

Table of Contents
Getting Started with Raspberry Pi Zero
Credits
About the Author
About the Reviewer
www.PacktPub.com

eBooks, discount offers, and more
Why subscribe?

Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions

1. Getting Started with Raspberry Pi Zero
Setting up the Raspberry Pi Zero
Powering the board
Hooking up a keyboard, mouse, and display
Installing the operating system
Adding Internet access

Accessing your Raspberry Pi Zero from your host PC
Summary

2. Programming Raspberry Pi Zero
Powering up Raspberry Pi Zero with Linux
Creating, editing, and saving files
Creating and running Python programs
Basic programming constructs on Raspberry Pi Zero

The if statement

The while statement
Working with functions
Libraries/modules in Python

Summary
3. Accessing the GPIO Pins on Raspberry Pi Zero

The GPIO capability of Raspberry Pi Zero
Simple GPIO digital voltage output

Raspberry Pi Zero and LED code
Adding a sonar sensor

Raspberry Pi Zero and the sonar sensor code
Connecting a digital compass to Raspberry Pi Zero
Accessing the compass programmatically
Summary

4. Building and Controlling a Simple Wheeled Robot
The basic platform
Controlling an H-bridge interface to the DC motors
Controlling your mobile platform programmatically using the

Raspberry Pi Zero
Controlling the speed of your motors with PWM
Using a motor controller board to control the DC motors
Controlling the vehicle using the Raspberry Pi Zero in Python
Planning your path
Summary

5. Building a Robot That Can Walk
Robots that can walk
How servo motors work
Building the quadruped platform
Using a servo controller to control the servos
Communicating between the servo controller and a PC
Connecting the servo controller to the Raspberry Pi Zero
Creating a program in Linux to control your quadruped
Summary

6. Adding Voice Recognition and Speech – A Voice Activated Robot
Communication between the Raspberry Pi Zero and the robot
Giving your robot voice commands
Using eSpeak to allow your robot to respond with an audible voice
Using pocketsphinx to accept your voice commands

Interpreting commands and initiating actions
Summary

7. Adding Raspberry Pi Zero to an RC Vehicle
Configuring and controlling an RC car with Raspberry Pi Zero
Controlling the RC car in Python
Accessing the RC car remotely
Connecting a webcam
Summary

8. Playing Rock, Paper, or Scissors with Raspberry Pi Zero
A robotic hand
Moving the robotic hand
Connecting the servo controller to the Raspberry Pi Zero
Creating a program on Raspberry Pi Zero so that you can control

your hand
Installing a USB camera on Raspberry Pi Zero
Downloading and installing OpenCV – a fully featured vision library
Gesture detection
Summary

9. Adding Raspberry Pi Zero to a Quadcopter
Constructing the platform
Mission planning software
Summary

Index

Getting Started with Raspberry
Pi Zero

Getting Started with Raspberry
Pi Zero
Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means, without
the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure
the accuracy of the information presented. However, the information
contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing, and its dealers and
distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information
about all of the companies and products mentioned in this book by the
appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

First published: March 2016

Production reference: 1210316

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78646-946-5

www.packtpub.com

http://www.packtpub.com

Credits
Author

Richard Grimmett

Reviewer

David Whale

Commissioning Editor

Kartikey Pandey

Acquisition Editor

Tushar Gupta

Content Development Editor

Merint Thomas Mathew

Technical Editor

Saurabh Malhotra

Copy Editors

Kevin McGowan

Sneha Singh

Project Coordinator

Francina Pinto

Proofreader

Safis Editing

Indexer

Priya Sane

Graphics

Disha Haria

Production Coordinator

Shantanu N. Zagade

Cover Work

Shantanu N. Zagade

About the Author
Richard Grimmett has always been fascinated by computers and
electronics since his very first programming project that used Fortran
on punch cards. He has a bachelor's and master's degree in electrical
engineering and a PhD in leadership studies. He also has 26 years of
experience in the radar and telecommunications industries, and even
has one of the original brick phones. He now teaches computer
science and electrical engineering at the Brigham Young University,
Idaho, where his office is filled with his numerous robotics projects.

This book is the result of working with the wonderful students at
BYU-Idaho. It also wouldn't be possible without the help of my
wonderful wife, Jeanne.

About the Reviewer
David Whale is a software developer living in Essex, UK. He started
coding as a schoolboy aged 11, inspired by the school science
technician to build his own computer from a kit and quickly progressed
to writing machine code programs because they were "small and fast".
These early experiments led to some of his code being used inside a
saleable educational word game when he was only 13.

He has been developing software professionally ever since, mainly
writing small and fast code that goes into electronic products,
including automated machinery, electric cars, mobile phones, energy
meters, and wireless doorbells.

These days, he runs his own software consultancy called Thinking
Binaries and spends nearly half of his time helping to design the next
wave of the Internet called The Internet of Things, by connecting
electronic devices to it. The rest of the time he volunteers for The
Institution of Engineering and Technology, running training courses for
teachers, designing and running workshops and clubs for school
children, and being busy with his Raspberry Pi, BBC micro:bit and
Arduino.

He was the technical editor for the book Adventures in Raspberry Pi
and the co-author of the book Adventures in Minecraft, and is a
regular reviewer and editor of technical books from a number of book
publishers.

I was really pleased to be asked to review this great new book of
projects using the Raspberry Pi Zero. The size of the Pi Zero
makes it ideal for building into other products. In this book, Richard
Grimmett takes us on an amazing journey of circuit bending,
coding, and innovating using this tiny computer! But don't stop
here; the projects in this book will give you the skills you need and
inspire you to come up with many new ideas yourself!

www.PacktPub.com

eBooks, discount offers, and
more
Did you know that Packt offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to the
eBook version at www.PacktPub.com and as a print book customer,
you are entitled to a discount on the eBook copy. Get in touch with us
at <customercare@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters and receive exclusive
discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is
Packt's online digital book library. Here, you can search, access, and
read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Preface
For many years, robots and other advanced electronic wonders could
only be seen on the television, movies, or in university or military labs.
In recent years, however, the availability of new and inexpensive
hardware and also free and open source software, has provided the
opportunity for almost anyone with a little technical knowledge and
imagination to build these technical wonders. The first wave of
projects were fueled by Arduino, an inexpensive and simple-to-
program microcontroller. The next wave was carried further by the
introduction of the Raspberry Pi, an even more capable processor
powered by the Linux operating system.

Now there is an even less expensive, powerful microprocessor: the
Raspberry Pi Zero. This little processor packs a processor powerful
enough to run Linux into a small and even less expensive package.
This capability, coupled with some additional power, inexpensive
hardware, and free open source software provides a platform for
projects that range from simple wheeled robots to advanced flying
machines.

What this book covers
Chapter 1, Setting Started with Raspberry Pi Zero, is designed to go
through the details of setting up a useful development environment on
Raspberry Pi Zero. The chapter begins with a discussion of how to
connect power and continues through setting up a full system,
configured and ready to be connected to any of the amazing devices
and SW capabilities to develop advanced robotics applications.

Chapter 2, Programming Raspberry Pi Zero, reviews, for those who
are already familiar, basic Linux, editing, and programming techniques
that will be useful through the rest of the book. You'll learn how to
interact from the command line, how to create and edit a file using an
editor, and basic Python programming.

Chapter 3, Accessing the GPIO Pins on Raspberry Pi Zero, discusses
the GPIO capabilities of Raspberry Pi Zero by building and controlling
some simple LED circuits.

Chapter 4, Building and Controlling a Simple Wheeled Robot,
discusses one of the amazing things you can do with Raspberry Pi
Zero, controlling a simple wheeled robot. This chapter will show you
how to add motor control, so you can build your very own autonomous
mobile robot.

Chapter 5, Building a Robot That Can Walk, tells us about another
impressive robotic project, an autonomous robot that can walk. This is
done using servos whose position can be controlled using Raspberry
Pi and some additional USB-controlled hardware.

Chapter 6, Adding Voice Recognition and Speech – A Voice Activated
Robot, tells us about a voice-activated robot. One of the significant
new features of today's computer system is the ability to input
commands and provide output without a screen or keyboard. A few
years ago, the concept of a computer that can talk and listen was
science fiction, but today it is becoming a standard part of new cell

phones. This chapter introduces how Raspberry Pi Zero can both
listen to speech and also respond in kind. This is not as easy as it
sounds (pun intended) and you'll be exposed to some basic
functionality, while also understanding some of the key limitations.
You'll take a standard toy and turn it into a responsive robot.

Chapter 7, Adding Raspberry Pi Zero to an RC Vehicle, tells us about
another astounding capability of Raspberry Pi Zero, the ability to add
"sight" to you projects. Raspberry Pi Zero makes this very easy by
supporting open source software and readily available USB webcams.
By adding this and a remote control, you can build a remote control
vehicle that can go around corners, into rooms, wherever you'd like to
go.

Chapter 8, Playing Rock, Paper, or Scissors with Raspberry Pi Zero,
tells us about how we can use our toolkit to build and control a robotic
hand that can see and respond to the world around it. In this case,
you'll program your hand to play rock, paper, and scissors.

Chapter 9, Adding Raspberry Pi Zero to a Quadcopter, talks about the
fact that building a robot that can walk, talk, or play air hockey is cool,
but one that can fly is the ultimate goal.

What you need for this book
You need a Raspberry Pi Zero. You can refer to the software list along
with the code bundle of the book.

Who this book is for
This book is designed for the beginner. It requires little more than a
vivid imagination and a desire to learn the basics of programming and
hardware configuration.

Conventions
In this book, you will find a number of text styles that distinguish
between different kinds of information. Here are some examples of
these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter
handles are shown as follows: "To install Nmap, type sudo apt-get
install nmap. To run Nmap, type sudo nmap -sp 10.25.155.1/154."

A block of code is set as follows:

a = input("Input value: ")

b = input("Input second value: ")

c = a + b

print c

When we wish to draw your attention to a particular part of a code
block, the relevant lines or items are set in bold:

a = input("Input value: ")

b = input("Input second value: ")

c = a + b

print c

Any command-line input or output is written as follows:

cd /home/pi/Desktop

New terms and important words are shown in bold. Words that you
see on the screen, for example, in menus or dialog boxes, appear in
the text like this: "Clicking on the Scan selector scans for all the
devices connected to the network."

Note

Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you
think about this book—what you liked or disliked. Reader feedback is
important for us as it helps us develop titles that you will really get the
most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>,
and mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in
either writing or contributing to a book, see our author guide at
www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number
of things to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your
account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and
password.

2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code

files.
6. Choose from the drop-down menu where you purchased this

book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or
extract the folder using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

Downloading the color images of this
book

http://www.packtpub.com
http://www.packtpub.com/support

We also provide you with a PDF file that has color images of the
screenshots/diagrams used in this book. The color images will help
you better understand the changes in the output. You can download
this file from
http://www.packtpub.com/sites/default/files/downloads/GettingStartedwithRaspberryPiZero_ColorImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you find a mistake in one of our books
—maybe a mistake in the text or the code—we would be grateful if
you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting
http://www.packtpub.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted
and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name
of the book in the search field. The required information will appear
under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem
across all media. At Packt, we take the protection of our copyright and
licenses very seriously. If you come across any illegal copies of our
works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a
remedy.

Please contact us at <copyright@packtpub.com> with a link to the
suspected pirated material.

http://www.packtpub.com/sites/default/files/downloads/GettingStartedwithRaspberryPiZero_ColorImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com

We appreciate your help in protecting our authors and our ability to
bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us
at <questions@packtpub.com>, and we will do our best to address the
problem.

mailto:questions@packtpub.com

Chapter 1. Getting Started with
Raspberry Pi Zero
There has been a major shift in electronics and computer accessibility
driven by the introduction of the Raspberry Pi microcomputer and its
variants. With a completely different price point along with a
significantly expanded support community, the Raspberry Pi has been
an unprecedented success in bringing inexpensive computing to a
wide audience. The Raspberry Pi Zero continues with that important
approach, providing unprecedented computer power at an even lower
price point.

The Raspberry Pi Zero is particularly useful as it can be paired with
inexpensive hardware and open-source software to do a wide range of
different Do-It-Yourself projects. You'll learn about many of these in
this book. You'll learn how to control DC motors, how to control
servos, how to hook up a microphone for speech recognition, and
even how to connect a webcam to view and interpret the outside
world.

The Raspberry Pi Zero can do amazing things, but first you'll need to
understand how to access all of this capability. In this chapter, you'll
learn how to:

Provide power to the board
Connect a display, keyboard, and mouse
Load and configure the operating system
Configure the board for remote access

Setting up the Raspberry Pi Zero
While the Raspberry Pi Zero is a powerful computer, you'll need some
additional hardware to access this capability. Here are the items that
you'll need for this chapter's projects:

A Raspberry Pi Zero
A micro USB cable and power supply to provide power to the
board
A display with an HDMI video input
A keyboard, a mouse, and a powered USB hub
A microSD card – with at least 4 GB capacity
A microSD card writer
Another computer that is connected to the Internet
A WLAN USB dongle
A 40x2 pin connector strip

Before you get started, let's get familiar with the Raspberry Pi Zero.
Here is an image of the hardware:

Note that the GPIO pin male headers are not pre-soldered to the
board; you'll want to do that. You can buy these at most online
electronics retailers. You should also become familiar with the various

connections on the board. Here, you can see the Raspberry Pi Zero
with the connector soldered and the connections labeled for your
information:

Powering the board
One of the first issues you'll want to consider is how to power the
board. To do this, you need to connect through the USB power
connection. There are two choices to provide power to the Raspberry
Pi Zero:

1. Connect the microUSB connector labeled power to a 5V DC
source powered by a USB power supply. This can be either a
power supply that can plug directly into an outlet or power
supplied by a powered USB port like those available on most
computers.

2. Connect the microUSB connector to a battery. The simplest
connection is to batteries that have a USB connector, like those
used to charge cellphones. Here is a image of just such a battery:

In both cases, make sure that the unit can supply enough current.
You'll need a supply that can provide at least 1000 mA at 5 volts.
There are two USB charge connections on this battery which makes it

easy to plug the Raspberry Pi Zero into one and the powered USB
hub into the other. Do not plug in the board just yet, you first need to
connect the rest of the hardware and configure the microSD card.
However, you are now ready to connect the rest of the hardware.

Hooking up a keyboard, mouse,
and display
The next step is to connect a keyboard, mouse, and display to the
Raspberry Pi Zero. You may have much of this stuff already but, if you
don't, there are some things to consider before buying additional
equipment. Let's start with the keyboard and mouse.

To connect any device to the Raspberry Pi Zero you'll need some sort
of adapter or hub. You can buy a simple hub that goes from the
microUSB connector on the Raspberry Pi Zero to the more common
standard connector. You can find these at most electronics online
retailers, and it looks something like this:

However, there will be projects when you will want to connect more
than one device to the Raspberry Pi Zero. For these cases you may
want to consider purchasing a powered USB hub. Before deciding on
the hub to connect to your board, you need to understand the
difference between a powered USB hub and one that gets its power
from the USB port itself.

Almost all USB hubs are not powered, in other words, you don't plug
in the USB hub separately. The reason for this is that almost all of
these hubs are hooked up to computers with very large power
supplies and powering USB devices from the computer is not a
problem. This is not the case for your board. The USB port on your
board has very limited power capabilities so if you are going to hook
up devices that require significant power – a WAN adapter or a
webcam for instance – you're going to need a powered USB hub, one
that provides power to the devices through a separate power source.
Here is an image of such a device, available at
http://www.amazon.com/ and other online retailers:

Note that there are two connections on this hub. The one to the far
right is a power connection and it will be plugged into a battery or a
USB power adapter with a USB port. The connection to the left is the
USB connection, which will be plugged into the Raspberry Pi. To
connect the power USB board to the Raspberry Pi Zero you need a
cable that connects to a microUSB connector. Now, you'll have more
connections to add a mouse and keyboard, webcams, and a USB
WLAN device.

Now, you'll also need a display. Fortunately, your Raspberry Pi Zero
offers lots of choices. There are a number of different video standards;
here is an image of some of the most common ones for reference:

http://www.amazon.com/

There is a mini HDMI connector on the Raspberry Pi Zero. In order to
connect it to an HDMI monitor you'll need a mini HDMI to standard
HDMI adapter or cable. You can also buy a cable that has a mini
HDMI connector on one end and a regular HDMI connector on the
other. Here is an image of the adapter:

To use this connector, simply connect the adapter to your Raspberry
Pi Zero, then the cable with the regular HDMI connections to the

adapter and your TV or monitor that has an HDMI input connector.
HDMI monitors are relatively new but if you have a monitor that has a
DVI input, you can buy relatively inexpensive adapters that provide an
interface between DVI and HDMI.

Tip
Don't be fooled by adapters that claim that they go from HDMI or
DVI to VGA, or HDMI or DVI to S-video. These are two different
kinds of signals: HDMI and DVI are digital standards, and VGA
and S-video are analog standards. There are adapters that can do
this, but they must contain circuitry and require power and they are
significantly more expensive than any simple adapter.

You are almost ready to plug in the Raspberry Pi Zero. Connect your
HDMI cable to your monitor and the Raspberry Pi Zero. Connect your
USB hub to the Raspberry Pi Zero and connect your keyboard and
mouse to the USB hub. Make sure that you connect all your devices
before you power on the unit. Most operating systems support hot-
swap of devices, which means you are able to connect a device after
the system has been powered but this is a bit shaky. You should
always cycle power when you connect new hardware. Here is a
picture of everything connected:

The USB connectors are connected to USB power adapters. Even
though your hardware configuration is complete, you'll still need to
complete the next section to power on the device. So, let's figure out
how to install an operating system.

Installing the operating system
Now that your hardware is ready, you need to download and image an
operating system to a microSD card. The Raspberry Pi Zero provides
a lot of different choices. You'll stick with Linux, an open-source
version of Unix, on your Raspberry Pi Zero. Linux, unlike Windows,
Android, or iOS, is not tightly controlled by a single company. It is a
grassroots effort from a wide community, mostly open-source and,
while it is available for free, it grows and develops a bit more
chaotically.

A number of different versions of Linux have emerged, each built on a
core set of similar capabilities referred to as the Linux kernel. These
core capabilities are all based on the Linux specification. However,
they are packaged slightly differently, and developed, supported, and
packaged by different organizations. The Raspberry Pi community has
become standardized on Raspbian, a Debian distribution of Linux for
the Raspberry Pi. So, you are going to install and run Raspbian on
your Raspberry Pi Zero.

The newest version of Debian is called Jessie, after the cowgirl in Toy
Story®. This is the naming convention for Debian and you need to
download this version of Raspbian.

You can purchase a card that has Raspbian installed or you can
download it onto your personal computer and then install it on the
card. To download a distribution, you need to decide if you are going
to use a Windows computer to download and create an SD card, a
MAC OS X, or a Linux machine. I'll give brief instructions for Windows
and Linux machines here.

Note
For directions on the MAC OS X, go to:
http://www.raspberrypi.org/documentation/installation/installing-

http://www.raspberrypi.org/documentation/installation/installing-images/mac.md

images/mac.md.

Firstly, you need to download an image. This part of the process is
similar for both Windows and Linux. Open a browser window. Go to
the Raspberry Pi organization's website, https://www.raspberrypi.org/
and select the Downloads selection at the top of the page. This will
give you a variety of download choices. Go to the Raspbian section,
and select the .zip file just to the right of the image identifier. You
need the latest version, but not the lite one. This will download an
archived file that has the image for your Raspbian operating system.
Note the default username and password; you'll need them later.

If you're using Windows, you'll need to unzip the file using an archiving
program like 7-Zip available at http://www.7-zip.org/. This will leave
you with a file that has the .img extension, a file that can be imaged
onto your card. Next, you need a program that can write the image to
the card. I use Image Writer for Windows. You can find a link to this
program at the top of the download section on the
https://www.raspberrypi.org/ website. Plug your card into the PC, run
this program, and you should see this:

Select the device card and download the image; it should look
something like this:

https://www.raspberrypi.org/
http://www.7-zip.org/
https://www.raspberrypi.org/

Then, click on the Write button. This will take some time, perhaps as
long as 15 minutes but, when it is complete, exit the program and
you'll have your microSD card with the image.

If you are using Linux, you need to un-archive the file and then write it
to the card. You can do all of this with one command. However, you
do need to find the /dev device label for your card. You can do this
with the ls -la /dev/sd* command. If you run this before you plug in
your card, you might see something like the following screenshot:

After plugging in your card, you might see something like the following
screenshot:

Note that your card is at sdb. Now go to the directory in which you
downloaded the archived image file and use the following command:

sudo dd if=2015-11-21-raspbian-jessie.img

of=/dev/sdX

The 2015-11-21-raspbian-jessie.img command will be replaced by
the image file that you downloaded and /dev/sdX will be replaced by
your card ID, in this example /dev/sdb. Be careful to specify the
correct device as this can overwrite the data on any of your drives.
Also, this may take a few minutes. Once the file is written, eject the
card and you are ready to plug it into the board and apply the power.

Make sure that your Raspberry Pi Zero is unplugged and install the
SD card into the slot. Then power the device. After the device boots,
you should get the following screen:

You are up and running!

