

Justin Rajewski

Learning FPGAs
Digital Design for Beginners

with Mojo and Lucid HDL

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-96549-8

[LSI]

Learning FPGAs
by Justin Rajewski

Copyright © 2017 Justin Rajewski. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Brian Jepson and Jeff Bleiel
Production Editor: Nicholas Adams
Copyeditor: Sharon Wilkey
Proofreader: Amanda Kersey

Indexer: Wendy Catalano
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

August 2017: First Edition

Revision History for the First Edition
2017-08-02: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491965498 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning FPGAs, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491965498

Table of Contents

Preface. vii

1. Introduction. 1
The Mojo 1
FPGAs Versus Microcontrollers: A Comparison 3
Setting Up Your Environment 7

Installing ISE 8
Installing the Mojo IDE 14
Mojo IDE Settings 15

2. Your First FPGA Project. 19
Creating a New Project 19
Understanding Modules 21
Representing Values 22
Using Always Blocks 23
Connecting the Button 25
Building Your Project 26
Loading Your Project 27
Some Notes on Hardware 30
Duplication 30
Array Indexing 30
Always Block Priority 31

3. Combinational Logic. 33
IO Shield 33
Logic Functions 36
Bitwise Operators 39
Reduction Operators 40

iii

Math 41
Common Subcircuits 44

Multiplexers 44
Decoders 46
Encoders 47
Arbiters 47
Decoder, Encoder, and Arbiter Example 50

4. Sequential Logic. 55
Feedback Loops and Flip-Flops 56

Clocks 57
Timing and Metastability 61

External Inputs 66
Add the Components 67
Instantiating a Module 69
Checking Timing 71
Bouncy Buttons and Edges 72
Running Total 73

5. Seven-Segment LED Displays and Finite-State Machines. 75
Single Digit 76
Lookup Tables 79
Binary to Decimal 83
The Finite-State Machine 87
The Stopwatch 87

6. Hello AVR. 91
The AVR Interface 91

Sending and Receiving Data 92
ROMs 92
The Greeter 93
Getting Personal with RAM 95

7. Mixing Colors with an RGB LED. 101
External I/O Constraints 103
Getting Fancy with PWM 105
Register Interface 111

8. Analog Inputs. 117
The AVR Interface 117
All the Channels 119

iv | Table of Contents

9. A Basic Processor. 121
What Is a Processor? 122

Instruction Sets 122
Memory 122

Initial Design 123
NOP 123
LOAD and STORE 123
SET 124
LT and EQ 124
BEQ and BNEQ 124
The ALU 124
The Program Counter 125

The Processor 125
The Program 128

The Assembler 130

10. FPGA Internals. 133
General Fabric and Routing Resources 133
Special Primitives 135

Block RAM (Memory) 135
Math 140
Clocking 140
Special I/O Features 143

11. Advanced Timing and Clock Domains. 145
Breaking Timing and Fixing It with Pipelining 145
Crossing Clock Domains 150

12. Sound Direction Detection: An Advanced Example. 155
Theory of Operation 156
Implementation Overview 162
Implementation 164

PDM Microphones 164
FFT 168
CORDIC 171
CAPTURE State 174
FFT State 175
DIFFERENCE State 177
AGGREGATE State 180

13. Lucid Reference. 183
Lucid Quick Reference 184

Table of Contents | v

Modules 185
Parameter Lists 185
Port Lists 186
Module Body 187

Expressions 195
Signals and Constants 195
Functions 196
Groups 197
Array Concatenation 197
Array Duplication 197
Array Builder 197
Bitwise Invert 197
Logical Invert 198
Negate 198
Multiply 198
Divide 198
Add and Subtract 198
Bit Shifting 199
Bitwise Operators 199
Reduction Operators 199
Comparison Operators 200
Logical AND and OR 200
Ternary Operator 200

Literal Values 201
Numbers 201
Strings 201

global Blocks 201
Array Size and Bit Selection 202

Array Size 202
Bit Selectors 203

Comments 204

A. Full Modules and Proof. 205

Index. 213

vi | Table of Contents

Preface

Designing digital circuits used to be something that only big companies could afford
to do. It used to require creating application-specific integrated circuits (ASICs)—tak‐
ing weeks or months to produce an actual chip, and requiring piles of cash or wiring
together tons of individual chips to perform various logic functions. Then the field-
programmable gate array (FPGA) was introduced. FPGAs are programmable logic
devices. Unlike an ASIC, the function an FPGA performs is determined at runtime,
so an FPGA can be configured to act like just about any digital circuit. However, it
wasn’t until recently that the cost of FPGAs has dropped to a point where they are
now affordable for even hobbyists.

An FPGA allows you to design digital circuits. Digital circuits are basically just a
bunch of logic gates (and, or, nor, etc.) connected together to perform a specific task.
The designs that you create can range from something as simple as a counter that
blinks an LED to something as complex as a multicore processor.

This book starts at the very beginning, with setting up your environment and getting
an LED to turn on. As you develop your skills, you will learn how to perform more-
complicated tasks and eventually design your own basic processor.

The board used in this book is the Mojo (along with the IO Shield). I created the
Mojo in 2013 as a simple no-shenanigans FPGA development board for the hobbyist.
I ran a Kickstarter to gauge interest and fund the initial round of boards. A lot more
excitement than I originally expected resulted and has allowed me to continue work‐
ing on it. My goal is to build a platform so that anyone who wants to learn about
FPGAs—and more generally, digital design—can without having to go to college or
having a personal mentor. This book is just another step toward this goal.

vii

http://embm.co/20
http://embm.co/21

Expected Background
This book is going to teach you the basics of digital hardware design. This is not a
topic for the complete beginner, and some background information is going to be
assumed. You should be familiar with electricity (voltage and current) and basic elec‐
trical components (resistors, capacitors, transistors, and LEDs). While not strictly
required, some programming background will be helpful, especially if it is with
embedded microcontrollers such as an Arduino.

The majority of this book uses Lucid. Lucid is a hardware description language (HDL)
that was designed to be beginner friendly and simpler to use with FPGAs than the
more traditional Verilog and VHDL languages. Lucid is similar to Verilog in many
ways, and our tools actually translate it to Verilog as an intermediate step during the
build process. However, it removes some of the quirks that plague Verilog and makes
many of the easy-to-make mistakes impossible.

Check out the Lucid Quick Reference guide in Chapter 13.

Lucid shares similar syntax with programming languages such as C/C++ and Java.
Being familiar with one of these can help. However, it is important to remember that
Lucid is a hardware description language and not a programming language.

It is important to have a solid understanding of binary, hexadecimal, and decimal
number systems.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

viii | Preface

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
A repo of the book example projects is here:

https://github.com/embmicro/book-examples

A repo of all the built-in example projects in the Mojo IDE is here:

https://github.com/embmicro/components-library/tree/master/base/mojo-v3/Lucid

If you are familiar with Git, you can use it to clone the repos. If you aren’t, you can
follow those links and click the green “Clone or download” button to open a drop‐
down menu with a link to download a ZIP of all the files.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/learning_FPGAs.

Preface | ix

https://github.com/embmicro/book-examples
https://github.com/embmicro/components-library/tree/master/base/mojo-v3/Lucid
http://bit.ly/learning_FPGAs

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

x | Preface

mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Introduction

FPGA stands for field programmable gate array. That mouthful is simply trying to tell
you that you can program an FPGA over and over (field programmable) and that it is
more or less just a large array of logic gates (gate array).

Unless you already know what all that means, it is still not very helpful, so let’s break
it down a little more. An FPGA belongs to a family of devices known as programma‐
ble logic devices. These devices allow you to design a digital circuit, and the device will
become that circuit. This works by configuring small blocks (known as slices) to per‐
form logic functions and connecting them together to implement your larger design.
A more detailed description of how this all works is covered later. You can reconfig‐
ure the FPGA as many times as you want, and each time it will become the new cir‐
cuit without needing to physically change anything!

In this chapter, we will explain a little more about what FPGAs are and what they are
good at. We will also walk you through all the steps to set up the necessary software
on Windows or Linux. Unfortunately, Macs are not supported by Xilinx’s tools, but
you can work through a virtual machine running a compatible operating system. You
can do with this with VirtualBox and Ubuntu, both of which are free. With a working
environment, we will work through a basic project that will turn on an LED when a
button is pressed.

The Mojo
Throughout this book, we will be using the Mojo and its IO Shield. The Mojo, shown
in Figure 1-1, is an FPGA development board that is relatively inexpensive and
requires only a computer and a micro USB cable to use. Unlike many other FPGA
development boards, it is fairly minimal, with most of the FPGA’s pins broken out
onto easy-to-use 0.1″ headers (a total of 84 digital I/O pins).

1

https://www.virtualbox.org/
https://www.ubuntu.com/

Figure 1-1. The Mojo

The Mojo also has an Arduino-compatible microcontroller whose main function is to
program the FPGA over USB. However, once the FPGA is programmed, the micro‐
controller can be used as an ADC (eight analog inputs are broken out) and a USB-to-
serial interface for your FPGA designs. Beyond the other bare necessities such as a 50
MHz oscillator, the Mojo features eight LEDs and a button (commonly used as a
reset).

The I/O on the Mojo is all at 3.3 V and is not 5 V tolerant. Power can be supplied via
the USB port, the barrel jack, the two holes, or the RAW input on the large headers.
The supplied power should be between 4.8 V–12 V, with 5 V being the recommended
voltage. You can connect an external power supply and the USB port at the same
time, as the USB port is protected by a diode.

You can find more information and order the Mojo from Embedded Micro.

The IO Shield, shown in Figure 1-2 is an add-on board that stacks on top of the Mojo.
It features 4 7-segment LED digits (like the display on your microwave), 24 LEDs, 24
switches, and 5 buttons. It is a great board for working through example projects. You
can find more information and order your own from Embedded Micro.

2 | Chapter 1: Introduction

http://embm.co/20
http://embm.co/21

Figure 1-2. IO Shield

FPGAs Versus Microcontrollers: A Comparison
FPGAs and microcontrollers are often compared. This is especially true for people
coming from a background of working with boards such as the Arduino or Rasp‐
berry Pi. An analogy that I particularly like is to think of a microcontroller as a per‐
son. People are flexible. You can teach someone to do almost any task, and his arms
and hands are capable of manipulating basically anything. However, people can really
focus on only one thing at a time, and unfortunately, we have only two hands. An
FPGA, on the other hand, is like an assembly line. You can tailor it specifically for the
exact job it needs to do. You can have many stages in the line that are all working at
the same time, independent of one another.

FPGAs have been becoming more popular recently and have started appearing in
more mainstream news. It used to be that if you wanted to improve the performance
of an application, you simply bought or waited for a faster processor. However, in
recent years, even though Moore’s law continues, processor performance has largely
stalled with the extra transistors being used to cram more cores into a single chip.

FPGAs Versus Microcontrollers: A Comparison | 3

Because of this, people have started turning to FPGAs to accelerate tasks by creating
custom hardware.

When you are working with FPGAs, you are designing hardware, not software. To
make this a little clearer, let’s look at something that could be done with either an
FPGA or a microcontroller: turning on an LED when you press a button. If you were
to do this with a microcontroller, such as an Arduino or Raspberry Pi, the code to do
this would read the button input, and if it is pressed, turn the LED on, and otherwise
turn it off. This would keep happening over and over in a loop. Read button, update
LED, read button, update LED, and so on. The problem with this is that the processor
is now spending all of its time keeping the LED up to date with the current value of
the button.

If you did the same project with an FPGA, you could simply connect the LED and the
button through the FPGA. Since they are connected, there is no loop, and there is no
code; the LED just turns on when the button is pressed. Now, if you wanted to change
it up an, say, turn on the LED when the button is not being pressed, with a microcon‐
troller you just change the test condition. However, with an FPGA, you can simply
insert a NOT gate between the LED and button.

With the microcontroller, the processor is fully busy with this trivial task. What hap‐
pens when you want it to also do something else, such as read other inputs or per‐
form calculations? The processor has to juggle the tasks, spending only finite
amounts of time on each one. As the complexity of your other code grows, the
amount of time the processor has to spend checking the button and updating the
LED shrinks, making it take longer and longer for the LED to turn off after you press
the button.

FPGAs are not like this. Instead, with an FPGA, since it is all hardware, the circuit
you designed to read the button and update the LED will operate completely inde‐
pendently of anything else you throw in your design. You could have another part of
the FPGA crunching some serious numbers, but the LED will still be just as respon‐
sive as before.

Although you can usually do the same task with a microcontroller or an FPGA, there
is usually a clear better choice. Things that require a lot of complex decision-making
or sequential operations are commonly better candidates for microcontrollers.
Things that can be done in stages or have a regular set pattern are great for FPGAs.
This is just a rule of thumb, but the takeaway is that custom hardware and a processor
fill different needs, and it’s often great to have both (and the Mojo does).

Another powerful feature of FPGAs is that they can read or write every I/O pin every
clock cycle. With a microcontroller, you are typically limited to reading registers of 8
or 32 bits that correspond to I/O pins. If you need to sample more pins, you need to
do it over multiple cycles, which may not be ideal. This makes it really easy to drive

4 | Chapter 1: Introduction

things that require a lot of I/O, such as LED matrices or a ton of servos. It’s also possi‐
ble to read and write I/O pins at much higher rates. The FPGA on the Mojo is capable
of I/O speeds up to 950 MHz; that’s 950 million reads or writes a second! Compare
this to a typical Arduino’s max I/O toggle rate of around 3–4 MHz (with a 16 MHz
clock), and this is achievable only if you dedicate all the processing time to toggling
the pin.

Table 1-1 summarizes some of the key distinctions.

Table 1-1. FPGA versus microcontrollers

Micro FPGA
Write software. Design hardware.
Typically executes one instruction at a time. All parts of your circuit can operate independently.
Fixed maximum clock speed. Maximum clock speed is dependent on your design.
A handful of I/O pins that can be accessed in small
groups (typically eight) at a time.

Many I/O pins that can all be accessed simultaneously.

Usually store programs in nonvolatile (persistent)
memory.

RAM based and needs to be programed after power on (the Mojo
does this automatically).

Often very power efficient with advanced sleep modes. Power usage depends on your design but typically requires more
than a microcontroller.

Fixed peripherals that limit the devices you can connect. Can interface with virtually any digital device.

So what can you do with an FPGA that you can’t with a microcontroller? In Chap‐
ter 12, we use seven microphones to detect the directions of potentially multiple
sound sources. Figure 1-3 shows the layout of the microphones on the board. This is
done by calculating the delays between all the microphones for various frequencies
and piecing them together to get an image of the sounds around the microphone
array. A crucial step is sampling all the microphones at exactly at the same time. With
an FPGA, it is fairly trivial to exert precise control over I/O pins. Once the samples
are gathered, the FPGA is capable of performing all the calculations incredibly fast.
The result is a sensor that constantly listens to its surroundings, generating direction
data at over 80 Hz (limited by the sample acquisition time and not the processing
time).

FPGAs Versus Microcontrollers: A Comparison | 5

Figure 1-3. Microphone Shield

One of my favorite projects with the Mojo was a hexapod, shown in Figure 1-4. A
hexapod is a 6-legged robot that usually has 3 servos per leg (18 total) plus 1 or 2
more for the “head.” Controlling all these servos can be pretty tricky. Many people
have made hexapods without using FPGAs. However, even if all you want to do is
make the hexapod walk, you still need to get external servo controllers to control that
many servos. With an FPGA, you simply add a servo controller as part of your FPGA
design, without the need for any external hardware. With an FPGA, every single I/O
pin can control a servo. What made the FPGA in this project really necessary was the
addition of a 2-megapixel camera (1,600 x 1,200) that took 15 pictures per second
(nearly 29 million pixels per second!). The images from the camera were streamed
directly into the FPGA, which performed blob detection (to look for red objects). By
having the robot detect red objects, it was able to move its body and “watch” a red ball
as someone moved it around. You can check it out in action on YouTube.

6 | Chapter 1: Introduction

https://youtu.be/KxeSHZFrkOw

Figure 1-4. Hexapod

Setting Up Your Environment
The first step on your journey to becoming a digital hardware master is to install all
the necessary tools. The FPGA on the Mojo is a Spartan 6 XC6SLX9 from Xilinx.
Because of this, you need to download and install Xilinx’s tools to synthesize (build)
your projects into configuration files (often called bit files) for the FPGA. Xilinx’s
tools are a bit clunky, so we will be using the Mojo IDE to do all the work. Although
you won’t need to use Xilinx’s tools directly, the Mojo IDE relies on them to build
your designs.

Synthesize
We use the term synthesize instead of compile and link, as you would for code, because
the tools for hardware are quite different from software. With software, each file is
compiled into instructions that are more or less a direct translation of your code.
Each file is then linked with the other compiled files to create your program.

With an FPGA, the tools use your design files as a description of the behavior the cir‐
cuit needs to have. It then looks at your entire design and synthesizes a circuit that
will match its behavior. The tools we are using need to rebuild the entire project if you
edit even the smallest thing in a single file. This can be a major headache for bigger
FPGAs, when synthesis can take hours or days. Partial resynthesis to speed things up
is an active area of development. Luckily for us, most projects on the Mojo synthesize
within a few minutes.

Setting Up Your Environment | 7

The tools require you to be using Windows or Linux. If you’re
using Windows, Windows 7 or newer is recommended. Although
Windows 8 and above isn’t officially supported by the tools, it
should still work with some minor workarounds. Most versions of
Linux should work fine, but CentOS is known to have issues with
setting up the Mojo and is not recommended. Ubuntu and its
derivatives should work out of the box.
If you have a Mac, you can run Linux in a virtual machine or boot
Linux from a USB drive. You can do the same for Windows if you
have a license. If going this route, I recommend VirtualBox and
Ubuntu. Both are free and known to work.

Installing ISE
ISE is the name of the tool Xilinx provides to build projects for the Spartan 6 family
of FPGAs. Xilinx has a newer tool called Vivado, but that doesn’t support Spartan 6
devices.

Unfortunately, the installation process for ISE is a bit complicated. You are required
to make an account with Xilinx to verify what you are using ISE for and where you
live (export restrictions are imposed by the US government). ISE is a fairly large pro‐
gram. The download file is just over 6 GB, and the actual installation requires an
additional 16 GB or so of space. After it is installed, you will then need to license it.
The FPGA on the Mojo is covered by Xilinx’s free WebPACK license, but you still
have to get the free license.

Head over to the Xilinx Downloads page. You need to download version 14.7 of ISE.
This is the latest and final version. It should already be selected. Scroll down past the
Multi-File Download: ISE Design section to ISE Design Suite. In this section, select
the full installer for your platform (Linux or Windows). You will likely be prompted
to fill out a survey on your reasons for downloading it. Then you will be asked to sign
in. Create an account to continue with the download.

If you are on Windows, you need a way to extract the TAR file. Some TAR extractors
don’t like this archive and fail to extract the entire thing. 7-Zip is known to work and
is free. You can download it from the 7-Zip website.

With the files extracted, you need to start the installer. On Windows, double-click the
xsetup executable. On Linux, you need to run xsetup with root privileges:

sudo ./xsetup

Once in the setup, accept all the license agreements. On the page that asks which edi‐
tion to install, select ISE WebPACK, as shown in Figure 1-5.

8 | Chapter 1: Introduction

https://www.virtualbox.org/wiki/Downloads
https://www.ubuntu.com/
http://embm.co/ise
http://www.7-zip.org/download.html

Figure 1-5. ISE edition selection

The next page, shown in Figure 1-6, asks which components you want to install.
Make sure that Acquire or Manage a License Key is selected. If you are on Linux,
make sure Ensure Linux System Generator Symlinks is also selected, as shown in
Figure 1-7. You can uncheck the other options. They won’t hurt anything if you install
them, but they aren’t needed. If you run into trouble with the installer, you can try to
uncheck “Use multiple CPU cores for faster installation,” as it has been reported to
cause problems in rare circumstances.

Setting Up Your Environment | 9

Figure 1-6. ISE installation options for Windows

Figure 1-7. ISE installation options for Linux

10 | Chapter 1: Introduction

On the next page, leaving the installation path as the default will make things a little
easier later, but feel free to change it as long as you remember where it is.

If you are using Windows 8.1 or Windows 10 on a 64-bit machine
and encounter problems, check out Embedded Micro’s ISE Installa‐
tion Tutorial for other OS specific fixes.

Once the installation is complete, a new window to set up a license should open. If for
whatever reason it doesn’t, you can manually open it by launching ISE and going to
Help → Obtain a License Key.

On Windows, you can double-click the ISE icon that should now be on your desktop.
On Linux, if you installed ISE to the default directory, you can run the following
commands to launch it on a 64-bit system:

source /opt/Xilinx/14.7/ISE_DS/settings64.sh
/opt/Xilinx/14.7/ISE_DS/ISE/bin/lin64/ise

To launch ISE on a 32-bit system, use the following:

source /opt/Xilinx/14.7/ISE_DS/settings32.sh
/opt/Xilinx/14.7/ISE_DS/ISE/bin/lin/ise

In the Xilinx License Configuration Manager, shown in Figure 1-8, select Get Free
Vivado/ISE WebPack License and click Next.

A little dialog box showing your system’s information pops up. Click Connect Now to
open a web browser to acquire the license. If the button fails to open a browser, you
can go to the license page directly.

Setting Up Your Environment | 11

https://embeddedmicro.com/tutorials/mojo-software-and-updates/installing-ise
https://embeddedmicro.com/tutorials/mojo-software-and-updates/installing-ise
http://www.xilinx.com/getlicense

Figure 1-8. Select the WebPack license

You need to log into your Xilinx account again. When you are on the Product Licens‐
ing page, shown in Figure 1-9, select ISE WebPACK License and click Generate
Node-Locked License to create your license. If you don’t see this option, you may
have already generated a license before. In this case, head over to the Manage Licen‐
ses tab and download your existing license by using the tiny download button in the
bottom-left corner.

Figure 1-9. Generate the WebPACK license

12 | Chapter 1: Introduction

Click through the little pop-up window until the license is created and you are taken
to the Manage Licenses tab. On this page, you should see your newly generated
license. To download it, click the tiny blue arrow in the lower-left corner, as shown in
Figure 1-10.

Figure 1-10. Click the little arrow in the bottom-left corner to download your license

A file named Xilinx.lic should be downloaded.

Back in the Xilinx License Configuration Manager, navigate to the Manage Licenses
tab, if you’re not already there, and click Load License. Locate the Xilinx.lic file you
just downloaded and select it. With the license loaded, the license manager should
look like Figure 1-11.

Setting Up Your Environment | 13

Figure 1-11. License manager with the WebPACK license loaded

Note that it might not look exactly like this, but ISE_WebPACK and PlanAhead
should now be green.

ISE should now be ready to build your projects. You can close any ISE-related win‐
dows still open.

Installing the Mojo IDE
Installing the Mojo IDE is substantially simpler than setting up ISE. Head over to
Embedded Micro and download the latest version. If you are on Windows, the instal‐
ler is the recommended way to go.

The installer is pretty straightforward. Just follow the instructions until everything is
installed. At the end of the installation, it should also install the necessary drivers.

14 | Chapter 1: Introduction

http://embm.co/ide

On Linux, you just have the files and you can place them anywhere you want. You
also need to have a JRE version 7 or newer to run the IDE. If you are using Ubuntu,
you can install it by entering the following command:

sudo apt-get install openjdk-7-jre-headless

You also need access to serial ports. Again on Ubuntu, you can use the following to
add yourself to the dialout group to get permission:

sudo usermod -a -G dialout `whoami`

In the Linux Mojo IDE files, there is a folder named driver with a file 99-mojo.rules.
You should copy this file to /etc/udev/rules.d/. This ensures that you have permission
to connect to the Mojo and prevents Ubuntu from thinking it is a modem and lock‐
ing it up for a while whenever it is plugged in.

You should log out or restart your computer to make sure all these changes take
effect.

Mojo IDE Settings
Before you create your first project, you need to tell the Mojo IDE where you installed
ISE and what serial port the Mojo connects to.

Launch the Mojo IDE. If you installed it using the Windows installer, you should have
a Start Menu entry and/or a desktop icon that you can use to launch it. If you down‐
loaded the Windows files, you can double-click the mojo-ide.exe file after extracting
the archive. On Linux, you need to run the mojo-ide script. This can be done with the
following command:

./mojo-ide

You will be greeted by a welcome dialog box that has a little info about the version of
the IDE you downloaded. You can get this welcome dialog back by going to Help →
About Mojo IDE.

Go ahead and plug in the Mojo if you haven’t already. You need to figure out what
serial port the Mojo is connected to. On Windows, you need to open the Device Man‐
ager. Launch the Control Panel and navigate to Hardware and Sound. You should
then see Device Manager under Devices and Printers.

In the Device Manager, expand Ports (COM & LPT). You should see an entry such as
Mojo V3 (COM3), as shown in Figure 1-12. The number following COM may be dif‐
ferent. This is the port it is connected to. Remember this.

Setting Up Your Environment | 15

Figure 1-12. The Mojo is connected to COM3. The COM port number may be different
for you.

On Linux, the Mojo will most likely connect to /dev/ttyACM0 or /dev/ttyUSB0. If you
have more than one USB-to-serial device, the last number may be nonzero. You can
list the ports on your computer with the following command:

ls /dev/tty*

If you unplug the Mojo and list the ports, and then plug it back in and list them again,
the new one is what the Mojo is connected to.

Back in the Mojo IDE, open the Serial Port Selector by going to Settings → Serial Port
and select the correct serial port, as shown in Figure 1-13.

Figure 1-13. Select the serial port you found in the preceding step

The last step is to tell the IDE where to find the Xilinx tools. If you installed them in
the default location, C:\\Xilinx\14.7 on Windows or /opt/Xilinx/14.7 on Linux, then

16 | Chapter 1: Introduction

you can skip this step because the IDE will check these by default. Otherwise, go to
Settings → ISE Location and locate the 14.7 directory in your installation.

Everything should now be good to go! It’s time to start your first project.

Setting Up Your Environment | 17

CHAPTER 2

Your First FPGA Project

Now that everything is set up, we are going to create a basic design that will turn on
an LED when you press a button. Although this is a fairly trivial example, it presents
a lot of new things that will take some time to understand.

Creating a New Project
In the Mojo IDE, choose File → New Project to open the New Project dialog box,
shown in Figure 2-1.

Figure 2-1. Creating a new project

You can make the project name whatever you want, but “LED to Button” fits well.
The Workspace is the directory where all your projects will be created. In this exam‐
ple, the new project will be in /home/justin/mojo/LED to Button. Note that if you are
using Windows, your path will look different. Make sure Lucid is selected for the lan‐
guage. The From Example option sets what your new project will be based on. There
is no fully blank project because there are a lot of connections to the FPGA internal to

19

the Mojo that you always want to have defined. The Base Project is the most basic
template and does nothing except provide a boilerplate design.

Click the Create button to create a new project.

Your project should be created and opened. In the left project tree, expand the
project, and then expand Source and double-click mojo_top.luc, as shown in
Figure 2-2.

Figure 2-2. New project with mojo_top.luc open

Notice that the name of the open tab is yellow and some of the lines have yellow high‐
lighting. These represent warnings. If you hover your cursor over one, a tooltip will
pop up, telling you the actual warning. In this case, these are all warnings about
unused inputs. You can also click the little checkbox icon in the toolbar to run a check
on your design, and all the warnings and errors will be printed to the console.

20 | Chapter 2: Your First FPGA Project

Understanding Modules
Hardware designs are broken into modules. This is similar to how programs are bro‐
ken down into functions. A module is a circuit with a set of inputs and outputs. In
this example, we have only one module called mojo_top. This is the top-level module
of our project. That means that all the inputs and outputs to the module are actual
inputs and outputs of the FPGA instead of internal signals. Later we will instantiate
modules inside the top-level module, and all their inputs and outputs will be internal
to the FPGA.

Take a look at the port declarations. These are all the connections internal to the
Mojo. For this project, we care only about rst_n and led. Besides clk (which is cov‐
ered later), all the other ports connect to the microcontroller on the Mojo. Note that
microcontroller is an AVR (ATmega32U4), and the avr prefix on some of the port
names refers to this. The connections to the AVR are used to give the FPGA access to
the USB port as well as the analog inputs. The _n of rst_n is there to indicate that it is
active low: when the button is pressed, it will have a value of 0 (active), and when the
button is just sitting, it will have a value of 1 (inactive):

module mojo_top (
 input clk, // 50MHz clock
 input rst_n, // reset button (active low)
 output led [8], // 8 user controllable LEDs
 input cclk, // configuration clock, AVR ready when high
 output spi_miso, // AVR SPI MISO
 input spi_ss, // AVR SPI Slave Select
 input spi_mosi, // AVR SPI MOSI
 input spi_sck, // AVR SPI Clock
 output spi_channel [4], // AVR general purpose pins
 // (used by default to select ADC channel)
 input avr_tx, // AVR TX (FPGA RX)
 output avr_rx, // AVR RX (FPGA TX)
 input avr_rx_busy // AVR RX buffer full
) {

There are three types of ports: input, output, and inout. By far the most common are
inputs and outputs. These are unidirectional and are fairly straightforward to use.
Inouts, on the other hand, are bidirectional. Outputs, like inouts, can be tri-stated
(output driver is disabled). However, output values can never be read. FPGAs don’t
have a way to have an internal signal be bidirectional, so inouts can be routed only
directly out of the FPGA. Again, this is covered later.

In the FPGA, we call all of these signals. It is similar in concept to a variable in code,
but they are actual wires carrying signals instead of a value in memory. Signals in a
design are a single bit wide unless you specify them to be an array. The output led is
an example of this. The [8] that comes after the name specifies that it is 8 bits wide.
Each bit of the array corresponds to an LED on the Mojo.

Understanding Modules | 21

One of the major benefits to breaking your design into modules is that you can reuse
them. What makes this really powerful is the use of parameters. This example doesn’t
show it, but a module declaration can have a parameter list. These are constants that
can be set when the module is instantiated and that allow you to write a generic mod‐
ule that can be customized for each situation.

Representing Values
Before moving on to the next section, let’s take a minor detour into how values are
represented in Lucid. Values are represented using one or more bits. The number of
bits a value has is known as its width. There are a few ways to specify a value. Some of
them allow you to specify a width, while others use an implied width.

The most basic way to represent a value is with a simple number such as 9. When you
do this, the width will be the minimum number of bits needed to represent that value.

Sometimes it’s easier to specify a number with a different radix (base) than 10. Lucid
supports decimal, binary, and hexadecimal. To specify the radix, prefix the value with
d, b, or h for decimal, binary, and hexadecimal, respectively. For example, hFF has the
decimal value 255, and b100 has the decimal value 4. If you don’t append a radix indi‐
cator, decimal is assumed.

It is important to remember that all numbers will be represented as bits in your cir‐
cuit. When you specify a number this way, the width of the number will be the mini‐
mum number of bits required to represent that value when using decimal. For binary,
it is simply the number of digits; for hexadecimal, it is four times the number of dig‐
its. For example, the value 7 will be 3 bits wide (111), 1010 will be 4 bits wide, and
hACB will be 12 bits wide.

You will usually want to specify exactly how many bits a value should be. To do this,
you prefix the radix letter with the number of bits. For example, 4d2 will be the value
2, but using 4 bits instead of the minimum 2 (binary value 0010 instead of 10). You
must specify the radix when specifying the width to separate the width from the
value.

If you specify a width smaller than the minimum number of bits
required, the number will drop the most significant bits. When this
happens, you will get a warning.

Table 2-1 shows different ways to represent the same values.

22 | Chapter 2: Your First FPGA Project

Table 2-1. Value representations

Decimal Hex Binary
6 or d6 or 3d6 3h6 b110 or 3b110
15 or d15 or 4d15 hF or 4hF b1111 or 4b1111
6d12 6hC b001100 or 6b001100 or 6b1100

Although all signals in your design will have a value of 0 or 1, you can assign two
other values. One is x, which generally means don’t care. It means you want to assign
a value, but you don’t care what value gets assigned. Why would you do this instead
of just assigning something random? By assigning x, you give the tools the flexibility
to select whatever value is most convenient. It may turn out that assigning a value of 1
makes your design much simpler to realize in hardware, and since you don’t care, the
tools can use that.

The x value will also show up in simulations, and in that case it means the value is
unknown. Either something wasn’t initialized properly or some of your don’t care val‐
ues are floating around. This is another reason to use x when you don’t think you care
about a value. When you simulate, the unknown values will propagate if used (for
example, x + 2 = x), so you can ensure that the value really doesn’t matter.

The last value is z, which means high-impedance. Assigning z means you are effec‐
tively disconnecting that signal. It’s important to know that FPGAs can’t realize high-
impedance signals internally. This means the only time you should use z is for
outputs of the top module (the module that connects to physical I/O pins). The only
real use of z is to disable outputs. This is useful for creating an open collector output
(instead of 0 and 1, you use 0 and z) or for disabling pins that may be driven exter‐
nally.

Using Always Blocks
Let’s skip to the always block. We will return to the lines before it shortly.

These blocks are where all the magic happens. They are where you can perform com‐
putation and read/write signals. The always block gets its name because it is always
happening. When the tools see an always block, they need to generate a digital circuit
that will replicate the behavior that the block describes.

Both Verilog and VHDL have their versions of the always block. In
Verilog, they are also called always blocks. In VHDL, they are called
processes.

Using Always Blocks | 23

Take a look at the always block in this example:

 always {
 reset_cond.in = ~rst_n; // input raw inverted reset signal
 rst = reset_cond.out; // conditioned reset

 led = 8h00; // turn LEDs off
 spi_miso = bz; // not using SPI
 spi_channel = bzzzz; // not using flags
 avr_rx = bz; // not using serial port
 }

The always block is an abstraction that allows us to create complicated designs
without having to worry about exactly how it will be implemented. Inside an always
block, statements that appear lower in the block have priority over earlier statements.
This is kind of similar to programming, where if you write to a variable twice, the
second write will be the one that persists, but this is just an abstraction. If a value is
written twice in an always block, it is as if the first line doesn’t even exist. Take a look
at the following example:

always {
 led = 8h00; // turn LEDs off
 led = 8hFF; // turn LEDs on
}

So what happens when this is synthesized? If you are thinking about this as code, you
may be tempted to think that the LEDs would turn on and off continuously, but that’s
not what happens. Remember, there is no processor running code; instead, a circuit
will be made from this block. When the tools synthesize this, the first line will be
ignored completely, and the LEDs will always be on. The led output would be hard‐
wired high. Although this example is trivial, and you would never write to the same
signal sequentially like this, with conditional assignments (such as if statements) this
becomes important.

Back to our design, the always block assigns values to six signals. Every output in a
module must be assigned a value in all circumstances. Because the base project does
nothing, and these signals are unused, they are assigned reasonable defaults.

Look at the first two lines in the always block:

 reset_cond.in = ~rst_n; // input raw inverted reset signal
 rst = reset_cond.out; // conditioned reset

On the first line, we are assigning a value to the input in of the module reset_cond.
Modules, such as reset_cond, can be used inside other modules. This is similar to
how you can call functions from other functions in code. However, unlike code,
where you reuse the exact same instructions, the module will be duplicated in hard‐
ware each time you use it. This is why when you use a module it is called instantiating
that module. You are creating another instance of it. We will get into more detail

24 | Chapter 2: Your First FPGA Project

about how to instantiate a module in the next section, so don’t worry about these
lines too much.

We are trying to connect the rst_n input, which corresponds to the reset button on
the board, to reset_cond.in. Note that we actually connect ~rst_n to the input. The
~ operator inverts the signal (1 becomes 0, and 0 becomes 1). This makes it active
high (1 means the button is pressed) instead of active low.

The second line connects the output out of reset_cond to the signal rst. The impor‐
tance of reset_cond will become clear later, but for now just know that it cleans up
(synchronizes it to clk) the button input, and rst will be 1 when the reset button is
pressed and 0 when it isn’t. For this simple example, it isn’t needed, and we could use
the rst_n input directly.

Take a look at the last four lines now:

 led = 8h00; // turn LEDs off
 spi_miso = bz; // not using SPI
 spi_channel = bzzzz; // not using flags
 avr_rx = bz; // not using serial port

On the first line, we assign the led output to all 0s. Remember from the port declara‐
tion that led is 8 bits wide. On this line we use 8h00 to make it clear we are setting all
8 bits to 0. We could have also just used the value 0. This is because 0 would become
1d0, but since led is 8 bits wide, it would be padded with 0s to match the width and
would become equivalent to 8b00000000 (or 8h00).

The next three lines are assigning z to the signals. This is because these signals are
outputs, so they need a value, but we aren’t using them in this example. Since they
aren’t being used, the safest value is z. These signals connect to the microcontroller
on the Mojo and are used to get access to the USB port and analog inputs.

When using x or z, constants won’t be padded with 0. For example, if you assign bx to
a 4-bit signal, it will expand to 4bxxxx and not 4b000x. This is true only if the most
significant bit is x or z. If you assign b0x to a 4-bit signal, it will expand to 4b000x.

If you look at the full always block, you’ll notice that there are no redundant assign‐
ments. When the design is synthesized, these values will be hardwired to the signals.
The led output will be tied low, and the other outputs will be left floating (high impe‐
dance).

Connecting the Button
We are going to modify the module to connect the reset button to the first LED so
that when you push the button, the LED turns on.

Connecting the Button | 25

The output led is 8 bits wide. Each one of these bits corresponds to a single LED on
the board. The least significant bit connects to the topmost LED (rightmost when the
LED side of the board is facing you). Arrays in hardware are nothing more than a
collection of single-bit signals and are really just a way to conveniently group (and do
math on) related bits.

Since led is 8 bits wide, we need to assign an 8-bit array to it (each bit needs a value).
However, the signal rst is a single bit wide. To compensate, we use the concatenation
operator.

To concatenate multiple arrays into a single larger one, you can use the concatenation
operator that takes the form c{x, y, z}. Here the arrays (or single-bit values) x, y, and z
will be concatenated into a single larger array.

We can modify line 28 to concatenate 7h00, which is seven zeros, with rst, which is a
single bit wide, to create an 8-bit array with the 7 most significant bits 0 and the least-
significant bit connected to rst:

 led = c{7h00, rst}; // connect rst to the first LED

Building Your Project
Go ahead and click the little hammer icon in the toolbar to build your project. As the
project builds, you should see a bunch of text printed in the console. Just wait for it to
finish building. It should look like Figure 2-3.

The important line here is impl_1 finished. This means your project was built
without errors. If you are using Lucid, the Mojo IDE should catch any syntax/design
errors. However, as your projects get more advanced, it is possible to create designs
that can’t be realized in the FPGA, and you will need to check the build output for
what went wrong.

26 | Chapter 2: Your First FPGA Project

Figure 2-3. Built project with rst connected to led

Loading Your Project
Once your project is built, plug your Mojo into your computer if you haven’t already.
Also make sure the correct serial port is selected under Settings → Serial Port.

You have two options when programming the Mojo. The first is to load the design
directly to the FPGA. This can be done by clicking the hollow arrow icon in the tool‐
bar. FPGAs are RAM-based devices, which means each time they lose power, they
also lose their configuration. By loading your design directly to the FPGA, it’ll be lost
when you disconnect power.

The second option is to program the flash on the Mojo. This will store your design in
persistent memory. When the board is powered up, the microcontroller will automat‐
ically reconfigure the FPGA. Note that if you program the flash, the microcontroller
will program the FPGA at the same time too.

Loading Your Project | 27

If you have a design loaded in flash and then program the FPGA, when you power
cycle the board, the old design in flash will be loaded. This can be helpful if you want
to test a design temporarily.

You can also clear the flash by clicking the eraser icon. This will prevent the FPGA
from being programmed at power up.

For now, click the hollow arrow to program the FPGA directly, since we will be mak‐
ing some modification soon anyway. After the FPGA is programmed, the IDE should
look like Figure 2-4.

Figure 2-4. Loading the project directly onto the FPGA

If you look at your Mojo, you should now see the DONE LED lit. This LED means
that the FPGA was successfully configured (Figure 2-5).

28 | Chapter 2: Your First FPGA Project

Figure 2-5. Mojo successfully configured

Now push the reset button. The first LED turns on, as shown in Figure 2-6.

Figure 2-6. The first LED turns on when the reset button is pressed

Loading Your Project | 29

Some Notes on Hardware
When you press the button, how long does it take for the LED to turn on? If this was
a processor instead of an FPGA, the processor would be in a loop reading the button
state and turning the LED on or off based on that state. The amount of time between
pressing the button and the LED turning on would vary depending on the code the
processor was executing and the time it takes to get back to reading the button and
turning on the LED. As you add more code to your loop, the variation in delay
increases.

However, an FPGA is different. With this design (design, not code), the button input
is directly connected to the LED output. You can imagine a physical wire bridging the
input to the output inside the FPGA. In reality, it’s not a wire but a set of switches
(multiplexers) that are set to route the signal directly to the output. Well, this is only
partially true, since reset_conditioner is there, which does some stuff to clean up
the reset signal.

Because the signal doesn’t have to wait for a processor to read it, it will travel as fast as
possible through the silicon to light the LED. This is almost instant (again, forget
about reset_conditioner)! The best part is that if you wire the button to the LED
then go on to create some crazy designs with the rest of the FPGA; the speed of this
operation will not decrease. This is because the circuits will operate independently as
they both simply exist. It is this parallelism that gives FPGAs their real power.

