data on remote FTP servers.

Setting Up a Single-Node Cluster

Before you can start working through the examples, you need to set up a 

single-node cluster of your Hadoop system. This is a straightforward exercise 

on the command line. I go through step by step to get the confi guration and 

secure shell requirements complete. If you haven’t read the basic Hadoop 

installation instructions in Chapter 2, you might want to read them before 

continuing.

Confi guring Secure Shell (ssh)

Hadoop requires access to each node by way of a password-less ssh login, 

regardless if it’s a single-node cluster or connecting to a number of machines. 

To create such a login, become the Hadoop user or log in to the account you 

will use for Hadoop and type the following command to generate the public 

and private keys:

ssh-keygen –t rsa –P '' –f ~/.ssh/id_rsa

The –t fl ag tells keygen to use the RSA encryption method, and the –P fl ag 

is for the password. As you can see, it’s two single quotes; make sure there are 

no spaces between them. If you have previously created a key, you are asked 

if you want to overwrite it. Within the .ssh directory there are two fi les: the 

private key id_rsa and the public key id_rsa.pub.
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Next copy the key to the authorized_keys fi le.

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

Note the >> in the command, which means you are appending to the fi le. 

If you use one >, then it creates a new fi le and deletes all the other keys, so be 

careful when executing it. 

Finally try to log in to the same machine on which you created the public/

private keys:

ssh localhost

The fi rst time you use the new key, ssh prompts by asking if you trust the 

key fi ngerprint. Press Return/Enter  to indicate yes. Each time you ssh from the 

localhost to the localhost after that, you will not be prompted for a password; 

instead, you should immediately see a login banner and then your normal com-

mand prompt. Log out again; you’re done setting up the keys. 

Confi guring HDFS

The HDFS requires some confi guration changes before you can start process-

ing data. Find the home directory of your Hadoop installation (I’m using /usr/

local/hadoop as a guide; yours may differ) and go to the conf directory.

cd /usr/local/hadoop/conf

Use a text editor to edit the core-site.xml fi le. (I’m using the nano text editor.)

nano core-site.xml

In a clean installation, the core-site.xml fi le is basically empty except for 

the confi guration tags. It looks like the following:

<configuration>
</configuration>

Add the following property for the default fi le system name:

<configuration>
    <property>
        <name>fs.default.name</name>
        <value>hdfs://localhost:9000</value>
    </property>
</configuration>

fs.default.name is the key name that Hadoop is looking for to set the default 

HDFS name. The value is set to localhost and set to port 9000.

The fi nal thing to do on HDFS is format the fi le system. This must be done 

before you start using Hadoop to analyze the data. The format command is 

done via the hadoop command from the command line:

hadoop namenode –format

hdfs://localhost:9000</value
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You see a few log messages output to the console, but the main thing to look 

out for is the success message:

14/01/14 21:17:01 INFO common.Storage: Storage directory /tmp/hadoop-
jason/dfs/name has been successfully formatted.

With the HDFS formatted, you are now ready to start and stop the Hadoop 

system, run a test job, and retrieve the results.

Running a Test Hadoop Job

So far, you’ve created a password-less login and formatted HDFS for use. 

Hadoop comes with some example jobs you can run, and one of those is 

the Word Count example. In Hadoop terms, the Word Count example has 

become the “Hello World!” of Big Data. It’s become the butt of many jokes 

for being far too simple, but it’s still a handy way to confi rm your cluster is 

working properly.

Within the Hadoop directory there is an examples jar fi le. Make a note 

of the name, which is usually hadoop-examples-1.2.1jar, as you’ll need it 

when doing your test.

First things fi rst—you need to start your Hadoop cluster. The following 

shell script starts all the required services:

/usr/local/hadoop/bin/start-all.sh

When the startup process is complete, you can start to copy the required fi les 

to process into HDFS and run your Word Count job.

To perform functions on HDFS, you have to do that within Hadoop and not 

from the usual UNIX commands. However, familiar UNIX-like commands are 

used within the fi le system component of the hadoop command. 

First, create an input directory called input: 

hadoop fs –mkdir input 

Check that the directory has been created within HDFS by running –ls:

hadoop fs –ls 

You should see some output similar to the following:

Found 1 items
drwxr-xr-x   - jason supergroup          0 2014-01-14 21:34 /user/jason/
input

Now that the directory exists, you can start to copy fi les to it. I have a public 

domain text fi le of the book Moby Dick, so I’m going to copy that into HDFS. 

You can use any text fi le you want, just remember to alter the fi lename to the 

name of your text fi le.

hadoop fs –put mobydick.txt input 



232 Machine  Learning

c10.indd 10:1:59:AM  10/06/2014 Page 232

This command copies the fi le into the input directory ready for Hadoop to 

process. You’re not limited to one fi le; it’s a directory, and you can store as many 

different fi les in there as you want. For this exercise, though, just copy the one fi le.

Now you’re ready to run the Word Count job. The basic hadoop command is 

naming the jar fi le to use with the MapReduce code and the input and output 

directories.

hadoop jar /usr/local/hadoop/hadoop-examples-1.2.1.jar wordcount input 
output

When the Hadoop job runs, there is a lot of output and updates of what 

MapReduce is working on (you take a proper look at what MapReduce is up to 

shortly). Although it all looks a bit cryptic, there are some interesting lines of 

which to take note. First, the following line shows the number of lines of text 

that the mapper has processed:

14/01/14 21:41:36 INFO mapred.JobClient:     Map input records=23244

The second useful line to know is the number of output records that the 

reducer has written in the fi nal phase:

Map output records=214112

As it stands, the output that Hadoop has created is still sitting within HDFS; 

and my preference is for it to be a text fi le in my home directory. With the hadoop 

command, you can merge all the result fi les within HDFS and create a fi le on 

the local fi le system:

hadoop fs --getmerge output output.txt

What you’re telling Hadoop to do is merge all the output result fi les to the 

local fi le system and call the fi le output.txt. Remember that if output.txt 

already exists, it will be overwritten.

The last thing to do is to shut down the Hadoop server node. You don’t want 

to waste memory while doing simple jobs like this:

/usr/local/hadoop/bin/stop-all.sh

You see all the services shut down in turn. There’s no stipulation to do this, 

but for the sake of completeness in this walkthrough I’ve put it in.

Now it’s time to inspect the fruits of your labor. The UNIX command head 

shows a certain number of lines of the start of the fi le instead of listing the 

entire fi le:

head –20 output.txt

The fi rst 20 lines of the MapReduce job output should look like the following:

jason@myserver:~$ head -n20 output.txt 
"'A    3
"'Also    1
"'Are    1
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"'Aye,    1
"'Aye?    1
"'Best    1
"'Better    1
"'Bout    1
"'But    2
"'Canallers!'    1
"'Canallers,    1
"'Come    1
"'Cross    1
"'Damn    1
"'Down    1
"'Excuse    1
"'Hind    1
"'How?    1
"'I    4
"'Is    2

The basic Word Count example that comes with the Hadoop distribution 

splits a sentence by every space. If there are special characters within text fi les, 

such as quotation marks and apostrophes, then they’ll be included. This is the 

reason that ‘Aye, and ‘Aye? are treated as two separate words during the map-

ping and reducing phases. I discuss more about these things in the “Mining 

the Hashtags” section of this chapter.

Quick Summary

Over the last few pages, you’ve set up the basic Hadoop single-node cluster, 

including creating a secure login with no password, formatting HDFS, and 

running a basic test job using the Hadoop examples. Next, you expand on this 

knowledge and create your own MapReduce job to extract the hashtags from 

the data collated from Spring XD.

How MapReduce Works

When you hear the name Hadoop, the phrase MapReduce isn’t far behind. 

MapReduce is a programming model, a way of doing things, and it’s not a 

unique feature of Hadoop.

So, how does the Word Count example work? Here’s a really brief explanation 

for those who would like to know but don’t want a bunch of jargon. 

When the NameNode sends a block of data to be processed, it’s sent to the 

Map phase fi rst. Consider the following piece of text:

Red lorry yellow lorry

Red lorry yellow lorry

Red lorry yellow lorry
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The mapper receives that data (let’s assume one line at a time), and for each 

word the mapper assigns the number count of one.

Red 1

Lorry 1

Yellow 1

Lorry 1

Red 1

Lorry 1

…and so on. 

In pseudo code it would look like this:

function mapper(String text)
    for each word wd in text:
    collect(wd, 1)

The data is sent back to the NameNode, and the mapper is free to process 

another block. When all the blocks are complete, then the reducer can collate 

the results and add up the occurrences of each word. 

function reducer(String word, Iterator wordCounts) 
    total = 0
        for each wordCount in wordCounts:
        total += wordCount
        return (word, total)

The fi nal output will look like:

Red 3

Lorry 6

Yellow 3

It’s a simple yet very powerful model, and when it’s worked in parallel with 

many nodes, it enables Hadoop to process huge volumes of data over a num-

ber of machines. I avoided getting bogged down with large amounts of theory 

because it’s far more fun coding your own and watching it work. So, it’s time 

to do that and move on to mining the hashtags.

Mining the Hashtags

In the previous chapter, you used Spring XD to consume streaming Twitter 

data and store it on the fi le system. Using a custom processor, you extracted 

the data you wanted (the actual text of the tweet) and used a tap to preserve 

the full JSON payload that came in. 
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The one thing you haven’t done is explored what was in that data apart from 

ranking each tweet with a basic sentiment score. With your single-node Hadoop 

cluster ready for action, you can take things further and make Spring XD and 

Hadoop integrate to work together.

Hadoop Support in Spring XD

You might have noticed when starting up Spring XD that within the XD con-

fi guration output there was an XD_HADOOP_DISTRO fl ag. This fl ag is telling Spring 

XD which version of Hadoop to use. At the time of writing, the following dis-

tributions are supported:

 ■ Apache Hadoop 1.2.1 (as default): hadoop12

 ■ Apache Hadoop 2.2.0: hadoop20

 ■ Pivotal HD 1.1: phd1

 ■ Cloudera CHD 4.3.1: cdh4

 ■ Hortonworks Data Platform 1.3: hdp13

Because you’re working with Hadoop 1.2.1, you don’t need to change anything 

in the confi guration. If you were to use a different distribution, you would have 

to tell the shell which one you were using.

./xd-shell --hadoopDistro <your_distribution_number>

You’re going to use Spring XD to output the processed tweet data directly to 

HDFS instead of to a fi le. This removes a lot of fi le system commands that are 

required to move the data from the local fi le system to HDFS. Spring XD takes 

care of all that for you. 

Objectives for This Walkthrough

Remember, you’re not dealing with one technology; you’re using Hadoop for 

mining the hashtags based on the output that Spring XD has collated. For the 

custom MapReduce functions, you’re going to use a Java program that uses the 

Hadoop framework. 

After the routine is written, you turn your attention to Spring XD and recon-

fi gure the stream to output to HDFS. Last, you run the Hadoop job to extract 

the hashtags and tell which is the most popular.

What’s a Hashtag?

Say the word “hashtag” to most people and they automatically think of Twitter. 

However, the hashtag has been around a lot longer than some people imagine. 
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Hashtags were used to emphasize special meaning within the technology arena. 

Later, hashtags became widely used in Internet relay chat (IRC) as a means to 

label specifi c groups of information.

Hashtags are made up of unspaced words with a hash sign (#) at the begin-

ning. So the hashtag #MachineLearning is valid but #Machine Learning is not 

because there is a space between the two words. 

So looking at the #fashion tweet stream you created in Chapter 9, there are 

plenty of hashtags to be mined:

Sun Jan 19 11:04:11 +0000 2014|Billie Jean - Sporting Club - #top 
#talent #pop #show #star #swag #smile #fashion #goodmorning ... 
http://t.co/0VCPvcjVBl
Sun Jan 19 11:04:16 +0000 2014|Incredible gift from my grandparents 
#katemoss #book #fashion #photography #kate #moss http://t.co/hWBKWxLPzx
Sun Jan 19 11:04:16 +0000 2014|RT @wallpapermag: At @LANVINofficial, 
designer Lukas Ossendrijver makes a case for rollneck rebels #fashion 
#Lanvin http://t.co/4oaZBZx1YW
Sun Jan 19 11:04:16 +0000 2014|#Gossip #CelebrityNews 2014 SAG Awards: 
Cate Blanchett Wins Best Actress, Throws a Little Bit of Shade... 
http://t.co/qH9SwUFigT #Fashion
Sun Jan 19 11:04:17 +0000 2014|NEW #NATURAL #BUTT #LIFTER WITH NO 
PADDING (X-Large) #shapewear #curves #Fashion #Accessory #Deal http://t.
co/Hk5zFSXjc9
Sun Jan 19 11:04:19 +0000 2014|#shoes #fashion
Dolce &amp; Gabbana Leopard Print Pony Skin Peep Toe Sling Back 40 UK 7

All you have to do is create a MapReduce job to extract the hashtags and 

record each one. This is much like the way the Word Count example worked at 

the start of the chapter, but you refi ne the data at the mapping phase to ensure 

it’s cleaned up. Doing so reduces the number of duplicate wordings recorded 

with punctuation characters.

Creating the MapReduce Classes

Every MapReduce is comprised of a job confi guration, mapper class, and, option-

ally, a reducer. I say optionally for the reducer because, under some circum-

stances, you don’t want to reduce results; instead, you just use the mapper as a 

means to allocate blocks of data to be processed. This example, though, requires 

a reducer to collate all the hashtags that were recorded.

Creating the Project

Open your integrated development environment (IDE) and create a new 

project. (I’m using Eclipse as my IDE.) Call it HashTagsMapReduce, as shown 

in Figure 10-1.

http://t.co/0VCPvcjVBl
http://t.co/hWBKWxLPzx
http://t.co/4oaZBZx1YW
http://t.co/qH9SwUFigT
http://t
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Figure 10-1:  Creating a new project

There’s no need for any folders to hold any jar fi les. You only use one within 

the build—the core Hadoop libraries.

Adding the Required Files for the Build

Go to the project properties by right-clicking the project and selecting Properties; 

alternatively, you can select Project ➪ Properties. Next, select Java Build Path 

from the left-hand menu and then click Add External Jar and fi nd the main 

Hadoop core libraries: hadoop-core-1.2.1.jar. (See Figure 10-2.)

Click OK and the project updates with the new libraries registered for use. 

Now you can start to create some code.

Creating the Mapper

Have a look at the mapper class fi rst; there are some considerations you need to 

make with regard to it. The mapper class reads in each line of text and extracts 

what you’re looking for (in this instance a hashtag). The saved data from Spring 

XD is the tweet date and then the content of the tweet. The data is pipe delimited, 

so you have to split that fi rst.
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Figure 10-2:  Adding the required libraries

Using a perl extended regular expression (peregex) as implemented in the 

Java language, you can easily match all the hashtags within the tweet. In a Java 

regular expression, there is a special, single-character matching pattern, \w, 

that matches a single character that is either a letter, a digit, or the underscore 

( _) character. (The mnemonic is “word” character.) So to match a hashtag, you 

can use a simple regular expression:

#[\w]+ 

This expression matches a “pound sign” or “hash” (#), and the set that contains 

a word character repeated one or more times.

Now it’s time to put all that into practice in a Java class. Create a new Java 

class (using File ➪ New ➪ Class) and call it HashtagMapper.java, as shown in 

Figure 10-3. I’m using an empty package, but you can use your own naming 

methods if you want to.
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Figure 10-3:  Creating the new mapper

Use the following mapper code within your class:

import java.io.IOException;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;

public class HashtagMapper extends MapReduceBase implements
        Mapper<LongWritable, Text, Text, IntWritable> {

    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    @Override
    public void map(LongWritable key, Text value,
            OutputCollector<Text, IntWritable> output, Reporter 
reporter)
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            throws IOException {

        String inputLine = value.toString().toLowerCase();
        String[] splitLine = inputLine.split("\\|");
        Pattern pattern = Pattern.compile("#[\\w]+");
        if (splitLine.length > 1) {
            Matcher matcher = pattern.matcher(splitLine[1]);
            while (matcher.find()) {
                word.set(matcher.group());
                output.collect(word, one);
            }
        }
    }
}

As you can see, it’s a simple class. You’re going to scale it with Hadoop to cope 

with large volumes of data. Try walking through it line by line.

When a line of text is mapped, it’s passed through the map method. The Text 

value saves that as a Java string and converts it to lowercase. Why lowercase? The 

mapping phase, for example, sees the words #Fashion, #fashion, and #FASHION 

as three separate entries and is scored accordingly. By converting them to low-

ercase, you have one hashtag that would be counted three times. It’s cleaner 

and saves in post processing after the Hadoop job is fi nished.

Because the incoming data is pipe delimited, I’ve split that line into a string 

array. The date is going to be ignored, but you will process the tweet content. 

Using Java’s regular expression engine, you create a basic pattern to match all 

the hashtags that appear in the content. For every matched hashtag, the mapper 

registers the matched word and assigns the value 1 to it. 

That’s the basic mapper. As you can see, it’s a simple piece of code that con-

sumes the text and matches all the hashtags. The next section examines the 

reducer class. 

Creating the Reducer

At present you have a mapper that is registering the value of 1 to every match-

ing hashtag from the regular expression. The reducer collates all that data and 

comes up with the fi nal total for each key (hashtag) that it fi nds. 

Create a new class called HashtagReducer.java and copy the following code into it:

import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
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import org.apache.hadoop.mapred.Reporter;

public class HashtagReducer extends MapReduceBase implements 
Reducer<Text, IntWritable, Text, IntWritable>{

    @Override
    public void reduce(Text key, Iterator<IntWritable> values,
            OutputCollector<Text, IntWritable> output, Reporter 
reporter)
            throws IOException {
        int sum = 0;
        while (values.hasNext()) {
            sum += values.next().get();
        }
        output.collect(key, new IntWritable(sum));
    }
}

The reducer takes every word that has been recorded by the mapper and 

adds the totals. So, for example, the mapper has recorded the following:

#fashion,1
#shoes,1
#shoes,1
#fashion,1
#fashion,1

The reducer combines the results of each key (each hashtag in this case) and 

adds them, so the fi nal result looks like the following:

#fashion,3
#shoes,2

You have your mapper and a reducer. The last thing to do is create a job 

confi guration class so Hadoop can run the job.

Creating the Job Confi guration

The job confi guration is made up of a number of components that tell Hadoop 

what mapper and reducer classes to use and where to expect the input and 

output fi les to live.

Create a new Java class and call it HashtagJob.java. Then use the following code:

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.apache.hadoop.mapred.FileInputFormat;
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import org.apache.hadoop.mapred.FileOutputFormat;

public class HashtagJob {

    public static void main(String[] args) throws Exception {
        JobConf conf = new JobConf(HashtagJob.class);
        conf.setJobName("HashtagMiner");
        
        conf.setOutputKeyClass(Text.class);
        conf.setOutputValueClass(IntWritable.class);
        
        conf.setMapperClass(HashtagMapper.class);
        conf.setReducerClass(HashtagReducer.class);
        
        conf.setInputFormat(TextInputFormat.class);
        conf.setOutputFormat(TextOutputFormat.class);
        
        FileInputFormat.setInputPaths(conf, new Path(args[0]));
        FileOutputFormat.setOutputPath(conf, new Path(args[1]));
        
        JobClient.runJob(conf);
    }
}

The output key and values are set (text and an integer). Next, you tell the job 

confi guration which mapper and reducer classes to use. The input and output 

fi le types are defi ned—both text format for this example—and you specify 

where the input and output folders on the fi le system will live.

Notice that the fi le system folders are read in from the values of the command 

line, args[0] for the input directory and args[1] for the output directory.

The fi nal line of the class is Hadoop’s JobClient running the job confi guration. 

The only thing left to do is export the jar fi le, and then you can do a fi rst test.

Exporting the Jar

The jar fi le is comprised of the mapper, the reducer, and the job confi guration. 

You can have as many classes in there as you want (if you have multiple jobs 

and functions), but I fi nd it easier to stick with one specifi c function (in this case 

mining hashtags) in one jar fi le.

To export the jar fi le, select File ➪ Export and select Jar File insert (see Figure 10-4). 

Ensure that you have the correct project selected and that you’ve selected the Export 

All Output Folders option. Call the jar fi le hashtagmining.jar and click Finish.

Testing on a File

It’s always a good idea to test the new MapReduce algorithm against a small 

sample of data to ensure that the output is what you’re expecting. I know it 

sounds like common sense, but experience has shown me many things. 
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Figure 10-4:  Exporting the jar file

First things first, create a directory for the test to happen; I’m going to 

call mine hashtagtest. Within that directory, create another directory 

called input.

mkdir hashtagtest
cd hashtagtest
mkdir input

I like to keep jar fi les within the testing directory, as it makes things easier 

when working with the command line. Therefore, I’m going to copy my jar fi le 

to the hashtagtest directory:

cp /home/jason/hashtagmining.jar ./

Assuming that you have the processed data output from Chapter 9, you can 

dump a certain number of lines into a new text fi le to use for the testing:

head –n 200 /tmp/xd/output/fashiontweets.out > ./input/input.txt

The head command should be familiar to you, as you used it earlier in this 

chapter. This time it’s taking the fi rst 200 lines of the processed tweets and 

directing the output to a new text fi le called input.txt in the input directory. 

Everything’s in place now, and you can run the basic test.

Hadoop has three running modes: a single-node cluster, a multi-node cluster, 

and a local mode. On a development machine it’s nice to have a local version of 

Hadoop on hand, so you can test your code before it’s deployed to the main cluster. 
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The local mode doesn’t use HDFS; instead it uses the data that’s in the local fi le 

system. This is perfect for testing, as it means you’re not copying small amounts 

of data to HDFS for testing. Nothing changes from the command-line perspec-

tive, so to test the new jar fi le you run the following command:

hadoop jar hashtagmining.jar HashtagJob input output

You see the MapReduce job run in exactly the same way as it did when the 

single-node cluster was tested in the fi rst walkthrough. After it’s fi nished, go to 

the output directory and you see two fi les. The fi rst is a fi le called _SUCCESS to 

show that Hadoop had completed the job without any problems. The second fi le 

is called part-00000; this is the text fi le with the results from the MapReduce test.

Use the more command to dump the contents of the fi le out to the terminal 

screen, one screen (page) at a time:

more  output/part-00000

The basic MapReduce job you created doesn’t order the results; it just outputs the 

hashtag and number of times it was found. For a quick look at the most popular 

hashtags, you can use the sort and head commands to show the top 20 hashtags.

sort -k 2 -n -r output/part-00000 | head -20 

The sort command is using three fl ags to process the output: The –k 2 fl ag 

means that you’re sorting on the second key position (the numeric output from 

the results); -n is to show a numeric sort; and –r is to show the results in reverse 

order. You see output that’s something like the following:

Jason-Bells-MacBook-Pro:output Jason$ sort –k 2 –n -r part-00000 | head 
-n 20
#fashion    157
#style    19
#etsy    12
#jewelry    12
#skirt    11
#outfit    10
#pencil    8
#vintage    8
#buciki    7
#fashionable    7
#fashionblogger    7
#fashiondiaries    7
#fashionstyle    7
#instafashion    7
#nowe    7
#sale    7
#szpilki    7
#deal    6
#dress    6
#cute    5
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With the test working as expected, you can turn your attention to Spring XD 

again. It’s time to get Hadoop and Spring XD to talk to each other.

Confi guring Spring XD

Until now, the streams that were created directed their output sinks to a fi le or 

logged on to the console. Within Spring XD there is an option to output directly 

to HDFS. You’re running Apache Hadoop 1.2.1, so there is nothing to change in 

the confi guration because this is what Spring XD defaults to.

Previously, you’ve created Twitter streams that were piped through a cus-

tomer processor to extract the date and content of the tweet. Here’s a reminder 

from the XD shell:

xd:>stream create --name fashiontweets --definition "twitterstream 
--track='#fashion' | twitterstreamtransformer | file"

To confi gure to use HDFS as the output sink, you need to stop that stream 

and create a new one. Before you do anything, you fi rst need to tell Spring XD 

about your Hadoop NameNode:

xd:>hadoop config fs --namenode hdfs://localhost:9000

Make sure your Hadoop single-node cluster is running, then you can create 

a new stream.

xd:>stream create --name fashiontweets --definition "twitterstream 
--track='#fashion' | twitterstreamtransformer | hdfs"

From the operating system command line, you can see the output now being 

stored within HDFS. Using the hadoop command you can list the data:

hadoop fs --ls /xd/fashiontweets

You see the output listed within HDFS:

jason@bigdatagames:~$ hadoop fs  --ls /xd/fashiontweets
Found 2 items
-rw-r--r--   3 jason supergroup      22753 2014-01-19 20:07 /xd/
fashiontweets/fashiontweets-0.log

If Spring XD is writing to the fi le while you are inspecting it, then the fi le 

has .tmp on the end of it. You’re not limited to one fi le being dumped within 

HDFS. With the –rollover fl ag, you can control how big the fi le can be before 

a new one is created.

xd:>stream create --name fashiontweets –definition  "twitterstream 
--track='#fashion' | twitterstreamtransformer | hdfs -–rollover=64M"
stream create --name fashiontweets --definition "twitterstream 
--track='#fashion' | twitterstreamtransformer | hdfs --rollover=64M"
18:46:26,272  WARN Spring Shell client.RestTemplate:566 - POST request 
for "http://localhost:9393/streams" resulted in 500 (Internal Server 

hdfs://localhost:9000
http://localhost:9393/streams
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Error); invoking error handler
Command failed org.springframework.xd.rest.client.impl.
SpringXDException: error occurred in message handler [moduleDeployer]

This would create a new text fi le when the current output fi le is 64 mega-

bytes in size. You can still use the taps functions to write raw data to the fi le 

system as you want, but the data for analysis—the hashtag content—now goes 

to HDFS. With Spring XD confi gured you can run your Hadoop MapReduce 

job properly.

Testing on Streaming Data

With your MapReduce job ready and Spring XD now sending streaming Twitter 

data directly to HDFS, you can perform some mining of hashtags. 