Note
Note that, if you use a powered USB hub, it might provide enough
power to your Raspberry Pi, however, in some circumstances it
might not be able to provide all the power you need. I strongly
suggest you use different power sources, one for your Raspberry
Pi Zero and one for your hub.

You are going to do one more thing to finalize your configuration. To
do this you need to go into the raspi-config application. So, open a
terminal window by clicking the icon in the upper left corner that looks

like a small computer screen.

Now, type in sudo raspi-config. You should see this application on
your screen:

You need to expand the filesystem to take up the entire card. Select 1
Expand Filesystem, hit the Enter key and you'll see the following
screen:

Hit Enter once again and you'll go back to the main configuration
screen. Now, hit the Tab key until you are positioned over the
<Finish> selection and then hit Enter. Then hit Enter again so that
you can reboot your Raspberry Pi Zero.

Note
If you are using a US keyboard, you may need to edit the keyboard
file for your keyboard to use nano effectively. To do this, use the
dropdown menu in the upper left hand corner of the screen,
choose Preferences | Mouse and Keyboard Settings and then
select the Keyboard tab. You can then choose the correct
keyboard for your configuration.

Now you are ready to start interacting with the system! You can bring
up a terminal window and start typing commands.

Adding Internet access
The Raspberry Pi Zero does not have a LAN connection. To connect
the Raspberry Pi Zero to the Internet, you have two choices. You can
establish a wireless LAN connection or you can connect by using a
USB to LAN adapter if you want to connect to an actual LAN port.
Let's look at both of these possibilities.

If you are going to connect wirelessly, make sure that you have a
wireless access point available. You'll also need a wireless device.
The official Raspberry Pi Foundation markets a device itself, but other
brands also work. See http://elinux.org/RPi_USB_Wi-Fi_Adapters to
identify the wireless devices that have been verified to work with the
Raspberry Pi Zero. Here is one that is available at many online
electronics outlets:

You'll also need to connect a powered USB hub for this process, so
that you can access both the keyboard and mouse, as well as the
USB wireless LAN device. Now, connect the device to the powered
hub.

http://elinux.org/RPi_USB_Wi-Fi_Adapters

Boot the system and then edit the wpa_supplicant.conf file by typing
sudo nano /etc/wpa_supplicant/wpa_supplicant.conf. You need to
change it to look like this:

The wpa-ssid and wpa-psk values here must, of course, match what
your wireless access point requires. Reboot and your device should
be connected to your wireless network. You'll know if it is connected
by looking in the upper right hand corner of the screen where you
should see the following:

You can now download any additional functionality you'll want to install
from the Internet.

If you want to connect to an actual LAN cabled connection you need a
device that goes from USB to LAN. This site
http://elinux.org/RPi_USB_Ethernet_adapters lists a number of
different possibilities. Here is an image of one such device:

http://elinux.org/RPi_USB_Ethernet_adapters

Connecting the Raspberry Pi Zero in this way is actually amazingly
easy. Simply plug the USB to LAN adapter into the powered USB hub,
connect an active LAN cable and you should then have Internet
access.

Accessing your Raspberry Pi Zero from
your host PC

Once you have established an Internet network connection with your
device, you can access it from your host computer. There are three
ways to access your system from your remote computer:

The first is through a terminal interface called SSH.
The second way is by using a program called VNC server. This
allows you to open a graphical user interface remotely which
mirrors the graphical user interface on the Raspberry Pi.
Finally, you can transfer files through a program called WinSCP,
which is custom-made for this purpose. You can use a program
called SCP for Linux.

So, firstly, make sure that your basic system is up and working. Open
a terminal window and check the IP address of your unit. You're going
to need this however you communicate with the system. Do this by
using the ifconfig command. It should produce the following
screenshot:

You need inet addr, which is shown in the third line of the preceding

screenshot to contact your board through the Ethernet. If you are
using a wireless device to gain access to the Internet, your ifconfig
will look like this:

The inet addr associated with the wlan0 connection, in this case
10.10.0.31, is the address you will use to access your Raspberry Pi.

You also need an SSH terminal program running on your remote
computer. An SSH terminal is a Secure Shell (SSH) connection,
which simply means that you'll be able to access your board and give
it commands by typing them into your remote computer. The response
from the Raspberry Pi Zero will appear in the remote computer
terminal window.

Note
If you'd like to know more about SSH, visit:
https://www.siteground.com/tutorials/ssh/.

https://www.siteground.com/tutorials/ssh/

If you are running Microsoft Windows, you can download an
alternative application. My personal favorite is PuTTY. It is free and
does a very good job of saving your configuration so that you don't
have to type it in every time. Type putty in a search engine and you'll
soon come to a page that supports a download or you can go to
http://www.putty.org/.

Download PuTTY to your Microsoft Windows machine. Then, run
putty.exe. You should see a configuration window which looks
something like the following screenshot:

Type the inet addr from the previous page in the Host Name space

http://www.putty.org/

and make sure that the SSH selection is selected. You may want to
save this configuration under Raspberry Pi so that you can reload it
each time.

When you click on Open, the system will try to open a terminal
window onto your Raspberry Pi through the LAN connection. The first
time you do this, you will get a warning about an RSA key as the two
computers don't know about each other. Windows therefore complains
that a computer that it doesn't know is about to be connected in a fairly
intimate way. Simply click on OK and you should get a terminal with a
login prompt, like the following screenshot:

Now you can log in and issue commands to your Raspberry Pi Zero. If
you'd like to do this from a Linux machine, the process is even
simpler. Bring up a terminal window and then type ssh
pi@xxx.xxx.xxx.xxx where the xxx.xxx.xxx.xxx is the inet addr of
your device. This will then bring you to the login screen of your
Raspberry Pi Zero, which should look similar to the preceding
screenshot.

SSH is a really useful tool to communicate with your Raspberry Pi
Zero. However, sometimes you need a graphical look at your system
and you don't necessarily want to connect to a display. You can get
this on your remote computer by using an application called
vncserver. You'll need to install a version of this on your Raspberry Pi
Zero by typing sudo apt-get install tightvncserver in a terminal
window on your Raspberry Pi Zero. This is a perfect opportunity to use
SSH, by the way.

Tightvncserver is an application that allows you to view your
complete Raspberry Pi Zero remotely. Once you have it installed, you
need to start the server by typing vncserver in a terminal window on
the Raspberry Pi Zero. You will then be prompted for a password,
then be prompted to verify the password, and then asked if you'd like
to have a view-only password. Remember the password that you
entered, you'll need it to log in via a VNC Viewer remotely.

You need a VNC Viewer application for your remote computer. On my
Windows system, I use an application called RealVNC. When I start
the application, it gives me the following screenshot:

Enter the VNC Server address, which is the IP address of your
Raspberry Pi Zero, and click on Connect. You will see a pop-up
window, as shown in the following screenshot:

Type in the password that you just entered while starting vncserver
and you should then get a graphical view of your Raspberry Pi that
looks like the following screenshot:

You can now access all of the capabilities of your system, although

they may be slower if you are doing a graphics-intense data transfer.

Note
There are ways to make vncserver start automatically on boot. I
have not used them; I prefer to type the vncserver command from
an SSH application when I want the application running. This
keeps your running applications to a minimum and, more
importantly, presents fewer security risks. If you want to start yours
each time you boot, there are several places on the Internet that
show you how to configure this. Try the following website:
http://www.havetheknowhow.com/Configure-the-server/Run-VNC-
on-boot.html.

To view this Raspberry Pi desktop from a remote Linux computer,
which is running Ubuntu for example, you can type sudo apt-get
install xtightvncviewer, then start it by using xtightvncviewer
10.25.155.110:1 and supplying the chosen password.

Linux has viewers with graphical interfaces such as Remmina
Remote Desktop Client (select the VNC-Virtual Network
Computing protocol), which might be used instead of
xtightvncviewer. Here is a screenshot of the Remote Desktop
Viewer:

http://www.havetheknowhow.com/Configure-the-server/Run-VNC-on-boot.html

Make sure that vncserver is running on the Raspberry Pi Zero. The
easiest way to do this is to log in using SSH and run vncserver at the
prompt. Now, click on Connect on the Remote Desktop Viewer. Fill
in the screen as follows, under the Protocol selection, choose VNC,
and you should see the following screenshot:

Now, enter the Host Internet address, making sure that you include a
:1 at the end and then click on Connect. You'll need to enter the
vncserver password you set up, as shown in the following screenshot:

Now you should be able to see the graphical screen of the Raspberry
Pi. To access the Raspberry Pi Zero graphically from a Mac or
another Apple device, you can still use Real VNC Viewer, see
https://www.realvnc.com/products/ for more information.

The final piece of software that I like to use with Windows is a free
application called WinSCP. To download and install this piece of
software, go to https://winscp.net/ and follow the instructions to
download and install. Once installed, run the program. It will open the
following dialog box:

https://www.realvnc.com/products/
https://winscp.net/

Click on New and you will get the following screenshot:

Here, you fill in the IP address in the host name tab, pi in the user
name tab, and the password (not the vncserver password) in the
password space. Click on Login and you should see a warning
displayed, as shown in the following screenshot:

The host computer, again, doesn't know the remote computer. Click
on Yes and the application will display the following screenshot:

Now, you can drag and drop files from one system to the other. You
can also do similar things with Linux by using the command line. To
transfer a file to the remote Raspberry Pi, you can use the scp file
user@host.domain:path command, where file is the filename, and
user@host.domain:path is the location you want to copy it to. For
example, if you wanted to copy example.py from your Linux system to
the Raspberry Pi Zero, you would type scp example.py
pi@10.25.155.176:/home/pi/. The system will ask you for the remote
password which is the login for the Raspberry Pi Zero. Enter the
password and the file will be transferred.

Now that you know how to use ssh, tightvncserver, and scp, you can
access your Raspberry Pi remotely without having a display,
keyboard, or mouse connected to it! If you are connecting via a WLAN
connection, your system will now look like this:

You only need to connect the power and the LAN, either with a cable
or through wireless LAN. If you need to issue simple commands,
connect through SSH. If you need a more complete set of graphical
functionality, you can access this through vncserver. Finally, if you
want to transfer files back and forth, you can use WinSCP from a
Windows computer or scp from a Linux computer. Now you have the
toolkit to build your first functionality.

One of the challenges of accessing the system remotely is that you
need to know the IP address of your board. If you have the board
connected to a keyboard and display, you can always just run the
ifconfig command to get this information. However, you're going to
use the board in applications in which you don't have this information.
There is a way to discover this by using an IP scanner application.
There are several available for free; on Windows, I use an application
called Advanced IP Scanner, available at www.advanced-ip-
scanner.com/. When you start the program, it looks like the following
screenshot:

http://www.advanced-ip-scanner.com/

Clicking on the Scan selector scans for all the devices connected to
the network. You can also do this in Linux; one application for IP
scanning in Linux is called Nmap. To install Nmap, type sudo apt-get
install nmap. To run Nmap, type sudo nmap -sp 10.25.155.1/154 and
the scanner will scan the addresses from 10.25.155.1 to
10.25.155.154.

Note
For more information on Nmap, see:
:http://www.linux.com/learn/tutorials/290879-beginners-guide-to-
nmap.

These scanners let you know which addresses are being used and

http://www.linux.com/learn/tutorials/290879-beginners-guide-to-nmap

this should allow you to see your Raspberry Pi address without typing
ipconfig.

Your system has lots of capabilities. Feel free to play around with the
system—try to get an understanding of what is already there and what
you'll need to add from a software perspective. Remember, there is
limited power on your USB port, so make sure that you are familiar
with the power needs of accessories plugged into your Raspberry Pi.
You may very well need to use a powered USB hub for many projects.

Summary
Congratulations! You've completed the first stage of your journey. You
have your Raspberry Pi Zero up and working. No gathering dust in the
bin for this piece of hardware. It is now ready to start connecting to all
sorts of interesting devices, in all sorts of interesting ways. You have,
by now, installed a Raspbian operating system, learned how to
connect all the appropriate peripherals, and even mastered how to
access the system remotely so that the only connections you need are
a power supply cable and a LAN cable.

Now, you are ready to start commanding your Raspberry Pi Zero to do
something. The next chapter will introduce you to the Linux operating
system and the Emacs text editor. It will also show you some basic
programming concepts in both the Python and C/C++ programming
languages. Then, you'll be ready to add open source software to
inexpensive hardware and start building your robotics projects.

Chapter 2. Programming
Raspberry Pi Zero
Now that your system is up and running, your Raspberry Pi Zero is
ready to do something. This will require you to either create your own
programs or edit someone else's programs. In this chapter, you'll learn
how to edit a file to create a program that can run on Raspberry Pi
Zero.

In this chapter, we will cover the following topics:

Basic Linux commands and navigating the filesystem on
Raspberry Pi Zero
Creating, editing, and saving files on Raspberry Pi Zero
Creating and running Python programs on Raspberry Pi Zero
Some of the basic programming constructs in Python on
Raspberry Pi Zero

You can create and run the programs discussed in this chapter by
connecting a keyboard, a mouse, and a monitor to Raspberry Pi Zero,
or remotely logging in using vncserver or SSH.

Powering up Raspberry Pi Zero
with Linux
After completing the tasks discussed in Chapter 1, Getting Started
with Raspberry Pi Zero, you'll have a working Raspberry Pi Zero that
is running a version of Linux called Raspbian. So, power up your
Raspberry Pi Zero and log in using a valid username and password. If
you are going to log in remotely through SSH or vncserver, go ahead
and establish the connection now. First, you'll take a quick tour of
Linux. This will not be extensive, but you will just walk through some of
the basic commands.

Once you have logged in, open up a terminal window. If you are
logging in using a keyboard, mouse, and monitor, or using vncserver,
you'll find the terminal by selecting the Terminal application on icon
set selection at the top of the screen, as shown in the following
screenshot:

If you are using SSH, you will already be in the terminal emulator
program. Either way, the terminal should look something similar to the
following screenshot:

Your cursor is at the Command Prompt. Unlike Microsoft Windows or
Mac's OS, with Linux, most of our work will be done by actually typing
commands in the command line. So, let's try a few commands. When
you type ls, you should be able to see the result similar to the
following screenshot:

In Linux, the ls command lists all the files and directories in our
current directory. You can tell the different file types and directories
apart because they are normally in different colors. You can also use
ls –l to see more information about the files.

You can move around the directory structure by issuing the cd
(change directory) command. For example, if you want to see what is
in the Desktop directory, type cd Desktop. If you issue the ls command
now, you should see something similar to the following screenshot:

This directory is empty; it doesn't have any files. The cd command
changes the directory. You could have typed cd /home/pi/Desktop and
received exactly the same result; this is because you were in the
/home/pi directory, which is the directory where you always start when
you first log in to the system.

If you ever want to see which directory you are in, simply type pwd,
which stands for present working directory. If you do that, you will get
the result, which is similar to the following screenshot:

The result of running the pwd command is /home/pi/Desktop. Now, you
can use two different shortcuts to navigate back to the default
directory. The first is to type cd .. on the terminal; this will take you to
the directory just above the current directory in the hierarchy. Then
type pwd; you should see the following screenshot as a result:

The other way to get back to the home directory is by typing cd ~; this
will always return you to your home directory. You can also type cd to
return to your home directory. If you were to do this from the Desktop
directory and then type pwd, you would see the following screenshot as
the result:

You can go to a specific directory using its entire pathname. In this
case, if you want to go to the /home/pi/Desktop directory from
anywhere in the filesystem, simply type cd /home/pi/Desktop.

There are a number of other Linux commands that you might find
useful as you program. The following is a table with some of the most
useful commands:

Linux
commands What it does

ls
This command lists all the files and directories in the
current directory by just their names.

rm filename This command deletes the file specified by filename.

mv filename1

filename2
This command renames filename1 to filename2.

cp filename1

filename2
This command copies filename1 to filename2.

mkdir

directoryname

This command creates a directory with the name
specified by directoryname; this will be made in the
current directory unless specified otherwise.

clear This command clears the current terminal window.

sudo

If you type the sudo command at the beginning of any
command, it will execute that command as the super
user. This may be required if the command or program
you are trying to execute needs the permission of the
super user. If, at any point, you type a command or
the name of the program you want to run and the
result seems to suggest that the command does not
exist or that permission is denied, try doing it again
with sudo at the beginning.

Now, you can play around with the commands and look at your
system and the files that are available to you. But, be careful! Linux is
not like Windows; the default behavior is to not warn you if you try to
delete or replace a file.

Creating, editing, and saving
files
Now that you can log in and move easily between directories and see
your files, you'll want to be able to edit those files. To do this, you'll
need a program that allows you to edit the characters in a file. If you
are used to working on Microsoft Windows, you have probably used
programs such as Microsoft Notepad, WordPad, or Word to do this.
These programs are not available in Linux. There are several other
choices for editors, all of which are free. In this chapter, you will use
an editing program called Emacs. Other possibilities are programs
such as nano, vi, vim, and gedit. Programmers have strong feelings
about which editor to use, so if you already have a favorite, you can
skip this section.

Note
If you want to use nano as an editor, it is already available on the
Raspbian distribution. For more information on nano, see
http://www.nano-editor.org/.

If you want to use Emacs, download and install it by typing sudo apt-
get install emacs. Once installed, you can run Emacs simply by
typing emacs filename, where filename is the name of the file you want
to edit. If the file does not exist, Emacs will create it. The following
screenshot shows what you will see if you type emacs example.py on
the prompt:

http://www.nano-editor.org/

Note that, unlike Windows, Linux doesn't automatically assign file
extensions; it is up to you to specify the kind of file you want to create.
The Emacs editor also indicates, in the lower-left corner of the screen,
that you have opened a new file. Now, if you are using Emacs in the
Raspbian GUI interface, either because you have a monitor,
keyboard, and mouse hooked up or because you are running
vncserver, you can use the mouse in much the same way as you do in
Microsoft Word.

However, if you are running Emacs from SSH, you won't have the
mouse available. So you'll need to navigate the file using the cursor
keys. You'll also have to use some keystroke commands to save your
file, as well as accomplish a number of other tasks that you would
normally use the mouse to select. For example, when you are ready to
save the file, you must press Ctrl + X and Ctrl + S and that will save
the file under the current filename. When you want to quit Emacs, you
must press Ctrl + X and Ctrl + C. This will stop Emacs and return you
to the Command Prompt.

The following are some Emacs keystroke commands that you might
find useful:

Emacs commands What it does

Ctrl + X and Ctrl + S Save: This command saves the current file.

Ctrl + X and Ctrl + C Quit: This command makes you exit Emacs
and return to the command prompt.

Ctrl + K Kill: This command erases the current line.

Ctrl + _ Undo: This command undoes the last
action.

Left-click on the text you
wish to copy, then place
the cursor cursor at the
place you want to paste
then right-click

Cut and paste: If you select the text you
want to paste by clicking the mouse, move
the cursor to where you want to paste the
code and then right-click on it; the code will
be pasted in that location.

Now that you have the capability to edit files, you'll use this capability
to create programs in the next section.

Creating and running Python
programs
Now that you are ready to begin programming, you'll need to choose a
language. There are many available, such as C, C++, Java, Python,
Perl, and a great deal of other possibilities. I'm going to initially
introduce you to Python for two reasons: it is a simple language that is
intuitive and very easy to use, and it uses a lot of the open source
functionality of the robotics world. We'll also cover a bit of C/C++ in
this chapter, as some features are only available in C/C++. However,
it makes sense to start with Python. To work through the examples in
this section, you'll need a version of Python installed. Fortunately, the
basic Raspbian system has one already, so you are ready to begin.

We are only going to cover some of the very basic concepts here. If
you are new to programming, there are a number of different websites
that provide interactive tutorials. If you'd like to practice some of the
basic programming concepts in Python using these tutorials, visit
https://www.codeacademy.com or http://www.learnpython.org/ or
https://docs.python.org and give it a try.

In this section, we'll cover how to create and run a Python file. It turns
out that Python can be used interactively, so you can type in the
commands one at a time. Using it interactively is extremely helpful
when you are getting acquainted with the language features and
modules. But you want to use Python to create programs, so you are
going to type in your commands using Emacs and then run them in
the command line by invoking Python. Let's get started.

Open an example Python file by typing emacs example.py. Now, let's
put some code in the file. Start with the code shown in the following
screenshot:

https://www.codeacademy.com
http://www.learnpython.org/
https://docs.python.org

Let's go through the code to see what is happening. The code lines
are as follows:

a = input("Input value: "): One of the basic purposes of a
program is to get input from the user; input allows us to do that.
The data will be input by the user and stored in a. The prompt
Input value: will be shown to the user.
b = input("Input second value: "): This data will also be input
by the user and stored in b. The prompt Input second value: will
be shown to the user.
c = a + b: This is an example of something you can do with the
data; in this example, you can add a and b.
print c: Another basic purpose of our program is to print out
results. The print command prints out the value of c.

Note
This code is written using Python 2. If you are using Python 3, you
will need to change your print to print(c). For other changes that
might be required, go to
http://learntocodewith.me/programming/python/python-2-vs-
python-3/.

