
DESIGN FOR EMBEDDED
IMAGE PROCESSING
ON FPGAS

DESIGN FOR EMBEDDED
IMAGE PROCESSING
ON FPGAS

Donald G. Bailey
Massey University, New Zealand

This edition first published 2011

� 2011 John Wiley & Sons (Asia) Pte Ltd

Registered office
John Wiley & Sons (Asia) Pte Ltd, 1 Fusionopolis Walk, #07-01 Solaris South Tower, Singapore 138628

For details of our global editorial offices, for customer services and for information about how to apply for permission

to reuse the copyright material in this book please see our website at www.wiley.com.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any

form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as expressly

permitted by law, without either the prior written permission of the Publisher, or authorization through payment of the

appropriate photocopy fee to the Copyright Clearance Center. Requests for permission should be addressed to the

Publisher, John Wiley & Sons (Asia) Pte Ltd, 1 Fusionopolis Walk, #07-01 Solaris South Tower, Singapore 138628,

tel: 65-66438000, fax: 65-66438008, email: enquiry@wiley.com.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be

available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and

product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective

owners. The Publisher is not associated with any product or vendor mentioned in this book. This publication is

designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the

understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert

assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Bailey, Donald G. (Donald Graeme), 1962-

Design for embedded image processing on FPGAs / Donald G. Bailey.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-470-82849-6 (hardback)

1. Embedded computer systems. 2. Field programmable gate arrays. I. Title.

TK7895.E42B3264 2011

621.39’9–dc22 2011002991

Print ISBN: 978-0-470-82849-6

ePDF ISBN: 978-0-470-82850-2

oBook ISBN: 978-0-470-82851-9

ePub ISBN: 978-0-470-82852-6

Mobi ISBN: 978-1-118-07331-5

Set in 9/11 pt Times New Roman by Thomson Digital, Noida, India

Contents

Preface xi

Acknowledgements xvii

1 Image Processing 1

1.1 Basic Definitions 2

1.2 Image Formation 3

1.3 Image Processing Operations 7

1.4 Example Application 9

1.5 Real-Time Image Processing 11

1.6 Embedded Image Processing 12

1.7 Serial Processing 12

1.8 Parallelism 14

1.9 Hardware Image Processing Systems 18

2 Field Programmable Gate Arrays 21

2.1 Programmable Logic 21

2.1.1 FPGAs vs. ASICs 24

2.2 FPGAs and Image Processing 25

2.3 Inside an FPGA 26

2.3.1 Logic 27

2.3.2 Interconnect 28

2.3.3 Input and Output 29

2.3.4 Clocking 30

2.3.5 Configuration 31

2.3.6 Power Consumption 32

2.4 FPGA Families and Features 33

2.4.1 Xilinx 33

2.4.2 Altera 38

2.4.3 Lattice Semiconductor 44

2.4.4 Achronix 46

2.4.5 SiliconBlue 47

2.4.6 Tabula 47

2.4.7 Actel 48

2.4.8 Atmel 49

2.4.9 QuickLogic 50

2.4.10 MathStar 50

2.4.11 Cypress 51

2.5 Choosing an FPGA or Development Board 51

3 Languages 53

3.1 Hardware Description Languages 56

3.2 Software-Based Languages 61

3.2.1 Structural Approaches 63

3.2.2 Augmented Languages 64

3.2.3 Native Compilation Techniques 69

3.3 Visual Languages 72

3.3.1 Behavioural 73

3.3.2 Dataflow 73

3.3.3 Hybrid 74

3.4 Summary 77

4 Design Process 79

4.1 Problem Specification 79

4.2 Algorithm Development 81

4.2.1 Algorithm Development Process 82

4.2.2 Algorithm Structure 83

4.2.3 FPGA Development Issues 86

4.3 Architecture Selection 86

4.3.1 System Level Architecture 87

4.3.2 Computational Architecture 89

4.3.3 Partitioning between Hardware and Software 93

4.4 System Implementation 96

4.4.1 Mapping to FPGA Resources 97

4.4.2 Algorithm Mapping Issues 100

4.4.3 Design Flow 101

4.5 Designing for Tuning and Debugging 102

4.5.1 Algorithm Tuning 102

4.5.2 System Debugging 104

5 Mapping Techniques 107

5.1 Timing Constraints 107

5.1.1 Low Level Pipelining 107

5.1.2 Process Synchronisation 110

5.1.3 Multiple Clock Domains 111

5.2 Memory Bandwidth Constraints 113

5.2.1 Memory Architectures 113

5.2.2 Caching 116

5.2.3 Row Buffering 117

5.2.4 Other Memory Structures 118

vi Contents

5.3 Resource Constraints 122

5.3.1 Resource Multiplexing 122

5.3.2 Resource Controllers 125

5.3.3 Reconfigurability 130

5.4 Computational Techniques 132

5.4.1 Number Systems 132

5.4.2 Lookup Tables 138

5.4.3 CORDIC 142

5.4.4 Approximations 150

5.4.5 Other Techniques 152

5.5 Summary 154

6 Point Operations 155
6.1 Point Operations on a Single Image 155

6.1.1 Contrast and Brightness Adjustment 155

6.1.2 Global Thresholding and Contouring 159

6.1.3 Lookup Table Implementation 162

6.2 Point Operations on Multiple Images 163

6.2.1 Image Averaging 164

6.2.2 Image Subtraction 166

6.2.3 Image Comparison 170

6.2.4 Intensity Scaling 171

6.2.5 Masking 173

6.3 Colour Image Processing 175

6.3.1 False Colouring 175

6.3.2 Colour Space Conversion 176

6.3.3 Colour Thresholding 192

6.3.4 Colour Correction 193

6.3.5 Colour Enhancement 197

6.4 Summary 197

7 Histogram Operations 199

7.1 Greyscale Histogram 199

7.1.1 Data Gathering 201

7.1.2 Histogram Equalisation 206

7.1.3 Automatic Exposure 210

7.1.4 Threshold Selection 211

7.1.5 Histogram Similarity 219

7.2 Multidimensional Histograms 219

7.2.1 Triangular Arrays 220

7.2.2 Multidimensional Statistics 222

7.2.3 Colour Segmentation 226

7.2.4 Colour Indexing 229

7.2.5 Texture Analysis 231

Contents vii

8 Local Filters 233

8.1 Caching 233

8.2 Linear Filters 239

8.2.1 Noise Smoothing 239

8.2.2 Edge Detection 241

8.2.3 Edge Enhancement 243

8.2.4 Linear Filter Techniques 243

8.3 Nonlinear Filters 248

8.3.1 Edge Orientation 250

8.3.2 Non-maximal Suppression 251

8.3.3 Zero-Crossing Detection 252

8.4 Rank Filters 252

8.4.1 Rank Filter Sorting Networks 255

8.4.2 Adaptive Histogram Equalisation 260

8.5 Colour Filters 261

8.6 Morphological Filters 264

8.6.1 Binary Morphology 264

8.6.2 Greyscale Morphology 269

8.6.3 Colour Morphology 270

8.7 Adaptive Thresholding 271

8.7.1 Error Diffusion 271

8.8 Summary 273

9 Geometric Transformations 275

9.1 Forward Mapping 276

9.1.1 Separable Mapping 277

9.2 Reverse Mapping 282

9.3 Interpolation 285

9.3.1 Bilinear Interpolation 286

9.3.2 Bicubic Interpolation 288

9.3.3 Splines 290

9.3.4 Interpolating Compressed Data 292

9.4 Mapping Optimisations 292

9.5 Image Registration 294

9.5.1 Feature-Based Methods 295

9.5.2 Area-Based Methods 299

9.5.3 Applications 305

10 Linear Transforms 309

10.1 Fourier Transform 310

10.1.1 Fast Fourier Transform 311

10.1.2 Filtering 318

10.1.3 Inverse Filtering 320

10.1.4 Interpolation 321

10.1.5 Registration 322

viii Contents

10.1.6 Feature Extraction 323

10.1.7 Goertzel’s Algorithm 324

10.2 Discrete Cosine Transform 325

10.3 Wavelet Transform 328

10.3.1 Filter Implementations 330

10.3.2 Applications of the Wavelet Transform 335

10.4 Image and Video Coding 336

11 Blob Detection and Labelling 343

11.1 Bounding Box 343

11.2 Run-Length Coding 346

11.3 Chain Coding 347

11.3.1 Sequential Implementation 347

11.3.2 Single Pass Algorithms 348

11.3.3 Feature Extraction 350

11.4 Connected Component Labelling 352

11.4.1 Random Access Algorithms 353

11.4.2 Multiple-Pass Algorithms 353

11.4.3 Two-Pass Algorithms 354

11.4.4 Single-Pass Algorithms 356

11.4.5 Multiple Input Labels 358

11.4.6 Further Optimisations 358

11.5 Distance Transform 359

11.5.1 Morphological Approaches 360

11.5.2 Chamfer Distance 360

11.5.3 Separable Transform 362

11.5.4 Applications 365

11.5.5 Geodesic Distance Transform 365

11.6 Watershed Transform 366

11.6.1 Flow Algorithms 366

11.6.2 Immersion Algorithms 367

11.6.3 Applications 369

11.7 Hough Transform 370

11.7.1 Line Hough Transform 371

11.7.2 Circle Hough Transform 373

11.7.3 Generalised Hough Transform 374

11.8 Summary 375

12 Interfacing 377

12.1 Camera Input 378

12.1.1 Camera Interface Standards 378

12.1.2 Deinterlacing 383

12.1.3 Global and Rolling Shutter Correction 384

12.1.4 Bayer Pattern Processing 384

Contents ix

12.2 Display Output 387

12.2.1 Display Driver 387

12.2.2 Display Content 390

12.3 Serial Communication 393

12.3.1 PS2 Interface 393

12.3.2 I2C 395

12.3.3 SPI 397

12.3.4 RS-232 397

12.3.5 USB 398

12.3.6 Ethernet 398

12.3.7 PCI Express 399

12.4 Memory 400

12.4.1 Static RAM 400

12.4.2 Dynamic RAM 401

12.4.3 Flash Memory 402

12.5 Summary 402

13 Testing, Tuning and Debugging 405

13.1 Design 405

13.1.1 Random Noise Sources 406

13.2 Implementation 409

13.2.1 Common Implementation Bugs 410

13.3 Tuning 412

13.4 Timing Closure 412

14 Example Applications 415

14.1 Coloured Region Tracking 415

14.2 Lens Distortion Correction 418

14.2.1 Characterising the Distortion 419

14.2.2 Correcting the Distortion 421

14.3 Foveal Sensor 424

14.3.1 Foveal Mapping 425

14.3.2 Using the Sensor 429

14.4 Range Imaging 429

14.4.1 Extending the Unambiguous Range 431

14.5 Real-Time Produce Grading 433

14.5.1 Software Algorithm 434

14.5.2 Hardware Implementation 436

14.6 Summary 439

References 441

Index 475

x Contents

Preface

I think it is useful to provide a little background as to why and how this book came into being. This

will perhaps provide some insight into the way the material is structured, and why it is presented in the

way that it is.

Background

Firstly, a little bit of history. I have an extensive background in image processing, particularly in the areas

of image analysis, machine vision and robot vision, all strongly application-orientated areas. With over

25 years of applying image processing techniques to awide range of problems, I have gained considerable

experience in algorithm development. This is not only at the image processing application level but also at

the image processing operation level. My approach to an application has usually been more pragmatic

than theoretical – I have focussed on developing image processing algorithms that solved the problem at

hand.Often this involved assembling sequences of existing image processing operations, but occasionally

it required developing new algorithms and techniques to solve particular aspects of the problem. Through

work on machine vision and robotics applications, I have become aware of some of the limitations of

software-based solutions, particularly in terms of speed and algorithm efficiency.

This led naturally to considering FPGAs as an implementation platform for embedded imaging

applications. Many image processing operations are inherently parallel and FPGAs provide program-

mable hardware, also inherently parallel. Therefore, it should be as simple as mapping one onto the other,

right? Well, when I started implementing image processing algorithms on FPGAs, I had lots of ideas, but

very little knowledge. I very soon found that therewere a lot of tricks thatwere needed to create an efficient

design. Consequently, my students and I learned many of these the hard way, through trial and error.

With my basic training as an electronics engineer, I was readily able to adapt to the hardware mindset. I

have since discovered through observing my students, both at the undergraduate and postgraduate level,

that this is perhaps the biggest hurdle to an efficient implementation. Image processing is traditionally

thought of as a software domain task, whereas FPGA-based design is firmly in the hardware domain. To

bridge the gap, it is necessary to think of algorithms not on their own but more in terms of their underlying

computational architecture.

Implementing an image processing algorithm (or indeed any algorithm) on an FPGA, therefore,

consists of determining the underlying architecture of an algorithm, mapping that architecture onto the

resources available within an FPGA and finally mapping the algorithm onto the hardware architecture.

Unfortunately, there is very little material available to help those new to the area to get started. Even this

insight into the process is not actually stated anywhere, although it is implicitly followed (whether

consciously or not) by most people working in this area.

Available Literature

While there are many research papers published in conference proceedings and journals, there are only a

few that focus specifically on how to map image processing algorithms onto FPGAs. The research papers

found in the literature can be classified into several broad groups.

The first focuses on the FPGA architecture itself. Most of these provide an analysis of a range of

techniques relating to the structure and granularity of logic blocks, the routing networks and embedded

memories. As well as the FPGA structure, a wide range of topics is covered, including underlying

technology, power issues, the effects of process variability and dynamic reconfigurability. Many of these

papers are purely proposals or relate to prototype FPGAs rather than commercially available chips.

Although such papers are interesting in their own right and represent perfectly legitimate research topics,

very few of these papers are directly useful from an applications point of view.While they provide insights

into some of the features which might be available in the next generation of devices, most of the topics

within this group are at too low a level.

A second group of papers investigates the topic of reconfigurable computing. Here the focus is on how

an FPGA can be used to accelerate some computationally intensive task or range of tasks. While image

processing is one such task considered, most of the research relates more to high performance (and high

power) computing rather than low power embedded systems. Topics within this group include hardware

and software partitioning, hardware and software co-design, dynamic reconfigurability, communication

between an FPGA and CPU, comparisons between the performance of FPGAs, GPUs and CPUs, and the

design of operating systems and specific platforms for both reconfigurable computing applications and

research. Important principles and techniques can be gleaned frommany of these papers, even though this

may not be their primary focus.

The next group of papers is closely related to the previous group and considers tools for programming

FPGAs and applications. The focus here is more on improving the productivity of the development

process. Awide range of hardware description languages have been proposed, with many modelled after

software languages such as C, Java and even Prolog. Many of these are developed as research tools, with

very few making it out of the laboratory to commercial availability. There has also been considerable

research on compilation techniques for mapping standard software languages to hardware. Such

compilers attempt to exploit techniques such as loop unrolling, strip mining and pipelining to produce

parallel hardware. Again, many of these papers describe important principles and techniques that can

result in more efficient hardware designs. However, current compilers are still relatively immature in the

level and kinds of parallelism that they can automatically exploit. They are also limited in that they can

only perform relatively simple transformations to the algorithm provided; they cannot redesign the

underlying algorithm.

The final group of papers focuses on a range of applications, including image processing and the

implementation of both image processing operations and systems. Unfortunately, as a result of page limits

and space constraints, many of these papers give the results of the implementation of various systems, but

present relatively few design details. Often the final product is described, without describing many of the

reasons or decisions that led to that design. Many of these designs cannot be recreated without acquiring

the specific platform and tools that were used, or inferring a lot of themissing details.While some of these

details may appear obvious in hindsight, without this knowledge many were far from obvious just from

reading the papers. The better papers in this group tended to have a tighter focus, considering the

implementation of a single image processing operation.

Sowhile there may be a reasonable amount of material available, it is quite diffuse. In many cases, it is

necessary to know exactly what you are looking for, or just be lucky to find it.

Shortly after beginning in this area, my research students and I wrote down a list of topics and

techniques that wewould have liked to have knownwhenwe started. As we progressed, our list grew. Our

intention from the start was to compile this material into a book to help others who, like us, were having to

learn things the hard way by themselves. Essentially, this book reflects our distilled experiences in this

xii Preface

field, combined with techniques (both FPGA design and image processing) that have been gleaned from

the literature.

Intended Audience

This book is written primarily for those who are familiar with the basics of image processing and want to

consider implementing image processing using FPGAs. It accomplishes this by presenting the techniques

and approaches that we wished we knew when wewere starting in this area. Perhaps the biggest hurdle is

switching from a software mindset to a hardware way of thinking. Very often, when programming

software, we do so without great consideration of the underlying architecture. Perhaps this is because the

architecture ofmost software processors is sufficiently similar that any differences are really only a second

order effect, regardless of how significant they may appear to a computer engineer. A good compiler is

able to map the algorithm in the programming language onto the architecture relatively efficiently, so we

can get away without thinking too much about such things. When programming hardware though,

architecture is everything. It is not simply a matter of porting the software onto hardware. The underlying

hardware architecture needs to be designed as well. In particular, programming hardware usually requires

transforming the algorithm into an appropriate parallel architecture, often with significant changes to the

algorithm itself. This is not something that the current generation of compilers is able to do because it

requires significant design rather than just decomposition of the dataflow. This book addresses this issue

by providing not only algorithms for image processing operations, but also underlying architectures that

can be used to implement them efficiently.

This book would also be useful to those who are familiar with programming and applying FPGAs to

other problems and are considering image processing applications. While many of the techniques are

relevant and applicable to awide range of application areas,most of the focus and examples are taken from

image processing applications. Sufficient detail is given to make many of the algorithms and their

implementation clear. However, I would argue that learning image processing is more than just collecting

a set of algorithms, and there are any number of excellent image processing texts that provide these.

Imaging is a practical discipline that can be learnedmost effectively by doing, and a software environment

provides a significantly greater flexibility and interactivity than learning image processing via FPGAs.

That said, it is in the domain of embedded image processing where FPGAs come into their own. An

efficient, low power design requires that the techniques of both the hardware engineer and the software

engineer be integrated tightly within the final solution.

Outline of the Contents

This book aims to provide a comprehensive overview of algorithms and techniques for implementing

image processing algorithms on FPGAs, particularly for low and intermediate level vision. However, as

with design in any field, there is more than one way of achieving a particular task. Much of the emphasis

has been placed on stream-based approaches to implementing image processing, as these can efficiently

exploit parallelism when they can be used. This emphasis reflects my background and experience in the

area, and is not intended to be the last word on the topic.

A broad overview of image processing is presented inChapter 1, with a brief historical context.Manyof

the basic image processing terms are defined and the different stages of an image processing algorithm are

identified and illustrated with an example algorithm. The problem of real-time embedded image

processing is introduced, and the limitations of conventional serial processors for tackling this problem

are identified. High speed image processing must exploit the parallelism inherent in the processing of

images. A brief history of parallel image processing systems is reviewed to provide the context of using

FPGAs for image processing.

Preface xiii

FPGAs combine the advantages of both hardware and software systems, by providing reprogrammable

(hence flexible) hardware. Chapter 2 provides an introduction to FPGA technology. While some of this

will bemore detailed than is necessary to implement algorithms, a basic knowledge of the building blocks

and underlying architecture is important to developing resource efficient solutions. The key features of

currently available FPGAs are reviewed in the context of implementing image processing algorithms.

FPGA-based design is hardware design, and this hardware needs to be represented using some form of

hardware description language. Some of the main languages are reviewed in Chapter 3, with particular

emphasis on the design flow for implementing algorithms. Traditional hardware description languages

such as VHDL and Verilog are quite low level in that all of the control has to be explicitly programmed.

The last 15 years has seen considerable research into more algorithm approaches to programming

hardware, based primarily on C. An overview of some of this research is presented, finishing with a brief

description of a number of commercial offerings.

The process of designing and implementing an image processing application on an FPGA is described

in detail in Chapter 4. Particular emphasis is given to the differences between designing for an FPGA-

based implementation and a standard software implementation. The critical initial step is to clearly define

the image processing problem that is being tackled. This must be in sufficient detail to provide a

specification thatmay be used to evaluate the solution. The procedure for developing the image processing

algorithm is described in detail, outlining the common stages within many image processing algorithms.

The resulting algorithm must then be used to define the system and computational architectures. The

mapping from an algorithm ismore than simply porting the algorithm to a hardware description language.

It is necessary to transform the algorithm tomake efficient use of the resources available on the FPGA.The

final stage is to implement the algorithm by mapping it onto the computational architecture.

Three types of constraints on the mapping process are: limited processing time, limited access to data

and limited system resources. Chapter 5 describes several techniques for overcoming or alleviating these

constraints. Possible FPGA implementations are described of several data structures commonly found in

computer vision algorithms. These help to bridge the gap between a software and hardware implemen-

tation. Number representation and number systems are described within the context of image processing.

A range of efficient hardware computational techniques is discussed. Some of these techniques could be

considered the hardware equivalent of software libraries for efficiently implementing common functions.

The next section of this book describes the implementation of many common image processing

operations. Some of the design decisions and alternativeways of mapping the operations onto FPGAs are

considered.While reasonably comprehensive, particularly for low level image-to-image transformations,

it is impossible to cover every possible design. The examples discussed are intended to provide the

foundation for many other related operations.

Chapter 6 considers point operations,where the output depends only on the corresponding input pixel in

the input image(s). Both direct computation and lookup table approaches are described. With multiple

input images, techniques such as image averaging and background subtraction are discussed in detail. The

final section in this chapter extends the earlier discussion to the processing of colour images. Particular

topics given emphasis are colour space conversion, colour segmentation and colour balancing.

The implementation of histograms and histogram-based processing are discussed in Chapter 7.

Techniques of accumulating a histogram and then extracting data from the histogram are described in

some detail. Particular tasks are histogram equalisation, threshold selection and using histograms for

imagematching. The concepts of standard one-dimensional histograms are extended tomultidimensional

histograms. The use of clustering for colour segmentation and classification is discussed in some

detail. The chapter concludes with the use of features extracted from multidimensional histograms for

texture analysis.

Chapter 8 focuses considers a wide range of local filters, both linear and nonlinear. Particular emphasis

is given to caching techniques for a stream-based implementation andmethods for efficiently handling the

processing around the image borders. Rank filters are described and a selection of associated sorting

network architectures reviewed.Morphological filters are another important class offilters. Statemachine

xiv Preface

implementations of morphological filtering provide an alternative to the classic filter implementation.

Separability and both serial and parallel decomposition techniques are described that enable more

efficient implementations.

Image warping and related techniques are covered in Chapter 9. The forward and reverse mapping

approaches to geometric transformation are compared in some detail, with particular emphasis on

techniques for stream processing implementations. Interpolation is frequently associated with geometric

transformation. Hardware-based algorithms for bilinear, bicubic and spline based interpolation are

described. Related techniques of image registration are also described at the end of this chapter, including

a discussion of the scale invariant feature transform and super-resolution.

Chapter 10 introduces linear transforms, with a particular focus on the fast Fourier transform, the

discrete cosine transform and the wavelet transform. Both parallel and pipelined implementations of the

FFTand DCTare described. Filtering and inverse filtering in the frequency domain are discussed in some

detail. Lifting-based filtering is developed for the wavelet transform. This can reduce the logic

requirements by up to a factor of four over a direct finite impulse response implementation. The final

section in this chapter discusses the stages within image and video coding, and outlines some of the

techniques that can be used at each stage.

A selection of intermediate level operations relating to region detection and labelling is presented in

Chapter 11. Standard software algorithms for chain coding and connected component labelling are

adapted to give efficient streamed implementation. These can significantly reduce both the latency and

memory requirements of an application. Hardware implementaions of the distance transform, the

watershed transform and the Hough transform are also described.

Any embedded application must interface with the real world. A range of common peripherals is

described in Chapter 12, with suggestions on how theymay be interfaced to an FPGA. Particular attention

is given to interfacing cameras and video output devices, although several other user interface and

memory devices are described. Image processing techniques for deinterlacing and Bayer pattern

demosaicing are reviewed.

The next chapter expands some of the issues with regard to testing and tuning that were introduced

earlier. Four areas are identified where an implementation might not behave in the intended manner.

These are faults in the design, bugs in the implementation, incorrect parameter selection and not

meeting timing constraints. Several checklists provide a guide and hints for testing and debugging an

algorithm on an FPGA.

Finally, a selection of case studies shows how the material and techniques described in the previous

chapters can be integratedwithin a complete application. These applications briefly show the design steps

and illustrate the mapping process at the whole algorithm level rather than purely at the operation level.

Many gains can be made by combining operations together within a compatible overall architecture. The

applications described are coloured region tracking for a gesture-based user interface, calibrating and

correcting barrel distortion in lenses, development of a foveal image sensor inspired by some of the

attributes of the human visual system, the processing to extract the range from a time of flight range

imaging system, and a machine vision system for real-time produce grading.

Preface xv

Conventions Used

The contents of this book are independent of any particular FPGA or FPGA vendor, or any particular

hardware description language. The topic is already sufficiently specialised without narrowing the

audience further! As a result, many of the functions and operations are represented in block schematic

form. This enables a language independent representation, and places emphasis on a particular hardware

implementation of the algorithm in a way that is portable. The basic elements of these schematics are

illustrated in Figure P.1. I is generally used as the input of an image processing operation, with the output

image represented by Q.

With some mathematical operations, such as subtraction and comparison, the order of the operands is

important. In such cases, the first operand is indicated with a blob rather than an arrow, as shown on the

bottom in Figure P.1.

Consider a recursive filter operating on streamed data:

Qn ¼
In; jIn�Qn�1j < T

Qn�1 þ kðIn�Qn�1Þ; otherwise

(
ðP:1Þ

where the subscript in this instance refers to the nth pixel in the streamed image. At a high level, this can be

considered as an image processing operation and represented by a single block, as shown in the top left of

Figure P.1. The low level implementation is given in the middle left panel. The input and output, I andQ,

are represented by registers – dark blocks, with optional register names in white; the subscripts have been

dropped because they are implicit with streamed operation. In some instances additional control inputs

may be shown: CE for clock enable, RST for reset, and so on. Constants are represented as mid-grey blocks

and other function blocks with light grey background.

When representing logic functions in equations,_ is used for logical OR and^ for logical AND. This is

to avoid confusion with addition and multiplication.

I

||

k

Register

Counter

Constant

Function block

Single bit signal

Multi-bit signal (a number)

Multiplexer

Signal concatenation

Signal splitting

Frame buffer

I QFilter
Image processing operation

x

A B

A-B

A B

A>B

I
Q

|| T

k

0

1

Figure P.1 Conventions used in this book. Top left: representation of an image processing operation;

middle left: a block schematic representation of the function given by Equation P.1; bottom left:

representation of operators where the order of operands is important. Right: symbols used for various

blocks within block schematics.

xvi Preface

Acknowledgements

I would like to acknowledge all those who have helped me to get me where I currently am in my

understanding of FPGA-based design. In particular, I would like to thank my research students

(David Johnson, Kim Gribbon, Chris Johnston, Aaron Bishell, Andreas Buhler and Ni Ma) who helped

to shape my thinking and approach to FPGA development as we struggled together to work out efficient

ways of implementing image processing algorithms. This book is as much a reflection of their work as it

is of mine.

Most of our algorithms were programmed for FPGAs using Handel-C and were tested on boards

provided byCeloxica Ltd. I would like to acknowledge the support provided by Roger Gook and his team,

originally with the Celoxica University Programme, and later with Agility Design Solutions. Roger

provided heavily discounted licences for the DK development suite, without which many of the ideas

presented in this book would not have been as fully explored.

Massey University has provided a supportive environment and the freedom for me to explore this field.

In particular, Serge Demidenko gave me the encouragement and the push to begin playing with FPGAs.

Since that time, he has been a source of both inspiration and challenging questions. Other colleagues who

have been of particular encouragement are Gourab Sen Gupta and Richard Harris. I would also like to

acknowledge Paul Lyons, who co-supervised a number of my students.

Early versions of some of the material in this book were presented as half-day tutorials at the IEEE

Region 10 Conference (TenCon) in 2005 in Melbourne, Australia, the IEEE International Conference on

Image Processing (ICIP) in 2007 in San Antonio, Texas, USA, and the 2010 Asian Conference on

Computer Vision (ACCV) in Queenstown, New Zealand. I would like to thank attendees at these

workshops for providing valuable feedback and stimulating discussion.

During 2008, I spent a sabbatical with theCircuits and SystemsGroup at Imperial CollegeLondon,UK.

I am grateful to Peter Cheung, who hosted my visit, and provided a quiet office, free from distractions and

interruptions. It was here that I actually began writing, and got most of the text outlined at least. I would

particularly like to thank Peter Cheung, Christos Bouganis, Peter Sedcole and George Constantinides for

discussions and opportunities to bounce ideas off.

My wife, Robyn, has given me the freedom of many evenings and weekends over the two years since

then to complete this manuscript. I am grateful for both her patience and her support. She now knows that

field programmable gate arrays are not alligators with ray guns stalking the swamp. This book is dedicated

to her.

Donald Bailey

Figure 6.28 Temporal false colouring. Images taken at different times are assigned to different

channels, with the resultant output showing coloured regions where there are temporal differences.

Red LUT

Green
LUT

Blue LUT

Figure 6.29 Pseudocolour or false colour mapping using lookup tables.

Figure 6.30 RGB colour space. Top left: combining red, green and blue primary colours; bottom: the

red, green and blue components of the colour image on the top right.

Figure 6.32 CMY colour space. Top left: combining yellow, magenta and cyan secondary colours;

bottom: the yellow, magenta and cyan components of the colour image on the top right.

Cb

Cr

Figure 6.34 YCbCr colour space. Top left: the Cb�Cr colour plane at mid luminance; bottom: the

luminance and chrominance components of the colour image on the top right.

R

G

B

Y

M

C
White

Black

H
S

V R

G

B

Y

M

C

White

Black

H

S
L

max=G

min=G

min=B

ni
m

=
R

m
ax=

R

max=B

Figure 6.36 HSVand HLS colour spaces. Left: the HSV cone; centre: the HLS bi-cone; right: the hue

colour wheel.

Figure 6.37 HSVand HLS colour spaces. Top left: HSV hue colour wheel, with saturation increasing

with radius; middle row: the HSV hue, saturation and value components of the colour image on the top

right; bottom row: the HLS hue, saturation and lightness components.

0.0

0.0

0.1

0.1

0.3

0.3

0.9

0.5

0.5

0.7

0.7

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

x

y

620

600

580

560

540

520

500

480

460

Figure 6.40 Chromaticity diagram. The numbers are wavelengths of monochromatic light in

nanometres.

0.0
0.0

0.1

0.1

0.3

0.3

0.9

1.0

0.5

0.5

0.7

0.7

0.2

0.2

0.4

0.4

0.6

0.6

0.8 0.9 1.0

0.8

r

g

Figure 6.41 Device dependent r�g chromaticity.

Figure 6.43 Simple colour correction. Left: original image captured under incandescent lights,

resulting in a yellowish-red cast; centre: correcting assuming the average is grey, using Equation

6.86; right: correcting assuming the brightest pixel is white, using Equation 6.88.

Figure 6.44 Correcting using black, white and grey patches. Left: original image with the patches

marked; centre: stretching each channel to correct for black and white, using Equation 6.90; right:

adjusting the gamma of the red and blue channels using Equation 6.91 to make the grey patch grey.

UU

VV

00

00

Figure 7.24 Using a two-dimensional histogram for colour segmentation. Left: U�V histogram using

Equation 6.61; centre: after thresholding and labelling, used as a two-dimensional lookup table; right:

segmented image.

1

Image Processing

Vision is arguably themost important human sense. The processing and recording of visual data therefore

has significant importance. The earliest images are from prehistoric drawings on cave walls or carved on

stonemonuments commonly associatedwith burial tombs. (It is not somuch themedium that is important

here – anything elsewould not have survived to today). Such images consist of a mixture of both pictorial

and abstract representations. Improvements in technology enabled images to be recorded with more

realism, such as paintings by the masters. Images recorded in this manner are indirect in the sense that the

light intensity pattern is not used directly to produce the image. The development of chemical

photography in the early 1800s enabled direct image recording. This trend has continued with electronic

recording, first with analogue sensors, and subsequently with digital sensors, which include the analogue

to digital (A/D) conversion on the sensor chip.

Imaging sensors have not been restricted to the portion of the electromagnetic spectrum visible to the

human eye. Sensors have been developed to cover much of the electromagnetic spectrum from radio

waves through to X-rays and gamma rays. Other imaging modalities have been developed, including

ultrasound, andmagnetic resonance imaging. In principle, any quantity that can be sensed can be used for

imaging – even dust rays (Auer, 1982).

Since vision is such an important sense, the processing of images has become important too, to augment

or enhance humanvision. Images can be processed to enhance their subjective content, or to extract useful

information. While it is possible to process the optical signals that produce the images directly by using

lenses and optical filters, it is digital image processing – the processing of images by computer – that is the

focus of this book.

One of the earliest applications of digital image processing was for transmitting digitised newspaper

pictures across the Atlantic Ocean in the early 1920s (McFarlane, 1972). However, it was only with the

advent of digital computers with sufficient memory and processing power that digital image processing

became more widespread. The earliest recorded computer-based image processing was from 1957, when

a scanner was added to a computer at the National Bureau of Standards in the USA (Kirsch, 1998). It was

used for some of the early research on edge enhancement and pattern recognition. In the 1960s, the need

for processing large numbers of large images obtained from satellites and space exploration stimulated

image processing research at NASA’s Jet Propulsion Laboratory (Castleman, 1979). In parallel with this,

research in high energy particle physics led to a large number of cloud chamber photographs that had to be

interpreted to detect interesting events (Duff, 2000). As computers grew in power and reduced in cost,

there was an explosion in the range of applications for digital image processing, from industrial

inspection, to medical imaging.

Design for Embedded Image Processing on FPGAs, First Edition. Donald G. Bailey.

� 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd.

1.1 Basic Definitions

More formally, an image is a spatial representation of an object, scene or other phenomenon (Haralick and

Shapiro, 1991). Examples of images include: a photograph, which is a pictorial record formed from the

light intensity pattern on an optical sensor; a radiograph, which is a representation of density formed

through exposure to X-rays transmitted through an object; a map, which is a spatial representation of

physical or cultural features; a video, which is a sequence of two-dimensional images through time.More

rigorously, an image is any continuous function of two or more variables defined on some bounded region

of a plane.

Such a definition is not particularly useful in terms of computer manipulation. A digital image is an

image in digital format, so that it is suitable for processing by computer. There are two important

characteristics of digital images. The first is spatial quantisation. Computers are unable to easily represent

arbitrary continuous functions, so the continuous function is sampled. The result is a series of discrete

picture elements, or pixels, for two-dimensional images, or volume elements, voxels, for three-

dimensional images. Sampling can result in an exact representation (in the sense that the underlying

continuous function may be recovered exactly) given a band-limited image and a sufficiently high sample

rate. The second characteristic of digital images is sample quantisation. This results in discrete values for

each pixel, enabling an integer representation. Common bit widths per pixel are 1 (binary images),

8 (greyscale images), and 24 (3� 8 bits for colour images). Unlike sampling, value quantisation will

always result in an error between the representation and true value. In many circumstances, however, this

quantisation error or quantisation noise may be made smaller than the uncertainty in the true value

resulting from inevitable measurement noise.

In its basic form, a digital image is simply a two (or higher) dimensional array of numbers (usually

integers) which represents an object, or scene. Once in this form, an imagemay be readily manipulated by

a digital computer. It does not matter what the numbers represent, whether light intensity, reflectance,

distance to a point (or range), temperature, population density, elevation, rainfall, or any other

numerical quantity.

Image processing can therefore be defined as subjecting such an image to a series of mathematical

operations in order to obtain a desired result. This may be an enhanced image; the detection of some

critical feature or event; a measurement of an object or key feature within the image; a classification or

grading of objects within the image into one of two or more categories; or a description of the scene.

Image processing techniques are used in a number of related fields. While the principle focus of the

fields often differs, at the fundamental level many of the techniques remain the same. Some of the

distinctive characteristics are briefly outlined here.

Digital image processing is the general term used for the processing of images by computer in some way

or another.

Image enhancement involves improving the subjective quality of an image, or the detectability of objects

within the image (Haralick and Shapiro, 1991). The information that is enhanced is usually apparent in

the original image, but may not be clear. Examples of image enhancement include noise reduction,

contrast enhancement, edge sharpening and colour correction.

Image restoration goes one step further than image enhancement. It uses knowledge of the causes of the

degradation present in an image to create amodel of the degradation process. Thismodel is then used to

derive an inverse process that is used to restore the image. In many cases, the information in the image

has been degraded to the extent of being unrecognisable, for example severe blurring.

Image reconstruction involves restructuring the data that a available into a more useful form. Examples

are image super-resolution (reconstructing a high resolution image from a series of low resolution

images) and tomography (reconstructing a cross-section of an object from a series of projections).

Image analysis refers specifically to using computers to extract data from images. The result is usually

some form of measurement. In the past, this was almost exclusively two-dimensional imaging,

2 Design for Embedded Image Processing on FPGAs

although with the advent of confocal microscopy and other advanced imaging techniques, this has

extended to three dimensions.

Pattern recognition is concerned with the identification of objects based on patterns in the measurements

(Haralick and Shapiro, 1991). There is a strong focus on statistical approaches, although syntactic and

structural methods are also used.

Computer vision tends to use a model-based approach to image processing.Mathematical models of both

the scene and the imaging process are used to derive a three-dimensional representation based on one or

more two-dimensional images of a scene. The use ofmodels implicitly provides an interpretation of the

contents of the images obtained.

The fields are sometimes distinguished based on application:

Machine vision is using image processing as part of the control system for a machine (Schaffer, 1984).

Images are captured and analysed, and the results are used directly for controlling the machine while

performing a specific task. Real-time processing is often emphasised.

Remote sensing usually refers to the use of image analysis for obtaining geographical information, either

using satellite images or aerial photography.

Medical imaging encompasses a wide range of imaging modalities (X-ray, ultrasound, magnetic

resonance, etc.) concerned primarilywithmedical diagnosis and othermedical applications. It involves

both image reconstruction to create meaningful images from the raw data gathered from the sensors,

and image analysis to extract useful information from the images.

Image and video coding focuses on the compression of an image or image sequence so that it occupies less

storage space or takes less time to transmit from one location to another. Compression is possible

because many images contain significant redundant information. In the reverse step, image decoding,

the full image or video is reconstructed from the compressed data.

1.2 Image Formation

While there are many possible sensors that can be used for imaging, the focus in this section is on optical

images, within the visible region of the electromagnetic spectrum. While the sensing technology may

differ significantly for other types of imaging, many of the imaging principles will be similar.

The first requirement to obtaining an image is some form of sensor to detect and quantify the

incoming light. Inmost applications, it is also necessary for the sensor to be directional, so that it responds

primarily to light arriving at the sensor from a particular direction. Without this direction sensitivity,

the sensor will effectively integrate the light arriving at the sensor from all directions. While such sensors

do have their applications, the directionality of a sensor enables a spatial distribution to be captured

more easily.

The classic approach to obtain directionality is through a pinhole as shown in Figure 1.1, where light

coming through the pinhole at some angle maps to a position on the sensor. If the sensor is an array then a

particular sensing element (a pixel) will collect light coming from a particular direction. The biggest

Sensor

Pinhole

Sensor

Lens

Sensor

Collimator

Sensor

Scanning
mirror

Figure 1.1 Different image formation mechanisms: pinhole, lens, collimator, scanning mirror.

Image Processing 3

limitation of a pinhole is that only limited light can pass through. This may be overcome using a lens,

which focuses the light coming from a particular direction to a point on the sensor. A similar focussing

effect may also be obtained by using an appropriately shaped concave mirror.

Two other approaches for constraining the directionality are also shown in Figure 1.1. A collimator

allows light from only one direction to pass through. Each channel through the collimator is effectively

two pinholes, one at the entrance, and one at the exit. Only light alignedwith both the entrance and the exit

will pass through to the sensor. The collimator can be constructed mechanically, as illustrated in

Figure 1.1, or through a combination of lenses. Mechanical collimation is particularly useful for imaging

modalities such as X-rays, where diffraction through a lens is difficult or impossible. Another sensing

arrangement is to have a single sensing element, rather than an array. To form a two-dimensional image,

the single element must be mechanically scanned in the focal plane, or alternatively have light from a

different direction reflected towards the sensor using a scanningmirror. This latter approach is commonly

used with time-of-flight laser range scanners (Jarvis, 1983).

The sensor, or sensor array, converts the light intensity pattern into an electrical signal. The two most

common solid state sensor technologies are charge coupled device (CCD) and complementary metal

oxide semiconductor (CMOS) active pixel sensors (Fossum, 1993). The basic light sensing principle is

the same: an incoming photon liberates an electron within the silicon semiconductor through the

photoelectric effect. These photoelectrons are then accumulated during the exposure time before being

converted into a voltage for reading out.

Within theCCDsensor (Figure 1.2) a bias voltage is applied to one of the three phases of gate, creating a

potential well in the silicon substrate beneath the biased gates (MOS capacitors). These attract and store

the photoelectrons until they are read out. By biasing the next phase and reducing the bias on the current

phase, the charge is transferred to the next cell. This process is repeated, successively transferring the

charge from each pixel to a readout amplifier where it is converted to a voltage signal. The nature of the

readout process means that the pixels must be read out sequentially.

A CMOS sensor detects the light using a photodiode. However, rather than transferring the charge all

the way to the output, each pixel has a built in amplifier that amplifies the signal locally. This means that

the charge remains local to the sensing element, requiring a reset transistor to reset the accumulated charge

at the start of each integration cycle. The amplified signal is connected to the output via a row select

transistor and column lines. These make the pixels individually addressable, making it easier to read

sections of the array, or even accessing the pixels randomly.

Although the active pixel sensor technology was developed before CCDs, the need for local transistors

made early CMOS sensors impractical because the transistors consumed most of the area of the device

(Fossum, 1993). Therefore, CCD sensors gained early dominance in the market. However, the continual

reduction of feature sizes has meant that CMOS sensors became practical from the early 1990s. The early

CMOS sensors had lower sensitivity and higher noise than a similar format CCD sensor, although with

recent technological improvements there is now very little difference between the two families (Litwiller,

2005). Since they use the same process technology as standardCMOSdevices, CMOS sensors also enable

other functions, such as A/D conversion, to be directly integrated on the same chip.

+ve bias

- -- --

-- --

Photon

-

Photon

Reset

Photodiode
Row

select

Amplifier

VDD

C
olum

n
line

Φ3 Φ1 Φ2 Φ3

Photoelectron

Figure 1.2 Sensor types. Left: theMOS capacitor sensor used by CCD cameras; right: a three-transistor

active pixel sensor used by CMOS cameras.

4 Design for Embedded Image Processing on FPGAs

Humans are able to see in colour. There are three different types of colour receptors (cones) in the

human eye that respond differently to different wavelengths of light. If the wavelength dependence of a

receptor is SkðlÞ, and the light falling on the receptor contains a mix of light of different wavelengths,

CðlÞ, then the response of that receptor will be given by the combination of the responses of all

different wavelengths:

Rk ¼
ð
CðlÞSkðlÞdl ð1:1Þ

What is perceived as colour is the particular combination of responses from the three different types of

receptor. Many different wavelength distributions produce the same responses from the receptors, and

therefore are perceived as the same colour. In practise, it is a little more complicated than this. The

incoming light depends on the wavelength distribution of the source of the illumination, IðlÞ, and the

wavelength dependent reflectivity, rðlÞ, of the object being looked at. So Equation 1.1 becomes:

Rk ¼
ð
IðlÞrðlÞSkðlÞdl ð1:2Þ

To reproduce a colour, it is only necessary to reproduce the associated combination of receptor responses.

This is accomplished in a television monitor by producing the corresponding mixture of red, green and

blue light.

To capture a colour image for human viewing, it is necessary to have three different colour receptors in

the sensor. Ideally, these should correspond to the spectral responses of the cones. However, since most of

what is seen has broad spectral characteristics, a precisematch is not critical except when the illumination

source has a narrow spectral content (for example sodium vapour lamps or LED-based illumination

sources). Silicon has a broad spectral response, with a peak in the near infrared. Therefore, to obtain a

colour image, this response must be modified through appropriate colour filters.

Two approaches are commonly used to obtain a full colour image. The first is to separate the red, green

and blue components of the image using a prism and with dichroic filters. These components are then

captured using three separate sensor chips, one for each component. The need for three chips with precise

alignment makes such cameras relatively expensive. An alternative approach is to use a single chip, with

small filters integratedwith each pixel. Since each pixel senses only one colour, the effective resolution of

the sensor is decreased. A full colour image is created by interpolating between the pixels of a component.

The most commonly used colour filter array is the Bayer pattern (Bayer, 1976), with filters to select the

red, green and blue primary colours. Other patterns are also possible, for example filtering the yellow,

magenta and cyan secondary colours (Parulski, 1985). Cameras using the secondary colours have better

low light sensitivity because the filters absorb less of the incoming light. However, the processing required

to produce the output gives a better signal-to-noise ratio from the primary filters than from secondary

filters (Parulski, 1985; Baer et al., 1999).

One further possibility that has been considered is to stack the red, green and blue sensors one on top of

the other (Lyon and Hubel, 2002; Gilblom et al., 2003). This relies on the fact that longer wavelengths of

light penetrate further into the silicon before being absorbed. Thus, by using photodiodes at different

depths, a full colour pixel may be obtained without explicit filtering.

Since most cameras produce video output signals, the most common format is the same as that of

television signals. A two-dimensional representation of the timing is illustrated in Figure 1.3. The image is

read out in raster format, with a horizontal blanking period at the end of each line. This was to turn off the

cathode ray tube (CRT) electron beam while it retraced to the start of the next line. During the horizontal

blanking, a horizontal synchronisation pulse controlled the timing. Similarly, after the last line is

displayed there is a vertical blanking period to turn off the CRT beam while it is retraced vertically.

Again, during the vertical blanking there is a vertical synchronisation pulse to control the vertical timing.

Image Processing 5

While such timing is not strictly necessary for digital cameras, at the sensor level there can also be

blanking periods at the end of each line and frame.

Television signals are interlaced. The scan lines for a frame are split into two fields, with the odd and

even lines produced and displayed in alternate fields. This effectively reduces the bandwidth required by

halving the frame rate without producing the associated annoying flicker. From an image processing

perspective, if every field is processed separately, this doubles the frame rate, albeit with reduced vertical

resolution. To process thewhole frame, it is necessary to re-interlace the fields. This can produce artefacts;

when objects are moving within the scene, their location will be different in each of the two fields.

Cameras designed for imaging purposes (rather than consumer video) avoid this by producing a non-

interlaced or progressive scan output.

Cameras producing an analogue video signal require a frame grabber to capture digital images.

A frame grabber preprocesses the signal from the camera, amplifying it, separating the synchronisation

signals, and if necessary decoding the composite colour signal into its components. The analogue video

signal is digitised by an A/D converter (or three A/D converters for colour) and stored in memory for

later processing.

Digital cameras do much of this processing internally, directly producing a digital output. A digital

sensor chipwill usually provide thevideo data and synchronisation signals in parallel. Cameraswith a low

level interface will often serialise these signals (for example the Camera Link interface; AIA, 2004).

Higher level interfaces will sometimes compress and will usually split the data into packets for

transmission from the camera. The raw format is simply the digitised pixels; the colour filter array

processing is not performed for single chip cameras. Another common format is RGB; for single chip

sensorswith a colour filter array, the pixels are interpolated to give a full colour value for each pixel.As the

human eye has a higher spatial resolution to brightness than to colour, it is common to convert the image to

YCbCr (Brown and Shepherd, 1995):

Y

Cb

Cr

2
4

3
5 ¼

65:481 128:553 24:966
�37:797 �74:203 112:0
112:0 �93:786 �18:214

2
4

3
5 R

G

B

2
4

3
5 þ

16

128

128

2
4

3
5 ð1:3Þ

Visible region

H
orizontal blanking

Vertical blanking

H
orizontal sync

Vertical sync

Figure 1.3 Regions within a scanned video image.

6 Design for Embedded Image Processing on FPGAs

where the RGB components are normalised between 0 and 1, and the YCbCr components are 8-bit integer

values. The luminance component, Y, is always provided at the full sample rate, with the colour difference

signals, Cb and Cr provided at a reduced resolution. Several common subsampling formats are shown in

Figure 1.4. These show the size or resolution of eachCb andCr pixel in terms of theY pixels. For example,

in the 4:2:0 format, there is a single Cb and Cr value for each 2� 2 block of Y values. To reproduce the

colour signal, the lower resolution Cb and Cr values are combined with multiple luminance values. For

image processing, it is usual to convert these back to RGB values using the inverse of Equation 1.3.

1.3 Image Processing Operations

After capturing the image, the next step is to process the image to achieve the desired result.

The sequence of image processing operations used to process an image from one state to another is

called an image processing algorithm. The term algorithm is sometimes a cause of confusion, since each

operation is also implemented through an algorithm in some programming language. This distinction

between application level algorithms and operation level algorithms is illustrated in Figure 1.5. Usually

the context will indicate in which sense the term is used.

As the input image is processed by the application level algorithm, it undergoes a series of

transformations. These are illustrated for a simple example in Figure 1.6. The input image consists

of an array of pixels. Each pixel, on its own, carries very little information, but there are a large number of

pixels. The individual pixel values represent high volume, but low value data. As the image is processed,

collections of pixels are grouped together. At this intermediate level, the data may still be represented in

Y

Cb Cr,

4:4:4 YCbCr 4:2:2 YCbCr 4:2:0 YCbCr 4:1:1 YCbCr

Figure 1.4 Common YCbCr subsampling formats.

Figure 1.5 Algorithms at two levels: application level and operation level.

Image Processing 7

terms of pixels, but the pixel values usually have more meaning; for example, they may represent a label

associated with a region. At this intermediate level, the representation may depart from an explicit image

representation, with the regions represented by their boundaries (for example as a chain code or a set of

line segments) or their structure (for example as a quad tree). From each region, a set of features may be

extracted that characterise the region. Generally, there are a small number of features (relative to the

number of pixels within the region) and each feature contains significant information that can be used to

distinguish it from other regions or other objects that may be encountered. At the intermediate level, the

data becomes significantly lower in volume but higher in quality. Finally, at the high level, the feature data

is used to classify the object or scene into one of several categories, or to derive a description of the object

or scene.

Rather than focussing on the data, it is also possible to focus on the image processing operations. The

operations can be grouped according to the type of data that they process (Weems, 1991). This grouping is

sometimes referred to as an image processing pyramid (Downton and Crookes, 1998; Ratha and Jain,

1999), as represented in Figure 1.7. At the lowest level of the pyramid are preprocessing operations. These

are image-to-image transformations, with the purpose of enhancing the relevant information within the

image, while suppressing any irrelevant information. Examples of preprocessing operations are distortion

correction, contrast enhancement and filtering for noise reduction or edge detection. Segmentation

operations such as thresholding, colour detection, region growing and connected components labelling

occur at the boundary between the low and intermediate levels. The purpose of segmentation is to detect

objects or regions in an image, which have some common property. Segmentation is therefore an image to

region transformation. After segmentation comes classification. Features of each region are used to

identify objects or parts of objects, or to classify an object into one of several predefined categories.

Classification transforms the data from regions to features, and then to labels. The data is no longer image

based, but position information may be contained within the features, or be associated with the labels. At

the highest level is recognition, which derives a description or some other interpretation of the scene.

6 corners
Hole area

= 760 pixels

Hexagonal
1/4 inch nut

Low level Intermediate level High level

Pixels Regions Features Description

Figure 1.6 Image transformations.

Low level

Intermediate level

High level

Pixels

Features

Objects

Preprocessing

Segmentation

Classification

Recognition

Figure 1.7 Image processing pyramid.

8 Design for Embedded Image Processing on FPGAs

1.4 Example Application

To illustrate the different stages of the processing, and how the different stages transform the image, the

problem of detecting blemishes on the surface of kiwifruit will be considered (this example application is

taken fromBailey, 1985).One of the problems frequently encounteredwith 100%grading is obtaining and

training sufficient graders. This ismadeworse for the kiwifruit industry because the grading season is very

short (typically only four to sixweeks). Therefore, a pilot studywas initiated to investigate the potential of

using image processing techniques to grade kiwifruit.

There are two main types of kiwifruit defects. The first are shape defects, where the shape of the

kiwifruit is distorted. With the exception of the Hayward protuberance, the fruit in this category are

rejected purely for cosmetic reasons. Theywill not be considered further in this example. The second class

of defects is that which involves surface blemishes or skin damage.With surface blemishes, there is a one

square centimetre allowance, provided the blemish is not excessively dark. However, if the skin is cracked

or broken or is infested with scale or mould, there is no size allowance and the fruit is reject. Since almost

all of the surface defects appear as darker regions on the surface of the fruit, a single algorithmwas used to

detect both blemishes and damage.

In the pilot study, only a single view of the fruit was considered; a practical application would have to

inspect the complete surface of the fruit rather than just one view. Figure 1.8 shows the results of

processing a typical kiwifruit with a water stain blemish. The image was captured with the fruit against a

dark background to simplify segmentation, and diffuse lighting was used to reduce the visual texture

caused by the hairs on the kiwifruit. Diffuse light from the direction of the camera alsomakes the centre of

the fruit brighter than around the edges; this property is exploited in the algorithm.

The dataflow for the image processing algorithm is represented in Figure 1.9. The first three

operations preprocess the image to enhance the required information while suppressing the

information that is irrelevant for the grading problem. In practise, it is not necessary to suppress

all irrelevant information, but sufficient preprocessing is performed to ensure that subsequent

operations perform reliably. Firstly, a constant is subtracted from the image to segment the fruit from

the background; any pixel less than the constant is considered to be background and is set to zero.

This simple segmentation is made possible by using a dark background. The next step is to normalise

the intensity range to make the blemish measurements independent of fluctuations in illumination

and the exact shade of a particular piece of fruit. This is accomplished by expanding the pixel values

linearly to set the largest pixel value to 255. This effectively makes the blemish detection relative to

the particular shade of the individual fruit. The third preprocessing step is to filter the image to

remove the fine texture caused by the hairs on the surface of the fruit. A 3� 3 median filter was used

because it removes the local intensity variations without affecting the larger features that must be

detected. It also makes the modelling stage more robust by significantly reducing the effects of noise

on the model.

The next stage of the algorithm is to compare the preprocessed image with an ideal model of an

unblemished fruit. The use of a standard fixed model is precluded by the normal variation in both the size

and shape of kiwifruit. It would be relatively expensive to normalise the image of the fruit to conform to a

Original Expanded Filtered Model Difference Blemishes

Figure 1.8 Steps within the processing of kiwifruit images (Bailey, 1985).

Image Processing 9

standard model, or to transform a model to match the fruit. Instead, a dynamic model is created from the

image of the fruit. Thisworks on the principle of removing the defects, followed by subtraction to seewhat

has been removed (Batchelor, 1979). Such a dynamic model has the advantage of always being perfectly

aligned with the fruit being examined both in position and in shape and size. A simple model can be

created efficiently by taking the convex hull of the non-zero pixels along each row within the image. It

relies on the lighting arrangement that causes the pixel values to decrease towards the edges of the fruit

because of the changing angle of the surface normal. Therefore, the expected profile of an unblemished

kiwifruit is convex, apart from noise caused by the hairs on the fruit. The convex hull fills in the pixels

associated with defects by setting their values based on the surrounding unblemished regions of the fruit.

The accuracy of the model may be improved either by applying a median filter after the convex hull to

smooth theminor discrepancies between the rows, or by applying a second pass of the convex hull to each

column in the image (Bailey, 1985).

The preprocessed image is subtracted from the model to obtain the surface defects. (The contrast of

this difference image has been expanded in Figure 1.8 to make the subtle variations clearer.) A pixel

value in this defect image represents how much that pixel had to be filled to obtain the model, and is

therefore a measure of how dark that pixel is compared with the surrounding area. Some minor

variations can be seen resulting from noise remaining after the prefiltering. These minor variations are

insignificant, and should be ignored. The defect image is thresholded to detect the significant changes

resulting from any blemish.

Two features are extracted from the processed images. The first is the maximum value of the difference

image. This is used to detect damage on the fruit, or to determine if a blemish is excessively dark. If the

maximum difference is larger than a preset threshold, then the fruit is rejected. The second feature is the

area of the blemish image after thresholding. For blemishes, an area less than one square centimetre is

acceptable; larger than this, the fruit is rejected because the blemish is outside the allowance.

Three threshold levels must be determined within this algorithm. The first is the background level

subtracted during preprocessing. This is set from looking at the maximum background level when

processing several images. The remaining two thresholds relate directly to the classification. The point

defect threshold determines how large the difference needs to be to reject the fruit. The second is the area

defect threshold for detecting blemished pixels. These thresholds were determined by examining several

fruit that spanned the range from acceptable, throughmarginal, to reject fruit. The thresholdswere then set

to minimise the classification errors (Bailey, 1985).

This example is typical of a real-time inspection application. It illustrates the different stages of the

processing, and demonstrates how the image and information are transformed as the image is processed.

Background
subtraction

Convex
hull

Contrast
expansion

Subtract

Threshold

Median
filter

Median
filter

Find
maximum

Area

Classification

Preprocessing

Modelling

Feature extraction

Figure 1.9 Image processing algorithm for detecting surface defects on kiwifruit (Bailey, 1985).

10 Design for Embedded Image Processing on FPGAs

This application has mainly low and intermediate level operations; the high level classification step is

relatively trivial. As will be seen later, this makes such an algorithm a good candidate for hardware

implementation on a FPGA (field programmable gate array).

1.5 Real-Time Image Processing

A real-time system is one in which the response to an event must occur within a specific time, otherwise

the system is considered to have failed (Dougherty and Laplante, 1985). From an image processing

perspective, a real-time imaging system is one that regularly captures images, analyses those images to

obtain some data, and then uses that data to control some activity.All of the processingmust occurwithin a

predefined time (often, but not always, the image capture frame rate). Examples of real-time image

processing systems abound. In machine vision systems, the image processing algorithm is used for either

inspection or process control. Some robot vision systems use vision for path planning or to control the

robot in someway where the timing is critical. Autonomous vehicle control requires vision or some other

form of sensing for vehicle navigation or collision avoidance in a dynamic environment. In video

transmission systems, successive framesmust be transmitted and displayed in the right sequence andwith

minimum jitter to avoid a loss of quality of the resultant video.

Real-time systems are categorised into two types: hard and soft real time. A hard real-time system is

one in which the complete system is considered to have failed if the output is not produced within the

required time. An example is using vision for grading items on a conveyor belt. The grading decisionmust

be made before the item reaches the actuation point, where the item is directed one way or another

depending on the grading result. If the result is not available by this time, the system has failed. On the

other hand, a soft real-time system is one in which the complete system does not fail if the deadline is not

met, but the performance deteriorates. An example is video transmission via the internet. If the next frame

is delayed or cannot be decoded in time, the quality of the resultant video deteriorates. Such a system is

soft real time, because although the deadline was not met, an output could still be produced, and the

complete system did not fail.

From a signal processing perspective, real time can mean that the processing of a sample must be

completed before the next sample arrives (Kehtarnavaz and Gamadia, 2006). For video processing, this

means that the total processing per pixel must be completed within a pixel sample time. Of course, not all

of the processing for a single pixel can be completed before the next pixel arrives, because many image

processing operations require data frommany pixels for each output pixel. However, this provides a limit

on the average processing rate, including any overhead associated with temporarily storing pixel values

that will be used later (Kehtarnavaz and Gamadia, 2006).

A system that is not real time may have components that are real time. For instance, in interfacing to a

camera, an imaging system must do something with each pixel as it is produced by the camera – either

process it in someway, or store it into a frame buffer – before the next pixel arrives. If not, then the data for

that pixel is lost. Whether this is a hard or soft real-time process depends on the context. While missing

pixels would cause the quality of an image to deteriorate (implying soft real time), the loss of quality may

have a significant negative impact on the performance of the imaging application (implying that image

capture is a hard real-time task). Similarly, when providing pixels for display, if the required pixel data is

not provided in time, that region of the display would appear blank. In the case of image capture and

display, the deadlines are in the order of tens of nanoseconds, requiring such components to be

implemented in hardware.

The requirement for the whole image processing algorithm to have a bounded execution time implies

that each operation must also have a bounded execution time. This characteristic rules out certain classes

of operation level algorithms from real-time processing. In particular, operations that are based on

iterative or recursive algorithms can only be used if they can be guaranteed to converge satisfactorily

within a predefined number of iterations, for the whole range of inputs that may be encountered.

Image Processing 11

One approach to guaranteeing a fixed response time is tomake the imaging system synchronous. Such a

system schedules each operation or step to execute at a particular time.This is suitable if the inputs occur at

regular (or fixed) intervals, for example the successive frames from a video camera. However, synchro-

nous systems cannot be used reliably when events occur randomly, especially when the minimum time

between events is less than the processing time for each event.

The time between eventsmay be significantly less than the required response time. A common example

of this is a conveyor-based inspection system. The time between items on the conveyor may be

significantly less than the time between the inspection point and the actuator. There are two ways of

handling this situation. The first is to constrain all of the processing to take place during the time between

successive items arriving at the inspection point, effectively providing amuch tighter real-time constraint.

If this new time constraint cannot be achieved then the alternative is to use distributed or parallel

processing to maintain the original time constraint, but spread the execution over several processors. This

can enable the time constraint to be met, by increasing the throughput to meet the desired event rate.

A commonmisconception of real-time systems, and real-time imaging systems in particular, is that they

require high speed or high performance (Dougherty and Laplante, 1985). The required response time

depends on the application and is primarily dependent on the underlying process to which the image

processing isbeingapplied.Forexample, a real-timecoastalmonitoringsystemlookingat themovementof

sandbarsmayrequireanalysis times in theorderofdaysorevenweeks.Suchanapplicationwouldprobably

not requirehighspeed!Whetherornot real-time imagingrequireshighperformancecomputingdependson

the complexity of the algorithm. Conversely, an imaging application that requires high performance

computing may not necessarily be real time (for example complex iterative reconstruction algorithms).

1.6 Embedded Image Processing

An embedded system is a computer system that is embedded within a product or component. Conse-

quently, an embedded system is usually designed to perform one specific task, or a small range of specific

tasks (Catsoulis, 2005), often with real-time constraints. An obvious example of an embedded image

processing system is a digital camera. There the imaging functions include exposure and focus control,

displaying a preview, and managing image compression and decompression.

Embedded vision is also useful for smart cameras, where the camera not only captures the image, but

also processes it to extract information as required by the application. Examples of where this would be

useful are “intelligent” surveillance systems, industrial inspection or control, robot vision, and so on.

A requirement of many embedded systems is that they need to be of small size, and light weight. Many

run off batteries, and are therefore required to operate with low power. Even those that are not battery

operated usually have limited power available.

1.7 Serial Processing

Traditional image processing platforms are based on a serial computer architecture. In its basic form, such

an architecture performs all of the computation serially by breaking the operation level algorithm down to

a sequence of arithmetic or logic operations that are performed by the ALU (arithmetic logic unit).

The rest of the CPU (central processing unit) is then designed to feed the ALU with the required data.

The algorithm is compiled into a sequence of instructions, which are used to control the specific operation

performed by the CPU and ALU during each clock cycle. The basic operation of the CPU is therefore to

fetch an instruction from memory, decode the instruction to determine the operation to perform, and

execute the instruction.

All of the advances inmainstream computer architecture have been developed to improve performance

by squeezing more data through the narrow bottleneck between the memory and the ALU (the so-called

von Neumann bottleneck; Backus 1978).

12 Design for Embedded Image Processing on FPGAs

The obvious approach is to increase the clock speed, and hence the rate at which instructions are

executed. Tremendous gains have been made in this area, with top clock speeds of several GHz being the

norm for computing platforms. Such increases have come primarily as the result of reductions in

propagation delay brought about through advances in semiconductor technology reducing both transistor

feature sizes and the supply voltage. This is not without its problems, however, and one consequence of a

higher clock speed is significantly increased power consumption by the CPU.

While the speeds of bulk memory have also increased, they have not kept pace with increasing CPU

speeds. This has caused problems in reading both instructions and data from the system memory at the

required rate. Caching techniques have been developed to buffer both instructions and data in a smaller

high speedmemory that can keep pacewith the CPU. The problem then is how tomaximise the likelihood

that the required data will be in the cache memory rather than the slower main memory. Cache misses

(where the data is not in cache memory) can result in a significant degradation in processor performance

because the CPU is sitting idle waiting for the data to be retrieved.

Both instructions and data need to be accessed from the main memory. One obvious improvement is to

use a Harvard architecture, which doubles the effective memory bandwidth by using separate memories

for instructions and data. This can give a speed improvement by up to a factor of two. A similar

improvementmay be obtainedwith a singlemainmemory, using separate caches for instructions and data.

Another approach is to increase thewidth of theALU, so thatmore data is processed in each clock cycle.

This gives obvious improvements for wider data word lengths (for example double precision floating-

point numbers) because each number may be loaded and processed in a fewer clock cycles. However,

when the natural word length is narrower, such is typically encountered in image processing, the

performance improvement is not as great unless data memory bandwidth is the limiting factor. When the

data path is wider than the word length, it is also possible to design the ALU to operate as a vector

processor. Multiple data words are packed into a single processor word allowing the ALU to perform the

same operation simultaneously on several data items (for example using the Intel MMX instructions;

Peleg et al., 1997). This can be particularly effective for low level image processing operations where the

same operation is performed on each pixel.

The speed of the fetch/decode/execute cycle may be improved by pipelining the separate phases. Thus,

while one instruction is being executed, the next instruction is being decoded, and the instruction after that

is being fetched. Depending on the complexity of the instructions, there may also be phases (and pipeline

stages) for reading data frommemory andwriting the results tomemory. Such pipelining is effectivewhen

executing long sequences of instructions without branches. However, instruction pipelining becomes

more complex with loops or branches that break the regular sequence. This necessitates flushing the

instruction pipeline to remove the successive instructions that have been incorrectly loaded and then

loading the correct instructions. Techniques have been developed to attempt tominimise time lost through

pipeline flushing. Branch prediction tries to anticipate which path will be taken at a branch, and increases

the likelihood that the correct instructions will be loaded. Speculative execution, executes the instructions

that have been loaded in the pipeline already, so that the time is not lost if the branch is predicted correctly.

If the branch is incorrectly predicted, the results of the speculative execution are discarded.

Other instruction set architectures have been designed to increase the CPU throughput. RISC (reduced

instruction set computer) architectures do this by simplifying the instructions, enabling a higher clock

speed. VLIW (very large instruction word) architectures enable multiple independent instructions to

execute in parallel, in an effort to maximise the utilisation of all parts of the CPU.

More recently, multiple core architectures have become mainstream. These enable multiple threads

within an application to execute in parallel on separate processor cores (Geer, 2005). These can give some

improvement for image processing applications, provided that the application has been developed

carefully to support multiple threads. If care is not taken, the memory bandwidth in accessing the image

can still be a bottleneck.

While impressive performance gains have been achieved, with serial processors, time is usually the

critical resource. This is because serial processors can only do one thing at a time. VLIWand multicore

Image Processing 13

processors are beginning to overcome this limitation, but, even so, they are still serially bound. Some

problems do not fit well onto serial processors, for example, those for which the processing does not scale

linearly with the number of inputs, or where the complexity of the problem is such that it remains

intractable (or impractical) given current processor speeds.

Another recent development is the GPU (graphics processing unit), a processor customised primarily

for graphics rendering, and initially driven by the high-end video game market. The primary function

performed by aGPU is to takevertex data representing triangular patcheswithin the scene and produce the

corresponding output pixels, which are stored in a frame buffer. Native operations include texture

mapping, pixel shading, z-buffering and blending, and anti-aliasing. Early GPUs had dedicated pipelines

for each of these stages, which restricted their use for wider application. More recent devices are

programmable, enabling them to be used for image processing (Cope et al., 2005) or other computation-

ally intensive tasks (Manocha, 2005). The speed gain is achieved through a combination of data pipelining

and lightweight multithreading (NVIDIA, 2006). Data pipelining reduces the need to write temporary

results to memory only to read them in again to perform further processing. Instead, results are written to

sets of local registers where they may be accessed in parallel. Multithreading splits the task into several

small steps that can be implemented in parallel, which is easy to achieve for low level image processing

operations where the independent processing of pixels maps well to the GPU architecture. Lightweight

threads reduce the overhead of switching the context from one thread to the next. Therefore, when one

thread stalls waiting for data, the context can be rapidly switched to another thread to keep the processing

units fully used. GPUs can give significant improvements over CPUs for algorithms that are easily

parallelised, especially where data access is not the bottleneck (Cope et al., 2005). However, power

considerations rule them out for many embedded vision applications.

For low power, or embedded vision applications, the size and power requirements of a standard serial

processor are impractical in many cases. Lowering the clock speed can reduce the power significantly, but

on a serial processor will also limit the algorithms that can be implemented in real time. To retain the

computing power while lowering the clock speed requires multiple parallel processors.

1.8 Parallelism

In principle, every step within any algorithm may be implemented on a separate processor, resulting in a

fully parallel implementation. However, if the algorithm is predominantly sequential, with every step

within the algorithm dependent on the data from the previous step, then little can be gained in terms of

reducing the response time. To be practical for parallel implementation, an algorithm has to have a

significant number of steps that may be implemented in parallel. This is referred to as Amdahl’s law

(Amdahl, 1967). Let s be the proportion of the algorithm that is constrained to run serially (the

housekeeping and other sequential components) and p the proportion of the algorithm that may be

implemented in parallel over N processors. The best possible speedup that can be obtained is then:

Speedup � s þ p

s þ p
N

¼ N

1 þ ðN�1Þ s ð1:4Þ

The equality will only be achieved if there is no additional overhead (for example communication or other

housekeeping) introduced as a result of parallelisation. This speedup is always less than the number of

parallel processors, and will be limited by the proportion of the algorithm that must be serially executed:

Limit
N!1

Speedup ¼ 1

s
ð1:5Þ

Therefore, to achieve any significant speedup, the proportion of the algorithm that can be

implemented in parallel must also be significant. Fortunately, image processing is inherently parallel,

14 Design for Embedded Image Processing on FPGAs

especially at the low and intermediate levels of the processing pyramid. This parallelism shows in a

number of ways.

Virtually all image processing algorithms consist of a sequence of image processing operations. This is

a form of temporal parallelism. Such a structure suggests using a separate processor for each operation, as

shown in Figure 1.10. This is a pipelined architecture. It works a little like a production line in that the data

passes through each of the stages as it is processed. Each processor applies its operation and passes the

result to the next stage. If each successive processor has to wait until the previous processor completes its

processing, this arrangement will not reduce the total processing time, or the response time. However, the

throughput can increase, because while the second processor is working on the output of operation 1,

processor 1 can begin processing the next image. When processing images, data can usually begin to be

output from an operation long before the complete image has been processed by that operation. The time

between when data is first input to an operation and the corresponding output is available is the latency of

that operation. The latency is lowest when each operation only uses input pixel values from a small, local

neighbourhood because each output only requires data from a few input pixel values. Operations that

require thewhole image to calculate an output pixel valuewill have a higher latency. Operation pipelining

can give significant performance improvements when all of the operations have low latency, because a

downstream processor may begin performing its operation before the upstream processors have

completed. This can give benefits, not only for multiprocessor systems, but also for software-based

systems using a separate thread for each process (McLaughlin, 2000) because the user can begin to see the

results before thewhole image has been processed. Of course, in a software system using a single core, the

total response time will not normally be decreased, although there may be some improvement resulting

from switching to another thread while waiting for data from slower external memory when it is not

available in the cache. In a hardware system, however, the total response time is given by the sum of the

latencies of each of the stages plus the time to input in thewhole image. If the individual latencies are small

compared to the time required to load the image, then the speedup factor can be significant, approaching

the number of processors in the pipeline.

Two difficulties can be encountered with using pipelining for more complex image processing

algorithms (Duff, 2000). The first is with multiple parallel paths. If, for example, Processor 4 in

Figure 1.10 also takes as input the results output from processor 1 then the data must be properly

synchronised to allow for the latencies of the other processors in the parallel path. For synchronous

processing, this is simply a delay line, but synchronisation becomes considerablymore complexwhen the

latencies of the parallel operations are variable. A greater difficulty is handling feedback, either with

explicitly iterative algorithms, or implicitly where the parameters of the earlier processors adapt to the

results produced in later stages.

A lot of the parallelism within an operation level algorithm is in the form of loops. The outermost loop

within each operation usually iterates over the pixels within the image, because many operations perform

the same function independently on many pixels. This is spatial parallelism, which may be exploited by

partitioning the image and using a separate processor to perform the operation on each partition. Common

partitioning schemes split the image into blocks of rows, blocks of columns, or rectangular blocks, as

illustrated in Figure 1.11. For video processing, the image sequence may also be partitioned in time, by

assigning successive frames to separate processors (Downton and Crookes, 1998).

Processor 1

Operation 1

Processor 2

Operation 2

Processor 3

Operation 3

Processor 4

Operation 4

Figure 1.10 Temporal parallelism exploited using a processor pipeline.

Image Processing 15

In the extreme case, a separate processor may be allocated to each pixel within the image (for example

the MPP; Batcher, 1980). Dedicating a processor to each pixel can facilitate some very efficient

algorithms. For example, image filtering may be performed in only a few clock cycles. However, one

problemwith such parallelism is the overhead required to distribute the image data to and from each of the

processors. Many algorithms for massively parallel processors assume that the data is already available at

the start.

The important consideration when partitioning the image is to minimise the communication between

processors, which corresponds tominimising the communication between the different partitions. For low

level image processing operations, the performance improvement approaches the number of processors.

However, the performance will degrade as a result of any communication overheads or contention when

accessing shared resources. Consequently, each processor must have some local memory to reduce any

delays associated with contention for global memory. Partitioning is therefore most beneficial when the

operations only require data fromwithin a local region, where local is defined by the partition boundaries.

If the operations performed within each region are identical, this leads to a SIMD (single instruction,

multiple data) parallel processing architecture according to Flynn’s taxonomy (Flynn, 1972).

With some intermediate level operations, the processing time for each partition may vary significantly

depending on the content of the image within that region. A simple static, regular, partitioning strategy

will be less efficient in this instance because the worst-case performance must be allowed for when

allocating partitions to processors. As a result, many of the processors may be sitting idle for much of the

time. In such cases, better performance may be achieved by having more partitions than processors, and

using a processor farm approach (Downton and Crookes, 1998). Each partition is then allocated

dynamically to the next available processor. Again, it is important to minimise the communications

between processors.

For high level image processing operations, the data is no longer image based. However, data

partitioning methods can still be exploited by assigning a separate data structure, region, or object to

a separate processor. Such assignment generally requires the dynamic partitioning approach of a

processor farm.

Logical parallelism reuses the same functional block many times within an operation. This often

corresponds to inner loops within the algorithm implementing the operation. Logical parallelism is

exploited by executing each instance of the function block in parallel, effectively unrolling the inner loops.

Often the functions can be arranged in a regular structure, as illustrated in the examples in Figure 1.12. The

odd–even transposition network within a bubble sort (for example to sort the pixel values within a rank

window filter; Heygster, 1982; Hodgson et al., 1985) consists of a series of compare and swap function

blocks. Implementing the blocks in parallel gives a considerable speed improvement over iterating with a

single compare and swap block. A linear filter or convolutionmultiplies the pixel values within a window

by a set of weights, or filter coefficients. Themultiply and accumulate block is repeatedmany times, and is

a classic example of logic parallelism.

Often the structure of the group of function blocks is quite regular, which, when combined with

pipelining, results in a synchronous systolic architecture (Kung, 1985).When properly implemented, such

Row partitioning Column partitioning Block partitioning

Figure 1.11 Spatial parallelism exploited by partitioning the image.

16 Design for Embedded Image Processing on FPGAs

architectures have a very low communication overhead, enabling significant speed improvements

resulting from multiple copies of the function block.

One of the common bottlenecks within image processing is the time, and bandwidth, required to read

the image from memory and write the resultant image to memory. Stream processing exploits this to

convert spatial parallelism into temporal parallelism. The image is read (and written) sequentially using a

raster scan often at a rate of one pixel per clock cycle (Figure 1.13). It then performs all of its processing on

the pixels on-the-fly as they are being read or written. The individual operations with the operation level

algorithm are pipelined as necessary to maintain the required throughput. Data is cached locally to avoid

the need for parallel external data accesses. This ismost effective if each operation uses input from a small

local neighbourhood, otherwise the caching requirements can be excessive. Stream processing alsoworks

best when the time taken to process each pixel is constant. If the processing time is data dependent, it may

be necessary to insert FIFO (first-in, first-out) buffers on the input or output (or both) tomaintain a constant

data rate. With stream processing, the response time is given by the sum of the time required to read or

write the image and the processing latency (the time between reading a pixel and producing its

corresponding output). For most operations the latency is small compared with loading the whole image,

Min Max

Window pixel values

Sorted pixel values

W
indow

pixelv alues

F
ilter

coefficie nts

Output
value

Compare and swap

Multiply and accumulate

Figure 1.12 Examples of logical parallelism. Left: compare and swapwithin a bubble sorting odd–even

transposition network; right: multiply and accumulate within a linear filter.

0
0
1
2
3
4
5
6
7
...
N

21 76543 ... M

0 1 2 ... M 0 1 2 ... M 0 1 2 ... M 0 1 2 ... M 0 1 2 ... M 0 1 2 ... M

Column

R
ow

Row 0 Row 1 Row 2 ... Row N Row 0
...

Time

Figure 1.13 Stream processing converts spatial parallelism into temporal parallelism.

Image Processing 17

so if thewhole application level algorithm can be implemented using stream processing the response time

is dominated by frame rate.

1.9 Hardware Image Processing Systems

In the previous section, it was not made explicit whether the processors that made up the parallel systems

were a set of standard serial processors, or dedicated hardware implementing the parallel functions. In

theory, it makes little difference, as long as the parallelism is implemented efficiently, and the

communication overheads are kept low.

Early serial computer systems were too slow for processing images of any size or in any volume. The

regular structure of images led to designs for hardware systems to exploit the parallelism because

hardware systems are inherently parallel. Many of the earliest systems were based on having a relatively

simple processing element (PE) at each pixel. Unger (Unger, 1958) proposed a system based on a

4-connected square grid for processing binary images. Although the hardware for each PE was relatively

simple, he demonstrated that many useful low level image processing operations could be performed.

Although this early system was not built (Duff, 2000), it inspired other similar architectures. Golay

proposed a system based on a hexagonal grid (Landsman et al., 1965; Golay, 1969) with the image cycled

through a single PE using streamprocessing. Such a systemwas ultimately built by Preston (Preston et al.,

1979). TheCLIP series of image processors used a parallel set of PEs. TheCLIP2 (Duff et al., 1973) used a

16� 12 hexagonal array, and although it was able to perform some basic processing itwas not practical for

real applications. The successor, CLIP4 (Duff, 2000) used a 96� 96 array, and was able to operate on

greyscale images in a bit serial manner. A similar 128� 128 array (the massively parallel processor) was

built by Batcher (Batcher, 1980); it also operated in a bit serial manner.

For capturing and display of video or images, even serial computers required a hardware system to

interfacewith the camera or display. These framegrabbers interfacedwith the host computer systemeither

through direct memory access (DMA), or sharedmemory that wasmappedwithin the address space of the

host. A basic frame grabber consisted of an A/D converter, a bank of memory capable of holding at least

one image frame, and a digital to analogue converter for image display. Many allowed basic point

operations to be applied through lookup tables on the image being captured or displayed. This simple

pipelining was extended to more sophisticated operations and completely pipelined image processing

systems, the most notable of which was the Datacube. Pipelining is less suitable for high level image

processing; hybrid systemswere developed consisting of pipelined hardware for the preprocessing and an

array of serial processors (often transputers) for high level processing, such as in the Kiwivision system

(Clist and Valkenburg, 1994).

The early hardware systems were implemented with small and medium scale integrated circuits. The

advent of VLSI (very large scale integration) lowered the cost of hardware and dramatically increased the

speed and performance of the resulting systems. This led to awider range of hardware architectures being

used and image processing operations being implemented (Offen, 1985). It is interesting to note that, as

technology has improved, the reducing feature sizes has meant that the cost of producing the masks has

increased, significantly increasing the proportion of the one-off costs relative to the cost of individual

devices. Consequently, the economics of VLSI production meant that only a limited range of circuits

(those general enough to warrant large production runs) saw widespread commercial use.

Hardware-based image processing systems are very fast, but their biggest problem is their relative

inflexibility. Once configured they perform their task very well, but it is difficult, if not impossible, to

reconfigure these systems if the nature of the task changes. In the 1980s, the introduction of FPGA (field

programmable gate array) technology opened new possibilities for digital logic design. FPGAs combine

the inherent parallel nature of hardware with the flexibility of software in that their functionality can be

reprogrammed or reconfigured. Early FPGAswere quite small in terms of the equivalent number of gates,

so they tended to be used primarily for providing flexible interconnect and interface logic (sometimes

18 Design for Embedded Image Processing on FPGAs

called glue logic), and for implementing finite state machine-based controllers. Multiple FPGAs were

required to implement any significant image processing system.As FPGAs grew in power, hybrid systems

were developed where FPGAs were used as vision coprocessors or accelerators within a host computer

(for example the Splash-2 system; Athanas and Abbot, 1995). Modern FPGAs now have sufficient

resources to enablewhole applications to be implemented on a single FPGA,making them an ideal choice

for embedded real-time vision systems.

Image Processing 19

2

Field Programmable Gate Arrays

In this chapter, the basic architectural features of FPGAs are examined.While a detailed understanding of

the internal architecture of an FPGA is not essential to programme them (the vendor-specific place and

route tools manage most of these details), a basic knowledge of the internal structure and how a design

maps onto that architecture can be used to develop a more efficient implementation.

2.1 Programmable Logic

The basic idea behind programmable hardware is to have a generic circuit where the functionality can be

programmed for a particular application. Conventional computers are based on this idea, where the ALU

can perform one of several operations based on a set of control signals. The limitation of an ALU is that it

can only perform one operation at a time. Therefore, a particular application must be broken into the

sequence of control signals for controlling the function of the ALU, along with the logic required to

provide the appropriate data to the inputs of the ALU. The sequence of controls is provided by a sequence

of programme instructions stored in the memory.

Programmable logic, on the other hand, represents the functionality as a circuit, where the particular

circuit can be programmed to meet the requirements of an application. The key distinction is that the

functionality is implemented as a parallel system, rather than sequential. Any logic function may be

implemented using a two-level minterm (OR of AND) representation. Therefore, it made sense that early

programmable logic devices consisted of a two-level programmable array architecture, such as that shown

on the left in Figure 2.1. Each of the inputs (and its inverse) can potentially be connected to the input of

each of a set of ANDgates. Each circle represents a programmable connection between the corresponding

vertical and horizontal line, as shown in the bottomof Figure 2.1. A similar arrangement is used to connect

the output of each of the AND gates to the inputs of the OR gates. In practice, both input and output

sections use the same circuit since, from De Morgan’s theorem, the OR of ANDs can be implemented as

a NAND of NANDs. Sequential logic, such as counters and finite state machines can be implemented

with the addition of latches or flip-flops on the output, and appropriate feedback from the output back to

the input.

Simple programmable logic devices began appearing in the early 1970s, and were mainly used to

simplify circuits containing many discrete logic devices. The early devices were either mask program-

mable or fuse programmable.Mask-programmable deviceswere programmed atmanufacture, effectively

hardwiring the programming using ametalmask. Fuse-programmable devices can be programmed by the

user, making such circuits field programmable. The programmable sections can consist either of fuses

Design for Embedded Image Processing on FPGAs, First Edition. Donald G. Bailey.

� 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd.

where a higher than normal current is used to break a connection (blow the fuse in the conventional sense),

or more usually antifuses, where a thin insulating layer is broken down by applying a high voltage across

it, and it becomes conducting. Since blowing a fuse (or antifuse) is destructive, once programmed the

devices cannot be reprogrammed.

Such a programmable array provides full programming flexibility. However, it was soon realised that

advantages could be gained from having a less flexible array. If the output (OR) array is replaced by fixed

connections, so that each OR gate has a fixed number of AND gates connected to it, the result is

programmable array logic (PAL) and is illustrated in the centre panel of Figure 2.1.While thismay appear

to reduce the number of connections, in practice the number of AND gates must be increased because the

AND terms cannot be shared between different outputs. However, restricting the programmability to just

one section does reduce the area, and the speed of the OR section is increased. The only limitation this

imposes on the logic function is the maximum number of terms that may be ORed together to give

a particular output. For all but the more complex circuits, this limitation is not significant, and even

when this limit is reached, multiple outputs may be used and combined to implement more complex

logic functions.

Another advance, in the mid 1980s, was to control each programmable connection with an EEPROM

(electrically erasable programmable read onlymemory) cell rather than a fuse. This enables the devices to

be cleared and reprogrammed. A key benefit is that the logic may be altered simply by reprogramming the

device. This opens possibilities for remote upgrading, without necessarily having the product returned to

the factory or service centre.

An alternative simplification to the PAL is to fix the AND section and make the OR section program-

mable, as shown in the right panel of Figure 2.1. This structure effectively results in a programmable read

only memory (PROM) or lookup table (LUT). Each AND gate will correspond to one combination of the

input signals, corresponding to exactly one line of the truth table representation of the function. So for

three inputs, therewill be 23 or eight ANDgates. TheOR section is programmed to select the combination

of inputs required to give a high output. A lookup tablemay implement any arbitrary function of its inputs.

This gives PROMs considerable flexibility, although the circuit size grows exponentially with the number

I
0

I
0

I
0

I
1

I
1

I
1

I
2

I
2

I
2

Q
0

Q
0

Q
0

Q
1

Q
1

Q
1

Q
2

Q
2

Q
2

≡

Figure 2.1 Types of programmable logic array. Left: both the input AND and output OR sections

are programmable. Centre: PAL, with programmable AND section and fixed OR section; right:

PROM, with fixed AND section and programmable output OR section; bottom: interpretation of the

programmable sections.

22 Design for Embedded Image Processing on FPGAs

of inputs, which restricts the usefulness of PROMs towhere only a few inputs are required. Larger PROMs

are also much slower than dedicated logic circuits, and consume more power. For these reasons, large

PROMs are not often used for general programmable logic. However, the flexibility of the lookup table

architecture can be effective with a small number of inputs, making it the most commonly used building

block within FPGAs. In practise, a PROM is not implemented as shown in Figure 2.1. The programmable

OR connection is usually replaced by a programmed memory cell, which is connected to the output via a

pass transistor as shown in Figure 2.2. Alternatively, for a small number of inputs the programmed

memory cell may be connected to the output via a multiplexer tree.

The programmable logic described so far only has a limited number of inputs and outputs. The next step

in the development of programmable logicwas to incorporate several blocks of logic on a single chip, with

programmable interconnections to enable more complex logic functions to be created. Two classes of

device resulted – complex programmable logic devices (CPLDs) based on the PAL architecture, and

FPGAs based on the LUTarchitecture. These differences mean that CPLDs have a higher density of logic

compared to interconnect, whereas the logic blockswithin FPGAs are smaller and the architecture ismore

dominated by interconnects. The othermain difference between CPLDs and FPGAs is that CPLDs tend to

be flash-programmable, whereas the programme or configuration for most FPGAs is usually held in static

memory cells. This makes the configuration volatile, requiring it to be reloaded each time the device is

powered on. The configuration data is contained in a configuration file which is used to programme

the system.

Both CPLDs and FPGAs were introduced in the mid 1980s, and were initially used primarily as glue

logic on printed circuit boards to flexibly interconnect a range of other components. However, as device

densities increased, FPGAs began to dominate because of the increased flexibility that came primarily

through the more flexible interconnect structure. Current FPGAs have sufficient logic resources (and

associated interconnect routing) to implement even complex applications on a single chip. More recent

trends have led to the integration of specific functional blocks within the FPGA, including multipliers,

memories, high speed input–output interfaces, and even serial processor cores (Leong, 2008). Imple-

menting such commonly used features as dedicated blocks frees up the programmable logic resources that

would otherwise be required. It also increases the speed and reduces the power consumption compared

with implementing those functions out of general purpose programmable logic.

I
0

I
0

I
1

I
1

I
2

I
2

Q
0

Q

Q
1

Q
2

Memory array

A
ddress

decoder

P
rogram

m
able

bits

Figure 2.2 PROM architectures. Left: implemented as memory; right: multiplexer tree.

Field Programmable Gate Arrays 23

2.1.1 FPGAs vs. ASICs

Programmability comes at a cost, however. If an FPGA-based implementation is compared with the same

implementation in dedicated hardware as an application specific integrated circuit (ASIC), the FPGA

requires more silicon, is slower, and requires more power. This should not come as a surprise – a custom

made circuit will always be smaller than a generic circuit for a number of reasons. Firstly, the custom

circuit only needs to consist of the gates that are required for the application, whereas the programmable

circuit will inevitably have components that are not used, or not used in the best possibleway. Secondly, a

programmable interconnect is not required in a custom circuit; the logic is just wired where it is needed.

The interconnect logic must also be sufficiently flexible to allow a wide range of designs, so again it will

only be partially used in any particular configuration. Thirdly, the programmable hardware requires extra

configuration logic, which also consumes a significant proportion of the chip real estate. Taking all these

factors into consideration, an FPGA requires 20–40 times the silicon area of an equivalent ASIC (Kuon

andRose, 2006). It is at the higher end of this range for designs dominated by logic, and at the lower end of

the range for those applications that make significant use multiplier blocks and memories, where the

programmable blocks are bigger.

In terms of speed, the flexibility of programmable logic means that it will always be slower than

a custom circuit. Also, since programmable circuits are larger, they will have more capacitance, reducing

the maximum clock speed. On custom hardware, the wiring delays can be minimised by placing

connected components as close as possible to each other. The need for programmable interconnect on

FPGAsmeans the logic blocks are spaced further apart, so it takes longer for the signals to travel from one

block to another. This is made worse by the fact that designs tend to be more scattered over the resources

available by the automated place and route tools. Finally, every interconnection switch that a signal passes

through also introduces a delay. Therefore, an ASIC will typically be three to four times faster than an

FPGA (Kuon and Rose, 2006) for the same level of technology.

An FPGAwill also consume about 10–15 times more dynamic power than a comparable ASIC (Kuon

andRose, 2006). Themain causes of the large disparity in power dissipation are the increased capacitance

and the larger number of transistors that must be switched.

In spite of these disadvantages, FPGAs do have significant advantages over ASICs, particularly with

digital systems. The mask and design costs of ASICs are significantly higher, although the cost per chip is

significantly lower (Figure 2.3). This makes ASICs only economical where high volumes are required, or

where the speed cannot bematched by an FPGA.With each new technology generation the capabilities of

FPGAs increase, moving the crossover point to higher and higher volumes. FPGAs also enable a shorter

timetomarket,bothbecauseof theshorterdesignperiodandbecause thereconfigurabilityallowsthedesign

to bemodified relatively late into the design cycle. The fact that the designmay also be reconfigured in the

fieldcanalsoextend theuseful lifetimeofaproductbasedonFPGAs.The future is likely to seean increased

use of reconfigurability within ASICs to address these issues (Rutenbar et al., 2001).

FPGAs

ASICs

Structured
ASICs

Volume

Unit
Cost

~500 ~5k ~50k

Figure 2.3 The relative costs of FPGAs, ASICs and structured ASICs.

24 Design for Embedded Image Processing on FPGAs

Structured ASIC approaches, which effectively take an FPGAdesign and replace it with the same logic

(hardwired) and fixed routing, can also overcome some of these problems. A structured ASIC consists of

a predefined sea of gates, with the interconnections added later. This effectively makes them mask-

programmed FPGAs. Fabrication of the user’s device consists of adding from two to six metal layers

forming the interconnection wiring between the gates. The initial cost is lower because the design and

mask costs for the underlying silicon can be shared over a large number of devices, and only the metal

interconnection layers need to be added to make a functioning device.

Both Altera (with HardCopy; Altera, 2009a) and Xilinx (with EasyPath; Krishnan, 2005) provide

services based on their high end FPGA families for converting an FPGA implementation into a structured

ASIC. The underlying sea of gates for these reflects the underlying architecture of the FPGA on which

they are based. Such devices provide significant cost reductions for volume production, while achieving

a 50% improvement in performance at less than half the power of the FPGA design they are based on

(Leong, 2008). NECElectronics Corporation also provides an embedded gate array service (NEC, 2009).

This is based in a generic sea of gates, with the logic designs mapped onto these gates.

For prototyping, and designs where a relatively small number of units is required, the programmability

and low cost of FPGAs makes them the device of choice.