Duplication
What if we want all the LEDs to turn on and off with the press of the button instead
of just one? Well, we could do it by using the concatenation operator as before, but
just use rst for each bit:

led = c{rst, rst, rst, rst, rst, rst, rst, rst};

This is pretty ugly, and there is a much cleaner way to write this. Instead, we can use
the duplication operator that takes the form M x{ A }. Here M is the number of times
to duplicate A. Note that M must be a constant. Using this, we can rewrite the line:

led = 8x{rst};

This line does exactly the same thing as before; it is just a lot cleaner.

Array Indexing
There is another way to write the design so that only one LED turns on. This is by
indexing the individual bits in led:

led[7:1] = 7h0; // turn these LEDs off
led[0] = rst; // connect rst to led[0]

30 | Chapter 2: Your First FPGA Project

The first line uses a multibit selector, [7:1]. You should read this as “seven down-to
one,” and it selects the bits 7 through 1. Note that the first value, when using this
selector, must be equal to or greater than the second value. Both values must also be
constants. These 7 bits are then set to 0.

The second line uses the single-bit selector, [0]. This is simply selecting the bit 0,
which is then connected to rst.

There is another way to select multiple bits. That is by using the start-width selector.
When using this selector, instead of specifying the start and stop bits (inclusive) as
before, you specify the start bit and the number of bits to include above or below it.

The first line from before could be rewritten in any of these three ways, which are
depicted in Figure 2-7:

led[7:1] = 7b0; // select bits 7-1
led[7-:7] = 7b0; // select 7 bits starting from 7 and going down
led[1+:7] = 7b0; // select 7 bits starting from 1 and going up

Figure 2-7. Visual of the bit selectors

The main benefit to using the start-width selector is that the start bit can be dynami‐
cally specified by a signal. For example, we could use the value of some switch inputs
as the start index instead of a constant number. This is because the width of the selec‐
tion is guaranteed to be fixed (as the width value must be constant) so that it can be
realized in hardware.

Always Block Priority
Because of the nature of always blocks, you could also write the assignment as
follows:

led = 8b0; // turn the LEDs off
led[0] = rst; // connect rst to led[0]

Always Block Priority | 31

As you may remember, the later assignment to led has priority over the earlier one.
However, the second assignment assigns only the first bit, so the other seven still
retain their values from the first assignment.

Because of the way always blocks work, bit 0 of led will never have the value 0 and
will be directly connected to rst. This will create a circuit that is identical to the one
before.

Congratulations! You’ve completed your first FPGA project!

32 | Chapter 2: Your First FPGA Project

CHAPTER 3

Combinational Logic

Digital circuits can be broken into two main categories: combinational logic and
sequential logic (sometimes referred to as synchronous logic).

Combinational logic is a digital circuit whose output depends only on the current
inputs. The circuit has no memory or feedback loops. It is important to have a strong
understanding of combinational logic before proceeding to sequential logic. Even in
sequential circuits, you can isolate large sections of combinational logic that perform
all the interesting computation.

An example of a combinational logic circuit is the previous button example. The out‐
put, if the LED is on, depends only on the current input, if the button is pressed.
Another example is a circuit that takes two numbers and adds them together. The
output depends only on the two numbers being added. A circuit that would not be
considered combinational logic is one that keeps a running total of a series of num‐
bers, as this requires the circuit to remember the current total.

In this chapter, we will run through several combinational logic examples including
basic logic gates, various operators, math functions, and more-complex but common
circuits. These form the building blocks for all future designs.

IO Shield
The next section requires the IO Shield, shown in Figure 3-1. Alternatively, you could
set up a comparable circuit on a breadboard. Go to Embedded Micro for the sche‐
matic of the IO Shield. We will be using the DIP switches and LEDs to demonstrate
combinational circuits.

33

https://embeddedmicro.com/products/io-shield.html
http://embm.co/iosch

Figure 3-1. IO Shield

We need to make a new project, but this time we are going to base it on the IO Shield
Base example project, instead of the Base Project as before. To do this, go to File →
New Project, enter whatever name you want (“IO Shield Demo” is a solid choice) and
select IO Shield Base from the From Example drop-down menu.

If you open mojo_top.luc, you’ll notice it is a little different from the version in the
bare-bones Base Project we used earlier. We now have some new inputs and outputs
declared, and we assign some default values in the always block to them. Take a look
at the full module, and after we will dive into the details:

module mojo_top (
 input clk, // 50MHz clock
 input rst_n, // reset button (active low)
 output led [8], // 8 user controllable LEDs
 input cclk, // configuration clock, AVR ready when high
 output spi_miso, // AVR SPI MISO
 input spi_ss, // AVR SPI Slave Select
 input spi_mosi, // AVR SPI MOSI
 input spi_sck, // AVR SPI Clock
 output spi_channel [4], // AVR general purpose pins

34 | Chapter 3: Combinational Logic

 // (used by default to select ADC channel)
 input avr_tx, // AVR TX (FPGA RX)
 output avr_rx, // AVR RX (FPGA TX)
 input avr_rx_busy, // AVR RX buffer full
 output io_led [3][8], // LEDs on IO Shield
 output io_seg [8], // 7-segment LEDs on IO Shield
 output io_sel [4], // Digit select on IO Shield
 input io_button [5], // 5 buttons on IO Shield
 input io_dip [3][8] // DIP switches on IO Shield
) {

 sig rst; // reset signal

 .clk(clk) {
 // The reset conditioner is used to synchronize the reset signal to the FPGA
 // clock. This ensures the entire FPGA comes out of reset at the same time.
 reset_conditioner reset_cond;
 }

 always {
 reset_cond.in = ~rst_n; // input raw inverted reset signal
 rst = reset_cond.out; // conditioned reset

 led = 8h00; // turn LEDs off
 spi_miso = bz; // not using SPI
 spi_channel = bzzzz; // not using flags
 avr_rx = bz; // not using serial port

 io_led = 3x{{8h00}}; // turn LEDs off
 io_seg = 8hff; // turn segments off
 io_sel = 4hf; // select no digits
 }
}

If you take a look at where io_led is declared, you will notice that it is a two-
dimensional array. This corresponds to the three groups of eight LEDs on the IO
Shield:

 output io_led [3][8], // LEDs on IO Shield

In Lucid, you can have multidimensional arrays that can then be indexed into
smaller-dimensional arrays or single bits. For example, io_led[0] would select the
first 8-bit single-dimensional array.

Because io_led is multidimensional, we have to use fancy syntax to assign 0 to all of
its bits:

 io_led = 3x{{8h00}}; // turn LEDs off

The first part of this should seem familiar, as it’s the duplication syntax from “Dupli‐
cation” on page 30. But unlike before, we need to create a 3 x 8 array. If we instead
wrote 3x{8h00}, that would create a 24-bit single-dimensional array of all 0s. We

IO Shield | 35

need to turn the 8h00 from an 8-bit array into a 1 x 8 array. To do this, we use the
array builder operator, which has the form {A, B, C}. Here A, B, and C must all have
equal dimensions. For example, {8h00, 8h37, 8hfa} would be valid (and would
make a 3 x 8 sized array) but {8h24, 16h2737, 8hfa} would not be.

The value {8h00} then is a 1 x 8 array. By using the duplication operator, we duplicate
the outermost dimension, making a 3 x 8 array. We could have also written {8h00,
8h00, 8h00}, but the duplication syntax is a little cleaner.

As you may have noticed, the IO Shield has three groups of eight LEDs. The first
dimension of io_led selects the group, and the second dimension selects the individ‐
ual LED.

The 2D array io_dip is organized the sameway as io_led.

Logic Functions
The first example we will work through is to connect two of the DIP switches to an
LED through a logic gate. A logic gate is a circuit that takes numerous logical inputs
(true/false) and has a single output. In digital circuits, 1 is considered to be true, and
0 is considered to be false. The basic logic gates are NOT, AND, OR, and XOR, which
are illustrated in Figure 3-2.

NOT takes a single input, and outputs true only when the input is false. In other
words, it negates the input.

AND takes two or more inputs, and outputs true only when all the inputs are true. If
an AND gate has two inputs, you can think of its output as being true only if the first
input and the second input are true.

OR takes two or more inputs, and outputs true only if one or more of the inputs are
true. If an OR gate has two inputs, you can think of its output as being true if either
the first input or the second input is true.

XOR takes two or more inputs, and outputs true only when an odd number of inputs
are true. This is a little weird for more than two inputs, but if you look at the two-
input case, it will output true when either input is true, but not when both are true.
XOR is short for exclusive or.

There are also variations on AND, OR, and XOR that invert the output. They are
known as NAND, NOR, and XNOR, respectively. You can think of them as the base
versions followed by a NOT. Their symbols are the same as their parent symbols but
with a bubble at the output (like the NOT symbol).

36 | Chapter 3: Combinational Logic

Figure 3-2. Schematic symbols and truth tables for NOT, AND, OR, and XOR

We can add a single line to the end of the always block to turn on the first LED when
switch 0 and 1 are both on. Note that we are going to consider the order of the
switches from right to left, not left to right as printed on the switches themselves. The
rightmost switch in a group is switch 0, and the leftmost is switch 7, as shown in
Figure 3-3.

Logic Functions | 37

Figure 3-3. IO Shield switch numbering

 always {
 reset_cond.in = ~rst_n; // input raw inverted reset signal
 rst = reset_cond.out; // conditioned reset

 led = 8h00; // turn LEDs off
 spi_miso = bz; // not using SPI
 spi_channel = bzzzz; // not using flags
 avr_rx = bz; // not using serial port

 io_led = 3x{{8h00}}; // turn LEDs off
 io_seg = 8hff; // turn segments off
 io_sel = 4hf; // select no digits

 io_led[0][0] = io_dip[0][0] & io_dip[0][1]; // new line!
 }

Looking at the new line, we need to index the first LED. To do this, we first select the
first group, group 0, and the LED is the first in the group, so also index 0. The bit
selection is then [0][0]. We index the first and second DIP switches in the same
manner. Finally, we use &, the bitwise AND operator, to AND the bits together.

Notice that the line where all of io_led is assigned to 0 is still the same. Trying to
assign all the bits but the first would be overly complicated when the new line will
simply override the value for the first bit. It is pretty common to have a line early on
in the always block that assigns a default value.

Build and load the project onto your Mojo. Try playing with the rightmost two
switches. If either switch is off, the LED will be off. Only when both are on, the LED
should be on.

Go back and replace the & operator with the operators for OR and XOR: | and ^. Play
with the switches, and make sure you understand how each works.

38 | Chapter 3: Combinational Logic

Practice

Add two more lines to the always block so that the first LED of the
first group lights up as before, the first LED of the second group
lights up when either (OR) of the first two switches in the second
group are on, and the first LED of the last group lights up only
when exactly one (XOR) switch of the first two switches in the last
group are on.

Bitwise Operators
So far, all the operators we have talked about are bit-wise operators: they can be used
on two equally sized arrays, and they will perform their operation on each pair of bits
individually.

For example, if we want to light up an LED in the first group only when the corre‐
sponding switch in the first and second groups are both on, we could do the follow‐
ing:

io_led[0] = io_dip[0] & io_dip[1];

Remember that io_led[0] is actually an array of 8 bits. The same is true for
io_dip[0] and io_dip[1]. This single line will create eight AND gates—one for each
pair of bits.

You can use the OR and XOR operators in the same way.

We can also chain multiple operators together. For example, if we want the LEDs in
the first group to turn on only when the corresponding switches in all three groups
are on, we could do the following:

io_led[0] = io_dip[0] & io_dip[1] & io_dip[2];

Bitwise operators are evaluated from left to right, so in this case io_dip[0] will be
ANDed with io_dip[1], and the result of that will be ANDed with io_dip[2]. In the
case of all AND operators, the order doesn’t matter. However, if you start mixing
operators, the order can matter. You can use parentheses to force the order you want.

You can negate any of these operators (1 becomes 0, 0 becomes 1) by simply using the
~ operator. This will flip each bit in a single array. If we wanted to NAND the first two
groups of switches and output the result on the first group of LEDs, we could use the
following:

io_led[0] = ~(io_dip[0] & io_dip[1]);

Bitwise Operators | 39

De Morgan’s Laws
De Morgan’s laws are the pair of Boolean logic relations that allow you to transform
between AND and OR operators. The relations are ~(A & B) == ~A | ~B and
~(A | B) == ~A & ~B. Given this, we could have also written the previous line as fol‐
lows:

io_led[0] = ~io_dip[0] | ~io_dip[1];

I would read the original line as “true when io_dip[0] and io_dip[1] aren’t both on.”
I would read the second version as “true when either io_dip[0] or io_dip[1] are
off.” However, these are the exact same expressions. You can prove it to yourself with
a truth table.

Practice

Use two bitwise operators so that the LEDs in the first group light
up when the corresponding switch in the third group is on or when
both switches in the first two groups are on.

Reduction Operators
The reduction operators are similar to the bitwise operators except they operate on a
single array and output a single bit. In other words, they reduce an array to a single
bit. You can think of these operators as a single logic gate with as many inputs as the
size of the array.

For example, if we wanted to turn the first LED on when all the switches in the first
group are on, we could use the following line:

io_led[0][0] = &io_dip[0];

This line is equivalent to ANDing each bit individually as follows:

io_led[0][0] = io_dip[0][0] & io_dip[0][1] & io_dip[0][2] & io_dip[0][3]
 & io_dip[0][4] & io_dip[0][5] & io_dip[0][6] & io_dip[0][7];

It should be obvious that the reduction operator is much cleaner.

The reduction operators are not limited to single-dimensional arrays. We could use
the OR reduction operator to turn on the first LED when any switch is on with the
following:

io_led[0][0] = |io_dip;

The AND reduction operator is great for checking whether a value is its max value
(all 1s). The OR reduction operator will basically tell you if the array isn’t zero, and

40 | Chapter 3: Combinational Logic

the XOR reduction operator (^, like the bitwise version) will tell you if there is an odd
number of 1s in the array.

Practice

Using your newly acquired bitwise and reduction operator skills,
make the first LED light up when any switch in the third group is
on, or all the switches in the second group are on and the first
group has an odd number of switches on.

Math
We will now look at addition, subtraction, and multiplication by performing opera‐
tions using the DIP switches as our number inputs and the LEDs as the output. This
means everything will be in binary, so make sure you are familiar with it. Check out
Embedded Micro if you need some background.

Let’s start with some addition. We will add the binary values from the first and second
groups of DIP switches.

Because the result of many of our operations will be more than 8 bits, we can create a
signal, result, to hold the value. You can think of signals (sig) as wires. They don’t
take up any space in your design, as they simply define the connection from some‐
thing to something else.

We set result to be the output of our addition. The addition of two 8-bit numbers
results in a 9-bit result. This is because an 8-bit number has the range 0–255, so
adding two of them together will have the range 0–510, which requires 9 bits to rep‐
resent.

We then take result and connect it to the LEDs so that we can see all 24 bits:

 sig result [24]; // result of our operations

 always {
 reset_cond.in = ~rst_n; // input raw inverted reset signal
 rst = reset_cond.out; // conditioned reset

 led = 8h00; // turn LEDs off
 spi_miso = bz; // not using SPI
 spi_channel = bzzzz; // not using flags
 avr_rx = bz; // not using serial port

 io_seg = 8hff; // turn segments off
 io_sel = 4hf; // select no digits

 result = io_dip[1] + io_dip[0]; // add the switch values

 // connect result to LEDs

Math | 41

http://embm.co/binary

 io_led = {result[23-:8], result[15-:8], result[7-:8]};
 }

Build and load your project to your Mojo. Congratulations! You’ve just built a basic
calculator. To make sure everything is working properly, let’s calculate 2 + 2. 2 has the
binary representation of 0000 0010. Set both groups of switches to 2. The result on
the LEDs should be 4, or 0000 0100.

Now change the + to a - to subtract the first switch group’s value from the second
group’s value:

result = io_dip[1] - io_dip[0]; // subtract the switch values

What happens when you set the second switch to 0 and the first to 1 so that you’re
performing 0 – 1? All 24 LEDs turn on! You can interpret this answer in two ways.
The first is that the result simply underflowed and restarted back at the maximum
value. The second way is to assume the number is a two’s complement representation
of –1. Both are valid interpretations, and what you use will depend on the scenario.

Two’s Complement
Two’s complement is a way to interpret binary numbers so that negative numbers are
allowed. It also has some convenient properties such as unsigned addition and sub‐
traction circuits work for signed addition, and subtraction without modification. If
the most significant bit (MSB) of a two’s complement number is 1, it is a negative
number, and to get the positive value, you simply invert the bits and add 1. Inverting
the bits and adding 1 also works to negate a positive number. For example, the value
1111 would be considered –1. If we invert the bits, 0000, and then add 1, 0001, we get
1. Going in the reverse direction, we get 1110 + 1 = 1111, or –1.

The range for an unsigned n-bit binary value is 0 to 2n – 1. An n-bit signed (two’s
complement) binary value has the range –2n-1 to 2n-1 – 1. For example, an 8-bit
unsigned number could go from 0–255, while the signed version would go from –128
to 127. Note that two’s complement numbers can represent one more negative num‐
ber than positive, as 0 takes up the last slot.

Even though when the number is negative all 24 LEDs light up, you need only 9 bits
to represent any 8 bit by 8 bit addition or subtraction. This is because when the value
would be negative, dropping the leading 1s doesn’t change its value.

Finally, change the - to a * to try multiplication:

result = io_dip[1] * io_dip[0]; // multiply the switch values

You should notice that multiplying two numbers can generate a much bigger result
than the operands. The result will generally be twice the size of the inputs—so in our
case, up to 16 bits wide.

42 | Chapter 3: Combinational Logic

Multiplication is much more expensive to perform than a simple addition or subtrac‐
tion. This is because a multiplication is essentially many conditional additions. Multi‐
plying two 8-bit numbers will result in a series of eight additions.

Also note that we didn’t talk about division. This is because although there is a divi‐
sion operator, you generally shouldn’t use it unless it’s only with constants so the tools
can replace it at synthesis time. Division is much more complicated than even multi‐
plication, and there are some trade-offs you need to decide for your design. If you
don’t need real division, you can approximate it by multiplying with fractions.

To approximate division, you can first multiply by any number and then shift the
value to the right. Shifting to the right effectively divides by a power of two (and trun‐
cates). For example, if you want to divide a number by 3, you could multiply by 86
and then shift right 8 bits. This will effectively multiply your value by 86/256 =
0.33594, which is pretty close to 1/3. If you need higher precision, you can use more
bits. For example, you could instead multiply by 21,846 and shift 16 bits to the right.
This is effectively multiplying by 0.333389, but 16-bit multiplication is significantly
more expensive than 8-bit:

x_divided = (x * 16d86) >> 8; // divide x by ~3

When selecting a value to use as the numerator, you should use the
smallest value that is still larger than the fraction you are trying to
approximate. For example, 85/256 is about 0.33203, which is less
than 1/3, but 86/256 is about 0.33594, which is just over 1/3.
Because the bit shifting will truncate the value, using a slight over‐
estimate will generally perform better. The expression (8d3 *

16d85) >> 8 is equal to 0, but (8d3 * 16d86) >> 8 is 1, as it
should be.

Notice that the numerator width is set to 16 bits. In this example, x
and x_divided are 8 bits wide, so we want the result of the multi‐
plication to be 16 bits, as we will be shifting off the 8 LSBs. If we
used 8d86, the width of (x * 8d86) would be 8 bits wide, and shift‐
ing right would result in 0 for any value of x.
This is because the width of the multiplication result is dependent
on the two numbers being multiplied and the width of the signal
being assigned. The width is set to the widest of these three values.
If we use 8d86, the width of all three of these is 8 bits, so the multi‐
plication result is 8 bits wide. By changing to 16d86, we force the
full multiplication result to be used.

Math | 43

Common Subcircuits
There are a handful of common subcircuits you’ll see used in designs. All of these are
made up of logic gates (as all digital circuits are), but they are often abstracted into
their own symbols for clarity in schematics. Here we will cover some of the most
common ones, including multiplexers, decoders, encoders, and arbiters.

Multiplexers
Multiplexers are circuits that can select one of many values based on the selection
input. In Figure 3-4, the multiplexer will select one of the six inputs, a through f, and
output it on g. The sel input in this case needs to be one-hot.

Figure 3-4. Schematic symbol for multiplexers

One-Hot
A one-hot signal has exactly one bit that is 1. In the multiplexer, the sel input will
always be made up of one 1 and five 0s. The position of the 1 corresponds to the input
to select.

A variation of one-hot, called one-or-none, allows for all bits to be 0.

One-cold is the same idea as one-hot, except there is always exactly one 0.

Although there are many ways to realize a multiplexer, the schematic in Figure 3-5 is
one potential way to make one.

44 | Chapter 3: Combinational Logic

Figure 3-5. Multiplexer circuit

When one of the inputs of an AND gate is 1, its output will be the same as the other
input (1 AND 1 is 1, 1 AND 0 is 0). If one of the inputs is 0, the output is always 0.
Therefore, the only AND gate that can be outputting 1 is the one with a correspond‐
ing sel bit set to 1. Even then it outputs 1 only if the corresponding input is 1. By
ORing all the AND gate outputs together, we can reduce all the signals to 1 bit. All
the inputs to the OR gate will be 0 unless the selected input is 1; then only that input
will be 1, but that is enough to make the OR gate output 1.

In your designs, you’ll rarely have a module dedicated to being a multiplexer or even
think about instantiating them explicitly. This is because if and case statements
(covered later) usually become multiplexers.

Common Subcircuits | 45

Decoders
The multiplexer circuit example requires the select input to be one-hot. Some circuits
are simpler when an input is one-hot, but what if we want to use a binary value as the
select input? This is where decoders come in. A decoder converts a binary (encoded)
value into a one-hot representation.

Decoders don’t have a special symbol like multiplexers do. Instead, they are com‐
monly drawn in a box with a label specifying that it is a decoder, as shown in
Figure 3-6. Notice that the output of a decoder will have a width of 2 to the power of
the width of the input.

Figure 3-6. Decoder symbol

Figure 3-7 shows one way to make a decoder. It basically amounts to a bunch of
equality checks. If the input is 0, the first output is 1. If the input is 1, the second out‐
put is 1, and so on. As you may have guessed, a decoder for many bits can get pretty
big. An 8-bit decoder would have 256 outputs!

Figure 3-7. Decoder circuit

46 | Chapter 3: Combinational Logic

Encoders
Encoders are the opposite of decoders. They convert a one-hot value into a binary
representation.

Just like decoders, encoders don’t have a special symbol and are drawn using a labeled
box, as shown in Figure 3-8. However, they take a power of 2 width input and have an
output width of that power.

Figure 3-8. Encoder symbol

The schematic for an encoder is a bit simpler than the decoder’s, as you can see in
Figure 3-9 This implementation uses OR gates to set all the bits high in the output for
that specific value. Note that bit 0 of the input isn’t even used. This is because when
this bit is 1, the output should be 0.

Figure 3-9. Encoder circuit

Arbiters
Sometimes you will have multiple parts of your design fighting over a resource. In
this case, it can be helpful to use an arbiter. An arbiter takes a set of inputs and then
outputs a one-or-none-hot value. The bit that is 1 in the output will be the most sig‐
nificant bit in the input that is 1. For example, if you have a 4-bit arbiter with an input

Common Subcircuits | 47

4b0111, the output would be 4b0100. You can think of the input as four things asking
for permission, with a 1 meaning permission requested. Each input has priority over
the bits lower than it (the MSB has the highest priority). The arbiter then grants per‐
mission to the highest-priority input requesting permission. It will grant permission
only to a single input, but if none are requesting it, it will output 0. This is where the
one-or-none-hot name comes from: one or none of the bits will be 1.

This may not be the best scheme for sharing resources for every application because a
greedy high-priority input could starve out the other inputs. However, unlike some‐
thing like round-robin, where each input takes turns, no state needs to be saved, and
the circuit is fairly simple.

The structure of an arbiter is known as a ripple-carry chain. The reason for this will
become obvious when we look at how to make one.

At each input bit, we need to know only if there is a 1 above us and if the input is a 1.
If there isn’t a 1 above us and the input is a 1, we can output a 1. If the input is 0 or
there already is a 1, we need to output 0. However, how do we know if there is a 1
above us? If we look at the MSB (in[3] in Figure 3-11), there obviously isn’t a 1 above
us because there are no bits higher than the MSB. We can then tell the next bit that
there aren’t any 1s above it if the MSB isn’t a 1.

At any bit, we can tell the bit lower than it that there isn’t a 1 if there isn’t a 1 above
the current bit and the current bit isn’t a 1. We can build a circuit, as shown in
Figure 3-10, that takes these two inputs, the current input bit and the bit telling us
whether permission has already been granted, and produces two outputs, indicating
whether this bit gets permission and whether permission has already been granted
(including to the current bit). The input and output bits that signal whether a 1 has
been seen are called carry bits.

Figure 3-10. Single bit in arbiter circuit

48 | Chapter 3: Combinational Logic

We can then take this circuit and duplicate it for each bit, as shown in Figure 3-11.
We chain the carry bits together. Note that since there aren’t any bits above in[3] to
feed into the carry, we need to initialize it. Here we feed in a constant 1 to signal that
no 1s have been seen before.

Figure 3-11. 4-bit arbiter

The first and last bits in the chain can be simplified, as shown in Figure 3-12 because
we don’t need to output a carry at the end, and the value of the initial carry is known.

Common Subcircuits | 49

Figure 3-12. Simplified 4-bit arbiter

Notice that for the least significant bit’s value to be determined, every other bit needs
to be determined. This makes longer chains take more time to produce a result.

Decoder, Encoder, and Arbiter Example
In this example project, we are going to instantiate a decoder, encoder, and arbiter
and hook them up to the switches and LEDs of the IO Shield. The Mojo IDE has
components for all of these circuits built into something known as the Components
Library. We will use these premade components, but first we need to create a new
project.

Create a new project (I called mine DecEncArb), and base it off the IO Shield Base
example project.

Components Library
The Components Library has a ton of built-in modules that you may find helpful in
your projects. We are going to take a look at how to add these components to our
project.

To access the Components Library, go to Project → Add Components. We need three
of the components for this project: the Decoder, Encoder, and Arbiter. All of these can
be found under the Miscellaneous category, as shown in Figure 3-13.

50 | Chapter 3: Combinational Logic

Figure 3-13. Components Library

With those three selected, click Add. They will then show up in your project under
the Components branch, as shown in Figure 3-14. You can open and view any of the
components’ source code to see how they work and for info on how to use them, but
they can’t be edited.

Figure 3-14. Component source tree

With the components added to your project, we need to instantiate them and hook
them up to switches and LEDs.

Common Subcircuits | 51

Each of these components has a parameter called WIDTH that is used to specify the
input width. In the case of a decoder, the output will be 2WIDTH. The encoder’s output
will be a ceiling of log2(WIDTH), and the arbiter’s output is just WIDTH.

When you declare a module, you can add an optional parameter list. If you want to
use parameters, you add #(PARAM_DEC, PARAM_DEC, ...) between the name of the
module and the port declaration. The actual parameter declaration, PARAM_DEC, in its
simplest form is simply the parameter name. You can then add a default value by
using NAME = default_value. This is the value that will be used if the parameter isn’t
overwritten when the module is instantiated. It’s generally a good idea to specify a
reasonable default if possible.

Parameter and constant names must be made up of only capital let‐
ters and underscores.

Sometimes you will want to constrain the parameter’s value. In the case of WIDTH, it
doesn’t make sense for this value to be negative or zero, so we add a constraint by
using the : EXPRESSION syntax. The expression can use the parameter it belongs to or
any parameters declared above it. If this value is nonzero, the constraint passes. If the
constraint fails, it will throw an error when the module is being instantiated. You
should always add constraints to parameters if there are any values that won’t work.

The parameter declaration for WIDTH in the decoder looks like this:

WIDTH : WIDTH > 0 // width of the input

In this case, a default wasn’t specified because there really isn’t a good default value,
and every use of the decoder should overwrite it.

We are going to hook all three up to their own block of eight switches and LEDs so
the inputs and outputs can be no more than 8 bits wide. We then need to set the
WIDTH for the decoder to be 3 (23 = 8) and 8 for the encoder and arbiter.

With that set, we just need to hook them up to the switch and LED groups:

module mojo_top (
 input clk, // 50MHz clock
 input rst_n, // reset button (active low)
 output led [8], // 8 user controllable LEDs
 input cclk, // configuration clock, AVR ready when high
 output spi_miso, // AVR SPI MISO
 input spi_ss, // AVR SPI Slave Select
 input spi_mosi, // AVR SPI MOSI
 input spi_sck, // AVR SPI Clock
 output spi_channel [4], // AVR general purpose pins

52 | Chapter 3: Combinational Logic

 input avr_tx, // AVR TX (FPGA RX)
 output avr_rx, // AVR RX (FPGA TX)
 input avr_rx_busy, // AVR RX buffer full
 output io_led [3][8], // LEDs on IO Shield
 output io_seg [8], // 7-segment LEDs on IO Shield
 output io_sel [4], // Digit select on IO Shield
 input io_button [5], // 5 buttons on IO Shield
 input io_dip [3][8] // DIP switches on IO Shield
) {

 sig rst; // reset signal

 .clk(clk) {
 // The reset conditioner is used to synchronize the reset signal to the FPGA
 // clock. This ensures the entire FPGA comes out of reset at the same time.
 reset_conditioner reset_cond;
 }

 decoder dec (#WIDTH(3));
 encoder enc (#WIDTH(8));
 arbiter arb (#WIDTH(8));

 always {
 reset_cond.in = ~rst_n; // input raw inverted reset signal
 rst = reset_cond.out; // conditioned reset

 led = 8h00; // turn LEDs off
 spi_miso = bz; // not using SPI
 spi_channel = bzzzz; // not using flags
 avr_rx = bz; // not using serial port

 io_seg = 8hff; // turn segments off
 io_sel = 4hf; // select no digits

 dec.in = io_dip[0][2:0];
 enc.in = io_dip[1];
 arb.in = io_dip[2];

 io_led[0] = dec.out;
 io_led[1] = enc.out;
 io_led[2] = arb.out;
 }
}

Build and load your project onto the Mojo. If you play with the first (rightmost)
group of switches, the LED in the position of the value of the first three switches
should light up. For example, if you set the first three switches to 010, or 2, the third
LED should turn on (remember, the first LED is 0).

The second group is the encoder. You should set only one switch on at a time, as the
input is supposed to be one-hot. However, the way the module is written, it’ll just use

Common Subcircuits | 53

the most significant bit if you turn on more than one. It does the exact opposite of the
first group of switches. This means if you set the three switches in the first group to a
value and then set the switches in the second group to match the LEDs in the first
group, the LEDs in the second group should match the switches in the first group.
For example, turning on all three switches in the first group will turn on LED 7.
Turning on only switch 7 (the leftmost switch) in the second group will cause the
three LEDs to turn on, mirroring the three switches in the first group.

The last group of switches is connected to the arbiter. Only the LED that matches up
with the leftmost on-switch will light up.

54 | Chapter 3: Combinational Logic

CHAPTER 4

Sequential Logic

In this chapter, we will cover what sequential logic is and, more specifically, what flip-
flops are and how to use them. Sequential logic is important for controlling the flow
of data through your design as well as improving efficiency by allowing different sec‐
tions of combinational logic to operate independently. This chapter starts a new
example project; you will create a circuit that can keep track of a running total. We
will also introduce how to properly read external inputs and solve the challenges that
can be associated with them.

It should come as no surprise that because combinational logic is a type of circuit that
depends only on the current inputs, the other type, sequential logic, is a type of circuit
whose output depends on not only the current inputs but also the sequence of previ‐
ous inputs. This means that the circuit has some sort of memory to be able to keep
track of what has happened before.

A basic example is a circuit that keeps a running total of numbers. Each cycle (we will
define what a cycle is later), it adds the current input to the previous sum, but the
previous sum isn’t an input. The circuit “remembers” it.

So how do we create circuits that can remember things? It’s quite simple: we need to
have feedback loops. In the example of the running total, we would need to feed the
previous output back as another internal input. In practice, it gets a little more com‐
plicated than that, though.

55

Feedback Loops and Flip-Flops
Take a look at the circuit in Figure 4-1.

Figure 4-1. Running total circuit

In this diagram, the box with a + in it represents an adder. The two inputs on the left
are the two numbers to be added, and the output on the right is the sum. In this
example, we loop the sum back to one of the inputs. However, there is a problem.
Imagine that somehow we know that total starts at 0. If we then change in to be 1,
what is the output? Well, at first the two inputs are 0 and 1, so the output should obvi‐
ously be 1. However, when the output is 1, the inputs are then 1 and 1, so the output
should be 2. But if the output is 2, the inputs are 2 and 1, so the output should be 3.
This will continue on forever.

If we built this circuit, how fast would total count up? Could we control the output
at all? The speed it would count would be determinated by the incredibly short delay
for the values to propagate through the logic gates. In practice, it wouldn’t even work.
Binary numbers are represented with multiple bits, and the propagation delays for
each bit would be different. This would lead to each bit updating its value at slightly
different times, giving invalid intermediate values at the input, which would in turn
lead to invalid outputs. The invalid outputs would cycle back to the input and pro‐
duce more garbage. Basically, this is a mess and clearly not the way to keep a running
total.

To make this work, we need a way to prevent the feedback from changing immedi‐
ately. We need to be able to control how often it changes. Luckily, there is a circuit
element known as the D-type flip-flop, or DFF, that will help us here.

Figure 4-2 is a basic representation of a common DFF. There are three inputs, D, clk,
and rst, and a single output, Q. Before we get into how these work, we need to cover
what a clock is.

56 | Chapter 4: Sequential Logic

Figure 4-2. D-type flip-flop

Clocks
You have likely heard about clock signals before without even knowing about it.
When you buy a computer, the spec sheet will always list the clock speed of the pro‐
cessor, something like 2.8 GHz. So what does this mean?

A clock is a signal that toggles between 0 and 1 with a set frequency. It looks some‐
thing like Figure 4-3.

Figure 4-3. Clock signal

The important parts of the clock signal are the edges. There are two types: the rising
and falling edges. Rising edges occur when the clock transitions from 0 to 1 and are
marked with a little up arrow in Figure 4-3. Most of the time, the rising edge is the
one you really care about. Falling edges occur the when the clock transitions from 1 to
0 and are used less often.

The time between edges is specified by the clock’s frequency. In the example of the
computer processor running at 2.8 GHz, the clock will toggle 2.8 billion times a sec‐
ond, or once every 357 picoseconds! The clock on the Mojo isn’t quite that extreme. It

Feedback Loops and Flip-Flops | 57

runs at 50 MHz, meaning it toggles 50 million times a second, or once every 20 nano‐
seconds.

So back to the DFF. As you may have guessed, the clk input stands for clock. The
function of a DFF is to copy the value from D and output it on Q on each rising edge
of the clock. Between rising edges, if the value at D changes, the value at Q won’t
change. Q changes only when there is a rising edge. In other words, the flip-flop will
remember the last value of D and output it until it is told to remember a new value (at
the next rising edge of the clock).

The input rst stands for reset and is used to force the output to a known value. In the
case of our running total, we want the initial total to be 0. We can use the reset input
to force the total to 0 when the circuit is powered on or needs to be reset. Without a
reset, DFFs initialize to a random value.

The reset input usually forces the DFF to 0, but you can also have it set the DFF, forc‐
ing it to 1.

You will also sometimes see flip-flops drawn with another input called enable. This is
used to select which rising edges the flip-flop should update on.

With your new knowledge of the DFF, take a look at the new running total circuit in
Figure 4-4.

Figure 4-4. Running total circuit with DFF

The new circuit has two more inputs, clk and rst. The clock will dictate when the
next value of in is added to total, and the reset input will allow us to reset the total
to 0.

58 | Chapter 4: Sequential Logic

Now if we were to implement this circuit on the Mojo and use the switches as the
input and the LEDs as the output, we couldn’t easily control it because it would add
the input to the total 50 million times per second. Let’s go ahead and do it anyway to
get a feel for using DFFs.

Create a new project based on the IO Shield Base and open up mojo_top.luc.

In Lucid, we have a type dff that we can use to instantiate DFFs in our design. Just as
in the diagram, they have three inputs (clk, rst, and d) and one output (q). Since
most of your design will use the same reset and clock signals, Lucid has a way to
easily connect the same signal to many instances of DFFs or other modules:

 .clk(clk) {
 // The reset conditioner is used to synchronize the reset signal to the FPGA
 // clock. This ensures the entire FPGA comes out of reset at the same time.
 reset_conditioner reset_cond;

 .rst(rst) {
 dff running_total[24]; // Running total, 24 bits wide
 }
 }

Here we use the .port_name(signal_name){} syntax to connect clk and rst to the
clk and rst inputs of the DFF. With this syntax, port_name is the name of the port on
the instance. A port is simply an input, output, or inout of a module. In other words,
signal_name is the name of the signal to connect to the port_name input of the DFF,
in this case. It’s a little confusing here because the names of the input and signal are
the same.

Also note that we nested the two port connection blocks. The module reset_cond
won’t have rst connected because it isn’t in the block for that. However,
running_total will have both rst and clk connected. You can list multiple connec‐
tions for a single block by separating them with commas. For example, if we didn’t
have reset_conditioner there, we could have instantiated the DFF as follows:

 .clk(clk), .rst(rst) {
 dff running_total[24]; // Running total, 24 bits wide
 }

Note that the port connection block syntax is great when you have a bunch of DFFs
in your design, but if you have a single DFF, you could also connect only to that DFF
with the following:

 dff running_total[24] (.clk(clk), .rst(rst)); // Running total, 24 bits wide

You can mix and match any of these port connections to fit your needs. However, it is
usually a good idea to set up a block that connects the clock and reset because they
are used so much.

Feedback Loops and Flip-Flops | 59

Also the rst input to the dff type is optional. If you don’t connect it, the dff won’t
have a reset. If you don’t need a reset, don’t use it, as this will make your design easier
for the tools to route. In the case of our running total, we definitely need a reset to be
able to get the running total to a known value.

We can complete the design as follows:

module mojo_top (
 input clk, // 50MHz clock
 input rst_n, // reset button (active low)
 output led [8], // 8 user controllable LEDs
 input cclk, // configuration clock, AVR ready when high
 output spi_miso, // AVR SPI MISO
 input spi_ss, // AVR SPI Slave Select
 input spi_mosi, // AVR SPI MOSI
 input spi_sck, // AVR SPI Clock
 output spi_channel [4], // AVR general purpose pins
 input avr_tx, // AVR TX (FPGA RX)
 output avr_rx, // AVR RX (FPGA TX)
 input avr_rx_busy, // AVR RX buffer full
 output io_led [3][8], // LEDs on IO Shield
 output io_seg [8], // 7-segment LEDs on IO Shield
 output io_sel [4], // Digit select on IO Shield
 input io_button [5], // 5 buttons on IO Shield
 input io_dip [3][8] // DIP switches on IO Shield
) {

 sig rst; // reset signal

 .clk(clk) {
 // The reset conditioner is used to synchronize the reset signal to the FPGA
 // clock. This ensures the entire FPGA comes out of reset at the same time.
 reset_conditioner reset_cond;

 .rst(rst) {
 dff running_total[24]; // Running total, 24 bits wide
 }
 }

 always {
 reset_cond.in = ~rst_n; // input raw inverted reset signal
 rst = reset_cond.out; // conditioned reset

 led = 8h00; // turn LEDs off
 spi_miso = bz; // not using SPI
 spi_channel = bzzzz; // not using flags
 avr_rx = bz; // not using serial port

 io_seg = 8hff; // turn segments off
 io_sel = 4hf; // select no digits

 running_total.d = running_total.q + io_dip[0];

60 | Chapter 4: Sequential Logic

 io_led =
 {running_total.q[16+:8], running_total.q[8+:8], running_total.q[0+:8]};
 }
}

Take a look at the line where we assign running_total.d. To access inputs and out‐
puts of an instance, we use the dot (.) syntax. This line assigns the d input of run
ning_total to the sum of the q output and the first eight switches. The next line
simply connects the q output to the LEDs as we did before with result.

If you build and load this project onto your Mojo, when all the DIP switches are off
nothing happens. However, the moment you flip the first switch, almost all the LEDs
seem solid on except for the last few. This is because it is counting so fast we can’t see
it. The first few LEDs are even pretty dim because the FPGA can’t fully turn on and
off the LED that fast.

If you flip the DIP switches back to 0, you’ll freeze the counter at a specific value. Try
this a few times just to prove to yourself that it is counting. If you turn on a few of the
switches, it will count so fast you can’t see any of the LEDs blinking.

Timing and Metastability
When thinking about designs, it is easiest to assume that the DFF takes an instanta‐
neous snapshot of its input at the rising edge of a clock. However, that isn’t true in
practice. The DFF requires that its input doesn’t change for a small period of time
around the rising edge of the clock.

The time required for it to be stable before the rising edge is known as the setup time,
and the time after the edge is known as the hold time.

During the time around the edge, if the D input changes, the value of Q is not guaran‐
teed to be valid. However, it gets worse. Not only can Q not be the value that D was,
but it also can do some weird things such as oscillate between 0 and 1 or even get
stuck somewhere in the middle. This instability can then propagate through your
design, making other DFFs unstable.

In Figure 4-5, D is stable through the setup and hold times of the first two edges, so Q
properly copies the value of D. However, on the last edge, D changes during the setup
time, so the value of Q is unknown.

Timing and Metastability | 61

Figure 4-5. Setup and hold times of a DFF. D is valid for the first two edges, but violates
the setup time on the last edge.

So how do we make sure that our designs don’t violate the flip-flop’s timing require‐
ments? For the most part, the tools take care of it. Let’s look at an example of two flip-
flops connected by an inverter, as shown in Figure 4-6.