Once you have created your program, save it (using Ctrl + X and Ctrl
+ S) and quit Emacs (using Ctrl + X and Ctrl + C). Now, from the
command line, run your program by typing python example.py. The

http://learntocodewith.me/programming/python/python-2-vs-python-3/

result you see should be similar to the following screenshot:

You can also run the program from the command line without typing
python example.py by adding the #!/usr/bin/python line to the
program. Then the program looks similar to the following screenshot:

Adding #!/usr/bin/python as the first line, simply makes this file
available for us to execute from the command line. Once you have
saved the file and exited Emacs, type chmod +x example.py. This will
change the file's execution permissions, so the computer will now
accept and execute it.

You should be able to simply type ./example.py and see the program
run, as shown in the following screenshot:

Note that if you simply type example.py, the system will not find the
executable file. Here, the file has not been registered with the system,
so you have to give the system a path to it. In this case, ./ is the
current directory.

Tip
Downloading the example code

You can download the example code files for this book from your
account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and
password.
Hover the mouse pointer on the SUPPORT tab at the top.
Click on Code Downloads & Errata.
Enter the name of the book in the Search box.
Select the book for which you're looking to download the code

http://www.packtpub.com
http://www.packtpub.com/support

files.
Choose from the drop-down menu where you purchased this book
from.
Click on Code Download.

Once the file is downloaded, please make sure that you unzip or
extract the folder using the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

Basic programming constructs
on Raspberry Pi Zero
Now that you know how to enter and run a simple Python program on
Raspberry Pi Zero, let's look at some more complex programming
tools. Specifically, we'll cover what to do when we want to determine
the instructions to execute and how to loop our code to do that more
than once. I'll give a brief introduction on how to use libraries in the
Python version 2.7 code and how to organize statements into
functions. Finally, we'll very briefly cover object-oriented code
organization.

Note
Indentation in Python is very important; it will specify which group
of statements is associated with a given loop or decision set, so
watch your indentation carefully.

The if statement
As you have seen in previous examples, your programs normally start
by executing the first line of code and then continue with the following
lines until the program runs out of code. But, what if you want to
decide between two different courses of action? We can do this in
Python using an if statement. The following screenshot shows some
example code:

The following are the details of the code shown in the previous
screenshot:

#!/usr/bin/python: This is included so that you can make your
program executable.
a = input("Input value: "): The data will be input by the user
and stored in a. b = input("Input second value: "): This data
will also be input by the user and stored in b.
if a > b:: This is an if statement. The expression evaluated in
this case is a > b. If it is True, the program will execute the next
one or more statements that are indented; in this case, c = a - b.
If not, it will skip that statement.
else::The else statement is an optional part of the command. If
the expression in the if statement is evaluated as False, the
indented statements after the else: statement will be executed; in
this case, c = b - a.
print c: Another basic purpose of our program is to print out
results. The print command prints out the value of c.

You can run the previous program a couple of times, checking both
the True and False possibilities of the if expression, as shown in the
following screenshot:

The while statement
Another useful construct is the while construct; it allows us to execute
a set of statements over and over again until a specific condition has
been met. The following screenshot shows a set of code that uses this
construct:

The following are the details of the code shown in the previous
screenshot:

#!/usr/bin/python: This is included so you can make your
program executable.
a = 0: This line sets the value of variable a to 0. We'll need this
only to make sure that we execute the loop at least once.
b = 1: This line sets the value of the variable b to 1. We'll need
this only to make sure that we execute the loop at least once.
while a != b:: The expression a != b (in this case, != means not
equal to) is verified. If it is True, the indented statements are
executed. When the statement is evaluated as False, the program
jumps to the statements (none in this example) after the indented
section.
a = input("Input value: "): The data will be input by the user
and stored in a.
b = input("Input second value: "): This data will also be input
by the user and stored in b.
c = a + b: The variable c is loaded with the sum of a and b.
print c: The print command prints out the value of c.

Now you can run the program. Note that when you enter the same
value for a and b, the program stops, as shown in the following
screenshot:

Working with functions
The next concept that we need to cover is how to put a set of
statements into a function. We use functions to organize code and
group sets of statements together when it makes sense to organize
them in the same location. For example, if we have a specific
calculation that we might want to perform many times, instead of
copying the set of statements every time we want to perform it, we
group them into a function. I'll use a fairly simple example here, but if
the calculation takes a significant number of programming statements,
you can see how that would make our code significantly easier to
maintain, as we don't need to duplicate our code over and over. It can
also make our code easier to read. The following screenshot shows
the code:

The following is the explanation of the code from our previous
example:

#!/usr/bin/python: This is included so you can make your
program executable.
def sum(a, b):: This line defines a function named sum. The sum
function takes a and b as arguments.
c = a + b: Whenever this function is called, it will add the values
in the variable a to the values in variable b.
return c: When the function is executed, it will return variable c to
the calling expression.
d = input("Input value: "): This data will also be input by the
user and will be stored in d. The prompt Input second value: will
be shown to the user.
e = input("Input second value: "):This data will also be input by
the user and stored in e. The prompt Input second value: will be
shown to the user.
f = sum(d, e): The function sum is called. The program then goes
to the sum function and executes it. The value in variable d is

copied to the variable a and the value in the variable e is copied to
the variable b. The value is returned from the function and then
stored in variable f.
print f: The print command prints out the value of f.

The following screenshot is the result received when you run the code:

Libraries/modules in Python
The next topic we need to cover is how to add functionality to our
programs using libraries/modules. Libraries or modules, as they are
sometimes called in Python, include a functionality that someone else
has created and that you want to add to your code. As long as the
functionality exists and your system knows about it, you can include
the library in the code.

So, let's modify our code again by adding the library, as shown in the
following screenshot:

The following is a line-by-line description of the code:

#!/usr/bin/python: This is included so that you can make your
program executable.
import time: This includes the time library. The time library
includes a function that allows you to pause for a specified
number of seconds.
d = input("Input value: "): This data will be input by the user
and will be stored in d. The prompt Input second value: will be
shown to the user.
time.sleep(2): This line calls the sleep function in the time library,
which will cause a 2 second delay.
e = input("Input second value: "): This data will also be input
by the user and will be stored in b. The prompt Input second
value: will be shown to the user.
f = d + e: The f variable is loaded with the value d + e.
print f: The print command prints out the value of f.

The following screenshot shows the result after running the previous

example code:

Of course, this looks very similar to other results. But you will notice a
pause between you entering the first value and the appearance of the
second value.

Summary
In this chapter, you've learned how to interact with the Raspbian
operating system using the command line and how to create and edit
files using Emacs. You have also been exposed to both the Python
and C programming languages. If this is your first experience with
programming, don't be surprised if you are still very uneasy with
programming in general, and if and while statements in particular.
You probably felt just as uncomfortable during your first introduction to
the English language, although you may not remember it.

It is always a bit difficult to try new things. However, I will try to give
you explicit instructions on what to type so that you can be successful.
There is one major challenge in working with computers. They always
do exactly what you tell them to do and not necessarily what you want
them to. So if you encounter problems, check several times to make
sure that your code matches the example exactly. Now, on to some
actual coding!

In the next chapter, you'll start writing code that will enable you to
create amazing projects. You'll start by providing your system with the
ability to speak and also listen to your commands.

Chapter 3. Accessing the GPIO
Pins on Raspberry Pi Zero
Now that you are familiar with Raspberry Pi Zero and also how to
create, edit, and upload a program, this chapter will turn your focus to
the hardware. You'll get the chance to learn how to connect and
access, from the software, the capabilities of the Raspberry Pi GPIO
pins.

In this chapter you'll learn:

All about Raspberry Pi Zero's GPIO pins and what they can and
can't do
A very basic circuit and very simple programming examples of
how to interface Raspberry Pi Zero's GPIO to produce a digital
control signal
A more complex example of how to interface Raspberry Pi Zero's
GPIO with a sonar sensor
An example of how to connect an I2C device to Raspberry Pi
Zero

The GPIO capability of
Raspberry Pi Zero
Raspberry Pi Zero was built to access the outside world. Much of this
access is available through the GPIO pins. Let's start by detailing what
the GPIO pins are and what they can do. Raspberry Pi Zero has 40
GPIO pins.

Here is a closeup of the 40 pins:

Here is a listing of the pins and their connection to the Raspberry Pi
Zero:

The purpose of some of these pins is very clear. Pins 1 and 17 are
available to supply 3.3 volts, pins 2 and 4 supply 5 volts, and pins 9,
25, 39, 6, 14, 20, 30, and 34 are all connected to ground on Raspberry
Pi Zero. The rest of the pins have various capabilities, which you'll
learn in this chapter. Let's start with the pins that can be used to
supply a simple DC signal to the outside world.

Simple GPIO digital voltage
output
Perhaps the simplest connection that you can make to the GPIO on
Raspberry Pi is to connect to a pin so that you can send a simple
digital output voltage. To do this, you will use the GPIO IO pins to light
up an LED. To be successful, you'll need four pieces of hardware: a
solder-less breadboard, some jumper wires, an LED, and a resistor.
Here are more details on these parts:

1. A breadboard is a simple device that lets you easily connect your
various electronic parts. They come in various sizes, shapes, and
colors. Here is a picture of such a breadboard:

They are available at many online outlets and hobby shops.

2. Jumper wires are designed to connect your various electronics
parts. These are specified by female or male ends, depending on
the type of connection. Here is a picture of a male to female
jumper wire, with the ends labeled:

For these projects, you'll want some female to male jumper
cables and some female to female jumper cables.

3. A Light Emitting Diode (LED) is a small component with two
leads that light up when a voltage is applied. They come in a wide
variety of colors. If you want to buy them online, search for a 3
mm LED. They come in various colors. You can also get them at
most electronics shops. Here is one:

4. You'll also need a resistor to limit the current supplied to the LED.
A 220-ohm resistor would be the right size. Again, you can get
them online or at most electronics shops. Here is an image of a
set of such resistors:

If you get two each of LED and resistor, you can exercise several of
the GPIO IO pins. Now that you have all the bits and bobs, let's build
your first hardware project. Before you plug anything in, lets look at
the breadboard for a moment so that you can understand how you are
going to use it to make connections. You'll be plugging your wires into
the holes on the breadboard. The holes on the breadboard are
connected in a unique way to make the connections you desire.

In the middle of the board, the holes are connected across the board.
So if you plug in the wire with another wire in the hole right next to it,
these two wires will be connected, like this:

The two rows on each side of the board are generally designed to
provide power, so they are connected up and down. Connect pin 2, 3
volts, to the + connection and pin 6, GND, to the + and – rows of the
breadboard, as shown:

Now you can place the electronic parts on the breadboard. Place the
LEDs so that one wire is on one side of the middle split of the
breadboard. The direction on the LED is important; make sure that the
longer of the two wires is on the left-hand side of the hole.

Now place the resistors on the holes on one side of the LED, with the
other lead connected to the GND row of the breadboard. The direction
of the resistor does not make any difference. Your circuit should look

similar to the following image:

Now you'll use the jumper wires to connect to Raspberry Pi Zero's
GPIO pins. You'll connect to pin 13 (GPIO 27) and pin 15 (GPIO 22),
as shown:

Choosing the right pins is important, as not all of the pins are available
to output a GPIO voltage. Here is another view of the GPIO pins,
labeled with some of the dedicated functions that have been assigned
to them:

You'll learn more about the dedicated functions in this chapter and
throughout the book. Now that the hardware is configured correctly,
you'll need to add code to drive the LEDs.

Raspberry Pi Zero and LED code
To create the code, you'll now want to boot up, log in, and open a
terminal window on Raspberry Pi Zero. You'll use Python to create a
simple program to turn on and off the LEDs. Here is the code:

Now enter the program. Lets go through the program line by line:

#!/usr/bin/python: This line lets you run this program without
having to type python before the filename. You'll learn how to do
this at the end of these instructions.
import RPi.GPIO as io: This lets you import the RPi.GPIO library,
which will allow you to control the GPIO pins.
import time: The time library provides several time-based
functions. In this case, you'll use it to pause the program for a few
seconds.
io.setmode(io.BCM): This sets the specification mode of the GPIO
pins to Broadcom SOC channel number (BCM). This means that
you will specify the GPIO numbers of the pins you want to control,
instead of the actual physical pin numbers.
led1 = 27: This assigns the value 27 to the led1 variable.
led2 = 22: This assigns the value 22 to the led2 variable.
io.setup(led1, io.OUT): This sets the GPIO pin 27 to an output
control.
io.setup(led2, io.OUT): This sets the GPIO pin 22 to an output

control.
while 1:: This puts you in a repeat-forever loop. To stop the
program you'll want to press Ctrl + C.
io.output(led1, True): This will output a 3.3 volt signal on led1
(this is GPIO 27).
io.output(led2, True): This will output a 3.3 volt signal on led1
(this is GPIO 22).
time.sleep(1): This will pause a program for one second.
io.output(led1, False): This will output 0 volts on led1 (this is
GPIO 27).
io.output(led2, False): This will output 0 volts on led2 (this is
GPIO 22).
time.sleep(1): This pauses a program for one second.

Save the program under the name led.py. Now run the program by
typing python led.py. You should see the two LEDs flash at one
second intervals, as shown:

You've just completed your first hardware project with Raspberry Pi
Zero!

Adding a sonar sensor
The basic circuit you just built is a wonderful start. Now you'll interface
a more complex device, a sonar sensor, with Raspberry Pi Zero. Here
is a picture of the sonar sensor that you'll add:

The device is an HC-SR04 and they are available at most online
electronics retailers. Now let's connect the device to Raspberry Pi
Zero. In order to do this, first let's look at the layout of the GPIO pins
on Raspberry Pi Zero:

You'll need to connect to the 5 volt connection of the Raspberry Pi
Zero, pin 2. You also need to connect to the GND, which is pin 6 on
Raspberry Pi. Pin 16 (GPIO 23) is used as an output trigger pin and
pin 18 (GPIO 24) as an input to time the echo from the sonar sensor.

Note
Don't connect 5 volts as an input to any of the GPIO pins as this
might cause damage.

Now that you know the pins you have to connect to, you'll connect the
sonar sensor. However, there is a problem, as you can't connect the
5-volt return from the sonar sensor directly to the Raspberry Pi GPIO
pins; they want a maximum of 3.3 volts as input. You need to build a
voltage divider that will reduce the 5 volts to 3.3 volts. This can be
done with two resistors, which are connected as shown in the
following diagram:

Note
For more information on how the voltage divider works in this
configuration, refer to http://www.modmypi.com/blog/hc-sr04-
ultrasonic-range-sensor-on-the-raspberry-pi.

The combination of these two resistors will reduce the voltage to the
desired levels. Here is the circuit, as shown on the breadboard:

http://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi

Finally, connect the sensor to the Raspberry Pi Zero, as shown:

Now that the device is connected, you'll need a bit of code to read in
the value, make sure it is settled (it produces a stable measurement),
and then convert it to distance.

Raspberry Pi Zero and the sonar
sensor code
Here is Python code to communicate with the sonar sensor:

Here is an explanation of the code:

#!/usr/bin/python: This line lets you run this program without
having to type python before the filename. You'll learn how to do
this at the end of these instructions.
import RPi.GPIO as io: This lets you import the RPi library, which
will allow you to control the GPIO pins.
import time: The time library provides several time-based
functions. In this case, you'll use it to pause the program for a
known amount of time and also measure a certain time delay.
io.setmode(io.BCM): This sets the specification mode of the GPIO
pins to Broadcom SOC channel number (BCM). This means you
will specify the GPIO numbers of the pins you want to control,

instead of the actual physical pin values.
trig = 23: This assigns the value 23 to the trig variable.
echo = 24: This assigns the value 24 to the echo variable.
io.setup(trig, io.OUT): This sets the GPIO pin 23 to an output.
io.setup(echo, io.IN): This sets the GPIO pin 24 to an input.
io.setup(trig, False): This will output a zero to the trig line, pin
23.
time.sleep(1): This command will cause the program to pause for
one second.
io.output(trig, True): This will output a one, 5 volts, to the trig
line, pin 23.
time.sleep(.00001): This will cause the program to wait
approximately 10 microseconds.
io.output(trig, False): This will output a zero to the trig line, pin
23.
while io.input(echo) == 0:: While the input to pin 24 is zero.
start = time.time(): Reset the start time continuously. When pin
24 goes high, start will hold the latest time that the value of pin
24 was low.
while io.input(echo) == 1:: Do the following set of commands
while the input pin 24 is 1.
end = time.time(): Resets the end time continuously. When pin
24 goes low, end will hold the latest time that the value of pin 24
was high.
duration = end – start: Duration will now hold the time distance
between the end and start time.
distance = duration * 17150: Distance converts the duration to a
distance value.
distance = round(distance, 2): Round the distance to two
decimal places.
print "Distance: ", distance, " cm": Print out the distance.
io.cleanup(): Reset the interface.

Now you should save and run the program and get a result, as shown
in the following screenshot:

Now you can sense the distance with Raspberry Pi Zero!

Connecting a digital compass to
Raspberry Pi Zero
Now you've created some pretty basic connections to Raspberry Pi
Zero, turning lines on and off and sensing a high or low signal. Now
let's explore one of the other interfaces available on Raspberry Pi
Zero, the I2C interface. To do this, you'll connect a digital compass
with this sort of interface.

Note
For more on the I2C interface, see http://www.robot-
electronics.co.uk/i2c-tutorial.

There are several chips that provide digital compass capability; one of
the most common is the HMC5883L, a 3-axis digital compass chip.
This chip is packaged in a module by several companies but almost all
of them result in a similar interface.

Here is an image of the GY-271 HMC5883L, a triple-axis compass
magnetometer sensor module available with a number of online
retailers:

http://www.robot-electronics.co.uk/i2c-tutorial

This type of digital compass uses magnetic sensors to measure the
earth's magnetic field. The output of these sensors is then made
accessible to the outside world through a set of registers that allow the
user to set things, such as the sample rate and continuous or single
sampling. The X, Y, and Z directions are the output using registers as
well.

This chip communicates with Raspberry Pi Zero using the Inter IC
(I2C) bus. There are three serial busses available on Raspberry Pi's
GPIO interfaces. The first is a standard Universal Asynchronous
Receiver/Transmitter (UART) interface. The UART interface uses
one pin for the RX, or receive signal, and one pin for the TX, or
transmit signal. The UART takes bytes of data and transmits the
individual bits in a sequential order. At the destination, a second
UART reassembles the bits into bytes. This interface is limited to
communicating with a single external device. For more information on
the UART interface and how it works, go to
https://www.freebsd.org/doc/en/articles/serial-uart/.

The second interface that is available is the I2C interface. The I2C
interface is similar to the UART interface; it also communicates using
two lines, in this case a data-line and a clock-line. However, it is a bit
more complex, as it allows communication between one master and

https://www.freebsd.org/doc/en/articles/serial-uart/

many slave devices. It does this by addressing the device the master
device wants to communicate with. For more information on the I2C
interface, see http://www.robot-electronics.co.uk/i2c-tutorial.

The final interface that is available is the Serial Peripheral Interface
(SPI) interface. As with the I2C interface, the SPI interface allows for
communication between a master device and more than one slave
device. However, each slave is selected using a different select data
line. SPI masters communicate with slaves using the serial clock
(SCK), Master Out Slave In (MOSI), Master In Slave Out (MISO),
and Slave Select (SS) lines. The SCK, MOSI, and MISO signals can
be shared by slaves, while each slave has a unique SS line. For more
information on the SPI interface, see
http://www.corelis.com/education/SPI_Tutorial.htm.

Since the device you are going to use is an I2C device, at the back of
the compass module will be three connections, one for power (VCC),
one for ground (GND), one for the clock (SCL), and one for data
(SDA). The connections are labeled as shown in the following image:

To connect the device, you need to connect the I2C interface pins on
Raspberry Pi Zero. Here is the detail of the GPIO pins:

http://www.robot-electronics.co.uk/i2c-tutorial
http://www.corelis.com/education/SPI_Tutorial.htm

You'll connect the device to pins 1, 3, 5, 7, and 9. For these
connections, you'll want female-to-female jumper wires:

1. Connect the VCC pin on the module to Pin 1 3.3 V on Raspberry
Pi Zero and GND to Pin 9 GND.

2. Then connect SCL on the module to Pin 5 GPIO3 and SDA to
Pin 3 GPIO2 on the Raspberry Pi Zero. Note that you will not
connect the Data Ready (DRDY) pin on the compass; this is an
optional connection for the device. Here are the connections:

Now, you are ready to communicate with the device.

Accessing the compass
programmatically
Now that the device is connected, you'll need to configure access via
the software. Here are the steps:

1. In order to access the compass capability, you'll need to enable
the I2C library on Raspberry Pi Zero. To enable this bus, run sudo
raspi-config and select 9 Advanced Options, as follows:

2. Then go to the A7 I2C selection and enable the I2C, as shown in
the following screenshot:

3. Select Yes to enable the I2C interface, as shown in the following
screenshot:

4. Select OK on the next screen, then Yes on the screen that asks

whether you want the I2C kernel module loaded by default, as
shown:

5. Select OK to return to the main selection, then exit and reboot
your Raspberry Pi Zero.

Now you can sense whether the device is connected. Install the I2C
toolkit by typing sudo apt-get install i2c-tools. You can see
whether I2C is enabled by typing sudo i2cdetect -y 1 and then you
should see something similar to the following screenshot:

You can see the device at 1e. Now you can communicate with your
digital compass. Here are the steps:

1. You'll need to create a Python program. Before you create your
Python code, you need to install the SMBus capability to access
I2C. This can be done by typing sudo apt-get install python-
smbus.