Find the directory where your exported jar fi le is and run the following 

hadoop command:

hadoop jar hashtagmining.jar HashtagJob /xd/fashiontweets /fashionoutput 

Hadoop processes the data within HDFS in the same way it did in the local 

test. The output is still held within HDFS, so you need to merge it and save it 

to the local fi le system.

hadoop fs -getmerge /fashionoutput fashionoutput.txt 

As you inspect the output on the local fi le system, you can see the most 

popular hashtags at the moment:

jason@bigdatagames:~$ sort -k2nr fashionoutput.txt | head -n20
#fashion    145
#style    35
#deal    31
#love    8
#skirt    8
#jewelry    6
#me    5
#pencil    5
#vintage    5
#cool    4
#dress    4
#earrings    4
#model    4
#outfit    4
#smile    4
#swag    4
#80s    3
#accessories    3
#black    3
#fashionable    3
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Although you can easily discard the #fashion hashtag, as you know that’s 

going to be the most popular, there are some interesting tags of note. It seems that 

skirts, jewelry, and vintage are all talking points on this day. If you were analyz-

ing this data for an e-commerce site, you could have some routines to respond 

to the originators of the tweets to show them sites of special offers and so forth. 

MapReduce Conclusions

This walkthrough gives you the basic grounding of creating your own MapReduce 

functions to work with Hadoop. Along with the Spring XD framework, these are 

the basic components of a system that enable you to monitor Twitter data and 

get trends on the incoming data. There are other aspects of the data you could 

mine along with measuring sentiment, fi nding the most mentioned users, and 

fi nding out who’s tweeting the most about a specifi c hashtag. Using the data 

coming out of Spring XD, with modifi cations to MapReduce fi les you have the 

basis for a good Twitter monitoring system.

Performing ETL on Existing Data

The last exercise was about collating information and processing it in a prompt, 

distributed manner. The Hadoop routines you wrote could have been run every 

ten minutes, hour, day, week, and so on. This tackles only the problem of data 

hosed out of specifi c application programming interfaces (APIs)—in our case 

the Twitter streaming API—and dealing with the data in real time or batching 

up and processing when required.

Companies are sitting on silos of existing data. It might be customer data, sales 

data, or even point-of-sale data that might be able to give some extra insight to 

customer behavior patterns. The emphasis isn’t on creating new data; it’s about 

making sense with the existing sets.

Historical data might be held in a number of different formats: text, spread-

sheet, or relational database. With text, it’s a case of copying it to HDFS and then 

doing the work on it with the required MapReduce classes. When you have data 

to extract from a database, then things become a little more involved. 

The Sqoop project was designed to manage the bulk movement of data from 

relational databases to Hadoop. Any database server that has a JDBC driver 

associated with it can be used. 

In times gone by, business intelligence specialists would talk about extract, 

transform, and load (ETL). Sqoop does the same thing for our relational data 

by extracting it from the database table, transforming it to a comma-separated 

fi le and loading it in the Hadoop’s HDFS. Additionally, Sqoop also creates a 

template Java fi le of the imported data for use within MapReduce, which reduces 

the development time required to work with the newly acquired data.
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Installing Sqoop

To install Sqoop, you need a Hadoop distribution to be available on the same machine, 

because Sqoop uses Hadoop’s MapReduce functions to extract the data. The Hadoop 

distribution you are using determines which Sqoop version you need to download. 

Sqoop1 is used for the Hadoop MR1 engine, and Sqoop2 for the MR2 engine.

You can download Sqoop (I’m using 1.4.4 for use with the Hadoop 1.2.1 ver-

sion) from the Apache download site at www.apache.org/dyn/closer.cgi/

sqoop/1.4.4.

Extract the tarred fi le to a directory and export the PATH variable to include 

Sqoop’s bin directory. You also need to tell Sqoop where your Hadoop instal-

lation is. With the following three lines from the command line, everything 

should be set up and ready to use:

export PATH=$PATH:/usr/local/sqoop/bin
export HADOOP_COMMON_HOME=/usr/local/hadoop
export HADOOP_MAPRED_HOME=/usr/local/hadoop

You can now run Sqoop to make sure that everything is set up okay. You 

should see output similar to the following:

jason@bigdatagames:/usr/local/hadoop$ sqoop version
Warning: /usr/lib/hbase does not exist! HBase imports will fail.
Please set $HBASE_HOME to the root of your HBase installation.
Warning: /usr/lib/hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: $HADOOP_HOME is deprecated.

Sqoop 1.4.4
git commit id 050a2015514533bc25f3134a33401470ee9353ad
Compiled by vasanthkumar on Mon Jul 22 20:01:26 IST 2013
jason@bigdatagames:/usr/local/hadoop$

N O T E  Don’t worry about the warnings, because they’re related to HBase and 

HCatalog, and you’re not using those.

Installing the JDBC Driver

Sqoop requires a copy of the JDBC driver to be in the lib directory so it can 

interact with your database. For this walkthrough, I’m using MySQL as the data-

base and the Connector/J JDBC driver, which is available from www.mysql.com/.

Basic Sqoop Usage

Sqoop is run from the command line, and with a number of fl ags you can start 

to extract data. Let’s assume you have a MySQL database called “mydb” and 

http://www.apache.org/dyn/closer.cgi
http://www.mysql.com
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within a table called “mytable,” to extract an entire table from the database you 

would run the command:

sqoop import --connect jdbc:mysql://localhost/mydb --username myuser 
--table mytable

As you can see, Sqoop makes a connection to the database using the standard 

JDBC connection string like it would if it were connecting within Java code. 

Sqoop lets you save the command-line options into a fi le where each line in 

the fi le is a separate command-line option.

import
--connect
jdbc:mysql://localhost/mydb
--username 
myuser

This is saved as a text fi le, and then it’s passed to the Sqoop from the com-

mand line with the –options-file fl ag:

sqoop import –options-file /home/jason/options.txt

If you are repeatedly using Sqoop commands with a set of common options, 

then it makes sense to keep all the options in a text fi le. You can use your favorite 

text editor instead of the command-line editor to make tweaks and changes. 

If you apply this technique, consider adding a shell function or alias in your 

shell’s startup confi guration (for example, ~/.bashrc).

.alias sq='sqoop import –options-file /home/Jason/options.txt'

Handling Database Passwords

The majority of the time the database tables are protected. There are two methods 

to use a password with Sqoop. The fi rst method is just to include the password 

in plain text in the command line:

sqoop import –connect jdbc:mysql://localhost/mydb –username myuser –
password mypass –table mytable

As you can imagine, this is not an ideal solution, as you are showing the 

plain password to anyone who happens to be passing your terminal, anyone 

who happens to look at what is running on the system, or even someone who 

looks back at what was run on the system in the past. It’s a very big security risk.

The more sensible and preferred approach is to hide the password in a fi le 

and reference the fi le with Sqoop:

echo [your password] > ~/.password
chmod 400 .password

Now when you run Sqoop you can add the password fi le to the command-

line arguments:

mysql://localhost/mydb
mysql://localhost/mydb
mysql://localhost/mydb
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sqoop import --connect jdbc:mysql://localhost/mydb --username myuser 
--password-file /home/Jason/.password –table mytable

The job confi guration now has no direct access to the password. It also means 

that if another user peeks into the process table (for example, runs the command 

to show running processes [ps] in UNIX) that person does not see the password 

referenced in the process list.

Product Recommendation with Mahout

To show you Sqoop in action, you’re going to create an e-commerce recommen-

dation system. You’ll use Hadoop and the Mahout machine learning libraries 

as well.

The source code and the database import fi les are on the Github repository 

that accompanies this book. You can download the full code from http://www

.wiley.com/go/machinelearning.

N O T E  There are many e-commerce websites available today, and they sell pretty 

much everything. When the topic of product recommendation comes up, the main 

business many people talk about is Amazon.com, because that company really got to 

grips with mining the data early on. Making recommendations based on what shop-

pers have previously purchased and just viewed is a powerful seller’s tool in the right 

hands. Harnessing this data is now critical to the success of all retail merchants. The 

ability to push a product in front of customers with a degree of targeting increases the 

top line (sales) of any company. 

So What’s in a Recommendation?

Consider what a recommendation is for a second. Imagine an online store 

with many product items and many customers. Now offer each customer 

the honor of rating an item from 1 (worst) to 5 (best). The database table is 

very simple.

 ■ User ID

 ■ Stock ID

 ■ A rating

 ■ A timestamp

Over time, you collect many user ratings in that table and periodically mine 

them to give users recommendations on products rated by other users. It doesn’t 

matter what type of items or the background of the users (age range, income 

bracket, and so on); all that matters is who rated what.

mysql://localhost/mydb
http://www


 Chapter 10 ■ Machine Learning as a Batch Process 251

c10.indd 10:1:59:AM  10/06/2014 Page 251

Using Mahout’s similarity co-occurrence algorithm, similar items that users 

have rated can be recommended to users who viewed or purchased the other 

items. 

Bill gives King Crimson’s album Discipline fi ve stars.

Sid gives King Crimson’s album Discipline fi ve stars.

Sid gives King Crimson’s album Beat fi ve stars. 

Then we can recommend Beat to Bill, as both Sid and Bill gave Discipline a 

good rating. Now, at scale you might have thousands of albums for sale, tens of 

thousands of customers, and millions of ratings. The more data you have, the 

better the mining and recommending that can be done. Too few ratings, and 

you won’t have enough data to do decent calculations.

I know what you’re thinking: “This sounds like a lot of programming.”

The reality is that all this correlation is already in place with Mahout’s API, 

so the only real programming involved it is to interpret the output of the rec-

ommendations for each user.

Although I’m using Java, it would be easy to put this together in PHP, Python, 

or Ruby.

Setting Up the Database

I’m going to use MySQL as my database of choice. From the command line, I’m 

going to create the database:

mysqladmin –u root create mahoutratings

The next thing to do is create two tables: one for the stock items and another 

for the user ratings. The easiest way is to copy the following SQL code and save 

it to a text fi le called stockitems.sql:

create table stockitems (
    id int(11) not null primary key auto_increment,
    albumartist varchar(200) not null default "",
    albumname varchar(200) not null default ""
);

Next, create a text fi le for the user ratings table and call it userratings.sql:

create table userratings (
    userid int(11) not null default -1,
    stockid int(11) not null default -1,
    rating int(4) not null default 3,
    created_at int(11) not null default -1
);

With these two text fi les, you can now create the tables in MySQL from the 

command line:
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mysql –u root mahoutratings < stockitems.sql
mysql –u root mahoutratings < userratings.sql

That’s the bare database. Now, you need to add some data before you do any 

analysis on it.

Importing the Initial Data

I’ve created the basic data for you; this saves writing programs to create random 

data and so on. From the command line, you run the two commands into MySQL:

mysql –u root mahoutratings < stockdata.sql
mysql –u root mahoutratings < ratingsdata.sql

To make sure that all went well with the import, use the MySQL client to 

confi rm:

mysql –u root mahoutratings

Then, from the MySQL client command line, type the following commands:

mysql>select count(*) from stockitems;
mysql>select count(*) from userratings;

If the tables are empty, then make sure that you typed the import commands 

correctly and try again.

Installing the Mahout Libraries

The Mahout libraries are extra to the Hadoop distribution, so they need to be 

downloaded and installed before you start. You can download the Mahout 

binary package from www.apache.org/dyn/closer.cgi/mahout/.

To install it, either untar or unzip the fi le to a directory. Keep a note of the direc-

tory because you’ll need it for fi nding the core jar fi les. The routines you’re going 

to use are working in conjunction with Hadoop, so please make sure you have 

HDFS working and the Hadoop processes running before you start mining the 

data. If you need a reminder on how to set up your single-node Hadoop cluster 

then look at the "Setting Up a Single Node Cluster" section earlier in this chapter.

Extracting Data with Sqoop

The plan of execution is simple. Extract the data from the database and then 

copy to HDFS. Have Mahout run its recommender job on the data. This gener-

ates the results with recommendations for each user.

Last, you create a small Java program to read the results and show the actual 

stock items recommended for a specifi c user ID.

http://www.apache.org/dyn/closer.cgi/mahout
http://www.apache.org/dyn/closer.cgi/mahout
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From Sqoop, you can pull the entire contents of the userratings table out 

in one line:

sqoop -–connect jdbc:mysql://localhost/mahoutratings -–username root -–
table userratings

Sqoop extracts the table contents and writes them as a CSV fi le. Now, you 

need to copy that into HDFS so Hadoop and Mahout can do their work on it. 

It’s also worthwhile to rename the output fi le that Sqoop created so you know 

exactly what it is: 

mv part-00000 userratings.csv

Then copy that to HDFS:

hadoop fs –put userratings.csv userratings.csv

With the data in HDFS, you can perform the Hadoop job on the data and let 

it generate the recommendations.

Running Hadoop

When you installed the Mahout libraries, I said to keep a note of the installa-

tion directory. Now, you’re going to use it with the Hadoop command to do the 

recommendation processing.

To set everything going, run the following command (all in one line):

hadoop jar [path to mahout]/ mahout-core-0.8-job.jar org.apache.mahout.
cf.taste.hadoop.item.RecommenderJob –s SIMILARITY_COOCCURRENCE –input 
userratings.csv --output recommendationoutput

Mahout runs a series of MapReduce jobs to complete the recommendations. 

It can take some time to complete. Obviously this is not something you’d really 

want to do in real time, but it’s a perfect use of batch processing.

Inspecting the Results

When the job is complete, you can get the results from HDFS and inspect them:

hadoop fs –getmerge recommendationoutput recommendations.txt

Looking at recommendations.txt you see the customer ID and then a set of 

numbers. These numbers are the stock item IDs that Mahout has recommended 

for that customer based on the other user ratings made. 

To make sense of the results, I’ve quickly coded up a Java program that reads 

in a customer ID and extracts the recommendations:

mysql://localhost/mahoutratings
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package chapter10;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.HashMap;
import java.util.Map;

public class ShowRecommendations {
    static {
        try {
            Class.forName("com.mysql.jdbc.Driver");
        } catch (ClassNotFoundException e) {
            e.printStackTrace();
        }
    }

    private Map<Integer, String> recommendations = new HashMap<Integer, 
String>();

    public ShowRecommendations(int customerid) {
        initMap(); // load the recommendations in to the hash map
        try {
            String rec = recommendations.get(new Integer(customerid));
            String output = generateRecommendation(rec);
            System.out.println("Customer: " + customerid + "\n" + 
output);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    private String generateRecommendation(String input) throws 
SQLException {
        StringBuilder sb = new StringBuilder();
        System.out.println("Working on " + input);
        String tempstring = input.substring(1,input.length()-1);
        String[] products = tempstring.split(",");
        System.out.println("products = " + products.length);
        Connection con = DriverManager.getConnection(
                "jdbc:mysql://localhost/mahoutratings", "root", "");
        PreparedStatement pstmt = con
                .prepareStatement("SELECT albumname, albumartist FROM 
stockitems WHERE id=?");
        ResultSet rs = null;
        for (int i = 0; i < products.length; i++) {
            String[] itemSplit = products[i].split(":");

mysql://localhost/mahoutratings
mysql://localhost/mahoutratings
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            pstmt.setInt(1, Integer.parseInt(itemSplit[0]));
            rs = pstmt.executeQuery();
            if (rs.next()) {
                sb.append("Album: " + rs.getString("albumname") + " by "
                        + rs.getString("albumartist") + " rating: "
                        + itemSplit[1] + "\n");
            }
        }

        rs.close();
        pstmt.close();
        con.close();

        return sb.toString();
    }

    private void initMap() {
        try {
            BufferedReader in = new BufferedReader(new FileReader(
                    "/Users/Jason/mahouttest.txt"));
            String str;
            while ((str = in.readLine()) != null) {
                String[] split = str.split("[ ]+");
                System.out.println("adding: " + split[0] + "=" + 
split[1]);
                recommendations.put(Integer.parseInt(split[0]), 
split[1]);
            }
            in.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    public static void main(String[] args) {
        if (args.length < 1) {
            System.out.println("Usage: ShowRecommendations 
[customerid]");
        } else {
            ShowRecommendations sr = new ShowRecommendations(Integer.
parseInt(args[0]));
        }
    }

}

A quick test on customer ID 9 returns the following output:

Customer: 9
Album: AlbumName_739 by AlbumArtist_739 rating: 5.0
Album: AlbumName_550 by AlbumArtist_550 rating: 5.0
Album: AlbumName_546 by AlbumArtist_546 rating: 5.0
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Album: AlbumName_11 by AlbumArtist_11 rating: 5.0
Album: AlbumName_527 by AlbumArtist_527 rating: 5.0
Album: AlbumName_523 by AlbumArtist_523 rating: 5.0
Album: AlbumName_514 by AlbumArtist_514 rating: 5.0
Album: AlbumName_511 by AlbumArtist_511 rating: 5.0
Album: AlbumName_508 by AlbumArtist_508 rating: 5.0
Album: AlbumName_498 by AlbumArtist_498 rating: 5.0

The code could easily be modifi ed to store the recommendations back to the 

database table, so it could be easily used in the e-commerce code for a website. 

Extending This Project Further

There’s plenty of scope for this project to be used in a real-world situation. The 

more data you generate, the better the recommendations you can give. Although 

you could perform the Mahout functions via code within a program, I prefer 

to use them away from the web application. This choice is more about personal 

preference than anything else, but I have some good reasons. I don’t want the 

database or the web application to be slowed down by heavy memory process-

ing. As you’ve probably gathered, I prefer a more batch-oriented approach by 

extracting the data from the database, running the recommendation algorithm, 

and then sending it back to the database for the web application to access.

To run this routine periodically, set up a UNIX cron job (setting up a cron 

job is covered in the section “Scheduling Batch Jobs” at the end of this chapter). 

Depending on the volume of ratings you get, this could be run once an hour, 

twice a day, or once a day. There’s nothing wrong with trying a few variations 

of time difference to fi nd out which works best for you.

Mahout Conclusions

The Mahout tutorial gave you a robust recommendation engine without the need 

for programming. Using Sqoop to extract data from a database and then using 

Hadoop to perform the Mahout processing in parallel gave you good recommen-

dations on a large amount of data in a short space of time. The Mahout libraries 

give a lot of options of memory caching to improve processing performance, 

but it’s still worth taking the processing away from the main application and 

performing it in batches.

Mining Sales Data

For all the Big Data problems in the world, there’s a large lean toward the social 

media side of things. It’s mostly text and can be mined with relative ease. Back 

in the real world where commerce is based on numbers, hashtag counts might 
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not be the most important thing on a CEO’s mind. Finding out which customers 

are worth retaining, however, probably is. 

This walkthrough looks at developing some code to perform calculations 

and then moves the code into Hadoop. Finally, you move the data through Pig, 

which is a MapReduce scripting-like language. You can download the code and 

the data from http://www.wiley.com/go/machinelearning.

Welcome to My Coff ee Shop!

To be fair, it’s an odd coffee shop because it sells only one sort of coffee: lattes. 

It’s been open for just more than a year, and I have a good set of data for my 

20,000 customers (it’s a large coffee shop). Okay, I don’t have a coffee shop, but 

you can use your imagination for this exercise.

The data is made up of a customer ID and the sales for 13 months. Here’s 

what the data looks like for the fi rst ten customers:

1,3,11,6,10,7,10,12,9,7,6,10,14,5
2,1,13,10,0,5,12,1,13,1,3,7,5,14
3,14,2,3,8,10,12,13,6,13,2,1,7,2
4,14,1,11,14,11,1,12,10,0,1,14,5,9
5,1,3,11,14,3,8,10,9,7,3,0,5,6
6,3,3,1,14,5,0,4,8,9,11,8,0,5
7,8,1,11,8,13,2,13,4,6,2,7,14,14
8,13,6,8,12,8,10,14,0,13,6,14,2,9
9,11,1,13,0,11,13,6,3,10,8,8,5,1
10,1,10,2,0,5,0,4,12,12,10,6,6,9

It’s a standard CSV fi le full of integers. I’ve been neat in my data collection over 

time. What I want to do now is answer some questions that have been on my mind. 

 ■ How many lattes do my customers purchase?

 ■ What is the sales drop for each customer?

 ■ What is the duration of the sales drop?

Armed with these stakeholder questions, you can put some actions into place. 

Fortunately, these questions are simple to answer with a little bit of simple math:

 ■ How many lattes do my customers purchase?

Calculate the mean sales on months 1-12.

 ■ What is the sales drop for each customer?

Subtract the month 13 sales from the mean.

 ■ What is the duration of the sales drop?

Calculate the number of months in which sales were below 40 percent 
of the mean.

http://www.wiley.com/go/machinelearning
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If you had a handful of customers, you could do this with a calculator or 

spreadsheet. Even with 20,000 customers, a spreadsheet would do the job fi ne. 

If my coffee shop goes worldwide and scales up to 20 million customers, then 

I’d have a job on my hands, and that’s where these tools become useful.

Going Small Scale

You need to start small and develop some code that answers the questions 

posed without processing all the data. Create a small training and testing data 

set using the UNIX head command:

head –n20 salesdata.csv > training.csv

With small sets of data, you can write the core of your logic, test it, and then 

port it to a Hadoop MapReduce job later. 

Writing the Core Methods

In the stakeholder list of requirements, there are three methods you need to 

code up. Add a fi le reader to pull the CSV fi le in and loop through each cus-

tomer record:

package chapter10;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;

public class CoreMethods {

    public CoreMethods() {
        try {
            BufferedReader in = new BufferedReader(new FileReader(
                    tmpdata.csv"));
            String str;
            while ((str = in.readLine()) != null) {
                String[] split = str.split(",");
                double[] values = new double[12];
                // 0 = userid
                // 1 - 13 = months sales. Jan - Jan, Mar - Mar etc
                for (int i = 1; i <= 12; i++) {
                    values[i-1] = Double.parseDouble(split[i]);
                }
                
                double mean = getMean(values);
                System.out.println("User id: " + split[0]);
                System.out.println("\tMean: " + mean);
                System.out.println("\tMonth 13 Sales Drop = " + 
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calcSalesDrop(Double.parseDouble(split[13]), mean));
                System.out.println("\tMonths 40% below mean: " + 
monthsBelow(values, mean));
            }
            in.close();
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
    
    private int calcSalesDrop(double lastMonth, double mean) {
        return (int)(lastMonth - mean) < 0 ? 0 : (int)(lastMonth - 
mean); 
    }
    
    private int monthsBelow(double[] data, double mean) {
        int count = 0;
        for(double a : data) {
            if((a < (mean * 0.40))) count++;
        }
        return count;
    }
    
    private double getMean(double[] data) {
        double sum = 0.0;
        for(double a : data) {
            sum += a;
        }
        return sum/data.length;
    }
    
    public static void main(String[] args) {
        CoreMethods coreMethods = new CoreMethods();
    }
}

As you can see, there are three private methods. The getMean() method takes 

the array of the sales data from month 1 to 12. The calcSalesDrop() method 

takes the value of the last month of sales (month 13) and subtracts the mean. If 

it’s a negative number, then it just returns zero. Last, the monthsBelow() method 

iterates through each of the 12 months, and anything below 40 percent of the 

mean is added to the count variable.

Programmatically the methods are simple math functions, but they serve 

their purposes perfectly.

Running the program with the test data, you get the following output: 

User id: 1
    Mean: 8.75
    Month 13 Sales Drop = 0
    Months 40% below mean: 1
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User id: 2
    Mean: 5.916666666666667
    Month 13 Sales Drop = 8
    Months 40% below mean: 4
User id: 3
    Mean: 7.583333333333333
    Month 13 Sales Drop = 0
    Months 40% below mean: 4
User id: 4
    Mean: 7.833333333333333
    Month 13 Sales Drop = 1
    Months 40% below mean: 4
User id: 5
    Mean: 6.166666666666667
    Month 13 Sales Drop = 0
    Months 40% below mean: 2
User id: 6
    Mean: 5.5
    Month 13 Sales Drop = 0
    Months 40% below mean: 3

If this were a small coffee shop with a few hundred customers, then that would 

do fi ne. No need to complicate matters with Hadoop clusters or anything like 

that—it’s computing power you just don’t need. On the chance that the coffee 

shop acquires a global chain of shops and the customer count increases to mil-

lions of customers, then you have to start looking at alternatives. 

The next section looks at scaling it up using the Hadoop framework.

Using Hadoop and MapReduce

You can reuse the core methods you created in the last program within the 

Hadoop framework. In terms of modifi cation, it’s a case of adding those three 

methods to within the map phase of the MapReduce job. The main difference 

between this code and the MapReduce job you created for the hashtag mining 

is that you don’t require a reducer.

In this instance, the mapper is going to work through each line of the sales 

data and output the results. The job confi guration does not have any reducers 

set, so the output is the same number of records that goes in.

This time around, you add the job confi guration in the same Java class as the 

mapper, just to keep everything together. 

package chapter10;

import java.io.IOException;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
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import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;

public class CoreMethodsMapper {

    public static class Map extends MapReduceBase implements
            Mapper<LongWritable, Text, Text, Text> {
        private Text userid = new Text();
        private Text userinfo = new Text();

        public void map(LongWritable key, Text value,
                OutputCollector<Text, Text> output, Reporter reporter)
                throws IOException {
            String[] split = value.toString().split(",");
            double[] datavalues = new double[12];

            for (int i = 1; i <= 12; i++) {
                datavalues[i - 1] = Double.parseDouble(split[i]);
            }

            double mean = getMean(datavalues);

            StringBuilder sb = new StringBuilder()
                    .append(mean + "\t")
                    .append(calcSalesDrop(Double.parseDouble(split[13]), 
mean)
                            + "\t").append(monthsBelow(datavalues, 
mean));

            userid.set(split[0]); // define our output key, the user id
            userinfo.set(sb.toString()); // define the output data

            output.collect(userid, userinfo);
        }

        private int calcSalesDrop(double lastMonth, double mean) {
            return (int) (lastMonth - mean) < 0 ? 0 : (int) (lastMonth - 
mean);
        }

        private int monthsBelow(double[] data, double mean) {
            int count = 0;
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            for (double a : data) {
                if ((a < (mean * 0.40)))
                    count++;
            }
            return count;
        }

        private double getMean(double[] data) {
            double sum = 0.0;
            for (double a : data) {
                sum += a;
            }
            return sum / data.length;
        }

    }
    
    public static void main(String args[]) throws IOException {
        JobConf conf = new JobConf(CoreMethodsMapper.class);
        conf.setJobName("CoreMethods Sales Data");
        conf.setNumReduceTasks(0); // no reducers!
        
        conf.setOutputKeyClass(Text.class);
        conf.setOutputValueClass(Text.class);
        
        conf.setMapperClass(Map.class); // the map class within this 
code
        
        conf.setInputFormat(TextInputFormat.class);
        conf.setOutputFormat(TextOutputFormat.class);
        
        FileInputFormat.setInputPaths(conf, new Path(args[0]));
        FileOutputFormat.setOutputPath(conf, new Path(args[1]));
        
        JobClient.runJob(conf);
        
    }
}

The main method contains the job confi guration; notice that there’s a method 

called setNumReduceTasks() and it’s set to zero. You’re telling Hadoop not to 

perform any reducers and just write out what the mapper is sending. 