Figure 4-6. Two DFFs connected through an inverter

So what will happen here when Q of the first flip-flop is 0, but D is 1 and there is a
rising edge?

Let’s quickly define the terms that you haven’t seen yet. If you look back at the sche‐
matic for this simple circuit, you’ll see that both DFFs have the same clock. It’s com‐
mon for all the DFFs in your entire design to have the same clock. However, the DFFs

62 | Chapter 4: Sequential Logic

are in different locations, and the clock signal originates from a single point. It takes
time for the clock signal to reach each DFF. The difference in arrival time of the clock
leads to clock skew. This means that the rising edges of the clock are not exactly the
same for each DFF. Also note that the skew can be both positive and negative,
depending how the circuit is actually laid out.

In Figure 4-7, Clock 1 refers to the clock seen at the input of DFF 1, and Clock 2 refers
to the clock seen at DFF 2. Both clocks originate from the same source.

Figure 4-7. Clock skew

Earlier we also assumed that the DFF copied the D value to Q immediately at the rising
edge. However, that’s not the case. There is a small amount of time between the rising
edge and when Q actually changes. This is known as the clock-to-Q propagation delay,
as shown in Figure 4-8.

Figure 4-8. Clock-to-Q delay

Timing and Metastability | 63

Once Q changes, the new value needs to propagate through the circuit. The time it
takes for the old value to be contaminated with the new value is called the contamina‐
tion delay.

However, after the contamination delay, the value may toggle a few times before set‐
tling on the correct value. The time it takes after Q changes to when the output is sta‐
ble and correct is called the combinational logic propagation delay. This delay is a
function of your circuit design. The more logic you stick between two flip-flops, the
longer this will be. It ultimately dictates the maximum clock speed at which you can
run your design. Figure 4-9 illustrates contamination delay and combinational logic
propagation delay.

Figure 4-9. Logic delays

If we ignore clock skew, to satisfy hold time we need to make sure that the clock-to-Q
delay plus the contamination delay is equal to or greater than the hold time. Note that
the clock-to-Q and the contamination delays are a function of how the circuit is laid
out and not of the clock frequency. Because of this, we have to fully rely on the tools
to make sure hold time is being met.

Again ignoring clock skew, to satisfy setup time, we need to ensure that the period of
the clock minus the setup time is greater than or equal to the clock-to-Q delay plus
the combinational logic delay. In this case, the period of the clock plays a role in tim‐
ing. If for some reason the tools can’t meet timing on your design, they will prioritize
satisfying the hold time over the setup time. This is because you can always satisfy the
setup time by reducing your clock frequency (which increases the clock period).

Take a look at all of these constraints put together in Figure 4-10.

64 | Chapter 4: Sequential Logic

Figure 4-10. Timing of the DFF chain

Notice that in this example the circuit would be functional because the inputs to the
flip-flops never change between the setup and hold times around each rising edge.

Timing and Metastability | 65

External Inputs
Luckily for us, the tools will figure out all these timing issues and attempt to lay out
your design in such a way that it will all work. However, they can figure out the tim‐
ing only when things are clearly defined. In some cases, the tools can’t satisfy timing
for you. One case is when you have external inputs.

You can synchronize some external inputs to the system clock so that you don’t have
to worry about the following issues. However, some inputs are generated from a dif‐
ferent system clock or have no clock at all.

In fact, in our previous example with the counter, we used the DIP switches as an
input directly to the counter. What happens if we flip one of the switches right on the
rising edge of the clock? There is no way we can possibly synchronize our switch
flips. This means we will eventually violate timing and cause stability issues if we flip
it enough.

So how do we solve this issue? It is quite simple: we can use a simple circuit known as
a synchronizer, shown in Figure 4-11.

Figure 4-11. Basic synchronizer

The most basic synchronizer is two flip-flops connected together. You feed the
unsynchronized input into the leftmost one, and the output on the right will be
synchronized to the clock. This works because even if the first flip-flop becomes
unstable, it is pretty unlikely that it will also cause the next to become unstable. How‐
ever, there is still a chance that they both become unstable. To further reduce the pos‐
sibility of instability, you can chain more than two DFFs together. The more you
chain, the lower the probability of instability at the end. However, the payoff quickly
diminishes after just two. This is something that all unsynchronized inputs in any
digital system suffer from, and there is always that small chance that a value will be
read incorrectly, or worse, the instability propagates. However, systems are designed
so that their mean time between failures, or MTBF, is ridiculously high. Even just two
flip-flops chained like this can have an MTBF of millions of years, depending on the
input and flip-flop characteristics.

66 | Chapter 4: Sequential Logic

Add the Components
Open the Components Library, and go to Project → Add Components. We need three
of the components for this project: the Pipeline, Edge Detector, and Button Condi‐
tioner. All of these can be found under the Miscellaneous category, as shown in
Figure 4-12.

Figure 4-12. Components Library

The Pipeline component is simply a chain of DFFs like the synchronizer. The length
of the chain is configurable using parameters. Let’s take a look at the source:

module pipeline #(
 DEPTH = 1 : DEPTH > 0 // number of stages
)(
 input clk, // clock
 input in, // input
 output out // output
) {

 dff pipe[DEPTH] (.clk(clk));
 var i;

 always {
 // in goes into the start of the pipe
 pipe.d[0] = in;

Timing and Metastability | 67

 // out is the end of the pipe
 out = pipe.q[pipe.WIDTH-1];

 // for each intermediate state
 for (i = 1; i < DEPTH; i++)
 pipe.d[i] = pipe.q[i-1]; // copy from previous
 }
}

The parameter DEPTH is used as the size of the array of DFFs, pipe. Even though
DEPTH can take different values, it is constant at synthesis time, so you can use it as
array sizes and indices.

Looking in the always block, the first line connects the input, in, to the first dff in
the chain. The second line connects the output, out, to the output of the last flip-flop.
To index the last flip-flop, we use the WIDTH attribute of the array. The WIDTH attribute
for a single-dimensional array is simply a number. In this case, it will be the same
value as DEPTH. For multidimensional arrays, WIDTH will be a single-dimensional array
with each entry being the width of a different dimension. For example, dff array[3]
[5] will have a WIDTH attribute of {5, 3}, so that array.WIDTH[0] is equal to 3, and
array.WIDTH[1] is 5.

There is a new type used in this module too, var. This stands for variable and is used
to store a value that won’t really be in the hardware design but is useful in the descrip‐
tion. The most common use for a var is as the index of a for loop.

Now let’s take a look at the for loop:

 for (i = 1; i < DEPTH; i++)
 pipe.d[i] = pipe.q[i-1]; // copy from previous

For loops take a similar form to C/C++ or Java for loops. They have the syntax for
(init_expr; condition_expr; operation) statement. Only the type var should
be used in for loops. The init_expr sets the initial value of the var—in this case, 1.
The condition_expr is evaluated before each iteration to see whether the loop should
continue. Finally, operation specifies how the var will change on each iteration.

Loops in Lucid my seem similar to software for loops you might be familiar with.
However, they are implemented differently. for loops should be thought of as short‐
hand for writing everything out. The synthesizer will essentially unroll the for loop,
duplicating the hardware required for each iteration. Unlike code, they don’t make
your design any smaller. They only make the design files smaller and easier to
maintain.

In this case, we couldn’t unroll the loop by hand because the number of iterations is
specified by the parameter DEPTH. However, DEPTH is a constant (although it may have
different values for different instances), so the tools can unroll it. for loops can be

68 | Chapter 4: Sequential Logic

used only when they have a constant number of iterations that can be determined at
synthesis time.

This for loop will simply connect the output of the previous flip-flop to the input of
the next, creating the chain. Note that if DEPTH is 1, which is allowed with our con‐
straint, the for loop will be ignored because the condition_expr will fail on the first
iteration. This is what we want, because the input and output of the single dff would
already be connected to the module’s ports.

Take a look at Figure 4-13 to see how this will look in hardware.

Figure 4-13. Hardware pipeline

Instantiating a Module
Now that you have a solid understanding of the pipeline component, let’s use it in the
running total project to synchronize the switch inputs with the clock:

module mojo_top (
 input clk, // 50MHz clock
 input rst_n, // reset button (active low)
 output led [8], // 8 user controllable LEDs
 input cclk, // configuration clock, AVR ready when high
 output spi_miso, // AVR SPI MISO
 input spi_ss, // AVR SPI Slave Select
 input spi_mosi, // AVR SPI MOSI
 input spi_sck, // AVR SPI Clock
 output spi_channel [4], // AVR general purpose pins
 input avr_tx, // AVR TX (FPGA RX)
 output avr_rx, // AVR RX (FPGA TX)
 input avr_rx_busy, // AVR RX buffer full
 output io_led [3][8], // LEDs on IO Shield
 output io_seg [8], // 7-segment LEDs on IO Shield
 output io_sel [4], // Digit select on IO Shield
 input io_button [5], // 5 buttons on IO Shield
 input io_dip [3][8] // DIP switches on IO Shield
) {

Timing and Metastability | 69

 sig rst; // reset signal

 .clk(clk) {
 // The reset conditioner is used to synchronize the reset signal to the FPGA
 // clock. This ensures the entire FPGA comes out of reset at the same time.
 reset_conditioner reset_cond;

 // create a 3x8 array of pipelines with a depth of 2
 pipeline switch_cond[3][8] (#DEPTH(2));

 .rst(rst) {
 dff running_total[24]; // Running total, 24 bits wide
 }
 }

 always {
 reset_cond.in = ~rst_n; // input raw inverted reset signal
 rst = reset_cond.out; // conditioned reset

 led = 8h00; // turn LEDs off
 spi_miso = bz; // not using SPI
 spi_channel = bzzzz; // not using flags
 avr_rx = bz; // not using serial port

 io_seg = 8hff; // turn segments off
 io_sel = 4hf; // select no digits

 switch_cond.in = io_dip; // connect the raw switch input to the conditioner

 // use the conditioned switch input
 running_total.d = running_total.q + switch_cond.out[0];
 io_led =
 {running_total.q[16+:8], running_total.q[8+:8], running_total.q[0+:8]};
 }
}

To instantiate the module, we use its name followed by the name of our instance.
Note that the pipeline module has a clk input but not a rst input. This means we can
put in the port connection block for clk, but not with running_total in the rst port
connection block.

We also need the pipeline to be an array of pipelines. To do this, we can tack on the
array size to the name. This will duplicate the pipeline module for each element in the
array. Because the entire array is in the clk port connection block, each individual
element will have its clk input connected to clk:

 .clk(clk) {
 ...
 // create a 3x8 array of pipelines with a depth of 2
 pipeline switch_cond[3][8] (#DEPTH(2));

70 | Chapter 4: Sequential Logic

 ...
 }

If you instantiate an array of modules and don’t connect a port at instantiation, that
port will be packed into an array. This is what happens to switch_cond.in and
switch_cond.out. While they are typically a single bit, because switch_cond is an
array, they become 3 x 8 arrays themselves. This is convenient because we can then
directly assign io_dip to switch_cond.in since they have the same dimensions. This
also makes switch_cond.out a direct drop-in replacement for io_dip.

The default depth of the pipeline is 1, which is pretty useless because you could just
use a DFF directly. We need to override this so that we get a chain of two DFFs. To
specify a parameter’s value, you specify it basically the same way as you do a port con‐
nection, except instead of leading the name with a period (.), you use #. You can even
add parameter values to port connection blocks if everything in the block has the
same parameter name. If we didn’t instantiate the pipeline module in the port con‐
nection block, we could use the following:

pipeline switch_cond[3][8] (#DEPTH(2), .clk(clk));

The order of parameters and port connections don’t matter, but typically parameters
are assigned first.

If you try changing DEPTH to an invalid value such as 0, you will get an error from the
failing constraint:

Line 28, Column 13 : The constraint "DEPTH>0" for parameter "DEPTH" with

value "0: {0}" failed

If you build and load this project, it should behave basically the same as before—
except this time we don’t have to worry about metastability issues.

Checking Timing
How do we know that the tools were able to meet the timing requirements? If you
look at the output when you build your project, a little bit above the end there is a
section that looks something like this:

--
 Constraint | Check | Worst Case | Best Case | Timing | Timing
 | | Slack | Achievable | Errors | Score
--
 TS_clk = | SETUP | 14.461ns| 5.539ns| 0| 0
 PERIOD
 TIMEGRP
 "clk" 50
 MHz HIGH
 50% | HOLD | 0.447ns| | 0| 0
--

Timing and Metastability | 71

All constraints were met.

The important line here is the All constrains were met. part. This means the tools
were able to route our design so that it should work under all operating conditions
that the FPGA is designed to work in. If there was a problem, the Timing Errors and
Timing Score columns would have nonzero values.

We will cover later what to do if timing fails, but for most designs running at 50 MHz,
timing won’t be an issue. In the preceding case, the Best Case Achievable time of
5.539 ns means this design could run at 180 MHz (1/5.539 ns) without problems.

Also how do the tools know that the clock is 50 MHz? We told them! If you look
under the Constraints section of the project tree, you will find a file called mojo.ucf.
This file is where we tell the tools what pins on the FPGA to use for each signal inter‐
nal to the Mojo as well as the frequency of the clock. The file io_shield.ucf contains
the pin constraints used by the IO Shield.

Don’t worry about the user constraints file (UCF) details for now: we will get to them
later.

Bouncy Buttons and Edges
We are going to modify the project further so that it adds the switch value only when
we push a button. But first, you need to know some stuff about buttons. We could try
to synchronize the button input as we did with the switches, but buttons have another
issue: they often bounce when you press them. The contacts, instead of staying
closed, hit each other and can then separate before slamming back together, as shown
in Figure 4-14. This can happen a few times or none at all. To compensate for this, we
need to register button presses only when they have been pressed and continue to be
pressed for a small amount of time.

Figure 4-14. Button bouncing

Luckily, the Button Conditioner component takes care of this for us.

Feel free to take a look at the contents of the module located in the button_condi‐
tioner.luc file. It works by first passing the button input through a pipeline, as we did
with the switches. If the synchronized output is 1 (the button is assumed active high),
a counter is incremented until it reaches its maximum value. When it reaches the

72 | Chapter 4: Sequential Logic

maximum value, the button conditioner outputs 1. If at any point the button input is
0, the counter is reset and the output of the conditioner is 0.

The button conditioner will output 1 when the button is pressed, and 0 when it isn’t.
However, we want to add the number only once for each time the button is pressed.
To do this, we need to be able to detect when the button goes from 0 to 1. This is easy
to do with a single DFF. You simply feed the value into the DFF. The output of the
DFF will then be the value of the button from the last clock cycle. If the button was 0
on the last clock cycle, but is now 1, we know it was just pressed.

However, we don’t need to do this because another component does this for us: the
Edge Detector component.

If you take a look at its source, you’ll see it does basically what was just described. The
one main difference is that you can configure it so that it will detect rising, falling, or
both types of edges using parameters.

Running Total
We now have all the pieces we need to make a more useful running total design.

First, we need to instantiate the button conditioner and edge detectors:

 .clk(clk) {
 // The reset conditioner is used to synchronize the reset signal to the FPGA
 // clock. This ensures the entire FPGA comes out of reset at the same time.
 reset_conditioner reset_cond;

 // create a 3x8 array of pipelines with a depth of 2
 pipeline switch_cond[3][8] (#DEPTH(2));
 button_conditioner btn_cond;
 edge_detector edge (#RISE(1), #FALL(0));

 .rst(rst) {
 dff running_total[24]; // Running total, 24 bits wide
 }
 }

Again, both of these don’t have rst inputs, so we can stick them in the clk port con‐
nection block. The default parameter values for the button conditioner are perfect, so
we don’t need to override them. However, the edge detector needs to be told to look
for only rising edges.

Finally, we need to connect it all up in the always block:

 always {
 reset_cond.in = ~rst_n; // input raw inverted reset signal
 rst = reset_cond.out; // conditioned reset

 led = 8h00; // turn LEDs off
 spi_miso = bz; // not using SPI

Timing and Metastability | 73

 spi_channel = bzzzz; // not using flags
 avr_rx = bz; // not using serial port

 io_seg = 8hff; // turn segments off
 io_sel = 4hf; // select no digits

 switch_cond.in = io_dip; // connect the raw switch input to the conditioner

 btn_cond.in = io_button[4]; // io_button[4] is the "right" button
 edge.in = btn_cond.out; // connect the button to the edge detector

 if (edge.out) // only add when the button is pressed
 // use the conditioned switch input
 running_total.d = running_total.q + switch_cond.out[0];

 io_led =
 {running_total.q[16+:8], running_total.q[8+:8], running_total.q[0+:8]};
 }

By using the if statement, we are able to assign running_total.d the new sum only
when edge.out is 1. You may remember from before that under all circumstances,
you need to assign a signal a value. The one exception to this rule is the d input of the
DFF. This is because a DFF is able to save its last value, while a basic wire can’t. If you
don’t assign it a value, the q output will stay the same.

Build and load the project onto your Mojo. By setting the DIP switches and pressing
the “right” button, you can now add individual numbers to the running total. If you
want to reset the total back to 0, press the button on the Mojo itself (not on the IO
Shield).

Congratulations on completing the working running total design! This design is not
only functional, but also quite robust, with all the proper precautions taken to clean
up the external signals. You can try to connect io_button[4] to edge.in directly to
see what kind of bad behavior you get when you use the external input directly. In my
testing, the button press would be ignored about every third press. This obviously
isn’t an issue of bouncing (which would cause multiple additions per press), so I must
be violating timing and causing stability issues. A tricky thing with timing violations
is that the behavior it can produce can seem random and unrelated to the input caus‐
ing it (as the instability can propagate).

74 | Chapter 4: Sequential Logic

CHAPTER 5

Seven-Segment LED Displays and
Finite-State Machines

In this chapter, we will create a new project that will teach you how to use the seven-
segment displays on the IO Shield, shown in Figure 5-1. Seven-segment displays are
common, and you have likely seen them all over the place (for example, on micro‐
wave ovens). We will continue building on this project to create a stopwatch that will
serve as an example for a finite-state machine.

Figure 5-1. Seven-segment displays on the IO Shield

Finite-state machines, or FSMs, are an important design idea that will allow you to
create designs with complex behavior. The basic idea is that your design has a finite
set of states that it can be in, and various inputs will cause it to transition between

75

states. The classic example of an FSM is a traffic light. The light can be in a few states:
green in one direction, red in both directions, green in the other direction, and so
forth. Depending on where cars are detected, it will transition between these states in
a specific way.

Single Digit
On the IO Shield, each segment from a digit is connected to the same segment of the
other three digits. Given this, it seems as if all four digits would always display the
same thing. However, each digit can be turned on and off individually. This is accom‐
plished by connecting the common pin of each digit to a transistor. By turning the
transistors on and off, we can enable and disable each digit. By quickly cycling
through the digits, we can create the illusion that all the digits are on and that they are
all displaying unique numbers. This technique is known as multiplexing.

Before we get ahead of ourselves, let’s figure out how to display a single digit on just
one digit. As before, create a new project based on the IO Shield Base example
project.

In the mojo_top module, we have two relevant outputs: io_seg and io_sel. The out‐
put io_seg connects to the eight LEDs in the digit (the seven segments plus a decimal
point). The output io_sel connects to the transistors that turn the digits on and off.
Both of these signals are active low. That means a 0 value will turn on the LED or
digit.

To get started, we can display a static value by changing the values of these outputs.
Take a look at the last two lines in the always block:

 io_seg = 8hff; // turn segments off
 io_sel = 4hf; // select no digits

We can edit these values to display a 2 on the first digit:

 io_seg = 8b10100100; // "2"
 io_sel = 4b1110; // select first digit

If you build and load the project, the first digit should turn on and display a 2. So
how did we know what value to set io_seg to? Figure 5-2 shows which segment con‐
nects to which bit. Remember that both of these signals are active low, so a value of 0
will enable the digit or turn on the LED segment.

76 | Chapter 5: Seven-Segment LED Displays and Finite-State Machines

Figure 5-2. LED segment mapping

We can use a counter and a decoder to index through the LEDs as well. Add the
Counter and Decoder components to your project. They can be found under the Mis‐
cellaneous category in the Components Library.

Then instantiate the counter and decoder. Note that the decoder is strictly combina‐
tional logic and doesn’t have a clock or reset input, while the counter has both:

 .clk(clk) {
 // The reset conditioner is used to synchronize the reset signal to the FPGA
 // clock. This ensures the entire FPGA comes out of reset at the same time.
 reset_conditioner reset_cond;

 .rst(rst) {
 counter ctr (#SIZE(3), #DIV(24));
 }
 }

 decoder num_to_seg (#WIDTH(3));

The Counter component has a handful of parameters that make it flexible. In this
case, we are using SIZE and DIV. The parameter SIZE specifies the width of the out‐
put. In our case, we want 3 bits so that the counter will count from 0 to 7. The DIV
parameter specifies the number of bits to use as a pre-counter to divide the clock. By
specifying 24 here, the counter will increment its output every 224, or 16,777,216,
clock cycles. With a clock frequency of 50 MHz, this means it will change about every
third of a second. Finally, we need the decoder to turn the binary value to a one-hot
value to turn on the LED segment. By setting WIDTH to 3 bits, we get an output of 8
bits, which is exactly what we want!

Single Digit | 77

All that’s left to do is to connect the counter to the decoder and the decoder to the
LEDs:

 num_to_seg.in = ctr.value; // connect counter to decoder

 io_seg = ~num_to_seg.out; // connect decoder to LEDs
 io_sel = 4b1110; // select first digit

Remember that the LEDs are active low and the decoder output is one-hot. We really
need it to be one-cold. We can get that by inverting the bits.

If you build and load the project now, each segment should cycle through. You can
adjust the speed by changing the DIV parameter on the counter. A higher value will
result in a slower cycle.

What if we want to also use other digits? We can modify the counter and add a sec‐
ond decoder to cycle the io_sel output too:

 .clk(clk) {
 // The reset conditioner is used to synchronize the reset signal to the FPGA
 // clock. This ensures the entire FPGA comes out of reset at the same time.
 reset_conditioner reset_cond;

 .rst(rst) {
 counter ctr (#SIZE(5), #DIV(24));
 }
 }

 decoder num_to_seg (#WIDTH(3));
 decoder num_to_digit (#WIDTH(2));

Notice that we made the counter’s output 5 bits wide and added another decoder with
a 2-bit input. We are going to use the 2 extra bits to feed into the new decoder, which
we will connect to the io_sel signal. This way, each time the single digit has gone
through a full cycle, we will select a new digit for the next cycle:

 num_to_seg.in = ctr.value[2:0]; // connect counter to segment decoder
 num_to_digit.in = ctr.value[4:3]; // connect counter to digit decoder

 io_seg = ~num_to_seg.out; // connect decoder to LEDs
 io_sel = ~num_to_digit.out; // connect decoder to select

If you build and load the project this time, after a complete cycle, the lit LED should
jump to the next digit.

You should now have a decent understanding of how the seven-segment LED displays
work. We can now get a little fancier and start displaying useful values.

78 | Chapter 5: Seven-Segment LED Displays and Finite-State Machines

Lookup Tables
An important technique in hardware design is using lookup tables, also known as
LUTs. These are tables from which you can select one of many constant values. You
can think of a lookup table as an arbitrary function mapping a range of inputs to
whatever output values you want. We are going to use one to convert a binary num‐
ber to the LEDs that should be lit.

Let’s put the digit LUT in its own module so we can reuse it. To create a new module,
click the little document icon in the toolbar and name the file digit_lut.luc and select
Lucid Source. The Mojo IDE will automatically populate the file with a bare-bones
module:

module digit_lut (
 input clk, // clock
 input rst, // reset
 output out
) {

 always {
 out = 0;
 }
}

We are going to make this fully combinational so we can remove the clock and reset
inputs and replace them with a value input. We also need to replace the out output
with a segs output that is 7 bits wide.

In the always block, we can remove the default assignment and replace it with a case
statement that will do the lookup for us:

module digit_lut (
 input value [4],
 output segs [7]
) {

 always {
 case (value) {
 0: segs = 7b0111111;
 1: segs = 7b0000110;
 2: segs = 7b1011011;
 3: segs = 7b1001111;
 4: segs = 7b1100110;
 5: segs = 7b1101101;
 6: segs = 7b1111101;
 7: segs = 7b0000111;
 8: segs = 7b1111111;
 9: segs = 7b1100111;
 default: segs = 7b0000000;
 }

Lookup Tables | 79

 }
}

A case statement works by looking at the value in the expression after the case key‐
word and then using the branch with that value. For example, when value is 2, the
line segs = 7b1011011; will be used. It is important to assign a value to segs no matter
what value value is. That is where the default entry comes in. This statement will be
used if value doesn’t match any of the other values.

The values used here are active high, meaning a 1 should turn on
the LED. We will need to invert these before we connect them to
the actual LED outputs.

A case statement is identical to using a bunch of if-else statements. It is more com‐
pact and easier to write out in some situations. Unlike programming, there is no per‐
formance benefit to it.

We can test out the digit_lut module by connecting a new counter to it and con‐
necting it to the LEDs in mojo_top.luc. We no longer need the decoders and the old
counter, so we can remove them:

 .clk(clk) {
 // The reset conditioner is used to synchronize the reset signal to the FPGA
 // clock. This ensures the entire FPGA comes out of reset at the same time.
 reset_conditioner reset_cond;

 .rst(rst) {
 counter ctr (#SIZE(4), #DIV(24), #TOP(9));
 }
 }

 digit_lut lut;

We also changed SIZE down to 4 and set a new parameter, TOP, to 9. The parameter
TOP sets the maximum value for the counter. If you don’t set it, it will overflow natu‐
rally. However, with 4 bits, it would count from 0 to 15, and we don’t have a digit to
display from 10 to 15, so we really want it to count only from 0 to 9:

 lut.value = ctr.value; // connect counter to LUT

 io_seg = ~lut.segs; // connect LUT to LEDs
 io_sel = 4b1110; // select first digit

We can connect everything, but remember that the LUT was active high, so we inver‐
ted its output.

80 | Chapter 5: Seven-Segment LED Displays and Finite-State Machines

Building and loading the project should make the first digit continuously count from
0 to 9. We now need to create a way to get all the digits showing a number.

To do this, we will create another module, multi_seven_seg. This module will take a
value for each digit and display it on the respective digit. It will do this by cycling
though them faster than we can see, making them all look like they are on. For this
module, we will assume that the LEDs and select signals are active high and invert
them when we connect it to the output.

Also our digit_lut module assumes that we have only seven segments. However, we
really have eight per digit because of the decimal place. The decimal place is the MSB
of the output seg. To allow these to be used, we will accept an array that will specify
which decimal places should be lit. We can concatenate the corresponding bit to the
beginning of the digit_dec output to get the full eight segments:

module multi_seven_seg #(
 DIGITS = 4 : DIGITS > 0,
 DIV = 16 : DIV >= 0
)(
 input clk, // clock
 input rst, // reset
 input values [DIGITS][4], // values to show
 input decimal [DIGITS], // decimal points
 output seg [8], // LED segments
 output sel [DIGITS] // Digit select
) {

 // number of bits required to store DIGITS-1
 const DIGIT_BITS = $clog2(DIGITS);

 .clk(clk), .rst(rst) {
 counter ctr (#DIV(DIV), #SIZE(DIGIT_BITS), #TOP(DIGITS-1));
 }

 digit_lut seg_dec; // segment decoder
 decoder digit_dec (#WIDTH(DIGIT_BITS)); // digit decoder

 always {
 seg_dec.value = values[ctr.value]; // select value for active digit
 seg = c{decimal[ctr.value], seg_dec.segs}; // output the decoded value

 digit_dec.in = ctr.value; // decode active digit to one-hot
 sel = digit_dec.out; // output the active digit
 }
}

Instead of hardcoding four digits, this module uses the parameter DIGITS. We also
break out the DIV parameter from the counter so we can adjust how fast it switches
between digits. The faster we switch, the more power is used, and the LEDs will

Lookup Tables | 81

appear a little less bright. However, if we switch too slowly, we will see a flicker. The
default value should typically be a solid balance.

This module also uses a constant, DIGIT_BITS. Constants are a lot like parameters,
but they can be set only inside the module. Their value must be known at synthesis
time, and their name can consist only of capital letters and underscores.

In the constant declaration, we also used a function. Functions take the form of
$name(arg, arg, arg, ...). Some functions can be used on any signal or value,
while others, such as $clog2, can be used only on constant values. The function
$clog2 stands for a ceiling of log base 2. In this case, we are using it to determine the
number of bits we need to store a value up to DIGITS-1.

We use a counter and decoder to generate the select signal as before. However, this
time, instead of using the counter and decoder to generate the LED segment value
too, we use the LUT from before. The value we feed into the LUT is the input to the
module indexed by the currently selected digit. Notice that the input values is a 2D
array, so values[0] is the value to show on the first digit, and values[1] is the value
for the second digit.

In mojo_top, we can remove the counter and LUT from before and instantiate the
new module:

 .clk(clk) {
 // The reset conditioner is used to synchronize the reset signal to the FPGA
 // clock. This ensures the entire FPGA comes out of reset at the same time.
 reset_conditioner reset_cond;

 .rst(rst) {
 multi_seven_seg seg_display;
 }
 }

Then connect it up to the actual LEDs. For testing, we can just use some constant
values:

 seg_display.values = {4d1, 4d2, 4d3, 4d4}; // display 1234
 seg_display.decimal = 4b0000; // no decimal points

 io_seg = ~seg_display.seg; // module assumes active high so invert
 io_sel = ~seg_display.sel;

Putting this on the Mojo should make all four digits show a different number at the
same time. Notice that the LEDs are a bit dimmer than before. This is because each
digit is on only one-quarter of the time. If you fix your eyes on something and then
shake the board, you should be able to tell they are flickering by seeing individual
digits instead of a smooth streak. Note that having DIV set to 16 makes it change
really fast, so if you can’t tell it is flickering, try making this 17 or 18.

82 | Chapter 5: Seven-Segment LED Displays and Finite-State Machines

Binary to Decimal
We now have a way to display four digits on the LEDs, but we need to specify which
digit we want to display on each separately. It would be nice to be able to specify a
number that would get displayed across all four digits. To do this, we need to convert
the binary number from the DIP switches into a decimal number.

Technically, the number will still be in binary since that is all we have to work with,
but we will produce a separate number for each digit from a single binary number.

Luckily, there is a component to do this for us. Go to the Components Library and
add the Binary to Decimal component, which can be found in the Miscellaneous sec‐
tion.

This component will output the decimal numbers, assuming our input is valid. It uses
the special value of 10 to indicate the digit should be blank (if there shouldn’t be lead‐
ing zeros), and the value of 11 to indicate that there was overflow. It is a bit compli‐
cated, but let’s break it down:

module bin_to_dec #(
 DIGITS = 1 : DIGITS > 0,
 LEADING_ZEROS = 0 : LEADING_ZEROS == 0 || LEADING_ZEROS == 1
)(
 // minimum number of bits for DIGITS
 input value[$clog2($pow(10, DIGITS))],
 output digits[DIGITS][4] // decimal output
) {

 var i, j, scale;
 sig remainder[value.WIDTH]; // running remainder
 // temporary subtraction value
 sig sub_value[value.WIDTH];
 sig blank; // flag for leading zeros

 always {
 for (i = 0; i < DIGITS; i++) // for all digits
 // default to invalid number
 digits[i] = d11;

 remainder = value; // initialize remainder
 blank = !LEADING_ZEROS; // set blank zero flag

 if (value < $pow(10, DIGITS)) { // if can be displayed
 for (j = DIGITS - 1; j >= $signed(0); j--) { // for each digit
 // get the scale for the digit
 scale = $pow(10, j);

 if (remainder < scale) { // if this digit is 0
 if (j != 0 && blank) // use 10 for blank
 digits[j] = 10;

Binary to Decimal | 83

 else // or 0 for zero
 digits[j] = 0;
 } else { // digit is 1-9
 blank = 0; // don't blank future zeros
 // default to no subtraction
 sub_value = 0;
 for (i = 9; i >= 1; i--) { // for each possible value
 // if remainder is less than value
 if (remainder < (i+1) * scale) {
 digits[j] = i; // set digit to this value
 sub_value = i * scale; // set subtraction value
 }
 }
 remainder = remainder - sub_value; // subtract off last digit
 }
 }
 }
 }
}

The two parameters should be fairly straightforward at this point. DIGITS specifies
the number of digits the decimal number can have, and LEADING_ZEROS specifies that
0 or 10 should be used for leading zeros. Basically, since 10 isn’t a decimal digit, we
can use this as a blank digit value. For a number such as 15 with LEADING_ZEROS set to
1 and DIGITS set to 4, we would get 0015, but with LEADING_ZEROS set to 0, we get 15.

The size of the input value is a bit complicated. The function $pow(a,b) returns ab.
So here we are using it to get the maximum value of a decimal number with DIGITS
digits can have, plus 1. For example, if DIGITS is 2, the maximum value is 99, and 102

is 100. The $clog2() function is then used to tell us the minimum number of bits
needed to store the maximum value plus 1, minus 1—so really just the minimum bits
needed to store the maximum value.

Inside an always block, the types sig and var can be read and written, and their
value can change throughout the block. It is best to think of sig as a wire. However,
when you start using them in for loops, they will actually be multiple wires that hap‐
pen to use the same name. Take a look at Figure 5-3 for one way this module could be
implemented.

84 | Chapter 5: Seven-Segment LED Displays and Finite-State Machines

Figure 5-3. Simplified binary-to-decimal schematic

This schematic leaves out the leading zero and overflow detection parts of the design
but still illustrates how you could make this module. The part shown would be the
part responsible for detecting the 10s place digit. Each digit would have a copy of this
circuit, except the constants would be different. Instead of multiples of 10, they would
be multiples of that digit’s power: 1,000, 100, 10, 1, and so forth.

The first part of the schematic consists of a bank of comparators that detect whether
the input is less than all the possible digits (multiplied by the power of this section).
These are then fed into an arbiter that will select the smallest number that is still
larger than the input. For example, if the input is 24, the arbiter would select the < 30
comparator.

Binary to Decimal | 85

The output from the arbiter is then used to select the digit via a multiplexer being
used as a lookup table.

We also need to output the remainder for the next digit, so we then have to subtract
off the current digit. Which value we use is selected using the output of the arbiter
again but with another multiplexer. If we have 24 as the input, then the 20 would be
selected and we would subtract that from the input. The remainder would be 4 and
that would get passed to the next stage.

The nice part about this design is that it doesn’t use any division. It uses comparisons
and subtraction, which are relatively cheap when compared to division.

Note that this is only one way you could realize this design. The tools may take a
completely different route that happens to be more efficient. It is, however, important
to try to visualize how a circuit you are designing could be realized. This will help you
design efficient circuits that are easily realized in hardware.

With an understanding of this component, let’s put it to use. Instantiate it in
mojo_top:

 .clk(clk) {
 // The reset conditioner is used to synchronize the reset signal to the FPGA
 // clock. This ensures the entire FPGA comes out of reset at the same time.
 reset_conditioner reset_cond;

 .rst(rst) {
 multi_seven_seg seg_display;
 counter ctr (#TOP(9999), #DIV(22), #SIZE(14));
 }
 }

 bin_to_dec digits (#DIGITS(4));

Also note the counter is back and the parameters changed so that it will count from
0–9999.

Then connect it all together in the always block:

 digits.value = ctr.value;
 seg_display.values = digits.digits;
 seg_display.decimal = 4b0000;

 io_seg = ~seg_display.seg;
 io_sel = ~seg_display.sel;

Build and load the project, and the LED displays should show a counter.

86 | Chapter 5: Seven-Segment LED Displays and Finite-State Machines

The Finite-State Machine
To get our feet wet with FSMs, we will create a stopwatch. This project will build off
the project in the previous example, so make sure you have that ready. Basically, we
need it to be able to display the stopwatch value on the seven-segment display.

Lucid has a type specifically for FSMs, the fsm type. This type is similar to the dff
type and in fact will instantiate DFFs. The difference is that instead of holding arbi‐
trary binary values, the fsm type will hold one of many state constants. For our stop‐
watch example, we might want the following states: IDLE, RUNNING, PAUSED. To declare
an FSM with these states, we could use the following:

 .clk(clk), .rst(rst) {
 fsm state = {IDLE, RUNNING, PAUSED};
 }

When reset, the FSM will reset to the first state in the list—in this case, IDLE. If for
some reason you want to reset to a different state, you can use the parameter INIT:

fsm state(#INIT(RUNNING)) = {IDLE, RUNNING, PAUSED};

FSMs have the same d and q ports that DFFs have and they act exactly the same. The
q output is the current state, and the d input is the state to transition to. If you don’t
assign d a state, the state will stay the same.

The Stopwatch
Although we could just use a counter as before, it would be much more useful if our
stopwatch counted actual seconds. To do this, we need two counters: one that gener‐
ates a tick at a regular interval, say every tenth of a second, and another that counts
the ticks. So how do we generate a tick every tenth of a second?

The clock on the Mojo is 50 MHz, meaning we have 50,000,000 cycles per second. We
need to generate a tick every 5,000,000 cycles for a tenth of a second. That means we
need a counter that will count from 0 to 4,999,999, which takes exactly 5 million
cycles.

To count this high, we need the ceiling of log base 2 of 5,000,000, or 23 bits. If we let
the counter overflow naturally, it would count way too long, so we need to reset it
whenever its value gets to 4,999,999. Each time we reset it, we can count this as a tick
and increment the stopwatch counter.

We can use these two counters with an FSM to control when they are running to cre‐
ate the stopwatch module:

module stopwatch (
 input clk, // clock
 input rst, // reset

The Finite-State Machine | 87

 input start_stop, // start/stop signal
 output value[14] // counter value
) {

 .clk(clk){
 .rst(rst){
 fsm state = {IDLE, RUNNING, PAUSED};
 }
 dff tenth_ctr[23]; // need to store up to 4,999,999
 dff ctr[14]; // need to store up to 9999
 }

 always {
 value = ctr.q; // output counter

 case (state.q) { // FSM case statement
 state.IDLE: // IDLE: not counting
 tenth_ctr.d = 0; // reset tenths counter
 ctr.d = 0; // reset main counter
 if (start_stop) // if start_stop pressed
 state.d = state.RUNNING; // switch to RUNNING state

 state.RUNNING: // RUNNING: increment counters
 tenth_ctr.d = tenth_ctr.q + 1; // increment tenths counter

 if (tenth_ctr.q == 4999999) { // if max value
 tenth_ctr.d = 0; // reset to 0
 ctr.d = ctr.q + 1; // increment main counter
 if (ctr.q == 9999) // if max value
 ctr.d = 0; // reset to 0
 }

 if (start_stop) // if start_stop pressed
 state.d = state.PAUSED; // switch to PAUSED state

 state.PAUSED: // PAUSED: maintain count but do nothing
 if (start_stop) // if start_stop pressed
 state.d = state.RUNNING; // switch back to RUNNING
 }
 }
}

FSMs are generally used with case statements, as you want to do different things for
each state. To access the different state constants, you need to prefix the state name
with the FSM’s name and a period to separate them. For example, the IDLE state can
be accessed with state.IDLE. This allows you to use the same state names for multi‐
ple FSMs if you want.

It is often helpful to draw a state diagram to understand the different states an FSM
can be in and under what conditions it will switch between them. Figure 5-4 is the
state diagram for the stopwatch.

88 | Chapter 5: Seven-Segment LED Displays and Finite-State Machines

Figure 5-4. Stopwatch state diagram

Basically, the start_stop signal will get the FSM to transition from IDLE to RUNNING,
and then it will toggle between RUNNING and PAUSED. The rst signal will always force
the FSM back to IDLE regardless of the state it is currently in. Note that we don’t need
to explicitly set state to IDLE when rst is 1 because we hooked rst to the reset input
of the FSM, and IDLE is the first state in the list.

We now need to hook this up in mojo_top. We need two buttons, one for the
start_stop signal and one for reset. We don’t really need a separate reset signal
because the button on the Mojo acts as the reset by default, but we can use one of the
buttons on the IO Shield to reset just the stopwatch.

Because we are using buttons, we need to condition them as before. We can use the
Button Conditioner component for this. We also want the start_stop signal to be
high for only one clock cycle when the start/stop button is pressed so that the FSM
changes state only once. To do this, we can connect the Edge Detector component to
the output of the Button Conditioner to detect the rising edge.

First we need to instantiate everything:

 .clk(clk) {
 // The reset conditioner is used to synchronize the reset signal to the FPGA
 // clock. This ensures the entire FPGA comes out of reset at the same time.
 reset_conditioner reset_cond;

 button_conditioner start_stop_button;
 button_conditioner reset_button;
 stopwatch stopwatch;

 edge_detector start_stop_edge (#RISE(1), #FALL(0));

 .rst(rst) {
 multi_seven_seg seg_display;

The Stopwatch | 89

 }
 }

Notice that we didn’t put the stopwatch instance in the reset port connection block.
This is because we are going to manually connect this later in the always block:

 start_stop_button.in = io_button[1]; // center button
 reset_button.in = io_button[3]; // left button

 // connect button to edge detector
 start_stop_edge.in = start_stop_button.out;

 stopwatch.start_stop = start_stop_edge.out; // rising edge of start/stop
 stopwatch.rst = rst | reset_button.out; // reset on rst or reset_button

 digits.value = stopwatch.value; // display stopwatch value
 seg_display.values = digits.digits; // digit values to display
 seg_display.decimal = 4b0010; // turn on second decimal point

 io_seg = ~seg_display.seg;
 io_sel = ~seg_display.sel;

Because we want both the global reset and the left button to reset the stopwatch, we
can OR the signals together.