2. Now reboot Raspberry Pi; you can use the smbus library ability to
read and write from your I2C device. Fortunately, in this case the
device comes with some example code on how to configure the
device and then read a value's. Here is an example of a Python
code:

Run the code by typing python compass.py and you should see the
following output:

As you move the device around, you should see this value change to
reflect the device's compass direction.

This is just an example of how to connect an I2C device. There are a
number of different other devices that can be connected to the GPIO
bus of Raspberry Pi Zero.

Summary
That's it! You've completed your very first hardware project. You
should now feel at least a little comfortable with Raspberry Pi Zero's
GPIO bus. In the next chapter, you'll learn how to create a Raspberry
Pi Zero controlled car.

Chapter 4. Building and
Controlling a Simple Wheeled
Robot
You should now be familiar with how to program your Raspberry Pi
Zero and how to communicate with the outside world with the GPIO.
Now, let's actually build a mobile project. Perhaps the easiest way to
make your projects mobile is to use a wheeled platform. In this
chapter, you will be introduced to some of the basics of manipulating
DC motors and using the Raspberry Pi Zero to control the speed and
direction of your wheeled platform.

In this chapter, you will learn how to perform the following actions:

Using the Raspberry Pi Zero GPIO to control a DC motor
Controlling your mobile platform programmatically using the
Raspberry Pi Zero
Implementing some simple path planning algorithms on the
Raspberry Pi Zero

The basic platform
You'll need to add some hardware, specifically a wheeled or tracked
platform, to make your project mobile. You're going to use a platform
that uses differential motion to propel and steer the vehicle. This
simply means that, instead of turning the wheels, you're going to vary
the speed and direction of the two motors that drive the wheels or
tracks. There are a lot of choices. Some come fully assembled while
others require some assembly; alternatively you can buy the
components and build your own custom mobile platform.

Let's look at a couple of the more popular units that come fully
assembled or can be assembled with simple tools (a screwdriver or

pliers). The simplest mobile platform is one that has two DC motors,
with each motor controlling a single wheel. On the wheeled platform,
there is a small wheel or ball in the front or at the back. Here is one
example of a wheeled platform, available at many online electronics
retailers:

Here is another simple wheeled platform, also sold by many online
electronics retailers:

This one also needs to be assembled but it is fairly straightforward.
You could also choose a tracked platform instead of a wheeled
platform. A tracked platform has more traction but is not as nimble, as
it takes a longer distance to turn. Again, manufacturers make pre-
assembled units. The following image is an example of a pre-
assembled tracked platform made by Dagu. It's called the Dagu Rover
5 Tracked Chassis:

As part of the platform, you'll need a mobile power supply for the
Raspberry Pi Zero and your vehicle. I personally like the external 5V
rechargeable cell phone batteries which are available at almost any
place that sells cell phones. These batteries can be charged using a
USB cable connected either through a DC power supply or directly
from a computer USB port, as shown in the following image:

You'll also need a USB cable to connect your battery to the Raspberry
Pi Zero. Now that you have the basic platform, you're ready to start
controlling it with the Raspberry Pi Zero.

There are two choices here and I'll walk you through both. Firstly, you
can use a chip called an H-bridge, plug it into your electronic
breadboard, and control the DC motors with connections to the GPIO
of the Raspberry Pi Zero. The second choice is to use a dedicated
motor controller board designed to connect directly onto the
Raspberry Pi Zero's GPIO pins. Let's cover the H-bridge option first.

Controlling an H-bridge
interface to the DC motors
The first step to make the platform mobile is to connect the Raspberry
Pi Zero to your H-bridge. This allows you to control the speed of each
wheel (or track) independently. Before you get started, let's spend
some time learning the basics of motor control. Whether you choose
the two-wheeled mobile platform or the tracked platform, the basic
movement control is the same. The unit moves by engaging the
motors. If the desired direction is straight ahead, the motors are run at
the same speed. If you want to turn the unit, the motors are run at
different speeds. The unit can turn in a circle if you run one motor
forwards and the other one backwards.

The DC motors are fairly straightforward devices. The speed and
direction of the motor is controlled by the magnitude and polarity of the
voltage applied to its terminals. The higher the voltage, the faster the
motor will turn. If you reverse the polarity of the voltage, you can
reverse the direction in which the motor turns.

The magnitude and polarity of the voltage are not the only important
factors when you think about controlling the motors. The power that
your motor can apply to move your platform is also determined by the
voltage and the current supplied to its terminals.

There are GPIO (short for general purpose input-output) pins on the
Raspberry Pi Zero that you can use to control the voltage and drive
your motors. These GPIO pins provide direct access to some of the
control lines available from the processor itself. However, the unit
cannot obtain enough current and your motors will not be able to
generate enough power to move your mobile platform. This can also
cause physical damage to your Raspberry Pi Zero board.

You can, however, connect your Raspberry Pi Zero to the DC motors
by using an H-bridge DC motor controller. An H-bridge is a fairly

simple device. It basically consists of a set of electronic switches and
provides the additional functionality of allowing the direction of the
current to be reversed so that the motor can be run in either forward or
reverse directions.

Let's start this example by building the H-bridge circuit and controlling
just one motor. To do this, you need to get an H-bridge. One of the
most common options is the L293 dual H-bridge chip. This chip allows
you to control the direction of the DC motors. These are available at
most electronics stores and online. Once you have your H-bridge,
build the circuit as shown in the following image with the Raspberry Pi
Zero, the motor, the jumper wires, a 4AA battery holder, and a
breadboard:

Also, before you start connecting wires, here is an image of the GPIO
pins on the Raspberry Pi Zero board:

You need to connect these pins on the Raspberry Pi Zero GPIO to the
pins on the H-bridge, as shown in the following table:

Raspberry Pi Zero
GPIO pin H-bridge pin

4 (5V) 1 (Enable pin)

13 (GPIO 27) 2 (Forward)

15 (GPIO 22) 7 (Backward)

4 (5V) 11 (Enable 2)

38 (GPIO 6) 10 (Forward)

40 (GPIO 13) 15 (Backward)

6 (GND) 4, 5, 12, 13 (GND)

2 (5 Volts) 16 (VCC)

Battery positive
terminal 8 (Vc)

Battery negative
terminal

GND (connect to the same GND as previous
GND pins)

Once you have the connections, you can test the system. To make
this all work, you need to add some code, which we will see in the
next section.

Controlling your mobile platform
programmatically using the
Raspberry Pi Zero
Now that you have your basic motor controller functionality up and
running, you need to connect both motor controllers to the Raspberry
Pi Zero. This section will cover this and also show you how to control
your entire platform programmatically.

You are going to use Python in your initial attempts to control the
motor. It is very straightforward to code, run, and debug your code in
Python. The first Python program you are going to create is shown in
the following screenshot:

Perform the following steps to create this program:

To create this program, create a directory called dcmotor in your home
directory by typing mkdir dcmotor and then type cd dcmotor. Now,
open the file by typing emacs dcmotor.py (if you are using a different
editor, open a new file with the dcmotor.py name).

Now, enter the program. Let's go through the program step by step:

#!/usr/bin/python: This line lets you run the program without
having to type python before the filename. You'll learn how to do
this at the end of these instructions.
import RPi.GPIO as io: This lets you import the RPi library, which
allows you to control the GPIO pins.
io.setmode(io.BCM): This sets the specification mode of the GPIO
pins to Broadcom SOC channel (BCM) number. This means
that you will specify the GPIO numbers of the pins you want to
control instead of the actual physical pin values.
in1_pin1 = 27: This assigns the value 27 to the in1_pin1 variable.
in2_pin1 = 22: This assigns the value 22 to the in1_pin1 variable.
in1_pin2 = 20: This assigns the value 20 to the in1_pin1 variable.
in2_pin2 = 21: This assigns the value 21 to the in1_pin1 variable.
io.setup(in1_pin1, io.OUT): This sets GPIO pin 27 to an output
control.
io.setup(in2_pin1, io.OUT): This sets GPIO pin 22 to an output
control.
io.setup(in1_pin2, io.OUT): This sets GPIO pin 20 to an output
control.
io.setup(in2_pin2, io.OUT): This sets GPIO pin 21 to an output
control.
def forward():: This defines the forward function. You have to
turn on GPIO 27 and GPIO 20 and turn off GPIO 22 and GPIO
21.
io.output(in1_pin1, True): Output a 3.3 volt signal on in1_pin1
(this is GPIO 27).
io.output(in2_pin1, False): Output 0 volts on in2_pin1 (this is
GPIO 22).
io.output(in1_pin2, True): Output a high voltage on in1_pin2
(this is GPIO 20).
io.output(in2_pin2, False): Output 0 volts on in2_pin2 (this is
GPIO 21).
def reverse():: This defines the reverse function. You'll turn on
GPIO 22 and GPIO 21, and turn off GPIO 27 and GPIO 20.
io.output(in1_pin1, False): Output 0 volts on in1_pin1 (this is

GPIO 27).
io.output(in2_pin1, True): Output a high voltage on in2_pin1
(this is GPIO 22).
io.output(in1_pin2, False): Output 0 volts on in1_pin2 (this is
GPIO 20).
io.output(in2_pin2, True): Output a high voltage on in2_pin2
(this is GPIO 21).
def stop():: This defines the stop function. You set the level to 0
on the pins off GPIO 22, GPIO 21, GPIO 27, and GPIO 20.
io.output(in1_pin1, False): Output 0 volts on in1_pin1 (this is
GPIO 27).
io.output(in2_pin1, False): Output 0 volts on in2_pin1 (this is
GPIO 22).
io.output(in1_pin2, False): Output 0 volts on in1_pin2 (this is
GPIO 20).
io.output(in2_pin2, False): Output 0 volts on in2_pin2 (this is
GPIO 21).
while True:: This performs loops over and over. You can stop the
program by pressing Ctrl + C.
cmd = raw_input("Enter f (forward) or r (reverse) or s

(stop): "): Enter a character for what you want the robot to do.
direction = cmd[0]: Take only the first character of the input.
if direction == "f":: If the direction is "f", then execute the
next statement.
forward(): Execute the forward function.
if direction == "r":: If the direction is "f", then execute the
next statement.
reverse(): Execute the reverse function.
if direction == "s":: If the direction is "f", then execute the
next statement.
stop(): Execute the stop function.

You can now run your program. In order to do this, type sudo python
./dcmotor.py. When you enter f, the motors should run forward; with r
they should run backward; and with s, they should stop. You can now
control the motor with Python. Additionally, you may want to make this
program available to run from the command line. Type chmod +x

dcmotor.py. If you now type ls (list programs), you'll see that your
program is now green, which means that you can execute it directly.
Now you can type sudo ./dcmotor.py and the program will run.

Now that you know the basics of commanding your mobile platform,
feel free to add even more functions and commands to make your
mobile platform move in different ways. Running just one motor will
make the platform turn, as will running both motors in opposite
directions.

Controlling the speed of your
motors with PWM
The previous example either turned the motors on to full speed or
turned them off. You may want to configure your motors to run at
different speeds. This can be done by using Pulse Width Modulation
(PWM) to adjust the speed. PWM simply defines a way of changing
the voltage of the signal by sending a series of pulses of equal value
and changing the width of each pulse. The wider the pulse, the higher
the average voltage delivered to the receiver. The DC motors that you
are using respond to this higher average voltage by spinning faster.

The Raspberry Pi Zero GPIO can create PWM signals. The code
snippet to do this is shown in the following screenshot:

The following is an explanation of the lines of code that you just
added:

io.setup(in2_pin1, io.OUT): This sets GPIO 27 to an output.
p1 = io.PWM(in1_pin1, 50): Instead of just on or off settings, this
PWM setting allows the programmer to set the relative width of

the pulse. This initializes this functionality on GPIO 27.
p1.start(0): This starts the pulses on p1, GPIO 27, with a pulse
width of 0 percent, or off.
io.setup(in2_pin1, io.OUT): This sets GPIO 22 to an output.
p2 = io.PWM(in2_pin1, 50): This initializes this functionality on
GPIO 22.
p2.start(0): This starts the pulses on p2, GPIO 22, with a pulse
width of 0 percent, or off.
io.setup(in1_pin2, io.OUT): This sets GPIO 20 to an output.
p3 = io.PWM(in1_pin2, 50): This initializes this functionality on
GPIO 20.
p3.start(0): This starts the pulses on p3, GPIO 20, with a pulse
width of 0 percent, or off.
io.setup(in2_pin2, io.OUT): This sets GPIO 21 to an output.
p4 = io.PWM(in2_pin2, 50): This initializes this functionality on
GPIO 21.
p4.start(0): This starts the pulses on p3, GPIO 21, with a pulse
width of 0 percent, or off.
def forward(50):: This function moves the unit forward by setting
the pulse width in a forward direction to 50 percent.
p1.start(50): This sets the value of p1 (GPIO 27) to 50 percent
on and 50 percent off. This should result in the motor running
forward at half speed.
p2.start(0): This sets the value of p2 (GPIO 22) to 0 percent.
This effectively turns this pin off.
p3.start(50): This sets the value of p3 (GPIO 20) to 50 percent
on and 50 percent off. This should result in the motor running
forward at half speed.
p4.start(0): This sets the value of p4 (GPIO21) to 0 percent. This
effectively turns this pin off.
def reverse(50):: This function moves the unit in reverse by
setting the pulse width in the reverse direction to 50 percent.
p1.start(0): This sets the value of p1 (GPIO 27) to 0 percent.
This effectively turns this pin off.
p2.start(50): This sets the value of p2 (GPIO 22) to 50 percent
on and 50 percent off. This should result in the motor running in
reverse at half speed.

p3.start(0): This sets the value of p3 (GPIO 20) to 0 percent.
This effectively turns this pin off.
p4.start(50): This sets the value of p4 (GPIO21) to 50 percent on
and 50 percent off. This should result in the motor running in
reverse at half speed.
def stop():: This function sets all PWM signals to 0 percent,
effectively stopping the motors.
p1.start(0): This sets the value of p1 (GPIO 27) to 0 percent.
This effectively turns this pin off.
p2.start(0): This sets the value of p2 (GPIO 22) to 0 percent.
This effectively turns this pin off.
p3.start(0): This sets the value of p3 (GPIO 20) to 0 percent.
This effectively turns this pin off.
p4.start(0): This sets the value of p4 (GPIO 21) to 0 percent.
This effectively turns this pin off.

The rest of the program is the same as the first dcmotor.py file.
Running this program should result in the unit running at half the
speed of the first program. You can easily change this speed by
changing the value sent to the various start functions.

You can also control the DC motors by using a DC motor controller to
connect to the Raspberry Pi Zero directly. For example, Pololu, who
can be found at https://www.pololu.com/, make the DRV8835 Dual
Motor Driver Kit for the Raspberry Pi. Another option is the
RasPiRobot Board V2 available at http://www.monkmakes.com/. For
this example, we will use the RasPiRobot Board V2.

https://www.pololu.com/
http://www.monkmakes.com/

Using a motor controller board
to control the DC motors
To build this project, you'll start by installing the motor controller board
on top of the Raspberry Pi Zero, like this:

The board provides the drive signals for the DC motors on the vehicle.
You can also turn the vehicle by driving each motor separately. You
can change the vehicle's direction and make very sharp turns by
reversing the signals. The following steps show how to connect the
motor control board:

1. Connect the battery power connector to the power connector on
the board. Use a 6 to 7.4 volts battery; you can either use a 4 AA
battery holder or a 2S LiPo RC battery. Connect the ground and
power wires to the motor control board as shown:

2. Next, connect one of the drive signals to the motor 1 connector on
the board. Connect motor 1 to the right motor and motor 2 to the

left, as shown:

3. Then, connect the second drive connector to the motor 2

connector on the board. The entire set of connections should look
like this:

Now you are ready to drive your vehicle using the Raspberry Pi Zero.

Controlling the vehicle using the
Raspberry Pi Zero in Python
The first step to take advantage of the functionality is to install the
library associated with the control board, which can be found at
http://www.monkmakes.com/?page_id=698. You need to connect your
Raspberry Pi Zero to the Internet with either a wired or WLAN
connection. Issue the following commands in a terminal window on
your Raspberry Pi Zero:

1. Type wget
https://github.com/simonmonk/raspirobotboard2/raw/master/python/dist/rrb2-

1.1.tar.gz: This will download the library to your Raspberry Pi.
2. Type tar -xzf rrb2-1.1.tar.gz: This unarchives the library.
3. Type cd rrb2-1.1: This changes directory to the location of the

files.
4. Type sudo python setup.py install: This installs the libraries.

Now that you have the library code installed, you need to create some
Python code that will allow you to access the two motors. The first part
of the code should look as follows:

http://www.monkmakes.com/?page_id=698

The second part of the code that drives the two different motors,
based on whether you want to go forwards, backwards, or turn right or
left, is as follows:

The rr.set_motors() function allows you to specify the speed and
direction of each motor independently. This program takes in a single
character and then sends a command to the motors. f moves the
vehicle forward, b moves it backward, l turns it left, r turns it right, and
s stops the vehicle.

Now that you have the basic code to drive your tracked vehicle, you
can modify it so that each action is contained in a function. In that

way, you can call these functions from another Python program. You
also need to add calibrated movement so that your tracked vehicle is
able to turn at a certain angle and move forwards a set distance. The
following example is what the code should look like:

The time.sleep(angle/20) command in the turn_right(angle) and
turn_left(angle) functions allows the tracked vehicle to move for the
right amount of time so that the vehicle moves through the desired
angle. You may need to modify this number to get the correct angle of
movement. The time.sleep(value) command moves the robot for a

specific amount of time, based on the number given in the value.

If you have chosen to use the RasPiRobot Board V2 you can also use
its special connections and libraries to connect the HC-SR04 sonar
sensor. Here is a picture of the special connector on the board:

To use this connector, simply connect the VCC to the 5V, the Trig to
the T connection, the Echo to the E connector, and the GND to the
GND connection. You can then use the library for the motor controller
board and simply call the function rr.get_distance(). Similarly, there
is also a special connector and libraries for the I2C interface, if you
want to add the compass to your mobile project.

Planning your path
Now that you have a wheeled or tracked vehicle, you may want to do
some basic path planning. To do this, you need a framework to
understand where your robot is and determine the location of the goal.
One of the most common frameworks is an x-y grid. The following
diagram is an example of this type of grid:

There are three key points on this grid that you need to understand.
Here is an explanation of them:

The lower left point is a fixed reference position. The directions x
and y are also fixed and all other positions are measured in
relation to this position and these directions. Each unit is
measured with regards to how far the unit travels in time in a
single unit.
Another important point is the starting location of your robot. Your
robot will then keep track of its location using its x and y
coordinates, the position with respect to some fixed reference
position in the x direction, or the position with respect to some
fixed reference position in the y direction to the goal. It uses the
compass to keep track of these directions.
The third important point is the position of the goal, also given in

the x and y coordinates with respect to the fixed reference
position. If you know the starting location and angle of your robot,
you can plan an optimum (the shortest distance) path to this goal.
To do this, you can use the goal location, the robot location and
some fairly simple math to calculate the distance and angle from
the robot to the goal.

To calculate the distance, use the following equation:

You use this equation to tell your robot how far to travel to reach the
goal. A second equation tells your robot the angle at which it needs to
travel:

Note
If you'd like a tutorial on the basic math of path planning, see
https://www.khanacademy.org/math/trigonometry/trigonometry-
right-triangles.

Here is the graphical representation of these two pieces of
information:

https://www.khanacademy.org/math/trigonometry/trigonometry-right-triangles

Now that you have a goal angle and distance, you can program your
robot to move. To do this, you need to write a program to do the path
planning and call the movement functions that you created earlier in
the chapter. You need to know the distance that your robot will travel
in a certain period of time so that you can tell your robot in time units,
rather than distance units, how far to travel.

You also need to be able to translate the distance that might be
covered by your robot in each time unit that you run the motor. If you
know the angle and distance, you can move your robot towards the
goal by turning the robot and then running it forward for a certain time.

Here are the steps that you need to follow:

1. Calculate the distance in units that your robot will travel to reach
its goal. Convert this into a number of time units to realize this
distance.

2. Calculate the angle at which your robot will need to travel to reach
its goal. You need to use the compass and your robot's turn
functions to turn and achieve this angle.

3. Now, call the step function a specified number of times to move
your robot in the correct distance.

That's it. Now you can use some very simple Python code to execute
these steps using the functions to move the robot forwards and turn it.
In this case, it makes sense to create a file called robotLib.py with all
the functions that do the actual servo settings to move the wheeled
robot forwards and turn the robot. You then import these functions
using the from robotLib import * statement so that your Python
program can call these functions. This makes the path planning
Python program much smaller and more manageable.

For more information on how to import functions from one Python file
to another, refer to
http://www.tutorialspoint.com/python/python_modules.htm.

Here is a screenshot of the program:

http://www.tutorialspoint.com/python/python_modules.htm

In this program, the user determines the goal location and the robot
decides on the shortest direction to the desired location by reading the
angle. To make it simple, the robot is positioned in the grid, heading in
the direction of an angle of 0 degrees. If the goal angle were less than
180 degrees, the robot would turn right. If it were greater than 180
degrees, the robot would turn left. The robot turns until the desired
angle and the measured angle are within a few degrees of each other.
Then, the robot takes the number of steps to reach the goal. As an
additional challenge, you could add a loop to measure the actual
angle and stop it when it reaches the target angle.