Copy the entire 20,000-record sales data set into the input directory. 

To run the job, you have to export the jar fi le with the class fi le inside and 

use Hadoop to run it. (If you need a reminder on how to create the jar fi les and 

run them with Hadoop, there are examples earlier in this chapter.) 

hadoop jar coremethodstest.jar chapter10.CoreMethodsMapper input output
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The output is sent to the output folder, and within the part-00000 fi le you see 

all the records in order with their mean, sales drop, and months below average:

head -n 20 output/part-00000 
1    8.75    0    1
2    5.916666666666667    8    4
3    7.583333333333333    0    4
4    7.833333333333333    1    4
5    6.166666666666667    0    2
6    5.5    0    3
7    7.416666666666667    6    3
8    8.833333333333334    0    2
9    7.416666666666667    0    2
10    5.666666666666667    3    4
11    7.75    0    3
12    6.75    6    2
13    7.333333333333333    0    1
14    8.666666666666666    0    1
15    7.833333333333333    0    3
16    5.583333333333333    0    1
17    8.0    0    2
18    7.0    0    2
19    7.333333333333333    0    1
20    8.416666666666666    0    1

The output is tab delimited, so you can easily import it into a database or a 

spreadsheet if you need to. 

Hadoop can be used for many applications, and, although the main emphasis 

is on the MapReduce programming model, sometimes there’s no need for the 

reducer. The mapper acts as a very handy parallel work distributor. 

One of the issues with the Hadoop framework is that there’s programming 

knowledge required to construct the mapper and reducer code. So, what hap-

pens if there aren’t any programmers in your organization that would perhaps 

struggle with crafting a MapReduce program? Then you need to think about a 

way of scripting a MapReduce job in a more abstract way that does not require 

deep programming skill.

Using Pig to Mine Sales Data

Coding MapReduce jobs can be a bit of a chore, as there’s a lot of coding that 

goes into a basic MapReduce job. It is worth noting that you’re not limited 

to using Java to create the jobs; with the Hadoop streaming facility you can 

use languages such as Ruby, Python, and R for processing the data. All those 

languages require good scripters or programmers to code solutions. With Pig, 

though, you can produce MapReduce models with a basic scripting language 

that looks very much like SQL.
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Why the name Pig? It’s derived from the Pig Latin language. Pig abstracts 

the MapReduce model and converts it into a higher-level language that’s a lot 

easier to understand. I must stress, though, that Pig is not SQL; it just looks a 

bit like it.

Installing Pig

The Pig downloads are available from www.apache.org/dyn/closer.cgi/pig. 

After you have downloaded a release, you need to unzip and then untar it to 

your chosen directory. 

For these examples, I use Pig in local mode (on a single machine with no 

parallel processing) and later use the batch mode where I save Pig scripts in 

their own fi les. You can use Pig in MapReduce mode and that uses the Hadoop 

cluster to connect and access the HDFS fi le system. 

Starting the Pig Console

To start the console in local mode, you run the following from the command line:

pig –x local

After it’s loaded, you see Pig’s command prompt, grunt>, and you’re ready 

to get started. 

Before you can do anything, you need to load some data. Use the sales data 

that you’ve previously been working on.

Loading Data into Pig

The LOAD command reads in the data. In its most basic form it is a very greedy 

command:

grunt> SD = LOAD 'salesdata.csv ' USING PigStorage(' ,');

This loads the sales data into a Pig variable called SD (that’s the name I gave 

it and not a Pig-defi ned one). The PigStorage function is a storage type that 

Pig uses as a loading and storing utility. It acts as a parser to the input records. 

We’re supplying the PigStorage with the comma to parse on.

To make sure the data has loaded into Pig, you can run the DUMP command 

to see what the input looks like.

grunt> DUMP SD;

You see the output sent to the console; here are the last few lines of the sales 

data:

(19985,3,5,1,13,13,8,6,14,4,9,7,2,6)
(19986,2,9,3,13,5,1,12,7,12,0,12,7,12)

http://www.apache.org/dyn/closer.cgi/pig
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(19987,7,11,11,6,13,3,2,5,6,11,4,7,9)
(19988,6,4,2,7,13,3,7,11,13,2,11,12,12)
(19989,12,0,3,0,14,7,0,5,6,8,9,1,5)
(19990,6,2,10,9,1,12,9,8,10,2,2,8,8)
(19991,2,11,14,4,14,10,10,8,13,8,1,9,1)
(19992,9,12,1,14,12,3,0,7,12,2,0,5,13)
(19993,1,2,13,8,6,9,10,14,9,2,2,14,2)
(19994,9,4,4,2,11,9,10,4,2,3,13,9,0)
(19995,5,2,1,1,14,4,9,12,4,13,6,7,14)
(19996,3,6,6,13,8,1,14,10,5,0,7,9,14)
(19997,4,8,13,3,14,11,4,2,11,12,13,8,1)
(19998,8,10,5,8,12,9,7,8,14,8,14,7,12)
(19999,10,13,14,4,10,14,2,9,11,14,9,14,8)
(20000,2,4,7,2,9,10,8,13,7,1,5,9,3)

Notice how you’ve not told Pig what the schema is; it’s just assuming that 

there’s something there, regardless of whether it’s numbers or text. Pig is very 

greedy on these terms; it guesses its way around and basically consumes any 

data that’s loaded in. To defi ne what data the PigStorage is to expect, you can 

defi ne a schema:

grunt> SD = LOAD 'salesdata.csv' USING PigStorage(',') AS (custid:int, 
m1:int, m2:int, m3:int, m4:int, m5:int, m6:int, m7:int, m8:int, m9:int, 
m10:int, m11:int, m12:int, m13:int);

All the values are integers and the schema is basic; it’s a customer ID and 

then the values for the 13 months of sales. There are identifi ers for the values 

too: custid, m1, m2, and so on. If relation names are not defi ned then you can 

reference by position using the dollar sign: $0, $1, $2, and so on.

When a schema is presented in the LOAD statement, then Pig tries to conform 

the best it can. If it comes across data that doesn’t match the schema, it either 

returns a null value or throws an error.

Data Types in Pig

For now you’re using integer data types, but the other data types that Pig sup-

ports are listed in Tables 10-1 and 10-2 for reference. Further in the walkthrough, 

I bring in more data types when I cover joining tables of data together. 

If a schema is not present, then Pig defaults to the type bytearray and attempts 

to convert the data, depending on the context in which you are using that data. 
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Table 10-1: Simple Data Types

DATA TYPE DESCRIPTION

chararray A character array string formatted in Unicode UTF-8

bytearray Byte array (blob)

int Signed 32-bit integer

long Signed 64-bit integer

float 32-bit fl oating point

double 64-bit fl oating point

Table 10-2: Complex Data Types

DATA TYPE DESCRIPTION

tuple An ordered set of fi elds. 

Example: (1,2,8,2,3,0) 

bag A collection of tuples.

Example: {(1,2),(4,2),(9,8)}

map A set of key value pairs.

Example: [mykey#myvalue]

Running the Sales Data as a Pig Script

With a bit of Pig theory under your belt, you can concentrate on the sales data 

again. Up to now you’ve done the major processing of any data in Java either as 

a plain program or using the Hadoop framework to run MapReduce on larger 

volumes. Quickly review what you need to do with the data:

 ■ How many lattes do my customers purchase?

Calculate the mean sales on months 1-12.

 ■ What is the sales drop for each customer?

Subtract the month 13 sales from the mean.

 ■ What is the duration of the sales drop?

Calculate the number of months in which sales were below 40 percent 
of the mean.

It’s easier to create scripts in a text editor and run from the command line. 

If you’re still within the Pig shell, then exit using the quit command and you 

return to the command prompt.

Open your text editor of choice. Call the fi le salesdata.pig; it will contain 

your script. The fi rst two items on the list are straightforward and the last 

requires some thought. 
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SD = LOAD 'salesdata.csv' USING PigStorage(',') AS (custid:int, m1:int, 
m2:int, m3:int, m4:int, m5:int, m6:int, m7:int, m8:int, m9:int, m10:int, 
m11:int, m12:int, m13:int);

AVGDATA =  FOREACH SD GENERATE custid,
           AVG({m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12}),
           AVG({m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12})-m13;
 
DUMP AVGDATA; 

The script is basic, but as a fi rst pass it already fulfi lls the fi rst type require-

ments. On the fi rst line, you import the data using a set schema with the customer 

ID and then the months. The imported data is saved in a variable called SD. 

You create a new variable called AVGDATA by iterating through each line of 

SD and storing the customer ID and the average of months 1 through 12 sales, 

and then calculating the sales drop. Last, you output the new calculations to 

the console.

Save the script in your text editor and exit. Make sure that the data is in the 

same directory as the Pig script and run the following command:

pig –x local salesdata.pig

You see Pig start processing the script and the data. If all is well, you see all 

20,000 records output to the console with the customer ID, average sales, and 

the sales drop. 

(19989,5.416666666666667,0.41666666666666696)
(19990,6.583333333333333,-1.416666666666667)
(19991,8.666666666666666,7.666666666666666)
(19992,6.416666666666667,-6.583333333333333)
(19993,7.5,5.5)
(19994,6.666666666666667,6.666666666666667)
(19995,6.5,-7.5)
(19996,6.833333333333333,-7.166666666666667)
(19997,8.583333333333334,7.583333333333334)
(19998,9.166666666666666,-2.833333333333334)
(19999,10.333333333333334,2.333333333333334)
(20000,6.416666666666667,3.416666666666667)

The data is stored as tuples. You can see the parenthesis in the output data. 

Note, this is just output to the console and hasn’t been stored. I cover that in a 

moment. There’s still one requirement left to fi x.

I’m creating a custom function to calculate the months below the average sales. 

Pig lets you create user-defi ned functions (UDF) in Java (and other scripting 

languages), so the more complex evaluations can be crafted to your requirements. 

Look at the Java class that will do the work. I’m going to reuse some of the 

methods in the core and Hadoop jobs that I created earlier to calculate the mean 

and fi gure out how many months’ sales were below the mean. 

import java.io.IOException;
import org.apache.pig.EvalFunc;
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import org.apache.pig.data.Tuple;

public class PigCalcMonthsBelow extends EvalFunc<Integer> {

       @Override
       public Integer exec(Tuple tuple) throws IOException {
           int[] months = new int[12];
           for(int count = 1; count <= 12; count++) {
           months[count-1] = (Integer)tuple.get(count);

    }
       return monthsBelow(months, getMean(months));
}

private int monthsBelow(int[] data, double mean) {
       int count = 0;
       for(double a : data) {
       if((a < (mean * 0.40))) count++;
}
       return count;
}

private double getMean(int[] data) {
       double sum = 0.0;
       for(double a : data) {
       sum += a;
}
       return sum/data.length;
       }
}    

It’s a basic class, but as you can see there is some Pig-related code in there 

with the exec function, which does the work for you. (This is the method that 

is used when the Pig script calls the function.) 

After this class is exported to a jar fi le, then you can use it within your Pig 

script. The REGISTER command loads the jar fi le into Pig for you. To call your cus-

tom function, you can use the name of the class including the full package name.

REGISTER salesudp.jar
 
SD = LOAD 'salesdata.csv' USING PigStorage(',') AS (custid:int, m1:int, 
m2:int, m3:int, m4:int, m5:int, m6:int, m7:int, m8:int, m9:int, m10:int, 
m11:int, m12:int, m13:int);

AVGDATA =  FOREACH SD GENERATE custid,
           AVG({m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12}),
           AVG({m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12})-m13,
           PigCalcMonthsBelow(*);
DUMP(AVGDATA);

In this instance, the whole tuple of your data has been passed into the exec 

function of the Java class. It iterates the month data and creates a double[] array 
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and also stores the month 13 value. Then it calculates the mean and the months 

below 40 percent of the average sales and passes that number back to Pig.

Storing the Output Data

So far, the only output you’ve done is to the console. This is far from helpful 

when other people want to see the data. The STORE function writes the output 

data to a fi le. It’s very similar to the LOAD function that you used earlier:

STORE DATA INTO 'myoutputfile' USING PigStorage(',');

This command would store the tuple data in DATA into a comma-separated 

text fi le called myoutputfile. So, to complete your task. you amend your Pig 

script accordingly:

REGISTER salesudp.jar
 
SD = LOAD 'salesdata.csv' USING PigStorage(',') AS (custid:int, m1:int, 
m2:int, m3:int, m4:int, m5:int, m6:int, m7:int, m8:int, m9:int, m10:int, 
m11:int, m12:int, m13:int);

AVGDATA =  FOREACH SD GENERATE custid,
           AVG({m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12}),
           AVG({m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12})-m13,
           PigCalcMonthsBelow(*);
 
STORE AVGDATA INTO 'salesoutput' USING PigStorage(',');

When the job is run this time, you see Pig go through its usual routines and 

process the script. Instead of dumping the entire output to the console this time, 

you see the following: 

HadoopVersion    PigVersion    UserId    StartedAt    FinishedAt    
Features
1.2.1    0.12.0    Jason    2014-01-26 07:56:12    2014-01-26 07:56:15    
UNKNOWN

Success!

Job Stats (time in seconds):
JobId    Alias    Feature    Outputs
job_local1303731742_0001    AVGDATA,SD    MAP_ONLY    file:///Users/
Jason/cmepart2/salesoutput,

Input(s):
Successfully read records from: "file:///Users/Jason/cmepart2/salesdata.
csv"

Output(s):
Successfully stored records in: "file:///Users/Jason/cmepart2/

file:///Users
file:///Users/Jason/cmepart2/salesdata.csv
file:///Users/Jason/cmepart2/salesdata.csv
file:///Users/Jason/cmepart2/salesdata.csv
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salesoutput"

Job DAG:
job_local1303731742_0001

This gives the status of the job and, most importantly, the state of the output. 

In this instance, it’s been successful. The output lives in a directory using the 

name you specifi ed in the STORE command. Change into that directory and you 

see a Hadoop-like output named fi le part-m-00000 that contains the output.

Joining the Customer Details Table

So far, you’ve been working on one table. The customer ID is hardly the politest 

way of reporting customer information back to the stakeholders. Under some 

circumstances you would not want to be sharing personal information with 

anyone, but I’m using this scenario solely as a way of illustration to join two 

tables of information together with Pig (for more information on PII please look 

at Chapter 2). 

Within Pig, you can join tables of information together very much like a 

relational database would.

Assume that I have a customer table within the company database or that 

I could export the customers out of the customer relationship management 

(CRM) system. The schema is basic; it’s just a customer ID, e-mail address, fi rst 

name, and last name. (I’ve used www.fakenamegenerator.com to generate my 

customer data; none of it is real.)

10,LouieThornton@cuvox.de,Louie,Thornton
11,NicholasWong@dayrep.com,Nicholas,Wong
12,HarrietBrennan@teleworm.us,Harriet,Brennan
13,AimeeHill@armyspy.com,Aimee,Hill
14,LaraBoyle@rhyta.com,Lara,Boyle
15,AmelieHowell@superrito.com,Amelie,Howell
16,GeorgiaAbbott@gustr.com,Georgia,Abbott
17,BradleyShah@einrot.com,Bradley,Shah
18,EvieRoss@teleworm.us,Evie,Ross
19,EllaOSullivan@einrot.com,Ella,O'Sullivan
20,ReeceEvans@cuvox.de,Reece,Evans
21,HenryPalmer@rhyta.com,Henry,Palmer
22,KayleighMoss@teleworm.us,Kayleigh,Moss
23,RobertHobbs@einrot.com,Robert,Hobbs
24,LoganGraham@superrito.com,Logan,Graham

Within the Pig script, you need to load both sets of data: the customers and 

the sales data:

CONSUMER = LOAD 'customer.csv' USING PigStorage(',') AS (custid:int, 

http://www.fakenamegenerator.com
mailto:LouieThornton@cuvox.de
mailto:NicholasWong@dayrep.com
mailto:HarrietBrennan@teleworm.us
mailto:AimeeHill@armyspy.com
mailto:LaraBoyle@rhyta.com
mailto:AmelieHowell@superrito.com
mailto:GeorgiaAbbott@gustr.com
mailto:BradleyShah@einrot.com
mailto:EvieRoss@teleworm.us
mailto:EllaOSullivan@einrot.com
mailto:ReeceEvans@cuvox.de
mailto:HenryPalmer@rhyta.com
mailto:KayleighMoss@teleworm.us
mailto:RobertHobbs@einrot.com
mailto:LoganGraham@superrito.com
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email:chararray, firstname:chararray, lastname:chararray);

SD = LOAD 'salesdata.csv' USING PigStorage(',') AS (custid:int, m1:int, 
m2:int, m3:int, m4:int, m5:int, m6:int, m7:int, m8:int, m9:int, m10:int, 
m11:int, m12:int, m13:int);

You can see that the schema for the customer data LOAD statement has the 

data type chararray for the e-mail, fi rst name, and last name. The sales data is 

loaded into a different variable reference, so there are now two data sets defi ned. 

They’re just not joined together.

To join two data sets together in Pig is a simple matter of using the JOIN com-

mand. It takes two data sets with a common ID (in our case the customer ID) 

and joins them into a new data set:

FULLDATA = JOIN CONSUMER BY (custid), SD BY (custid);

If you dumped out the FULLDATA tuple after joining the two data sets, the 

output would look like the following:

(19994,FreddieWoodward@teleworm.us,Freddie,Woodw
ard,19994,9,4,4,2,11,9,10,4,2,3,13,9,0)
(19995,LillyMahmood@cuvox.de,Lilly,Mahm
ood,19995,5,2,1,1,14,4,9,12,4,13,6,7,14)
(19996,DavidHudson@cuvox.de,David,Hud
son,19996,3,6,6,13,8,1,14,10,5,0,7,9,14)
(19997,AliciaSmart@teleworm.us,Alicia,Sm
art,19997,4,8,13,3,14,11,4,2,11,12,13,8,1)
(19998,EmmaGrant@teleworm.us,Emma,Gr
ant,19998,8,10,5,8,12,9,7,8,14,8,14,7,12)
(19999,JoshGallagher@superrito.com,Josh,Gallag
her,19999,10,13,14,4,10,14,2,9,11,14,9,14,8)
(20000,HenryColeman@armyspy.com,Henry,Cole
man,20000,2,4,7,2,9,10,8,13,7,1,5,9,3)

Piecing It All Together

With all the knowledge you’ve acquired about Pig and creating custom functions 

with UDFs, you can now look at completing the original task:

REGISTER salesudp.jar

SD = LOAD 'salesdata.csv' USING PigStorage(',') AS (custid:int, m1:int, 
m2:int, m3:int, m4:int, m5:int, m6:int, m7:int, m8:int, m9:int, m10:int, 
m11:int, m12:int, m13:int);

CONSUMER = LOAD 'customers.csv' USING PigStorage(',') AS (custid:int, 
email:chararray, firstname:chararray, lastname:chararray);

AVGDATA =  FOREACH SD GENERATE custid,
           AVG({m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12}),
           AVG({m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12})-m13,

mailto:FreddieWoodward@teleworm.us
mailto:LillyMahmood@cuvox.de
mailto:DavidHudson@cuvox.de
mailto:AliciaSmart@teleworm.us
mailto:EmmaGrant@teleworm.us
mailto:JoshGallagher@superrito.com
mailto:HenryColeman@armyspy.com
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           PigCalcMonthsBelow(*);

FULLDATA = JOIN CONSUMER BY (custid), AVGDATA BY (custid);

STORE FULLDATA INTO 'salesoutput' USING PigStorage(',');

First, the custom jar fi le is loaded into Pig; you then load the two data 

sets into two separate variables (SD for the sales data and CONSUMER for the 

customer data). You join the two data sets together using the customer ID 

as the key, creating a new data set called FULLDATA, then iterate through the 

data to do your calculations for the average sales, the sales drop, and the 

months below the average. Finally, you write the results into a new comma-

separated fi le.

Once Pig has run you can inspect the output in the salesoutput folder.

1,EloiseBradley@dayrep.com,Eloise,Bradley,1,8.75,3.75,1
2,ChloeJohnston@einrot.com,Chloe,Johns
ton,2,5.916666666666667,-8.083333333333332,4
3,TomClark@rhyta.com,Tom,Clark,3,7.583333333333333,5.583333333333333,4
4,AliciaArmstrong@armyspy.com,Alicia,Armstr
ong,4,7.833333333333333,-1.166666666666667,4
5,RobertLong@superrito.com,Robert,L
ong,5,6.166666666666667,0.16666666666666696,2
6,OliviaOsborne@cuvox.de,Olivia,Osborne,6,5.5,0.5,3
7,EllieChandler@dayrep.com,Ellie,Chand
ler,7,7.416666666666667,-6.583333333333333,3
8,SophieDean@gustr.com,Sophie,D
ean,8,8.833333333333334,-0.16666666666666607,2
9,DeclanBruce@gustr.com,Declan,Br
uce,9,7.416666666666667,6.416666666666667,2
10,LouieThornton@cuvox.de,Louie,Thorn
ton,10,5.666666666666667,-3.333333333333333,4

What this section aimed to do was give you a broad overview of what 

could be achieved with a set of data-processing tools in a real-world con-

text. Word count examples are all good, but they only scratch the surface of 

what’s possible. 

I’ve tried to avoid explaining how the core of each technology works, because 

some of those subjects require books in themselves. Instead, I offered a hands-on 

“get-it-working” approach that can be used in your projects quickly. To further 

your learning on Hadoop, Pig, Mahout, and Sqoop, have a look at the “Further 

Reading” appendix at the end of this book.

You now have a framework for giving recommendations, exporting data from 

existing data sources, and mining sales data. You can easily modify these tuto-

rials for your own means. Just sit down, plan, and think about what question 

you’re trying to answer. Have a proper talk with stakeholders in the company 

to fi nd out what benefi t the data could bring to them. Sometimes the answers 

and ideas are surprising.

mailto:EloiseBradley@dayrep.com
mailto:ChloeJohnston@einrot.com
mailto:TomClark@rhyta.com
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Scheduling Batch Jobs

Within this chapter you’ve dealt with batch processing but not with repeating 

the task over and over again. The obvious choice for scheduling something to 

run is by using a scheduled task, Launch Daemon job, or cron job.

To set up a cron job on a UNIX system or Mac OS X, you need to amend the 

crontab fi le. From the command line, run the following command:

crontab –e 

Depending on the operating system of your machine, if a default text editor 

hasn’t been defi ned, then you are prompted for one. After the text editor has 

opened, then you can create your cron job. 

A cron job is specifi ed as a time when the job is scheduled to be run and this 

is represented as white-space-separated fi elds comprising the minutes, hours, 

day of month, month, and day of week, followed by the command to run. For 

example, to run a job every day at 11:30 a.m., the cron job syntax would look 

like the following:

30 11 * * *  echo "It's 11:30am"

After the text editor saves the cron job line, then crontab stores the schedule 

and runs the process at the desired time.

To put this in context of your hashtags example, perhaps you want to check 

every hour what top-trending tags are from Spring XD (remember it’s stream-

ing the data into HDFS for you already), so you can write a shell script to run 

the task:

#!/usr/bin/env bash
# runhashtag.sh – Hadoop shell script for Spring XD hashtags
hadoop jar hashtagmining.jar HashtagJob /xd/fashiontweets /fashionoutput
hadoop fs -getmerge /fashionoutput fashionoutput.txt 
sort –k2nr fashionoutput.txt | head -20 > hourlytrends.txt

The following crontab entry would run the shell script every hour on the 

hour and output the top 20 results to a text fi le:

0 * * * * svc –o /path/to/script/runhashtag.sh 

If you want to learn more about crontab, you can either read the manual pages 

on your UNIX distribution (type man cron at the command line) or consult the 

Wikipedia page on cron at http://en.wikipedia.org/wiki/Cron.

Although this is a simple approach, you must be careful. If the volumes of 

data become great, you might reach a stage where the processing is taking longer 

to produce results than the time difference you leave in between the cron job. 

It’s worth adding mutual exclusion to your job and having it exit if an earlier 

incarnation of itself is running, skipping those hours where earlier jobs have 

http://en.wikipedia.org/wiki/Cron
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taken too long to complete.  It might also be worth having the job “give up” and 

exit before it completes, if it takes much too long (perhaps 3 hours).

Summary 

Hadoop is an important technology, and it’s worth putting some time aside to 

craft some MapReduce programs that might be of use in your organization. 

You also have to think about the openly available data that’s available to you. 

Weather data is a gold mine if you are in the retail business, and with a carefully 

crafted algorithm you could consume the weather data and compare it with 

sales data. Do sales increase in certain weather conditions? If the weather can 

be predicted fi ve days out, then can you do the same with the potential sales?

If crafting MapReduce seems like a lot of work, then think about using Pig 

instead. It might be just as quick to solve simple problems against large sets of 

data. Remember that Pig is designed to work with data fl ow, so when complex-

ity creeps in, it might be worth looking at a coded solution.

Machine learning sometimes isn’t so much about designing heavy-duty algo-

rithms as it is a case of fi nding the right tools to do the simple job. 

With a small amount of exposure to Hadoop, Sqoop, Mahout, and Pig, there’s 

a broad set of tools for extracting, processing, and learning from existing and 

newly acquired data. Coupling this with the different types of machine learn-

ing outlined in the chapters of this book will give you a good grounding in 

what’s possible. 