2.2 FPGAs and Image Processing

Since an FPGA implements the logic required by an application by building separate hardware for each

function, FPGAs are inherently parallel. This gives them the speed that results from a hardware design

while retaining the reprogrammable flexibility of software at a relatively low cost. This makes FPGAs

well suited to image processing, particularly at the low and intermediate levels where they are able to

exploit the parallelism inherent in images. FPGAs can readily implement most of the forms of parallelism

discussed in Section 1.8.

For a pipelined architecture, separate hardware is built for each image processing operation in the

pipeline. In a data synchronous system, data is simply passed from the output of one operation to the input

of the next. If the data is not synchronous, appropriate buffersmay be incorporated between the operations

to manage variations in dataflow or access patterns.

Spatial parallelism may be exploited by building multiple copies of the processing hardware and

assigning different image partitions to each of the copies. The extreme case of spatial parallelism consists

of building a separate processor for each pixel. This is not really practical for all but very small images; for

realistic sized images, such massive parallelism does not map well onto current FPGAs, simply because

the number of pixels within images exceeds the resources available within an FPGA.

Logical parallelism within an image processing operation is well suited to FPGA implementation, and

it is herewheremany image processing algorithmsmay be accelerated significantly. This is accomplished

by unrolling the inner loops, so that rather than performing the operations sequentially, parallel hardware

is used.

Streaming feeds image data serially through a single function block. This maps well to a hardware

implementation, especially when interfacing directly to a camera or display where the images are

naturally streamed. If all of the operations are able to be implemented using stream processing, then the

implementation of the whole algorithm as a single streamed pipeline results in a very efficient imple-

mentation. With stream processing, pipelining is usually required to achieve the required throughput.

The ability to make significant use of parallelism has significant implications when building embedded

vision systems. Performing multiple operations in parallel enables the clock speed to be lowered

significantly. A VGA resolution video streamed from a camera at 30 frames per second produces

approximately 10 million pixels per second (although the clock speed is usually higher to account for the

blanking periods). Any significant processing requires many operations to be performed for each pixel,

requiring a conventional serial processor to have a much higher clock frequency. A streamed pipelined

Field Programmable Gate Arrays 25

system implemented on an FPGA can often be operated at the native pixel input (or output) clock

frequency. This corresponds to a reduction in clock speed over a serial processor of two orders of

magnitude or more. The dynamic power consumption of a system is directly related to the clock

frequency, so a slower clock results in a significantly lower power design.

If the whole algorithm can be implemented on a single FPGA, the resulting system has a small form

factor. Designs with only two or three chips are possible, enabling the whole image processing system

to be embedded with the sensor. This enables smart sensors and smart cameras to be built, where the

intelligence of the system is built within the camera (Leeser et al., 2004; Mosqueron et al., 2007). The

result is that vision can then be embedded within many applications as a versatile sensor.

2.3 Inside an FPGA

So, what exactly is inside an FPGA? Figure 2.4 shows the basic structure and essential components of a

generic FPGA. The programmable logic consists of a set of fine-grained blocks that are used to implement

the logic of the application. This is sometimes called the fabric of the FPGA. The logic blocks are usually

based on a lookup table architecture, enabling them to implement any arbitrary function of the inputs. The

logic blocks are typically tiled in a grid structure and interconnected via a programmable routing matrix

that enables the blocks to be connected in arbitrary configurations. The input and output (I/O) blocks

interface between the internals or core of the FPGA and external devices. The routingmeans that virtually

any signal can be routed to any I/O pin of the device.

In addition to these basic features, most FPGAs provide some form of clock synchronisation to control

the timing of a clock signal relative to an external source. A clock distribution network provides

clock signals to all parts of the FPGAwhile limiting the clock skew between different sections of a design.

There is also some dedicated logic for loading the configuration into the FPGA. This logic does not

directly form part of the user’s design, but is the overhead required for FPGAs to be programmable and

provides the mechanisms for loading the user’s design onto an FPGA.

Each of these components is examined in a little more detail in the following sections.

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

I/O
block

Logic
block

Logic
block

I/O
block

I/O
block

I/O
block

I/O
block

Configuration
control

Clock
control

Figure 2.4 The basic architecture of an FPGA.

26 Design for Embedded Image Processing on FPGAs

2.3.1 Logic

The smallest unit of logic within the FPGA is a logic cell. This is the finest grain logic unit producing

a single bit output. It typically consists of a small LUT and a latch on the output, as represented in

Figure 2.5. A common terminology is to refer to a three-input LUT as a 3-LUT, and similarly for other

LUT sizes. The latch is used to register the output. On some FPGAs, both outputs may be provided, as in

Figure 2.5; on others, a multiplexer may be used to select whether the registered or unregistered signal is

output. The registers can be used for building finite state machines, counters, and for registering data

within pipelined systems.

The LUT can implement any arbitrary function of its inputs. More complex functions can be

implemented by cascading multiple levels of LUTs by connecting the output, X, to the input of the

next layer. FPGAmanufacturers face a trade-off in choosing the size of the LUTs. Consider implementing

a simple two-input AND gate. With a large LUT, a significant fraction of the logic would be unused.

Smaller LUTs would achieve a higher usage of resources. However, when implementing complex

functions with small LUTs, multiple logic cells would have to be cascaded, which can significantly

increase the propagation delay. For complex functions, using a larger LUT would be preferable. To

balance this, the silicon area of the table grows exponentiallywith the number of inputs, so at some stage it

is more efficient to split a complex function over multiple LUTs. A larger LUT also has a longer

propagation delay than a smaller table because of the extra levels in the multiplexer tree. Early studies

showed that the optimum size is for the LUT to have four to six inputs (Kouloheris and El Gamal, 1991;

Singh et al., 1992). Early FPGAs used 3-LUTs and 4-LUTs. However, as device scales have shrunk, the

proportion of the total propagation delay used by the routing matrix has increased. This has led to larger

LUTs inmore recent devices, for example recentXilinx devices use 6-LUTs.Another approach taken is to

combine two basic lookup tables, sharing some of the inputs, but allow the logic to be partitioned between

the two outputs according to the application (Hutton et al., 2004).

It is also usual to combine multiple logic cells into a logic block or tile, as in Figure 2.4. All of the logic

cells within a block share common control signals, for example, common clock and clock enable signals.

In a logic block, the outputs are directly available as inputs to other logic cells within the same block. The

resulting direct connections reduce the number of signals that need to be routed through the interconnect

matrix, reducing the propagation delay on the critical path. A small number of additional dedicated

multiplexers allowmore complex functions to be synthesised by combining adjacent LUTs to effectively

create a larger LUT. Studies have shown that the optimal logic block size is four to ten logic cells (Ahmed

and Rose, 2000).

Many of the early FPGAswere homogenous in that therewas only one type of logic resource. However,

as FPGAs developed andmoved frombeing used primarily as glue logic to compute resources in their own

CE
D

Inputs

P
rogram

m
able

bits

Clk CE

X

Q

Figure 2.5 A logic cell is the basic building block of an FPGA.

Field Programmable Gate Arrays 27

right, implementing many functions using fine-grained logic was expensive. This has led to a more

heterogeneous architecture, with a range of more complex coarser-grained building blocks.

Addition is a commonly performedoperation.On anFPGA, a full adderwould require two3-LUTs, one

to produce the sum and one to produce the carry. With a ripple adder, the propagation of the carry signal

through the routing matrix is more likely to form the critical path. Since addition is such a common

operation, many manufacturers provide additional circuitry within logic cells (or logic blocks) to reduce

the resources required and significantly reduce the critical path for carry propagation. This usually

consists of dedicated logic to detect the carry (so only one LUT is needed per bit of addition) and

a dedicated direct connection for the carry signal between adjacent logic cells.

Multiplication is also a common operation in digital signal processing (DSP). A multiplier can be

implemented using logic blocks to perform a series of additions, either sequentially or in parallel.

Sequentially, multiplication is time consuming, requiring one clock cycle for each bit of the multiplier to

perform the associated addition. Implementing the multiplication in parallel improves the timing, but

consumes significant resources. Therefore, it is common in FPGAs targeting DSP and other compute

intensive applications to have dedicated multiply or multiply and accumulate blocks.

On a fine-grained FPGA, all of the storage is within the flip-flops in the logic cells.While this is suitable

for data that is accessed frequently, the storage space is limited, making it expensive for storing larger

volumes of data. Rather than require the use of off-chipmemories, many FPGAs have had small blocks of

memory added on-chip for intermediate storage and buffers. This can be implemented in twoways – either

by adding dedicated memory blocks (block RAM) or by adapting the structure of the logic cells to enable

them to be used as a random access memory rather than as LUTs; such memory is called fabric RAM

because it ismade from the “fabric” of the FPGA.Ahigh bandwidth ismaintained by keeping thememory

blocks small, enabling independent access to each block. Many of the memory blocks are also dual-port,

simplifying the construction of FIFO buffers and custom caches. True dual-port allows independent

reading and writing on each of the ports. Some memories are only simple dual-port, where one port is

write only and one port is read only.

Often, some parts of an application benefit from the parallelism offered by an FPGA, and other parts are

more efficiently implemented using a serial processor. In these latter cases, a serial processor may be

constructed from the fabric of the FPGA. The delays associated with programmable logic and intercon-

nect will limit the clock speed of such a processor. Therefore several high end FPGA families implement

a high performance serial processor as a hardware block on the FPGA.

To summarise, fine-grained homogenous FPGAs consist of a sea of identical logic blocks. However,

most current FPGAs have moved away from this homogenous structure, with a heterogeneous mixture of

both fine-grained logic blocks and larger coarse-grained blocks targeted for accelerating commonly used

operations. This has both advantages and disadvantages in terms of design. Heterogeneous systems will

generally be faster because the coarse-grained blocks will not have the same level of overhead that comes

with fine-grainedflexibility.However, heterogeneous devices are also harder to programme, and if themix

of specialised blocks is not right much of the functionality may remain underused.

2.3.2 Interconnect

The purpose of the programmable interconnect is to flexibly enable the different logic blocks to be

connected to implement the desired functionality. Obviously it is impractical to provide a dedicated

direct connection from every possible output to every possible input. In any given application, only a

very small fraction of these connections would be required; however, any of the connections potentially

may be required. The solution is to have a smaller set of connection resources (routing lines) that can be

shared flexibly to create the connections required for a given application, a little like the cables in a

telephone network.

Since the interconnect takes up roomon the silicon, there is a compromise. If only a few routing lines are

provided, more space is available for logic, but complex circuits cannot be constructed because of

28 Design for Embedded Image Processing on FPGAs

insufficient interconnection resources. Alternatively, if toomany routing lines are provided,manywill not

be used, and this reduces the area available for logic. There is an optimum somewhere in between these

extremes, where sufficient routing lines are available formost applications, without using toomuch space.

The connection network formost FPGAs is based on a grid structure, similar to that shown in Figure 2.4.

At each grid intersection some form of crossbar switch enables programmable connection between the

horizontal and vertical routing lines.

Another factor that needs to be considered is the propagation delay through the interconnection

network. Each switch that the signal passes through will add to the delay. This has led to a segmented

structure, where not every routing line is switched at every junction. Also, dedicated direct connections

can be provided between adjacent logic blocks to reduce the number of signals that need to go via the

interconnect matrix. While having a range of different interconnection resources improves the flexibility

and speed, it can make the process of finding good routes significantly more complex, especially for

designs which use most of the logic available on the FPGA.

It is important that only a single output is driving a routing line. If two outputs are connected together,

with one high and the other low, the power supply will effectively be shorted, causing damage to the chip.

One of the roles of the FPGA programming tools is to ensure that this never happens. Devices that use bus

structures for routing must limit the current of driving transistors, or use open drain and passive pull-up.

Both approaches affect the speed and power dissipation.

2.3.3 Input and Output

Input and output blocks enable the connection of signals between the FPGA and external devices. The

flexibility of FPGAs requires them to be able to connect to a wide range of other components. Most of

the I/O pins can be programmed as inputs, outputs, or both, and be connected directly to the internal

logic of the FPGA, or pass via registers. This range of functionality may be provided by a generic I/O

block such as that shown in Figure 2.6, with each multiplexer controlled by a programmable

configuration bit. The main complexity of I/O arises from the large number of different signalling

standards used by different devices and ensuring appropriate synchronisation between the FPGA and

the off-chip components.

Perhaps themost common signalling standard is LowVoltage Transistor–Transistor Logic (LVTTL) or

LowVoltage CMOS (LVCMOS), which are suitable for general purpose 3.3V signals. FPGAswill almost

certainly require a separate power supply for the I/O pins because the I/O voltages are often larger than the

core supply voltage. Some standards may also require an external voltage reference to determine the

threshold level between a logical 0 and 1. The voltage supply and reference levels will usually apply to a

group or bank of I/O pins.

It is important when interfacing high speed signals to consider transmission line effects. A general

rule of thumb is that any connection longer than about one-eighth of the rise time should have

OE

I/O

Output enable

Output

Input

Buffers and

drivers

Figure 2.6 Generic input/output block.

Field Programmable Gate Arrays 29

appropriate termination to minimise signal reflections. As FPGAs have become larger and faster, it has

become common practise to provide programmable on-chip termination. If not provided, it is necessary to

ensure that appropriate termination is built off-chip for fast switching signals.

Just as dedicated logic blocks are provided in some FPGAs for commonly used functions, many

newer FPGAs may also include dedicated I/O hardware to manage some commonly used connections

and protocols. One example is the logic required to interface to double data rate (DDR) memories.

Two data bits are transferred per clock cycle on each I/O pin, one on clock high and one on clock low.

Multiplexing and de-multiplexing are built into the I/O block, enabling the internal circuitry to operate

at the clock rate rather than twice the clock rate. Differential signalling is commonly used for high speed

communication because it is less sensitive to noise and cross-talk. This improved noise immunity

enables a lower signalling voltage to be used, reducing the power requirements. Most of the recent

FPGAs include the logic for managing low voltage differential signalling (LVDS), which requires two

I/O pins for each bit.

High speed serial standards have signalling rates higher than the maximum clock speed supported by

the core of the FPGA. Support for such standards requires incorporation of parallel-to-serial converters on

outputs and serial-to-parallel converters on inputs. The serialisation and deserialisation (SERDES) logic

enables the FPGA to run at a lower speed than required by the communication data rate.

Manyhigh level communication protocolswould require significant FPGA resources simply tomanage

the protocol. While this can be implemented in the fabric of the FPGA, the design is often quite complex

and is better implemented using a dedicated interface chip. Such chips typically manage themedia access

control (MAC) and physical signalling (PHY) requiring only standard logic signals in their interfacewith

the FPGA. Some FPGAs incorporate dedicated MAC and PHY circuitry for commonly used commu-

nications protocols, such as PCI express and Gigabit Ethernet.

Most FPGAs provide a range of both general purpose and dedicated I/O connections.

2.3.4 Clocking

FPGAs are designed primarily as synchronous devices, so require a clock signal. Although multiple

clocksmay be used in a design, registers, synchronousmemories and I/O blocks can only be controlled by

one clock. A clock domain consists of all the circuitry that is controlled by a particular clock.

Since a clock drives a lot of inputs potentially over the whole of the FPGA, there are two special

characteristics of clock lines that distinguish them from other interconnections on an FPGA. Firstly, it is

important that all registers in a clock domain are clocked simultaneously. Clock skew is the difference in

arrival time of the clock signal at successive registers in a design (Friedman, 2001). Any skewwill reduce

the timingmargin and impact the maximum clock speed of a design. Although skew can beminimised by

using H-tree or X-tree clock distribution networks, these do not fit well with the grid based structure of

FPGAs (Lamoureux and Wilton, 2006). Instead, a spine and ribs structure is typically used (Figure 2.7),

Figure 2.7 Clock distribution networks. Left: H-tree structure; right: spine and ribs structure.

30 Design for Embedded Image Processing on FPGAs

where the clock is distributed to rows using a spine and then to the elements on the row using the ribs

(Lamoureux and Wilton, 2006). A series of buffers is used within the distribution network to manage the

high fan-out. In practise, it is a little more complex than this, as the network must cater for multiple clock

domains, and many FPGAs also have a mixture of local clocks and global clocks.

Delay locked loops (DLLs) are used to minimise the skew and to synchronise clocks with external

sources. These dynamically adjust a programmable delay to align the clock edge with an external

reference.A side effect ismaking the output duty cycle 50%and providing quadrature phase clock signals.

While the delay locked loopwillmatch the input frequency, phase locked loops (PLLs) can also be used to

synthesise different clock frequencies by multiplying a reference clock by an integer ratio.

2.3.5 Configuration

All of the switches, structures and options within the FPGA are controlled by configuration bits. Most

commonly, the configuration data is containedwithin the FPGA in staticmemory (SRAM) cells, although

flash-programmed devices are available from some manufacturers. Flash-programmed FPGAs are non-

volatile, retaining their configuration after power-off, so they can immediately begin working after

powering-on. Static memory based FPGAs lose their configuration on power-off, requiring the configu-

ration file to be reloaded every time the system is powered on. Static memory had the advantage of being

infinitely reprogrammable; flash memory typically has a limited number of write cycles.

An FPGA is configured by loading the configuration file into the internal memory. This is usually

accomplished by streaming the configuration file onto the FPGA either serially, or in parallel 8, 16 or in

some cases 32 bits at a time. In a stand-alone system, the configuration file is usually contained within an

external flash memory, such as that shown in Figure 2.8, with the board set up to automatically configure

the FPGA on power-on. FPGAs can also be programmed serially via a JTAG (Joint Test Action Group)

interface, and this interface is commonly usedwhen programming anFPGA froma host computer system.

The need to transfer the configuration into the FPGA each time the system is powered exposes the

configuration file making the intellectual property contained within vulnerable to piracy or reverse

engineering. The higher end FPGAs overcome this limitation by encrypting the configuration file and

decrypting the configuration once it is within the FPGA.

FPGAs can also be reconfigured at any time after power-on. Since the configuration controls all aspects

of the operation of the FPGA, it is necessary to suspend operation and restart it after the new configuration

is loaded. No state information can be retained from one configuration to the next – all of the flip-flops are

reset and all memories are usually initialised according to the new configuration. Therefore, any state

information must be saved off-chip and reloaded after reconfiguration.

Some FPGAs can be partially reconfigured. The internal static memory controlling the configuration is

addressed via internal registers, allowing the configuration for part of the FPGA to be accessed and

changed. As before, this cannot be done while that part of the FPGA is operating; however, the rest of the

Configuration

ROM

SRAM

based

FPGA

Figure 2.8 Configuration of static RAM-based FPGAs.

Field Programmable Gate Arrays 31

FPGA can continue executing normally. Partial reconfiguration requires the layout of the design to be

structured in such a way that the blocks being reconfigured are within a small area on the FPGA to

facilitate loading at run-time.

Some FPGAs also support read-back of the configuration from the FPGA. This feature can be useful for

debugging a design, given appropriate tools, but is generally not used in normal operation.

2.3.6 Power Consumption

In embedded applications, the power consumption of the system, and in particular of the FPGA, is of

importance. The power dissipated by an FPGA can be split into two components: static power and

dynamic power. Dynamic power is the power required for switching signals from 0 to 1 and vice versa.

Conversely, static power is that consumed when not switching, simply by virtue of the device being

switched on. Most FPGAs are based on CMOS technology. A CMOS inverter, the most basic CMOS

circuit, is shown in Figure 2.9. It consists of a P-channel pull-up transistor and an N-channel pull-down

transistor. Only one of the transistors is on at any one time, and since theMOS transistors have a very high

off-resistance, CMOS circuits typically have very low static power dissipation.

Any significant power is only dissipated when the output changes state. This results from two main

sources (Sarwar, 1997). The first is from charging the capacitance on the output line. The capacitance

results from the inputs of any gates connected to the output, combined with the stray capacitance

associated with thewiring between the output and any downstream inputs. The power required is given by

P ¼ NCV2
DD f ð2:1Þ

where N is the average number of outputs that are changing in each clock cycle, C is the average

capacitance on each output and f is the clock frequency. For an embedded system, the power consumption

may be reduced by considering each of the terms of Equation 2.1:

. by limiting the number of outputs that change with each clock cycle;

. by minimising the fan-out from each gate and minimising the use of long wires (to keep the

capacitance lower);
. by reducing the power supply voltage (although the developer has little control over this, it has been

reducing with each technology generation); and
. by reducing the clock frequency.

In terms of a given design, reducing the clock frequency probably has the most significant effect on

reducing the power consumption, as it is often the clock signal itself that dissipates the most power. It is

togglingwith every cycle, and because the clock distribution network extends over thewhole FPGA it also

has a high capacitance. Minimising the number of clock domains and keeping the logic associated with

each clock domain together can also help to limit the power used by the clock circuitry.

VDD

VSS

Input Output

Figure 2.9 CMOS inverter.

32 Design for Embedded Image Processing on FPGAs

The second component of dynamic power dissipation results from the fact that as one transistor is

switching off, the other is switching on. During the transition there is a brief interval when both transistors

are partially on and there is a conduction path between VDD and VSS. For fast transition rates, power

dissipation from this source is typically much lower than that from charging the load capacitance. The

flow-through current can be minimised by keeping the input rise time short, which can be managed by

limiting the fan-out from the driving source. This flow-through current is becoming more important with

reducing VDD because the threshold voltages of the P- and N-channel transistors are brought closer

together and both transistors are partially on for a wider proportion of the input voltage swing.

The static power dissipation arises from leakage currents from five different sources (Unsal and Koren,

2003) of which the subthreshold leakage is dominant. This is the leakage current through the transistor

when the gate voltage is below the switching threshold and the transistor should be switched off. As

the feature size and supply voltage of devices is scaled down, the threshold voltage must also be scaled

down tomaintain device speed. Unfortunately, the subthreshold leakage current scales exponentiallywith

decreasing threshold voltage, so the leakage current contributes to an increasing proportion of the total

power dissipation with each technology generation (Kao et al., 2002; Unsal and Koren, 2003).

Several techniques canmitigate against this increase in subthreshold leakage current (Kao et al., 2002).

One is to use a higher threshold voltage in the sections of the circuit where the speed is not critical, and

only use low threshold devices on the critical path. Another technique is to switch off sections of the

circuit which are not being used, or at least place them on standby. Both of these techniques are used by

FPGA manufacturers.

The user’s design can significantly affect the power dissipated by an FPGA. In general, minimising the

clock frequency and minimising the number of signals that transition every clock cycle can significantly

reduce power dissipation. Theremay be limited control over the length of the interconnections, asmuch of

this is managed automatically by the vendor’s place and route tools. However, these tools are also

programmed to minimise the length of the interconnections.

Another factor that can influence the design of embedded systems is the large current burst drawn from

the power supply when the device is switched on. This results from the activity that takes place as the

FPGA is configured. It is essential that the power supplies be able to handle this peak current, and not just

the average required for normal operation. This is of particular concern in low power, battery operated

devices where the peak current may be limited.

2.4 FPGA Families and Features

In the previous section the architectural features of FPGAswere reviewed in a general way. In this section,

the particular characteristics of devices from severalmanufacturers are considered inmore detail. The two

main FPGA manufacturers in terms of market share are Xilinx and Altera, although there are several

others that provide FPGAs. The current offerings from each of these are described in turn. Of particular

interest from an image processing perspective is the size of the device in terms of logic resources,

embedded memories, embedded multipliers or DSP blocks, and whether or not the device includes

a processor core. (Note, where a processor core is not available, it is still possible to implement a soft

processor using the logic resources.) For each family the range of resources across the different family

members is listed. In the number of logic cells, 1 k represents 1000 cells. The RAM size is given in bits,

where 1K¼ 1024 bits. The total RAMfigures represent the dedicated blockRAMavailable on the FPGA,

and do not include fabric RAM. The descriptions given are by necessity brief; more details may be found

in the data sheets or product guides referred to; these are available from the manufacturer’s web sites.

2.4.1 Xilinx

Xilinx was one of the first developers of field programmable gate array technology. It has had a number

of families of devices, with the two current families being the Spartan series and the Virtex series.

Field Programmable Gate Arrays 33

The main difference between the two families is that the Spartan devices are designed primarily for low

cost, and theVirtex devices are designed primarily for high performance. Both families are discussed here

chronologically, outlining the key features that have been added with each succeeding generation. In the

newest generation, the 7 Series devices, the Spartan family is replaced by the Artix and Kintex families.

Within each generation, a range of device sizes is available. The key characteristics are summarised in

Table 2.1 with more details to be found from the data sheets (the shaded lines in the table represent

“mature” devices that are no longer recommended for new designs).

2.4.1.1 Virtex and Spartan-II

Although the Virtex and Spartan-II are now obsolete, it is instructive to look at their architecture to see the

evolution with successive generations. Both the Virtex and Spartan-II are structurally similar, so will be

described together.

The basic logic cell is a 4-LUT. Each logic cell also has a flip-flop on the output. However, a

bypass input is also provided allowing the LUT to be bypassed, enabling the LUT and flip-flop to be

used independently. A dedicated multiplexer combines the outputs of two adjacent logic cells to

implement a 5-LUT or a 4:1 multiplexer. (Xilinx calls this pair of logic cells a slice.) Another

multiplexer enables two slices to be combined, to implement a 6-LUT or 8:1 multiplexer. Additional

logic is provided to accelerate arithmetic operations. The carry chain includes multiplexers for carry

generation and propagation, along with an XOR gate to enable a full adder to be implemented within

a single logic cell, as demonstrated in Figure 2.10. The carry chain propagates vertically up the

columns within the FPGA. Each logic cell also provides a dedicated AND gate to reduce the logic

required to implement multiplication.

Each logic cell can also be configured as a 16� 1 bit fabric RAM or as a 16-bit shift register. The two

logic cells within a slice may be combined to implement a dual-port memory. This fabric RAM is useful

for storing coefficients or other small data structureswhere thememory depth is shallow. In addition to the

fine-grained fabric RAM, both the Virtex and Spartan-II contain blocks of dual-port memory, where each

block contains 4096 bits. The aspect ratio may be configured between 4096� 1 to 256� 16, making it

useful for implementing row buffers and larger FIFO buffers.

There is a range of interconnection resources between the logic blocks. There are direct

connections within a logic block and to adjacent logic blocks horizontally, enabling the logic cells

to be chained efficiently. In addition to the direct connections, the routing matrix provides four types

of connections:

. single length lines connecting adjacent tiles, both horizontally and vertically;

. hex lines that span six tiles, with a connection after three tiles;

. buffered long lines that span the whole chip, both horizontally and vertically; and

. horizontal bus lines. These can be driven by tri-state buffers within the logic blocks.

0 0

1 1

LUT
LUT

Sum Sum

Cout CoutCin Cin

Figure 2.10 Left: logic required to implement a full adder with a single logic cell; right: a two-bit

multiplication in a single logic cell. (Adapted from Elzinga et al. (2000); reproduced by permission of

Xilinx, Inc.)

34 Design for Embedded Image Processing on FPGAs

T
a
b
le

2
.1

C
h
ar
ac
te
ri
st
ic
s
o
f
th
e
X
il
in
x
F
P
G
A

fa
m
il
ie
s

F
am

il
y
an
d
G
en
er
at
io
n

P
ro
ce
ss

L
U
T
S
iz
e

B
lo
ck

S
iz
e

L
o
g
ic

C
el
ls

R
A
M

S
iz
e

T
o
ta
l
R
A
M

D
S
P
S
iz
e

D
S
P
B
lo
ck
s

P
ro
ce
ss
o
r

S
p
ar
ta
n
-I
I
(X

il
in
x
,
2
0
0
8
b
)

0
.1
8
mm

4
4

4
3
2
–
5
.3
k

F
ab
ri
c:

6
4

1
6
K
–
5
6
K

—
—

—

2
5
6
�
1
6

S
p
ar
ta
n
-I
II
(X

il
in
x
,
2
0
0
8
c)

9
0
n
m

4
8

1
.5
k
–
6
6
k

F
ab
ri
c:

6
4

7
2
K
–
1
.8
M

1
8
�
1
8

4
–
1
0
4

—

5
1
2
�
3
6

S
p
ar
ta
n
-I
II
D
S
P

(X
il
in
x
,
2
0
0
8
d
)

9
0
n
m

4
8

3
3
k
–
4
7
k

F
ab
ri
c:

6
4

1
.5
M
–
2
.2
M

1
8
�
1
8
þ

4
8

8
4
–
1
2
6

—

5
1
2
�
3
6

S
p
ar
ta
n
-6

(X
il
in
x
,
2
0
0
9
c)

4
5
n
m

6
o
r
5
�
2

8
2
k
–
9
2
k

F
ab
ri
c:

2
5
6

1
4
4
K
–
4
.7
M

1
8
�
1
8
þ

4
8

4
–
1
8
2

—

5
1
2
�
3
6

A
rt
ix
-7

(X
il
in
x
,
2
0
1
0
a)

2
8
n
m

6
8

1
1
k
–
2
2
0
k

F
ab
ri
c:

2
5
6

7
2
0
K
–
1
2
M

2
5
�
1
8
þ

4
8

4
0
–
7
0
0

—

5
1
2
�
7
2

K
in
te
x
-7

(X
il
in
x
,
2
0
1
0
a)

2
8
n
m

6
8

1
9
k
–
2
5
4
k

F
ab
ri
c:

2
5
6

2
.3
M
–
2
9
M

2
5
�
1
8
þ

4
8

1
2
0
–
1
5
4
0

—

5
1
2
�
7
2

V
ir
te
x
(X

il
in
x
,
2
0
0
1
)

0
.2
2
mm

4
4

1
.7
k
–
2
7
k

F
ab
ri
c:

6
4

3
2
K
–
1
2
8
K

—
—

—

2
5
6
�
1
6

V
ir
te
x
-I
I
(X

il
in
x
,
2
0
0
7
a)

0
.1
5
mm

/0
.1
2
mm

4
8

5
1
2
–
9
3
k

F
ab
ri
c:

1
2
8

7
2
K
–
1
2
8
K

1
8
�
1
8

4
–
1
6
8

—

5
1
2
�
3
6

V
ir
te
x
-I
I
P
ro

(X
il
in
x
,

2
0
0
7
b
)

0
.1
3
mm

/9
0
n
m

4
8

2
.8
k
–
8
8
k

F
ab
ri
c:

1
2
8

2
1
6
K
–
7
.8
M

1
8
�
1
8

1
2
–
4
4
4

P
P
C
4
0
5

5
1
2
�
3
6

V
ir
te
x
-4

(X
il
in
x
,
2
0
0
8
e)

9
0
n
m

4
8

1
2
k
–
2
0
0
k

F
ab
ri
c:

6
4

6
4
8
K
–
9
.7
M

1
8
�
1
8
þ

4
8

3
2
–
9
6

P
P
C
4
0
5

(F
X

o
n
ly
)

5
1
2
�
3
6

V
ir
te
x
-5

(X
il
in
x
,
2
0
0
8
f)

6
5
n
m

6
o
r
5
�
2

8
1
2
k
–
4
1
5
k

F
ab
ri
c:

2
5
6

9
3
6
K
–
1
8
M

2
5
�
1
8
þ

4
8

3
2
–
1
0
5
6

P
P
C
4
4
0

(F
X
T
o
n
ly
)

5
1
2
�
7
2

V
ir
te
x
-6

(X
il
in
x
,
2
0
1
0
d
)

4
0
n
m

6
o
r
5
�
2

8
4
6
k
–
4
7
4
k

F
ab
ri
c:

2
5
6

5
.5
M
–
3
7
M

2
5
�
1
8
þ

4
8

2
8
8
–
2
0
1
6

—

5
1
2
�
7
2

V
ir
te
x
-7

(X
il
in
x
,
2
0
1
0
a)

2
8
n
m

6
8

1
7
9
k
–
1
2
2
2
k

F
ab
ri
c:

2
5
6

1
4
M
–
6
3
M

2
5
�
1
8
þ

4
8

7
0
0
–
3
9
6
0

—

5
1
2
�
7
2

Field Programmable Gate Arrays 35

In addition to these, there are global routing resources to distribute several clocks and other global

signals (such as reset) with low skew. The clock drivers use a delay locked loop to synchronise skew free

to either an external or internal source. The drivers can also divide down the signal or provide multiple

phases if necessary.

Configuration of the FPGA is based on a frame structure, where each frame is associated with a column

(or part of a column) within the FPGA. This enables partial reconfiguration of the FPGA, on a frame by

frame basis. The configuration can also be read back from the FPGA for verification or debugging.

Readback will also read the contents of any user registers (the flip-flops within I/O blocks or logic cells),

and RAM (both fabric RAM and block RAM).

2.4.1.2 Virtex-II

Many of the changes inmoving to the Virtex-II were relatively minor. The structure of each logic cell was

basically unchanged, although a logic block is now made up of eight logic cells grouped in four slices of

two logic cells each. As before, the logic cells may also be configured as fabric RAM or shift registers.

An additional OR gate was added per slice to enable implementation of large sum of products chains

(Xilinx, 2007b). Each logic cell can be configured as a 4-input AND gate, with the carry chain used to

parallel adjacent logic cells to give wider input AND gates. The OR is placed at the top of each slice and

can be linked horizontally to arbitrarywidths.Dedicatedmultiplier blocks (18� 18)were introducedwith

the Virtex-II, accelerating DSP and other compute applications.

The size of the block RAMs was increased to 18Kbits, with configurable aspect ratio from 16K� 1 to

512� 36. The extra bits can be can be used as additional storage, although they are intended as parity bits.

However, the user is required to implement any parity generation and checking logic.

There was a small change to the hierarchical routing resources. The single lines were replaced with

double lines which connect over one or two tiles, both horizontally and vertically. The direct connections

were also extended to allow direct connection to diagonally adjacent logic blocks.

The clock network was also augmented with local clocks associated primarily with I/Os. The clock

drivers were augmented to include phase locked loops to enable frequency synthesis by a ratio of integers.

The I/O blocks were enhanced to provide digitally controlled termination and direct support for

differential I/O and double data rate standards.

The Virtex-II Pro added a number of additional coarse-grained blocks (Xilinx, 2007b). A key new

feature was the introduction of a PowerPC processor core to accelerate high performance computing

applications.Another new feature to facilitate high speed communicationwas themultigigabit transceiver

cores (called RocketIO by Xilinx). These cores include SERDES logic to enable the communication to

take place at a much higher clock speed than is used internally for the logic.

2.4.1.3 Virtex-4 and Spartan-III

The previous generation of FPGAs saw an increase in the use of coarser grained block for implementing

specific functions. However, different applications require a different mix of these blocks. For example

DSP applicationsmake extensive use of hardwaremultiplication; communication applications require the

high speed connectivity; image processing makes extensive use of the internal RAM for buffering.

Therefore, to provide a goodmix of features targeted at specific application areas, Xilinx provides several

FPGAs within each family that have a different mix of coarse-grained blocks. From an image processing

perspective, of particular interest are the devices that provide a focus on logic, block memories, and in

some imaging applications, DSP resources.

The biggest changewithin the logic blocks is that only half of the slicesmay nowbe used as fabric RAM

or as a shift register. All of the sliceswithin a logic block still have fast carry chains. All of the devices have

multiplier blocks, although the Virtex-4 devices also include a 48-bit post-adder and accumulator, and the

Spartan-III add to this an 18-bit pre-adder on one of the multiplier inputs. Both families use 18 Kbit block

36 Design for Embedded Image Processing on FPGAs

RAMs, although the Virtex 4 also provides built-in logic to operate the block RAM as a FIFO without

using additional logic resources.

The interconnect resources are the similar to those provided with the previous generation devices. Two

notable exceptions are that the long lines only connect to every sixth tile, and the horizontal busses and

associated tri-state buffers are no longer provided.

The clock managers introduced with the Virtex-II have been extended to the Spartan family as well.

Similarly, the programmable I/O termination, support for differential signalling and double data rate

interface have been extended to both families.

The Virtex-4 FX branch also includes the PowerPC core, high speed transceiver blocks and an Ethernet

MAC. The Virtex-4 also introduces an internal configuration access port that makes the configuration

memory of the clock managers and high speed I/O ports accessible from internal to the FPGA. This

enables these devices to be reconfigured directly from within the fabric of the FPGA, or through the

embedded processor. Also introduced with the Virtex-4 is encryption of the configuration file to prevent

the design from being copied or reverse engineered. The decryption key is stored in volatile memory,

which requires a battery backup to retain when the system is powered off.

The Spartan-3AN includes a serial flash memory on chip that can be used to configure the FPGA

(Xilinx, 2009b). This has sufficient capacity for two complete configuration files, plus additional capacity

for user applications.

2.4.1.4 Virtex-5

In the Virtex-5, the size of the logic cell increased to a 6-LUT, which may be fragmented to two 5-LUTs

(sharing common inputs). The logic block architecture has four LUTs per slice, and two slices per logic

block. As with the Virtex-4, only one of the slices can be configured as fabric RAM or a shift register.

However, the increase to four LUTs per slice allows the fabric RAM to be configured as quad-port (using

all four logic cells as separate interfaces), although only one port has read and write capability; the other

ports are read only. A logic cell can be configured as a programmable 32-bit or dual 16-bit shift register.

The size of the block RAMs has been increased to 36 Kbits per block. The aspect ratio may be

configured from 32K� 1 to 1024� 36 as full dual-port, or as 512� 72 simple dual-port. The block can

also be partitioned as two independent 18Kbitmemories. Optional 64-bit error correction circuitry is built

in, enabling detection of 2-bit errors and correction of single-bit errors.

New to the Virtex-5 are PCI express endpoint blocks in some branches of the family. This can simplify

connection with other devices, or a host computer through the PCI express interface.

2.4.1.5 Virtex-6 and Spartan-6

The latest members of the Xilinx FPGA families available at the time of writing are the Spartan-6 and

Virtex-6. These extend the storage per logic cell to two flip-flops. While all of the logic cells within the

Virtex-6 provide arithmetic logic and carry chains, only half of thosewithin the Spartan-6 do so. Similarly,

approximately half of the Virtex-6 logic cells can be used as fabric RAM or shift registers, while only

approximately one quarter of the Spartan-6 logic cells can be configured to do so.

The interconnectmodelwithin the Spartan-6 has also been changed to givemore focus on local routing.

The horizontal and vertical long-lines have been removed, with the following resources now available

(Xilinx, 2010b):

. direct connections back to the inputs within the same logic block;

. single hop, to adjacent tiles horizontally and vertically;

. double hop, to two tiles away horizontally and vertically, or one tile diagonally;

. quad hop, to four tiles away horizontally and vertically, or two tiles diagonally.

Field Programmable Gate Arrays 37

While the Virtex-6 block RAMs have integrated FIFO logic and support for error correction, this has not

been migrated to the Spartan family. However, new with the Spartan-6 is an integrated memory control

block that simplifies the interface to common memory types. This transparently hides the buffering and

control with high speed high bandwidth DDR connections (Xilinx, 2010c). The PCI express endpoint

blocks and high speed transceivers previously only present in theVirtex family have nowbeenmigrated to

some of the Spartan-6 FPGAs. It is interesting that Xilinx has not continued the FX series with the

PowerPC processor into the Virtex-6 generation.

2.4.1.6 Virtex-7, Artix-7 and Kintex-7

Xilinx has recently announced its 7 Series of devices. This latest generation of Xilinx FPGAs all share

a common underlying architecture, designed to simplify the portability of a design from one family to the

other. At the logic level, the Xilinx-7 Series is similar to the Virtex-6, but implemented in an advanced

28 nm process technology. This gives improved performance while at the same time giving significant

power savings over previous generations. The main differences between the families are the size of the

devices and the targetmarket. TheArtix-7 family is optimised for low cost and power and is designedwith

a small footprint targeting high volume embedded applications. As before, the Virtex-7 family is targeted

for highest performance and capacity. The Kintex-7 family sits between the other two families, giving

a balance between cost and performance.

A new feature added with the 7 Series is a general purpose analogue to digital converter that gives

12 bits resolution at up to one mega-samples per second. While too slow for video, these A/D converters

would be useful in many embedded control applications.

2.4.2 Altera

Altera currently provides three families of FPGAs: the low cost Cyclone series, the mid range Arria series

and the high performance Stratix series (Table 2.2). The original Stratix used the same logic architecture

as the Cyclone, butwith the Stratix II Altera introduced a new adaptive logicmodule (Hutton et al., 2004).

None of the current families incorporate a processor core within the logic; the last to do so was the

Excalibur FPGA, based on the now obsolete Apex20K family. In terms of embedded processors, Altera

has focussed its efforts on its soft-coreNIOSprocessor.However, theExcalibur is included inTable 2.2 for

comparison.

2.4.2.1 Cyclone

The Cyclone series was designed for low cost applications, making it well suited for commodity

embedded devices. This includes embedded image processing applications, especially distributed vision

systems where a large number of sensors is required.

The basic logic cell is a 4-LUT with a register on the output. However, for arithmetic operations,

the 4-LUT is partitioned into four 2-LUTs, enabling a full adder to be implemented using a single

logic cell. Both the sum and the carry are implemented efficiently as a carry-select adder, with two

2-LUTs calculating each the sum and carry on the input signals, both without and with carry. These

outputs are multiplexed by the carry-in, as demonstrated in Figure 2.11. This speeds up the addition

or subtraction of wide operands because the LUTs are not in the critical path and the carry signals

are generated in parallel for each section. A logic block consists of ten logic cells arranged vertically

in a column.

In addition to the logic blocks, there are also blocks of dual-port memory, with 4608 bits per block. The

aspect ratio of each port can be configured from4096� 1 up to 128� 36, although the largestwidth is only

38 Design for Embedded Image Processing on FPGAs

T
a
b
le

2
.2

C
h
ar
ac
te
ri
st
ic
s
o
f
th
e
A
lt
er
a
F
P
G
A

fa
m
il
ie
s

F
am

il
y
an
d
G
en
er
at
io
n

P
ro
ce
ss

L
U
T
S
iz
e

B
lo
ck

S
iz
e

L
o
g
ic

C
el
ls

R
A
M

S
iz
e

T
o
ta
l
R
A
M

D
S
P
S
iz
e

D
S
P
B
lo
ck
s

P
ro
ce
ss
o
r

E
x
ca
li
b
u
r
(A

lt
er
a,

2
0
0
2
)

0
.1
8
mm

4
1
0

4
k
–
3
4
k

1
2
8
�
1
6

3
2
K
–
2
5
6
K

—
—

A
R
M
9
2
2
T

C
y
cl
o
n
e
(A

lt
er
a,

2
0
0
8
b
)

1
3
0
n
m

4
1
0

2
.9
k
–
2
0
k

1
2
8
�
3
6

5
8
K
–
2
8
8
K

—
—

—

C
y
cl
o
n
e
II
(A

lt
er
a,

2
0
0
8
c)

9
0
n
m

4
1
6

4
.6
k
–
6
4
k

1
2
8
�
3
6

1
1
7
K
–
1
.1
M

2
�
9
�
9

1
3
–
1
5
0

—

1
8
�
1
8

C
y
cl
o
n
e
II
I
(A

lt
er
a,
2
0
0
8
d
)

6
5
n
m

4
1
6

5
.2
k
–
1
1
9
k

2
5
6
�
3
6

4
1
4
K
–
3
.8
M

2
�
9
�
9

2
3
–
2
8
8

—

1
8
�
1
8

C
y
cl
o
n
e
IV

(A
lt
er
a,

2
0
1
0
b
)

6
0
n
m

4
1
6

6
.3
k
–
1
5
0
k

2
5
6
�
3
6

2
7
0
K
–
6
.3
M

2
�
9
�
9

1
5
–
2
6
6

—

1
8
�
1
8

A
rr
ia

G
X

(A
lt
er
a,
2
0
0
8
a)

9
0
n
m

8
In
p
u
t
A
L
M

8
8
k
–
3
6
k

3
2
�
1
8

1
.2
M
–
4
.3
M

8
�
9
�
9

1
0
–
4
4

—

1
2
8
�
3
6

4
�
1
8
�
1
8
þ

5
2

4
K
�
1
4
4

3
6
�
3
6

A
rr
ia

II
G
X

(A
lt
er
a,

2
0
1
0
a)

4
0
n
m

8
In
p
u
t
A
L
M

1
0

6
k
–
1
0
2
k

F
ab
ri
c:

6
4
0

7
8
3
K
–
8
.3
M

8
�
9
�
9
�

2
�
3
6
�
3
6

2
9
–
9
2

—

2
5
6
�
3
6

S
tr
at
ix

(A
lt
er
a,
2
0
0
6
)

1
3
0
n
m

4
1
0

1
0
k
–
7
9
k

3
2
�
1
8

8
9
9
K
–
7
M

8
�
9
�
9

6
–
2
2

—

1
2
8
�
3
6

4
�
1
8
�
1
8
þ

5
2

4
K
�
1
4
4

3
6
�
3
6

S
tr
at
ix

II
(A

lt
er
a,
2
0
0
7
)

9
0
n
m

8
In
p
u
t
A
L
M

8
6
k
–
7
2
k

3
2
�
1
8

4
1
0
K
–
8
.9
M

8
�
9
�
9

1
2
–
9
6

—

1
2
8
�
3
6

4
�
1
8
�
1
8
þ

5
2

4
K
�
1
4
4

3
6
�
3
6

S
tr
at
ix

II
I
(A

lt
er
a,

2
0
0
8
f)

6
5
n
m

8
In
p
u
t
A
L
M

1
0

1
9
k
–
1
3
5
k

F
ab
ri
c:

3
2
0

1
.8
M
–
1
4
M

8
�
9
�
9
�

2
�
3
6
�
3
6

2
7
–
1
1
2

—

2
5
6
�
3
6

2
K
�
7
2

S
tr
at
ix

IV
(A

lt
er
a,
2
0
1
0
d
)

4
0
n
m

8
In
p
u
t
A
L
M

1
0

2
9
k
–
3
2
5
k

F
ab
ri
c:

6
4
0

6
.3
M
–
2
2
M

8
�
9
�
9
�

2
�
3
6
�
3
6

4
8
–
1
6
1

—

2
5
6
�
3
6

2
K
�
7
2

S
tr
at
ix

V
(A

lt
er
a,
2
0
1
0
e)

2
8
n
m

8
In
p
u
t
A
L
M

1
0

2
3
9
k
–
1
0
8
7
k

F
ab
ri
c:

6
4
0

2
9
M
–
5
3
M

9
�
9
�

5
4
�
5
4
þ

6
4

2
0
0
–
1
8
4
0

—

5
1
2
�
4
0

Field Programmable Gate Arrays 39

available as simple dual-port. Each memory block can also be configured as a bank of tapped shift

registers, with up to 36 outputs from a combination of taps and parallel registers.

Associated with each logic block is a local interconnect, which connects between logic cells within

a block, orbetween adjacent blocks in the same row.Moredistant connections aremadebydriving horizontal

and vertical lines which extend to the local interconnects of other logic blocks up to four tiles away.

In addition to the local data interconnects, there is a global clock network, which distributes up to eight

clocks throughout the FPGA. The Cyclone has two phase locked loops, which can be used to synthesise

clock signals by multiplying a signal by a ratio of integers. The PLL can also provide a programmable

phase shift.

The basic I/O structure of the Cyclone is similar to that in Figure 2.6. A group of I/O blocks has a local

interconnect in much the same way as the logic blocks, and it is primarily through this that the I/Os are

connected to the logic. Selected I/Os have integrated circuitry to interface to DDR memories.

Differential signalling support is also provided, although with an external resistor network for

providing appropriate termination.

Configuration is based on a SRAM cell, which is programmed by serially loading the configuration

data, either through dedicated pins or through the JTAG interface. The Cyclone FPGAs are not partially

reconfigurable; the complete configuration must be loaded.

2.4.2.2 Stratix

The basic structure of the Stratix FPGA is similar to that of the Cyclone. The logic block also consists of

ten 4-LUTs, with local interconnect. The biggest difference is the inclusion of DSP blocks, and a wider

range of memory block sizes.

EachDSPblock consists of a 36� 36 bitmultiplier. One of the unique features of thismultiplier is that it

can be segmented, enabling four parallel 18� 18 multiplications, or eight parallel 9� 9 multiplications.

This latter feature is particularly useful for image processing, where 9-bit multiplications are suitable in

many image processing operations. The 18� 18 and 9� 9 multiplications can operate with an associated

52-bit accumulator, making them suitable for DSP applications.

In addition to the 4608-bit memory block provided by the Cyclone, the Stratix also provides 576 bit and

72 Kbyte blocks. A 576-bit memory may be configured with aspect ratios from 512� 1 to 32� 18, with

0

0 1

1

Cout

Block Cin

2-LUT
2-LUT

2-LUT
2-LUT

0

1

0 1

0 1 0 1

Sum

Co1

Ci1

Co0

Ci0

Block Cin

Datain

A0 S0

S1

S2

S3

S4

A1

A2

A3

A4

B0

B1

B2

B3

B4

Cell0

Cell1

Cell2

Cell3

Cell4

Figure 2.11 Carry select adder as implemented by Altera. (Adapted fromAltera, 2008b; reproduced by

permission of Altera Corporation. Altera is a trademark and service mark of Altera Corporation in the

United States and other countries. Altera products are the intellectual property of Altera Corporation and

are protected by copyright laws and one or more U.S. and foreign patents and patent applications.)

40 Design for Embedded Image Processing on FPGAs

separate independent read and write ports. The two ports can be of different widths and in different clock

domains, enabling them to be used as small FIFO buffers, or converting between parallel and serial data

for lower speed serial I/O. The 72 Kbyte sized dual-port blocks can be configured with aspect ratios from

64K� 9 up to 4K� 144 (although the largest data width is only simple dual-port). This makes them

suitable for storing larger data tables, or even buffering part of an image. Having a range of memory sizes

enables the best size to be selected for an application without wasting too many resources.

The interconnect matrix of the Stratix extends that of the Cyclone by adding additional higher speed

lines that span eight rows or columns from a logic block, and high speed lines that span 24 tiles

horizontally or 16 columns vertically. The clock network is also significantly enhanced, with 16 global

clocks and a number of regional clocks which drive each quarter of the FPGA. These enable up to 48

independent clock domains to be implemented on the FPGA. The phase locked loops of the Stratix can

be reconfigured on-the-fly, enabling the clock frequencies and delays to be dynamically adjusted by

an application.

The Stratix provides direct support for double date rate (DDR) memories and quad data rate (QDR)

memories with two reads and twowrites per clock cycle. This simplifies interfacing to external high speed

memories. On-chip termination is provided for differential signalling, with dedicated high speed

SERDES blocks for high speed serial signalling.

In addition to the serial configuration modes of the Cyclone, the Stratix can also be reconfigured in

parallel, significantly reducing the configuration time, especially for the larger devices. It also has

a register which can be used to control which of up to eight configurations is loaded, supporting dynamic

update and reconfiguration of the FPGAwith a small number of components. Partial reconfigurability is

limited to reprogramming the phase locked loops.

2.4.2.3 Cyclone II, III and IV

The successive generations of the Cyclone family are based onmuch the same architecture as the original

Cyclone. The basic logic cell is still a 4-LUT with a register on the output, although the logic block is

extended to 16 logic cells. However, the use of the logic cell for performing arithmetic has been changed.

Rather than use the carry select adder of the original Cyclone, a simpler ripple carry adder is used. The

logic cell is split into two 3-LUTs; one implements the sum and the other the carry. The carry-out connects

directly to the carry-in of the next logic cell in the chain.

The new generations incorporate dedicated hardware multiplication blocks. These are not as fully

featured as the DSP blocks within the Stratix series, but accelerate designs where small multipliers are

used. Each multiplier block can perform a single multiplication of two 18-bit numbers, or two multi-

plications of 9-bit numbers.

In theCyclone II, the embeddedmemory blocks are the same size as theCyclone.However, theCyclone

III and IV double the size of each block RAM to 9 Kbits. This can be configured with aspect ratios from

8K� 1 to 256� 36, although only simple dual-port is supported with the widest memory.

The interconnect with the original Cyclone was restricted to short local distances. These have been

extended in the later generations to include higher speed horizontal lines which span 24 tiles, and vertical

lines which span 16 tiles.

With each generation, the number of PLLs and global clock lines increases. TheCyclone III extends the

size of the PLLmultiplier and divider from 32 to 256, and the Cyclone IVextends this further to 512. This

enables finer resolution clock frequencies to be synthesised with each succeeding generation. Both

the Cyclone III and IV allow the PLLs to be reconfigured at run-time without having to reconfigure the

entire FPGA.

The performance of the I/O blocks improves with each succeeding generation. The Cyclone III

introduces programmable on-chip termination of outputs, although inputs still require external termina-

tion. From the Cyclone II onwards, support for memory interfaces is extended to QDR memories.

Field Programmable Gate Arrays 41

PCI express is also supported, although this requires an external PHY and an internal soft intellectual

property core (available fromAltera) to implement the required endpoint logic in the FPGA. TheCyclone

IV GX introduces up to eight high speed transceivers, with SERDES logic built into the I/O block. Also

included within the Cyclone IVGX is a hard-wired endpoint for PCI express, including the buffering and

control logic and PHY-MAC layer.

From the Cyclone II, the configuration data can be compressed to reduce the configuration file size by

up to 55%, depending on the complexity of the design and device use. The FPGA then decompresses the

data as it is streamed into the FPGA. This can reduce reconfiguration times by up to a factor of two.

Configuration compression is only supported with serial reconfiguration. The Cyclone III and IV also

provide the option of parallel configuration, up to 16 bits per clock cycle.

2.4.2.4 Stratix II, III and IV

With the Stratix II, Altera replaced the standard 4-LUT logic cell with an adaptive logic module (ALM)

(Hutton et al., 2004). The key idea behind the adaptive logic module is that when a large LUT is used,

much of the logic is often unutilised. By being able to adaptively adjust the effective size of the LUTs, the

logic resources within the logic cell may be better used. This increases the effective logic density without

a significant penalty in terms of chip area and routing overhead. It also has the advantage that larger

functions which share common inputs may be packed within a single adaptive structure. In the Stratix II

ALM, up to eight inputs may be combined with two adaptive LUTs to produce two outputs. The various

combinations are (Altera, 2007):

. two independent 4-LUTs;

. a 5-LUT and 3-LUT within independent inputs;

. a single 6-LUT;

. two independent 5-LUTs, with two inputs shared between the LUTs;

. two 6-LUTs with the same function, with four inputs shared between the LUTs.

As well as the adaptive LUTs, each logic cell also contains two full-adders, enabling two result bits to be

generated by each logic cell. Both theLUTs and addersmay be used in a design, for example to apply logic

to the inputs before adding, or even to use the result of the addition to select one of the inputs. This enables,

for example, three input adders to be constructed, or very efficient implementation of functions such as

(Altera, 2007):

Q ¼minðX; YÞ
¼ ðX <YÞ?X : Y

ð2:2Þ

The outputs from the logic cell (from either the LUTs or the adders) can be optionally registered, with

two registers per logic cell. The Stratix II has eight ALMs per logic block; this is increased to ten for the

Stratix III and IV.

In the Stratix II, the ALMs can only implement logic. From the Stratix III on, some of the logic

blocks can be configured as simple dual-port fabric RAMs. In the Stratix III, a logic cell may be

configured as a 16� 2 RAM, whereas in the Stratix IV it can be configured as a 64� 1 RAM.

The fabric RAM replaces the small 576-bit memory blocks that were available in the Stratix and

Stratix II. The size of the other memory blocks was also changed with the Stratix III and IV. The size

of the intermediate blocks was doubled, implementing RAMs from 8K� 1 to 256� 36. The size of

the large blocks was reduced significantly, with each block implementing sizes from 16K� 8 up to

2 K� 72. Again, the block memories are true dual-port except for the widest data words, where only

simple dual-port is supported. Although parity bits are provided, if they are to be used for error

42 Design for Embedded Image Processing on FPGAs

detection and correction the user must provide the appropriate logic. The Stratix IV provides a

hardware block for setting the parity bits and correction of single bit errors when the block RAM is

64 bits wide.

The architecture of the multipliers in the Stratix II is much the same as those in the original Stratix,

although rounding and saturation units were introduced. These can significantly reduce the logic required

to manage overflow in particular. In the Stratix III the multipliers were redesigned to natively support

9� 9, 12� 12, 18� 18 and 36� 36 multiplications. The DSP blocks can also be configured to provide

a 54� 54 bit multiplier to support double precision floating point multiplication. However, rounding and

saturation logic is only provided on 18-bit multiplications.

The interconnect structure was simplified a little from the Stratix, by removing the intermediate length

lines. The routing resources are made up of:

. connections within a logic block through the local interconnect;

. direct connections between horizontally adjacent logic blocks;

. carry and register chains directly from one block to another vertically;

. horizontal and vertical connections from a logic block that span up to four tiles in each of the four

directions horizontally and vertically;
. fast horizontal connections that span 24 tiles left and right. This was reduced to 20 tiles left and right for

the Stratix III and IV;
. fast vertical connections that span 16 tiles up and down. This was reduced to 12 tiles up and down for the

Stratix III and IV.

In terms of I/O resources, each generation saw a general improvement in speeds available. Full on-chip

termination of both input and outputs was introduced with the Stratix III. In the Stratix IV, dedicated

circuitry was introduced to support a range of high-speed communication standards, including PCI

express and gigabit Ethernet.

With the Stratix II, Altera introduced both compression and encryption of the configuration file. The

decryption key is stored internally in non-volatile memory. Stratix devices do not support configuration

read-back or partial reconfiguration (other than of the clock circuitry).

2.4.2.5 Arria and Arria II

The Arria and Arria II families are basically the same as the Stratix II and Stratix IV respectively, but with

enhanced high speed transceiver blocks designed primarily for serial communication applications. Since

these features are less relevant for image processing, they are not described further here.

2.4.2.6 Stratix V

With the recently announced Stratix V, Altera has made a number of minor changes over previous

generations. The ALM has been redesigned to improve logic utilisation. It is now able to implement

many seven input LUT functions. The number of registers per ALM has been doubled to four. The

increased availability of registers will improve the speed of heavily pipelined designs and this is

likely to be of benefit in high speed image processing applications. The DSP block has been

redesigned to natively support variable precision from 9� 9 (three of which can be built with a single

DSP block) up to 54� 54 (which requires four DSP blocks). The small sizes will be of value for

image filtering, while the large size is sufficient to implement double precision floating point for

numeric intensive applications.

Another area where there is significant change is the size of memory blocks. The ability to

use some ALMs as fabric memory has been retained, but the block RAMs are now only available in

Field Programmable Gate Arrays 43

20 Kbit blocks rather than the 9 K and 144 K of the Stratix IV. The 20 Kbit blocks support error

correction, and both fabric RAM and block RAM can be configured as dual-port RAM, FIFO or

shift registers.

An increased range of hard intellectual property blocks is available. Most of these provide direct

hardware implementation for high speed communication protocols, in particular PCI Express. This

speeds the design, and reduces logic resources and system power requirements.

Partial reconfigurability is not currently available (at the time of writing) but full support for partial

reconfigurability is planned in future releases of Altera’s Quartus software tools.

2.4.3 Lattice Semiconductor

Lattice Semiconductor produces a number of FPGA families (Table 2.3). Its current families are the

ECP series designed for low cost applications, the corresponding non-volatile XP series and the

high performance SC/M family. The Lattice Semiconductor documentation does not list the process

technology, so that is not listed in the table.

2.4.3.1 ECP

TheLatticeECP is based on a 4-LUTwith a carry chain to speed arithmetic operations and a flip-flop on the

output of each logic cell. Adjacent cells form a slice, with four slices combining to make a logic block.

Additional multiplexers associated with each cell enable adjacent cells to be combined to create 5-LUTs,

6-LUTs or a 7-LUTwithin a single logic block. The carry logic enables one bit of addition or subtraction

per logic cell. Some of the logic blocks can be configured as fabric RAM, with the LUTs within each slice

Table 2.3 Characteristics of the Lattice FPGA families

Family and Generation LUT

Size

Block

Size

Logic Cells RAM Size Total RAM DSP Size DSP

Blocks

LatticeECP

(Lattice, 2008a)

4 8 1.5 k–32 k Fabric: 128 18K–498K 8� 9� 9 0–8

256� 36 4� 18� 18

36� 36

LatticeECP2

(Lattice, 2008b)

4 8 6 k–95 k Fabric: 64 55K–5.2M 8� 9� 9 6–42

512� 36 4� 18� 18

36� 36

LatticeECP3

(Lattice, 2010)

4 8 17 k–149 k Fabric: 64 700K–6.7M 8� 9� 9 12–160

512� 36 4� 18� 18

18� 36

LatticeXP

(Lattice, 2007)

4 8 3 k–20 k Fabric: 128 54K–396K — —

256� 36

LatticeXP2

(Lattice, 2008d)

4 8 5 k–40 k Fabric: 64 166K–885K 8� 9� 9 3–8

512� 36 4� 18� 18

36� 36

LatticeSC/M

(Lattice, 2008c)

4 8 15 k–115 k Fabric: 128

512� 36

1M–7.8M — —

44 Design for Embedded Image Processing on FPGAs

providing a 16� 2 single-portmemory. Adjacent slicesmay be combined to create either awidermemory

or add a second port, giving a simple dual-port fabric RAM.

In addition to the fabric RAM, there are 9 Kbit blocks of RAM with configurable aspect ratio from

8K� 1 up to 256� 36. The block RAMs are true dual-port, except for thewidest data width (�36) which

is only simple dual-port.

DSP blocks enable multiplication at a range of data sizes from 9–36 bits wide. The smaller sizes can

combine the multiplication with an accumulator which has an extra 16 guard bits (giving a total of 34 bits

for 9� 9, and 52 bits for 18� 18).

The system has four global clocks, plus an additional four local clocks in each quadrant of the FPGA.

On the FPGA are up to four phase locked loops which can be used to provide the global clock signals.

Dynamic clock multiplexers enable the application to switch between different clock sources at run-time

without glitches.

As withmost FPGAs, a wide range of I/O standards is supported. Adjacent I/O blocks can be combined

to provide support differential signalling. Multiplexing is provided on inputs and outputs to enable

interfacewith DDRmemories. A delay locked loop is used to provide the required clock alignment for the

memory strobe signals.

Lattice Semiconductor provides an internal logic analyser which is accessible through the JTAG

interface. The necessary logic to support the logic analyser must be added to the user design at

compile time.

2.4.3.2 ECP2 and ECP3

With the next generations of the ECP, the logic blocks were restructured. In the ECP2, carry chains and

output flip-flops are only available in three of the four slices within each logic block. The size of the fabric

RAM from those blocks that supported it was also reduced. However, the size of the block RAMs was

increased to 18 Kbits with configurable aspect ratio. As with the ECP, this is true dual-port except for the

widest data widths.

With the ECP2, Lattice Semiconductor introduced high speed SERDES blocks to support high speed

serial connections. The logic also includes the corresponding physical coding sublayer including PCI

express and Gigabit Ethernet. Designs use a combination of dedicated hardware and user logic to manage

the protocol.

The DSP block was been completely redesigned for the ECP3 to optimise its speed. The input registers

are connected as a shift register to simplify the moving of coefficients or samples when filtering. This is

followed by a set of multipliers which can be configured to manage the range of word sizes from 9� 9 to

18� 36. A set of pipeline registers separates the multipliers and an adder network and accumulators.

The clock network of the ECP2 consists of eight global clocks, and an additional four local clocks are

available in each quadrant of the FPGA. This was extended in the ECP3 by splitting the FPGA into up to

36 local clock regions (depending on the size of the FPGA)with eight local clocks available in each region.

Configuration file encryption was introduced with the ECP2, as was dual boot support. This enables

two configuration files to be present in the configuration ROM. If one configuration file fails to load for

some reason, the FPGA will automatically switch to the other configuration file. Therefore, if an error

occurs during a remote configuration update (into the configuration ROM), there is always a working

configuration file available.

2.4.3.3 XP and XP2

The LatticeXP has basically the same architecture as the LatticeECP, with the exception that there are no

multiplication blocks. The XP also contains on-chip a non-volatile flash memory that may be used for

configuring the FPGA on power-up. This saves the need for an external flash memory for configuration,

Field Programmable Gate Arrays 45

reducing the chip count. It is also faster because the transfer from the flash memory to the SRAM-based

configuration memory has a significantly higher bandwidth. A further benefit is that it provides some

protection of the intellectual property because the configuration file is not visible every time the FPGA is

powered on.

The LatticeXP also has a sleepmode, where the logic is disabled, and the outputs are tri-stated. In sleep

mode, the current is reduced by up to three orders of magnitude over the normal running mode. The

advantage of sleep mode over powering off is that normal functionality may be resumed very quickly.

Note though, that the block RAM and register contents are not maintained during sleep.

Similar to the XP, the LatticeXP2 is a version of the LatticeECP2 with built-in flash. It has been

optimised further over the LatticeXP so that configuration from the internal flash only takes a few

microseconds, making the FPGA virtually instant-on. It is also possible to transfer the contents of the

block RAMs back into the flashmemory without changing the rest of the configuration. The internal flash

memory may be updated while the device is running normally, enabling live update of the device

configuration. The XP2 also includes a configuration decryption block to provide additional design

security. This enables the configuration file to be encrypted before transferring it to the FPGA, whether to

the on-chip flash memory or direct to the SRAM configuration memory.

2.4.3.4 SCP/M

TheLatticeSCP/M family is designed primarily for high speed communications applications. The internal

architecture is much the same as the ECP series. The main difference is in the advanced high speed I/O

blocks incorporated into the SC/M family. These are implemented as hard ASIC blocks integrated onto

the FPGA. A flexible hardware PHY supports a number of high speed communications standards

including PCI express and gigabit Ethernet. Programmable on-chip termination reduces the need for

external termination resistances on both inputs and outputs.

A novel feature added by the LatticeSCP/M is a microprocessor interface. This enables the FPGA to be

placed on the microprocessor’s bus, enabling high speed configuration or direct processing of data as

a hardware coprocessor. This is a viable alternative to providing a series of FPGAs with a built-in

processor.

2.4.4 Achronix

Arelative newcomer in FPGA terms is theAchronix Speedster. This claims to be theworld’s fastest FPGA

(Achronix, 2009), with clock speeds up to 1.5GHz. These speeds are obtained through extensive

pipelining – even the routing is broken into short pipelined segments to reduce the capacitance and enable

high clock speeds. Internally, the FPGA is self-synchronous, by combining clock and data together to

create a data token. The development tools map a conventional synchronous design onto the fine-grained

pipelined architecture. The characteristics of the Speedster are summarised in Table 2.4, with key features

described in more detail below.

Table 2.4 Characteristics of the Achronix Speedster family

Family Process

Technology

LUT

Size

Block

Size

Logic Cells RAM Size Total RAM DSP Size DSP

Blocks

Speedster

(Achronix,

2009)

65 nm 4 8 25 k–164 k Fabric: 128

512� 36

1.2M–9.8M 2� 9� 9

18� 18

50–270

46 Design for Embedded Image Processing on FPGAs

The logic cell consists of a conventional 4-LUT. These can be combined in pairs to create a 5-LUT.

Half of the logic cells also have carry chain logic for implementing arithmetic operations. The output

of each cell has a flip-flop that can be used either for storage or pipelining. To achieve high speed,

there is a maximum of one level of logic per pipeline stage. A logic block consists of eight logic

cells. This may be configured either as logic, or as a 16� 8 simple dual-port RAM. Each logic block

also has a clock domain converter which facilitates transfer of data tokens from one clock domain

to another.

Two other block types are included in the Speedster FPGA. The first is an 18Kbit dual-port block RAM

with configurable aspect ratio from 16K� 1 to 512� 36. The extra bits may be used for error correction,

although this must be implemented through user logic. The second block type is a hardware 18� 18

multiplication, which can be split into two 9� 9 multiplies. Both blocks operate at up to 1.5GHz.

The Speedster supports a wide range of I/O standards, including both differential and DDR signalling.

For high speed I/Os, both input and output termination is provided on-chip, with the actual impedance

value being set by external resistances on dedicated control pins. High speed serialisation and

deserialisation enable serial data rates of up to 10.3 Gbps, with standards such as PCI express, gigabit

Ethernet, SATA and so on supported directly in hardware.

Device configuration is either serial or parallel (8 bits wide). For serial configuration up to four serial

flash devices may connected simultaneously, reducing the configuration time by a factor of four.

Configuration encryption is supported, with the key stored in non-volatile memory.

2.4.5 SiliconBlue

Another recent newcomer to FPGAs is SiliconBlue Technologies. It has a series of low power FPGAs

suitable for embedded applications (Table 2.5). The logic cell consists of a 4-LUT combined with carry

logic and a flip-flop. A logic block is made up of eight logic cells. In addition to the logic, the FPGA also

contains a number of simple dual-port block RAMs. The I/O block is similar to the basic block shown

in Figure 2.6, although DDR and differential signalling are supported on some I/Os. Although the

configuration is static RAM based, the iCE65 FPGAs have on chip a non-volatile memory that can

optionally be used to reconfigure the device.

The low power of the iCE65 makes it well suited to battery powered embedded applications. The low

power is achieved by keeping the clock rate as low as possible, or putting the FPGA into sleepmodewhen

not processing data. Typical power dissipation when operating at 32MHz (suitable for pipeline-based

image processing from a camera) is 20 mW.

2.4.6 Tabula

Tabula is a new entrant in the FPGA area, announcing its ABAX family of programmable logic early in

2010. Tabula has taken a completely new approach to solving the problem of device densities and speed.

The ABAX has a three-dimensional architecture, enabling it to stack more logic into a given area.

However, since three-dimensional logic devices are still not yet practical, it is using a novel approachwith

time as the third dimension, which Tabula has called a SpaceTime architecture (Tabula, 2010b). The basic

principle is to dynamically reconfigure the whole device (logic, memory and even interconnect) with

Table 2.5 Characteristics of the SiliconBlue iCE65 family

Family Process

Technology

LUT

Size

Block

Size

Logic Cells RAM size Total RAM

iCE65 (SiliconBlue, 2009) 65 nm 4 8 3.5 k–7.8 k 256� 16 80K–128K

Field Programmable Gate Arrays 47

every clock cycle (up to 1.6GHz) enabling each block to be used for multiple different functions. This

reuse reduces the number of logic blocks actually required and also shortens interconnect paths, resulting

in a faster and more compact design. The key characteristics are summarised in Table 2.6.

The rapid reconfiguration is achieved by having a stack of up to eight active configurations available.

The user clock is multiplied up by the number of active configurations to give the internal system clock.

Then with each internal system clock cycle the active configuration is cycled between those available.

Thus each component is effectively being time-multiplexed up to eight times each user clock cycle.

At the time of writing, full data was not available on the internal components of the ABAX FPGA.

The logic cell appears to be based on a 4:1multiplexer, butmay bemore general than this. Four of these are

grouped into a slice,with associated arithmetic logic.A logic block appears to consist of four slices, giving

a total of 16 logic cells per tile. However, since each block is used for different functions up to eight times

per user clock cycle, the effective logic densities are up to eight times the physical densities listed in

Table 2.6. On the output of each logic cell is a number of flip-flops to enable communication between the

different time slices.

On the FPGA, there are three different sizes of block memory. The small 64� 9 blocks can be used

either as a register file or as a 6-LUT. The medium sized dual-port block can be configured from

16K� 2 to 2K� 18. It also has built-in FIFO control, reducing the logic needed to implement FIFO

buffers. The large size blocks are single port with aspect ratio from 36K� 2 to 4 K� 18. Dividing the

user clock cycle into up to eight internal time slices also means that a standard single-port memory

can be accessed up to eight times every user clock cycle, effectively creating a multiport memory with

a large number of ports. The DSP block performs a pre-addition, an 18� 18 multiplication, followed

by a 44 bit sum. Like the rest of the FPGA, it is capable of running at up to 1.6 GHz with the internal

system clock.

A wide range of I/O standards is supported, including DDR and LVDS signalling. High speed serial

links have built in SERDES logic, although the protocols must be managed with user logic.

Although the primary target market is DSP for wireless networking, the ABAX devices should also

perform well in an image or video processing context.

2.4.7 Actel

Actel provides a range of low power FPGAs, making them ideally suited for embedded applications.

There are three main families: the Axcelerator, the ProASIC3 and the IGLOO. Also included in Table 2.7

for comparison is the SmartFusion family, which includes an ARM processor and programmable

analogue circuitry in addition to a ProASIC3 based FPGA block.

The Axcelerator family is one-time programmable using anti-fuse technology. Once programmed, it

cannot be reprogrammed. A big advantage of one-time configuration is that it can begin operating

immediately on power-on. The basic logic cell is a 4:1multiplexer, whichmakes it different from the other

cells looked at so far.Associatedwith eachmultiplexer is additional logic, including a carry chain, tomake

a full adder. A logic block consists of four such cells combined with two flip-flops. Although the logic is

Table 2.6 Characteristics of the Tabula ABAX family

Family Process

Technology

Logic

Cell

Block

Size

Logic

Cells

RAM

Size

Total

RAM

DSP Size DSP

Blocks

ABAX

(Tabula, 2009,

2010a)

40 nm 4:1mux 16 27 k–79 k 64� 9 44M 18� 18 þ 44 0–160

2K� 18

4K� 18

48 Design for Embedded Image Processing on FPGAs

quite fine grained, it is relatively rich in memory resources, with a number of 4608-bit memory blocks.

Thesememories are simple dual-port with configurable aspect ratio from4K� 1 to 128� 36. The routing

within the Axcelerator is relatively fast because the fuses do not introduce delay in the sameway that pass

transistors do. The lack of reprogrammabilitymakes theAxcelerator best suited in embedded designs only

where the functionality is not going to change.

The other families are based on flashmemory programmed FPGAs. These also have the advantage that

they are immediately ready on power-on, but with the ability to be reprogrammed if necessary. The basic

logic element consists of a 3-LUT,which can also be configured as aDflip-flop. Thismakes themvery fine

grained and quite homogenous logically. Within the FPGA is a single block of 128� 8 of user flash and a

number of 4608-bit blockRAMs. These can be configured from4K� 1 to 256� 18 and are true dual-port

within the ProASIC3 or simple dual-port within the IGLOO. The IGLOO also has hardware logic to use

theRAMs as FIFObuffers. The larger devices are able to implement a 32-bitARMprocessor as a soft-core

block. While both families are low power, the IGLOO is designed particularly for ultra low power

applications, making it ideal for embedded vision sensors. Both families are available in very small

footprint packages (as small as 3mm� 3mm) making for an extremely compact design.

2.4.8 Atmel

The Atmel devices are relatively old technology, although they are still available. The main features are

summarised in Table 2.8. The relatively small size of the FPGA (in terms of logic resources) limits what

they can be used for in terms of image processing applications.

Table 2.7 Characteristics of the Actel FPGA families

Family and

Generation

Process

Technology

Logic Cell Block

Size

Logic

Cells

RAM Size Total RAM Processor

Axcelerator

(Actel, 2009)

0.15mm 4:1 multiplexer 4 1.3 k–22 k 128� 36 18K–288K —

ProASIC3

(Actel, 2008b)

130 nm 3-LUT 1 384–75 k 256� 18 0–504K —

IGLOO

(Actel, 2008a)

130 nm 3-LUT 1 384–75 k 256� 18 0–504K —

SmartFusion

(Actel, 2010)

130 nm 3-LUT 1 1.5 k–12 k 256� 18 36K–108K ARM

Cortex-M3

Table 2.8 Characteristics of the Atmel FPGA families

Family and

Generation

Process

Technology

LUT

Size

Block

Size

Logic

Cells

RAM

Size

Total

RAM

DSP

Size

Processor

AT40K

(Atmel, 2006)

0.35mm 3 2 256–2.3 k 32� 4 2K–18K — —

FPLIC

(Atmel, 2008)

0.35mm 3 2 256–2.3 k 32� 4 2K–18K

36 Kbytes

8� 8

In AVR

AVR

Field Programmable Gate Arrays 49

The logic cell consists of a 3-LUT,which are grouped two to a logic block. This enables a 4-LUTor full-

adder to be implemented from each logic block. Each logic block also contains a single flip-flop. Small

dual-port RAMs are distributed through the logic giving a relatively homogenous architecture. The

devices are partially reconfigurable, enabling adaptive systems to be constructed where blocks of the

design can be overwritten after the initial programming.

The FPLIC combines anAT40KFPGAwith an 8-bitAVRmicrocontroller and 36Kbytes of static RAM

for the microcontroller instruction and data memory.

2.4.9 QuickLogic

QuickLogic used tomake a range of FPGAs; itsmost recent familywas theEclipse (Table 2.9). Because of

their age, the devices were relatively small, making them less suitable for many image processing

applications. Their distinctive feature was that the logic was not LUT based, but consisted of a mixture of

difference size AND gates and small multiplexers.

More recently, QuickLogic has moved from the FPGA market to providing much higher level

application blocks that can be combined and customised for specific applications. A radiation tolerant

version of the Eclipse is provided from Aeroflex that would be suitable for space-based applications.

2.4.10 MathStar

An alternative approach to programmable logic is taken by MathStar with its Arrix Field Programmable

Object Array (MathStar, 2007). It is like an FPGA, but rather than the fine-grained logic blocks, it consists

of a set of much coarser-grained building blocks. The advantage of this is that the coarse-grained blocks

may be implemented more efficiently than building complex logic out of LUTs. However, unless the mix

of blocks matches that required by an application, the resulting designmaymake poor use of the available

resources. MathStar targets applications where there is significant mathematical computation (including

image and signal processing) that can effectively make use of the coarser-grained blocks.

The Arrix is a 16-bit device in that all data paths are 16 bits wide rather than working with each bit

individually as is the case with FPGAs. The available building blocks are:

. An arithmetic and logic unit (ALU). These have a 16-bit data path and can perform addition, subtraction

and a wide range of logic functions. The ALUs are controlled by a reconfigurable state machine. The

control bits which specify the operation come with the data.
. A multiply and accumulate block, that performs a 16� 16 multiply, with a 40-bit accumulator.
. A register file that contains a 64� 20 simple dual-port memory. The register file can also be configured

as a 6-LUT (producing 20 outputs) or as a FIFO buffer.

Table 2.9 Characteristics of the QuickLogic FPGA families

Family and Generation Process

Technology

Logic

Cell

Block

Size

Logic

Cells

RAM

Size

Total

RAM

Multiplier

Eclipse

(QuickLogic, 2007b)

0.25mm Other 1 960–4032 128� 18 45K–81K —

Eclipse II

(QuickLogic, 2007a)

0.18mm Other 1 128–1536 128� 18 9K–54K 8� 8

þ 16

Aeroflex UT6325

(Aeroflex, 2008)

0.25mm Other 1 1536 128� 18 54K —

50 Design for Embedded Image Processing on FPGAs

. A block RAM. Each block is a single-port 2048� 76 memory.

. An external RAM interface that facilitates connection to external DDR memories.

. A general I/O interface.

. A high-speed LVDS block with separate transmitters and receivers. These have built-in FIFO buffers to

manage the flow of data onto and off the chip.

Two forms of interconnect are used: nearest neighbour and shared longer lines. The longer lines must be

registered, giving them a latency of at least one clock cycle (longer for longer distances). Such pipelining

enables a high clock speed to bemaintained regardless of the length of interconnection. Each interconnect

path is 21 bits wide: 16 bits for the data, one bit to indicate valid data and four control bits are used to

control the ALU function.

While not strictly an FPGA, it is appropriate to use the Arrix for image processing applications.

2.4.11 Cypress

CypressSemiconductorprovidesaseriesof threeprogrammablesystem-on-chipsystems.Theycombinean

8-bit, 16-bit or 32-bit microcontroller with a range of relatively high level analogue and digital building

blocks or peripherals. Again, the blocks are too high level to classify them as FPGAs, and the underlying

system is based primarily on the microcontroller rather than programmable logic. While these devices are

lesssuitedtoreal-timeimageprocessingapplications, theymaybeappropriatewhencombiningserial image

processing (performed by the microcontroller) with a range of other sensors in a low cost sensor network.

Cypress Semiconductor alsomakes awide range of peripherals (USB,wireless nodes, etc.) that provide

a relatively simpleway of integrating these functionswithin an FPGA system. Some of these are discussed

in more detail in Chapter 12.

2.5 Choosing an FPGA or Development Board

ManyFPGAmanufacturers also sell development boards or evaluation boards. These boards often consist

of an FPGAwith a set of peripherals to demonstrate the capabilities of the devicewithin a range of targeted

applications. In particular, most boards provide some form of external memory and some means of

interfacing with a host computer (even if it is just for the downloading of configuration files). Other than

this, the specific set of peripherals canvarywidely depending on the target application andmarket. Boards

aimed for education use tend to be lower cost, often with a smaller FPGA and awide range of peripherals,

enabling them to be used for laboratory instruction.

With the large range of both FPGAs and development boards available, how does one choose the right

system? Unfortunately, there is no easy answer to this, because the requirements vary widely depending

on the target application, and whether or not a development system or product is being built.

For image processing, the development system should have the largest FPGA that can be afforded, with

sufficient peripherals to enable a wide range of applications to be considered and programmed. Some

essentials for any image processing application:

. There needs to be some method for getting images into the FPGA system. Depending on the intended

input source, there are a number of possibilities here. To come from an analogue video camera, some

form of codec is necessary to decode the composite video signal into its colour components and to

digitise those components. Some systems provide a codec to digitise VGA signals, allowing the capture

of images produced by another computer system. Common interface standards to connect to digital

cameras include USB, Firewire and CameraLink. Most development boards have a USB interface

(although actually getting to the video stream is more complex than just the physical interface), but few

will have other camera inputs.

Field Programmable Gate Arrays 51

. The development board must have some method of displaying the results of image processing. While

the final implementation may not require image display, it is essential to be able to see the output image

while debugging. Either a VGA output or digital video interface (DVI) is suitable.
. The system must have sufficient memory to buffer one or more frames of video data. While the final

applicationmay not require a frame buffer, just capturing and displaying an imagewill require buffering

the frame unless the camera and display are synchronised. Only the largest FPGAs have sufficient

on-chip memory to buffer a whole image, and this memory is probably better used for other purposes in

most applications. Therefore it is usually necessary for the frame buffer to be in off-chip memory.

Dynamicmemory has a variable latency, making it less suitable for high speed random access, although

is suited for stream processing where the access pattern is known in advance. Static memory has faster

access, although is generally available in smaller blocks. Working with two or more banks of static

memory can often simplify an algorithm by increasing the memory bandwidth.

For systems where the FPGA is installed as a card within a standard PC, the host computer usually

manages the image capture and display. The interface between the FPGA and host is usually through PCI

express. Managing the interface with the host computer can use considerable resources on the FPGA.

Depending on the application, the interface may also be a bandwidth bottleneck within the system.

When implementing a target embedded product, power and size are often the critical constraints. This

will involve eliminating any peripherals that are unnecessary in the final application. However, for

debugging it may be useful to have additional peripherals accessible through an expansion port. To

minimise the cost of a product, it is desirable to reduce the size of the FPGAused. However, it is important

to keep in mind upgrades that may require a larger FPGA.Many families have several different footprints

for each size FPGA. Choosing a footprint that allows a larger FPGA to be substituted will reduce the

retooling costs if a larger FPGA is required in later models.

52 Design for Embedded Image Processing on FPGAs

3

Languages

InChapter 2, a low level view of the architecture of FPGAswas presented. To programme an FPGA at this

level, it is necessary to break down the design into the fine-grained logic blocks available on the FPGAand

build up the logic required by the application from these blocks. There are two main problems with

representing designs at this level. Firstly, designing at such a low level is both tedious and error prone.

Secondly, the portability would be limited to FPGAs that had the same basic architecture and logic block

granularity. While it is possible to programme FPGAs at this level, it is akin to programming a

microprocessor in assembly language. It may be appropriate for the parts of the design where the timing

and resource use are critical. However, for most applications, this is too low level, and this is also the case

for most image processing designs based on FPGAs.

Fortunately, the tools for implementing algorithms and systems on FPGAs enable working at a higher

level. Implementing a working design requires several key steps, as illustrated by the generic design flow

in Figure 3.1. Firstly, the design must be coded in some human readable form. This represents the design

using a hardware description language (HDL) and captures the essential aspects of the design that enables

it to be both simulated and synthesised onto an FPGA. Design representation is the primary focus of this

chapter. AlthoughmanyHDLs are based on software languages, they are not software but instead describe

the hardware required to implement the design. For an FPGA implementation of an algorithm it is

necessary to describe not only the algorithm, but also the hardware used to implement it. Most

development environments enable the hardware description to be ‘compiled’ and simulated at the

logical level to verify that it behaves in the intended manner.

Synthesis takes the logical representation describing the hardware and converts it to a device or gate

level net-list representing the actual hardware that is to be constructed on the FPGA. This form defines the

circuits in terms of basic building blocks, both at the logic gate level and in terms of the primitives

available on the FPGA if they have been used within the description. It also defines the interconnectivity

between the building blocks. For interchange between different tools, a net-list is often represented using

EDIF (electronic design interchange format). Synthesis constraints control aspects of the synthesis

process, such as whether to: optimise for speed or area; automatically extract and optimise finite state

machines; force set and reset to operate synchronously; and so on.Gate level functional simulationverifies

that the design has been synthesised correctly, and provides more information on the specific low level

characteristics of the circuit than the higher level simulation.

The next stage is tomap the net-list onto the target FGPA.There are two phases to this process.Mapping

determines how the logic maps onto the specific components available on FPGA. In particular, this phase

partitions the logic of the design into the LUTs, splitting complex logic over several LUTs, or merging

logic to fit within a single LUT where appropriate. The place and route phase then associates these

Design for Embedded Image Processing on FPGAs, First Edition. Donald G. Bailey.

� 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd.

mapped components with particular logic blocks on the FPGA and determines the routing required to

connect the logic blocks, memories and I/Os. Implementation constraints direct the placement of logic to

specific blocks, in particular associating inputs and outputs with specified pins. They also specify the

required timing,which is used to guide the placement and routing of critical nets.Once the design has been

mapped onto the FPGA,more accurate estimates of the circuit timing are available based on the lengths of

the connections, fan-outs and particular resources that are used to implement the logic function.

The final stage is to generate the configuration file required to programme the FPGA. During

development, the configuration file can be loaded onto the target system to verify that the design works

as intended and that it correctly interacts with the other components within the system. In the deployed

system, the FPGA is programmed by automatically loading the configuration file from flash memory

on power-on.

As can be seen from Figure 3.1, implementing a design on an FPGA is quite different from

implementing a design in software, even on a processor within an embedded system. It requires a

hardware mindset, even during the initial design. However, image processing is usually considered to be

a software development task. Successful implementation of algorithms on an FPGA therefore requires a

mix of both software (algorithmic) and hardware (logic circuit design) skills.

Most FPGA-based design is carried out at an intermediate level that is amixture of both algorithmic and

circuit level design. The implementation of synchronous systems is usually performed at the register

transfer level (RTL). As illustrated in Figure 3.2, this structures the application as a series of alternating

blocks of logic and registers. The structure is not necessarily linear, as implied by Figure 3.2; from a

computational perspective, the primary purpose of each block of logic is to determine the next value that

will be stored into the registers on its outputs. It can take its inputs from anywhere: other registers, I/O pins

or internal memory blocks. As demonstrated in Figure 3.2, inputs, outputs and memory accesses may be

Representation

Design

Map

Place and route

Configuration file
generation

Synthesis

Timing
simulation

In-system
verification

Behavioural and
functional simulation

Gate level
simulation

Synthesis
constraints

Implementation
constraints

Implementation

Figure 3.1 Steps to implementing a design on an FPGA.

54 Design for Embedded Image Processing on FPGAs

either direct or via registers. The blocks of logic are not directly clocked; all of the clocking is through

the registers (and also thememory if it is synchronous). Therefore, the signals must propagate through the

logic before they can be clocked into the registers. This limits the clock speed of the design to the

propagation delay through the most complex block.

The art of implementing an algorithm on an FPGA therefore falls to decomposing the algorithm into a

sequence of register transfers, and determining the appropriate logic between each register. Note that,

unlike implementing algorithms in software, each logic block operates in parallel. This usually requires

adapting the algorithm from a conventional sequential form into one that can exploit the parallelism

available from hardware.

Implicit within Figure 3.2 is the control logic required to sequence the steps within the algorithm.

Depending on the algorithm and its implementation, not all of the registers may necessarily be updated at

every clock cycle. This can be achieved by using the clock enable for the registers to control when they are

updated. Also, the computation to produce a value for a register may not necessarily be the same every

cycle. This requires a multiplexer on the inputs of the registers to select the appropriate computation

depending on the current stage within the algorithm. These are made more explicit in Figure 3.3, with

control logic providing the clock enable and multiplexer selection signals. Implicit within the compute

logic are any memory elements that may be used to perform part of the computation, or provide cached

input or output data.

The distinction between control logic and compute logic can help with the transition from an algorithm

to hardware. The control logic determines what is computed (or more precisely which computation gets

saved in which register – in hardware, the logic is always adjusting its output to reflect changes on its

inputs), while the compute logic actually performs the computation.

Since the computation is often context dependent, a common implementation of the control logic is as a

finite state machine, with the context encoded in the states. Figure 3.4 gives two examples of simple

finite state machines. The one on the left illustrates how a sequential algorithm may be implemented on

sr
e t

si
g

e
R

sr
et

si
g

e
R

sr
e t

si
g

e
R

s r
et

si
g

e
R

Logic Logic Logic

I/O I/OMemory

Figure 3.2 Basic structure of any application – logic interspersed with registers.

CECECE

Compute logic

Outputs

Inputs

Control
logic

Figure 3.3 A rearrangement of Figure 3.2 to explicitly separate the control and compute logic.

Languages 55

parallel hardware.The algorithmconsists of four steps, eachofwhich take exactly oneclockcycle, andwhen

the algorithm has completed the fourth step, it returns to the start (perhaps operating on the next data item).

Thefinite statemachine on the right represents the typical structure for the control for a three-stage pipelined

stream process with one clock cycle per pixel. The algorithm begins in theWait state, waiting for the first

pixel.When thefirst pixel arrives, the next two states are initialisation, priming theprocessing pipeline.Once

primed, the pipeline stays within the Run state while pixel data is arriving. At the end of each block of data,

the state machine transitions to the Tidy states where the pipeline is flushed, completing the calculations for

the last pixels to arrive. It then returns to the Wait state, waiting for the first pixel on the next block.

The transitions from one state to the next may be determined by input (control) signals or, for more

complex algorithms, determined by the data being processed, as reflected in Figure 3.3. In practise, an

algorithm is decomposed into a series ofmodules. Rather than control everythingwith a single large finite

state machine, the control logic is also modularised, with a separate state machine for each module.

Having looked at the basic structure of an algorithmwhen implemented on an FPGA, the next step is to

look at the representation of the algorithm being programmed onto the FPGA.

3.1 Hardware Description Languages

The traditional approach to describing electronic circuits is through schematic diagrams. These provide a

graphical representation of the components and connectivity. They are best used for representing smaller

designs at the transistor and gate level. For higher level designs, they represent modules and packages as

block diagrams. Modern schematic capture tools integrate circuit simulation and printed circuit board

layout, making them invaluable for the production of physical systems. High end tools also integrate

hardware description languages allowing the complete development andmodelling of systems containing

FPGAs and other programmable hardware. However, the level of abstraction of schematic diagrams is

typically too low for representing complex algorithmic designs. At the lowest level, they can represent

logic circuits as transistors and logic gates. At the register transfer level, a schematic representation is

structural, as a collection of components or block diagram, rather than clearly representing the behaviour

or algorithm. This makes them difficult to navigate for algorithmic designs, because the behaviour is not

particularly transparent from a structural representation.

From these roots, hardware description languages evolved in the 1980s to address some of the

limitations and shortcomings of schematic representations, and to provide a standard representation of the

behaviour of a circuit. Since hardware is inherently parallel, it is necessary for anHDL to be able to specify

and model concurrent behaviour down to the logic gate level. This makes HDLs quite different from

conventional software languages, which are primarily sequential.

Step
1

Step
2

Step
3

Step
4

Init
1

Init
2

Tidy
1

Tidy
2

Run
Wait

Prime

Flush

Figure 3.4 Example finite statemachines. Left: a repeating sequential process; right: a pipelined stream

process.

56 Design for Embedded Image Processing on FPGAs

The two main HDLs are VHDL (very high speed integrated circuit HDL) and Verilog, both of which

have since been made into IEEE standards (the current standards are IEEE, 2009, 2006a, respectively).

Their original purpose was for documenting and modelling electronic systems. Both are hierarchical

structural languages in that they describe the hardware structurally in terms of logic blocks and their

interconnections. They also allow a behavioural description of the functionality of the circuit, rather than

necessarily having to specifically identify the logic circuits. A behavioural description, as its name

implies, describes how the circuit is to behave, or respond to changes on its inputs. It is, therefore, the role

of the synthesis tools to determine the actual logic required to implement the specified behaviour.