Summary
This chapter provided you with an opportunity to create a mobile
platform for your Raspberry Pi Zero. You can add the sonar sensor or
the compass from Chapter 3, Accessing the GPIO Pins on Raspberry
Pi Zero to give it even more functionality. In the next chapter, you'll
learn how to build a Raspberry Pi Zero platform robot with legs, an
even more flexible mobile platform.

Chapter 5. Building a Robot That
Can Walk
Now that you are familiar with robots that can navigate using tracks or
wheels, let's build one that can walk. Walking robots are interesting as
they can navigate the terrain where wheeled or tracked vehicles can't
go. They also provide advanced functions where the robot can use
their legs for purposes other than walking.

In this chapter, you will build the basic quadruped platform. To do this
you will learn:

How servos work
How to use the Raspberry Pi to control lots of servos using a
servo controller
Creating complex movements out of simple servo commands

Robots that can walk
In this chapter, you'll build a quadruped robots. You'll be using 12
servos so that each leg has three points that can move, or three
Degrees of Freedom (DOF). In this project, you'll control 12 servos at
the same time; so it makes sense to use an external servo controller
that can supply the control signals and supply voltages for all 12
servos. Since servos are the main component of this project, it will
perhaps be useful to go through a tutorial on servos and learn how to
control them.

How servo motors work
Servo motors are similar to DC motors; however, there is an important
difference. While DC motors are generally designed to move in a
continuous way—rotating 360 degrees at a given speed—servos are
generally designed to move in a limited set of angles. In other words,
in the DC motor world, you generally want your motors to spin with a
continuous rotation speed that you control. In the servo world, you
want your motor to move to a specific position that you control. This is
done by sending a Pulse-Width-Modulated (PWM) signal on the
control connector of the servo. PWM simply means that you are going
to change the length of each pulse of electrical energy in order to
control something. In this case, the length of this pulse will control the
angle of the servo, as shown:

These pulses are sent out with a repetition rate of 60 Hz. You can
position the servo at any angle by setting the correct control pulse.

Building the quadruped platform
You'll first need some parts, so you can build your quadruped robot.
There are several kit possibilities out there, including at
http://www.trossenrobotics.com/p/PhantomX-AX-12-Quadruped.aspx.
However, such kits can be expensive; so for this example, you'll
create your own kit using a set of Lynxmotion parts. These are
available with several on-line retailers, such as
http://www.robotshop.com/. To build this quadruped, you'll need two
sets each of the two leg parts and then one set each of a body. Here
are the parts with their Robotshop part number:

Quantity Description

1 Lynxmotion Symmetric Quadrapod Body Kit - Mini QBK-02

2 Lynxmotion 3'' Aluminum Femur Pair

2 Lynxmotion Robot Leg "A" Pair (No Servo) RL-01

4 Lynxmotion Aluminum Multipurpose Servo Bracket Two
Pack ASB-04

2
Ball Bearing with Flange - 3mm ID (pair)

Product Code: RB-Lyn-317

http://www.trossenrobotics.com/p/PhantomX-AX-12-Quadruped.aspx
http://www.robotshop.com/

The last part is not a Lynxmotion part but a bearing that you'll need to
connect the legs to the body.

You'll also need 12 standard-size servos. There are several possible
choices, but I personally like the Hitec servos. They are very
inexpensive servos that you can get at most hobby shops and on-line
electronics retailers. Now its time to get to know some details about
the selection of the model of servo. Servos come in different model
numbers, primarily based on the amount of torque they can generate.

Torque is the force that the servo can exert to move the part
connected to it. In this case, your servos will need to lift and move the
weight associated with your quadruped, so you'll need a servo with
enough torque to do this. In this case, I suggest you use eight model
HS-485HB servos. You'll use these for the servos attached to the end
of the leg and for the body. Then you'll use four model HS-645MG
servos for the middle of the leg; this is the servo that will require the
highest amount of torque. You can also just use twelve HS-645MG
servos, but they are more expensive than the HS-485, so using the
two different servos will be less expensive.

The following are the steps to assemble the quadruped:

1. Put the lower part of the right leg together; it should look like the
following image:

2. Now connect this assembly to an interconnecting piece, as
shown:

3. Complete the leg by connecting two of the servo brackets
together at right angles, mounting the HS-645MG onto one of the
brackets, and then connecting this servo to the interconnecting
piece, as shown:

4. Put the other right leg together.
5. Now put the two left legs together by following the preceding

steps, but in left leg configuration. They look similar to the
following image:

6. The next step is to build the body kit. You can find the instructions
at http://www.lynxmotion.com/images/html/sq3u-assembly.htm.

7. Now connect each leg to the body kit. Here is a picture of the
body kit:

http://www.lynxmotion.com/images/html/sq3u-assembly.htm

8. Now, connect the servo to the empty servo bracket and the body
as shown:

Your quadruped should now look similar to the following image:

Now that you have the basic hardware assembled, you can turn your
attention to the electronics.

Using a servo controller to
control the servos
To make your quadruped walk, you first need to connect the servo
motor controller to the servos. The servo controller you are going to
use for this project is a simple servo motor controller using USB from
Pololu: Pololu item number 1354, available at https://www.pololu.com/,
which can control 18 servo motors. Here is an image of the unit:

Make sure you order the assembled version. This piece of hardware
will turn the USB commands from the Raspberry Pi Zero into signals
that control your servo motors. Pololu makes a number of different
versions of this controller; each version can control a certain number
of servos. In this case, you may want to choose the 18-servo version,
so you can control all 12 servos with one controller and also add an
additional servo to control the direction of a camera or sensor; you can
also choose the 12-servo version. One advantage of the 18-servo

https://www.pololu.com/

controller is the ease of connecting power to the unit via screw-type
connectors.

There are two connections that you'll need to make to the servo
controller to get started: the first to the servo motors, the second to a
battery.

First, connect the servos to the controller. In order to be consistent,
let's connect your 12 servos to the connections marked 0 through 11
on the controller using the following configuration:

Servo connector Servo

0 Right front lower leg

1 Right front middle leg

2 Right front upper leg

3 Right rear lower leg

4 Right rear middle leg

5 Right rear upper leg

6 Left front lower leg

7 Left front middle leg

8 Left front upper leg

9 Left rear lower leg

10 Left rear middle leg

11 Left rear upper leg

Here is an image of the back of the controller; this will tell us where to
connect our servos:

Now you need to connect the servo motor controller to your battery.

For this project, you can use a 2S RC LiPo battery. The 2S means
that the battery will have two cells, with an output voltage of 7.2 volts.
It will supply the voltage and current needed by your servos, which
can be in the order of 2 amps, as shown in the following image:

This battery will come with two connectors, one with larger gauge
wires for normal usage and a smaller connector to connect to the
battery recharger. You'll want to build connectors that can connect to
the screw-type connectors of the servo controller. I purchased a few
XT60 connector pairs and soldered some wires to the mating
connector of the battery and then screwed these into the servo
controller.

Your system is now functional. Now you'll connect the motor controller
to your personal computer to check whether you can communicate
with it. To do this, connect a mini USB cable to the servo controller
and your personal computer. I'll detail the directions with a PC, but you
can also do this step with a Mac or Linux. You can find the details at
https://www.pololu.com/docs/0J40.

https://www.pololu.com/docs/0J40

Communicating between the
servo controller and a PC
Now that the hardware is connected, you can use some software
provided by Pololu to control the servos. Let's do this using your
personal computer. First, download the Pololu software from
www.pololu.com/docs/0J40/3.a and install it based on the instructions
on the website. Once it is installed, run the software and you should
be able to see this screen:

You will first need to change the configuration in Serial Settings, so
select the Serial Settings tab, and you should see this:

http://www.pololu.com/docs/0J40/3.a

Make sure that USB Chained is selected; this will allow you to
connect and control the motor controller over USB. Now go back to
the main screen by selecting the Status tab; now you can actually turn
on the 12 servos. The screen should look like this:

You can now use the sliders to actually control the servos. Make sure
that servo 0 moves the right front lower servo, 1 the right front middle
servo, 2 the right front upper servo, and so on. You can also use this
to center the servos. Set all the servos so that the slider is in the
middle. Now, unscrew the servo horn on each servo until the servos
are centered at this location. At the zero location for all of your servos
your quadruped should look like this:

Your quadruped is now ready to actually do something. Now, you'll
need to send the servos the electronic signals they need to move your
quadruped.

Connecting the servo controller
to the Raspberry Pi Zero
You've checked the servo motor controller and the servos; you'll now
connect the motor controller to the Raspberry Pi Zero and make sure
that you can control the servos from it. Remove the USB cable from
the PC and connect it to the Raspberry Pi Zero. The entire system will
look similar to the following image:

The Raspberry Pi Zero is in the middle, the motor controller is to the
right, and the powered hub to the left. The alligator clips below are
connected to a power supply; eventually you'll want to connect these
to a battery.

Let's now talk to the motor controller by downloading the Linux code
from Pololu at www.pololu.com/docs/0J40/3.b:

1. Perhaps the best way is to log on to your Raspberry Pi Zero
through PuTTY, then type wget
http://www.pololu.com/file/download/maestro-linux-

100507.tar.gz?file_id=0J315.
2. Then, move the file using mv maestro-linux-100507.tar.gz\?

file_id\=0J315 maestro-linux-100507.tar.gz.
3. Unpack the file by typing tar –xzfv maestro-linux-100507.tar.gz.
4. This will create a directory called maestro_linux. Go to that

directory by typing cd maestro_linux and then type ls -l; you
should see something similar to this:

The document README.txt will give you explicit instructions on how to
install the software. This is basically done in two steps:

http://www.pololu.com/docs/0J40/3.b

1. First, install a set of supporting libraries by typing sudo apt-get
install libusb-1.0-0-dev mono-runtime libmono-winforms2.0-

cil.
2. Then, copy the configuration file by typing sudo cp 99-

pololu.rules /etc/udev/rules.d/.

Unfortunately, you can't run Maestro Control Center on your
Raspberry Pi Zero because your version of Windows doesn't support
the graphics, but you can control your servos using the UscCmd
command-line application to ensure that they are connected and
working correctly.

First, type ./UscCmd --list and you should see the following:

The unit sees our servo controller. If you just type ./UscCmd, you can
see all the commands you can send to your controller:

Note that you can send a servo a specific target angle, although the
target is not in degrees of angle values so it makes it a bit difficult to
know where you are sending your servo.

Try typing ./UscCmd --servo 0, 10. The servo will move to its full
angle position.

Type ./UscCmd – servo 0, 0 and it will stop the servo from trying to
move.

In the next section, you'll write some Python code that will translate
your angles into commands that the servo controller will want to move
it to specific angle locations.

Note
If you didn't run the Windows version of Maestro Controller and set
the Serial Settings to USB Chained, your motor controller may

not respond. Rerun the Maestro Controller code and set the Serial
Settings to USB Chained.

Creating a program in Linux to
control your quadruped
You now know that you can talk to your servo motor controller and
move your servos. In this section, you'll create a Python program that
will let you talk to your servos to move them to specific angles.

Let's start with a simple program that will make your legged mobile
robot's servos go to 90 degrees (which should be somewhere close to
the middle of the 0 to 180 degrees you can set.) To access the serial
port, you'll need to make sure that you have the Python serial library. If
you don't, then type sudo apt-get install python-serial. After you
have installed the serial library, you can run your program by typing
sudo python quad.py.

This particular controller uses two bytes of information, so the code in
the setAngle function will translate the input of the channel and angle
into numbers that the controller can understand. For more specifics,
see http://www.pololu.com/docs/0J40. Here is the code:

http://www.pololu.com/docs/0J40

Here is an explanation of the code:

#! /usr/bin/python: This first line allows you to execute this
Python file from the command line.
import serial: This line imports the serial library. You need the
serial library to talk to your unit via USB.
def setAngle(ser, channel, angle):: This function converts your
desired setting for servo and angle into the serial command that
the servo motor controller needs.
ser = serial.Serial("/dev/ttyACM0", 9600): This opens the
serial port connection to your servo controller.
for i in range(0, 12):: This for loop will access each servo.
setAngle(ser, i, 90): Now, you can set each servo to the middle
(home) position. The default would be to set each servo to 90
degrees. If your legs aren't in their middle position, you can adjust
them by adjusting the position of the servo horns on each servo.

Once you have the basic home position set, you can now ask your
robot to do things. Let's start by making your quadruped wave. Here is
the Python code:

In this case, you are using the setAngle command to set your servos
to manipulate your robot's front-right arm. The middle servo raises the
arm and the lower survey then goes back and forth between angle
100 and 130 degrees.

One of the most basic actions you'll want your robot to take is to walk
forward. Here is an example of how to manipulate the legs to make
this happen:

This program lifts and then moves each leg forward, one at a time,
then moves all the legs to the home position, which moves the robot
forward. Not the most elegant, but it does work. There are more
sophisticated algorithms for walking with your quadruped; see
http://letsmakerobots.com/node/35354 and
https://www.youtube.com/watch?v=jWP3RnYa_tw. Once you have the
program working, you'll want to package all your hardware onto the
mobile robot.

http://letsmakerobots.com/node/35354
https://www.youtube.com/watch?v=jWP3RnYa_tw

You can make your robot do many amazing things, such as walk
forward, walk backward, dance, and turn around; any number of
movements are possible. The best way to learn is to try new and
different positions with the servos.

Summary
You now have a robot that can walk! You can also add other sensors,
such as the ones you discovered for your wheeled robot, sensors that
can watch for barriers, or others that know the direction you are
moving in.

In the next chapter, you'll start on a new robot. You'll combine a
Raspberry Pi Zero with a toy robot and construct a project with the
ability to speak and respond to voice commands.

Chapter 6. Adding Voice
Recognition and Speech – A
Voice Activated Robot
You've started with some pretty basic projects but you can take the
concepts you have learned further by modifying robotic toys with the
Raspberry Pi Zero. One class of toys that are excellent candidates for
your projects are a set of robot toys by WowWee. You can purchase
these toys from the company at http://wowwee.com/ but you can also
find used versions of these toys on eBay for a significantly lower price.

In this chapter, you'll learn the following:

How to break into the toy and provide the control signals for your
project
How to send and receive voice commands to control the robot
How to interpret commands and initiate actions

There are several toys that have excellent possibilities. One such toy
is the WowWee Roboraptor. The following picture shows this robot:

http://wowwee.com/

Another option is the WowWee Robosapien. Here is a picture of this
one:

We will use this robot for the project, as it has more functionality and is
easier to modify.

Communication between the
Raspberry Pi Zero and the robot
You're going to connect to the internal serial bus so that you, not the
remote, can send commands. You'll add an Arduino to handle real-
time communication between the Raspberry Pi Zero and the robot.
Here are the steps:

1. Firstly, you need to disassemble the robot to get access to the

main controller board. To do this, lay the robot face down so that
you have access to the back. Remove the plate at the back by
unscrewing the four screws that hold it in place. Now, at the top of
the exposed board, you should see the main connector. The
following image is a close-up photograph of the connector:

There are only two wires that you are interested in. The first is the
black wire, which is the GND for the Robosapien system. The
second is the white wire. This is the serial connection that
controls the command for the Robosapien.

2. So, you're going to connect a wire to the black wire, but you need
both ends of the black wire to stay connected to the system. To
do this, strip off a bit of the insulation with a soldering iron and
then solder another wire at this point. The following image
illustrates this:

3. Now, snip the white wire and connect a wire to the end that is
connected to the white header connector, as shown in this image:

You may want to add some heat-shrink tubing to cover your
connections.

4. Finally, drill a hole in the back shell of the robot so that you can
run both of these cables out of the unit, as shown in the following
image:

5. This picture also shows two more holes on either side of the shell,
which you can use together with cable ties to attach the
Raspberry Pi to the robot. Now you can put the shell back onto
the robot.

6. Now, you need to connect these two wires to the Arduino. There
are several versions of the Arduino that work but the most
common one is the Arduino Uno. If you use a different Arduino
with a different time, the delay constant in the Arduino code may
need adjusting. The reason that you need to use an Arduino is
that the bit patterns that are sent to the robot are sent at a fairly
high rate and need to be created by a processor dedicated to this
type of real-time communication. This allows the Raspberry Pi
Zero to perform other processor-intensive activities, such as
speech, while keeping the communication flowing at the correct
rate.

Note

For specifics on how to use the development environment of
the Arduino family of processors, visit https://www.arduino.cc.
For information on how to use the Raspberry Pi to create and
upload programs to the Arduino, refer to
http://www.instructables.com/id/Arduino-On-Pi/ or
https://www.youtube.com/watch?v=wCxQrW96jTM.

7. Connect the GND wire to one of the GND pins on the Arduino.
Then, connect the other wire to pin 9 on the Arduino. These
connections should look similar to the following picture:

8. The final step is to get the code to send the correct commands to
the Arduino board. The code for this book is available in the
PacktPub code download section or at
http://playground.arduino.cc/Main/RoboSapienIR. This Arduino
code takes an input from the Serial Monitor, in this case a USB
connection from the Raspberry Pi Zero and turns it into the
appropriate command for the WowWee robot. Once you have
uploaded the code to the Arduino, either by using an external PC
or a Raspberry Pi Zero, you can use the Arduino IDE's Serial
Monitor capability to send individual letter commands and the

https://www.arduino.cc
http://www.instructables.com/id/Arduino-On-Pi/
https://www.youtube.com/watch?v=wCxQrW96jTM
http://playground.arduino.cc/Main/RoboSapienIR

robot should respond to these commands.

Note
If you are unfamiliar with the Arduino IDE application, Arduino is
well documented at https://www.arduino.cc/ which includes
instructions on how to upload the code and use the Serial Monitor
to communicate with the Arduino.

Now that the robot works, you can add the following Python program
to send the commands:

To run this program, type python argControl.py f and the robot will
respond to that command. To make this program executable without
the Python command, type chmod +x argControl.py and you will be
able to run the program by typing ./argControl.py f. You'll need this
later when you want to run this program from your voice control
program.

https://www.arduino.cc/

Giving your robot voice
commands
Now that your robot knows how to respond to the commands from the
Python program, you can add the ability to your robot to respond to
voice commands. You'll also make your robot speak, which will make
the robot more interactive.

To add these capabilities to your robot, you need to add some new
hardware. This project requires a USB microphone and speaker
adapter. You need the following three pieces of hardware:

A USB device to be able to plug in a microphone and speaker;
one that works well is Sabrent USB External Stereo Sound
Adapter for Windows and Mac, as shown here:

A microphone that can plug into the USB device; any such device
might work, like the one shown here:

A powered speaker that can plug into the USB device; any device
that can plug into your USB adapter would work, such as
something similar to what is shown here:

Fortunately, these devices are inexpensive and widely available. Make
sure that the speaker is powered because your board will generally
not be able to drive a passive speaker with enough power for your
applications. The speaker can use either internal battery power or can
get its power from a USB connection.

Now, we move on to getting the Raspberry Pi Zero to access these
devices. You can follow these instructions in either of the two following
ways:

If you are still connected to the display, keyboard, and mouse, log
in to the system and use the GUI by opening a terminal window
If you are only connected through LAN, you can do all this by
using an SSH terminal window; as soon as your board indicates
that it has power, open up an SSH terminal window using PuTTY
or any similar terminal emulator

Plug the devices into a USB port. Once the terminal window comes
up, type cat /proc/asound/cards. You will get the following response:

There are two possible audio devices that you can use. The first is the
internal Raspberry Pi audio, which is connected to the audio port, and
the second is the USB audio plugin. You could use the USB audio
plugin to record the sound and the Raspberry Pi for the audio output
to play the sound, though it is easier to just use the USB audio plugin
to create and record sound.

Firstly, you need to play some music to test whether the USB sound
device is working or not. You need to configure your system to search
for your USB audio plugin and use it as the default plugin to play and
record sound. To do this, you need to add a couple of libraries to your
system. The first libraries are the Advanced Linux Sound
Architecture (ALSA) libraries. These will enable the sound on the
Raspberry Pi if you perform the following steps:

1. Install two libraries that are associated with ALSA by typing sudo
apt-get install alsa-base alsa-utils.

2. Then, install those files that help to provide the sound library by
typing sudo apt-get install libasound2-dev.

You'll use an application named alsamixer to control the volume of
the input and output of your USB sound card. To do this, perform the
following steps:

1. Type alsamixer at the command prompt. You will see a screen
similar to the following screenshot:

2. Press F6 and select your USB sound device by using the arrow
keys. This is demonstrated in the following screenshot:

3. C-Media USB Audio Device is my USB audio device. You should
now be able to see a screen that looks similar to the following
screenshot:

4. You can use the arrow keys to set the volume for both the
speakers and the microphone. Use the M key to un-mute the
microphone. In the preceding screenshot, MM is mute and oo is un-
mute.

5. Let's make sure that our system knows about our USB sound
device. At the command prompt, type aplay –l. You should now
be able to see the following screenshot:

If this does not work, try sudo aplay –l. You need to add a file to your
home directory called .asoundrc. This will be read by your system and
used to set your default configuration. To do this, perform the following
steps:

1. Open the file named .asoundrc using the editor of your choice.
2. Type pcm.!default sysdefault:Set. Set is the variable that

appears right after card 1: in the output of the aplay –l
command.