If you build and load your project now, you should see .0 on the LEDs. If you press
the center button, the FPGA should start counting in tenths of a second. Pressing the
center button again pauses the counter, and pressing the left button resets it back to 0.

90 | Chapter 5: Seven-Segment LED Displays and Finite-State Machines

CHAPTER 6

Hello AVR

In this chapter, we will design a project that will send the text “Hello World!” through
the microcontroller on the Mojo to the USB port and onto your computer. Doing this
in hardware is not a trivial project requiring only a few lines. However, it will demon‐
strate many useful techniques such as read-only memory (ROM) and finite-state
machines (FSMs). ROMs provides a simple way to store a large number of constants,
and FSMs allow you to control tasks that require sequential steps. We will also dive
into using block random access memory (RAM) to save your name as you type it and
send it back in a personalized greeting.

The AVR Interface
In this example, we are going to make a new project based on the AVR Interface
example project because it has the interface to the AVR already set up for us.

Create a new project based on the AVR Interface example project and open
mojo_top.luc. The starter code for this is similar to before except it already has the
avr_interface component instantiated and hooked up in the always block.

The avr_interface module deals with talking to the AVR (the microcontroller on
the Mojo) and allows you to easily send and receive data through the USB port, as
well as read analog values from the analog pins. In this tutorial, we are going to be
using only the USB port.

Look in the always block and find the following lines:

 // unused serial port
 avr.tx_data = 8hxx; // don't care
 avr.new_tx_data = 0; // no data

91

Here avr.tx_data is the byte to send, and avr.new_tx_data will send that byte
when set to 1. Note that the byte will be ignored if avr.tx_busy is 1, but don’t worry
about this for now.

There are similar signals for receiving data, and we can “hackily” connect them to
echo data by editing the preceding lines to look like the following:

 // echo serial port
 avr.tx_data = avr.rx_data;
 avr.new_tx_data = avr.new_rx_data;

The reason this is hacky is that we are ignoring the avr.tx_busy flag so bytes can be
dropped.

Build the project and load it onto your Mojo. After it’s loaded, go to Tools → Serial
Port Monitor. This opens a little console that you can type in to send letters over the
USB port, and you will see whatever is received. Because we are echoing everything
we receive, you should see what you type.

Sending and Receiving Data
Two signals are used for receiving data: avr.new_rx_data and avr.rx_data. The flag
avr.new_rx_data, when 1, tells you that the data available on avr.rx_data is valid.
The signal avr.rx_data is 8 bits wide and is the data being received.

A similar, but opposite, interface exists for sending data. When sending data, you
provide the data on avr.tx_data (also 8 bits wide) and signal when the data is valid
by setting the flag avr.new_tx_data to 1. The one catch is that it is possible to pro‐
vide data way faster than it can be sent. To prevent this, the signal avr.tx_busy needs
to be checked before settings avr.new_tx_data to 1. Both of these signals should
never be 1 at the same time. To send a byte, first check that avr.tx_busy is 0, and
then provide the data on avr.tx_data and set avr.new_tx_data to 1.

If avr.tx_busy is 1, you must wait until it is 0 before trying to send more data. It may
be 1 indefinitely if you try to send data and the Mojo isn’t plugged in over USB, or an
application on the PC side isn’t reading the data, causing the buffers to fill up.

ROMs
In this section, we will create a module that will listen for the character h to be
received and then respond with “Hello World!”. We need a way to store the text
“Hello World!”. This is where read-only memory, or ROM, comes in. A ROM is
pretty similar to the LUT except that it can have many more entries. A ROM has a
single input, the address, and a single output, the data. You supply the address, and it
gives you the data that corresponds to it.

92 | Chapter 6: Hello AVR

Create a new module named hello_world_rom and add the following:

module hello_world_rom (
 input address[4], // ROM address
 output letter[8] // ROM output
) {

 // text is reversed to make 'H' address [0]
 const TEXT = $reverse("Hello World!\r\n");

 always {
 letter = TEXT[address]; // address indexes 8 bit blocks of TEXT
 }
}

Strings in Lucid (and other HDLs) are treated essentially as num‐
bers. The rightmost value is the zeroth index. This is the same
order as bits in an array or the array builder syntax.

Strings in Lucid are arranged as a 2D array. The first index is the character, and the
second index is the bits of that character. A string of N characters is an N x 8 array.
An exception exists if there is only one character: then it is a single-dimensional array
of size 8.

We want the first letter we send to be H. That means H needs to be at address 0. We
could write the TEXT constant as \r\n!dlroW olleH to accomplish this, but Lucid has
the $reverse() function that reverses the indices of the outermost dimension of an
array. This function can be used only on constants. By using this, we can type the text
in a more natural way.

The always block section is simple. It outputs the letter of TEXT indexed by the
address input. Notice that address is 4 bits wide, as we need it to be able to index
 14 characters.

The Greeter
We now need to make a module that will wait for the h to be received and then send
out the Hello World! message. Create a new module called greeter for this purpose:

module greeter (
 input clk, // clock
 input rst, // reset
 input new_rx, // new RX flag
 input rx_data[8], // RX data
 output new_tx, // new TX flag
 output tx_data[8], // TX data

The Greeter | 93

 input tx_busy // TX is busy flag
) {

 const NUM_LETTERS = 14;

 .clk(clk) {
 .rst(rst) {
 fsm state = {IDLE, GREET};
 }
 dff count[$clog2(NUM_LETTERS)]; // min bits to store NUM_LETTERS - 1
 }

 hello_world_rom rom;

 always {
 rom.address = count.q;
 tx_data = rom.letter;

 new_tx = 0; // default to 0

 case (state.q) {
 state.IDLE:
 count.d = 0;
 if (new_rx && rx_data == "h")
 state.d = state.GREET;

 state.GREET:
 if (!tx_busy) {
 count.d = count.q + 1;
 new_tx = 1;
 if (count.q == NUM_LETTERS - 1)
 state.d = state.IDLE;
 }
 }
 }
}

We can use an FSM to switch between waiting for the h and sending the message. In
the GREET state, we can use a counter to keep track of which character we are on and
switch back to IDLE after we have sent them all.

In the IDLE state, to check for an h we have to wait for new_rx to be 1 and rx_data to
be h. When new_rx is 0, the value of rx_data should be considered invalid.

Notice that in the GREET state, we increase the counter and send a new character only
 when tx_busy is 0. If we didn’t have that condition, tha FPGA would try to send all
the characters back to back, which would likely get only the first one through.

We can now add the greeter to mojo_top and try it out:

 .clk(clk) {
 // The reset conditioner is used to synchronize the reset signal to the FPGA

94 | Chapter 6: Hello AVR

 // clock. This ensures the entire FPGA comes out of reset at the same time.
 reset_conditioner reset_cond;

 .rst(rst){
 // the avr_interface module is used to talk to the AVR
 // for access to the USB port and analog pins
 avr_interface avr;

 greeter greeter; // instance of our greeter
 }

We also need to connect it up in the always block:

 // connect the greeter
 greeter.new_rx = avr.new_rx_data;
 greeter.rx_data = avr.rx_data;
 avr.new_tx_data = greeter.new_tx;
 avr.tx_data = greeter.tx_data;
 greeter.tx_busy = avr.tx_busy;

Note that these will replace the lines we had for echoing data back.

Build and load the project onto your Mojo. Then go to Tools → Serial Port Monitor to
open the Serial Port Monitor. This allows you to send and receive text. Make sure the
correct serial port is selected in the drop-down. If you just programmed your Mojo,
the port should already be selected. Then try typing h into the monitor. Anything you
type will be sent to the Mojo, and anything the Mojo sends back will be displayed.
Each h you send should result in “Hello World!” showing up.

Getting Personal with RAM
The last example was good to get your feet wet, but it was so impersonal. It would be
much better if we could greet you by name. In this example we are going to ask you
for your name and then respond by greeting you personally. Create a new project
based on the AVR Interface example project.

As the title of this section alludes to, we are going to use RAM in this example. There
are a few types of RAM, and we are going to use the most basic one, a simple single-
port RAM. There is a component for this in the Components Library. It’s called Sim‐
ple RAM and is under the Memory category.

Although you could code a RAM yourself, if it doesn’t follow a specific template, the
tools won’t recognize it as RAM and will fail to properly utilize the block RAM that
exists in the FPGA. FPGAs have something known as the general fabric, which is flex‐
ible and where most of your design gets implemented, but they also have special
resources to help with certain design elements such as RAM, ROM (RAM can be ini‐
tialized so it can act like a ROM), multiplication, and special I/O functions. By using

Getting Personal with RAM | 95

the Simple RAM component, you know the tools will recognize it is RAM and will
use the FPGA’s resources efficiently.

However, in order to fit the specific template, the simple_ram module is coded in
Verilog. You can take a look at the entire simple_ram.v file, which is now in the Com‐
ponents branch of your project tree, but we will just look at the module declaration:

module simple_ram #(
 parameter SIZE = 1, // size of each entry
 parameter DEPTH = 1 // number of entries
)(
 input clk, // clock
 input [$clog2(DEPTH)-1:0] address, // address to read or write
 output reg [SIZE-1:0] read_data, // data read
 input [SIZE-1:0] write_data, // data to write
 input write_en // write enable (1 = write)
);

Mixing Lucid and Verilog
The Mojo IDE has limited support for mixing Lucid and Verilog in your project.
When using Verilog, many of the IDE’s convenient features, such as real-time error
checking, are limited.

Just like Lucid, Verilog has parameters that act the same way. However, there isn’t a
way to specify constraints on them, and they require a default value.

The inputs and outputs are similar as well, but the array sizing is a bit different. First,
the array size comes before the array’s name. It also takes the form [End Index :
Start Index] instead of simply [Size]. The start index should basically always be 0,
so the size is the end index plus 1. That plus 1 is why most of the end indices have a
minus 1. For example, write_data has a size of SIZE.

This RAM works similarly to the ROM from before, with a few differences. The ROM
didn’t use a clock (which really made it more like a LUT), and the output was avail‐
able on the same clock cycle as we specified in an address. When reading from the
RAM, the data will be available a clock cycle after the address is specified.

To write to the RAM, you supply an address and data on address and write_data,
respectively, and set write_en to 1. The RAM is always reading, so specifying an
address will cause that data to show up on read_data in one clock cycle.

We can use the RAM to make a new greeter module. You can find the full source at
“Greeter Module” on page 205.

96 | Chapter 6: Hello AVR

With this greeter, we didn’t bother putting the text into a separate module, as it is just
as easy to access directly as an array. In HELLO_TEXT, we are using the @ character to
signify where to put the name:

 // reverse so index 0 is the left most letter
 const HELLO_TEXT = $reverse("\r\nHello @!\r\n");
 const PROMPT_TEXT = $reverse("Please type your name: ");

Even though the simple RAM module is written in Verilog, we can use it just like any
other module:

simple_ram ram (#SIZE(8), #DEPTH($pow(2,name_count.WIDTH)));

We set SIZE to 8, which is how big each entry is, and DEPTH to 2 to the power of our
name counter, which is the maximum number of letters we’ll allow a name to have.
The DEPTH parameter specifies the number of entries in the RAM. It is nice if this is a
power of 2 so that there are no invalid addresses, but it doesn’t have to be.

In the IDLE state, we reset all the counters and wait for anything to be sent over the
serial port so we know someone is there. We then transition to PROMPT to ask the user
for his or her name:

 // IDLE: Reset everything and wait for a new byte.
 state.IDLE:
 hello_count.d = 0;
 prompt_count.d = 0;
 name_count.d = 0;
 if (new_rx) // wait for any letter
 state.d = state.PROMPT;

The PROMPT state is basically the same as the GREET state in the old greeter. We pump
out all the letters in PROMPT_TEXT as fast as we can and then change to the LISTEN
state:

 // PROMPT: Print out name prompt.
 state.PROMPT:
 if (!tx_busy) {
 prompt_count.d = prompt_count.q + 1; // move to the next letter
 new_tx = 1; // send data
 tx_data = PROMPT_TEXT[prompt_count.q]; // send letter from PROMPT_TEXT
 if (prompt_count.q == PROMPT_TEXT.WIDTH[0] - 1) // no more letters
 state.d = state.LISTEN; // change states
 }

In the LISTEN state, we wait for data to be received and save each character to the
RAM, incrementing the address each time. If we run out of space, or receive a new‐
line character, we switch to the HELLO state:

Getting Personal with RAM | 97

 // LISTEN: Listen to the user as they type his/her name.
 state.LISTEN:
 if (new_rx) { // wait for a new byte
 ram.write_data = rx_data; // write the received letter to RAM
 ram.write_en = 1; // signal we want to write
 name_count.d = name_count.q + 1; // increment the address

 // We aren't checking tx_busy here that means if someone types super
 // fast we could drop bytes. In practice this doesn't happen.

 // only echo non-new line characters
 new_tx = rx_data != "\n" && rx_data != "\r";
 tx_data = rx_data; // echo text back so you can see what you type

 // if we run out of space or they pressed enter
 if (&name_count.q || rx_data == "\n" || rx_data == "\r") {
 state.d = state.HELLO;
 name_count.d = 0; // reset name_count
 }
 }

The snippet &name_count.q is a useful technique for checking whether something is
maxed out. The & operator there is the AND reduction operator, which will AND all
the bits of name_count.q together, effectively testing whether they are all 1.

Finally, the HELLO state prints the HELLO_TEXT but with the @ character replaced with
the name stored in the RAM. It does this by printing HELLO_TEXT normally, but when
the @ is reached, it switches to printing from the RAM. After the name from RAM has
been printed, the counter indexing HELLO_TEXT is incremented to bypass the @ and it
resumes normal printing until it reaches the end. It then cycles back to the IDLE state
to greet you again:

// HELLO: Prints the hello text with the given name inserted
state.HELLO:
 if (!tx_busy) { // wait for tx to not be busy
 if (HELLO_TEXT[hello_count.q] != "@") { // if we are not at the sentry
 hello_count.d = hello_count.q + 1; // increment to next letter
 new_tx = 1; // new data to send
 tx_data = HELLO_TEXT[hello_count.q]; // send the letter
 } else { // we are at the sentry
 name_count.d = name_count.q + 1; // increment name_count letter

 // if we are not at the end
 if (ram.read_data != "\n" && ram.read_data != "\r")
 new_tx = 1; // send data

 tx_data = ram.read_data; // send the letter from the RAM

 // if we are at the end of the name or out of letters to send
 if (ram.read_data == "\n" || ram.read_data == "\r" || &name_count.q) {
 // increment hello_count to pass the sentry

98 | Chapter 6: Hello AVR

 hello_count.d = hello_count.q + 1;
 }
 }

 // if we have sent all of HELLO_TEXT
 if (hello_count.q == HELLO_TEXT.WIDTH[0] - 1)
 state.d = state.IDLE; // return to IDLE
 }

Getting Personal with RAM | 99

CHAPTER 7

Mixing Colors with an RGB LED

In this chapter, we will hook up a red, green, and blue (RGB) LED to the Mojo and
use pulse-width modulation (PWM), to fade the colors in and out. We will then
explore how to use the Register Interface to control the LED. The Register Interface
provides a simple way to interface your designs with your computer without having
to parse streams of characters in the FPGA. We will be using this to allow you to set
the color of the LED from your computer.

To complete these examples, you need an RGB LED and three resistors with a value
close to 330 ohms. The LED I’m using is a common anode type (LEDs share a single
positive pin, and the negative sides are used to control them individually), but a com‐
mon cathode LED will work as well. You may also want a breadboard and some
jumper wires.

We are going to use the pins 40, 50, and 51 on the Mojo. They are located in the top-
left corner and are colored red in Figure 7-1.

101

Figure 7-1. Mojo pinout with pins 40, 50, and 51 highlighted in red

Take your LED and connect the three LED color channels to the three pins. It doesn’t
matter which pins you choose, as you’ll see later, but I used 40 for red, 51 for green,

102 | Chapter 7: Mixing Colors with an RGB LED

and 50 for blue. All that is important is that you know which is which. Make sure that
you connect the LED with the resistors between it and the Mojo. If you have a com‐
mon anode LED, connect the common pin to V+. If you have a common cathode
LED, connect the common pin to GND.

External I/O Constraints
Create a new project based on the Base Project example.

We need to create three new outputs in mojo_top that will be the outputs for the LED.
The first step is to add them to the module declaration:

module mojo_top (
 input clk, // 50MHz clock
 input rst_n, // reset button (active low)
 output led [8], // 8 user controllable LEDs
 input cclk, // configuration clock, AVR ready when high
 output spi_miso, // AVR SPI MISO
 input spi_ss, // AVR SPI Slave Select
 input spi_mosi, // AVR SPI MOSI
 input spi_sck, // AVR SPI Clock
 output spi_channel [4], // AVR general purpose pins
 input avr_tx, // AVR TX (FPGA RX)
 output avr_rx, // AVR RX (FPGA TX)
 input avr_rx_busy, // AVR RX buffer full
 output red, // LED red channel
 output green, // LED green channel
 output blue // LED blue channel
) {

Don’t forget to add a comma after avr_rx_busy when adding the new outputs.

We now need to tell the tools what I/O pins to use for these outputs. If we don’t, the
tools will pick some unused pins that it finds convenient. This can be helpful if you
are working on an FPGA design before laying out your actual board, but you’ll
almost always want to constrain the I/O location to a specific pin.

This is where user constraint files (UCFs) come into play. These are Xilinx-specific
files that tell the tools various things about your design. They can be used to give you
a ton of control over how your design is laid out inside the FPGA, but we will be
using them only to constrain which I/O pins are used. If you want to look into the
details of UCFs, see the official documentation.

Take a look at the mojo.ucf file under the Constraints branch in the project tree:

NET "clk" TNM_NET = clk;
TIMESPEC TS_clk = PERIOD "clk" 50 MHz HIGH 50%;

NET "clk" LOC = P56 | IOSTANDARD = LVTTL;
NET "rst_n" LOC = P38 | IOSTANDARD = LVTTL;

External I/O Constraints | 103

http://bit.ly/XilinxUG625

NET "cclk" LOC = P70 | IOSTANDARD = LVTTL;

NET "led<0>" LOC = P134 | IOSTANDARD = LVTTL;
NET "led<1>" LOC = P133 | IOSTANDARD = LVTTL;
NET "led<2>" LOC = P132 | IOSTANDARD = LVTTL;
NET "led<3>" LOC = P131 | IOSTANDARD = LVTTL;
NET "led<4>" LOC = P127 | IOSTANDARD = LVTTL;
NET "led<5>" LOC = P126 | IOSTANDARD = LVTTL;
NET "led<6>" LOC = P124 | IOSTANDARD = LVTTL;
NET "led<7>" LOC = P123 | IOSTANDARD = LVTTL;

NET "spi_mosi" LOC = P44 | IOSTANDARD = LVTTL;
NET "spi_miso" LOC = P45 | IOSTANDARD = LVTTL;
NET "spi_ss" LOC = P48 | IOSTANDARD = LVTTL;
NET "spi_sck" LOC = P43 | IOSTANDARD = LVTTL;
NET "spi_channel<0>" LOC = P46 | IOSTANDARD = LVTTL;
NET "spi_channel<1>" LOC = P61 | IOSTANDARD = LVTTL;
NET "spi_channel<2>" LOC = P62 | IOSTANDARD = LVTTL;
NET "spi_channel<3>" LOC = P65 | IOSTANDARD = LVTTL;

NET "avr_tx" LOC = P55 | IOSTANDARD = LVTTL;
NET "avr_rx" LOC = P59 | IOSTANDARD = LVTTL;
NET "avr_rx_busy" LOC = P39 | IOSTANDARD = LVTTL;

The first two lines tell the tools that the clk input is a clock with a frequency of 50
MHz and a duty cycle of 50% (high half the time). The rest of the lines are the pins to
use for the inputs and outputs in the Base Project.

Although you could typically just add some extra pin location constraints to the same
file, the mojo.ucf file is a shared file and can’t be edited. Instead, we need to create a
new UCF to add our constraints to. Click the Add File icon and create a new file
called led.ucf. Make sure to select User Constraints as the file type.

In the new led.ucf file, add the following:

NET "red" LOC = P40 | IOSTANDARD = LVTTL;
NET "green" LOC = P51 | IOSTANDARD = LVTTL;
NET "blue" LOC = P50 | IOSTANDARD = LVTTL;

If you didn’t use the same pins as me, you can change the numbers for each one to
match your setup. All the pin numbers are labeled on the board, and their names are
simply the number prefixed with a P.

Also note that for all the pin location constraints, we also specify the IOSTANDARD con‐
straint. This is required, as the default I/O standard is LVCMOS25, which requires 2.5 V
I/O, and the Mojo uses 3.3 V. If you fail to specify this, or specify a different one, the
tools will complain and your project will fail to build.

If your I/O pin is an array, you can use <BIT> appended to the net name to specify the
location of each bit. See the led pin locations in mojo.ucf for an example.

104 | Chapter 7: Mixing Colors with an RGB LED

With the pin definitions now in place, we can test out the LED. In the always block in
mojo_top, add the following:

red = 0;
green = 1;
blue = 1;

This is for a common anode LED that will turn on when the output is 0. Invert the
values if you are using a common cathode LED. If you build and load your project
now, the RGB LED should be red.

Getting Fancy with PWM
Turning on different colors is great and all, but RGB LEDs need to have their colors
blended. We can use a technique known as pulse-width modulation (PWM) to create
the illusion of varying the brightness of the colors. PWM works by turning the LED
on and off really fast. The percent of the time the LED is on is known as the duty
cycle. A 25% duty cycle means the LED is on for a quarter of the time. The duty cycle
is independent of the frequency.

We don’t particularly care about the frequency for the LED, as long as it isn’t really
high or too low. We just need to make sure it is high enough that we can’t see a flicker.
If you go too high, you start losing noticeable power to capacitance in the LED and
board.

To generate the pulse train, we can use a continuously running counter. To set the
duty cycle, we can compare the value of the counter to a value. If the counter is less
than that value, we output 1; otherwise we output 0. The duty cycle we generate is
then proportional to the comparison value divided by the maximum counter value. If
we set the comparison value to half of the counter’s max value, we will get a 50% duty
cycle. Figures 7-2 and 7-3 show how the duty cycle changes when we change the
compare value.

Getting Fancy with PWM | 105

Figure 7-2. PWM based off a counter with a 33% duty cycle

Figure 7-3. PWM based off a counter with a 66% duty cycle

As you may have guessed, there is a component for creating a PWM signal. Add the
Pulse Width Modulator component to your project. It can be found in the LED
Effects category.

106 | Chapter 7: Mixing Colors with an RGB LED

This component is pretty simple, but it has a few extras that make it produce a glitch-
free PWM signal. A glitch in the PWM signal can happen if you change the compare
value mid cycle. For example, let’s assume an 8-bit counter, so it has a range of 0–255.
If the compare value is 25, and the counter value is 120, the pulse will already have
been sent, and the output will be low. If we then change the compare value to 130, the
output will be high for 10 counts. This extra pulse will be shorter than anything we
wanted and will screw up the frequency. Although this doesn’t really matter for the
LED, since you won’t notice it with your eyes, it matters if you use the PWM module
to control a servo or anything that measures the pulse widths.

To fix this, we update the compare value only when the counter is 0. The output will
always be 1 at this time, so there is no chance of causing a glitch. This means we need
to save the current compare value as well as the value to update it with and indicate
whether it needs to be updated:

module pwm #(
 WIDTH = 8 : WIDTH > 0, // resolution of PWM counter
 TOP = 0 : TOP >= 0, // max value of counter
 DIV = 0 : DIV >= 0 // clock pre-scaler
)(
 input clk, // clock
 input rst, // reset
 input value[WIDTH], // duty cycle value
 input update, // new value flag
 output pulse // PWM output
){

 .clk(clk) {
 .rst(rst) {
 counter ctr(#SIZE(WIDTH), #DIV(DIV), #TOP(TOP));
 dff curValue[WIDTH];
 dff needUpdate;
 }
 // nextValue doesn't need reset
 dff nextValue[WIDTH];
 }

 always {
 // if ctr.value is 0 and we need to update
 if (!|ctr.value && needUpdate.q) {
 curValue.d = nextValue.q; // set our new value
 needUpdate.d = 0; // don't need update now
 }

 // if value is valid
 if (update) {
 nextValue.d = value; // save it
 needUpdate.d = 1; // flag for update
 }

Getting Fancy with PWM | 107

 // if the counter is less than the set
 // value output 1, otherwise output 0
 pulse = ctr.value < curValue.q;
 }
}

We can use three of these to control the colors of the LED in mojo_top:

 .clk(clk) {
 // The reset conditioner is used to synchronize the reset signal to the FPGA
 // clock. This ensures the entire FPGA comes out of reset at the same time.
 reset_conditioner reset_cond;

 .rst(rst) {
 pwm r;
 pwm g;
 pwm b;
 }
 }

We can then connect them to the LED colors and assign some values:

 red = ~r.pulse;
 green = ~g.pulse;
 blue = ~b.pulse;

 r.update = 1;
 g.update = 1;
 b.update = 1;

 r.value = 8d128;
 g.value = 8d10;
 b.value = 8d230;

Because the LED I’m using is a common anode, I needed to invert the pulse signal.
Directly connect the pulse signal if you are using a common cathode LED.

You can play with the values you assign to the colors to get different mixes. If you
build and load the preceding values, you should get a nice purplish color.

Let’s get a little fancier and make the color dynamic. It’s always fun to make RGB
LEDs fade through the rainbow, as shown in Figure 7-4. To do this, we need to cycle
the three channels in a specific way.

108 | Chapter 7: Mixing Colors with an RGB LED

Figure 7-4. RGB fade pattern

Basically, we always want one channel to be full on, one to be off, and one to be turn‐
ing on or off. Each color takes turns being the one to turn on or off, and we can break
the pattern into six regions of change.

We need a way to generate the transitional values as well as figure out which region
we are in. This is easily done by using a counter. We can use an 11-bit counter with
the 8 LSBs being used for the transitional values and the 3 MSBs being used to keep
track of the region. You can think of this as two counters, the 8 LSBs being one, and
the 3 MSBs being another, that increment each time the first counter overflows. The
only catch is that we have six regions, but 3 bits can have eight different values, so we
need to set a top value for the counter:

 .clk(clk) {
 // The reset conditioner is used to synchronize the reset signal to the FPGA
 // clock. This ensures the entire FPGA comes out of reset at the same time.
 reset_conditioner reset_cond;

 .rst(rst) {
 pwm r;
 pwm g;
 pwm b;

 counter ctr (#SIZE(11), #DIV(17), #TOP(b10111111111));
 }
 }

You will need to add the Counter component to your project.

Getting Fancy with PWM | 109

The value for TOP was chosen so that it would rest right at the end of the sixth region,
when the 3 MSBs have the value 5 and the 8 LSBs are maxed out. We also set DIV so
that the LED fades at a reasonable speed.

We can then replace the constant value assignments with a case statement:

 case (ctr.value[10:8]) {
 0:
 r.value = hff;
 g.value = ctr.value[7:0];
 b.value = h00;
 1:
 r.value = ~ctr.value[7:0];
 g.value = hff;
 b.value = h00;
 2:
 r.value = h00;
 g.value = hff;
 b.value = ctr.value[7:0];
 3:
 r.value = h00;
 g.value = ~ctr.value[7:0];
 b.value = hff;
 4:
 r.value = ctr.value[7:0];
 g.value = h00;
 b.value = hff;
 5:
 r.value = hff;
 g.value = h00;
 b.value = ~ctr.value[7:0];
 default:
 r.value = hxx; // don't care, should never be here
 g.value = hxx;
 b.value = hxx;
 }

Notice we are using the 3 MSBs as the value for the case statement. This allows us to
set different values for the six regions. We have a default case, even though it should
never be used so that the three pwm values are guaranteed to have a value assigned,
even if the value is don’t care.

To generate the down slopes, we can invert the bits of the counter. This will cause it to
count down from 255 to 0. This is code equivalent to doing 255 minus the counter
value, but inversion is a lot cheaper than subtraction.

If you build and load the project now, the RGB LED should smoothly fade through
the rainbow of colors.

110 | Chapter 7: Mixing Colors with an RGB LED

Register Interface
In this section, we are going to use the Register Interface to control the RGB LED
from the Mojo IDE. The Register Interface component takes control of the serial port
communications with the AVR and breaks out a simple-to-use address-based inter‐
face. Basically, it allows the FPGA to act sort of like RAM for your computer. Your
computer can issue reads and writes to addresses. The difference is that the FPGA
can interpret these reads and writes however you want. We are going to use three
addresses to allow your computer to read and write the brightness values for the dif‐
ferent color channels of the RGB LED.

Create a new project based on the Reg Interface example. This example project has the
Register Interface component already wired up for us. This example project makes
the LEDs on the Mojo accessible to your computer on address 0. Build and load the
project without any modifications to test it out.

With the project loaded, open the Register Interface tool via Tools → Register Inter‐
face. This allows you to manually send read/write commands to your designs. Type 0
in for the address, and enter a number between 0 and 255 for the value, as shown in
Figure 7-5.

Figure 7-5. Register Interface

The LEDs on your Mojo should turn on, displaying the number you just wrote (in
binary, of course). Try out a few numbers. If you change the address to something
other than 0, you’ll notice that it doesn’t do anything for writes and that reads fail.
This is because our design ignores reads and writes to other addresses.

Take a look at the reg_interface.luc file in the Components branch of the project tree.
In the beginning of the file, we have a new type of code block, global definitions:

global Register {
 struct master { // master device outputs
 new_cmd, // 1 = new command
 write, // 1 = write, 0 = read
 address[32], // address to read/write
 data[32] // data to write (ignore on reads)

Register Interface | 111

 }
 struct slave { // slave device outputs
 data[32], // data read from requested address
 drdy // read data valid (1 = valid)
 }
}

The name of the global block comes right after the global keyword and must start
with a capital letter and have at least one lowercase letter. Its content consists of con‐
stant and/or struct definitions. A struct is similar to an array, but the members are
accessed by names instead of numbers. Unlike an array, the members can have differ‐
ent sizes. Structs aren’t instantiated directly, but rather one is defined that can then be
used to size a different type (dff, fsm, sig, etc.).

In this global block, two structs are defined that are used in the port declaration of
the reg_interface module:

 // Register Interface
 output<Register.master> regOut, // register outputs
 input<Register.slave> regIn // register inputs

To use a struct, add it to the type with the <STRUCT_NAME> syntax. You can also make a
struct into an array of structs by using the same array syntax as before.

Notice that the names of the structs are prefixed with the name of their global block
and separated by a period. This is so that you can have multiple global blocks with
the same constant or struct names. It also ensures that global definitions won’t con‐
flict with any local definitions in your modules.

Let’s look at mojo_top to see how the structs are used:

 reg.regIn.drdy = 0; // default to not ready
 reg.regIn.data = 32bx; // don't care

 if (reg.regOut.new_cmd) { // new command
 if (reg.regOut.write) { // if write
 if (reg.regOut.address == 0) { // if address is 0
 leds.d = reg.regOut.data[7:0]; // write the LEDs
 }
 } else { // if read
 if (reg.regOut.address == 0) { // if address is 0
 reg.regIn.data = leds.q; // read the LEDs
 reg.regIn.drdy = 1; // signal data ready
 }
 }
 }

 led = leds.q; // connect the dff

112 | Chapter 7: Mixing Colors with an RGB LED

The port is accessed the same way as any other port, with the module instance name
followed by a period and the port name. However, because the port is a struct, we can
also access the individual struct members with their names.

In this section of code, we wait for a new command. If it is a write, we use the pro‐
vided value to set the value of the DFF we are using to control the LEDs. If it is a read,
we return the value that the LEDs are currently set to. It’s important that regIn.drdy
be 0 until you are responding to a read request. By default, you have about a quarter-
second at most to respond to a read request. If you don’t respond to the read, a timed-
out error will be thrown. In the preceding example, we respond only to reads to the
address 0, so if you try to read anything else, you will get a timed-out error.

Let’s modify mojo_top so that we can control the RGB LED by using the Register
Interface. First, we need to add some of the code from the previous example. Create a
new UCF and add the lines to connect the three LED pins to the red, green, and blue
ports that you need to add as well. Then add the Pulse Width Modulator component
to your project and instantiate three of them as before.

We can then modify the preceding code to write to the PWM module instances when
addresses 1, 2, or 3 are written to:

 reg.regIn.drdy = 0; // default to not ready
 reg.regIn.data = 32bx; // don't care

 r.update = 0; // default to no update
 g.update = 0;
 b.update = 0;
 r.value = 8hxx; // when update = 0, value doesn't matter
 g.value = 8hxx;
 b.value = 8hxx;

 red = ~r.pulse; // connect to LEDs
 green = ~g.pulse;
 blue = ~b.pulse;

 if (reg.regOut.new_cmd) { // new command
 if (reg.regOut.write) { // if write
 case (reg.regOut.address) {
 0:
 leds.d = reg.regOut.data[7:0];
 1:
 r.value = reg.regOut.data[7:0];
 r.update = 1;
 2:
 g.value = reg.regOut.data[7:0];
 g.update = 1;
 3:
 b.value = reg.regOut.data[7:0];
 b.update = 1;
 }

Register Interface | 113

 } else { // if read
 if (reg.regOut.address == 0) { // if address is 0
 reg.regIn.data = leds.q; // read the LEDs
 reg.regIn.drdy = 1; // signal data ready
 }
 }
 }

 led = leds.q; // connect the dff

Because we care about more than one address, we can replace the if statement with a
case statement. The PWM module will change its value only when update is 1. We
can take advantage of that by setting it to 1 only when a new value is written to the
corresponding address. However, we don’t have access to the current PWM values, so
we can’t provide them back on a read. In this case, it’s not a big deal, so we still ignore
reads to these addresses.

If you build and load the project, you can then use the Register Interface tool to write
to addresses 1–3. Writing to address 1 will change the red color, 2 for green, and 3 for
blue. Remember, the PWM module uses 8 bits, so you can write a value between 0
and 255, with 255 being full brightness. Try writing 10 to address 1, 191 to address 2,
and 10 to address 3. That is Embedded Micro’s green.

Hopefully, this gives you an idea of how easy it is to create a fairly complex interface
to your FPGA. The Register Interface isn’t limited to manual reads and writes from
the tool built into the IDE. You can write your own programs that utilize the inter‐
face. A basic Eclipse Java project shows you how to talk to it using Java; you can
download the project at Embedded Micro.

You don’t have to use Java, and you can write your own library to interface in any
language that supports reading and writing to a serial port.

Every request starts with 5 bytes being sent. The first byte is the command byte, and
the next four are the address (32 bits = 4 bytes) sent with the least significant byte
first.

In many cases, you will want to read or write to many consecutive addresses, or per‐
haps the same address many times. Issuing the entire command each time would be
inefficient, so the command byte contains info for consecutive or multiple read/write
requests in one.

The MSB (bit 7) of the command byte specifies whether the command is a read (0) or
write (1). The next bit (bit 6) specifies whether consecutive addresses should be read/
written (1) or whether the same address should be read/written multiple times (0).
The 6 LSBs (bits 5–0) represent the number of read/write requests that should be gen‐
erated. Note that the number of requests will always be 1 more than the value of these
bits. That means if you want to read or write a single address, they should be set to 0.
Setting them to 1 will generate two read or write requests.

114 | Chapter 7: Mixing Colors with an RGB LED

http://embm.co/1x

If you send a write request, after sending the command byte and address, you con‐
tinue sending the data to be written. Data is always sent as 4 bytes per write request,
and the least significant byte should be sent first.

For reads, after sending the command byte and address, you wait for the data to be
returned. Data is returned in least-significant-byte order. Note that you may not
always receive all the data you ask for if there is an issue with the FPGA design (i.e.,
the requested data is never presented, as in our LED example).

Let’s take a look at an example. If you want to write to addresses 5, 6, and 7, you could
issue the following request:

0xC2 (1100 0010), 0x05, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00,
0x00, 0x00, 0x03, 0x00, 0x00, 0x00

This would write 1 to address 5, 2 to address 6, and 3 to address 7. If you changed the
command byte to 0x82 (1000 0010), you would write 1 to address 5, 2 to address 5,
and then 3 to address 5 (in that order).

Issuing a read follows the exact same format, except the data bytes are received
instead of sent. A single command can generate up to 64 read/write requests. If you
need to read/write more, you need to issue separate commands.

Register Interface | 115

CHAPTER 8

Analog Inputs

There are eight analog inputs on the Mojo, accessible though the 10-pin connector.
However, FPGAs don’t usually have any analog circuitry built in. Because of this,
these analog inputs are from the microcontroller on the Mojo. After the microcon‐
troller does its job of programming the FPGA, it becomes a USB-to-serial converter
as well as an analog-to-digital converter (ADC).

In this tutorial, we are going to read the analog inputs and use their values to vary the
brightness of the eight LEDs on the Mojo.

The AVR Interface
We’ve used the AVR Interface component before, in Chapter 6. However, this time we
are going to use the ADC portion of it instead of the serial portion. The ADC on the
AVR takes a voltage input in the range of 0–3.3 V and converts it to a number from
0–1,023 (a 10-bit value). As before, we will start by creating a new project based on
the AVR Interface example project.

If you take a look at the avr_interface module, there are four signals we care about
when trying to read the analog inputs:

 // ADC Interface Signals
 input channel[4], // ADC channel to read from, use hF to disable ADC
 output new_sample, // new ADC sample flag
 output sample[10], // ADC sample data
 output sample_channel[4], // channel of the new sample

You’ll probably notice that only one of these is an input. That means the value we
have to worry about providing is channel, which is the number of the input we want
to read. If you look at your Mojo, there are eight analog inputs, but they are num‐

117

bered a little strangely. The inputs are A0, A1, and A4–A9. A2 and A3 are missing.
They simply don’t exist for this package of the microcontroller.

To use the ADC, you need to set channel to a channel to read. Samples will then start
to come in. If you don’t need to use the ADC, you should set channel to any invalid
value, such as 15. When the ADC isn’t being used, the microcontroller will have more
time to service the USB-to-serial portion of its job, and the bandwidth will be sub‐
stantially higher. Remember, it isn’t an FPGA, so the single processor has to split its
time between tasks.

When channel is a valid value, new samples will start to show up. When a new sam‐
ple arrives, new_sample will be 1. This tells you that the data on sample and sam
ple_channel is valid. The signal sample is the actual sample value, while
sample_channel is the channel the sample was taken from. If you set channel to a
constant, you can safely ignore sample_channel, but if you change sample, you
should verify that sample_channel matches the channel you are looking for, as it
could be from the old channel.

To test out the ADC, let’s first sample only one channel. Add the Pulse Width Modu‐
lator component to your project again. Then change line 41 in mojo_top to the fol‐
lowing:

 avr.channel = h0; // ADC set to channel 0

By setting avr.channel to 0, we will be continuously reading from A0.

We then need to instantiate the PWM module and connect it to the AVR Interface:

 .clk(clk) {
 // The reset conditioner is used to synchronize the reset signal to the FPGA
 // clock. This ensures the entire FPGA comes out of reset at the same time.
 reset_conditioner reset_cond;

 .rst(rst){
 // the avr_interface module is used to talk to the AVR for access to the
 // USB port and analog pins
 avr_interface avr;

 pwm pwm; // PWM module for the LEDs
 }
 }

Add this to the end of the always block:

 pwm.update = avr.new_sample; // update when we have a new sample
 pwm.value = avr.sample[9:2]; // use the 8 MSBs

 led = 8x{pwm.pulse}; // connect PWM output to all the LEDs

118 | Chapter 8: Analog Inputs

We update the PWM value only when we have a new sample, and we use the 8 MSBs
from the sample as the PWM value. The ADC takes 10-bit samples, but if you need
only 8 bits, as we do here, you can drop the LSBs. This is equivalent to dividing by 4.

Finally, we connect the output of the PWM module to all eight LEDs.

Build and load the project. If you have a potentiometer, you can connect it between
GND and V+ and connect its output to A0 to vary the brightness of the LEDs. Be
careful not to connect it to RAW, as this will damage the microcontroller.

All the Channels
Now that we have one channel continuously sampling, we can make it a little more
interesting by sampling all eight. To do this, we are going to use a counter that counts
from 0–7. However, we have to modify the count value to generate the actual channel
value. If the counter is greater than 1 (2–7), we will add 2 to it so it will count 0–1
then 4–9.

We need to increment the counter after we receive a sample for the currently selected
channel. To do this, we need to convert the sample channel back to a counter value by
subtracting 2 when the value is greater than 1.

To store these two intermediate values, we can use sig types:

 sig real_channel[4];
 sig sample_channel[3];

The sig real_channel will hold the ADC channel that the counter is on, and
sample_channel will be the 0–7 value converted from the avr.sample_channel
value.

Generating these two values is pretty easy using the ternary operator. The ternary
operator, ?, selects one of two values based on the logical value of a statement. It looks
like STATEMENT ? WHEN_TRUE : WHEN_FALSE. When STATEMENT is true, the first,
WHEN_TRUE, expression will be used: and when it is false, the second, WHEN_FALSE,
expression will be used:

 real_channel = channel_ctr.q > 1 ? channel_ctr.q + 2 : channel_ctr.q;
 sample_channel =
 avr.sample_channel > 1 ? avr.sample_channel - 2 : avr.sample_channel;

 if (avr.new_sample && sample_channel == channel_ctr.q)
 channel_ctr.d = channel_ctr.q + 1;

When the value is greater than 1, we select the modified value. Otherwise, we pass the
signal along unchanged.

Each time a new sample shows up, if it matches the counter value, we increment the
counter.