I used Hadoop version 1 because it gives a good grounding on how MapReduce 

jobs are put together. In a real-world context you would be using Hadoop ver-

sion 2 because it performs better and also has the added feature of YARN (Yet 

Another Resource Negotiator) for job deployment. It’s also worth noting that 

in memory systems like Spark are gaining in popularity; read on to Chapter 11 

for more information about Spark .
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The Apache Spark project was created by the AMPLab at UC Berkeley as a data 

analytics cluster computing framework. This chapter is a quick overview of the 

Scala language and its use within the Spark framework. The chapter also looks 

at the external libraries for machine learning, SQL-like queries, and streaming 

data with Spark.

Spark: A Hadoop Replacement?

The debate about whether Spark is a Hadoop replacement might rage on longer 

than some would like. One of the problems with Hadoop is the same thing that 

made it famous: MapReduce. The programming model can take time to master 

for certain tasks. If it’s a case of straight totaling up frequencies of data, then 

MapReduce is fi ne, but after you get past that point, you’re left with some hard 

decisions to make.

Hadoop2 gets beyond the issue of using Hadoop only for MapReduce. With 

the introduction of YARN (Yet Another Resource Negotiator) Hadoop acts as 

an operating system for data with YARN controlling resources against the 

cluster. These resources weren’t limited to MapReduce jobs; they could be any 

job that could be executed. An excellent example of this was the deployment of 

JBoss application server containers in the book Apache Hadoop YARN by Arun 

 C H A P T E R 
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C. Murthy and Vinod Kumar Vavilapalli (Addison-Wesley Professional, 2014; 

see the “Further Reading” section at the end of this book for more details). 

The Spark project doesn’t rely on MapReduce, which gives it a speed advan-

tage. The claim is that it’s 100 times faster than in-memory Hadoop and 10 times 

faster on disk. If speed is an issue for you, then Spark is certainly up there on the 

list of things to look at. As for the argument that it’s a replacement for Hadoop. 

. . . well, I’ll leave that for the technical press to suss out. It all boils down to the 

fundamental element of what question you are trying to answer. The tools are 

just that—tools.

Java, Scala, or Python?

Spark jobs can be written in Java, Scala, or Python. As usual, which language 

you use tends to be a matter of personal preference. Because it is written in 

the JVM language Scala, the primary language for Spark is Scala and, with the 

inclusion of a command-line tool, this makes life easier when you want to get 

answers more quickly. 

The application programming interface (API) is available to Java developers, 

but there’s more work required in getting programs ready. The Python language 

is also supported, and it, like Scala, comes with a command-line interpreter for 

Spark jobs.

The bottom line is, if you want to work on the command line, then you should 

use Scala or Python. If the thought of Scala scares you, read on and I’ll attempt 

to help make you feel better. On the other hand, if you want to skip this part, 

then you can proceed to the “Downloading and Installing Spark” section.

As you progress through this chapter, you might come to the conclusion 

that Java is too bulky for quickly writing Spark jobs. Remember, it’s a matter 

of personal preference, so you should use the language in which you’re most 

comfortable.

Scala Crash Course

If you are a Java programmer and you want to move to Scala, this section covers 

the essentials in a few digestible pages.

For a more detailed look at the Scala language, try the site documentation at 

www.scala-lang.org/documentation.

Installing Scala

Scala is classed as a Java Virtual Machine (JVM) language, because it uses the 

JVM to execute its bytecodes. There is a download that you need to perform 

http://www.scala-lang.org/documentation
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before you get into the basics. If you are happy to use Spark on its own, then 

you don’t need to download Scala, because the libraries are in the distribution. 

On the other hand, if you want to write some Scala programs to run on Spark 

afterward then it’s prudent to download the Scala distribution fi le and install 

it. You can fi nd the downloads at www.scala-lang.org/download/all.html.

Pick a fairly recent version for your operating system (nothing too cutting 

edge) and download it. After it has downloaded, fi nd a place for it to live and 

then uncompress the archive (usually a .tgz fi le for Mac OS X/Linux or a Zip 

fi le for Windows users). 

Ensure that the path to the bin directory is set, so you can access the programs 

from your command line. When you have all that done, you can proceed.

Packages

Package imports behave in the same way as Java imports, but instead of using 

the * as you do in Java, you use _ in Scala.

import java.util._
import org.my.thing._

Scala is based on the JVM, so you can import and use Java libraries and 

third-party libraries.

Data Types

Scala supports the following seven numeric data types. They are classes. Scala 

doesn’t support primitive data types like Java does.

 ■ Byte

 ■ Char

 ■ Short

 ■ Int

 ■ Long

 ■ Float

 ■ Double

 ■ Boolean

Because they are all classes, you can use the class methods to manipulate 

them in the same way as Java:

scala> 1000.toString
res10: String = 1000
scala> 1000.toDouble

http://www.scala-lang.org/download/all.html
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res11: Double = 1000.0
scala> 1000.toInt
res13: Int = 1000

Declarations of constants and variables are defi ned as val or var; it’s not a 

big deal which one you use. 

Classes

Scala source fi les can contain as many classes as you want in the same way as Java:

class MyClass {
    var myval = 0
}

Like Plain Old Java Objects (POJOs), where you create a public variable name 

and then create two getter and setter methods, Scala is doing the same. The 

variable (myval in the example) is accessed like so:

val newclass = new Myclass
newclass.myval = 42
println(newclass.myval)

The primary constructor in Scala classes is public. All variables have to be 

initialized within Scala code; it’s not an optional thing. 

Within classes you can defi ne methods in the same way as you can in Java. 

So, a basic void method would look like the following:

def myMethod() {
}

You can also add return types as you do in Java. So, assuming you want to 

return an integer data type from your method, you’d type:

def myMethod(): Int = {
    Return 42
}

The fi nal example shows how you pass values into the function. Add two 

numbers together and return the answer, like so:

def addNums(a: Int, b: Int) : Int = {
return a + b
}

Calling Functions

Function calls in Scala are very much the same as in Java. Using the dot notation 

against the object you can call the method name. If no values are to be passed 
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(like .addNumber(1,2), for example), then the parentheses are optional. Unlike 

Java, though, there are no static methods in Scala.

Operators

The operators in Scala operate in the same way as the majority of the Java 

operators. 

Control Structures

Scala supports the usual mix of if, while, and for control structures. 

for Loops

for loops can work on any collection. For example:

val filesInDir = (new java.io.File("/home/user/").listFiles
for(thisFile <- filesInDir)
    println(thisFile)

You also have ranges at your disposal, which is simpler than the Java equivalent:

for(i <- 1 until 10)
    println(i)
for(i <- 1 to 10)
    println(i)

You can also fi lter within the for loop. The following is an example with the 

output from my home directory. (I’ve made the actual commands bold.)

scala> val fileshere = (new java.io.File("/home/jason/").listFiles)
fileshere: Array[java.io.File] = Array(/home/jason/twitterstream.jar, 
/home/jason/.ssh, /home/jason/.profile, /home/jason/spring-shell.log, 
/home/jason/testyarn.jar, /home/jason/twitterstreamtransformer.xml, 
/home/jason/.bashrc, /home/jason/worldbrain.txt, /home/jason/.bash_
logout, /home/jason/.spark_history, /home/jason/.bash_history)

scala> for(file <- fileshere if file.getName.endsWith(".xml")) 
print(file)
/home/jason/twitterstreamtransformer.xml

while Loops

while loops operate in the same way as Java while loops:

while(value != 100) {
    value += 1
}
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if Statements

As you’d expect, if statements in Scala are similar to Java if statements. Scala 

supports ternary operators as Java does. 

Java:
boolean debug = server.equals("localhost") ? true : false;

Scala:
var debug = if (server.equals("localhost")) true else false;

Downloading and Installing Spark

There are a few ways to download and use Spark. The easiest way is to use 

the prebuilt packages that are available from the Spark website. Before you 

download one, check which version of Hadoop you (or your organization) is 

running as it will determine the download you want. At the time of writing, 

Spark was available for

 ■ Hadoop 1—(Hortonworks HDP1 and Cloudera CDH3)

 ■ Hadoop 2—(Hortonworks HDP2 and Cloudera CDH5)

 ■ Cloudera CDH4

You are not required to exclusively run Hortonworks or Cloudera. Spark 

works fi ne on a download of Hadoop 1 or 2 from the Apache site.

After you have downloaded the fi le for your Hadoop version, you can install 

it by moving the downloaded fi le to the directory you want to install it to. The 

fi le is a .tgz fi le, so you can unarchive it in one command:

tar xvzf spark-1.0.0-bin-hadoop2.tgz

The contents of the fi le will unarchive and be ready for use.

A Quick Intro to Spark

The interactive shell in Scala gives you a quick and easy way to see what Spark 

can do in a very short span of time. If you read the really short introduction 

to Scala earlier in the chapter, then you should cope well with the following 

examples.
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Starting the Shell

From the directory where you installed Spark, type the following command 

to launch the shell:

./bin/spark-shell

You see the following output while Spark boots up:

jason@cloudatics:/usr/local/spark$ bin/spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on 
classpath
14/07/05 09:28:44 INFO SecurityManager: Using Spark's default log4j 
profile: org/apache/spark/log4j-defaults.properties
14/07/05 09:28:44 INFO SecurityManager: Changing view acls to: jason
14/07/05 09:28:44 INFO SecurityManager: SecurityManager: authentication 
disabled; ui acls disabled; users with view permissions: Set(jason)
14/07/05 09:28:44 INFO HttpServer: Starting HTTP Server
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 1.0.0
      /_/

Using Scala version 2.10.4 (OpenJDK 64-Bit Server VM, Java 1.6.0_31)
Type in expressions to have them evaluated.
Type :help for more information.
14/07/05 09:28:51 INFO SecurityManager: Changing view acls to: jason
14/07/05 09:28:51 INFO SecurityManager: SecurityManager: authentication 
disabled; ui acls disabled; users with view permissions: Set(jason)
14/07/05 09:28:52 INFO Slf4jLogger: Slf4jLogger started
14/07/05 09:28:52 INFO Remoting: Starting remoting
14/07/05 09:28:52 INFO Remoting: Remoting started; listening on 
addresses :[akka.tcp://spark@cloudatics.com:38921]
14/07/05 09:28:52 INFO Remoting: Remoting now listens on addresses: 
[akka.tcp://spark@cloudatics.com:38921]
14/07/05 09:28:52 INFO SparkEnv: Registering MapOutputTracker
14/07/05 09:28:52 INFO SparkEnv: Registering BlockManagerMaster
14/07/05 09:28:52 INFO DiskBlockManager: Created local directory at /
tmp/spark-local-20140705092852-2f00
14/07/05 09:28:52 INFO MemoryStore: MemoryStore started with capacity 
297.0 MB.
14/07/05 09:28:53 INFO ConnectionManager: Bound socket to port 48513 
with id = ConnectionManagerId(cloudatics.com,48513)
14/07/05 09:28:53 INFO BlockManagerMaster: Trying to register 
BlockManager

tcp://spark@cloudatics.com:38921
tcp://spark@cloudatics.com:38921
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14/07/05 09:28:53 INFO BlockManagerInfo: Registering block manager 
cloudatics.com:48513 with 297.0 MB RAM
14/07/05 09:28:53 INFO BlockManagerMaster: Registered BlockManager
14/07/05 09:28:53 INFO HttpServer: Starting HTTP Server
14/07/05 09:28:53 INFO HttpBroadcast: Broadcast server started at 
http://176.67.170.176:41692
14/07/05 09:28:53 INFO HttpFileServer: HTTP File server directory is /
tmp/spark-c6a5efed-113d-4dd9-9cd0-7618d901f389
14/07/05 09:28:53 INFO HttpServer: Starting HTTP Server
14/07/05 09:28:53 INFO SparkUI: Started SparkUI at http://cloudatics.
com:4040
14/07/05 09:28:54 WARN NativeCodeLoader: Unable to load native-hadoop 
library for your platform... using builtin-java classes where applicable
14/07/05 09:28:54 INFO Executor: Using REPL class URI: 
http://176.67.170.176:39192
14/07/05 09:28:54 INFO SparkILoop: Created spark context..
Spark context available as sc.

scala>

I’m showing all the messages, because there are a few interesting things I 

want to show you in a moment. For now, though, you should see the scala> 

prompt at the bottom, which means you’re ready. 

Data Sources

Spark supports the same input fi le systems as Hadoop. If your data store is sup-

ported by the InputFormat method in Hadoop, then you can read it into Spark 

without too much effort. 

The obvious ones that come to mind are the local fi lesystem, Amazon S3 buck-

ets, HBase, Cassandra, and fi les already on a Hadoop Distributed File System 

(HDFS). As you see in the next section, you’re using the sc.textFile method 

to load in data. This isn’t limited to specifi c fi les; you can use that method to 

process wildcards on fi les, zipped fi les, and directories as well.

Testing Spark

Find a text fi le with which to test Spark and follow along with the rest of this 

section. I’m using a fi le from the local fi lesystem for this example.

Load the Text File

First, load the text fi le. From the Scala command line, type

scala> var textF = sc.textFile("/home/jason/worldbrain.txt")

http://176.67.170.176:41692
http://cloudatics
http://176.67.170.176:39192
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Basically you’re storing the contents of the text fi le into a Scala variable called 

textF. Spark responds with output along the lines of the following:

14/07/05 09:40:08 INFO MemoryStore: ensureFreeSpace(146579) called with 
curMem=0, maxMem=311387750
14/07/05 09:40:08 INFO MemoryStore: Block broadcast_0 stored as values 
to memory (estimated size 143.1 KB, free 296.8 MB)
textF: org.apache.spark.rdd.RDD[String] = MappedRDD[1] at textFile at 
<console>:12

scala>

Spark uses a concept called Resilient Distributed Datasets (RDDs), so in the 

output you can see that you now have a MappedRDD containing strings. With 

the text fi le loaded, you can start to inspect it and get some results.

Make Some Quick Inspections

With the data loaded, you can do some quick inspections. First, how many ele-

ments of data do you have in the RDD?

scala> textF.count()

You get the output:

14/07/05 09:58:01 INFO SparkContext: Job finished: count at 
<console>:15, took 0.036546484 s
res4: Long = 469

scala>

This count represents the number of elements in the RDD and not the number 

of lines in the text fi le. You can pull the fi rst element from the RDD:

scala> textF.first()
And the output appears:
14/07/05 10:00:20 INFO SparkContext: Job finished: first at 
<console>:15, took 0.007266678 s
res5: String = THE papers and addresses I have collected in this little 
book are submitted as contributions,......
scala>

As you can see from the output, these results are returning very quickly as 

the RDD is based in memory.
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Filter Text from the RDD

With the .filter function, you can start to inspect specifi c things within the 

text fi le. Assuming that you want to see how many times the word “statistical” 

occurs in the document, you can run the following:

scala> textF.filter(line => line.contains("statistical")).count()

One line in Scala and the Spark fi lter iterate the RDD and inspect the lines. 

Because you’ve appended the count at the end, you get the following result:

14/07/05 10:16:55 INFO SparkContext: Job finished: count at 
<console>:15, took 0.042640019 s
res7: Long = 2

So, there are two mentions of the word “statistical” in the entire document, 

and all completed in 0.04 seconds. If required, you could save this output to 

another Scala array:

scala> var filtered = textF.filter(line => line.contains("statistical"))
filtered: org.apache.spark.rdd.RDD[String] = FilteredRDD[4] at filter at 
<console>:14
scala> filtered.count
14/07/08 09:20:16 INFO SparkContext: Job finished: count at 
<console>:17, took 0.067395793 s
res4: Long = 2

With the aid of concise commands in Scala and the power of in-memory 

processing of distributed datasets (the RDDs), you have a neat system to get 

large amounts of crunching done quickly.

Spark Monitor

Earlier, I mentioned that when you start Spark a few things are being 

run. One of them is the web-based monitor. If you point your browser to 

http://<yourdomain>:4040, you should get the website shown in Figure 11-1, 

assuming Spark is still running.

As far as Spark is concerned, every line you run is a job, so Spark logs it 

accordingly, giving its duration and outcome. There’s also information on the 

storage and runtime environment.

You can click on each of the stages to see full details of the job and its execu-

tion output. If one of your jobs is causing trouble, then it’s handy to look here 

fi rst and get a bird’s eye view of things. 
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Figure 11-1:  Spark web console

Comparing Hadoop MapReduce to Spark

Recall from Chapter 10 that it required a certain amount of effort to create a 

MapReduce program in Java to work with Hadoop. 

The basic Java code boilerplate is usually along the lines of the map and 

reduce phases:

public static class Map extends MapReduceBase implements
            Mapper<LongWritable, Text, Text, IntWritable> {
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();

        public void map(LongWritable key, Text value,
                OutputCollector<Text, IntWritable> output, Reporter 
reporter)
                throws IOException {
            // ususally emit something to the reducer here....
        }
    }

    public static class Reduce extends MapReduceBase implements
            Reducer<Text, IntWritable, Text, IntWritable> {
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        public void reduce(Text key, Iterator<IntWritable> values,
                OutputCollector<Text, IntWritable> output, Reporter 
reporter)
                throws IOException {
            // reducer would add the value +1 for example
            
        }
    }

Then a job defi nition enables it to run within the Hadoop framework:

public static void main(String[] args) throws IOException {
        JobConf conf = new JobConf(BlankHadoopJob.class);
        conf.setJobName("BlankHadoopJob");

        conf.setOutputKeyClass(Text.class);
        conf.setOutputValueClass(IntWritable.class);

        conf.setMapperClass(Map.class);
        conf.setCombinerClass(Reduce.class);
        conf.setReducerClass(Reduce.class);

        conf.setInputFormat(TextInputFormat.class);
        conf.setOutputFormat(TextOutputFormat.class);

        FileInputFormat.setInputPaths(conf, new Path(args[0]));
        FileOutputFormat.setOutputPath(conf, new Path(args[1]));

        JobClient.runJob(conf);

    }

Some developers complain about the amount of code you need to write in 

Java to get MapReduce working. It’s never been an issue for me (as I have tem-

plates set up), but when I show you how it works in Spark, you’ll realize why 

they were complaining.

In Spark, you can put together a quick word count MapReduce routine that 

demonstrates how easy it is to do. Using the same text fi le you used earlier, 

you can run a MapReduce process from the Spark shell. First load the text fi le:

scala> var textF  = sc.textFile("/home/jason/worldbrain.txt")

Then create a new variable with the results of the MapReduce:

scala> var mapred = textF.flatMap(line => line.split(" ")).map(word => 
(word, 1)).reduceByKey((a,b) => a+b)
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Then output the results:

scala> mapred.collect

You see a block of the output appear in the shell:

14/07/08 09:28:29 INFO SparkContext: Job finished: collect at 
<console>:17, took 0.78279487 s
res7: Array[(String, Int)] = Array((professors,,1), (mattered,1), 
(intimately,1), (better.,3), (someone,3), (House,1), (manifestly,1), 
(order,13), (socialism.,1), (apprehension,4), (conclusively,1), 
(gowns,2), (behind,3), (Out",,1), (merge,1), (wasn't,1), (been,125), 
(Judea;,1), (gap,5), (underrate,1), (aspects;,1), (knows,8), 
(informative,15), (divorced,1), (are,259), (records,4), (2.,1), 
(Western,3), (politician,,1), (room—and,1), (newspapers,,3), 
(picture.,1), (interchange—from,1), (prete

To save the results, use the .saveAsTextFile method on the RDD to output 

as text:

scala> mapred.saveAsTextFile("/home/jason/testoutput")

Spark, in the same way as Hadoop, saves the fi les in a directory (I called this 

one testoutput). Within it you see the part-00000 fi les:

-rw-r--r-- 1 1234 1234 52961 Jul  8 13:47 part-00000
-rw-r--r-- 1 1234 1234 52861 Jul  8 13:47 part-00001
-rw-r--r-- 1 1234 1234     0 Jul  8 13:47 _SUCCESS

The output of those fi les contains the basic word count:

(lags—throughout,1)
(however,9)
(cry.,1)
(eminent,2)
(dangerous,5)
(varieties,1)
(History.,1)
(behind,,1)
(late,3)
(nineteenth,6)
(helpless,1)
(throwing,2)
(aesthetic,4)
(leapt,2)
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In three lines you performed a basic MapReduce program on some raw text. 

Notice that I didn’t remove odd characters and convert everything to lowercase, 

but essentially it gave us the word count output. 

Writing Standalone Programs with Spark

The brief introduction to Spark has shown you that it’s fast, and you can perform 

certain tasks with ease. The shell is useful for inspecting datasets and getting a 

basic set of answers, counts, or frequencies from the data. There are times, though, 

when full programs are required to be written. As previously discussed, Spark 

programs can be written in Scala, Java, or Python, because there’s a supporting 

API for each of them. This section concentrates on Scala and Java.

N O T E  The Scala program requires the Scala libraries and compiler. Instructions on 

how to install them are provided earlier in this chapter.

Spark Programs in Scala

Scala applications are very similar to Java applications in their construction. 

With the Scala Build Tool (sbt), you can manage the building of everything in 

one place, too. 

It’s worth treating programs as small projects, so keeping the code in its own 

directory makes maintenance more manageable. 

Installing SBT

The Scala Build Tool is a separate download from the main Scala libraries, so 

you need to download and install that as well. The downloads are available 

from www.scala-sbt.org/download.html. Download the fi le that’s appropriate 

for your operating system and unarchive it. Make sure the binary is in your 

path, so you can execute the sbt fi le.

The Scala Program Code

Create a project called ScalaMRExample, then create the src and main directories 

within it:

mkdir –p ScalaMRExample/src/main

http://www.scala-sbt.org/download.html


 Chapter 11 ■ Apache Spark 289

c11.indd 10:2:12:AM  10/06/2014 Page 289

Keeping the MapReduce example in mind, the Spark application, in a fi le 

named “ScalaMRExample.scala” would look like so:

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

object ScalaMRExample {
  def main(args: Array[String]) {
    val configuration = new SparkConf().setAppName("Scala MapReduce 
Example")
    val sc = new SparkContext(conf)
    val textFile = "/home/jason/worldbrain.txt" 
    val textSc = sc.textFile(textFile)
    val mapred = textFile.flatMap(line => line.split(" ")).map(word => 
(word, 1)).reduceByKey((a,b) => a+b)

    mapred.collect

    mapred.saveAsTextFile("wboutput")

  }
}

You must adjust the fi lenames and paths for your environment, of course. 

The program imports the required Spark libraries and then sets up the object 

name and the main method to run. As you can see, it’s very similar to Java in 

those respects.

To load the system properties and the active classpath, you create a 

SparkConf object and pass in the name of your application, in this case 

ScalaMapReduce Example. The remainder of the program is the same as what 

has been previously covered. Load in the text fi le, run the simple MapReduce, 

output the results, and then save the output results to a location.

The Scala Build Tool File

The Scala Build Tool is similar to Java build tools such as Ant and Maven. You 

need a build fi le in the ScalaMRExample directory that tells Scala about the 

project, its dependencies, and where to get them:

name := "ScalaMRExample"

version := "0.1"

scalaVersion := "2.10.4"
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libraryDependencies += "org.apache.spark" %% "spark-core" % "1.0.0"

resolvers += "Akka Repository" at "http://repo.akka.io/releases/" 

Save this fi le as scalamrexample.sbt, and then you can use sbt to package 

up the project. Inspect the directory structure to make sure everything is in 

place. In Linux/MacOS X, you can use the find command:

Jason-Bells-MacBook-Pro:ScalaMRExample Jason$ find . -print
.
./scalamrexample.sbt
./src
./src/main
./src/main/scala
./src/main/scala/ScalaMRExample.scala

When you’re happy with the fi le listing (it should look like the preceding 

code), then you can package it up using sbt. Make sure you are in the top-level 

ScalaMRExample.

sbt package

The fi rst run might take some time, as sbt might have to download external 

libraries. When that’s happened, though, the code compiles and the package 

is created:

Jason-Bells-MacBook-Pro:ScalaMRExample Jason$ sbt package[info] Set 
current project to ScalaMRExample (in build file:/Users/Jason/work/
scala/ScalaMRExample/)
[info] Compiling 1 Scala source to /Users/Jason/work/scala/
ScalaMRExample/target/scala-2.10/classes...
[info] Packaging /Users/Jason/work/scala/ScalaMRExample/target/scala-
2.10/scalamrexample_2.10-1.0.jar ...
[info] Done packaging.
[success] Total time: 8 s, completed 09-Jul-2014 17:25:49

You see the newly compiled package in the target/scala-2.10 directory:

Jason-Bells-MacBook-Pro:ScalaMRExample Jason$ cd target/scala-2.10/
Jason-Bells-MacBook-Pro:scala-2.10 Jason$ ls -l
total 16
drwxr-xr-x  7 Jason  staff   238  9 Jul 17:25 classes
-rw-r--r--  1 Jason  staff  4495  9 Jul 17:25 scalamrexample_2.10-
1.0.jar
Jason-Bells-MacBook-Pro:scala-2.10 Jason$

http://repo.akka.io/releases


 Chapter 11 ■ Apache Spark 291

c11.indd 10:2:12:AM  10/06/2014 Page 291

Executing the Spark Project

It’s the jar fi le that you need to use with Spark. Assuming you are in the same 

directory where the jar fi le resides, use the spark-submit script to run the fi le:

/usr/local/spark/bin/spark-submit --class "ScalaMRExample" \
--master local[4] scalamrexample_2.10-1.0.jar

The --master local[4] option tells Spark to create four local nodes when 

it starts up. If all goes according the plan, you see Spark whirr into action and 

perform the task:

14/07/09 19:32:42 INFO TaskSetManager: Finished TID 5 in 922 ms on 
localhost (progress: 2/2)
14/07/09 19:32:42 INFO TaskSchedulerImpl: Removed TaskSet 2.0, whose 
tasks have all completed, from pool 
14/07/09 19:32:42 INFO DAGScheduler: Completed ResultTask(2, 1)
14/07/09 19:32:42 INFO DAGScheduler: Stage 2 (saveAsTextFile at 
ScalaMRExample.scala:15) finished in 0.924 s
14/07/09 19:32:42 INFO SparkContext: Job finished: saveAsTextFile at 
ScalaMRExample.scala:15, took 1.014446651 s

As you used wboutput as the target directory to save the text output to, you 

see that in your directory structure. You see that using Scala means that creat-

ing MapReduce-based programs becomes a simple matter, compared to the 

Hadoop way of doing things. I’m not saying that one is better than the other; 

it’s just another way of doing things. Take a look at the Java way of creating 

Spark programs.