The primary focus of VHDL and Verilog is for verification and simulation of logic circuits. Therefore,

modules can readily be written in either language for testing the functionality of the circuits described.

Through the design of appropriate test benches, this allows the design to be thoroughly tested for

correctness before it is synthesised. The complexity of synthesising a circuit from its behavioural

description limits what can be synthesised. Structural designs can be readily synthesised, as can

behavioural descriptions that conform to an RTL coding style. However, these restrictions mean that

many of the constructs available within both languages are not synthesisable.

3.1.1.1 VHDL

VHDLhas its roots in the USDepartment of Defence andwas built on theAda language. VHDL therefore

inherits many of the characteristics of Ada, including being strongly typed and having a tendency to be

somewhat verbose. The synthesisable subset of VHDL is specified in (IEEE, 2004).

Perhaps the best way to briefly describe the language is to demonstrate its functionality through a

simple example. This will implement the recursive streamed filter with input I and output Q:

Qn ¼
In; In�Qn�1j j< t
Qn�1 þ kðIn�Qn�1Þ; otherwise

�
ð3:1Þ

where k and t are constants. The corresponding schematic for this is shown in Figure 3.5. One VHDL

representation of this is given in Listing 3.1.

Listing 3.1 VHDL implementation of the filter illustrated in Figure 3.5

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3

4 package globals is

5 constant PIXEL_WID : integer :¼ 8;

6 subtype PIXEL_VALUE is STD_LOGIC_VECTOR (PIXEL_WID-1 downto 0);

7 subtype SIGNED_PIXEL is STD_LOGIC_VECTOR (PIXEL_WID downto 0);

8 subtype SIGNED_PROD is STD_LOGIC_VECTOR (PIXEL_WID�2 downto 0);

9 end package globals;

10

11 --

12 library IEEE;

13 use IEEE.STD_LOGIC_1164.ALL;

14 use IEEE.STD_LOGIC_ARITH.ALL;

15 use IEEE.STD_LOGIC_SIGNED.ALL;

16 use globals.ALL;

17 --

18 entity filter is

19 generic (k : SIGNED_PIXEL; -- Fixed point fraction -1 to 1

Languages 57

20 t : PIXEL_VALUE :¼ "00001010"); -- Threshold level

21 port (clk, ce : in STD_LOGIC;

22 data_in : in PIXEL_VALUE;

23 data_out : out PIXEL_VALUE);

24 end entity filter;

25

26 --

27 architecture filter_implement of filter is

28 component absv

29 port (s_in : in SIGNED_PIXEL;

30 u_out : out PIXEL_VALUE);

31 end component;

32

33 signal diff : SIGNED_PIXEL;

34 signal q, av : PIXEL_VALUE;

35

36 begin

37 abs_1 : absv port map(diff, av); -- Structural style

38

39 diff <¼ (’0’ & data_in) - (’0’ & q); -- Concurrent style

40 data_out <¼ q;

41

42 process (clk) -- Behavioural style

43 variable prod : SIGNED_PRODUCT;

44 begin

45 if rising_edge(clk) and ce ¼ ’1’ then

46 if av < t then

47 q <¼ data_in;

48 else

49 prod:¼ diff � k;
50 q <¼ q þ prod(PIXEL_WID�2 downto PIXEL_WIDþ1);

51 end if;

52 end if;

53 end process;

54 end architecture filter_implement;

The main features of VHDL will be demonstrated through a line-by-line explanation of the code in

Listing 3.1. The first two lines indicate that the following codewill make use of definitions fromwithin the

STD_LOGIC_1164 package within the IEEE library. The basic representation of a single bit wire is

STD_LOGIC, which can represent not only logic 0 and 1, but a range of other levels as well including a

weak high or low, high impedance, and undefined. When synthesised, this will be either 0 or 1 (or high

impedance if the output of a tristate buffer), but the other states are useful for detecting errors during

simulation. A multi-bit number is represented by the type STD_LOGIC_VECTOR.

q

| | t

k
data_in

diff prod

av
absv

data_out

Figure 3.5 Schematic representation of Equation 3.1.

58 Design for Embedded Image Processing on FPGAs

Since VHDL is strongly typed, the types of every operand and the result to which it is assigned must

match exactly; any mismatch will result in a compiler error. This helps to ensure the correctness and

internal consistency of the specification, but does mean that the developer has to do extra work to make

everythingmatch. To simplify this, a package is defined in lines 4–9, which defines thewidth of a pixel,

and a number of types used within the project. Normally the packagewill be in a separate file and be used

by all of the fileswithin the project, effectively centralising the definitions. In this case it is includedwithin

the same file for compactness.

Lines 12–16 list the packages that will be used in the following definitions. The STD_LOGIC_ARITH

overloads the definitions of arithmetic operations for the STD_LOGIC_VECTOR types, and these are

extended in STD_LOGIC_SIGNED for signed arithmetic. Line 16 includes the package containing our

type definitions.

Every blockwithinVHDL consists of two parts: anentity (lines 18–24), which defines the block and

its interfaces, and an architecture (lines 27–54), which describes the implementation. Within the

entity, generic defines parameters of the entity – in this case the filter gain and threshold value. The

thresholdt is given a default value of 10.Rather than enter thevalue as a bit string, the conversion function

CONV_TO_STD_LOGIC_VECTOR() defined in STD_LOGIC_ARITH can be used. A value needs to

be given for k when the filter is instantiated and, if a value is given for t, it will override the default.

Making them generic generalises the code. The port defines all of the data connections for the block.

Here, a clock and clock enable signals are required to control the register internal to the filter. The data

input and output are defined as PIXEL_VALUE, making use of the previously defined type. Note that the

generic items must be constants; if they are to be controlled by other logic they need to be specified

within theport list to enable them to be connectedwithwhatever is controlling their value. Theentity

definition contains all that is required to connect the filter to other components within the design.

The architecture block defines the implementation of the entity. An entity may have

severalarchitectures associatedwith it, each describing a different implementation. The head of the

architecture block defines the components and signals used within the architecture.

A component is any other external entity that will be instantiated within the body of the

architecture. In the example here, lines 28–31 define the absolute value block in Figure 3.5, which

is going to be instantiated by another VHDL entity called absv. Lines 33 and 34 define the signals

used within this implementation; these are labels for any internal wires or registers. The names here

correspond to the labels within Figure 3.5.

There are three distinct coding styles that can be usedwithin the body of anarchitecture. The first

style is a structural style. This builds up a design by instantiating and connecting a number of

component blocks. On line 37, an instance of the absv component called abs_1 is incorporated

into the design. The port map defines the connections to the component instance; here diff is

connected to the s_in port and av to the u_out output. A purely structural implementation would

describe everything in thismanner, using a hierarchy of connected components inmuch the sameway that

the schematic diagram would represent the circuit. More complex structural implementations can use

generate statements and loops to instantiate multiple copies of a component for example to build

multi-bit circuits from single bit components.

The second programming style is illustrated in lines 39 and 40. It places more focus on the flow of data

through the block, and describes the implementation in terms of concurrent signal assignments.

Whenever any of the signals on the right hand side changes, the corresponding statement is evaluated

with the result immediatelyassigned to the lefthandside.Line39subtractsq fromdata_in toproduce the

signal labelled diff. It is necessary to concatenate a 0 bit to the front of each of the terms to be able to

represent the sign of the result. Line 40 connects the output port of the filter to the output of the register.

The third programming style defines the implementation in terms of its behaviour through one or more

process statements. Each process block is executed whenever any of the signals within its

sensitivity list changes. The process on lines 42 to 53 will be executed whenever clk changes.

The statements within a process block are executed sequentially, making it a little more like a

Languages 59

conventional programming language. If written in an RTL style, such a behavioural description can be

converted to the corresponding logic by the synthesis tools. Within the header, any variables used

within theprocess are defined.Avariable is a little like asignal, with the difference being that an

assignment to a variable takes place immediately within the process, whereas any assignment to

signals is made whenever a wait statement or the end of the process is reached. At that point, all

signal assignments within the process are made concurrently; up to that point, all signals will have

the value when execution of the process started. That is variable assignments are made

sequentially, whereas signal assignments are concurrent.

The if statement on line 45 specifies that the enclosed statements are only executed on the rising edge

of the clock when the clock enable is set (the rising_edge function is defined in STD_

LOGIC_1164). Consequently, any signal assignments within this block will be synchronous,

implying that a register is required. The if on lines 46 to 51 imply a multiplexer, with each branch

providing an appropriate input for the signal (register) q. Line 49 performs the multiplication and

assigns the result to the variableprod. Themultiplication operation is defined inSTD_LOGIC_SIGNED

to perform a signed multiplication, producing a full precision output. The least significant bits are

truncated and the result accumulated in q in line 50.

As can be seen, the different programming stylesmay bemixedwithin any given design. All statements

within the architecture are executed concurrently, in the sense that whenever any of the inputs

change, the corresponding statement is evaluated.

While this example illustrates many of the features and characteristics of VHDL, it is by no means

exhaustive. The interested reader should consult the standard (IEEE, 2004; 2009), the documentation for

their synthesis tool or other references on VHDL (for example Bhasker, 1999; Ashenden, 2008).

3.1.1.2 Verilog

Verilog has many of the same features as VHDL. However, in contrast with VHDL which has its roots in

Ada, Verilog is loosely modelled after C. Consequently, Verilog is more compact that VHDL. Again, as

primarily a modelling language, not all language constructs are synthesisable (IEEE, 2005).

Each block within a design is specified as a module, with associated input and output ports.

A structural design defines its operation by referencing lower level modules, and describes the

interconnections between the module instances.

Within the module, there are two types of variables: wire and reg. A wire is as it sounds, a wire,

while areg is a variable that holds its value until it is changed (this is often, but not necessarily, associated

with a flip-flop).Wider variables are created as arrays of bits. Anassign statement performs continuous

assignment. Whenever any variable on the right hand side of such a statement changes, the assignment is

evaluated to determine the newvalue for the left hand side. The assignments are effectively all concurrent;

the order that they appear within the module is immaterial.

Aninitial block contains sequential statements, with the block executing once on initialisation. An

always block similarly executes a block of sequential statements whenever one of the variables in its

sensitivity list changes. Within such blocks, there are two types of assignment: sequential, where the left

hand side is updated immediately; and concurrentwhichwaits until the next time unit or clock cycle, when

all such assignments are made in parallel.

As with VHDL, a range of programming styles may be used. A full description of Verilog is beyond

the scope of this book. The interested reader is referred to the standards (IEEE, 2005; 2006a) or other

language references (for example Bhasker, 2005).

3.1.1.3 Summary

Standard HDLs are very good at describing the structure of a hardware design. Structural descriptions

generally give the best performance, using the minimum of resources (if optimised appropriately

60 Design for Embedded Image Processing on FPGAs

by the designer). This makes them good for developing libraries of intellectual property (IP) blocks that

may be instantiated many times or in many designs. However, design at the structural level is quite low

level and can be very tedious. At a higher level, HDLs can model functionality through a behavioural

specification. This describes what the circuit does, without necessarily specifying how it is to be

implemented. Consequently, the designer generally has less control, so although the design is at a higher

level, it is relying on the synthesis tools to derive an efficient implementation. Only the subset of

behavioural descriptions that conform to an RTL style is synthesisable.

The low level of HDLs makes exploration of the design space (the trade-offs between area, speed,

latency and throughput) more difficult. It is time consuming enough to programme one design, let alone

several different designs to investigate the effects of different levels of loop unrolling and pipelining.

HDLs, by necessity, are general purpose and allow considerable control over how the circuit is

implemented. This is both an advantage and a disadvantage. The advantage is that the developer can target

specific structures available on the FPGA, or optimise the design for speed or resources required by

programming in particular ways. By giving the designer control over every aspect of the design, fast and

efficient designs are possible. The disadvantage is that the designer must control everything in quite fine

detail, including both the data and control flows. The flexibility comes from the relatively low-level

constructs, but programming at this level requires a lot of basic bookkeeping. This makes complex

algorithmic programming more difficult.

The low level of programming is also not always particularly transparent. Very similar behavioural

constructs map to latches or multiplexers. While a structural design can specify registers explicitly, they

tend to be implicit in the behavioural programming style. These characteristics require close attention be

paid at the low level, and has a strong focus on the hardware rather than the algorithm. Compared to

software-based languages, HDLs are a lot like programming in assembly language.

3.2 Software-Based Languages

In an attempt to overcome this problem, over the last fifteen years considerable research has gone into the

synthesis of hardware fromhigh level languages, in particular fromC.The rationale behind this is twofold.

Firstly, it enables existing software to be easily ported or recompiled to a hardware implementation.Many

algorithmic designs are first developed and tested usingCorMATLAB�. Onceworking, the design is then

often re-enteredmanually into anHDL after which it is necessary to verify and refine the designmanually.

This process is both time consuming and error-prone. Having a single source that can be compiled to both

hardware and software would speed the development process considerably. It would also enable the

partitioning of the final implementation between hardware and software to be explored more easily. The

time critical and easily parallelisable components can be compiled to hardware, with the more sequential

components compiled as software. A second motivation is to raise the level of abstraction to make

hardware design more like software design, making it more accessible to software engineers (Alston and

Madahar, 2002).

Unfortunately, there are significant differences between hardware and software that pose significant

challenges to describing a hardware implementation using a software language. Five areas of difference

identified by Edwards (2005; 2006) are concurrency, having a model of time, data types, memory model

and communication patterns.

Hardware is inherently concurrent, with each step or computation performed by separate hardware. In

contrast, software performs its computation by reusing a central processor, making software inherently

serial. As indicated in Chapter 1, software processors introduce parallelism at a range of levels: at the

instruction level through wide instruction words (effectively issuing several instructions in parallel),

temporally, through instruction pipelining (with successive instructions overlapping by being in

different phases of the fetch/decode/execute cycle), through to coarse grained parallelism introduced

by splitting the application into several relatively independent processes and using a separate thread

Languages 61

for each. The fine-grained parallelism at the instruction level is closer to that of hardware, but is

controlled by the particular architecture of the processor. The compiler just needs to map the high level

statements to the given processing architecture. At this level the algorithm is primarily sequential,

although compilers can (and do) exploit dependencies between instructions to maximise parallelism.

At the thread or process level, the coarse-grainedmodel does not match the fine-grained concurrency of

hardware, but maps closer to having separate blocks of hardware for each thread or process.

Time and timing is absent frommost software programming models. The sequential processing model

of software ensures causality within an instruction sequence (Edwards, 2006), although this becomes

more complex and less deterministic withmultithreaded execution and task switching. However, the time

taken for each task is not considered by the language. In contrast, hardware, and especially synchronous

hardware, is often governed by strict timing constraints.Manyhardware interactionsmust be controlled at

the clock level and representing these with a high level software language can be difficult.

The data word width of a hardware system is usually optimised to the specific task being performed.

In contrast, software languages have fixed word widths (8, 16, 32, 64 bits) related more to the underlying

architecture than the computation being performed. Two approaches to this are to modify the language to

allow the word width to be explicitly specified, or to make use of the object orientated features (Java or

Cþþ) to define new types and associated operators. Virtually all software languages support floating-

point computation, and floating-point numbers have been the mainstay of scientific computing, including

image and signal processing, for some time. However, until recently floating-point number representa-

tions have been avoided on FPGAs because of the cost of implementing the more complex hardware. It is

onlywith higher capacity FPGAs and higher level languages that floating-point calculations have become

practical in hardware for other than very specialised tasks.

The memory model of software is very different to that used within hardware systems. Software treats

memory as a single large block. The compiler maymap some local variables to registers, but the software

model has everything stored in memory. This allows memory to be allocated to a process dynamically,

with the associated memory block referenced by its address. C even allows efficient memory traversal

algorithms through pointer arithmetic. In hardware,many local variables are not implemented inmemory,

but directly as registers. Memory is often fragmented into a large number of small, independent blocks.

In such an environment, pointers have very littlemeaning, and dynamic allocation ofmemory resources is

difficult, if not impossible. This has a direct impact on the algorithms that can readily be used or compiled

to hardware.

The differences inmemory structure also directly impact communicationmechanisms between parallel

processes. Software generally uses shared memory (including mailboxes) to communicate between

processes. Such a model is sensible where there is only a single CPU (or small number of CPUs), and the

processes cannot communicate directly. In hardware systems, parallel processes are truly concurrent and

can therefore communicate directly. In data-synchronous systems, such as streamed pipelining, com-

munication is often implicit, or through simple token passing. More complex systems can use FIFO

buffers or other synchronising and communication mechanisms. In many hardware systems, the

communication relies on dedicated hardware. This is particularly the case when communicating between

clock domains.

Anothermajor difference between hardware and software relates to the representation and execution of

an algorithm. In software, an algorithm is represented as a sequence of instructions, stored in memory.

A program counter points to the current instruction in memory, and a memory-based stack can be used to

maintain state information, including any local variables. This allows algorithms to be implemented using

recursionwherewithin a procedure the state can be saved and the procedure called again. In hardware, the

algorithm is represented by physical hardware connections. Saving the current algorithm state is difficult,

making recursive algorithms impractical in hardware. Any such recursion within an algorithm must be

remapped to iteration to allow a practical implementation.

In spite of these significant differences, three approaches have been used to develop synthesis tools

from high level languages. One is to use the host language to create and manipulate a structural

62 Design for Embedded Image Processing on FPGAs

representation of the circuit constructed. This is effectively using the high level language to simply

model the hardware, rather than directly specifying it. The second is to modify or extend the syntax

of a high level language to provide constructs that enable it to be used to describe hardware

(Todman et al., 2005; Edwards, 2006). The third approach is to use a standard high level language

and requires the compiler to automatically extract parallelism from the design and appropriately map it

to hardware. These three approaches are described in more detail with some examples of each of these

approaches. Much of the literature reports experimental work, although there are now several

commercial offerings.

3.2.1 Structural Approaches

Structural approaches work at describing the design using a structural model, rather than algorithmically.

These are primarily tools that mimic the structural designs of conventional HDLs but within a standard

programming language making the language and design more accessible to software engineers. They

are able to use the programming constructs of the host language to automate some design tasks, or to

facilitate parameterisation more naturally than standard HDLs. The other advantage of using a high level

language is that it more readily enables targeting the result to either software or hardware, facilitating the

partitioning of the design.

3.2.1.1 JHDL

JHDL (Bellows and Hutchings, 1998; Hutchings et al., 1999) is a Java-based hardware description

language developed by the Configurable Computing Laboratory at the Brigham Young University. It

began as a tool to experiment with run-time reconfigurability (Bellows and Hutchings, 2001) and was

extended to synthesise the designs, targeting Xilinx FPGAs. It is based on a structural design, which is

described programmatically using Java, with sets of classes representing objects, and wires. The

integrated environment then allows the circuits to be simulated to verify and debug operation. Tools

within the environment allow the manipulation of the design, including the placing of components on

the FPGA (floor planning). The design is then compiled to anEDIF net-list which the FPGAvendor’s tools

then place and route to produce the bitstream.

The main limitation of the original tool was that it used purely a structural design model. While this

enabled smaller and faster designs to be produced more quickly than conventional tools, design of

complex control circuits and finite state machines was awkward. This led to the incorporation of

behavioural synthesis (Wirthlin et al., 2001). Here the behavioural code is written in two key Java

methods of the class associated with the module, which are then compiled by the Java tools. The Java

byte codes are analysed to extract both the data flow and control flow from which the circuit

is synthesised.

Although the documentation and papers talk about a technology mapping phase (where the platform

independent representation is mapped to the resources of a specific FPGA technology), the environment

currently supports only Xilinx FPGAs up to the Virtex II.

3.2.1.2 Quartz

Quartz (Pell and Luk, 2005) is a structural hardware description language based on block composition.

This allows concise descriptions which can be manipulated by formal reasoning to prove the correctness

of the implementation. One of the focuses of this work was on parameterised pipelines for exploring

power consumption. The motivation for the work was to create efficient parameterised libraries, so the

representation was compiled to structural VHDL.

Languages 63

3.2.1.3 HIDE

Crookes et al. (1998; 2000) extended their earlier work on implementing image algebra-based systems on

transputers (Crookes et al., 1989) and other parallel processing systems to target FPGAs. The approach

takenwas to have a library of primitive operations, with corresponding hardware implementation, and use

a Prolog-based system of rules to construct the final system automatically from the image algebra

representation. The work was later extended to provide a range of low level implementations (bit-serial,

parallel, signed-digit) to enable low level architectural explorationwithout having to change the high level

program representation (Benkrid et al., 2000).

A later incarnation of the language, HIDE4K (Benkrid, 2000; Benkrid et al., 2002b) extended this

rule-based approach to hardware skeletons, effectively a set of high level library constructs for building

more complex operations. The image processing problem is represented as a directed acyclic graph of

basic image processing operations, which is then matched to skeletons to get the framework for the

implementation. The components within the skeleton are then instantiated from a library of optimised

basic building blocks (line buffers, adders, multipliers, absolute value units, and so on) depending on the

particular image processing operations being used. Although the HIDE language can produce platform

independent VHDLwith the vender tools implementing the design, it was found that higher clock speeds

and better packing density could be achieved with libraries that target a particular FPGA (Benkrid et al.,

2006). The platform specific libraries perform an initial placement, producing an EDIF net-list which is

mapped to the FPGA.

The use of a skeleton library allows the user to specify a high level description of the operations, which

are then internally translated to a structural representation, with the detailed implementation complexity

hidden from the user (Benkrid and Benkrid, 2008). While more flexible than a pure library-based

approach, it still requires that the design be able to be mapped to the available skeletons.

3.2.2 Augmented Languages

The second approach is to modify the syntax of the high level language to effectively convert it into a

hardware description language (Todman et al., 2005). Particular extensions are the ability to specify

concurrency and associated communication mechanisms, and to include hardware specific constructs

such as RAMs, ROMs and variable data bit widths. With this approach the responsibility of mapping the

algorithm onto hardware still rests primarily with the designer. Fully exploiting parallelism often requires

significant changes to the algorithm to handle hardware constraints. This, of course, requires the developer

to be familiar with hardware design. However, a wider range of parallelisation techniques can be

exploited, enabling the design to be optimised for real-time operation. The advantage of using a high level

language rather than a more conventional HDL is that much of the low level bookkeeping is abstracted

from the developer. However, since this still allows some control at the lower levels, it really provides an

intermediate level of abstraction and control. While some of the changes to the language may appear

relatively superficial, the introduction of parallel constructs significantly modifies the language and the

way that it is programmed. This requires the programmer to modify their thinking – it is still important to

think in terms of hardware.

3.2.2.1 SystemC

SystemC (IEEE, 2006b) is a modelling language based on Cþþ . System languages can be used for

modelling a complete system, including both hardware and software components. SystemC decomposes

the system into a set of modules, which are connected using ports. In this way it represents the structure of

the system. A class library is definedwhich provides the components used to build up the system. Derived

classes can then be used to implement the system directly using Cþþ . The expressive functionality is

64 Design for Embedded Image Processing on FPGAs

similar to VHDL or Verilog, with each module containing processes that run concurrently, with the code

inside each process executing sequentially. Like processes in VHDL, SystemC processes are triggered

through events (changes on particular signals), perform some action, and then suspend execution. In this

way, the language can also operate at the behavioural level. Although the system is structurally based, the

behavioural description is written using standard Cþþ .

One of the features of SystemC is the separation of the computation from the communication. This

allows amove to a higher level of communication between processes through transaction level modelling

(Swan, 2006). At the register transfer level, a communication takes place using a set of signals between the

communicating modules, and a series of signal assignments and read operations on the wires of the bus.

A transaction level model would represent the complete transaction with a single function call containing

the request and response. Modelling at a higher level both simplifies the design and increases the speed of

simulation by up to two orders of magnitude.

SystemC contains hardware orientated data types and directly supports fixed-point arithmetic. This

raises the level of abstraction from conventional HDLs, because appropriate rounding and overflow

operations can much more easily and transparently be specified. Although designed primarily as a

modelling language, a subset of SystemC (including at the behavioural level) can be synthesised for FPGA

implementation. Although early synthesis work was experimental (Economakos et al., 2001), most

electronic design automation (EDA) vendors now provide tools for synthesis from SystemC.

3.2.2.2 ASC

ASC (A Stream Compiler) (Mencer et al., 2003; Mencer, 2006) also uses Cþþ classes to represent

hardware data types and provides a layered approach to the design at the algorithm, architecture,

arithmetic and gate level. The focus is primarily for the development and design space exploration of

hardware accelerators to augment a standard serial processor.

The approach taken is to convert iteration through an array into a hardware stream process. At the

algorithm analysis level, the developer is responsible for performing the associated loop transformations

and selecting the appropriate architecture and data structures. The architecture generation is definedby the

resulting ASC code. A set of Cþþ classes define the variable types (integer, fixed-point and floating-

point), the datawidth,with the specific hardware number representation and storage type (register, stream,

on-chip memory or off-chip memory) specified through an attribute. These attributes allow the design

space to be explored simply by changing the appropriate attribute at the higher level, rather than having to

specifically redesign everything at the low level. A library approach is used for the generation of

arithmetic modules, with the specific format and storage defined by an extensive library. Compilation of

the code produces either an executable that simulates the design at either the word level or bit level, or

produces the circuit in the form of an EDIF net-list. Each module can be constrained on the basis of area,

latency or throughput, enabling exploration of the design space from within the one framework.

Processing as streams simplifies the interface between the host processor and the accelerator. Data

from the host is streamed into input FIFOs at the head of the stream and streamed from output FIFOs at

the output.

3.2.2.3 SA-C

Single assignment C (Draper et al., 2000; Bohm et al., 2001; 2002; Draper et al., 2002;Najjar et al., 2003)

is a high level variant of C specifically designed for image processing applications. It was originally

developed as an accelerator for within the Khoros image processing framework (Hammes et al., 1999)

and fits well with the low level image processing operations for which it is targeted.

There are threemain differences between regularC and SA-C (Draper et al., 2000). Firstly, hardware data

types are introduced. Inparticular, variablewidth integer andfixed-point numbers enable the datawidth tobe

Languages 65

tailored to the application. Standard floating-point and Boolean types are also supported. Secondly, arrays

are natively supported, with associated control constructs for simply looping through multidimensional

arrays and for scanning windows through arrays. Such constructs not only provide a higher level

representation but also makes analysis of array accessing easier for the compiler. Looping through an

array also maps naturally to a streamed style of architecture. Thirdly, aspects of C that do not fit well with

FPGAhardwareare eliminated. Pointers are not allowed (they are lessnecessarywith thepowerful newarray

iterators) and recursion is prohibited. The language also enforces single assignment semantics (eachvariable

may only be written to once), which facilitates analysis of the dataflow, and enables a one-to-one

correspondence between each variable and wires on the FPGA (registers are not required to hold a variable,

except for pipelining to improve throughput). All of these features enable the dataflow to be analysed and

optimised by the compiler to result in an efficient mapping to the FPGA architecture.

Thecomputational architecture is split into three levels.Thefirst is the data generator,which is responsible

for streaming thedata in frommemoryas requiredby the loop.This includes bufferingdata fromonewindow

position to the next. SA-C does not, however, infer or build row buffers, but reduces the number of reads by

processingmultiple rows across the image simultaneously (Draper et al., 2001). The second level is the loop

body, which performs the processing on the data as the image is scanned. The single assignment restriction

enables producer and consumer relationships to be identified at the image level, enabling two or more loops

to be combined, minimising the number of times that the data needs to be transferred between the host (or

memory) and theFPGA.Thisoptimisation is effectively inferringa streamedpipeline from the dataflow.The

third level is the data collector, which stores the results back to external memory.

The compactness of a SA-C representation is illustrated inListing 3.2 for the implementationof a Prewitt

edge detection filter (Bohm et al., 2002). Line 1 declares a procedure that takes as input a two dimensional

image of 8-bit unsigned integers, and produces a 16-bit unsigned image result. Lines 2 and 3 declare and

initialise the Prewitt masks. An image is declared on line 4, which is assigned the result of scanning a 3� 3

window through the input image (lines–10). The body of the loop (lines 6–8) is executed for each window

position. An inner loop (lines 7 and 8) iterates in parallel (thedot operator) through the twomasks and the

pixels within the window. The sum functions on line 8 reduce the pixel by pixel products to two numbers,

one for each of the masks. These are assigned to the 16-bit integer variables dfdx and dfdy. Line 9

combines these values together to create the magnitude, which is then used to build up the array M.

Listing 3.2 SA-C code for a Prewitt edge detector (With kind permission from Springer Scienceþ
Business Media: Journal of Supercomputing, “Mapping a single assignment programming language to

reconfigurable systems,” 21, � 2002, 119, W. Bohm, J. Hammes, B. Draper et al., Figure 2.)

1 int16 [:,:] main (uint8 Image[:,:]) {

2 int16 H[3,3] ¼ {{-1,-1,-1}, { 0, 0, 0}, { 1, 1, 1}};

3 int16 V[3,3] ¼ {{-1, 0, 1}, {-1, 0, 1}, {-1, 0, 1}};

4 int16 M[:,:] ¼
5 for window W[3,3] in Image {

6 int16 dfdy, int16 dfdx ¼
7 for h in H dot w in W dot v in V

8 return(sum(h�w), sum(v�w));
9 int16 magnitude ¼ sqrt(dfdy�dfdyþdfdx�dfdx);

10 } return(array (magnitude));

11 } return(M);

The language can be compiled for serial processing, for simulation and debugging on a conventional

processor, or via VHDL to target hardware. The mapping to hardware is facilitated by a library of

constructs for implementing each of the components.

66 Design for Embedded Image Processing on FPGAs

The lack of awhile statement makes other types of operationsmore difficult. However, the array access

mechanisms are efficient for implementing operations that require a scan through the image and provide a

higher level representation for those tasks than regular C.

3.2.2.4 A|RT

An early commercial C to HDL compiler was A|RT (for Algorithm to Register Transfer), marketed by

Frontier Design. It extends C with fixed-point data types (Johnson and Defossez, 1999). A|RT creates a

processor like architecture and uses a VLIW type processor to direct and schedule the operations

(Johnson, 2000). The tools allow interactive exploration of different processor architectures during the

design.One of the features is the ability to import predefined components (intellectual property cores) into

theC programme as function calls. Thesemap to a structural representation inVHDL, allowing optimised

code to be directly incorporated into the design. However, as an early generation language, it has not

survived (Martin and Smith, 2009).

3.2.2.5 Mitrion-C

Mitrion-C (Mohl, 2006) is a parallel C dialect marketed by Mitrionics specifically targeted towards high

performance computing (including image processing). Like SA-C, it is based on the single assignment

semantic to simplify extraction of parallelism from the code. Every statement returns a value and performs

an assignment, including loops and conditionals. The only effect that a loop or block has on the rest of the

programme is through the return value. This enables loops to be executed independently of other parts of

the programme.Within a block, all assignments are parallel. The language supports awide range of types,

including variable sized integers and floating-point numbers. Collections of types include lists, vectors

and streams. Memory accesses are synchronised through the use of instance tokens, which guarantee the

sequential order of accesses.

The basic concept of Mitrion-C is that everything is parallel. Using this concept, a Mitrion virtual

processor is created and the language is compiled to that. For an FPGA, the algorithm is accelerated to the

maximum extent by unrolling loops (effectively creating multiple parallel processors) until the FPGA is

filled. The latest version of their compiler will take the same source code and target an FPGA, GPU or

multithreaded CPU exploiting the parallel capabilities of the target platform.

3.2.2.6 Handel-C

One of the difficulties withmultiple parallel processes is ensuring reliable communication between them.

Simply using shared registers or shared memory only works if the processes are synchronised. One

approach is to use the communicating sequential processes (CSP)model described byHoare (1985). This

model requires all communication channels between processes to be unidirectional, point-to-point and

blocking. That is the processes at both the sending and receiving end of the channel will wait until the

communication successfully takes place before continuing. Using CSP primitives, it is possible to build

more complex communication methods, including buffered communication.

The Occam programming language was the first to implement CSP for communication between

parallel processes, and as a parallel language this was readily adapted to programming FPGAs (Page and

Luk, 1991). Converting the Occam language (and the CSP model) to use a C-like syntax led to Handel-C

(Page, 1996).

The Handel-C language was commercialised by Celoxica through the DK Design Suite (an integrated

compiler and clock accurate simulator) and quickly established a strong following in the academic

community. In 2006, the Handel-C development tools were passed to Agility Design Solutions. In 2009

Agility ceased trading and Mentor Graphics acquired Handel-C and the DK Design Suite.

Languages 67

Handel-C (Mentor, 2010b) extends a subset of C with variable word length integer variables, bit

manipulation operations, hardware architectural components (ports, interfaces, RAMs, ROMs), con-

structs for specifying concurrency through parallel blocks and channel communication between parallel

processes. While pointers are allowed, pointer arithmetic is not supported by the language.

The language also provides powerful recursivemacros for constructing repetitive complex circuits (for

example variable width multiplication and division, or CORDIC calculations). A distinctive feature of

Handel-C is that every assignment takes exactly one clock cycle. The resulting strongly timed syn-

chronous design is therefore implicitly at the register transfer level, although using a higher level

algorithmic syntax. The compiler internally builds a state machine using a token passing scheme to

control the execution and sequencing of commands. The compiler therefore reduces the burden of

designing the control logic, as it is implicit in the language constructs. In other respects, though, it is still

the responsibility of the developer to identify and exploit parallelism and create pipelines where

appropriate. This makes Handel-C an intermediate-level rather than a high-level language. However,

even this is sufficient to give significant design productivity over programming in VHDL.

Listing 3.3 A Handel-C code fragment to implement the filter shown in Figure 3.5

1 #include <stdlib.hch>

2

3 macro expr t ¼ 10;

4 macro expr k ¼ 128; //fixed point number/256

5

6 macro expr absv(si) ¼
7 (unsigned)(((si < 0) ? -si: si) <- (width(si) - 1));

8

9 macro proc filter(data_in, data_out) {

10 macro expr dw ¼ width(data_in);

11 unsigned int (dw) i, q;

12 signal <int (dwþ1)> diff;

13 do par {

14 data_in ? i; //Stream input through data_in

15 diff ¼ (signed)((0@i) - (0@q));

16 if (absv(diff) < t)

17 q ¼ i;

18 else

19 q þ¼ (unsigned)(adjs(diff, dw�2þ1) � k)\\(dwþ1);

20 data_out ! q; //Stream output through data_out

21 } while(1);

22 }

A Handel-C implementation of the circuit in Figure 3.5 is given in Listing 3.3. Lines 3 and 4 define

constants for the threshold level and filter gain. The absolute value block is implemented by the macro

expression on lines 6 and 7. Since Handel-C is strongly typed, it is necessary to cast the result to unsigned.

width(si) is a compile time constant that gives the bit width of si; the expression here is taking the

least significant bits, reducing thewidth by one. The actual filter is represented by themacro procedure on

lines 9–22. The arguments of a macro procedure are passed by reference, so any operations on the

parameterwithin the procedurewill be directly accessing the caller’s arguments. The parameters ofmacro

procedures are untyped, deriving their type from the arguments. This allowsmacro procedures to bemore

easily parameterised, whereas the parameters of standard functions must be explicitly typed. Line 10

illustrates one mechanism for such parameterisation by defining dw to be the width of the argument.

68 Design for Embedded Image Processing on FPGAs

This is used in the following lines to declare the variables i and q, and the signal diff. Note that signals

in Handel-C have a different meaning to those in VHDL. Here a signal corresponds to an unregistered

wire. Lines 13–21 contain an infinite loop. The par specifies that all of the statements within the loop

are executed in parallel. The data is streamed into the filter through the channel read from data_in

on line 14, with the result streamed out through the channel data_out on line 20. Since these are all

executing in parallel, if input data is not available or the downstream process is not ready, then the

corresponding channel operation will block, stalling the process until the input data is available and the

output transferred. In this way, the filter is automatically self-synchronising with the upstream and

downstream processes using the CSP model. Lines 15–19 implement the actual filter. Line 15 takes the

difference between the input and output. To prevent losing the sign of the result, thewidths of the variables

are increased by concatenating (@) a 0 on the front. Since diff is a signal, the result is not registered, so

this does not take any clock cycles. A signal is used here to reuse the result in multiple places (in lines 16

and 19). Line 19 is effectively executing q þ¼ diff � k; however the output of the multiplication in

Handel-C is the same size as the inputs, sodiff needs to be sign extended (adjs is defined instdlib.

hch) to the desiredwidth. Sincek is a constant, it will automatically bemade the right width. The result is

cast to unsigned and the least significant bits dropped (\\) tomake it the right width and type for adding to

q. While the strong typing is good for detecting errors, the need for casting when the variable widths

change can reduce the readability of the code.

The Handel-C source can either be compiled to VHDL, or directly to an EDIF net-list. Vendor tools are

then used to place and route the design for the target FPGA. These can be integratedwithin theDKDesign

Suite as custom build commands, producing the configuration file as the output.

3.2.2.7 Handel-C Derivatives

Oneof the limitations ofHandel-C is that once a programhas been developedwith the strict timingmodel, it

can be very time consuming to rearrange the algorithm. This makes exploration of the design space more

difficult. Haydn-C (Coutinho and Luk, 2003) overcomes this problem by having two distinct formats. One

is a strict timingmodel and structure that closely followsHandel-C, and indeed is compiled to hardware by

usingHandel-C as an intermediate language. The other format is an untimed dataflow graph that represents

the algorithm itself. From this form, the algorithmmay be transformed into a range of different structures,

enabling exploration of pipelining, loop unrolling, resource allocation and scheduling. A single design can

then be used to create a range of implementations guided by a set of annotations in the code. This enables a

very flexible exploration of the design space without sacrificing the strict timing model.

Bach-C (Yamada et al., 1999; Kambe et al., 2001) is very similar to Handel-C, and with similar design

goals. The main difference is that Bach-C does not have timed semantics. This allows for greater

optimisation within each thread. Synchronisation is performed using either synchronous channels (like

Handel-C) or asynchronous channels (effectively shared variables or memory).

3.2.3 Native Compilation Techniques

An alternative approach to those described in the previous section is to use standard software source code,

and require the compiler to automatically extract parallelism from the design and map the design to

hardware. The compilation processmay be guided, either with annotations within the source or constraint

files that control and optimise themapping process (Todman et al., 2005). Common optimisations include

loop unrolling and automatic pipelining based on an analysis of the algorithm dataflow. By hiding

the hardware constraints from the designer, the lower level hardware design is abstracted away, enabling

the developer to focus primarily on the algorithm development. Note that the significant differences

between the way in which software and hardware are implemented may place some limitations on how

the algorithm is coded or restrictions on the language to enable the compiler to identify constructs that

Languages 69

maybe parallelised.However,most of thework inmaking the design suitable for FPGA implementation is

moved from the designer to the compiler. One of the limitations of this approach is that the compiler is

effectively optimising a sequential algorithm, and only the obvious forms of parallelismmay be extracted

and exploited. The underlying algorithm is still sequential. However, for low level image processing, this

approach has been shown to be effective (for example, Streams-C; Gokhale et al., 2000).

3.2.3.1 Transmogrifier C

One of the early efforts at a C to FPGA compiler was Transmogrifier C (Galloway, 1995). It supported a

very limited subset of C (no multiplication, division, pointers, arrays or structures). One extension to

regular C was the use of pragmas to specify the number of bits used by integers. It provided a simple

behavioural method of describing a hardware circuit. The timing semantic was also very simple – there

was one clock cycle for each function call and one for each loop iteration. Transmogrifier C was

more recently reincarnated as FPGA C on Sourceforge.

3.2.3.2 SUIF-Based Compilers

The SUIF (Stanford University Intermediate Format) compiler system (Wilson et al., 1994; Hall et al.,

1996) is a framework designed within Stanford University for collaborative research on parallelising

compilers. The framework has been used as the basis for experimental work on compiling from C

to HDLs.

The NAPA C compiler (Gokhale and Stone, 1998) works on standard C code and targets the NAPA

platform,which consists of aRISCprocessor coupledwith an adaptive logic array. Sections of code can be

marked with pragmas to target execution on either the RISC processor or the reconfigurable logic. The

compiler pipelines loops targeted for hardware to accelerate their execution.

Streams-C (Gokhale et al., 2000) is an extension of NAPA C to efficiently handle pipelined stream

computing. As such, it is able to exploit the parallelism associated with processing streams, with

pipeline optimisations performed automatically by the compiler. Directives are added as comment-

based annotations that declare processes, streams and signals, and to assign resources to these on the

FPGA. A process is a computational block that operates on streamed data. The compiler builds a state

machine to control the flow of data through the process pipeline. A library of functions is provided for

basic stream manipulations (opening, reading, writing and closing). These link successive processes,

including those running on a host serial processor, with inter-process communication based on the CSP

model. The same source can be compiled for sequential execution (using threads for each process) or to

synthesizable VHDL for FPGA implementation.

One fruitful area of parallelisation is loop unrolling and pipelining. SPC (Weinhardt and Luk, 2001b)

takes standardC input and performs loop transformation compiling to a net-list, with thevendor tools used

for place and route. ROCCC (Buyukkurt et al., 2006) similarly takes standard C and compiles to VHDL.

ROCCC is designed to manage and pipeline two-dimensional arrays and the access patterns required for

image processing filters. Smart buffers are used to cache data required in subsequent rows to increase data

reuse and reduce the number of memory accesses.

3.2.3.3 Impulse C

Impulse C (Pellerin and Thibault, 2005) is a commercial offering, from Impulse Accelerated Technolo-

gies, that follows along the lines of Streams-C. Following the CSP model, the application is divided by

the programmer into a set of processeswhich communicatewith one another through streams. This allows

the processors with high computation density to be implemented on an FPGA, with the remainder of the

application implemented on a serial processor (Pellerin et al., 2005). The development tools (called

70 Design for Embedded Image Processing on FPGAs

CoDeveloper) compile modules either to software or to hardware, using a library of streaming

functions for software–hardware and hardware–hardware communication. The compiler automati-

cally extracts parallelism, pipelines the design and builds the controlling state machine for each

hardware process. However, the developer must still structure the code in a way that maximises the use

of hardware resources.

3.2.3.4 Dime-C and DimeTalk

Dime-C (Genest et al., 2007) is a C to VHDL compiler provided by Nallatech. It aims to be ANSI

compliant, but does not allow pointers, structures, and some types of loop or switch statements that can be

expressed in other ways. The code can be compiled using standard software compilers for testing and

debugging the algorithm.When compiled for hardware, pragmas are used to annotate the code to indicate

to the compiler sections that contain significant parallelism. The compiler automatically parallelises and

pipelines the code when possible.

The compiler can be run on its own or as part of DimeTalk IDE. DimeTalk (Sanderson, 2004) enables

the communication between processes both within and between FPGAs to be designed at the conceptual

level and it generates the required synthesisable code. Communication is based on a lightweight network

architecture for connecting the various modules, with data transferred using a custom, low overhead

packet-based protocol.

3.2.3.5 Catapault C

Catapault C (Bollaert, 2008) is a high level synthesis tool provided by Mentor Graphics. It uses

standard, untimed Cþþ code allowing the design to be directly specified at the algorithmic level. It has

no specific concurrency constructs – any concurrency is automatically extracted at the compilation and

optimisation stage. The only restriction on the language is that everything must be determinable at

compile time. This means dynamic memory allocation and recursion cannot be used. The language is

extended with a class library that supports variable bit-width integers and fixed-point real numbers, as

needed for an efficient hardware design. As standard Cþþ code, the algorithm can be tested and

validated within the standard software environment before synthesising to hardware. Of all the

languages reviewed here, Catapault C is the most compliant with C (or Cþþ) in terms of what it

is able to synthesise.

The compilation to hardware is controlled by the user by specifying timing and resource constraints.

These, combined with characterisations of the target technology, are used to optimise the mapping to

hardware through loop unrolling, loop merging, and pipelining. The tools provide several views of the

algorithm and its performance, allowing the user to interactively adjust the constraints to efficiently

explore the design space without having to rewrite the source code. During synthesis, the communication

mechanisms between the different modules are automatically chosen based on the access patterns (stream

FIFO, bank-switched memories, round robin memories and other interleaving constructs). The control

logic required to schedule and sequence all of the modules is also built automatically. Synthesis then

converts theCþþ code toRTL inVHDL,Verilog or SystemC,which can then be used to directly generate

hardware either for FPGA or ASIC implementation.

3.2.3.6 MATLAB� Based

Many image and signal processing algorithms are first developed and tested in MATLAB�. Therefore,

considerable development timewould be saved if theMATLAB� code could be synthesised directly to an

FPGA. The MATCH project aimed to do exactly this (Banerjee et al., 2000).

Languages 71

Firstly, the MATLAB� code is analysed to determine the operations performed and the data

types. This is complicated by the fact that MATLAB� is dynamically typed, with the type changing

depending on the results of any assignments. For many operations there are optimised cores (Banerjee

et al., 2000), otherwise the code is mapped to sequential code on the FPGA. Matrix operations

are expanded out into loops, with complex expressions broken down to simpler expressions. The loops

are then pipelined to accelerate the computation. Since most processing in MATLAB� is on large arrays,

the input and output arrays are assumed to be in external memory. Speed, therefore, is dominated by

memory references (Haldar et al., 2001a; 2001b). The floating-point calculations used byMATLAB� are

converted to fixed-point for computation on the FPGA (Nayak et al., 2001; Banerjee et al., 2003). This

significantly reduces the hardware and, if the bit width can also be reduced, multiple array elements may

be packed into a single memory location, improving the bandwidth. The algorithm is compiled to the

target FPGA via VHDL.

Since MATCH was developed, its technology was transferred to a start-up company, AccelChip. In

2006, Xilinx acquired AccelChip and the technology is now available as AccelDSP (Xilinx, 2009a). The

design flow still follows the principles outlined above. The MATLAB� code has to follow a particular

coding style that assumes streamed input and output data. The floating-point design is converted to fixed-

point and verified for fidelity with the original floating-point model. The fixed-point model is then

converted to RTL and a test bench created for validation. Acceleration optimisations performed by

AccelDSP include partial or full loop unrolling, mapping of variables (arrays) to memory and pipelining.

The final design can also be compiled to a block for use with Xilinx System Generator (described in the

next section).

Another MATLAB�-based tool is Compaan/Laura (Harriss et al., 2002; Stefanov et al., 2004).

This toolset converts a sequential MATLAB� design into a network of independent processes, which

is more dataflow orientated. The revised processing model is easier to map to hardware. The

data flows from one process to another using blocking FIFOs to ensure correct computation order.

Within each process, optimisations such as loop unrolling and skewing are used to improve

the implementation.

3.3 Visual Languages

An alternative to representing an algorithm textually is to use a graphical programming environment

and its associated visual language. A visual programming language is one which uses a visual

representation to augment what is normally represented purely with text. Textual programming

languages are a one-dimensional sequence of commands or statements, which matches the needs of

a serial processing environment with a linear program memory architecture. However, programming

FPGAs efficiently requires parallel and concurrent programming. A visual language offers multidi-

mensionality (Chang et al., 1999), enabling both spatial and temporal semantic relationships to be

expressed more clearly.

At the low level, a schematic diagram is a form of visual language. It enables a network of components

to be created with connections between the components indicated by wires. In a textual language, each

wire becomes a net name,with the circuit represented by a net-list. Connections aremade by listing the net

names associated with each port of the component (for example structural VHDL).

Many of the control structures of complex logic systems are based on finite state machines. These can

readily be represented graphically using state transition diagrams, such as those shown in Figure 3.4.

Therefore, a natural tool for creating and editing finite state machines could be based around the direct

editing of the associated state transition diagrams. One example of such a tool is StateCAD, which is part

of the Xilinx toolset. While such tools are good for creating finite state machines, this only forms part of

the control structure for the complete design.

A range of higher level techniques are reviewed in the following sections.

72 Design for Embedded Image Processing on FPGAs

3.3.1 Behavioural

3.3.1.1 vVHDL

Visual VHDL (vVHDL) (Miller-Karlow and Golin, 1992; Golin et al., 1993) provides a visual

representation of VHDL, with different shaped icons and boxes representing concurrent and sequential

processes. Otherwise, it provides much the same features as VHDL. Advantages of the graphical

representation are that it overcomes the syntax problems associated with VHDL and provides better

insight into the function of a design by distinguishing between sequential and concurrent processes

(Miller-Karlow and Golin, 1992).

3.3.2 Dataflow

At a higher level of abstraction, both parallelism and pipelining are well represented using a dataflow

graph. The parallel nature of FPGAs results in a better fit with dataflow languages, both visual and text

based. Indeed, most image and signal processing algorithms are often represented graphically by block

diagrams with blocks representing operations on the data, and connections between the blocks indicating

the flow of data. Dataflow graphs expose the parallelism of an algorithm, while imposing minimal

constraints on the execution order (Buck and Lee, 1993). This allows an appropriate set of hardware

processors to be defined for the dataflow. All of the compilers of text-based serial languages (described in

the previous section) that automatically extract and exploit the parallelism use some form of dataflow

analysis of the algorithm to identify dependencies and parallelism.

This has led to the obvious approach of directly representing image processing algorithms graphically

using some form of dataflow language. This can be at two levels: building the algorithm from image

processing operations, and at the lower level of dataflow within the individual operations.

3.3.2.1 Khoros Based

Khoros is a software-based image processing environment (Williams andRasure, 1990), ofwhichCantata

is the dataflow-based graphical programming tool. Within Cantata, each image processing operation is

represented by a block, with the blocks wired together according to the dataflow. There have been several

research projects using Khoros diagrams as a front-end for targeting FPGA implementations (Hoisko

et al., 1996; Levine et al., 1999; Ong et al., 2001).

The basic approach is to have a library of HDL primitives for each Khoros function (Levine et al.,

1999). The application can then be compiled by piecing together these primitives based on the dataflow.

Since the latency of each primitive is known, synchronising delays can automatically be inserted in

parallel paths. Adding a new operation requires providing the underlying code in both C/Cþþ for the

software environment and VHDL for the hardware implementation. These must be functionally

equivalent to ensure that the hardware produced will gave the same results as the software algorithm

(Ong et al., 2001). This is achieved by using the same fixed-point C/Cþþ code and compiling it toVHDL

to create the library primitives using the A|RT compiler.

3.3.2.2 Simulink Based

Simulink is a graphical dataflow-based programming environment within MATLAB�. It is widely used

for DSP-based design and is also applicable for stream-based image processing designs. A number of

systems leverage off the environment by providingSimulink block sets for targeting FPGA-based designs.

Examples are System Generator from Xilinx (Hwang et al., 2001), DSP builder from Altera (2010c),

Synplify DSP from Synplicity (Balakrishnan and Eddington, 2007), and Simulink’s own HDL Coder

Languages 73

directly from MathWorks (2010). A brief comparison of some of these tools is performed by

(Zoss et al., 2011)—there can be quite significant differences in both resources used and processing

time between the different tools for the same design. Using the Simulink environment allows application

developers without a detailed knowledge and experience of the hardware to produce efficient imple-

mentations relatively quickly and effectively. The modelling environment offered by Simulink (and

MATLAB�) provides accurate simulation of the design that is considerably faster than that provided by

conventional HDLs.

The design flow involves developing the algorithm within MATLAB� and then representing the

algorithm graphically within Simulink. At this stage, the specific block sets are used for targeting the

design to an FPGA. The design can then be thoroughly tested with bit-level accuracy within the Simulink

environment, before being compiled directly to an FPGA. Many of the blocks are parameterisable,

allowing the data width and other parameters to be tuned for the design. The block sets from Xilinx and

Altera specifically target the advanced DSP features within their respective FPGAs, resulting in an

efficient design and use of resources. For example, Altera provides a block set specifically targeted for

video and image processing (Altera, 2010f).

The library-based approach hidesmany of the low level implementation details within the block sets. If

all of the blocks required by an application are in the library, then this can be an efficient design approach.

However, if a high level block is not available, it is necessary to use quite low level blocks to implement the

design, which significantly increases the design complexity and reduces the transparency.

3.3.2.3 Others

LabVIEW is another dataflow-based programming environment. While targeted more for control

applications, it can also be used for image processing. LabVIEW provides a set of blocks which have

both a software and hardware implementation (National Instruments, 2005). The software implementa-

tion is used within the LabVIEWenvironment for simulating the design, while the hardware implemen-

tation is used when targeting an FPGA. When producing an FPGA implementation, the tools effectively

use a library-based approach. Again, this has the limitation that only functions availablewithin the library

may be used for the design.

Another visual language is the PixelStreams graphical interface to Handel-C (Mentor, 2010c). It uses a

libraryapproach toprovidea rangeof imageprocessingoperations ina streambasedgraphical environment.

Each operation is written in Handel-C, so is readily extensible. The operations are connected using a

consistent stream based interfacewhich consists of a number of control flags and a range of data variables:

pixel values, coordinates, and synchronisationpulses.The common interfacemakes the operationsplug and

play, with the resulting system compiled and implemented by the underlying Handel-C compiler.

3.3.3 Hybrid

While dataflow languages provide a good match for a parallel hardware implementation, unless the

control can be embedded with the data, the control tends to be hidden. Directly expressing complex

control within a dataflow language can be clumsy. Therefore, a hybrid approach can give improvement,

where a dataflow representation is used for streaming data and a finite state machine can be used for

designing the more complex control.

3.3.3.1 VERTIPH

TheVisual Environment for Real Time Image Processing inHardware (VERTIPH) (Johnston et al., 2004;

2006a; Johnston, 2009) is the approach that Massey University is investigating to address this issue.

The representation of a design is divided into three main views. At the top, the architecture view

74 Design for Embedded Image Processing on FPGAs

provides a high level dataflow representation of the image processing algorithm in amanner similar to that

used by Khoros or PixelStreams. The computational view is a timed dataflow representation of the

computations required to implement each operation; this is at a similar level to that of the inner blocks

within a Simulink representation. Finally, the scheduling view uses augmented state transition diagrams

for providing the complex control, for scheduling each of the computational blocks and for managing

shared resources.

The architecture view comprises a hierarchical block and wire representation of the algorithm

(Johnston, 2009). The top level gives an overall view of the complete algorithm. Since the top view

must be constructed first, VERTIPH enforces a top-down design. If necessary, each architectural block

can be decomposed into a networked collection of either other architectural blocks or computational

blocks as illustrated in Figure 3.6. The hierarchical nature of architectural blocks enables resources to be

encapsulated with their controlling processes (for example a bank-switched frame buffer). Although such

encapsulation is not enforced by the language, it follows good design principles for hiding complexity

fromwhere it is not needed, and helps to improve the reusability and maintainability of components. The

wires between blocks can carry both data and control signals. The connections also use a hierarchical data

structure (similar to structs in C) to hide unnecessary details from the diagram. An example architectural

view is shown in Figure 3.7. Note that the control flow (shown in grey) flows in a different direction to the

dataflow in many cases. Image processing specialists who never develop their own operations can use the

architectural view to assemble predefined library modules into their design.

The computational view specifies the arithmetic and logic operations required to implement each block

within the design. To encourage functional decomposition, it is also hierarchical, allowing computational

blocks to be used in place of operation blocks. Like the architectural view, the computational view follows

a dataflow style, but also introduces control constructs (loops and conditional executions) using a

graphical representation modified from Nassi–Shneiderman diagrams (Nassi and Shneiderman, 1973).

The control structures enclose the operations that they control, making the structure more evident.

Root architecture view

Block containing
architecture blocks

Block containing
computational blocks

Computational
view for a

computational
block

Figure 3.6 Hierarchical structure of aVERTIPHdesign. (Johnston, 2009; Reproduced by permission of

C. Johnston.)

Languages 75

The syntax also introduces a strict timing semantic, with each operation assigned to a particular clock

cycle, with the horizontal axis used to indicate time whereas the vertical axis indicates concurrency. The

visual structuremore clearly conveys the intention of the code,with a clear distinction between sequential,

parallel and pipelined operations. The VERTIPH computational view for Figure 3.5 is illustrated

in Figure 3.8.

VERTIPH is unique in its representation of pipelines. All other languages consider pipelines as a

special case of concurrent operations, reflecting the fact that each stage of the pipeline operates

concurrently. However, from a dataflow perspective a pipeline is really a sequential construct. The fact

that other data is also being processed in the other stages is immaterial to the dataflow (Johnston et al.,

2010). Separating the sequential semantic aspects from the concurrent syntactic aspects significantly

improves the transparency of the design. The representation used clearly shows the timing, throughput and

latency of the design. Exploration of the design at this level is facilitated by giving the designer to direct

control over the pipeline phasing. Having an explicit representation of the pipeline can also aid with

pipeline control, enabling priming, flushing and stalling circuitry to be instantiated automatically inmany

cases (Johnston et al., 2010).

The third view within VERTIPH is the scheduling view. The primary purpose of this view is to control

when each of the computational blocks is executed, and to manage resource contentions. For simple

systems, the resource and scheduling view is not necessary; all of the controls may be specified by using

conditional structures directly within the individual computational views. However, as the system grows in

complexity, this can become unwieldy, especially as one change may require consequent changes in other

computational blocks. Centralising the high level control in a single view makes the process

more manageable. The scheduling view has two parts (Johnston et al., 2008). The first part consists of

one ormore state transitiondiagrams. Thesemaybe controlledby either external events or internal counters.

Camera
interface

Frame
buffer

manager

Bilinear
interpolation

Video
driver

Barrel
distortion
correction

Keyboard
interface

pixels pixels pixels

address address

undistorted
address distorted

address

distortion
parameter

Figure 3.7 VERTIPH architectural view for lens distortion correction. (Johnston et al., 2004;

Reproduced by permission of C. Johnston.)

q=q+k*(d-q)

d

data_in data_out

data_out

data_out

data_in

data_in

q

q=d

d q

if (abs(data_in-q)<t)

else

data_in data_out

Figure 3.8 VERTIPH computational view for the filter shown in Figure 3.5.

76 Design for Embedded Image Processing on FPGAs

In each state, one or more processes (computational blocks) may be scheduled to execute. The second

part of the view indicates which processes are associated with each state. When multiple processes

are associated with a state, these may be scheduled sequentially, concurrently, or as a pipeline. When

multiple processes share a common resource, potential conflicts may arise. Many resource conflicts

are simplified by encapsulating the resource and its conflict resolution processes within a single

architectural block.

At the time of writing, the VERTIPH language does not include a simulator or compiler, but the

language is described here to give a flavour of the approaches that can be taken for implementing image

processing systems.

3.4 Summary

Four quite different approaches to programming an FPGA have been presented in this chapter. Hardware

description languages (VHDL and Verilog) are good at describing hardware, and are inherently

concurrent. Their main limitation is that they require programming at the structural level or register

transfer level, which is quite different from the algorithmic approach to representing image processing

algorithms. Consequently, the algorithm is usually developed within a software environment, leaving the

laborious and error-prone task of translating it from the software into the HDL.

Conventional software languages, such as C and MATLAB�, are much better for representing

algorithms, so if the translation step from software to HDL can be avoided, significant gains in

productivity can be achieved. Two approaches are taken for using these languages to programme FPGAs.

One is to extend the language to enable it to describe hardware, by adding concurrent constructs. The

result is a software-based hardware description language – it retains the algorithmic structure, but is able

to describe concurrent hardware. The conversion from software to hardware is then one of refinement,

rather than rewriting the algorithm from scratch. The other approach is to leave the language unchanged,

but to enhance the compiler to automatically identify and extract any parallelism from within the

algorithm. The limitation of this approach is than many algorithms are represented serially, and are

optimised for implementation on serial processors. While there may be parallelism that can be exploited,

unless the underlying algorithm is essentially parallel it is not going to give themost efficient solution. The

danger here is that the wrong algorithm is being parallelised and parallelising serial algorithms is

not trivial.

The fourth approach is to use some form of visual language to represent the operation of the

hardware. For many image processing algorithms, a dataflow representation exposes the natural

parallelism inherent within the algorithm. One limitation of visual languages is that the representation

is significantly more expansive (requires more screen real-estate), making it harder to maintain an

overall view of the whole algorithm. In exposing the flow of data through the system, the control flow

can also become obscured.

None of the current offerings is perfect (Martin and Smith, 2009). Which is best? The answer depends

on the goals. A solution hand crafted in an HDL using a structural coding style will generally give the

smallest and fastest design, although the development process is very time consuming. Using a C-based

language gives higher productivity, but this often comes at the expense of a larger and slower design. The

compiler orientated approaches will usually enable a faster exploration of different architectures, as these

can often be set up as compiler constraints. Library-based approaches (whether using a textual or visual

language) can be very efficient if all of the required functions are available within the library. The design

then becomes one of piecing together library components, which usually have implementations that have

been optimised for a particular family of FPGA.

In the Massey University laboratory, a combination of VHDL and Handel-C is used. VHDL is used

primarily for developing interfaces to external components where precise control is required. All of the

algorithmic design is inHandel-C, which is an intermediate level C-based hardware description language.

Languages 77

This gives significant productivity gains over VHDL through its higher level algorithmic representation,

but also enables control at the lower levels where necessary.

It is important to keep in mind that FPGA-based development is hardware design. Design for hardware

and for software requires different skills. Even if a C-based language is used to represent the design, it is

important to keep in mind the architecture that is being built or is implied by the algorithm. Not all

software algorithms map well to hardware. For example, recursion is not available unless hardware is

explicitly built for saving the context and recalling it again later (Skliarova and Sklyarov, 2009). Under

real-time constraints, there is limited access tomemory. These andmany other aspects of hardware design

usually require that the algorithm be transformed rather than simply mapped to hardware. Again, this

requires a hardware orientated mindset.

Image processing algorithm development, however, is usually considered software design. Therefore,

the development of efficient FPGA-based image processing systems requires a mix of both hardware and

software engineering skills. The differences between these is explored in more detail in the next chapter.

78 Design for Embedded Image Processing on FPGAs

4

Design Process

The process of developing an embedded image processing application involves four steps or stages

(Gribbon et al., 2007). The relationship between these is illustrated in Figure 4.1. The problem

specification clearly defines the problem in such a way that the success of the proposed solution can

be measured. The algorithm development step determines the sequence of image processing operations

required to transform the expected input image or images into the desired result. Architecture selection

involves determining the computational structure of the processors that are required to execute the

algorithm at both the application and operation levels. Finally, system implementation is the process

of mapping the algorithm onto the selected architecture, including construction and testing of the

final system.

It has been observed that the development of complex algorithms onFPGAs is sensitive to the quality of

the implementation (Herbordt et al., 2007). To gain a significant speed improvement over a software

implementation, it is necessary that a significant fraction of the algorithm can be parallelised. Often the

speedup obtained from implementing an application on an FPGA is disappointing.One of themain factors

is that it is not merely sufficient to port an algorithm from software onto an FPGA implementation. To

obtain an effective and efficient solution, it is necessary for the computation and the computational

architecture to be well matched. While algorithm development is usually considered part of the software

engineering realm, the design of the processing architecture is firmly in the domain of hardware

engineering. Consequently, FPGA-based image processing requires a mix of both skill sets. To fully

exploit the resources available on an FPGA, the system implementation stage often requires changes to

both the algorithm and the architecture. As a result, the development process is usually iterative, rather

than performed as discrete distinct steps as implied by Figure 4.1.

In the description of each of the stages below, the important tasks within each step are identified and

explained. In particular, the differences between designing for implementation on an FPGA and on a

standard software-based system are highlighted.

4.1 Problem Specification

Deriving a detailed specification of the problem or application is arguably the most important step,

regardless of whether the resultant system is software or hardware based. Without an adequate

specification of the problem, it is impossible to measure how well the problem has been solved. It is

impossible to know when a project has been completed when ‘completed’ has not been defined!

Design for Embedded Image Processing on FPGAs, First Edition. Donald G. Bailey.

� 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd.

Within image processing, it is common to have a relatively vague description of the problem.

For example, a produce inspection problem may be described as inspecting the produce in order to

remove blemished and damaged produce. While this may be the aim, such a description is of limited

value from an engineering design perspective. In an engineering context, determining the problem

specification is usually called requirements analysis. To be useful, the problem specification needs to be

specific, complete, achievable and measurable (DAU, 2001). These will be defined more fully in the

following paragraphs.

A problem specification should clearly describe the problem rather than the solution. It should cover

what the system needs to do and why it needs to do it, but should not cover how the system should be

implemented; that is the result of thewhole design process. For the specification to be specific, it will need

to address at least three areas (DAU, 2001). The first is the system functionality –what the system needs to

be able to do. In an image processing application, it needs to specify the desired result of image processing.

Secondly, the performance of the systemmust be addressed – howwell must it perform the functions. For

real-time image processing, important aspects of this are themaximum allowable latency and the number

of images or frames that must be processed every second. If the problem involves classification, then for

non-trivial problems it will be inevitable that the system will make misclassifications. If the decision is

binary, the allowable failure rate should be specified in terms of both false acceptance and false rejection

rates. The third area of consideration is the environment in which the system will operate. Applied image

processing consists of more than just the image processing algorithm; it is a systems engineering problem

that requires consideration and specification of the complete system (Bailey, 1988). Other important

aspects to consider include (Batchelor andWhelan, 1994): lighting, optics and interfacingwith supporting

hardware and machinery. The relationships between the image processing system and the rest of the

system need to be carefully elucidated and defined.

To illustrate some of these points, consider the kiwi fruit grading application introduced in Section 1.4.

The system had to detect both blemished and damaged fruit based on their visible surface characteristics.

The output was a binary decision: whether the fruit was acceptable or not. The minimum processing rate,

to work in with the grading lines at the time, was four kiwifruit per second, although the latency could be

several seconds if necessary. The initial pilot investigated prescreening the fruit (Bailey, 1985), rather than

performing a full grading. To enable the manual grading line to operate at close to full capacity, the

proportion of reject fruit at the output needed to be less than 3% of the total. Profitability required

minimising the number of false rejects, so when in doubt the system needed to err on the side of retaining

fruit with the false acceptances removed by the manual grading stage. It was also desirable to integrate

the system at the front of the existing grading line rather than as a separate stand-alone grading

system. The system therefore required a mechanism for removing rejected fruit from the grading line.

Architecture

Selection

System

Implementation

Problem

Specification

Algorithm

Development

Figure 4.1 The relationship between the four main steps of the design process.

80 Design for Embedded Image Processing on FPGAs

Note that almost as much of this specification relates to the working environment as to the image

processing requirements.

The problem specification must be complete. It should consider not only the normal operation, but

should also consider how the system should behave in exceptional circumstances. If the system is

interactive, then the interface between the user and the system needs to be clearly defined, at least in terms

of functionality. The specification should also consider not only the operation of the system, but also

address the desired reliability and the requiredmaintenance over the expected life of the system.Again, all

aspects of the system should be addressed, not just the image processing components.

The system as defined by the problem specification must be achievable. In a research context, it is

essential that the research questions can be answered by the research. For a development project, the final

system must be technically achievable at an affordable cost.

Finally, the problem specification must be measurable. This enables the resultant system to be

evaluated objectively to verify that it satisfies the specification. Consequently, the requirements

should be quantitative, and should avoid vague words such as excessive, sufficient, resistant and so on

(DAU, 2001). It is important to determine the constraints on the system. For embedded real-time systems,

this includes the frame rate, system latency, size, weight, power and cost constraints. The resulting set of

requirements must be mutually consistent. A distinction should be made between hard constraints (those

that are essential for successful operation or completion of the project) and soft constraints (those that are

considered desirable, butmaybe relaxed if necessary in the final system). Inevitably, therewill be conflicts

between the different constraints, particularly with real-time processing. A common trade-off occurs

between speed and accuracy (Kehtarnavaz and Gamadia, 2006). These conflicts must be resolved before

the development begins.

Successful specification of the problem requires comprehensive knowledge of the problem or task to

which image processing is being applied. This knowledge is important, since it increases the

likelihood that the application level algorithm will be robust. It is used to select the representative

set of sample images that will be used to develop and test the imaging algorithm. During the algorithm

development process, it also guides the selection of the image features that are measured. Without

such problem knowledge, it is easy to make invalid assumptions about the nature of the task. There is

always a danger that a resultant algorithm will work well for the specific cases that were used to

develop it, but not be sufficiently general or robust to be of practical use. Often the system developer

has limited knowledge of the problem. In such cases, it is essential to have regular feedback and

verification from the client or other problem domain expert, particularly during the algorithm

development phase.

4.2 Algorithm Development

The task of image processing algorithm development is to find a sequence of image processing operations

that transform the input image into the desired result. Algorithmdevelopment is a formof problem solving

activity, and therefore usually follows heuristic development principles (Ngan, 1992). Like all problem

solving tasks, there is not a unique solution. The usual way of progressing is to find an initial solution and

then refine it until it meets the functionality required by the problem specification.

Before the algorithm can be developed, it is necessary to capture a set of sample images. These should

be representative of the imaging task that is to be performed and should be captured under conditions that

match as closely as possible the conditions under which the system is expected to operate.

In scenarios where it is possible to control the lighting (machine vision for example) then choosing

appropriate lighting is essential to simplify the task (Uber, 1986; Batchelor, 1994). In some applications,

much of the problem can be solved using structured lighting techniques (such as projecting a grid onto the

scene;Will and Pennington, 1972). Conversely, inadequate lighting canmake segmentationmore difficult

by reducing contrast, illuminating the background or object unevenly, saturating part of the scene, or

Design Process 81

introducing shadows or specular reflections that may be mistaken for other objects (Bailey, 1988). If the

lighting is likely to be variable (for example mobile robotics or video surveillance using natural lighting)

then it is essential that the set of sample images include images captured under the full range of lighting

conditions that the system is expected to work under.

4.2.1 Algorithm Development Process

Once the sample images have been captured, one or two of these are used to develop the initial sequence

of image processing operations. Developing an image processing algorithm is not as straightforward as it

sounds. There are many imaging tasks that humans can performwith ease, that are difficult for computer-

based image processing. One classic example is face recognition, something humans can do naturally,

without thinking, whereas it is a difficult computer vision problem. This dichotomy is sometimes called

the ‘trap of the two-legged existence theorem’ (Hunt, 1983). Because humans can perform the task, it is

known that a solution to the problem exists. However, finding that solution (or indeed any solution) in the

context of computer vision can be very difficult. While significant advances have been made in

understanding how the human brain and visual system works, this does not necessarily lead to

algorithmic solutions any more than understanding how a computer works can lead to programming

it for a specific task.

One of the difficulties is that there is still little underlying theory for developing image processing

algorithms.While attempts have beenmade to formulate the processwithin amore theoretical framework,

for example in terms of mathematical morphology (Vogt, 1986) or statistics (Therrien et al., 1986), these

are incomplete. Even within such frameworks, algorithm development remains largely a heuristic (trial

and error) process (Bailey andHodgson, 1988).An operation is chosen from those available and applied to

the image. If it performs satisfactorily, it is kept and an operation is found for the next step. However, if the

operation does not achieve the desired result, another is tried in its place. Algorithm development must

rely heavily on using the human visual system to evaluate the results of applying each operation. The

experience of the developer plays a significant role in this process. The brute force search for a solution to

the algorithm development problem can be significantly streamlined by the application of appropriate

heuristics (Ngan, 1992).

This process requires an interactive image processing system that supports such experimentation

(Brumfitt, 1984). The algorithm development environment needs to have available a wide range of

different operations, because it is generally not known in advance which operations will be required in

any particular application. It also needs to support the development and integration of new operations

should a particular operation not be supplied with the development environment. It requires an

appropriate image display for viewing and evaluating the effects of an operation on an image. The

processing time of each operation must be sufficiently short so as not to distract the developer from their

task. It has been suggested that within the development environment operations should take no longer

than about fifteen seconds (Cady et al., 1981). It is also desirable to have some form of scripting

capability, to avoid the need for re-entering complex sequences of commands when testing the algorithm

on different images.

The sequence of operations within an algorithm generally follows that outlined in Section 1.3.

However, the particular operations required depend strongly on the image processing task. The order

in which the operations are added to the algorithm may not necessarily correspond to the order that they

appear in the final algorithm. For example in the kiwifruit grading application described in Section 1.4,

the key step that forms the basis of the algorithm is using the convex hull to create the dynamic model.

After this was tested, it was necessary to introduce the background subtraction and noise filtering as

preprocessing steps to make the modelling work reliably. Later, while testing the algorithm on a range of

images, the contrast normalisation step was introduced into the algorithm to compensate for the fact that

some fruit were naturally darker or lighter than others were.

82 Design for Embedded Image Processing on FPGAs

4.2.2 Algorithm Structure

The remainder of this section briefly reviews the operations that may be used at each stage within the

algorithm, with particular emphasis on how the operations work together to give a robust algorithm. There

aremany good references that review imageprocessingoperations and their functionality (Pratt, 1978; Jain,

1989; Castleman, 1996; Russ, 2002; Gonzalez andWoods, 2004; 2008; Solomon and Breckon, 2011). The

FPGA implementation ofmany of these operations is considered inmore detail in Chapters 6–11. Here, the

focus is on where the operations fit within the application level algorithm.

Appropriate preprocessing is essential to make the algorithm robust to the variations encountered

within the range of images. The primary goal of preprocessing is to enhance the information or features of

interest in the scenewhile suppressing irrelevant information. However, the necessity of an operation in a

particular application depends strongly on the detailed properties and characteristics of the operations that

follow in the algorithm.

Physical or environmental constraints maymean that the input images are not ideal. To compensate for

deficiencies in the image capture process, preprocessing can be used: to remove background or dark

current noise; to correct for nonlinearity in the image transfer function; to correct for distortion caused by

optics or camera angle; and to compensate for deficiencies in illumination. Image filteringmay be used to

smooth noise or to enhance and detect edges, lines and other image features. Examples of some of these

preprocessing operations are illustrated in Figure 4.2.

One way of suppressing irrelevant information is to normalise the image content. Intensity normal-

isation, such as contrast expansion or histogram equalisation can be used to compensate for variations in

lighting, reflectivity or contrast. Position and size normalisationmay be used to centre, orientate and scale

an image or object to match a template or model. This may require an initial segmentation to first locate

the object.

Segmentation is the processes of splitting the image into itsmeaningful components. This canvary from

separating objects from the background to separating an image into its constituent parts. Segmentation can

be based on intensity, colour, texture or any other local property of the pixel values. There are two broad

approaches to segmentation, as shown in Table 4.1. Edge-based methods focus on detecting the

boundaries between regions, with the regions defined implicitly by the enclosing boundaries. They

usually use edge detection or gradient filters to detect edges and then link the significant edges to form the

boundaries. Region-based methods work the other way around. They effectively classify pixels as

belonging to one class of objects or another based on some local property, with the edges determined

implicitly by changes in property at the region boundary. They are characterised by filtering (to enhance or

detect the property used for segmentation; Randen and Husoy, 1999) followed by thresholding or

statistical classificationmethods to assign each pixel to a region. Both edge and region basedmethods can

be performed either globally or incrementally (Bailey, 1991). Global methods perform the segmentation

by processing every pixel in the image. Incremental methods only operate locally on the part of the image

that is being segmented. They are usually initialised with a seed pixel and work by extending the

associated edge or region by adding neighbouring pixels until a termination condition is met. Segmenta-

tion may also involve using techniques for separating touching objects such as concavity analysis,

watershed segmentation and Hough transform.

The next stage within the algorithm is to extract any required information from the image. In image

analysis applications, the measurements are the desired output from the image processing procedure. The

measurements may be tangible (physical size, intensity) or abstract (for example, the fractal dimension to

quantify roughness (Brown, 1987) or the average response to a particular filter to characterise texture

(Randen and Husoy, 1999)). Most tangible measurements require the imaging system to be calibrated to

determine the relationship between pixel measurements and real world measurements.

In other applications, a set of image or object feature measurements is used to characterise or classify

the image or object. Boundary features are properties of the edges of the object (such as contrast) while

region features are properties of the pixels within the region (colour, texture, shading). Shape features

Design Process 83

consider thewhole object (area, height, width, perimeter, enclosing rectangle, number of corners, convex

hull area and perimeter, moments, best-fit ellipse, Fourier descriptors etc.). Virtually anything that can be

measured, or can be derived from multiple measurements, can be used as a feature. The set of measured

features makes up a multidimensional feature vector, with each feature corresponding to a dimension.

Figure 4.2 Example preprocessing operations.

Table 4.1 Image segmentation methods

Edge-Based Segmentation Region-Based Segmentation

Global processing Edge detection and linking Thresholding

Incremental processing Boundary tracking Region growing

84 Design for Embedded Image Processing on FPGAs

Classification is the process of recognising or assigning meaning to an object based on the measured

feature vector. Each point in the feature space represents a particular combination of feature values.When

an appropriate set of features is chosen, the feature vectors for objects within a class should be similar and

fall in the same region of feature space. The classification process therefore involves clustering or

segmentation within the feature space. With such a large number of possible features to choose, the

feature space potentially has a high dimensionality. However, there is often a strong correlation between

many of the features. Choosing the best features to use can be a bit of an art. The goal in selecting the

feature set is to choose only as many features as are necessary to distinguish the objects as unambiguously

as possible. Obviously, a starting point is to look at the features used to distinguish the objects of interest.

An analysis of the covariance can help to identify significant correlations between the features. Where

there are strong correlations, consider replacing one or more of the features by a derived feature. For

example, the length and width of an object are often correlated, especially as the scale changes. In this

case more information can often be obtained from the aspect ratio (length divided by width) than either

the length or width. Unless the size or some other feature is used directly to distinguish between classes, it

is often better to use dimensionless derived features such as aspect ratio, compactness and so on. Principal

components analysis and related techniques can help to identify the features that account for most of the

variance in the population.

Given a set of feature vectors (for example those derived from the set of sample images) there is a wide

range of techniques used to perform the classification: decision trees, feature template-based classifica-

tion, Bayesian classification, neural networks, and support vector machines, amongst many others. In

most applications, each object within the set of sample images has an associated desired classification.

These associations form the training data for the classification. Training is the process of determining the

classification parameters that minimise the classification errors. This may be as simple as determining the

average feature vector for the objects belonging to each class for feature template classification, or as

complex as determining the optimum set of weights for a neural network.

Some applications have no training data but a large number of samples. Unsupervised classification is

the process of determining the classes purely froman analysis of the resultant feature vectors. It derives the

classification by looking for groups or clusters of samples within the data provided. One example of an

unsupervised classifier is K-means clustering (Leeser et al., 2000).

Finally, the data that is extracted may require further processing depending on the application. For

example, a Kalman filter may be used for object tracking (Kalman, 1960), or in mobile robotics the data

may be used to update a map or to plan a route through the scene. In many computer vision applications,

the data derived from the image is used to update the parameters of an underlying model representing

the scene.

Once the initial algorithm has been developed, often on only a small set of images, the next step is to

refine the algorithmusing awider range of images. The algorithm is tested on the remaining imageswithin

the representative sample to ensure that it is able to handle all of the expected conditions in the correct

manner. Algorithm refinement is most likely to affect the preprocessing operations to make the complete

algorithm more robust. Particular care should be taken to check the algorithm over the full range of

lighting conditions that it is expected to operate under.

Very few algorithms are perfect. There are two key points where the algorithm ismost likely to fail. The

first is segmentation failure, where the object is not correctly segmented from the background. Often a

partial segmentation is worse than a complete failure, because the features obtained will generally not

reflect those of the complete object. With any segmentation failure, it is important to re-evaluate any

assumptions that are made about the task or scene to check that they are not the cause of the failure, and

correct these if necessary. If the problem is caused by poor contrast or noise, this may require further

preprocessing to correct, or even redesign of the image capture system to obtain better starting images. If

possible, the algorithm should detect whether or not the segmentation was successful, or at least act

appropriately when it encounters errors. Remember the ‘garbage in, garbage out’ principle – if the image

quality is very low, the algorithm is not likely to work reliably.

Design Process 85

The second point of failure is classification failure, which can have several causes. The first, and

probablymost common, iswhen the featurevector distributions for two ormore classes are not completely

separated. In the region of overlap in feature space, it is impossible to distinguish to which class an

unknown feature vector belongs. One solution is to find an additional feature (or combination of features)

that is able to better discriminate between the overlapping classes. Misclassification can also result from

under-training, where insufficient samples are used to represent each of the classes adequately. As a result,

the region of feature space associated with one or more classes in inaccurately represented. A particular

danger occurs if the samples in the training set are not representative and the set of feature vectors obtained

is biased in some way. The opposite of under-training is over-training. This can be a particular problem

with neural network-based classifiers. An over-trained classifier gives excellent results on the set of

images used for training, but gives very poor results on previously unseen images. The classifier is able to

recognise the training examples but does not generalise well to other examples of the same class. A fourth

cause of classification failure results fromusing an inappropriate classifier, which does not have the power

to make the required distinctions. An example is a neural network with insufficient nodes in the hidden

layer, or using linear discriminant analysis when the classes cannot be separated using hyperplanes.

Finally, faulty or inaccurate segmentation may result in feature vectors that are outliers of the correct

distribution. Such outliers can have an undue influence over the training of some classifiers (for example,

support vector machines) and should be eliminated before training.

4.2.3 FPGA Development Issues

The image processing algorithm cannot be developed directly on the FPGA. The main reason is that the

development cycle times are far too long to allow interactive design. Assuming that an implementation of

the desired operation is available in a hardware description language, the compilation and place and route

times required to map it onto an FPGA are prohibitive.

Therefore, the algorithm first needs to be developed in a software environment. For this, any image

processing algorithm development environment that satisfies the requirements described in the previous

section is suitable. Suchan environmentwill usually bedistinct from theFPGAdevelopment environment.

One of the advantages of separating the algorithm development from the FPGA implementation is that

the application level algorithm can be thoroughly tested before the complex task ofmapping the algorithm

onto the target hardware. Such testing is often much easier to perform within the software-based image

processing environment, which has been designed to facilitate this purpose. Testing the hardware

implementation then becomes a matter of verifying that each of the image processing operations has

been implemented correctly. If the operations behave correctly, then the whole image processing

algorithm will also function in the same way as the software version.

The algorithm development process does not stand alone. The implementation process, as described

shortly, is often iterative as the algorithm is modified to make all of the operations architecturally

compatible. Whenever any changes are made to the image processing algorithm, it is necessary to retest

the algorithm to ensure that it still performs satisfactorily.

Some algorithm testingmust be deferred to the final implementation. Evaluating the effectiveness of an

image processing algorithm on a continuous, noisy, real-time video stream is difficult in any environment.

The output from the algorithm development step is the sequence of image processing operations

required to transform the input image or images into the desired form. It has been tested (within the

software-based image processing environment) and shown to meet the relevant accuracy and robustness

specifications for the application.

4.3 Architecture Selection

Once an initial algorithm has been developed, it is necessary to define the implementation architecture. It

is important to obtain a good match between the architecture and both the application level and operation

86 Design for Embedded Image Processing on FPGAs

level algorithms. A poormatchmakes inefficient use of the available resources on the FPGA and can limit

the extent towhich the algorithmmay be accelerated. Consequently, the systemmay notmeet the targeted

speed requirements or the design may require a larger FPGA than is really needed.

The architecture can be considered at two distinct levels. The system level architecture is concerned

primarily with the relationship and connections between the components of the system. Three aspects of

the system architecture are of primary importance: the relationship between the FPGA and any other

processing elements (whether they be a standard computer, orDSP); the nature of anyperipherals and how

they are connected; and the nature and structure of externalmemorywithin the system. The computational

architecture is concerned primarilywith how the computation of the algorithm is performed. This includes

the forms of parallelism that are being exploited and the split between using hardware and software for

implementing the algorithm.

On a software-based image processing system, the computational architecture is fixed and the system

architecture is generally predefined. For an FPGA based system, however, nothing is provided and all

aspects of the architecture must be developed. Once exception to this is perhaps the use of development

boards for prototyping, where much of the system level architecture is fixed by the board vendor.

4.3.1 System Level Architecture

Perhaps the biggest factor of the system architecture is whether the system has a conventional serial

computer as a host processor or whether the FPGA stands alone. Compton and Hauck (Compton and

Hauck, 2002) identified four distinct ways in which programmable logic could be coupled with a host

computer system within this spectrum, as illustrated in Figure 4.3. Todman et al. (2005) added a fifth

coupling architecture: that of a CPU embedded within the FPGA (either as an embedded hard-wired core

or as a soft core built from the FPGA fabric).

In the most closely coupled arrangement, the programmable logic provides reconfigurable functions

units integrated within the host CPU. This requires that the programmable logic be built inside the

processor and allows instructions to be customised according to the application that is being executed

(Hauck et al., 2004). The purpose is to accelerate key instructions within the host processor, while

retaining the simplicity of the standard software processing model. Data is usually passed between the

reconfigurable logic and CPU through shared registers (Compton and Hauck, 2002).

With modern FPGAs, this approach may be readily taken by building the processor from the logic

within the FPGA (the fifth architecture identified by Todman et al., 2005). Such a processor may be

augmentedwithwhatever custom instructions the developer requires. However, one limitation of building

a custom processor is that the developer also needs to build all of the associated tools (optimising

Integrated Coprocessor Multiprocessor Standalone

e
c
af
r
et

ni
O/
I

CPU

FPGA

System buse
h
c
a
c

at
a
D DMA

Mem FPGA
Mem

FPGA

Figure 4.3 Coupling between a host processor and an FPGA. (K. Compton and S. Hauck. ‘‘Reconfigur-

able computing: A survey of systems and software,’’ACMComputing Surveys, Vol. 34: 171–210,� 2002

Association for Computing Machinery, Inc. Reprinted by permission.)

Design Process 87

compilers, etc.). This may be overcome by using vendor provided soft-core processors, such as the NIOS

II with Altera FPGAs, or MicroBlaze with Xilinx FPGAs. The NIOS allows the provided processor to be

augmentedwith custom instructions. One limitation of custom instructions is the restriction in the amount

of data that may be passed to or from the function unit with each instruction, and the limited time that is

available to complete the processing. It is usually necessary to stall the main processor if the custom

instruction takes a long time to execute.

In the next more loosely coupled configuration, an FPGA can be used as a coprocessor (Miyamori and

Olukotun, 1998), to accelerate particular types of operations in much the same way that a floating-

point coprocessor accelerates floating-point operations within a standard CPU. In this configuration, the

FPGA-based processing unit is usually larger than an ALU or similar functional unit within the host. The

coprocessor operates on its data relatively independently of the main processor. The main processor

provides the data to be processed (either directly or indirectly) and then triggers the coprocessor to begin

executing. The results are then returned after completion (Compton and Hauck, 2002). The operations

performed can run for many clock cycles without intervention from the host processor. This allows the

host to continuewith other tasks,whilewaiting for the coprocessor to complete.Note that the FPGA-based

coprocessor has access to the data from the host’s cache.

Using dedicated hardware as a coprocessor is most commonly used when the main application is

implemented within software, but time critical or computationally dense sections of an algorithm are

accelerated through direct hardware implementation. There may also be multiple hardware processors,

each developed to accelerate a critical part of the algorithm.

In the next loosely coupled arrangement, the FPGA system effectively behaves as an additional

processor in a multiprocessor system (Compton and Hauck, 2002). This requires the FPGA system to

process large sections of an application independently of the host to be the most effective. The FPGA

system sits on the system bus, with DMA used to transfer data from the host system memory into local

memory. Depending on the processing performed, the results can either be transferred back to the host

through DMA, or via registers within the FPGA that are mapped into the address space of the host.

The host system configures the FPGA, indicates where the data to be processed is located, and triggers

the FPGA system to begin its execution. When processing is complete, this is signalled back to the

host processor.

For image processing, the performance is strongly influenced by the I/O bandwidth, the amount of

local memory available and its arrangement (Benitez, 2002). The independent processor arrangement

also maps well to the image processing pyramid introduced in Figure 1.7, with the lower level

operations implemented directly in hardware, and with software used to implement the higher level

operations.

In the final configuration, the FPGA operates independently of the host system, which may not even be

connected. In this arrangement, the communication with the host is generally sporadic and of relatively

low bandwidth. In the stand-alone configuration, usually all of the processing is performed by the FPGA,

including any embedded software processor it may contain.

Within image processing, where a large degree of parallelism can be exploited by the operation level

algorithms, either multiprocessor or stand-alone configurations are usually the most appropriate. The

integrated and coprocessor configurations are usually too tightly coupled to fully exploit parallelism in

low level image processing operations.

For high performance computing applications, the hosted multiprocessor configuration is the most

common. For image processing, the host is usually responsible for image capture and display, and any user

interaction. The host operating system needs to be augmented to enable it to reconfigure the FPGA

(Andrews et al., 2004). This is usually dynamic reconfiguration, allowing the host to change the FPGA

configuration depending on the application (Wigley and Kearney, 2001; Sedcole et al., 2007). The host

operating system is also responsible for distributing tasks between the serial processor and the FPGA

system (Steiger et al., 2004; Lubbers and Platzner, 2007), and synchronising communications between all

of the processes (both hardware and software) (Mignolet et al., 2003; So, 2007).

88 Design for Embedded Image Processing on FPGAs

The stand-alone configuration performs all or most of thework on the FPGA. This does not necessarily

mean that there is no serial processor. Some modern FPGAs have a processor built into them, or it is

always possible to include a soft-core processor within the fabric of the FPGA. However, the FPGA is

responsible for any image capture and display. Any user interaction must also be built into the FPGA,

either as hardware modules, or using the serial processor. Unlike on a conventional serial processor, an

FPGA has no operating system (Bailey et al., 2006). If there is an embedded serial processor, this may

have an operating system running on it, but the drivers will be limited to common peripherals.Much of the

low level interfacing must be built in hardware, and if this is to be interfaced to the processor, device

drivers must be written. If no serial processor is used, all of the user interface must be built in hardware

(Buhler, 2007).

For debugging and initial development, the stand-alone configuration may have a host computer. This

can be used for directly downloading the FPGA configuration and may provide some support for

debugging. However, for normal running the FPGA configuration is often loaded directly from flash

memory, avoiding the need for a host processor.

Also at the system level is the memory architecture. A key factor to consider is the degree of coupling

between the memory, FPGA and any CPU. Only some of the arrangements are shown in Figure 4.3.

Distinction also needs to be made between shared system memory and memory local to the FPGA. For

local memory, the technology is also an important consideration. Many high speed memories, especially

those with large capacity, operate most efficiently in burst mode. In this mode, a predefined number of

successive memory locations may be read or written in successive clock cycles. Dynamic memories

require separate addressing of the row and column within the memory, sometimes with several clock

cycles between the row address and the column address. Dynamic memories also must be refreshed

regularly, with access to the memory unavailable during the refresh period.

Other memory technologies may allow random access on successive clock cycles, although for high

speed operation they are often pipelined with the address having to be provided one or two clock cycles

before the data is available. This may have implications for the speed of some operation level algorithms,

especially where the memory address is data dependent.

4.3.2 Computational Architecture

The computational architecture defines how the computational aspects of the algorithm are implemented.

A particular focus is the form of parallelism being exploited to achieve the algorithm acceleration. Not all

aspects of the algorithmmay be amenable to hardware implementation, so a later section focuses more on

the split of the application level algorithm between hardware and software execution.

4.3.2.1 Stream Processing

The main bottleneck of software-based image processing is that it is memory bound. An operation reads

the pixel values from memory, processes them, and writes the results back to memory. Since each

operation performs this, the speed of the algorithm will be largely limited by the number and speed of

memory accesses. Stream processing can overcome this bottleneck by pipelining operations. The input

data is read once from memory, or streamed from the camera and passed into the first operation. Rather

than write the results back to main memory, they are directly passed on to the next operation. This will

eliminate at least twomemory accesses for each stage of the pipeline: writing the results and reading them

again as input for the next operation. The benefits of streaming can therefore be significant.

For embedded vision applications, at some stage the data must initially be read from the camera. If

possible, asmuch processing should be performed on this datawhile it is passing through the FPGAbefore

it is written to memory. If the whole application can be implemented as a single streamed pipeline then it

may not even be necessary to use a frame buffer to hold the image data. Similarly, if an image is being

Design Process 89

displayed, the pixels need to be streamed to the display. Again, much benefit can be gained by performing

as much processing on-the-fly as the data is being streamed out.

Oneof thekeycharacteristics of streamprocessing is afixedclock rate, usually oneclock cycleper pixel.

This clock rate is constrained by the input (from a video camera) or output (to a display). At the input, each

pixel must be processed as it arrives, otherwise the data is lost. Similarly, a pixel must be produced on the

output at eachclockcycle;otherwise therewill benodata todisplayand theoutputwill appearblank for that

pixel. Consequently, the design of stream processing systems is synchronous, at least on the input and

output. If every stage of the pipeline can be operated synchronously, then the design is simplified.

Stream processing is well suited to low level image processing operations, such as point operations and

local filters,where processing can be performed during a raster scan through the image. If an operation, for

example a filter, requires data from more than one pixel, it is necessary to design local buffers for each

operation to cache the necessary data. This is because the synchronous nature of stream processing limits

memory access to one read or write per clock cycle. To satisfy this constraint, the algorithms for some

operations may need to be significantly redesigned from that conventionally used in software. The fixed

timing constraint arising from the predetermined constant throughput of stream processing may be

overcome by using low level pipelining. This splits a more complex calculation over several clock cycles

while maintaining the throughput of one pixel per clock cycle.