All the Channels | 119

Because we are going to have a different value for each LED, we need eight PWM
modules. We could instantiate eight different ones, but we can instead instantiate an
array of modules:

 pwm pwm[8]; // PWM modules for the LEDs

When you create an array of modules, each port has the module’s dimensions prepen‐
ded to it. That means the signal pwm.update, which used to be a single bit, is now an
array of 8 bits. If a signal was already an array, such as pwm.value, it becomes a multi‐
dimensional array. In this case, pwm.value is now an 8 x 8 array. The first index
selects the module instance.

We can use the sample_channel value to index into the array of modules to select
which one receives the new sample. However, we need to assign a default value to all
the modules because seven of the eight won’t be assigned a value now. We just need to
set pwm.update to 0 and pwm.value to don’t care, as it doesn’t matter when
pwm.update is 0:

 pwm.update = 8h00; // default values
 pwm.value = 8x{{8hxx}};

 // update when we have a new sample
 pwm.update[sample_channel] = avr.new_sample;
 pwm.value[sample_channel] = avr.sample[9:2]; // use the 8 MSBs

 led = pwm.pulse; // connect PWM output to all the LEDs

Remember that pwm.value is now an 8 x 8 array, so when we assign a default value, it
also needs to be an 8 x 8 array. The value 8hxx is an array of size 8, so we need to wrap
it in the array builder syntax, {}, to make it a 1 x 8 array. We can then use the array
duplication syntax, Nx{}, to duplicate the outer dimension eight times, making it an
8 x 8 array.

With the default values taken care of, we can use the sample_channel value to index
the specific PWM module. Finally, because pwm.pulse is an 8-bit array, we can simply
assign it to led. The full mojo_top source can be found in the “ADC Multichannel
Example” on page 207.

If you build and load the project, the eight LEDs will now show the eight ADC inputs.
Try connecting individual inputs to different voltages between 0 V and 3.3 V.

120 | Chapter 8: Analog Inputs

CHAPTER 9

A Basic Processor

In this chapter, we will design a basic processor and write some code to run on it. In
their most basic form, processors aren’t that complicated. They are more or less a
programmable FSM. However, the latest processors from Intel or AMD are insanely
complex devices that utilize many clever improvements over our basic design to
squeeze out more performance. Look at this example as a starting point that you can
modify and improve in the future.

Why even bother with a processor? Processors have three big advantages. The first is
that you can drastically change their behavior by only changing the contents of a
ROM. The exact same hardware can do many tasks. If you make your ROM external,
the FPGA design doesn’t even need to change for it to perform different tasks (like a
computer). The second is that processors can easily handle sequential tasks. With just
hardware, it can be complicated to coordinate complicated tasks that need to come in
sequence. You usually end up with a lot of FSMs, which basically turn out to be non‐
programmable processors. The final and possibly biggest benefit is that processors
are extremely resource efficient. This is because a processor has a single adder, multi‐
plier, comparison circuit, and so forth, and each one is used every time your code
calls for that operation. If you need to do two multiplications in a hardware pipeline
(with each step of your task performed by a different stage in parallel), you need to
instantiate two multipliers, taking up twice the resources. Granted, a full pipeline will
drastically outperform a simple processor.

Just like everything else we have covered so far, processors are just another tool for
your toolbox. In an FPGA, they can be incredibly helpful to orchestrate complex
tasks, but are not an end-all tool. Otherwise, you wouldn’t be bothering to learn hard‐
ware design, as you could just buy a better processor and write code.

121

What Is a Processor?
You are probably familiar with at least the idea of a processor. However, we need to be
clear about our definition of a processor and what it should do.

In the most abstract form, a processor is a circuit whose behavior is determined by the
set of instructions provided to it. This way, the same circuit can perform a completely
different task simply by switching out the instructions. In general, a processor also
has some form of memory to work with, and all processors need a way to input and
output data. Without any external I/O, a processor can’t do anything meaningful.

Instruction Sets
A processor’s instruction set is the language that it speaks. It is the set of instructions
that the processor understands. An instruction is a set of bits that has some meaning
to the processor. We will be making up our own simple instruction set. There are
many instruction sets out there, with the most famous being x86 (and its 64-bit
extension, x86_64). This is the instruction set that computers with processors from
Intel or AMD understand.

There are two important widths in a processor. The first is the one you hear about
most, the data path. This is the largest chunk of data the processor can deal with.
When you hear of an 8-bit processor, that means the processor can deal with 8-bit
values. If you want it to work with bigger numbers, you have to play tricks and
manipulate only 8 bits at a time. Most computer (desktop and laptop) processors are
64-bit.

The other important size is the instruction size. This is the number of bits each
instruction is encoded with. These two sizes are often the same, but they don’t have to
be. Some instruction sets, like x86, even have variable-length instructions, but that
complicates things quite a bit. For our processor, we are going to have an 8-bit data
path with 16-bit instructions.

Memory
Before we dive into what our processor will do, we need to figure out how data will
get in and out—and when it is in, how do we work with it? Processors typically have a
tiny bit of super fast memory built into them. This memory is known as the process‐
or’s registers and serves as the working memory. Our processor will be able to per‐
form operations only directly on these registers. So if all the work happens on these
registers, how do we process outside data?

We need a way to load data into a register and output the value of a register. The
interface we will use will be basically the same as the RAM interface in Chapter 6. We
will specify an address and data (for a write), or we will specify an address and receive

122 | Chapter 9: A Basic Processor

data (for a read). This will be covered a bit more later. For now, just know that we
have internal memory called registers and that we will have a way to load and store
values to/from the outside world.

Initial Design
Before we can start to write any code, we need to decide on a set of instructions our
processor will understand. We will be using 16 bits to encode each instruction, but we
need to decide what to do with these bits.

We are going to use the first 4 bits for something known as the opcode, or operation
code. This means we can have 16 different instructions, which will be plenty for now.
Some of our instructions will require three arguments, which means we can divide
the remaining 12 bits into 4-bit chunks for each argument. These arguments will be
the addresses of registers, so we can have 16 registers.

NOP
What’s the most basic instruction you can think of? An instruction that does nothing!
This instruction is usually encoded as all 0s and known as no operation, or NOP:

Because this instruction does nothing, we can fill the remaining 12 bits with 0s.

LOAD and STORE
As you may remember from earlier, a processor needs a way to get data in and out of
itself. If it can’t output data, it doesn’t matter what the processor does. We will create
two more instructions, LOAD and STORE, to get data in and out, respectively:

Because the loads and stores need to provide both a value and an address, we need
two arguments. The DEST argument is the register that will get the value from a LOAD.
The SRC argument is the register whose value will be output from a STORE. The ADDR
argument is the register whose value should be used as the address. Finally, OFFSET is
a constant that will be added to the value of the ADDR register to get the address. This
offset can be convenient to have, but you don’t really need it. I added it because there
were 4 extra bits we could do something with.

Initial Design | 123

SET
It is common to have to write a constant to a register. The SET instruction will let us
do that:

Here DEST is the register that will be set, and CONST is the 8-bit value to set it to. Keep
in mind that because we are making an 8-bit processor, the registers are 8 bits wide.

LT and EQ
We will likely want to be able to compare two values. To do any comparison, we need
only two operators, less than (LT) and equal (EQ). If we then wanted to perform a
greater-than, we could use less than and flip the arguments. Less than or equal to can
be achieved by using both:

In the LT case, the DEST register will be 1 if OP1 is less than OP2, and 0 otherwise. EQ is
the same, except it checks for equality.

BEQ and BNEQ
Typically, a program will execute instruction after instruction. However, it can be
powerful to be able to control the flow. This is where branching instructions are used:

If register OP1 is equal to the value CONST, then the BEQ instruction will skip the
instruction following it. Otherwise, the program will continue as normal. BNEQ does
the same thing but skips if they are not equal.

These instructions allow you to create if statements in your code.

The ALU
Processors commonly need to manipulate the values in the registers. Operations such
as addition, AND, OR, bit shifting, and so forth, are all typically contained in some‐

124 | Chapter 9: A Basic Processor

thing called the arithmetic logic unit (ALU). These types of instructions will make up
the remainder of our instruction set:

ADD and SUB add or subtract OP1 and OP2 and store the result into DEST.

SHL and SHR shift OP1 to the right or left by OP2 bits and store the result into DEST.

AND, OR, and XOR perform their respective bitwise operations on OP1 and OP2 and store
the result into DEST.

INV does a bitwise inversion of OP1 and stores the result into DEST.

The Program Counter
We are going to put all the instructions for whatever program we write into a ROM.
The ROM will need an address in order to know what instruction we need. This
address will be specified by the program counter. For our processor, we will use regis‐
ter 0 as our program counter. This will allow us to directly manipulate the flow of the
program by messing with its value.

The Processor
Check out the full processor module at “Basic Processor” on page 209.

You may notice that the entire module including the constant declarations is under
100 lines long! It’s pretty amazing how much functionality you can get with such a
simple design.

Something you haven’t seen yet is the use of a global block to declare constants:

global Inst {
 c NOP = 4d0; // 0 filled
 c LOAD = 4d1; // dest, op1, offset : R[dest] = M[R[op1] + offset]

The Processor | 125

 c STORE = 4d2; // src, op1, offset : M[R[op1] + offset] = R[src]
 c SET = 4d3; // dest, c : R[dest] = c
 c LT = 4d4; // dest, op1, op2 : R[dest] = R[op1] < R[op2]
 c EQ = 4d5; // dest, op1, op2 : R[dest] = R[op1] == R[op2]
 c BEQ = 4d6; // op1, c : R[0] = R[0] + (R[op1] == c ? 2 : 1)
 c BNEQ = 4d7; // op1, c : R[0] = R[0] + (R[op1] != c ? 2 : 1)
 c ADD = 4d8; // dest, op1, op2 : R[dest] = R[op1] + R[op2]
 c SUB = 4d9; // dest, op1, op2 : R[dest] = R[op1] - R[op2]
 c SHL = 4d10; // dest, op1, op2 : R[dest] = R[op1] << R[op2]
 c SHR = 4d11; // dest, op1, op2 : R[dest] = R[op1] >> R[op2]
 c AND = 4d12; // dest, op1, op2 : R[dest] = R[op1] & R[op2]
 c OR = 4d13; // dest, op1, op2 : R[dest] = R[op1] | R[op2]
 c INV = 4d14; // dest, op1 : R[dest] = ~R[op1]
 c XOR = 4d15; // dest, op1, op2 : R[dest] = R[op1] ^ R[op2]
}

The constant declarations are like any we used before inside the module declaration.
But, when they are declared in a global block, they become accessible throughout
our entire design.

These are the opcodes for each of the instructions. The actual value for each code
doesn’t particularly matter (except it is convenient if NOP is 0). What does matter is
that we use consistent encoding throughout our design. Accessing these is similar to
accessing a globally declared struct, with Namespace.CONST—for example, Inst.LOAD.

The processor’s registers are nothing more than a 2D array of DFFs:

 .clk(clk), .rst(rst) {
 dff reg[16][8]; // CPU Registers
 }

We have 16 registers of 8 bits each. Using an array of DFFs makes it easy to access
multiple registers in the same cycle, but it wouldn’t scale well if the bank was huge:

instRom instRom; // program ROM

We can’t forget our program ROM! We will cover the actual ROM in a bit. However,
it has only two ports, address and inst. It outputs the corresponding instruction on
inst for the given address. It works the same as the ROM in Chapter 6.

The design also uses five signals for intermediate values:

 sig op[4]; // opcode
 sig arg1[4]; // first arg
 sig arg2[4]; // second arg
 sig dest[4]; // destination arg
 sig constant[8]; // constant arg

These will be used to rename parts of the instruction so that the rest of the design is
easier to read. They aren’t strictly needed, as we could just pull the bits out of the
instruction whenever we need them. Here are the actual assignments:

126 | Chapter 9: A Basic Processor

 op = instRom.inst[15:12]; // opcode is top 4 bits
 dest = instRom.inst[11:8]; // dest is next 4 bits
 arg1 = instRom.inst[7:4]; // arg1 is next 4 bits
 arg2 = instRom.inst[3:0]; // arg2 is last 4 bits
 constant = instRom.inst[7:0]; // constant is last 8 bits

The way we defined our instruction set, the opcode is always the 4 most significant
bits. The other four signals are just the common names for the different parts of the
instruction.

Remember we said that we would use register 0 as the program counter? Here are the
two lines that use it:

instRom.address = reg.q[0]; // reg 0 is program counter
reg.d[0] = reg.q[0] + 1; // increment PC by default

We use register 0 to index into the program ROM, and by default it will increment by
1 each cycle. Incrementing it keeps the program moving along. If the program writes
a value to it, it will receive that value instead of the increment.

Finally, we have the meat of the processor:

 // Perform the operation
 case (op) {
 Inst.LOAD:
 read = 1; // request a read
 reg.d[dest] = din; // save the data
 address = reg.q[arg1] + arg2; // set the address
 Inst.STORE:
 write = 1; // request a write
 dout = reg.q[dest]; // output the data
 address = reg.q[arg1] + arg2; // set the address
 Inst.SET:
 reg.d[dest] = constant; // set the reg to constant
 Inst.LT:
 reg.d[dest] = reg.q[arg1] < reg.q[arg2]; // less than comparison
 Inst.EQ:
 reg.d[dest] = reg.q[arg1] == reg.q[arg2]; // equals comparison
 Inst.BEQ:
 if (reg.q[dest] == constant) // if R[dest] == constant
 reg.d[0] = reg.q[0] + 2; // skip next instruction
 Inst.BNEQ:
 if (reg.q[dest] != constant) // if R[dest] != constant
 reg.d[0] = reg.q[0] + 2; // skip next instruction
 Inst.ADD:
 reg.d[dest] = reg.q[arg1] + reg.q[arg2]; // addition
 Inst.SUB:
 reg.d[dest] = reg.q[arg1] - reg.q[arg2]; // subtraction
 Inst.SHL:
 reg.d[dest] = reg.q[arg1] << reg.q[arg2]; // shift left
 Inst.SHR:
 reg.d[dest] = reg.q[arg1] >> reg.q[arg2]; // shift right
 Inst.AND:

The Processor | 127

 reg.d[dest] = reg.q[arg1] & reg.q[arg2]; // bitwise AND
 Inst.OR:
 reg.d[dest] = reg.q[arg1] | reg.q[arg2]; // bitwise OR
 Inst.INV:
 reg.d[dest] = ~reg.q[arg1]; // bitwise invert
 Inst.XOR:
 reg.d[dest] = reg.q[arg1] ^ reg.q[arg2]; // bitwise XOR
 }

It is really just one big case statement performing a operation for each different
opcode.

The Program
Now that we have a processor, we need a program for it to run. Take a look at this
example instRom:

module instRom (
 input address[8],
 output inst[16]
) {

 always {
 inst = c{Inst.NOP, 12b0};

 case (address) {
 // begin:
 0: inst = c{Inst.SET, 4d2, 8d0}; // SET R2, 0
 // loop:
 1: inst = c{Inst.SET, 4d1, 8d128}; // SET R1, 128
 2: inst = c{Inst.STORE, 4d2, 4d1, 4d0}; // STORE R2, R1, 0
 3: inst = c{Inst.SET, 4d1, 8d1}; // SET R1, 1
 4: inst = c{Inst.ADD, 4d2, 4d2, 4d1}; // ADD R2, R2, R1
 5: inst = c{Inst.SET, 4d15, 8d1}; // SET R15, loop
 6: inst = c{Inst.SET, 4d0, 8d7}; // SET R0, delay
 // delay:
 7: inst = c{Inst.SET, 4d11, 8d0}; // SET R11, 0
 8: inst = c{Inst.SET, 4d12, 8d0}; // SET R12, 0
 9: inst = c{Inst.SET, 4d13, 8d0}; // SET R13, 0
 10: inst = c{Inst.SET, 4d1, 8d1}; // SET R1, 1
 // delay_loop:
 11: inst = c{Inst.ADD, 4d11, 4d11, 4d1}; // ADD R11, R11, R1
 12: inst = c{Inst.BEQ, 4d11, 8d0}; // BEQ R11, 0
 13: inst = c{Inst.SET, 4d0, 8d11}; // SET R0, delay_loop
 14: inst = c{Inst.ADD, 4d12, 4d12, 4d1}; // ADD R12, R12, R1
 15: inst = c{Inst.BEQ, 4d12, 8d0}; // BEQ R12, 0
 16: inst = c{Inst.SET, 4d0, 8d11}; // SET R0, delay_loop
 17: inst = c{Inst.ADD, 4d13, 4d13, 4d1}; // ADD R13, R13, R1
 18: inst = c{Inst.BEQ, 4d13, 8d0}; // BEQ R13, 0
 19: inst = c{Inst.SET, 4d0, 8d11}; // SET R0, delay_loop
 20: inst = c{Inst.SET, 4d1, 8d0}; // SET R1, 0
 21: inst = c{Inst.ADD, 4d0, 4d15, 4d1}; // ADD R0, R15, R1

128 | Chapter 9: A Basic Processor

 }
 }
}

This code will slowly increment a counter and output its value to address 128. Before
we dive into the details of the ROM, let’s hook everything up and display the output
value on the LEDs:

module mojo_top (
 input clk, // 50MHz clock
 input rst_n, // reset button (active low)
 output led [8], // 8 user controllable LEDs
 input cclk, // configuration clock, AVR ready when high
 output spi_miso, // AVR SPI MISO
 input spi_ss, // AVR SPI Slave Select
 input spi_mosi, // AVR SPI MOSI
 input spi_sck, // AVR SPI Clock
 output spi_channel [4], // AVR general purpose pins
 input avr_tx, // AVR TX (FPGA RX)
 output avr_rx, // AVR RX (FPGA TX)
 input avr_rx_busy // AVR RX buffer full
) {

 sig rst; // reset signal

 .clk(clk) {
 // The reset conditioner is used to synchronize the reset signal to the FPGA
 // clock. This ensures the entire FPGA comes out of reset at the same time.
 reset_conditioner reset_cond;

 .rst(rst) {
 cpu cpu; // our snazzy CPU
 dff led_reg[8]; // storage for LED value
 }
 }

 always {
 reset_cond.in = ~rst_n; // input raw inverted reset signal
 rst = reset_cond.out; // conditioned reset

 spi_miso = bz; // not using SPI
 spi_channel = bzzzz; // not using flags
 avr_rx = bz; // not using serial port

 cpu.din = 8hxx; // default to don't care

 // if cpu uses address 128
 if (cpu.address == 128) {
 if (cpu.write)
 led_reg.d = cpu.dout; // update the LED value
 if (cpu.read)
 cpu.din = led_reg.q; // let the CPU read the LED value

The Processor | 129

 }

 led = led_reg.q; // connect LEDs to led_reg
 }
}

Notice that this design is similar to the Register Interface example, where we received
write and read requests for a given address. The big difference here is that we have to
provide the read value immediately. Before, we had up to a quarter second to gener‐
ate the requested value. We could change the processor’s design so that it will stall as
it waits for a read, but that is an enhancement you can add.

So why did we use address 128 for the LEDs instead of address 0? Conventionally, the
first half of the memory space is reserved for RAM, and the second half is reserved
for memory-mapped I/O. Memory-mapped I/O is a term used to describe the
address-based interface we are using. The addresses of reads and writes don’t go to
RAM but rather to peripherals allowing the processor to interact with the outside
world. This is how your computer works. The drivers you install for new hardware
are used as the glue from a set of special registers to some simpler abstraction.

You should now be able to build and load the project to see the LEDs counting. This
example is simple (counting LEDs could have been done long ago), but you can now
change what the LEDs do simply by changing the contents of the ROM.

The Assembler
If you try to edit that ROM directly, it would be a bit of nightmare because of all the
hardcoded addresses. If you need to insert an instruction, you have to renumber
every instruction after it and change any instruction number constants. Instead, we
can use something known as an assembler to make life easier.

An assembler takes assembly code and turns it into machine code (our ROM).
Assembly is just barely an abstraction above machine code, as it has a one-to-one
relationship, but it makes it much easier to read and edit.

The assembly I used to generate that ROM is shown here:

begin:
 SET R2, 0 // R2 = 0
loop:
 SET R1, 128 // R1 = 128
 STORE R2, R1, 0 // M[128] = R2
 SET R1, 1 // R1 = 1
 ADD R2, R2, R1 // R2++
 SET R15, loop // R15 = loop, R15 is return address
 SET R0, delay // goto delay
delay:
 SET R11, 0 // R11 = 0
 SET R12, 0 // R12 = 0

130 | Chapter 9: A Basic Processor

 SET R13, 0 // R13 = 0
 SET R1, 1 // R1 = 1
delay_loop:
 ADD R11, R11, R1 // R11++
 BEQ R11, 0 // skip next if (R11 == 0)
 SET R0, delay_loop // goto delay_loop
 ADD R12, R12, R1 // R12++
 BEQ R12, 0 // skip next if (R12 == 0)
 SET R0, delay_loop // goto delay_loop
 ADD R13, R13, R1 // R13++
 BEQ R13, 0 // skip next if (R13 == 0)
 SET R0, delay_loop // goto delay_loop
 SET R1, 0 // R1 = 0
 ADD R0, R15, R1 // R0 = R15 (return)

This should be a little easier to read and understand than the raw ROM from before.

Although our CPU treats only R0 specially (it’s the program counter), it is helpful to
assign special roles to some registers for use in our programs. For example, for many
instructions, it can be handy to have a temporary register to load a constant into. I
used R1 for this purpose. The other special register I used was R15 to store the return
address from a function call (more on this later).

The goal of this program is to count and output the count to address 128. Because we
have no external RAM, all our memory needs to fit in the 16 registers. I chose R2 to
store our primary counter.

The first line initializes R2 to 0; we then enter the main loop. The main loop starts by
writing R2 to address 128. R1 is used to store the address 128 used by the STORE
instruction. We then increment R2 by 1. Again, we use R1 to store the constant 1 to
add to R2.

We could simply loop here, but it would count way too fast for us to see on the LEDs.
So we need to create a delay function. A function is just a block of code that can be
called from anywhere and will return to where it’s called from. We use R15 to specify
the address we want to return to. In our case, we cheat a little bit and set R15 to the
beginning of our loop instead of the instruction after the call to delay. This is just a
little more efficient.

We can use the SET instruction with R0 to jump to anywhere in our program. This is
where labels are really helpful, since we don’t care what the actual instruction number
is because the label will get replaced with the proper value.

The delay function uses R11, R12, and R13 to count from 0 to 16,777,215. This takes
a decent amount of time, so we can actually see the LEDs change. When the counter
overflows, the delay function returns to the address in R15 by using the ADD instruc‐
tion to set R0 to R15.

The Assembler | 131

So how do we convert the assembly code to our ROM? I’ve written a Java program
that does this and is available on GitHub or from Embedded Micro.

If you don’t want to modify the assembler, you can download the skinny-asm.jar file
in the root of the repository. You can then use the JAR from the command line as
follows:

java -jar skinny-asm.jar assembly-file.asm

This should turn assembly-file.asm into the instRom module, or tell you what is
wrong with your assembly.

Try editing this code, or write you own program! Feel free to even swap out some of
the instructions for your own if you can think of something more useful. Maybe you’d
prefer an instruction for directly setting a bit instead of XOR, or maybe you would
rather be able to tell whether a value is even or odd instead of shifting right.

Congratulations on making your first processor!

132 | Chapter 9: A Basic Processor

https://github.com/embmicro/SkinnyAssembler
http://embm.co/1y

CHAPTER 10

FPGA Internals

In this chapter, we are going to briefly cover the internals of an FPGA and how they
work. This chapter provides an overview of how the different parts work with enough
detail that you can then use this knowledge to help better inform your design deci‐
sions. However, we will stay out of the nitty-gritty.

General Fabric and Routing Resources
The biggest part of the FPGA is something known as the general fabric. This is where
most of your design gets implemented. It consists of a bunch of pieces known as con‐
figurable logic blocks, or CLBs. In the case of the FPGA used on the Mojo, the Spartan
6, a CLB contains a few six-input LUTs, eight flip-flops, and some have extra resour‐
ces such as RAM or special routing for carry logic (like the arbiter).

The way all the combinational logic in your designs gets implemented is in lookup
tables. The Spartan 6 uses six input LUTs. Each one of these can have a completely
unique mapping of any six inputs to a single output. This means each LUT can imple‐
ment any six-to-one function regardless of its complexity. For added flexibility, the
LUTs in this FPGA can also be used as two five-input LUTs (using the same five
inputs).

All these LUTs and DFFs are connected to something known as the switch matrix.
This is a basically what the name indicates: a huge matrix of switches. It is how spe‐
cific CLBs and other resources are connected to each other. There aren’t too many
details available about what exactly the switch matrix consists of or how it is con‐
structed (a lot of the FPGA’s internals are proprietary), but you can imagine it as a
bunch of wires and multiplexers to control how the wires are connected.

There are some special routing resources in the switch matrix for special signals such
as clocks, but most of the time the tools will figure this out for you and route things

133

accordingly. This is why you can run into trouble when you try to use a clock signal
for something other than a clock, or a signal that isn’t a clock as a clock.

FPGAs are basically a bunch of LUTs and DFFs that can be connected however they
need to be. Let’s look a little closer at the details of the Spartan 6.

CLBs contain two slices. There are three types of slices: SLICEX, SLICEL, and SLI‐
CEM. SLICEX is the simplest of them, and SLICEM is the most complex. Every slice
has four LUTs and eight flip-flops.

The SLICEL slices contain everything in a SLICEX but with routing logic for carry
chains. The SLICEM slices have everything in a SLICEL but also can use their LUTs
as small RAMs or shift registers.

The FPGA on the Mojo has 1,430 slices: 360 SLICEMs, 355 SLICELs, and 715 SLI‐
CEXs. This provides 5,720 LUTs, up to 90 Kb of distributed RAM, up to 45 Kb of
shift registers, and 11,440 flip-flops for your designs.

For schematics of the slice types, see pages 9–11 of the Xilinx doc UG384.

What does this look like inside the FPGA? Xilinx’s tool, PlanAhead, will show you the
floor plan of your implemented design. Figure 10-1 shows two designs. The one on
the left is from Chapter 9, while the one on the right is from a later project in Chap‐
ter 12. The lighter blue represents resources that are being used, and as you can tell,
the simple processor has a fairly low utilization (~18%), while the other example uses
most of the FPGA’s slices (~96%).

In this image, the darker blue section that makes up most of the FPGA is the general
fabric. This is where all the slices live. The dark red rectangles sandwiched in the gen‐
eral fabric are block RAMs. The green rectangles, also mixed in the fabric, are multi‐
pliers (DSP48A1). The orange rectangles in the middle are special clocking resources,
and the colorful stuff around the edges represents I/O ports and I/O-related primi‐
tives. Some of these special primitives are covered in the next section.

You can view the floor plan for any of your built projects by launching PlanAhead
and opening the PlanAhead project file generated by the Mojo IDE. These can be
found in WORKSPACE/PROJECT/work/planAhead/PROJECT/PROJECT.ppr, where
WORKSPACE is your workspace directory and PROJECT is the name of your project.
With the project open, click Open Implemented Design on the left side. You should
note that the whole PlanAhead project is deleted each time you build your project in
the Mojo IDE, so any changes you make in PlanAhead won’t persist.

134 | Chapter 10: FPGA Internals

http://bit.ly/XilinxUG384

Figure 10-1. FPGA floor plans of the simple processor (left) and a more complicated
project (right)

Special Primitives
Besides the general fabric, FPGAs typically contain other special primitives to effi‐
ciently perform certain functions. A lot of these primitives are automatically used to
implement your design efficiently, while some you need to explicitly use.

In the following sections, we will touch on the primitives related to memory, math,
clocking, and I/O. There are tons of primitives, but we will be looking only at the
most commonly used ones. For a more complete list, see the “Spartan 6 Libraries
Guide for HDL Designs.”

Block RAM (Memory)
When you build your project, if you scroll up a little in the output after it is done
building, you will find something like this:

Special Primitives | 135

http://bit.ly/Spartan6Lib
http://bit.ly/Spartan6Lib

Device Utilization Summary:

Slice Logic Utilization:
 Number of Slice Registers: 97 out of 11,440 1%
 Number used as Flip Flops: 97
 Number used as Latches: 0
 Number used as Latch-thrus: 0
 Number used as AND/OR logics: 0
 Number of Slice LUTs: 167 out of 5,720 2%
 Number used as logic: 157 out of 5,720 2%
 Number using O6 output only: 123
 Number using O5 output only: 12
 Number using O5 and O6: 22
 Number used as ROM: 0
 Number used as Memory: 5 out of 1,440 1%
 Number used as Dual Port RAM: 0
 Number used as Single Port RAM: 4
 Number using O6 output only: 0
 Number using O5 output only: 0
 Number using O5 and O6: 4
 Number used as Shift Register: 1
 Number using O6 output only: 1
 Number using O5 output only: 0
 Number using O5 and O6: 0
 Number used exclusively as route-thrus: 5
 Number with same-slice register load: 4
 Number with same-slice carry load: 1
 Number with other load: 0

Slice Logic Distribution:
 Number of occupied Slices: 59 out of 1,430 4%
 Number of MUXCYs used: 16 out of 2,860 1%
 Number of LUT Flip Flop pairs used: 171
 Number with an unused Flip Flop: 85 out of 171 49%
 Number with an unused LUT: 4 out of 171 2%
 Number of fully used LUT-FF pairs: 82 out of 171 47%
 Number of slice register sites lost
 to control set restrictions: 0 out of 11,440 0%

 A LUT Flip Flop pair for this architecture represents one LUT paired with
 one Flip Flop within a slice. A control set is a unique combination of
 clock, reset, set, and enable signals for a registered element.
 The Slice Logic Distribution report is not meaningful if the design is
 over-mapped for a non-slice resource or if Placement fails.

IO Utilization:
 Number of bonded IOBs: 22 out of 102 21%
 Number of LOCed IOBs: 22 out of 22 100%
 IOB Flip Flops: 4

Specific Feature Utilization:
 Number of RAMB16BWERs: 0 out of 32 0%

136 | Chapter 10: FPGA Internals

 Number of RAMB8BWERs: 0 out of 64 0%
 Number of BUFIO2/BUFIO2_2CLKs: 0 out of 32 0%
 Number of BUFIO2FB/BUFIO2FB_2CLKs: 0 out of 32 0%
 Number of BUFG/BUFGMUXs: 1 out of 16 6%
 Number used as BUFGs: 1
 Number used as BUFGMUX: 0
 Number of DCM/DCM_CLKGENs: 0 out of 4 0%
 Number of ILOGIC2/ISERDES2s: 3 out of 200 1%
 Number used as ILOGIC2s: 3
 Number used as ISERDES2s: 0
 Number of IODELAY2/IODRP2/IODRP2_MCBs: 0 out of 200 0%
 Number of OLOGIC2/OSERDES2s: 1 out of 200 1%
 Number used as OLOGIC2s: 1
 Number used as OSERDES2s: 0
 Number of BSCANs: 0 out of 4 0%
 Number of BUFHs: 0 out of 128 0%
 Number of BUFPLLs: 0 out of 8 0%
 Number of BUFPLL_MCBs: 0 out of 4 0%
 Number of DSP48A1s: 0 out of 16 0%
 Number of ICAPs: 0 out of 1 0%
 Number of MCBs: 0 out of 2 0%
 Number of PCILOGICSEs: 0 out of 2 0%
 Number of PLL_ADVs: 0 out of 2 0%
 Number of PMVs: 0 out of 1 0%
 Number of STARTUPs: 0 out of 1 0%
 Number of SUSPEND_SYNCs: 0 out of 1 0%

This is from the example project that asks for your name and says hello.

The first section of the report gives you an overall feel for how much of the FPGA
you are using. The number of slice registers is how many DFFs you are using, only
97/11,440 in this case. The number of slice LUTs gives you a feel for how complex the
logic in your design is, only 167/5,720 here. This decently complex project is using
less than 2% of the FPGA’s general fabric!

As you may remember, we used a special RAM component, with the reasoning being
that the tools would realize this component was RAM and would utilize the RAM
built into the FPGA. However, if you look under the Specific Feature Utilization cate‐
gory, both RAMB16BWERs and RAMB8BWERs are not being used at all (these are the block
RAM primitives)!

This is because the RAM we used was set to be only 8 bits wide and 32 entries deep.
This isn’t very big, so the tools decided to put the RAM in the general fabric. If you
look under the Number of Slices LUTs section, the Number Used as Single Port RAM
shows that four LUTs were used to make the small RAM. We are actually fully utiliz‐
ing the four LUTs here. This is because the four LUTs are operating as RAM with two
outputs; all four are using both O5 and O6 outputs. The LUTs generally hold 64
entries (remember, they are 6-bit LUTs), but can be split to two LUTs of 5 bits each.

Special Primitives | 137

If we change the size of the RAM in our design to be 64 entries deep, we see the fol‐
lowing change:

 Number used as Memory: 9 out of 1,440 1%
 Number used as Dual Port RAM: 0
 Number used as Single Port RAM: 8
 Number using O6 output only: 8
 Number using O5 output only: 0
 Number using O5 and O6: 0

Now we are using eight LUTs as RAM, but each one is using only one output, so each
is 64 entries deep.

What happens if we crank up the size of the RAM to be 128 entries? The simple LUT
RAM can go up to only 64 entries. Take a look at the following report:

Device Utilization Summary:

Slice Logic Utilization:
 Number of Slice Registers: 89 out of 11,440 1%
 Number used as Flip Flops: 89
 Number used as Latches: 0
 Number used as Latch-thrus: 0
 Number used as AND/OR logics: 0
 Number of Slice LUTs: 140 out of 5,720 2%
 Number used as logic: 138 out of 5,720 2%
 Number using O6 output only: 105
 Number using O5 output only: 12
 Number using O5 and O6: 21
 Number used as ROM: 0
 Number used as Memory: 1 out of 1,440 1%
 Number used as Dual Port RAM: 0
 Number used as Single Port RAM: 0
 Number used as Shift Register: 1
 Number using O6 output only: 1
 Number using O5 output only: 0
 Number using O5 and O6: 0
 Number used exclusively as route-thrus: 1
 Number with same-slice register load: 0
 Number with same-slice carry load: 1
 Number with other load: 0

Slice Logic Distribution:
 Number of occupied Slices: 51 out of 1,430 3%
 Number of MUXCYs used: 16 out of 2,860 1%
 Number of LUT Flip Flop pairs used: 154
 Number with an unused Flip Flop: 72 out of 154 46%
 Number with an unused LUT: 14 out of 154 9%
 Number of fully used LUT-FF pairs: 68 out of 154 44%
 Number of slice register sites lost
 to control set restrictions: 0 out of 11,440 0%

 A LUT Flip Flop pair for this architecture represents one LUT paired with

138 | Chapter 10: FPGA Internals

 one Flip Flop within a slice. A control set is a unique combination of
 clock, reset, set, and enable signals for a registered element.
 The Slice Logic Distribution report is not meaningful if the design is
 over-mapped for a non-slice resource or if Placement fails.

IO Utilization:
 Number of bonded IOBs: 22 out of 102 21%
 Number of LOCed IOBs: 22 out of 22 100%
 IOB Flip Flops: 4

Specific Feature Utilization:
 Number of RAMB16BWERs: 0 out of 32 0%
 Number of RAMB8BWERs: 1 out of 64 1%
 Number of BUFIO2/BUFIO2_2CLKs: 0 out of 32 0%
 Number of BUFIO2FB/BUFIO2FB_2CLKs: 0 out of 32 0%
 Number of BUFG/BUFGMUXs: 1 out of 16 6%
 Number used as BUFGs: 1
 Number used as BUFGMUX: 0
 Number of DCM/DCM_CLKGENs: 0 out of 4 0%
 Number of ILOGIC2/ISERDES2s: 3 out of 200 1%
 Number used as ILOGIC2s: 3
 Number used as ISERDES2s: 0
 Number of IODELAY2/IODRP2/IODRP2_MCBs: 0 out of 200 0%
 Number of OLOGIC2/OSERDES2s: 1 out of 200 1%
 Number used as OLOGIC2s: 1
 Number used as OSERDES2s: 0
 Number of BSCANs: 0 out of 4 0%
 Number of BUFHs: 0 out of 128 0%
 Number of BUFPLLs: 0 out of 8 0%
 Number of BUFPLL_MCBs: 0 out of 4 0%
 Number of DSP48A1s: 0 out of 16 0%
 Number of ICAPs: 0 out of 1 0%
 Number of MCBs: 0 out of 2 0%
 Number of PCILOGICSEs: 0 out of 2 0%
 Number of PLL_ADVs: 0 out of 2 0%
 Number of PMVs: 0 out of 1 0%
 Number of STARTUPs: 0 out of 1 0%
 Number of SUSPEND_SYNCs: 0 out of 1 0%

We are now using no LUTs as RAM! Instead, notice that we are using RAMB8BWER.
Because we used the special RAM component in our design, the tools knew that we
wanted RAM and, depending on the size, they will use block RAM (as they are now)
or distributed RAM (as before).

Something else to notice is that the numbers of registers and LUTs used for this
design are lower than when the RAM was smaller by a fairly significant margin. This
is because a lot of the logic needed before is built into the RAMB8BWER primitive. The
tools will generally avoid using block RAM if it can, though, because we have thou‐
sands of registers and LUTs but only 64 RAMB8BWERs and 32 RAMB16BWERs.

Special Primitives | 139

Math
One of the more important primitives is DSP48A1. The FPGA on the Mojo has only 16
of these, but they are very important if you start doing any serious math in your
design.

As we’ve seen, some of the slices are specifically designed to efficienctly implement
circuits with a carry chain, such as addition and subtraction. This makes these opera‐
tions cheap to implement in the general fabric. However, multiplication is a different
beast. Each DSP48A1 contains an 18-bit pre-adder/subtracter followed by an 18 x 18
signed multiplier and, finally, a 48-bit post-adder/subtracter. All of these operations
are performed directly instead of having to go through the general fabric of the
FPGA, making them substantially faster.

If you use multiplication in your design, keep an eye on this utilization number. If
you exceed the number of DSP48A1s on the FPGA, the tools will have to put the mul‐
tiplication logic into the general fabric. Depending on your clock speed and multipli‐
cation size, your design may start to fail timing.

Clocking
The primitives DCM/DCM_CLKGEN and PLL_ADV are used to synthesize new clock fre‐
quencies. This means generating new clocks from the single 50 MHz clock present on
the Mojo. In some projects, you may find that 50 MHz isn’t enough or that you may
need another frequency for some high-speed I/O. You may even want a slower clock
to save power. This can all be done with the clocking primitives.

These primitives are pretty complicated, and although you can manually instantiate
them, it is a lot easier to use Xilinx’s CoreGen tool. This tool is integrated into the
Mojo IDE to make it easy to add cores to your project.

CoreGen is similar to the Components Library, except many of the cores are given to
you as block boxes instead of open source. Some of the more complicated cores
require you to buy a license to use them. However, most of the most commonly used
basic ones are free.

To use CoreGen in your project, go to Project → Launch CoreGen. After a short
delay, the CoreGen window should open, as shown in Figure 10-2. There is a tree in
the left panel with all the cores you can generate. Expand the FPGA Features and
Design category. Then expand the Clocking subcategory. Figure 10-2 shows the
expanded category.

140 | Chapter 10: FPGA Internals

Figure 10-2. Xilinx’s CoreGen tool

Double-click Clocking Wizard. A new window opens that will allow you to customize
the core. On the first page, you can change the name of the module GoreGen will
generate. By default, it is clk_wiz_v3_6, which is a bit uninspiring. On the same page,
you also set the input clock frequency. By default, this is set to 100 MHz, but the Mojo
has a 50 MHz clock, so make sure to change this. These settings are shown in
Figure 10-3

Special Primitives | 141

Figure 10-3. Xilinx’s Clocking Wizard

Click the Next button to get to the next page. Here you can specify the new clock fre‐
quencies you want from the core. You can request up to six frequencies to be gener‐
ated. However, note that mixing frequencies in your design requires a lot of care, as
you can easily violate timing, and the tools won’t hold your hand. When you request a
frequency, the frequency column will tell you what the core will synthesize. This is
because the FPGA can only multiply and divide the frequency by integers. So if you
want 75 MHz, the FPGA could take the 50 Mhz, multiply it by 3, and then divide it by
2 to get exactly 75 Mhz. However, if you want 74 MHz, the best it can do is 73.077
MHz (50 x 19/13).

On the next page, you can select whether you want to use RESET and LOCKED signals.
The reset signal stops all the output clocks and causes the circuit to have to reinitial‐
ize. The locked signal tells you when the output clocks are stable and at the requested
frequency. Initially, it may take a small amount of time for this to happen. I generally
don’t use either of these signals, but if your design is highly dependent on clock fre‐
quency at startup, you may want to use the locked signal to hold the rest of your
design in reset.

You can skip page 4 of the wizard. It just shows the parameters that were autogener‐
ated.

142 | Chapter 10: FPGA Internals

Page 5 lets you rename the input and output ports. I usually like to rename the output
clocks to indicate what they are being used for or include their frequency—for exam‐
ple, clk_75 for a 75 MHz clock.

The last page is a summary of your settings. At this point, you can click Generate to
make the core. After the core is done generating, a little readme window will pop up
that you can close. You should now see your core in the CoreGen window in the
bottom-left corner. You can close CoreGen at this point.

The Mojo IDE automatically detects when you generate a new core and will add it to
your project under the Cores branch of your project tree. In the case of the Clocking
Wizard core, the IDE simply generates some Verilog code to instantiate the primitives
it needs. You can check out the source in the Cores directory. It’s really not that reada‐
ble, but it can be helpful to look at to get the names of the module’s ports. You can
now use this module like any other module in your design.