Spark Programs in Java

The concept of creating a Spark program written in Java is very much the same 

as the Scala example just covered. The main difference is the language and the 

build tool.

The Spark API for Java requires a little more thought than the Scala examples. 

You can’t just rattle out a four-line program to perform a MapReduce task.

import scala.Tuple2;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
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import org.apache.spark.api.java.function.PairFunction;

import java.util.Arrays;
import java.util.List;
import java.util.regex.Pattern;

public final class JavaMRExample {
  private static final Pattern spacePattern = Pattern.compile(" ");

  public static void main(String[] args) throws Exception {
    
    SparkConf configuration = new SparkConf().
setAppName("JavaMRExample");
    JavaSparkContext ctx = new JavaSparkContext(configuration);
    JavaRDD<String> linesOfText = ctx.textFile("/home/jason/worldbrain.
txt", 1);

    JavaRDD<String> findWords = linesOfText.flatMap(new 
FlatMapFunction<String, String>() {
      @Override
      public Iterable<String> call(String thisString) {
        return Arrays.asList(spacePattern.split(thisString));
      }
    });

    JavaPairRDD<String, Integer> getTheOnes = findWords.mapToPair(new 
PairFunction<String, String, Integer>() {
      @Override
      public Tuple2<String, Integer> call(String thisString) {
        return new Tuple2<String, Integer>(thisString, 1);
      }
    });

    JavaPairRDD<String, Integer> finalCounts = getTheOnes.
reduceByKey(new Function2<Integer, Integer, Integer>() {
      @Override
      public Integer call(Integer i1, Integer i2) {
        return i1 + i2;
      }
    });

    List<Tuple2<String, Integer>> thisOutput = finalCounts.collect();
    for (Tuple2<?,?> tuple : thisOutput) {
      System.out.println(tuple._1() + ": " + tuple._2());
    }
    ctx.stop();
  }
}



 Chapter 11 ■ Apache Spark 293

c11.indd 10:2:12:AM  10/06/2014 Page 293

There’s a lot more code to put together than in the Scala MapReduce example 

program. The Java Spark API requires a little more thought in execution:

 ■ Splitting the words

 ■ Assigning a count of 1 for each word

 ■ Adding up the counts for each unique word

 ■ Generating the output

Using Maven to Build the Project

Throughout the book, I’ve used Eclipse to generate the projects and handle the 

build for me. Maven is a build tool (sbt was pretty much inspired by the Maven 

build process in my opinion) and, along with Ant, is the mainstay of Java build 

tools. If you don’t have Maven installed, you can download it from http://

maven.apache.org and unarchive the fi le.

For every project, you need a Maven build fi le; this is called pom.xml. 

<project>
  <groupId>com.mlbook</groupId>
  <artifactId>javamrexample</artifactId>
  <modelVersion>4.0.0</modelVersion>
  <name>Java MR Example</name>
  <packaging>jar</packaging>
  <version>1.0</version>
  <repositories>
    <repository>
      <id>Akka repository</id>
      <url>http://repo.akka.io/releases</url>
    </repository>
  </repositories>
  <dependencies>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-core_2.10</artifactId>
      <version>1.0.0</version>
    </dependency>
  </dependencies>
</project>

This gives you the basic outline of the project and which repositories to pull 

any required dependencies from. For Spark projects, you need to have the Spark 

API in the dependencies declaration.

http://maven.apache.org
http://maven.apache.org
http://repo.akka.io/releases</url
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Creating Packages in Maven

To create the package, you run Maven from the command line:

mvn package

The Maven build tool looks after the downloading of the dependencies, 

creates the class fi les, and then packages the jar fi le with the required classes. 

After it’s built, a directory called target is created and you see the jar fi le there.

Jason-Bells-MacBook-Pro:JavaMRExample Jason$ cd target/
Jason-Bells-MacBook-Pro:target Jason$ ls -l
total 24
drwxr-xr-x  10 Jason  staff   340  9 Jul 18:19 classes
-rw-r--r--   1 Jason  staff  8679  9 Jul 18:19 javamrexample-1.0.jar
drwxr-xr-x   3 Jason  staff   102  9 Jul 18:04 maven-archiver
Jason-Bells-MacBook-Pro:target Jason$

To run the project with Spark, you need to use the spark-submit program 

like you did in the previous Scala example:

jason@cloudatics:~$ /usr/local/spark/bin/spark-submit --class 
"JavaMRExample" \
--master local[4] javamrexample-1.0.jar

Spark executes the jar fi le, and you see the MapReduce output in the console:

14/07/09 20:37:08 INFO DAGScheduler: Stage 0 (collect at JavaMRExample.
java:44) finished in 0.784 s
14/07/09 20:37:08 INFO SparkContext: Job finished: collect at 
JavaMRExample.java:44, took 2.47317507 s
young: 29
mattered: 1
intimately: 1
journeys.: 1
Let: 7
House: 1
(Socialism),: 1
instance,: 1
superannuated.: 1
proportions,: 1
Contributed: 1
secure: 4
incoherent.: 1
everyone.: 1
gowns: 2
well-informed: 1
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Spark Program Summary

You’ve now seen two methods for quickly creating and building projects for 

the Spark framework. As previously mentioned, the decision about whether to 

use Java or Scala really depends on your comfort level. For production work, 

you really don’t want to be using experimental code in a language with which 

you’re not 100percent comfortable.

So, with the basics of Spark and creating standalone applications, you can 

now move forward and look at some of the libraries that are available for use 

within Spark. 

Spark SQL

One of the great discussions in the Hadoop world has been “Can I run SQL 

(Structured Query Language)-like queries?” There’s still something intrinsic 

in people who deal with data and their use of SQL. It’s easy to see why; SQL is 

nice and language friendly. The Pig scripting language in Hadoop was close to 

getting to English-like MapReduce jobs, but the lure of true SQL queries is just 

too much for some, so they ask if it exists.

SparkSQL is just that—SQL-like queries within the Spark framework. It’s just 

limited to SQL, so you can run Scala queries or even HiveSQL queries within 

the Spark framework. The data can be held within an external datastore like 

Apache Hive or loaded into memory as an RDD and queried that way.

N O T E  The SQL parser in SparkSQL will be useful for most people, but it’s not as 

advanced as some might expect in a full database system. If you need that full fl exibil-

ity, then you are advised to look at HiveSQL as an alternative. For the remainder of the 

section I concentrate on the SparkSQL parser by way of an introduction.

Basic Concepts

With the SparkContext in place, you can easily create a SparkSQL instance and 

associate that with the current context. This can be done within the shell in Scala 

or as a standalone program with Scala, Java, or Python. The program method 

is easier if you have maintenance of code in mind.

The basic code to incorporate the SparkSQL libraries is as follows:

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
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import org.apache.spark.SparkConf

object SparkSQLExample {
  def main(args: Array[String]) {
    val configuration = new SparkConf().setAppName("SparkSQL Example")
    val sc = new SparkContext(configuration)
    val sql = new org.apache.spark.sql.SQLContext(sc)

    // program continues.

  }
}

You need to add the SparkSQL library to the required dependencies in your 

sbt build fi le. I’ve created a new build fi le for the code:

name := "SparkSQLExample"

version := "1.0"

scalaVersion := "2.10.4"

libraryDependencies += "org.apache.spark" %% "spark-core" % "1.0.0"

libraryDependencies += "org.apache.spark" %% "spark-sql" % "1.0.0"

resolvers += "Akka Repository" at http://repo.akka.io/releases/

Don’t forget to ensure there is a blank line between each text line. Otherwise, 

the build tool throws an error during the build.

Using SparkSQL with RDDs

It’s time to create a real-world example of the SparkSQL system using the inter-

nal RDD as a storage system. With the data being held, in memory it will be 

fast. In addition, you’ll open up the Scala language a little bit to show you an 

application with more than one .scala fi le in the build.

Generating Data

This example uses a .csv fi le with the following information:

 ■ Unique Id

 ■ First name

 ■ Surname

 ■ UK Postcode

http://repo.akka.io/releases
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 ■ Date of Birth (month/day/year format)

 ■ Latitude

 ■ Longitude

This could represent some form of customer database. You can either gener-

ate your own data or use a service such as fakenamegenerator.com to create a 

dataset for you. If you do use that service, ensure that you do not have the fi eld 

names on the top line of the .csv fi le; delete it if necessary.

A sample of the data looks like this:

72215385-fad0-45fd-b932-a3d4fa07fb6d,William,Winter,DG3 
7AL,1/4/1969,55.282416,-3.831666
71efb06f-63a7-4312-abe2-1fc4c8bd52e5,Billy,Noble,DD6 
7FU,9/11/1969,55.597429,-3.170968
eac7b8f6-2d71-49a7-8e4d-a780826ce893,Kayleigh,Atkins,DG8 
9ES,1/20/1932,54.73341,-4.407141
337d498d-9bed-4663-b688-6ec2651bcd9d,Emma,Perry,IM3 
2GE,4/16/1935,54.173625,-4.480233
c3b0cc54-1f2f-416f-9b91-17a0700a4dc1,Liam,Carr,EX32 
8AA,1/3/1991,50.682015,-3.119895
ea6acc38-1b69-424f-b885-09b078f6eaf2,Alex,Dodd,PH2 
0QJ,6/24/1993,55.982172,-3.592573

With the data in place, you can turn your attention to the code.

The Scala Application

I’m going to split this application up logically. One Scala object to run the main 

program and Spark confi guration and another to do the query work. The main 

program is going to output some log information as well, making it easier to 

keep track of what’s going on while the program is being run. Take a look at 

the basic breakdown with the confi guration:

import java.io._

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

import org.apache.spark.sql.SQLContext

object SparkSQLExample {

  def main(args: Array[String]) {
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    val conf = new SparkConf().setAppName("SparkSQLExample").
setMaster("local")

    conf.set("spark.eventLog.enabled", "true")
    conf.set("spark.eventLog.dir", "file:///home/jason/sparksqltest/
myeventlog/eventlog.out")
 

    val logger = new PrintWriter(new File("logging/sparksql.out"))

    val sc = new SparkContext(conf)
    val sql = SparkQueries.importDataToRDD(sc)

    logger.write("Sending Query " + System.currentTimeMillis() + "\n")
    SparkQueries.getUserLocations(sql, sc)
    System.exit(0)
  }
}

As in the previous example, you create a SparkConfiguration object and 

give the application a name. You’re also adding the master node of the Spark 

deployment (in this instance local as it’s on the local machine). 

You’ve enabled the logging as well and given the name of the directory and 

fi le to write the event log to. You could extend the confi guration and give the 

Spark scheduler a priority schedule for running the application in favor of oth-

ers in the queue, but that’s not a concern right now. You will also see the object 

SparkQueries being called to import the data to the RDD and run another 

method called getUserLocations to run a SQL query. 

Building the Queries

I suggest that you create a separate object for the queries to keep everything 

clean in terms of code. There’s one object to run the job and one for the worker, 

very much like the Java MapReduce jobs.

As I said at the start of the section, you’re going to use the RDD to hold the 

data. This example creates a case class to defi ne the schema object. If you think 

of a POJO, it’s very similar in defi nition.

case class Customer(guid: String, firstname: String, lastname: String, 
postcode: String, dob: String, latitude: Double, longitude: Double)

You now need a way of importing the data from the .csv fi le into the Customer 

object. Previously in this chapter, you used the sc.textFile() method to pull 

in the data and store it as an RDD as an array datatype. With the new Customer 

object, you can map the values from each row of the .csv into the object:

def importDataToRDD(sc: SparkContext) : SQLContext = {
    val sqlContext = new SQLContext(sc)
    val customers = sc.textFile("customers.csv").map(_.split(",")).
map(c=> Customer(c(0), c(1), c(2), c(3), c(4), c(5), c(6).toDouble, 

file:///home/jason/sparksqltest/myeventlog/eventlog.out
file:///home/jason/sparksqltest/myeventlog/eventlog.out
file:///home/jason/sparksqltest/myeventlog/eventlog.out
file:///home/jason/sparksqltest/myeventlog/eventlog.out
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c(7).toDouble)) 
    customers.registerAsTable("customers")
    cacheTable("customers")
    sqlContext
  }

All the customer data is now in memory, so you can create a query to look at 

the data. The SparkSQL dialect is very similar to standard ANSI SQL. In this 

example, I create separate functions for each of my queries, mainly to keep the 

code readable and clean, and I pass in the Spark context and SQL context in 

the parameters: 

def getUserLocations(sqlContext: SQLContext, sc: SparkContext) {
    val query = "SELECT lastname, firstname, latitude, longitude FROM 
customers"
    sc.setJobDescription(query)
    val result = sqlContext.sql(cmd).collect.foreach(println)
  }

The full object code looks like this:

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

import org.apache.spark.sql.SQLContext

case class Customer(guid: String, 
    firstname: String, 
    lastname: String, 
    postcode: String, 
    dob: String, 
    latitude: Double, 
    longitude: Double)

//This code just copied from shark context testing 
object SparkQueries {
  
  def importDataToRDD(sc: SparkContext) : SQLContext = {
    val sqlContext = new SQLContext(sc)
    import sqlContext._
    val customers = sc.textFile("customers.csv").map(_.split(",")).
map(c=> Customer(c(0), c(1), c(2), c(3), c(4), c(5).toDouble, c(6).
toDouble)) 
    customers.registerAsTable("customers")
    cacheTable("customers")
    sqlContext
  }

  def getUserLocations(sqlContext: SQLContext, sc: SparkContext) {
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    val query = "SELECT lastname, firstname, latitude, longitude FROM 
customers"
    sc.setJobDescription(query)
    val result = sqlContext.sql(query).collect.foreach(println)
  }
}

With the two object fi les complete, you can build the project:

Jason-Bells-MacBook-Pro:SparkSQLExample$ sbt package

[info] Set current project to SparkSQLExample (in build file:/Users/
Jason/work/scala/SparkSQLExample/)
[info] Compiling 2 Scala sources to /Users/Jason/work/scala/
SparkSQLExample/target/scala-2.10/classes...
[info] Packaging /Users/Jason/work/scala/SparkSQLExample/target/scala-
2.10/sparksqlexample_2.10-1.0.jar ...
[info] Done packaging.
[success] Total time: 9 s, completed 12-Jul-2014 14:25:05

Running the Project

Put the required jar fi le and the .csv data in a directory called sparksqldemo: 

jason@cloudatics:~/sparksqldemo$ ls -l
total 292
-rw------- 1 jason jason 269781 Jul 12 16:51 customers.csv
drwxr-xr-x 2 jason jason   4096 Jul 12 16:47 logging
drwxr-xr-x 3 jason jason   4096 Jul 12 16:47 myeventlog
-rw-r--r-- 1 jason jason  12673 Jul 12 16:50 sparksqlexample_2.10-
1.0.jar
jason@cloudatics:~/sparksqldemo$

To run the program under Spark, use the spark-submit program:

/usr/local/spark/bin/spark-submit --class "SparkSQLExample" --master 
local[4] sparksqlexample_2.10-1.0.jar

There’s a lot of console output when Spark runs the program, but there are 

some interesting things to look out for. First of all, you see SparkSQL importing 

the data into memory:

14/07/12 17:00:44 INFO StringColumnBuilder: Compressor for [guid]: org.
apache.spark.sql.columnar.compression.PassThrough$Encoder@2ce10a23, 
ratio: 1.0
14/07/12 17:00:44 INFO StringColumnBuilder: Compressor for [firstname]: 
org.apache.spark.sql.columnar.compression.PassThrough$Encoder@6a6096d9, 



 Chapter 11 ■ Apache Spark 301

c11.indd 10:2:12:AM  10/06/2014 Page 301

ratio: 1.0
14/07/12 17:00:44 INFO StringColumnBuilder: Compressor for [lastname]: 
org.apache.spark.sql.columnar.compression.PassThrough$Encoder@6b4fb71e, 
ratio: 1.0
14/07/12 17:00:44 INFO StringColumnBuilder: Compressor for [postcode]: 
org.apache.spark.sql.columnar.compression.PassThrough$Encoder@3e7f499c, 
ratio: 1.0
14/07/12 17:00:44 INFO StringColumnBuilder: Compressor for [dob]: org.
apache.spark.sql.columnar.compression.PassThrough$Encoder@16b9c0d2, 
ratio: 1.0
14/07/12 17:00:44 INFO FloatColumnBuilder: Compressor for [latitude]: 
org.apache.spark.sql.columnar.compression.PassThrough$Encoder@7d2226a5, 
ratio: 1.0
14/07/12 17:00:44 INFO FloatColumnBuilder: Compressor for [longitude]: 
org.apache.spark.sql.columnar.compression.PassThrough$Encoder@4d175ad1, 
ratio: 1.0

The query plan then shows the query that’s running. The fi rst line tells 

you the fi elds that are being returned. (In this example, they are lastname, 

firstname, latitude, and longitude).

== Query Plan ==
Project [lastname#2:2,firstname#1:1,latitude#5:5,longitude#6:6]
 InMemoryColumnarTableScan 
[guid#0,firstname#1,lastname#2,postcode#3,dob#4,latitude#5,longitude#6], 
(ExistingRdd 
[guid#0,firstname#1,lastname#2,postcode#3,dob#4,latitude#5,longitude#6], 
MapPartitionsRDD[4] at mapPartitions at basicOperators.scala:174), 
false)
14/07/12 17:00:44 INFO TaskSchedulerImpl: Adding task set 1.0 with 1 
tasks
14/07/12 17:00:44 INFO TaskSetManager: Starting task 1.0:0 as TID 1 on 
executor localhost: localhost (PROCESS_LOCAL)
14/07/12 17:00:44 INFO TaskSetManager: Serialized task 1.0:0 as 2883 
bytes in 0 ms
14/07/12 17:00:44 INFO Executor: Running task ID 1
14/07/12 17:00:44 INFO BlockManager: Found block broadcast_0 locally
14/07/12 17:00:44 INFO BlockManager: Found block rdd_7_0 locally
14/07/12 17:00:44 INFO Executor: Serialized size of result for 1 is 
162709
14/07/12 17:00:44 INFO Executor: Sending result for 1 directly to driver
14/07/12 17:00:44 INFO Executor: Finished task ID 1
14/07/12 17:00:44 INFO TaskSetManager: Finished TID 1 in 543 ms on 
localhost (progress: 1/1)
14/07/12 17:00:44 INFO TaskSchedulerImpl: Removed TaskSet 1.0, whose 
tasks have all completed, from pool 
14/07/12 17:00:44 INFO DAGScheduler: Completed ResultTask(1, 0)
14/07/12 17:00:44 INFO DAGScheduler: Stage 1 (collect at SparkQueries.
scala:30) finished in 0.808 s
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14/07/12 17:00:44 INFO SparkContext: Job finished: collect at 
SparkQueries.scala:30, took 0.849306003 s
[Thorpe,Maya,52.541897,1.624524]
[Cox,Ethan,52.67349,-2.078559]
[Glover,Imogen,52.47305,-0.963058]
[Smith,Sarah,50.54306,-3.720899]
[Reid,Christopher,50.855225,-0.599943]
[Iqbal,Oliver,50.808296,-2.644681]
[Little,Evie,52.01529,-1.95964]
[Flynn,Finley,51.381012,-3.258463]

Using Object-Based Queries

You’re not just restricted to SQL-based queries. If you are used to object map-

ping, you might be more interested in object-based queries. Assuming that I 

have the customer objects in the RDD called Customers, I could easily query 

all the firstnames with “George” as follows:

val georges = customers.where('firstname="George").select('lastname)

A Java SparkSQL Example

As you can imagine, the Java version of the code is similar to the Scala version. 

Using a POJO for the customer class, you import the data into the RDD:

import java.io.Serializable;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;

import org.apache.spark.sql.api.java.JavaSQLContext;
import org.apache.spark.sql.api.java.JavaSchemaRDD;
import org.apache.spark.sql.api.java.Row;

public class JavaSQLExample {
    public static class Customer implements Serializable {
        private String guid;
        private String firstname;
        private String lastname;
        private String postcode;
        private String dob;
        private Float latitude;
        private Float longitude;
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        public String getGuid() {
            return guid;
        }

        public void setGuid(String guid) {
            this.guid = guid;
        }

        public String getFirstname() {
            return firstname;
        }

        public void setFirstname(String firstname) {
            this.firstname = firstname;
        }

        public String getLastname() {
            return lastname;
        }

        public void setLastname(String lastname) {
            this.lastname = lastname;
        }

        public String getPostcode() {
            return postcode;
        }

        public void setPostcode(String postcode) {
            this.postcode = postcode;
        }

        public String getDob() {
            return dob;
        }

        public void setDob(String dob) {
            this.dob = dob;
        }

        public Float getLatitude() {
            return latitude;
        }

        public void setLatitude(Float latitude) {
            this.latitude = latitude;
        }

        public Float getLongitude() {
            return longitude;
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        }

        public void setLongitude(Float longitude) {
            this.longitude = longitude;
        }
    }

    public static void main(String[] args) throws Exception {
        SparkConf sparkConf = new SparkConf().
setAppName("JavaSQLExample");
        JavaSparkContext ctx = new JavaSparkContext(sparkConf);
        JavaSQLContext sqlCtx = new JavaSQLContext(ctx);

        System.out.println("Load csv file into RDD");
        
        JavaRDD<Customer> customers = ctx.textFile("customers.csv").map(
          new Function<String, Customer>() {
            public Customer call(String line) throws Exception {
              String[] split = line.split(",");

              Customer customer = new Customer();
                customer.setGuid(split[0]);
                customer.setFirstname(split[1]);
                customer.setLastname(split[2]);
                customer.setPostcode(split[3]);
                customer.setDob(split[4]);
                customer.setLatitude(Float.parseFloat(split[5]));
                customer.setLongitude(Float.parseFloat(split[6]));

              return customer;
            }
          });

        JavaSchemaRDD customerSchema = sqlCtx.applySchema(customers, 
Customer.class);
        customerSchema.registerAsTable("customers");

        JavaSchemaRDD georges = sqlCtx.sql("SELECT lastname FROM 
customers WHERE firstname='George'");

        List<String> georgeList = georges.map(new Function<Row, 
String>() {
          public String call(Row row) {
            return "Lastname: " + row.getString(0);
          }
        }).collect();

        for (String lastname: georgeList) {



 Chapter 11 ■ Apache Spark 305

c11.indd 10:2:12:AM  10/06/2014 Page 305

          System.out.println(lastname);
        }
    }
}

To run the example, just run Maven to package up the jar fi le and then run 

with the spark-submit tool.

$ /usr/local/spark/bin/spark-submit --class "JavaSQLExample" --master 
local[4] javasqlexample-1.0.jar

Spark generates a lot of output while it starts up and imports the .csv fi le into 

memory. Finally the query runs and you see the results output to the console:

14/08/25 23:03:19 INFO SparkContext: Job finished: collect at 
JavaSQLExample.java:110, took 1.664090864 s
Lastname: Dawson
Lastname: Power
Lastname: Stewart
Lastname: Stewart
Lastname: Young
Lastname: Cartwright
Lastname: Carr
Lastname: Chandler
Lastname: Begum

Wrapping Up SparkSQL

If you, or any of your team, have good knowledge of SQL, then it makes sense 

to look at SparkSQL, especially if you are trying to extract data from the RDDs. 

Although there are limitations of the SparkSQL language range, it covers the 

needs of most people in terms of SELECT and JOINS and so on.

Spark Streaming

Chapter 9 discusses using Spring XD as a mechanism for ingesting data from 

various sources. Spark has a streaming ingestion engine, too, by way of Spark 

Streaming. 

Basic Concepts

Spark Streaming can ingest data from a range of sources, such as ZeroMQ, 

Kafka, Flume, Twitter (more on that in a moment), and raw TCP sockets. As with 
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Spring XD, after data has entered the system, you have the option to process 

and manipulate the data coming in and then store it to an outbound location.

Spark Streaming divides data into batches for processing, rather than han-

dling one piece of data at a time as Spring XD does. Then Spark Streaming 

processes and hands those batches to the requested output. Spark calls them 

“micro batches.”

Try creating a really basic example of a stream. You can use the raw TCP 

socket to emit some data and Spark Streaming to ingest it. Spark Streaming 

uses the concept of a DStream—a discretized stream—which is a continuous 

stream of data coming in for processing. 

Creating Your First Stream with Scala

StreamingContext replaces the standard SparkContext as the main entry point. 

The code listing is pretty simple; it listens to the raw socket on port 9898 on 

localhost and then does a quick word count on the data coming in.

import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.StreamingContext._
import org.apache.spark.storage.StorageLevel

object TCPIngester {
  def main(args: Array[String]) {

    val sparkConf = new SparkConf().setAppName("TCPIngester")
    val ssc = new StreamingContext(sparkConf, Seconds(1))
    
    val incomingLines = ssc.socketTextStream("localhost", 9898, 
StorageLevel.MEMORY_AND_DISK_SER)
    val words = lines.flatMap(_.split(" "))
    val counts = words.map(w => (w, 1)).reduceByKey(_ + _)
    counts.print()
    
    ssc.start()
    ssc.awaitTermination()
  }
}

The code is very similar to the previous word count examples in this chapter. 

StreamingContext takes the confi guration and also defi nes the amount of time 

to wait between processing the batches of data. In this example, you’ve asked 

for one second. The last two lines, though, are new, and they are required to 

ensure that Spark Streaming runs and monitors the stream.
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The Build File

Use the following build fi le to ensure that the streaming example compiles and 

packages up properly:

name := "StreamingExample"

version := "1.0"

scalaVersion := "2.10.4"

libraryDependencies += "org.apache.spark" %% "spark-core" % "1.0.0"

libraryDependencies += "org.apache.spark" % "spark-streaming_2.10" % 
"1.0.0"

resolvers += "Akka Repository" at "http://repo.akka.io/releases/"

Then use the sbt tool to build the project. It might take a few minutes for the 

streaming libraries and its dependencies to download.

Jason-Bells-MacBook-Pro:SparkStreaming Jason$ sbt package
[info] Set current project to StreamingExample (in build file:/Users/
Jason/work/scala/SparkStreaming/)
[info] Updating {file:/Users/Jason/work/scala/SparkStreaming/}
sparkstreaming...
[info] Resolving org.fusesource.jansi#jansi;1.4 ...
[info] Done updating.
[info] Packaging /Users/Jason/work/scala/SparkStreaming/target/scala-
2.10/streamingexample_2.10-1.0.jar ...
[info] Done packaging.
[success] Total time: 9 s, completed 13-Jul-2014 10:48:58

With everything compiled and packaged up you can test the project.