4.3.2.2 Systolic Arrays and Wavefront Processing

The idea of stream processingmay be extended further to systolic arrays (Kung, 1985). A systolic array is

a one or two dimensional array of processors, with data streamed in and passed between adjacent

processors at each clock cycle. It is this latter characteristic that gives systolic arrays their name. Since the

communication is regular and local, communication overheads are low. A systolic array differs from

pipeline processing in that data may flow in any direction, depending on the type of computation being

performed. For many systolic arrays, the processing elements in the array are often relatively simple and

perform the same operation at each clock cycle. This makes systolic arrays well suited to FPGA

implementation.

The difference between a systolic array and a wavefront array is that systolic arrays are globally

synchronous, whereas wavefront arrays are asynchronous. A wavefront array therefore requires hand-

shaking with each data transfer. This means that a wavefront array is self-timed and is able to operate as

fast as the data is able to be processed. Unfortunately, such asynchronous systems are not well suited to

implementation on synchronous FPGAs. However, they may be able to be implemented by self-timed

architectures such as the Achronix Speedster (Section 2.4.4).

Systolic arrays work best where the processing is recursive with a regular data structure. The systolic

array effectively unrolls the recursive loop to exploit concurrency in away that uses pipelining tomake use

of the regular data structure. This makes such an architecture well suited for matrix operations (Kung and

Leiserson, 1978) and for implementing many low level image processing operations (Kung and Webb,

1986). They are most suited where the operations are relatively simple and regular, such as filtering

(Hwang and Jong, 1990; Diamantaras and Kung, 1997; Torres-Huitzil and Arias-Estrada, 2004),

connected component labelling (Nicol, 1995; Ranganathan et al., 1995) and computing the Fourier

transform (Nash, 2005). However, a single array is not well matched for implementing a complete

application level image processing algorithm. The streamed nature of the inputs and outputs means that a

systolic array processor would fit well with stream processing.

4.3.2.3 Random Access Processing

In contrast with stream processing, random access processing allows pixels to be accessed from anywhere

in the memory as needed by an operation. Consequently, there are no explicit requirements in the pattern

90 Design for Embedded Image Processing on FPGAs

of data access. It requires the image to be available in a frame buffer rather than as an input stream.

Random access processing relaxes the hard timing constraint associated with stream processing. If

necessary, several clock cycles may be used to process each pixel accessed or output.

Random access processing is, therefore, most similar to software processing. Consequently, it is

generally easier to map a software algorithm to random access processing than to stream processing.

However, simply porting a software algorithm to hardware using random access processingwill generally

give disappointing performance. This is because the underlying software algorithm will usually be

memory bound and performance will be limited by memory bandwidth. Where possible, steps must be

taken to minimise the number of memory accesses by using local buffers. It may also be necessary to

design an appropriate memory architecture to increase the memory bandwidth. Some of these mapping

techniques are described in the next chapter.

For complex algorithms, the output may not be regular in the sense that there may be a variable number

of clock cycles for each pixel produced. This can make it more difficult to synchronise the dataflow

between successive operations in the application level algorithm. Therefore, it may be necessary to design

synchronisation buffers to manage the uneven data flows. If the inputs and outputs are in a sequential

order, then a FIFO buffer provides such synchronisation. Otherwise, synchronisation may require a

frame buffer.

The clock speed for random access designs is generally not constrained. Therefore, the throughput can

be increased by maximising the clock speed. This may be accomplished by using low level pipelining to

reduce the combinatorial delay. The operation level algorithm may be further accelerated by examining

the dataflow to identify parallel branches and implementing such operations in parallel.

One form of this data parallelism is to partition different parts of the image to separate processors. This

requires multiple copies of the hardware, one for each parallel processor. Each copy will usually have its

own local memory to avoid problems with limited bandwidth. However, when considering such

parallelism, it is also important to consider not only the operation being parallelised, but also the

operations before and after it in the processing chain. One overhead to consider is that required to transfer

the data from systemmemory (such as a frame buffer) to localmemory and back. If care is not taken, these

overheads can remove much of the performance improvement gained by partitioning the processing.

Often the processor will need to be idle during the data transfer phase unless there are sufficient memory

resources to enable some form of bank switching to be used.

4.3.2.4 Massively Parallel Architectures

The extreme case of such data parallelism is to use a massively parallel architecture. Such architectures

exploit the fact that many image processing operations consist of a series of operations performed

independently on each pixel. In software, the outermost loop for such operations will iterate through the

pixels within the image. A massively parallel architecture effectively unrolls this outermost loop and

implements the iterations on each pixel in parallel. The result is a separate processor for each pixel or

block of pixels. A massively parallel processor is able to process whole images in a few clock cycles,

regardless of the size of the image. Algorithms that rely primarily on local information can readily be

mapped onto such architectures.

While nice in theory, there are two limitations to massively parallel architectures. The first is the

communication bottleneck. Massively parallel algorithms work well when the data is already present

within the processors. However, getting the data into the array (from the camera) and out of the array (to a

display if necessary) can often take longer than the actual processing of the image. A second

communication problem occurs if the processing requires sending or receiving data from outside a

local region. The communications must either be broken down into a series of local steps, with the

processors spending a significant proportion of their time forwarding data, or a hierarchical communica-

tion scheme established for longer distance communication and data collection.

Design Process 91

The second limitation is that a massively parallel processor requires significant resources on the FPGA,

even if each processor is relatively simple. This limits the use of such architectures to small images, or

allocating a block of pixels to each processor. For example, both the communication and resource

limitations are reduced by allocating one processor to each column or row of pixels within the image.

As a result of these limitations, massively parallel architectures are not considered in detail any further

in this book.

4.3.2.5 Hybrid Processing

The best performance can usually be achievedwhen thewhole application can be implemented in a single

processing mode and memory access to a frame buffer is minimised. This may require considerable

redesign and development of the operation level algorithms to make them architecturally compatible. It

may also require modifying the application level algorithm to avoid using operations that do not integrate

well with the others.

In some applications, it may not be possible to implement the entire algorithm using stream processing.

In such cases, it may be necessary to combine stream and random access processing. The introduction

of one or more frame buffers will usually increase the latency of the algorithm. However, for some

operations where each output pixel may depend on data from anywhere within the image, this cannot

be avoided. With hybrid processing, frame buffer access may be minimised by maximising the use of

stream processing.

4.3.2.6 Computational Architecture Design

The key to an efficient hardware implementation is not to port an existing serial algorithm, but to transform

the algorithm to produce the computational architecture. There are two stages to this process (before

implementation), as shown in Figure 4.4.

The first stage is to analyse the algorithm for the underlying algorithmic architecture. In this process, it

is important to look at thewhole algorithm, not just the individual operations. This is because gains can be

made by considering the interactions between operations, especially if the operations can be made

architecturally compatible. A dataflow analysis is one common method of identifying the underlying

computational architecture (Johnston et al., 2006b; Sen et al., 2007). This allows the developer to get an

overview of the design and investigate how it can be modified. In this process of analysing the algorithm,

the underlying algorithm needs to be changed or transformed to one that is more readily able to map

efficiently to a hardware implementation.

Several such transformations may be applied to the algorithm (Bailey and Johnston, 2010). The first is

to convert as many operations as possible to pipelined stream processing to eliminate intervening frame

buffers. Any operation that may be implemented by processing the data in a raster-scanned order through

the image can be streamed. Some algorithms that are not naturally streamed may be redesigned to use

stream processing (for example chain coding, as described in Section 11.3).

System

Implementation

Software

algorithm

Identify

algorithm

architecture

Design

computational

architecture

Figure 4.4 Transforming an algorithm to produce the computational architecture.

92 Design for Embedded Image Processing on FPGAs

The iterations present inmany loopsmay readily be parallelised. Loop unrolling replaces the innermost

loops of an algorithm with multiple sequential copies of the operations within the loop construct. This

allows longer pipelines to be constructed at the expense of additional hardware. With many image

processing operations, these innermost loops are inherently parallel (for example weighting the pixels

within a linear filter) and it is only the sequential nature of a serial processor that requires a loop. Strip

mining is related to loop unrolling in that it creates multiple parallel copies of the loop body. The

difference is that each copy operates on a different section of the data. The computation is accelerated by

partitioning the input data over different hardware processors.

A less common transformation is strip rolling andmultiplexing. Sometimes, after stripmining, only one

of the parallel processing units is active in any clock cycle. For example, using stream processing to find

the bounding boxes of objects requires operating onmultiple objects in parallel. However, a pixel can only

belong to one object, so in any clock cycle, only one bounding box processorwill be operating. In this case,

strip rolling replaces themultiple processing units with a single processor that is multiplexed between the

different instances.

In some algorithms, it is possible to rearrange the order of the operations to simplify the processing

complexity, or even eliminate some steps. A classic example of this is greyscale morphological filtering

followed by thresholding. This sequence of operations is equivalent to thresholding first, followed by

binary morphological filtering. The algorithms for binary filtering are significantly simpler than those for

greyscale filtering, resulting in considerable hardware savings and often a reduction in latency.

The data can sometimes be coded to reduce the volume, and hence the processing speed. Run length

coding is a good example. After the data has been run length coded, whole runs of pixels can be processed

as a group, rather than as individual pixels. For example, Appiah et al. (2008) used run length coding to

accelerate the second pass through the image for connected components labelling.

Gains can often be made by substituting one or more image processing operations with other,

functionally similar, operations. Substitutions may involve approximating operations with similar

but computationally less expensive operations. Common examples are replacing the L2 norm in the

Sobel filter with the computationally simpler L1 or L¥ norm (Abdou and Pratt, 1979), or modifying

the coefficients used for colour space conversion to be powers of two (Sen Gupta et al., 2004).

Note that substituting an operation may change the results of the algorithm. The resulting algorithm

will be functionally similar but not necessarily equivalent. In many applications, this does not matter,

and the substitution may enable other transformations to be applied to improve the computational

efficiency.

The second stage is to design the computational architecture that is implied by the algorithm

architecture. This may require further transformation of the algorithm to result in a resource efficient

architecture that can effectively exploit the parallelism available through a hardware implementation.

Some of the techniques that may be used for this will be described in more detail in the next chapter.

Operation specific caching of data ensures that data which is used multiple times will be available when

needed. Low level pipelining and retiming can be used to reduce the combinatorial delay and increase the

clock speed. It is also necessary to select appropriate hardware structures that correspond with data

structures used in the software algorithm.

The design process can be iterative with the algorithm and architecture mappings being updated as

different design decisions are made. However, with a thorough design at this stage, the final step of

mapping the algorithm onto the architecture to obtain the resultant implementation is straightforward.

4.3.3 Partitioning between Hardware and Software

Low level image processing operations that can readily exploit parallelism are ideal for hardware

implementation. Such operations are relatively slowwhen implemented in software simply because of the

volume of data that needs to be processed.

Design Process 93

However, not all algorithms map well to a hardware implementation. Tasks that have dynamically

variable length loops can be clumsy to implement in hardware. Those with complex control sequences

(Compton and Hauck, 2002) are more efficiently implemented in software. Such tasks are characterised

by large amounts of complex code that is primarily sequential in nature. If implemented in directly in

hardware, this would require significant resources because each operation in the sequence would need to

be implemented with a separate hardware block. If there is little scope for exploiting parallelism, much of

the hardware will be sitting idle much of the time. The same applies for functions that are only called

occasionally, for example once or twice per frame (or less). These tasks or operations can be implemented

more easily and more efficiently in software.

Two broad classes of tasks or operations that are best implemented in software are high level image

processing operations (for example object tracking; Arias-Estrada and Rodr�ıguez-Palacios, 2002) and
managing complex communications protocols. High level image processing operations are characterised

by a lower volume of data and more complex control patterns. Many provide limited opportunities for

exploiting parallelism and often the computation path is dependent on the data being processed. Similarly,

communications such as TCP/IP require a complex protocol stack that can be unwieldy to implement in

hardware. While it is possible to implement these tasks in hardware (see, for example Dollas et al., 2005,

for a TCP/IP implementation), it can be more efficient in terms of resource utilisation to implement them

in software. Software also has the advantage that it is generally easier to programme.

The approach taken to partitioning the application between hardware and software will depend

significantly on the system level architecture and, in particular, the level of coupling between the software

processor and programmable logic. The software processormay consist of a separateCPUor be integrated

on the FPGA as a hardware core (such as the PowerPC core within the Xilinx Virtex Pro) or as a soft core

implemented using the FPGAs programmable logic. There is also a wide range of standard processor

cores available that have FPGA implementations, including common microcontrollers (8051, 68HC11,

PIC) and digital signal processors (320C25). One advantage of using a standard processor is that all of the

application development tools for that processor can be used. In particular, using the integrated high level

language development and emulation tools for the processor can speed code development and debugging

of the software components.

Therefore, the choice is not just whether to implement the application in either software or hardware.

There is a spectrum of partitioning of the application between the two, ranging between full software and

full hardware implementations as illustrated in Figure 4.5.

At the instruction level of granularity, the application can be largely implemented in software, with the

FPGA used to implement custom instructions. This allows the programme to ‘call’ hardware acceleration

blocks (Arnold and Corporaal, 2001). For image processing, it is impractical to implement the whole

algorithm this way. However, this approach can be used to augment the processor for the software

component of the application where groups of instructions are clumsy or inefficient when implemented

purely in software.

Software

only

Hardware

only

Custom

instructions

Custom

processor

FPGA

CPU

Task

partitioning

Figure 4.5 Spectrum of hardware and software mix. Note that the CPU can be either external or

integrated within the FPGA.

94 Design for Embedded Image Processing on FPGAs

The partitioning can also be at the task level of granularity, where whole tasks are assigned either to a

software or hardware processor. The hardware and software tasks operate relatively independently of each

other, only communicating when necessary. This would allow, for example, the image capture and low

level image processing operations to be implemented in hardware, with the results being passed to high

level image processing operations implemented in software.

If the software tasks are of low complexity, then an alternative to using a full CPU is to design a

simplified serial processor. This can be either a lightweight soft core (such as the picoBlaze) or a

completely custom processor. One limitation to using a custom processor is that compilers and other

development tools will not be available and the software for the processor must generally be written in

assembly language. At the extreme end, the sequential components of the algorithm could be imple-

mented using a finite state machine. Quite sophisticated, memory-based, finite state machines can be

implemented with a small resource footprint (Sklyarov, 2002; Sklyarov and Skliarova, 2008), effectively

making them custom processors.

Regardless of the level of partitioning, it is essential to clearly define the interface and communication

mechanisms between the hardware and software components. In particular, it is necessary to design the

synchronisation and data exchangemechanisms to facilitate the smooth flow of data. In the final design, it

is also important to take into account the communication overhead between the hardware and software

portions of the design.

One advantage of using a standard processor is the availability of standard operating systems such as

Linux. Using an operating system such as embedded Linux has an advantage that all of the features of the

standard operating system are available, subject to the limitations of the memory available within the

system (Williams, 2009). It also provides a familiar development environment for the software

components, including the ability to develop and test the software on one platform before transferring

it to the FPGA. One feature of particular interest is that Linux has a full TCP/IP stack enabling the

complete system to be networked relatively easily. This can significantly extend the functionality of

the system, even if the software processor is not used directly for the application. Having a TCP/IP

interface enables:

. an efficient means of communicating images and other data between devices in a distributed system;

. a Web interface for control and setting of algorithm parameters, and for viewing the results of

processing;
. remote debugging through telnet, and even mounting the file system across the network;
. the ability to remotely update the configuration.

A minor disadvantage of using an embedded Linux is that even a minimal system will require off-chip

RAM.Aminimal Linux kernelwill require approximately 4MBof additional flashmemory and 16MBof

DDR systemmemory. The systemmemory should be solely for the use of the embedded processor and be

separate from any memory directly accessed from the user logic on the FPGA. As the number of support

applications (within Linux) is increased, the memory requirements (both flash and RAM) will increase

accordingly. The boot process of the system is as follows (Figure 4.6) (Gregori, 2009):

1. The FPGA configuration is loaded from flash memory. This configures the FPGA, including the

processor on the FPGA.

2. When the system starts running, the processor executes the boot loader from the flash memory.

3. The boot loader decompresses both the Linux kernel and the root file system from flash, and copies

them into RAM.

4. Using the RAM image, the processor starts execution of the Linux kernel and associated services.

When interfacing between the hardware and software running under embeddedLinux, it is best tomake

the interface through aLinux device driver (Williams, 2009).While it is possible to interface directly from

Design Process 95

the software to the hardware, using a device driver will make access to the hardware more portable, and

make the interface easier to maintain and manage. The Linux kernel effectively provides an API and will

provide locking and serialisation on the device.

One limitation of using a multitasking operating system is the variable latency of the software

components, especially if virtual memory is used. Care must be taken when using such systems in a hard

real-time context, especially where software latency is critical. In other cases an embedded Linux can

simplify the development and debugging, especially of stand-alone systems.

The key requirement of architecture selection is choosing the most appropriate architecture for the

algorithm, both at the computational and system levels. In an embedded application, most of the

performance gains come through exploiting parallelism. Power considerations often require maintaining

a low clock speed. Careful design of the image processing algorithm can often allow the low level vision to

operate at the input or output video rate, which is often up to two orders of magnitude slower than current

high end serial processors.

Image capture and display almost always operate on streamed data. Therefore, as much processing as

possible should be performed on-the-fly either as the image is streamed in, or streamed out. This will

minimise the number of memory accesses required and the sequential nature of the accesses will simplify

memory system design.

4.4 System Implementation

The final stage within the design process is system implementation. This is where the image processing

algorithm is mapped onto the chosen hardware resources as defined by the architecture. The steps here

differ significantly from software-based design, where implementation primarily consists of coding the

algorithm.AnFPGA-based implementation requires designing the specific hardware thatwill perform the

required image processing operations.

Not all of the operations in the algorithm will necessarily map well to hardware. To gain maximum

benefit of the parallelism offered by the FPGA, all of the individual operations must be architecturally

compatible. If the image processing algorithmhas not been developedwith the computational architecture

in mind, then it may be necessary to modify the algorithm so that the operations better match the selected

architecture. This may require the selection of alternative operations where necessary.

The application level algorithm is created at a relatively high level of abstraction, in terms of individual

image processing operations. Some of these operations can be quite complex, and all have their own

operation level algorithms at a lower level of abstraction. Many of these operations can be implemented

using several possible algorithms. The operations within the software-based image processing environ-

ment will have been optimised for serial implementation within that environment. Simply porting that

algorithm onto the FPGA will generally give relatively poor performance, because it will still be

MARmetsySyromemhsalF

Configuration

file

Boot loader

Compressed

Linux kernel

Compressed

root file system

Linux kernel

Root

file system

User memory

FPGA

CPU

1

2
3

3

4

Figure 4.6 Embedded Linux boot process.

96 Design for Embedded Image Processing on FPGAs

predominantly a serial algorithm. Sometimes the serial algorithm may have a relatively simple

transformation to make it suitable for parallel hardware. More often, however, the underlying algorithm

may need to be completely redesigned tomake it more suitable for FPGA implementation, as described in

the previous section. In this case, it may be better to first re-implement the operation using the new

algorithm within the image processing environment, where it can be tested more easily, rather than

attempt to directly develop and test it on the FPGA.

Since each image processing operation is considerably simpler than the complete application, this can

make the implementation easier to test and debug. Standard test bench techniques can be used to exercise

the operation through simulation within the FPGA development environment. For individual operations,

most of these tests require a much smaller range of possible inputs than the complete application, so most

operations can be tested with relatively small data sets rather than with complete images. The FPGA

development platform is also implemented on a standard serial computer, so the simulation of a parallel

architecture on a serial computer is usually quite time consuming. This is especially the case for clock-

accurate simulations of complex circuits with large data sets (images). Therefore, it is better to test as

much of each operation as possible using much smaller data sets.

If the algorithm for an operation is complex, or the mapping from software to hardware is not

straightforward, incremental implementation techniques are recommended. For this, each stage or block

of the algorithm is simulated as it is completed, rather than leaving testing of the complete operation to the

end. This approach generally enables errors in the implementation to be found earlier and corrected

more easily.

Another task that is required for FPGA-based designs is to develop the interface logic required by

peripherals attached to the FPGA. Intellectual property cores may be available for some devices, such as

common memory chips, USB ports and so on. For others, these will need to be developed as part of the

implementation process. Example interfaces for some specific devices are developed inChapter 12. These

interface blocks may be thought of as device drivers within a conventional operating system. Even if

the design uses an embedded CPU running a conventional operating system such as Linux, it will still be

necessary to develop the hardware interface between the processor and the external device.

Despite efforts to make programming FPGAs more accessible and more like software engineering

(Alston and Madahar, 2002), efficient FPGA programming is still very difficult. It is important to realise

that programming FPGAs is hardware design, not software design. Although the languages may look like

software, the compilers use the language statements to create the corresponding hardware. Rather than

executing the statements on a common, shared, ALU, each statement builds independent, parallel,

hardware. Concurrency and parallelism are implicit in the hardware that is built and the compilers have to

build additional control circuitry to make them execute sequential algorithms (Page and Luk, 1991).

Consequently, sequential algorithms ported from software will by default run sequentially, usually at a

significantly lower clock speed than high end CPUs. Some compilers can automatically make minor

changes to the algorithm to exploit some of the parallelism available, and this is often sufficient to

compensate for the lower clock speed. However, the algorithm is still largely sequential unless it has been

specifically adapted for parallel execution. The software-like languages are in reality hardware descrip-

tion languages, and efficient design requires a hardware mindset.

4.4.1 Mapping to FPGA Resources

While it is not necessary to perform the design at the transistor or gate level, it is important to be aware of

how the resources of the FPGA are used to implement the design, whether explicitly or implicitly.

Both arithmetic and logic functions are implemented as combinatorial hardware using the configurable

logic blocks on the FPGA. Depending on the size of the lookup tables, each logic cell can implement any

arbitrary logic function of between three and seven binary inputs, with or without a register on the output.

Functions with more inputs are implemented by cascading two or more logic cells.

Design Process 97

A simple logic function, such as AND or OR between twoN-bit operandsmay be implemented usingN

LUTs, one for each bit of the operands. For more complex logic operations, the number of LUTs required

will depend primarily on the number of inputs rather than the actual complexity of the logic. In many

situations, logical inversion may be obtained for free, simply by modifying the contents of the

corresponding LUTs.

Addition and subtraction also map onto combinatorial logic. The carry propagation may be im-

plemented using circuits for ripple carry, or more advanced look-ahead carry or carry select designs

(Hauck et al., 2000). Most FPGAs implement dedicated carry chain logic that can be used to speed up

carry propagation by reducing routing delays and avoiding the need for additional hardware to implement

the carry logic. Counters are simply adders (usually adding a constant) combined with a register to hold

the current count value.

Relational operators compare the relative values of two numbers. The simplest is testing for equality or

inequality, which requires a bit-wise comparison using exclusive NOR, and combining all of the outputs

with a single gate to test that all bits in the two numbers are equal. A comparison operation may be

implemented efficiently using a subtraction and testing the sign bit. This has longer latency than testing for

equality because of the carry propagation. Therefore, if the algorithm involves any loops, tests should be

made for equality rather than comparison, if possible, to give the smallest and fastest circuit.

Multiplication can be performed using a combination of shift and addition. If time is not important, this

can be implemented serially using not much more logic than an adder. Unrolling the loop results in an

array of adders that combines the partial products in parallel. Although, in principle, the length of the carry

propagation may be reduced using a Wallace (Wallace, 1964) or Dadda (Dadda, 1965) adder tree, in

practise this gives a larger and slower implementation than using the dedicated carry logic of the FPGA

(Rajagopalan and Sutton, 2001). Additional logic is required to perform the carry save additions, and the

structure is not as regular as a simple series of adders resulting in increased routing delays. If necessary, the

parallel multipliers can be pipelined to increase the throughput. Most current devices (especially those

targeted at DSP applications) have dedicated hardware multiplication circuits. These provide faster and

smaller multipliers because they do not suffer from FPGA routing delays between stages. However, the

multipliers are available only in fixed bit widths. A single multiplier may readily be used for smaller sized

words, but for larger word widths either several multipliers must be combined or a narrower multiplier

supplemented with programmable fabric logic to make up the width.

In principle, division is only slightlymore complex thanmultiplication, with a combination of shift and

subtraction to generate each bit of the quotient. With the standard long division algorithm (for unsigned

divisor and dividend), if the result of the test subtraction is positive the quotient bit is 1 and the result of the

test subtraction retained. However, if the test subtraction result is negative then the corresponding quotient

bit is 0 and the test subtraction discarded, restoring the partial remainder to a positive value. This requires

that the carry from each subtraction must completely propagate through the partial remainder before the

sign bit can be determined. The algorithm speed may be improved (Bailey, 2006) by using non-restoring

division, which allows the partial remainder to go negative. With this scheme, the divisor is added rather

than subtracted for negative partial remainders. The major limitation to the speed of division is the

propagation delay of the carry rippling through the whole partial remainder at each iteration. An obvious

solution is to reduce the number of iterations by determining more quotient bits per iteration (using a

higher radix). Another approach is to reduce the propagation delay by reducing the length of the critical

path. The SRT algorithm (named after Sweeney, Robertson (1958) and Tocher (1958)) achieves this by

introducing redundancy in the quotient digit set. This gives an overlap in selecting between adjacent

digits, which allows a quotient digit to be determined from an approximation of the partial remainder

(hence does not need to wait for the carry to propagate fully). Two disadvantages of the SRT method are

that the divisor must be normalised (so that the MSB is 1) and the quotient digits must be converted to

standard binary, both of which require additional logic and time. All of these algorithms may be

implemented sequentially to reduce hardware requirements at the expense of throughput, or can be

pipelined to increase the throughput. There are also many other advanced algorithms (Tatas et al., 2002;

98 Design for Embedded Image Processing on FPGAs

Trummer, 2005). An alternative approach if high speedmultipliers are available is to take the reciprocal of

the divisor (using lookup tables or fast iterative methods) and then multiply.

In all of the operations described so far, if one of the operators is always a constant, the hardware can

be simplified. This can often result in a reduction in both the logic required and the propagation delay of

the circuits.

Another logic circuit that is commonly a part of FPGA designs is the multiplexer. These are required

when writing to a register or memory from multiple hardware blocks to select the data source being

written. A multiplexer is also required on the address lines of memory to select the address source when

accessingmemory frommultiple points in the hardware. Typically, two input bits are required for each bit

of the source word (Figure 4.7); one bit for the data value, and one bit to select or gate that source to the

output. When many sources are used, the multiplexers may require a significant fraction of the FPGA

resources available. There are two types of multiplexer commonly used, corresponding to the use of

positive and negative logic (the differences are shown in Figure 4.7). With positive logic, the default

output is 0 and a logic 1 is used to gate (or select) the inputs

Out ¼ _
i
Datai ^ Selectið Þ ð4:1Þ

With negative logic, the levels of the input and output are inverted making the default output a 1. De

Morgan’s theorem is used to convert the expression into a product of sums form:

Out ¼ _
i

Datai ^ Selecti
� �

Out ¼
î

Datai _ Selecti
� � ð4:2Þ

This would normally have little effect on the operation of the circuit (provided the correct polarity select

signals are generated) except when multiple sources are enabled simultaneously. In this error condition,

the logic levels from the two sources are combined; for positive logic the output is the OR of the enabled

inputs, whereas for negative logic it is the AND of the inputs.

Modern FPGAs also providememory resources at a range of granularities. At the lowest level, registers

may be built up of from the flip-flops associated with the logic blocks. In most devices, each logic cell has

one flip-flop available on its output, so an N-bit register would require N logic cells. The outputs of these

flip-flops are always available for use by other logic, so all of the registers in an arraywould be available at

every clock cycle. An array constructed of registers, if accessed using a variable index, would require one

or more multiplexers on the output to select the data from the required register. Similarly, writing to an

array may also require a multiplexer on the input of each register in the array.

The LUTswithin the logic cells of some FPGAs can also be configured as fabricmemory, providing 16,

32, or 64 memory locations depending on the available size of the LUTs. These are true memories, with

the address decoding and data multiplexing performed using dedicated logic within the logic cell. Note

that only one bit is accessible for either reading orwriting per clock cycle. SomeFPGAs allow the inputs to

an adjacent logic cell to be configured as a second port, enabling two accesses per clock cycle. Multiple

logic cells can be combined in parallel to create arbitrary width memories. In doing so, each parallel

Data
1

Data
1

Data
2

Data
2

Data
3

Data
3

Select
1

Select
1

Select
2

Select
2

Select
3

Select
3

Figure 4.7 Multiplexer circuits for data selection. Left: using positive logic; right: using negative logic.

Design Process 99

memory will share the same address inputs. Fabric RAM is best suited for small, shallow memories

because any increase in the depth requires the use of external decoding andmultiplexing. Exampleswhere

fabric RAM would be used include storing coefficients or parameters that do not have to be accessed

simultaneously, and short FIFO buffers.

Modern FPGAs also have available larger blocks of RAM. These generally have flexible word widths

from1 to over 64 bits wide.Most suchRAMblocks are dual-port. The sizemakes themwell suited for row

buffers for image processing, for larger size FIFO buffers or for distributed data caching. The RAM can

also be used as instruction and data memory for internal CPUs (both hard and soft core).

Some of the larger FPGAs have sufficient memory blocks to hold whole images on chip. However,

image frame buffers are more likely to be held off-chip. The number of parallel external RAMs (and

ROMs) and their size are limited only by the I/O resources available. Off-chip RAM can also be used for

other large blocks of intermediate data storage or be used by an internal CPU to hold data and instructions

for larger programmes.

A software processor, if used, can be implemented either on the FPGA or as a separate chip. Large

modern FPGAs have sufficient resources on chip not to need an external processor. However, when using

an operating system such as an embedded Linux, an external memory is essential.

4.4.2 Algorithm Mapping Issues

As mentioned earlier in this chapter, mapping is not simply a matter of porting the set of operation level

algorithms onto the FPGA, unless they were developed with hardware in mind. The key thing is to map

what the software is doing by adapting the algorithm to the hardware.

Again, it is important to keep in mind the different levels of abstraction. At the higher level, the

application level algorithm should be thoroughly tested on a software-based platform before mapping the

operations to hardware. In some situations, it may be necessary to substitute different image processing

operations to maintain a uniform computational architecture if possible. Generally, though, the applica-

tion level algorithm should not change much through the mapping process.

Mapping the individual image processing operations is a different story. The operation level algorithm

may change significantly to exploit parallelism. For some operations, the transformation from a serial to

parallel algorithm is reasonably straightforward, while for others a completely new approach, and

algorithm, may need to be developed.

During the mapping process, it can be worthwhile to consider not just the operations on their own, but

also as a sequence. It may be possible to simplify the processing by combining adjacent operations and

developing an algorithm for the composite operation. An example of this is illustrated in Section 11.4

with connected components analysis. In other instances, it may be possible to simplify the processing by

splitting a single operation into a sequence of simpler operations. An example of this is splitting a

separable filter into two simpler filters. In some situations, swapping the order of operations can reduce the

hardware requirements. For example, following a greyscale morphological filter with thresholding

requires a more complex filter than its equivalent of first performing the thresholding and then using a

binary morphological filter.

One of the major issues facing the algorithm mapping process for embedded, real-time image

processing is meeting the various constraints. There are three main constraints facing the system

designer: timing constraints, memory bandwidth constraints and resource constraints.

Any real-time application will have timing constraints. These are of two types: throughput and latency.

Stream processing has a throughput constraint, usually of processing one pixel every clock cycle. If this

rate is notmaintained, then data streamed from the cameramay be lost, or data streamed to the displaymay

be missing. Since the processing performed per pixel will usually take significantly longer than one clock

cycle, it is necessary to use pipelining to maintain the throughput. The other timing constraint is latency.

This is the maximum permissible time from when the image is captured until the results are output or an

100 Design for Embedded Image Processing on FPGAs

action is performed. Latency is particularly important for real-time control applications where image

processing is used to provide feedback used to control the state. Delays in the feedback of a control system

(caused in this case by the latency of the processing) will limit the response time of the closed loop

system and can make control more difficult. In particular, excessive delay can compromise the stability

of the system.

Closely related to the timing constraint is the memory bandwidth constraint. Each memory port may

only be accessed once per clock cycle. On-chipmemory is usually less of a problembecause suchmemory

consists of a number of relatively small blocks, each of which can be accessed independently. Off-chip

memory, on the other hand, tends to be in larger monolithic blocks. Operations where the computation

order does not correspond to the raster order usually require thewhole frame to be buffered. The large size

of the image buffer generally restricts the frame buffer to be in off-chip memory. Consequently, it can be

difficult to readmore than one pixel per clock cycle. This can be further complicated by pipelinedmemory

architectures, where the address needs to be provided several clock cycles before the data is available.

Operations where the next memory location depends on the results of processing at the current location

(for example chain coding) exacerbate this problem. For the memory bandwidth not to seriously limit

the processing speed, it is often necessary to transfer data from off-chip memory into multiple blocks of

on-chip memory where the bandwidth constraints are more relaxed.

The third area of constraint relates to the resources available on the FPGA. The cost of an FPGA

generally increases with increasing size (in terms of the number of logic blocks, memory etc.). When

targeting a commercial application, tominimise the product cost it is desirable to use an FPGA that is only

as large as necessary. However, even the largest FPGA has finite resources. It is therefore important to

make efficient use of the available resources. Using fewer resources can also improve the timing in two

ways. The first, and more obvious, is that an algorithm that uses fewer resources will generally have a

shorter delay simply because of the shallower logic depth. The second is that amore regular designwill be

easier to route on the FPGA, andwill have a shorter routing delay.As the design approaches the capacity of

the FPGA, it becomes increasingly harder to route efficiently and the maximum clock speed of the design

decreases.

A second issue relating to resources is contention between shared resources. A parallel implementation

will have multiple parallel blocks working concurrently. In particular, only one process can access

memory or write to a register in any clock cycle. Concurrent access to shared resources must either be

scheduled to avoid conflicts, or additional arbitration circuitry must be designed to restrict access to a

single process. Arbitration has the side effect of delaying some processes, making it more difficult to

determine the exact timing of tasks.

Techniques for addressing timing, bandwidth and resource constraints are discussed in more detail in

the next chapter.

4.4.3 Design Flow

A more detailed sequence of steps for the design process that we follow in our research group is shown

in Figure 4.8. The image processing algorithm is developed either usingVIPS (Bailey andHodgson, 1988)

or MATLAB� (Gonzalez and Woods, 2004; Solomon and Breckon, 2011). Both are rich algorithm

development environments. VIPS was designed specifically for image processing; MATLAB� is more

general, but with the image processing toolbox is also targeted for imaging applications. Both are

extensible, operations for VIPS are written in Cþþ, whereas for MATLAB� extensions may be written

in C or as MATLAB� scripts (m-files).

At Massey University Handel-C has been used for the hardware description language because it

describes hardware at a higher level of abstraction than Verilog or VHDL. It also allows hardware to be

described at a low level where necessary. Where possible, Handel-C is also used for any device drivers.

VHDL is only used at the very lowest levels, where Handel-C does not provide sufficient control over the

detailed implementation.

Design Process 101

Incremental development techniques are used. As each operation ismapped toHandel-C, the simulator

within the development environment is used to verify that the operation functions correctly. If each

operation performs as designed, then the complete application level algorithm will function as developed

and tested within the image processing environment.

FPGAvendor tools are used to place and route the design onto the FPGA resources. The output from this

process will indicate whether there are sufficient resources available on the target FPGA. It also provides

timing information based on the actual resources used. Feedback from this process is used to modify the

algorithms or implementation where necessary to meet timing constraints.

The final step is to download the configuration file onto the target device for system testing. As part of

the debugging process, sections may require re-implementation, remapping or, in the worst case,

redevelopment.

4.5 Designing for Tuning and Debugging

4.5.1 Algorithm Tuning

Many application level algorithms require tuning to function correctly. Most algorithms have threshold

levels or other parameters that must be optimised to obtain the best performance.

Develop image

processing algorithm

(VIPS / MATLAB®)

Problem

specification

Place and route

Implement on

target device

Compile design

Redesign algorithm

for operations

(C / C++ / MATLAB®)

Speed and resource

verification

System debug

Select system and

computational

architectures

Map algorithm

to architecture

Behavioural and

functional simulation

Implement design

(Handel-C)

Develop device

drivers

(Handel-C / VHDL)

Figure 4.8 Design flow for FPGA-based implementation of image processing algorithms.

102 Design for Embedded Image Processing on FPGAs

If these parameters are hard wired into the implementation, then whenever a parameter is changed, the

whole algorithm needs to be recompiled and remapped to hardware – a process that is very time

consuming. Therefore, it is best to store these parameters in registers, where theymay be readilymodified.

While it is technically possible to modify the register values directly in the bitstream before downloading

onto the FPGA, for example using JBits (Guccione et al., 1999) or RapidSmith (Lavin et al., 2010) with

Xilinx FPGAs, Xilinx is currently the onlymanufacturer to provide the tools for doing this (Graham et al.,

2001). In someways, tuning an algorithm is a little like tuning a car. Recompiling the application is a little

like rebuilding the complete engine each time an adjustment is required. Modifying the bitstream is like

turning the engine off, making the adjustments, and then restarting the engine with each modification.

Instead, it ismuchmore convenient to tune the enginewhile it is running. Similarly, the best time tomodify

many of an algorithm’s parameter values is while the algorithm is running.

Changing parameters dynamically requires building the hardware to update the parameters. It also

requires some form of user interface that enables the developer to adjust or provide new values. When

running in a hosted configuration, the host system can provide the user interface and write the control

parameters to registers on the FPGA. However, with a stand-alone configuration, the user interface must

also be built on the FPGA.This can be either in hardware or on an embedded processor.At theminimum, it

must provide amechanism for selecting andmodifying the parameters.Withmany applications, though, it

is usually necessary to provide additional information on the context of the parameters being adjusted.

This often involves displaying the image or other data structures at intermediate stages within the

algorithm, as illustrated in Figure 4.9 for a simple colour tracking application.

In this application, the complete algorithm can be implemented using stream processing, without the

need of a frame buffer. However, to set the threshold levels used to detect the coloured targets, it may be

RGB YCbCrto

conversion

Colour

thresholding

Morphological

filter

Bounding

box

Control

Accumulate

histogramCb-Cr

Box overlay

generator

Accumulate

histogram

Histogram

display

Threshold

levels

Camera
User

interface

Display

Actual application Additional tuning requirements

Frame

buffer

Figure 4.9 Algorithm tuning may require considerable additional hardware to provide appropriate

feedback or interaction with the user.

Design Process 103

necessary to display histograms of red, green and blue components of the image, or of the YCbCr

components used for colour thresholding. Since the primary thresholdingwill be performed in theCb�Cr

plane, it is also useful to accumulate and display a two-dimensional Cb�Cr histogram of the image. One

way of setting the threshold levels is to click on the coloured objects of interest in the input image and use

these to initialise or adjust the threshold levels. It is also useful to see the output image after thresholding to

see the effects of adjusting the levels, particularly on the boundaries of coloured regions. Similarly, it is

also useful to see the effects of the morphological filter in cleaning up the misclassification noise. Finally,

it may be useful to include a box generator to overlay the bounding boxes of the detected regions over the

top of the original image (or indeed after any of the other processing stages).

Although this example probably provides more contextual information than is really needed, it does

illustrate that the additional logic and resources required to support tuningmay actually bemore extensive

than those of the original application. One way to manage these extra requirements is to use two separate

FPGA configurations – one for tuning and the other for running the application. The tuning configuration

does not need all of the application logic, for example the final control block in Figure 4.9may be omitted.

The tuning configuration can then store the tuning parameters in flash memory (or other non-volatile

memory) where they can be retrieved by the actual application configuration.

4.5.2 System Debugging

In many ways, the requirements for debugging the algorithm and system are similar to tuning. In

particular, it may be important to see the results of processing after each of the operations to verify that

each operation is functioning correctly. This may require the stand-alone configuration to support video

output even if the application does not explicitly require it.

System failure can be the result of two main causes. The first is algorithm failure and the second is a

result of not meeting timing constraints.

Since it is much harder to debug a failing algorithm in hardware than it is in software, it is important to

ensure that the algorithm is working correctly in software before mapping it onto the FPGA. It is essential

that any modifications made to the operation level algorithms during the mapping process be tested in

software to ensure that the changes do not affect the correct functioning. However, while it is possible to

test the individual operations to check that they function correctly, it is not possible to exhaustively test the

complete application level algorithm. Inmany real-timevideo processing applications, every image that is

processed is different. Failures, therefore, should not be a result of the algorithm not working at all, but be

intermittent failures resulting from the algorithm not being completely robust.

Unfortunately, the intermittent nature of such algorithm failuresmakes themhard to detect.Many, if not

most, of the images should be processed correctly. Therefore, to investigate the failures, it is necessary to

capture the images that cause the algorithm to fail. One way of accomplishing this is to store each of the

images before it is processed. Then when a failure occurs during testing, the input image that caused

the failure will be available for testing. Such testing is actually easier to perform in software, either in the

image processing development environment or through simulation of the hardware in the FPGA

development environment.

Algorithm debugging in hardware is much more complex. Additional user controls may be required to

freeze the input image to enable closer examination of what is happening for a particular input. It may be

important to view the image after any of the operations, not just the output. This may require stepping

through the algorithm one operation at a time, not only in the forward direction, but also stepping

backwards through the algorithm to locate the operation that is causing the algorithm to fail. The

additional hardware to support these controls is shown in Figure 4.10.

Note that if stream processing is used, it is not necessary to have a frame buffer on the output; the output

is generated on-the-fly and routed to the display driver. However, non-streamed operations or non-image

based information may require a frame buffer to display the results.

104 Design for Embedded Image Processing on FPGAs

At a lower level, debugging the internals of an operation is more difficult. Again, it is emphasised that

such debugging should be performed in software or through simulation if possible. The advantage of

software debugging is that in software each clock cycle does relatively little compared with hardware

where a large number of operations are performed in parallel, and the system state can change

considerably (Graham, 2001).

Simulation is only as reliable as the simulation model used. The models can be validated by directly

comparing the results of simulation with hardware execution over the full range of situations that may be

encountered (Graham, 2001). This is particularly useful for identifying problems (both functional and

timing) associated with device drivers or other interfaces.

If the designmust be debugged in hardware, there are a number ofways inwhich thismay be performed

(Graham et al., 2001). Perhaps the simplest approach is to route key signals to unused I/O ports to make

them observable from outside the FPGA. An external oscilloscope or logic analyser is then required to

monitor the signals. This concept may be extended further by embedding a logic analyser within the

design. Both Xilinx (ChipScope; Xilinx, 2008a) and Altera (SignalTap; Altera, 2008e) provide cores that

use memory within the FPGA to record internal signals, and later read these recorded signals out to an

external companion software package. It is also possible to build dedicated hardware to perform a similar

function, recording signals of interest within a block RAM and using the configuration readback

mechanism to obtain the data. One limitation of modifying the circuit to include signal probes and

additional signal recording hardware is that that these can affect how the connections are routed on the

FPGA. These affect the timing and can even change the critical paths, possibly masking or creating subtle

timing problems that may occur when the modifications are either present or absent (Graham, 2001;

Tombs et al., 2004).

Configuration readback can be used to sample the complete state of a design at one instant. The

difficulty with this approach is to associate the logical design with the hardware state of the mapped

resources on the FPGA. Signal names, or even the circuit, can be altered for optimisation or other reasons,

and with fabric RAM the address pins may be reordered to improve design routability (Graham, 2001). In

spite of these limitations, configuration readback provides thewidest observability of the design (Graham,

2001). It is possible to add only a little logic to stop and restart execution by gating the clock (Tombs et al.,

2004). These features enable hardware single stepping and, with a little extra logic to detect key events,

can effectively provide hardware breakpoints. A key limitation of readback-based methods is that they

require the clock to be stopped. This makes them impractical for timing verification and, in particular, for

testing of real-time systems. For example, data streamed from a camera or output to a display must be

routed via a frame buffer to allow the execution to be stopped and restartedwithout losing external context

and synchronisation.

One technique that enables internal timing to be verified while repeatedly stopping the design to

enable configuration readbackhas been described byVuillemin et al. (1996).Bydouble stepping the design

(advancing the clock two cycles at a time), the second cycle can run at full speed, with normal timing.

Operation

1

Operation

2

Operation

3Camera

Display
Frame

buffer

Figure 4.10 Instrumenting an image processing algorithm for debugging. The frame buffer enables the

input image to be frozen and fed through the algorithm. The results of any of the stepsmay be routed to the

display (stream processing is assumed here).

Design Process 105

The system can then be stopped after the second cycle and the configuration read back out to detect timing

failures. To verify the timing of the complete design, two execution cycles are required, one for the even

cycles and one for the odd cycles (Graham, 2001).

In any complex design, it is important that provision for tuning and debugging be considered as part of

the design process, rather than something that is added to the implementation at the end.

106 Design for Embedded Image Processing on FPGAs

5

Mapping Techniques

The previous chapter described the process of designing an embedded image processing application for

implementation on an FPGA. Part of the implementation process involvesmapping the algorithm onto the

resources of the FPGA. Three types of constraints to this mapping process were identified as timing

(limited processing time), memory bandwidth (limited access to data) and resource (limited system

resources) constraints (Gribbon et al., 2005; 2006). In this chapter, a selection of techniques for

overcoming or alleviating these constraints is described in more detail.

5.1 Timing Constraints

The data rate requirements of real-time applications impose a strict timing constraint. At video rates, all

required processing for each pixel must be performed at the pixel clock rate (or faster). This generally

requires low level pipelining to meet this constraint.

When considering stream processing, it is convenient to distinguish between processes that are source

driven and those that are sink driven, because each has slightly different requirements on the processing

structure (Johnston et al., 2008). With a source-driven process, the timing is constrained primarily by the

rate at which data is produced by the source. The processing hardware has no direct control over the data

arrival. The systemneeds to respond to the data and control events as they arrive. For video data, the events

of concern are new pixels, newline and newframe events. Based on the event, different parts of the

algorithm need to run; for example, when a new frame is received, registers and tables may need to be

reset. The processors in source-driven systems are usually triggered by external events.

Conversely, a sink-driven process is controlled primarily by the rate at which data is consumed. An

example of this is displaying images and other graphics on a screen. In this case, processors must be

scheduled to provide the correct control signals and data to drive the screen. Processors in a sink-driven

system are often triggered to run at specified times, using internal events. Another form of timing

constraint occurs when asynchronous processes need to synchronise to exchange data.

5.1.1 Low Level Pipelining

In all non-trivial applications, the propagation delay of the logic required to implement all the image

processing operations exceeds the pixel clock rate. Pipelining splits the logic into smaller blocks, spread

over multiple clock cycles, reducing the propagation delay in any one clock cycle. This allows the design

to be clocked faster in order to meet timing constraints.

Design for Embedded Image Processing on FPGAs, First Edition. Donald G. Bailey.

� 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd.

Consider a simple example. Suppose that the following quadratic must be evaluated for a range of

values of x at every clock cycle:

y¼ ax2 þ bxþ c

¼ a� xþ bð Þ � xþ c
ð5:1Þ

If implemented within a single clock cycle, as shown in the top panel of Figure 5.1, the propagation delay

is that of twomultiplications and two additions. If this is too long, the calculationsmay be spread over two

clock cycles, as shown in the middle panel. Register y1 splits the computation path allowing the second

multiplication and addition to be moved into a second clock cycle. Note that register x1 is also required to

delay the input for the second clock cycle.Without it, the new value of x on the input would be used in the

second multiplication, giving the wrong result. The propagation delay per clock cycle is almost halved,

although a small additional propagation delay is introduced with the additional register. The two-stage

pipeline would enable the clock speed to be almost doubled. Operating as a pipeline, the throughput is

increased as a result of the higher clock speed. One new calculation begins every clock cycle, even though

each calculation now takes two clock cycles. This increase in throughput comes at the expense of a small

increase in latency,which is the total time the calculation takes. This is a result of the small increase in total

propagation delay.

Pipelining may result in a small increase in logic block usage. This results from the need to introduce

registers to construct the pipeline stages. These registers are implemented using flip-flops within the logic

blocks. They are typically mapped onto unused flip-flops within the logic cells that are already used for

implementing the logic. For example, the flip-flops to implement y1 will most likely bemapped to the flip-

flops on the output of the logic cells implementing the adder. Register x1 does not correspond to any logic

outputs, although it may be mapped to unused flip-flips of other logic within the design.

a

a

a

x

x

x

x1

x1 x2

y

yy1

y1 y2

b

b

b

c

c

c

1

1

1

2

432

y3 y

Figure 5.1 A simple pipelining example. Top: performing the calculation in one clock cycle; middle: a

two-stage pipeline; bottom: spreading the calculation over four clock cycles.

108 Design for Embedded Image Processing on FPGAs

In the bottom panel of Figure 5.1 the pipeline is extended further, splitting the calculation over four

clock cycles. This time, however, the clock period cannot be halved because the propagation delay of the

multiplication is significantly longer than that of the adder. Stages 1 and 3 of the pipeline, containing the

multipliers, will govern themaximumclock frequency. Consequently, although themaximum throughput

can be increased a little, there is a larger increase in the latency because stages 2 and 4 have significant

timing slack.

This imbalance in the propagation delay in different stages may be improved through retiming

(Leiserson and Saxe, 1991). This requires some of the logic from the multiplication to be moved from

stages 1 and 3 through registers y1 and y3 to stages 2 and 4, respectively. Depending on the logic that is

shifted, and how it is shifted, there may be a significant increase in the number of flip-flops required as a

result of retiming. Performing such fine-grained retiming manually can be tedious and error prone.

Fortunately, retiming can be automated, for example it is provided as an optimisation option when

compiling Handel-C designs (Mentor, 2010a). Retiming can even move the registers within the relatively

deep logic created for multipliers and dividers; places that are not accessible within the source code. Such

automated retiming canmake debuggingmore difficult because it affects both the timing and the visibility

of the intermediate signals.

If retiming is not available, or practical (for examplewhere the output is fed back to the input of the same

circuit for the next clock cycle), there are several techniques that can be used to reduce the logic depth

(Mentor, 2010b). Of the arithmetic operations, division produces the deepest logic, followed by

multiplication. Multiplication and division by constants (especially powers of two) can often be replaced

by shifts or shifts and adds, whilemodulo operations based on powers of two can be replaced by simple bit

selection. While long multiplication and division can be implemented efficiently with a loop, if a high

throughput is required, the loop can be unrolled and pipelined (Bailey, 2006), with each loop iteration put

in a separate pipeline stage. The ripple carry used forwide adders can increase the depth of the logic. Carry

propagation can be pipelined by using narrower adders and propagating the carry on the next clock cycle.

If carried to the extreme, this results in a form of carry save adder (see Parhami (2000) for some of

the different adder structures). Greater than and less than comparisons are based on subtraction. If they

can be replaced with equality comparisons, the logic depth can be reduced because the carry chain is no

longer required.

Although a pipeline is a parallel computational structure in that each stage has separate hardware that

operates in parallel with all of the other stages, from a dataflow perspective it is better to think of pipelines

as sequential structures (Johnston et al., 2006b; 2010). Directly associated with the sequential processing

is the pipeline latency. This is the time fromwhen data is input until the corresponding output is produced.

This view of latency is primarily a source-driven concept.

From a sink-driven perspective, the latency implies that data must be input to the pipeline at a

predetermined time before the output is required. This period is referred to as priming the pipeline.

If the output is synchronous, priming can be scheduled to begin a preset time before data is required at

the output. Unfortunately, this is not an option when data is requested asynchronously by a sink. In this

case, it is necessary to prime the pipeline with data and then stall the pipeline in a primed state until

the data is requested at the output. This is discussed in more detail in the next section on

synchronization. Source-driven processes may also be stalled if valid data is not available on every

clock cycle.

During priming, the output is invalid, while the valid data propagates through the pipeline.

The corresponding period at the end of processing is pipeline flushing, continuing the processing after

the last valid data has been input until the corresponding data is output. Note that this use of the term

pipeline flushing differs from that used with instruction pipelining of the fetch/decode/execute cycle;

there flushing refers to the dumping of the existing, invalid, contents of the pipeline after a branch is taken,

and repriming with valid data. The consequence of both priming and flushing is that the pipelined process

must be clocked for more clock cycles than there are data elements.

Mapping Techniques 109

5.1.2 Process Synchronisation

Whenever there are operations working in parallel, a recurring problem is the coordination of

behaviour and communications between the different processes. This is relatively easy if all of the

operations are streamed within a pipeline. However, it is more difficult for random access or hybrid

processing modes, especially where the latencies may be different or where the time taken by the

operations may vary. When there is a mix of processing modes, it is often necessary to synchronise the

data transfer between operations.

If all of the external events driving the system are regular and each operation has a constant processing

time or latency, then global scheduling can be used. This can be accomplished by using a global counter to

keep track of events and the algorithm state, as shown in Figure 5.2. The various operations are then

scheduled by determining when each operation requires its data and matching the count. An example of

global scheduling is processing an image on-the-fly as it is being displayed. Each line is the same length,

with regular and synchronous events – the horizontal and vertical sync pulses. This enables the processing

for each line to be scheduled to start so that the pipeline is primed when the data must be available for

output to the display. Global scheduling requires all of the operations in the algorithm to be both

predictable in their execution time, and tightly coupled.

Other communication and synchronisation methods must be used when each operation or module is

loosely coupled. For source-driven processes, one way to achieve this is to associate a ‘data valid’ flag or

tokenwith the output. This token is then used to control the downstream operations or processes, by either

stalling the process or continuing to run but ignoring the invalid data and marking the corresponding

outputs as being invalid. For sink-driven applications, in addition to the data valid flag propagated

downstream, it is also necessary to have a ‘wait’ flag or token propagated upstream (Mentor, 2010c). This

is asserted when a processor is unable to accept further data on its input and requests the upstream process

to stop providing data. Depending on the nature of each operation, it may be necessary to use FIFO buffers

to smooth the flow of data between the processes. In particular, use of such buffers can simplify the

management of pipeline priming and flushing. The interface between the operations within the Pixel-

Streams library is based primarily on this form of synchronisation (Mentor, 2010c), and enables the

operations to be kept separate and developed independently.

Another mechanism that allows point-to-point communication and synchronisation between concur-

rent processes is the CSP (communicating sequential processes) model (Hoare, 1985). One process is the

transmitter, the other is the receiver, and they are connected by a data channel. Both processes must be

ready before the communication or data transfer takes place. If one process is not ready, the other process

will block or stall until both ends of the channel are ready. Thus, a CSP channel will ensure that both

processes are synchronised at the point of data transfer. Channels can be used to pass data between

operations in a pipeline, where they will automatically synchronise the processes. The fact that channels

block when they are not ready allows them to be used with both source and sink driven pipelines.

With source-driven flow, the downstream operations will stall when data is not available at the input.

System
counter

Time1

= = = =

Event
1

Event
2

Event
3

Event
4

Time2 Time3 Time4

Figure 5.2 Global scheduling derives synchronisation signals from a global counter.

110 Design for Embedded Image Processing on FPGAs

With sink-driven flow, the upstream operations will automatically prime and, then when the data is not

read from the output, will stall waiting for the available data to be transferred. Note that because channels

can block the execution of a process, care must be taken to avoid deadlocks caused by circular

dependencies (Coffman et al., 1971).

An example of channel synchronisation logic is shown in Figure 5.3. Identical logic is used to

synchronise both the sender and receiver, so only the send logic will be described. If the receiver is not

ready, then the Send signal is latched to remember that data is waiting to transfer. The Complete signal is

clocked low to indicate that the sending process should wait. When the receiver becomes ready, the data

will be transferred into the register on the next clock edge and theComplete signal is latched high for one

clock cycle.

Combining the channelwith a FIFObufferwill relax the timing constraints. It allows a source process to

continue producing outputs until the FIFO buffer is full before it stalls. Similarly, a sink process will read

available data from the FIFO buffer until the buffer is empty before it stalls.

The use of FIFO buffers enables operations with variable latency to be combined within a pipeline. In

many video-based applications, where data is read from a camera or written to a display, the blanking

intervals between rows and between frames can occupy a significant proportion of the total time. The strict

timing of one pixel per clock cyclemay be relaxed somewhat by enabling operations towork ahead during

the blanking period, storing the results in a FIFO buffer, which can then be used to smooth out the timing

bumps later.

5.1.3 Multiple Clock Domains

With some designs, using separate clocks and even different clock frequencies in different parts of a

design are unavoidable. This is particularly the case when interfacing with external devices that provide

their own clock. It makes sense to use the most natural clock frequency for each device or task, with

different sections of the design running in separate clock domains. A problem then arises when

communicating or passing data between clock domains, especially when the two clocks are independent,

or when receiving asynchronous signals externally from the FPGA.

If the input of a flip-flop is changing when the flip-flop is clocked (violating the flip-flop’s setup

or hold times) the flip-flop can enter a metastable state where the output is neither a 0 nor a 1. When

in this state, the output will eventually resolve to either a 0 or 1, but this can take an indeterminate

time. Any logic connected to the output of the flip-flop will be affected, but because the resolution

can take an arbitrarily long time, there is a danger that with the propagation delay through the logic,

the setup times of downstream flip-flops may also be violated. The probability of staying in the

metastable state decreases exponentially with time, so waiting for one clock cycle is usually

sufficient to resolve the metastability. A synchroniser does just this; the output is fed to the input of

CE

Send Receive

Complete

Complete

Figure 5.3 Channel synchronisation logic. (Adapted from Page and Luk, 1991.)

Mapping Techniques 111

a second flip-flop. The reliability of a synchroniser is expressed as the mean time between failures

(Dike and Burton, 1999):

MTBF ¼ eT=t

TWfS fT
ð5:2Þ

where t is the settling time constant of the flip-flop, T is the period of the settling window allowed for

metastability to resolve; the numerator gives the probability that any metastability will be resolved within

the period T. TW is the effectivewidth of themetastability window and is related to the setup and hold times

of the flip-flop, fS is the frequency of the synchroniser’s clock, and fT is the frequency of asynchronous data

transitions on the clock domain boundary. The denominator of Equation 5.2 is the rate at which metastable

transitions are generated. T is usually chosen so that theMTBF is at least ten times the expected life of the

product (Ginosar, 2003). This is usually satisfied by setting T to be one clock period.

To guarantee that data is transferred regardless of the relative clock frequencies of the transmitter and

receiver, bidirectional synchronised handshaking is required (Ginosar, 2003). Such a circuit is shown in

Figure 5.4. As the data is latched at the sending end, the Request line is toggled to indicate that new data is

available. This Request signal is synchronised using two flip-flops. The resolution time is one clock period

less the propagation delay of the exclusive OR gate and the setup time on the clock enable of the data latch.

The exclusive OR gate detects the transition on the Request line, which is then used to enable the clock on

the data latch (the data from the sending clock domainwill have been stable for at least one clock cycle and

does not require separate synchronisation), and provides a single pulse out on the Data Available line. An

Acknowledge signal is sent back to the sending domain,where again it is synchronised and aData Received

pulse generated. It is only after this signal has been received that new data may be safely latched into the

sending register. Otherwise, new datamay overwrite the old in the sending data register before the contents

have been latched at the receiver.

This whole process can take either three or four clock cycles of the slowest clock domain, limiting the

throughput to this rate. If the sending domain is always slower, then the acknowledgement logic may

be saved by limiting the input to send every three clock cycles. The danger with this, though, is that if the

clock rates are later changed, the synchronisation may no longer be valid (Ginosar, 2003).

An alternative approach based on using dual-port fabric RAM as a form of FIFO buffer is shown in

Figure 5.5. The RAM has one port in each clock domain and enables data to be queued while the

synchronisation signal is sent from one domain to the other. This enables a sustained throughput of one

data element per slow clock cycle. Themost significant bit of the sending domain’s address counter is sent

across the domain boundary using a pair of synchronisation flip-flops to resolvemetastability. This is then

used to indicate when one block of data (half of the RAM) is available and the receiver can start to read.

A small amount of logic prevents the address counter from addressing past the end of the available block.

To provide safe transfer regardless of which clock domain is slower, both address counters should be

interlinked to make access to the two halves of the address space mutually exclusive.

CE

CE CE

Sending clock domain Receiving clock domain

Request

Acknowledge

Data
Available

Data
Received

Latch
Data

Figure 5.4 Bidirectional handshaking circuit for data synchronisation across clock domains.

112 Design for Embedded Image Processing on FPGAs

5.2 Memory Bandwidth Constraints

Some operations require images to be partially or wholly buffered. While current high-capacity devices

have sufficient on-chipmemory to buffer a single image, inmost applications it is poor use of this valuable

resource to simply use it as an image buffer. For this reason, image frames and other large data sets are

more usually stored in off-chip memory. This effectively places large amounts of data behind limited

bandwidth and serialised (at the data word level) connections.

For this reason, it is essential to process as much of the data as possible while it passes through the

FPGA, and to limit the data traffic between the FPGA and external devices. The standard software

approach is to read each pixel required by an operation from memory, apply the operation and write the

results back to memory. This is then repeated for every pixel within the image. A similar process is

repeated for every operation that is applied to the image. The continual reading from and writing to

memory may be avoided in many places by using a pipelined stream processing architecture.

Some operations cannot achieve this andmay require an appropriate design of thememory architecture

to overcome bandwidth problems. Other operations may be modified to cache data that is reused. For

example, row buffering is a form of caching where pixel values read at one time are saved for reuse when

processing subsequent rows.

5.2.1 Memory Architectures

The simplest way to increase memory bandwidth is to have multiple parallel memory systems. If each

memory system has separate address and data connections to the FPGA, then each can be accessed

independently and in parallel.

The crudest approach is to havemultiple copies of the image in separate memory banks. Each bank can

then be accessed independently to read the required data. For off-chipmemory this is not themostmemory

efficient architecture, but it can be effective for on-chip caching when multiple processors require

independent access to the same data.

With many operations, it is likely that adjacent pixels need to be accessed simultaneously.

By partitioning the address space over multiple banks, for example using one memory bank for odd

addresses and one for even addresses, adjacent addresses may be accessed simultaneously. This can be

applied to both the row and column addresses, so, for example, four banks could be used to access the four

pixels within a 2� 2 block (top panel of Figure 5.6). Rather than simply partitioning the memory, the

addresses may be scrambled to enable a larger number of useful subsets to be accessed simultaneously

(Lee, 1988; Kim and Kumar, 1989). For example, the bottom panel of Figure 5.6 enables four adjacent

pixels in either a row or a column to be accessed simultaneously. It also allows the main diagonal and the

anti-diagonal of a 4� 4 block, and many (but not all) 2� 2 blocks to be accessed concurrently (Kim and

Sending domain Receiving domain

Block
Available

Addr Addr

MSB

Figure 5.5 Transfer from a slower sending domain using a dual-port RAM.

Mapping Techniques 113

Kumar, 1989). It is not possible to have all 4� 1, 1� 4 and 2� 2 blocks all simultaneously accessiblewith

only four memory banks. This can be accomplished with five banks, although the address logic is

considerably more complex as it requires division and modulo 5 remainders (Park, 1986). In addition to

the partitioning and scrambling logic, a series ofmultiplexers is also required to route the address and data

lines to the appropriate memory bank.

A further approach to increasing bandwidth is to increase thewordwidth of thememory. Eachmemory

access will then read or write several pixels. This is effectively connecting multiple banks in parallel but

using a single set of address lines common to all banks. Additional circuitry, as shown in Figure 5.7, is

usually required to pack the multiple pixels before writing to memory, and to unpack the pixels after

reading, which can increase the propagation delay or latency of this scheme. Data packing is effective

when pixels that are required simultaneously or on successive clock cycles are packed together. This will

be the case when reading or writing streamed images.

Another common use ofmultiplememory banks is bank switching or double buffering. Bank switching

is used between two successive image processing operations to decouple thememory access patterns. This

makes it usefulwhen pipelining randomaccess image processing operations, orwith the hybrid processing

mode to connect between stream processing and random access processing. It uses two coupled memory

banks, as shown in Figure 5.8. The upstream process has access to one bank to write its results while the

downstream process accesses data fromwithin a second bank.When the frame is complete, the role of the

two banks is reversed, making the data just loaded by the upstream process available to the downstream

process. Bank switching therefore adds one frame period to the latency of the algorithm.

If the upstream and downstream processes have different frame rates, or are not completely

synchronised, then the two processes will want to swap banks at different times. If the bank switching

is forced by one process when the other is not ready, this can result in tearing artefacts, with part of

Row

Row

Column

Column

Memory address

Memory address

B
ank

B
ank

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

Column

Column

R
ow

R
ow

Scrambled

Simple
partitioning

Figure 5.6 Memory partitioning schemes. Top: simple partitioning allows access of 2� 2 blocks;

bottom: scrambling the address allows row, column and main diagonal access.

Off-chip

RAM

Figure 5.7 Packing multiple pixels per memory location.

114 Design for Embedded Image Processing on FPGAs

the frame containing old data and part new. This problem may be overcome by triple buffering, using a

third bank to completely separate the reading and the writing (Khan et al., 2009). This has the obvious

implication of increasing the component count of the system and will use a larger number of I/O pins.

Bandwidth can also be increased by using multiport memory. Here the increase is gained by allowing

two or more concurrent accesses to the same block of memory through separate address and data ports.

While this is fine in principle, in practise it is not used with external memory systems because multiport

memory is more specialised and consequently considerably more expensive.

A more practical approach to mimic multiport memory is to run the memory at a higher clock speed

than the rest of the system. The resulting designwill allow two or three accesses tomemorywithin a single

system clock period. The memory clock should be synchronised with the system clock to avoid

synchronisation issues. Double data rate (DDR) memory is one example of memory that allows two

data transfers per clock cycle, using both the falling and rising edges of the clock. A higher frequency

RAM clock is only practical for systems with a relatively low clock speed, or with high speed memories.

Alternatively, the complete design could be run at the higher clock speed, with the data entering the

processing pipeline every several clock cycles. Such approaches are called multiphase designs, with

several clock cycles or phases associated with the pixel clock. Multiphase designs not only increase

the bandwidth, but can also reduce computational hardware by reusing the hardware in different phases.

The extreme is multiphase design is the Tabula ABAX FPGA, where the complete logic of the FPGA is

changed in each of up to eight phases (Section 2.4.6).

5.2.1.1 Memory Technologies

It is generally best to use static memory for frame buffers, especially where they are accessed randomly

and frequently. Static memory is faster than dynamic memory and is usually lower power. However,

because it uses six transistors per bit rather than the one used by dynamic memory it is also more

expensive. Many modern high speed static memories have been designed for use as instruction and data

caches for high end serial computers. Consequently, they operate best in a burst mode and can take one or

more clock cycles to switch between reading and writing (bus turnaround). Zero bus turnaround (ZBT)

memories are designed with no dead period, enabling true low latency random access. This makes them

easier to interface to an application, making them a good choice for frame buffers.

Dynamic memory is better for large volumes of data where there is not a strict time constraint. This is

because dynamic memory is slower and generally requires several clock cycles latency from when the

address is supplied to when the data is available. Dynamic memories have their highest bandwidth when

operated in burst mode, with a series of reads or writes on the same row. They are also significantly harder

to interface to for two reasons. They must be refreshed periodically (usually every 64ms) by accessing

every row once within this period. The internal structure means that when a row is accessed, all values on

that row are available internally, with the column address selecting the entry on the row. Because of this

Bank

1

Bank

2

Select

Downstream

process

Upstream

process

Figure 5.8 Bank switching or double buffering.

Mapping Techniques 115

segmented address structure, the row address is required before the column address. Usually, the row and

column addresses share the same pins. All of these factors mean that some form of caching may be

required to smooth the flow of data to or from the memory.

5.2.2 Caching

A cache memory is a small memory located close to a processor that holds data loaded from an external

data source, or results that have been previously calculated. It provides rapidly accessible temporary

storage for data that is usedmultiple times. The benefit of a cache is that it has faster access than re-reading

the data from external memory (or hard disk) or recomputing the data from original values.

On an FPGA, a cache can be used to buffer accesses to external memory, particularly memory with a

relatively long latency or access time, or operates in burst mode. In this capacity, it can also be used to

smooth the flow of data between off-chip memory and the application. The cache can significantly reduce

the bandwidth required between the FPGA and memory if the data in the cache is used multiple times

(Weinhardt and Luk, 2001a). In some applications, the cache is positioned between the processor and the

mainmemory, as shown in Figure 5.9, with accesses made to the cache rather than thememory. The cache

controller in this case is then responsible for ensuring that the required data will be available in the cache.

A separate cache is often used to hold the results to bewritten back to memory.With some operations, for

example clustering or classifier training algorithms, the taskmay be accelerated by usingmultiple parallel

processors working independently from the same data. Since the block RAMs on the FPGA can all be

accessed independently, the cache bandwidth can be increased by having multiple separate copies of the

cached data (Liu et al., 2008), one for each process. This allows each process to access the data without

conflict with other processes.Whether there is a single results cache or multiple distributed results caches

will depend primarily on how the results are reused by the processes. In Figure 5.9 it is assumed that results

are only reused locally.

One possible structure for the caches is an extended FIFO buffer.With a conventional FIFO buffer, only

the item at the head of the buffer is available, andwhen it is read it is removed from the buffer. However, if

the access and deletion operations are separated, and the addressingmade external so that not just the head

of the buffer is accessible, then the extended FIFO buffer can be used as a cache (Sedcole, 2006).With this

arrangement, data is loaded into the buffer in logical blocks. Addressing is relative to the head of the

buffer, allowing local logical addressing and data reuse.When the processing of a block is completed, the

whole block is removed from the head of the FIFO buffer, giving the next block the focus.

Another arrangement is to have the cache in parallel with the external memory, as shown in Figure 5.10,

rather than in series. This allows data to be read from the cache in parallel with thememory, increasing the

bandwidth. The cache can be loaded either by copying the data as it is loaded from memory or by the

process explicitly saving the data that it may require later into the cache.

Off-chip
RAM

Input
Cache

Results
Cache

Processes

Off-chip
RAM

Input
Cache

Input
Cache

Input
Cache

Results
Cache

Results
Cache

Results
Cache

Process Process Process

Figure 5.9 Caching as an interface to memory. Left: a single cache is shared between processes; right:

data is duplicated in multiple input caches, but each process has a separate results cache.

116 Design for Embedded Image Processing on FPGAs

5.2.3 Row Buffering

One common form of caching is row buffering. Consider a 3� 3 window filter – each output sample is a

function of the nine pixel values within the window. Without caching, nine pixels must be read for each

window position (each clock cycle for stream processing) and each pixel must be read nine times as the

window is scanned through the image. Pixels adjacent horizontally are required in successive clock cycles,

so may be buffered and delayed in registers. This reduces the number of reads to three pixels every clock

cycle. A row buffer caches the pixel values of previous rows to avoid having to read the pixel values in again

(Figure 5.11).A 3� 3filter spans three rows, the current row and twoprevious rows; a newpixel is read in on

the current row, so two row buffers are required to cache the pixel values of the previous two rows.

Each row buffer effectively delays the input by one row. An obvious implementation of such a digital

delay would be to use an N-stage shift register, where N is the width of the image. There are several

problems with such an implementation on an FPGA. Firstly, a shift register is made up of a chain of

registers, where each bit uses a flip-flop. Each logic cell only has one flip-flop, so a row buffer would use a

significant proportion of the FPGAs resources. Some FPGAs allow the logic cells to be configured as shift

registers. This would use fewer of the available resources, since each cell could provide a delay of up to 16

(or 32 for the Virtex 5; Xilinx, 2008f) clock cycles.

A better use of resources would be to use a block RAM as a row buffer. Block RAMs cannot be directly

configured as shift registers (one exception is Altera’s Cyclone and Stratix devices), although most of the

newer FPGAs can configure them as FIFO buffers, which can be arranged to provide an equivalent

functionality. Those that natively provide FIFO buffers will automatically manage the addressing of the

RAM. Otherwise, a FIFO buffer may be built from a dual-port memory, as shown in Figure 5.12. Two

counters are needed, one for providing the address for writing to the memory and one for reading.

Thememory is used as a circular buffer, with the first address appearing sequentially after the last address

within the memory. For blocks of memory that are a power of two long, this is achieved by allowing the

address counters to wrap around. If the memory is other than a power of two long, then the counter has to

Off-chip
RAM

Cache Cache

Process Process

Off-chip
RAM

Figure 5.10 Parallel caches.

Scan

Window

Row buffer

Row buffer

Window

Input stream

Figure 5.11 Row buffering caches the previous rows so they do not need to be read in again.

Mapping Techniques 117

bemodified to reset to 0 after the last address is reached. A small amount of logic is also required to detect

when the buffer is full or empty, although for use as a row buffer this is not necessary. The buffer is empty

when the read and write addresses are identical, and full if incrementing the write address would make it

equal to the read address.

A FIFO buffer can be used as a shift register as follows. Assume that the buffer is initially empty.

A series of N writes to the FIFO buffer will advance the write position to N locations ahead of the read

position. Then, if a read and write are preformed simultaneously every clock cycle, the value read will be

delayed from that written byN clock cycles. If the counters are provided explicitly, then resetting the read

counter to 0 and the write counter to N would create an N-stage shift register. Since both counters are

incremented at the same time, a single counter could be used, with an adder to offset it byN to get thewrite

address. If the size of the RAM is exactly the same as the width of the image then the read address will

always be the same as the write address, simplifying the circuit further.

Note thathavingmultiplebuffers inparallel, suchas inFigure5.11, is thesameasasinglebufferbutwitha

wider data path. If implemented using separate RAM blocks, the address counters may be shared.

In many applications, it is necessary to maintain a column address, even if only for the purposes of

reading from or writing to a frame buffer. This column address may be used to index the buffer rather than

using a separate counter. The buffer is then no longer circular, but is automatically indexed to the current

position in the image.

5.2.4 Other Memory Structures

With current technologies, memory is inherently a serial device. Although internally, data is stored in

parallel, with a separate latch (or capacitor for dynamic memory) per bit stored. (While somemore recent

dynamic RAMs can store multiple bits per capacitor using different levels, this does not affect

the argument here.) However, the addressing and access mechanisms mean that only one memory

location can be selected for reading or writing at a time. Multiple data items can, therefore, only be

accessed serially.

FIFO and circular buffers have been described in some detail in the previous section on row buffering.

A FIFO buffer allows data items to be visited twice, the first time when the data items are loaded into the

buffer, and the second time when they are retrieved.

Other useful memory structures are stacks, linked lists, trees and hash tables.

5.2.4.1 Stacks

Stacks also allow data items to be visited twice, although the second time the items are accessed in the

reverse order. Items are pushed onto a stack by storing them in successive memory locations. When an

AddrW
CE

AddrR
CE

1 1=

=

Dual-port
RAM

Write

Full

Datain Dataout

Read

Empty
CE CE

Figure 5.12 Circular memory based FIFO buffer. The full and empty detection logic is not required for

use as a row buffer.

118 Design for Embedded Image Processing on FPGAs

item is popped from the stack, the most recently saved item is retrieved first. Stacks are, therefore, a form

of first-in last-out or last-in first-out queue.

A stack can be implemented using a single-port memory, combinedwith a single address counter as the

stack pointer, SP, as shown in Figure 5.13. It is usual for the stack pointer to address the next available free

location. A push writes to the top of stack, as pointed to by SP and increments the stack pointer to point to

the next free location. A pop needs to decrement the stack pointer before reading to access the data on the

top of the stack.

In the implementation shown above, a multiplexer is used to add either 1 or �1 to SP depending on

whether a Push or Pop operation is used respectively. A Push uses SP directly as the RAM address,

whereas a Pop uses the decremented SP as the address. The stack is empty if the address is zero; in this

condition, a Pop is not allowed because there is nothing left on the stack to pop. Note that the test for zero

can be implemented by simply taking the NOR of all of the bits. The stack is full after the last memory

element is written. Incrementing SP will wrap it past the end. This is prevented by making SP one bit

longer than needed to address the memory. The stack is then full when the most significant bit of SP is set.

5.2.4.2 Linked Lists

A linked list is useful for maintaining a dynamic collection of data items. Each item is stored in a separate

location in the memory; however, successive items are not necessarily in sequential memory locations.

Associated with each item is a pointer to the next item (a pointer to an item is just the memory address of

that item), resulting in an implicit ordering of the itemswithin the list. Linked lists have an advantage over

arrays when inserting an item into the list. To insert an item into an array, all the successive items in the

array must be moved to new memory locations to make space at the appropriate position in the array.

However, with a linked list, the new item can be stored in any free memory location and the pointers

adjusted to put it into the correct place in the sequence. Similarly, when deleting an item from an array, all

subsequent itemsmust be shifted back.With a list it is only necessary to adjust the pointers to skip the item

that is removed.

The first item in the list is called the head of the list. The last item in the list has a null pointer, Ø,

indicating that there is no next item. On software systems, 0 is often used as the null pointer because 0 is

not usually a valid data address. However, on FPGAs 0 usually is a valid data address. This may be

resolved either by using a separate flag to indicate a null pointer, or by not using location 0 to hold data.

The former approach requires one extra bit per pointer to contain the null pointer flag but it doesmean that

only one bit needs to be tested to determine if it is a null pointer. Not using location 0 reduces the number of

items that may be stored in a block of memory by one item and a null pointer can be tested by checking if

all bits are 0.

1

0
-1

SP
CE

CE R/W

RAM

Data

Push

Pop

=

Full

Empty

Figure 5.13 Implementation of a stack.

Mapping Techniques 119

One problem with linked lists is keeping track of which memory locations are free. There are two

approaches to solving this problem. One is to maintain a series of one bit registers indicating that a

memory location is free. Associated with this is a priority encoder to translate the first 1 into the

corresponding address. While this is suitable for short lists, it can quickly get expensive as the address

space gets larger. A second approach is to reuse the linkingmechanism tomaintain a second list of unused

entries. This requires that the memory be initialised with the links before being used.

Inserting newdata into a list requires fourmemory accesses (Figure 5.14).Assume that it is necessary to

insert the new data item,D4, afterD2 and that there is currently a pointer toD2. Also assume that unused

entries are in a list pointed to byFree. The first access is to read the pointer associatedwithD2 (the pointer

to D3). The pointer is then changed to point to the head of the free list (which will become the new data

item), and iswritten back toD2. The item pointed to by the head of the free list (the pointer associatedwith

F4) becomes the new head, so it must be read from the memory. Finally, the new data and pointer toD3 is

written to the new element.

To implement even this relatively simple operation on an FPGAwould require a finite state machine to

sequence each of the steps. The controlling state machine would require a series of branches to manage

each different operation: initialisation, traversing a list, insertion and deletion. Since each operation will

require several clock cycles, it will be necessary to include synchronisation logic between the linked list

and the rest of the design.

Note that the sequential ordering means it is necessary to insert an item either after a specified item in

the list or at the head of the list. Items cannot be directly inserted before a specified item because there is no

direct reference to the previous item in a list. The previous item points to the specified item; to insert an

entry this pointer needs to be changed to point to the new item. With a singly linked list, the only way to

locate the previous item is to sequentially scan through the list from the head.

This limitation can be overcome by using a doubly linked list; this has bidirectional links, to both the

previous and the next items in the list. Having the extra link also means that extra memory accesses are

required when inserting and deleting links. The extra pointer associated with each data item would also

require a wider memory.

5.2.4.3 Trees

Another data structure commonly used in computer vision to represent hierarchically structured data is a

tree. An example tree is shown on the left in Figure 5.15. The node at the top of the tree is called the root

node; node A is the root in this example. The nodes immediately below a node are called the child nodes.

For example,D,E andF are children ofB, andB is their parent. Nodes that have no children are leaf nodes.

In this example, D, F, G, I, J and K are the leaf nodes.

Free → F4 → F3 → F2 → F1 → Ø Free → F3 → F2 → F1 → Ø
Head → D1 → D2 → D3 → Ø Head → D1 → D2 → D4 → D3 → Ø

Free Free

Head Head

Ptr Ptr

F1 F1

F3 F3

F4 D4

D1 D1

D2 D2

D3 D3

F2 F2

ØØ
ØØ

Figure 5.14 Inserting an element into a linked list. Changed links are shown in bold.

120 Design for Embedded Image Processing on FPGAs

In a general tree, a node can have an arbitrary number of children. Therefore, it is inconvenient for a

node to point to all of its children. One general representation of a tree is as a form of two-dimensional

linked list. Every node has two pointers: one to its first child (or null if it is a leaf node) and one to its next

sibling. In thisway, all of the children of a node are contained in a linked list. This approach to representing

a tree is shown in Figure 5.15.

Note that this method is suitable for navigating from the root of a tree down to a node, but there is no

pointer from a child to its parent so navigating back up the tree is more difficult. This may be overcome by

using doubly linked lists, but would require every node to maintain three pointers. A more efficient

alternative in many applications is to use a separate memory structure to remember the context of a node.

When performing a depth-first traversal of the tree, a stack can be used to remember parent nodes. As the

link from a node to its first child is taken, a pointer to the node can be pushed onto a stack. Then to move

back up the tree after reaching a leaf, it is only necessary to pop the most recently visited parent from the

stack. The stack therefore provides the required link from a child back to its parent. If performing a

breadth-first search, it is more appropriate to use a FIFO queue. As a node is visited, if it has any children

the pointer to the first child node is stored in the queue. Thenwhen the last child is reached, the first entry in

the queue is the next node to visit.

One particular type of tree deserves special mention is a binary tree. It has at most two children, so for a

binary tree it is possible to (and indeed useful to) directly point to the two children rather than having a list

to represent the children.

5.2.4.4 Hash Tables

Asparse array is an arraywith a large address space, but only a small proportion of the array has data at any

one time. If the whole array is reserved, this can be wasteful of the memory resources available on an

FPGA.While thememory requirement of the arraymay be significantly reduced using a linked list or tree

to represent the occupied data elements, these structures incur a significant overhead of having to search

through the list or tree to find a particular element.

An alternative approach is to store the data using a hash table. As shown in Figure 5.16, the original

address is mapped using a hash function to a much smaller address space, that of the hash table, where the

data is actually stored. The reduction memory comes at the cost of evaluating the hash function. In most

applications, this cost can be lower than that of searching through a linked list or tree.

A good hash function is one that maps the different input addresses that are actually used to different

slots within the hash table. If the input addresses can be considered random, then a simple and effective

hash function can be to use a subset of the bits of the input address. However, if the set of input addresses is

likely to be clustered, then a good hash function will distribute these to quite different slots to reduce the

A

CB

FD HGE

JI K

A

CB

ED GF H

KI J

Ø

Ø

Ø

ØØØØØ

Ø Ø Ø Ø

Figure 5.15 A representation of a tree.

Mapping Techniques 121

chance that multiple input addresses will map to the same slot. For this reason, a common technique is to

base the hash function on a pseudorandom number generator, using the input address as the seed. This will

tend to map the input addresses randomly throughout the hash table.

Inevitably, though, therewill be address collisions, withmultiple input addressesmapping to a common

slots. There are two main approaches for resolving such collisions. One is to store multiple elements per

slot, using a linked list for example. This requires additional data structures to the hash table. Another

alternative is to use a so-called open addressing scheme to store the data in the next available slot

(Peterson, 1957). Both methods require a search in the event of collisions. The search is kept small by

ensuring that the used slots are randomly distributed and the hash table is not too full. Open addressing is

sensitive to the fill factor of the hash table (the proportion of slots that are used) and it is generally better to

keep the maximum fill factor below about 75%. There are several advanced techniques (Askitis, 2009)

that can be used to increase the fill factor, but these generally come at the expense of more complex

hash functions.

A hash table can be considered as a form of associative memory. The sparse addressing of hash tables

makes them appropriate for implementing caches. When a hash table is used for a cache, whenever a

collision occurs the previous entry can be discarded, avoiding the need for searching.

The input addresses do not necessarily need to be memory locations, but could be strings or other

complex data structures that are reduced using the hash function to provide an index into the hash table.

5.3 Resource Constraints

The finite number of available resources in the system such as function blocks or local and off-chip RAM

imposes a constraint. On an FPGA, there may be a number of concurrent processes that need access to a

particular resource in a given clock cycle, which can result in contention, or undefined behaviour if both

are permitted access.

5.3.1 Resource Multiplexing

An expensive resource may be shared between multiple parts of a design by using a multiplexer. There

are three conditions required for this to be practical. Firstly, the cost of the resource must be less than

the cost of the multiplexers required to share the resource. For example, sharing an adder in most

instances is not practical because the cost of building a separate adder will usually be less that the cost

of the multiplexers required to share the adder. However, sharing a complex functional block may well

be practical. The second condition is that the resource must only be partially used in each of the

locations that it is used. If the instances of the resource are fully used, then sharing a single instance

between the multiple locations will slow the system down. The third consideration is the timing of

when the resource is required. If the resource must be used simultaneously in multiple parts of the

design, then multiple copies must be used.

Address Hash
function

Address

Hash
function
mapping

Hash
table

Figure 5.16 Address hashing. Left: original sparse address space; centre: using a hash function to

reduce address space; right: the mapping between address spaces by the hash function.

122 Design for Embedded Image Processing on FPGAs

The limitation of sharing a resource is that multiple simultaneous accesses to the resource are

prohibited. Sharing often requires associating some form of arbitration logic with the resource to manage

the access; some of the options for this are explored in more detail in the next section.

An option when only a few instances of a resource are required simultaneously with instances required

bymany tasks is to have a pool of resources. This approach is illustrated in Figure 5.17.When the resource

pool is shared by a large number of tasks, the multiplexing requirements can become prohibitive.

An alternative is to connect to the resources via busses. Note that the busses are additional resources that

must also be shared, because only one task or resource may use a bus at a time.

Sometimes, careful analysis of a problem can identify potential for resource sharing where it may

not be immediately obvious. Consider obtaining the bounding boxes of a set of objects from a

streamed input image consisting of labelled pixels, where the label indicates the associated object (see

also Section 11.1). Since each object can appear anywhere in the image, and the bounding boxes for

different objects may overlap, it is necessary to build the bounding boxes for each label in parallel.

The computational structure for performing this is shown on the left in Figure 5.18. This has a separate

processor for each label, building the bounding box for that label. A multiplexer is required on the

output to access the data for a particular label for downstream processing. Careful analysis reveals that

it is not the processor that needs to be separate for each label, because any given pixel input will have

only one label, but rather it is the data that must be maintained separately for each label. Only a single

bounding box processor is needed and this may be multiplexed between the different labels.

Equivalently, the data registers for each label need to be multiplexed for the single instance of the

bounding box processor. Multiplexing more than a few data registers can get quite expensive. Where

the memory bandwidth allows, an efficient alternative is to use a RAM rather than registers because

the RAM addressing effectively provides the multiplexing for free.

Task 1

Resource 1 Resource 2

Task 2 Task 3 Task 4

Task 1

Resource 1 Resource 2

Task 2 Task 3 Task 4

Figure 5.17 Sharing a pool of resources amongst several tasks. Left: using multiplexers; right:

using busses.

Data

Data

Data

Data

Data

Data

Data
RAM

Building the data Accessing
the data

Bounding
box processor

Bounding
box processor

Bounding
box processor

Bounding
box processor

Bounding
box processor

Figure 5.18 Sharing data with a resource. Left: processing each label with a separate bounding box

processor; right: sharing a single processor but with separate data registers, which can be efficiently

implemented using a RAM.

Mapping Techniques 123

5.3.1.1 Busses

The example in Figure 5.17 highlights one of the problems with using multiplexers to connect multiple

outputs to multiple inputs. Each input requires a multiplexer, with the width of the multiplexer dependent

on the number of outputs connected. The complexity is therefore proportional to the product of the number

of inputs and the number of outputs. This does not scale well as a new input or output is added.

Such growth in complexity may be overcome by using a bus as shown in the top of Figure 5.19. With a

bus, all of the inputs are connected directly to the bus,while the outputs are connected via a tri-state buffer.

Enabling an output connects it to the bus, while disabling it disconnects it. The logic scales well, with each

new device requiring only a tri-state buffer to connect.

This reduction in logic does not come without a cost. Firstly, with multiplexers, each connection is

independent of the others. A bus, however, is shared amongst all of the devices connected to it.While a bus

does allow any output to be connected to any input (in fact it connects to all of the inputs), only one output

may be connected at a time. If multiple outputs attempt to connect simultaneously to the bus, this could

potentially damage the FPGA (if the outputs were in opposite states). Therefore, an additional hidden cost

is the arbitration logic required to control access to the bus.

In
In

In
In

In In In In

In
In

O
ut

O
ut

O
ut

O
ut

O
ut

O
ut

O
ut

O
ut

O
ut

O
ut

E
nable

E
nable

E
nable

E
nable

E
nable

E
nable

E
nable

E
nable

E
nable

E
nable

In
In

O
ut

O
ut

E
nable

E
nable

Bus

Bus

Distributed
multiplexer cell

Figure 5.19 Bus structures. Top: connecting to the bus with tri-state buffers; middle: implementing

a bus as a distributed multiplexer; bottom: implementing a bus as a shared multiplexer. (Sedcole, 2006;

reproduced by permission of P. Sedcole.)

124 Design for Embedded Image Processing on FPGAs

Unfortunately, not many FPGAs have an internal bus structure with the associated tri-state buffers.

An equivalent functionality may be constructed using the FPGAs logic resources (Sedcole, 2006), as

shown in themiddle of Figure 5.19. The bus is replaced by two signals, one propagating to the right and the

other to the left. An enabled output from a device isORed onto both signals, to connect it to devices in both

directions. An input is taken as the OR of both signals. Such an arrangement is effectively a distributed

multiplexer; if the expression on the input is expanded, it is simply the OR of the enabled outputs.

If multiple outputs are enabled, the signal on all of the inputs may not bewhat was intended, but it will not

damage the FPGA.

The disadvantage of the distributed multiplexer is that it requires the devices to be in a particular

physical order on the FPGA. This was not a problem where it was initially proposed – for connecting

dynamically reconfigurable functional blocks to a design (Sedcole, 2006). There the logic for each block

connecting to the ‘bus’ was constrained to a particular region of the FPGA. For general use, a bus may be

simply constructed using a shared multiplexer, as shown in the bottom of Figure 5.19.

When a bus is used to communicate between processes, it may be necessary for each process to

have a FIFO buffer on its both its input and output (Sedcole, 2006). Appropriately sized buffers

reduce the time lost when stalled waiting for the bus. This becomes particularly important with high

bus use to cope with time varying demand while maintaining the required average throughput for

each process.

5.3.2 Resource Controllers

There are potential resource conflicts whenever a resource is shared between several concurrent blocks.

Any task that requires exclusive access to the resource can cause a conflict. Some common examples are:

. Writing to a register: Only one block may write to a register in any clock cycle. The output of the

register, though, is available to multiple blocks simultaneously.
. Accessingmemory,whether reading orwriting:Amultiportmemorymayonly have one access per port.

The different ports may write to different memory locations, writing to the same location frommultiple

ports will result in undefined behaviour.
. Sending data to a shared function block for processing: Note that if the block is pipelined, it may be

processing several items of data simultaneously, each at different stages within the pipeline.
. Writing to a bus:While a busmay be used to connect to another resource, the bus is a resource in its own

right, since only one output may write to the bus at a time.

Since the conflicts may occur between quite different parts of the design that may be executing

independently, none of these conflicts can be detected by a compiler. The compiler can only detect

potential conflicts through the resource being connected in multiple places and, as a result, it builds the

multiplexer needed to connect to the shared resource. The conflicts are run-time events; therefore, they

must be detected and resolved as they occur.

A good design principle is to reduce the coupling as much as possible between parallel sections of an

algorithm. Thiswill tend to reduce the number of unnecessary conflicts. However, some coupling between

sections is inevitable, especially where expensive resources are shared.

One way of systematically managing the potential conflicts is to encapsulate the resource with a

resourcemanager (Vanmeerbeeck et al., 2001) and access the resourcevia a set of predefined interfaces, as

shown in Figure 5.20. If necessary, the interface should include handshaking signals to indicate that a

request to access the resource is granted. Combining the resource with its manager in this way makes the

design easier to maintain, as it is only the manager process that interacts directly with the resource. It also

makes it easier to change the conflict resolution strategy because it is in one place, rather than distributed

throughout the code wherever the resource is accessed.

Mapping Techniques 125

For example, Figure 5.21 shows a possible implementation of the double-buffered bank switching

introduced in Figure 5.8. In this example, the conflict resolution mechanism is scheduled separate

access, so no handshaking is required. The State variable controls which RAM bank is being written to

and which is being read from at any one time. The specific banks are hidden from the tasks performing

the access. The upstream task just writes to the write port as though it was ordinary memory, and the

resource controller directs the request to the appropriate RAM bank. Similarly, when the downstream

task reads from the buffer, it is directed to the other bank. The main difference between access via the

controller and direct access to a dedicated RAM bank is the slight increase in propagation delay through

the multiplexers.