When generating the core or looking at its source, you may have noticed the BUFG
primitive. This stands for buffer global, and is used to move a signal from the general
fabric to a special global routing layer. This global network is generally reserved for
clock signals, as it is designed to get a signal throughout the chip with low latency.
Signals on this layer can’t be used in the same way as other signals. For example, you
can’t connect a signal from the global network directly to an output pin.

In all our other designs, the tools automatically added BUFGs to the clk signal for us.
You can see this in the utilization reports from before.

It can be easy to want to get carried away with the FPGA’s clock speed. However, once
you start cranking it up, meeting timing will become harder and harder. You
shouldn’t have too much trouble with a simple design running at 100–150 MHz, but
if your design starts getting more complicated, making it workable will require a lot
of effort. Just because you can generate a 375 MHz clock doesn’t mean you should
clock your design at the frequency.

Special I/O Features
The FPGA has a lot of primitives for performing special I/O functions. Two of the
more impressive ones are ISERDES and OSERDES. These serialize or deserialize data
from an input, or data to an output, respectively. For example, if you have an input
running at 500 MHz, ISERDES can break this into four steams at 125 MHz for easier
processing in the FPGA. OSERDES does the inverse, taking a few streams and combin‐
ing them into a single high-speed signal. Each SERDES can do up to 1:4 or 4:1 ratios,
but it is possible to combine two to get up to 1:8/8:1 ratios. The FPGA on the Mojo
can use these to sample inputs or generate outputs up to 950 MHz.

Special Primitives | 143

Setting these up properly can be a bit difficult to figure out, especially when connect‐
ing two for higher ratios. Luckily, a core in CoreGen can help with this and other I/O
tasks. You can find it under FPGA Features and Design → IO Interface → SelectIO
Interface Wizard.

Another I/O feature is double-data rate inputs and outputs (IDDR and ODDR), where
you input/output data on both the rising and falling edges of a clock (this works like a
1:2/2:1 [de]serializer). There is also the IODELAY2 primitive that allows you to delay
an input or output by tiny amounts of time to synchronize bus signals if the trace
lengths on the PCB aren’t the same length. Both of these are used directly via the
SDRAM Controller in the Components Library.

Many of the FPGA-specific primitives can be used directly in Lucid by prefixing the
names with xil_. For example, the IODELAY2 primitive has the name xil_IODELAY2
and can be used like any other module. See the SDRAM Component in the Mojo
IDE’s Components Library for an example of how these are used.

144 | Chapter 10: FPGA Internals

CHAPTER 11

Advanced Timing and Clock Domains

In this chapter, we will look at what happens when you break timing and some ways
to fix the problem. We will also talk about having multiple clocks in your design and
how to reliably get data between clock domains. This can be tricky because usually
you can’t ensure the that clocks are aligned or they aren’t perfect multiples of each
other. If you try to feed a signal synchronized to one clock into a DFF running off
another clock, you will violate timing constraints periodically.

After finishing this chapter, you should know how to identify timing problems and
know some techniques to fix them. This includes timing issues that the tools try to
avoid when laying out and routing your design and issues that arise due to your
design.

Breaking Timing and Fixing It with Pipelining
In this section, we are going to create a design that intentionally breaks timing by
giving the tools an impossible task of performing a bunch of multiplications in a sin‐
gle clock cycle. We will identify the issue by looking at the timing report generated by
the tools and then fix the design by splitting the operation into multiple clock cycles.

If you are using the 50 MHz clock on the Mojo without changing the frequency, you
won’t likely run into timing issues for your designs. However, it is still quite possible
to break timing, and we’ll take a look at a technique known as pipelining that can be
used to help timing.

To demonstrate this, we need a design that fails timing. Create a new project based on
the IO Shield Base example. Then create a new module named timing.luc with the fol‐
lowing contents:

module timing (
 input clk, // clock

145

 input a [8], // first input
 input b [8], // second input
 output c [64] // output
) {

 .clk(clk) {
 dff a_reg [8]; // register to hold a
 dff b_reg [8]; // register to hold b
 dff c_reg [64]; // register to hold c
 }

 always {
 a_reg.d = a; // connect inputs
 b_reg.d = b;
 c = c_reg.q; // connect output

 // super long expression of lots of multiplication
 c_reg.d = (a_reg.q * a_reg.q) * (a_reg.q * a_reg.q) *
 (b_reg.q * b_reg.q) * (b_reg.q * b_reg.q);
 }
}

To break timing, we can perform a bunch of multiplication. Because this is the only
multiplication in our design, all the operations have DSP48A1s to use making it faster.
If this was performed in the general fabric, a much simpler expression would break
timing.

We can add this module to the top-level module and build the project:

 .clk(clk) {
 // The reset conditioner is used to synchronize the reset signal to the FPGA
 // clock. This ensures the entire FPGA comes out of reset at the same time.
 reset_conditioner reset_cond;

 timing timing;
 }

 always {
 reset_cond.in = ~rst_n; // input raw inverted reset signal
 rst = reset_cond.out; // conditioned reset

 led = 8h00; // turn LEDs off
 spi_miso = bz; // not using SPI
 spi_channel = bzzzz; // not using flags
 avr_rx = bz; // not using serial port

 io_seg = 8hff; // turn segments off
 io_sel = 4hf; // select no digits

 timing.a = io_dip[0];
 timing.b = io_dip[1];
 io_led = {timing.c[16+:8], timing.c[8+:8], timing.c[0+:8]};

146 | Chapter 11: Advanced Timing and Clock Domains

 }
}

Here we hook up the timing module’s inputs and outputs to the switches and LEDs
on the IO Shield. We need to use some nonconstant inputs and actually use the out‐
put so the module doesn’t get optimized away. With external inputs and outputs, the
tools can’t assume anything.

Build the project. It will still generate a configuration file, but this file may not work.
If you scroll up in the output, you’ll see something like this:

 Constraint | Check | Worst Case | Best Case | Timing | Timing
 | | Slack | Achievable | Errors | Score

* TS_clk = PERIOD | SETUP | -5.748ns| 25.748ns| 82| 320922
 TIMEGRP "clk"
 50 MHz HIGH
 50% | HOLD | 3.995ns| | 0| 0

1 constraint not met.

This tells you that the best it could do for this design was 25.748 ns, or 38.84 MHz.
With a 50 MHz clock, 20 ns period, things won’t work out. The timing score is the
total time in picoseconds of all the signals that fail timing. 320922 is a pretty bad
score. If this number is small and the worst-case slack is also small, the design likely
will still work under most conditions, but it isn’t guaranteed.

So how do we know where our design broke? In this case, it’s trivial because we
designed it to break in one spot, but if it is your own design, you might not know
where it is failing. At the time of writing, the Mojo IDE doesn’t have any tools to help
with closing timing. Instead, we need to take a look at one of the log files generated
when you built the project.

If you look in the project’s folder, there should be a file with a similar path to Break‐
Timing/work/planAhead/BreakTiming/BreakTiming.runs/impl_1/mojo_top_0.twr (I
named the project “BreakTiming”). This is the timing report. You can open this file in
the Mojo IDE since it is just a text file. Just make sure to select the * filter for file types
in the open file dialog.

There are 80 signals in our design failing to meet timing, but in our case they are all
related. The report lists violations in order of severity. Usually, you need to look at
only the first few failing constraints to get an of idea of where in your design this is
failing. Take a look at the first failing signal:

Slack: -5.748ns (requirement - (data path - clock path skew +...
 Source: timing/Mmult_M_a_reg_q[7]_M_a_reg_q[7]_MuLt_0_OUT (DSP...
 Destination: timing/Mmult_M_c_reg_d_submult_01 (DSP)

Breaking Timing and Fixing It with Pipelining | 147

 Requirement: 20.000ns
 Data Path Delay: 25.759ns (Levels of Logic = 3)(Component delays alone ...
 Clock Path Skew: 0.046ns (0.696 - 0.650)
 Source Clock: clk_BUFGP rising at 0.000ns
 Destination Clock: clk_BUFGP rising at 20.000ns
 Clock Uncertainty: 0.035ns

 Clock Uncertainty: 0.035ns ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
 Total System Jitter (TSJ): 0.070ns
 Total Input Jitter (TIJ): 0.000ns
 Discrete Jitter (DJ): 0.000ns
 Phase Error (PE): 0.000ns

 Maximum Data Path at Slow Process Corner: timing/Mmult_M_a_reg_q[7]_M_a_reg_...
 Location Delay type Delay(ns) Physical Resource
 Logical Resource(s)
 --- -------------------
 DSP48_X0Y9.M14 Tdspcko_M_B0REG 4.371 timing/Mmult_M_a_reg_q[...
 timing/Mmult_M_a_reg_q[...
 DSP48_X0Y10.B14 net (fanout=2) 1.115 timing/M_a_reg_q[7]_M_a...
 DSP48_X0Y10.M7 Tdspdo_B_M 3.894 timing/Mmult_M_a_reg_q[...
 timing/Mmult_M_a_reg_q[...
 DSP48_X0Y13.A7 net (fanout=1) 1.765 timing/M_a_reg_q[7]_M_a...
 DSP48_X0Y13.P47 Tdspdo_A_P 3.926 timing/Mmult_M_a_reg_q[...
 timing/Mmult_M_a_reg_q[...
 DSP48_X0Y14.C37 net (fanout=18) 1.224 timing/Mmult_M_a_reg_q[...
 DSP48_X0Y14.P1 Tdspdo_C_P 3.141 timing/Mmult_M_a_reg_q[...
 timing/Mmult_M_a_reg_q[...
 DSP48_X0Y12.A1 net (fanout=1) 1.269 timing/M_a_reg_q[7]_M_b...
 DSP48_X0Y12.CLK Tdspdck_A_PREG 5.054 timing/Mmult_M_c_reg_d_...
 timing/Mmult_M_c_reg_d_...
 --- -----------------------...
 Total 25.759ns (20.386ns logic, 5.373n...
 (79.1% logic, 20.9% rou...

The source and destination fields are the ones you want to look at to figure out what
caused this. In our case, timing/Mmult_M_a_reg_q[7]_M_a_reg_q[7]_MuLt_0_OUT
(DSP) refers to the timing module and the output of one of the multiplications. The
destination is the input of another multiplication. The names of your signals at this
point in the project building can get pretty cryptic. This is because the tools have
already optimized your design and mapped it to FPGA primitives. Usually, enough of
the original names are intact that you can get a rough idea of what signals are causing
trouble. If you look through the rest of the failed timing constraints, you’ll see they
are more or less all the same.

So how do we fix this? Well, the root of the problem is that we are trying to do too
much in a single clock cycle. We can break our operation into multiple clock cycles by
pipelining it. Pipelining refers to adding DFFs to break up a single chunk of combina‐
tional logic. It will inherently increase latency (it’ll now take multiple clock cycles
instead of one), but the throughput increases:

148 | Chapter 11: Advanced Timing and Clock Domains

module timing (
 input clk, // clock
 input a [8], // first input
 input b [8], // second input
 output c [64] // output
) {

 .clk(clk) {
 dff a_reg [8]; // register to hold a
 dff b_reg [8]; // register to hold b
 dff c_reg [64]; // register to hold c

 dff temp_a [32];
 dff temp_b [32];
 }

 always {
 a_reg.d = a; // connect inputs
 b_reg.d = b;
 c = c_reg.q; // connect output

 temp_a.d = (a_reg.q * a_reg.q) * (a_reg.q * a_reg.q);
 temp_b.d = (b_reg.q * b_reg.q) * (b_reg.q * b_reg.q);
 c_reg.d = temp_a.q * temp_b.q;
 }
}

If you build the project now, all timing constraints will be met. However, note that it
now takes three clock cycles for the output c to reflect changes on a and b instead of
the previous two cycles.

This design has a best achievable case of 13.078 ns, or a maximum clock frequency of
76.46 MHz. This is nearly twice as good as before and shows an ideal case of pipelin‐
ing. The latency increased by only a tiny amount, but the throughput almost doubled.
Why does adding the extra DFFs nearly double throughput? It is because we broke
the block of combinational logic into two sections, allowing each section to operate
independently. Before, the second half couldn’t start working on a result until the first
half computed the intermediate result. Now, the second half is presented with valid
data to work with at the start of the clock cycle. As the second half is chugging on
some new data, the first half can start working on the next values without worrying
about contaminating the intermediate values.

You can continue to add pipeline stages to improve throughput, but this has a limit.
As you may recall from “Timing and Metastability” on page 61, DFFs add a delay of
their own (the clock-to-Q delay). By adding more and more stages, the sum of delays
from the DFFs will start to dominate the total delay in your design, and adding more
stages can actually make it slower. Also, combinational logic blocks don’t have
unlimited places to cut them up. In our example, it makes sense to break off the big‐
gest multiplication, as it will take roughly the same time as the smaller multiplica‐

Breaking Timing and Fixing It with Pipelining | 149

tions. But if we wanted to add more states, we would have to split the multiplication
operation itself. This can be done (and the DSP48A1s can be configured for pipelin‐
ing), but it becomes much more complicated. If you run into a problem like this, you
can usually make a change to your design’s overall architecture to make it more effi‐
cient rather than trying to optimize an inefficient section.

Pipelining can seem like a magical tool to solve timing problems. Timing failed? Just
throw some more DFFs in there. However, this doesn’t always work. If your design
fails timing because of routing issues, this can be because you are reaching the FPGA’s
resource limits and the tools are having a hard time finding places to put everything
and still efficiently route signals. If this is the case, adding more flip-flops will only
add to the congestion and make timing worse. To solve this, make your design
smaller/more efficient or get a bigger FPGA.

It is worth mentioning that placement and routing aren’t exact processes. The tools
have many parameters you can tweak that can cause some designs to fail or meet tim‐
ing, depending on how they are configured. The Mojo IDE doesn’t currently allow
you to tweak these, but if you need to, you can open the built project (found in the
work folder) in PlanAhead and play with stuff there. This isn’t usually a good way to
try to fix timing, though, as any slight change in your design can break it once again.
It’s much better to try to find a design solution if possible.

Crossing Clock Domains
Inside your design, all the flip-flops that use the same clock belong to the same clock
domain. If you can, it is easiest to have just one clock domain in your design. How‐
ever, some cases require you to have multiple clocks. Usually this happens when you
have an external device you want to talk to that throws a lot of high-speed data at you
and the data is accompanied by its own clock. In this case, you typically clock part of
your design to capture the incoming data, but then you need to transfer that data to
your design’s primary clock domain.

Before we get into anything complicated, let’s look at the simple case of wanting to get
a single bit from one clock domain to another. This is a pretty common case, as single
bits can be used as flags to signal that a part is ready or busy. Although the later, more
complicated techniques will work perfectly fine here, a simple synchronizer can be
used. As you may recall from “External Inputs” on page 66, we can use a few flip-
flops in a chain to synchronize an unsynchronized signal to our clock. Before, we
used these to synchronize external button inputs that have no clock associated with
them, but they can also be used to cross clock domains.

Synchronizers work great when you have a single bit and it isn’t changing fast. The
ideal use case is for flags. Because of metastability issues, you don’t know exactly how
long it will take for the bit to propagate from one domain to the other. Sometimes it

150 | Chapter 11: Advanced Timing and Clock Domains

may take an extra cycle; sometimes it won’t. In many cases, this slight unknown delay
isn’t a big deal.

However, this can cause a problem if you try to use synchronizers for multibit signals.
If multiple bits change at the same time, it isn’t guaranteed that they will all change at
the same time in the other clock domain. For example, if you try to synchronize a 4-
bit signal and change from 0 (b0000) to 9 (b1001), you may see 0 (b0000), then 8
(b1000), then 9 (b1001). You could get around this with a delayed data_valid flag to
signal when to sample the multibit signal, but that is a bit messy, as you’ll have to
make sure it is delayed enough that you are guaranteed all the bits will be settled. This
would cause your bandwidth to be pretty low.

The more sophisticated way to cross clock domains is to use an asynchronous FIFO. A
FIFO is a first in, first out buffer. Basically, it takes a stream of values and dispenses
them in the order they were received. The asynchronous part means that the part that
accepts values has a different clock than the part that outputs values. To use one to
cross clock domains, you supply both clocks and read and write data from the two
domains.

The Mojo IDE has an asynchronous FIFO component available under the Memory
category. Take a look at its interface:

module async_fifo #(
 SIZE = 4 : SIZE > 0, // Size of the data
 DEPTH = 8 : DEPTH == $pow(2,$clog2(DEPTH)) // DEPTH must be a power of 2
)(
 input wclk, // write clock
 input wrst, // write reset
 input din [SIZE], // write data
 input wput, // write flag (1 = write)
 output full, // full flag (1 = full)

 input rclk, // read clock
 input rrst, // read reset
 output dout [SIZE], // read data
 input rget, // data read flag (1 = get next)
 output empty // empty flag (1 = empty)
) {

The FIFO can be configured to be any SIZE (number of bits for each entry) and any
DEPTH (number of entries) that is a power of 2. To write to the FIFO, you first check
that full isn’t 1. If it is, your write will be ignored. With full set to 0, you provide
your data on din and set wput high.

To read from the FIFO, you check that empty is 0 (meaning there is data) and then set
rget to 1 and read the data on dout. The FIFO component is what’s known as a first-
word fall-through FIFO. This means that dout is valid whenever empty is 0. You don’t
need to wait a clock cycle after setting rget to read it.

Crossing Clock Domains | 151

You’ll notice that the FIFO takes two clocks and two reset signals. The reason for both
clocks is obvious, but the two resets are a little different. The reason for these is that
each reset should be synchronized to the respective clock domain. All the project
templates in the Mojo IDE are set up to synchronize the external reset input to the
main clock by using the Reset Conditioner component. If you use the FIFO with two
clocks, you should use a second Reset Conditioner to synchronize the reset signal to
the other clock domain.

So how does the FIFO work? If you take a look at its source, the fundamental block is
a dual-port asynchronous RAM. That is RAM that has a read and write port with two
clocks. As long as you don’t read and write to the same address at the same time,
there isn’t any ambiguity in what value you will read. The FIFO uses two counters:
one to know what address to write data to, and one to know what address to read data
from. When you write data, the write address is incremented. If the write address is
just below the read address, you know that the FIFO is full. When you read data, the
read address increments. If the read address isn’t the same as the write address, the
FIFO isn’t empty.

The tricky part is that the read and write counters live in different clock domains. To
cross the clock domains, we use synchronizers. However, the counters are multibit
signals! That means we have to worry about invalid intermediate values. We can get
around this issue by changing only one bit at a time. If we use simple binary values
for the counters, we’ll have a problem, because multiple bits will change. When the
counter overflows, every bit will change! To overcome this, we use something known
as Gray encoding. Binary is just an arbitrary way to represent numbers. We could map
any combination of 1s and 0s to any number. Gray encoding is an alternative map‐
ping to binary encoding. While binary encoding has convenient math properties,
Gray has the special property that any two consecutive numbers differ by only one bit
change. Take a look at Table 11-1 for some examples of binary versus Gray.

Table 11-1. Gray encoding

Decimal Binary Gray
0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

152 | Chapter 11: Advanced Timing and Clock Domains

It’s easy to convert a binary value to the Gray version. Shift the value to the right by 1
bit, and XOR it with itself: Gray = (binary >> 1) ^ binary. Converting back is a little
more complicated. The MSB is always the same. From there, each bit is the bit above
it XORed with the corresponding Gray bit. For example, a 4-bit Gray number g3
through g0 can be converted to a binary number, b3 through b0, with the following
relations: b3 = g3, b2 = b3 ^ g2, b1 = b2 ^ g1, b0 = b1 ^ g0.

Using this, and the fact that the values will be incremented by only 1, we can ensure
that only a single bit changes, which avoids any invalid intermediate values.

Because of the synchronizers, it will take a few clock cycles from when you write a
value to the FIFO for the read side to signal that it isn’t empty. You should make sure
the FIFO is big enough (DEPTH set to a large enough value) so that this won’t bottle‐
neck your data. A value of 8 works well if the reading clock is faster than the writing
clock (typical case).

If the writing clock of the FIFO is faster than the reading clock, you won’t be able to
write data every clock cycle because the reading side won’t be able to keep up and the
FIFO will fill up regardless of its size. You need to make sure that your design can
read the data as fast as you plan to write it. If you have bursty write patterns, you need
to make sure the FIFO is large enough to absorb the bursts.

FIFOs are useful even when staying in the same clock domain to absorb bursty writes.
You could, for example, use a FIFO to absorb writes to the slow serial port. Parts of
your design could spit out a bunch of values to write and then forget about it while
the FIFO slowly writes them out.

Crossing Clock Domains | 153

CHAPTER 12

Sound Direction Detection:
An Advanced Example

In this chapter, we will use seven microphones, six evenly spaced around a circle with
one in the middle, to capture an audio sample and calculate the different directions
the sound comes from. In this project, we will push the Mojo’s FPGA fairly close to its
limits in terms of design size. This will serve as an example for some digital signal
processing (DSP), using an FSM to save resources, and a handful of other tricks that
you may find useful in your own designs.

Unlike previous chapters, this chapter serves as more of an explanation of the full
project rather than a step-by-step walk-through of designing it yourself.

This project also requires specialized hardware, the Microphone Shield, shown in
Figure 12-1. This shield has recently been released, and is available online.

155

http://embm.co/mic

Figure 12-1. Microphone Shield

Theory of Operation
The idea is that we will record a short sample of audio from all seven microphones at
exactly the same time. We can then use this to calculate the delay between the micro‐
phones and use that to detect the direction of the sound.

We need to make a few assumptions about the sound the shield will be detecting. The
first is that all sound comes from the sides and not from above or below. This is
required because we have only a 2D grid of microphones. Second, the sound waves
have a straight wavefront. This one isn’t true because most sound will originate from a
single point and have a circular wavefront, but for sources any reasonable distance
from our microphone array, it will be a reasonable approximation (a curved line
when zoomed in enough looks straight). Finally, we assume that each frequency in a
sample comes from a single direction.

So how do we go about calculating the delays between the microphones? If we had a
simple pulse and everything else was quiet, it would be quite easy by just looking at
the peak of the pulse in each sample. However, the real world is hardly that nice.

156 | Chapter 12: Sound Direction Detection: An Advanced Example

Instead, we will be using the phase of the different frequencies in each sample. This
has two major benefits: the phase is pretty easy to calculate with an FPGA by using a
fast fourier transform (FFT), and the other being that we can detect multiple sound
sources as long as their frequency components are different enough. Imagine a bird
chirping and someone talking. The bird chirps will be substantially higher pitch than
the person talking, and we should be able to detect these simultaneously.

If you aren’t familiar with FFTs, don’t worry too much. All you need to know for this
example is that a Fourier transform takes a signal in the time domain, meaning the x-
axis of the sample is time, and converts it into the frequency domain. It tells you what
frequency sine waves (and their magnitudes) you would have to add together to get
the exact same signal back. If you’ve ever seen a music equalizer, you’ve seen an FFT
in action. This is exactly what the demo of the Clock/Visualizer Shield does.

So after collecting a short sample from all seven microphones, we can run each one
through an FFT to get the frequency components. The FFT output for each frequency
is a complex number. The real portion of the number corresponds to the magnitude
of the sine portion, and the imaginary portion corresponds to the cosine portion. By
adding together sine and cosine waves of varying amplitudes, you can create a sine
wave with any phase.

The raw output of the FFT isn’t particularly useful to us. Instead, it would be much
better if we knew the phase and magnitude of each frequency. To do this, we need to
convert the complex number, which can be thought of as converting a Cartesian
coordinate (if that helps you) into a polar coordinate. Basically, if we were to plot the
complex number on a regular 2D space, instead of the x and y position of the coordi‐
nate, we want to know the angle and distance it is from the origin. Again, this isn’t too
bad to do with an FPGA, as you’ll see later.

With the phase of each frequency calculated, we can subtract the phase of the center
microphone from each of the surrounding six microphones to get a phase offset for
each one. Using the formula delay = phase offset / frequency, we could calculate the
delay for that frequency. However, scaling the delay by a constant factor (the fre‐
quency) for all six microphones won’t make a difference later, and we can use this fact
to avoid a costly division in the FPGA. Instead, we will simply use the phase offsets as
if they were the delays, since they are proportional to them.

Now that we have a delay for each microphone relative to the center microphone, we
need to combine these to get an overall direction. To do this, we need to scale each of
the microphone’s location vectors by their corresponding delay and sum them. This
will give us a single vector pointing in the direction of the sound source.

Theory of Operation | 157

https://youtu.be/jqyU4NgeoIw

Figure 12-2 shows this geometrically. I drew in only three microphones for simplicity.
Adding the other three would make the sum of the scaled vectors twice as long but
wouldn’t change the direction due to symmetry. I also drew this so that the sound is
coming from the y direction and the microphones are rotated by Φ instead of the
sound coming in at angle Φ. This will make it a little easier to show that this method
works later. The black circles represent the locations of the microphones, and their
coordinates are labeled.

Figure 12-2. Microphone array

158 | Chapter 12: Sound Direction Detection: An Advanced Example

The delay of each microphone to the origin (center microphone) is proportional to
the y value of the microphone’s location. We can draw these in, as shown in
Figure 12-3.

Figure 12-3. Microphone array with delays

Theory of Operation | 159

If we take the location of each microphone and scale it by the corresponding delay,
we get the new purple lines shown in Figure 12-4. Note that the bottom microphone
has a negative delay, so the vector points in the opposite direction.

Figure 12-4. Microphone array with scaled vectors

Finally, we can take the three scaled vectors and sum them together by moving them
tip-to-tail. This is shown by the light purple lines in Figure 12-5. The orange vector is
the result of the summation of the three scaled vectors.

160 | Chapter 12: Sound Direction Detection: An Advanced Example

Figure 12-5. Microphone array

Notice that the x components of the summed scaled vectors cancel, so the resulting
sum points only in the positive y direction. To prove that this method works, we need
to show that the x components cancel and the y components sum to a positive value
for any value of ϕ. We don’t care about the magnitude of the resulting vector, only the
direction.

You can find a full proof at “Direction Detection Proof ” on page 211.

Now that we have the angle for the frequency, we need to aggregate each angle into
something useful. I chose to bin them into 16 directions so that it would be easier to
use and display them on the LEDs. I used the magnitude from the center microphone
to weight the importance of each frequency’s contribution. This was done by iterating
through each frequency, determining the bin it belonged to, and keeping a running
total of the magnitude of each bin.

Theory of Operation | 161

The final output is the 16 values representing how much noise came from that direc‐
tion.

Implementation Overview
Now that we have an idea of how this is going to work, we need to come up with a
plan for implementing this in hardware.

First, we need to gather audio samples from all seven microphones at exactly the
same time. The microphones on this shield are pulse-density modulation (PDM)
microphones, meaning that they provide a series of 1-bit pulses at a high rate (2.5
MHz in this case) that we can pass through a low-pass filter (basically, a moving aver‐
age) to recover the audio signal. We also decimate the signal by a factor of 50, so our
sampling rate becomes 50 KHz.

With the seven audio samples captured, we need to feed each of them through an FFT
to extract their frequency information. The output of the FFT is complex numbers,
but we need it to be in phase-magnitude form, so we then pass these values through a
module that calculates the new values.

With the phase-magnitude representation of all the samples, we can then subtract the
phases of the six surrounding microphones from the center one to get the delays. We
need to be careful here because after the subtraction, the phase difference can be out‐
side the +/– pi range. If it is, we need to add or subtract 2 pi to get it back into range.

The calculated phase differences are equal to the delay multiplied by the frequency.
Because we are working with one frequency at a time, it is really just the delay scaled
by a constant. We can use this fact to avoid having to divide by the frequency.

We then scale the six microphone location vectors by the corresponding phase differ‐
ences (delays) and sum their components. This gives us a vector that points in the
direction of the sound source for this frequency. However, we care only about the
direction of this vector, as the magnitude is pretty meaningless. We can convert the
Cartesian vector into a phase-magnitude representation by using the same module as
before to extract the phase (angle).

Repeating this process for all the frequencies gives us an angle for the direction of
sound for each frequency. We can pair each of these directions with the magnitude
(volume) of that frequency from the center microphone to find out how relevant it is.

This in itself could be the output of our design, but it is a little more useful to bin the
directions into a handful of angles. In our case, we will assign each into one of 16
equally spaced bins. All the magnitudes of the frequencies that fall into a bin are sum‐
med to get that bin’s overall magnitude. These 16 sums are the final output and repre‐
sent the amount of sound that came from each bin’s direction.

162 | Chapter 12: Sound Direction Detection: An Advanced Example

We could implement this design as a full pipeline with each stage simply feeding into
the next. Figure 12-6 shows what that could look like.

Figure 12-6. Sound direction locator fully pipelined

This design would have the highest throughput, but it would also take up a lot of
resources. In fact, it would take up way more than we have available in the Mojo’s
FPGA. However, we can instead perform each step in sequence and take advantage of
the fact that a lot of the steps require the same operations, just on different data. In a
full pipeline we would need seven FFTs and eight CORDICs (the Cartesian-to-phase-
magnitude converts). However, we can reuse just one of each and save a ton of
resources.

Figure 12-7 is a drawing of the data-path of the circuit. The data-path shows the way
data flows through a design, but it does not, for simplicity, show the control logic that
controls the multiplexers and other flow decisions. The fully pipelined version doesn’t
need any control logic because the data just flows from one end to the other. How‐
ever, we will need to create an FSM to control the compact version. The steps the
FSM will need to take are outlined in the following paragraphs.

Figure 12-7. Sound direction locator compact

First, samples from the microphones pass through the decimation filter and are
stored in the RAM. The RAM is organized into seven groups of two (14 RAMs total),
each 16 bits wide. The seven groups correspond to the seven microphones, and two
RAMs in each group will store even and odd samples, respectively. The reason for the
7 x 2 arrangement will become clear later.

Implementation Overview | 163

When the blocks of RAM are full of sample data, the data is passed one channel at a
time to the FFT. The data is also passed through a Hanning window (not shown) to
minimize leakage in the FFT. The purpose of this is outside the scope of this book,
but it comes down to multiplying the samples by the Hann function that is stored in a
ROM. The output of the FFT is fed into the CORDIC to convert it to phase-
magnitude format and then written back into the RAM, overwriting the original
channel’s sample data. When writing back to the RAM, the seven groups still corre‐
spond to each channel, but the two values in each group now are for the phase and
magnitude values instead of even and odd samples. By having these two values in dif‐
ferent RAMs, we can easily read or write them simultaneously. This is repeated seven
times, once for each channel. After this step is done, the RAM contains phase and
magnitude data for each channel.

Because the sample data we are feeding into the FFT is all real (no imaginary compo‐
nents), the output of the FFT will be symmetrical. This means that even though each
frequency has two values related to it, we have half the number of frequencies as we
did samples, so we have the exact same number of values to store in the RAM.

The next step is to take the phase-magnitude data for each frequency and pass it
through the direction calculator to get the directional vector for that frequency. The
angle (phase) of that vector is then extracted using the same CORDIC as before. The
output is then saved back into the RAM. This time, we write the data to group 0, as
we don’t need the phase-magnitude data for this microphone (nor microphones 1–5)
anymore.

Finally, we feed the phase data from the last step and the magnitude data from micro‐
phone 6 (the center microphone) into the aggregator. The aggregator adds each sam‐
ple to its corresponding bin and outputs the final results.

Even with all this reuse, this design still use 77% of the LUTs, 32% of the DFFs, and
occupies 94% of the slices in the Mojo. It just fits!

Implementation
Now that we have a road map of what we need to design, let’s get into the code. You
can find the full source in the GitHub repo for this book.

We will start with the microphones and work our way through the steps of the sound
locator.

PDM Microphones
This project relies on PDM microphones. These are a common type of microphone
and easy to interface with an FPGA because they have a digital output. As noted pre‐
viously, PDM stands for pulse-density modulation, which means that the density of

164 | Chapter 12: Sound Direction Detection: An Advanced Example

http://embm.co/book

pulses is correlated to the pressure on the microphone. Because of this simple inter‐
face, we need a lot of pulses to be able to get any real definition of the underlying
signal. The microphones on the Microphone Shield can output between 1 and 3.25
million pulses per second, depending on the clock provided to it. In our design, we
will use the nice middle value of 2.5 million per second.

To convert this high-frequency, low-resolution pulse train into a more useful lower-
frequency, higher-resolution signal, we will use a cascaded integrator–comb (CIC) fil‐
ter. This type of filter is useful for changing sampling rates, decimation (decrease), or
interpolation (increase). Lucky for us, Xilinx’s CoreGen tool can be used to generate
the filter.

If you have the full Sound Locator project open, you can launch CoreGen and take a
look at the decimation_filter core. It was created from the CIC Compiler version
3.0, which can be found under Digital Signal Processing → Filters → CIC Compiler
and is shown in Figure 12-8.

Figure 12-8. CIC Compiler page 1

Here we specify that it is a decimation type filter and should have a decimation rate of
50. This will convert the 2.5 MHz input into 50 KHz output. Take a look at the fre‐
quency response chart, which shows that it is a low-pass filter. You can play with the
other parameters to get it to attenuate the higher frequencies more at the cost of more
hardware. For our use, it doesn’t really make a difference.

Implementation | 165

If you look at the second page, shown in Figure 12-9, it shows the filter is capable of
outputting 25 bits per sample. However, this is set to 20, so the last 5 bits are trunca‐
ted. This was found empirically to be a good value for sensitivity, and we will be using
only 16 bits for each sample anyway. The extra MSBs will be used to check for over‐
flow but will otherwise be ignored.

We also have this set not to use Xtreme DSP Slices, as we don’t have enough to spare
in the FPGA. This option will use the built-in multipliers when selected instead of
using the general fabric of the FPGA. However, it will use two multipliers per filter,
and we have seven filters. The FPGA on the Mojo has 16 multipliers, so 14 just for
this stage would be way too much.

Figure 12-9. CIC Compiler page 2

For more information on the CIC filter, check out the Xilinx LogiCORE documenta‐
tion.

Armed with the filter, we can now look at the pdm_mics.luc file to see how it is used.

In this module, we need to generate a clock for the microphones. This is a 2.5 MHz
signal that is 1/20th of the 50 MHz system clock. To do this, we can use a counter that
counts from 0–9 (10 cycles) and toggle the clock each time it overflows. We can
detect overflows when the MSB falls.

166 | Chapter 12: Sound Direction Detection: An Advanced Example

http://bit.ly/CICcompv3
http://bit.ly/CICcompv3

On each rising edge of the microphone clock, we have another bit of PDM data from
each microphone. We first need to convert the single-bit value of 0 or 1 into a 2-bit
signed value of –1 or 1 for the CIC filters.

All that’s left is to feed the data into the CIC filters and output the data from them
after converting it to 16 bits. The CIC filter data is signed, so when we convert to 16
bits and want to saturate on overflows, we need to check for negative and positive
overflow separately:

module pdm_mics (
 input clk, // clock
 input rst, // reset
 output mic_clk, // clock for all the microphones
 input mic_data [7], // data from each microphone
 output sample [7][16], // sample from all 7 microphones
 output new_sample // new sample flag
) {

 .clk(clk) {
 .rst(rst) {
 counter clk_ctr (#SIZE(4), #TOP(9)); // clock divider counter
 dff mic_clk_reg; // mic_clk dff
 }
 edge_detector clk_edge (#RISE(0), #FALL(1)); // clock counter reset detector
 edge_detector new_data (#RISE(1), #FALL(0)); // clock rising edge detector
 }

 // decimates by a factor of 50
 decimation_filter dfilter [7] (.aclk(clk));

 const SAMPLE_MSB = 19;
 const SAMPLE_LSB = 0;

 // used to store unused MSBs
 sig left_over [SAMPLE_MSB - SAMPLE_LSB + 1 - 16];

 var i;

 always {
 // generate a clock at 1/20 the system clock (2.5 MHz)
 clk_edge.in = clk_ctr.value[3]; // this bit will fall when clk_ctr resets
 if (clk_edge.out) // if fall was detected
 mic_clk_reg.d = ~mic_clk_reg.q; // toggle the mic clock

 new_data.in = mic_clk_reg.q; // detect rising edges = new data

 mic_clk = mic_clk_reg.q; // output mic clock

 // data valid at rising edge of mic clock
 dfilter.s_axis_data_tvalid = 7x{new_data.out};

 // all decimators are identical so we can use any tvalid flag for new_sample

Implementation | 167

 new_sample = dfilter.m_axis_data_tvalid[0];

 // for each mic
 for (i = 0; i < 7; i++) {
 // convert 0 or 1 into -1 or 1
 dfilter.s_axis_data_tdata[i] = mic_data[i] ? 8d1 : -8d1;
 sample[i] = dfilter.m_axis_data_tdata[i][SAMPLE_LSB+:16];
 left_over = dfilter.m_axis_data_tdata[i][SAMPLE_MSB:SAMPLE_LSB+16];

 // check for overflow and saturate
 if (!left_over[left_over.WIDTH-1] && (|left_over))
 sample[i] = 16h7fff;
 else if (left_over[left_over.WIDTH-1] && !(&left_over))
 sample[i] = 16h8000;
 }
 }
}

FFT
Before we jump into the sound_locator module, let’s take a look at the two other
cores we need from CoreGen: the FFT and CORDIC cores. Again, with the Sound
Locator project open, fire up CoreGen from the Mojo IDE and take a look at the
xfft_v8_0 core.

The first page of the FFT wizard, shown in Figure 12-10, allows you to choose the
number of channels (the number of FFTs you want to compute at once), the trans‐
form length (number of samples), the system clock, and the architecture. We will be
using 512 samples per iteration, which seems to be a nice balance between latency
and accuracy. The FFT architecture is set to Radix-2 Lite, Burst I/O, which will result
in the smallest implementation at the cost of speed. We don’t care that much about
speed, but resources are at a premium. Even at the slowest architecture type, it will
take only 5,671 cycles to compute the transform. With our 50 MHz clock, that is a
small 113.4 μs (about 1/10,000th a second). The fastest architecture is about five
times faster, but takes a lot more resources that we don’t have. We could likely use the
next size up for a modest speed improvement, but, again it won’t make an appreciable
difference for this use. It takes 100 times longer for us to capture the sample in the
first place.

168 | Chapter 12: Sound Direction Detection: An Advanced Example

Figure 12-10. FFT Wizard page 1

On the second page, shown in Figure 12-11, we specify more details about the inter‐
nals of the FFT. We are using fixed-point data, so the data format is set to fixed point.
The samples from the microphones are 16 bit, so that’s what the input data width is
set to. The phase-factor width is the size of some values stored in a ROM that are
used when computing the FFT. Higher values will result in a slightly more accurate
result. The accuracy for our purposes isn’t too important, as 16 bits is more than
enough.

Scaling is used to save resources. Without scaling, the values continue to grow in the
different FFT steps that require a much wider data path. However, if you enable scal‐
ing, you need to provide a scaling schedule that tells the FFT core when to truncate
data. This is set at runtime, and I found one that worked well for the microphone data
using Xilinx’s Matlab module that simulates the FFT.

The rounding mode option is another trade-off of accuracy and resources. Trunca‐
tion is basically free, while convergent rounding has a small cost.

The control signals are fairly self-explanatory; you can enable a reset and a clock
enable if you need them. We need only the reset.

An FFT will naturally produce values in bit-reversed order. For an FFT of eight sam‐
ples, the output order would be 0, 4, 2, 6, 1, 5, 3, 7. In binary, this is 000, 100, 010,
110, 001, 101, 011, 111. If you reverse the bits around, this becomes 0, 1, 2, 3, 4, 5, 6,
7. If you can work with the output in this order, the core can load and unload data

Implementation | 169

simultaneously. Otherwise, loading and unloading must take place in different stages.
By enabling XK_INDEX in the Optional Output Fields section, we get the index of
each output value, so the order doesn’t really matter for us.

Finally, the throttle scheme is to specify whether whatever is receiving the output can
stop the core from outputting data. In other words, will the hardware using the out‐
put ever not be able to accept data? If it can’t for any reason, you need to use Non
Real Time. This enables the m_axis_data_tready flag to signal that data can be out‐
put. If you set this to Real Time, it will spit out data as soon as it is ready, no matter
what. In our case, we are feeding the data into the CORDIC core, which can be busy,
so this needs to be Non Real Time.

Figure 12-11. FFT Wizard page 2

The final page of the wizard, shown in Figure 12-12, is all about hardware usage. The
first section, Memory Options, allows you to choose whether you want to use block
RAM or distributed RAM. We have plenty of block RAM left over in our design, so it
only makes sense to take advantage of it.

In the Optimize Options section, choose to use the DSP multipliers. The FPGA on
the Mojo has 16 of these, which should be used when you can. For the CIC filter, we
set it not to use these because they would use two each, and we have seven filters, so it
would take a total of 14 multipliers. That is too much (our design only has eight
extra). In this case, the FFT will use only three, and we can spare them. You can see

170 | Chapter 12: Sound Direction Detection: An Advanced Example

how many it will use under the Implementation Details tab on the left side of the wiz‐
ard.

In general, if you have special resources available (block RAM and DSPs, in this case),
use them. They will generally make your design faster and smaller, and if you don’t
take advantage of them, they will still be sitting in your FPGA.

Figure 12-12. FFT Wizard page 3

For more information on the FFT core, check out the Xilinx LogiCORE documenta‐
tion.

CORDIC
Coordinate Rotation Digital Computer (CORDIC) is an algorithm for efficiently calcu‐
lating hyperbolic and trigonometric functions. The algorithm is capable of rotating
vectors that can be cleverly used to convert to/from Cartesian and polar (magnitude
and angle) notations, compute sin and cos, compute sinh and cosh, compute arc tan,
compute arc tanh, or even compute square roots. We will be using it to convert from
Cartesian to polar coordinates.