Testing the Project

There are two parts to this test. One is the Spark Streaming program you’ve just 

created, and the second is fi nding some data to stream in.

The example uses netcat to send the data out and uses the same port number 

(9898), to which the project will be listening. Start netcat fi rst; otherwise, the 

Spark Streaming program will fail to bind to the host and port number and 

then throw an exception.

http://repo.akka.io/releases
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It’s best to have two terminal windows open to perform this test. In a terminal 

window, start up netcat:

nc -lp 10000

There’ll be no output to say it’s started, it will just sit there waiting for input. 

In the other terminal window, you need to start the Spark Streaming project. 

Ensure that you have two local nodes running (as denoted by local[2] in the 

command line); otherwise, you won’t get the reduced output:

/usr/local/spark/bin/spark-submit --class "TCPIngester" --master 
local[2] streamingexample_2.-1.0.jar

It’s worth having the two terminal windows side by side, so you don’t miss 

the output. Type some text into the terminal running netcat, and you see the 

stream ingesting the information:

14/07/13 15:53:42 INFO BlockManagerInfo: Added input-0-1405256022600 in 
memory on cloudatics.com:55995 (size: 18.0 B, free: 297.0 MB)

You also see the reduced output:
-------------------------------------------
Time: 1405258766000 ms
-------------------------------------------
(this,1)
(is,1)
(another,1)
(a,2)
(and,2)
(wibble,3)

Saving the Output

It’s easy to extend this program further, adding the saveAsTextFiles method:

counts.saveAsTextFiles("mystream_",".txt")

After you’ve rebuilt the package with sbt and run the project again, you see 

the output written every second as a directory with an output fi le. With the 

stream processor running every second, it’s sometimes hard to see what fi le the 

output is in, but using the find command can easily solve that.

jason@cloudatics:~/streamtestout$ ls -l
total 108
drwxr-xr-x 2 jason jason 4096 Jul 13 16:48 mystream_-1405259285000..txt
drwxr-xr-x 2 jason jason 4096 Jul 13 16:48 mystream_-1405259286000..txt



 Chapter 11 ■ Apache Spark 309

c11.indd 10:2:12:AM  10/06/2014 Page 309

drwxr-xr-x 2 jason jason 4096 Jul 13 16:48 mystream_-1405259287000...txt
drwxr-xr-x 2 jason jason 4096 Jul 13 16:48 mystream_-1405259288000...txt
.
.
. (and so on ....)
.
drwxr-xr-x 2 jason jason 4096 Jul 13 16:48 mystream_-1405259309000...txt
drwxr-xr-x 2 jason jason 4096 Jul 13 16:48 mystream_-1405259310000...txt
drwxr-xr-x 2 jason jason 4096 Jul 13 16:48 mystream_-1405259311000...txt

jason@cloudatics:~/streamtestout$ find . -type f -exec grep "ipsum" {} 
\; -print
(ipsum.,1)
(ipsum,1)
./mystream_-1405259294000...txt/part-00000

Creating Your First Stream with Java

The Java example works in the same way logically as the Scala example: 

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.StorageLevels;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import scala.Tuple2;
import com.google.common.collect.Lists;

import java.util.regex.Pattern;

public final class JavaStreaming {
  private static final Pattern SPACE = Pattern.compile(" ");

  public static void main(String[] args) {

    SparkConf sparkConf = new SparkConf().setAppName("JavaStreaming");
    JavaStreamingContext jsc = new JavaStreamingContext(sparkConf,  new 
Duration(1000));

    JavaReceiverInputDStream<String> incomingLines = ssc.
socketTextStream(
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            "127.0.0.1", 10000, StorageLevels.MEMORY_AND_DISK_SER);

    JavaDStream<String> words = incomingLines.flatMap(new 
FlatMapFunction<String, String>() {
      @Override
      public Iterable<String> call(String incomingLine) {
        return Lists.newArrayList(SPACE.split(incomingLine));
      }
    });

    JavaPairDStream<String, Integer> counts = words.mapToPair(
      new PairFunction<String, String, Integer>() {
        @Override
        public Tuple2<String, Integer> call(String s) {
          return new Tuple2<String, Integer>(s, 1);
        }
      }).reduceByKey(new Function2<Integer, Integer, Integer>() {
        @Override
        public Integer call(Integer i1, Integer i2) {
          return i1 + i2;
        }
      });

    counts.print();
    jsc.start();
    jsc.awaitTermination();
  }
}

The pom.xml Maven build fi le has the dependencies for the Spark Streaming 

libraries and Google Guava libraries:

<project>
  <groupId>com.mlbook</groupId>
  <artifactId>javastreaming</artifactId>
  <modelVersion>4.0.0</modelVersion>
  <name>Java Streaming Example</name>
  <packaging>jar</packaging>
  <version>1.0</version>
  <repositories>
    <repository>
      <id>Akka repository</id>
      <url>http://repo.akka.io/releases</url>
    </repository>
  </repositories>
  <dependencies>
    <dependency>
      <groupId>org.apache.spark</groupId>

http://repo.akka.io/releases</url
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      <artifactId>spark-core_2.10</artifactId>
      <version>1.0.0</version>
    </dependency>
      <dependency>
          <groupId>org.apache.spark</groupId>
          <artifactId>spark-streaming_2.10</artifactId>
          <version>1.0.0</version>
      </dependency>
     <dependency>
        <groupId>com.google.guava</groupId>
        <artifactId>guava</artifactId>
        <version>17.0</version>
    </dependency>
  </dependencies>
</project>

Running and testing the project is the same as the Scala version previously 

covered; all you need to do is run netcat and then ensure you’re using the jar 

fi le that Maven has created with the following command:

/usr/local/spark/bin/spark-submit --class "JavaStreaming" --master 
local[2] javastreaming-1.0.jar

MLib: The Machine Learning Library

The Spark Machine Learning libraries provide Spark with some of the concepts 

covered earlier in the book with Weka. MLib provides the following,

 ■ Support Vector Machines

 ■ Linear Least Squares

 ■ Decision Trees

 ■ Naïve Bayes

 ■ K-means Clustering

Dependencies

This is where things get a little involved. MLib is dependent on the ScalaNLP 

library called Breeze, which is dependent on netlib-java and jbias. If you’re just 

going to want the use of linear calculations, then it might be a better idea to use 

other existing libraries, such as the Weka framework or the Apache Commons 

Math libraries.
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Netlib-java requires low-level libraries to be installed. I’m going to concentrate 

on Linux-based systems (Debian and Ubuntu especially).

sudo apt-get install libatlas3gf-base

This installs the libfortran3 library as well. The netlib-java library is a required 

dependency to be added to the build fi le of any MLib project you are working 

on; it’s not included in the Spark system.

"com.github.fommil.netlib" % "all" % "1.1.1" pomOnly()

The next two sections cover a couple of examples.

Decision Trees

Chapter 3 covers decision trees and uses Weka to produce a system to decide 

the best place to put a CD based on previous sales patterns. The walkthrough 

of the theory examines the notion of entropy-based classifi cation. 

Try walking through the code block by block. First, you need to import some 

data from a fi le (or a datastore) and convert it into vector classes. Be careful, as 

the vectors in MLib are different than the Java and Scala vectors. If you run into 

problems, make sure that you are importing the right ones.

val inputData = sc.textFile("/home/jason/mlibtestdata.csv")
val mldata = data.map { line =>
  val parts = line.split(',').map(_.toDouble)
  LabeledPoint(parts(0), Vectors.dense(parts.tail))
}

Then run the algorithm to determine the decision tree:

val model = DecisionTree.train(mldata, Classification, Entropy, 5)

The .train method takes the loaded data, the algorithm (in this case 

Classification), an impurity type (Entropy, but you could have chosen Gini), 

and the maximum depth of the tree.

You can evaluate the classifi cation and look at the predictions the algorithm 

has calculated. Finally, you output the training error rate (if there is one):

val labelAndPreds = mldata.map { point =>
  val prediction = model.predict(point.features)
  (point.label, prediction)
}
val trainErr = labelAndPreds.filter(r => r._1 != r._2).count.toDouble / 
parsedData.count
println("Training Error = " + trainErr)
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If you extend this basic code further, you could store the fi nal model so it 

can be reused. 

Clustering

The k-means clustering algorithm is very useful to construct within Spark MLib. 

It’s so easy that it could be run in the Spark shell to test it. 

Like the decision tree example, you load in some data and then defi ne the 

algorithm you’re going to use: 

val inputData = sc.textFile("/home/jason/mlibkmeans/trainingdata.txt")
val parsedData = inputData.map(s => Vectors.dense(s.split(' ').map(_.
toDouble)))

In this case, the k-means object trains the data, and you need to defi ne the 

number of clusters and the number of iterations you want the algorithm to run:

val numberOfClusters = 4
val numberOfIterations = 40
val clusters = KMeans.train(parsedData, numberOfClusters, 
numberOfIterations)

You can fi nally show the “Within Set Sum of Squared Errors” based on the 

trained k-means algorithm:

val WSSSE = clusters.computeCost(parsedData)
println("WSSSE = " + WSSSE)

Summary

 This chapter is a whistle-stop tour of the core Spark system and a number of 

the projects that work along with it. At the time of writing, Spark had just hit 

version 1.0, but it’s still considered cutting edge in terms of the landscape of 

machine learning and data tools.

That hasn’t stopped folks from calling it the Hadoop replacement, but at the 

end of the day it comes down to fi nding the tools that work for you, not against 

you. If you have a good resource of Scala developers, then perhaps Spark is a 

good fi t. 

One thing to keep in mind with these sorts of cutting-edge projects is that 

the codebase is liable to change from version to version, and it’s worth keeping 

on top of the mailing list discussions to see how the landscape is emerging. 
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When you’re in a room of data scientists, statisticians, and math types, you’ll hear 

one letter crop up again and again: the letter R. R is a programming language, 

and it’s basically command-line driven. If you used the Spark shell in Chapter 

11, then you’re already familiar with the shell concept; R is the same. In addition 

to being used in the command-line shell, R can be written in code form and run.

Why am I telling you all this? Well, on top of the programming skills that get 

mentioned, you might also be asked, “Do you do R?” After this chapter, you’ll 

hopefully have a starting point to reply, “Yes!”

Installing R

The R language comes ready to use for a number of operating systems. The 

download page at http://www.r-project.org has a number of mirror sites, so 

pick a mirror that’s closest to you. From the mirror, choose the download for 

your operating system.

Mac OSX

The current version of R (3.1.1 at time of writing) comes in two separate down-

load types: one for users running Snow Leopard and the other for Mavericks. 

 C H A P T E R 

12

Machine Learning with R

http://www.r-project.org
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The latter is built on XCode5 compiler binaries. Download the fi le and open it 

to install. It installs the R binaries to the /Applications folder.

Windows

The .exe download for Windows provides binaries for running on 32- or 64-bit 

machines. The base package download will provide you with everything you 

need to get started.

Linux

Binary downloads are available for Debian, Ubuntu, Red Hat, and SUSE Linux 

distributions. If you want to save some time (and effort) and you’re running 

Debian or Ubuntu, then you can use apt-get to install the r-base and r-base-dev 

packages. Ensure that the repository package base is up-to-date fi rst. For users 

of the RedHat family of distributions use the command sudo yum install R.

Your First Run

When you run R, you’re presented with the basic R shell, as shown in Figure 12-1. 

This is the main place where the work is done. It’s sparse, but it does the job fi ne. 

Use this to
quit the shell

Figure 12-1:  The R Shell
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If at any time you want help on a topic, you can use the help command. For 

example, if you want to know about Standard Deviation, just type help(sd), 

and R opens a new window with the information (see Figure 12-2). 

Figure 12-2:  R’s help system

You can quit the shell by either clicking the light switch on the top right of the 

program window (refer to Figure 12-1) or by typing quit() on the command line.

For basic needs, the R shell is fi ne and does the job well. For an actual devel-

opment environment, you have to install some more software such as R-Studio.

Installing R-Studio

The R-Studio project (see Figure 12-3) is a commercial integrated development 

environment (IDE) for R. It comes in an open source community edition that 

is free to use. To download R-Studio IDE, visit http://www.rstudio.com/

products/rstudio/download and select your operating system type. Make sure 

that the R base binary is installed as described in the preceding section before 

you download R-Studio.

http://www.rstudio.com


318  Machine Learning

c12.indd 10:2:25:AM  10/06/2014 Page 318

Figure 12-3:  R-Studio

The R Basics

To run through the R basics, I’m going to use the standard R development envi-

ronment. The command-line prompt is a simple greater than sign (>). 

You can perform calculations on the command line, so adding numbers 

together is a trivial process, like so:

> 1+2
[1] 3
>

To get proper use from R, though, you need to think a little more 

programmatically.

Variables and Vectors

R supports variables as you would expect. To assign them, you can either use 

the equal sign (=) or the less than sign and a hyphen together (<-):

> myage = 21
> myageagain <- 21
> myage
[1] 21
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> myageagain
[1] 21
>

Variables can also store string variables and other data types. The one you’ll 

use most are numeric values.

Lists of data are held in arrays, called vectors in R, and are defi ned with the 

c() function.
> lotterynums <- c(2,7,20,35,36,42)
> lotterynums
[1]  2  7 20 35 36 42

Vectors can also hold strings. Using the length() function tells you how 

many elements are in the array. 

> kc <- c("Robert", "Adrian", "Tony", "Bill", "Pat", "Trey")
> kc
[1] "Robert" "Adrian" "Tony"   "Bill"   "Pat"    "Trey"  
> length(kc)
[1] 6
>

To show specifi c values in the array, you can use the variable name and the 

element you want to show.

> kc[5]
[1] "Pat"

Matrices

Now that you know how vector lists of numbers work, you can convert them 

into a matrix. To defi ne a matrix, you take the data and then defi ne how many 

rows and columns you require.

> mymatrix <- matrix(c(1,2,3,4,5,6,7,8,9,10), nrow=2, ncol=5, 
byrow=TRUE)
> mymatrix
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    2    3    4    5
[2,]    6    7    8    9   10
>

You can then retrieve data based on the row and column position.

> # by row, col
> mymatrix[2,4]
[1] 9
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> # entire row
> mymatrix[2,]
[1]  6  7  8  9 10
> # entire col
> mymatrix[,4]
[1] 4 9
>

Instead of numeric row and column names, you can defi ne text label names 

to make things more readable.

> dimnames(mymatrix) <- list(c("row1","row2"),c("c1","c2","c3","c4"
,"c5"))
> mymatrix
     c1 c2 c3 c4 c5
row1  1  2  3  4  5
row2  6  7  8  9 10
>

You can reference data by row and column by using the row and column 

names you’ve just defi ned.

> mymatrix["row2", "c5"]
[1] 10

Lists

A list is a vector containing other objects. This can be a mixture of objects 

(numeric, Boolean, and strings, for example) or other vectors within the list.

> nums <- c(1,2,3,4,5)
> strings <- c("hello", "world", "again")
> bools <- (TRUE, FALSE)
Error: unexpected ',' in "bools <- (TRUE,"
> bools <- c(TRUE, FALSE)
> mylist <- list(bools, strings, nums)
> mylist
[[1]]
[1]  TRUE FALSE

[[2]]
[1] "hello" "world" "again"

[[3]]
[1] 1 2 3 4 5

To retrieve the strings on their own, you can slice the list accordingly with 

the [] notation.
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> mylist[2]
[[1]]
[1] "hello" "world" "again"

To reference a member of the listed object directly, you have to use a double 

squared bracket. You can modify the member within the list as well.

> mylist[[2]][1]
[1] "hello"
> mylist[[2]][1] <- "goodbye"
> mylist
[[1]]
[1]  TRUE FALSE

[[2]]
[1] "goodbye" "world"   "again"  

[[3]]
[1] 1 2 3 4 5

>

Data Frames

Data frames are basically lists of vectors. The column count is the same in 

the vectors. R comes with some predefi ned data frames to play with. Using the 

head() function, you can see the top few lines of the data frame. This saves 

the entire contents of the frame being shown in the command line.

> data(USArrests)
> head(USArrests)
           Murder Assault UrbanPop Rape
Alabama      13.2     236       58 21.2
Alaska       10.0     263       48 44.5
Arizona       8.1     294       80 31.0
Arkansas      8.8     190       50 19.5
California    9.0     276       91 40.6
Colorado      7.9     204       78 38.7

You can reference data with the row and column positioning like you did 

with the matrices.

> USArrests["New York",]
         Murder Assault UrbanPop Rape
New York   11.1     254       86 26.1
> USArrests["New York", "Assault"]
[1] 254
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Installing Packages

R comes with a comprehensive selection of packages that are available to down-

load. You can see the Comprehensive R Archive Network (usually referred to 

as “CRAN”) packages that are available on the R website at www.r-project

.org/. They are a broad spectrum of statistics, data-processing, and other tools. 

To install the packages, you use the install.packages() function from the 

R command line. It takes care of everything for you.

For example, to install the tools for Approximate Bayesian Computation (ABC), 

you install the “abc” package:

>install.packages("abc")

Some packages might require dependencies to be installed fi rst, so it’s prudent 

to use the dependencies fl ag to ensure they are installed, too.

> 
also installing the dependencies 'SparseM', 'quantreg', 'locfit'

trying URL 'http://cran.rstudio.com/bin/macosx/mavericks/contrib/3.1/
SparseM_1.03.tgz'
Content type 'application/x-gzip' length 825491 bytes (806 Kb)
opened URL
==================================================
downloaded 806 Kb

trying URL 'http://cran.rstudio.com/bin/macosx/mavericks/contrib/3.1/
quantreg_5.05.tgz'
Content type 'application/x-gzip' length 1846783 bytes (1.8 Mb)
opened URL
==================================================
downloaded 1.8 Mb

trying URL 'http://cran.rstudio.com/bin/macosx/mavericks/contrib/3.1/
locfit_1.5-9.1.tgz'
Content type 'application/x-gzip' length 597404 bytes (583 Kb)
opened URL
==================================================
downloaded 583 Kb

trying URL 'http://cran.rstudio.com/bin/macosx/mavericks/contrib/3.1/
abc_2.0.tgz'
Content type 'application/x-gzip' length 5303210 bytes (5.1 Mb)
opened URL
==================================================
downloaded 5.1 Mb

http://www.r-project
http://cran.rstudio.com/bin/macosx/mavericks/contrib/3.1
http://cran.rstudio.com/bin/macosx/mavericks/contrib/3.1
http://cran.rstudio.com/bin/macosx/mavericks/contrib/3.1
http://cran.rstudio.com/bin/macosx/mavericks/contrib/3.1
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The downloaded binary packages are in
/var/folders/b5/fz_57qk522nd6vqk2pd4lytr0000gn/T//RtmpOqHaEV/downloaded_
packages

To use the library after it’s installed, you call it with the library() function. 

It initializes and gives notice of the dependencies it has also loaded.

> library(abc)
Loading required package: nnet
Loading required package: quantreg
Loading required package: SparseM

Attaching package: 'SparseM'

The following object is masked from 'package:base':

    backsolve

Loading required package: MASS
Loading required package: locfit
locfit 1.5-9.1 2013-03-22

Loading in Data

With the basic notions of variables, lists, and vectors in place, it’s time to look 

at getting some data loaded into R. 

CSV Files

The read.csv function reads a .csv fi le and loads it into a data frame. 

> trans <- read.csv('vdata.csv', header=TRUE, sep=',')
> head(trans)
  wheels chassis pax vtype
1      4       2   4   Car
2      9      20  25   Bus
3      5      14  18   Bus
4      5       2   1   Car
5      9      17  25   Bus
6      1       1   1  Bike
>

If your .csv fi le has the column names in the fi rst line, then use header=TRUE; 

otherwise, set it to FALSE. The separator is defi ned with the sep keyword, and 

you defi ne whatever delimiter you want. If you have missing values, then it’s 

wise to use the fill fl ag as well to ensure that your data will have the correct 

number of elements in each row.
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MySQL Queries

Installing the RMySQL package gives you access to MySQL databases. You can 

pull queries into R so they can be processed.

>install.packages("RMySQL", dependencies=TRUE)

If you are working on a Windows-based system then the library requires 

building for the source fi les. Two environment variables are required for the 

library to compile:

> Sys.setenv(PKG_CPPFLAGS = "-I/path/to/mysql/include/dir")
> Sys.setenv(PKG_LIBS = "-L/path/to/library/dir -lmysqlclient")
> install.packages("RMySQL", type = "source")

As with Java code, you need to defi ne a connection to the database before 

you can query it.

>con <- dbConnect(MySQL(), user="myuser", password="mypass", 
dbname="mydb", host="localhost")

From there, after you have a connection, you can see what tables are in the 

database.

>dbListTables(con)

You then query a table. The data from the query is returned as a data frame.

>dta <- dbGetQuery(con, "SELECT * FROM mytable")

There are a number of other databases supported in R, including SQLite3, 

Postgresql, and Oracle.

Creating Random Sample Data

Perhaps you don’t have any data to load or you just want to have a random 

sample of numbers to play with. Using the sample function, you can create a 

handy vector of numbers.

> sam <- sample.int(1000, 20, replace=TRUE)
> sam
 [1]  32 192 783 654 250 261 150 687 619 332 549 225 545 175 508 782 237 
748 334 804

Plotting Data

R supports basic plots of your data. They can take a little amount of getting use 

to with regard to the syntax, so the following sections provide a short primer. 
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Bar Charts

How many bar charts did you draw at school? I drew far more than I care to 

remember, but R makes it easy for me now. (See Figure 12-4.)

> sam <- sample.int(1000, 20, replace=TRUE)
> sam
 [1]  32 192 783 654 250 261 150 687 619 332 549 225 545 175 508 782 237 
748 334 804
> barplot(sam, main="My first plot", horiz=TRUE)

Figure 12-4:  Horizontal bar chart

If you remove the horiz option, you get the bars travelling in a vertical direc-

tion, as shown in Figure 12-5.

> barplot(sam, main="My first plot")

Pie Charts

The pie charts in R are basic (see Figure 12-6), but they get the job done. It’s just 

a case of giving the pie chart values and labels. You can easily expand on this 

if necessary.

> pie(sam, main="First Pie Chart", labels=sam)
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Figure 12-5:  Vertical bar chart

Figure 12-6:  Simple pie chart

Dot Plots

The dot plot function (see Figure 12-7) is a simple case of specifying a vector. 

You can also group the dot plot into specifi c sections if required.

> dotchart(sam, main="My Dot Chart", labels="Value", xlab="Frequency")
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Figure 12-7:  Simple dot plot

Line Charts

With two vectors of numbers, you can create a line chart, as shown in Figure 12-8. 

> sam1 <- sample.int(10, 12, replace=TRUE)
> sam1
 [1]  5 10  4  8  2  2  2  4  2  5  2  6
> sam2 <- sam1
> plot(sam1, sam2)
> lines(sam1, sam2, type="l")

Simple Statistics

R is about statistics; that’s what it’s built for. Unlike Java, Scala, or Python, R’s 

syntax is a little unforgiving, but after a few sessions it becomes more natural.

Try creating a simple vector of numbers, and then you can work through 

some functions. Start with the basics.

> s <- sample(100, 12, replace=TRUE)
> # get a basic summary of the vector: lowest value, 1st quartile, 
median, mean, 3rd quartile and maximum value
> summary(s)
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   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   1.00    9.25   28.50   37.58   58.25   97.00 
> # just get the minimum
> min(s)
[1] 1
> # get the maximum value
> max(s)
[1] 97
> # get the average
> mean(s)
[1] 37.58333
> # get the median
> median(s)
> # get the standard deviation
> sd(s)
[1] 31.57807
> # use the table function to see the frequency of the data
> table(s)
s
 1  5  7 10 22 25 32 55 57 62 78 97 
 1  1  1  1  1  1  1  1  1  1  1  1

Obviously, you can reassign these function results as new variables or vectors. 

This gives you the basic outline of how the summaries work.

Figure 12-8:  Simple line chart
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Simple Linear Regression

This section gives an example of simple linear regression in R. It will give you 

a good idea of how things are put together. Here’s the story: You have profi t 

made based on the number of seconds that the sales team is on a call. If you 

know the profi t made, can you calculate how long the call took?

Creating the Data

First, create two separate vectors: one for the number of seconds in the call 

(secondsCall) and another for the amount of profi t that was made (dollarProfit).

> # setup the data
> secondsCall <- c(23,28,39,48,64,75,88,96,97,109,118,149,150,156,165)
> dollarProfit <- c(1,2,3,3,4,4,5,6,6,7,8,8,9,10,10)

The Initial Graph

You can create a simple plot for those values (see Figure 12-9) by using the plot 

command.

> # create a simple plot
> plot(secondsCall, dollarProfit)

Figure 12-9:  Seconds/dollar plot
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Regression with the Linear Model

Within R, there is a command that will do the linear model for you: lm. You 

can defi ne the model and save it as a variable. The order of variables is depen-

dent (secondsCall), followed by a tilde symbol (~), and fi nally the independent 

variables (dollarProfit).

> # define the linear model
> model <- lm(secondsCall ~ dollarProfit)
> model

Call:
lm(formula = secondsCall ~ dollarProfit)

Coefficients:
 (Intercept)  dollarProfit  
      0.6226       16.2286  

>

So, you now know the intercept (0.6226) and the dollar profi t amount of 16.22. 

You can expand on the model information using the summary command.

> # expend the summary of the model
> summary(model)

Call:
lm(formula = secondsCall ~ dollarProfit)

Residuals:
    Min      1Q  Median      3Q     Max 
-12.451  -5.151  -1.308   4.734  18.549 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)    0.6226     4.8981   0.127    0.901    
dollarProfit  16.2286     0.7681  21.129  1.9e-11 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.306 on 13 degrees of freedom
Multiple R-squared:  0.9717, Adjusted R-squared:  0.9695 
F-statistic: 446.4 on 1 and 13 DF,  p-value: 1.898e-11

So, you have a basic model that gives you a regression equation of 

secondsCall = 0.6226 + 16.2268 * profi t amount. To put the regression line on the 

plot, use the abline function.