A CSP model (Hoare, 1985) is another approach for managing the communication between the

resource controller and the processes that require access to the resource. This effectively uses a channel for

each read and write port, with the process blocking until the communication can take place. The blocking

is achieved in hardware by using a handshake signal to indicate that the data has been transferred.

Req

Req

Req

Ack

Ack

Ack

Data

Data

Data

Conflict
Arbitration

Interfaces

Resource manager

Resource

Figure 5.20 Encapsulating a resource with a resource manager simplifies the design.

Req Req

Data Data

Addr

Control

Addr

Write
port

Read
port

ADDR ADDRDATA DATAR/W R/WCE CE

RAM 1 RAM 2

State

Figure 5.21 Resource manager for bank switched memories.

126 Design for Embedded Image Processing on FPGAs

5.3.2.1 Conflict Arbitration

A conflict occurs when multiple processes attempt to access a resource at the same time. If there is no

conflict resolution in place, the default will be for all of the processes to access the resource

simultaneously. The multiplexers used to share the resource will prevent any physical damage to the

FPGA (although care needs to be takenwith busses).However, themultiple selectionswill be combined in

a manner that depends on the multiplexer design (Figure 4.7). Generally, this will have undesired results

and could be a cause of bugs within the algorithm that could be difficult to locate.

With conflict resolution, only one process will be granted access to the resource and the other processes

will be denied access. These processesmust wait for the resource to become free before continuing.While

it may be possible to perform some other task while waiting, this can be hard to implement in practise. In

some circumstances, it may be possible to queue the access (for example using a FIFO buffer) and

continue if processing time is critical. It is more usual, however, simply to stall or block the process until

the resource becomes free.

The simplest form of conflict resolution is scheduled access.With this, conflict is avoided by designing

the algorithm such that the accesses are separated or scheduled to occur at different times. In the bank-

switch example above, accesses to each bank of RAM are separated in time. While data is being stored in

one bank, it is being consumed from the other. At the end of the frame, the control signal is toggled to

switch the roles of the banks.When stream processing is used, a shared resourcemay be available to other

processes during the horizontal or vertical blanking periods. Ifmultiple processes need to use the resource,

simple synchronisation mechanisms may be used to pass access from one process to the next.

Scheduled access can also be employed at a fine grain by using a multiphase pipeline. Consider

normalising the colour components of YCbCr data (Johnston et al., 2005b) (on the left in Figure 5.22):

each of Cb and Cr are divided by Y to normalise for intensity as part of a stream processing pipeline:

Cbn ¼ Cb=Y
Crn ¼ Cr=Y

ð5:3Þ

The divider is a relatively expensive resource, so sharing its access may be desirable. Since the pixel clock

is often slow compared with the capabilities of modern FPGAs, the clock frequency can be doubled,

creating a two-phase pipeline. New data is then presented at the input (and is available at the output) on

every second clock cycle. However, with two clock cycles available to process every pixel, the divider

(and other resources) can now be shared, as shown on the right in Figure 5.22. In one phase,Cb is divided

by Y and stored in Cbn, and in the other phase Cr is similarly processed. If necessary, the divider can be

pipelined to meet the tighter timing constraints, since each of Cb and Cr are being processed in separate

clock cycles. It is only necessary to use the appropriate phase of clock to latch the results into the

corresponding output register.

When the processes are able to be synchronised, scheduled access works well and is easy to implement.

However, scheduling requires knowing in advancewhen the accesses will occur. It is difficult to schedule

asynchronous accesses (asynchronous in the sense that they can occur in any clock cycle; the underlying

resources must be in one clock domain so are still driven by a common clock).

Y Yn

Cr Crn

Cb Cbn

÷

Phase

Y Yn

Cr Crn

Cb Cbn

÷

÷

CE

CE

Figure 5.22 Sharing a divider in a two-phase pipeline.

Mapping Techniques 127

With asynchronous accesses, it is necessary to build hardware to resolve the conflict. The type of

hardware required depends on the duration of the access. If the duration is only a single clock cycle, then

relatively simple conflict resolution such as a simple prioritised acknowledgement (left panel of

Figure 5.23) may be used. With a prioritised access, different parts of the algorithm have different

priority with respect to accessing a resource. The highest priority section is guaranteed access, while a

lower priority section can only gain access if the resource is not being used by a higher priority section.

That is:

Acki ¼ Reqi ^ _i�1

j¼1
Reqj

� �
ð5:4Þ

where a smaller subscript corresponds to a higher priority. The implementation shown in Figure 5.23 is

suitable for providing a clock enable signal for a register or some other circuit where the output is sampled

on the clock. This is because the propagation delays of the circuit generating the Req signals mean that

there can be hazards on the Ack outputs. If such hazards must be avoided, then the Ack outputs can be

registered, delaying the acknowledgement until the following clock cycle.

One example of a prioritised access is the prioritisedmultiplexer shown in the right panel of Figure 5.23.

The output will correspond to the highest priority selected input. This could be used, for example, in

selecting the pixel to display. Only one pixel may be displayed at any location and a standard multiplexer

would combine the pixel values if multiple inputs were selected. By assigning each source a priority, only

a single valuewill be selected. This effectively creates a series of layers or overlays on the display, with the

background (lower priority) layers only being visible when a foreground layer is not selected.

Another example of prioritised access is lookahead caching. Consider a streamed operation that

requires zero, one or two accesses tomemory in a clock cycle depending on the local context.Also assume

that the average number of memory accesses per clock cycle is less than or equal to one. The operation

maybe split into twoprocesses: one that produces the streamed output at one pixel per clock cycle, and one

that looks ahead to where two accesses are required and preloads one of those values into a cache. The

output processwill have the higher priority formemory access because itmust produce its streamed output

on time. The cache process, however, can access memory whenever the output process does not require it.

If the conflict duration is for many clock cycles, then a semaphore is required to lock out other tasks

while one task has access. Equation 5.4 then becomes:

Acki ¼ Reqi ^ _i�1

j¼1
Reqj

� �
^ Sema _ Release
� � ð5:5Þ

Req1

Req2

Req3

Req4

Select1
Ack1

Ack2

Ack3

Ack4

Data1

Select2
Data2

Select3
Data3

Select4
Data4

Out

Figure 5.23 Priority-based conflict resolution. Left: a simple prioritised acknowledgement; right: a

prioritised multiplexer.

128 Design for Embedded Image Processing on FPGAs

where the first two terms determine the prioritised input as before. The third term selects the prioritised

input if either the semaphore, Sema, is not set or when the semaphore is released. In the latter case, the

highest priority waiting task is then acknowledged. Sema is effectively a flag that indicates whether a

resource is currently being used (on the left in Figure 5.24). Any request will set the semaphore,whichwill

remain set until released. The new value of the semaphore, Sema0, is:

Sema0 ¼ _N
j¼1

Reqj

� �
_ Sema ^ Release
� � ð5:6Þ

When a request is acknowledged, the semaphore is set, which prevents further requests from being

acknowledged. Note that this also means that the Ack output only goes high for one clock cycle to

acknowledge the request. Again, with this circuit there may be hazards on the Ack outputs, which may be

removed if necessary by adding a register on each output.

If it is necessary to know which task has the semaphore, one method is to hold the corresponding Ack

output high while that task has access. This requires a separate flag for each task, as shown on the right in

Figure 5.24, where each flag is set by:

Acki
0 ¼ Reqi ^ _i�1

j¼1
Reqi

� �
^ _N

j�1
Ackj _ Release

� � !
_ Acki ^ Release
� � ð5:7Þ

This works on the same principle as before, with any of the semaphores blocking the requests until the

Release input is asserted. With this circuit, once a lower priority task gains the semaphore, it will block a

high priority task. If necessary, itmay bemodified further to enable a high priority task to pre-empt a lower

priority task:

Acki
0 ¼ _i�1

j¼1
Reqi ^ Reqi ^ _i�1

j¼1
Ackj

� �
_ Reqi ^ Releaseð Þ _ Acki ^ Release

� �� �
ð5:8Þ

Care must be taken when using semaphores to prevent deadlock. A deadlock may occur when the

following four conditions are all true (Coffman et al., 1971):

. Tasks claim exclusive control of the resources they require.

. Tasks hold resources already allocated while waiting for additional resources.

Req1

Req2

Req3

Req4

Req1

Req2

Req3

Req4

Ack1

Ack2

Ack3

Ack4

Release ReleaseSema

Ack1

Ack2

Ack3

Ack4

Figure 5.24 A prioritised semaphore. Left: a single semaphore flag; right: a separate flag for each task,

to indicate which task currently has the semaphore.

Mapping Techniques 129

. Resources cannot be forcibly removed by other tasks. Theymust be released by tasks using the resource.

. There isacircular chainof tasks,whereeach taskholds resources that arebeingrequestedbyanother task.

Deadlockmay be prevented by ensuring that any one of these conditions is false. For complex systems,

this is perhaps easiest achieved by requiring tasks to request all of the resources they require

simultaneously. If not all of the resources are available, then none of the resources are allocated. This

requires modification of semaphore circuit to couple the requests. It still does not necessarily avoid

deadlocks unless care is takenwith the priority ordering. For example, consider two tasks that both require

the same two resources simultaneously. If the priority order is different for the two resources, then,

because of the prioritisation, each taskwill prevent the other fromgaining one of the resources, resulting in

a deadlock.

5.3.3 Reconfigurability

In most applications, a single configuration is loaded onto the FPGA prior to executing the application.

This configuration is retained, unchanged, until the application is completed. Such systems are called

compile-time reconfigurable, because the functionality of the entire system is determined at compile time

and remains unchanged for the duration of the application (Hadley and Hutchings, 1995).

Sometimes, however, there are insufficient resources on the FPGA to hold all of a design. Since the

FPGA is programmable, the hardware can be reprogrammed or reconfigured dynamically, while still

executing an application. Such systems are termed run-time reconfigurable (Hadley and Hutchings,

1995). This requires the algorithm to be split into multiple sequential sections, where the only link

between the sections is the partially processed data. Since the configuration data for an FPGA includes the

initial values of any registers and the contents of on-chip memory, any data that must be maintained from

the old configuration to the new must be stored off-chip (Villasenor et al., 1996) to prevent it from being

overwritten. Unfortunately, reconfiguring the entire FPGA can take a significant time– large FPGAs

typically have reconfiguration times of tens to hundreds of milliseconds. This latency must be taken into

account in any application. With smaller FPGAs, the reconfiguration time may be acceptable (Villasenor

et al., 1995; 1996). The latency is usually less important when switching from one application to another,

for example between an application used for tuning the image processing algorithm parameters and the

application that runs the actual algorithm.

The time required to reconfigure the whole FPGA has spurred research into partially reconfigurable

systems, where only a part of the FPGA is reprogrammed. Partial reconfiguration has two advantages over

reconfiguring the entire FPGA. The first is that the configuration data for part of the FPGA is smaller than

that for the whole chip, so will usually take significantly less time to load than a complete configuration

file. It also has the advantage that the rest of a design can continue to operate while part of the design is

being reconfigured. Not all FPGAs are partially reconfigurable; the bitstream must be able to split into a

series of frames,with each frame including an address that specifies its target locationwithin the FPGA.At

present only some of the devices with the Xilinx range and the older Atmel AT40K support partial

reconfiguration.

Partial reconfiguration requires a modular design, as shown in Figure 5.25, with a static core and a

set of dynamic modules (Mesquita et al., 2003). The static core usually deals with interface and

control functions and holds the partial results, while the reconfigurable modules typically provide the

computation. The dynamic modules can be loaded or changed as necessary at run-time, a little

like overlays or dynamic link libraries in a software system (Horta et al., 2002). Only the portion

of the FPGA being loaded needs to be stopped during reconfiguration; the rest of the design can

continue executing.

Between the dynamic modules and the static core, a standard interface must be designed to

enable each dynamic module to communicate with the core or with other modules (Sedcole, 2006).

130 Design for Embedded Image Processing on FPGAs

Common communication mechanisms are to use a shared bus (Hagemeyer et al., 2007) or predefined

pipeline ports connecting from one module to the next (Sedcole et al., 2003). Both need to be in standard

locations to enable them to connect correctly when the module is loaded.

Two types of partial reconfiguration have been considered in the literature. One restricts the

reconfigurable modules to being a fixed size that can be mapped to a small number of predefined

locations. The other allows modules to be of variable size and be placed more flexibly within the

reconfigurable region. Themore flexible placement introduces two problems. Firstly, the heterogeneity of

resources restricts possible locations that a dynamic module may be loaded on the FPGA. The control

algorithmmust not only search for a space sufficiently large to hold amodule, but the spacemust also have

the required resources in the right place. Secondly, with the loading and unloading of modules, it is

possible for the free space to become fragmented. To overcome this, it is necessary to make the modules

dynamically relocatable (Koester et al., 2007). To relocate amodule (Dumitriu et al., 2009) it must first be

stopped or stalled, then disconnected from the core. The current state (registers andmemory)must be read

back from the FPGA, before writing the module (including its state) to a new location, where it is

reconnected to the core, and restarted.

Partial reconfigurability allows adaptive algorithms. Consider an intelligent surveillance camera

tracking vehicles on a busy road. The lighting and conditions in the scene can vary significantly with

time, requiring different algorithms for optimal operation (Sedcole et al., 2007). These different

subalgorithms may be designed and implemented as modules. By having the part of the algorithm that

monitors the conditions in the static core, it can select themost appropriatemodules and load them into the

FPGA based on the context.

Simmler et al. (2000) have taken this one step further. Rather than consider switching between tasks

that are part of the same application, they propose switching between tasks associated with different

applications running on the FPGA.Multitasking requires suspending one task and resuming a previously

suspended task. The state of a task is represented by the contents of the registers and memory contained

within the FPGA (or dynamicmodule in the case of partial reconfigurability). Therefore, the configuration

must be read back from the FPGA to record the state or context. To accurately record the state, the task

must be suspended while reading the configuration and while reloading it. However, not all FPGAs

support readback, and therefore not all will support dynamic task switching.

At present, the tools to support partial dynamic configuration are quite low level. Each module must be

developed with quite tight placement constraints to keep the module within a restricted region and to

ensure that the communication interfaces are in defined locations. The system core also requires similar

placement constraints to keep out of the reconfigurable region and to fix the communication interfaces.

Xilinx provides an internal configuration access port (ICAP) to enable an embedded CPU to dynamically

reconfigure part of the FPGA (Blodget et al., 2003). This can also be accessed directly by logic for partial

reconfiguration without requiring a CPU (Lai and Diessel, 2009).

Static core

D
ynam

ic
m

odule

D
ynam

ic
m

odule

D
ynam

ic
m

odule
Figure 5.25 Designing for partial reconfigurability. A set of dynamic modules ‘plug in’ to the

static core.

Mapping Techniques 131

Regardless of whether full or partial reconfigurability is used, run-time reconfigurability can be used to

extend the resources available on the FPGA. This can allow a smaller FPGA to be used for the application,

reducing both the cost and power requirements.

5.4 Computational Techniques

An FPGA implementation is amenable to a wider range of computational techniques than a software

implementation. Some of the computational considerations and techniques are reviewed in this section.

5.4.1 Number Systems

In any image processing computation, the numerical values of the pixels, coordinates, features and other

numerical datamust be represented andmanipulated. There is awide range of number systems that can be

used. A full discussion of the range of number systems and associated logic circuits for performing basic

arithmetic operations is beyond the scope of this book. The interested reader should refer to one of the

many good books available on computer arithmetic (for example Parhami, 2000).

Arguably, the most common representation is based on binary or base-two numbers. As shown in

Figure 5.26, a positive binary integer, B, is represented by a set of N binary digits, bi, where each digit

represents a successive power of two. The numerical value of the number is then:

B ¼
XN�1

i¼0

bi2
i ð5:9Þ

Inmost software representations,N is fixed by the underlying computer architecture at 8, 16, 32, or 64. On

an FPGA, however, there is no necessity to constrain the representation to these widths. In fact, the

hardware requirements can often be significantly reduced by tailoring the width of the numbers to the

range of values that need to be represented (Constantinides et al., 2001). For example, for a 640� 480

image the row and column coordinates can be represented by 9-bit and 10-bit integers respectively.

When representing signed integers, there are three common methods. The first is the sign-magnitude

representation. This uses a sign bit to indicate whether the number is positive or negative, and the

remainingN� 1 bits to represent the magnitude (absolute value) of the number. With this representation,

addition and subtraction are slightly complicated because the actual operation performed will depend on

the combination of sign bits and the relative magnitudes of the numbers. Multiplication and division are

simpler, as the sign andmagnitude bits can be operated on separately. The range of numbers represented is

from �ð2N�1�1Þ to 2N�1�1. Note that there are two representations for zero: �0 and þ 0.

The two’s complement representation is the formatmost commonly used by computers. Numbers in the

range �2N�1 to �2N�1�1 are represented modulo 2N, which maps the negative numbers into the range

2N�1 to �2N�1. This is equivalent to giving the most significant bit a negative weight:

B ¼ �bN�12
N�1 þ

XN�2

i¼0

bi2
i ð5:10Þ

b7 b6 b5 b4 b3 b2 b1 b0

27 26 25 24 23 22 21 20

Figure 5.26 Binary number representation.

132 Design for Embedded Image Processing on FPGAs

Therefore, negative numbers can be identified by a 1 in the most significant bit. Addition and subtraction

of two’s complement numbers is exactly the same as for unsigned numbers, which is why the two’s

complement representation is so attractive. Multiplication is a little more complex; it has to take into

account that the most significant bit is negative.

The third representation is offset binary, where an offset or bias is added to all of the numbers:

B ¼ Offsetþ
XN�1

i¼0

bi2
i ð5:11Þ

where Offset is usually (but not always) 2N�1. Offset binary is commonly used in image processing to

display negative pixel values. It is not possible to display negative intensities, so offsetting zero to mid-

grey shows negative values as darker and positive values as lighter. Offset binary is also frequently used

withA/Dconverters to enable them to handle negativevoltages.MostA/D converters are unipolar andwill

only convert positive voltages (or currents). By adding a bias to a bipolar signal, negative voltages can be

made positive enabling them to be successfully converted. A limitation with offset binary is that the offset

needs to be taken into account when performing any arithmetic.

5.4.1.1 Real Numbers

One limitation of integer representations is their inability to represent real numbers. This may be

overcome by scaling the integer by a fraction, so that the integer represents the number of fractions. If the

fraction is made a negative power of two, for example 2�k, then the result is fixed-point notation. The

resulting number is then:

BFP ¼ B� 2�k ¼ � bN�12
N�1�k þ

XN�2

i¼0

bi2
i�k ð5:12Þ

where the integerB can be either unsigned or signed (usually two’s complement). A convenient shorthand

notation for the format of a fixed-point number is UN.k or SN.k, where the letter is either U or S to indicate

an unsigned or signed N-bit integer is used with k fraction bits. As seen in Figure 5.27, the N-bit integer

representation of the fixed-point number corresponds to shifting it k bits to the left.

Most real numbers can only be represented approximately with a fixed-point representation. While

increasing the number of bits to the right of the binary point will increase the accuracy of

the approximation, many even relatively simple numbers cannot be represented exactly with a finite

number of bits. For example, the fraction 1=3 has an infinitely repeating binary representation,

0.01010101010101. . ., so any fixed-point (or even floating-point) representation will only ever be

b7 b6 b5 b4 b3 b2 b1 b0

2-1 2-2 2-3±24 23 22 21 20

b7 b6 b5 b4 b3 b2 b1 b0

±27 26 25 24 23 22 21 20

Figure 5.27 Fixed-point number representation with resolution 2�3. Shifting the number 3 bits to the

left gives the corresponding integer representation. This number is of type U8.3 or S8.3 depending on

whether the weight of the most significant bit was positive or negative respectively.

Mapping Techniques 133

an approximation. The absolute error of the representation, or resolution, will be determined by the

position of the binary point.

The advantage of a fixed-point representation over a more complex floating-point representation is that

the location of the binary point is fixed. All arithmetic operations are the same as for integers, apart from

aligning the binary point for addition and subtraction. This corresponds to an arithmetic shift, by a fixed

number of bits since the location of the binary point is fixed. Such a shift is effectively free in hardware

(it is simply a case of routing the signals appropriately).

A problem with fixed-point numbers is that they have limited dynamic range. The fixed location of the

binary point fixes the resolution, so while they are able to represent some real numbers, the underlying

representation is still as an integer. The same representation is unable to represent both very small and very

large numbers. This may be overcome by allowing the location of the binary point to be variable, which

requires another parameter. A floating-point number therefore has two components: the mantissa or

significand, which are the binary digits of the number, and the exponent, which gives the power of two that

the significand is multiplied by, and effectively specifies the position of the binary point.

The floating-point representation is still an approximation to a real number. The absolute error will vary

depending on the position of the binary point. However, the relative error of the representation will be

constant regardless of the size of the number and is determined by the number of bits in the significand.

Increasing the number of bits in the significand will increase the accuracy of the approximation. The

relative error of the representation should not be confused with the relative error after an operation.

Consider, for example, subtracting two very similar numbers. Many of the significant bits will cancel,

giving a much larger relative error for the difference.

Even when a number can be represented exactly, in general it will not be unique; the number six, for

example, can be represented with a 4-bit significand as 0.011� 24¼ 0.110� 23¼ 1.100� 22. To give a

unique representation, a normalised floating-point number has a 1 in the most significant bit of the

significand. Requiring numbers to be normalised will maximise the number of significant digits within a

number, and consequently minimise any errors in the approximation. However, a big disadvantage is that

there is no representation for zero (Goldberg, 1991). It also requires a sign-magnitude representation of

the significand because the two’s complement representation of a negative numberwould have a leading 1

regardless of the position of the binary point.

The normalised representation therefore has the significand greater than or equal to 1, and less than 2.

Since the leadingdigit is always 1, it can be assumed, giving anextrabit of resolution for free.The significand

bits therefore represent a binary fraction. The number of bits used for the exponent will determine the

dynamic range of numbers (the ratio between the largest and smallest number) that can be represented.While

it could potentially be represented using two’s complement, an offset binary representation is commonly

used because it enables a simpler unsigned integer comparison to be used for comparing magnitudes. The

common representation is shown in Figure 5.28, giving the floating-point number, F, as

F ¼ �1ð Þs � 2Exponent � 1þ
XNb

j¼1

bj2
�j

 !

where

Exponent ¼
XNe�1

j¼0

ej 2
j� 2Ne�1�1
� �

ð5:13Þ

b−1 b−2 b−3 b−4 b−5 b−6 b−7 b−8 b−9 b−10e4 e3 e2 e1 e0

2−1 2−4 2−7 2−102−2 2−5 2−82−3 2−6 2−924 23 22 21 20

s

Sign SignificandExponent

Figure 5.28 Floating-point representation.

134 Design for Embedded Image Processing on FPGAs

Nb is the number of bits in the significant andNe is the number of bits in the exponent. The term subtracted

from the exponent is the standard offset or bias that balances the dynamic range so that both a number and its

reciprocal may be represented.

The IEEE standard for floating-point numbers (IEEE, 2008) enables reproducibility of floating-point

calculations between machines. It does this by specifying the representation (how the bits are encoded)

making the floating-point numbers portable. For example, a single precision (32 bit) floating-point

number uses 1 bit for the sign, 8 bits for the exponent with an offset of 127, and 24 bits (including the

implicit leading 1) for the significand. Two exponent values are reserved for special cases. All zeros are

used to represent denormalised numbers (numbers smaller than the smallest normalised number),

including zero. All ones are used to represent overflow, infinity and not a number (NaN – for example

the result of 0/0 or
ffiffiffiffiffiffiffi�1

p
). The standard also specifies how operations should be performed, so that the

same calculation should give the same result regardless of the processor performing the computation.

When performing an image processing calculation on an FPGA, the size of the significand and

exponent can be tailored to the accuracy of the calculation being performed, to reduce the hardware

required. The consequence of this, however, is that the result will, in general, be different fromperforming

the same calculation in software using the IEEE standard. As with fixed-point, this requires a careful

analysis of the approximation errors to ensure that the results are meaningful.

Multiplication and division are the most straightforward operations for floating-point numbers. For

multiplication, the significands are multiplied and the exponents added. If the resulting significand is

greater than two, renormalisation requires shifting it one bit to the right and incrementing the exponent.

The product will have more digits than can be represented, so the result must also be rounded to the

required number of digits. The sum of the two exponents will include two offsets, so one must be

subtracted off. The sign of the output is the exclusive-ORof the input sign bits. Additional logic is required

to detect underflow, overflow and handle other error conditions such as processing infinities and NaNs.

Division is similar except the significands are divided and the exponents subtracted, and renormalisation

may involve a left shift.

Addition and subtraction are more complex. As with the sign-magnitude representation, the actual

operation performed will also depend on the signs of the inputs. The numbers must be aligned so that the

exponents are the same. This will involve shifting the significand of the smaller number to the right by the

difference in the exponents. When implemented on an FPGA, such a shift is either slow (performed as a

series of smaller shifts) or expensive (implemented as a large number of widemultiplexers). If available, a

multiplier blockmayalso beused to perform the shift (Gigliotti, 2004). It is necessary to keep anextra bit in

the shifted smaller number (a guard bit) to reduce the error introduced by the operation (Goldberg, 1991).

Thesignificandsare thenaddedor subtracteddependingon theoperationand the result renormalised. If two

similar numbers are subtracted, many of the most significant bits may cancel. Renormalisation therefore

requiresdetermining thepositionof the leftmostone,movingthis to themostsignificantbit (bothoperations

may be combined by using the prioritised multiplexer shown in Figure 5.24) and adjusting the exponent

accordingly. Again, additional logic is required to handle error conditions.

Floating-point operations require significantly more resources than the corresponding fixed-point

operations. It is not that floating point operations are that complicated, but managing the exceptions

requires a large proportion of the logic, especially if compliance to the IEEE standard is required. For this

reason, most developers prefer to use fixed-point unless the wider dynamic range of floating-point is

needed for an application.Where dynamic range is required, one compromise that has been proposed is to

use two fixed-point ranges (Ewe et al., 2004, 2005).

5.4.1.2 Logarithmic Number System

An alternative to floating-point is the logarithmic number system, first proposed byKingsbury andRayner

(1971). This achieves awide dynamic range by representing a number by its logarithm.A sign-magnitude

Mapping Techniques 135

representation is required because a real logarithm is not defined for negative numbers. The logarithm of

zero is also not defined; this requires either a separate flag, a special code or approximating zero by the

smallest available number.

The logarithms are usually base-two, although using another base will simply scale the logarithm. The

logarithm is represented using fixed-point notation, withNI bits for the integer component andNF bits for

the fractional component. The integer component will be the same value as the exponent for a normalised

floating-point representation (apart from the offset).

The attraction of the logarithmic number system is that multiplication and division are simple additions

and subtractions. If LA ¼ log2 A and LB ¼ log2 B then multiplication becomes:

log2ðA� BÞ ¼ log2 Aþ log2 B ¼ LA þ LB ð5:14Þ

Addition and subtraction, however, are more complex. Without loss of generality, assume that A>B.

Then:

log2ðA � BÞ ¼ log2 A

�
1 � B

A

�

¼ log2 Aþ log2

�
1 � 2log2ðB=AÞ

�

¼ LA þ log2

�
1 � 2LB�LA

�
ð5:15Þ

This requires two functions to represent the second term, one for addition:

log2ðAþBÞ ¼ LA þ fAddðLB�LAÞ
where fAddðrÞ ¼ log2 1þ 2rð Þ

ð5:16Þ

and one for subtraction:

log2ðA�BÞ ¼ LA þ fSubðLB�LAÞ
where fSubðrÞ ¼ log2 1�2rð Þ

ð5:17Þ

These functions can either be evaluated directly (by calculating 2r, performing the addition or subtraction,

then taking the logarithm), by using table lookup or by piece-wise polynomial approximation (Fu et al.,

2006). Since A> B then 2LB�LA will be between 0 and 1. Therefore, fAdd will be relatively well behaved,

although fSub is more difficult as log2 0 is not defined. The size of the tables depends onNF, and by cleverly

using interpolation can be made of reasonable size (Lewis, 1990).

As would be expected, if the computation involves more multiplications and divisions than additions

and subtractions then the logarithmic number representation has advantages over floating-point, in terms

of both resource requirements and speed (Haselman, 2005; Haselman et al., 2005).

5.4.1.3 Residue Number Systems

A residue number system is a system for reducing the complexity of integer arithmetic by using modulo

arithmetic. A set of k co-prime moduli, M1;M2; . . .Mkf g, is used and an integer, X, is represented by its
residues or remainders with respect to each modulus: x1; x2; . . . xkf g. That is:

X ¼ niMi þ xi ð5:18Þ

136 Design for Embedded Image Processing on FPGAs

where each ni is an integer and each xi is a positive integer. Negative values of X may be handled just as

easily because modulo arithmetic is used. The representation is unique for:

0 � X <
Yk
i¼1

Mi

or � 1

2

Yk
i¼1

Mi � X <
1

2

Yk
i¼1

Mi

ð5:19Þ

Addition, subtraction and multiplication are performed respectively by using modulo addition, subtrac-

tion and multiplication independently on each of the residues. This makes the residue number system

attractive for FPGA implementation (Tomczak, 2006) because it replaces a single wide integer with a set

of smaller integers, and the calculations on each of the residues may be implemented in parallel. This can

reduce both the propagation delay and logic footprint compared with using wide adders and multipliers.

A disadvantage of the residue number system, however, is that division is impractical. The main

application is in digital filtering, which consists of fixed-point multiplications and additions, so the lack of

division is not serious.

To be useful, it is necessary to be able to convert from the residue number system back to binary.

This is performed using the Chinese remainder theorem or variants (Wang, 1998). A common choice

of moduli is f2n�1; 2n; 2n þ 1g (Wang et al., 2002), for which the logic required to perform modulo

arithmetic is only marginally more complex than for performing standard arithmetic. For this set,

there are also efficient techniques for converting between binary and the equivalent residue number

representation (Fu et al., 2008).

5.4.1.4 Redundant Representations

Arithmetic operations are slow compared to simple logic operations because of the propagation delay

associatedwith the carry fromone digit to the next.Another technique that can be used to speed arithmetic

is the use of a redundant representation. A redundant number system is one that has more digits than the

size of the radix (Avizienis, 1961). Standard binary (radix-2) uses the digits bi 2 f0; 1g. A commonly used

redundant system is a signed digit representation, where bi 2 f�1; 0; 1g.
With redundancy, carry propagation may be considerably shortened, giving significant speed im-

provements for additions. A particular signed digit representation that maximises the number of zeroes in

the number is the canonical signed digit form (Arno and Wheeler, 1993). This has at least one zero

between every non-zero digit, so has at least half of its digits zero. The carry from adding two canonical

signed digit numbers will propagate at most one bit. Minimising the number of digits will also reduce the

number of partial products when multiplying numbers (Koc and Johnson, 1994).

The disadvantage of redundant representations is that the additional digits requirewider signals (at least

two bits are required for the radix-2 signed digit representation), wider registers for storing the numbers

and, usually, more logic to process the wider signals. While addition of two canonical signed digit

numbers will give a signed digit representation, additional logic and propagation delaymay be required to

convert the result back to canonical form.With any redundant representation, additional logic is required

to convert any output back to normal binary.

The signed digit idea can be extended further, for example to bi 2 f�2;�1; 0; 1; 2g (Sam and Gupta,

1990), to further improve the performance of multipliers in particular. The trade-off is primarily between

incremental performance improvements and rapidly increasing circuit complexity.An asymmetric signed

digit representation using the digits bi 2 f�1; 0; 1; 3g has been proposed for reducing the number of non-

zero digits (Kamp et al., 2006). It also has the advantage that each digit only requires two bits to represent;

a single 4-LUT is sufficient to perform an arbitrary operation on two digits (Kamp et al., 2006).

Mapping Techniques 137

Signed digits form the basis of the Booth multiplication algorithm (Booth, 1951), which uses a

combination of addition (þ 1) and subtraction (�1) and nothing (0) to reduce the number of additions

required. It is also used by non-restoring division algorithms to avoid having to restore the result when

a test subtraction gives a negative result (Bailey, 2006). Redundancy is exploited by SRT division

techniques (Robertson, 1958; Tocher, 1958) by giving an overlap when selecting the correct quotient

digit. The overlap means that the quotient digit may be determined from an approximation of the

partial remainder and does not need to wait for the carry to propagate fully. Similar techniques have

also been applied to shift and add methods for the calculation of logarithms and exponentials (Nielsen

and Muller, 1996).

5.4.2 Lookup Tables

Many functions can be quite expensive to calculate. In some circumstances, an alternative is to

precalculate the function for the range of expected inputs and store the results in a table. Then, rather

than calculate the function, the input is simply looked up in the table, which will return the result.

There are two primary instances when the use of lookup tables can be particularly valuable. The first is

when the latency of performing the calculation exceeds the available time constraint. Using a lookup table

requires a single clock cycle for the memory access regardless of the complexity of the function. The

second is when the complexity of the calculation is such that excessive resources are used on the FPGA.

A lookup table only requires a memory sufficiently large to provide an accurate representation of

the function.

There are two measures commonly used for assessing the accuracy of the representation. Let f(x)

be the function that is being approximated and ~f ðxÞ the approximation in the domain a � x � b. The

error of the approximation is then:

eðxÞ ¼ ~f ðxÞ� f ðxÞ ð5:20Þ

The total squared error between the function and its approximation is then:

SE ¼
ðb

a

e2ðxÞdx ð5:21Þ

A small squared error is one indication of a good approximation.

One limitation of using the square error to measure the difference between the function and its

approximation is that minimising the total error can make the absolute error large at some points.

Therefore, it is usually better tominimise themaximumabsolute error (deDinechin and Tisserand, 2001),

given by:

MaxE ¼ max
a�x�b

eðxÞj j ð5:22Þ

The difference between minimising the squared error and maximum error is illustrated in Figure 5.29, in

particular in the first segment.

With lookup tables, there is a trade-off between accuracy and the size of the table. While lookup tables

can be very efficient for low to moderate accuracy, they do not scale well, with the table size increasing

exponentially with the width of the input. Practical table sizes require reducing the accuracy of the input.

This can be achieved simply by dropping the least significant bits. It is not necessary to round the input, as

the content of the table can be set to give the best result over the domain implied by the bits that are kept.

138 Design for Embedded Image Processing on FPGAs

This is clearly shown in the centre panel of Figure 5.29, where the table entry is set to the middle of the

range for a particular bit combination. The error depends on the slope of f(x), with the maximum slope

determining the number of bits required on the input to achieve a particular accuracy on the output.

5.4.2.1 Interpolated Lookup Tables

Observe that the error function consists of a set of approximately linear segments. This can be exploited by

using linear interpolation. Rather than each entry in the table being a constant, each entry can be a line

segment containing an intercept, c, and slope, m. The most significant bits are looked up to get the

intercept and slope for the corresponding segment, with the least significant bits used to scale the slope to

interpolate the values:

~f ðxÞ ¼ c xjMSB

	
þm xjMSB

	
� xjLSB ð5:23Þ

The linear segment approximation and corresponding hardware (Mencer and Luk, 2004) are shown in

Figure 5.30. The lookup tables for the intercept and slope have the same addresses. Such tables in parallel

are effectively a single table with a wider data path. Note that it is not necessary for the piece-wise linear

segments to be continuous; smaller errors can in general be obtained by fitting each segment indepen-

dently. The slopewith the smallest error in the sense of Equation 5.22will, in general, be the slope between

the two endpoints, with the segment offset so that themaximum errorwithin the segment is the negative of

the error at the ends, as shown on the right in Figure 5.30. Additional errors (not shown in the figure) will

arise from truncation of the least significant bits after the multiplication and also the finite precision of the

slopes stored in the table.

An interpolated table effectively trades the size of the lookup table for increased computational

resources and latency. The accuracy of the approximation will depend on the curvature or the second

derivative of f(x).

Where the curvature is higher, a smaller step size (more bits used to look up the segment) is required to

maintain accuracy. However, over much of the table, the accuracy is more than adequate and a larger step

size could be used. Avariable step size (effectively varying the partition between the most significant bits

looked up and the least significant bits used for the interpolation) can significantly reduce the table size

E
rror

A
pproxim

atio
n

xxx

xxx

00 00 0000
0001
0010
0011

01 01 0100
0101
0110
0111

10 10 1000
1001
1010
1011

11 11 1100
1101
1110
1111

f x() f x() f x()
f x()
~

f x()
~

f x()
~

ε x()
ε x() ε x()

Figure 5.29 Approximating a function by lookup table. Left: minimising the mean square error of

the function; centre and right: minimising the maximum error; right: reducing the error by increasing the

table size.

Mapping Techniques 139

(Lee et al., 2003b; Lachowicz and Pfleiderer, 2008). The cost is a little more logic to manage the variable

partitioning. The variable step size approach may be extended to functions of two variables (Nagayama

et al., 2008). With two variables, it is essential to partition the space carefully to avoid excessive table

sizes, especially for higher precision outputs.

If the approximation is made continuous, as shown in Figure 5.31, and dual-port memory is

available for implementing the lookup table, then the slope table is not needed. The current intercept

and the next intercept are both looked up using separate ports, and the slope calculated from the

difference (Gribbon et al., 2003):

~f ðxÞ ¼ c xjMSB

	
þ c xjMSB þ 1
	
�c xjMSB

	
� �� 2�M � xjLSB ð5:24Þ

where 2�M is theweight of the least significant bit used to address the lookup table. The 2�M is a bit shift,

which is free in hardware (hence it is not shown in Figure 5.31). The approximation errormay be slightly

larger than if each segment is fitted independently, but this will only occur if the second derivative

changes sign, as shown between the first two segments in Figure 5.31.

x

x

x

00 01 10 11

f (x)

f (x)

f (x)
~

f (x)
~

f (x)
~

ε(x)
ε(x)

MSB LSB

mcLUT

x

ε

ε ε

-ε
ε

Figure 5.30 Linearly interpolated lookup table. The table contains both the slope and the intercept.

Centre: the computational architecture; right: method of construction that minimises the maximum error.

x

x

x

00 01 10 11

f x()
f (x)
~

f (x)
~

ε x()

LUT

1

MSB LSB

Figure 5.31 Linearly interpolated lookup table using dual-port RAM. The slope is calculated from

successive table entries.

140 Design for Embedded Image Processing on FPGAs

For higher accuracy, each segment of the table may be represented by a higher order polynomial

approximation. This extends Equation 5.23 to:

~f ðxÞ ¼
Xd
i¼0

pi xjMSB

	
� xjLSB
� �i ð5:25Þ

where d is the order of the polynomial with coefficients pi. In practise, to control the accumulation of

round-off errors, the polynomial should be evaluated using Horner’s method:

~f ðxÞ ¼ pd � xjLSB þ pd�1

� �� xjLSB þ . . .
� �� xjLSB þ p0 ð5:26Þ

For each segment, the optimum polynomial coefficients may be determined using Remez’s exchange

algorithm (Lee et al., 2003a). As with a linear approximation, the table size can often be significantly

reduced by using non-uniform segment widths at the expense of additional decoding logic (Lee et al.,

2003a). A higher order polynomial requires fewer segments to fit to a given level of accuracy, but requires

moremultipliers and, therefore, more resources. It is possible to implement a second order approximation

using only a single multiplier by making careful use of lookup tables (Detrey and de Dinechin, 2004).

5.4.2.2 Bipartite and Multipartite Tables

Observe that in Figure 5.30 the slope of the last two segments is very similar. This is often the case,

especially with smoothly varying functions. The average slope of the last two segments would also

give reasonable errors. If the offsets resulting frommultiplying the slope by the least significant bits were

stored in a table, the multiplication can be avoided. Unfortunately, if the offsets were stored for every

segment, the length of the offset table would be the same as looking up every value. However, since the

offsets for adjacent segments are similar (because the slopes are similar) then several of these offsets can

be shared between segments, giving a significant reduction in the size of the table.

This is the same concept that is used in tables of logarithms (Hassler and Takagi, 1995). Consider a

standard four digit (decimal) table of logarithms. Such a tablewould require 104 or 10 000 entries. Instead,

it is arranged as a two-dimensional grid, with 100 rows indexed by the first two digits and 10 columns

indexed by the third digit. A second table, which contains offsets, has the same 100 rows indexed by the

first two digits, also with 10 columns, but this time indexed by the fourth digit. The same offsets apply to

thewhole row of the first table. This dual table approach only requires 1000 entries in each table, for a total

of 2000 entries. The savings are even greater than first appear, because the numbers in the second table are

smaller, so the bit width can be narrower.

This approach to bipartite tables (Das Sarma and Matula, 1995; Hassler and Takagi, 1995) is shown in

Figure 5.32. In this example, the eight segments are split into two groups of four for the offset table. Note

that at this scale the bipartite method is not particularly effective for the left group, but works well for the

right group where the slopes are similar. In general, the input word is split into three approximately equal

groups of bits. The most significant two groups are used to index the main table, and define the segments.

The most significant and least significant groups are used to give the offsets that apply to the set of

segments defined by the first group.

Since no multiplication is used, only an addition, bipartite tables are fast and relatively resource

efficient. In addition, since the offsets are usually small, the width of the offset table is usually less than

that of the main table. If the value in the main table represents the centre of the segment, the entries in

the offset table may be made symmetrical. With a little extra logic, this symmetry may be exploited to

halve the size of the offset table (Schulte and Stine, 1997). One of the input bits indicates whether

the input value is in the left or right part of a segment. It can therefore be used to invert (using exclusive

Mapping Techniques 141

OR gates) the other address bits within the segment to get the corresponding symmetrical position. The

offset from the table is also inverted to give the symmetrical offset, as shown on the right in Figure 5.32.

This idea may be extended further to give multiple tables in parallel (Stine and Schulte, 1999; de

Dinechin and Tisserand, 2001), which enables the size of the tables to be reduced further, at the cost of an

increased number of additions.

Overall, it has been shown (Boullis et al., 2001; Mencer and Luk, 2004) that for short inputs (up to

about 8–10 bits) a direct table lookup is best. For intermediate size inputs (10–12 bits) the bipartite

tables require the smallest resources. However, for larger inputs (12–20 bits) interpolated lookup tables

are the best compromise.

5.4.3 CORDIC

CORDIC (Coordinate Rotation Digital Computer; Volder, 1959) is an iterative technique for evaluating

elementary functions. Itwas originally developed for trigonometric functions (Volder, 1959), butwas later

generalised to include hyperbolic functions and multiplication and division (Walther, 1971). For

trigonometric functions, each iteration is based on rotating a vector (x, y) by an angle yk:

xkþ 1

ykþ 1

� �
¼ cos yk �sin yk

sin yk cos yk

� �
xk
yk

� �
ð5:27Þ

The trick is choosing the angle and rearranging Equation 5.27 so that the factors within the matrix are

successive negative powers of two, enabling the multiplications to be performed by simple shifts.

xkþ 1

ykþ 1

� �
¼ 1

cos yk
1 �dk tan yk

dk tan yk 1

� �
xk
yk

� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�2k

p
1 �dk 2

�k

dk 2
�k 1

� �
xk
yk

� � ð5:28Þ

where the direction of rotation, dk, is þ 1 for an anticlockwise rotation and �1 for a clockwise rotation,

and the angle is given by:

tan yk ¼ 2�k ð5:29Þ

x

x

000

001

010

011

100

101

110

111

f x()
f x()
~

ε x()

x

f x()
~

LUTs

x

f x()
~

} } } }

MSB LSB
MSB LSB

Figure 5.32 Bipartite lookup tables. Right: symmetry is exploited to reduce the table size.

142 Design for Embedded Image Processing on FPGAs

After a series of K rotations, the total angle rotated is the sum of the angles of the individual rotations:

y ¼
XK�1

k¼0

dk tan
�1 2�k ð5:30Þ

The total anglewill depend on the particular rotation directions chosen at each iteration. Therefore, it is

useful to have an additional register (labelled z) to accumulate the angle.

The resultant vector is:

xK

yK

� �
¼
YK�1

k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�2k

p 1 �dk 2
�k

dk 2
�k 1

" # !
x0

y0

� �

¼ G
cos y �sin y

sin y cos y

� �
x0

y0

� � ð5:31Þ

where the scale factor, G, is the gain of the rotation and is constant for a given number of iterations.

G ¼
YK�1

k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�2k

p
� 1:64676 ð5:32Þ

The iterations are, therefore:

xkþ 1 ¼ xk � dk 2
�kyk

ykþ 1 ¼ yk þ dk 2
�kxk

zkþ 1 ¼ zk � dk tan
�1 2�k
� � ð5:33Þ

with the corresponding circuit shown in Figure 5.33.OnLoad, the initial values are loaded into thex, y and

z registers, and k is reset to zero. Then with every clock cycle, one iteration of summations is performed

and k incremented. Note that it is necessary for the summations and the registers to have an extra log2 N

guard bits to protect against the accumulation of rounding errors (Walther, 1971). Themost expensive part

of this circuit is the shifters, which are often implemented using multiplexers. If the FPGA has available

sparemultipliers, thesemaybe used to perform the barrel shifts (Gigliotti, 2004).A small ROM is required

to store the small number of angles given by Equation 5.29. There are two modes for choosing the

direction of rotation at each step (Volder, 1959): rotation mode and vectoring mode.

x y z

k
ROM

>>k

>>k

Mode
Load

dk

x0 z0y0

R

Sign bits

tan 2−1 −k

Figure 5.33 Iterative hardware implementation of the CORDIC algorithm.

Mapping Techniques 143

The rotationmode starts with an angle in the z register and reduces this angle to zero by choosing dk as the

sign of the z register as the vector is rotated:

dk ¼ signðzkÞ ð5:34Þ

The result after K iterations is:

xK ¼ Gðx0 cos z0�y0 sin z0Þ
yK ¼ Gðx0 sin z0 þ y0 cos z0Þ
zK ¼ 0

ð5:35Þ

This converges (zK can be made to go to zero within the precision of the calculation; Walther, 1971) if:

yk�
XK�1

j¼kþ 1

yj < yK�1 ð5:36Þ

In other words, if the angle is zero, and a rotation moves it away, the remaining rotations must be able to

move it back to zero again. In this case, the series converges because:

tan�1 2�i < 2 tan�1 2�ðiþ 1Þ ð5:37Þ

For Equation 5.33 the domain of convergence is:

z0j j <
XK�1

k¼0

tan�12�k � 99:88� ð5:38Þ

Starting with x0 ¼ 1=G and y0 ¼ 0, the rotation mode can be used to calculate the sine and cosine of the

angle in z0. It may also be used to rotate a vector by an angle, subject to the extension of themagnitude by a

factor of G. For angles larger than 90�, the easiest solution is to perform an initial rotation by 180�:

x0 ¼ �x�1

y0 ¼ �y�1

z0 ¼ z0 � 180�
ð5:39Þ

The second mode of operation is vectoring mode. This chooses dk as the opposite of the sign of the y

register, determining the angle required to reduce y to zero:

dk ¼ �signðykÞ ð5:40Þ

which gives the result:

xK ¼ G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

p
yK ¼ 0

zK ¼ z0 þ tan�1

�
y0

x0

� ð5:41Þ

This has the samedomain of convergence as the rotationmode, given inEquation5.38. Therefore, ifx0 < 0

it is necessary to bring the vector within range by rotating by 180� (Equation 5.39). The vectoring mode

144 Design for Embedded Image Processing on FPGAs

effectively converts a vector from rectangular topolar coordinates. Ifx0 andy0 are both small, then rounding

errors can become significant, especially in the calculation of the arctangent (Kota and Cavallaro, 1993). If

necessary, this may be solved by renormalizing xk and yk by scaling by a power of two (a left shift).

With both the rotation mode and vectoring mode, each iteration improves the accuracy of the angle by

approximately one binary digit.

An additional mode of operation has been suggested by Andraka (1998) for determining arcsine or

arccosine. It starts with x0¼ 1 and y0¼ 0 and rotates in the direction given by:

dk ¼ signðs�ykÞ ð5:42Þ

where s is the sine of the angle. The result after converging is:

xK ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2x20�s2

p
yK ¼ s

zK ¼ z0�sin�1

�
s

Gx0

� ð5:43Þ

This result would be simpler if initialised with x0 ¼ 1=G. This mode is effective for s=Gx0j j < 0:98.
Outside this range, the gain of the rotation can cause the wrong direction to be chosen, leading to

convergence failure (Andraka, 1998). An alternative two-step approach to calculating arcsine and

arccosine will be described shortly.

One way of speeding up CORDIC is to consider the Taylor series expansions for sine and cosine for

small angles (Walther, 2000):

sin y ¼ y 1� 1

6
y2 þ 1

120
y4 þ . . .

0
@

1
A � y

cos y¼ 1� 1

2
y2 þ 1

24
y4 þ . . . � 1

ð5:44Þ

After N/2 iterations in the rotation mode, the angle in the z register is such that y2 is less than the

significance of the least significant guard bit, so can be ignored. The remaining N/2 iterations may be

replaced by small multiplications:

xN ¼ xN=2�zN=2yk

yN ¼ yN=2 þ zN=2xk
ð5:45Þ

(The assumption here is that the angle is in radians.) Note that the same technique cannot be applied in the

vectoring mode because it relies on the angle approaching zero.

The implementation in Figure 5.33 is word-serial in that each clock cycle performs one iteration at the

word level. Other implementations are the bit-serial (Andraka, 1998) and the unrolled parallel versions

(Wang et al., 1996; Andraka, 1998). The bit-serial implementation uses significantly fewer resources, but

requires N clock cycles per iteration, where N is the width of the registers. The unrolled implementation

(Figure 5.34) uses separate hardware for each iteration and can perform one complete calculation per

clock cycle. Unrolling enables two simplifications to the design. Firstly, the shifts at each iteration are

fixed and can be implemented simply by wiring the appropriate bits to the inputs to the adders. Secondly,

the angles that are added are constants, simplifying the z adders.

Mapping Techniques 145

The propagation delay of the unrolled implementation is long because the carry must propagate all of

the way to the sign bit at each iteration before selecting the next operation. However, the design can be

readily pipelinedwith a throughput of one calculation per clock cycle. Several attempts have beenmade

at reducing the latency by investigating ways of overcoming the carry propagation. It cannot be solved

using redundant arithmetic, because to determine the sign bit with redundant arithmetic it is still

necessary to propagate the carry. Two approaches have been developed, although they only work in

rotation mode. The first is to work with the absolute value in the z register and detect the sign changes

(Dawid and Meyr, 1992), which can be done with redundant arithmetic, working from the most

significant bit down, significantly improving the delay. The second approach relies on the fact that the

angles added to the z register are constant, enabling dk to be predicted, significantly reducing the latency

(Timmermann et al., 1992).

5.4.3.1 Compensated CORDIC

Amajor limitation of the CORDIC technique is the rotation gain. If necessary, this constant factor may be

removed by a multiplication either before or after the CORDIC calculation. Compensated CORDIC

algorithms integrate this multiplication within the basic CORDIC algorithm in different ways.

Conceptually the simplest (and the original compensated CORDIC algorithm) is to introduce a scale

factor of the form 1 � 2�k with each iteration (Despain, 1974). The sign is chosen so that the combined

gain approaches one. This can be generalised in twoways. The first is by applying the scale factor only on

some iterations, and choosing the terms so that the gain is two, enabling it to be removed with a simple

shift. Since the signs are predetermined, this results in only a small increase in the propagation delay,

although the circuit complexity is considerable increased.

The second approach is to repeat the iterations for some angles to drive the total gain, G, to two

(Ahmed, 1982). This uses the same hardware as the original CORDIC, with only a little extra logic

required to control the iterations. The disadvantage is that it takes significantly longer than the

uncompensated algorithm. A hybrid approach is to use a mixture of additional iterations and scale

factor terms to reduce the total logic required (Haviland and Tuszynski, 1980). This is probably best

applied to the unrolled implementation.

Modex 0

xN

z0

zN

y0

yN

×2-1

×2-2

×2-3

×2-N+1

tan–1 20

tan–1 2–1

tan–1 2–2

tan–1 2–3

tan–12–N+1

Figure 5.34 Unrolled CORDIC implementation.

146 Design for Embedded Image Processing on FPGAs

Another approach is to use a double rotation (Villalba et al., 1995). This technique is only applicable to

the rotation mode; it performs two rotations in parallel (with different angles) and combines the results.

Consider rotating by an angle ðyþ bÞ:

xþ
N ¼ G x0ðcos y cos b� sin y sin bÞ� y0ðsin y cos bþ cos y sin bÞð Þ
yþ
N ¼ G x0ðsin y cos bþ cos y sin bÞþ y0ðcos y cos b� sin y sin bÞð Þ

ð5:46Þ

Similarly, rotating by an angle ðy� bÞ gives:

x�N ¼ G x0ðcos y cos bþ sin y sin bÞ� y0ðsin y cos b� cos y sin bÞð Þ
y�N ¼ G x0ðsin y cos b� cos y sin bÞþ y0ðcos y cos bþ sin y sin bÞð Þ ð5:47Þ

Then adding these two results cancels the terms containing sin b:

1

2
xþ
Nþ x�N

� � ¼ G x0 cos y cos b�y0 sin y cos bð Þ

1

2
yþ
Nþ y�N

� �¼ G x0 sin y cos bþ y0 cos y cos bð Þ
ð5:48Þ

Therefore, by setting cos b ¼ 1=G, the gain term can be completely cancelled. It takes the same time to

perform the double rotation as the original CORDIC apart from the extra addition at the end. However, it

does require twice the hardware to perform the two rotations in parallel, and this technique does not work

for the vectoring mode.

5.4.3.2 Linear CORDIC

So far the discussion of CORDIC has been in a circular coordinate space. The CORDIC iterations may

also be applied in a linear space (Walther, 1971):

xkþ 1 ¼ xk

ykþ 1 ¼ yk þ dk2
�kxk

zkþ 1 ¼ zk�dk2
�k

ð5:49Þ

Again, either the rotation mode or vectoring mode may be used. Rotation mode for linear CORDIC

reduces z to zero usingEquation 5.34, and in doing so is performing avariation on longmultiplicationwith

the result:

xK ¼ x0

yK ¼ y0 þ x0z0

zK ¼ 0

ð5:50Þ

The domain of convergence depends on the initial value of k.

z0j j <
XK�1

k¼ki

2�k � 21�ki ð5:51Þ

Mapping Techniques 147

Vectoringmode reduces y to zero usingEquation 5.40 and effectively performs the same algorithmas non-

restoring division, with the result:

xK ¼ x0

yK ¼ 0

zK ¼ z0 þ y0

x0

ð5:52Þ

Usually, ki ¼ 1 for which Equation 5.52will converge provided y0 < x0. Note that there is no scale factor

or gain term associated with linear CORDIC.

5.4.3.3 Hyperbolic CORDIC

Walther (Walther, 1971) also unified CORDIC with a hyperbolic coordinate space. The corresponding

iterations are then:

xkþ 1 ¼ xk þ dk2
�kyk

ykþ 1 ¼ yk þ dk2
�kxk

zkþ 1 ¼ zk�dk tanh
�1 2�k
� � ð5:53Þ

There are convergence issues with these iterations that require certain iterations to be repeated

(k ¼ 4; 13; 40; . . . ; kr; 3kr þ 1; . . .) (Walther, 1971). Note, too, that the iterations start with k ¼ 1 because

�1 < tanhx < 1.

Subject to these limitations, operating in rotation mode gives the result:

xK ¼ Ghðx0 cosh z0 þ y0 sinh z0Þ
yK ¼ Ghðx0 sinh z0 þ y0 cosh z0Þ
zK ¼ 0

ð5:54Þ

where the gain factor (including the repeated iterations) is:

Gh ¼
YK�1

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2�2k

p
� 0:82816 ð5:55Þ

and the domain of convergence is:

z0j j <
XK�1

k¼1

tanh�12�k � 1:118 ð5:56Þ

Operating in vectoring mode gives the result:

xK ¼ Gh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x20�y20

p
yK ¼ 0

zK ¼ z0 þ tanh�1

�
y0

x0

� ð5:57Þ

148 Design for Embedded Image Processing on FPGAs

As with circular CORDIC, the gain may be compensated either by appropriate initialisation of the x or y

register (for rotation mode) or by introducing additional, compensating operations. Much of the

discussion of compensated CORDIC above may be adapted to hyperbolic coordinates.

The CORDIC iterations from the different coordinate systems may be combined to use the same

hardware (with a multiplexer to select the input to the x register). With all three modes available, other

common functions may also be calculated (Walther, 1971):

tan y ¼ siny
cosy

ð5:58Þ

tanh y ¼ sinhy
coshy

ð5:59Þ

exp x ¼ sinh xþ cosh x ð5:60Þ

ln x ¼ 2 tanh�1 x�1

xþ 1

� �
ð5:61Þ

ffiffiffi
x

p ¼
ffi
xþ 1

4

� �2

� x� 1

4

� �2
s

ð5:62Þ

Other common functions that may be calculated in two steps are:

sin�1x ¼ tan�1 xffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
� �

ð5:63Þ

cos�1x ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffi
1�x2

p

x

 !
ð5:64Þ

5.4.3.4 CORDIC Variations and Generalisations

The basis behind CORDIC is to reduce multiplications by an arbitrary number to a shift by constraining

the system to powers of two. This can be extended to the direct calculation of other functions. For example,

looking at logarithmic functions (Specker, 1965), the relation:

ln x 1þ 2k
� � ¼ ln xþ ln 1þ 2k

� � ð5:65Þ

allows a shift and addalgorithmfor the calculation of logarithms. The idea is to successively reducex to one

by a series of multiplications, and adding the corresponding logarithm terms obtained from a small table.

Mapping Techniques 149

The iteration is given by:

xkþ 1 ¼ xk 1þ dk2
�k

� �
zkþ 1 ¼ zk�ln 1þ dk2

�k
� � ð5:66Þ

where dk ¼ 1; xk þ xk2
�k < 1

0; otherwise

(
ð5:67Þ

will converge for 0:4195 < x0 � 1 to:

xK ¼ 1

zK ¼ z0 þ ln x0
ð5:68Þ

Alternatively, if a factor of ð1�dk2
�kÞ is used, then the iteration converges for 1 � x0 < 3:4627. The

iteration of Equation 5.66 may also be readily adapted to taking logarithms in other bases simply by

changing the table of constants added to the z register. The algorithm can also be run the other way, by

reducing zk to zero, giving the exponential function.

Muller (1985) showed that this iteration shared the same theory as the CORDIC iteration and placed

them within the same framework. Since trigonometric functions can be derived from complex ex-

ponentials using the Euler identity:

e jy ¼ cos yþ j sin y ð5:69Þ

the iteration of Equation 5.66, can be generalised to use complex numbers (Bajard et al., 1994) enabling

trigonometric functions to be calculated without the gain factors associated with CORDIC. Another

advantage of this implementation is that it allows redundant arithmetic to be used (Nielsen and Muller,

1996) by exploiting the fact that if dk 2 f�1; 0; 1g then there is an overlap between the selection ranges
for the dk. Thismeans than only the fewmost significant bits need to be calculated in order to determine the

next digit, reducing the effects of carry propagation delay.

While the CORDIC and other related shift-and-add based algorithms have relatively simple circuitry,

their main limitation is their relatively slow rate of convergence. Each iteration gives only a single bit

improvement of the result. A further limitation is that only a few elementary functions may be calculated.

More complex or composite functions require the evaluation of many elementary functions.

5.4.4 Approximations

An alternative to direct function evaluation is to approximate the function with another simpler function

that gives a similar result over some domain of interest. One popularmethod of approximating functions is

to use a minimax polynomial. This chooses the polynomial coefficients to minimise the maximum

approximation error within the domain of interest:

~f ðxÞ ¼
XN
i¼0

aix
i ð5:70Þ

Typically, Remez’s exchange algorithm is used to find the coefficients. However, such coefficients do not

take into account the fact that it is desirable to perform the calculation with limited precision or small

multipliers, and simply rounding the coefficients may not give the coefficients with minimum error

(Brisebarre et al., 2006). This requires a search for the appropriate coefficients.

150 Design for Embedded Image Processing on FPGAs

For low precision outputs (less than 14–20 bits) table lookupmethods are both faster andmore efficient

(Sidahao et al., 2003). However, the resources to implement a lookup table grow exponentially with

output precision, whereas those required for polynomial approximations grow only linearly.

An extension of polynomial approximations are rational approximations where:

~f ðxÞ ¼
PN
i¼0

aix
i

PM
i¼0

bixi
ð5:71Þ

For a given level of accuracy, a lower order rational polynomial is required (Koren andZinaty, 1990) than a

regular polynomial, although it does require a division operation. This makes rational polynomial

approximations best suited for high precision.

Afurtherapproachforhighprecision is tousean iterativeapproximation.This startswithanapproximate

solution and with each iteration improves the accuracy. A common approach is the Newton–Raphson

iteration, which is a root-finding algorithm. The Newton–Raphson iteration is given by:

xkþ 1 ¼ xk� f ðxkÞ
f 0ðxkÞ ð5:72Þ

It works, as illustrated in Figure 5.35, by projecting the slope at xk to obtain a more accurate estimate.

Newton–Raphson has quadratic convergence. This means that if the input is close to the solution, the

relative errorwill squarewith each iteration. This effectivelymeans that the number of significant bits will

approximately double with each iteration.

For example, to evaluate the square root of an input number, X, an equation is formed for which
ffiffiffiffi
X

p
is a root:

f ðxÞ ¼ x2�X ¼ 0 ð5:73Þ

Then, the iteration is formed from Equation 5.72:

xkþ 1 ¼ xk� x2k�X

2xk

¼ 1

2
xk þ X

xk

0
@

1
A

ð5:74Þ

f(x)

xk xk+1 x

Figure 5.35 Newton–Raphson iteration.

Mapping Techniques 151

Note that the iteration of Equation 5.74 requires a division, which is relatively expensive. Avariation on

this technique is to rearrange the equation to be solved. For example:

ffiffiffiffi
X

p
¼ Xffiffiffiffi

X
p ð5:75Þ

so solving 1=
ffiffiffiffi
X

p
enables

ffiffiffiffi
X

p
to be calculated with a final multiplication. The corresponding function to

solve would be:

f ðxÞ ¼ x�2�X ¼ 0 ð5:76Þ

with the corresponding iteration:

xkþ 1 ¼ xk� x�2
k �X

�2x�3
k

¼ 1

2
xk 3�x2kX
� � ð5:77Þ

AlthoughEquation 5.77 ismore complex than Equation 5.74, it does not involve a division and can almost

certainly be implemented with lower latency.

The number of iterations required to reach a desired level of accuracy depends on the accuracy of

the initial estimate. Therefore, other techniques, such as lookup tables or other approximations, are

helpful to give a more accurate initial approximation and hence reduce the number of iterations

(Schwarz and Flynn, 1993). Since the iteration for many functions is a polynomial (for example

Equation 5.77), the same hardware may be used to form the initial approximation using a low order

polynomial (Habegger et al., 2010).

5.4.5 Other Techniques

5.4.5.1 Bit-Serial Processing

In situations where resources are scarce but latency is less of an issue, bit-serial processing can provide a

solution.Conventionally, operations are performed awholeword at a time, processing all of the bitswithin

a data word in parallel. In contrast to this, bit-serial techniques process the data one bit per clock cycle

(Denyer andRenshaw, 1985). This requires serialising the input data and processing the data as a serial bit-

stream. The order that the bits should be presented (least significant bit first, or most significant bit first)

will depend on which input bits affect which output bits (Andraka, 1996). For example, most arithmetic

operations should be presented least significant bit first because carry propagates from the lower bits to the

higher bits. This is illustrated in Figure 5.36 for a bit-serial adder.

Processing only one bit at a time can significantly reduce the propagation delay, although more

clock cycles are required to process the whole word. For many operations, bit-serial processing can

lead to efficient pipelined designs or systolic structures. Another significant advantage of bit-serial

designs is that, because the logic is more compact, routing is also simplified and more efficient (Isshiki

and Dai, 1995).

A compromise between bit-serial and word-parallel systems is digit-serial designs (Parhi, 1991).

These process a small number of bits (a digit) in parallel but have the digits presented serially. This

can reduce the high clock speeds required for bit-serial designs while maintaining efficient use of

logic resources. Digit-serial designs therefore fall within the spectrum between bit-serial and word-

parallel systems.

152 Design for Embedded Image Processing on FPGAs

5.4.5.2 Incremental Update

Another technique that may be employed, particularly with stream processing, is incremental update.

Rather than perform a complete calculation independently for each pixel, incremental update exploits the

fact that often part of the calculation performed for the previous pixel may be reused. A classic example

(Gribbon et al., 2003) is the calculation of x2 or y2 where x and y are pixel coordinates. When moving to

the next pixel, the identity:

ðxþ 1Þ2 ¼ x2 þ 2xþ 1 ð5:78Þ

can be used to maintain the value of x2 without performing a multiplication. The same concept may be

extended to calculate higher order moments (Chan et al., 1996).

A similar technique may be used to determine the input location for an affine transformation

incrementally. Consider the transformation:

x0

y0

� �
¼ A B C

D E F

� � x

y

1

2
64
3
75 ð5:79Þ

The input location corresponding to the next pixel in the scan line is then given by:

x0 (x0 þA

y0 (y0 þD
ð5:80Þ

Note that in this case it may be necessary to keep extra guard digits to prevent accumulation of round-off

errors in the approximation of A and D.

Another common example of incremental update is with local filters. As the window moves from one

pixel to the next, there is a significant overlap between the corresponding input windows. Many of the

pixels within the window will be the same as the window moves. This may be exploited, for example, by

median filters by maintaining a histogram of the values within the window and updating the histogram

only for the pixels that change (Garibotto and Lambarelli, 1979; Huang et al., 1979; Fahmy et al., 2005).

5.4.5.3 Separability

Image processing often involves operations that require inputs from two (or more) dimensions. Separable

operations are those that can split the two-dimensional operations into separate operations in each of theX

Full
Adder

coci

A

LSB

B
Sum

0

Figure 5.36 Bit-serial adder.

Mapping Techniques 153

and Y dimensions. The separate one-dimensional operations are usually significantly simpler than the

composite two-dimensional operation. The most common application of separability is with filters, but it

can also be applied to two-dimensional transformations such as the fast Fourier transform (FFT), or be

used with image warping (Catmull and Smith, 1980).

5.5 Summary

This chapter has reviewed a range of techniques for mapping from a software algorithm to a hardware

implementation. These techniques may be considered as a set of design patterns that provides ways of

overcoming common problems or constraints encountered in the mapping process (DeHon et al., 2004;

Gribbon et al., 2005; 2006).

Timing constraints focussed particularly on the limited time available for performing the required

operations. One technique for improving throughput is to use low level pipelining. Another timing issue

encountered with concurrent systems is the synchronisation of the different processes. For synchronous

processes, global scheduling can derive synchronisation signals froma global counter.With asynchronous

systems one synchronisation technique is to use a channel based on CSP. If necessary, a FIFO can be used

to smooth the flow of data between processes.

Memory bandwidth constraints result from the fact that only onememory accessmay bemade per clock

cycle. A range of techniques were reviewed that improved the bandwidth of external memories. The

largest effect can be obtained by caching data on the FPGAwhere the datamay be distributed over several

parallel blockRAMs, significantly increasing the bandwidth. Customcaching can significantly reduce the

number of times that the data needs to be loaded into the FPGA.

The third form of constraint was for resources. Any concurrent system with shared resources will face

contention when a resource is used by multiple processes. The resource needs to be multiplexed between

the various processes, with appropriate conflict arbitration. This is best managed by combining the

resource with its manager. Efficient use of the limited logic and memory resources available on an FPGA

requires appropriate data structures and computational techniques to be used by the algorithm. If

necessary, the FPGA can be dynamically reconfigured to switch from one task to another. While partial

reconfigurability has received a lot of research, not every FPGA supports it, and those that do require quite

low level programming to manage the placement constraints.

The next several chapters explore how these may be specifically applied to mapping image processing

operations onto an FPGA. Every operation may be implemented in many different ways. However, the

primary focus is on stream processing where appropriate. This is because, for an embedded system,

the data is inevitably streamed from a camera or other device. If the data is processed as it is streamed in,

the memory requirements of the algorithm can often be significantly reduced. Using stream processing

does place a strict time constraint of a one pixel per clock cycle (although this may be relaxed a little for

slower pixel clocks by using multiphase techniques), so not every operation may be able to be streamed.

154 Design for Embedded Image Processing on FPGAs

6

Point Operations

Beginning with this chapter, the focus is on how specific image processing operations may be

implemented on an FPGA. The next few chapters describe preprocessing and other low level operations.

Later chapters move to intermediate level operations.

An assumption in the next few chapters (unless stated otherwise) is that the N-bit pixels represent

unsigned values from 0 to V ¼ 2N�1. Most of the examples here will be given with N ¼ 8 bits.

6.1 Point Operations on a Single Image

The simplest class of image processing operations is that of point operations. They are so named because

the output value for a pixel depends only on the corresponding pixel value of the input image:

Q½x; y� ¼ f I½x; y�ð Þ ð6:1Þ

where f is some arbitrary function. Since the output value depends only on the input value and not on the

location of the pixel in the image, point operations may be represented by a mapping or transfer function,

as shown in Figure 6.1.

From a hardware implementation perspective, point operations may be easily implemented in any

processingmode. However, because each operation is applied exactly once to each pixel in the image, the

simplest approach is to systematically pass each input pixel through a single hardware block implement-

ing the function. This corresponds to the streamed mode of processing and is illustrated in the right panel

of Figure 6.1. Since each pixel is processed independently, point operations can also be easily

implemented in parallel. The image may be partitioned and a separate processor used with each partition.

In spite of their simplicity, point operations have wide use in terms of contrast enhancement,

segmentation, colour filtering, change detection, masking and many other applications.

If the subsequent imaging operation requires random access of pixels (for example from a frame

buffer), the hardware block implementing the point operation may be placed between the source and

subsequent operation. In this way, as the pixels are read, they are transformed by the point operation as

required for the subsequent process.

6.1.1 Contrast and Brightness Adjustment

One interpretation of the mapping function is to consider its effect on the brightness and contrast of the

image. Tomake an image brighter, the output pixel value needs to be increased. Thismay be accomplished

Design for Embedded Image Processing on FPGAs, First Edition. Donald G. Bailey.

� 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd.

by adding a constant, as illustrated in Figure 6.2. Similarly, an image may be made darker by decreasing

the pixel value, whichmay be accomplished by subtracting a constant. In practise, adjusting the brightness

is more complicated than this because the human visual system is nonlinear and does not consider each

point in an image in isolation but relative to its context within the overall image. This is shown in the

optical illusion in Figure 6.3, where the band through the image appears brighter on the left and darker on

the right (actually the pixel value is the same).

The contrast of an image is affected or adjusted by the slope of the mapping function. A slope greater

than one corresponds to an increase in the contrast (Figure 6.4) and a slope less than one corresponds to

a contrast reduction. This may be accomplished by multiplying by a constant greater than or less than

one respectively.

A relatively simple point operation for adjusting both the brightness and contrast is:

Q ¼ aIþ b ¼ a Iþ b0ð Þ ð6:2Þ

where a and b are arbitrary constants that control the brightness and contrast. One issue is what to dowhen

the value for Q exceeds the range of representable values. For example, with an eight bit per pixel

representation, what should be output if Q is outside the range of 0–255? The default of just taking the

I

Q

f fI Q

Figure 6.1 A point operation maps the input pixel value, I, to the output value, Q, via an arbitrary

mapping function, f . Right: implementation of a point operation using stream processing.

I

Q

Figure 6.2 Increasing the brightness of an image by adding a constant.

Figure 6.3 Brightness illusion.

156 Design for Embedded Image Processing on FPGAs

eight least significant bits and ignoring anyoverflowwould causevalues outside this range towrap around.

If the goal is to enhance the brightness or contrast of an image, this is seldom the desired effect. More

sensible would be for the output to saturate or clip to the limits. Note that clipping the output is

not invertible.

Clipping requires building hardware to detect when the limits are exceeded and adjust the output

accordingly. This is shown in block diagram form in Figure 6.5. Note that either the brightness or contrast

operation may be performed first depending on the form of Equation 6.2.

On the left in Figure 6.5, the clipping tests are performed after the calculation of Equation 6.2. This

means the propagation delay for the complete operation includes the time required for the clipping test. If,

however, the clipping test was performed on the input, it would be computed in parallel with the contrast

enhancement operation (as shown on the right), and the propagation delay would be reduced. The clip

limits referred to the input are:

Imin ¼ 0�b

a
; Imax ¼ V�b

a
ð6:3Þ

This form is most practical if the gain and offset values are constant, so that the input range can be

determined at compile time.

This circuit may be further simplified by relying on the factV ¼ 2N�1.With positive gain, it is only the

offset that can cause the result to go negative. Using the second form of Equation 6.2, the sign bit of the

addition can be used to set the output to zero. Similarly, the carry from the multiplication can be used to

clip to the maximum by setting all the bits to one. This scheme is shown in Figure 6.6.

Further optimisationsmay bemade.Obviously if the gain and offset are constant then themultiplication

may be replaced by a series of fixed additions. Representing the gain in canonical signed digit form will

reduce the number of terms that need to be added.

I

Q

Figure 6.4 Increasing the contrast of the image.

I Q

a b
V

0 <

>

Clipping

s
s

e
nt

h
gi

r
B

t
s

ar
t

n
o

C

I Q

a b

Imin

Imax

<

>V

0

Figure 6.5 Schematic representation of a simple contrast enhancement operation. Right: improving the

performance by moving the comparisons to the input.

Point Operations 157

A common contrast enhancement method is to derive the gain and offset from the minimum and

maximum values available in the input image. The contrast is then maximised by stretching the pixel

values to occupy the full range of available pixel values. This obviously requires that the whole image be

read to determine the extreme pixel values, with consequent timing issues. Such issues are discussed in

Section 7.1.2 with histogram equalisation, another adaptive contrast enhancement technique.

A contrast reversal is obtained if the slope of the transfer function is negative. For example to invert the

image, a gain of �1 is used, as shown in Figure 6.7, where:

Q ¼ V�I ¼ 2N�1
� ��I ¼ �I ð6:4Þ

Logically, this may be obtained by taking the one’s complement (inverting each bit) of the input.

The transformation does not necessarily have to be linear. The same principle applies with a nonlinear

mapping: raising or lowering the output will increase or decrease the brightness of the corresponding

pixels; slopes greater than one correspond to a local increase in contrast, while slopes less than one

correspond to a decrease in contrast; a negative slope will result in contrast inversion. A nonlinear

mapping allows different effects at different intensities.

A common mapping is the gamma transformation. This is easier to represent when considering

normalised values (where QN and IN represent fractions between zero and one).

QN ¼ I
g
N ð6:5Þ

The gamma curve was designed primarily to compensate for nonlinearities in the transfer function at

various stages within the imaging system. For example, the relationship between the drive voltage of

a cathode ray tube (CRT) and the output intensity is not linear, but is instead a power law. Therefore,

a compensating gamma curve is required to make the contrast appear more natural on the display. (This is

complicated by the fact that our eyes are not linearly sensitive to intensity either.)

The effects of the gamma transformation can be seen in Figure 6.8. When g is less than one, the curve
moves up, increasing the overall brightness of the image. From the slope of the curve, the contrast is

I
Q

ab´

-12toClip0toClip
N

Sign Carry

Figure 6.6 Simplified circuit. The sign bit from the addition sets the result to zero if the number is

negative, and the carry from the multiplication sets the result to all ones.

I

Q

Figure 6.7 Inverting an image (Photo courtesy of Robyn Bailey).

158 Design for Embedded Image Processing on FPGAs

increased for smaller pixel values at the expense of the lighter pixels, which have reduced contrast. For g
greater than one, the opposite occurs. The image becomes darker and the contrast is enhanced in the lighter

regions at the expense of the darker regions.

A sigmoid curve is also sometimes used to selectively enhance the contrast of the mid-tones at the

expense of the highlights and shadows (Braun and Fairchild, 1999).

6.1.2 Global Thresholding and Contouring

Thresholding, in its basic form, compares each pixel in the image with a threshold level and assigns the

output to true or false (white or black) as shown in Figure 6.9. Since each pixel is treated identically,

thresholding is a point operation.

Q ¼ 1; I � thr

0; I < thr

(
ð6:6Þ

IN

QN

γ=2.0

IN

QN

γ=0.5

Figure 6.8 The effects of a gamma transformation.

thr

I Q

I

Q

thr

Figure 6.9 Simple global thresholding.

Point Operations 159

Thresholding effectively classifies each pixel into one of two classes and is commonly used to segment

between object and background. An appropriate threshold level can often be selected by analysing the

statistics of the image, for example as contained in a histogram of pixel values. Several such threshold

selection methods are described in Section 7.1.4 under histogram processing.

Sometimes, however, a single global threshold does not suit the whole image. Consider the example in

Figure 6.10. The optimum threshold for one part of the image is not the optimum for other parts. Using

a global threshold to process such images will involve a compromise in the quality of the thresholding of

some region. A point operation is unsuitable to process such images, because to give good results over the

whole image the operation needs to take into account not only the input pixel value but also the local context.

Such images require adaptive thresholding, a form local filtering, and is considered further in Section 8.7.

Simple thresholding may be generalised to operate with more than one threshold level.

Q ¼
2; thr2 � I

1; thr1 � I < thr2

0; I < thr1

8><
>: ð6:7Þ

An example of this is shown in Figure 6.11. Here, two thresholds have been used to separate the image into

three regions: the background, the cards and the pips. Each output pixel is assigned a label based on its

relationship to the two threshold levels.

In this example, the darkest region is never adjacent to the lightest region. This it not the case in

Figure 6.12, where the interior of thewhite bubbles is black. There is also a gradation in contrast between

the white and black giving a ring of pixels within the bubbles detected as the intermediate background

level. However, even if there was a sharp change in contrast between the black and white, many of

Figure 6.10 Global thresholding is not always appropriate. Left: input image; centre: optimum

threshold for the bottom of the image; right: optimum threshold for the top of the image.

thr
2

thr
1

I Q

e
d

o
c

n
E

I

Q

thr
1
thr

2

Figure 6.11 Multilevel thresholding.

160 Design for Embedded Image Processing on FPGAs

the boundary pixels are still likely to have intermediate levels. This is because images are area sampled;

the pixel value is proportional to the average light falling within the area of the pixel. Therefore, if the

boundary falls within a pixel, as illustrated in Figure 6.13, part of the pixel will be white and part

black, resulting in intermediate pixel values. Any blurring or lens defocus will exacerbate this effect.

Consequently, with multilevel thresholding, it is inevitable that some of the boundary pixels will fall

between the thresholds and will be assigned an incorrect label. Such misclassifications require the

information from the context (filtering) either as preprocessing before the thresholding, or after thresh-

olding to reclassify the incorrect incorrectly labelled pixels.

Another form of multilevel thresholding is contouring. This selects pixel values within a range, as seen

in Figure 6.14, and requires a minor modification to Equation 6.7:

Q ¼
0; thr2 � I

1; thr1 � I < thr2

0; I < thr1

8>><
>>:

ð6:8Þ

Contouring is so named because, in an image with slowly varying pixel values, the pixels selected appear

like contour lines on a map. However, contouring is less effective on high contrast edges, because it is

detecting the intermediate pixel values illustrated in Figure 6.14. For a given threshold range, only a few

edge pixels may fall within the range, and there is no guarantee that these pixels would be connected.

While the pixels detected are likely to be edge pixels (depending on the threshold range), contouring

makes a poor edge detector because it lacks the context required to give connectivity.

As the output after thresholding is binary, it only requires a single bit of storage per pixel. (More bits

would be required for the output from multilevel thresholding, although this is usually significantly less

than that of the input image.) Therefore, if an image is able to be successfully thresholded as it is streamed

from the camera, the memory requirements for buffering the image are significantly reduced.

Figure 6.12 Misclassification problem with multilevel thresholding. Left: original image; centre:

classifying the three ranges; right: the background level labelled with white to show themisclassifications

within each bubble.

Figure 6.13 Edge pixels have an intermediate pixel value.

Point Operations 161

6.1.3 Lookup Table Implementation

Most of the point operations considered so far are relatively simple mappings and can be implemented

directly using logic. More complex mappings, such as gamma adjustment, require considerable logic to

implement directly. If necessary, if such operations were implemented in logic, pipelining can be used to

improve the speed.

Since the output value depends only on the input, the mapping for any point operation can be

precalculated and stored in a lookup table. Then it is simply a case of using the input pixel value to index

into the table to find the corresponding output. An example of this is shown in Figure 6.15.

The biggest advantage of a lookup table implementation is the constant access time, regardless of the

complexity of the function. The size of the table depends on thewidth of the input stream, with each extra

bit on the input doubling the size of the table.

A disadvantage of using a lookup table is that once the table has been set, the mapping is fixed. If the

mapping is parameterised (for example contrast enhancement or thresholding) then it is also necessary to

build logic to construct the lookup table before the frame is processed. Constructing the table will use the

same (or similar) logic as implementing the point operation directly. The only difference is that timing is

less critical. In a system with a software coprocessor, it may also be possible to construct the table in

software rather than building hardware to calculate the table values.

If the parameter can be reduced to a small number of predefined values, then one alternative is to use the

parameter to select between several preset lookup tables (as shown on the left in Figure 6.16). This is

achieved by concatenating the parameter with the input pixel value to form the table address. Another

possibility for more complex parameterised functions is to combine one or more lookup tables with logic,

as shown for the gamma mapping on the right in Figure 6.16.

A sequence of two or more point operations is in itself a point operation. For example, contrast

enhancement followed by thresholding is equivalent to thresholding with a different threshold level.

thr
2

thr
1

I Q

I

Q

thr
1
thr

2

Figure 6.14 Contouring selects pixels within a range of pixel values.

I

Q
LUT
Mapping

Figure 6.15 Performing an arbitrary mapping using a lookup table.

162 Design for Embedded Image Processing on FPGAs

This property of point operations implies that a complex sequence of point operations may be replaced by

a single lookup table that implements the whole sequence in a single clock cycle.

6.2 Point Operations on Multiple Images

Point operations can be applied not only to single images, but also between multiple images. For this,

Equation 6.1 is extended to:

Q½x; y� ¼ f I1½x; y�; I2½x; y�; . . . ; Ik½x; y�ð Þ ð6:9Þ

Corresponding pixels of the images are combined by an arbitrary function, f , to give the output pixel value

at the corresponding pixel location.

There are two main ways in which multi-image point operations are used. One is between two or more

images derived from the same input image. Avariation of this is between images derived from different,

but synchronised, sensors. Stream processing requires that the streams for each of the images be

synchronised. If the processing branches prior to the point operation have different latencies, then it

will be necessary to introduce a delay within the faster branches to equalise the latency with the slowest

branch. This is shown in Figure 6.17 for a three-input point operation. Note that the delay does not

necessarily need to follow the faster process (as with Process 2); it may be inserted before it (as with

Process 3), or even distributed throughout the process. However, keeping the delay together enables

a more efficient implementation using shift registers or a FIFO buffer.

The other way is to apply the point operation between images captured at different times. This requires

one or more frame buffers to hold the data from previous frames, as shown in Figure 6.18. Direct

sequential access operates directly on the input image and one or more previous images. Recursive access

feeds the output image back to be combined in somewaywith the incoming input image. In both cases, the

frame buffer is used for both reading and writing. Some of the techniques of Section 5.2.1 may need to be

used to enable the multiple parallel accesses.

LUT
bank

I IQ Q

Parameter

log
LUT

exp
LUT

γ

}

Figure 6.16 Parameterised lookup tables. Left: using the parameter as an address; right: combining

tables with logic (implementing the gamma mapping).

1Process
Latency λ1

2Process
Latency λ2

3Process
Latency λ3

Point
Operation

Delay
–λλ 21

Delay
λλ 31–

Figure 6.17 Two-image point operation applied to the same input image. A delay is inserted into the

faster branch to equalise the latency.

Point Operations 163

Just as single image point operations may be implemented using a lookup table, lookup tables may also

be used to implement multiple image point operations. The table input or address is formed by

concatenating the individual inputs. The main limitation of this approach is that the memory requirement

of a table grows exponentiallywith the number of address lines. Thismakesmultiple input point operation

lookup tables impractical for all but the most complex operations, or where the latency is critical. As with

single input lookup tables, the latency of multiple input LUTs is constant at one clock cycle.

While there are potentially manymulti-image point operations, this section focuses primarily on some

of the more common ones.

6.2.1 Image Averaging

Real images inevitably contain noise, both from the imaging process and also from quantisation when

creatingadigital image.Let thecaptured imagebe the sumof the ideal, noise-free imageandanoise image:

I½x; y� ¼ ~I½x; y� þ n½x; y� ð6:10Þ

By definition, the noise-free image is the same from frame to frame. Let the noise have zero mean, and be

independent from frame to frame:

E ni½x; y�nj ½x; y�
� � ¼ 0 for i 6¼ j ð6:11Þ

where E is the expectation operator. The signal-to-noise ratio (SNR) of the noisy image is then defined by

the ratio of the energy in the signal to the energy in the noise. One definition of this is:

SNRI ¼
s2~I
s2n

ð6:12Þ

If several images of the same scene are averaged:

Q½x; y� ¼
X
i

wiIi½x; y� ð6:13Þ

where: X
i

wi ¼ 1 ð6:14Þ

then:

Q½x; y� ¼
X
i

wi
~I½x; y� þ

X
i

win½x; y�

¼ ~I½x; y� þ n̂½x; y�
ð6:15Þ

Point
Operation

Point
Operation

Frame
buffer

Frame
buffer

Figure 6.18 Two-image point operation applied to successive images. Left: sequential access; right:

recursive access. A frame buffer is required to hold the image from the previous frame.

164 Design for Embedded Image Processing on FPGAs

The image content is the same from frame to frame, so will reinforce when added. However, since the

individual noise images are independent, the noise in one frame will partially cancel the noise in other

frames. The noise variance will therefore decrease and is given by (Mitra, 1998):

s2n̂ ¼ s2n
X
i

w2
i ð6:16Þ

If averaging a constant number of images,N, the greatest noise reduction is givenwhen theweights are all

equal. The output signal-to-noise ratio is then:

SNRQ ¼ s2~I
s2n̂

¼ N
s2~I
s2n

¼ N � SNRI ð6:17Þ

Note that the signal-to-noise ratio depends on the noise variance. The noise amplitude will therefore

decrease by
ffiffiffiffi
N

p
.

There is also a limitation with averagingmultiple frames to reduce quantisation noise. If the noise from

other sources (before quantisation) is significantly less than one pixel value, then the quantisation noise

will be similar from one frame to the next. The noise termwill no longer be independent and the reduction

given by Equation 6.16 will no longer apply. On the other hand, if the noise standard deviation from other

sources has a standard deviation larger than one pixel value, then the quantisation noise will be

independent and will be reduced by averaging.

Themain problemwith averaging multiple frames is the requirement to store the previousN�1 frames

in order to perform the averaging. Alternatively, this limitationmay be overcome if the output frame rate is

reduced by a factor of N. In this latter case, the images are accumulated until N have been summed, then

the accumulator is reset to begin accumulation of the next N.

To overcome this limitation, one technique is to have an exponentially decreasing sequence of weights.

Q½x; y� ¼
X1
i¼0

að1�aÞiI�i½x; y� ð6:18Þ

This may be implemented efficiently by calculating the result recursively:

Qi½x; y� ¼ ð1�aÞQi�1½x; y� þ aIi½x; y�
¼ Qi�1½x; y� þ a Ii½x; y��Qi�1½x; y�ð Þ

ð6:19Þ

The output noise variance, from Equation 6.16, is then given by:

s2n̂ ¼ s2n
X1
i¼0

a2ð1�aÞ2i

¼ s2n
a

2�a

ð6:20Þ

with the resulting signal-to-noise ratio:

SNRQ ¼ 2

a
�1

� �
s2~I
s2n

ð6:21Þ

Point Operations 165

By equating Equation 6.21 with Equation 6.17, the weight to give an equivalent noise smoothing to

averaging N images is:

a ¼ 2

Nþ 1
ð6:22Þ

The assumption with this analysis is that no additional noise is introduced by the averaging process. In

practise, the result of multiplication by awill require truncating the result. This will introduce additional
noise, limiting the improvement in signal-to-noise ratio. To reduce this additional noise, it is necessary to

maintain additional guard bits on the accumulator image.

An example implementation of Equation 6.19 is shown in Figure 6.19. Since the frame buffer will

almost certainly be off-chipmemory, one of the schemes of Section 5.2.1will need to be used to enable the

accumulated image to be both read andwritten for each pixel. For practical reasons, a can bemade a power

of two, enabling the multiplication to be implemented with a fixed binary shift. If a ¼ 2�k then the

effective noise averaging window, from Equation 6.22, is:

N ¼ 2

a
�1 ¼ 2kþ 1�1 ð6:23Þ

In most applications, this restriction is not a problem.

6.2.2 Image Subtraction

The main purpose for subtracting images is to determine the similarity between two images. Two global

metrics are commonly used to gauge similarity: the sum of absolute differences (SAD):

SAD ¼
X
x;y

��I1½x; y��I2½x; y�
�� ð6:24Þ

and the sum of squared differences (SSD):

SSD ¼
X
x;y

I1½x; y��I2½x; y�ð Þ2 ð6:25Þ

By squaring the difference, the SSD effectively gives more weight to large differences.

One application of these metrics is in image registration. The spatial offset of one of the images is

adjusted to obtain an estimate of the similarity as a function of position.

SSD½i; j� ¼
X
x;y

I1½xþ i; yþ j��I2½x; y�ð Þ2 ð6:26Þ

Frame

buffer

Ii

Qi

α

Qi-1

Figure 6.19 An implementation of weighted image averaging using Equation 6.19.

166 Design for Embedded Image Processing on FPGAs

The offset corresponding to the minimum SAD or SSD is therefore the offset that makes the images most

similar, and therefore provides an estimate of the relative position of the images to the nearest pixel. Image

registration is discussed in more detail in Section 9.5.

Another application of image subtraction is to detect changes within the scene. This is illustrated in

Figure 6.20.Where there is no change, the difference between pixel valueswill be zero and any changes in

the image will result in non-zero difference. This allows not only the addition or removal of objects to be

detected, but also subtle shifts in the position of the object, which result in differences at intensity edges

within the image.

Offsetting the pixel values so that no difference is represented by mid-grey enables both positive and

negative differences to be represented. Any small shift in the image contents between the compared

frames results in a bas relief effect, as seen in the difference image in Figure 6.20. Analysing the pixel

values and thickness of these features enable even subpixel shifts to be detected.

Note that it is important when subtracting images taken at different times that the lighting remains

constant or the images be normalised. This is particularly difficultwith outdoor scenes,where there is little

control over the lighting. There are two basic approaches to managing this problem. One is to take

differences only between images closely spaced in time,where it is assumed that conditions do not change

significantly from frame to frame, and the other is to maintain a dynamic estimate of the background that

adapts as conditions change.

The principle behind frame differencing is that, when an object moves, part of the background in the

previous image becomes obscured, resulting in a change in pixel value (assuming the object and

background have different pixel values). One of the limitations of frame differencing is that there will

also be a difference where the object was, as the background is uncovered. This is shown clearly in

Figure 6.21.While in this case the previous position and current position can be distinguished by the sign

of the difference, in general, with a complex background and objects this will not be the case. Significant

differences are detected by thresholding the absolute difference. Double differencing (Kameda and

Minoh, 1996) then detects regions that are common between successive difference images using a logical

AND. It therefore detects objects that are arriving in the first difference and leaving in the second.

Although the double difference requires data from three frames, the recursive architecture introduced in

Figure 6.19 can be readily adapted, as illustrated in Figure 6.22. The input pixel value is augmented with

one extra bit (D) to indicate that the pixel has been detected as different between the last two frames. This

difference bit is then combined with the difference bit stored with the previous frame to give the detected

output pixels.

For more slowly moving objects (that obscure the background for several successive images) it

is necessary that the object has sufficient texture to create differences in both difference frames.

Double differencing has been applied to vehicle detection using an FPGA implementation (Cucchiara

et al., 1999).

Figure 6.20 Image subtraction to detect change. Left: original scene; centre: the changed scene; right:

the difference image (offset to represent zero difference as a mid-grey).

Point Operations 167

The alternative is to construct a model of the static background and take the difference between each

successive image and the background. To account for changing conditions, it is necessary for the

background image (or model) to be adaptive. Such background models can vary significantly in

complexity (McIvor et al., 2001).