Open the mag_phase_calculator core in CoreGen.

On the first page of the wizard, as shown in Figure 12-13, we have options to specify
the mode of operation as well as accuracy, latency, and area trade-offs.

Implementation | 171

http://bit.ly/LogicCOREfft
http://bit.ly/LogicCOREfft

Figure 12-13. CORDIC Wizard page 1

The Functional Selection option selects the mode of operation. In our case, Translate
is selected for Cartesian-to-polar conversion.

The Architectural Configuration option gives an area versus latency trade-off. The
Parallel option allows the core to spit out a new value every clock cycle by replicating
a bunch of hardware. The Word Serial option reuses hardware but can work on only
one value at a time. Optimizing for area, the Word Serial mode was selected.

The Pipelining Mode is a performance (maximum clock speed) versus area and
latency trade-off. The Optimal option will pipeline as much as possible without using
extra LUTs. The Maximum option will pipeline after every stage.

The Phase Format option is important, as it dictates the output format. Either option
will output a fixed-point value with the three MSBs being the integer portion. For
example, 01100000 would be 3.0, and 00010000 would be 0.5. In the Radians case,
this value is the angle in radians. For Scaled Radians, this value is the angle divided by
pi. We are using radians for simplicity.

The Inout/Output Options section is pretty self-explanatory. We are using 16-bit
inputs and outputs, and truncation for internal rounding as it is the cheapest option.

Under Advanced Configuration Parameters, leaving Iterations and Precision at 0 will
cause the wizard to automatically set these based on the output width. The Coarse
Rotation option allows us to use the full circle instead of just the first quadrant. Com‐
pensation Scaling is used to compensate for a side effect of the CORDIC algorithm.

172 | Chapter 12: Sound Direction Detection: An Advanced Example

By enabling this, the core will output unscaled correct values at the expense of some
resources. You can select the resources to use in the drop-down. In our case, we are
using Embedded Multiplier, as we still have a few DSP48A1s to use. We could have
used the BRAM option as well, as we have plenty of that too.

On the second page of the wizard, as shown in Figure 12-14 you can configure the
input and output streams. The TLAST and TUSER options give you extra inputs to
the module that will output the values seen when the corresponding inputs have been
processed. It’s a way to pass along data and keep it in sync. In our case, we will need
the address of the values and where the last sample is, so both are enabled. The
address size is 9 bits, so we set TUSER’s width to 9.

The Flow Control option will enable buffers on the input when Blocking is specified.
This is more useful when you have the CORDIC in a different mode when both input
streams are used, as it will force them to be in sync. The NonBlocking option uses less
resources, and there is no real benefit to Blocking for us.

Finally, we don’t care about a reset, as the CORDIC will have flushed itself by the time
the FSM ever reaches it upon a reset.

Figure 12-14. CORDIC Wizard page 2

For more information on the CORDIC core, check out the Xilinx LogiCORE docu‐
mentation.

Now that we have all the pieces, let’s dig into the sound_locator module itself. The
module is too big to replicate here in its entirety, but we will dissect the states of the

Implementation | 173

http://bit.ly/LogicCORECORDICv5
http://bit.ly/LogicCORECORDICv5

FSM. The FSM has four main stages: CAPTURE, FFT, DIFFERENCE, and AGGREGATE. The
CAPTURE state is responsible for storing the microphone samples into RAM. In FFT,
these samples are converted into their frequency representation. The DIFFERENCE
state takes this information and calculates a direction for each frequency by using the
difference in phase for each microphone. Finally, AGGREGATE combines all the data
together into the 16 directional bins and outputs the final result.

CAPTURE State
The CAPTURE state is pretty straightforward. We simply wait for new samples to come
in from the microphones and write them to RAM, incrementing our address counter
until the RAM has been filled.

There is a little fancy notation for assigning the address value to all 14 RAM modules
because they are in a 7 x 2 array. The first line in this state duplicates addr.q (exclud‐
ing the LSB) into the 7 x 2 x 8 array.

The LSB of addr is used to select between even and odd RAMs. This little quirk is
because we want the two RAMs separate for when we store magnitude and phase data
in them later. We assign both even and odd RAMs the same data, but enable the write
only on the corresponding one.

Finally, after the RAM is full, we perform some initialization for the next state and
move on to FFT:

state.CAPTURE:
 // set each channel's write address to addr.q (minus the LSB)
 ram.waddr = 7x{{2x{{addr.q[addr.WIDTH-1:1]}}}};

 if (new_sample_in) {
 // write each sample to RAM
 for (i = 0; i < 7; i++) {
 ram.write_data[i] = 2x{{sample_in[i]}};
 // write alternating samples to the upper and lower channels
 ram.write_en[i][addr.q[0]] = 1;
 }

 addr.d = addr.q + 1;
 // if all samples captured move on to next stage
 if (addr.q == SAMPLES - 1) {
 addr.d = 0;
 load_ch_ctr.d = 0;
 unload_ch_ctr.d = 0;
 wait_ram.d = 1;
 state.d = state.FFT;
 }
 }

174 | Chapter 12: Sound Direction Detection: An Advanced Example

FFT State
In this stage of the calculation, we have two processes going on. The first is responsi‐
ble for keeping the FFT feed, and the second is for writing the result from the COR‐
DIC into RAM. The FFT feeds directly into the CORDIC.

The feeding process requires a little finesse, because reading from the RAM takes a
clock cycle. The flag wait_ram is used to ensure that the RAM is outputting the value
for address 0 when we start. If at any point the FFT can’t accept more data but we are
feeding it data, we’ll need to save the value that is coming out of the RAM because on
the next cycle it will be gone. When resuming feeding data into the FFT, we then feed
it the saved value before resuming reading from the RAM.

Before feeding the FFT, we also pass the data through a Hanning window. The Hann
ROM has a single-cycle latency like the RAM, so we also need to save its value if the
FFT can’t accept values. The Hann value and microphone sample are multiplied
together. The Hann value is a 1.15 fixed-point number (1 integer bit, 15 decimal bits),
so the result of the multiplication is shifted 15 bits to the right before being passed to
the FFT. The idea is the same as if you were multiplying two decimal numbers. For
example, 2 x 1.3 can be looked at as (2 x 13) / 10. Note that the multiplication should
be a signed multiplication, so both operands are wrapped by the $signed function to
ensure this.

Once we’ve filled the FFT, we increment the channel and wait for the FFT to be ready
to accept more data. After all seven channels have been loaded, we wait for the state
to change:

state.FFT:
 // read from addr.q minus LSB
 ram.raddr = 7x{{2x{{addr.q[addr.WIDTH-1:1]}}}};

 // only load the seven channels
 if (load_ch_ctr.q < 7) {
 // if we have to wait for the RAM to catch up
 if (wait_ram.q) {
 wait_ram.d = 0; // reset flag
 addr.d = addr.q + 1; // increment address
 } else {
 // if the fft was ready but now isn't we need to save the
 // output from the RAM for when the FFT is ready
 if (xfft_ready.q && !xfft.s_axis_data_tready) {
 last_value.d = ram.read_data[load_ch_ctr.q][addr.q[0]];
 last_hann.d = hann.value;
 }

 // if the FFT is ready to accept data
 if (xfft.s_axis_data_tready) {
 // if the FFT was ready last cycle use the RAM output directly,
 // otherwise use the saved value

Implementation | 175

 sample = xfft_ready.q ?
 ram.read_data[load_ch_ctr.q][addr.q[0]] : last_value.q;
 hann_value = xfft_ready.q ? hann.value : last_hann.q;

 // multiply each sample by the HANN window
 mult_temp = $signed(sample) * $signed(c{1b0,hann_value});
 hann_sample = mult_temp[15+:16];
 // imaginary part of FFT is 0
 xfft.s_axis_data_tdata = c{16b0, hann_sample};
 xfft.s_axis_data_tvalid = 1;
 addr.d = addr.q + 1;

 // addr.q will be 0 if the fft was stalled when waiting for the
 // last sample

 // if we've read all the samples
 if ((addr.q == SAMPLES - 1 && !xfft_ready.q) || addr.q == 0) {
 xfft.s_axis_data_tlast = 1;
 addr.d = 0;
 wait_ram.d = 1; // wait for RAM to read addr 0
 load_ch_ctr.d = load_ch_ctr.q + 1;
 }
 }
 }
 }

We need to connect the FFT output to the CORDIC to get the magnitude-angle rep‐
resentation. The CORDIC conveniently lets us pass the address and last flag through
it so that it stays in sync with the other data. The tready and tvalid handshaking
flags ensure that data is transferred only when there is data and the CORDIC can
accept it:

xfft.m_axis_data_tready = mag_phase.s_axis_cartesian_tready;
mag_phase.s_axis_cartesian_tdata = xfft.m_axis_data_tdata;
mag_phase.s_axis_cartesian_tvalid = xfft.m_axis_data_tvalid;

// pass the address info through the user channel so it is available
// when the mag_phase data has been processed
mag_phase.s_axis_cartesian_tuser = xfft.m_axis_data_tuser[addr.WIDTH-1:0];
mag_phase.s_axis_cartesian_tlast = xfft.m_axis_data_tlast;

Finally, we need to unload the CORDIC data into the RAM. We have the address to
write from the tuser field, and we keep track of the channel number by counting the
tlast flags.

After we have unloaded the last of the data from the last channel, we can change to
the next state, DIFFERENCE:

// recover the address from the user channel
ram.waddr =
 7x{{2x{{mag_phase.m_axis_dout_tuser[addr.WIDTH-2:0]}}}};
ram.write_en[unload_ch_ctr.q] =

176 | Chapter 12: Sound Direction Detection: An Advanced Example

 2x{mag_phase.m_axis_dout_tvalid
 // write only first half of values
 & ~mag_phase.m_axis_dout_tuser[addr.WIDTH-1]};
ram.write_data[unload_ch_ctr.q] =
 // phase, mag
 {mag_phase.m_axis_dout_tdata[31:16], mag_phase.m_axis_dout_tdata[15:0]};

// if we have processed all the samples we need to
if (mag_phase.m_axis_dout_tvalid && mag_phase.m_axis_dout_tlast) {
 unload_ch_ctr.d = unload_ch_ctr.q + 1; // move onto the next channel
 // if we have processed all 7 channels
 if (unload_ch_ctr.q == 6) {
 state.d = state.DIFFERENCE; // move to the next stage
 addr_pipe.d = 2x{{addr.WIDTHx{1b0}}};
 }
}

DIFFERENCE State
In this stage, we subtract the phase of the center microphone from each of the six
outer microphones. We then use this difference to scale the microphone’s location
vectors and then sum the vectors. The single resulting vector is fed through the COR‐
DIC to get its angle, which is then written back to RAM.

The first operation that takes place is the subtraction of the phases. The only interest‐
ing part here is that we need to keep the resulting differences in the +/– pi range. This
is done by checking for overflow and adding or subtracting 2pi. All the operations
here are intended to be signed, so everything is wrapped in $signed again to ensure
this:

state.DIFFERENCE:
 for (i = 0; i < 6; i++) {
 // we care about the difference in phase between the center microphone
 // and the outer microphones
 // as this is proportional to the delay of the sound (divided by the
 // frequency)
 temp_phase[i] =
 $signed(ram.read_data[i][1]) - $signed(ram.read_data[6][1]);

 // we need to keep the difference in the +/- pi range for the next
 // steps

 // 25736 = pi (4.13 fixed point)
 if ($signed(temp_phase[i]) > $signed(16d25736)) {
 // 51472 = 2*pi (4.13 fixed point)
 temp_phase[i] = $signed(temp_phase[i]) - $signed(17d51472);
 } else if ($signed(temp_phase[i]) < $signed(-16d25736)) {
 temp_phase[i] = $signed(temp_phase[i]) + $signed(17d51472);
 }
 }

Implementation | 177

Because of all the multiplications, the scaling of the vectors and summing them hap‐
pens over two clock cycles. This adds a little bit of complexity: because the CORDIC
can tell us it can’t accept new data at any time, we need to be able to stall the pipeline.

To do this, we detect the specific case when pipeline data would be lost and revert to
the dropped address. The only time this can happen is if the pipeline has been active
for at least two cycles before being halted. This method can cause some values to be
calculated more than once, depending on the halt/resume patterns, but this isn’t a big
deal as long as every value is calculated at least once and we continue to make pro‐
gress. The worst-case pattern would be run, run, halt, run, run, halt, and so on. In this
case, we would advance only one address per run, run, halt cycle. However, we would
still make progress and cover all the values. The actual behavior of the CORDIC will
have many more halts between a single run, and with this pattern we don’t repeat any
values.

Some of the scaling is really simple; for example, the first microphone is at (–1, 0), so
the x value is just the negated phase difference, and the y component is always 0.
However, some require multiplying by sqrt(3)/2. This is done using fixed-point mul‐
tiplication and a bit shift.

With all the scaled phase values calculated, they are summed and then divided by 8,
which is the closest power of 2 greater than 6 (the number of microphones). The divi‐
sion is used to keep the values in a 16-bit range:

/* Sample coordinates

 0: (-1, 0)
 1: (-1/2, sqrt(3)/2)
 2: (1/2, sqrt(3)/2)
 3: (1 0)
 4: (1/2, -sqrt(3)/2)
 5: (-1/2, -sqrt(3)/2)
 6: (0, 0)
*/

addr_pipe.d[0] = addr.q; // output address of the ram

if (mag_phase.s_axis_cartesian_tready) {
 /*
 Here we are scaling each microphone's location vector by
 he delay (phase difference). This will give us a vector
 roportional to that microphone's contribution to the total
 direction.
 */
 scaled_phase.d[0][0] = -temp_phase[0];
 scaled_phase.d[0][1] = 0;

 mult_temp = -temp_phase[1];
 scaled_phase.d[1][0] = c{mult_temp[16],mult_temp[16:1]};

178 | Chapter 12: Sound Direction Detection: An Advanced Example

 mult_temp = $signed(temp_phase[1]) * $signed(17d56756);
 // phase * sqrt(3)/2
 scaled_phase.d[1][1] = mult_temp[mult_temp.WIDTH-2:16];

 scaled_phase.d[2][0] = c{temp_phase[2][16], temp_phase[2][16:1]};

 mult_temp = $signed(temp_phase[2]) * $signed(17d56756);
 scaled_phase.d[2][1] = mult_temp[mult_temp.WIDTH-2:16];

 scaled_phase.d[3][0] = temp_phase[3];
 scaled_phase.d[3][1] = 0;

 scaled_phase.d[4][0] = c{temp_phase[4][16], temp_phase[4][16:1]};

 mult_temp = $signed(temp_phase[4]) * $signed(-17d56756);
 scaled_phase.d[4][1] = mult_temp[mult_temp.WIDTH-2:16];

 mult_temp = -temp_phase[5];
 scaled_phase.d[5][0] = c{mult_temp[16], mult_temp[16:1]};

 mult_temp = $signed(temp_phase[5]) * $signed(-17d56756);
 scaled_phase.d[5][1] = mult_temp[mult_temp.WIDTH-2:16];

 addr_pipe.d[1] = addr_pipe.q[0]; // address of scaled vector values

 /*
 With all the scaled vectors, we simply need to sum them to get
 the overall direction of sound for this frequency.
 */
 summed_phase[0] = 0;
 summed_phase[1] = 0;
 for (i = 0; i < 6; i++) {
 summed_phase[0] = $signed(scaled_phase.q[i][0]) +
 $signed(summed_phase[0]);
 summed_phase[1] = $signed(scaled_phase.q[i][1]) +
 $signed(summed_phase[1]);
 }

 // if there are more samples to go, advance the addr
 if (addr.q != SAMPLES/2)
 addr.d = addr.q + 1;

 // use the summed vectors (divided by 8) to calculate the overall
 // direction of sound
 mag_phase.s_axis_cartesian_tdata =
 c{summed_phase[1][3+:16], summed_phase[0][3+:16]};
 // only valid for the first half of addr
 mag_phase.s_axis_cartesian_tvalid = ~addr_pipe.q[1][addr.WIDTH-1];

 // feed in the address for later use
 mag_phase.s_axis_cartesian_tuser = addr_pipe.q[1];

Implementation | 179

 mag_phase.s_axis_cartesian_tlast = addr_pipe.q[1] == SAMPLES/2 - 1;

} else if (&mag_phase_ready.q) {
 // if we were ready but now aren't we need to go back an address so
 // that we don't skip one
 addr.d = addr_pipe.q[0];
}

We now just need to feed the output of the CORDIC back into the RAM. This is basi‐
cally the same as the last part of the FFT state:

// write the phase data into the RAM channel 0
ram.waddr = 7x{{2x{{mag_phase.m_axis_dout_tuser[addr.WIDTH-2:0]}}}};
ram.write_data[0] =
 {mag_phase.m_axis_dout_tdata[31:16], mag_phase.m_axis_dout_tdata[15:0]};
ram.write_en[0] = 2x{mag_phase.m_axis_dout_tvalid};

// if we are on the last sample move onto the next stage
if (mag_phase.m_axis_dout_tlast && mag_phase.m_axis_dout_tvalid) {
 addr.d = CROP_MIN;
 state.d = state.AGGREGATE_WAIT;
}

AGGREGATE State
In this stage, we will run through the calculated directions and sum their correspond‐
ing magnitudes into 16 directional bins.

Even though we have 256 frequencies to work with, we will be summing only the
ones between 9 and 199. The lowest frequencies aren’t too useful, and the highest
ones get out of hearing range. These values are set by CROP_MIN and CROP_MAX.

The bin selection is performed with a series of if statements that check whether the
angle lies in a particular bin’s range. Only the 8 MSBs are used to save on the size of
the comparisons. It doesn’t make a difference if the bin boundaries aren’t perfectly
precise. These comparisons are all signed, so the constants are wrapped in $signed.
The signal angle is declared as signed, so the $signed function isn’t required:

state.AGGREGATE:
 addr.d = addr.q + 1;
 angle = ram.read_data[0][1][15:8]; // angle calculated in the last step
 magnitude = ram.read_data[6][0]; // use the magnitude from the center mic

 /*
 We now need to go through each frequency and bin them into one of 16 groups.
 This makes it easier to get an idea of where the sound is coming from as
 many frequencies will point in the same direction of a single source. If
 we have multiple sources then multiple bins will receive a lot of values.
 A more advanced grouping method could be done in software off chip such as
 K-means to get a more accurate picture, but this method works relatively
 well and is simple to implement in hardware.

180 | Chapter 12: Sound Direction Detection: An Advanced Example

 */
 if (angle >= $signed(ANGLE_BOUNDS[7]) || angle < $signed(-ANGLE_BOUNDS[7])) {
 sums.d[0] = sums.q[0] + magnitude;
 } else if (angle >= $signed(ANGLE_BOUNDS[6]) &&
 angle < $signed(ANGLE_BOUNDS[7])) {
 sums.d[1] = sums.q[1] + magnitude;
 } else if (angle >= $signed(ANGLE_BOUNDS[5]) &&
 angle < $signed(ANGLE_BOUNDS[6])) {
 sums.d[2] = sums.q[2] + magnitude;
 } else if (angle >= $signed(ANGLE_BOUNDS[4]) &&
 angle < $signed(ANGLE_BOUNDS[5])) {
 sums.d[3] = sums.q[3] + magnitude;
 } else if (angle >= $signed(ANGLE_BOUNDS[3]) &&
 angle < $signed(ANGLE_BOUNDS[4])) {
 sums.d[4] = sums.q[4] + magnitude;
 } else if (angle >= $signed(ANGLE_BOUNDS[2]) &&
 angle < $signed(ANGLE_BOUNDS[3])) {
 sums.d[5] = sums.q[5] + magnitude;
 } else if (angle >= $signed(ANGLE_BOUNDS[1]) &&
 angle < $signed(ANGLE_BOUNDS[2])) {
 sums.d[6] = sums.q[6] + magnitude;
 } else if (angle >= $signed(ANGLE_BOUNDS[0]) &&
 angle < $signed(ANGLE_BOUNDS[1])) {
 sums.d[7] = sums.q[7] + magnitude;
 } else if (angle >= $signed(-ANGLE_BOUNDS[0]) &&
 angle < $signed(ANGLE_BOUNDS[0])) {
 sums.d[8] = sums.q[8] + magnitude;
 } else if (angle >= $signed(-ANGLE_BOUNDS[1]) &&
 angle < $signed(-ANGLE_BOUNDS[0])) {
 sums.d[9] = sums.q[9] + magnitude;
 } else if (angle >= $signed(-ANGLE_BOUNDS[2]) &&
 angle < $signed(-ANGLE_BOUNDS[1])) {
 sums.d[10] = sums.q[10] + magnitude;
 } else if (angle >= $signed(-ANGLE_BOUNDS[3]) &&
 angle < $signed(-ANGLE_BOUNDS[2])) {
 sums.d[11] = sums.q[11] + magnitude;
 } else if (angle >= $signed(-ANGLE_BOUNDS[4]) &&
 angle < $signed(-ANGLE_BOUNDS[3])) {
 sums.d[12] = sums.q[12] + magnitude;
 } else if (angle >= $signed(-ANGLE_BOUNDS[5]) &&
 angle < $signed(-ANGLE_BOUNDS[4])) {
 sums.d[13] = sums.q[13] + magnitude;
 } else if (angle >= $signed(-ANGLE_BOUNDS[6]) &&
 angle < $signed(-ANGLE_BOUNDS[5])) {
 sums.d[14] = sums.q[14] + magnitude;
 } else {
 sums.d[15] = sums.q[15] + magnitude;
 }

 // stop once we reach the highest frequency to count (we only care about
 // audible ones)

Implementation | 181

 if (addr.q == CROP_MAX)
 state.d = state.OUTPUT;

Finally, with the different bins full, we can output the values. We first check for over‐
flow and saturate the bin if it did.

Upon completion, we return to idle and wait for the command to start the process all
over again:

state.OUTPUT:
 for (i = 0; i < 16; i++) {
 sum = sums.q[i][sums.q.WIDTH[1]-1:0];
 if (sum > 65535) // if it overflowed, saturate it
 sum = 65535;

 result[i] = sum[15:0]; // use the 16 LSBs for decent sensitivity
 }
 result_valid = 1;

 state.d = state.IDLE;

This project is a fairly complicated example, but hopefully it gives you an idea of
some of the interesting things you can do with an FPGA.

182 | Chapter 12: Sound Direction Detection: An Advanced Example

CHAPTER 13

Lucid Reference

This chapter contains information on Lucid and can be used as a reference. Although
a lot of Lucid’s syntax and features are covered throughout the book, this chapter
explains them in a more comprehensive way. This chapter is roughly organized from
an outside-in approach, meaning we start from a full module declaration and work
our way down to individual expressions and constants.

The templates are written using syntax similar to ANTLR grammar. Things in single
quotes are string literals, meaning they must appear as is. A question mark after
something means that it is optional. An asterisk following something means zero or
more of that thing may be present. A plus following something means one or more of
that thing may be present. Parentheses are used to group multiple tokens.

The following page is intended as a quick reference guide. It covers the most com‐
monly used features of Lucid but is not an exhaustive reference. Refer to the rest of
the chapter for more details on any specific feature. You may find it helpful to print
the reference guide.

183

Lucid Quick Reference
Modules
module name #(
 PARAM = DEFAULT_VALUE : CONSTRAINT
)(
 port_type name
) {
 SIGNAL_AND_MODULE_INSTANCES
 always {
 ALWAYS_STATEMENTS
 }
}

Assignment Blocks
.port_name(EXPR), #PARAM_NAME(CONST_EXPR) {
 SIGNAL_AND_MODULE_INSTANCES
}

Types
input Port input, read-only
output Port output, write-only
inout Bidirectional port with subsignals: read, write, enable
sig Acts as a way to connect expressions
var Used in loops
dff Stores data, subsignals clk, rst, d, q
fsm Similar to a dff but with built-in constants
const Constant value

Instantiation
DFF: dff name (.clk(clk_sig));

FSM: fsm name = { STATE, STATE, ... };

Module: module name (#PARAM(CONST_EXPR), .port(EXPR));

Always Statements
Assignment: signal = EXPR;

If: if (EXPR) { ... } else { ... }

Case: case (EXPR) {
 CONST: ...
 default: ...
}

For: for (INIT; CONDITION; STEP) { ... }

Bit Selectors
Single index: [EXPR]

Constant range: [MAX_CONST:MIN_CONST]

Fixed-width increment: [START+:WIDTH_CONST]

Fixed-width decrement: [START-:WIDTH_CONST]

Functions
$clog2(a) Performs ceiling of log2(a)
$pow(a,b) Raises a to the b power
$reverse(a) Reverses the indices of the outermost dimension of a
$flatten(a) Collapses a into a 1D array
$signed(a) Forces a to be interpreted as signed
$unsigned(a) Forces a to be interpreted as unsigned

Numbers
Integers: 0-9

Decimal: Wd0-9

Hexadecimal: Wh0-9 A-F x z

Binary: Wb0 1 x z

Strings: "TEXT"

Arrays
Array builder: { EXPR, EXPR, ... }

Concatenation: c{ EXPR, EXPR, ... }

Duplication: NUM x{ EXPR }

Bitwise Operators
NOT: ~EXPR

AND: EXPR & EXPR

OR: EXPR | EXPR

XOR: EXPR ^ EXPR

XNOR: EXPR ~^ EXPR

Logical Operators
NOT: !EXPR

AND: EXPR && EXPR

OR: EXPR || EXPR

Ternary: EXPR ? EXPR : EXPR

Comparison Operators
Less than: EXPR < EXPR

Greater than: EXPR > EXPR

Less than or equal: EXPR <= EXPR

Greater than or equal: EXPR >= EXPR

Equal: EXPR == EXPR

Not equal: EXPR != EXPR

Reduction Operators
OR: |EXPR

NOR: ~|EXPR

AND: &EXPR

NAND: ~&EXPR

XOR: ^EXPR

XNOR: ~^EXPR

Math Operators
Negate: -EXPR

Add: EXPR + EXPR

Subtract: EXPR - EXPR

Multiply: EXPR * EXPR

Divide: EXPR / EXPR

Shift right: EXPR >> NUM_BITS

Signed shift right: EXPR >>> NUM_BITS

Shift left: EXPR << NUM_BITS

Signed shift left: EXPR <<< NUM_BITS

184 | Chapter 13: Lucid Reference

Modules
Module declarations take place at the root of a file. Each file can have at most one
module declaration, and it is convention for the module’s name to match the file’s
name.

A module declaration takes the following form:

'module' name param_list? port_list module_body

The declaration starts with the module keyword followed by the name of this module.
The param_list is optional and is followed by the port_list and the module_body.

A module’s name must start with a lowercase letter. The rest of the name can contain
lower- or uppercase letters, numbers, and underscores.

Here is an example of a bare-bones, but complete, module:

module my_module (
 input clk, // clock
 input rst, // reset
 output out
) {

 always {
 out = 0;
 }
}

Parameter Lists
The purpose of a parameter list is to specify parameters that are used to make your
module more flexible. The values of the parameters can be changed for each instance
of the module, but they are always constant values.

A param_list takes the following form:

'#(' param_dec (',' param_dec)* ')'

That is, a series of one or more param_dec separated by commas and enclosed in
parentheses prefixed by a hash symbol.

Each param_dec takes the following form:

name ('=' expr)? (':' param_constraint)?

Here is an example of a param_dec:

SIZE = 8 : SIZE > 0

Modules | 185

It starts with the parameter’s name, which must start with a capital letter followed by
only capital letters, numbers, and underscores. This is followed by an optional default
value, which is any constant expression, and an optional param_constraint that is
prefixed with a colon.

The param_constraint is a constant expression that can use the parameter being
declared and any parameters declared before this one. This expression is evaluated
with the parameter values set when the module is instantiated. If they fail (have a
value of 0), an error will be thrown.

Because the default value and constraint are optional, the most minimal version is
simply a name:

SIZE

Here is an example of a full param_list from the Counter component:

#(
 SIZE = 8 : SIZE > 0, // Width of the output
 DIV = 0 : DIV >= 0, // number of bits to use as divisor
 TOP = 0 : TOP >= 0, // max value, 0 = none

 // direction to count, use 1 for up and 0 for down
 UP = 1 : UP == 1 || UP == 0
)

Port Lists
Every module has a port list. This is where you list the inputs, outputs, and inouts of
the module. It defines all the external connections.

The port_list takes the following form:

'(' port_dec (',' port_dec)* ')'

It is a list of port_dec separated by commas and enclosed in parentheses.

The port_dec takes the following form:

'signed'? ('input' | 'output' | 'inout') struct_type? name array_size?

Here is an example of a few port_dec statements:

 output<Memory.master> memOut
 inout sda
 signed output value [8]

The port_dec starts with an optional signed type modifier. This will make the value
be interpreted as two’s complement. This is followed by the type: input, output, or
inout. Each port can then be a struct specified by an optional struct_type and an
array of potentially multiple dimensions specified by the optional array size. The

186 | Chapter 13: Lucid Reference

name of a port is the port’s name and must start with a lowercase letter followed by
upper- or lowercase letters, numbers, or underscores.

Each port_dec can be for an input, output, or inout. Inputs and outputs are fairly
straightforward. Inputs can be read and get their value only from an external connec‐
tion. Outputs can only be written. The inout type is for bidirectional signals and can
be used only by the top-level module of your design or must be routed directly to an
inout in the top-level module. The inout can be read and written to.

Here is an example of a full port_list from the Memory Arbiter component:

(
 input clk, // clock
 input rst, // reset
 input<Memory.slave> memIn, // memory inputs
 output<Memory.master> memOut, // memory outputs
 input<Memory.master> devIn [DEVICES], // devices inputs
 output<Memory.slave> devOut [DEVICES] // devices outputs
)

Note that you can use a module’s parameters in the array sizes of the ports. In the
preceding example, the parameter DEVICES is used to size devIn and devOut.

Module Body
A module’s body consists of a list of statements enclosed in curly braces:

'{' statement* '}'

A statement can be any one of the following.

Constant declaration
Constant declarations are used to define a constant that can be used later. Wherever
the constant is used, it will be replaced by the value it represents. The declaration
takes the following form:

'const' name '=' expr ';'

Here’s an example:

const MY_CONST = 12;

The name of a constant must start with a capital letter and can be followed by capital
letters, numbers, and underscores. It can’t contain lowercase letters.

Here, expr is an expression. The expression must have a constant value—that is, one
that can be determined at synthesis time.

Modules | 187

Variable declaration
Variable declarations are used to define one or more variables that can be used later.
Variables are used to store temporary integer values that you won’t see in your actual
design. The most common use for them is as the index in a for statement.

The declaration takes the following form:

'var' name array_size? (',' name array_size?)* ';'

Here’s an example:

var i, j, k;

Each variable declaration can define one or more variables separated by commas.
Each variable requires a name that starts with a lowercase letter followed by lower- or
uppercase letters, numbers, and underscores. The name is then followed by an
optional array size.

Unlike other signals, a var can hold integers without being an array. An array of vars
would act like an array of ints in a programming language.

Signal declaration
Signal declarations are used to define one or more signals. Signals should be thought
of as wires in your design; they are used to carry a value from one expression to
another. Inside an always block, they can be read and written. Their value will be
whatever was last written in the always block, and they must be written before being
read.

The declaration takes the following form:

'signed'? 'sig' struct_type? name array_size? (',' name array_size?)*

Here’s an example:

sig mySig [16];

The type sig behaves similarly to other types. Without the optional struct_type or
array_size, it will be a single bit wide and can hold a value of 0 or 1. If struct_type
is present, it is used for all sigs declared in this line.

DFF declaration
DFF declarations are used to define one or more DFFs. A DFF acts as a basic unit of
memory and is commonly used to split up combinational logic.

The declaration takes the following form:

'signed'? 'dff' struct_type? name array_size? inst_cons?
(',' name array_size? inst_cons?)*

188 | Chapter 13: Lucid Reference

Here are some examples:

dff ctr [32] (#INIT(32d15), .clk(clk));
signed dff value [8] (.clk(clk), .rst(rst));
dff<color> rgbValue;

Like input, output, and inout types, the dff type has an optional struct_type and
array_size that will specify the size of the dff. However, unlike other simpler types,
the dff acts more like a module instance. The dff has four ports: clk, rst, d, and q.
The clk port is used as the clock and must be connected when the dff is declared.
The rst port can optionally be connected. If it isn’t connected, the DFF won’t have a
reset signal. Typically, if you don’t need a reset, don’t use it. The ports d and q are used
to input a new value and read the current value, respectively. These are typically used
inside an always block.

The dff type also has a few optional parameters. The INIT parameter can be used to
set the initial value of the DFF when the FPGA starts up or the reset signal is asserted.
The IOB parameter accepts a value of 0 or 1, and when 1, the DFF will be marked to
be packed into an I/O buffer in the FPGA. This is useful when the DFF output goes
directly out of the FPGA and you want it have minimal delay. If the FPGA being tar‐
geted doesn’t support this, it will be ignored.

The optional inst_cons takes the following form:

'(' (param_con | port_con) (',' (param_con | port_con))* ')'

Here’s an example:

(#INIT(32d15), .clk(clk), .rst(rst))

This is a list of parameter and port connections enclosed by parentheses and separa‐
ted by commas. The details of the connections are in the following section.

Instance connections. The connections made to the ports of a DFF declaration, FSM
declaration, or module instance are made using the following form:

'.' name '(' expr ')'

Here are some examples:

.dataIn(myData)

.value(8d12)

Here name is the name of the port to be connected to expr, and expr is an expression.
The name must start with a lowercase letter and can be followed by lower- or upper‐
case letters, numbers, and underscores.

Parameter assignments follow a similar form but replace the period with a hash:

'#' name '(' expr ')'

Modules | 189

Here’s an example:

#WIDTH(16)

Another difference is that expr must be known at synthesis time. That means it can
contain only constants or parameters.

FSM declaration

FSM declarations are used to define a single FSM. The fsm type is similar to the dff
type. The only real difference is that you specify a list of different constant states that
can be assigned to it. The size of the fsm will be automatically set to be able to contain
any of the states you declared. An array of fsms is able to store multiple states.

The declaration takes the following form:

'fsm' name array_size? inst_cons? '=' '{' name (',' name)* '}'

Here’s an example:

fsm state (.clk(clk), .rst(rst)) =
 {IDLE, START, WAIT_CMD, READ, WRITE, STOP, WAIT} ;

The first name is the name of the fsm. This must start with a lowercase letter and can
be followed by lower- or uppercase letters, numbers, and underscores.

The list of names is the list of states. These must start with an uppercase letter and can
be followed by uppercase letters, numbers, and underscores.

Like DFF declarations, fsms have the INIT parameter. However, if present, it can be
assigned to only one of the states. If it isn’t present, the first state in the list is used by
default as the initial state.

Again like dffs, there are four ports: clk, rst, d, and q, which behave exactly the
same way.

To access the state constants of an fsm, you prefix the name with the name of the fsm
followed by a period. For example, if we had an fsm called current_state and it had
a state named RUNNING, we could access this constant with current_state.RUNNING.
This allows you to use the same state names for different fsms without collision.

Struct declaration

Struct declarations allow you to define a new struct. The struct can then be used to
size other signals later in your design. A struct allows you to bundle a collection of
names into a single type. It is similar to an array, but the elements are accessed with
names instead of numbers and each element can have a unique width.

190 | Chapter 13: Lucid Reference

The declaration takes the following form:

'struct' name
 '{' name struct_type? array_size? (',' name struct_type? array_size?)* '}'

Here’s an example from the Memory Arbiter component:

// simple structure to hold pending commands
struct command {
 valid, // valid flag (1 = valid)
 write, // write/read flag (1 = write)
 addr[23], // address to read/write
 data[32] // data for writes
}

The name of the struct must start with a lowercase letter and can be followed by
lower- or uppercase letters, numbers, and underscores.

Following the name is a list of the struct's members. Each member can simply be a
name, which follows the same naming convention as the struct. However, the mem‐
bers can also be arrays and/or structs allowing you to nest structs.

Here is an example of using nested structs:

struct color {
 red[8],
 green[8],
 blue[8]
}

struct video_data {
 valid,
 pixel<color>
}

sig mySig<video_data>;

always {
 mySig.pixel.red = 129;
}

If two data types are declared with the same struct type, they can be directly
assigned to each other. This is equivalent to assigning each member individually.

Module instance
Module instantiation is similar to using DFF declaration, except a module in your
project serves as the type. An instantiation takes the following form:

name name array_size? inst_cons?

Modules | 191

Here are some examples:

reset_conditioner reset_cond;
pipeline pipe [8] (#DEPTH(16));

The first name is the name of the module you want to instantiate, and the second name
is the name of this instance. This must start with a lowercase letter and can be fol‐
lowed by lower- or uppercase letters, numbers, and underscores.

Similar to using DFF declarations, you can connect inputs and parameters to the
module with the optional instance connections.

Inputs that weren’t assigned at instantiation and outputs can be accessed using the
name of the instance followed by a period and the name of the port—for example,
counter.value.

You can also specify an array size for the instance. If you do this, that module will be
duplicated in your design for each element in the array. Any connections or parame‐
ters specified at instantiation will be connected to each instance separately. For exam‐
ple, if your module has a single-bit input clk and you connect a signal to it, that
single-bit signal will be duplicated and connected to each module. However, ports not
connected at instantiation are packed into arrays. Single-bit signals become arrays the
same size as your module array, and arrays become multidimensional arrays. The
module indices become the first dimensions in the array. In other words, you select
the module first and then the bits in the port.

Assignment block
An assignment block is a way to connect a signal or value to a port or parameters of
multiple modules. It is most commonly used to connect the clock and reset signals as
they exist on most modules.

The assignment block takes the following form:

con_list '{' ((dff_dec | fsm_dec | module_inst) ';' | assign_block)* '}'

Here con_list is a comma-separated list of instance connections. These are the
parameter and port connections that will be applied to all the DFF declarations, FSM
declarations, and module instances. All instances in the block must have ports and
parameters with the same names as the ones in the list.

Assignment blocks can be nested.

Here is an example of a common use case:

.clk(clk) {
 dff noResetDff;
 dff anotherDff;

 .rst(rst) {

192 | Chapter 13: Lucid Reference

 dff dffWithReset;

 myModule instOfMyModule;
 }
}

always block

always blocks are where all a module’s logic resides. This is where you can assign val‐
ues to signals, perform calculations, and evaluate expressions.

An always block takes the following form:

'always' block

It simply is the always keyword followed by a block. A block is a single always state‐
ment, or multiple always statements enclosed in curly brackets.

Statements are evaluated from top to bottom, with lower statements having prece‐
dence over previous statements. In this regard, it can feel a bit like programming,
where statements are evaluated sequentially. However, they aren’t really evaluated
sequentially, but simply interpreted sequentially. You should think of everything in an
always block as being evaluated continuously.

The statements in an always block can be any of the following.

Assignment. Assignments are the most basic always statement and are perhaps the
most useful. They take the following form:

signal '=' expr ';'

Here are some examples:

data_out = data.q;
scl_reg.d = 0;
scl_reg.d = c{2b11, (scl_reg.WIDTH-2)x{1b0}} + 1;
state.d = state.WRITE;

Here signal is anything that can be assigned a value, and expr is an expression.

As you might expect, this will assign the value of expr to signal.

If statement. If statements provide a simple method for making decisions. They
allow you to make a set of always statements to be conditionally evaluated.

An if statement takes the following form:

'if' '(' expr ')' block ('else' block)?

Here’s an example:

if (!&ctr.q) // if counter isn't full
 ctr.d = ctr.q + 1; // increment it

Modules | 193

else
 ctr.d = newValue;

If the value of expr, which is an expression, is nonzero, then the first block is evalu‐
ated. If the value of expr is zero and the optional else clause is present, then the sec‐
ond block is evaluated.

A block is a single always statement, or multiple always statements enclosed in curly
brackets.

Case statement. Case statements provide a compact way to select a set of always
statements based on the value of an expression.

They take the following form:

'case' '(' expr ')' '{' case_elem+ '}'

Here’s an example:

case (ctr.q) {
 0: out = 15;
 1: out = 6;
 2: out = 24;
 default: out = 0;
}

Here expr is the expression to evaluate and is an expression.

Each case_elem takes the following form:

(expr | 'default') ':' always_statements+

Here’s an example:

state.INIT:
 value = 1;
 ctr.d = 0;
 state.d = state.NEXT;

This expr is also an expression, but it must have a constant value known at synthesis
time. The default keyword is used to catch all values not otherwise stated.

If the expr being evaluated by the case statement matches the case_elem's expr
value, then the corresponding set of always statements are evaluated.

The same effect could be accomplished using a set of if-else statements, but case
statements are more concise. Unlike programming, there is no performance improve‐
ment generally associated with using a case statement over a series of if-else state‐
ments.

for statement. for statements provide a compact way to write something that is
otherwise repetitive. It takes the following form:

194 | Chapter 13: Lucid Reference

'for' '(' assign_stat ';' expr ';' var_assign ')' block

Here’s an example from the Encoder component:

for (i = 0; i < WIDTH; i++) {
 if (in[i]) // if the bit is set
 out = i; // the output is the index of that bit
}

A for loop has four main components. The assign_stat is an assignment that is
evaluated once before everything else. The expr, an expression, is evaluated before
each loop iteration. If it is nonzero, the loop continues. Otherwise, the loop exits. The
var_assign is evaluated at the end of each iteration. The var_assign is identical to
an assignment, except that it also supports the increment and decrement shorthand for
variables.