3. Save the file. The file should appear as follows:

This will tell the system to use your USB device as the default. Reboot
your system.

Now, you can play some music. To do this, you need a sound file and
a device to play it. You can copy a simple .wav file to your Raspberry
Pi Zero. If you are using a Linux machine as your host, you can also
use the scp command from the command line to transfer the file. You
can download music onto the Raspberry Pi Zero by using a web
browser if you have a keyboard, mouse, and display connected. You
use the application named aplay to play sound. Type aplay Dance.wav
to see whether you can play music using the aplay music player. You
will see the result (and hopefully hear it), as shown in the following
screenshot:

If you don't hear any music, check the volume level on alsamixer and
the speaker power cable; aplay can be a bit finicky about the types of
file it accepts, so you may be required to try different .wav files until
aplay accepts one. One more thing to try, if the system doesn't seem
to know about the program, is to type sudo aplay Dance.wav.

Now that you can play sound, you can also record sound. To do this,
you have to use the arecord program. At the prompt, type arecord -d
5 -r 48000 test.wav. This records the sound at a sample rate of
48000 Hz per 5 seconds. Once you have typed the command, either
speak into the microphone or make some other recognizable sound.
You will see the following output in the terminal:

Once you have recorded some audio, stop the recording by pressing
Ctrl + C. Once you have created the file, play it with aplay. Type aplay
test.wav and you should be able to hear the recording. If you can't
hear your recording, check alsamixer to make sure that your speakers
and microphone are both un-muted.

Now you can play music or other sound files using your Raspberry Pi.
You can change the volume of your speaker and record your voice or
other sounds on the system. You're now ready for the next step.

Using eSpeak to allow your
robot to respond with an audible
voice
Sound is an important tool in our robotic toolkit but you will want to do
more than just play music. Let's make our robot speak. You're going to
start by enabling eSpeak, an open source application that provides us
with a computerized voice. It is a voice generation application. To get
this free functionality, download the eSpeak library by typing sudo apt-
get install espeak at the prompt. The download may take a while but
the prompt will reappear when it is complete. Now, let's see if the
Raspberry Pi Zero has a voice. Type the espeak hello command. The
speaker should emit "hello" in a computer-generated voice. If it does
not, check the speakers and the volume level.

Now that we have a computer-generated voice, you may want to
customize it. eSpeak offers a complete set of customization features,
including a large number of languages, voices, and other options. To
access these, you can type in the options at the command-line
prompt. For example, type in espeak -v +f3 hello and you should be
able to hear a female voice. You can even add a Scottish accent by
typing espeak –v en-sc +f3 hello.

There are a lot of choices with respect to the voices that you can use
with eSpeak. This depends on your own preferences but you might
like a female voice with an English accent. Feel free to play around
and choose your favorite voice. Then, edit the default file to set it to
this voice. This default file is in the home directory of eSpeak.
However, don't expect to get the kinds of voice that you hear from
computers in the movies; those are actors and not computers.
However, one day, we will hopefully reach a stage when computers
will sound a lot more like real people.

Using pocketsphinx to accept
your voice commands
Now that your robot can talk, you'll also want it to obey voice
commands. This section shows you how to add speech recognition to
your robotic projects. This isn't nearly as simple as the speaking part
but, thankfully, you have some significant help from the open source
development community. You are going to download a set of
capabilities named pocketsphinx, which will allow our project to listen
to our commands.

The first step is downloading the pocketsphinx software.
Unfortunately, this is not quite as user-friendly as the eSpeak process,
so follow these steps carefully. There are two ways to do this. If you
have a keyboard, mouse, and display connected or want to connect
through vncserver, you can do this graphically by performing the
following steps:

1. Go to the Sphinx website hosted by Carnegie Mellon University
(CMU) at http://cmusphinx.sourceforge.net. This is an open
source project that provides you with speech recognition
software. With our smaller embedded system, we will use the
pocketsphinx version of this code.

2. You will need to download two pieces of software—sphinxbase
and pocketsphinx. Select the DOWNLOAD option at the top of
the page and then find the latest version of both of these
packages. Download the .tar.gz versions of the packages and
move them to the /home/pi directory of your Raspberry Pi.

Another way to do this is to use wget directly from the command
prompt of the Raspberry Pi. If you want to do it in this way, perform
the following steps:

1. To use wget on your host machine, find the link to the file that you
wish to download. In this case, go to the Sphinx website hosted

http://cmusphinx.sourceforge.net

by CMU at http://cmusphinx.sourceforge.net. This is an open
source project that provides you with the speech recognition
software. With your smaller embedded system, you will use the
pocketsphinx version of this code.

2. You will need to download two pieces of software, namely
sphinxbase and pocketsphinx. Select the DOWNLOAD option at
the top of the page and then find the latest version of both these
packages. Right-click on the sphinxbase-0.8.tar.gz file (as long
as 0.8 is the latest version) and select Copy link location. Now
open a PuTTY window in your Raspberry Pi and, after logging in,
type wget and paste the link that you just copied. This will
download the .tar.gz version of sphinxbase. Now, follow the
same procedure for the latest version of pocketsphinx.

Before you build these, you need another library. This library is called
Bison. This is a general purpose, open source parser that is used by
pocketsphinx. To get this package, type sudo apt-get install bison.

Once everything is downloaded and the libraries are installed, you can
untar and build pocketsphinx. To unpack and build the sphinxbase
module, type sudo tar –xzvf sphinxbase-0.y.tar.gz, where y is the
version number, which in this example is 8. This should unpack all the
files from the archive into a directory named sphinxbase-0.8. Now,
type cd sphinxbase-0.8. The listing of the files should look something
like the following screenshot:

http://cmusphinx.sourceforge.net

To build the application, start by issuing the sudo ./configure --
enable-fixed command. This command checks whether or not
everything is okay with the system and then configures a build.

Now you are ready to build the sphinxbase codebase. This is a two-
step process, which is as follows:

1. Type sudo make and the system will build all the executable files.
2. Type sudo make install to install all the executables onto the

system.

Now, you need to make the second part of the system—the
pocketsphinx code. Go to the home directory and decompress and
unarchive the code by typing tar -xzvf pocketsphinx-0.8.tar.gz.
Now, the files will be unarchived and you can build the code. Installing
these files is a three-step process, as follows:

1. Type cd pocketsphinx-0.8 to go to the pocketsphinx directory and
then type sudo ./configure to check whether or not you are ready
to build the files.

2. Type sudo make and wait for everything to build.

3. Type sudo make install.

Note
Other additions to our library installations will be useful later if you
are going to use the pocketsphinx capability with Python as the
coding language. You can install Python-Dev using sudo apt-get
install python-dev. Similarly, you can get Cython using sudo
apt-get install cython. You can also choose to install pkg-
config, a utility that sometimes helps in dealing with complex
compiles. Install it by using sudo apt-get install pkg-config.

Once the installation is complete, you need to let the system know
where your files are. To do this, use your favorite editor and change
the /etc/ld.so.conf file by adding a line to the file so that it looks as
follows:

Type sudo /sbin/ldconfig and the system will be aware of your
pocketsphinx libraries. Now that everything is installed, you can try out
the speech recognition. Reboot the system and type cd
/home/pi/pocketsphinx-0.8/src/programs to go to a directory to try a
demo program. Then, type ./pocketsphinx_continuous. For some
reason, I had to type sudo ./pocketsphinx_continuous, allow it to fail,
and then type ./pocketsphinx_continuous to make it work. This

program takes input from the microphone and turns it into speech.
After running the command, you'll get a lot of irrelevant information
and then you will see the following screenshot:

The INFO and Warning statements come from the C or C++ code and
are there for debugging purposes. Initially, they will warn you that they
cannot find your Mic and Capture elements but, when your Raspberry
Pi finds them, it will print out READY..... If you have set things up as
described previously, you are ready to give your Raspberry Pi a
command. Say "hello" into the microphone. When it senses that you
have stopped speaking, it will process your speech and, after giving
lots of irrelevant information, it will eventually show the commands, as
shown in the following screenshot:

Notice the 000000000: hello command. It recognized your speech!
You can try out other words and phrases too. The system is very
sensitive so it may pick up background noise. You will also see that it
is not very accurate. We'll deal with this in a moment. To stop the
program, press Ctrl + C.

There are two ways to make your voice recognition more accurate.
One is to train the system to understand your voice more accurately.
This is rather complex but if you want to know more, go to the CMU
pocketsphinx, website which was mentioned earlier in the chapter.

The second way to improve accuracy is to limit the number of words
that your system uses to determine what you are saying. The default
has literally thousands of word possibilities, so pocketsphinx may
choose the wrong word if the two words are similar in sound. To avoid
this, you can make your own dictionary to restrict the words that
pocketsphinx has to choose from. To create your own dictionary,
follow the instructions at
http://cmusphinx.sourceforge.net/wiki/tutorialdict.

Your system can now understand your voice commands! In the next

http://cmusphinx.sourceforge.net/wiki/tutorialdict

section of this chapter, you'll learn how to use this input to create a
response.

Interpreting commands and
initiating actions
Now that the system can both hear and speak, you'll want to provide
the robot with the ability to respond to your speech and execute
commands based on the speech input. Next, you're going to configure
the system to respond to simple commands.

In order to respond, we're going to edit the continuous.c code in the
/home/pi/src/programs directory. We could create our own C file but
this file is already set up in the make system and is an excellent
starting point. You can save a copy of the current file as
continuous.c.old so that you can always go back to the starting
program if required. Then, you need to edit the continuous.c file. It is
very long and a bit complicated. However, you are looking for a
specific section in the code, which is shown in the following
screenshot. Look for the /* Exit if the first word spoken was
GOODBYE */ comment line:

In this section of the code, the word has already been decoded and is
held in the hyp variable. You can add the code here in order to make
your system do things based on the value associated with the word
that we decoded. Firstly, let's try to add the ability to respond to hello
and goodbye commands to see whether or not we can get the
program to respond to these commands. You need to make changes
to the code in the following manner:

1. Find the /* Exit if the first word spoken was GOODBYE */
comment

2. In the statement if (strcmp(word, "goodbye") == 0), change
word to hyp and goodbye

3. Insert brackets around the break; statement and add the
system("espeak" \"good bye\""); statement just before the
break; statement

4. Add the other else if statement to the clause by typing else if
(strcmp(hyp, "hello") == 0). Add brackets after the else if
statement and, inside the brackets, type system("espeak
\"hello\"");

The file should now look as follows:

Now you need to rebuild your code. As the make system already knows
how to build the pocketsphinx_continuous program, it will rebuild the
application if you make a change to the continuous.c file at any point.
Simply type sudo make and the file will compile and create a new
version of pocketsphinx_continuous. To run your new version, type
./pocketsphinx_continuous. Make sure that you type ./ at the start.
Again, I had to type sudo ./pocketsphinx_continuous, allow it to fail,
and then type ./pocketsphinx_continuous to make it work.

If everything was set up correctly, saying "hello" should result in a
response of "hello" from your Raspberry Pi. Saying "goodbye" should
elicit a response of "goodbye" and also shut down the program. Note
that the system command can be used to run any program that runs
from a command line. Now you can use this program to start and run
other programs based on the commands. In this case, you need to
change the code shown to call your Python code to issue the
commands to the robot, as shown in the following screenshot:

In this case, you hook up only two of the very many commands that
your robot can respond to; you can add the rest of the commands to
your continuous.c file by using the same technique. Now, you can

give your robot voice commands and it will obey them! Using the
directions from the earlier section of this chapter, you can also control
your robot remotely using single character commands and add a
webcam. You have your very own robotic servant!

Summary
In this chapter, you've learned about the basics of hacking a toy robot
using a Raspberry Pi. Feel free to experiment; you can see how easily
you can play all sorts of games with your new toys. In the next
chapter, you'll learn how to build a remote control vehicle that can go
into a room and display what it sees back to a central location.

Chapter 7. Adding Raspberry Pi
Zero to an RC Vehicle
You've now built robots that can roll, walk, and respond to voice
commands. In this chapter, you'll modify an RC car to add Raspberry
Pi Zero to control the vehicle. Additionally, you'll add a webcam so that
you can see what your car is seeing remotely.

In this chapter, you'll learn the following topics:

How to modify an Xmods RC car using Raspberry Pi Zero
How to set break into the control circuitry of the car and use the
Raspberry Pi to control it
How to use wireless communication to add remote control to the
car
How to add a webcam so you can control your car via First
Person View (FPV)

Configuring and controlling an
RC car with Raspberry Pi Zero
In this project, you'll be working on a simple RC car, similar to the one
shown here:

This particular car is an Xmods car, originally sold by Radio Shack.
However, the best place to get them now is eBay. The advantage of
this particular set is that the inputs to the drive train and steering are
very easy to access.

The following image shows the car with its center control mechanism
exposed:

There are two connections that you will want direct access to. The first
is the drive motor, and the second is the steering mechanism. For this
particular model of RC car, the drive mechanism is in the rear. What
you are normally looking for is two wires that will directly drive the DC
motor of the car. In this system, there is a connector in the rear of the
car; it looks similar to the following image:

In the main control section of the car, you can see that there is a
connector that plugs into these two wires, in order to control the speed
of the car, as shown here:

Remove this plug and these wires; you'll use Raspberry Pi Zero and a
motor controller to provide the voltage to the drive system of the car.
The motor will run faster or slower based on the voltage that is applied
to these wires and the polarity of the voltage will determine the
direction. Raspberry Pi Zero will need to provide a positive or negative
6-volt signal to control the speed and direction of the car.

You'll also need to replace the control signals that go to the front of the
car for the steering. This is a bit more difficult. The following is the
connector that goes to the front of the car:

The five-pin connector that comes from the control module is shown in
the following image:

The trick is to determine how the wires control the steering. One way
to determine this is by opening up the unit. This is how it looks from
inside:

As you can see in the preceding image, the blue and yellow wires are
attached to a DC motor, and the orange, brown, and red wires are
attached to another control circuit. The motor will drive the wheels left
or right, the polarity of the voltage will determine the direction, and its
magnitude will cause the wheels to turn more or less sharply. The

orange, brown, and red wires are interesting, as their purpose is a bit
difficult to discover.

To do this, I used a voltmeter and an oscilloscope. The orange and
brown wires are straightforward; they are 3.5 volts and GND,
respectively. The red wire is a control wire; the signal is a Pulse
Width Modulation (PWM) signal. It is a square wave at 330 Hz and
10 percent duty cycle, and it enables the control signal. Without the
signal, the turning mechanism is not engaged. Now that you
understand the signals that are used in the original system to control
the car, you can replicate those with Raspberry Pi.

To control the steering, Raspberry Pi Zero needs to provide a 3.3-volt
DC signal, a GND signal, a 330 Hz, 3.3-volt PWM signal, and the +/-
6-volt drive signal to the turning mechanism. To make these available,
you can use the existing cables, solder some additional cable length
and use some shrink-wrap tubing to create a new connector with the
connector that is available in the car:

You'll also need access to the rear wheel compartment of your car to

drive the two rear wheels. The following is how the access will look:

You'll also need to connect the battery power to Raspberry Pi Zero.
Here is the modified connection to get the battery power from the car:

To control the car, you'll need to provide each of the control signals.
The + or - 6-volt signals cannot be sourced directly by Raspberry Pi
Zero. You'll need some sort of a motor controller to source the signal
to control the rear wheel drive of the car and the turning mechanism of
the car. The simplest way to provide these signals is to use a motor
shield, an additional piece of hardware that is installed on top of
Raspberry Pi Zero and can source the voltage and current to power

both of these mechanisms. The RaspiRobot Board V2 you used in
Chapter 4, Building and Controlling a Simple Wheeled Robot, can
provide these signals, as shown in the following image:

Note
Specifics on the board can be found at
http://www.monkmakes.com/?page_id=698.

The board will provide you with two key signals to your RC car, the
drive signal and the turn signal. You'll need one more additional
signal, the PWM signal that enables the steering control. The following
are the steps to connect Raspberry Pi to the board:

1. First, connect the battery power connector to the power connector
on the board, as shown in the following image:

http://www.monkmakes.com/?page_id=698

2. Next, connect the rear drive signal to the motor 1 connectors on
the board, as in the following image:

3. Connect the front drive connector to the motor 2 connectors on
the board, as shown in the following image:

4. Connect the 3.3-volt and GND connectors to the General
Purpose Input/Output (GPIO) pins of Raspberry Pi. Here is a
layout of these pins:

5. You'll use Pin1 3.3V for the 3.3-volt signal and Pin 9 GND for the
ground signal. You'll connect one of the GPIO pins so that you
can create the 320 Hz, 10 percent duty cycle signal to enable the

steering. Connect GPIO pin 18, pin 12, as shown in the following
image:

Now the hardware is connected.

Controlling the RC car in Python
The hardware is ready, now you can access all this functionality from
Raspberry Pi Zero. First, install the library associated with the control
board, found at http://www.monkmakes.com/?page_id=698 and
perform the following steps:

1. Run the command wget
https://github.com/simonmonk/raspirobotboard2/raw/master/python/dist/rrb2-

1.1.tar.gz. This will retrieve the library.
2. Then, run tar -xzf rrb2-1.1.tar.gz. This will unarchive the files.
3. Type cd rrb2-1.1. This will change the directory to the location of

the files.
4. Type sudo python setup.py install. This will install the files.

Now you'll create some Python code that will allow you to access both
the drive motor and the steering motor. The code will look similar to
the following screenshot:

http://www.monkmakes.com/?page_id=698

The specifics on the code are as follows:

import RPi.GPIO as GPIO: This will import the RPi.GPIO library,
allowing you to send out a PWM signal to the front steering
mechanism.
import time: This will import the time library, allowing you to use
the time.sleep(number_of_milliseconds), which causes a fixed
delay.
from rrb2 import *: This will import the rrb2 library, allowing you
to control the two DC motors. The rrb2 is the library you just
downloaded from GitHub.
pwmPin = 18: This will set the PWM pin to GPIO pin 18, which is
physical pin 12 on the Raspberry Pi.
dc = 10: This will set the duty cycle to 10 percent on the PWM
signal.
GPIO.setmode(GPIO.BCM): This will set the definition mode in the
RPi.GPIO library to the BCM mode, allowing you to specify the

GPIO numbers of the PWM signal.
GPIO.setup(pwmPin, GPIO.OUT): This will set the PWM pin to an
output so that you can drive the control circuitry on the steering.
pwm = GPIO.PWM(pwmPin, 320): This will initialize the PWM signal
on the proper pin and set the PWM signal to 320 Hz.
rr = RRB2(): This will create an instance of the motor controller.
pwm.start(dc):This will start the PWM signal.
rr.set_led1(1): This will light LED 1 on the motor controller
board.
rr.set_motors(1, 1, 1, 1):This will set both the motors to move
so that the vehicle goes in the forward direction. This command
will allow you to set the motors to forward or reverse and set it at
a specific speed. The first number is the speed of motor 1 and
goes from 0 to 1. The second number is the direction of motor 1,
where 1 is forward and 0 is reverse. The third number is the
speed of motor 2, which also goes from 0 to 1, and the fourth
number is the reverse and forward setting of the second motor,
either 1 or 0.
print("Loop, press CTRL C to exit"): This will instruct the user
how to stop the program.
while 1: This will keep looping until Ctrl + C is pressed.
time.sleep(0.075): Causes the program to wait for 0.075
seconds.
pwm.stop(): This will stop the PWM signal.
GPIO.cleanup(): This will clean up the GPIO driver and prepare
for shutdown.

Now you can run the program by typing sudo python xmod.py. When
you run this, the LED 1 on the control board should turn on, the rear
wheels should move in the forward direction, and the steering should
turn. This confirms that you have connected everything correctly. To
make this a bit more interesting, you can add more dynamic control of
the motors by adding some control code. The following is the first part
of the Python code:

Before you start, you may want to copy your Python code into a new
file; you can call it xmodControl.py. In this code, you'll have some
additional import statements; these will allow you to sense key
presses from the keyboard without hitting the enter key, this will make
the real-time interface seem more real time. The getch() function
senses the actual key press.

The rest of this code will look similar to the previous program. Now,
the second part of this code is as follows:

The second part of the code is a while loop that takes the input and
translates it into commands for your RC car, going forward and
backward and turning right and left. This program is quite simple; you'll
almost certainly want to add more commands that provide more ways
to control the speed and direction.

Accessing the RC car remotely
You can now control your RC car, but you certainly want to do this
without any connected cables. This section will show you how to add a
wireless LAN device so that you can control your car remotely. In
Chapter 1, Getting Started with Raspberry Pi Zero, you learned how to
access Raspberry Pi Zero from a host computer. However, for this to
work you need your Raspberry Pi Zero to be connected to a network,
either with a LAN cable or a wireless network. What if you want to
drive your car where there is no network, but still connect to it? You
can do this by making your Raspberry Pi Zero a wireless access point.