> abline(model)
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Making a Prediction

Assume that someone made a $5 profi t, and you want to know the duration of 

the call based on the model you’ve just created. Using the predict command, 

you can make the prediction. 

> # make a basic prediction of someone making $5. 
> predict(model, newdata=data.frame(dollarProfit=5))
       1 
81.76568 
>

The prediction is that the person was on a call for 81 seconds. You can extend 

that by adding different interval types, which will give you the upper and 

lower prediction amounts based on the model.

> predict(model, newdata=data.frame(dollarProfit=5), interval="pred")
       fit      lwr      upr
1 81.76568 63.19372 100.3376
> predict(model, newdata=data.frame(dollarProfit=5), 
interval="confidence")
       fit      lwr      upr
1 81.76568 76.97553 86.55583

Basic Sentiment Analysis

Chapter 9, where you ingested tweet data and showed the positive and negative 

scoring, covers basic sentiment analysis. The same is achievable in R with some 

basic coding. The text to rate could be anything from simple sentences typed 

in to reading in a Twitter stream or a fi le. 

Functions to Load in Word Lists

You need two sets of text fi les: one with the positive words and one with the 

negative words. You can write two quick functions to load the text fi les and 

save them to two separate lists. 

LoadPosWordSet<-function(){
 iu.pos = scan("positive-words.txt", what='character', comment.char=";")
 pos.words = c(iu.pos)
 return(pos.words)
}
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Then you do the same for the negative word list:

LoadNegWordSet<-function(){
 iu.neg = scan("negative-words.txt", what='character', comment.char=";")
 neg.words = c(iu.neg)
 return(neg.words)
}

Writing a Function to Score Sentiment

You have a function that takes in a sentence and two word lists (positive and 

negative sentiment words). So now you can test it.

GetScore<-function(sentence, pos.words, neg.words) {
 sentence = gsub('[[:punct:]]', '', sentence)
 sentence = gsub('[[:cntrl:]]', '', sentence)
 sentence = gsub('\\d+', '', sentence)
 
 sentence = tolower(sentence)
 
 word.list = str_split(sentence, '\\s+')
 words = unlist(word.list)
 
 pos.matches = match(words, pos.words)
 neg.matches = match(words, neg.words)
 
 pos.matches = !is.na(pos.matches)
 neg.matches = !is.na(neg.matches)
 score = sum(pos.matches) - sum(neg.matches)
 
 return(score)
}

The fi rst thing that happens is the sentence is cleaned up with punctuation, 

control characters, and numbers removed. That should give you just a sentence 

of words; you then convert it into all lowercase letters.

You split the sentence into a list of words and fi nd out how many times the 

words match in the positive word list. You also do the same with the negative 

word list. 

With a positive score and negative score, you take the negative away from 

the positive to get the fi nal score.

You can save the functions as an R source fi le. You can either create it in a 

text editor or use the R-Studio editor to create the source fi le. For the purpose 

of this example, I save it all in a fi le called sentiment.r.
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Testing the Function

To test the sentiment code, you fi rst need to load the code and the required 

library into R:

>install.packages("stringr")
>library(stringr)
>source('sentiment.r')

> pos.words <- LoadPosWordSet() 
Read 2006 items

> neg.words <- LoadNegWordSet() 
Read 4783 items

So, you have 2,006 positive words and 4,783 negative words loaded. By using 

the GetScore method, you can get a score now on some text, and you can make 

up some to test. For example, here’s a positive one:

> testscore<-GetScore("This concert is the best thing I've been to!", 
pos.words, neg.words) 
> testscore 
[1] 1

As you can see the sentiment analysis gave a score of +1, so it’s positive. Try 

a negative sentence:

> testscore2<-GetScore("That's bad real bad, horrible", pos.words, neg.
words) 
> testscore2 
[1] -3

With a negative string, you get a score of -3. With this basic function, you 

could process a list of sentences and create a bar graph of the scoring. 

Apriori Association Rules

With a set of transactions, you can run a basic Apriori algorithm. The R base 

system requires a package called arules to be installed before use. 
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Installing the ARules Package

Before you get started you have to install the arules package:

> install.packages("arules", dependencies=TRUE)
also installing the dependencies 'colorspace', 'TSP', 'gclus', 
'scatterplot3d', 'vcd', 'seriation', 'igraph', 'pmml', 'XML', 
'arulesViz', 'testthat'
The downloaded binary packages are in /var/folders/b5/fz_57qk522nd6vqk2p
d4lytr0000gn/T//Rtmpgp3zNQ/downloaded_packages
> library(arules)
Loading required package: Matrix

Attaching package: 'arules'

The following objects are masked from 'package:base':
%in%, write

>

The Training Data

I have prepared a basic .csv fi le with the basket ID and one item per line. You 

can see that there are repeating basket IDs to show that the basket contains 

multiple items. I’ve called my fi le transactions.csv.

1001,Fries
1001,Coffee
1001,Milk
1002,Coffee
1002,Fries
1003,Coffee
1003,Coke
1003,Eraser
1004,Coffee
1004,Fries
1004,Cookies
1005,Milk
1006,Coffee
1006,Milk
1007,Coffee
1007,Fries
1008,Fries
1008,Coke
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Importing the Transaction Data

With the read.transactions method, you load the .csv data into a 

transactions object. It works in a similar way to the read.csv function you 

saw at the start of the chapter.

I’m setting the rm.duplicates fl ag to FALSE, because I don’t want basket 

items to be removed. 

> transactions <- read.transactions(file="transactions.csv", 
rm.duplicates=FALSE, format="single", sep=",", cols=c(1,2))
> transactions
transactions in sparse format with
 8 transactions (rows) and
 6 items (columns)
>

As you can see, the transaction object knows there are eight transactions 

with six items. You can see the relative frequency of items graphically by using 

the itemFrequencyPlot function, which generates a graph like the one in 

Figure 12-10.

> itemFrequencyPlot(transactions)

Figure 12-10:  Transaction frequencies
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Running the Apriori Algorithm

The function to run the algorithm is done in one line. You supply the transaction 

objects and a set of parameters. When you run the algorithm, you’re presented 

with the resulting output. So, with a support of 0.5 and a confi dence of 0.8 (the 

system is 80% confi dent), you get one association rule:

> minedbasketrules <- apriori(transactions, parameter=list(sup=0.5, 
conf=0.8, target="rules"))

parameter specification:
 confidence minval smax arem  aval originalSupport support minlen maxlen 
target   ext
        0.8    0.1    1 none FALSE            TRUE     0.5      1     10  
rules FALSE

algorithmic control:
 filter tree heap memopt load sort verbose
    0.1 TRUE TRUE  FALSE TRUE    2    TRUE

apriori - find association rules with the apriori algorithm
version 4.21 (2004.05.09)        (c) 1996-2004   Christian Borgelt
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[6 item(s), 8 transaction(s)] done [0.00s].
sorting and recoding items ... [2 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 done [0.00s].
writing ... [1 rule(s)] done [0.00s].
creating S4 object  ... done [0.00s].
>

Inspecting the Results

Have a look at the one rule and see what it is. You use the inspect command 

to look at the result:

> inspect(minedbasketrules)
  lhs        rhs      support confidence     lift
1 {Fries} => {Coffee}     0.5        0.8 1.066667
>

There’s an 80 percent chance that if someone buys fries, they’ll also buy a 

coffee. If you had thousands or tens of thousands of transactions, then you 

would raise the confi dence level and also be able to see more rules appearing.
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Accessing R from Java

Like the power of the Weka workbench can be accessed from a Java program, 

so too can R code. With the rJava bridge, you can run R within Java code and 

Java within R code. 

Installing the rJava Package

Originally the rJava package was split along with the JRI package; installing 

them was a technical process at the time. Fortunately, that has all been replaced 

with a single binary that covers both packages.

> install.packages("rJava")
trying URL 'http://cran.rstudio.com/bin/macosx/mavericks/contrib/3.1/
rJava_0.9-6.tgz'
Content type 'application/x-gzip' length 600621 bytes (586 Kb)
opened URL
==================================================
downloaded 586 Kb

The downloaded binary packages are in
/var/folders/b5/fz_57qk522nd6vqk2pd4lytr0000gn/T//Rtmpgp3zNQ/downloaded_
packages
>

The rJava package uses JNI to talk to Java libraries. From the point of view of 

working within R, things might seem a little cumbersome, but they do work fi ne.

Your First Java Code in R

Open your R console or R-Studio. Assuming you’ve installed the package as 

described earlier in this chapter, you can do the following:

> library(rJava)
> .jinit()
> stringobj <- .jnew("java/lang/String", "This is a string as a Java 
object, in R!")
> stringobj
[1] "Java-Object{This is a string as a Java object, in R!}"

After the library is loaded, you need to initialize the rJava system with the 

.jinit() method. You then create a new variable in R that is going to contain 

http://cran.rstudio.com/bin/macosx/mavericks/contrib/3.1
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a Java string object. The .jnew() method creates a new String object and popu-

lates the string. Notice that you have to put the full Java package name in with 

a slashed notation and not the dotted one.

If you want to fi nd the location of the word “Java” in the string, you use Java’s 

indexOf method. You can call it with rJava by executing the following:

[1] "Java-Object{This is a string as a Java object, in R!}"
> .jcall(stringobj, "I", "indexOf", "Java")
[1] 22

The command looks involved. The fi rst parameter is the existing object you 

previously created. The next is the return type from method; because the indexOf 

method returns an integer, you use the "I" in the calling method. Next is the 

method name—"indexOf"—and last is the thing you’re looking for, "Java". 

You see the result on the line underneath.

For the full package information for the rJava interface, have a look at the 

method list at http://rforge.net/doc/packages/rJava/00Index.html.

Calling R from Java Programs

The interface for calling R from Java is called JRI. The fi les required to do this 

are all in the library that was installed from R. There are two components that 

your Java project requires: the jar fi le (called JRI.jar) and the native library 

fi le (the name changes depending on the operating system you are using—on 

Mac OS X, it’s called libjri.jnilib).

Jason-Bells-MacBook-Pro:jri Jason$ pwd
/Library/Frameworks/R.framework/Resources/library/rJava/jri
Jason-Bells-MacBook-Pro:jri Jason$ ls -l 
total 256
-rw-r--r--  1 Jason  admin  31384 24 Apr 16:02 JRI.jar
-rw-r--r--  1 Jason  admin  10272 24 Apr 16:02 JRIEngine.jar
-rw-r--r--  1 Jason  admin  32354 24 Apr 16:02 REngine.jar
drwxr-xr-x  8 Jason  admin    272 24 Apr 16:02 examples
-rwxr-xr-x  1 Jason  admin  47500 24 Apr 16:02 libjri.jnilib
-rwxr-xr-x  1 Jason  admin    833 24 Apr 16:02 run
Jason-Bells-MacBook-Pro:jri Jason$ 

You’ll set up a basic Eclipse project and then you can see how the parts fi t 

together. I developed the example on the Mac OS X operating system, but the 

variations on the other operating systems, such as Windows or Linux, are not 

that different.

Setting Up an Eclipse Project

Create a Java project and call it JRITest. Go to the properties, click the Java 

Build Path, and add an external jar fi le. Now look for the JRI.jar fi le, which 

http://rforge.net/doc/packages/rJava/00Index.html
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is normally located in the /Library/Frameworks/R.framework/Resources/

library/rJava/jri folder. (See Figure 12-11.)

Figure 12-11:  Adding the JRI.jar file to the project

To make sure the R engine is working within Java, you’re going to create a 

small test fi le to initialize the engine, load the built-in iris dataset, and iterate 

through an evaluation. 

Creating the Java/R Class

To create a new class, select File ➪ New ➪ Class and call the new fi le TestR.java.

import java.util.Enumeration;

import org.rosuda.JRI.REXP;
import org.rosuda.JRI.RVector;
import org.rosuda.JRI.Rengine;

public class TestR {
    
    public static void main(String[] args) {
        Rengine rEngine = new Rengine(new String[] { "--vanilla" }, 
false, null);
        System.out.println("Waiting for R to create the engine.");
 
        if (!rEngine.waitForR()) {
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            System.out.println("Cannot load R engine.");
            return;
        }
 
        rEngine.eval("data(iris)", false);
        REXP exp = rEngine.eval("iris");
        RVector vector = exp.asVector();
        System.out.println("Outputting data:");
        for (Enumeration e = vector.getNames().elements(); 
e.hasMoreElements();) {
            System.out.println(e.nextElement());
        }
      }
}

The fi rst thing that happens within the main method is to start up an R engine. 

Nothing works until this step is complete.

Next, you pass an R command to load the iris data using the REngine.eval 

function. Last, you initialize an R vector within Java, convert the iris data to 

a vector, and then iterate the output.

Running the Example

If you attempt to run the class now, you will get an error from Eclipse, because 

the R runtime library isn’t linked to the project. You get the following error if 

the library isn’t linked:

Cannot find JRI native library!
Please make sure that the JRI native library is in a directory listed in 
java.library.path.

java.lang.UnsatisfiedLinkError: no jri in java.library.path
    at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1764)
    at java.lang.Runtime.loadLibrary0(Runtime.java:823)
    at java.lang.System.loadLibrary(System.java:1044)
    at org.rosuda.JRI.Rengine.<clinit>(Rengine.java:19)
    at TestR.main(TestR.java:10)

To set that up, you need to look at the run confi gurations for the project. Select 

Run ➪ Run Confi gurations and then click the TestR class. On the Arguments 

tab, you need to add a –D fl ag to the virtual machine arguments, as shown in 

Figure 12-12.

If you get an error about the R_HOME path not being set, then reopen the run 

confi guration and click the Environments tab, as shown in Figure 12-13. If you 

use windows locate the R.dll fi le on your system and add it to your Path. 
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Figure 12-12:  Adding the JRI library path

Figure 12-13:  Adding the environment R_HOME path
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Click Run and try again. This time you should see the correct output.

Waiting for R to create the engine.
Outputting names:
Sepal.Length
Sepal.Width
Petal.Length
Petal.Width
Species

Extending Your R Implementations

The code you’ve just walked through gives you the basic framework for getting 

R functions and commands working from a Java program. The R examples 

you’ve seen in this chapter could be easily converted to a Java program using 

this method if you want. If you have an R expert on your team, then it might be 

prudent to have that person write the R functions fi rst and then port them to Java.

R and Hadoop

If you are of a delicate nature, then you might want to look away from this sec-

tion. It is possible to run R jobs with Hadoop. When you look back at the date 

when the likes of R and Weka were fi rst developed, the notion of the MapReduce 

paradigm existed, but it was not on the top of the list of most data crunchers. 

Over time, though, the volumes of data have increased dramatically. What 

hasn’t progressed as much are the older tools. With large volumes of data, the 

memory implications make R diffi cult to use on a day-to-day basis. For small 

work, it’s fi ne; when used for larger, more memory-intensive work, things might 

eventually break. 

The RHadoop Project

Revolution Analytics developed the RHadoop libraries, which enable you to 

use Hadoop to scale R jobs. This gives you full MapReduce capabilities on one 

or more Hadoop nodes. 

The RHadoop project requires you to have Hadoop 1.0.2 or later (Cloudera 

CDH3). R installs on each node that you are intending to use with a copy of the 

rmr2 package installed as well.

Before you can download and install the rmr2 package you are required to 

have the following R packages installed:

 ■ Rcpp

 ■ RJSONIO (>= 0.8-2)
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 ■ Bitops

 ■ Digest

 ■ Functional

 ■ reshape2

 ■ stringr

 ■ plyr

 ■ caTools (>= 1.16)

To install the rmr2 package, you have to manually download it from Revolution 

Analytics’ Github repository (https://github.com/RevolutionAnalytics/rmr2) 

and run the following command from a terminal shell:

$ R CMD INSTALL rmr2_<the_version_number>.tar.gz . rmr2

The rmr2 package is not available on the CRAN package manager at present.

Finally the environment variable for HADOOP_HOME needs to be set and the 

location of the streaming jar fi le set for HADOOP_STREAMING.

A Sample Map Reduce Job in RHadoop

I’m going to break down a basic word count job in R using the RHadoop packages. 

I’m assuming you’ve already copied some text data into the Hadoop Distributed 

File System (HDFS).

The Map Phase

The fi rst thing you do is load the rmr2 library package into memory. The map 

splits the incoming lines by a space character, which gives you a list of words. 

You’re emitting a value of 1 for each word.

library(rmr2) 

map <- function(x,inputLines) {
  words.list <- strsplit(inputLines, '\\s') 
  words <- unlist(words.list)
  return( keyval(words, 1) )
}

The Reduce Phase

The reduce phase is a function that takes a word and its counts and reduces 

them to a word and a sum of the counts, This is then passed back to the calling 

function.

https://github.com/RevolutionAnalytics/rmr2
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## reduce function
reduce <- function(word, counts) { 
  keyval(word, sum(counts))
}

Setting Up the WordCount Job

You create a function to take in the input and output detail to the job and set 

up the basic map and reduce functions—the ones we’ve just created.

wordcount <- function (inputObject, outputObject=NULL) { 
  mapreduce(input= inputObject, output= outputObject, input.
format="text", map=map, reduce=reduce)
}

Running the Job

The fi rst thing you do is delete any references to the existing output data in 

HDFS. Hadoop fails if the output directory already exists.

Next, create your job with the input and output paths and then set a variable 

object to the output of the wordcount function you created earlier:

system("hadoop fs -rmr wordcount/outputdata")

hdfs.root <- 'wordcount'
hdfs.data <- file.path(hdfs.root, 'inputdata') 
hdfs.out <- file.path(hdfs.root, 'outputdata') 
out <- wordcount(hdfs.data, hdfs.out)

Checking the Results

You extract the output data from HDFS and then create a dataframe that 

reads in the results. Two column names are created for the top of the output: 

inputWord and frequency.

results <- from.dfs(out)

## check top 30 frequent words
results.df <- as.data.frame(results, stringsAsFactors=F) 
colnames(results.df) <- c('inputWord', 'frequency') 
head(results.df[order(results.df$count, decreasing=T), ], 10)
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N O T E  Although I’ve concentrated on the RHadoop library, it’s not the only one that 

exists. It’s also worth checking out the RHIPE software libraries for R published by the 

Department of Statistics at Purdue University. You can fi nd the website with all the 

details at www.datadr.org/install.html.

Connecting to Social Media with R

I know—another mention of the Twitter application program interface (API). 

This sort of data is important and not just for sentiment analysis. The majority 

of news, social graphs, and conversations happen on these platforms, and it’s 

increasingly important to keep on top of developments. This goes for R, too; 

being able to connect to Twitter is important.

In the previous examples you used Twitter’s development account to create 

the authorization keys for the application. You’re essentially forcing your appli-

cation to use these pre-existing keys. That works fi ne, but you have to approach 

things a little differently for the twitteR library.

Make a note of the consumer key and secret as you’ll need those, but there 

are couple of other things you need to confi rm.

First of all, make sure there’s no callback URL. You confi rm this on the Settings 

tab of your application. Make sure the Allow This Application to Be Used to Sign 

In to Twitter check box is set to true as well. Don’t forget to update the settings 

for them to take effect. Refresh the page until you see the settings are correct.

Now that the Twitter side of things is set up you can look at some R code to 

help you log in to Twitter.

You need to open a text editor and use the following code:

library(twitteR)
cred <- OAuthFactory$new(consumerKey="xxxxxxxxxxxxx",
 consumerSecret="xxxxxxxxxxxx",
 requestURL="http://api.twitter.com/oauth/request_token",
 accessURL="http://api.twitter.com/oauth/access_token",
 authURL="http://api.twitter.com/oauth/authorize")
download.file(url="http://curl.haxx.se/ca/cacert.pem", destfile="cacert.
pem")
cred$handshake(cainfo="cacert.pem")

Replace the consumer key and secret values with the ones you have for your 

application. Save the fi le as twitterconnect.r and then quit the text editor.

Back in the R command line, you load the source fi le, and it runs as soon as 

it’s loaded.

>source(twitterconnect.r')

http://www.datadr.org/install.html
http://api.twitter.com/oauth/request_token
http://api.twitter.com/oauth/access_token
http://api.twitter.com/oauth/authorize
http://curl.haxx.se/ca/cacert.pem
http://api.twitter.com/oauth/request_token
http://api.twitter.com/oauth/access_token


346  Machine Learning

c12.indd 10:2:25:AM  10/06/2014 Page 346

You see the twitteR library load the dependencies and then attempt to con-

nect to Twitter:

> source("twitterconnect.r")
Loading required package: ROAuth
Loading required package: RCurl
Loading required package: bitops
Loading required package: digest
Loading required package: rjson
trying URL 'http://curl.haxx.se/ca/cacert.pem'
Content type 'text/plain' length 251338 bytes (245 Kb)
opened URL
==================================================
downloaded 245 Kb
To enable the connection, please direct your web browser to: 

http://api.twitter.com/oauth/authorize?oauth_token=cv88UGfPrAJnraJPqdGje
g5QJEUMk185jOUncJhDk

When complete, record the PIN given to you and provide it here:

The main thing to look out for is the connecting URL with the oauth_token 

key. Copy the whole URL and paste it into a browser. You go to the Twitter site 

where you’re asked to authorize your application request. When you accept 

this you’d normally return to the application, but because you’ve disabled that 

feature, you get a personal identifi cation number (PIN) instead.

Back at the R command line, the program you have written is currently wait-

ing for input—the PIN—so type that in the R window.

As soon as the PIN is entered you’re returned to the R prompt. You need to 

register the oauth with the twitteR library, which you do with the following 

command:

>registerTwitterOAuth(cred)

The R command line responds with TRUE when the credentials are registered. 

After that’s done you can run a quick test:

searchTwitter("#bigdata")

You start to see results come through to the command line:

[[1]]
[1] "eriksmits: #BigData could generate millions of new jobs http://t.
co/w1FGdxjBI9 via @FortuneMagazine, is a Java Hadoop developer key for 
creating value?"
[[2]]
[1] "MobileBIAus: RT @BI_Television: RT @DavidAFrankel: Big Data 
Collides with Market Research http://t.co/M36yXMWJbg #bigdata 
#analytics"

http://curl.haxx.se/ca/cacert.pem
http://api.twitter.com/oauth/authorize?oauth_token=cv88UGfPrAJnraJPqdGje
http://t
http://t.co/M36yXMWJbg
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[[3]]
[1] "alibaba_aus: @PracticalEcomm discusses how the use of #BigData can 
combat #ecommerce fraud http://t.co/fmd9m0wWeH"
[[4]]
[1] "alankayvr: RT @ventanaresearch: It's not too late! Join us in S.F. 
for the 2013 Technology Leadership Summit - sessions on #BigData #Cloud 
&amp; more http. . ."
[[5]]
[1] "DelrayMom: MT @Loyalty360: White Paper 6 #Tips for turning 
#BigData into key #insights, http://t.co/yuNRWxzXfZ, @SAS, #mktg #data 
#contentmarketing"

It’s worth saving the credentials so you don’t have to keep re-authorizing the 

access tokens via Twitter. You can save them to a fi le:

>save(cred,file="credentials.RData")

The next time you want to use the Twitter credentials again, you can do it 

in two lines:

>load("credentials.RData")
>registerTwitterOAuth(cred)

Summar y

R is a complex piece of software, but it’s well-loved by data scientists (new and 

old ones alike) and also it’s become the de facto statistics software for the open 

source generation. 

There are hundreds of well-developed and documented libraries for R within 

the CRAN package library.

Development does come at a cost; it can be memory intensive for large and 

complex jobs. It doesn’t handle huge amounts of data well, but this is improved 

by the work done by Revolution Analytics and Purdue University bringing 

Hadoop processing power to the R engine. 

If you still prefer the comfort of your “normal” programming language, such 

as Java, then use the JRI/RJava combinations; they work very well. Think about 

real-time analytics to your Java web servlets, for example—very powerful indeed.

Regardless of whether you’re processing social media feeds, evaluating 

e-commerce shopping baskets, or reading sensor data from temperature gauges, 

look at R as an alternative for processing the data . 

http://t.co/fmd9m0wWeH
http://t.co/yuNRWxzXfZ
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You can download SpringXD from the Pivotal site at http://projects.spring

.io/spring-xd.

Installing Manually

Use the following steps to install SpringXD:

 1. Create a new directory: 

mkdir /opt/springxd

 2. Unzip the contents of the downloaded zip fi le.

 3. Set the environment variable to the directory:

export XD_HOME=/opt/springxd/spring-xd-1.0.0.M7/

Starting SpringXD 

Start SpringXD by doing the following:

 1. Change the directory to the location in which you installed SpringXD:

cd /opt/springxd/spring-xd-1.0.0.M7/xd

 2. Start the SpringXD server with the following command:

./bin/xd-singlenode & 

A P P E N D I X 

A

SpringXD Quick Start 

http://projects.spring
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Creating a Stream

Assuming that the SpringXD server is up and running, launch the SpringXD 

shell in another terminal window:

../shell/bin/xd-shell

From the SpringXD xd:> command prompt, create a stream like so:

xd:>stream create --name ticker --definition "time | log" –deploy

Go back to your SpringXD server terminal window and check the output of 

the stream to confi rm it’s working properly.

16:39:06,323  INFO task-scheduler-1 sink.ticker:155 - 2014-06-30 
16:39:06
16:39:07,326  INFO task-scheduler-4 sink.ticker:155 - 2014-06-30 
16:39:07
16:39:08,330  INFO task-scheduler-1 sink.ticker:155 - 2014-06-30 
16:39:08
16:39:09,331  INFO task-scheduler-1 sink.ticker:155 - 2014-06-30 
16:39:09
16:39:10,333  INFO task-scheduler-1 sink.ticker:155 - 2014-06-30 
16:39:10
16:39:11,339  INFO task-scheduler-7 sink.ticker:155 - 2014-06-30 
16:39:11
16:39:12,341  INFO task-scheduler-8 sink.ticker:155 - 2014-06-30 
16:39:12

Adding a Twitter Application Key

If you want to use SpringXD to ingest data from the Twitter application pro-

gramming interface (API), you fi rst need to have created an application on the 

Twitter developer site (http://dev.twitter.com).