The simplest model is to represent the background image by the mean (Heikkila and Silven, 1999) or

median (Cutler and Davis, 1998) of the previous several images. The median is less sensitive to outliers,

Figure 6.21 Double difference approach. Top: three successive input images; middle: differences

between successive images; bottom, left and centre: absolute differences above the threshold; bottom,

right: the double difference.

Frame

buffer

Detected

pixels

I Ii
Δ i

Ii-1
Δi-1

Thr

Abs

Figure 6.22 Implementing double differencing.

168 Design for Embedded Image Processing on FPGAs

but requires maintaining a large number of images to calculate. The mean, however, can be estimated

using the recursive update of Equation 6.19. In this equation, a controls how quickly changes to the scene

are updated into the background. Larger values of a result in faster adaption of the background and rapid
assimilation of objects into the background, but may result in artefacts of trails behind moving objects as

they are partially assimilated into the background (Heikkila and Silven, 1999).

A problem with such a simple model is that it is unable to cope with regions of the image that are

naturally variable, for example leaves fluttering in the wind. By estimating the variance associated with

each pixel, pixels that vary significantlymay be eithermasked out or only be detected as foreground object

pixels if the difference exceeds three standard deviations (Orwell et al., 1999). Equation 6.19 may be

adapted to efficiently derive an estimate of the variance:

s2i ½x; y� ¼ ð1�aÞs2i�1½x; y� þ a Ii½x; y��Qi½x; y�ð Þ2 ð6:27Þ

Calculating the standard deviation requires taking the square root of the variance. A simpler alternative is

to replace the standard deviation with the mean absolute deviation:

di½x; y� ¼ ð1�aÞdi�1½x; y� þ a
��Ii½x; y��Qi½x; y�

�� ð6:28Þ

Again, the recursive architecture of Figure 6.19 can be extended to detect foreground pixels. Figure 6.23

replicates the mean update logic to calculate the mean absolute deviation. All pixels that differ from the

mean bymore than three deviations are detected as foreground pixels. As before, it is desirable to have a to
be a power of two to reduce the logic. Themultiplication of the deviation by three can also be implemented

with a shift and add.

A limitation of themean and variance approach is that the largevariance (ormean absolute deviation) is

often the result of two ormore different distributions being represented by a pixel. For example, with a flag

waving in thewind a pixel may alternate between the background and one of the colours on the flag.More

sophisticated models account for the bimodal and multimodal pixel value distributions resulting from

such effects. They represent each pixel by aweightedmixture of Gaussians (Stauffer andGrimson, 1999).

To be effective, themixture andGaussian parameters need to be updated online as each image is acquired.

The basic approach (Stauffer andGrimson, 1999) is to determinewhich of theGaussians is represented by

the current pixel (startingwith theGaussian that has themostweight). If it iswithin 2.5 standard deviations

of the mean of one of the Gaussians, the pixel value is incorporated into that Gaussian, using

Equations 6.19 and 6.27. The weights for all of the Gaussians in the mixture are updated using

a similar weighted update, increasing the weight of the matched Gaussian and decreasing the weights

of the others. If none of the Gaussians in themixturematches the current pixel, the Gaussian with the least

weight is discarded and replaced by a new Gaussian with a large standard deviation and low weight. The

most probable Gaussians are considered background and the lowest weight Gaussians represent new

events, so are considered to be foreground object pixels.

Frame
buffer

α α 3

Detected
foregroundAbsI

di
Qi

di-1
Qi-1

Figure 6.23 Detecting foreground pixels using the mean and mean absolute deviation.

Point Operations 169

A significant advantage of the mixture model over a single Gaussian occurs when an object stops long

enough to become part of the background, and then moves away again. The single Gaussian model will

gradually drift to the new pixel value and then drift away again, resulting in an object being detected for

a considerable time after it moves. With the mixture model, however, the mean does not drift, but a new

distribution is begun for the object.When this receives sufficient weight, it is considered background. The

model for the original background is retained, so when the object moves again, the pixels are correctly

classified as background.

Typically, three to five Gaussians are used to model most images (McIvor et al., 2001). An FPGA

implementationwould be a relatively straightforward extension of Figure 6.23.Usingmore terms for each

pixel requires more storage and logic to maintain the model. This may require multiple external RAM

banks to give the requiredmemorywidth. Alternatively, the frame rate can be reduced to enable sequential

memory locations to be used for the component distributions. Appiah and Hunter (2005) have

implemented a slightly simpler version of multimodal background modelling using a fixed width rather

than explicitlymodelling Gaussians. Their implementation considered both greyscale and colour images.

Other, more advanced andmore complexmethods of background estimation and subtraction have been

reviewed by Piccardi (2004).

6.2.3 Image Comparison

Image addition and subtraction of successive images may be considered as a form of temporal filtering.

Another type of filter useful for background estimation is to select the median (Cutler and Davis, 1998),

maximum or minimum pixel value of successive images. The median is used in a similar manner to

image averaging as described earlier. A problem with using the median, however, is that multiple

images must be stored to enable its calculation on a pixel-by-pixel basis. The memory storage and

consequent bandwidth issues restrict the usefulness of median calculation to short time windows for

real-time operation.

If it is desired to detect dark objects moving against a light background, then the maximum of

successive images may be able to estimate the background (Shilton and Bailey, 2006). Sufficient images

must be combined so that for each pixel, at least one image within the set contains a background pixel.

This may be implemented directly with the recursive architecture.

Mi½x; y� ¼ max Mi�1½x; y�; Ii½x; y�ð Þ ð6:29Þ
This makes using the maximum (or conversely using the minimum to estimate a dark background with

light objects) practical. Only the maximum (or minimum) found so far needs to be stored.

Two limitations of Equation 6.29 are that any outlier will automatically become part of the background

and, if conditions change, the background is unable to adapt. These may be overcome by building a decay

into the expression:

Mi½x; y� ¼ max aMi�1½x; y�; Ii½x; y�ð Þ ð6:30Þ

where a is slightly less than one. The multiplication may be replaced by a subtraction by choosing:

a ¼ 1�2�k ð6:31Þ

Whenworkingwith theminimum, such amultiplication does not work as well. In this case, it is necessary

to invert the image before scaling, so that the decay is toward white rather than black:

mi½x; y� ¼min ð2N�1Þ�a ð2N�1Þ�mi�1½x; y�
� �

; Ii½x; y�
� �

¼min ami�1½x; y� ; Ii½x; y�
� 	 ð6:32Þ

170 Design for Embedded Image Processing on FPGAs

In practise, the inversion may be performed efficiently by taking the one’s complement. Expressing

Equation 6.32 in terms of its dual puts it in the same form as Equation 6.30:

mi½x; y� ¼ max ami�1½x; y�; Ii½x; y�
� 	

ð6:33Þ

The disadvantage of the multiplication is that the amount of the decay depends on the pixel value. An

alternative is simply to subtract a constant:

Mi½x; y� ¼ max Mi�1½x; y��D; Ii½x; y�ð Þ ð6:34Þ

where D is related to the expected noise level. The constant offset may also be used for estimating a dark

background:

mi½x; y� ¼ min mi�1½x; y� þD; Ii½x; y�ð Þ ð6:35Þ

An implementation of this using the recursive architecture is shown in Figure 6.24.

Image comparison is also used for adaptive thresholding. Instead of using a constant global threshold as

in Equation 6.6, the threshold level is made to depend on the local context:

Q½x; y� ¼ 1; I½x; y� � thr½x; y�
0; I½x; y� < thr½x; y�

(
ð6:36Þ

Equivalently, the comparison may be performed by subtracting the two images and then using a single

global threshold.

Determining the threshold from the context requires some formof local filtering. Adaptive thresholding

are therefore discussed in more detail in Section 8.7 in the context of filters.

6.2.4 Intensity Scaling

Multiplication or division can be used to selectively enhance the contrast within an image. One image is

usually the input image being enhanced, and the other image represents the pixel dependent gain. As

described earlier, a gain greater than onewill increase the contrast and a gain less than onewill reduce the

contrast. The gain image is often obtained by preprocessing the input image in some way.

One application of pixel-by-pixel division is correcting for non-uniform pixel sensitivity within the

image sensor, or vignetting caused by the lens. If the pixel response is nonlinear, then correction requires

characterising the nonlinearity function, which is potentially different for each pixel (Sawchuk, 1977).

Fortunately, most modern solid-state sensors are linear, enabling a simpler correction. The basic principle

Frame

buffer

Δ

Background

stream

Mi-1 Mi

I

0

1

Figure 6.24 Estimating a light background using a recursive maximum.

Point Operations 171

is to characterise the response by capturing an image of a uniform field. This approach is also able to

correct for uneven illumination, provided the illumination is unchanged in the images being corrected.

Firstly, it is necessary to capture a reference image of a uniform field or a plain, non-textured

background. Since the image should be uniform, any variation in pixel value is a result of deficiencies in

the capture process, whether caused by variations in sensor gain or illumination. An image of a scene can

then be corrected by dividing by the reference image (Aikens et al., 1989):

Q x; y½ � ¼ k
I½x; y�

Ref ½x; y� ð6:37Þ

where the constant k controls the dynamic range of the output image and is chosen so that the full range of

pixel values is used. If the input and reference images are captured under identical conditions, then k is

typically set to 255 (or V). For practical implementation, k can be combined with the reference image to

avoid the extra operation. After calibration, the reference image does not change. Therefore, the

processing complexity of Equation 6.37 may be reduced by converting the division to a multiplication

and precalculating k=Ref ½x; y�.
For best accuracy, when capturing the reference image the exposure should be as large as possible

without actually causing any pixels to saturate. In practise, a uniform illumination field is difficult to

achieve (Schoonees and Palmer, 2009) but a similar reference image may be obtained by processing a

sequence of images of a moving background containing amodulation pattern. The processing enables the

variations caused by the imaging process to be separated from the variations in the illumination

(Schoonees and Palmer, 2009).

Note that any errors or noise present in the reference image will be introduced into the image through

Equation 6.37. It is therefore important tominimise the noise. This may be accomplished, if necessary, by

averaging several images or applying an appropriate noise smoothing filter.

Once calibrated, the reference image needs to be stored so that it can be made available as needed for

processing. The large size of an image requires an external memory to use as a frame buffer in most

circumstances. However, as the reference image is generally slowly varying, it can be compressed

readily. A simple compression scheme would be to down-sample the reference image and reconstruct

the reference using interpolation. Down-sampling by a factor of 8 or 16 would give a significant data

reduction, enabling the reference to be stored directly on the FPGA. See Section 9.3 for an

implementation of the reference reconstruction process.

When considering only vignetting, an alternative approach is to model the intensity fall off with radius

(Goldman and Chen, 2005). The model can then be used to perform the correction, rather than requiring

a reference image.

Other applications of normalisation include colour balancing and colour space conversion. For

example, calculating the colour saturation requires normalising by the intensity. This, and other related

colour transformations are described in more detail in Section 6.3.

Correlation is another image operation that requires multiplication of images on a pixel-by-pixel basis.

The resulting product is then summed over the image:

COR ¼
X
x;y

I1½x; y�I2½x; y� ð6:38Þ

Like the sum of squares or absolute differences, this is a measure of the similarity of two images, with a

larger correlation indicating a better match. Like the sum of differences, correlation is also used for

image registration, by adjusting the offset of one of the images to maximise the correlation. It can be

shown that correlation is closely related to the minimum square difference (Jain, 1989). Expanding

Equation 6.25 gives:

172 Design for Embedded Image Processing on FPGAs

SSD¼
X
x;y

I1½x; y��I2½x; y�ð Þ2

¼
X
x;y

I21 ½x; y� þ I22 ½x; y��2I1½x; y�I2½x; y�
� �

¼
X
x;y

I21 ½x; y� þ
X
x;y

I22 ½x; y��2COR

ð6:39Þ

The first two terms are constant when registering images, so maximising the correlation is equivalent to

minimising the sum of squared difference.

The problem with simple correlation for image registration is that images are finite. Therefore, if the

image is darker on one side than the other, this can introduce a bias that offsets the correlation peak. This

may be overcome by normalising the correlation by the overlap area and average pixel value (Jain, 1989):

CORN i; j½ � ¼

X
x;y

f ½xþ i; yþ j�g½x; y�
ffiX
x;y

f 2½xþ i; yþ j�
r ffiX

x;y

g2½x; y�
r ð6:40Þ

This requires maintaining three accumulators for each correlation output: one for fg, one for f 2 and one

for g2. The division and square root are only performed at the end of the image, rather than at every pixel,

so their speed is much less critical.

6.2.5 Masking

The final operation that will be considered in this section is image masking. In its most basic form it

consists of a logical AND or OR operation. Masking is commonly used to select a region of an image to

process, while ignoring irrelevant regions within the image. The choice to use an AND or OR depends on

the desired level for the background. ANDing with zero will result in a black background, while ORing

with one will make the background white. These options are shown schematically in Figure 6.25.

Logical OR andAND can also be used to combinemultiple regions into a single image. OR is usedwith

a black background and AND with a white background. The result is a generalisation of multiplexing,

using a set of mask images to select the corresponding image data for the output.

One application of this is image compositing, creating a single image from a series of offset images, for

examplewhenmaking a panorama from a series of panned images. To ensure a good result, it is necessary

to correct for lens and other distortions and to ensure accurate registration in the region of overlap.

Input
image

Mask
image

Figure 6.25 Masking, with setting of the background to black or white.

Point Operations 173

Where the scene geometry is known, this may be accomplished by rectifying the images (Bailey and

Shand, 1996). If the images are subject to vignetting, the seams between the images can be visible.

Correcting for vignetting (Goldman and Chen, 2005) can significantly improve the results by making the

pixel values of on each side of the join similar.

Rather than switch from one image to the other at the border between the images, the seam resulting

frommismatched pixel values between the imagesmay be significantly reduced bymerging the images in

the region of the overlap. Consider two overlapping frames, I1 and I2, as illustrated in Figure 6.26. In the

region of overlap the two frames are merged with a smooth transition from one to the other. The weights

applied to each of the images, w1 and w2 respectively, depend on the width of overlap, which may vary

from image to image, and also with position within the image.

One relatively simple technique is to apply the distance transform to each of the mask images. This

labels each pixel within the mask image with the distance to the nearest edge of the mask (distance

transforms are covered later in Section 11.5). The weights may then be calculated from the distance

transformed masks, D1 and D2:

w1 ¼ D1

D1 þD2

; w2 ¼ D2

D1 þD2

¼ 1�w1 ð6:41Þ

The output image is then given by:

Q ¼ w1I1 þw2I2

¼ w1I1 þð1�w1ÞI2
¼ I2 þw1ðI1�I2Þ

ð6:42Þ

An implementation of Equation 6.42 suitable for streamed operation is shown in Figure 6.27. Note that

these operations are applied for each pixel within the image. The rearrangement in Equation 6.42 reduces

I
1

D
1

w
1

I
2

D
2

w
2

0

1

BA

Figure 6.26 Merging of images in the overlap region. Theweights corresponding to the input images are

shown for the section A–B.

I
1

I
2

D
1

D
2

Q

÷ w
1

Figure 6.27 Schematic for merging images, given distance weighted masks.

174 Design for Embedded Image Processing on FPGAs

the computation to a single division to calculate theweight and a single multiplication to combine the two

images. The calculation may require pipelining to meet timing constraints.

6.3 Colour Image Processing

Colour image processing is a logical extension to the processing of greyscale images. Themain difference

is that each pixel consists of a vector of components rather than a scalar. A vector-based image can be

defined as I, where:

I½x; y� ¼ I1½x; y�; I2½x; y�; I3½x; y�f g ð6:43Þ

or

I½x; y� ¼
I1½x; y�
I2½x; y�
I3½x; y�

2
64

3
75 ð6:44Þ

and I1, I2, I3 are the component images. If the colour image is split into its component parts, then a point

operation on a colour image can be considered to be a point operation on multiple images.

The most common native representation of an image is for each pixel to have red, green and blue

components, IRGBfR;G;Bg, corresponding approximately with the sensitivity of the cones within the

human visual system. As described in Section 1.2, a colour image is usually formed by capturing images

with sensors that are selectively sensitive to the red, green and blue regions of the spectrum. Colour is

typically represented by a three-dimensional vector, and the most common standard is to have eight bits

per component, resulting in a 24-bit colour system.

Sensors are not solely restricted to the visible region of the electromagnetic spectrum. Each spectral

band conveys different information about the properties of the object being imaged. Such multispectral

imaging, particularly in the infrared, has been found useful in awide range of applications, including land

use and vegetation classification in remote sensing (Ehlers, 1991) and produce grading (Duncan and

Leeson, 1999) for detecting blemishes that may not be as apparent in the visible spectrum.

Colour image processing, therefore, involves the processing of such vector-valued images.

6.3.1 False Colouring

The first operation considered is false colouring. This is so named because the colours seen in the output

image are false in that they do not reflect the true underlying colour of the scene. The purpose of false

colouring is to make apparent to a human viewer that which may not be apparent or visible in the original

image. It is seldom used as part of an automatic image processing algorithm.

False colouring is applied in two distinct ways. The first is to map the non-visible components of a

multispectral image into the visible region of the spectrum.This enables humanviewing (and interpretation)

of the resultant image. For example, in remote sensing, different types of vegetation have different spectral

signatures that aremost obvious in the near infrared, red and green components (Duncan andLeeson, 1999).

Therefore, a mapping commonly used within remote sensing is to map these onto the red, green and blue

components respectively of the output image or display. The resulting colours are not the same as seenby the

unaided human eye. However, they do allow subtle distinctions to be more readily seen and distinguished.

A related technique is to combine different images of the same scene as the different components of

a colour image. One examplewhere this has been used is to verify the correct registration of images taken

from different viewpoints (Reulke et al., 2008). The images from each viewpoint are registered to a

common coordinate system, and when combined, they should align. Any registration errors will show as

coloured fringes. A similar application is to combine images taken at different times as different

Point Operations 175

components, as shown in Figure 6.28. Common regions within the set will show up as grey because they

have equal red, green and blue components. However, any differences will cause an imbalance in the

components, resulting in a coloured output. In the example here (Figure 6.28), dark objects appear in their

complimentary colour: the dark second hand in the red channel appears cyan, dark in the green channel

appears magenta, and dark in the blue channel appears yellow.

The second way in which false colouring is commonly used is to map a greyscale image onto a colour

image. Each pixel value is assigned a separate colour. This is implemented by using a lookup table to

produce each of the red, green and blue components, as shown in Figure 6.29. Its usefulness relies on the

ability of the human visual system to more readily distinguish colours than shades of grey, particularly

when the local contrast is different (see, for example, Figure 6.3). An appropriate pseudocolour both

enhances the contrast, and can facilitate the manual selection of an appropriate threshold level.

6.3.2 Colour Space Conversion

While the RGBcolour space is native tomost display devices, it is not necessarily themost natural towork

in. Colour space conversion involves transforming one vector representation into another that makes

Figure 6.28 Temporal false colouring. Images taken at different times are assigned to different

channels, with the resultant output showing coloured regions where there are temporal differences.

(See colour version of this figure in colour plate section)

176 Design for Embedded Image Processing on FPGAs

subsequent analysis or processing easier. Colour space conversion is a point operation, since each pixel is

operated on independently.

6.3.2.1 RGB

The RGB colour space is referred to as additive, because a colour is made by adding particular levels of

red, green and blue light. Figure 6.30 illustrates this with the RGB components of a colour image.

The RGB colour components (whether from capture or display) are device dependent. In a scene

captured by a camera, the colour vector for each pixel depends not only on the colour in the scene and

the illumination, but also on the spectral response of the filters used to measure the red, green and blue

components. Similarly, the actual colour produced on a display will depend on the spectral content of the

red, green and blue light sourceswithin the display. Therefore, there aremany different RGB colour spaces

dependingon the particularwavelengths (or spectralmix) used for eachof the red, green and blue primaries.

Two variations of RGB are of particular note. The first is 16-bit RGB. This is used where the entire

colour vector must be contained within 16 bits, usually as a result of bandwidth limitations. With 16-bit

RGB, five bits are allocated for each of the R and B components, and six bits are allocated for G (to take

into account the increased sensitivity of the human visual system to green). To convert from 16-bit to

24-bit RGB, rather than append zeros, it is better to append the two (for G) or three (for R and B) most

significant bits of the component as shown in Figure 6.31.

The main limitation of the RGB colour space is that it is device dependent. To combat this, a device

independent colour spacewas defined: sRGB (Stokes et al., 1996). This is a defacto standard for consumer

colour devices, including cameras, printers and displays. It not only defines the specific colours of the

three primaries used for red, green and blue, but also defines a nonlinear gamma-likemapping between the

intensity and the numerical values that closely approximates the response of CRT-based displays.

Red LUT

Green
LUT

Blue LUT

Figure 6.29 Pseudocolour or false colour mapping using lookup tables. (See colour version of

this figure in colour plate section)

Point Operations 177

Conversion from a device-dependent RGB to sRGB requires first multiplying the device dependent

colour vector by a 3 � 3 matrix that depends on the red, green and blue spectral characteristics of the

device. This transformation, determined by calibration, is sometimes called the colour profile of the

device. The result of the transformation represents a vector of normalised (between zero and one) linear

RGB values. Any component that is outside this range is outside the gamut of colours that may be

reproduced within sRGB and is clipped to fall within this range. Each component, CN , is then mapped

from linear RGB to sRGB values by (Stokes et al., 1996):

CNsRGB ¼
12:92CNRGB; CNRGB � 0:0031308

1:055C
1=2:4
NRGB�0:055; CNRGB > 0:0031308

(
ð6:45Þ

The final values can then be represented as 8-bit quantities by scaling by 255.

Equation 6.45 can be easily inverted to remove the gamma component and return to linear components:

CNRGB ¼

CNsRGB

12:92
; CNRGB � 0:04045

CNsRGB þ 0:055

1:055

0
@

1
A

2:4

; CNRGB > 0:04045

8>>>>><
>>>>>:

ð6:46Þ

Figure 6.30 RGB colour space. Top left: combining red, green and blue primary colours; bottom: the

red, green and blue components of the colour image on the top right. (See colour version of this figure in

colour plate section)

565

888

R G B

Figure 6.31 Converting from RGB565 to RGB888.

178 Design for Embedded Image Processing on FPGAs

6.3.2.2 CMY and CMYK

In printing, rather than actively producing light, the image begins with the white paper, and colour is

produced by filtering or blocking some of the colour. The subtractive primaries are cyan, magenta and

yellow, and usually consist of appropriate inks, dyes or filters. Consider the yellow dye; it will allow the

red and green spectral components to pass through, but will attenuate the blue, making that part of the

scene appear yellow. The more yellow, themore the blue is attenuated, the yellower the scenewill appear.

Similarly, the magenta dye attenuates the green spectral component, and the cyan dye attenuates the red

component. A CMY image is therefore formed from the cyan, magenta and yellow components:

ICMY ¼ fC;M; Yg

Therefore, as illustrated in Figure 6.32, the colours of a scene may be produced by mixing different

quantities of yellow, magenta and cyan dyes to give the required spectral content at each point. If the RGB

components are normalised then the corresponding normalised CMY components are approximately

given by:

CN ¼ 1�RN

MN ¼ 1�GN

YN ¼ 1�BN

ð6:47Þ

The exact relationship depends on the spectral content of the RGB components and the spectral

transmissivity of the CMY components. While the simple conversion of Equation 6.47 works reasonably

well with lighter, unsaturated colours, it becomes less accurate for darker and more saturated colours

where one (or more) of the CMY components is larger. There are two reasons for this. Firstly, the

attenuation is not linear with the amount of dye used, but is exponential. This makes the relationship

approximately linear for lower levels of CMY components, but deviates more for the higher levels.

Consequently, a particular spectral component cannot be completely removed, making it difficult to

produce fully saturated colours and dark colours. The second reason is that equal levels of yellow,magenta

Figure 6.32 CMY colour space. Top left: combining yellow, magenta and cyan secondary colours;

bottom: the yellow, magenta and cyan components of the colour image on the top right. (See colour

version of this figure in colour plate section)

Point Operations 179

and cyan seldom result in a flat spectral response. Both of these factors make black appear as a muddy

colour often with a colour cast.

In printing, this problem is overcome with the addition of a black dye, resulting in the CMYK colour

space. Equal amounts of yellow, magenta and cyan dyes are replaced by the appropriate amount of black

dye. This changes the approximate conversion from Equation 6.47 to:

KN ¼ 1�maxðRN ;GN ;BNÞ
CN ¼ 1�KN�RN ¼ maxðRN ;GN ;BNÞ�RN

MN ¼ 1�KN�GN ¼ maxðRN ;GN ;BNÞ�GN

YN ¼ 1�KN�BN ¼ maxðRN ;GN ;BNÞ�BN

ð6:48Þ

Note that one of the CMYK components will always be zero. Other than for printing, the CMYor CMYK

colours spaces are not often used for image processing.

6.3.2.3 YUV, YIQ and YCbCr

When colour television was introduced, backward compatibility with existing black and white television

was desired. The luminance signal, Y , is a combination of RGB components, with the colour provided by

two colour difference signals, B�Y and R�Y . Assuming normalised RGB, the image can be represented

in YUV colour space, IYUV ¼ fY;U;Vg, with the components given by:

Y ¼ 0:299Rþ 0:587Gþ 0:114B

U ¼ 0:492ðB�YÞ
V ¼ 0:877ðR�YÞ

ð6:49Þ

The particular weights given for the Y component reflect the relative sensitivities of the human visual

system. Representing Equation 6.49 in matrix form gives:

Y

U

V

2
64

3
75 ¼

0:299 0:587 0:114

�0:147 �0:289 0:436

0:615 �0:515 �0:100

2
64

3
75

R

G

B

2
64

3
75 ð6:50Þ

The range of the V component is from �0.615 to 0.615, which requires an extra bit to represent. When

processing digitally, it ismore common to adjust the scale factors of theU andV components so both are in

the range �0.5 to 0.5 (for example as used by the JPEG2000 standard (ISO, 2000)). This makes the

transform matrix:

Y

U

V

2
64

3
75 ¼

0:299 0:587 0:114

�0:169 �0:331 0:500

0:500 �0:419 �0:081

2
64

3
75

R

G

B

2
64

3
75 ð6:51Þ

The YIQ colour space is very similar to the YUV, except for different weights in Equation 6.50:

Y

I

Q

2
64

3
75 ¼

0:299 0:587 0:114

0:596 �0:275 �0:321

0:212 �0:523 0:311

2
64

3
75

R

G

B

2
64

3
75 ð6:52Þ

180 Design for Embedded Image Processing on FPGAs

The difference is that the chrominance components ðU;VÞ are rotated by 33 degrees. This requires a full
matrixmultiplication (ninemultiplications) rather than the five of Equation 6.49. The advantage gained is

a reduction in bandwidth required for television broadcasting because the human visual system is less

sensitive to theQ component than to the I component. The YIQ colour space, however, is seldom used for

digital image processing.

Strictly speaking, the YUV colour space is an analogue representation. The corresponding digital

representation is called YCbCr, with IYCbCr ¼ fY;Cb;Crg. There are two commonly used YCbCr

formats: one scales the values by less than 255 to give 8-bit quantities with headroom and footroom and

offsets the chrominance components to enable an unsigned representation:

Y

Cb

Cr

2
64

3
75 ¼

65:481 128:553 24:966

�37:797 �74:203 112:0

112:0 �93:786 �18:214

2
64

3
75

RN

GN

BN

2
64

3
75þ

16

128

128

2
64

3
75 ð6:53Þ

and the other uses the full range of 8-bit outputs for each of the components. This latter case is often used

with 8-bit input images (from 0–255) where the headroom and footroom are not considered as important

as maximising the dynamic range:

Y

Cb

Cr

2
64

3
75 ¼

0:299 0:587 0:114

�0:169 �0:331 0:500

0:500 �0:419 �0:081

2
64

3
75

R

G

B

2
64

3
75þ

0

128

128

2
64

3
75 ð6:54Þ

The implementation of Equation 6.54 will be considered here. This matrix can be factorised to use four

multiplications:

Y ¼ 0:299 R�Gð Þþ 0:114 B�Gð ÞþG

Cb ¼ 0:5

ð1�0:114Þ B�Yð Þþ 128 ¼ 0:564 B�Yð Þþ 128

Cr¼ 0:5

ð1�0:299Þ R�Yð Þþ 128 ¼ 0:713 R�Yð Þþ 128

ð6:55Þ

with the implementation shown in Figure 6.33. The inverse similarly requires four non-trivial

multiplications.

R

G

B

2
664

3
775 ¼

1 0 1:402

1 �0:344 �0:714

1 1:772 0

2
664

3
775

Y

Cb�128

Cr�128

2
664

3
775 ð6:56Þ

Since themultiplications are by constants, theymay be implemented efficiently using a few additions. The

addition and subtraction of 128 can be accomplished by just inverting themost significant bit. The YCbCr

components of a colour image are illustrated in Figure 6.34.

From an image processing perspective, the advantage of using YUV or YCbCr over RGB is the

reduction in correlation between the channels. This is particularly useful with colour thresholding as

described in the next section. It also simplifies the enhancement of colour images. For example, contrast

enhancement (such as histogram equalisation) may be performed on the Y component of the image.

Point Operations 181

There are two limitations of the YUV (or YCbCr colour space). The first is that the transformation is a

(distorted) rotation of the RGB coordinates. The scale factors are chosen to ensure that every RGB

combination has a legal YCbCr representation; however, the converse is not true. Some combinations of

YCbCr fall outside the legal range of RGB values. The implication is that more bits must be kept in the

YCbCr representation if the transform is to be reversed. Note that this cannot be avoided when using

rotation based transformation of the colour space.

The second limitation is that it requires either floating-point or fixed-point multiplications to perform

the transformation. This problem is primarily caused by the different weights for the Y component, which

are based on human perception of the luminance. From an image processing point of view, this is often less

relevant and can be relaxed.

The obvious solution to this problem is to restrict the coefficients to powers of two. There are several

ways of accomplishing this. One is the reversible colour transform (RCT) used by lossless coding in

JPEG2000 (ISO, 2000). This has:

Y ¼
jRþ 2GþB

4

k

Cr¼ R�G

Cb ¼ B�G

ð6:57Þ

R
R

G G

B
B

Y Y

Cr
Cr

Cb
Cb

0.299 1.402 0.714

0.114 1.772 0.344

0.713

0.564 128 128

128 128

Figure 6.33 Left: conversion from RGB to YCbCr; right: conversion from YCbCr to RGB.

Cb

Cr

Figure 6.34 YCbCr colour space. Top left: the Cb�Cr colour plane at mid luminance; bottom: the

luminance and chrominance components of the colour image on the top right. (See colour version of this

figure in colour plate section)

182 Design for Embedded Image Processing on FPGAs

where b c represents truncation. Although information appears to be lost by the truncation, it is retained in

the other two terms and can be recovered exactly (hence reversible colour transform). TheCr andCb terms

would appear to require an extra bit to prevent wrap around, and this is mandated in the JPEG2000

standard, but this is actually unnecessary, since the Y term provides sufficient information to resolve the

ambiguity. The reverse transformation is:

R ¼ Y�
jCrþCb

4

k

G ¼ CrþG

B ¼ CbþG

ð6:58Þ

While this solution is good from a coding perspective, for many image processing algorithms the

ambiguity between positive and negative values of Cr and Cbwould need to be resolved by retaining the

extra bit.

The RCT is not orthogonal; in particular, there is a strong correlation caused by the significant sharing

of theG component. One YUV-like orthogonal transformation is (Sen Gupta et al., 2004; Sen Gupta and

Bailey, 2008):

Y

U

V

2
64

3
75 ¼

1 1 1

1 �2 1

1 0 �1

2
64

3
75

R

G

B

2
64

3
75 ð6:59Þ

A similar transformation is:

Y

U

V

2
64

3
75 ¼

1 2 1

1 �1 1

1 0 �1

2
64

3
75

R

G

B

2
64

3
75 ð6:60Þ

The problem with these is that the inverse transformations require division by three. An orthogonal

transformation that uses powers of two for both the forward and inverse transformations is not possible. A

minor adjustment to Equations 6.59 and 6.60 gives a simple transform that is nearly orthogonal and is also

easily inverted. Here it is represented in normalised form:

Y

U

V

2
6664

3
7775 ¼

1
4

1
2

1
4

1
4

� 1
2

1
4

1
2

0 � 1
2

2
6664

3
7775

R

G

B

2
6664

3
7775 ð6:61Þ

This may be further factorised to reduce the complete transformation to four additions, with the ÷2
performed by a shift, which is free in hardware. The implementation of this, and its inverse:

R

G

B

2
64

3
75 ¼

1 1 1

1 �1 0

1 1 �1

2
64

3
75

Y

U

V

2
64

3
75 ð6:62Þ

are shown in Figure 6.35.

Point Operations 183

6.3.2.4 HSV and HLS

The RGB or YUV colour spaces do not reflect the psychological way in which colour is interpreted or

thought about. When a colour is interpreted, it is considered primarily in terms of its hue and the strength

of the colour (saturation) rather than the individual RGB components. Therefore, it is reasonable to have

a colour space with hue, saturation and intensity as the three components. Two such colour spaces are

IHSV ¼ fH; S;Vg (hue, saturation and value) and IHLS ¼ fH; L; Sg (hue, lightness, and saturation) (Foley
and Van Dam, 1982).

The HSV colour space is typically represented as a cone as shown in the left panel of Figure 6.36. The

hue represents the angle around the cone, resulting in the colourwheel on the right panel of Figure 6.36. By

definition, the black-white axis up the centre of the cone has a hue of zero. The remainder of the colour

wheel is split into three sectors based on which component is the maximum, and the proportion between

the other two components is used to give the angle. This is illustrated graphically in the colour wheel in

Figure 6.36.

Mathematically, the hue is defined as:

H ¼

0; R ¼ G ¼ B

G�Bð Þ60�
maxðR;G;BÞ�minðR;G;BÞmod 360�; R � G;B

B�Rð Þ60�
maxðR;G;BÞ�minðR;G;BÞ þ 120�; G � R;B

R�Gð Þ60�
maxðR;G;BÞ�minðR;G;BÞ þ 240�; B � R;G

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð6:63Þ

R R
G G

B
B

Y Y

U
U

V V

÷2

÷2

÷2

÷2

Figure 6.35 A multiplier-less YUV-like transformation and its inverse.

R

G

B

Y

M

C
White

Black

H

S

V
R

G

B

Y

M

C

White

Black

H

S

L

max=
G

min=
G

min
=
B

ni
m

=
R

m
a
x
=
R

max=
B

Figure 6.36 HSVand HLS colour spaces. Left: the HSV cone; centre: the HLS bi-cone; right: the hue

colour wheel. (See colour version of this figure in colour plate section)

184 Design for Embedded Image Processing on FPGAs

With a binary number system, the use of degrees (or even radians) is inconvenient. There are two

alternatives. One is to normalise the angle so that a complete cycle goes from zero to one, which

maximises the hue resolution for a given number of bits and avoids the need to manage wraparound of

values outside the range of 0–360�. This may be preferable when performing many manipulations on the

hue. The other is to represent 60� by a power of two (for example 64) to simplify themultiplication. It also

makes it easier to convert back to RGB.

The value is similar to Y , except that equal weight is given to the red, green and blue components, rather

thanweighting thembased on human perception. TheV component represents the height up the cone. The

value is usually represented normalised between zero and one.

VN ¼ maxðRN ;GN ;BNÞ ð6:64Þ

The saturation represents the strength of the colour and is represented by the radius of the cone relative to

the maximum radius for a given value:

SHSV ¼
0; maxðR;G;BÞ ¼ 0

maxðR;G;BÞ�minðR;G;BÞ
maxðR;G;BÞ ; otherwise

8>><
>>:

ð6:65Þ

This normalisation means only the value changes as the intensity of the image is scaled. The HSV

components of a sample image are shown in the middle row of Figure 6.37. Note that for greys in the

input image the hue is meaningless, because even a small amount of noise on the components will

determine the hue.

TheHLS representation is slightly different from theHSV colour space in that it is a bi-cone rather than

a cone, as seen in the centre panel of Figure 6.36. The main advantage of HLS over HSV is that it is

symmetric with respect to black and white. The hue is the same for both representations, given by

Equation 6.63, but the lightness and saturation differ from the HSV space. Again, the lightness and

saturation are usually represented as normalised values.

LN ¼ 1

2
maxðRN ;GN ;BNÞþminðRN ;GN ;BNÞð Þ ð6:66Þ

SHLS ¼

0; LN ¼ 0

maxðR;G;BÞ�minðR;G;BÞ
2LN

; LN < 1
2

maxðR;G;BÞ�minðR;G;BÞ
2�2LN

; LN � 1
2

8>>>>>>>><
>>>>>>>>:

ð6:67Þ

The HLS components of the sample image are shown in the bottom row of Figure 6.37.

Equation 6.66 places fully saturated primary colours at half lightness, at the intersection of the two

cones. In general, this makes L less than V , although this has no real consequence from an image

processing perspective.

Point Operations 185

The major limitation of HLS is that the saturation is only constant with scaling lightness only in the

lower cone (LN � 1
2
). This gives the anomaly that pastel colours can appear as fully saturated. In particular,

this can be seen in the lighter areas of Figure 6.37, where the saturation is high.

For these reasons, only the implementation of HSV will be considered here. Figure 6.38 shows an

implementation of the conversion from RGB to HSV. The minimum and maximum components are

determined from the sign bits of the differences between the input colour channels. These differences need

to be calculated anyway to give the numerators of Equation 6.63, so this information is effectively

obtained for free.Apart from themultiplexers to select theminimumandmaximumcomponents, themain

complexity is the two dividers for normalising the hue and the saturation. The colour wheel is rotated so

that a hue of zero corresponds to magenta to save the modulo normalisation when the maximum pixel is

red. To achieve this, the offset added to the hue is given by:

Offset ¼ 256 �Bmax þ 128 �Gmax þ 64 ð6:68Þ

with the hue taking a value between zero and 383. If necessary, this can be shifted back by subtracting 64,

and then adding 384 if the result goes negative.

To convert HSV back to RGB, the three most significant bits of the hue represent the sector, hence can

be used to select the appropriate values for the RGB components:

Figure 6.37 HSVand HLS colour spaces. Top left: HSV hue colour wheel, with saturation increasing

with radius; middle row: the HSV hue, saturation and value components of the colour image on the top

right; bottom row: the HLS hue, saturation and lightness components. (See colour version of this figure

in colour plate section)

186 Design for Embedded Image Processing on FPGAs

IRGB ¼

V ;V�VS;V�VSHLSBf g; HMSB ¼ 0

V ;V�VSð1�HLSBÞ;V�VSf g; HMSB ¼ 1

V�VSHLSB;V ;V�VSf g; HMSB ¼ 2

V�VS;V ;V�VSð1�HLSBÞf g; HMSB ¼ 3

V�VS;V�VSHLSB;Vf g; HMSB ¼ 4

V�VSð1�HLSBÞ;V�VS;Vf g; HMSB ¼ 5

8>>>>>>>>>>><
>>>>>>>>>>>:

ð6:69Þ

where the least significant bits of hue are considered as a fraction. An implementation of Equation 6.69 is

shown in Figure 6.39.

A form of hue and saturation may also be derived from the YCbCr colour space by converting the

chrominance components into polar coordinates (Punchihewa et al., 2005). This may be readily

implemented using a CORDIC transformation.

H ¼ tan�1 Cb

Cr
ð6:70Þ

R

V

G

S

B

H÷

÷

×64

Offset

GmaxGmin BmaxBmin RmaxRmin

R
G
B

R
G
B

R
G
B

Min

Max

Sign

bits

=

=

0

0

Figure 6.38 Conversion from RGB to HSV.

R
V

G

S

B

H

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

1

MSBs
select
sector

LSBs

Odd

Figure 6.39 Conversion from HSV to RGB.

Point Operations 187

S ¼
ffi
Cb2 þCr2

p
ð6:71Þ

In this form, the saturation will scalewith intensity, which is generally not desired. Tomake the saturation

more meaningful, it is necessary to scale the saturation by either the Y or the maximum RGB component

so that it is not intensity dependent.

The HSV colour space is useful in image processing for colour detection and enhancement. The

advantage gained is the intensity independence of hue and saturation, enablingmore robust segmentation.

One limitation, however, is the need to have a correct colour balance. The hue (and also the saturation to

a lesser degree) is affected by any colour cast, especially for colours with low saturation. Section 6.3.4

considers correcting the colour balance of an image.

In some applications, only one part of the colour wheel is of interest. For example, many fruits vary in

colour from green to yellow or red. In this case the sectors between green and red are of particular interest,

whereas outside this range it less important. In these cases, a simplified substitute for huemay be used. For

example, when analysing the colour of limes, colours in the range from green (chlorophyll dominates) to

yellow (carotenoids dominate) are important (Bunnik et al., 2006); thesemay be captured by a ratio of the

components:

HG�Y ¼ R

G
ð6:72Þ

This measure ranges from zero for pure green to one for yellow, enabling the health of the fruit to be

assessed. Such a measure is less suitable for reds (such as would be encountered when grading tomatoes,

where the red pigmented lycopene dominates), because the red component can be much larger than the

green. A small change in the green component can result in a large change in the measure. An alternative

hue measure that is more uniform is (Bunnik et al., 2006):

HG�R ¼ R�G

RþG
ð6:73Þ

which ranges from�1 for pure greens through 0 for yellow to þ 1 for pure reds. Note that, as with the hue,

both the measures of Equations 6.72 and 6.73 require the correct scaling or balance between the red and

green channels to accurately reflect the colour.

In other applications, other colour distinctions may be important, enabling similar simplifications to

be used.

6.3.2.5 CIE XYZ and xyY

The limitation, as mentioned before, of RGB is that it is device dependent. In 1931, the International

Commission on Illumination (CIE) established the XYZ standard colour space. The X, Y and Z are

imaginary (in the sense that they do not correspond to any real illumination) tristimulus values chosen

such that the Y corresponds with perceived intensity, and all possible visible colours are represented by a

combination of positive values of XYZ (Hoffmann, 2000). (It is impossible to produce all visible colours

with only three real sources.)

One limitation of a three-dimensional colour space is that it is difficult to represent graphically in two

dimensions. Since the underlying colour does not change with changing intensity, a normalised colour

space Ixyz ¼ fx; y; zg may be derived:

x¼ X

Xþ Y þ Z

y ¼ Y

Xþ Y þ Z

z ¼ Z

Xþ Y þ Z
¼ 1�x�y

ð6:74Þ

188 Design for Embedded Image Processing on FPGAs

which then allows the colour or chromaticity to be represented by two of the components.

The x�y plane is usually used to define the colour, resulting in the chromaticity diagram of

Figure 6.40. Given two points on the chromaticity diagram corresponding to two colour sources, a

linear combination of those sources will lie on a straight line between those points. Therefore, any

three points, corresponding for example to red, green and blue light sources, can be mixed to produce

only the colours within the triangle defined by those three points. To go outside the triangle would

require one (or more) of the sources to have a negative intensity, which is clearly impossible. The

triangle, therefore, defines the gamut of colours that can be produced by those primaries, for example

on a display.

To convert from a chromaticity back to XYZ tristimulus values, it is also necessary to know the

intensity, Y , resulting in the xyY representation. The X and Z values may be recovered from

X ¼ Y

y
x

Z ¼ Y

y
ð1�x�yÞ

ð6:75Þ

With any linear tristimulus colour space, the component values may be transformed into any other

linear colour space simply by a matrix multiplication (Hoffmann, 2000). The matrix used depends,

of course, on the spectral characteristics of the particular components used. For example, the

primaries used in HDTV have the chromaticity values listed in Table 6.1. The white point defines the

chromaticity coordinates of white, defined as the colour observed when all three RGB components

are equal.

The corresponding transformation matrix and its inverse can then be derived as (Hoffmann, 2000):

R

G

B

2
64

3
75 ¼

3:2410 �1:5374 �0:4984

�0:9692 1:8760 0:0416

0:0556 �0:2040 1:0570

2
64

3
75

X

Y

Z

2
64

3
75 ð6:76Þ

0.0
0.0

0.1

0.1

0.3

0.3

0.9

0.5

0.5

0.7

0.7

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

x

y

620

600

580

560

540

520

500

480

460

Figure 6.40 Chromaticity diagram. The numbers are wavelengths of monochromatic light in nano-

metres. (See colour version of this figure in colour plate section)

Point Operations 189

X

Y

Z

2
64

3
75 ¼

0:4124 0:3576 0:1805

0:2126 0:7152 0:0722

0:0193 0:1192 0:9505

2
64

3
75

R

G

B

2
64

3
75 ð6:77Þ

If device independence is not a requirement, a device-dependent chromaticity may also be formed. This

normalises the RGB components in a similar manner to Equation 6.74:

r ¼ R

RþGþB

g¼ G

RþGþB

b¼ B

RþGþB
¼ 1�r�g

ð6:78Þ

with the device dependent r�g chromaticity shown in Figure 6.41.

6.3.2.6 CIE L	a	b	 and CIE L	u	v	

One limitation of the colour spaces mentioned so far is that they are not perceptually uniform. In

estimating colour differences or colour errors, it is useful if the distance between two points is ameasure of

Table 6.1 Chromaticity values for HDTV and sRGB

x y z

Red 0.6400 0.3300 0.0300

Green 0.3000 0.6000 0.1000

Blue 0.1500 0.0600 0.7900

White point 0.3127 0.3290 0.3583

0.0
0.0

0.1

0.1

0.3

0.3

0.9

1.0

0.5

0.5

0.7

0.7

0.2

0.2

0.4

0.4

0.6

0.6

0.8 0.9 1.0

0.8

r

g

Figure 6.41 Device dependent r�g chromaticity. (See colour version of this figure in colour

plate section)

190 Design for Embedded Image Processing on FPGAs

the perceived colour difference. Several colour spaces have been derived from the CIEXYZ space that are

perceptually more uniform. Two considered here are the CIE L	a	b	 and CIE L	u	v	 colour spaces.
TheL	a	b	 space is defined relative to a referencewhite point fXn; Yn; Zng and introduces the following

nonlinearity to make the space more uniform:

f ðCÞ ¼
C1=3; C >

�
6

29

�3

1

3

�
29

6

�2

Cþ 4

29
; otherwise

8>>>>><
>>>>>:

ð6:79Þ

The conversion is to IL*a*b* ¼ fL*; a*; b*g is then:

L*¼ 116f Y=Ynð Þ�16

a* ¼ 500 f X=Xnð Þ�f Y=Ynð Þð Þ
b* ¼ 200 f Y=Ynð Þ�f Z=Znð Þð Þ

ð6:80Þ

resulting in the lightness, L*, ranging from 0 to 100. A different range may be arranged by appropriate

scaling. The a* axis goes fromgreen (negative) to red ormagenta (positive), and the b* axis goes fromblue

(negative) to yellow (positive).

The function, f , may be implemented using a lookup table, although three will be required to convert

one pixel per clock cycle, one for each component. If the reference white point does not change, the

division can be combined into the tables.

The inverse conversion:

f Y=Ynð Þ ¼ L*þ 16

116

f X=Xnð Þ ¼ a*

500
þ f Y=Ynð Þ

f Z=Znð Þ ¼ f Y=Ynð Þ� b*

200

ð6:81Þ

requires three divisions before inverting Equation 6.79:

C ¼

f ðCÞ3; f ðCÞ > 6

29

3

�
6

29

�2�
f ðCÞ� 16

116

�
; otherwise

8>>>>><
>>>>>:

ð6:82Þ

which is again best implemented as a lookup table. The resultant components then need to be

scaled by the reference white point components, which can again be combined into the lookup table

if constant.

The L	u	v	 colour space was designed to be a little easier to calculate than L	a	b	, although on an

FPGA theremay be little difference. The lightness is the same as Equation 6.80, with the two chrominance

components given by:

u*¼ 13L* u0�u0nð Þ
v* ¼ 13L* v0�v0nð Þ

ð6:83Þ

Point Operations 191

where

u0 ¼ 4X

Xþ 15Y þ 3Z

v0 ¼ 9Y

Xþ 15Y þ 3Z

ð6:84Þ

The chrominance components range from�100 to 100. Again, a more convenient range may be achieved

by scaling L*.

Conversion from L	u	v	 back to XYZ is:

u0 ¼ u*

13L*
þ u0n

v0 ¼ v*

13L*
þ v0n

Y ¼
Yn

�
3

29

�3

L*; L* � 8

Yn

�
L*þ 16

116

�3

; L* > 8

8>>>>><
>>>>>:

X ¼ Y
9u0

4v0

Z ¼ Y
12�3u0�20v0

4v0
ð6:85Þ

The colour difference between two points in either the L	a	b	 or L	u	v	 colour space may be

determined by calculating the Euclidean distance between the corresponding vectors.

6.3.3 Colour Thresholding

Colour thresholding, like scalar thresholding, assigns a label to each pixel. With colour images, the

purpose is to detect which pixels belong to each of a set of colours of interest. The output of colour

thresholding is an image of labels, with each label corresponding to a colour class.

A computationally simple approach is to associate a rectangular box in the colour coordinates with

a colour class. This corresponds to using a pair of thresholds for each component to define the boundaries

of the box along that component.

It is generally not appropriate to use RGB space for this unless the illumination is fixed. This is because

there is a strong correlation between the red, green and blue components, and all three will scale with

illumination. This means that as the intensity changes, points will move diagonally in RGB space,

requiring the box to be large. Consequently, only a few very different colours can be detected, and there is

poor discrimination between colours.

Converting to YCbCr will give some improvement because rectangular boxes aligned with the YCbCr

axes will be diagonal in RGB space. However, the chrominance components still scale with the

luminance. Better discrimination may be obtained by scaling the chrominance by the luminance, or

alternatively scaling the chrominance components by the maximum of the red, green and blue

components (Johnston et al., 2005b).

192 Design for Embedded Image Processing on FPGAs

Alternatively, the thresholding may be performed directly in the HSV colour space where the hue and

saturation are independent of the luminance. Note that the HLS colour space is usually less suitable than

HSV because the saturation changes with lightness when the lightness is greater than 50%.

The implementation of colour thresholding extends the contouring operation of Equation 6.8 and

Figure 6.14 to each of the three channels, as shown in the left in Figure 6.42. This circuit will need to be

repeated for each colour class to be detected.

An alternative is to use a lookup table to implement the thresholding. This requires a separate

LUT for each channel, but has the advantage that multiple classes may be segmented simultaneously

by having a separate bit-plane associated with each colour class in the lookup tables (Sen Gupta

et al., 2004).

The set of pixel values corresponding to a colour class do not necessarily need to fall within a

rectangular box aligned with the component axes. However, the logic becomes increasingly more

complex to handle arbitrary shaped regions. One approach is to use a single large lookup table taking as

input the concatenated components of the colour input vector (Sen Gupta et al., 2003). The mapping can

then be arbitrarily complex and can include any necessary colour space conversions. Unfortunately, such

a lookup table is prohibitively large (224 ¼ 16 777 216 entries for 24-bit colour) and would need to be

implemented in externalmemory. The table sizemay be reduced by using fewer bits of the input at the cost

of poorer discrimination.

A composite approach can also be used. For example, Johnston et al. (2005a) use two lookup tables,

for each of Cb and Cr, and combine the normalisation division by Y into those tables, with a reduced

number of bits. The resultant tables had only 512 entries of four bits (for four colour classes) enabling both

tables to be contained within a single 4 Kbit block RAM.

6.3.4 Colour Correction

The colour of each pixel observed in an image depends not only on the spectral reflectivity of the

corresponding object point, but also on the illumination. For example, the colours of objectswithin a scene

illuminated by incandescent light can be quite different from those illuminated by fluorescent light. For

outdoor scenes, the spectral characteristics of the illumination depend onwhether the object is illuminated

by sunlight, or in shadow, or whether the sky is clear or overcast, or even on the time of day.

Yth1

Cbth1

Cbth2

Crth1

Crth2

Yth2

Y

Y

Cb

CbCr

Cr

Classi

Class

Y
LUT

Cb
LUT

Cr
LUT

0

0

0

1

1

1

Cr

Cbth1

Yth1

Cr

Cbth2

th1 th2

Yth2

Figure 6.42 Colour thresholding. Left: comparisons required for each colour class using a rectangular

block; right: lookup table approach, with one lookup table per colour channel, detects multiple classes in

parallel.

Point Operations 193

The colour constancy problem is that of estimating how the scene would appear given canonical

illumination. Unfortunately, without prior knowledge of the illumination, this is an ill-posed problem. In

practise, it is not necessary to estimate the full spectral characteristics of the illumination; it is sufficient to

remove the effects of varying illumination on the image. Colour correction involves transforming the

RGB value of each pixel in the image to remove the effects of illumination. In general, this requires

determining the components of a 3 � 3 linear transformation matrix. However, given that the spectral

distribution at the sensor is the product of the reflectivity and illumination distributions, this is often

simplified to a diagonal matrix, independently scaling the R, G, and B components (Finlayson et al.,

1994). Note that if any of the components are saturated, this will result in an additional colour change that

cannot easily be corrected.

Perhaps the simplest model is to assume that, on average, the image is achromatic (Finlayson et al.,

2001). This implies that the average colour within the image should be grey. The effective illumination

colour is then given by the mean of the red, green and blue components of the image. Correction is

performed by dividing by themean value and scaling to ensure that all pixel values arewithin the range of

allowed values.

R̂¼ kR=mR
Ĝ ¼ kG=mG
B̂¼ kB=mB

ð6:86Þ

where R̂ĜB̂ are the corrected colour components and the scaling factor, k, that maximises the output

contrast is given by:

k ¼ V min
mR

max
x;y

ðRÞ ;
mG

max
x;u

ðGÞ ;
mB

max
x;y

ðBÞ

0
@

1
A ð6:87Þ

where V ¼ 2N�1. Alternatively, the scaling factor can be set to V=2 (Funt et al., 1998), although this has
the danger that one or more of the components may saturate.

Themajor limitation of this approach is that if the image contains a dominant colour, the estimate of the

illumination colour will be biased towards that colour (Gershon et al., 1987). As a result, a colour cast

complementary to the dominant colour will be introduced into the image. This is clearly seen in the centre

panel of Figure 6.43, where a bluish cast is introduced. As it is not known in general whether or not there is

a dominant colour, this approach to colour correction is impractical.

Figure 6.43 Simple colour correction. Left: original image captured under incandescent lights,

resulting in a yellowish-red cast; centre: correcting assuming the average is grey, using Equation

6.86; right: correcting assuming the brightest pixel is white, using Equation 6.88. (See colour version

of this figure in colour plate section)

194 Design for Embedded Image Processing on FPGAs

Another assumption that is sometimes used for colour correction is that the image contains at least one

white pixel within the image, and that thewhite region is the brightest in the image. In this case, the white

pixel may be found simply by finding the maximum of each component. Since this should be white

(achromatic, with all components equal), the input image can be corrected by scaling each component by

its corresponding maximum (Funt et al., 1998):

R̂ ¼ VR=max
x;y

ðRÞ
Ĝ ¼ VG=max

x;y
ðGÞ

B̂ ¼ VB=max
x;y

ðBÞ
ð6:88Þ

The results of this scheme are shown in the right panel of Figure 6.43.

One limitation of this approach is that it is easy for the assumptions to be violated. If the white pixel is

the brightest in the image, there is a strong possibility that one or more of the channels will be saturated at

V . The true value of that component will be underestimated, affecting the correction. In many cases, the

brightest point in an image is the result of specular reflectionwith the resulting pixel affected by the colour

of the reflecting surface. Also, basing the correction on a single pixel will inevitably introduce noise into

the estimate of the illumination colour, affecting the accuracy of any correction. These limitations may be

mitigated by requiring a region of adjacent pixels be detected, and using themean of that region. The logic

for detection, however, becomes considerably more complex.

The brightest object in the image may not be white, and if it is white it may not be pure white. If the

colour is slightly off-white, making it white will introduce a cast. This limitation is harder to overcome,

because it is impossible to distinguish between an off-white surface or slightly coloured illumination.

This approach may be extended by deliberately placing a white patch within the image. If the

illumination and camera settings do not change with time, this may even be captured off-line as

a calibration image. The white patch can then be detected either automatically, or by having the patch

in a known location, or by manually selecting the region of interest. Let mðwhiteÞ be the mean of the pixels

within the white patch, then the correction may be performed as:

R̂ ¼ VR=mRðwhiteÞ
Ĝ ¼VG=mGðwhiteÞ
B̂ ¼ VB=mBðwhiteÞ

ð6:89Þ

If the white patch is not the brightest region within the image (for example, a light grey is used instead to

prevent any of the components of the calibration patch from saturating), then the V in Equation 6.89 may

be replaced by k similar to Equation 6.86.

Thiswill ensure that thewhite patchwill appear achromatic. However, the cameramay also introduce

a DC offset in the output (for example as an offset in the amplifier or A/D converter, or not completely

estimating the dark current). The colour correction may be enhanced by introducing a black patch into

the model. Let mðblackÞ be the mean of the pixels within the black patch. A colour correction using both

patches is:

R̂ ¼ V
R�mRðblackÞ

mRðwhiteÞ�mRðblackÞ

Ĝ ¼ V
G�mGðblackÞ

mGðwhiteÞ�mGðblackÞ

B̂ ¼ V
B�mBðblackÞ

mBðwhiteÞ�mBðblackÞ

ð6:90Þ

Point Operations 195

The results of this correction are shown in the centre panel of Figure 6.44.

If the calibration performed off-line, then the colour correction is making a brightness and

contrast adjustment to each of the channels, as described in Section 6.1.1. If the calibration is

performed on-line, then the best approach is to place the black and white patches at the top of the

image, so the mean values may be used to correct the rest of the image. Otherwise, the whole image

needs to be stored in a frame buffer to enable the whole image to be corrected. If the illumination is

changing slowly, then it may be sufficient to use the channel gains and offsets calculated from the

previous frame.

A more sophisticated model adds a third mid-grey patch, with mean value mðgreyÞ. This allows slight
variations in gamma to be corrected between the channels. The green pixel value is left unchanged, but

a gamma correction is applied to the red and blue channels to make the components equal for the grey

patch. Considering just the red component (a similar equation results for blue):

R̂ ¼ V
R�mRðblackÞ

mRðwhiteÞ�mRðblackÞ

 !gR

ð6:91Þ

where gR ¼
ln

mGðgreyÞ�mGðblackÞ
mGðwhiteÞ�mGðblackÞ

 !

ln
mRðgreyÞ�mRðblackÞ
mRðwhiteÞ�mRðblackÞ

 ! ð6:92Þ

The results of adjusting the gamma are shown in the right panel of Figure 6.44.

Correcting for grey requires the addition of two gamma correction blocks, one for each of red and blue

as shown in Figure 6.45. The circuit for these is complicated by the fact that the gamma values are not

constant, but are a result of calibration. If implemented on-line, the calculation of the gamma is also

required. However, since this is only performed once per frame, it is probably best implemented in

software rather than directly in hardware. In that case, the software can also calculate the values for

a lookup table implementation of the gamma correction blocks.

There is a wide range of more complex illumination estimation methods, which are not considered

here. Several of these are discussed elsewhere (Funt et al., 1998; Finlayson et al., 2001).

Figure 6.44 Correcting using black, white and grey patches. Left: original image with the patches

marked; centre: stretching each channel to correct for black and white, using Equation 6.90; right:

adjusting the gamma of the red and blue channels using Equation 6.91 to make the grey patch grey. (See

colour version of this figure in colour plate section)

196 Design for Embedded Image Processing on FPGAs

6.3.5 Colour Enhancement

When performing colour enhancement, is often easier to work in HSV or HLS space. Since the hue

represents the basic colour, generally it is left unchanged (unless correcting colour errors as described

above). Colours can bemademovevivid by increasing the saturation. This can be achieved bymultiplying

by a constant, or using a gamma enhancement (with g < 1). Overall the contrast of the image may be

enhanced by enhancing the lightness or value component.

6.4 Summary

Point operations are some of the simplest to implement on an FPGA because each output pixel value

depends only on the corresponding input pixel value. This enables them to be implemented using any

processing mode. Since there are no dependencies between pixels, point operations can readily be

parallelised by building multiple processing units. It is also common to pipeline point operations,

processing data as it is being read from or written to memory.

Point operations on a single image are primarily concernedwith adjusting the brightness or contrast (or

equivalently adjusting the colour balance or contrast of a colour image). Thresholding is another common

point operation, used for segmenting an image on the basis of intensity or colour. Any point operationmay

be directly implemented using a lookup table, giving constant processing time regardless of the

complexity of the operation.

Point operations may also be applied betweenmultiple images. Virtually any operation may be applied

between the pixels of the images being combined. Most commonly, these are images captured at different

times, so requires frame buffering to store the history. A common architecture is recursive processing,

where a newly acquired image is combinedwith one ormore images held in a frame buffer, with the result

written back to the frame buffer.

The simplicity of point operations is also one of themain limitations. Frequently, global data is required

to set appropriate parameters (for example for contrast stretching or selecting an appropriate threshold

level). The use of histograms to capture and derive some of these parameters is described in the next

chapter. A point operation considers each pixel in isolation and does not take into account context. Local

filters, where the output pixel value is dependent on several pixels within a local neighbourhood, are

described in Chapter 8.

R(black)

B(black)

G(black)

R

B

G

B
la

c
k

o
ffs

e
t

W
h
ite

g
a
in

G
re

y

R̂

B̂

Ĝ

GainR

GainB

GainG

R

B

Gamma

Gamma

Figure 6.45 Implementing colour correction; the various parameters are stored in registers. Overflow

detection and clipping has been omitted for clarity.

Point Operations 197

7

Histogram Operations

As indicated in the previous chapter, the parameters for many point operations can be derived from

the histogram of pixel values of the image. This chapter is divided into to two parts: the first

considers greyscale histograms and some of their applications, and the second extends this to

multidimensional histograms.

7.1 Greyscale Histogram

The histogram of a greyscale image, as shown in Figure 7.1, gives a count of the number of pixels in an

image as a function of pixel value.

H½i� ¼
X
x;y

1; I½x; y� ¼ i

0; otherwise

�
ð7:1Þ

There are two main steps associated with using histograms for image processing. The first step is to

build the histogram, and the second is to extract data from the histogram and use it for processing the

image. Building the histogram is discussed in this section, whereas the applications are described in

subsequent sections.

To build the histogram, it is necessary to accumulate the counts for each pixel value, as indicated in

Equation 7.1. Since each pixel must be visited once, building the histogram is ideally suited to stream

processing. To accumulate the pixel count for each pixel value requires maintaining the count so far for

each value. Thismay be accomplished by an array of counters,with the input pixel used to enable the clock

of the corresponding counter (Figure 7.2). The output counts need to be indexed using a bus ormultiplexer.

A disadvantage of this approach is that the decoding and output multiplexing are relatively expensive.

The decoder of the input pixel stream may be re-used as part of the output multiplexer; however, the

number of different pixel values (or histogram bins)means that a large amount of logic cannot be avoided.

The counters and associated registers must also be built using the logic resources of the FPGA, with each

counter register built from flip-flops. This approach is, therefore, best suited if only a few counters are

required (for example after thresholding), or if processing requires the individual counters to be accessed

in parallel.

Each pixel can have only one pixel value, so only one counter is incremented in any clock cycle. This

implies that the accumulators may be implemented in memory. Incrementing an accumulator requires

reading the associatedmemory location, adding one, andwriting the sum back tomemory. This requires a

Design for Embedded Image Processing on FPGAs, First Edition. Donald G. Bailey.

� 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd.

dual-port memory, with one port being used to read the memory and one port to write the result. This

scheme is shown in Figure 7.3. Memory is effectively a multiplexed register bank. However, from an

implementation perspective, the multiplexers are built within the memory addressing, so significantly

fewer logic resources are required.

0
0

200

400

600

800

1200

1000

255128
Pixel value

C
ount

Figure 7.1 An image and its histogram.

CE
RSTCounter0

CE
RST

CE
RST

CE
RST

CE
RST

D
ecoder

Clear

Count

Index

I

Counter1

Counter2

Counter3

CounterV

Figure 7.2 Histogram accumulator built from counters.

I

1

Port 1 Port 2

Histogram memory

Figure 7.3 Histogram accumulation using dual-port memory.

200 Design for Embedded Image Processing on FPGAs

One disadvantage of the memory-based approach is that resetting the registers at the start of a frame

requires sequentially cycling through memory locations to set them to zero. With the register-based

approach of Figure 7.2, all of the registers may be reset in parallel.

The circuit of Figure 7.3 requires a late write to the second port. This requires the timing to allow the

data to be read near the start of the clock cycle, so the incremented value may be written at the end of the

clock cycle. This may be readily achieved with asynchronous memory or by delaying the write pulse for

synchronous memory.

If a late write is not available, then both the pixel value and the accumulated count must be buffered in

registers to enable the updated count to be written in the following clock cycle. It is slightly more

complicated than this, as shown in Figure 7.4, because if the subsequent pixel has the samevalue, the count

read frommemorywill not have been updated yet. This requires checking if the current pixel is the same as

the previous value, and if so incrementing the registered value rather than that read from memory.

As each pixel is processed independently, it is also possible to partition the image over several parallel

accumulators (Figure 7.5). This approach then requires a final pass through the accumulators to combine

the results from each partition to give the histogram for the complete image.

The circuitry that processes the histogram to extract data from it must operate on the same histogram.

Similarly, the circuitry that resets the histogram must also be connected to the histogram memory. These

require multiplexing the address and data lines to the appropriate data structures. These multiplexers are

assumed in the following sections.

7.1.1 Data Gathering

Histograms may be used to gather data from the objects within the image. Consider an image of a single

object, and that object can be separated from the background by thresholding. Then the area of the object is

simply given by the number of pixels detected by thresholding. This may be obtained from the histogram

of the corresponding binary image. Obviously, it is unnecessary to build a complete histogram for this

case, a single counter will suffice (comparewith Figure 7.2). However, if the threshold level is obtained by

processing the histogram, then the area may be found directly from the histogram without necessarily

thresholding the input image:

AreaðImin � I � ImaxÞ ¼
XImax

i¼Imin

H½i� ð7:2Þ

This idea may be generalised to measuring the area of many objects within an image. If the image is

processed in such away that the pixels associated with each object within the image are assigned a unique

label, then each histogram bin will be associated with a different label, effectively giving the area of

each object.

Pv

H

1

=

=
≠

Port 1 Port 2

Histogram memory

I

Figure 7.4 Performing histogram accumulation with caching when late write is not available.

Histogram Operations 201

Other useful statistics of the image, such as the mean and variance, may be extracted from the

histogram, rather than directly from the image. While these may be calculated directly from the image, if

the statistics are taken from a restricted range of pixel values that is chosen dynamically, it ismore efficient

to obtain the histogram as an intermediate step.

The mean pixel value of an image is given by:

mI ¼

X
x;y

I½x; y�
X
x;y

1
¼
X
i
iH½i�

X
i
H½i� ð7:3Þ

with the variance as:

s2I ¼

X
x;y

I½x; y��mIð Þ2
X
x;y

1
¼
X
i

i�mIð Þ2H½i�
X
i
H½i� ¼

X
i
i2H½i�

X
i
H½i� �m2I ð7:4Þ

The last form of Equation 7.4 allows the variance to be calculated in parallel with the mean, rather than

having to calculate themean first. Often, the mean and variancewithin a restricted range of pixel values is

required rather than over the full range. In this case, the summations of Equations 7.3 and 7.4 are

performed over that range (imin to imax).

A direct implementation of these summations is shown in Figure 7.6. The start signal selects imin into i

and resets the summations to zero. On subsequent clock cycles, H[i] is read and added to the appropriate

accumulators. If the delay through the multiplications is too long, then this may be pipelined. When

i reaches imax, the final summation is performed and the divisions to calculate the mean and variance

carried out. Again, if the divisions take too long, they may be pipelined. The Done output goes high to

indicate the completion of the calculation.

Partitioned
Image

Histogram
accumulator

Total
Histogram

Histogram
accumulator

Histogram
accumulator

Histogram
accumulator

Figure 7.5 Partitioning the accumulation over several parallel processors.

Hi2

iH

Η

÷

÷ μI

σI
2

x2

Histogram
memory

imax = Done
Start RST CE

CERST

RST

iimin
INIT

∑

∑

∑

Figure 7.6 Calculating the mean and variance from a range of values within the histogram.

202 Design for Embedded Image Processing on FPGAs

While the divisions on the output cannot easily be avoided, it is possible to share the hardware for a

single division between the two calculations. The division can also be pipelined if necessary. If the

standard deviation is required (rather than the variance) then a square root operationmust be applied to the

variance output. This may be accomplished with less logic than the division (Li and Chu, 1996).

The multiplications associated with the summations may be eliminated by using incremental update.

Firstly, consider the summation, where K is an arbitrary constant:

X
i

ðK�iÞH½i� ¼ K
X
i

H½i��
X
i

iH½i� ð7:5Þ

Therefore:

mI ¼ K�
PðK�iÞH½i�P

H½i� ð7:6Þ

Similarly:
X
i
ðK�iÞ2H½i�
X
i
H½i� ¼

X
i
i2H½i�

X
i
H½i� �2K

X
i
iH½i�

X
i
H½i� þK2

X
i
H½i�

X
i
H½i�

¼ s2I þ m2I�2KmI þK2

¼ s2I þ mI�Kð Þ2

ð7:7Þ

Therefore:

s2I ¼
X
i
ðK�iÞ2H½i�
X
i
H½i� �

X
i
ðK�iÞH½i�
X
i
H½i�

0
@

1
A

2

ð7:8Þ

Next, consider the incremental calculation of Equations 7.5 and 7.7:

XK
i

K�ið ÞH½i� ¼
XK�1

i

K�ið ÞH½i�

¼
XK�1

i

ðK�1Þ�ið ÞH½i� þ
XK�1

i

H½i�
ð7:9Þ

From

XK�1

i

ðK�iÞ�1ð Þ2H½i� ¼
XK�1

i

K�ið Þ2H½i��2
XK�1

i

K�ið ÞH½i� þ
XK�1

i

H½i� ð7:10Þ

XK
i

K�ið Þ2H½i� ¼
XK�1

i

K�ið Þ2H½i�

¼
XK�1

i

ðK�iÞ�1ð Þ2H½i� þ 2
XK�1

i

K�ið ÞH½i��
XK�1

i

H½i�

¼
XK�1

i

ðK�1Þ�ið Þ2H½i� þ 2
XK�1

i

ðK�1Þ�ið ÞH½i� þ
XK�1

i

H½i�

ð7:11Þ

Histogram Operations 203

Therefore, startingKwith imin and incrementing until imax allows the summations to be performedwithout

any multiplications (the factor of two in Equation 7.11 is simply implemented with a left shift). The

resulting circuit is shown in Figure 7.7.

The circuits of Figures 7.6 and 7.7 are fine if only a single calculation is required. However, if the mean

and variance are required for several different ranges, then the repeated summation can become a time

bottleneck. If timing becomes a problem, then this may be overcome by building sum tables that contain

cumulative moments of the histogram:

S0H½j� ¼
Xj
i¼0

H½i�

S1H½j� ¼
Xj
i¼0

iH½i�

S2H½j� ¼
Xj
i¼0

i2H½i�

ð7:12Þ

The first, S0H, is also called the cumulative histogram, an example of which is shown in Figure 7.8. These

tables require a single pass through the histogram to construct and, after that, themean and variance of any

range may be calculated with two accesses to each table:

Σ ()K-i H
2

Σ ()K-i H

Σ H

÷

÷ μI

σI
2

x2i

Histogram
memory

imin

imax = Done
Start RST CE

CERST

INIT

RST

×2

imax

Figure 7.7 Using incremental calculations for the mean and variance.

0
0

10000

20000

30000

40000

60000

50000

2551280
0

200

400

600

800

1200

1000

255128
Pixel valuePixel value

C
ount

C
um

ulative count

Figure 7.8 Left: a histogram; right: its cumulative histogram.

204 Design for Embedded Image Processing on FPGAs

mIðimin � I � imaxÞ ¼ S1H½imax��S1H½imin�1�
S0H½imax��S0H½imin�1�

s2I ðimin � I � imaxÞ ¼ S2H½imax��S2H½imin�1�
S0H½imax��S0H½imin�1� �

S1H½imax��S1H½imin�1�
S0H½imax��S0H½imin�1�

0
@

1
A
2 ð7:13Þ

Higher order moments (skew and kurtosis) may also be calculated in a similar manner by extension of the

above circuit.

The statistical range of pixel values within an image is probably best calculated directly from the image

as it is streamed. However, if the histogram is already available for other processing then it is a simple

manner to extract the range from the histogram. The minimum pixel value, Imin, is the smallest index that

has a non-zero count, and the maximum pixel value, Imax, is the largest. A common operation using the

range is contrast expansion using Equation 6.2 with:

b0 ¼ Imin

a ¼ V

Imax�Imin

ð7:14Þ

Calculating the median of an image is probably easiest using the cumulative histogram of the image. The

image median is defined as the bin that contains the fiftieth percentile. Ideally, an inverse cumulative

histogram could be used; this maps from the cumulative count back to the corresponding pixel value.

However, this can be derived from the cumulative histogram:

medI ¼ min
i

S0H i½ � � NP

2

� �
ð7:15Þ

where NP is the number of pixels in the image and:

S0H½V � ¼ NP ð7:16Þ

Rather than scan through the histogram to find the median, Equation 7.15 may be solved with a binary

search, with each successive iteration giving one bit of the median.

The image median may be generalised to determine the median value within a range of pixel values:

medIðimin � I � imaxÞ ¼ min
i

S0H i½ � � S0H½imax� þ S0H½imin�1�
2

� �
ð7:17Þ

The architecture of Figure 7.2 may be adapted to build the cumulative histogram directly (Fahmy et al.,

2005). Figure 7.9 demonstrates how this works. The decoder enables the clock of all of the counters

greater than or equal to the pixel value, causing them to be incremented. After the whole image has been

accumulated, the counters represent the cumulative histogram. As the outputs of all these counters are

available, they can be compared with the median count (indicated by ‘50%’ in the figure) in parallel.

The priority encoder finds theminimumoutput that has a one, as required byEquation 7.15, and returns the

corresponding index.

Another statistic that requires the histogram is the mode. The mode is defined as the index of the

highest peak within the histogram. This requires a single scan through the histogram, for example as

in Figure 7.10.

Histogram Operations 205

There are two limitations to this approach for finding themode. If the histogram ismultimodal, only the

global mode is found. The global mode is the onewith the highest peak, which is not necessarily the most

significant peak. Finding multiple peaks requires detecting the significant valleys and finding the mode

between these valleys. Valley detection is described in Section 7.1.4 on threshold selection.

A second limitation is that histograms tend to be noisy. This is clearly seen in Figure 7.1. Consequently,

the mode may not necessarily be representative of the true location of the peak. The accuracy of the peak

location may be improved through filtering the histogram before finding the mode. A one-dimensional

linear smoothing filter may be pipelined between reading the histogram values and finding the maximum.

Suitable filters are described in detail in the next chapter. Note that care must be taken when designing the

filter response to avoid bias being introduced if the peak is skewed.

7.1.2 Histogram Equalisation

Histogram equalisation is a contrast enhancement or contrast normalisation technique. It uses the

histogram to construct a monotonic mapping that results in a flattened output histogram. From an

information theoretic perspective, histogram equalisation attempts to maximise the entropy of an image

by making each pixel value in the output equally probable.

From a contrast enhancement perspective, the assumption behind histogram equalisation is that

the peaks of the input histogram contain the information of interest and the contrast between the

peaks is of lesser importance. To make the output histogram flat, it is necessary to reduce the average

height of the peaks by spreading the pixel values out. This increases the contrast of these regions.

The valleys between the peaks are compressed to raise the average value, effectively reducing the

contrast of these features.

These factors are clearly seen in Figure 7.11, where the regionswith counts greater than the average are

enhanced at the expense of those below the average. In this image, the effect has been to enhance the

contrast within the background material; this is probably not the intended consequence for this image,

CE
RST

Counter0

CE
RST

CE
RST

CE
RST

CE
RST

P
riority encoder

Clear

Median

50%

0

1

2

3

N

I

Counter1

Counter2

Counter3

CounterV

Figure 7.9 Parallel architecture for measuring the median.

i

Histogram
memory

CE

CE

Count

Mode

Figure 7.10 Finding the mode of a histogram.

206 Design for Embedded Image Processing on FPGAs

where it would have been more useful to enhance the contrast between the regions. However, in many

applications, histogram equalisation gives a useful contrast enhancement.

Note that the main peak of the output histogram is exactly the same height as that of the input. This is a

consequence of using a point operation to perform themapping,which requires all pixelswith onevalue in

the input to map to the same value in the output. The average is obtained by spacing consecutive input

values tomore separated values in the output. The opposite occurs for bins with counts below the average.

Several consecutive input pixel values may map to the same output pixel.

A flatter histogram may be obtained by using local information to distribute the pixels with an input

value with a large count over a range of output pixel values (Hummel, 1975; 1977) although such

operations are technically filters rather than point operations.

The mapping for performing histogram equalisation is the normalised cumulative histogram. Intui-

tively, if the input bin count is greater than the average, the slope of the mapping will be greater than one,

and conversely if less than the average. Normalisation requires scaling the histogram by the number of

pixels, so that the output maps to the maximum pixel value (V).

The associated division operation is the most expensive part of histogram equalisation, although it can

readily be pipelined. An alternative to division is to calculate the inverse off-line (since the number of

0
0

255128

0
0

255128

200

400

600

800

1000

1200

1400

200

400

600

800

1000

1200

1400

Pixel value

Pixel value

C
ount

C
ount

Figure 7.11 Histogram equalisation. Top: input image with its histogram; bottom: the image and

histogram after histogram equalisation. The grey line on the histograms shows the average ‘flat’ level.

Histogram Operations 207

pixels in an image is constant) and use a multiplication. Another alternative is to arrange the region of the

image that the histogram is taken of to result in a scale factor that is a power of two. The region used is best

taken from the centre of the image, with the assumption that the values not accumulated will follow the

same statistics.

The division may be performed using repeated subtraction. This takes advantage of the fact that the

cumulative histogram is monotonic to extend the calculations performed at lower pixel values to higher

values. Therefore, the repeated subtractions calculate the mapping at the same time as the total is

accumulating.

The architecture for this is shown in Figure 7.12. The countersmap and i are initialised to zero, and the

sum is initialised to �scale (or �scale/2 for rounding) where:

scale ¼ NP

V
ð7:18Þ

If the accumulated sum, which represents the current remainder, is negative then the count from the next

histogram bin is accumulated. However, if the accumulated sum is positive, the scale factor is subtracted

from the sum and the quotient incremented. When the index i is incremented, the previous value is also

saved as ip. As a histogram bin is accumulated, the current quotient,map, is saved at the index ip. For 8-bit

images, map will be incremented at most 255 times, and 257 clock cycles are required to read the input

histogram and write the mapping into the lookup table.

There are several control issues associated with histogram equalisation, or indeed any other histogram

processing. Firstly, the circuitry for building the histogram (for example from Figure 7.3 or Figure 7.4)

must be combined with that for building the mapping used to perform the histogram equalisation

(Figure 7.12). This will require appropriate multiplexers in the address and data lines. It is also necessary

to reset the histogram accumulators to zero before the next frame. This may be accomplished in parallel

with building the map, by using the histogram memory write port, as shown in Figure 7.12.

Secondly, there is a similar resource sharing issue with the mapping associated with performing the

histogram equalisation. The lookup table must be shared between the circuit for building the mapping

(Figure 7.12) and applying the mapping to the image. Each of these processes only requires a single port,

so use of a dual-port memory would simplify the sharing. Otherwise, the map address lines would require

an appropriate multiplexer, with additional control required to provide the memory read or write signal.

Thirdly, the registers for building themap (in Figure 7.12)may be initialised to appropriate valueswhile

the histogram is being built.

Finally, since construction of the histogram equalisation map requires data from the complete image, it

is necessary to buffer the image before themapping is applied, as shown in the left panel of Figure 7.13. In

many instances, the image changes relatively slowly. An approximation in these circumstances is to apply

the mapping acquired from the previous frame while building the histogram for the current frame

(McCollum et al., 1988), as illustrated in the right panel of Figure 7.13. The consequence is that

the histogram equalisation might not be quite correct, but there is a significant savings in both resources

(the frame buffer is not required) and latency.

Histogram
memory

LUT
memory0

i ip

–scale

sum
map

Accumulator Quotient+

–

CE CE

CE CECESign

Figure 7.12 Using repeated subtraction to avoid division for histogram equalisation.

208 Design for Embedded Image Processing on FPGAs

The procedure for histogram equalisation may readily be adapted to perform other histogram

transformations, for example hyperbolisation (Frei, 1977). It is even possible to derive a target histogram

from one image and apply a mapping to another image such that the histogram of the output image

approximates that of the target. The basic procedure for this is illustrated graphically in Figure 7.14.

Frame
buffer

Histogram
accumulator

Histogram
accumulator

Mapping
LUT

Mapping
LUT

I I

Q Θ

Figure 7.13 Using the histogram for histogram equalisation. Left: buffering the frame during histogram

accumulation; right: directly applying table from the last image to the current image.

I

I

QQ

Q

Cum. count

C
um

. count

Count

C
ount

C
ount

Target histogram

Input histogramOutput histogramOutput image

Figure 7.14 Determining the mapping to produce an arbitrary output histogram shape by matching

cumulative histograms. Top: target histogram and cumulative histogram; right: input histogram and

cumulative histogram; top right: building the mapping; bottom: output image and output histogram (with

target histogram in the background).

Histogram Operations 209

To derive amonotonic mapping, it is necessary for all of the pixels less than or equal to a pixel value in the

input image to map to values that are less than or equal to the corresponding output value. This may

be achieved by mapping the cumulative histogram of the input to the cumulative histogram of the target.

As with histogram equalisation, the output histogram approximates the target on average, as shown in the

bottom of Figure 7.14.

The circuit of Figure 7.12 may be adapted to calculate this mapping. Rather than subtract off the

constant scale, the value to be subtracted may be obtained from the target histogram,HT ½map� (assuming

that both images have the same area).

Related to histogram equalisation is the successivemean quantisation transform (Nilsson et al., 2005b).

This works by using a series of means to derive successive threshold levels that define successive bits of

the output pixel value. Initially, the whole range of pixel values is defined as a single partition. The mean

value of the pixels within a partition is used to split the partition into two at the next level, with the

corresponding output bit defined by the partition to which a pixel is assigned. This partitioning process is

shown in Figure 7.15. Sum tables may be used to calculate successive means efficiently using

Equation 7.13.

It has been demonstrated that, in many applications, the successive mean quantisation transform

provides a subjectively better enhancement than histogram equalisation, because it preserves the gross

structure of the histogram and does not over-enhance the image (Nilsson et al., 2005a; 2005c). In the

context of the successive mean quantisation transform, histogram equalisation corresponds to succes-

sively partitioning using the median rather than the mean.

7.1.3 Automatic Exposure

Related to contrast enhancement is automatic exposure. This involves using data obtained from the

captured image to modify the image capture process to optimise the resultant images. In sensors with

electronic shuttering, this may require adjusting the control signals that determine the exposure time. It

may also involve automatically adjusting the aperture or even controlling the intensity of the light source.

The histogram of the captured image is able to provide useful data for gauging the quality of the

exposure. If the maximum pixel value within the image is significantly less than V, then the image is not

making the best use of the available dynamic range. Thismay be improved by increasing the exposure. On

the other hand, if the image contains a large number of pixels with pixel value V, then there may be

important detail lost through saturation. This may be corrected by reducing the exposure.

0 1

00 1001 11

000 100010 110001 101011 111

I
0

I
1,0

I
2,0

I
2,1

I
2,2

I
2,3

I
1,1

Q

I

Figure 7.15 Determining the output code or pixel value using the successive mean quantisation

transform. Centre: the resultant mapping; right: applying the mapping to the input image. (Adapted with

permission from M. Nilsson et al., “The successive mean quantization transform,” IEEE International

Conference on Acoustics, Speech and Signal Processing, 4, 429–432, 2005. � 2005 IEEE.)

210 Design for Embedded Image Processing on FPGAs

Although the maximum pixel value may be determined without needing a histogram, there are two

major limitations to using the maximum pixel value to assess exposure. Firstly, the maximum value is

likely to be a result of noise andmay not reflect the true peak of intensities within the image. Secondly, the

maximum pixel valuemay actually reachVwithout being saturated. Inmany images, themaximum value

may result from specular reflections or other highlights that are not significant from an image processing

point of view.

An alternative approach is to use the histogram to find the pixel value of the 99th percentile (Bailey

et al., 2004) (or even higher depending on the image content). If the histogram is flat, the 99th percentile

should have a value of about 252 for an 8-bit image. However, most histograms are non-uniform, and in

many applications there may be variability from one frame to the next that must be tolerated.

One approach is to have a target acceptable range for the given level. Consider the image in Figure 7.16.

The histogram clearly shows that some pixels are saturated (from the peak at 255). These are the specular

reflections and highlights in the figure on the left, and no information of importance is lost if these are

saturated. However, the 99.6th percentile (allowing for the equivalent of two rows worth of pixels to be

saturated) is within the allowed band of 192–250, indicating that the exposure for this image is acceptable.

In this application, the large dead-band allowed for the considerable variability in the produce from one

image to the next, while ensuring that an adequate exposure was maintained.

When determining if the exposure is acceptable, it is faster to accumulate the histogram counts starting

from the maximum pixel value and counting down, rather than counting up from zero.

Note that changing the camera exposure will not affect the current image. It may also be best to adjust

the exposure incrementally over several images rather than in a single step, especially if the object being

imaged changes from one image to the next.

7.1.4 Threshold Selection

The purpose of thresholding is to segment the image into two (ormore) classes based on pixel value.While

it is possible to consider connectivity and other issues (Sezgin and Sankur, 2004), there is a wide range of

threshold selection techniques that calculate a threshold level from the histogram rather than the image

(Sezgin and Sankur, 2004). Consider an obvious case, where the pixel values of each class are well

separated; the resulting pixel value histogram is multimodal. This implies that the distributions of each of

the classes, and hence the best places to threshold the image, may be determined by analysing the

histogram. Since selecting an appropriate threshold is a common task in many image analysis applica-

tions, many of the key methods for dynamically determining the threshold from a histogram will be

reviewed.

0
0

200

400

600

800

1000

255128

O
ver-exposed

A
cceptable

U
nde r-exposed

9 9.6%

Pixel value

C
ount

Figure 7.16 Using the histogram for exposure. Left: example image; right: histogram with its 99.6th

percentile shown, along with the acceptable bounds.

Histogram Operations 211

Themost common case is separating objects froma background,where there are two classes: object and

background. If the proportion of object pixels is known then the corresponding threshold level may be

determined from the inverse cumulative histogram (Doyle, 1962). Thismay be found from the cumulative

histogram in two ways.

The first is to scan through cumulative histogram until the desired proportion is reached. In fact, it is not

necessary to actually build the cumulative histogram; the histogram counts may be accumulated until the

desired total is reached.

T ¼ max
i

S0H½i� < Nobj

� �

¼ max
k

Xk
i¼0

H½i� < Nobj

()
ð7:19Þ

The second approach, if the cumulative histogram is available, is to solve Equation 7.19 using a binary

search, as described earlier for finding the median.

In many cases, however, the number of object pixels in not known in advance, but is determined as a

result of thresholding. An alternative that is more tolerant of variation in the number of object pixels is to

set the threshold a given number of standard deviations from the mean:

T ¼ mI þ asI ð7:20Þ

where a is chosen empirically based on knowledge of the image being thresholded.

When separating objects from the background, the histogram is often bimodal, with the peaks

representing the distributions of object and background pixel values. If the peaks are clearly separated

and do not overlap, choosing an appropriate threshold between the peaks is relatively trivial. Inmost cases,

however, the peaks are often broad, with significant overlap between the distributions, as in the image in

Figure 7.17. When the histogram has distinct peaks, an appropriate threshold is somewhere in the valley

between the peaks. Finding the ‘best’ threshold is complicated by the fact that the histogram is seldom

smooth. Both the peaks and the valley between them are noisy, so simply choosing the deepest valley can

result in considerable variation from one image to the next.

One approach to this problem is to smooth the histogram to make the valley between the peaks clearer.

This was first proposed by Prewitt and Mendelsohn (1966). The histogram is repeatedly filtered with a

0
0

200

400

600

800

1000

255128
Pixel value

C
ount

Figure 7.17 An image of objects against a background and its corresponding histogram.

212 Design for Embedded Image Processing on FPGAs

narrowfilter until there are only twomaxima; the threshold is then in the valley between the peaks. That is,

it will be the only pixel value in the histogram that satisfies:

H½T�1� > H½T� � H½T þ 1� ð7:21Þ

Avariation on this theme is to record the location of the peaks and valleys and track these through a range

of filter widths. This results in a range of thresholds, depending on the scale of filtering (Carlotto, 1987).

Such a multiscale approach suits multilevel thresholding, or the threshold at the lowest scale (most

smoothed) may be tracked up the scales to refine it. A disadvantage of such approaches is the repeated

filtering required to obtain the necessary smoothness, or range of scales in the latter case.

An alternative approach is to fit a curve to the histogram.Acommon assumption is that the shape of each

of the modes is a Gaussian distribution, modelling the histogram as a sum of Gaussians:

H i½ � ¼
X
j

Aje
�ði�mj Þ2

2s2
j ð7:22Þ

In the casewhere the histogram is bimodal, the threshold that gives theminimummisclassification error is

(Kittler and Illingworth, 1986):

T ¼ min
t

errorðtÞ ¼ min
t

p1 ln s1 þ p2 ln s2 � p1 ln p1 � p2 ln p2ð Þ ð7:23Þ

where

p1 ¼
Pt
i¼0

HðiÞ
NP

¼ S0HðtÞ
NP

; p2 ¼

PV
i¼tþ 1

HðiÞ
NP

¼ 1�p1 ð7:24Þ

and

s1 ¼ sIð0 � I � tÞ; s2 ¼ sIðt < I � VÞ ð7:25Þ

This is based on separating the histogram into two parts by the threshold and modelling each part with a

Gaussian distribution. The minimum error will correspond to the crossover point between the two

distributions. Jiulun and Winxin (1997) showed that the derivation given by Kittler is equivalent to

minimising the relative entropy between the actual distributions and the ideal Gaussian distributions and

determining the threshold that gives the minimum classification error.

Equation 7.23 may be evaluated with a single pass through the cumulative histogram, although several

clock cycles may be needed for each t to evaluate the logarithms. Note the square roots for calculating the

standard deviation may be avoided by using:

ln s1 ¼ 1

2
ln s21 ð7:26Þ

An alternative to fitting to the histogram is to make the distributions on each side of the threshold as

compact as possible. This leads to the popular approach by Otsu of minimising the intra-class variance

(Otsu, 1979):

T ¼ min
t

p1s21 þ p2s22
� � ð7:27Þ

Histogram Operations 213

which is equivalent to maximising the separation between the means, or the interclass variance:

T ¼ max
t

p1p2ðm2�m1Þ2
� 	

ð7:28Þ

where

m1 ¼ mIð0 � I � tÞ and m2 ¼ mIðt < I � VÞ ð7:29Þ

The advantage of Equation 7.28 over Equation 7.27 is that is only requires calculating the means rather

than the variances. Since the criterion function that is maximised in Equation 7.28 can havemultiple local

maxima (Lee and Park, 1990), iterative methods for finding the maximum may converge to the wrong

value. Therefore, it is necessary to search by scanning through the histogram. Equation 7.28 may be

calculated incrementally if the global mean is known. Firstly, a pair of registers is initialised to zero:

p1½�1� ¼ 0

S1½�1� ¼ 0
ð7:30Þ

Then the following iterations are used:

p1½t� ¼ p1½t�1� þH½t� p2½t� ¼ NP�p1½t�
S1½t� ¼ S1½t�1� þ tH½t� S2½t� ¼ mINP�S1½t�
m1½t� ¼ S1½t�=p1½t� m2½t� ¼ S2½t�=p2½t�

ð7:31Þ

Note that in Equation 7.31 p1 is not a probability, rather it is the cumulative histogram. The division byNP

is unnecessary, since it is constant and will not affect the location of the maximum.

Alternatively, the criterion function may be evaluated directly from the cumulative histogram and

summed first moment:

p1p2ðm2�m1Þ2 ¼
S0H½t�
NP

NP�S0H½t�ð Þ
NP

S1H½t�
S0H½t� �

S1H½V ��S1H½t�
NP�S0H½t�

 �2

ð7:32Þ

Again, the factor of N2
P in the denominator of the first two terms may be left out and Equation 7.32

rearranged to reduce the number of division operations:

p1p2ðm2�m1Þ2 /
S1H½t�NP�S0H½t�S1H½V �ð Þ2

S0H½t� NP�S0H½t�ð Þ ð7:33Þ

Otsu’smethodworks best with a bimodal distribution,with a clear distinct valley between themodes (Lee

and Park, 1990). Performance can deterioratewhen there is a significant imbalance between the number of

object and background pixels, or when the object and background are not well separated, or when there is

significant noise (Lee and Park, 1990).