Setting up Raspberry Pi Zero as a WLAN access point depends upon
the USB WLAN adapter you choose; see http://elinux.org/RPI-
Wireless-Hotspot for some of the devices supported and how to
configure them. I chose the Edimax USB WLAN adapter, pictured
here:

http://elinux.org/RPI-Wireless-Hotspot

This device can be configured using the script found at
http://blog.sip2serve.com/post/48899893167/rtl8188-access-point-
install-script. Here are the steps:

1. Type wget
https://dl.dropboxusercontent.com/u/1663660/scripts/install-

rtl8188cus.sh. This gets the script content.
2. Type sudo chown root:root install-rtl8188cus.sh. This changes

the owner so that you can install the script.
3. Type sudo chmod 755 install-rtl8188cus.sh. This changes the

script's executable permission so you can execute it.
4. Finally, type sudo ./install-rtl8188cus.sh to run the script. This

runs the script and configures the device. You will be asked for
the name you want to use for the access point and the password.

http://blog.sip2serve.com/post/48899893167/rtl8188-access-point-install-script

This will pause and ask you if you want to continue to set up. Press y.

Now, you can connect your computer, tablet, or cell phone to the
wireless access point. Using a terminal emulator program, like PuTTY,

you can use the SSH protocol to access your device as described in
Chapter 1, Getting Started with Raspberry Pi Zero. You can then
execute your vncserver and run a vncviewer program on your remote
device.

Connecting a webcam
Now you are ready to observe the output of a USB webcam
connected to your car. This is quite straightforward; simply plug in a
USB webcam and download a video viewer. One such video viewer
that works well is guvcview. To install this, type sudo apt-get install
guvcview.

With all these tools installed, you can now run vncview. When you are
viewing the graphical screen of Raspberry Pi Zero type guvcivew –r 2
and you will be able to see the video from the webcam. You can
control your RC car remotely by running the xcmodControl.py program
that you wrote earlier. The screen will look similar to the following
screenshot:

You will notice that as you adjust the resolution down, the update rate
goes up; this is related to the size of the image. There are a lot of
additions that you can make to your Raspberry Pi controlled car, such
as adding the joystick control or more autonomy. However, let's move
on to the next project.

Summary
Now you know how to work with Raspberry Pi to add its capability to
an existing piece of hardware, in this case an RC car. In the next
chapter, you'll learn how to use Raspberry Pi Zero to build a robot that
can play rock, paper, or scissors.

Chapter 8. Playing Rock, Paper,
or Scissors with Raspberry Pi
Zero
You've now built several projects with Raspberry Pi Zero. Now, you'll
take some of these capabilities and add it to a new project, such as
the ability to see and determine what is going on around you using a
USB webcam and an open source library called OpenCV. In this
project, you'll control a robotic hand to play the classic decision-
making game; rock, paper, or scissors.

In this chapter, you will build a basic robotic hand and then use it to
play rock, paper, or scissors. In this chapter, you will learn:

How to use Raspberry Pi Zero to control servos that will control a
robotic hand
How to add a USB webcam to the project to "see" the world
around you
How to use OpenCV, an open source image processing library, to
determine whether the human opponent is showing rock, paper,
or scissors

A robotic hand
In this chapter, you'll build a human hand that has four fingers, a
thumb, and a rotating wrist. There are actually several possible robotic
hand configurations that you can purchase or build yourself. If you'd
like to purchase an already 3D printed hand, my personal favorite is
the hand that was designed by Christopher Chappelle and Easton
LaChappelle, available already 3D printed at
http://www.shapeways.com/product/Z5CZ2RKLY/3d-printed-hand-
right?li=search-results-1&optionId=42512474. Here is an image of the
hand:

http://www.shapeways.com/product/Z5CZ2RKLY/3d-printed-hand-right?li=search-results-1&optionId=42512474

If you have access to a 3D printer, you can also download and print
the hand yourself. Here is the link:
https://www.thingiverse.com/thing:288856. Once you have assembled
the hand, you'll need to add the servos to control the hand and the
wrist. To control the hand, you'll pull on five separate fishing lines that
come out of the hand. Here is an image of those fishing lines:

https://www.thingiverse.com/thing:288856

The hand is normally fully open. When you pull on the lines, each of
the digits of the hand closes. When you release the lines, rubber
bands on the back of each joint force the fingers and thumb back
open. You'll use the servos to control the fingers and thumb. For this
project, you'll only need three states: the fully-closed hand (rock), the
fully-open hand with the sideways wrist (paper), and the thumb, ring
finger and little finger closed with the index and pointer finger fully
open (scissors).

Here is an image of how to connect the fishing lines to a servo:

Connect each of the digits to a servo, and then connect the entire
hand to a bracket; this will act as the wrist. You'll also connect this to a
servo that can turn the wrist.

Moving the robotic hand
In order to move the servos, you'll use a servo controller similar to the
one introduced in Chapter 5, Building a Robot That Can Walk, to
control six servos that will control the fingers, thumb, and wrist. As in
Chapter 5, Building a Robot That Can Walk, the servo controller you
are going to use for this project is a simple servo motor controller
using the USB from Pololu. However, since you only need to control
five servos, you can order the six-servo controller version available at
https://www.pololu.com. Here is an image of the unit:

Make sure you order the assembled version. This piece of hardware
will turn the USB commands from the Raspberry Pi Zero into signals
that control your servo motors. There are two connections that you'll
need to make to the servo controller to get started: the first to the

https://www.pololu.com

servo motors and the second to a power source.

First, connect the servos to the controller. In order to be consistent,
let's connect your six servos to the connections marked 0 through 5 on
the controller, using this configuration:

Servo connector Servo

0 Thumb

1 Index finger

2 Middle finger

3 Ring finger

4 Little finger

5 Wrist

Here is an image of the back of the controller; this will tell us where to
connect our servos:

Now, you need to connect the servo motor controller to a power
source. For this project, you can use a battery but you can also use a
dedicated power supply. Here is an image of a dedicated power
supply, available at most on-line electronics outlets that can provide
approximately 3 amps at 6 volts, which you'll need for the project:

The connections on the power supply are clearly marked; you'll
connect the 6-volt power supply and GND connections to the
connections marked BAT on the servo controller.

Note
Be very careful with this kind of power supply, never work on the
wiring connected to the supply when the power supply is plugged
in, and it is best to place the power supply in a protective
enclosure after you have completed all the connections.

Your system is now functional. Now, you'll connect the motor
controller to your personal computer to check to see if you can
communicate with it as shown in Chapter 5, Building a Robot That
Can Walk. To do this, connect a mini USB cable between the servo

controller and your personal computer.

Now, you can use the sliders on the Pololu Maestro Control Center to
actually control the servos. Make sure that servo 0 moves the thumb,
1 the index finger front middle servo, 2 the right front upper servo, and
so on. You can also use this to calibrate the servos.

Set all of the servos so that the slider is on one side of the slider bar,
as you will want this to be the open setting. The setting on the other
side of the slider bar will pull the fishing line, and thus move the
associated finger or thumb to the closed setting. Now, unscrew the
servo horn on each servo until the servos are positioned so that the
open hand is at one end of the servo's movement. When the servos
move to the other end of the range, the hand should close.

Your hand is now ready to actually do something. Now, you'll need to
send the servos the electronic signals they need to signal rock, paper,
or scissors.

Connecting the servo controller
to the Raspberry Pi Zero
You've checked the servo motor controller and the servos; you'll now
connect the motor controller to the Raspberry Pi Zero and make sure
you can control the servos from it. Remove the USB cable from the
PC and connect it to the Raspberry Pi Zero.

Let's now focus on the motor controller by downloading the Linux code
from Pololu at www.pololu.com/docs/0J40/3.b. Perhaps the best way
is to log into your Raspberry Pi Zero through PuTTY, then type wget
http://www.pololu.com/file/download/maestro-linux-100507.tar.gz?

file_id=0J315. Then, move the file using mv maestro-linux-
100507.tar.gz\?file_id\=0J315 maestro-linux-100507.tar.gz.
Unpack the file by typing tar –xzfv maestro-linux-100507.tar.gz.
This will create a directory called maestro_linux. Go to that directory
by typing cd maestro_linux and then type ls -l; you should be able to
see something similar to this:

http://www.pololu.com/docs/0J40/3.b

The document README.txt will give you explicit instructions on how to
install the software. This is basically done in two steps. First, install a
set of supporting libraries by typing sudo apt-get install libusb-1.0-
0-dev mono-runtime libmono-winforms2.0-cil, then copy the
configuration file by typing sudo cp 99-pololu.rules
/etc/udev/rules.d/.

Unfortunately, you can't run Maestro Control Center on your
Raspberry Pi Zero, as your version of Windows doesn't support the
graphics, but you can control your servos using the UscCmd command-
line application to ensure that they are connected and working
correctly. First, type ./UscCmd --list and you should be able to see
the following:

The unit sees your servo controller. If you just type ./UscCmd, you can
see all the commands you could send to your controller:

Note that you can send a servo to a specific target angle, although the
target is not in degrees, so it makes it a bit difficult to know where you
are sending your servo. Try typing ./UscCmd --servo 0, 10. The servo
will move to its full angle position. Type ./UscCmd – servo 0, 0 and it
will stop the servo from trying to move. In the next section, you'll write
some Python code that will translate your angles in degrees to the
commands that the servo controller will want to see in order to move it
to specific angle locations.

Note
If you didn't run the Windows version of Maestro Controller and set
the Serial Settings to USB Chained, your motor controller may
not respond. Rerun the Maestro Controller code and set the Serial
Settings to USB Chained.

Creating a program on
Raspberry Pi Zero so that you
can control your hand
You now know that you can talk to your servo motor controller and
move your servos. In this section, you'll create a Python program that
will let you talk to your servos to move them to specific angles.

Let's start with a simple program that will position your hand so that
the servos are set to one end of the range (which should open the
hand) and then go the other end of the range (which should close your
hand). This program starts with the code you wrote in Chapter 5,
Building a Robot That Can Walk. Here is the basic code to control the
servos:

Here is an explanation of the code:

#! /usr/bin/python: This first line allows you to make this Python
file execute from the command line.
import serial: This line imports the serial library. You need the
serial library to talk to your unit via USB.
def setAngle(ser, channel, angle):: This function converts your
desired setting of servo and angle into the serial command that
the servo motor controller needs.
ser = serial.Serial("/dev/ttyACM0", 9600): This opens the
serial port connection to your servo controller.
for i in range(0, 12):: For each of the servos
setAngle(ser, i, 90): Now you can set each servo to the middle
position. This should open your fingers half way. If your hand isn't
in the middle position, you can adjust it by adjusting the position
of the servo horns on each servo.

To access the serial port, you'll need to make sure that you have the
Python serial library. If you don't, then type sudo apt-get install
python-serial. After you have installed the serial library, you can run
your program by typing sudo python hand.py.

Once you know the angle to set the servo at the middle angle position,
the settings for the angle for each servo that opens or closes the hand
will be roughly 20 degrees on either side. Finally, you can now ask
your hand to close the servos for the thumb, ring finger, and little
finger, which will be the scissors hand. You'll want a Python function
for each of the three different positions. In this case, you can use your
setAngle command to set your servos to manipulate your hand's six
servos to either do paper (everything open), rock (everything closed),
or scissors (two fingers extended, the rest closed).

Since each of these is a function, this code also has the ability to be
included in a library so that they can be used in your system with the
webcam.

Installing a USB camera on
Raspberry Pi Zero
Having vision capability is essential to your rock, paper, or scissors
robot. Fortunately, adding hardware and software for vision is both
easy and inexpensive.

Connecting a USB camera is very easy. Just plug it into the USB slot.
To make sure your device is connected, type lsusb. You should be
able to see this:

The following screen shows a creative webcam located at Bus 001
Device 004: ID 041e:4095. To make sure that the system sees this as
a video device, type ls /dev/v* and you should see something similar
to the following screenshot:

The /dev/video0 is the webcam device. Now that your device is
connected, let's actually see if you can capture the images and video.

Note
While many USB web cameras will work, in order to ensure this,
you may want to purchase a webcam from a major webcam
manufacturer like Logitech.

There are several tools that can allow you to access the webcam, but
a simple program with video controls is called guvcview. To install
this, type sudo apt-get install guvcview. Once the applications are
installed, you'll want to run it. To do this, you'll need to be either
connected directly to a display or connected to a remote computer
using vncviewer. Open a terminal window on Raspberry Pi and run
guvcview. You should see something similar to this:

Don't worry about the quality of the image, you'll be capturing and
processing your images inside OpenCV, a vision framework.

Downloading and installing
OpenCV – a fully featured vision
library
Now that you have your camera connected, you can access some
amazing capabilities that have been provided by the open source
community. Open a terminal window and type the following
commands:

sudo apt-get update: You're going to download a number of new
software packages, so it is good to make sure that everything is
up to date.
sudo apt-get install libavformat-dev: This library provides a
way to code and decode audio and video streams.
sudo apt-get install libcv2.4 libcvaux2.4 libhighgui2.4: This
command shows the basic OpenCV libraries. Note the number in
the command. This will almost certainly change as new versions
of OpenCV become available. If 2.4 does not work, try either 3.0
or Google for the latest version of OpenCV.
sudo apt-get install python-opencv: This is the Python
development kit needed for OpenCV, as you are going to use
Python.
sudo apt-get install opencv-doc: This command will download
the documentation for OpenCV just in case you need it.
sudo apt-get install libcv-dev: This command downloads the
header file and static libraries to compile OpenCV.
sudo apt-get install libcvaux-dev: This command downloads
more development tools for compiling OpenCV.
sudo apt-get install libhighgui-dev: This is another package
that provides header files and static libraries to compile OpenCV.

Now, type cp -r /usr/share/doc/opencv-doc/examples /home/pi/. This
will copy all the examples to your home directory.

Now that OpenCV is installed, you can try one of the examples. Go to
the /home/pi/examples/python directory. If you do an ls, you'll see a
file named camera.py. This file has the most basic code for capturing
and displaying a stream of picture images. But before you run the
code, make a copy of it, using cp camera.py myCamera.py. Then edit
the file to look similar to this:

The two lines that you'll add are the two with the
cv.SetCaptureProperty; they will set the resolution of the image to 360
by 240. To run this program, you'll need to either have a display and
keyboard connected to Raspberry Pi or use vncviewer. When you run
the code, you should see the window displayed as shown:

You may want to play with the resolution to find the optimum settings
for your application. Big images are great—they give you a more
detailed view of the world—but they also take up significantly more
processing power. You'll play with this resolution more as you actually
ask your system to do some real image processing. Be careful if you
are going to use vncserver to understand your system performance,
as this will significantly slow down the update rate. An image that is
twice the size (width/height) will involve four times more processing.
You can now use this capability to do a number of impressive tasks.

Gesture detection
OpenCV and your webcam can also track objects. This will be useful
as you want your project to differentiate your hand from the
background. OpenCV makes this amazingly simple by providing some
high-level libraries that can help us with this task. To accomplish this,
you'll edit a file to look something similar to what is shown in the
following screenshot:

This code makes it possible to isolate your hand. Once you have
created this file and saved it, you can run the program. Now take your
target (in this case your hand) and move it into the frame. You should
see something similar to what is shown in the following screenshot:

Note the white pixels in our threshold image showing where you hand
is located. You can add more OpenCV code that gives the actual
location and size of your hand. In the original image file of your hand,
you can actually draw a rectangle around your hand as an indicator.
Edit the file to look similar to the following screenshot:

Now that the code is ready, you can run it. You should see something
similar to what is shown in the following screenshot:

You can now track your hand. You can also see the x, y, length, and
width relative measures of your hand for each of the scissors, rock, or
paper. Here is the rock:

The following screen is the measure of your hand for paper:

You can add some simple code to determine if your hand is making a
rock, paper, or scissors using the ratios of x and y. In the preceding
picture, you can see that the ratio of width to height is roughly 140/80
for paper. For a rock, the ratio is going to be roughly 85/55. For
scissors, it is going to be 140/40. Here is the code for the library that
determines a rock/paper/or scissors:

Now you know the state of the human opponent's hand. To complete
the entire project, you'll need to add code to make a random selection
for the computer hand's state, call the functions in the previous
sections of this chapter to make the hand move to that state, and then
compare the random selection of your robot hand and the user's hand
to determine the winner. Playing rock, paper, or scissors has never
been easier!

Summary
You now have a hand that can play rock, paper, or scissors! By now
you should have quite a few different capabilities that you can add to
almost any project. In the last chapter, you'll add Raspberry Pi Zero to
a quad copter to build a project that can fly.

Chapter 9. Adding Raspberry Pi
Zero to a Quadcopter
You've had the opportunity to build lots of different types of robot, so
now let's end with the one that can be truly amazing, a robot that can
fly.

Note
Before we start, there are a number of safety warnings to be
considered. Of course, never fly near people or buildings. Also, be
very careful about flying outside your viewing range. In many
countries, there are restrictions on where and when you can fly a
quadcopter. Some countries, including the United States, require
you to register your quadcopter.

It is also important to note that this chapter is not designed to be a
complete step-by-step guide to the construction of a quadcopter for
flying. That would take many chapters. This chapter is designed to get
you started if you consider building a quadcopter that can be
controlled using the Raspberry Pi Zero. In this chapter, you'll learn
about the following topics:

Building the basic quadcopter platform
Interfacing Raspberry Pi Zero with the flight controller
Discussing long-range communications
Using GPS for location
Adding autonomous flight

Constructing the platform
Constructing the quadcopter hardware can be daunting; however,

there are several excellent websites that can lead you through the
process, from component selection to build details and programming
and controlling your quadcopter with a radio. The
http://www.arducopter.co.uk/ website is a great place to start for those
who are new to quadcopter flight. Go to http://copter.ardupilot.com/,
which is another excellent website with lots of information.

For this project, you'll want to choose a project that uses the Pixhawk
flight controller. There are other flight controllers that are significantly
less expensive, but this particular flight controller provides easy
access for Raspberry Pi Zero. Here are some possible websites that
can guide you through the construction process:
http://learnrobotix.com/uavs/quadcopter-build/pixhawk/connecting-the-
q-brain-esc.html, http://learnrobotix.com/uavs/quadcopter-
build/pixhawk/connecting-components-pixhawk-flight-controller.html,
and http://www.flying-drone.co.uk/how-to-build-a-quadcopter-with-a-
pixhawk-flight-controller-step-11/.

At http://copter.ardupilot.com/wiki/advanced-pixhawk-quadcopter-
wiring-chart/, you'll find an excellent wiring diagram of how to hook
everything up. Let's go through the steps of constructing our own
quadcopter.

First, you'll need a frame. You'll be building a quadcopter of size 450
mm, one of the least expensive frames, which is available from most
online retailers, with fiberglass arms, as shown in the following image:

http://www.arducopter.co.uk/
http://copter.ardupilot.com/
http://learnrobotix.com/uavs/quadcopter-build/pixhawk/connecting-the-q-brain-esc.html
http://learnrobotix.com/uavs/quadcopter-build/pixhawk/connecting-components-pixhawk-flight-controller.html
http://www.flying-drone.co.uk/how-to-build-a-quadcopter-with-a-pixhawk-flight-controller-step-11/
http://copter.ardupilot.com/wiki/advanced-pixhawk-quadcopter-wiring-chart/

Now, perform the following steps to complete your quadcopter
assembly:

1. The first step is to build the quadcopter as the instructions
suggest.

2. The second step is to solder the four Electronic Speed
Controllers (ESCs), one to each motor, and the battery
connection to the bottom plate. Here is an image of the bottom
plate:

Note the + and – connections; each connection will be soldered to
all the ESCs. The following is an image of the motor controller:

The red and black wire connectors are the connectors that are
soldered to the bottom plate of the frame. The other three

connectors will connect to the motor.

3. The third step is to install the motors on the frame. You'll need
motors that are in the 1000 KV range, here is an image of such a
motor:

Again, follow the instructions that came with your frame to attach
the motor. Then attach the three connections that come from the
ESC to the motor.

4. One optional step is to add a landing gear set to the unit. There
are many of these available; the following is an image of one that
is very sturdy:

5. Now you'll install Pixhawk on the frame and connect its
associated electronics. The details are shown and described at
http://copter.ardupilot.com/wiki/advanced-pixhawk-quadcopter-
wiring-chart/. This will connect the Pixhawk to the ESCs, the
battery, an RC transmitter, a telemetry radio, and a switch that will
prevent the quadcopter from flying until you are ready.

6. Eventually, you will install four propellers on the quadcopter;
however, you will have to wait until you have calibrated the ESCs,
motors, and RC transmitter to install them. You'll need four
propellers, two that are designed to spin clockwise and another
two that are designed to spin counter-clockwise. For this
quadcopter, you'll want propellers that are 10x4.7 pitches. Here is
an image of one such propeller:

http://copter.ardupilot.com/wiki/advanced-pixhawk-quadcopter-wiring-chart/

The following is an image of the entire quadcopter using the Pixhawk
flight controller:

Note
Note the arrows and cords arranged on the quadcopter. This is not
to make it look menacing but to protect it from running into

something and fracturing the propellers. There are commercial
guards available; however, this system also works and is less
expensive.

You'll want to build your quadcopter and fly it with an RC
transmitter/receiver pair; this will allow you to get familiar with your
quadcopter and how it flies, and it will also allow you to tweak all the
settings to stabilize it. Once your quadcopter is stable, you can
perform some simple autonomous flights. Let's use the mission
planning software, which runs on a remote computer.