The form for variable increment and decrement is as follows:

signal ('++'|'--')

Here’s an example:

i++

Here, signal is a variable. If it is followed by ++, the value of the variable is incremen‐
ted by 1. If it is followed by --, it is decremented by 1.

Each iteration of the loop, the statements in block are evaluated with a different value
of the loop variable. The loop will behave exactly the same as if you manually copied
and pasted the block and replaced any instances of the loop variable with each loop’s
value. For loops must have a constant number of iterations, because if the loop can’t
be unrolled, it can’t be realized in hardware.

Expressions
Expressions are common throughout Lucid. Although there are many operators, they
all boil down to a single value. The following is a list of the possible forms for an
expression.

Signals and Constants
The most basic form of an expression is a signal or constant. This can be the name of
any readable signal such as inputs, module instance outputs, sigs, vars, parameters, or
constants. It can also be a literal value.

Expressions | 195

Functions
Functions perform an operation on a set of arguments. Many of them can be used
only with constant values and are evaluated at synthesis. Others simply change how
values are interpreted.

$clog2(arg)
This function performs the operation ceiling(log2(arg))—that is, the ceiling of the log
base 2 of its argument. This is useful when needing to determine the number of bits
that are needed to store a certain number, as $clog2(num + 1) will return the mini‐
mum numbers of bits to store the value num with the exception of num being 0. This
function can be used only with constant values and is evaluated at synthesis time.

$pow(arg1, arg2)

This function performs the operation arg1arg2. That is, it raises arg1 to the power of
arg2. This function can be used only with constant values and is evaluated at synthe‐
sis time.

$reverse(arg)

This function takes the outermost index of the array arg and reverses it. The most
common use is for reversing the indices of a string to make the leftmost letter index
0. This function can be used only with constant values and is evaluated at synthesis
time.

$flatten(arg)

This function takes the array arg and reduces it to a single-dimensional array. For
example, an 8 x 2 array would become a 16-bit array. It would be arranged with the 2
LSBs being the 2 bits indexed by 0 for the outermost dimension. This can be used on
any signals.

$signed(arg)

This function causes arg to be interpreted as a signed (two’s complement) value. This
can be used on any signals.

$unsigned(arg)

This function causes arg to be interpreted as an unsigned value. This can be used on
any signals.

196 | Chapter 13: Lucid Reference

Groups
Groups are indicated by parentheses; we group an expression so that it is evaluated
before things outside the parentheses. It takes the following form:

'(' expr ')'

Array Concatenation
Array concatenation allows you to concatenate two arrays as long as all their dimen‐
sions match, excluding the outermost one. For example, you can concatenate a 3 x 8
array with a 4 x 8 array to make a 7 x 8 array. It takes the following form:

'c{' expr (',' expr)* '}'

Array Duplication
Array duplication allows you to duplicate the outermost dimension of an array. It has
the same effect as concatenating an array with itself multiple times. It takes the fol‐
lowing form:

expr 'x{' expr '}'

The first expr specifies the number of times the outermost dimension of the array,
the second expr, should be duplicated. The first expr must be a constant expression
that can be evaluated at synthesis time.

Array Builder
The array builder is used to pack multiple values into an array. Each value must have
the same dimensions. It takes the following form:

'{' expr (',' expr)* '}'

The dimensions of the new array will be one higher than the dimension of any ele‐
ment.

Bitwise Invert
The bitwise inverting operator is used to flip the values of all the bits in an expression.
In other words, all 0s become 1s, and all 1s become zeros. It takes the following form:

'~' expr

Expressions | 197

Logical Invert
The logical inverting operator is used to negate the logical value of an expression. If
the expression is nonzero, it becomes 0. If it is 0, it becomes 1. It takes the following
form:

'!' expr

Multidimensional arrays are considered to be true if any element is nonzero.

Negate
The negation operator performs a two’s complement negation on the expression. It
takes the following form:

'-' expr

Multiply
The multiplication operator multiplies two values and takes the following form:

expr '*' expr

Divide
The division operator divides two values and takes the following form:

expr '/' expr

While the division operator can be used on signals, it is highly recommended to use
this operator only when the result is constant and can be evaluated at synthesis time.
If you use it with a dynamic value, the resulting circuit is expensive. Instead, if you
need to perform division, you should use Xilinx’s CoreGen tool to generate a division
module with optimal parameters for your design.

Add and Subtract
Addition and subtraction operators add or subtract two numbers, respectively. They
take the following form:

expr ('+'|'-') expr

When the + symbol is used, the expressions are added together. When the - symbol is
used, the second expression is subtracted from the first.

198 | Chapter 13: Lucid Reference

Bit Shifting
Bit shifting allows you to shift the bits in a single-dimensional array either left or
right. It takes the following form:

expr ('>>'|'<<'|'>>>'|'<<<') expr

The first expr is shifted by the value of the second expr.

If the >> operator is used, the array is shifted right and padded with 0s.

If the << operator is used, the array is shifted left and padded with 0s.

If the >>> operator is used, the array is shifted right and padded with 0s if the value
being shifted is unsigned. If the value is signed, it is padded with the value of the
MSB.

If the <<< operator is used, the array is shifted left and padded with 0s.

Bitwise Operators
The bitwise operators perform a Boolean operation on two arrays bit by bit. The two
arrays must have matching dimensions.

It takes the following form:

expr ('|'|'&'|'^'|'~^') expr

The | operator performs a bitwise OR.

The & operator performs a bitwise AND.

The ^ operator performs a bitwise XOR.

The ~^ operator performs a bitwise XNOR.

The resulting array has the same dimensions as both inputs.

Reduction Operators
Reduction operators take in only one argument and produce a single bit. They simply
perform a Boolean operation on all the bits in an array.

It takes the following form:

('&'|'~&'|'|'|'~|'|'^'|'~^') expr

The | operator ORs all the bits together.

The ~| operator NORs all the bits together.

The & operator ANDs all the bits together.

Expressions | 199

The ~& operator NANDs all the bits together.

The ^ operator XORs all the bits together.

The ~^ operator XNORs all the bits together.

Comparison Operators
The comparison operators allow you to compare two values and create a Boolean
value (1 or 0).

It takes the following form:

expr ('<'|'>'|'=='|'!='|'<='|'>=') expr

The < operator is true when the first expr is less than the second expr.

The > operator is true when the first expr is greater than the second expr.

The == operator is true when the first expr is equal to the second expr.

The == operator is true when the first expr is not equal to the second expr.

The <= operator is true when the first expr is less than or equal to the second expr.

The >= operator is true when the first expr is greater than or equal to the second
expr.

Logical AND and OR
The logical operators are used to combine multiple logical expressions. True is consid‐
ered anything nonzero, and false is 0.

They take the following form:

expr ('||'|'&&') expr

The || operator will return 1 when either expr is nonzero, and 0 otherwise.

The && operator will return 1 only when both expr are nonzero, and 0 otherwise.

Ternary Operator
The ternary operator is basically a compact if statement. It allows you to select one of
two values based on the logical value of another.

It takes the following form:

expr '?' expr ':' expr

If the first expr is nonzero, the expression takes the value of the second expr. How‐
ever, if it is 0, the expression takes the value of the third expr.

200 | Chapter 13: Lucid Reference

The second and third expr must be the same size because the result of the expression
must be a fixed size.

Literal Values
Literal values can be expressed using numbers in binary, decimal, or hexadecimal as
well as strings.

Numbers
Numbers can be specified in binary, decimal, or hexadecimal. The width used to rep‐
resent the number can be explicitly or implicitly stated.

The most basic way to represent a value is to type it, such as 12. This defaults to deci‐
mal with an implicit width. When the width is implicit, the value will have the mini‐
mum number of bits needed to represent the value.

To specify a radix, you prefix the value with b for binary, d for decimal, or h for hexa‐
decimal. For example, hF2 or b110110.

To specify a width, you must specify the radix first and then prefix the whole thing
with the number of bits to use. For example, 8h2C or 12d8.

When using binary or hexadecimal, you can also use the characters x for don’t care
and z for high impedance.

Strings
Strings are an easy way to get the ASCII values for characters. A string consists of
double quotes enclosing a set of characters. A single character string, such as "B", is
an 8-bit array. However, strings with more than one character become two-
dimensional arrays, with the first dimension being the letter index, and the second
dimension is the bits of each letter. It is therefore an N x 8 array, where N is the num‐
ber of letters in the string. This makes it easy to access the individual letters.

The first letter in the string is the rightmost one. This is opposite of how we read
them, but consistent with the right being the least significant value. Because of this, it
is common to use $reverse(arg) to make the leftmost letter index 0.

global Blocks
global blocks give you a way to declare constants and structs that can be used any‐
where in your design. They are especially helpful because they allow you to use
structs in the ports of your modules. A file can contain any number of global blocks.

Literal Values | 201

Each block is named, and that name is used when accessing the constants. The
global block’s name must be unique throughout your design.

They take the following form:

'global' name '{' (struct_dec | const_dec)* '}'

The name of a global block must begin with an uppercase letter and can be followed
by lower- or uppercase letters, numbers, and underscores. It must also contain at least
one lowercase letter.

See “Constant declaration” on page 187 and “Struct declaration” on page 190 for
const_dec and struct_dec, respectively.

To access a globally declared struct or constant, start with the global block’s name
followed by a period and then the name of the constant or struct. See the following
example from the OV2640 Interface component:

global Camera {
 // structure for storing the image data
 struct image_data {
 end_frame, // end of frame reached (active high)
 end_line, // end of line reached (active high)
 new_pixel, // new pixel (active high)
 pixel [16] // pixel data (valid when new_pixel = 1)
 }
}

...

 output<Camera.image_data> image // image data

Array Size and Bit Selection
Array sizes are used when declaring many types in Lucid to turn them into arrays. Bit
selection is used to index the various elements inside an array.

Array Size
Array sizes are pretty simple and take the following form:

('[' expr ']')*

Here expr is an expression, but it must have a value that can be determined at synthe‐
sis time.

If no sizes are specified, the type is assumed to be 1 bit or one instance. For each size
specified, the array will get another dimension. For example, something declared with
[4][8] would be considered a 4 x 8 two-dimensional array.

202 | Chapter 13: Lucid Reference

Bit Selectors
Bit selectors are used to index into arrays. The most basic kind, simple indices, select
a single element from the array. The more complex constant bit and fixed-width bit
selectors allow selection of multiple elements.

When indexing into a multidimensional array, only the last index can be a constant
bit selector or a fixed-width bit selectors. Every other index must be a simple array
index.

Array index
The array index is the simplest form of indexing into an array. It selects a single ele‐
ment and takes the following form:

'[' expr ']'

Here expr is an expression. When indexing into a multidimensional array, the first
index specified will index into the leftmost dimension when the array was declared.
For example, sig mySig[4][7] can be indexed later with mySig[3]. This will have a
width of 7. To index to a single bit, you could use mySig[3][6].

Constant bit selector
Constant bit selectors allow you to select everything between a fixed start and stop
indices. It takes the following form:

'[' expr ':' expr ']'

Both expr elements are expressions, but they both must be constant values that can
be determined at synthesis time.

The first expr must be greater or equal to the second expr in value. These specify an
inclusive range to select from the array.

Fixed-width bit selector
The fixed-width bit selector allows you to specify a start index and the number of ele‐
ments to select above or below that index. The benefit of this over the constant index
selector is that the start index doesn’t need to be a constant value.

It takes the following form:

'[' expr ('+'|'-') ':' expr ']'

Again, both expr elements are expressions. The first expr is the starting index. The
second expr is the number of elements to select. If the selector uses the + symbol, it
selects that many elements above the starting index. If it is a - symbol, it selects that
many elements below the starting index. The starting index itself is always included.

Array Size and Bit Selection | 203

Comments
Comments give you a way to annotate your designs. The tools will ignore everything
in comments. Lucid uses C/Java style comments, with single-line and block com‐
ments available.

Single-line comments start after // and end at the end of the line. Block comments
start with /* and end with */. These can span multiple lines or begin and end in the
same line.

204 | Chapter 13: Lucid Reference

APPENDIX A

Full Modules and Proof

Greeter Module
This is the full greeter module greeting someone over the USB port. Referenced
from “Getting Personal with RAM” on page 95:

module greeter (
 input clk, // clock
 input rst, // reset
 input new_rx, // new RX flag
 input rx_data[8], // RX data
 output new_tx, // new TX flag
 output tx_data[8], // TX data
 input tx_busy // TX is busy flag
) {

 // reverse so index 0 is the left most letter
 const HELLO_TEXT = $reverse("\r\nHello @!\r\n");
 const PROMPT_TEXT = $reverse("Please type your name: ");

 .clk(clk) {
 .rst(rst) {
 fsm state = {IDLE, PROMPT, LISTEN, HELLO}; // our state machine
 }

 // we need our counters to be large enough to store all the indices of our
 // text

 // HELLO_TEXT is 2D so WIDTH[0] gets the first dimension
 dff hello_count[$clog2(HELLO_TEXT.WIDTH[0])];
 dff prompt_count[$clog2(PROMPT_TEXT.WIDTH[0])];

 dff name_count[5]; // 5 allows for 2^5 = 32 letters
 // we need our RAM to have an entry for every value of name_count

205

 simple_ram ram (#SIZE(8), #DEPTH($pow(2,name_count.WIDTH)));
 }

 always {
 ram.address = name_count.q; // use name_count as the address
 ram.write_data = 8hxx; // don't care
 ram.write_en = 0; // read by default

 new_tx = 0; // default to no new data
 tx_data = 8hxx; // don't care

 case (state.q) { // our FSM
 // IDLE: Reset everything and wait for a new byte.
 state.IDLE:
 hello_count.d = 0;
 prompt_count.d = 0;
 name_count.d = 0;
 if (new_rx) // wait for any letter
 state.d = state.PROMPT;

 // PROMPT: Print out name prompt.
 state.PROMPT:
 if (!tx_busy) {
 prompt_count.d = prompt_count.q + 1; // move to the next letter
 new_tx = 1; // send data
 tx_data = PROMPT_TEXT[prompt_count.q]; // send letter from PROMPT_TEXT
 if (prompt_count.q == PROMPT_TEXT.WIDTH[0] - 1) // no more letters
 state.d = state.LISTEN; // change states
 }

 // LISTEN: Listen to the user as they type his/her name.
 state.LISTEN:
 if (new_rx) { // wait for a new byte
 ram.write_data = rx_data; // write the received letter to RAM
 ram.write_en = 1; // signal we want to write
 name_count.d = name_count.q + 1; // increment the address

 // We aren't checking tx_busy here that means if someone types super
 // fast we could drop bytes. In practice this doesn't happen.

 // only echo non-new line characters
 new_tx = rx_data != "\n" && rx_data != "\r";
 tx_data = rx_data; // echo text back so you can see what you type

 // if we run out of space or they pressed enter
 if (&name_count.q || rx_data == "\n" || rx_data == "\r") {
 state.d = state.HELLO;
 name_count.d = 0; // reset name_count
 }
 }

206 | Appendix A: Full Modules and Proof

 // HELLO: Prints the hello text with the given name inserted
 state.HELLO:
 if (!tx_busy) { // wait for tx to not be busy
 if (HELLO_TEXT[hello_count.q] != "@") { // if we are not at the sentry
 hello_count.d = hello_count.q + 1; // increment to next letter
 new_tx = 1; // new data to send
 tx_data = HELLO_TEXT[hello_count.q]; // send the letter
 } else { // we are at the sentry
 // increment the name_count letter
 name_count.d = name_count.q + 1;

 // if we are not at the end
 if (ram.read_data != "\n" && ram.read_data != "\r")
 new_tx = 1; // send data

 // send the letter from the RAM
 tx_data = ram.read_data;

 // if we are at the end of the name or out of letters to send
 if (ram.read_data == "\n" || ram.read_data == "\r" || &name_count.q)
 {
 // increment hello_count to pass the sentry
 hello_count.d = hello_count.q + 1;
 }
 }

 // if we have sent all of HELLO_TEXT
 if (hello_count.q == HELLO_TEXT.WIDTH[0] - 1)
 state.d = state.IDLE; // return to IDLE
 }
 }
 }
}

ADC Multichannel Example
This is the full mojo_top module for reading all the ADC channels and displaying
them on the LEDs using PWM. Referenced from Chapter 8:

module mojo_top (
 input clk, // 50MHz clock
 input rst_n, // reset button (active low)
 output led [8], // 8 user controllable LEDs
 input cclk, // configuration clock, AVR ready when high
 output spi_miso, // AVR SPI MISO
 input spi_ss, // AVR SPI Slave Select
 input spi_mosi, // AVR SPI MOSI
 input spi_sck, // AVR SPI Clock
 output spi_channel [4], // AVR general purpose pins
 input avr_tx, // AVR TX (FPGA RX)
 output avr_rx, // AVR RX (FPGA TX)
 input avr_rx_busy // AVR RX buffer full

Full Modules and Proof | 207

) {

 sig rst; // reset signal

 .clk(clk) {
 // The reset conditioner is used to synchronize the reset signal to the FPGA
 // clock. This ensures the entire FPGA comes out of reset at the same time.
 reset_conditioner reset_cond;

 .rst(rst){
 // the avr_interface module is used to talk to the AVR for access
 // to the USB port and analog pins
 avr_interface avr;

 pwm pwm[8]; // PWM modules for the LEDs
 dff channel_ctr[3];
 }
 }

 sig real_channel[4];
 sig sample_channel[3];

 always {
 reset_cond.in = ~rst_n; // input raw inverted reset signal
 rst = reset_cond.out; // conditioned reset

 real_channel = channel_ctr.q > 1 ? channel_ctr.q + 2 : channel_ctr.q;
 sample_channel = avr.sample_channel > 1 ?
 avr.sample_channel - 2 : avr.sample_channel;

 if (avr.new_sample && sample_channel == channel_ctr.q)
 channel_ctr.d = channel_ctr.q + 1;

 // connect inputs of avr
 avr.cclk = cclk;
 avr.spi_ss = spi_ss;
 avr.spi_mosi = spi_mosi;
 avr.spi_sck = spi_sck;
 avr.rx = avr_tx;
 avr.channel = real_channel; // ADC set to channel 0
 avr.tx_block = avr_rx_busy; // block TX when AVR is busy

 // connect outputs of avr
 spi_miso = avr.spi_miso;
 spi_channel = avr.spi_channel;
 avr_rx = avr.tx;

 // unused serial port
 avr.tx_data = 8hxx; // don't care
 avr.new_tx_data = 0; // no data

 pwm.update = 8h00; // default values

208 | Appendix A: Full Modules and Proof

 pwm.value = 8x{{8hxx}}; // 8 by 8 array of x's

 // update when we have a new sample
 pwm.update[sample_channel] = avr.new_sample;
 pwm.value[sample_channel] = avr.sample[9:2]; // use the 8 MSBs

 led = pwm.pulse; // connect PWM output to all the LEDs
 }
}

Basic Processor
This is the module containing the meat of the processor referenced from Chapter 9:

global Inst {
 const NOP = 4d0; // 0 filled
 const LOAD = 4d1; // dest, op1, offset : R[dest] = M[R[op1] + offset]
 const STORE = 4d2; // src, op1, offset : M[R[op1] + offset] = R[src]
 c SET = 4d3; // dest, c : R[dest] = c
 const LT = 4d4; // dest, op1, op2 : R[dest] = R[op1] < R[op2]
 const EQ = 4d5; // dest, op1, op2 : R[dest] = R[op1] == R[op2]
 c BEQ = 4d6; // op1, c : R[0] = R[0] + (R[op1] == c ? 2 : 1)
 c BNEQ = 4d7; // op1, c : R[0] = R[0] + (R[op1] != c ? 2 : 1)
 const ADD = 4d8; // dest, op1, op2 : R[dest] = R[op1] + R[op2]
 const SUB = 4d9; // dest, op1, op2 : R[dest] = R[op1] - R[op2]
 const SHL = 4d10; // dest, op1, op2 : R[dest] = R[op1] << R[op2]
 const SHR = 4d11; // dest, op1, op2 : R[dest] = R[op1] >> R[op2]
 const AND = 4d12; // dest, op1, op2 : R[dest] = R[op1] & R[op2]
 const OR = 4d13; // dest, op1, op2 : R[dest] = R[op1] | R[op2]
 const INV = 4d14; // dest, op1 : R[dest] = ~R[op1]
 const XOR = 4d15; // dest, op1, op2 : R[dest] = R[op1] ^ R[op2]
}

module cpu (
 input clk, // clock
 input rst, // reset
 output write, // CPU write request
 output read, // CPU read request
 output address[8], // read/write address
 output dout[8], // write data
 input din[8] // read data
) {

 .clk(clk), .rst(rst) {
 dff reg[16][8]; // CPU Registers
 }

 instRom instRom; // program ROM

 sig op[4]; // opcode
 sig arg1[4]; // first arg
 sig arg2[4]; // second arg

Full Modules and Proof | 209

 sig dest[4]; // destination arg
 sig constant[8]; // constant arg

 always {
 // defaults
 write = 0; // don't write
 read = 0; // don't read
 address = 8hxx; // don't care
 dout = 8hxx; // don't care

 instRom.address = reg.q[0]; // reg 0 is program counter
 reg.d[0] = reg.q[0] + 1; // increment PC by default

 op = instRom.inst[15:12]; // opcode is top 4 bits
 dest = instRom.inst[11:8]; // dest is next 4 bits
 arg1 = instRom.inst[7:4]; // arg1 is next 4 bits
 arg2 = instRom.inst[3:0]; // arg2 is last 4 bits
 constant = instRom.inst[7:0]; // constant is last 8 bits

 // Perform the operation
 case (op) {
 Inst.LOAD:
 read = 1; // request a read
 reg.d[dest] = din; // save the data
 address = reg.q[arg1] + arg2; // set the address
 Inst.STORE:
 write = 1; // request a write
 dout = reg.q[dest]; // output the data
 address = reg.q[arg1] + arg2; // set the address
 Inst.SET:
 reg.d[dest] = constant; // set the reg to constant
 Inst.LT:
 reg.d[dest] = reg.q[arg1] < reg.q[arg2]; // less than comparison
 Inst.EQ:
 reg.d[dest] = reg.q[arg1] == reg.q[arg2]; // equals comparison
 Inst.BEQ:
 if (reg.q[dest] == constant) // if R[dest] == constant
 reg.d[0] = reg.q[0] + 2; // skip next instruction
 Inst.BNEQ:
 if (reg.q[dest] != constant) // if R[dest] != constant
 reg.d[0] = reg.q[0] + 2; // skip next instruction
 Inst.ADD:
 reg.d[dest] = reg.q[arg1] + reg.q[arg2]; // addition
 Inst.SUB:
 reg.d[dest] = reg.q[arg1] - reg.q[arg2]; // subtraction
 Inst.SHL:
 reg.d[dest] = reg.q[arg1] << reg.q[arg2]; // shift left
 Inst.SHR:
 reg.d[dest] = reg.q[arg1] >> reg.q[arg2]; // shift right
 Inst.AND:
 reg.d[dest] = reg.q[arg1] & reg.q[arg2]; // bitwise AND
 Inst.OR:

210 | Appendix A: Full Modules and Proof

 reg.d[dest] = reg.q[arg1] | reg.q[arg2]; // bitwise OR
 Inst.INV:
 reg.d[dest] = ~reg.q[arg1]; // bitwise invert
 Inst.XOR:
 reg.d[dest] = reg.q[arg1] ^ reg.q[arg2]; // bitwise XOR
 }
 }
}

Direction Detection Proof
The following is a proof for the sound-direction detector referenced in Chapter 12.

First we need to look at the delay each microphone will see when rotated at angle Φ.
Because we are measuring the delay in respect to the center microphone, it is the y
component of its location multiplied by a constant. The constant will be the place‐
holder for the speed of sound and radius of the microphone ring. It isn’t really that
important because it will cancel later:

d1 = C · sin Φ

d2 = C · sin Φ + 2π
3

d3 = C · sin Φ − 2π
3

The x components of each of the three microphones are as follows:

x1 = cos Φ

x2 = cos Φ + 2π
3

x3 = cos Φ − 2π
3

We now need to show that if we scale the x components by their respective delays and
sum them up, they sum to 0:

C · sin Φ · cos Φ + C · sin Φ + 2π
3 · cos Φ + 2π

3 + C · sin Φ − 2π
3 · cos Φ − 2π

3 = 0

To show this is true, we need two trigonometry identities:

sin u · cos v = 1
2 sin u + v + sin u − v

sin u ± v = sin u · cos v ± cos u · sin v
We can now divide out C and apply the first identity to the three sine-cosine pairs.
Note that sin(0) is 0, so the second term of the identity is 0 for all three as u and v are
the same:
1
2 sin 2Φ + 1

2 sin 2Φ + 4π
3 + 1

2 sin 2Φ − 4π
3 = 0

Full Modules and Proof | 211

Now we can apply the second identity to the second and third terms:
1
2 sin 2Φ + 1

2 sin 2Φ · cos 4π
3 + cos 2Φ · sin 4π

3 + sin 2Φ · cos 4π
3 − cos 2Φ · sin

4π
3 = 0

We can combine terms to simplify it:
1
2 sin 2Φ + sin 2Φ · cos 4π

3 = 0

Replacing the cosine with its value gives us the following:
1
2 sin 2Φ − 1

2 sin 2Φ = 0

This, of course, simplifies to this obviously true expression:
0 = 0
Now we just need to show that the sum of the scaled y components is always positive.
The y components of each of the three microphones are as follows:

y1 = sin Φ

y2 = sin Φ + 2π
3

y3 = sin Φ − 2π
3

Scaling these by their delays and summing them gives the following:

C · sin Φ
2

+ C · sin Φ + 2π
3

2
+ C · sin Φ − 2π

3
2

> 0

C is a positive value, so each term is positive or 0. This means we just need to ensure
that all three terms can’t be 0 at the same time.

Let’s set Φ to 0 to make the first term 0:

C · sin 2π
3

2
+ C · sin − 2π

3
2

> 0

After evaluating the sine function, we get this:
C · 3

2 > 0

This is true, as C is positive.

If we set Φ to ± 2π
3 , we will end up with the same result by symmetry.

Therefore, no matter what angle the sound comes from, the sum of the scaled vectors
will point toward it.

212 | Appendix A: Full Modules and Proof

Index

Symbols
$clog2() function, 82, 84, 196
$flatten() function, 196
$pow() function, 84, 196
$reverse() function, 93, 196
$signed() function, 180, 196
$unsigned() function, 196
7-Zip, 8
: EXPRESSION, 52
? (ternary operator), 119, 200

A
ADC, 117-119
addition operator, 198
address input, 126
ALU (arithmetic logic unit), 124-125
always blocks, 23-25, 31, 34, 73, 76, 84, 95, 193
always statements, 184
analog inputs, 117-120
AND gate, 36
AND operator, 200
arbiters, 47-54
Arduino, 4
arrays, 21, 184

array builder, 36, 197
concatenation, 197
duplicating, 197
indexing, 30-31, 38, 203
multidimensional, 35
sizes/sizing, 96, 202

ASICs (application-specific integrated circuits),
vii

assemblers, 130-132
assembly-file.asm, 132

assignment blocks, 184, 192
assignments, 193
asynchronous FIFOs, 151-153
AVR interface, 91

ADC, 117-119
greeter module, 93-95
serial interface, 92

avr_interface component, 91-92

B
Binary to Decimal component, 83-86
bit files, 7
bit selectors, 184, 203
bit shifting, 199
bitwise invert, 197
bitwise operators, 39-40, 184, 199
block RAM primitives, 135-139
breaking timing, 145-153
BUFG primitive, 143
building the project, 26
button bouncing, 72
Button Conditioner component, 72

C
carry bits, 48
cascaded integrator–comb (CIC) filter, 165-168
case statements, 45, 80, 88, 110, 114, 194
CentOS, 8
clocks/clocking

asynchronous FIFOs, 151-153
clk input, 58, 70, 104
clock domains, 150-153
clock signal, 57-61, 63, 133
clock-to-Q propagation delay, 63

213

Clocking Wizard, 141
primitives, 140-143
synchronizers, 150

$clog2() function, 82, 84, 196
combinational logic, 33-54

bitwise operators, 39-40
common subcircuits, 44-54

(see also subcircuits)
logic functions, 36-39
mathematical calculations, 41-43
overview, 33
reduction operators, 40

combinational logic propagation delay, 64
comments, 204
comparison operators, 184, 200
Components Library, 50-54, 67-69, 77
concatenation operator, 26
configurable logic blocks (CLBs), 133-134
constant bit selectors, 203
constant declarations, 187
constant names, 52
constants, 82, 195
contamination delay, 64
CORDIC (Coordinate Rotation Digital Com‐

puter), 163, 171-174, 176
CoreGen, 140-144, 165
Counter component, 77, 109
counters, 119

D
data path, 122
DCM/DCM_CLKGEN, 140
DDR (double-data rate inputs/outputs), 144
De Morgan's laws, 40
decimation_filter core, 165
Decoder component, 77
decoders, 46-47, 50-54
default, 80, 194
DFF (D-type flip-flop), 56-61, 87

chaining, 66
declarations, 188
timing requirements, 61-65

division operator, 198
DSP multipliers, 140, 170
duplication operator, 30, 36
duty cycle, 105

E
Edge Detector component, 73

encoders, 47, 50-54
example projects, ix
expressions, 195-201
external inputs, 66

F
falling edges, 57
fast Fourier transform (FFT), 157, 168-171,

175-177
feedback loops, 56-61
FIFOs, 151-153
finite-state machines (FSMs), 75, 91

case statements, 88
declarations, 190
sound source detection example, 163
stopwatch example, 87-90

first-word fall-through FIFO, 151
fixed-width bit selectors, 203
flash programming on Mojo, 27
$flatten() function, 196
flip-flops, 56-61

(see also DFF (D-type flip-flop))
for loops, 68-69
for statements, 194
FPGAs (field-programmable gate arrays)

floor plans, 134
general fabric, 95, 133-134
microcontrollers compared to, 3-7
overview, vii, 1
routing resources, 133-134
special primitives, 135-144

(see also primitives)
switch matrix, 133

frequency phases, calculating, 157
FSM declarations, 87, 190
functions, 82, 131, 184, 196

G
general fabric, 95, 133-134
global blocks, 112, 125, 201
Gray encoding, 152
greeter module, 93-95, 205-207
groups, 197

H
Hann value, 175
Hanning window, 164, 175
hardware considerations, 30

214 | Index

HDLs (hardware description languages), viii
Hello World! project, 91-98

(see also AVR interface)
hexapod project, 6
high-impedence signals, 23
hold time, 61

I
I/O constraints, external, 103-105
I/O pins, 4, 103
I/O special features, 143
IDDR, 144
if statements, 45, 114, 180, 193
if-else statements, 80
indexing arrays, 30-31, 38
input ports, 21
instance connections, 189
instantiation, 24, 184
instRom module, 132
IO Shield, 2, 33-36

single digit displays, 76-78
switch numbering, 37

IODELAY2, 144
IOSTANDARD constraint, 104
io_dip, 36, 71
io_led, 35-36
io_seg, 76
io_sel, 76, 78
io_shield.ucf , 72
ISE installation, 8-14
ISERDES, 143

L
led, 21
LED button project, 19-32
led output, 25
led.ucf, 104
Linux, 8

ISE installation, 8-11
Mojo IDE installation, 15

literal values, 201
logic functions, 36-39
logic gates, 36-39, 44
logical inverting operator, 198
logical operators, 184, 200
lookup tables (LUTs), 79-82, 133-134, 137-139
Lucid, viii, 59

quick reference guide, 183-185
and Verilog, 96

M
Mac OS, 8
mag_phase_calculator, 171
math operators, 184
mathematical calculations, 41-43
Matlab, 169
memory, processor, 122
memory-mapped I/O, 130
metastability, 61-74
microcontrollers, FPGAs compared to, 3-7
microphone arrays, 158-161
microphone shield, 155-182

(see also sound source detection)
module declarations, 103
modules, 21-22, 184

instantiation, 24, 69-71, 191
module body, 187-195
module declarations, 185-195

Mojo, vii, 1-3
analog inputs on, 117
IDE installation, 14
IDE settings, 15-17
pinout example, 102
programming options, 27

mojo.ucf, 72, 103-104
mojo_top, 21, 76, 82, 89, 103
MTBF (mean time between failures), 66
multibit selector, 31
multidimensional arrays, 35
multiplexers/multiplexing, 44-45, 76
multiplication operator, 198

N
NAND gate, 36
negation operator, 198
new project creation, 19-32
NOR gate, 36
NOT gate, 4, 36
numbers, 184, 201

O
ODDR, 144
one-cold, 44
one-hot signal, 44
one-or-none hot value, 47
opcode, 123, 126
OR gate, 36-38
OR operator, 200

Index | 215

OSERDES, 143
output ports, 21

P
parameter lists, 185
parameters, 52
Pipeline component, 67-69
pipelining, 148-150
PlanAhead, 134-134
PLL_ADV, 140
port lists, 186
port types, 21
$pow() function, 84, 196
primitives, 135-144

block RAM, 135-139
for clocking, 140-143
for math functions, 140
for special I/O functions, 143

processors, 121-132
assemblers and, 130-132
benefits of, 121
data path, 122
full processor module example, 209-211
instruction sets, 122
instruction size, 122
memory, 122
memory space, 130
program counter, 125
programming, 128-130
registers, 122

program counter, 125
project loading, 27-30
Pulse Width Modulator component, 106
pulse-density modulation (PDM) microphones,

162, 164-168
pulse-width modulation (PWM), 101, 105-110,

113-114, 118-120

R
radix, 22
RAMB16BWERs, 137-139
RAMB8BWERs, 137-139
random access memory (RAM), 91, 95-98, 130

block RAM primitives, 135-139
dual-port asynchronous, 152
Simple RAM component, 95
wait_ram flag, 175

read-only memory (ROM), 92-91, 126, 130-132
reduction operators, 40, 184, 199

reference guide, Lucid, 183-185
Register Interface, 101, 111-115
registers, 122
reg_interface.luc, 111
reset_conditioner, 24, 30, 59
$reverse() function, 93, 196
RGB LED, 101-115

dynamic color, 108
external I/O constraints, 103-105
pulse-width modulation (PWM), 105-110
Register Interface component, 111-115

ripple-carry chain, 48
rising edges, 57
rst input, 25, 58, 70, 89
rst_n input, 21, 25
running totals, 55-74

(see also sequential logic)

S
segment mapping, 76-78
sequential logic, 55-74

button bouncing, 72
checking timing, 71
external inputs, 66
feedback loops and flip-flops, 56-61
overview, 55
timing and metastability, 61-74

Serial Port Monitor, 92, 95
setup time, 61
seven-segment LED displays, 75-90

Binary to Decimal component, 83-86
lookup tables, 79-82
single digit, 76-78

signals (sig), 21, 41, 84, 188, 195
$signed() function, 180, 196
Simple RAM component, 95
single-bit selector, 31
single-port RAM, 95
skinny-asm.jar, 132
slices, 134
sound source detection, 5, 155

compact version, 163
CORDIC core (see CORDIC (Coordinate

Rotation Digital Computer))
fast Fourier transform (FFT), 157, 168-171
full pipeline implementation, 163
implementation overview, 162-164
microphone arrays, 158-161
PDM microphones, 164-168

216 | Index

proof for, 211-212
theory of operation, 156-162

sound_locator module, 173
Spartan 6 XC6SLX9, 7
start-width selector, 31
stopwatch, 87-90
STORE, 131
strings, 201
struct declarations, 190
structs, 112
subcircuits

arbiters, 47-54
decoders, 46-47
encoders, 47
multiplexers, 44-45

subtraction operator, 198
switch numbering, 37
synchronizers, 66, 150
synchronous logic (see sequential logic)
synthesize, 7

T
ternary operator (?), 119, 200
timing checks, 71
timing issues, 145-153
timing report, 147
Two's complement, 42

U
Ubuntu, 1, 8, 15
$unsigned() function, 196
user constraint files (UCFs), 103-104

V
values representation, 22-23

var type, 68
variable declarations, 188
Verilog, viii, 23, 96
VHDL, 23
VirtualBox, 1, 8
Vivado, 8

W
WIDTH attribute, 68
Windows, 8

ISE installation, 8-11
Mojo IDE installation, 14

Workspace, 19

X
x value, 23, 25
xil prefix, 144
Xilinx

Clocking Wizard, 141
CORDIC core (see CORDIC (Coordinate

Rotation Digital Computer))
CoreGen, 140-144, 165
ISE (see ISE installation)
ISE WebPACK License, 12
License Configuration Manager, 13
Matlab, 169
tools, 7

XNOR gate, 36
XOR gate, 36-38

Z
z value, 23, 25
zero-one-hot, 44

Index | 217

About the Author
Justin Rajewski first got started with FPGAs over a summer internship with North‐
rop Grumman before his senior year of high school. Before this, a SparkFun blog post
had piqued his interest in FPGAs, but he was frustrated with the lack of information
available for beginners. After a few summers working with FPGAs as an intern, and
some formal classes at Stanford University, Justin created the Mojo, an FPGA devel‐
opment board targeted specifically at beginners. He then launched a hugely successful
Kickstarter for the Mojo. Justin continued to work on the Mojo and has even gone so
far as to create an IDE with a new beginner-friendly language, Lucid.

Colophon
The animals on the cover of Learning FPGAs are giant bamboo ladybird beetles (Syn‐
onycha grandis), a member of the Coccinellidae family, which are more commonly
known as ladybugs (in the United States and Canada) or ladybirds (in the UK and
other English-speaking regions). As their name suggests, giant bamboo ladybird bee‐
tles are relatively large, growing up to 13 mm in length and 11.5 mm in width. They
have a vibrantly colored carapace that ranges from yellow to red as they age.

Giant bamboo ladybird beetles live primarily in India, although they have also been
found in Nepal and Sri Lanka. They feed on aphids, a smaller species of insect that
infests plants (including bamboo). Giant bamboo ladybird beetles swarm onto bam‐
boo to feed on the aphids living there. They also lay their eggs near bamboo plants to
increase the chance newly hatched larvae will find a food source.

Because of their distinctive and attractive appearance, members of the Coccinellidae
family have been adopted as a symbol of good luck throughout the world. They are a
frequent subject of poetry and nursery rhymes, and are often featured in logos.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Insects Abroad. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Expected Background
	Conventions Used in This Book
	Using Code Examples

	How to Contact Us

	Chapter 1. Introduction
	The Mojo
	FPGAs Versus Microcontrollers: A Comparison
	Setting Up Your Environment
	Installing ISE
	Installing the Mojo IDE
	Mojo IDE Settings

	Chapter 2. Your First FPGA Project
	Creating a New Project
	Understanding Modules
	Representing Values
	Using Always Blocks
	Connecting the Button
	Building Your Project
	Loading Your Project
	Some Notes on Hardware
	Duplication
	Array Indexing
	Always Block Priority

	Chapter 3. Combinational Logic
	IO Shield
	Logic Functions
	Bitwise Operators
	Reduction Operators
	Math
	Common Subcircuits
	Multiplexers
	Decoders
	Encoders
	Arbiters
	Decoder, Encoder, and Arbiter Example

	Chapter 4. Sequential Logic
	Feedback Loops and Flip-Flops
	Clocks

	Timing and Metastability
	External Inputs
	Add the Components
	Instantiating a Module
	Checking Timing
	Bouncy Buttons and Edges
	Running Total

	Chapter 5. Seven-Segment LED Displays and Finite‑State Machines
	Single Digit
	Lookup Tables
	Binary to Decimal
	The Finite-State Machine
	The Stopwatch

	Chapter 6. Hello AVR
	The AVR Interface
	Sending and Receiving Data

	ROMs
	The Greeter
	Getting Personal with RAM

	Chapter 7. Mixing Colors with an RGB LED
	External I/O Constraints
	Getting Fancy with PWM
	Register Interface

	Chapter 8. Analog Inputs
	The AVR Interface
	All the Channels

	Chapter 9. A Basic Processor
	What Is a Processor?
	Instruction Sets
	Memory

	Initial Design
	NOP
	LOAD and STORE
	SET
	LT and EQ
	BEQ and BNEQ
	The ALU
	The Program Counter

	The Processor
	The Program

	The Assembler

	Chapter 10. FPGA Internals
	General Fabric and Routing Resources
	Special Primitives
	Block RAM (Memory)
	Math
	Clocking
	Special I/O Features

	Chapter 11. Advanced Timing and Clock Domains
	Breaking Timing and Fixing It with Pipelining
	Crossing Clock Domains

	Chapter 12. Sound Direction Detection: An Advanced Example
	Theory of Operation
	Implementation Overview
	Implementation
	PDM Microphones
	FFT
	CORDIC
	CAPTURE State
	FFT State
	DIFFERENCE State
	AGGREGATE State

	Chapter 13. Lucid Reference
	Lucid Quick Reference
	Modules
	Parameter Lists
	Port Lists
	Module Body

	Expressions
	Signals and Constants
	Functions
	Groups
	Array Concatenation
	Array Duplication
	Array Builder
	Bitwise Invert
	Logical Invert
	Negate
	Multiply
	Divide
	Add and Subtract
	Bit Shifting
	Bitwise Operators
	Reduction Operators
	Comparison Operators
	Logical AND and OR
	Ternary Operator

	Literal Values
	Numbers
	Strings

	global Blocks
	Array Size and Bit Selection
	Array Size
	Bit Selectors

	Comments

	Appendix A. Full Modules and Proof
	Greeter Module
	ADC Multichannel Example
	Basic Processor
	Direction Detection Proof

	Index
	About the Author
	Colophon