In principle, Otsu’s method may be extended to multilevel thresholding (Otsu, 1979), although each

threshold added will increase the dimensionality of the search space, making the search for the

maximum computationally impractical for more than two or three threshold levels. Peaks within the

214 Design for Embedded Image Processing on FPGAs

multidimensional criterion function will correspond to zero partial derivatives, and iterative search

techniques may be employed to speed up the search for the zero partial derivatives (Lin, 2005).

An alternative approach that gives similar results to Otsu’s method for many images is to iteratively

refine the threshold to midway between the means of the object and background classes (Ridler and

Calvard, 1978; Trussell, 1979):

Tk ¼ mIð0 � i � Tk�1Þþ mIðTk�1 < i � VÞ
2

¼ 1

2

S1H½Tk�1�
S0H½Tk�1� þ

S1H½V ��S1H½Tk�1�
NP�S0H½Tk�1�

0
@

1
A

ð7:34Þ

with the initial threshold given from the global mean:

T0 ¼ mI ð7:35Þ
The iteration of Equation 7.34 is repeated until it converges (Tk ¼ Tk�1), although this generally occurs

within four iterations (Trussell, 1979). Note that the resultant threshold level is dependent on the initial

value. The initialisation of Equation 7.35 works well if there are approximately equal numbers of object

and background pixels, or the object and background arewell separated. An alternative initialisation if the

distribution is very unbalanced is the midrange of the distribution:

T0 ¼ minðIÞþmaxðIÞ
2

ð7:36Þ

The attractiveness of this iterative method is its simplicity and speed, and with good contrast images it

gives good results.

Another approach to thresholding is to use the total entropy of two regions of the histogram as the

criterion function (Kapura et al., 1985). The threshold is then chosen to maximise the information

between the object and background distributions:

T ¼max
t

�
Xt
i¼0

H½i�
S0H½i� ln

H½i�
S0H½i� �

XV
i¼tþ 1

H½i�
NP�S0H½i� ln

H½i�
NP�S0H½i�

0
@

1
A

¼max
t

ln S0H½i�ðNP�S0H½i�Þð Þ�
Xt
i¼0

H½i�lnH½i�
S0H½i� �

XV
i¼tþ 1

H½i�lnH½i�
NP�S0H½i�

0
BBB@

1
CCCA

ð7:37Þ

As with the other methods, calculating the optimum threshold using this criterion function may be

performed with a single pass through the histogram. However, as with the minimum error method, a

hardware implementation is complicated by the need to calculate logarithms.Maximising the entropy has

a tendency to push the threshold towards the middle of the distribution, so this method works best when

there is a clear distinction between the two distributions. It may also be extended to multilevel

thresholding (Kapura et al., 1985) in a similar manner to Otsu’s method, with the same limitation of

the exponential growth of the search space with the number of threshold levels used.

When the object and background distributions significantly overlap, there may not be two

distinct modes to the distribution. Rosenfeld and de la Torre (1983) proposed using the difference

between the distribution and its convex hull to identify irregularities on the flanks of a unimodal

Histogram Operations 215

distribution. The method also works equally well with bimodal distributions, where it will tend to bias

the threshold toward the higher peak, as shown in Figure 7.18. Since, in general, the convex hull is sloped,

the largest difference will correspond to the pixel value in the valley that has a tangent parallel

with the hull. It is this slope that biases the threshold location and enables a bump on the side of a

unimodal histogram to be detected.

The convex hull of the histogram is the smallest extension of the shape that has no concavities. A

physical analogy is to stretch a rubber band over the histogram and fill in the histogram below the rubber

band, as shown in Figure 7.18. The convex hull may be represented by the set of convex vertices, which

corresponds to the set of counts in the histogram that are unaffected by this infilling process.

Firstly, observe that the slope of the convex hull decreases monotonically with increasing pixel value.

Therefore, consider a sequence of three points with increasing pixel value: ði1;H½i1�Þ, ði2;H½i2�Þ and
ði3;H½i3�Þ. The middle point is concave if the slope between the first two points is less than the slope

between the second two points. That is:

H½i2��H½i1�
i2�i1

<
H½i3��H½i2�

i3�i2
ð7:38Þ

The division may be avoided by cross-multiplying:

H½i2��H½i1�ð Þ i3�i2ð Þ < H½i3��H½i2�ð Þ i2�i1ð Þ ð7:39Þ

If the middle point is concave, it may be eliminated.

Using this, the convex verticesmay be found as follows. Firstly, the histogram is scanned to find the first

non-zero count and the corresponding pixel value, imin, is stored in a register. For each successive pixel

value, the pixel difference, DiCurrent ¼ 1 and histogram difference, DHCurrent ¼ H½i��H½i�1�, are

determined. A table is used to maintain these offsets between the convex vertices. If the table is empty,

the pair ðDi;DHÞ is recorded in the table. If the table is not empty, Equation 7.39 is evaluated between the

last entry in the table and the new entry:

DHLastDiCurrent < DHCurrentDiLast ð7:40Þ

0
0

200

400

600

800

1000

255128 0
0

200

400

600

800

1000

255128

Line parallel to hull

Pixel value Pixel value

C
ount

H
ull difference

Figure 7.18 Convex hull of histogram. Left: the convex hull superimposed on the histogram, the line

parallel to the top of the hull shows how the threshold is biased towards the higher peak; right: the

difference between the hull and the histogram.

216 Design for Embedded Image Processing on FPGAs

If Equation 7.40 is true, then the previous vertex is now concave so must be eliminated. The last entry in

the table is therefore removed and combined with the current entry:

DiCurrent (DiCurrent þDiLast
DHCurrent (DHCurrent þDHLast

ð7:41Þ

Equation 7.40 is repeatedly re-evaluated with the new last entry in the table and entries removed with

Equation 7.41 until all concave vertices to the left of the current point are removed. Then the current point

is added to the table. Note that when a count of zero is reached (H½i� ¼ 0), the above is not performed in

case it is the end of the histogram. However, if a subsequent non-zero count is encountered,DiCurrent is set
to reflect the intervening zero counts.

Once the end of the histogram has been reached, the table will contain the offsets between the convex

vertices. This processwill take atmost 2V steps, because for each new pixel value one entry is added to the

table, and through the elimination steps each entry can only be removed at most once from the table.

The final stage is to link between the convex vertices to obtain the convex hull. This is complicated

slightly by the fact that the pixel values are discrete and the slopes are not necessarily represented by

integers. This process starts with the pixel value with the first non-zero count, imin, and initialising a

remainder to zero:

HHull ½imin� ¼ H½imin�
R ¼ 0

ð7:42Þ

Then each table entry is used to calculate the next Di hull values:

HHull ½i� ¼ HHull i�1½ � þ DHþR

Di

6664
7775

R ¼ ðDHþRÞmodDi

ð7:43Þ

where b c is the largest integer value less than its argument, and mod returns the remainder between zero

and Di. Rather than record the actual hull, it is only necessary to determine the pixel value corresponding

to the maximum difference between the hull and the original histogram

T ¼ max
t

HHull ½t��H½t�ð Þ ð7:44Þ

that is, the position of the maximum value on the right in Figure 7.18.

A variation on valley finding is the global valley approach of Davies (2008). His criterion

function is based on the geometric mean of differences between a histogram point and the peaks on

either side:

T ¼ max
t

ffi
clipðHL½t��H½t�ÞclipðHR½t��H½t�Þ

p
ð7:45Þ

where

HL½t� ¼max
i<t

H½i�
HR½t� ¼max

i>t
H½i� ð7:46Þ

Histogram Operations 217

and

clipðxÞ ¼ 0; x < 0

x; x > 0

�
ð7:47Þ

The geometric mean in Equation 7.45 is better than the arithmetic mean because it prevents pedestals at

the ends of the distribution (Davies, 2008). Only two passes are required through the histogram to evaluate

the criterion function: a reverse pass to incrementally calculate HR and a forward pass to incrementally

calculate bothHL and the criterion function. If searching for a single threshold, the square root operation of

Equation 7.45 may be omitted.

This approachmay be extended tomultilevel thresholding by smoothing the criterion function until the

specified number of local maxima remains (Davies, 2008).

The threshold levels calculated for the differentmethods are compared in Figure 7.19 for the image of

Figure 7.17. The different assumptions made, and different criteria functions, result in threshold levels

ranging from 127 for the maximum entropy method, through to 188 for the minimum error method.

Note that for this image there is no global threshold that provides good separation between the objects

and the background. Of all the methods considered here, the iterative mean of Equation 7.34 is

computationally the simplest, especially if the cumulative histogram and the cumulative first moment

are calculated.

Histogram-basedmethods of calculating threshold levels generally rely on valley finding techniques.

If the number of either object or background pixels is significantly smaller than the other, the valley

0
0

200

400

600

800

1000

255128

Entropy

Entropy

Otsu

Davies
Iterative

Smoothed
Convex hull

Minimum error

Minimum error

Pixel value

C
ount

Figure 7.19 Applying the threshold calculation method to the histogram of Figure 7.17. The methods

are minimum error (Equation 7.23), convex hull (Equation 7.44), smoothed minimum (Equation 7.21),

Davies (Equation7.45), iterativemean (Equation7.34),Otsu (Equation7.28) and entropy (Equation7.37).

Right: results of the two extreme threshold levels are compared; top: the minimum error method; bottom:

the maximum entropy method.

218 Design for Embedded Image Processing on FPGAs

between the peaks can be indistinct. Filters may be applied to the image to improve the histogram

obtained. Obtaining the histogram-only pixels near edges will result in an approximately equal

numbers of object and background pixels (Weszka et al., 1974). Noise smoothing may result

in narrower peaks, making them more distinct and easier to detect and separate. Applying an

edge enhancement filter prior to accumulating the histogram will reduce the number of pixel values

in the valley between the peaks, making the result less sensitive to the actual threshold level used

(Bailey, 1995).

Many of the threshold selection techniques described here would be easier to implement in software,

using an embedded processor, than directly in hardware. The timing is not particularly critical because the

threshold could be calculated during the vertical blanking period between frames.

Only global thresholding has been considered in this section. Adaptive thresholding chooses a different

threshold at each location based on local statistics. Adaptive thresholding can be considered equivalent to

filtering followed by global thresholding. Adaptive thresholding is considered in more detail in the next

chapter on filtering.

7.1.5 Histogram Similarity

Histogram similarity is one method of object classification. The intensity histograms of a set of candidate

model objects are maintained in a database. The histogram of the test object is obtained and compared

with the histograms of the model objects, with the object classified based on which model has the most

similar histogram. Unlike most other methods of object classification, the object does not need to be

completely separated from the background, as long as it dominates the content of the image.

The histogram may require some normalisation prior to matching (usually limited to contrast

stretching) to account for varying illumination intensity. Normalisation such as histogram equalisation,

or shaping, is obviously not appropriate. Often the resolution of the histogram is reduced (the bin size is

increased) by combining adjacent bins. This reduces the sensitivity to small changes in illumination and

reduces problems resulting from gaps in the histogram that result from normalisation. It also helps to

speed the search for a match.

Let all the model histograms be normalised to correspond to the same area image and letMj ½i� be the
histogram of the jth model. The similarity between the test histogram, H½i�, and the model can be found

from their intersection (Swain and Ballard, 1991):

Matchj ¼
X
i

min H½i�;Mj ½i�
� � ð7:48Þ

This measure will be a maximum when the histograms are identical and will decrease as the histograms

become more different. Therefore, the input image is classified as the object that has the largest match.

All spatial relationships between the pixel values are lost in the process of accumulating the histogram.

Consequently, many quite different images can have the same histogram. Classification based on

histogram similarity will, therefore, only be effective when the histograms of all of the models are

distinctly different. However, the method has the advantage that the histogram has a considerably smaller

volume of data than that of thewhole image, significantly reducing comparison times. This can be helped

further by reducing the number of binswithin the histograms.Where speed is important, the test histogram

may be compared with a number of model histograms in parallel.

7.2 Multidimensional Histograms

Just as pixel-value histograms are useful for gathering data from greyscale images, multidimensional

histograms canbe used to accumulatedata fromcolour or othervector valued images. The simplest approach

is simply to accumulate a one-dimensional histogram of each channel. While this is useful for some

Histogram Operations 219

purposes, for example gathering the data required for colour balancing, it cannot capture the relationships

between channels that give each pixel its colour. This requires a true multidimensional histogram.

A multidimensional histogram has one axis or dimension for each channel in the input image. For

example, the histogram of an RGB imagewould require three dimensions. The histogram gives a count of

the pixels within the image that have a particular vector value. For an RGB image, Equation 7.1 would be

extended to give:

H½r; g; b� ¼
X
x;y

1; IRGB½x; y� ¼ fr; g; bg
0; otherwise

�
ð7:49Þ

Data is accumulated in exactly the same way as for a greyscale histogram. The larger address space of a

multidimensional histogram requires a significantly larger memory, which may not necessarily fit within

the FPGA.Twohistogrammemory accesses are required for each pixel: one to read the previous count and

the other towrite the updated count. This may be accomplished either with dual-port memory, in the same

manner as one-dimensional histograms (Figure 7.4), or by running the accumulator memory at twice the

pixel clock frequency.

While it is usually possible to implement two-dimensional histograms at the full resolution of the input

vector, for three and higher dimensions the size of the histogrammemory can become prohibitively large.

This problemmay be overcome by reducing the number of bins by applying a coarse quantisation to each

component. Indexing into the multidimensional array is performed in the same manner as in software:

H½x; y; z� ¼ H½xþ nxyþ nxnyz� ð7:50Þ

where nx and ny are the number of bins used for the x and y components, respectively. Indexing may be

simplified if the range of each component is a power of two, as thememory addressmay then be formed by

concatenating thevector components. The quantisation to accomplish thismay be readily implemented by

truncating the least significant bits of each vector component.

One limitation with using multidimensional histograms is the time required to both initialise them and

to extract the data. Throughput issues may be overcome by using pipelining, although bandwidth issues

are harder to deal with. It may require multiple parallel banks to initialise and process the histograms in a

realistic time. Bank switching allows one bank to be initialisedwhile another is accumulating and a third is

being processed. Once the histogram data has been collected, the histograms can be used and processed as

images in their own right if necessary.

7.2.1 Triangular Arrays

Oftenwhen processing colour images, intensity independence is often desired.With an appropriate colour

space conversion, the intensity may be removed, with a reduction to two dimensions for the chrominance.

If chromaticity is used (either x�y or r�g) the resulting histogram accumulator is triangular. This may

result in inefficient use ofmemory, as almost half is not being used.Unless thememorymay be sharedwith

another part of the application, an alternative is to pack the memory.

With a triangular accumulator, nx ¼ ny ¼ n. The number of entries in the triangular array is then
1
2
nðnþ 1Þ rather than n2 for the full array.When n is a power of two, as suggested earlier for efficiency, say

n ¼ 2k, the number of entries becomes:

NE ¼ 1

2
nðnþ 1Þ ¼ 22k�1 þ 2k�1 ð7:51Þ

If using a single memory block, this does not result in any savings, because of the second term in

Equation 7.51. Memory savings can only be achieved with multiple small memory blocks.

220 Design for Embedded Image Processing on FPGAs

Instead, if the number of bins is reduced to n ¼ 2k�1, the number of entries is now:

NE ¼ 1

2
nðnþ 1Þ ¼ 22k�1�2k�1 ð7:52Þ

Since the second term is now subtracted rather than added, the array will fit into a block of size 22k�1.

The quantisation of the input range into n bins is nowmore complex and requires scaling the input before

truncating the least significant bits. Fortunately, this scaling may be implemented by a single subtraction:

x ¼ xin
n

2b

 �
¼ xin

2k�1

2b

 �
¼ xin�2�kxin

2b�k

 �
ð7:53Þ

Two approaches may be used to pack the data into the smaller array. The first successively shifts each row

back in memory to remove the unused entries:

H½x; y� ¼ H

�
xþ ny� 1

2
yðy�1Þ

�

¼ H

�
xþ 2ky� 1

2
yðyþ 1Þ

� ð7:54Þ

The multiplication may be avoided by using a small lookup table on the y address, as shown on the left in

Figure 7.20.

The second approach is tomaintain the spacing but fold the upper addresses into the unused space at the

end of each row:

H x; y½ � ¼
H½xþðnþ 1Þy�; y � n

2

H½ðn�xÞþ ðnþ 1Þðn�yÞ�; y >
n

2

8>>><
>>>:

ð7:55Þ

Note that ðn�xÞ and ðn�yÞ are just one’s complements of x and y respectively, enabling them to be

implemented with exclusive OR gates as shown in Figure 7.20.

xin

yin

÷2k

÷2k

÷2b-k

÷2b-k

][

][

Quantisation

Addr
LUT

Histogram
memory

0
0

2k-1

n

0
0

2k-1

n

xin

yin

÷2k

÷2k

÷2b-k

÷2b-k

][

][

Quantisation

Histogram
memory

}

MSBLS
B

s

0
01 1

2 2
3 3
4

4

5
5

6

6

Figure 7.20 Packed addressing schemes for a triangular array with n ¼ 2k�1. Left: packing the

rows sequentially. The numbered memory locations represent the addresses stored in the Addr LUT.

Right: folding the upper addresses into the unused space.

Histogram Operations 221

7.2.2 Multidimensional Statistics

The scalar mean and variance extend to vector valued quantities as the mean vector and covariance

matrix. Themeanvector is simply found by taking themean of the components, for example themean of

a three-dimensional data set is:

lI ¼

X
x;y

I½x; y�
X
x;y

1
¼

mI1
mI2
mI3

2
4

3
5 ð7:56Þ

Similar to the variance of Equation 7.4, the covariance between two variables is:

s2Ii ;Ij ¼

X
x;y
ðIi�mIi ÞðIj�mIj Þ

X
x;y

1
¼

X
x;y

IiIj
X
x;y

1
�mIimIj ð7:57Þ

with the covariance matrix formed from the covariances between every pair of components:

r2I ¼
s2I1 s2I1;I2 s2I1;I3
s2I1 ;I2 s2I2 s2I2;I3
s2I1 ;I3 s2I2;I3 s2I3

2
664

3
775 ð7:58Þ

The diagonal elements of r2I correspond to the variances of the individual components. The off-diagonal

elements measure how the corresponding components vary with respect to each other, which reflects the

correlation between that pair of components. It is clear from Equation 7.57 that the covariance matrix is

symmetric. In matrix form:

r2I ¼

X
x;y
ðI� lIÞðI� lIÞT

X
x;y

1
ð7:59Þ

where the superscript T denotes the vector transpose. (For complex data, the complex conjugate of the

transpose is used.)

For a colour image, each sample has three components or dimensions. Calculating the mean

therefore requires three accumulators, one for each dimension. If the denominator is not fixed (for

example extracting statistics from a region of the image), an additional accumulator is required for the

denominator. From the symmetry in the covariance matrix, only six accumulators are required for the

numerator of Equation 7.59.

When calculating global statistics for the image, the data for the mean and covariance may be

performed directly on the input as it is streamed in. Alternatively, a multidimensional histogram may be

used as an intermediary, in a similar manner to that described in Section 7.1.1.While using a histogram as

an intermediate step is efficient for one-dimensional histograms, in two and higher dimensions their utility

for this purpose becomesmarginal. Unless the resolution in each dimension is reduced, the histogram can

have more entries than the original image. While this may be overcome by reducing the resolution, this

will also reduce the accuracy of the statistics derived from the histograms. Therefore, gathering data from

a multidimensional histogram is usually only practical if many separate calculations must be performed

for different regions within the multidimensional data space (for example to obtain the mean and

covariance for each of a set of colour classes).

The covariance matrix may be used in a number of ways. If the covariance matrix is of a set of points

from the same distribution, such as from the same colour class, then the covariance matrix provides

information on the spread of distribution within the multidimensional space. If the distribution is

222 Design for Embedded Image Processing on FPGAs

Gaussian, then the shape will be ellipsoidal, with the orientation and extent of the ellipsoid defined by the

covariance matrix. In one dimension, the probability that a point, x, belongs to the distribution may be

determined from the distance of the point from the centre of the distribution, d, in terms of the number of

standard deviations:

d ¼ x�m
s

¼
ffi
ðx�mÞ2ðs2Þ�1

q
ð7:60Þ

With a multidimensional distribution, in general the spread of the distribution is different in different

directions. The Mahalanobis distance (Mahalanobis, 1936) generalises Equation 7.60 to measure the

distance of a vector, x, from a distribution, X, using the covariance:

dMahalanobis ¼
ffi
ðx�lXÞTðr2XÞ�1ðx�lXÞ

q
ð7:61Þ

If the distribution is spherical, with a standard deviation of one, then the covariance matrix will be the

identity matrix, and this will reduce to the standard Euclidean distance:

dEuclidean ¼
ffi
ðx�lXÞTðx�lXÞ

q
ð7:62Þ

Another common use for the covariance matrix is for dimensionality reduction. Principal components

analysis (PCA) defines a new set of axes where each axis is independent of the others (the covariances are

all zero). This effectively rotates the multidimensional space in such a way to best align the axes with the

axes of the distribution. In the rotated space, the axes are ordered in terms of decreasing variance. This

means that the first principle component is in the direction that accounts for the most variation within the

data, and corresponds to the long axis of the ellipsoid if the data is from a multidimensional Gaussian

distribution. The dimensionality of the data setmay be reduced by discarding the lower order components.

It can be shown that for a given number of dimensions or axes retained, this will minimise the error of the

approximation in a least squares sense.

The principal component axes are found by determining the eigenvectors of the covariance matrix. It

can be shown that the eigenvectors will be orthogonal because the covariance matrix is symmetric.

Therefore, the matrix E formed from the unit eigenvectors of the covariance matrix will represent a pure

rotation of the multidimensional space about the centre (or mean vector). The corresponding eigenvalues

represent the variance in the direction of each eigenvector. This is related by:

r2PCA ¼ ETr2I E ð7:63Þ

where the r2PCA is the diagonal covariance matrix of the transformed data. The transformation is

performed by projecting each pixel onto the new axes:

IPCA ¼ ETI ð7:64Þ

The complexity of the control logic for determining the eigenvectors from the covariance matrix implies

that this step is probably best performed in software rather than hardware. Of course, the ALU for the

processor may be enhanced with dedicated instructions to accelerate the matrix operations. Once the

transformation matrix, E, has been determined, the projection of Equation 7.64 may be readily

implemented in hardware.

The principal components are only independent axes with respect to the underlying data only if the

whole data set is Gaussian distributed. This may be the case if it is performed on a cluster of data points

within the data set (for example a particular colour class) but is generally not the case for whole images,

which consist ofmultiple objects or classes. In this case, PCAwillmerely decorrelate the axes. These axes

Histogram Operations 223

may not necessarily have any usefulmeaning; in particular, theymay not necessarily be useful features for

performing classification. The two-dimensional (contrived) example of Figure 7.21 is such a counter-

example that illustrates a case where the original axes were better for separating the two classes than the

principal axes.

From an image processing perspective, principal components analysis has two main uses. When

applied across the components of an image, it determines the linear combinations of components that

account formost of thevariationwithin the image. Thismay be used, for example, to reduce the number of

channels of amultispectral image. It can also be used for image compression to concentrate or compact the

energy in the signal. Fewer bits are required for the components that have lower variance. In this regard,

the principal components of an RGB image are often similar to the YUVor YIQ components (unless the

image is dominated by a strongly coloured region).

The second application of PCA is in object recognition. In this case, rather than consider the components

as the axes, the pixel locations are the axes; each image may then be considered a point in this very high

dimensional space.When considering a set of images of related objects, each imagewill result in a separate

point, with the resulting distribution representing the variability from one image to another. The

dimensionality of this high dimensional space may be significantly reduced by principal components

analysis. Each axis in the new space corresponds to an eigen-image – the high dimensional eigenvector of

the corresponding covariance matrix. The variation between the set of images may be reduced to a small

number of components, representing the projections onto, hence the weights of, each eigen-image. These

weights may then be used for classifying the objects. One classic example of this approach is face

recognition (Turk and Pentland, 1991), where the eigen-images are often referred to as eigen-faces.

Other statisticalmeasures, such as themedian and range, are based on an ordering of the data. Sincevectors

have no natural ordering (Barnett, 1976), the standard definitions no longer apply. The simple approach of

taking the median or range of each component gives an approximation but is not the true result. For the

median, the resulting point may not be one of the input data points because in general the median of one

component will select a different pixel to the median of another component (Astola et al., 1990). When used

for median filtering within an image, this can result in coloured fringes around edges.

The problem with operating independently on the components is that it does not take into account the

relationship between components. Each vector value should be treated as a single unit and operated on as

such. One approach is to convert the vector to a scalar, which can then be used to define an ordering. Such

conversions enable a reduced ordering (Barnett, 1976), with the results determined by the particular

conversion used. A simple conversion is to use the vectormagnitude. For colour images, the luminance, or

in fact anyweighted combination of the components, could be used as the scalar value for ordering (Comer

andDelp, 1999). A limitation of these approaches is thatmanyquite different vectorswould be considered

equal, with no ordering between them.Oneway of overcoming this for integer components is to interleave

After transformation

Principal
axes

Figure 7.21 Principal components counter-example. Left: the data on the original axes, with the

principal component axes overlaid. The ellipses represent different data classes. Right: after PCA

transformation; the original axes were better for class separation than the PCA axes.

224 Design for Embedded Image Processing on FPGAs

the bits of each of the components (Chanussot et al., 1999). This keeps each distinct vector unique,

although the ordering is still dependent on interleaving order.

It is possible to define both a truemedian (Astola et al., 1988; 1990) and range (Barnett, 1976) for vector

data. The median of a set of vectors,X, is the vector within the set, x, that minimises the distances to all of

the other points in the set. That is:

xmed ¼ argmin
xj2X

X
i

���xj�xi

��� ð7:65Þ

The distances may be measured either using Euclidean (L2 norm) or city block (L1 norm) distances

(Astola et al., 1990). The city block distance is easier to calculate in hardware, although the median

vector will then depend on the particular coordinates used. Calculating themedian requiresmeasuring the

distance between every pair of points within the set. This makes the computational complexity of order

OðN2ÞwhereN is the number of points in the set. For an image, this is impractical. However, for smallerN,

such as filtering, this is more feasible.

One limitation of themedian defined in thisway is that it is not unique.Consider a set of points distributed

symmetrically (for example in two dimensions, evenly around the circumference of a circle as shown in

Figure 7.22). Each one of the points is themedian as defined by Equation 7.65. This non-uniqueness results

from requiring the median to be one of the input samples. Davies (2000) argues that this constraint is

unnecessary and results in selecting a point that is not representative of the data as awhole. If this constraint

is relaxed, the resulting minimum, also called the geometric median, is then:

xmed ¼ arg;min
xj2Rn

X
i

���xj�xi

���
2

ð7:66Þ

where n is the number of components in each vector. It can be shown that the geometric median is unique

(Ostresh, 1978) andmaybe found iteratively byWeiszfeld’s algorithm(Ostresh, 1978;Chandrasekaran and

Tamir, 1989):

xrþ 1 ¼

X
i

xi

kxi�xrk2X
i

1

kxi�xrk2

ð7:67Þ

Each iteration of Equation 7.67 requires summing over the complete set of vectors. Since successive

iterationsmust be performed sequentially, the only scope for parallelism is to partition the set of input vectors

over several processors. Calculating the inverse Euclidean distance is also relatively expensive, but is

Figure 7.22 Vector median is not unique.

Histogram Operations 225

amenable to pipelining using a CORDIC processor. The resulting weight may be shared by the numerator

and denominator. The iteration of Equation 7.67 converges approximately linearly, although it can get stuck

if one of the intermediate points is a one of the input vectors (Chandrasekaran and Tamir, 1989).

For multidimensional data, the range can be defined as the distance between the two points that are

furthermost apart (Barnett, 1976):

range ¼ max
xi ;xj2X

jjxi�xj jj ð7:68Þ

Again the distance between every pair of points must be calculated, giving complexity of orderOðN2Þ. A
simpler approximation is to combine the ranges of each component. This assumes that the distribution is

rectangular and aligned with the axes, so will tend to over-estimate the true range.

7.2.3 Colour Segmentation

Multidimensional histograms provide a convenient visualisation for segmentation, particularly when

looking at colour images. Segmentation is equivalent to finding clusterswithin the data set, or equivalently

finding peaks within the multidimensional histogram.

When considering colour segmentation or colour thresholding, using three-dimensional histograms is

both hard to visualise and expensive in terms of resources. In this case, pairs of components are usually

considered; this projects the three-dimensional histogram onto a two-dimensional plane. As described

before, RGB is generally not the best colour space for segmentation. If colour is of primary interest, then

the colour can be converted to YCbCr or HSVand the intensity channel ignored. The corresponding two-

dimensional histograms are then taken of either Cb�Cr or H�S respectively. Alternatively, the

components can be normalised and the x�y or r�g histogram taken.

Several of these are compared in Figure 7.23. Note the predominantly diagonal structure in the R�G

histogram in the left panel. This is even more exacerbated if the lighting varies across the scene. The grid

structure is caused from the stretching of each component during colour correction.

Normalising the coordinates by dividing the sum (as in Equation 6.78) gives the r�g histogram. This is

a triangular histogramwith nothing above the line rþ g ¼ 1. The intensity dependence has been removed,

resulting in tighter groups. The dense group in the centre corresponds to the white background. The

isolated ‘random’ points result from the black region where a small change in one of the components due

to noise drastically changes the proportions of the components. Black regionsmust be distinguished based

on luminance rather than colour. The faint lines connecting each cluster with the background result from

mixing around the edges of each coloured patch; the edge pixels consist partly of the coloured object and

R

G

r

g

H

S

Figure 7.23 Example two-dimensional histograms of the colour corrected image from Figure 6.44.

Left: R�G histogram; centre: r�g histogram; right:H�S histogram. (For key features of each histogram,

refer to the text.)

226 Design for Embedded Image Processing on FPGAs

partly of the background.Although present in all of the histograms, these edges aremorevisible in the r�g

or Cb�Cr histograms.

The third example is theH�S histogram on the right. This, too, removes the intensity dependence. The

best separation is achieved after proper colour balancing, which has quite a strong effect on both the hue

and saturation. The pattern of points at low saturation results from noise affecting both the hue and

saturation of grey and white pixels. Similarly, the scattered points at higher saturation result from noise

affecting the black pixels.

The colour histogram can then be used as the basis for segmentation. This process is illustrated

in Figure 7.24 with theU�V histogram (using Equation 6.61) of the colour corrected image of Figure 6.44.

Since each of the coloured patches results in a distinct cluster, simply thresholding the two-dimensional

histogram is effective in this case. Each connected component in the histogram is assigned a unique label

(Section 11.4), represented here by a colour. This labelled two-dimensional histogram can then be used as a

lookup table on the original U and V components to give the labelled, segmented image.

In the example here, the white pixels represent unclassified colour values. The corresponding

points within the histogram were below the threshold. The number of unclassified pixels within a patch

may be significantly reduced by expanding the labelled regions within the two-dimensional lookup

table (using a morphological filter) and filtering the output image to remove isolated unclassified pixels.

Note the large number of unclassified pixels around the borders of each patch. These result from edge pixels

being a mixture of the patch and background colours. They therefore fall part way between

the corresponding clusters in the histogram. The number of such pixels may be significantly reduced

UU

VV

00

00

Figure 7.24 Using a two-dimensional histogram for colour segmentation. Left: U�V histogram using

Equation 6.61; centre: after thresholding and labelling, used as a two-dimensional lookup table; right:

segmented image. (See colour version of this figure in colour plate section)

RGB

YUV
to

Histogram
reset

Accumulate
histogram

Threshold
and
label

U-V
lookup table

Frame buffer

U-V
histogram

I

Q

Figure 7.25 Block diagram of a simple colour segmentation scheme.

Histogram Operations 227

by using an appropriate edge enhancement filter prior to classification. The grey and black patches

cannot be distinguished from the white background in this classification because the Y component is

not used for segmentation. The projection onto theU�V plane collapses these regions into a single cluster.

A block diagram for implementing such colour segmentation is shown in Figure 7.25. The scheduling

logic is not shown here but effectively controls the sequence as follows:

1. Firstly, the histogram must be initialised by resetting the counts to zero.

2. As the input image is streamed in, it is converted to YUV (or any other convenient colour space). The

U andV components are used to increment the corresponding bin in the histogram.The components are

also saved in a frame buffer for later classification.

3. Once the histogram is accumulated, the clusters are determined. Here simple thresholding and blob

labelling are used, butmore sophisticated cluster extraction techniques could be used. The histogram is

converted into a lookup table.

4. Finally, theU andV components from the frame buffer are used to index the lookup table to produce the

corresponding label for the pixel, producing a streamed output image.

If the labelling is determined offline, then the U and V components may be directly looked up to

produce the label. However, the advantage of using the histogram is that the segmentation can be

adaptive. The lookup table is also not really required to perform the classification – any of the fixed

threshold methods described in Section 6.3.3 could be used, with the data from the histogram used to

adapt the threshold levels.

Once common application of multidimensional histograms is for detecting skin-coloured regions

within images (Vezhnevets et al., 2003; Kakumanua et al., 2007). While a number of approaches can be

used, histogramsmay be used to represent the colour distributions of skin and non-skin regions. The initial

distributions are established through training, with examples of skin and general background. The

histograms, once normalised, give the prior probability of observing a particular colour, I, given the class,

Ci, that is:

pðIjCiÞ ¼ histi½I�X
I
histi½I�

ð7:69Þ

where histi½I� is the histogram for classCi. Bayes’ theorem can be used to invert this to give the probability

of a given class given the observed colour:

pðCijIÞ ¼ pðIjCiÞpðCiÞ
pðIÞ ð7:70Þ

where

pðCiÞ ¼
X
I
histi½I�

X
i

X
I
histi½I�

ð7:71Þ

given that the training samples are provided in the expected proportion of observation and pðIÞ is the
probability of observing a particular colour.

The Bayesian classifier then selects the most probable class given the observation, I:

Ci ¼ argmax
i

pðCijIÞf g

¼ argmax
i

pðIjCiÞpðCiÞ
pðIÞ

8<
:

9=
;

ð7:72Þ

228 Design for Embedded Image Processing on FPGAs

Since the denominator does not depend on i, it will not affect which one is themaximum. Simplifying, and

then substituting Equations 7.69 and 7.71 gives:

Ci ¼ argmax
i

pðIjCiÞpðCiÞf g

¼ argmax
i

histi½I�X
I
histi½I�

X
I
histi½I�

X
i

X
I
histi½I�

8<
:

9=
; ¼ argmax

i

histi½I�X
i

X
I
histi½I�

8<
:

9=
;

ð7:73Þ

Again because the denominator does not depend on i, this may be simplified further:

Ci ¼ argmax
i

histi½I�f g ð7:74Þ

In other words, the particular class that has the maximum histogram entry for the observation is the most

likely class. Alternatively, if the cost of false positives and false negatives differs, then the histogramsmay

be weighted accordingly before selecting the maximum (Chai and Bouzerdoum, 2000).

The process can then be made adaptive, by using the classification results to further train the classifier.

For this to provide new data, rather than simply to reinforce the existing classification, the output has to be

filtered to remove as many misclassifications (both false positives and false negatives) as possible before

being fed back. This is shown in block diagram form (without the control logic) in Figure 7.26.

Using only the chrominance components will make the colour segmentation independent of the light

intensity. However, it has also been shown (Kakumanua et al., 2007) that this will also decrease the

discrimination ability, and that better accuracy is obtained with a full three-dimensional colour space.

Toledo et al. (2006) have implemented on an FPGA a histogram-based skin colour detector using a

combination of three-dimensional probability maps (histograms) with 32 bins per RGB and YCbCr channel

and a combination of two-dimensional histograms using I�Q, andU�V components. They used a software

processor tomonitor the results, and adapt the segmentation parameters to improve the tracking performance.

7.2.4 Colour Indexing

Histogram similarity, as described in Section 7.1.5, can readily be extended to identification of colour

images. This histogram in Equation 7.48 is simply replacedwith amultidimensional histogram. Themain

application of histogram similarity is searching for similar images within an image database. The colour

Frame
buffer

hist0 hist1

Histogram
update

argmax Filtering

Input

Class

Figure 7.26 Adaptive Bayesian colour segmentation.

Histogram Operations 229

histogram contains much important information that can be used to distinguish different colour images, is

invariant to translation and rotation, and is relatively insensitive to the orientation of the object and

occlusion. If the colour histogram has a reduced number of bins then the histograms can bemuch faster to

compare than the images themselves. Reasonable results can be achieved with as few as 200 bins (Swain

and Ballard, 1991).

One limitation of simple colour indexing is that the search is linear with the size of the database.

However, the scaling factormay be improved in a number ofways. The simplest is to reduce the number of

bins by combining the counts of groups of adjacent bins. Since:

minðA;A0Þ þminðB;B0Þ � minðAþB;A0 þB0Þ ð7:75Þ

the reduced resolution will always give a higher match score than the higher resolution histogram.

Therefore, database entries with a low match score may be eliminated at a lower cost.

For many histograms, most of the total count is concentrated in a few bins, corresponding to the

dominant colours in the image. The match from these bins has the greatest influence on the match score.

An approximate match score may be produced quickly by comparing only those bins with the database

histograms. The search speedmay be further improved if the database is sorted based on the count in each

bin (Swain and Ballard, 1991). This requires a separate database index for each bin, but this index only

needs to include those database histograms for which that bin is significant. In this way, large sections of

the database that will give a poor match are not even searched. Only those that are likely to give a good

match are compared and, even then, only a small number of bins need to be matched. Swain and Ballard

(1991) demonstrated that as few as 10 bins actually need to be compared, significantly improving the

search time.

If the database contains objects that may be present within the image, then once a match is found, the

next step is to locate the actual objectwithin the image. This can be accomplished through histogramback-

projection (Swain and Ballard, 1991). The basic idea for this is illustrated in Figure 7.27. Each pixel in the

input image is looked up in both the model histogram from the database, histM , and the histogram for the

image, histI . The value of the back-projected pixel is then:

bp x; y½ � ¼ min
histM I½x; y�½ �
histI I½x; y�½ � ; 1

 �
ð7:76Þ

This effectively assigns a high value to the pixels that have a strong colourmatchwith themodel, and a low

value to the pixels that are not significant in themodel. The back-projected image is then smoothed using a

suitable filter and the location of the maximum detected. Since the largest peak does not necessarily

correspond to the object (sometimes it will be the second or third largest peak), an alternative is to

threshold the filtered image to detect candidate locations.

histM histI

+

1
min Filter Peak

detect
Object
location

I

Figure 7.27 Object location through histogram back-projection.

230 Design for Embedded Image Processing on FPGAs

7.2.5 Texture Analysis

Visual texture is characterised by spatial patterns within the pixel values of an image. Since it has a

spatial aspect, simple first order statistics are unable to characterise a texture properly. For example,

many quite different textures have identical grey-level histograms. It is necessary to capture the

spatial relationships using second order statistics. One common method for texture analysis and

classification is the based on second order conditional distribution functions, which can be captured

in a co-occurrence matrix. This is essentially a two-dimensional histogram, where the first

component is the input greyscale image and the second component is the input image offset by

distance d in direction y:

Hd;y½a; b� ¼
X
x;y

1; ðI½x; y� ¼ aÞ ^ ðI½xþDx; yþDy� ¼ bÞ
0; otherwise

�
ð7:77Þ

where jjðDx;DyÞjj ¼ d and ffðDx;DyÞ ¼ y. Typically, the city block distance is used and the directions
are limited to 45� increments to simplify calculation.

The spatial grey-level dependencemethod (SGLDM) (Conners andHarlow, 1980) of texture analysis

extracts several features from the co-occurrence matrix. Haralick et al. (1973) define 14, of which

five are commonly used (Conners and Harlow, 1980). To obtain meaningful results for comparison

or classification, the counts within the two-dimensional histogram must be normalised to

give probabilities.

Energy : E Hd;y
� � ¼

X
i; j

Hd;yði; jÞ
� �2

X
i; j

Hd;yði; jÞ
 !2

ð7:78Þ

Entropy : H Hd;y
� � ¼ �

X
i; j

Hd;yði; jÞlog2Hd;yði; jÞ
X
i; j

Hd;yði; jÞ
ð7:79Þ

Correlation : C Hd;y
� � ¼

X
i; j
ði�miÞðj�mjÞHd;yði; jÞ

sisj
ð7:80Þ

Local homogeneity : L Hd;y
� � ¼

X
i; j

Hd;yði; jÞ
1þði�jÞ2X

i; j
Hd;yði; jÞ

ð7:81Þ

Inertia or contrast : I Hd;y
� � ¼

X
i; j

ði�jÞ2Hd;yði; jÞ
X
i; j

Hd;yði; jÞ
ð7:82Þ

where mi, mj , si, and sj are the means and standard deviations of the i and j components respectively of

the SGLDM.

Several features are used, over a range of angles, and for a selection of distances that characterise the

textures of interest. Some of the features are shown for a sample texture in Figure 7.28, along with the

Histogram Operations 231

associated SGLDMs displayed as images. The one-dimensional histogram is also shown for reference; it

is indistinguishable from a Gaussian distribution and is unable to capture any spatial relationships.

If the whole image contains a single texture, the above analysis is suitable. However, for texture

segmentation, the co-occurrence matrices must be calculated from smaller regions or windowswithin the

image. The co-occurrence matrix is more accurate when formed from a large number of pixels. However,

for small windows, the measures can become meaningless unless the number of bins in the histogram is

reduced accordingly. This has an advantage from an implementation perspective, since the memory

required to store the matrix is smaller and calculating the texture features is faster. On an FPGA, the

different features may be calculated in parallel as the matrix is scanned. If several matrices are used (with

different separations and orientations), the features from these may also be calculated in parallel. Tahir

et al. (2003a) do exactly this; they build 16 co-occurrence matrices in parallel with distance ranges of

d ¼ f1; 2; 3; 4g and angles y ¼ f0; 45; 90; 135g, with 32 pixel value bins in each dimension of their two-

dimensional histogram. They also used the FPGA to calculate seven texture features from each matrix in

parallel (Tahir et al., 2003b).

E()H H()H C()H L H() I H()

4.69x10-4

3.27x10-4

7.19x10-4

11.89

12.06

11.57

0.356

0.260

0.606

0.151

0.095

0.216

451

517

2760°

45°

90°

θ H

Figure 7.28 A sample texture with its histogram and some associated SGLDM features for d ¼ 3.

232 Design for Embedded Image Processing on FPGAs

8

Local Filters

Local filters extend point operations by having the output be some function of the pixel values within a

local neighbourhood or window:

Q½x; y� ¼ f I½x; y�; . . . ; I½xþDx; yþDy�ð Þ; ðDx;DyÞ 2 W ð8:1Þ

where W is the window or local neighbourhood centred on I½x; y�, as illustrated in Figure 8.1. The

window can be any shape or size, but is usually square, W�W pixels in size, with W odd so that

the window centre is well defined. As the window is scanned through the input image, each possible

position generates an output pixel according toEquation 8.1. Again, f is any function, with the particular

function determining the type of filter. Since the output depends not on only the input pixel but also its

local context, filters can be used for noise removal or reduction, edge detection, edge enhancement, line

detection and feature detection.

The software approach to filtering has both the input and output images stored in frame buffers. The

algorithm iterates for each output pixel, retrieving the pixels within the window in the input image

and applying the filter function. In this form, the algorithm is ultimately limited by the bandwidth of the

input memory.

Any acceleration of filtering must exploit the fact that each pixel is used in multiple windows. With

stream processing, this is accomplished through caching pixels as they are read in to enable them to be

reused in later window positions.

8.1 Caching

Pixel caching for stream processing of aW�W filters requires a series ofW� 1 row buffers, as described

in Section 5.2.3. Scanning thewindow through the image is equivalent to streaming the image through the

window. The row buffers can either be placed in parallel with thewindow or, since thewindow consists of

a set of shift registers, in series with the window as shown in Figure 8.2. Computationally they are

equivalent. The parallel row buffers need to be slightly longer (the full width of the image) but have the

advantage that they are kept independent of the window and filter.

Variations on this stream access pattern are also possible. If the resources are limited and the row buffer

is too long for the available memory, then the image may be scanned down the columns rather than across

the rows. Alternatively, the imagemay be partitioned and processed as a series of vertical strips (Sedcole,

Design for Embedded Image Processing on FPGAs, First Edition. Donald G. Bailey.

� 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd.

2006), as illustrated in Figure 8.3. In the latter case, there is a small overhead because to process the

complete image the vertical strips will have to overlap by W� 1 pixels.

Conversely, if additional resources andmemory bandwidth are available, the imagemay be partitioned

with multiple filters operating in parallel. However, rather than partition the image as illustrated on the

right in Figure 8.3, it can bemore efficient to simultaneously processmultiple adjacent rows (Draper et al.,

2003). This requires multiple pixels to be input per clock cycle and exploits the fact that the windows for

vertically adjacent outputs overlap significantly, as can be seen in Figure 8.4. This is partially unrolling the

vertical scan loop through the image. Note that the number of row buffers is unchanged. For an unroll

factor of k (processing k rows of pixels in parallel) the combinedwindow size isW � ðW þ k�1Þ. Of this,
k rows of data are streamed in frommemory in parallel, so the remainingW� 1 rowsmust come from row

buffers. These buffers are arranged with a pitch of k rather than simply being chained. The parallel

implementation will require k copies of the filter function. However, with some filters, the overlap in

windows can even enable some of the filter function logic to be shared (Lucke and Parhi, 1992), reducing

the resource requirements further.

Input image Output image

Window, W
Filter

function
f

Figure 8.1 Awindowfilter. The shaded pixels represent the inputwindow located at� that produces the

filtered value for the corresponding location in the output image. Each possiblewindowposition generates

the corresponding pixel value in the output image.

Row buffer

Row buffer Row buffer

Row buffer

Window Window

Filter function Filter function

I

Q

I

Q

Figure 8.2 Row buffers. Left: in parallel with window; right: in series with window.

Figure 8.3 Access patterns for stream processing.

234 Design for Embedded Image Processing on FPGAs

Partially unrolling the scan loop vertically will require reading pixels from k rows of the image.

However, these pixels are not usually stored together in memory, requiring an awkward memory access

pattern. Pixels are more likely to be packed inmemory, so it may be preferable to readmultiple horizontal

pixels simultaneously. Figure 8.5 demonstrates a partial horizontal unrolling of the scan loop. This time

k horizontally adjacent pixels are processed simultaneously, making the combined window size

ðW þ k�1Þ �W . This also requires the shifting pitch of the window registers to be k pixels. W� 1

row buffers are still required, but their aspect ratio must be changed to provide the wider combined data.

Again, k copies of the filter function are required, although for some functions some of the filter logicmay

be able to be shared.

Although the internal memory of most FPGAs is dual-port (only simple dual-port is required for

circular memory-based row buffers), it is possible to cache the input rows using only single-port memory.

This requiresW buffermemories, with the input beingwritten to one buffer and row0 of thewindow,while

the other rows of the window are read from other row buffers as shown in Figure 8.6. Table 8.1 shows the

corresponding control for a 3� 3 window. The state is easiest implemented as a ring counter, directly

controlling the read/write signals to the memories and the multiplexers.

Row buffer

Row buffer

Filter
function

Filter
function

Q[x,y+1]

I[x,y+1]
Q[x,y]

I[x,y]

Figure 8.4 Partially unrolling the loop vertically, streaming in multiple rows in parallel.

Filter
function

Filter
function

Row buffer

Row buffer

Q[x+1,y]

I[x+1,y]

Q[x,y]

I[x,y]

Figure 8.5 Partially unrolling horizontally, streaming multiple pixels each clock cycle.

Row buffer 0

Row buffer 1

Row buffer 2

Filter function

0
1
2

Row 0

Row 1

Row 2

State

0
1
2

Column address

I

Q

Figure 8.6 Filtering with single-port row buffers (see Table 8.1 for the control sequence).

Local Filters 235

One problem with filtering is managing what happens when the window is not completely within

the input image (Bailey, 2011b). Very few papers consider these boundary conditions – the design

to handle them properly can take more effort than to manage the normal case where all of the data

is available. For some solutions, the logic required to handle the boundary cases can be just

as much or more than the regular window logic. There is a wide range of solutions that can

be considered:

. The output could be left uncalculated for the boundary pixels. The output image would become

ðW�1Þ � ðW�1Þ pixels smaller. In many applications and with a small window size this would not be

a problem.
. The filter function could bemodified toworkwith the smaller windowwhen part of thewindow extends

beyond the boundary of the image. For many filters, this is not an option and, where it is, the logic

requirements can grow rapidly to manage the different cases.
. The input image could bemade larger. This requiresmanufacturing ðW�1Þ=2 pixel values beyond each
border of the image so that there is sufficient data to fill the window to produce a full-sized image at the

output. An original M � N image is extended to produce the ðMþW�1Þ � ðNþW�1Þ input image

that is processed. The following options describe different techniques for extending the input image in

order of complexity.
. The input stream can just bewrapped. This is equivalent to ignoring the problem and simply processing

theM � N image. The pixels at the end of a row are immediately followed by the pixels at the start of the

next row. Similarly, the last row of one frame is immediately followed by the first row of the next frame.

Since the opposite edges of an image are not likely to be related in most applications, the border pixels

are likely to be invalid. However, the advantage over the first case above is that output pixels are

produced and the output image is the same size as the input.
. A predefined value could be used for the pixels outside the image. This could be black (0), white, or

some other value depending on the type of filter and the expected scene.
. The pixel values on the border of the image could be duplicated, assigning thevalue to that of the nearest

available pixel. This is effectively nearest neighbour extrapolation. This approach has been used with

median and rank filters (Choo and Verma, 2008).
. The previous extension made the pixels outside the image flat. With some filter functions, this may

result in undesired artefacts around the edge. An alternative is to mirror the rows and columns just

inside the border to the outside of the image. Mirroring is commonly used with wavelet filters. There

are two approaches to mirroring that have been used. One mirrors using the edge of the image,

duplicating the border pixels (Kurak, 1991), and the other mirrors from the border row, without

duplicating the border pixels (McDonnell, 1981; Benkrid et al., 2003a). These approaches are

compared in Figure 8.7.

Table 8.1 Control for single-port row buffer in Figure 8.6

Input row State Row buffer 0 Row buffer 1 Row buffer 2 Output row

0 0 Write (Row 2) (Row 1) —

1 1 Row 1 Write (Row 2) —

2 2 Row 2 Row 1 Write 1

3 0 Write Row 2 Row 1 2

4 1 Row 1 Write Row 2 3

5 2 Row 2 Row 1 Write 4

6 0 Write Row 2 Row 1 5

.

236 Design for Embedded Image Processing on FPGAs

Whatever extension method is used, it is easier to apply it between the row buffering and forming the

filter window than to attempt to modify the filter function to handle the boundary conditions. Specific

mechanisms for achieving this are described after discussing the priming and flushing requirements of

filter pipelines.

It is necessary to load a whole window of data before the output starts. The time required to prime the

filter and fill the row buffers for a W�W window is the time for loading W� 1 complete rows of

ðMþW�1Þ pixels plus an additional W pixels. Therefore:

tPrime ¼ ðMþW�1ÞðW�1ÞþW

¼ ðMþWÞðW�1Þþ 1
ð8:2Þ

However, at the top of the image, half of these rows are outside the boundary of the image. The latency of

the filter is the time fromwhen a pixel is input towhen the corresponding output pixel is produced, and can

be broken into two components. The first is that of the windowing operation and the second is the latency

of the filter function itself. The latency of windowing is the time from when the centre pixel is loaded to

when the last pixel is loaded for that window position, enabling the output to be calculated. This gives:

tLatency ¼ tLatency;W þ tLatency;f

¼ ðMþW�1ÞW�1

2
þ W þ 1

2
þ tLatency; f

¼ 1

2
ðMþWÞðW�1Þþ 1þ tLatency; f

ð8:3Þ

If the system is sink-driven, then it is necessary to start the filtering at least this length of time before the

first data is required on the output. The filter must also be clocked for this many clock cycles after the last

data is input to flush the contents of the filter. Note the times of Equations 8.2 and 8.3 are further

complicated if the input stream has additional horizontal and vertical blanking intervals.

Part of priming the filter window includes loading the extended input image (beyond the borders of

the original image). Consider the case of boundary replication – the first and last rows must be loaded

ðW þ 1Þ=2 times, and similarly the first and last pixels on each row. Rather than explicitly reload them, it

is possible to reuse the loaded values using the scheme of Figure 8.8. As the first pixel of each row is

streamed in, the value is loaded into all of the shift register stages on the input. This allows the first pixel

to be replicated an additional ðW�1Þ=2 times. The rest of the stream also passes through the input shift

register to enable the whole row to be streamed continuously. As the last pixel of the row is loaded into

the window, the last shift register stage is fed back replicating the last pixel of the row. At this stage the

first row buffer contains the whole first row, including the duplicated pixels at the boundaries. This row

is recirculated to the input ðW�1Þ=2 times through theR input of themultiplexer, repeating the first row

0,0 0,0 0,0

0,0

0,0

0,0

0,0

0,00,00,0 0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

1,0 1,0 1,0

1,0

1,0

1,01,01,0 1,0

1,0

2,0 2,0 2,0

2,0

2,0

3,0

3,03,03,0 3,03,03,03,0

2,02,02,0 2,0

2,0

0,1 0,1 0,1

0,1

0,1

0,1

0,1

0,1 0,1

0,1

1,1 1,1 1,1

1,1

1,1

1,1 1,1

1,1

1,1

2,1 2,1 2,1

2,1

2,1

3,1

3,13,13,1

2,1 2,1

2,1

2,1

3,1

3,13,1

0,2 0,2 0,2

0,2

0,2

0,2

0,2

0,2 0,20,3 0,30,30,3

0,30,3

0,3

0,3

0,2

1,2 1,2 1,2

1,2

1,2

1,2 1,21,3 1,31,31,3

1,2

1,21,3 1,3

1,3

2,2 2,2 2,2

2,2

2,2

3,2

3,23,23,2

2,2 2,22,3 2,32,32,3

2,2

2,22,3 2,3

2,3 3,2

3,23,2

3,3

3,3

3,3

3,33,33,3

Figure 8.7 Edge extension schemes. Left: border pixel duplication; centre: mirroring with duplication;

right: mirroring without duplication.

Local Filters 237

as necessary. Then the remainder of the image is streamed in, with the last row repeated as before while

flushing data out of the window.

A similar approach may be used for mirroring the input, although the multiplexing gets a little more

complex. One disadvantage of this approach is that it requires at least ðMþW�1Þ � ðN þW�1Þ clock
cycles to process the whole image, and the row buffers need to be slightly longer than one row. However,

since onlyM � N pixels are loaded in andM � N pixels are output, it should be possible to process pixels

continuously, without the delays associated with repeating pixels and rows. An approach that does that,

using mirroring without duplication, for a 5� 5 window is demonstrated in Figure 8.9 (Bailey, 2011b).

The operation of this is a little more complex. Firstly consider the operation along a row. In normal

operation (in the centre of the image) the bottom row of shift registers is used to shift the pixels along. At

the end of the row, the first pixels of the next row are clocked into the top rowof shift registers.Meanwhile,

the appropriate pixel from within the window is fed back to the start of the window to give the mirroring.

The labels on the input multiplexer refer to the second last (�2) and last (�1) positions of the window

on the row. On the next clock cycle, the window should correspond to the first position on the next row.

While flushing the end of one row, the initial pixels required to prime the window for the next row have

been loaded. These are now transferred to the appropriate window registers (through multiplexer inputs

labelled 1) to give themirroredwindow values. Note that no clock cycles have been lost here – thewindow

transitions from the last position on one row directly to the first position on the next row.

A similar procedure could be used for transitioning from the bottom of one image to the top of the next.

However, this would require two extra row buffers to perform the counterpart of the preload registers

along the row. Instead, the outputs from the rowbuffers are routed directly to the corresponding rows of the

window.Mirroring requires feeding back the data at the bottom of thewindow;multiplexer inputs�2 and

�1 refer to the second last and last rows of the image respectively. On the first and second rows of the new

Row buffer

Row buffer

Row buffer

Row buffer

5 × 5
Window

1
1

R

M

I

Figure 8.8 Priming the filter. Row and pixel replication at the boundaries.

Row buffer

Row buffer

Row buffer

Row buffer

1

1

1 1 1 1

2

-1
-2

-1
-2

-1

One window row (repeated 5 times)I

Figure 8.9 Priming the filter with mirroring and no additional delay between rows.

238 Design for Embedded Image Processing on FPGAs

image, multiplexer inputs 1 and 2 respectively feed forward the row buffered and input data to reflect

the mirroring.

This section has shown how row buffers can be used to cache the data associated with local filters. Each

pixel is only loaded once, with thevalue reused for all of thewindowpositions that require it. A throughput

of one pixel per clock cycle can be maintained (or higher if partially unrolling the raster scan). It is also

possible to process the borders of the image without introducing additional latency with only a small

amount of additional control logic.

8.2 Linear Filters

The filter function for a linear filter is a weighted sum of the pixel values within the window.

Q½x; y� ¼
X
i; j2W

w½i; j�I½xþ i; yþ j� ð8:4Þ

The particular set ofweights is sometimes called the filterkernel, with the filter function determined by the

kernel used. Linear filtering is equivalent to performing a two-dimensional convolution with the flipped

kernel, w½�i;�j�. Since the Fourier transform of a convolution is a product of the respective Fourier

transforms (Bracewell, 2000), the operation of linear filters can be also be considered from their effects in

the frequency domain. This is considered further in Chapter 10.

In signal processing terminology, the filters described by Equation 8.4 are finite impulse response

filters. Recursive, infinite impulse response filters can also be used; these use the previously calculated

outputs in addition to the inputs to calculate the current output:

Q½x; y� ¼
X
i; j2W

wq½i; j�Q½xþ i; yþ j� þ
X
i; j2W

w½i; j�I½xþ i; yþ j� ð8:5Þ

By necessity,wq must be zero for the pixels that have not been calculated yet. While recursive filters may

be used to implement some finite impulse response filters (for example box filters described below), they

are otherwise not often used in image processing. The nonlinear phase response results in a directional

smearing of informationwithin the image. To avoid this, it is necessary to apply each filter twice, oncewith

a top-to-bottom, left-to-right scan pattern, and again with a bottom-to-top, right-to-left scan pattern. This

makes such filters harder to pipeline, although for a given frequency response, infinite impulse response

filters require a significantly smaller window (Mitra, 1998). Only finite impulse response filters are

discussed further in this section.

8.2.1 Noise Smoothing

Oneof themostcommonfilteringoperations is tosmoothnoise.Thebasicprinciplebehindnoisesmoothing

is to use the central limit theorem to reduce the noise variance. With only one image, it is not possible to

average with time as was used in Section 6.2.1. Instead, adjacent pixels are averaged. To avoid the output

value frombeingdifferent from the input in uniform regions of the image, a noise smoothingfilter requires:

X
i; j2W

w½i; j� ¼ 1 ð8:6Þ

Most images have their energy concentrated in the low frequencies, with the high frequencies contain-

ing information relating to fine details and edges (wherever the pixel values are changing quickly).

Local Filters 239

Random (white) noise has a uniform frequency distribution. Therefore, a low pass filter will remove the

most noisewhile having the least impact on the energy content of the image. Unfortunately, in attenuating

the noise, the high frequency content of the image is also attenuated, resulting in blur.

With linear filters, their effect on the noise and the image content can be analysed separately. Assuming

that the noise is independent for each pixel, then from Equation 6.16 the best improvement in variance for

a given sizewindowwill result if theweights are all equal. A larger widthwindowwill result inmore noise

smoothing. These noise suppression effects can be clearly seen in Figure 8.10, where an image with

artificially added noise is filtered.

Spatial averaging will result in a loss of fine detail and a blurring of edges. Unfortunately, these effects

will become worse with increased noise smoothing. Therefore, there is a trade-off between blurring and

noise suppression, as is also seen in Figure 8.10.

The Fourier transformof a uniformfilter is a sinc function, which has poor sidelobe performance at high

frequencies. These sidelobesmean that significant high frequency noise still remains after filtering. This is

apparent in the fine textured region in the centre image in Figure 8.10. A better low pass filter can be

obtained by rolling off theweights towards the edge of the kernel.While the noise variancewill be higher,

there is better attenuation of the high frequency noise and fewer filtering artefacts.

1

1
1
1

1
1

1
1
1

1
9

1
49

1
1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1
1
1

0

0

0

01

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

3

3

3 3

8

8 8

8

6
6

6

6

6
6

6

6

12

12

12

12

15
1515

15
19

3

3

3

3

1
255

Figure 8.10 Linear noise smoothing filters.

240 Design for Embedded Image Processing on FPGAs

A commonly used filter has Gaussian weights:

wG i; j½ � ¼ 1

2ps2
e�

i2 þ j2

2s2 ð8:7Þ

where s is the standard deviation or equivalent radius of the filter. Note that the Gaussian weights never

actually go to zero, so a practical implementation will require truncating the weights within a finite

rectangular region. The filter width, W, should generally be greater than about 4s and, if accuracy is

important, thenW � 6s. With truncation, the kernel coefficients may require rescaling to make the total

equal to one. The filter in the bottom row of Figure 8.10 corresponds to s ¼ 1:5.
One application of Gaussian filtering is to obtain a scale–space representation of an image (Lindeberg,

1994). Filtering by a series of Gaussian filters with successively larger standard deviations will remove

from the image features of increasing size or scale.

8.2.2 Edge Detection

Edge detection is another common application of filtering. At the edges of objects, there is often a change

in pixel value, reflecting the contrast between the object and the background, or between two objects.

Since the edge is characterised by a difference in pixel values, a differencing filter can be used to detect

edges. Differencing is sensitive to noise, so the top filter in Figure 8.11 averages vertically (to give noise

smoothing) while differencing horizontally to detect vertical edges. Note that differencing like this will

only detect edges of particular orientation. Alternatively, since the edges contain high frequency

information (this was lost through the low pass noise smoothing filter), a high pass filter can be used

to detect edges of all orientations. Themain limitation of high pass filters is their strong sensitivity to noise

(see the middle filter of Figure 8.11).

The noise sensitivity can be improved significantly by first filtering the image with a Gaussian filter.

However, there is a trade-off between accurate detection (improves with smoothing) and accurate

localisation (deteriorates with smoothing) (Canny, 1986). With the smoothed image, the peaks of the first

derivativewill correspond to the location of the edges. These can either be found directly or by finding the

zero crossings of the second derivative. (Note that finding the peaks or zero crossings requires a nonlinear

filter, which will be described in the next section.)

With linear filters, it does notmatter whether the derivatives are taken before or after smoothing. Indeed

they can even be combinedwith the smoothing to give a single filter.With the first derivative, there are two

filters for derivatives in each of the x and y directions. The corresponding weights are:

wGx
½i; j� ¼ i

2ps4
e
�i2þj2

2s2

wGy
½i; j� ¼ j

2ps4
e�

i2þj2

2s2
ð8:8Þ

Using the Laplacian for the second derivativemakes the second derivative filter (Laplacian of Gaussian or

LoG filter) (Marr and Hildreth, 1980):

wLoG i; j½ � ¼ i2 þ j2�2s2

2ps6
e�

i2 þ j2

2s2 ð8:9Þ

The LoG filter can be used to detect edges of all orientations. It is effectively a band-pass filter, where the

standard deviation, s, controls the centre frequency or the scale from a scale–space perspective, at which

edges are detected. The bottom image of Figure 8.11 shows theLaplacian ofGaussian filterwiths ¼ 1:12.

Local Filters 241

If the Gaussian and Laplacian operations are separated, then one of the Laplacian kernels in Figure 8.12

may be used.

A filter with a similar response to the LoG filter is the difference of Gaussians (or DoG filter). It is

formed by subtracting the output of two Gaussian filters with different standard deviations:

wDoG i; j½ � ¼ 1

2pk2s2
e
�i2 þ j2

2k2s2� 1

2ps2
e
�i2 þ j2

2s2 ð8:10Þ

where k � 1:5 is the ratio of standard deviations of the two Gaussians. This corresponds closely to the

receptive field response within the human visual system (Wilson and Giese, 1977).

1

1
-1
-1

-1
1

0
0
0

1
3

-1
-1 -1 -1

-1
-1 -1 -1

81
8

1
288

-9-9

-9-9

0

0

0

0

2

2
2 2

2 2
2

2

6

6 6

6 6

6

6

6

7

7 7

7

9

9

9 9

14

14

14

14
14 14

14 14
12

12

12

12

-39
-39

-39
-39
-96

Figure 8.11 Linear edge detection filters. Top: vertical edge detection; centre: high pass filter; bottom:

Laplacian of Gaussian filter. The output images are offset to show negative values.

-81
81

0 1 0

11

11

11
1
1

1

0 1 0
-41

4

Figure 8.12 Filter kernels for a Laplacian filter.

242 Design for Embedded Image Processing on FPGAs

Note that theweights for an edge detection filter should sum to zero, so that the response is zero for regions

of uniformpixel value. For edge detection, theweights can bemultiplied by an arbitrary constant, since the

edges correspond either to the positions of themaximumderivatives, or the locations of the zero crossings

of the Laplacian.

8.2.3 Edge Enhancement

An edge enhancement filter sharpens edges by increasing the gradient at edges. In this sense it is the

opposite of edge blurring,where the gradient is decreased by attenuating the high frequency content. Edge

enhancement works by boosting the high frequency content of the image. One such filter is shown in

Figure 8.13. A major limitation of the high frequency gain is that any noise within the image will also be

amplified. This cannot be easily avoided, so linear edge enhancement filters should only be applied to

relatively noise-free images. Over-enhancement of edges can result in ringing, which will become more

severe as the enhancement is increased.

The weights of an edge enhancement filter must sum to one to avoid changing the global contrast of

the image.

8.2.4 Linear Filter Techniques

Although most of the examples shown in this section are 3� 3 filters, the techniques readily extend

to larger filter sizes. The obvious implementation of a linear filter is illustrated in Figure 8.14,

especially if the FPGA has plentiful multiplication or DSP blocks. Each pixel within the window is

multiplied in parallel by the corresponding filter weight and then added. Note that the bottom right

window position is the oldest pixel and corresponds to the top left pixel within the image in the

image. The filter weights are shown here as constants, but could also be programmable and stored in

a set of registers.

The propagation delay through the multiplication and adders may exceed the system clock cycle and

require pipelining. Since each input pixel contributes to several pixels, rather than delaying the inputs

and accumulating the output, the transpose filter structure performs all the multiplication with the input

and delays the product terms (Mitra, 1998). The transpose filter structure does this by feeding data through

the filter backwards (swapping the input and the output) and swapping summing junctions and pick-off

points. This is applied to each row in Figure 8.15, and to the whole window (Benkrid et al., 2003a) in

Figure 8.16. The advantage of the transposed structures is that the output is automatically pipelined.When

transposing the whole window, it is necessary to cache the partial sums using row buffers until the

remainder of the window appears. Depending on the filter coefficients, these partial sums may require a

-1
-1 -1 -1

-1
-1 -1 -1

121
4

Figure 8.13 Linear edge enhancement filter.

Local Filters 243

few guard bits to prevent accumulation of rounding errors. The row buffers, therefore, may need to be a

few bits wider than the input pixel stream. The transposed filter structures may also require a little more

effort to manage the image boundaries, although that can also be incorporated into the filter structure

(Benkrid et al., 2003a).

There are several techniques that may be used to simplify and reduce the logic required by linear filters.

Many filters are symmetric, therefore many of their filter coefficients share the same value. If using the

direct implementation of Figure 8.14, the corresponding input pixel values can be added prior to the

multiplication. Alternatively, since each input pixel is multiplied by a number of different coefficients,

the input pixel value can be multiplied by each unique coefficient once, with the results cached until

needed (Porikli, 2008). This fitswell with the transposed implementation of Figure 8.16. In both cases, the

number of multipliers is reduced to the number of unique coefficients.

If using a relatively slow clock rate, and hardware is at a premium, then significant hardware savings can

often be made by doubling or tripling the clock rate but keeping the same data throughput. The result is a

multiphase designwhich enables expensive hardware (multipliers in the case of linear filters) to be reused

in different phases of the clock. This is shown for a three-phase system in Figure 8.17. With the

accumulator, a 0 is fed back in phase zero to begin the accumulation for a new pixel.

w[1,1]

w[1,0]

w[1,-1]

w[0,1] w[-1,1]

w[0,0] w[-1,0]

w[0,-1] w[-1,-1]

Window

Q

Row buffer

Row buffer

I

Figure 8.14 Direct implementation of linear filtering.

w[1,1]

w[1,0]

w[1,-1]

w[0,1]w[-1,1]

w[0,0]w[-1,0]

w[0,-1]w[-1,-1]

Window

Row buffer

Row buffer

Q

I

Figure 8.15 Pipelined linear filter. Note the different order of coefficients to Figure 8.14 because the

transpose filter structure is used for each row.

244 Design for Embedded Image Processing on FPGAs

Many useful filters are separable:

w½i; j� ¼ wx½i�wy½j� ð8:11Þ

This means that a two-dimensional filter may be decomposed into a cascade of two one-dimensional

filters: a 1�W filter operating on the columns and aW� 1 filter operating on the rows. This will reduce

the number of both multiplications and associated additions from W2 to 2W. Note that the column filter

does not require a separate pass through the image. It, too, can be streamed by replacing the pixel delays

within the window by row buffers, as shown in Figure 8.18. This is effectively implementing the filters

Row buffer

Row buffer

Row buffer
Filter function

F
ilter

function

Row filter Column filter

I

I

Q

Q

Figure 8.18 Converting a row filter to a column filter by replacing pixel delays with row buffers.

w[1,1]

w[1,0]

w[1,-1]

w[0,1]w[-1,1]

w[0,0]w[-1,0]

w[0,-1]w[-1,-1]

Row buffer

Row buffer Q

I

Figure 8.16 Transposed implementation of linear filtering. Note the changed coefficient order.

w[-1,1]

w[-1,0]

w[-1,-1]

w[1,1]

w[1,0]

w[1,-1]

w[0,1]

w[0,0]

w[0,-1]

Q

Window

Phase

Phase 0

Figure 8.17 Reducing the number of multipliers by using a higher clock speed.

Local Filters 245

for each column in parallel, but sequentially stepping the filter function from one column to the next as

the data is streamed in. Consequently, the row and column filters may be directly pipelined.

While not all filters are directly separable, even arbitrary two-dimensional filtersmaybe decomposed as

a sum of separable filters (Lu et al., 1990; Bouganis et al., 2005)

w½i; j� ¼
X
k

wkx½i�wky½ j� ð8:12Þ

through singular value decomposition of the filter kernel. The vectors associated with the k largest

(significant) singular values will account for most of the information within the filter. With such a

decomposition, the column filters should be implemented before the row filters to enable a single set of

rowbuffers to be used for all the parallel filters. For a similar reason, the transpose filter structure cannot be

used for the column filters, although it may be used for the row filters. Such a decomposition can give

savings if k � W=2, which will be the case if the original filter is symmetrical either horizontally

or vertically.

Also worth considering are series decompositions of filters. The kernel of a composite filter is the

convolution of the kernels of the constituent filters:

w½i; j� ¼ w1½i; j� � w2½i; j�
¼
X
x;y

w1½x; y�w2½i�x; j�y� ð8:13Þ

Acommon example of this is approximating aGaussian filter by repeated application of a rectangular box

filter. For k repetitions of a window of width W, the standard deviation of the resultant approximate

Gaussian is:

s ¼
ffi
1

12
kðW2�1Þ

r
ð8:14Þ

For many applications, three or four repetitions will provide a sufficiently close approximation to a

Gaussian filter.

Of course, when implementing constant coefficient filters, if any of the coefficients is a power of two,

the corresponding multiplication is a trivial shift of the corresponding pixel value. Such shifts can be

implemented without logic. If not using multiplier blocks, the multiplications may be implemented with

shift and add algorithms. For any given coefficient, the smallest number of shifts and adds (or subtracts) is

obtained by using the canonical signed digit representation for the coefficients. Further optimisationsmay

be obtained by identifying common subexpressions and factorising them out (Hartley, 1991). For

example, 165¼ 101 001 012 requires three adders for a canonical signed digit multiplication, but only

two by factorising as 5� 33 (¼ 1012� 1 000 012). A range of techniques has been developed to find

the optimal (in some sense) factorisation and arrangement of terms (Dempster and Macleod, 1994;

Potkonjak et al., 1996; Martinez-Peiro et al., 2002; Al-Hasani et al., 2011).

A simple example will illustrate the power of these techniques. Consider a 21� 21 Gaussian

smoothing filter with s ¼ 3. A direct implementation would require 441 multipliers and 440 adders.

Representing the coefficients with fixed-point numbers with resolution of 2�16 has the coefficients in the

range from 0 to 1160, requiring 11 bits for the central few coefficients. Of the coefficients, 40 of them are

zero, so do not need to be multiplied or added in. This reduces the number of adders to 400. Of the

246 Design for Embedded Image Processing on FPGAs

coefficients, 96 are direct powers of two (1, 2, 4 and 8); these alsowill not require multipliers but will still

require adders. Since the filter is symmetric, most of the coefficients will be used four or eight times. This

can be exploited by adding the corresponding pixel values first and then multiplying by the coefficient.

Since there are 40 unique coefficients (not counting the zero or powers of two), this reduces the number

of multipliers to 40, although 400 adders are still required. A further 10 of the coefficients can be

represented as the sum or difference of two powers of two. This allows those multiplications to be

performed by a single addition rather than a multiplication. The number of operations is then

30 multiplications and 410 additions.

A further observation is that the Gaussian filter is separable. This allows the 21� 21 filter to be

implemented as cascade one-dimensional Gaussian filters (1� 21 and 21� 1). The fixed-point coeffi-

cients with a resolution of 2�11 are shown along the top of Figure 8.19. Each one-dimensional filter would

require nine multiplications (because of symmetry and two coefficients are powers of two) and 20

additions. A further six coefficients can be represented as a sum or difference of two powers of two,

reducing the requirements to threemultiplications and 25 additions (one addition can be removed through

common subexpression elimination: 272¼ 4� 68). The remaining three multiplications can also be

eliminated by reusing common subexpressions, in the form of a shifted sum of two existing coefficients

(37¼ 2� 18 þ 1; 165¼ 37 þ 128; 218¼ 8� 18 þ 2� 37) allowing even those multipliers to be

replaced with single additions. Therefore, the complete 21� 1 filter can be implemented with only

28 additions, as demonstrated in Figure 8.19. A similar filter can be used for the vertical filter, replacing

each the register in the chain across the top with a row buffer.

With the increasing prevalence of high speed pipelined multipliers within FPGAs, the need for such

decompositions has diminished somewhat in the last few years. The optimised hardware multipliers are

hard to out-perform with the relatively slow adder logic of the FPGA fabric (Zoss et al., 2011).

Other decompositions and approximations are also possible, especially for large windows. For

example, Kawada and Maruyama (2007) approximate large circularly symmetric filters by octagons

and rely on the fact that the pixels with a common coefficient lie on a set of lines. As the window

scans, the total for each octagon edge is updated to reflect the changes from one window position to

the next.

A simpler version of this can be applied to averaging using a rectangular window with equal weights

(McDonnell, 1981). Firstly, a large rectangular window is separable, allowing the filter to be

implemented as a cascade of two one-dimensional filters. Secondly, the equal weights make the filter

31 188 37 68 112 165 218 258 272

×256
×2

×2

×2 ×2

×2
×8 ×8

×16×16
×64

×4

×4

×128
×128

Q÷2048

I

Window

Weights:

Figure 8.19 Adder only implementation of a 21� 1 Gaussian filter with s ¼ 3.

Local Filters 247

amenable to a recursive implementation:

S½xþ 1� ¼
XW�1

2

i¼�W�1
2

I½xþ 1þ i�

¼
XW�1

2

i¼�W�1
2

I xþ i½ � þ I
h
xþ 1þW�1

2

i
�I

h
x�W�1

2

i

¼ S x½ � þ I
h
xþW þ 1

2

i
�I

h
xþW þ 1

2
�W

i

ð8:15Þ

which reduces the one-dimensional filter to a single addition and subtraction regardless of the size of the

window. The same recursive mechanism may also be used for the column filter. An input pixel is then

only required twice, oncewhen it first enters thewindow and again when it leaves thewindow. For large

windows, a large number of row buffers are required to cache the input for its second access. Therefore,

if the input stream is from a frame buffer which has sufficient bandwidth to stream from two rows

simultaneously, the row buffering requirements can be reduced significantly, with only the current

column sum buffered. Such an implementation for a W�W box average is illustrated in Figure 8.20.

8.3 Nonlinear Filters

While the theory behind linear filters is well established and the filters are relatively simple to implement,

restricting f in Equation 8.1 to a linear combination of the input values has some significant limitations

(Bailey et al., 1984). In particular, the filters have difficulty distinguishing between legitimate changes in

pixel value (for example at an edge) from undesirable changes resulting from noise. Consequently, linear

filters will blur edges while attempting to reduce noise, or be sensitive to noise while detecting edges or

lines within the image.

Linear filtersmay bemodified to improve their characteristics, for example bymaking the filterweights

adaptive, or dependent on the image content. The simplest of these are trimmed filters, which omit some

pixelswithin thewindow from the calculation.While themean possesses good noise reduction properties,

it is sensitive to outliers. A trimmed mean will discard the outliers by discarding the extreme pixels and

calculate the mean of the remainder (Bednar andWatt, 1984). With a heavy tailed noise distribution, this

can give an improvement in signal-to-noise ratio. A related application is smoothing noise without

significantly blurring edges; it is desirable to average the pixel values only from one side of the edge. By

selecting only the pixel values that are similar to the central pixel value, the probability of using pixel

values on the opposite side of the edge is reduced, with a corresponding reduction in blur.

Row buffer

sum

Row Wi
W pixels
delay

÷

W 2

I[x,y-W]

I[x,y]

Q

Figure 8.20 Efficient implementation of a W �W box average filter.

248 Design for Embedded Image Processing on FPGAs

Box average filters may also be operated as trimmed filters. For example, the average could be taken

only of pixel values within a given range (McDonnell, 1981). The sum of the pixel values is

augmented with the count of those that are within range. The corresponding implementation is given

in Figure 8.21.

Gated filters are a related form of adaption to trimmed filters. These use one function of the pixel values

within the window to select between two or more different filters to produce an output, as represented in

Figure 8.22. The gating is determined independently for each output pixel. A simple example of a gated

filter is to detect the gradient within the window and only apply smoothing perpendicular to the gradient.

Such filters apply smoothing along an edge to reduce noise without significantly blurring the edge.

Another example is to determine whether the window is within a uniform region away from an edge or is

adjacent to an edge. If an edge is present, an edge enhancement filter may be used, otherwise a noise

smoothing filter can be selected. At the extreme, a statistical test may be performed to determine if the

pixel values come from a singleGaussian distribution (Gasteratos et al., 2006). If so, themean can be used

to smooth the noise, otherwise the original pixel value is retained to prevent degrading edges (which will

generally have a mixed distribution).

Nonlinear combinations of linear filters can also providemore useful outputs than a simple linear filter.

Perhaps the most common example of this are the Prewitt and Sobel edge detection filters (Abdou and

Pratt, 1979), which combine the outputs of two linear gradient filters; one in the horizontal direction and

one in the vertical direction. LetH be the horizontal gradient andV be thevertical gradient. Themagnitude

of the two-dimensional gradient is ideally given by:

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þV2

p
ð8:16Þ

sum

area

W pixels
delay

÷
thr2

thr1

Row buffer

Row i–W
I[x,y-W]

I[x,y]

Q

Figure 8.21 The box filter of Figure 8.20 augmented for trimming the input.

Function
1

Function
2

Gating
function

Filter
window

Q

Figure 8.22 Gated filter.

Local Filters 249

If the edge orientation is also required, this may be conveniently calculated using a CORDIC unit

(Section 5.4.3) to calculate both the arctangent and Equation 8.16. However if just the edge strength is

required, Equation 8.16 is quite expensive and two simpler alternatives are commonly used (Abdou and

Pratt, 1979):

Q ¼ max Hj j; Vj jð Þ ð8:17Þ

or

Q ¼ Hj j þ Vj j ð8:18Þ

One example of a Sobel filter implementation is given by Hezel et al. (2002); it directly implements the

two linear filters and combines the result. However, a simpler implementationmay be devised that reduces

the number of calculations by exploiting separability. Both the horizontal and vertical filters are separable

and may be decomposed, as shown in Figure 8.23. The two filters are combined using Equation 8.18 to

reduce the complexity.

One limitation of differencing filters to detect gradients is that differentiating is a high pass operation

and is, therefore, sensitive to noise. An alternative that has been proposed aremoment-based filters (Suciu

andReeves, 1982), which are based on adding or integrating and are, therefore, inherently less sensitive to

noise. The basic principle for edge detection is that the centre of gravity will be moved from the centre of

thewindow in the presence of an edge. The offset of the centre of gravity from thewindow centre indicates

the magnitude of the edge, while the direction is perpendicular to the edge orientation.

While there aremanyuseful nonlinear filters, only a fewof these are described in the following sections.

8.3.1 Edge Orientation

The orientation of edges, or intensity gradients, within an image may be determined by taking the

derivatives in two perpendicular directions. If necessary, the effects of noisemay be reduced by applying a

Gaussian or other noise smoothing filter before detecting the gradients. The two derivatives can then be

treated as the components of the gradient vector. The orientation of the gradient may then be determined

from the angle of the vector by taking an arctangent. This process is illustrated in Figure 8.24.

Inmany situations, the output angle is required in terms of neighbouring pixels. Rather than perform the

arctangent and then quantise the result, the orientation may be distinguished directly. Figure 8.25 shows

some of the possibilities. To distinguish between a horizontal or vertical gradient, a threshold of 45	 may

be evaluated by comparing themagnitudes, as shown on the left. If necessary, the sign bits of the gradients

may be used to distinguish between the four compass directions. The logic for this is most efficiently

1

1
2

1

-1
0 11 11

1-1 0

1

1
-2
-1

-1
2

0
0
0

1

1
2 1-1 0≡ ⊗

11

-1 -2 -1

2
000

1

-1
0 11 11≡ ⊗⊗

1×3

1×3 filters 3×1 filters

window

||

||
Q

Combining
results

– –
+

Sign

×2

Figure 8.23 Sobel filter implemented as parallel separable filters. Left: filter decomposition; right:

implementation using Equation 8.18.

250 Design for Embedded Image Processing on FPGAs

implemented using a lookup table to give the two bits out. If an eight-neighbourhood is required, the

threshold angle is 22.5	. A sufficiently close approximation in most circumstances is:

Horizontal ¼ dI

dx

����
���� > 2

dI

dy

����
���� ð8:19Þ

which corresponds to a threshold of 26.6	. This will give a small preference to horizontal and vertical

gradients over the diagonals. Again, the sign bits are able to resolve the particular direction and which

quadrant the diagonals are in.

8.3.2 Non-maximal Suppression

TheCanny edge detector (Canny, 1986) first smoothes the image, then detects the gradient, and suppresses

points that are not a local maximum along the direction of the steepest gradient. Since the Gaussian

smoothing will also spread the edge, the detector defines the position of the maximum gradient as the

location of the edge. Non-maximal suppression is therefore thinning the edges, keeping only those points

where the edge is the strongest.

Identifying themaximumgradient points first requires determining the orientation of the edge (from the

direction of the steepest gradient). Thismay be determined as either horizontal or vertical or one of the two

diagonals using the scheme described in the previous section. If the gradient magnitude at a point is larger

than both points on either side in the direction of the gradient, then the magnitude is kept. Otherwise, it is

not a local maximum and reset to zero. One possible circuit for implementing this is in Figure 8.26. An

alternative for determining both themagnitude and orientation is a CORDIC block, although only two bits

are required for the orientation. The orientationmust be delayed by one row to compensate for the latency

d
dx

d
dy

tan-1Gaussian
filter

Figure 8.24 Edge orientation. The circle shows the mapping between angle and output pixel value.

dI
dx

dI
dy

| |

| |

dI
dx

dI
dy

| |

| |

Sign LUT

dI
dx

dI
dy

| |

| |

Sign

Sign

×2
×2

LUT

Figure 8.25 Circuits for detecting limited orientations. Left: distinguishing horizontal and vertical;

centre: four directions (0	,
 90	, 180); right: including diagonal directions (0	, 45	, 90	, 135	, or 0	,

 45	,
 90	,
 135	, 180).

Local Filters 251

of getting the magnitude on the row below the current pixel. The orientation is used to select the two

adjacent magnitudes for comparison. If either of the neighbours is greater, this masks the output.

8.3.3 Zero-Crossing Detection

A zero-crossing detector is required to detect the edge locations from the output of Laplacian of Gaussian

or difference of Gaussian filters. Whenever two adjacent pixels have opposite sign, it must cross through

zero somewhere in the space between the two pixels (only very occasionally does the zero-crossing occur

precisely at a pixel location). The pixel on the positive side of the edge is arbitrarily defined as being the

location of the zero crossing. Referring to Figure 8.27, if the centre pixel is positive and any of the four

adjacent pixels is negative, then the centre pixel is a zero-crossing. Just using the sign bit also handles the

case when the centre pixel is exactly zero.

The zero-crossings will form closed contours within a two-dimensional image. However, many of the

detected crossings will correspond to insignificant or unimportant features. A cleaner edge image may be

obtained by requiring the adjacent pixels to not only be of opposite sign, but also be significantly different.

This thresholding is shown in the right panel of Figure 8.27.

8.4 Rank Filters

An important class of nonlinear filters is rank filters (Heygster, 1982;Hodgson et al., 1985). These rank the

pixel values within the window and use the value from a selected rank in the list, as illustrated in

0
45
90
135

0
45
90
135

Window

Orientation

Q

d
dx

d
dy

Row buffer

Magnitude

Figure 8.26 Non-maximal suppression for the Canny edge detector.

Window
T
C
B

RL

Q

T

C

B

L

R Sign

thr

Q

T

C

B

L

R Sign

Sign

Figure 8.27 Zero-crossing detection filter. Left: definition of pixel locations within thewindow; centre:

all zero crossings; right: those above a threshold.

252 Design for Embedded Image Processing on FPGAs

Figure 8.28. They can be considered as a generalisation of the minimum, maximum (Nakagawa and

Rosenfeld, 1978) and median filters. The main component of a rank filter is the sorting network that

arranges the pixel values in ascending order. Obviously, if only a single, constant rank position is required,

then only that sorted output needs to be produced by the sorting network, and the multiplexer is

not required.

Rank filters, or combinations of rank filters, can be used in awide range of image processing operations.

Using ranks close to the median will discard outliers giving them good noise smoothing properties,

especially for heavy tailed distributions. This is demonstrated in Figure 8.29 by almost completely

removing the salt and pepper noise from a heavily corrupted image. In terms of additive Gaussian noise,

Window

Sorting network
MIN MED MAX

rank

Q

Figure 8.28 Rank filter.

3×3
median

3×3
median

Figure 8.29 Median filter. Top: salt and pepper noise with 12% pixels corrupted; bottom: additive

Gaussian noise.

Local Filters 253

the median is not as effective as an unweighted average of the same size. The best characteristics of

both filters may be obtained by taking a weighted average of several ranks (Bovik et al., 1983).

Straight edges are not affected by median filters, although if the edge is curved its position can shift,

affecting the accuracy of any measurements made on the object (Davies, 1999). In the absence of noise,

median filters do not blur edges (Nodes and Gallagher, 1982). However, any noise will cause edges to be

slightly blurred, with the level of blurring dependent on the noise level (Justusson, 1981).

To detect edges, two rank values must be used and the difference between them is taken (Bailey and

Hodgson, 1985), effectively using the range or subrange of pixel values within the window. The way this

works as an edge detection filter is that each rank filter will shift the edges within the image by differing

amounts, so the pixel differencewill be larger in the vicinity of an edge. Generally a 3� 3 window is used

for edge detection; using a larger window will result in thick responses at the edges. The ranking of the

pixelswithin thewindowmeans that the filter can detect edges of all orientations, and that the output of the

filter is always positive. Using rank values closer to the extremes will give a stronger response, but is also

more sensitive to noise. Rank values closer to the median are less noise sensitive, but will give a weaker

response. These effects are clearly seen in Figure 8.30.

A simple gated rank filter can be used for both enhancing edgeswhile simultaneously suppressing noise

(Bailey, 1990). Consider a blurred edge as shown on the left in Figure 8.31.When the centre of thewindow

is over the edge, there are several pixels on either side of the edge. These will be selected by rank values

near the extremes. Let the pixel values selected by the rank filters to be representative of the dark and light

sides of the edge be D and L respectively. An edge enhancement filter classifies the centre pixel as being

either light or dark depending on which is closer:

Q ¼ D; C�D < L�C

L; otherwise

�
ð8:20Þ

Selecting the extremevalues forD andLwill bemore sensitive to noise and outliers, andwill tend to give a

slight over enhancement. Ringing is completely avoided because one of the pixel values within the

Ranks
9 – 1

Ranks
7 – 3

Figure 8.30 Subrange filters for edge detection.

254 Design for Embedded Image Processing on FPGAs

window is always selected for output. Selecting rank values closer to the median will give some edge

enhancement, while at the same time filtering noise.

The rank-based edge enhancement filter is particularly effective immediately prior to multilevel

thresholding and can almost completely eliminate the problems described in Section 6.1.2. It also makes

threshold selection easier because the classification process of Equation 8.20 depopulates the spread

between the histogram peaks that results from pixels that are a mixture of two regions. The thresholding

results are therefore less sensitive to the exact threshold level used. For best enhancement, the size of the

window should be twice the width of the blur. Then whenever the window is centred over a blurred edge,

there will be representatives of each side of the edge within the window to be selected.

Since rank filtering involves sorting the pixel values within the window, any monotonically increasing

transformation of the pixel values will not change the order of the pixel values. Rank filters are therefore

commutative with monotonic transformations. Note that the results of rank-based edge detection or edge

enhancement will be affected, because the output is a function ofmultiple selected values, and the relative

differences will in general be affected by the transformation.

8.4.1 Rank Filter Sorting Networks

Key to the implementation of rank filters is the sorting network that takes the pixel values within the

window and sorts them into ranked order. A wide range of techniques has been developed for

implementing this, both in software and in hardware.

Perhaps the simplest and most obvious approach is to use a simple bubble sorting odd–even

transposition network, as shown in Figure 8.32. To sort a whole window at the clock rate, it is necessary

to pipeline each stage in the network. This simple approach is only really suitable for small windows

because the amount of logic grows with the square of the window area.

As with linear filters, running the filter with a higher clock rate (using a multiphase design) can reduce

the hardware requirements. In this case it is complicated by the fact that the odd and even layers alternate.

A two-phase scheme is shown in Figure 8.33. For sorting a 3� 3 window, the number of layers has been

reduced from nine to five. At the bottom, the data is looped back for a second pass through the network on

the opposite phase. Note that since the bottom layer and the top layer are the same, phase 3b will not

actually perform any sorting, but is required to phase shift the data fed back to interleave it with the new

incoming data from the window.

An improvement may be gained by exploiting the fact that there is considerable overlap between

successivewindowpositions. Significant savingsmay be gained by sorting a column once as the newpixel

comes into the window and then merging the sorted columns (Chakrabarti and Wang, 1994; Waltz et al.,

1998). One arrangement of this is shown in Figure 8.34. Note that for three inputs it is both faster

and more efficient to perform the comparisons in parallel and use a single, larger multiplexer than it is to

Ranks
8 and 2

C
D

L

Figure 8.31 Rank-based edge enhancement filter. Left: pixels on either side of a blurred edge; right:

edge enhancement using ranks 8 and 2.

Local Filters 255

use a series of three two-input compare and swap blocks. In the middle layer of compare and sorts, since

the inputs are successively delayed with each window position, the middle comparator can also be

removed and replaced with the delayed output of the first comparator. This reduces the number of

comparators from 36 required for a bubble sort to 14. Again, this can be further reduced if not every rank

value is required.

A similar analysis may be performed for larger window sizes. Although savings can be gained by

sorting the columns only once, the logic requirements still increase approximately with the square of the

window size.

Rather than sort the actual pixel values, each pixel in thewindow can have a corresponding rank register

which counts the number of other pixels in the window greater than that pixel (Swenson and Dimond,

1999). Then, as new pixels are added to the window, it is necessary to compare the incoming pixels with

MaxMin

Sorted pixel values

Compare and swap 2

MIN MED MAX

Window

Figure 8.32 Bubble sorting using an odd–even transposition network.