Mission planning software
The mission planning software is available at
http://planner.ardupilot.com/. There are actually two applications
available that perform similar actions, but the Mission Planner is a
good place to get familiar with how to talk with your quadcopter from a
computer program.

To do this, you'll need to make sure that you have telemetry radios
connected to the Pixhawk and the computer. This will prevent the
need to directly connect to the Pixhawk with a long USB cable. When
you begin the mission planning software, you will see the following
screen:

This is the basic screen. You'll then need to configure your radio's
COM port and then press the CONNECT button in the corner on the
upper right-hand side of the screen. As you move the quadcopter
around, you will see the measurements change. If you are having
problems connecting to the Pixhawk, there is lot of help available on

http://planner.ardupilot.com/

the website.

Now that you have connected, you can actually see how your
quadcopter is flying with this application. The software communicates
with the Pixhawk controller via the MAVLink, a serial control link that
comes from the software application, goes out over the telemetry
radio, is received by the telemetry radio, and is then routed to the
Pixhawk. The Pixhawk not only knows how to send information, but
also receive information.

Once the software is connected, you'll want to calibrate the RC radio
connection; this can be done through the software. You'll also want to
calibrate the ESCs; refer to http://learnrobotix.com/uavs/quadcopter-
build/pixhawk/calibrating-electronic-speed-controllers-with-
pixhawk.html for specific directions.

Now, you are ready to connect the Raspberry Pi Zero. To do this,
connect Raspberry Pi Zero to the second telemetry input on the
Pixhawk, as shown in the following image:

http://learnrobotix.com/uavs/quadcopter-build/pixhawk/calibrating-electronic-speed-controllers-with-pixhawk.html

Now that this is connected, you can access the Pixhawk from
Raspberry Pi Zero using the MAVLink. You'll need to add and
configure the Raspberry Pi Zero to complete the connection. To do
this, run raspi-config and choose the 8 Advanced Options,
Configure advanced settings option, as shown in the following
screenshot:

Now, you'll turn off sending the serial output on boot up by selecting
the A8 Serial, Enable/Disable shell and kernel m option, as shown:

Then select the answer <No> to the following question:

Now you are ready to install some additional software. To install this
software, perform the following steps:

1. Type sudo apt-get update: This updates the local package lists
so that your system can find the appropriate software.

2. Type sudo apt-get install screen python-wxgtk2.8 python-
matplotlib python-opencv: This installs a graphical package, a
plotting package, and a version of OpenCV.

3. Type sudo apt-get install python-numpy: This will install
NumPy, a numerical library for Python, although you may already
have it from the previous projects that you have done.

4. Type sudo apt-get install python-dev: This is a set of files that
will allow you to develop in the Python environment.

5. Type sudo apt-get install python-pip: This is a tool that helps
you to install Python packages.

6. Type sudo pip install pymavlink: This is the set of code that
implements the MAVLink or the communication profile for the
Pixhawk, in Python.

7. Type sudo pip install mavproxy: This last step installs the
Unmanned Aerial Vehicle (UAV) ground station software
package for MAVLink-based systems that are based on the
Pixhawk.

Now that you have installed all the software, you can test the link. To
do this, type sudo –s; this establishes you as the superuser. Then type
mavproxy.py --master=/dev/ttyAMA0 --baudrate 57600 --aircraft

MyCopter and you will see the following:

Now that the link is established, you can send commands to either set
or show parameters. For example, type param show ARMING_CHECK; it
should show you the value of the parameter, as shown in the following
screenshot:

Details for all available commands can be found at
http://dronecode.github.io/MAVProxy/html/uav_configuration/index.html

You can issue these commands directly, but you can also connect to
the Pixhawk using an interface that is similar to the Mission Planner
interface, which you have worked with earlier. To do this, you'll need
to install the DroneKit code. Overall directions and documentation for
DroneKit can be found at
http://python.dronekit.io/1.5.0/guide/getting_started.html, but let's see
an example here.

First, type sudo pip install droneapi. You can download some
example scripts by typing git clone
http://github.com/dronekit/dronekit-python.git. Now cd to the
dronekit-python/examples/vehicle_state directory. You'll see the
vehicle_state.py file that shows an excellent example of how to use
the MAVLink to talk with the Pixhawk to find out information, as well as
set values and issue commands.

To run an example program, start the MAVLink by typing two

http://dronecode.github.io/MAVProxy/html/uav_configuration/index.html
http://python.dronekit.io/1.5.0/guide/getting_started.html

commands: sudo –s, and then mavproxy.py --master=/dev/ttyAMA0 --
baudrate 57600 --aircraft MyCopter. Once inside, load the API by
typing module load droneapi.module.api at the prompt. The system
will then tell you whether the module is loaded. Now, run the Python
script by typing api start vehicle_state.py.

The Python code will first read in a series of parameters and then, if
the quadcopter is armed, it will also read some details about the state
of the quadcopter. Details of each command can be found at
http://python.dronekit.io/guide/vehicle_state_and_parameters.html#vehicle-
information. The output will look something similar to the following
screenshot:

Now, you can look at other Python examples to see how to control
your quadcopter via Python files from Raspberry Pi Zero.

http://python.dronekit.io/guide/vehicle_state_and_parameters.html#vehicle-information

You can also interface the MAVProxy system with the Mission
Planner running on a remote computer. With a radio connected to the
TELEM 1 port of the Pixhawk and your Raspberry Pi Zero connected
to the TELEM 2 port of the Pixhawk, change the MAVProxy start-up
command by adding --out <ipaddress>:14550 with ipaddress being
the address of the remote computer that is running the Mission
Planner. On a Windows machine, the ipconfig command can be used
to determine this IP address.

For example, your mavproxy command might look similar to this:
mavproxy.py --master=/dev/ttyAMA0 --baudrate 57600 --out

ipaddress:14550 --aircraft MyCopter. Once connected to MAVProxy,
you can connect to the Mission Planner software using the UDP
connection, as shown in the following screenshot:

Now, you can run your MAVProxy scripts and see the results on the
Mission Planner software.

Summary
That's it. You now have a wide array of different robotics platforms that
run with Raspberry Pi Zero as the central controller. These chapters
have just introduced you to some of the most fundamental capabilities
of your platforms; you can now explore each and expand their
capabilities. The only limit is your imagination and time.

Index
A

actions

initiating / Interpreting commands and initiating actions

Advanced IP Scanner

about / Accessing your Raspberry Pi Zero from your host PC
URL / Accessing your Raspberry Pi Zero from your host PC

Advanced Linux Sound Architecture (ALSA)

about / Giving your robot voice commands

alsamixer

about / Giving your robot voice commands

aplay

about / Giving your robot voice commands

Arduino

URL / Communication between the Raspberry Pi Zero and
the robot

arecord program

about / Giving your robot voice commands

B

Bison

about / Using pocketsphinx to accept your voice commands

board, Raspberry Pi Zero

powering / Powering the board

body kit, quadruped

URL / Building the quadruped platform

C
Carnegie Mellon University (CMU)

about / Using pocketsphinx to accept your voice commands
URL / Using pocketsphinx to accept your voice commands

CMU

URL / Using pocketsphinx to accept your voice commands

commands

interpreting / Interpreting commands and initiating actions

compass

accessing programmatically / Accessing the compass
programmatically

configuration, USB WLAN adapter

URL / Accessing the RC car remotely

control board, Raspberry Pi Zero

URL / Controlling the vehicle using the Raspberry Pi Zero in

Python

Cython

using / Using pocketsphinx to accept your voice commands

D
Data Ready (DRDY)

about / Connecting a digital compass to Raspberry Pi Zero

DC motors

H-bridge interface, controlling to / Controlling an H-bridge
interface to the DC motors
controlling, motor controller board used / Using a motor
controller board to control the DC motors

Debian

about / Installing the operating system

Degrees of Freedom (DOF)

about / Robots that can walk

digital compass

connecting, to Raspberry Pi Zero / Connecting a digital
compass to Raspberry Pi Zero

display, Raspberry Pi Zero

connecting / Hooking up a keyboard, mouse, and display

DroneKit

about / Mission planning software

URL / Mission planning software
references / Mission planning software

E
Electronic Speed Controllers (ESCs)

about / Constructing the platform

Emacs

about / Creating, editing, and saving files

Emacs commands

defining / Creating, editing, and saving files

ESCs

URL / Mission planning software

eSpeak

used, for allowing robot to respond with spoken voice / Using
eSpeak to allow your robot to respond with an audible voice
about / Using eSpeak to allow your robot to respond with an
audible voice

F
files

creating / Creating, editing, and saving files
editing / Creating, editing, and saving files
saving / Creating, editing, and saving files

functions, importing

URL / Planning your path

G
General Purpose Input/Output (GPIO)

about / Configuring and controlling an RC car with Raspberry
Pi Zero

gesture detection

defining / Gesture detection

GPIO digital voltage output

defining / Simple GPIO digital voltage output

guvcview

about / Installing a USB camera on Raspberry Pi Zero

GY-271 HMC5883L

about / Connecting a digital compass to Raspberry Pi Zero

H
H-bridge interface

controlling, to DC motors / Controlling an H-bridge interface
to the DC motors

Hitec servos

about / Building the quadruped platform

HMC5883L

about / Connecting a digital compass to Raspberry Pi Zero

host PC

Raspberry Pi Zero, accessing from / Accessing your
Raspberry Pi Zero from your host PC

I
I2C interface

URL / Connecting a digital compass to Raspberry Pi Zero

Inter IC (I2C) bus

about / Connecting a digital compass to Raspberry Pi Zero

Internet access

adding / Adding Internet access

J
Jessie

about / Installing the operating system

K
keyboard, Raspberry Pi Zero

connecting / Hooking up a keyboard, mouse, and display

L
LED code

and Raspberry Pi Zero / Raspberry Pi Zero and LED code

library, control board

URL / Controlling the RC car in Python

Light Emitting Diode (LED)

about / Simple GPIO digital voltage output

Linux

Raspberry Pi Zero, powering up with / Powering up
Raspberry Pi Zero with Linux

Linux commands

defining / Powering up Raspberry Pi Zero with Linux

Lynxmotion

about / Building the quadruped platform

M
MAC OS X

URL / Installing the operating system

make system

about / Interpreting commands and initiating actions

Master In Slave Out (MISO)

about / Connecting a digital compass to Raspberry Pi Zero

Master Out Slave In (MOSI)

about / Connecting a digital compass to Raspberry Pi Zero

MAVLink

about / Mission planning software

MAVProxy

reference / Mission planning software

Mission Planner

about / Mission planning software

mission planning software

defining / Mission planning software
URL / Mission planning software

mobile platform

controlling programmatically, Raspberry Pi Zero used /
Controlling your mobile platform programmatically using the
Raspberry Pi Zero

motor controller board

used, for controlling DC motors / Using a motor controller
board to control the DC motors

motor speed

controlling, with PWM / Controlling the speed of your motors
with PWM

mouse, Raspberry Pi Zero

connecting / Hooking up a keyboard, mouse, and display

N
nano

URL / Creating, editing, and saving files

Nmap

about / Accessing your Raspberry Pi Zero from your host PC
URL / Accessing your Raspberry Pi Zero from your host PC

NumPy

installing / Mission planning software

O
OpenCV

downloading / Downloading and installing OpenCV – a fully
featured vision library
installing / Downloading and installing OpenCV – a fully
featured vision library

operating system

installing / Installing the operating system

P
path planning

URL / Planning your path

PC

and servo controller, communicating between /

Communicating between the servo controller and a PC

Pixhawk flight controller

about / Constructing the platform
references / Constructing the platform

platform

constructing / Constructing the platform

pocketsphinx

used, for accepting voice commands / Using pocketsphinx to
accept your voice commands
about / Using pocketsphinx to accept your voice commands
URL / Using pocketsphinx to accept your voice commands

Pololu

URL / Controlling the speed of your motors with PWM, Using
a servo controller to control the servos, Moving the robotic
hand, Connecting the servo controller to the Raspberry Pi
Zero
references / Communicating between the servo controller
and a PC, Connecting the servo controller to the Raspberry
Pi Zero, Creating a program in Linux to control your
quadruped

program, in Linux

creating, for controlling robot / Creating a program in Linux to
control your quadruped

program, on Raspberry Pi Zero

creating, for controlling hand / Creating a program on
Raspberry Pi Zero so that you can control your hand

Pulse-Width-Modulated (PWM)

about / How servo motors work

Pulse Width Modulation (PWM)

about / Controlling the speed of your motors with PWM,
Configuring and controlling an RC car with Raspberry Pi Zero

PuTTY

about / Accessing your Raspberry Pi Zero from your host PC
URL / Accessing your Raspberry Pi Zero from your host PC

PWM

motor speed, controlling with / Controlling the speed of your
motors with PWM

Python

references / Creating and running Python programs
RC car, controlling / Controlling the RC car in Python

Python-Dev

using / Using pocketsphinx to accept your voice commands

Python 2, versus Python 3

URL / Creating and running Python programs

Python programs

creating / Creating and running Python programs
running / Creating and running Python programs

Q

quadcopter flight

references / Constructing the platform

quadruped

assembling / Building the quadruped platform
references / Creating a program in Linux to control your
quadruped

quadruped platform

building / Building the quadruped platform

quadruped robot

URL / Building the quadruped platform

R
Raspberry Pi

URL / Installing the operating system
references / Communication between the Raspberry Pi Zero
and the robot

Raspberry Pi Zero

setting up / Setting up the Raspberry Pi Zero
accessing, from host PC / Accessing your Raspberry Pi Zero
from your host PC
powering up, with Linux / Powering up Raspberry Pi Zero
with Linux
programming constructs, defining / Basic programming
constructs on Raspberry Pi Zero
if statement / The if statement
while statement / The while statement
functions, defining / Working with functions

libraries, in Python / Libraries/modules in Python
modules, in Python / Libraries/modules in Python
GPIO capability / The GPIO capability of Raspberry Pi Zero
and LED code / Raspberry Pi Zero and LED code
and sonar sensor code / Raspberry Pi Zero and the sonar
sensor code
digital compass, connecting to / Connecting a digital
compass to Raspberry Pi Zero
used, for controlling mobile platform programmatically /
Controlling your mobile platform programmatically using the
Raspberry Pi Zero
servo controller, connecting to / Connecting the servo
controller to the Raspberry Pi Zero, Connecting the servo
controller to the Raspberry Pi Zero
RC car, configuring with / Configuring and controlling an RC
car with Raspberry Pi Zero
RC car, controlling with / Configuring and controlling an RC
car with Raspberry Pi Zero
USB camera, installing on / Installing a USB camera on
Raspberry Pi Zero

Raspberry pi Zero

and robot, communication between / Communication
between the Raspberry Pi Zero and the robot

Raspberry Pi Zero, in Python

used, for controlling vehicle / Controlling the vehicle using the
Raspberry Pi Zero in Python

Raspbian

about / Installing the operating system

RasPiRobot Board V2

URL / Controlling the speed of your motors with PWM

RC car

configuring, with Raspberry Pi Zero / Configuring and
controlling an RC car with Raspberry Pi Zero
controlling, with Raspberry Pi Zero / Configuring and
controlling an RC car with Raspberry Pi Zero
controlling, in Python / Controlling the RC car in Python
accessing remotely / Accessing the RC car remotely

RealVNC

about / Accessing your Raspberry Pi Zero from your host PC

Real VNC Viewer

URL / Accessing your Raspberry Pi Zero from your host PC

RoboSapienIR

URL / Communication between the Raspberry Pi Zero and
the robot

robot

and Raspberry pi Zero, communication between /
Communication between the Raspberry Pi Zero and the
robot
voice commands, giving to / Giving your robot voice
commands

robotic hand

defining / A robotic hand
references / A robotic hand
moving / Moving the robotic hand

Robotshop

URL / Building the quadruped platform

S
scp

about / Accessing your Raspberry Pi Zero from your host PC

Secure Shell (SSH)

about / Accessing your Raspberry Pi Zero from your host PC
URL / Accessing your Raspberry Pi Zero from your host PC

serial clock (SCK)

about / Connecting a digital compass to Raspberry Pi Zero

Serial Monitor

about / Communication between the Raspberry Pi Zero and
the robot

Serial Peripheral Interface (SPI)

about / Connecting a digital compass to Raspberry Pi Zero

servo controller

used, for controlling servos / Using a servo controller to
control the servos
and PC, communicating between / Communicating between
the servo controller and a PC
connecting, to Raspberry Pi Zero / Connecting the servo
controller to the Raspberry Pi Zero, Connecting the servo
controller to the Raspberry Pi Zero

servo motors

working / How servo motors work

servos

controlling, servo controller used / Using a servo controller to
control the servos

Slave Select (SS)

about / Connecting a digital compass to Raspberry Pi Zero

SMBus capability

about / Accessing the compass programmatically

sonar sensor

adding / Adding a sonar sensor
and Raspberry Pi Zero / Raspberry Pi Zero and the sonar
sensor code

sphinxbase

about / Using pocketsphinx to accept your voice commands

SPI interface

URL / Connecting a digital compass to Raspberry Pi Zero

SSH

about / Accessing your Raspberry Pi Zero from your host PC

T
Tightvncserver

about / Accessing your Raspberry Pi Zero from your host PC

Torque

about / Building the quadruped platform

U
UART interface

URL / Connecting a digital compass to Raspberry Pi Zero

Universal Asynchronous Receiver/Transmitter (UART)

about / Connecting a digital compass to Raspberry Pi Zero

Unmanned Aerial Vehicle (UAV)

about / Mission planning software

USB camera

installing, on Raspberry Pi Zero / Installing a USB camera on
Raspberry Pi Zero

USB to LAN

references / Adding Internet access

USB WLAN adapter

URL / Accessing the RC car remotely

V
vncserver

about / Accessing your Raspberry Pi Zero from your host PC

VNC server

about / Accessing your Raspberry Pi Zero from your host PC

vncserver command

reference / Accessing your Raspberry Pi Zero from your host
PC

voice commands

giving, to robot / Giving your robot voice commands
accepting, pocketsphinx used / Using pocketsphinx to accept
your voice commands

voltage divider

reference / Adding a sonar sensor

W
walking robot

building / Robots that can walk

webcam

connecting / Connecting a webcam

wget

using / Using pocketsphinx to accept your voice commands

Wheeled Robot

basic platform, using / The basic platform
path, planning / Planning your path

WinSCP

about / Accessing your Raspberry Pi Zero from your host PC
URL / Accessing your Raspberry Pi Zero from your host PC

wireless devices

references / Adding Internet access

Z
7-Zip

URL / Installing the operating system

	Getting Started with Raspberry Pi Zero
	Table of Contents
	Getting Started with Raspberry Pi Zero
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	1. Getting Started with Raspberry Pi Zero
	Setting up the Raspberry Pi Zero
	Powering the board
	Hooking up a keyboard, mouse, and display
	Installing the operating system
	Adding Internet access
	Accessing your Raspberry Pi Zero from your host PC

	Summary

	2. Programming Raspberry Pi Zero
	Powering up Raspberry Pi Zero with Linux
	Creating, editing, and saving files
	Creating and running Python programs
	Basic programming constructs on Raspberry Pi Zero
	The if statement
	The while statement
	Working with functions
	Libraries/modules in Python

	Summary

	3. Accessing the GPIO Pins on Raspberry Pi Zero
	The GPIO capability of Raspberry Pi Zero
	Simple GPIO digital voltage output
	Raspberry Pi Zero and LED code

	Adding a sonar sensor
	Raspberry Pi Zero and the sonar sensor code

	Connecting a digital compass to Raspberry Pi Zero
	Accessing the compass programmatically
	Summary

	4. Building and Controlling a Simple Wheeled Robot
	The basic platform
	Controlling an H-bridge interface to the DC motors
	Controlling your mobile platform programmatically using the Raspberry Pi Zero
	Controlling the speed of your motors with PWM
	Using a motor controller board to control the DC motors
	Controlling the vehicle using the Raspberry Pi Zero in Python
	Planning your path
	Summary

	5. Building a Robot That Can Walk
	Robots that can walk
	How servo motors work
	Building the quadruped platform
	Using a servo controller to control the servos
	Communicating between the servo controller and a PC
	Connecting the servo controller to the Raspberry Pi Zero
	Creating a program in Linux to control your quadruped
	Summary

	6. Adding Voice Recognition and Speech – A Voice Activated Robot
	Communication between the Raspberry Pi Zero and the robot
	Giving your robot voice commands
	Using eSpeak to allow your robot to respond with an audible voice
	Using pocketsphinx to accept your voice commands
	Interpreting commands and initiating actions
	Summary

	7. Adding Raspberry Pi Zero to an RC Vehicle
	Configuring and controlling an RC car with Raspberry Pi Zero
	Controlling the RC car in Python
	Accessing the RC car remotely
	Connecting a webcam
	Summary

	8. Playing Rock, Paper, or Scissors with Raspberry Pi Zero
	A robotic hand
	Moving the robotic hand
	Connecting the servo controller to the Raspberry Pi Zero
	Creating a program on Raspberry Pi Zero so that you can control your hand
	Installing a USB camera on Raspberry Pi Zero
	Downloading and installing OpenCV – a fully featured vision library
	Gesture detection
	Summary

	9. Adding Raspberry Pi Zero to a Quadcopter
	Constructing the platform
	Mission planning software
	Summary

	Index