In SpringXD you can store the Twitter credentials in a properties fi le. You 

can fi nd a template fi le in the ./xd/config/modules/directory. Older builds 

of SpringXD use the twitter.properties fi le directory and newer builds use 

the modules.yml fi le. 

To add a Twitter stream API key, add the following lines to the appropriate 

fi le with your text editor (I used vi in this example):

vi modules.yml

Uncomment the following lines:

twitter:
consumerKey: wSs8crbV3Wa. . . .
consumerSecret: yKKv7UqutMsvXyMuQks. . . .
accessToken: 1248789104-k5QurElGEHMabclPw. . . .
accessTokenSecret: ceqZkUPUYqv391qoKlFx6YGAe. . . .

Add the consumer key, secret and access tokens at their appropriate lines in the 

confi g fi le. If you want to use another set of credentials, you can defi ne them within the 

stream. Changes to these fi les take effect only after you restart the SpringXD server. 

http://dev.twitter.com
http://dev.twitter.com
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If you are running Mac OS X or a Unix operating system (for example, Linux) 

then the following instructions apply.

Downloading and Installing Hadoop 

You can download Hadoop from one of the Apache mirror sites. I used 

http://mirrors.ukfast.co.uk/sites/ftp.apache.org/hadoop/common/.

Chapter 10 covers Hadoop, and the example is based on Hadoop’s MapReduce 

version 1 engine (MR1). The instructions in this appendix are for the MR1 engine. 

You might want to consider the Hadoop 2 version, which has performance 

improvements; installation is very similar to the following steps.

A P P E N D I X 

B

Hadoop 1.x Quick Start

A NOTE FOR WINDOWS USERS

The Apache open source version of Hadoop is not really suitable for Windows oper-

ating systems. It’s possible to run via Cygwin, but it is slow and clunky. If you are on 

Windows, you probably want to look at the Hortonworks open source Hadoop dis-

tribution. Hortonworks has developed a version of Hadoop for Windows that runs 

natively.

http://mirrors.ukfast.co.uk/sites/ftp.apache.org/hadoop/common
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Look for the hadoop-1.2.x release and download the .tar.gz, where x is the 

highest number. There are extra links to “stable1,” “stable2,” and “current,” that 

help guide you to the correct version.

tar xvzf hadoop-x.x.x-bin.tar.gz

In the confi guration directory (called conf), edit the hadoop-env.sh fi le and 

edit the JAVA_HOME line:

export JAVA_HOME=/path/to/wherever/your-java/is

Also (this is a part that’s very rarely mentioned), if your SSH confi guration has 

a different port set up (the default port is 22, but the paranoid among us run it 

on another port), then you also need to comment out the HADOOP_SSH_OPS and 

add a line that reads:

export HADOOP_SSH_OPS="-p <my ssh port>"

T I P  Obviously you should change <my ssh port> to the actual number on which 

your SSHD accepts connections.

Next, if you have not already done so, create a passwordless RSA key on your 

machine:

ssh-keygen -t rsa -P ''

That command should save the key under your home directory in ~/.ssh/

id_rsa.

Now, append that fi le to the authorized keys fi le in that same directory on 

the same machine:

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

Add Hadoop’s bin path to your working path. Consider also adding this line 

to your ~/.bash_profile so that it executes each time you log in.

export PATH=$PATH:/path/to/hadoop/bin

The last thing to do is to define Hadoop’s filesystem settings in conf/

core-site.xml.

<configuration>
    <property>
        <name>fs.default.name</name>
        <value>hdfs://localhost:9000</value>
    </property>
</configuration>

Formatting the HDFS Filesystem

From the command line, run the following:

hadoop namenode -format

When executing this command, you’re prompted with Y or N to proceed; 

make sure you enter uppercase Y and not lowercase y. It’s case sensitive. 

hdfs://localhost:9000</value
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Starting and Stopping Hadoop

To start Hadoop, run:

start-all.sh

To stop it, use:

stop-all.sh

Process List of a Basic Job

Start up the server:

start-all.sh

Copy the data you want to process to the HDFS fi lesystem:

hadoop fs -put mydata.txt mydata.txt

Run the Hadoop job. There are two parameters: the input fi le or directory in 

HDFS and the directory to output the results (to ensure it doesn’t already exist 

on HDFS):

hadoop jar /path/to/hadoop-*-examples.jar wordcount mydata.txt output

Hadoop then processes the job. To see the results, you need to copy the result 

data from the HDFS fi lesystem back to your local fi lesystem.

hadoop fs --getmerge output output.txt

Stop the server:

stop-all.sh
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A P P E N D I X 

C

Useful Unix Commands

Regardless of the operating system you use on a daily basis, there’s nothing 

wrong with learning some handy Unix commands. The commands covered in 

this section will help you on the day-to-day tasks of quickly testing, parsing, 

and searching through your text data. 

If you’re a Windows user, you can still join in by downloading Cygwin, which 

is a Unix shell command interpreter. Cygwin is a shell that sits on top of the 

Windows Command application and behaves like it’s a Unix install. 

Some of these commands will appear from time to time in the chapters of 

this book, especially in Chapters 9 and 10, so it’s worth reviewing them now. 

Experiment with them and study the output so you have an idea of what to expect.

Using Sample Data

Before you get started with the tools, you need some sample data. With a text 

editor, type out the following lines and separate each value with a tab. 

987    1391548780   hhh bbb
988    1391548781   sda jjj
989    1391548782   asd asd
990    1391548783   gjh jkl
991    1391548784   abc abc
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992    1391548785   ghj gjh
993    1391548785   hhh bbb
994    1391548785   sda jjj
995    1391548786   asd asd
996    1391548787   gjh jkl
997    1391548787   abc abc
998    1391548787   ghj gjh

Name the text fi le text.txt, and then you can follow along with the follow-

ing commands and see the output. The sample data is basically comprised of 

a unique id, a timestamp, and some text. It’s the sort of thing you would see 

within a database table but is output as text. This example uses a tab delimiter, 

but you might fi nd data with commas, semicolons, and other characters used 

as a delimiter.

Showing the Contents: cat, more, and less

The cat command concatenates and prints the contents of one or more fi les to 

the console output.

Example Command

cat text.txt text2.txt text3.txt

Expected Output

987    1391548780   hhh bbb
988    1391548781   sda jjj
989    1391548782   asd asd
990    1391548783   gjh jkl
991    1391548784   abc abc
992    1391548785   ghj gjh
993    1391548785   hhh bbb
994    1391548785   sda jjj
995    1391548786   asd asd
996    1391548787   gjh jkl
997    1391548787   abc abc
998    1391548787   ghj gjh

Adding –b to the options gives you the line numbers, too.

$ cat -b sample.txt 
     1 987    1391548780   hhh bbb
     2 988    1391548781   sda jjj
     3 989    1391548782   asd asd
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     4 990    1391548783   gjh jkl
     5 991    1391548784   abc abc
     6 992    1391548785   ghj gjh
     7 993    1391548785   hhh bbb
     8 994    1391548785   sda jjj
     9 995    1391548786   asd asd
    10 996    1391548787   gjh jkl
    11 997    1391548787   abc abc
    12 998    1391548787   ghj gjh

If too much content is showing in the console for you to keep up with, you 

can add the more command after the cat command:

$ cat sample | more

Alternatively the less command gives you a controlled environment for 

viewing the contents of fi les but does not let you edit them. 

Filtering Content: grep 

For matching patterns within text, grep is your friend. It’s one of those utilities 

you’ll use again and again after you get used to it. The syntax is very basic: 

grep [options] [pattern to find] [name of file(s)].

Example Command for Finding Text

$grep 'bbb bbb' sample.txt

Example Output

To invert the output, fi nd the lines that don’t match the pattern then add the –v 

fl ag before the pattern. Table C-1 shows other handy option fl ags you can use 

with grep.

Table C-1: grep Option Flags

FLAG EFFECT ON OUTPUT

-c Outputs the number of times the pattern was matched in the fi le

-v Inverts the output to show lines that don’t match the pattern

-i Ignores the case on the input line so “BBB” and “bbb” would match

-n Displays the line number on which the pattern match occurs

-l Lists the fi lenames where the pattern matches
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The pattern matching can be taken a step further by introducing Perl-like 

patterns with the –P option. There are numerous books on the subject of Perl 

and Regular Expressions. 

$ grep -e '[1-5]\tsda' sample.txt 
988    139154878    sda jjj
994    1391548785   sda jjj

Sorting Data: sort

The sort command takes the input fi le and sorts in ascending or descending 

order. By default, sort assumes that everything is a string. (You’ll read about 

number values in a moment.)

Example Command for Basic Sorting

$sort sample.txt

Example Output

987    1391548780   hhh bbb
988    1391548781   sda jjj
989    1391548782   asd asd
990    1391548783   gjh jkl
991    1391548784   abc abc
992    1391548785   ghj gjh
993    1391548785   hhh bbb
994    1391548785   sda jjj
995    1391548786   asd asd
996    1391548787   gjh jkl
997    1391548787   abc abc
998    1391548787   ghj gjh

The –r fl ag outputs the results in descending order.

$ sort -r sample.txt 
998    1391548787   ghj gjh
997    1391548787   abc abc
996    1391548787   gjh jkl
995    1391548786   asd asd
994    1391548785   sda jjj
993    1391548785   hhh bbb
992    1391548785   ghj gjh
991    1391548784   abc abc
990    1391548783   gjh jkl
989    1391548782   asd asd
988    1391548781   sda jjj
987    1391548780   hhh bbb
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So far the example has covered sorting strings. Consider the following list 

of numbers:

10
18
1
20
17
15
103
110
12
22
21
201

Running a default sort command would sort the number values as strings, so 

the output would be correct, but it probably would not be what you hoped for.

$ sort sample2.txt 
1
10
103
110
12
15
17
18
20
201
21
22

The –n option treats the input data as numeric.

$ sort -n sample2.txt 
1
10
12
15
17
18
20
21
22
103
110
201
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The fi nal useful option is the –k fl ag, which splits the input data into columns 

and lets you sort on a specifi c column. In the sample data, the fi rst three-letter 

text column is the third, so by using the option –k3 you sort on the text column.

$ sort -k3 sample.txt 
991    1391548784   abc abc
997    1391548787   abc abc
989    1391548782   asd asd
995    1391548786   asd asd
992    1391548785   ghj gjh
998    1391548787   ghj gjh
990    1391548783   gjh jkl
996    1391548787   gjh jkl
987    1391548780   hhh bbb
993    1391548785   hhh bbb
988    1391548781   sda jjj
994    1391548785   sda jjj

When combining the sort option fl ags, you can output pretty much anything 

you want. For example, you could reverse sort the second column as a numeric 

value using the following code:

$ sort -k2nr sample.txt 
996    1391548787   gjh jkl
997    1391548787   abc abc
998    1391548787   ghj gjh
995    1391548786   asd asd
992    1391548785   ghj gjh
993    1391548785   hhh bbb
994    1391548785   sda jjj
991    1391548784   abc abc
990    1391548783   gjh jkl
989    1391548782   asd asd
988    1391548781   sda jjj
987    1391548780   hhh bbb

The combination of the –k, -n, and –r fl ags is suitable for most applications 

when you’re running through basic delimited data.

Finding Unique Occurrences: uniq

Sometimes data will have repeat lines in them due to a data entry error or a 

slightly error-prone database query. Before raising your voice at the database 

operator (I have to look in the mirror to talk to my DBA), you can use the uniq 

command to extract all the unique lines.

$ uniq sample.txt 
987    1391548780   hhh bbb
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988    1391548781   sda jjj
989    1391548782   asd asd
990    1391548783   gjh jkl
991    1391548784   abc abc
992    1391548785   ghj gjh
993    1391548785   hhh bbb
994    1391548785   sda jjj
995    1391548786   asd asd
996    1391548787   gjh jkl
997    1391548787   abc abc
998    1391548787   ghj gjh

Using uniq in combination with the –c fl ag, the output will contain the number 

of repeats that were found within the fi le. If you do not need to see the counts 

then you can use the –u fl ag in the sort command. 

Showing the Top of a File: head

When you’ve downloaded a 10,000-line fi le and you want to quickly inspect it, 

it’s so easy to use the cat command and dump the whole fi le out. Obviously, 

you can’t read it as the lines are appearing faster than your eyes. The head com-

mand shows the output of a defi ned number of lines.

$ head -n 5 sample.txt 
987    1391548780   hhh bbb
988    1391548781   sda jjj
989    1391548782   asd asd
990    1391548783   gjh jkl
991    1391548784   abc abc

If you want to show the last number of lines of the fi le, then use the tail 

command.

Counting Words: wc

Using wc counts the number of lines, words, and characters used within the 

text document.

$ wc sample.txt 
      13      48     277 sample.txt

If you only want to see the number of lines, then use –l as an option, -w for 

words, and –m for characters.
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Locating Anything: fi nd

The find command is one of my favorites. It takes a little getting used to, but 

once you do, it will be a big help to you. 

The syntax starts with a source directory (using a period [.] if you want to 

start in the current directory) and various text options. For example, here’s what 

it looks like to run the find command on the home directory on my machine.

$ find . -type f -name '*.txt' -print
./.gradle/caches/1.10/scripts/build_361heej71i7errcd096649rjns/
ProjectScript/buildscript/classes/emptyScript.txt
./.gradle/caches/1.8/scripts/build_4p3rjceekul5gbo8of3d9h4hso/
ProjectScript/buildscript/classes/emptyScript.txt
./.rvm/config/displayed-notes.txt
./.rvm/gems/ruby-1.9.2-p320/gems/arel-3.0.2/History.txt
./.rvm/gems/ruby-1.9.2-p320/gems/arel-3.0.2/Manifest.txt

With the –type fl ag, I am looking for fi les (f). –name gives the types of fi le I’m 

looking for—in this instance any fi le with the extension .txt. I print the results 

with the –print fl ag.

So far, there’s nothing here that a few Unix commands couldn’t do. The great 

thing about find is that you can use Unix commands within the command 

itself. Imagine you’re looking for any fi les with the phrase “SOFTWARE IS 

PROVIDED” in the body of the text fi le:

$ find . -type f -name "*.txt" -exec grep "SOFTWARE IS PROVIDED" {} \; -print

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

./.rvm/gems/ruby-1.9.2-p320/gems/arel-3.0.2/MIT-LICENSE.txt

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

./.rvm/gems/ruby-1.9.2-p320/gems/polyglot-0.3.3/License.txt

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

./.rvm/gems/ruby-1.9.2-p320/gems/polyglot-0.3.3/README.txt

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

./.rvm/gems/ruby-1.9.2-p320/gems/rack-test-0.6.1/MIT-LICENSE.txt

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

./.rvm/gems/ruby-1.9.2-p320/gems/rack-test-0.6.2/MIT-LICENSE.txt

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

./.rvm/gems/ruby-1.9.2-p320/gems/uglifier-1.2.6/LICENSE.txt

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

./.rvm/gems/ruby-1.9.2-p320/gems/uglifier-1.3.0/LICENSE.txt

This example uses the standard grep command that is covered earlier in 

this chapter, but it replaces the fi lename with {}, which is a placeholder for the 

fi lename on which the find command is working. 

find has saved my programming sanity many times over, and if I’m looking 

for a fi le that has a method name but I can’t remember where it is (this happens 

a lot with large codebases), I don’t have to fi re up my IDE. I just use find from 

the command line. 
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Combining Commands and Redirecting Output

The explanations for the Unix commands showed you how to use one command 

at a time. Using the pipe symbol (|), you can chain these commands together. 

With the greater than symbol (>), you can redirect output to a new fi le.

$ grep 'hhh' sample.txt | sort | less
987    1391548780   hhh bbb
993    1391548785   hhh bbb

The preceding command uses grep to search for 'hhh' in the sample.txt 

fi le and then runs the result through the sort command; this is then written 

to a new fi le called newsample.txt. Finally, the output of the new fi le is sent to 

the console with cat.

Picking a Text Editor

The choice of text editor is a very personal one, akin to liking a specifi c music 

group, sports team, or a favorite actor or actress. I’m not saying fi ghts have 

broken out about these editors, but conversations over coffee and beer have 

sometimes been emotional. If you want to work out the personality type of a 

software developer, just ask him what text editor he uses.

Ultimately it’s up to you what sort of text editor you’ll use. You might not be 

using it all the hours of the day, but for the times you need to quickly look at or 

edit something, you’ll want an editor that you can use fl uently and without fuss.

Colon Frenzy: Vi and Vim

Vi (see Figure C-1) was written in 1976 by Bill Joy and was introduced in 1978 

when it was released as part of BSD Unix. Pronounced “vee eye,” it’s been the 

mainstay of Unix system administrators for a long time. It’s still one of the most 

widely used text editors today.

 The thing that makes vi challenging is the concept of “modes” for the arcane 

commands: There are line-oriented “ex” commands that operate on lines of text; 

they are needed to write the fi le (:w) or quit the application (:q). If you want to 

quit without saving, then :q! is needed. Likewise, overwriting an existing fi le 

uses :w! There is an “insert mode” while you are entering new text, and there is 

an “edit mode” for moving and changing text.  Vi is so simple there is  a coffee 

mug available with all (100%) of the vi commands on it.

It takes time to learn the commands, how to delete lines, yank text into 

“buffers” then paste it, how to search for text, and other basic functions. After a 

bit of time, the “modes” actually becomes second nature. Vi includes a powerful 

“macro language” for adding your own commands or command sequences.
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Figure C-1:  The vi editor

I’m still a user of vi; it covers most of my needs. Though, I have to admit it 

drove me mad when I fi rst used it in 1995. I’ve still not moved over to vim (Vi 

iMproved), though it has windows, better editing, mouse support, and colorful 

syntax highlighting.

Nano

For those that can’t cope with the colon command, the nano editor (see 

Figure C-2) provides command-line heaven without all the complication. The 

nano editor lets you navigate around using the arrow keys (vi uses the h, j, k, 

and l keys for navigating). The editor includes a decent number of hints at the 

bottom of the screen, so you can see how you can save and quit.

For sheer speed of loading, editing, saving, and exiting a document, the nano 

is a very good choice.

Emacs

Compared to vi and nano, Emacs (see Figure C-3) is the big gun of the text edi-

tors. It’s highly customizable and confi gurable. With the resurgence in Lisp-like 

languages, Clojure being an example, usage of Emacs is on the rise.

Richard Stallman and Guy Steel, Jr. wrote the original program in 1976. If you 

want to try Emacs I’d recommend the xemacs version of the program. 
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Figure C-2:  The nano editor

Figure C-3:  The Emacs editor

Emacs bypasses the whole insert mode issue that vi users are willing to 

adopt. Like nano, in Emacs you type onscreen and you see the changes. It also 

has more than 2,000 built-in commands for those who are happy to use Emacs 

as their main editor for everything. It is extensible by writing Lisp programs.  

To exit Emacs if you start it accidentally, press Ctrl-X Ctrl-C.
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Machine learning is only part of the story; it’s the application of knowing 

what to use to get the insight you need. The domain of data science combines 

several disciplines that cover programming, math, domain knowledge, and 

visualization.

It’s very rare for one book to cover it all. To that end, I’ve included some 

further reading that will be of help to you on your machine learning and data 

journey. (I know what you’re thinking, and yes, I have bought and read all of 

these books.) 

Machine Learning

The machine learning arena is a huge domain and the majority of the books 

written are big, in-depth, heavy affairs that can take time to read, digest, and 

appreciate. Two stand out:

Data Mining – Practical Machine Learning Tools and Techniques by Ian H. Witten, 

Eibe Frank, and Mark A. Hall (Morgan Kaufmann, 2011, ISBN 9780123748560).

Collective Intelligence in Action by Satnam Alag (Manning, 2008, ISBN 

9781933988313).

A P P E N D I X 

D

Further Reading
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Statistics

More and more emphasis is being put on statistical knowledge and its applica-

tion. Sometimes it feels hard to get into, especially for software developers, so 

these two titles will help you along: 

Naked Statistics: Stripping the Dread from the Data by Charles Wheelan (Norton, 

2013, ISBN 9780393071955).

Keeping Up with the Quants: Your Guide to Understanding and Using Analytics by 

Thomas H. Davenport and Jinho Kim (Harvard Business Review Press, 2013, 

ISBN 9781422187258).

Big Data and Data Science

Regardless of whether you are a supporter of the term “Big Data,” there’s no denying 

the impact that data has on industry. In Big Data, planning is key, and it’s impor-

tant to have a proper understanding of the implications of planning and insight.

Data Just Right: Introduction to Large-Scale Data & Analytics by Michael 

Manoochehri (Addison-Wesley, 2014, ISBN 9780321898654).

Big Data: Understanding How Data Powers Big Business by Bill Schmarzo (Wiley, 

2013, ISBN 9781118739570).

Big Data @ Work: Dispelling the Myths, Uncovering the Opportunities by Thomas 

H. Davenport (Harvard Business Review Press, 2014, 9781422168165).

Big Data: A Revolution That Will Transform How We Live, Work, and Think by 

Viktor Mayer-Schonberger and Kenneth Cukier (Eamon Dolan/Houghton 

Miffl in Harcourt, 2013, ISBN 9780544002692).

Data Smart: Using Data Science to Transform Information into Insight by John W. 

Foreman (Wiley, 2013, ISBN 9781118661468).

Data Science for Business: What You Need To Know About Data Mining and Data-
Analytic Thinking by Foster Provost and Tom Fawcett (O’Reilly Media, 2013, 

ISBN 9781449361327).

Hadoop

The Hadoop platform has earned its place as the tool of use for distributed 

computing. It has transformed how companies can process volumes of data 

over commodity hardware. Although Hadoop 1.x was about the processing of 

blocks of data, Hadoop 2.x is about the data platform as an enterprise operating 

system. These books will get you up to speed:

Apache Hadoop YARN: Moving Beyond MapReduce and Batch Processing with 
Apache Hadoop 2 by Arun C. Murthy, Vinod Kumar Vavilapalli, Doug Eadline, 

Joseph Niemiec, and Jeff Markham (Addison-Wesley, 2014,  ISBN 9780321934505).
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Professional Hadoop Solutions by Boris Lublinsky, Kevin T. Smith, and Alexey 

Yakubovich (Wiley, 2013, ISBN 9781118611937)

Hadoop: The Defi nitive Guide by Tom White (O’Reilly Media, 2012, ISBN 

9781449311520).

Programming Pig by Alan Gates (O’Reilly Media, 2011, ISBN 9781449302641).

Visualization

My book concentrates on the pure back-end processing of data with machine 

learning techniques, but do not discount the power of visualization to com-

municate your results. These books will help:

Visualize This: The Flowing Data Guide to Design,  Visualization, and Statistics by 

Nathan Yau (Wiley, 2011, ISBN 9780470944882).

Information Is Beautiful by David McCandless (Harper Collins, 2012, ISBN 

9780007492893).

Facts Are Sacred by Simon Rogers (Faber & Faber, 2013, 9780571301614).

Making Decisions

The key to machine learning projects is making good decisions. With insight in 

hand, you can form next steps. The books listed here aren’t software oriented 

at all, but they will give you vast pools of thinking about how to process and 

make decisions with the information you have:

Eyes Wide Open by Noreena Hertz (HarperCollins, 2013, ISBN 9780062268617).

The Signal and the Noise: Why So Many Predictions Fail—but Some Don’t by Nate 

Silver (Penguin Books, 2012, ISBN 9781594204111).

Risk Savvy: How to Make Good Decisions by Gerd Gigerenzer (Penguin Books, 

2014, ISBN 9780670025657).

Lean Analytics: Use Data to Build a Better Startup Faster by Alistair Croll and 

Benjamin Yoskovitz (O’Reilly Media, 2013, ISBN 9781449335670).

Datasets

Sometimes it’s hard to fi nd data to play with. Luckily, there are a few websites 

with loads of the stuff to download:

 ■ UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/

The UCI maintains 290 datasets covering many different domains. What’s 

the most popular downloaded dataset? It’s still the iris. 

 ■ Hilary Mason: http://bit.ly/bundles/hmason/1

Hilary is Scientist Emeritus at Bitly, and she’s also a fan of data and 

cheeseburgers. The website gives you links to research-quality datasets 

that you can use.

http://archive.ics.uci.edu/ml
http://bit.ly/bundles/hmason/1
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 ■ Quora: http://www.quora.com/Where-can-I-find-large-datasets-
open-to-the-public 

Here you’ll fi nd a long list of URLs covering all sorts of topics that you 

can investigate. (This site requires you to sign in.)

Blogs

And they said RSS feeds were dead…I don’t think so! There are a few blogs that 

I keep an eye on regularly, and these are the ones that relate to what is covered 

in this book:

 ■ FiveThirtyEight: http://www.fivethirtyeight.com 

Nate Silver and a team of contributors build this daily digest of stories 

with data, covering everything from politics down to which is the best 

burrito in the United States.

 ■ Radar: http://radar.oreilly.com

This site for emerging technologies is worth checking out for the daily 

“Four Short Links,” which pinpoints some very interesting programs, 

stories, and case studies from around the Internet.

 ■ MathBabe: http://mathbabe.org

Cathy O’Neill’s blog discusses data, quantitative issues, and other subjects 

within the analytics arena.

Useful Websites

Although Google does a very good job of showing you where to fi nd the best 

sites, I still refer to the following sites when I’m looking for specifi cs.

 ■ Wiley: http://www.wiley.com

This is the main website for all Wiley books and also the place to go for 

the sample code examples for this book.

 ■ Stack Overfl ow: http://www.stackoverflow.com

A community of developers helping a community of developers, what’s 

not to like? This site is defi nitely worth a quick look for answers on cod-

ing, servers, and machine learning.

The Tools of the Trade

Here are the links to the tools that are used in this book. It’s worth having them 

bookmarked for updates and announcements. 

http://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public
http://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public
http://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public
http://www.fivethirtyeight.com
http://radar.oreilly.com
http://mathbabe.org
http://www.wiley.com
http://www.stackoverflow.com
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Apache Hadoop: http://hadoop.apache.org
SpringXD: http://projects.spring.io/spring-xd
Weka: http://www.cs.waikato.ac.nz/ml/weka
Mahout: http://mahout.apache.org

http://hadoop.apache.org
http://projects.spring.io/spring-xd
http://www.cs.waikato.ac.nz/ml/weka
http://mahout.apache.org
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