Sorted pixel values
MIN MED AXM

Window

1a

1b

2a

2b

3a

3b

4a

4b

5a

5b

6a

Figure 8.33 Two-phase rank sorting network. Right: phasing of the data as it passes through the

network.

256 Design for Embedded Image Processing on FPGAs

each of the existingwindowpixels to determine their rank and to adjust the ranks of the existing pixels. For

one-dimensional filtering, a systolic array may be used to efficiently compare each pixel with every other

pixel in thewindowand assign a rank value to each sample.Oneway of extending this to twodimensions is

to collapse the two-dimensional window to one dimension by inserting thewhole new column at each step

(Hwang and Jong, 1990). The output is then taken every W samples after the complete window has

been processed.

An alternative approach is to use the threshold decomposition property of rank filtering (Fitch et al.,

1984; 1985). Rank filtering is commutativewith thresholding, so if the image is thresholded first, a binary

rank filter may be used. Therefore, a grey-level rank filter may be implemented by decomposing the input

using every possible threshold, performing a binary rank filter, and then reconstructing the output by

adding the results. This process is illustrated in Figure 8.35.

A simple implementation of a binary rank filter is to count the number of ones within the window and

compare this with the rank value, as shown in Figure 8.36. The counter here is parallel; it is effectively an

adder network, adding the inputs to give the count. As with other implementations, it is possible to exploit

the significant window overlap for successive pixels. An implementation of this is shown on the right in

Figure 8.36. The column counts aremaintained,with the newcolumn added and the old column subtracted

as the window moves. This reduces the size of the counter from W2 to W inputs.

Threshold decomposition requires V ¼ 2N�1 parallel binary rank filters. This is expensive for small

windows, but becomes more efficient for larger window sizes. This principle of threshold decomposition

may also be generalised to stack filters (Wendt et al., 1986).

A closer look at the left panel of Figure 8.36 reveals that the count produced is actually the bin from

cumulative histogram of the window corresponding to the threshold, thr. An early software approach to

median filtering was based on maintaining the running histogram of the window, updating it as the data

Sorted pixel values
MIN MED MAX

MaxMedMin

Compare and sort 3

Logic

Window

Figure 8.34 Sorting columns first, followed by a merging.

C
oun ter

Q

Binary
rank filter

Window

thr1

thr2

thrV

Binary
rank filter

Binary
rank filter

Figure 8.35 Threshold decomposition – the window values are thresholded to enable separate binary

filters and reconstructed by combining the outputs.

Local Filters 257

moved into and out of the window (Garibotto and Lambarelli, 1979; Huang et al., 1979). There are two

problems with directly using a histogram. The first is that for two-dimensional windows, multiple bins

must be updated simultaneously, although this can be overcome by using a trick similar to that shown in

the right panel of Figure 8.36. The second problem is that the histogram must be searched to find the

corresponding rank value. The search may take many clock cycles to find the appropriate output value.

These problems may be overcome by using the cumulative histogram. This approach was used by

Fahmy et al., (2005) for one dimensional windows. An alternative to the direct output shown in

Figure 8.35 is to use a binary search of the cumulative histogram (Harber and Neudeck, 1985). This

is illustrated in Figure 8.37 for 3-bit data words. Note that in the right panel, the cumulative histogram

counts are arranged in a bit-reversed order to minimise the interconnect length. The binary search can

easily be extended to wider words, using pipelining if necessary to meet timing constraints. The binary

search circuitry needs to be duplicated for each rank value required at the output.

This binary search can be extended towork from the original data using a bit voting approach. The idea

is to reduce the logic by performing a binary sequence of threshold decompositions, with each

decomposition yielding one bit of the output (Ataman et al., 1980; Danielsson, 1981). The threshold

decomposition is trivial, selecting the most significant bit of those remaining, while passing on the

remaining bits to the next stage. If themost significant bit of the input differs from the desired rank output,

that input pixel value can never be selected for the rank output. This is achieved by setting the remaining

bits to zero or one accordingly to prevent them from being selected in subsequent stages. The circuit for

this scheme is shown in Figure 8.38.Note that only a single rank value is output; to produce additional rank

values, the sorting network must be duplicated.

A scheme similar to this has been implemented on an FPGA by Benkrid et al. (2002a); Benkrid and

Crookes (2003) for median filtering and by Choo and Verma (2008) for rank filtering.

Minimum and maximum filters with rectangular windows are separable, providing an efficient

implementation for large window sizes. A one-dimensional filter may be applied to either the rows or

rank rank

thr

thr

Counter

Q Q

Window

Binary
rank
filter

C
ounter

Window

count

Figure 8.36 Binary rank filter for threshold decomposition. Left: thresholding to create binary values,

and counting; right: an efficient implementation exploiting commonality between adjacent window

positions.

Count 1

Count 1

Count 2 Count 2
Count 3

Count 3

Count 4

Count 4

Count 5 Count 5
Count 6

Count 6

Count 7 Count 7

1

0

1

0

1

0 1

0

rankrank

Q

C
ounter

Q

MSB

LSB

Figure 8.37 Searching the cumulative histogram (illustrated for 3-bit data). Left: parallel approach of

Figure 8.35; right: binary search.

258 Design for Embedded Image Processing on FPGAs

columns first, followed by a second one-dimensional filter in the other direction. The overlap in window

positions as the windowmoves enables the filter to be efficiently implemented using log2Wd e operations
(Bailey, 2010b). The basic principle is shown in Figure 8.39 for W ¼ 8. To find the maximum requires

W�1 two-input maximum operations. To minimise propagation delay, these may be arranged in a tree as

shown in the top left panel. Since the inputs are sequential, the operations shownwith awhite background

have already been calculated and can be buffered from before. The buffered version is shown in the top

right panel. The circuit can readily be modified for window lengths that are not a power of two simply by

reducing the number of delays in the last stage. The middle and bottom panels show a similar reuse

transformation applied to the transposed filter structure (swapping input with output, and maximum

operationswith pick-off points). In the versionwhich exploits reuse, the number of delays in the first stage

can be reduced for window lengths that are not a power of two. Figure 8.39 illustrates a row filter; to

implement a column filter, the sample delays are replaced by row buffers in the manner of Figure 8.18.

to
counter

LSBs

LSB

MSB

MSB

from
selector

Count Count Count

rank

Q

W
indow

Bit selector

Figure 8.38 Bit sequential rank sorter.

Max Max

Max MaxMax
Max Max

Max Max

Q Q

I

Max

I

Q

I

MaxMaxMaxMax MaxMaxMax Q

I

Max
Max

Max

Figure 8.39 Reducing the number of operations in a maximum filter. Top left: a tree structure requires

W�1 operations; top right: exploiting reuse reduces this to log2W operations; middle: transposed tree

structure, requires W�1 operations; bottom: exploiting reuse in the transposed structure.

Local Filters 259

While themedian and other rank filters are not separable, a separablemedian can be defined that applies

a one-dimensional median filter first to the rows then to the columns of the result, or vice versa (Shamos,

1978; Narendra, 1981). Although this is not the same as the true two-dimensional median, it is a

sufficiently close approximation in most image processing applications. It also gives a significant savings

in terms of computational resources. Note that in general a different result will be obtained when

performing the row or column median first.

8.4.2 Adaptive Histogram Equalisation

Closely related to rank filtering is adaptive histogram equalisation for contrast enhancement. Global

histogram equalisation, as described in Section 7.1.2, is ineffective if there is a wide variation in

background level, making the global histogram approximately uniform. Adaptive histogram equalisation

overcomes this problem by performing the transformation locally, attempting to make the pixel values

within a local window be equally likely. This expands the contrast locally, while making the image more

uniform globally.

Adaptive histogram equalisation is therefore a filter that determines the histogram equalisation

mapping within a window, with only the centre pixel value being transformed. Each pixel is subject

to a separate mapping based on local context (Hummel, 1977). Since each transformation is given by the

scaled cumulative histogram within the window, the output is effectively the scaled rank position of

central pixel value within the window (Pizer et al., 1987).

Whatmakes adaptive histogram equalisation computationally expensive is that it generally uses a large

window. To overcome this, many software implementations divide the image into a series of overlapping

blocks and either use a single transformation for all of the pixels within each block or interpolate the

transformationsbetweenblocksandapply the interpolated transformation toeachpixel (Pizeret al., 1987).

Rather than build the histogram or cumulative histogram from scratch at each window position, it is

possible to use an approach similar to that for box filtering to exploit adjacency and to update the

histogram based on the changes. This approach was taken by Kokufuta and Maruyama (2009) and is

represented in Figure 8.40. The basic approach is to maintain column histograms within the window. As

thewindowmoves to the next pixel, the histogram for the new column is updated and added to thewindow

histogram.The column that has just left thewindow is subtracted from thewindowhistogram.The column

0 255

I x y[,]

+

–
Histogram
row buffer

Histogram

Window centre

Q÷

W2

Cumulative
histogram

I x y[+ , +]W-1
2

W-1
2

I x y[+ , -]W-1
2

W+1
2

– +

+

–

W delay

Figure 8.40 Adaptive histogram equalisation by maintaining a running histogram.

260 Design for Embedded Image Processing on FPGAs

histograms must be cached in a row buffer until the next line. Since the histograms must be added and

subtracted in parallel, they must be stored in registers, although a block RAM may be used for the

histogram row buffer. Shallower fabric RAM or shift registers can be used to provide the W pixel delay

unless W is large enough to make efficient use of a block RAM. The two delays in the window centre

account for the latency of the histogram accumulation. Thewindow histogram entries from bins less than

the centre are summed to give the corresponding cumulative histogram bin, which is normalised to give

the output pixel value.

The resources required by this approach are independent of the window size. However, significant

memory resources are required for the histogram row buffer and for registers for the column and window

histograms. This approach is, therefore, suitable for large window sizes, although it does require a larger

modern FPGA to provide the required on-chip memory.

For smaller window sizes, an alternative is to modify the threshold decomposition rank filter of

Figure 8.36 to calculate the cumulative histogram bin for the current centre pixel value. This approach is

demonstrated in Figure 8.41. Unfortunately, it is not possible to exploit thewindow overlap whenmoving

from one pixel to the next because the threshold level varies with each pixel.

8.5 Colour Filters

Filtering colour images carries its own set of problems. Linear filters may be applied independently to

each component of the image.

Problems can be encountered when filtering hue images, because the hue wraps around. For example,

the average of 12	 and 352	 is not 182	 obtained by direct numerical averaging, but 2	. If the dominant hue

is red (close to 0), the huesmay be offset by 180	 before filtering and adjusted back again afterwards. The
alternative is to convert from hue and saturation polar coordinates to rectangular coordinates before

filtering and convert back to polar after filtering.

When using nonlinear filters, it is important to keep the colour components together. If a trimmed filter

removes one component, all components should be trimmed.Agated filter should apply the samegating to

all channels.Applying a nonlinear filter independently to each component can lead to colour fringing if the

different components are treated differently.

Rank filtering, in particular, is not defined for colour images, because vectors do not have a natural

ordering. This problemwas discussed inmore detail in Section 7.2.2. Themedian is, however, defined for

colour data (Astola et al., 1988; 1990) and can be used for noise smoothing. One problem is the search

through all of the points to find the median. For filtering, this must be performed within a pixel clock

cycle. To do this efficiently, it is necessary to reuse the large proportion of data that is common from one

window position to the next. Even so, efficient search algorithms, such as proposed by Barni (1997), are

difficult tomap to a hardware implementation. For small windows, themedianmay be calculated directly,

although for larger windows the separable median may be more appropriate.

Counter

Window

Window
centre

Q÷

W2

Figure 8.41 Adaptive histogram equalisation through window thresholding.

Local Filters 261

Many variations of the vector median filter have been proposed in the literature. The simplest is to

interleave the bits from each of the components and perform a scalarmedian filter (Chanussot et al., 1999)

with the wider data word. A wide range of gated vector medians has been proposed (Celebi and

Aslandogan, 2008) that remove noise without losing too many fine details.

The rank-based edge enhancement filter can readily be adapted to colour images. The key is to identify

when a pixel is on a blurred edge and then identify which of the two regions the edge pixel is most

associated with. Consider three pixels across a boundary between two different coloured regions, as

illustrated on the left in Figure 8.42. If point C is on a blurred edge between regions A and B, the colour

will be a mixture of the colours of A and B:

C ¼ aAþð1�aÞB ð8:21Þ

In this case, sinceC is betweenA andB, the central pixelCwill be the vectormedian of the three points.

In this case, from Equation 7.65:

jC�Aj jj þ jC�Bj jj < jA�Bj jj þ jA�Cj jj
jB�Aj jj þ jB�Cj jj

�
ð8:22Þ

or

jC�Bj jj
jC�Aj jj g < jA�Bj jj ð8:23Þ

If this is used as the criterion for detecting an edge pixel as proposed in (Tang et al., 1994), a point C

anywhere in the shaded region in the centre panel of Figure 8.42 would be considered an edge pixel and

enhanced. In three dimensions, this is a discus-shaped region, which can include points that deviate

considerably from Equation 8.21. If C is indeed a mixture of the two colours, then:

jC�Aj jj þ jC�Bj jj � jA�Bj jj ð8:24Þ

An alternative edge criterion, allowing for some small deviation from the line as a result of noise, is

(Gribbon et al., 2004):

jC�Aj jj þ jC�Bj jj < jA�Bj jj þ T ð8:25Þ

which is an ellipsoidal region, illustrated by the shaded region in the right panel of Figure 8.42.T can either

be fixed, or it may be proportional to the distance betweenA andB. In Figure 8.42, T is jA�Bj jj=8, which
can easily be calculated using a simple shift.

A BC
AA

BB

Figure 8.42 Constructs for colour edge enhancement. Left: three pixels, withC on the border between

regionsA andB; centre: pointCwould be the vector median in the shaded region; right: a tighter criterion

defined by Equation 8.25.

262 Design for Embedded Image Processing on FPGAs

IfC is an edge pixel, as determined by either Equation 8.23 or Equation 8.25, then the edge pixelmay be

enhanced by selecting the closest:

Q ¼ A; jC�Aj jj < jC�Bj jj
B; jC�Aj jj � jC�Bj jj

�
ð8:26Þ

otherwise it is left unchanged.

In extending to two dimensions, using a larger two-dimensional window presents a problem because of

the difficulty in determiningwhich twopixels in thewindoware the opposite sides of the edge (theA andB

above). One alternative is to apply the one-dimensional enhancement filter to the rows and columns

(Tang et al., 1994). An alternative is to check if the edge is primarily horizontal or vertical and perform the

enhancement perpendicular to the edge (Gribbon et al., 2004). This approach is shown in Figure 8.43

using the edge detection criterion of Equation 8.25.

The distancesmay bemeasured using either the L1 or L2 norms. The L1 normhas the advantage that it is

simple to calculate, although it is not isotropic. The L2 norm is isotropic, although for colours it requires

three multiplications, two sums and a square root. The alternative is to use CORDIC arithmetic, although

two CORDIC units are required for a three-component colour space. Since the norms do not need to be

exact, an approximation to the L2 norm may be obtained by taking a linear combination of the ordered

components (Barni et al., 2000). For three components, the relative weighting of the three components

that gives theminimum error is (Barni et al., 2000) 1 : ð ffiffiffi
2

p �1Þ : ð ffiffiffi
3

p � ffiffiffi
2

p Þ. A simple approximation that

is reasonably close is 1 : 0.5 : 0.25, with the corresponding calculation represented in Figure 8.44.

Window
T
C
B

L R

Q
T

C

B

L

R

x
x

xx
T

Selecting horizontal
or vertical

Edge
enhancement

Determining
if an edge

0

0

0

0

1

1

1

1

Figure 8.43 Colour edge enhancement.

Max

Sign

Med

Min

Logic

–

–

–

–

–

–

+

+

+

Absolute
value

Sorter Combiner

÷2
÷4

Figure 8.44 Simplified approximation of Euclidean distance (L2 norm).

Local Filters 263

If the edge blur is larger, then the same filter can be extended but considering points two or three pixels

apart (Tang et al., 1994). If noise is an issue, the filter may be preceded by an appropriate noise smoothing

filter (Tang et al., 1994).

For other operations, a common strategy is to apply the enhancement or filtering to the luminance

component of the image (theY fromYUVorYCbCr, theV fromHSV, orL* fromL�a�b� or L�u�v�).When

doing so, it is important to keep the components together through any selection process to avoid colour

fringing artefacts.

8.6 Morphological Filters

Based on set theory, mathematical morphology defines a set of transformations on a set based on a

structuring element (Serra, 1986). In terms of image processing filters, the set can be defined by the pixel

values within the image and the structuring element may be thought of as an arbitrary window. As implied

by the name, morphological filters will filter an input image on the basis of the shape or morphology of

objects within an image. The structuring element defines the shape of the filter and effectively defines or

controls what is being filtered.

The basic principles of morphological filtering are easiest understood in terms of binary images. These

principles can then be extended to filtering greyscale images.

8.6.1 Binary Morphology

Abinary image considers each pixel to belong to one of two classes: object and background. In general the

object pixels are represented by a binary 1 and the background is represented by 0. The structuring

element, S, consists of a set of vectors or offsets. It can therefore be considered as another binary image

or shape.

The basic operations ofmorphological filtering are erosion and dilation.With erosion, an object pixel is

kept only if the structuring element fits completely within the object. Considering the structuring element

as a window, the output is considered an object pixel only if all of the inputs are one; erosion is therefore a

logical AND of the pixels within the window:

Qerosion½x; y� ¼ I � S

¼ ^i;j2S I½xþ i; yþ j� ð8:27Þ

It is called an erosion, because the object size becomes smaller as a result of the processing.

With dilation, each input pixel is replaced by the shape of the structuring element within the output

image. This is equivalent to outputting an object pixel if the flipped structuring element hits an object pixel

in the input. In other words, the output is considered an object pixel if any of the inputs within the flipped

window is a one, that is dilation is a logical OR of the flipped window pixels:

Qdilation½x; y� ¼ I S

¼ _i; j2S I½x�i; y�j� ð8:28Þ

Note that the flipping of the window (rotation by 180	 in two dimensions) will only affect asymmetric

windows. In contrast with erosion, dilation causes the object to expand and the background to become

smaller. Erosion and dilation are duals, in that a dilation of the image is equivalent to an erosion of the

background and vice versa. This can also be seen in Equations 8.27 and 8.28 by taking the logical

complement of both sides of the equation and using De Morgan’s theorem.

Many other morphological operations may be defined in terms of erosion and dilation. Two of the most

commonly used morphological filters are opening and closing. An opening is defined as an erosion

264 Design for Embedded Image Processing on FPGAs

followed by a dilation with the same structuring element.

I 	 S ¼ ðI � SÞ S ð8:29Þ

The erosion will remove features smaller than the size of the structuring element and the dilation will

restore the remaining objects back to their former size. Therefore, the remaining object points are only

where the structuring element fits completely within the object.

The converse of this is a closing, which is a dilation followed by an erosion with the same

structuring element.

I . S ¼ ðI SÞ � S ð8:30Þ

Background regions are kept only if the structuring element completely fits within them. It is called a

closing because any holes or gaps within the object smaller than the structuring element are closed as a

result of the processing. Example morphological operations are illustrated in Figure 8.45.

The relatively simple processing and modest storage required by morphological filters has made them

one of the most commonly implemented image processing filters, especially in the early days when

FPGAs were quite small and the available resources limited what could be accomplished.

The direct implementation of erosion and dilation are relatively trivial, as seen in Figure 8.46. Duality

enables both to be implemented with a single circuit, with a control signal used to complement the input

and output.

More interesting, however, is to make the structuring element programmable (Velten and Kummert,

2002). Associated with each window element is an additional register which controls whether or not that

window element is part of the structuring element. It effectively gates thewindow data by providing a one

from those window elements that are not part of the structuring element. The circuit of Figure 8.46 is

modified to give Figure 8.47. The programme registers may be set either as part of the initialisation or

programmed on-the-fly by another process.

Opening and closing may be implemented as a pipeline of erosion followed by dilation, or dilation

followed by erosion respectively. However, it is possible to combine both processes within a single

window structure. Without loss of generality, consider the opening. By definition, if the complete

Input DilationErosion

OpeningStructuring element Closing

Figure 8.45 Morphological filtering. In this example, black pixels are considered object, with a white

background. (Photo courtesy of Robyn Bailey.)

Local Filters 265

structuring element fits within the object, all of those corresponding object pixels will be output.

Therefore, by feeding back the erosion output, a parallel set of window registers may be used to hold the

opening output. Thesemust be shifted along because any of thewindow positionsmay set the output from

the opening operation. This scheme is shown in Figure 8.48. Note that the row buffers have been changed

to the serial configuration because the output must be shifted serially. The output multiplexer selects

between erosion or dilation and opening or closing.

Although a single window structure is used, this filter has the same latency and row buffer memory

requirements as a cascade of two filters. The advantage is that, for a programmable window, the structure

element control bits are easier to share than if the two window filters were operated separately.

Just as linear filters could be decomposed as a sequence of simpler smaller filters, morphological filters

can also be decomposed. There are two types of decomposition of particular interest here. The first is that

dilation is associative, allowing a complex structuring element to be made up of a sequence of simpler

structuring elements:

I S1ð Þ S2 ¼ I S1 S2ð Þ ð8:31Þ

with a similar chain rule for a sequence of erosions:

I � S1ð Þ � S2 ¼ I � S1 S2ð Þ ð8:32Þ

The most obvious application of the chain rule is to make the operations for rectangular structuring

elements separable, with independent filters in each of the horizontal and vertical directions.

Window

Q

Row buffer

Row buffer

I

E/D
–

E/D

Figure 8.46 Circuit for erosion and dilation. The control signal selects between erosion and dilation.

Window

Q

Row buffer

Row buffer

I

E/D

E/D

Figure 8.47 Morphological filtering with a programmable structuring element.

266 Design for Embedded Image Processing on FPGAs

The second decomposition is based on combining filters in parallel. For dilations:

I S1 _ S2ð Þ ¼ I S1ð Þ _ I S2ð Þ ð8:33Þ

and for erosions:

I � S1 _ S2ð Þ ¼ I � S1ð Þ ^ I � S2ð Þ ð8:34Þ

These decompositions, for example, allow the structuring element in Figure 8.45 to be decomposed as in

Figure 8.49. Note that with decompositions, the integrated approach of performing the opening or closing

demonstrated in Figure 8.48 cannot be used.

An alternative approach is to implement the filter directly as a finite state machine (Waltz, 1994c).

Firstly, consider a one-dimensional erosion filter. The pattern of 1s and 0s in thewindow can be considered

the state, as this information must be maintained to perform the filtering. If the structuring element is

continuous, a useful representation of the state is the count of successive 1swithin thewindow. The output

is a 1 only when all of the inputs within the window are 1s. Therefore, whenever a 0 is encountered, the

count is reset to zero, and when the count reaches the window width, it saturates. An example state

transition diagram and corresponding implementation are given in Figure 8.50.

This approach may be extended to arbitrary patterns by maintaining a more complex state machine.

Basically the state is a compressed representation of the elements within the window. The finite state

machine approach can also be extended to two dimensions by creating two state machines, one for

⊕⊕ ⊕ ≡≡ ∨

Figure 8.49 Example structuring element decompositions. Left: series decomposition using dilation;

right: parallel decomposition using OR.

Q

Row buffer

Row buffer

I

E/D

ED/OC

E/D

Figure 8.48 Extending the window operations to perform opening or closing as well as erosion or

dilation using a programmable structuring element.

Local Filters 267

operating on the rows and the other for operating on the columns (Waltz, 1994c; Waltz and Garnaoui,

1994a). It is not necessary for the structuring element to be separable in the normal sense of separability;

the row state machine passes pattern information representing the current state of the row to the column

state machine. This is illustrated for a non-separable structuring element in Figure 8.51.

Firstly, the required patterns on each of the rows of the structuring element are identified. The row state

machine is then designed to identify the row patterns in parallel as the data shifts in. Combinations of the

row patterns are then encoded in the output to the column state machine. The column state machine then

identifies the correct sequence of row patterns as each column shifts in. In this example, the rowmachine

has only seven states and the column machine six states. The finite state machines may therefore be

implemented using small lookup tables.

The technique may be extended to filters using several different structuring elements in parallel. The

corresponding state machines are coded to detect all of the row patterns for all of the filters in parallel, and

similarly detect the outputs corresponding to all of the different row pattern combinations in parallel.

0
xxxx0

1
xxx01

2
xx011

3
x0111

4
01111

5
11111

CounterRST
CE

=W
Q

I

1

0

0

0000

11111

Figure 8.50 Horizontal erosion based on a state machine implementation. The shaded state outputs a 1,

the other states output a 0. W is the size of the one-dimensional window.

Row patterns
Z: xxxxx
A: x111x
B: 11111

A

A

B
B
B

State
0
1
2
3
4
5
6
7

Pattern
xxxx0
xxx01
xx011
x0111
01110
01111
11110
11111

0
0
0
0
4
0
6
0
6

1
1
2
3
5
1
7
1
7

Output
Z
Z
Z
Z
A
A
A
B

Next

State
0
1
2
3
4
5
6

Pattern
xxxxZ
xxxZA
xxZAB
xZABB
ZABBB
ABBBA
ABBBB

Z
0
0
0
0
0
0
0

A
1
1
1
1
5
1
5

B
1
2
3
4
5
2
6

Output
0
0
0
0
0
1
1

Next

Row buffer

Column
LUT

Row
LUT

QI

Row state Column state

0 1 2 3 4

5

6
A,B BBB

B

B

B

A
A

A

A

Z
ZZ Z

Z

Z

Z A

A

0/Z 1/Z 2/Z 3/Z

4/A

5/A

6/A

7/B

11
1

1

1
1

11

0

0 0

0

0 0

00

Row state machine

Column state machine

Figure 8.51 Separable finite state machines for erosion with a non-separable window.

268 Design for Embedded Image Processing on FPGAs

The extension to dilation is trivial; the pattern is made up of 0s rather than 1s. It may also be extended to

binary template matching (Waltz, 1994a), where the row patterns consist of a mixture of 0s and 1s (and

don’t cares). Binary correlation is implemented in a similar manner (Waltz, 1995), although it counts the

number of pixels that match the template. The state machines for correlation are more complex because

they must also account for mismatched patterns with appropriate scores.

8.6.2 Greyscale Morphology

Binary morphology requires that the image be thresholded before filtering. The concepts of binary

morphology may be extended to greyscale images by using threshold decomposition. Reconstructing the

greyscale image leads to selecting theminimumpixel valuewithin the structuring element for erosion and

the maximum pixel value for dilation. An alternative viewpoint is to treat the pixel value as a fuzzy

representation between 0 and 1, and use fuzzy AND and OR in Equations 8.27 and 8.28 (Goetcherian,

1980). Either way, the resulting representations are:

I � S ¼ min
i; j2S

I½xþ i; yþ j�f g ð8:35Þ

and

I S ¼ max
i; j2S

I½x�i; y�j�f g ð8:36Þ

with opening and closing defined as combinations of erosion and dilation as before.

Examples of greyscalemorphological operations are illustrated in Figure 8.52. Opening removes lighter

blobs from the image that are smaller than the structuring element, whereas closing removes darker blobs.

Input DilationErosion

Opening

Structuring element

Closing

Figure 8.52 Greyscale morphological filtering.

Local Filters 269

Any of the decompositions described for binary morphological filters also apply to their greyscale

counterparts. The finite state machine implementation may also be extended to greyscale images

(Waltz, 1994b), although significantly more state information is required to represent the greyscale

pixel values. For rectangular structuring elements, efficient separable implementations as illustrated in

Figure 8.39 are applicable.

For circular structuring elements, the structuring element may be decomposed using OR decomposi-

tion, with the corresponding rectangular windows implemented separably (Bailey, 2010b). Figure 8.53

demonstrates this for the 5� 5 circular structuring element. The rowbuffers and delays are reused for both

filters by merging the two filters. This requires that a transpose structure be used for the row filter. If

necessary, additional pipeline registers may be added to reduce the delay through a chain of maximum

operations, although on modern FPGAs the maximum processing rate is more likely to be limited by the

timing for the row buffers.

Equations 8.35 and 8.36 representmorphological filterswith a binary structuring element. Theymay be

further extended to use greyscale structuring elements:

I � S ¼ min
i; j2S

I½xþ i; yþ j��S½i; j�f g ð8:37Þ

and

I S ¼ max
i; j2S

I½x�i; y�j� þ S½i; j�f g ð8:38Þ

The introduction of the extra component makes efficient implementation more difficult, because it is

difficult to reuse results of previous calculations in all but special cases of the structuring element.

8.6.3 Colour Morphology

Extending morphological filters to colour images is more complex, because the equivalents of minimum

and maximum do not exist for vectors. Simply applying the corresponding greyscale filters to each

channel can give colour fringing where the relative contrast in different channels is reversed (for example

Row buffer

Row buffer

Row buffer

Row buffer

Max

Max MaxMaxMax

Max

Max

Q

I
0

≡ ∨

0
01234

1
2
3
4

01234
0
1
2
3
4

0

1

1

0-1

0-1

0-10-2

1-2 1-2

1-3 1-32-4

0-2

1-30-4

0-4

2-4

Column filters Row filters

3×5

3×5

5×3

5×3

Figure 8.53 Efficient circular window implementation. Top: OR decomposition of the structuring

element; bottom: the separable implementation of both components. A transposed filter structure is used

for the row filter. The numbers with the column filter represent the number of rows delay from the input.

The numbers in the row filter represent the number of pixel delays to the output.

270 Design for Embedded Image Processing on FPGAs

on a border between red and green). The alternative (Comer and Delp, 1999) is to define a vector to scalar

transformation that may be used for sorting the pixel values to enable a minimum or maximum pixel to

be selected.

8.7 Adaptive Thresholding

Adaptive thresholding is a form of nonlinear filter where the input is a greyscale image and output is

binary, usually object and background. It is used when a single global threshold is unable to adequately

separate the objectswithin the image from the background. There are twoways of looking at the operation.

The first considers adaptive thresholding as a filterwhich calculates a suitable threshold based on the local

context. The other is to consider the filter as a preprocessing step that adjusts the image enabling a global

threshold be effective.

Since the goal of adaptive thresholding is to distinguish between object and background, the

threshold level should be somewhere between the two distributions. The simplest estimate, therefore, is

an average of the pixel values within the window, provided the window is larger than the object size. (A

Gaussian filter gives a smoother threshold, although the unweighted box average is simpler to

calculate.) This approach works best around the edges of the object, where thresholding is most

critical, but for larger objects or empty background regions may result in misclassifications. These may

be reduced by offsetting the average. This is illustrated in Figure 8.54 for the image of Figure 6.10

where global thresholding did not work. The delay in the main path is to account for the latency of the

Gaussian filter.

Another approach is to use morphological filtering to estimate the background level, which can then be

subtracted from the image enabling a global threshold to be used. This approach is demonstrated

in Figure 8.55.

8.7.1 Error Diffusion

When producing images for human output, one problem of thresholding is a loss of detail. A similar

problem occurs when quantising an image to a few grey levels, where the spatial correlation of the

Gaussian
filter

Delay

offset

I Q

Figure 8.54 Adaptive thresholding. Top: implementation; left: input image; centre: threshold level

calculated using a Gaussian filter with s ¼ 8 and offset ¼ 16; right: thresholded image.

Local Filters 271

quantisation error results in contouring artefacts. What is desired is for the local average level to be

maintained, while reducing the number of quantisation levels.

Floyd and Steinberg (1975) devised such an algorithm for displaying greyscale images on a binary

display. The basic principle is that, after thresholding or quantisation, the quantisation error (the

difference between the input and the output) is propagated on to the neighbouring four pixels that have

not yet been processed. A possible implementation of this is shown in Figure 8.56. A row buffer holds the

accumulated error for the next row, where it is added to the incoming pixel. The small integer

multiplications can be implemented with a shift and add.

The threshold is normally set at mid-grey. The thresholding is then equivalent to selecting the most

significant bit of the input (and repeating it to give the equivalent output grey level as either black or

white). The threshold level is actually arbitrary (Knuth, 1987); regardless of the threshold level, the errors

will average out to zero, giving the desired average grey level on the output.Modulating the threshold level

(making it dependent on the input) can be used to enhance edges (Eschbach and Knox, 1991), with the

recommended level given as:

thr ¼ I½x; y� ð8:39Þ

Although described here for a binary output, the same principles can be applied when any number of

quantisation levels is used, by propagating the quantisation error to reduce contouring effects.

Closing

Delay

thr

I Q

Figure 8.55 Adaptive thresholding. Top: implementation; left: estimated background after using a

morphological closing with a 19� 19 circular structuring element to remove the objects; centre: after

removing the background; right: thresholded image.

1
16

7
53 1

thr

Row buffer

I Q

7 5 3

÷16

Figure 8.56 Binary error diffusion. (Photo courtesy of Robyn Bailey.)

272 Design for Embedded Image Processing on FPGAs

When applied to colour images, error diffusionmay be applied to each component independently.With

a binary output for each component, the outputs are in general uncorrelated between the channels.

Threshold modulation may be used to either force correlation or anti-correlation between the channels

(Bailey, 1997a). A simple modulation based on intensity (sum of RGB components) is sufficient to force

resynchronisation. If the intensity is closer to black, the threshold level in all three channels can be

increased by about 15% to encourage all three channels to simultaneously produce a 0 output. Similarly, if

the intensity is closer towhite, the threshold can be decreased to encourage all three channels to produce a

1. If the image is coloured, therewill be a different number of 0s and 1s in each channel, but theywill tend

to cluster together as a result of the threshold modulation. To force anti-correlation, the opposite

modulation can be used.

8.8 Summary

Local filters extend point operations by making the output depend not only in the corresponding input

pixel value, but also its local context (a window into the input image surrounding the corresponding input

pixel). To implement filters efficiently on an FPGA, it is necessary to cache the input values as they are

loaded so that each pixel is only loaded once. The regular access pattern of filters enables the cache to be

implemented with relatively simple row buffers, built from the block RAMs within the FPGA. When

combined with pipelining of the filter function, such caching allows one pixel to be processed every clock

cycle, making local filters ideal for stream processing.

Linear filters are arguably the most widely used class of local filters. The output of a linear filter is a

linear combination of the input pixels within the window. Linearity enables such filters also to be

considered in terms of their effect on different spatial frequencies; this aspect is explored more fully in

Chapter 10.

One of the disadvantages of linear filters is their limited ability to distinguish between signals of interest

and noise. Awide range of nonlinear filters has been developed to address this problem, of which only a

small selection has been reviewed in this chapter. Two important classes of nonlinear filters considered in

some detail are rank filters and morphological filters. A range of efficient structures for implementing

these filters has been described in some detail.

Filtering colour images poses its own problems. Linear filters can be applied separately to each

component, but for nonlinear filters it is important to treat the colour vector as a single entity. This is

particularly so for rank and morphological filters, where edges within the image can be shifted as a result

of filtering. To prevent colour artefacts, the edges within all components must be moved similarly.

Local filters are an essential part of any image processing application. Therefore, the range of

techniques and principles described in this chapter is indispensible for accelerating any embedded

image processing application.

Local Filters 273

9

Geometric Transformations

The next class of operations to be considered is that of geometric transformations. These redefine the

geometric arrangement of the pixels within an image (Wolberg, 1990). Examples of geometric

transformations include zooming, rotating and perspective transformation. Such transformations are

typically used to correct spatial distortions resulting from the imaging process, or to normalise an image

by registering it to a predefined coordinate system (for example, registering an aerial image to a particular

map projection or warping a stereo pair of images so that the rows corresponds to epipolar lines).

Unlike point operations and local filters, the output pixel does not, in general, come from the same input

pixel location. This means that some form of buffering is required tomanage the delays resulting from the

changed geometry. The simplest approach is to hold the input image or the output image (or both) in a

frame buffer. Most geometric transformations cannot easily be implemented with streaming for both the

input and output.

The mapping between input and output pixels may be defined in two different ways, as illustrated

in Figure 9.1. The forward mapping defines the output pixel coordinates, ðu; vÞ, as a function, mf , of the

input coordinates:

Q½u; v� ¼ Q mfuðx; yÞ;mfvðx; yÞ
� � ¼ I½x; y� ð9:1Þ

The forward mapping is suitable for processing a streamed input, for example from a camera, because it

specifies for each input pixel, where the pixel value goes to in the output image. Therefore, it is able to

process sequential addresses in the input image. Note that as a result of the mapping, sequential input

addresses do not necessarily correspond to sequential output addresses.

Conversely, the reverse mapping defines the input pixel coordinates as a function, mr, of the

output coordinates:

Q½u; v� ¼ I mrxðu; vÞ;mryðu; vÞ
� � ¼ I½x; y� ð9:2Þ

It is, therefore, more suited for producing a streamed output, for example images being streamed to a

display, because for each output pixel the reverse mapping specifies where the pixel value comes from in

the input image. It can therefore process sequential output addresses, but will in general require non-

sequential access of the input image.

The basic architectures for implementing forward and reverse mappings are compared in Figure 9.2.

For streamed access of the input (forward mapping) or output (reverse mapping), the address will be

provided by appropriate counters synchronised with the corresponding stream. While the input to the

Design for Embedded Image Processing on FPGAs, First Edition. Donald G. Bailey.

� 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd.

mappings will usually be integer image coordinates, the mapped addresses will not, in general, be integer

locations. Consequently, the implementation will be more complex than that implied by Figure 9.2. The

main issues associated with the forward and reverse mappings are different, so are discussed here in more

detail separately.

9.1 Forward Mapping

With a forward mapping, simply rounding the output coordinates to the nearest pixel results in two

problems. Firstly, if the transformmagnification is greater than one (zooming in), there can be holes in the

output image, where no input pixels map to. Such output pixels will not be assigned a value. Secondly,

if themagnification is less than one (zooming out), several input pixels canmap onto a single output pixel.

If the input pixel value is simply written to the frame buffer, then the value may be overwritten by

subsequent pixels. Even if the magnification is exactly one, if there is a rotation then both problems can

occur, as demonstrated in the left panel of Figure 9.3.

To overcome both problems, it is necessary to map the whole rectangular region associated with each

input pixel to the output image. Each output pixel is then given by theweighted sum of all the input pixels

which overlap it. Theweight associatedwith each pixel is given by the proportion of the output pixel that is

contributed to by the corresponding input pixel:

Q½u; v� ¼
X
x;y

wx;y;u;vI½x; y� ð9:3Þ

where

wx;y;u;v ¼
ð
Q½u; v� \ I½x; y�dudv ð9:4Þ

Input image, I Output image, Q

Forward mapping

Reverse mapping

Q m I[()]= []
f
x x

Q I[]= []x xm
r
()

Figure 9.1 Forward and reverse mappings for geometric transformation.

Frame
buffer
I

Frame
buffer
Q

m
f

m
r

I Q

sserddAsserddA
xx

yy

uu

vv

} }

Figure 9.2 Basic architectures for geometric transformation. Left: forward mapping; right: reverse

mapping.

276 Design for Embedded Image Processing on FPGAs

For this, it is easier to map the corners of the pixel, because these define the edges, which in turn define the

region occupied by the pixel. On the output, it is necessary to maintain an accumulator image to which

fractions of each input pixel are added as they are streamed in. There are two difficulties with

implementing this approach on an FPGA for a streamed input. Firstly, each input pixel can intersect

many output pixels, especially if the magnification of the transform is greater than one. Therefore, many

(depending on the position of the pixel and themagnification) clock cycles are required to adjust all of the

output pixels affected by each input pixel. Since each output pixel may be contributed to by several input

pixels, a complex caching arrangement is required to overcome the associated memory bandwidth

bottleneck. A second problem is that, even for relatively simplemappings, determining the intersection as

required by Equation 9.4 is both complex and time consuming.

9.1.1 Separable Mapping

Both of these problemsmay be significantly simplified by separating the transformation into two stages or

passes (Catmull and Smith, 1980). The key is to operate on each dimension separately:

Q½u; v� ¼ Q u;mfvðu; yÞ
� � ¼ T mfuðx; yÞ; y

� � ¼ I½x; y� ð9:5Þ

The first pass through the image transforms each row independently to get each pixel on that row into the

correct column. This forms the temporary intermediate image, T ½u; y�. The second pass then operates on
each column independently, getting each pixel into the correct row. This process is illustrated with an

example in Figure 9.4. The result of the two transformations is that each pixel ends up in the desired output

location. Note that the transformation for the second pass is in terms of u and y rather than x and y to reflect

the results of the first pass.

Figure 9.3 Problems with forward mapping. Left: the input pixels (dots) are rotated anti-clockwise by

40 degrees. Output pixels shaded dark have no input pixels mapping to them. Output pixels shaded light

are mapped to by two input pixels. Right: it is necessary to map the whole pixel to avoid such problems.

Figure 9.4 Two-pass transformation to rotate an image by 40 degrees. Left: input image; centre:

intermediate image after transforming each row; right: transforming each column.

Geometric Transformations 277

Reducing the transformation from two dimensions to one dimension significantly reduces the difficulty

in finding the pixel boundaries. In one dimension, each pixel has only two boundaries: with the previous

pixel and with the next pixel. The boundary with the previous pixel can be cached from the previous input

pixel, so only one boundary needs to be calculated for each new pixel.

Both the input and output from each pass are produced in sequential order, enabling stream processing

to be used. Although the second pass scans down the columns of the image, stream processing can still be

used. However, a frame buffer is required between the two passes to hold the intermediate image. If

the input is streamed frommemory, and the bandwidth enables, the image can be processed in place, with

the output written back into the same frame buffer. Bank switching is still required to process every frame,

with an implementation is shown in Figure 9.5.One frame buffer bank is used for each pass, with the banks

switched each frame to maintain the throughput. The processing latency is a little over two frame periods.

Since the same algorithm is applied to both the rows and columns (apart from calculating themapping),

a single one-dimensional processor may be used for both passes, as shown in Figure 9.6. This halves the

resource requirements at the expense of only processing every second input frame.

Since each row and column is processed independently, the algorithmmay be accelerated by processing

multiple rows and columns in parallel. Themain limitation on the number of rows thatmay be processed in

parallel is the bandwidth available to the frame buffer.

Before looking at the implementation of the one-dimensional warping, the limitations of the two-pass

approach will be discussed. Firstly, consider rotating an image by 90 degrees – all of the pixels on a row in

the input will end up in the same column in the output. Therefore, the first pass maps all of the points on a

row to the same point in the intermediate image. The second pass is then supposed to map each of these

points onto a separate row in the output image, but is unable to because all the data has been collapsed to a

point. This is called the bottleneck problemand occurswhere the local rotation is close to 90 degrees. Even

for other angles, there is a reduction in resolution as a result of the compression of data in the first pass,

followed by an expansion in the second pass (Figure 9.4 shows an example – the data in the intermediate

image occupies a smaller area than either the input or output images). The worst cases may be overcome

by rotating the image 90 degrees first, and then performing the mapping. This is equivalent to treating the

incoming row-wise scanned data as a column scan and performing the column mapping first. This works

fine for global rotations. However, many warps may locally have a range of rotation angles, in which case

some parts of the image should be rotated first and others should not.Wolberg and Boult (1989) overcame

this by performing both operations in parallel and selected the output locally based on which had the least

I

1-D
warping

1-D
warping

Select

Figure 9.5 Implementation of two-pass warping with forward mapping using bank switching.

I 1-D
warping

1-D
warping

I

Figure 9.6 Two-pass forward mapping. Left: in the first pass each row is warped and written to a frame

buffer, while the previous image is streamed out; right: in the second pass, each column is processed and

written back to the frame buffer.

278 Design for Embedded Image Processing on FPGAs

compression in the intermediate image. This solution comes at the cost of doubling the hardware required

(in particular the number of frame buffers needed).

An alternative algorithm that avoids the bottleneck problem when performing rotations is to use three

passes rather than two, with each pass a shear transformation (Wolberg, 1990). While requiring an extra

pass through the image, it has the advantage that each pass merely shifts the pixels along a row or column,

resulting in a computationally very simple implementation for pure rotations.

A second problem occurs if the mappings on each row or column in the first pass are not either

monotonically increasing or decreasing. As a result, the mapping is many-to-one, with data from one part

of the image folding over that which has already been calculated. (Such fold-over can occur even if the

complete mapping does not fold over; the second pass would map the different folds to different rows.)

In the original proposal (Catmull and Smith, 1980), it was suggested that such fold-over data from the first

pass be held in additional frame buffers, so that it is available for unfolding in the second pass. Without

such additional resources, the range of geometric transformations that may be performed using the two-

pass approach is reduced.

A third difficulty with the two-pass forward mapping is that the second transformation is in terms of

u and y. Since the original mapping is in terms of x and y, it is necessary to be able to invert the first

mapping in order to derive the second mapping. Consider, for example, an affine transformation:

u ¼ mfuðx; yÞ ¼ auxxþ auyyþ au

v ¼ mfvðx; yÞ ¼ avxxþ avyyþ av
ð9:6Þ

The first pass is straight forward, giving u in terms of x and y. However, v is also specified in terms of x and

y rather than u and y. Inverting the first mapping gives:

x ¼ u�auyy�au
aux

ð9:7Þ

and then substituting into the second part of Equation 9.6 gives the required second mapping:

v ¼ mfvðu; yÞ ¼ avx

aux
uþ avy� auyavx

aux

� �
yþ av� auavx

aux

� �
ð9:8Þ

While inverting the first mapping in this case is straightforward, for many mappings it can be difficult (or

even impossible) to derive the mapping for the second pass and, even if it can be derived, it may be

computationally expensive to perform. Wolberg and Boult (1989) overcame this by saving the original x

in a second frame buffer, enablingmfvðx; yÞ from Equation 9.6 to be used. They also took the process one

step further and represented the transformation through a pair of lookup tables rather than directly

evaluating the mapping function.

The final issue is that the two-pass separable warp is not identical to the two-dimensional warp. This is

because each one-dimensional transformation is of an infinitely thin line within the image. However, this

line actually consists of a rowor columnof pixelswith a thickness of one pixel. Since each rowand column

is warped independently, significant differences in the transformations between adjacent rows can lead to

jagged edges (Wolberg and Boult, 1989). As long as adjacent rows (and columns) are mapped to within

one pixel of one another, this is not a significant problem.

Subject to these limitations, the two-pass separable approach provides an effective approach to

implement the forward mapping. Each pass requires the implementation of a one-dimensional

geometric transformation. While the input data can simply be interpolated to give the output, this

can result in aliasing where the magnification is less than one. To reduce aliasing, it is necessary

to filter the input; in general this filter will be spatially variant, defined by the magnification at

each point.

Geometric Transformations 279

The filtering, interpolation and resampling can all be performed in a single operation (Fant, 1986).

Fant’s original algorithm used a reverse map; it was adapted by Wolberg et al. (2000) to use both the

forward and reverse map, with the forward map presented in Figure 9.7. The basic principle is to

maintain two fractional valued pointers into the stream of output pixels. Inseg indicates how many

output pixels that the current input pixel has yet to cover, while Outseg indicates how much of the

current output pixel remains to be filled. If Outseg is less than or equal to Inseg, an output pixel can be

completed so an output cycle is triggered. The input value is weighted by Outseg, combined with

the output value accumulated so far in Accum, and is output. The accumulator is reset, Outseg reset to

one and Inseg decremented by Outseg to reflect the remaining input to be used. Otherwise Inseg is

smaller, so the current input is insufficient to complete the output pixel. This triggers an input cycle,

which accumulates the remainder of the current input pixel (weighted by the fraction of output pixel it

covers), subtracts Inseg from Outseg to reflect the fraction of the output pixel remaining, and reads a

new input pixel value. As each input pixel is loaded, the address is passed to the forward mapping

function to get the corresponding pixel boundary in the output. The mapping may either be implemented

directly or via a lookup table (Wolberg and Boult, 1989). The magnification or scale factor for the

current pixel is obtained by subtracting the previous pixel boundary, OutPos, from the new boundary.

This result is used to initialise Inseg.

The interpolation block is required when the magnification is greater than one, to prevent a single pixel

from simply being replicated in the output, resulting in large flat areas and contouring (Fant, 1986).

It performs a linear interpolation between the current input value and the next pixel value in proportion to

how much of the input pixel is remaining.

Each clock cycle is either an input cycle or an output cycle, although in general these do not alternate.

(If the magnification is greater than one, then therewill be multiple output pixels for each input pixel, and

if themagnification is less than one, then therewill bemultiple input pixels for each output pixel.) A FIFO

buffer is therefore required on both the input and output to smooth the flow of data to allow streamingwith

one pixel per clock cycle. Although the one-dimensional warping has an average latency of one row, it

requires two row times to complete. Therefore, to run at pixel clock rates, two such warping units must be

operated in parallel.

Handling of the image boundaries is not explicitly shown in Figure 9.7. The initial and trailing edge of

the input can be detected from the mapping function. If the first pixel is already within the image, a series

of empty pixels need to be output. Similarly, at the end of the input row, a series of empty pixels may also

be required to complete the output row.

OutPos

Inseg Outseg

CE

Edge

Scale

CE

CE

Value

CE

Next

CE

I O

I
I

I

II

I O

I O

– 1.0

Sign
I O/ cycle

I

Q

FIFO

FIFO
CE

O

m
f

s
s

er
d

d
A ÷

Interpolation

Accum

I O

0

Figure 9.7 One-dimensional warping using resampling interpolation.

280 Design for Embedded Image Processing on FPGAs

The speed can be significantly improved by combining the input and output cycles if the input pixel is

sufficiently wide to also complete an output pixel (Wolberg et al., 2000). This will be the case if:

B ¼ ðInseg < OutsegÞ ^ ðEdge�Outposþ Inseg > OutsegÞ ð9:9Þ

For the combined cycle, the clock is enabled for both (B) the input and output circuits. The extra logic to

complete this is shown in Figure 9.8. The main change is rather than add the remainder of the old input

pixel to an accumulator, the sum is added to the fraction of the new pixel required to complete the output,

with the result sent directly to the FIFO.

While manymappings will still take longer than one data row length, the extra time required is small in

most cases. Where the magnification is greater than one, a pixel will be output every clock cycle, with an

input cyclewhen necessary to providemore data. The conversewill be truewhere themagnification is less

than one. Assuming that the input and output are the same size, then extra clock cycles are only required

when themagnification is greater than one on some parts of the row, and less than one on other parts. If the

image has horizontal blanking at the end of each row, this would be sufficient to handlemostmappings in a

single row time.

Since the output pixel value is a sum over a fraction of pixels, Evemy et al. (1990) took a different

approach to accelerate the mapping by completely separating the input and output cycles. As the row is

input, the image is integrated to create a sum table. This enables any output pixel to be calculated by

taking the difference between the two interpolated entries into the sum table corresponding to the edges

of the output pixel. After the complete row has been loaded, the output phase begins. The reverse

mapping (along the row) is used to determine the position of the edge of the output pixel in the sum

table, with the subpixel position determined through interpolation (Figure 5.31). The difference between

successive input sums gives the integral from the input corresponding to the output pixel. This is

normalised by the width of the output pixel to give the output pixel value. The structure for this is shown

in Figure 9.9.

As both input and output take exactly one clock cycle per pixel, regardless of the magnification, this

approach can be readily streamed. By bank switching the summed row buffers, a second row is loaded

while the first row is being transformed and output. The latency of this scheme is, therefore, one row length

(plus any pipeline latencies). Since the blockRAMs on FPGAs are dual-port, a singlememorywith length

of two rows can be used, with the bank switching controlled by the most significant address line.

Rather than perform the two passes independently, as implied at the start of this section, the two passes

can be combined together (Bailey and Bouganis, 2009a). In the second pass, rather than process each

Inseg Outseg

Accum

Value

CE

Next

CE

IB

IB

IB

IB

IB

I B O I B O

I B O

I B O

B

O

–

0

1.0OutPos
CE

Edge
CE

Sign

I

Q

FIFO
FIFO
CE

OB

m
f

s
s

er
d

d
A ÷

Interpolation

0
x
OI B

0
1 1
1

Scale
CE

Figure 9.8 Extending Figure 9.7 to combine the input and output cycle (labelled B for both) if possible.

Geometric Transformations 281

column separately, they can be processed in parallel, with row buffers used to hold the data. The basic idea

is illustrated in Figure 9.10.

The circuit for the first pass rowwarping can be any of those described above. For the second pass, using

sum tables would require an image buffer because the complete column needs to be input before output

begins, gaining very little. However, with the interleaved input and output methods, each time a pixel is

output from the first pass, it may be passed to the appropriate column in the second pass. Any output pixel

from the second pass may be saved into the corresponding location in the output frame buffer. If the

magnification is less than one, then at most one pixel will be written every clock cycle. Note that, in

general, pixels will bewritten to the frame buffer non-sequentially because themappings for each column

will be different.

If themagnification is greater than one, thenmultiple clock cycles may be required to ready the column

for the next input pixel before moving onto the next column. This will require that the column warping

controls the rate of the rowwarping. If the input FIFO is not blocking, then itwill also control the rate of the

input stream.

To summarise, a forwardmapping allows data to be streamed from an input. To save having tomaintain

an accumulator image, with consequent bandwidth issues, the mapping can be separated into two passes.

The first pass operates on each row and warps each pixel into the correct column, whereas the second pass

operates on each column, getting each pixel into the correct row.

9.2 Reverse Mapping

In contrast, the reverse mapping determines for each output pixel where it comes from in the input image.

This makes the reverse mapping well suited for producing a streamed output for display or passing to

downstream operations. Reverse mapping is the most similar to software, where the output image is

scanned and the output pixel obtained from the mapped point in the input image.

There are two factors which complicate this process. The first is the fact that themapped coordinates do

not necessarily fall on the input pixel grid. This requires some form of interpolation to calculate the pixel

value to output. Interpolation methods are described in more detail in the next section. The second factor

is that the when the magnification is less than one, it is necessary to filter the input image to reduce the

effects of aliasing. If the magnification factor is constant (or approximately constant) then a simple filter

I

Q

Acc

Out

Pos

Bank switched

Interpolated buffers

÷

m
r

Address

counter

Row buffer

Row buffer

Figure 9.9 Separating the input and output phases using sum tables, and interpolating on the output.

I

Frame
buffer
Q

1-D row
warping

1-D column
warpingFIFO

Data row
buffer

Rate control

Addr

Figure 9.10 Combining the row and column warps by implementing the column warps in parallel.

282 Design for Embedded Image Processing on FPGAs

may be used. However, if the magnification varies significantly with position (for example with a

perspective transformation) then the filter must be spatially variant, with potentially large windows in

some places in the image. Filtering the input image with a large window is also inefficient, because a

conventional filter will produce outputs corresponding to every input pixel position. The small

magnification means that most of the calculated outputs will be discarded anyway.

As there is insufficient time to perform the filtering while producing the output, it is necessary to

prefilter the image before the geometric transformation. There are two main approaches to filtering that

allow for a range ofmagnifications. One is to use a pyramidal data structurewith a series of filtered images

at a range of resolutions; the other is to use summed area tables.

An image pyramid is a multiresolution data structure used to represent an image at a range of scales.

Each level of the pyramid is formed by successively filtering and down-sampling the layer below it by a

factor of two, as illustrated in Figure 9.11. Typically, each pixel in the pyramid is the average of the four

pixels below it. A pyramid can be constructed in a single pass through the image and requires 33% more

storage than the original image. A convenient memory organisation for a colour image is a mip-map

(Williams, 1983), which divides the image memory into four quadrants, one for each of red, green, and

blue, and the fourth quadrant for the remainder of the pyramid at the higher levels as shown on the right

in Figure 9.11.

The pyramid can be used for filtering for geometric transformation in several ways. The simplest is to

determine which level corresponds to the desired level of filtering based on the magnification, and select

the nearest pixel within that level (Wolberg, 1990). The limitation of this is that the filter window is

considered to be a square, with size and position determined by pyramid structure. This may be improved

by interpolating within the pyramid (Williams, 1983) in the x, y, and scale directions (tri-linear

interpolation). Such interpolation requires reading eight locations in the pyramid, requiring innovative

mapping and caching techniques to achieve in a single clock cycle.

An alternative approach is to use summed area tables (Crow, 1984). A summed area image is formed in

which each pixel contains the sum of all of the pixels above and to the left of it:

S½x; y� ¼
X
i�x

X
j�y

I½i; j� ð9:10Þ

The sum over any arbitrary rectangular region may then be calculated in constant time (with four

accesses to the summed area table, as shown in Figure 9.12) regardless of the size and position of the

rectangular region:

Xx2
i¼x1

Xy2
j¼y1

I½i; j� ¼ S½x2; y2��S½x1�1; y2��S½x2; y1�1� þ S½x1�1; y1�1� ð9:11Þ

Summed area tables can be created recursively by inverting Equation 9.11:

S½x; y� ¼ S½x�1; y� þ S½x; y�1��S½x�1; y�1� þ I½x; y� ð9:12Þ

R
GB R

GB
R

GB

R
GB

Figure 9.11 Pyramidal data structures. Left: multiresolution pyramid; right: mip-map organisation for

storing colour images (Williams, 1983).

Geometric Transformations 283

This requires a row buffer to hold the sums from the previous row. Amore efficient approach, however,

is to maintain a column sum and add this to the sum:

C½x; y� ¼ C½x; y�1� þ I½x; y�
S½x; y� ¼ S½x�1; y� þC½x; y� ð9:13Þ

as shown on the right in Figure 9.12. In the first row of the image, the previous column sum is initialised as

0 (rather than feeding back from the row buffer) and, in the first column, the sum table for the row is

initialised to 0. Two benefits of using Equation 9.13 rather than Equation 9.12 are that it reduces the

number of operations and the row buffer can be narrower, since the column sum requires fewer bits per

pixel than the area sum.

To use the summed area table for filtering requires dividing the sum from Equation 9.11 by the area to

give the output pixel value. This can be seen as an extension of box filtering, as described in Section 8.2, to

allow filtering with a variable window size.

In the context of filtering for geometric transformation, summed area tables have an advantage over

pyramid structures in that they give more flexibility to the shape and size of the window. Note that with

magnifications close to and greater than one, filtering is not necessary, and the input pixel values can

simply be interpolated to give the required output.

Although an arbitrary warp requires the complete input image to be available for the reverse mapping,

if the transformation keeps the image mostly the same (for example, correcting lens distortion or rotating

by a small angle), then the transformation can begin before the whole image is buffered. Sufficient image

rowsmust be buffered to account for the shift in thevertical direction between the input and output images.

While a new input row is being streamed in, the output is calculated and streamed from the row buffers, as

shown in Figure 9.13. The use of dual-port row buffers enables direct implementation of bilinear

interpolation. Address calculations (to select the appropriate row buffer) are simplified by having the

number of row buffers be a power of two, although this may be overcome by using a small lookup table to

map addresses to row buffers. Reducing the number of row buffers required can significantly reduce both

resource requirements and the latency (Akeila and Morris, 2008).

Row buffer

I S

0

0

x
1

y
1

x
2

y
2 +

+ -

-

Figure 9.12 Left: using a summed area table to find the sum of pixel values within an arbitrary

rectangular area; right: efficient streamed implementation to create a summed area table.

I QRow buffers Interpolation

Row
map

u

v

Addr

at
a

D

m
r

x

y

Fractional
parts

Row
control

Figure 9.13 Reverse mapping with a partial frame buffer (using row buffers).

284 Design for Embedded Image Processing on FPGAs

9.3 Interpolation

When transforming the image using the reverse map, the mapped coordinates are usually not on integer

locations. Estimating the output pixel value requires estimating the underlying continuous intensity

distribution and resampling this at the desired locations. The underlying continuous image, Cðx; yÞ, is
formed by convolving the input image samples with a continuous interpolation kernel, Kðx; yÞ:

Cðx; yÞ ¼
X
i; j

I½i; j�Kðx�i; y�jÞ ð9:14Þ

which is illustrated in one dimension in Figure 9.14.

If the images are band-limited and sampled at greater than twice the maximum frequency, then the

continuous image may be reconstructed exactly using a sinc kernel. Unfortunately, the sinc kernel has

infinite extent and only decays slowly. Instead, simpler kernels with limited extent (or region of support)

that approximate the sinc are used. This is important because it reduces the bandwidth required to access

the input pixels.

Sampling the continuous image is equivalent to weighting a sampled interpolation kernel by the

corresponding pixel value:

I½u; v� ¼ Cðx; yÞjx¼u;y¼v
¼
X
i; j

I½i; j�K½u�i; v�j� ð9:15Þ

Resampling can, therefore, be seen as filtering the input image with the weights given by the sampled

interpolation kernel. There are two important differences with the filtering described in Section 8.2.

Firstly, the fractional part of the input location changes fromone output pixel to the next, so too do the filter

weights. This means that some of the optimisations based on filtering with constant weights can no longer

be applied. Secondly, the path through the input image corresponding to a row of pixels in the output will

not, in general, follow a raster scan, but will follow an arbitrary curve. This makes the simple, regular,

caching arrangements for local filters unsuited for interpolation, andmore complex caching arrangements

must be devised to manage the oblique or curved path through the input image.

Nearest neighbour interpolation is the simplest form of interpolation; it simply selects the nearest pixel

to the desired location. This requires rounding the coordinates into the input image to the nearest integer,

Input
samples

Output
samples

Interpolation kernel

Continuous
surface

Figure 9.14 Interpolation process. Top: the input samples are convolvedwith a continuous interpolation

kernel; middle: the convolution gives a continuous image; bottom: this is then resampled at the desired

locations to give the output samples.

Geometric Transformations 285

which is achieved by adding 0.5 and selecting the integer component. If this addition can be incorporated

into the mapping function, then the fractional component can simply be truncated from the calculated

coordinates. The corresponding pixel in the input image can then be read directly from the frame buffer.

Other interpolation schemes combine the values of neighbouring pixels to estimate the value at a

fractional position. The input pixel is split into its integer and fractional components

ðx; yÞ ¼ ðxi; yiÞþ ðxf ; yf Þ ð9:16Þ

The integer parts of the desired location, ðxi; yiÞ, are used to select the input pixel values, which are

weighted by values derived from the fractional components, ðxf ; yf Þ, as defined in Figure 9.15.

As with image filtering, the logic also needs to appropriately handle boundary conditions. There are

two specific cases that need to be handled. The first is when the output pixel does not fall within the

input image. In this case, the interpolation is not required and an empty pixel (however this is defined

for the application) is provided to the output. The second case is when the output pixel comes from

near the edge of the input image and one or more of the neighbouring pixels are outside the image. It is

necessary to provide appropriate values as input to the interpolation depending on the image extension

scheme used.

9.3.1 Bilinear Interpolation

Perhaps themost commonly used interpolation method is bilinear interpolation. It combines the values of

the four nearest pixels using separable linear interpolation:

I½x; y� ¼ I½xi; yi�ð1�xf Þð1�yf Þþ I½xi þ 1; yi�xf ð1�yf Þþ
I½xi; yi þ 1�ð1�xf Þyf þ I½xi þ 1; yi þ 1�xf yf

ð9:17Þ

An alternative way of interpreting Equation 9.17 is demonstrated on the right in Figure 9.15. Each pixel

location is represented by a square, with the weights given by the area of overlap between the desired

output pixel and the available input pixels. Although Equation 9.17 appears to require eight multi-

plications, careful factorisation to exploit separability can reduce this to three:

Iyi ¼ I½xi; yi� þ xf I½xi þ 1; yi��I½xi; yi�ð Þ
Iyiþ 1
¼ I½xi; yi þ 1� þ xf I½xi þ 1; yi þ 1��I½xi; yi þ 1�ð Þ

I½x; y� ¼ Iyi þ yf Iyiþ 1
�Iyi

� � ð9:18Þ

x
i

x
i
+1

x
f

x
f

y
f

y
f

y
i

y
i
+1

I x y[,]
i i

I x y[,]

I x y[+1,]
i i

I x y[,]
i i
+1 I x y[,]

i i
+1 +1

Figure 9.15 Left: coordinate definitions for interpolation; subscripts i and f denote integer and fractional

parts of the respective coordinates. Right: bilinear interpolation.

286 Design for Embedded Image Processing on FPGAs

While a random access implementation (for example such as performed in software) is trivial, accessing

all four input pixels within a single clock cycle requires careful cache design.

If the whole image is available on chip, it will be stored in block RAMs. By ensuring that successive

rows are stored in separate RAMs, a dual-port memory can simultaneously provide both input pixels

on each line, hence all four pixels, in a single clock cycle. If only a single port is available, the data

must be partitioned with odd and even addresses in separate banks so that all four input pixels may

be accessed simultaneously. In most applications, however, there is insufficient on-chip memory

available to hold the whole image and the image is held in an external frame buffer with only one

access per clock cycle.

In this case, memory bandwidth becomes the bottleneck. Each pixel should only be read from external

memory once, and held in an on-chip cache for use in subsequent windows. There are two main

approaches that can be used. One is to load the input pixels as necessary; the other is to preload the cache

and always access pixels directly from there. Since the path through the input image does not, in general,

follow a raster scan, it is necessary to store not only the pixel values but also their locations within the

cache. However, to avoid the complexity of associativememory, the row address can be implicit in which

buffer the data is stored in. Consider a B row cache consisting of B separate block RAMs. The particular

block RAMused to cache a pixelmay be determined by taking the row address moduloB and using this to

index the cache blocks. This is obviously simplified if B is a power of two, where the least significant bits

of the row address give the cache block.

Loading input pixels on demand requires that successive output rows and pixels bemapped sufficiently

closely in the input image that the reuse from one location to the next is such that the required input pixels

are available (Gribbon and Bailey, 2004). This generally requires that the magnification be greater than

one. Otherwise multiple external memory accesses are required to obtain the input data. If the output

stream has horizontal blanking periods at the end of each row, this requirement may be partially relaxed

through using a FIFObuffer on the output to smooth the flow. For a bilinear interpolation, a new framemay

be initialised by loading the first row twice; the first time loads data into the cache but does not produce

output, while the second pass produces the first row of output. This is similar to directly priming the row

buffers for a regular filter.

The requirements are relaxed somewhat in a multiphase design, because more clock cycles are available

to gather the required input pixel values.

Preloading the cache is a little more complex. It may require calculating in advance which pixels are

going to be required. This will mean either performing the calculation twice, once for loading the cache

and once for generating the output, or buffering the results of the calculation for use when all of the pixels

are available in the cache. These two approaches are compared in Figure 9.16. Another alternative is for

the cache control to monitor when data is no longer required and automatically replace the expired values

with new data. This relies on the progression of the scan through the image in successive rows, so that

Address AddressMap Map

Map Buffer

Cache
control

Cache
control

ehcaCehcaC

Frame
buffer

Frame
buffer

Interpolation InterpolationQ
Q

Figure 9.16 Preloading the cache. Left: calculating the mapping twice – once for loading the cache and

once for performing the interpolation; right: buffering the calculated mapping for when the data is

available.

Geometric Transformations 287

when a pixel is not used in a column it is replaced by the next corresponding pixel from the frame buffer.

This process is illustrated in Figure 9.17.

9.3.2 Bicubic Interpolation

While bilinear interpolation gives reasonable results in many applications, a smoother result may be

obtained through bicubic interpolation. Bicubic interpolation uses a separable piecewise cubic interpo-

lation kernel with the constraints that it is continuous and has a continuous first derivative. These

constraints result in the following kernel (Keys, 1981):

KKeysðxÞ ¼
ðaþ 2Þjxj3�ðaþ 3Þjxj2þ 1; 0 � jxj < 1

ajxj3�5ajxj2þ 8ajxj�4a; 1 � jxj < 2

0; 2 � jxj

8>><
>>:

ð9:19Þ

where a is a free parameter. Selecting a ¼ �0:5 makes the interpolated function agree with the Taylor

series approximation to a sinc in as many terms as possible (Keys, 1981). The resulting one-dimensional

interpolation weights two samples on either side of the desired data point, giving a region of support of

four samples:

I½x� ¼
X2
k¼�1

wkI½xi þ k� ð9:20Þ

where the weights may be derived by substituting the fractional part of the desired pixel location into

Equation 9.19:

w�1 ¼� 1

2
x3f þ x2f�

1

2
xf

w0 ¼ 3

2
x3f�

5

2
x2f þ 1

w1 ¼� 3

2
x3f þ 2x2f þ

1

2
xf

w2 ¼ 1

2
x3f�

1

2
x2f

ð9:21Þ

Path through
input image

Cache

Pixels accessed
during scan
for interpolation

Pixels no longer
needed so are
replaced by new
values

Pixels no
longer needed

Replacement
pixels preloaded
for later pass

Image

Figure 9.17 Preloading pixels which are no longer required.

288 Design for Embedded Image Processing on FPGAs

These weights may either be calculated directly from the fractional component or determined through a

set of small lookup tables. Since the weights sum to one, Equation 9.20 may be simplified to reduce the

number of multiplications:

I½x� ¼ I½xi þ 2� 1�
X1
k¼�1

wk

 !
þ
X1
k¼�1

wkI½xi þ k�

¼ I½xi þ 2� þ
X1
k¼�1

wk I½xi þ k��I½xi þ 2�ð Þ
ð9:22Þ

The implementation of the separable bicubic interpolation requires a total of 15 multiplications, as

demonstrated in Figure 9.18. Here the filter weights are provided by lookup tables on the fractional

component of the pixel.

The larger region of support makes the design of the cachemore complex for bicubic interpolation than

for bilinear interpolation. In principle, the methods described above for bilinear interpolation may be

extended, althoughmemory partitioning is generally required to obtain the four pixels on each rowwithin

the window. The added complexity of memory management combined with the extra logic required to

perform the filtering for a larger windowmake bilinear interpolation an acceptable compromise between

accuracy and computational complexity in many applications.

Nuño-Maganda and Arias-Estrada (2005) use bicubic interpolation for image zooming. Since there

is no rotation, the regular access pattern enables conventional filter structures to be used, although the

coefficients change from one pixel to the next. Bellas et al. (2009) used bicubic interpolation to

correct fisheye lens distortion, which requires a more complex access pattern within the image. They

overcame the memory bandwidth by dividing the input image into overlapping tiles and preloading

the image data for a complete tile into a set of block RAMs on the FPGA before processing that tile.

The block RAMs then provide the required bandwidth to access all of the pixels needed to interpolate

each output pixel.

Weight
LUT

Weight
LUT

Q

Data cache
x
i

x
f

y
i

y
f

w
-1

w
-1

w
-1

w
-1

w
-1

w
0

w
0

w
0

w
0

w
0

w
1

w
1

w
1

w
1

w
1

Figure 9.18 Implementation of bicubic interpolation.

Geometric Transformations 289

9.3.3 Splines

A cubic spline is the next most commonly used interpolation technique. A cubic spline also defines a

continuous signal that passes through the sample points as a series of piece-wise cubic segments, with the

condition that both the first and second derivatives are continuous at each of the samples. This has the effect

that changing the value of any point will affect the segments over quite a wide range. Consequently,

interpolatingwith splines is not a simple convolutionwith a kernel, because of their wide region of support.

B-splines, on the other hand, do have compact support. They are formed from the successive

convolution of a rectangular function, as illustrated in Figure 9.19. B0 corresponds to nearest neighbour

interpolation, while B1 gives linear interpolation, as described above.

The cubic B-spline kernel is given by:

B3ðxÞ ¼

1

2
jxj3�jxj2þ 2

3
; 0 � jxj < 1

� 1

6
jxj3þ jxj2�2jxj þ 4

3
; 1 � jxj < 2

0; 2 � jxj

8>>>>><
>>>>>:

ð9:23Þ

Its main limitation is that it does not go to zero at jxj ¼ 1. This means that Equation 9.14 cannot be used

directly for interpolation, since the continuous surface produced by convolving the image samples with the

cubic B-spline kernel will not pass through the data points. Therefore, rather thanweight the kernels with the

image samples as in Equation 9.14, it is necessary to derive a set of coefficients based on the image samples:

Cðx; yÞ ¼
X
i; j

ci;jB3ðx�i; y�jÞ ð9:24Þ

These coefficients may be derived by solving the inverse problem, by setting C½x; y� ¼ I½x; y� in
Equation 9.24. Solving directly, this requires a matrix inversion, although this can be implemented

using infinite impulse response filters in both the forward and backward direction on each row and column

of the image (Unser et al., 1991). Spline interpolation therefore requires two stages, as shown in

Figure 9.20: prefiltering the image to obtain the coefficients and then interpolation using the kernel.When

implementing spline interpolation with an arbitrary (non-regular) sampling pattern, the prefiltering may

be performed in the regularly sampled input image, with the result stored in the frame buffer. Then the

interpolation stagemay proceed as before, using the sampled kernel functions as filter weights to generate

the output image.

Direct implementation of the infinite impulse response prefiltering presents a problem for a

streamed implementation, because each one-dimensional filter requires two passes, once in the

B
0

B
1

B
2

B
3

===

Figure 9.19 B-splines.

I Q
Frame
buffer

Prefilter Interpolation

Figure 9.20 Structure for spline interpolation.

290 Design for Embedded Image Processing on FPGAs

forward direction and once in the reverse direction. However, since the impulse responses of these

filters decay relatively quickly, they may be truncated and implemented using a finite impulse

response filter (Ferrari and Park, 1997).

Rather than use B-splines, the kernel can be selected so that the coefficients of the prefilter are

successively smaller powers of two (Ferrari and Park, 1997) (this has been called a 2-5-2 spline). This

enables the filter to be implemented efficiently in hardware, using only shifts for the multiplications, as

demonstrated on the left in Figure 9.21. Since each coefficient is shifted successively by one bit, shifting

by more than k bits, where k is the number of bits used in the fixed-point representation of ci;j , will make

the term go to zero. This provides a natural truncation point for the window.

Since each half of the filter is a power series, theymay be implemented recursively, as shown in the right

hand panel of Figure 9.21. The bottom accumulator sums the terms in the first half of the window and

needs to be 2k bits wide to avoid round-off errors. The upper accumulator sums the terms in the second

half of the window. It does not need to subtract out the remainder after a further k delays, because that

decays to zero (this is using an infinite impulse response filter).

The kernel for the 2-5-2 spline is:

K2�5�2ðxÞ¼

1

4
jxj3� 7

12
jxj2þ 5

9
; 0 � jxj < 1

1

36
jxj3þ 1

12
jxj2� 2

3
jxj þ 7

9
; 1 � jxj < 2

0; 2 � jxj

8>>>>>>><
>>>>>>>:

ð9:25Þ

with the corresponding filter weights given as (Ferrari et al., 1999):

w�1 ¼ 1

36
x3f þ

1

6
x2f�

5

12
xf þ 2

9

w0 ¼ 1

4
x3f�

7

12
x2f þ

5

9

w1 ¼� 1

4
x3f þ

1

6
x2f þ

5

12
xf þ 2

9

w2 ¼� 1

36
x3f þ

1

4
x2f

ð9:26Þ

These are used in the same way as for the bicubic interpolation, although the awkwardness of these

coefficients makes lookup table implementation better suited than direct calculation.

I

c

2 delaysk

1
2

-()
k

×
1
2

-()
k

×
1
4×

1
4×

1
2

-×
1
2

-× I c

k delays

×2

÷2

÷2
k

Figure 9.21 Efficient spline prefilter. Left: implementation as proposed in Ferrari and Park (1997);

right: recursive implementation. (Reproduced with permission from L.A. Ferrari and J.H. Park, “An

efficient spline basis formulti-dimensional applications: Image interpolation,”Proceedings of 1997 IEEE

International Symposium on Circuits and Systems, 578, 1997. � 1997 IEEE.)

Geometric Transformations 291

The filters given here are one dimensional. For two-dimensional filtering, the two filters can be used

separably on the rows and columns, replacing the delays with row buffers. If the input is coming from a

frame buffer, and the memory bandwidth allows, then the k row buffer delay may be replaced by a second

access to the frame buffer in a similar manner to the box filter shown in Figure 8.20.

An FPGA implementation of this cubic spline filter was used to zoom an image by an integer

factor by Hudson et al. (1998). The prefilter shown in the left of Figure 9.21 was used. The

interpolation stage was simplified by exploiting the fact that a pure zoom results in a regular access

pattern. Since this was fairly early work, the whole algorithm did not fit on a single FPGA.

One-dimensional filters were implemented, with the data fed through separately for the horizontal

and vertical filters. Dynamic reconfiguration was also used to separate the prefiltering and

interpolation stages.

A wide range of other interpolation kernels is available; a review of the more commonly used

kernels for image processing is given elsewhere (Wolberg, 1990). Very few of these have been used for

FPGA implementation because of their higher computational complexity than those described in

this section.

9.3.4 Interpolating Compressed Data

Interpolation can also be used to reduce the data volume when using non-parametric methods of

representing geometric distortion, uneven illumination or vignetting. Rather than representing the

map (either geometric transformation or intensity map) by a parametric model, the map is stored

explicitly for each pixel. For a geometric transformation, this map represents the source location (for a

reverse mapping) for each pixel in the output image (Wang et al., 2005). For modelling uneven

illumination, the map contains the illumination level or correction scale factor directly for each pixel.

This has two advantages over model-based approaches. Firstly, evaluating the map is simply a table

lookup, so is generally much faster than evaluating a complex parametric model. Secondly, a non-

parametric map is able to capture distortions and variations that are difficult or impossible to model

with a simple parametric model (Bailey et al., 2005). However, these advantages come at the cost of

the large memory required to represent the map for every pixel. If the map is smooth and slowly

varying, then it can readily be compressed. The simplest form of compression from a computational

point of view is to down-sample the map and use interpolation to reconstruct the map for a desired

pixel (Akeila and Morris, 2008).

The resolution required to represent the down-sampled map obviously depends on the smoothness of

the map, and also the accuracy with which it needs to be recreated. There is a trade-off here. Simple

bilinear interpolation will require more samples to represent the map to a given degree of accuracy than a

bicubic or spline interpolation requires, but require less computational logic to evaluate the map for a

given location.

For stream processing, the required points will be aligned with the scan axis, simplifying the access

pattern. The relatively small number ofweights used can be stored in small RAMs (fabricRAMis ideal for

this). With a separable mapping, the vertical mapping can be performed first, since each set of vertical

points will be reused for several row calculations.

9.4 Mapping Optimisations

With stream processing, the input to themapping function is a raster scan, regardless of whether a forward

or reversemapping is used (refer to Figure 9.2 to see that this is so). Therefore, incremental calculation can

be used to simplify the computation by exploiting the fact that the y (or v) address is constant and the x (or

u) address increments with successive pixels.

292 Design for Embedded Image Processing on FPGAs

For an affine transformation, Equation 9.6 can be represented in matrix form as:

u

v

� 	
¼ aux auy au

avx avy av

� 	 x

y

1

2
4
3
5 ð9:27Þ

Implemented directly, this transformation would require six multiplications and four additions. With

incremental calculation, the only change moving from one pixel to the next along a row is x xþ 1.

Substituting this into Equation 9.27 gives:

u

v

� 	
 aux auy au

avx avy av

� 	 xþ 1

y

1

2
4

3
5 ¼ u

v

� 	
þ aux

avx

� 	
ð9:28Þ

requiring only two additions. A similar simplification can be used for moving on to the next row. When

implementing these, it is convenient to have a temporary register to hold the position at the start of the row.

This may be incremented whenmoving from one row to the next and is used to initialise themain register,

which is updated for stepping along the rows, as shown in Figure 9.22. It is necessary that these registers

maintain sufficient guard bits to prevent the accumulation of round-off errors.

Equation 9.27 can be extended to a perspective transformation using homogenous coordinates:

mu

mv

m

2
4

3
5 ¼

aux auy au
avx avy av
akx aky ak

2
4

3
5 x

y

1

2
4
3
5 ð9:29Þ

where the third rowgives a position dependentmagnification,m. Themu andmv terms are then divided by

m to give the transformed coordinates. The same incremental architecture from Figure 9.22 may be used

for the perspective transformation, with the addition of a division at each clock cycle to perform the

magnification scaling.

Themappings shown here for the affine and perspective transformations are for forwardmappings. The

reverse mappings will have the same form and may be determined simply by inverting the corresponding

transformations.

Using incremental mapping for polynomial warping is a little more complex. Consider just the u

component of a second order polynomial forward mapping:

ux;y ¼ auxxx
2þ auxyxyþ auyyy

2þ auxxþ auyyþ au ð9:30Þ

First consider the initialisation of each row:

u0;y ¼ auyyy
2þ auyyþ au ð9:31Þ

u v,

a a
uy vy
,

a a
u v
,

a a
ux vx
,

Row increment Column increment

init

init

Figure 9.22 Incremental mapping for affine transformation.

Geometric Transformations 293

For the row increment, it is necessary to know the value from the previous row:

u0;y�1 ¼ auyyðy�1Þ2þ auyðy�1Þþ au
¼ auyyy

2þ auyyþ au�auyyð2y�1Þ�auy ð9:32Þ

Therefore:

u0;y ¼ u0;y�1þ auyyð2y�1Þþ auy ð9:33Þ

with the second term produced by another accumulator, as shown in Figure 9.23.

For the column increment along the row, it is necessary to know the previous value:

ux�1;y ¼ auxxðx�1Þ2þ auxyðx�1Þyþ auyyy
2þ auxðx�1Þþ auyyþ au

¼ auxxx
2þ auxyxyþ auyyy

2þ auxxþ auyyþ au�auxxð2x�1Þ�auxyy�aux
ð9:34Þ

Therefore:

ux;y ¼ ux�1;yþ auxxð2x�1Þþ auxyyþ aux ð9:35Þ

where the second term is produced by a secondary accumulator incremented with each column and the

third term is provided by a secondary accumulator incremented each row.

A parallel circuit is also required for the v component. A similar approachmay be taken for higher order

polynomial mappings, with additional layers of accumulators required for the higher order terms.

Unlike the affine and perspective mappings, the inverse of a polynomial mapping is not another

polynomial mapping. Therefore, it is important to determine the mapping coefficients for the form that is

being used. It is not a simple matter to convert between the forward and reverse mapping.

9.5 Image Registration

In the previous sections, it was assumed that the geometric transformation was known. Image registration

is the process of determining the relationship between the pixels within two images, or between parts of

images. There is awide variety of image registrationmethods (Brown, 1992; Zitova and Flusser, 2003), of

which only a selection of the main approaches are outlined here. General image registration involves four

a
yu a

xu

a
u

Row increment Column increment

u
0,y

init

init

init

init

init

u
x y,

a
xyu

a
yyu

×2
×2

a
xxu

Figure 9.23 Incremental calculation for a second order polynomial warp.

294 Design for Embedded Image Processing on FPGAs

steps (Zitova and Flusser, 2003): feature detection, feature matching, transform model estimation and

image transformation and resampling. The last step has been discussed in some detail earlier in this

chapter. This section will therefore focus on the other steps. There are two broad classes of registration:

those based on matching sets of feature points and those based on matching extended areas within the

image. Since these are quite different in their approach, they are described separately. This section

concludes with some of the applications of image registration.

9.5.1 Feature-Based Methods

A common approach to registration is to find corresponding points within the images to be registered.

While such points can be found manually, this precludes automatic processing. Therefore, a feature

extraction step is required that locates salient and distinctive points within each image. Ideally, these

should be well distributed throughout the image and be easy to detect. The features should also be

invariant to the expected transformation between the images. Once a set of features is found, it is then

necessary to match these between images. Not all feature points found in one image may be found in the

other, so the matching method must be robust against this.

9.5.1.1 Feature Detection

If the scene is contrived (as is often the case when performing calibration), for example consisting of a

array of dots, a checkerboard pattern or a grid, then the detection method can be tailored specifically to

those expected features. For an array of dots, adaptive thresholding can reliably segment the dots, with the

centre of gravity used to define the feature point location. With a checkerboard pattern, either an edge

detector is used to detect the edges, from which the corners are inferred, or a corner detector is used

directly. A corner detector is just a particular filter that is tuned to locating corners (Noble, 1988).

Consequently, corner detectors can be readily implemented on FPGAs (Claus et al., 2009). For grid

targets, a line detector can be used, with the location of the intersections identified as the feature point

locations. An example of this is considered in more detail in Section 14.2.

The regular structure of a contrived target makes correspondence matching relatively easy because the

structure is known in advance. The danger with using a periodic pattern is that the matched locations may

be offset by one or more periods between images. This may be overcome by adding a distinctive feature

within the image that can act as a key for alignment.

Edge and corner features can also be used with natural scenes, but often do not work as well because

such points are usually not aswell defined in terms of contrast, and theremay bemany features detected in

one image but not the other. To overcome this, it is necessary to find only the dominant features which are

likely to appear in both images.While there are several approaches that could be taken, one that has gained

prominence in recent years is the scale invariant feature transform (SIFT).

SIFT (Lowe, 1999; 2004) filters the images with a series of Gaussian filters to obtain a repre-

sentation of the image at a range of scales. The difference between successive scales (a difference of

Gaussian filter) is a form of band-pass filter that responds most strongly to objects or features of that

scale. The local maxima and minima within each scale are then located and compared with adjacent

scales, both larger and smaller. The local extremes both spatially and in scale that are greater than a

preset threshold (3% of the pixel range), are considered as possible feature points and are located to

subpixel accuracy. Since the difference of Gaussian filter also responds strongly to edges, there is a

danger that a point will be poorly located along the edge and, therefore, be sensitive to small

amounts of noise. Therefore, it is necessary to eliminate peaks which are poorly defined along

the edge direction. Let D be the response of the difference of Gaussian filter. Then only the points

which satisfy

Geometric Transformations 295

DxxþDyy

� �2
DxxDyy�D2

xy

< Thr ð9:36Þ

are kept, where Dxx, Dyy and Dxy are second derivatives and the threshold Thr ¼ 12:1 (Lowe, 2004).

The feature orientation is determined by taking the derivatives of the Gaussian filtered image at the

appropriate scale. The orientations within awindow are examined and the dominant direction determined

throughweighted averaging. Finally, local gradient information is used to derive a descriptor of the feature

point. The feature orientation is used as the reference to give orientation independence,with the descriptor

built from a set of histograms of gradients weighted by edge strength. Basing the descriptor on gradients

reduces the sensitivity to absolute light levels, and normalising the final feature to unit length reduces

sensitivity to contrast, improving the robustness.

In implementing a feature detection algorithm such as SIFT,most of the computation is spent in filtering

image. Typically less than 1% of the pixels within the image are feature points. Several factors can be

exploited to filter the images efficiently. The first is that the Gaussian window is separable, so the two-

dimensional filter can be decomposed into a one-dimensional filter along the rows and a one-dimensional

filter down the columns. Secondly, a Gaussian of a larger scale may be formed by cascading another

Gaussian filter over the already processed image. Thirdly, after blurring the image sufficiently, it may be

safely down-sampled, reducing the volume of processing in the subsequent stages. These stages are

illustrated in Figure 9.24. Each of the blocks (apart from the feature point processing) was a filter

described in Chapter 8, and the feature processing is outlined above.

Such processing has been implemented on an FPGA. Pettersson and Petersson (2005) used five element

Gaussian filters and four iterations of CORDIC to calculate the magnitude and direction of the gradient.

They also simplified the gradient calculation, with only one filter used per octave rather than one per scale.

Chang andHernandez-Palancar (2009) made the observation that after down-sampling the data volume is

reduced by a factor of four. This allows all of the processing for the second octave and below to share a

single Gaussian filter block and peak detect block.

Yao et al. (2009) took the processing one step further and also implemented the descriptor extraction in

hardware. The gradientmagnitude used the simplified formulation of Equation 8.18 rather than the square

root, and a small lookup table was used to calculate the orientation. They used a modified descriptor that

Peak detect

Peak detect

Peak detect

Peak detect

Peak detect

Peak detect

Gradient filter

Gradient filter

Gradient filter

Gradient filter

Gradient filter

Gradient filter

I

Gaussian filter

Gaussian filter

Gaussian filter

Gaussian filter

Gaussian filter

Gaussian filter

Feature
point

processing

First
octave

Second
octave

2

Figure 9.24 SIFT feature point extraction.

296 Design for Embedded Image Processing on FPGAs

had fewer parameters, but was easier to implement in hardware. The feature matching, however, was

performed in software using an embedded MicroBlaze processor.

9.5.1.2 Feature Matching

The matching step aims to find the correspondence between features detected in the two images. Again,

there is awide range ofmatching techniques (Zitova and Flusser, 2003), with a full description beyond the

scope of this work. The method based on invariant descriptors used by SIFT will be discussed as an

example of one matching algorithm.

Features descriptors which are invariant to the expected transformation may be matched by finding the

feature in the reference imagewhich has themost similar descriptor. The descriptormatch is unlikely to be

exact because of noise and differences resulting from local distortions.With a large number of descriptors

and a large number of components within each descriptor, a brute force search for the closest match is

prohibitive. Therefore, efficient search techniques are required to reduce the search cost.

If the reference is within a database, for example when searching for predefined objects within an

image, then two approaches to reduce the search are hashing and tree-based methods. A locality sensitive

hash function (Gionis et al., 1999) compresses the dimensionality, enabling approximate closest points to

be found efficiently. Alternatively, the points within the database may be encoded in a high-dimensional

tree-based structure and, using a best bin first heuristic, the tree may be searched efficiently (Beis and

Lowe, 1997). Such searches for a particular point are generally sequential. While the search for multiple

points may be performed independently, implying that they may be searched in parallel, for large

databases this is also impractical. Serial search methods with complex data structures and heuristics

may be best performed in software, although it may be possible to accelerate key steps using

appropriate hardware.

For matching between images, one approach is to build a database of points from the reference image

and use the approaches described in the previous paragraph. An alternative is to combine the matching

and model extraction steps. The first few points are matched using a full search. These are then used to

create a model of the transformation, which is used to guide the search for correspondences for the

remaining points. Newmatches can then be used to refine the transformation. Again, the search process

is largely sequential, although hardware may be used to accelerate the transformation to speed up the

search for new matches.

9.5.1.3 Model Extraction

Given a set of points, the transformation model defines the best mapping of the points from one image to

the other. For a given model, determining the transformation can be considered as an optimisation

problem, where the model parameters are optimised to find the best match.

If the model is sufficiently simple (for example an affine model, which is linear in the model

parameters) it may be solved directly using least squares minimisation. Consider for example the

affine mapping of Equation 9.6; this may be represented in matrix form in terms of the transform

coefficients (compare this with Equation 9.27) as:

u

v

� 	
¼ x y 1 0 0 0

0 0 0 x y 1

� 	
aux
auy
au
avx
avy
av

2
6666664

3
7777775

ð9:37Þ

Geometric Transformations 297

Each pair of corresponding points provides two constraints. Therefore, the set of equations for N sets of

control points has 2N constraints:

u1
v1

..

.

uN
vN

2
666664

3
777775
¼

x1 y1 1 0 0 0

0 0 0 x1 y1 1

..

. ..
. ..

. ..
. ..

. ..
.

xN yN 1 0 0 0

0 0 0 xN yN 1

2
666664

3
777775

aux
auy
au
avx
avy
av

2
6666664

3
7777775

ð9:38Þ

or

u ¼Ma ð9:39Þ

Usually this set of equations is over-determined and with noise it is impossible to find model parameters

which exactly match the constraints. In this case, the transform parameters can be chosen such that the

total squared error is minimised:

E2 ¼ ðu�MaÞTðu�MaÞ
¼ uTu�2aTMTuþ aTMTMa

ð9:40Þ

This is minimised by taking the partial derivative with respect to each parameter and setting the result to

zero:

@E2

@a
¼ �2MTuþ 2MTMa ¼ 0 ð9:41Þ

so solving

MTMa ¼MTu ð9:42Þ

to give

a ¼ MTM
� ��1

MTu ð9:43Þ

yields the least squares solution. The regular nature of matrix operations and inversion makes them

amenable to FPGA implementation (Irturk et al., 2008; Burdeniuk et al., 2010), although if care is not

taken with scaling this can result in significant quantisation errors if fixed-point arithmetic is used. Least

squares optimisation is quite sensitive to outliers, so robust fitting methods can be used, if necessary, to

identify outliers, and remove their contribution from the solution.

If the corresponding points may come from one of several models, then the mixture can cause even

robust fitting methods to fail. One approach suggested by Lowe (2004) was to have each pair of

corresponding points vote for candidatemodel parameters using a coarse Hough transform (the principles

of the Hough transform are described in Section 11.7). This effectively sorts the pairs of corresponding

points based on the particular model, filtering the outliers from each set of points.

Withmore complex or nonlinearmodels, a closed form solution of the parameters is not possible. In this

case, it is common to use an iterative technique as outlined in Figure 9.25. An initial estimate of themodel

is used to transform the reference points. The error can then directly bemeasured against the target points,

298 Design for Embedded Image Processing on FPGAs

with the error used to update the model using steepest descent or Levenberg–Marquardt (Press et al.,

1993) error minimisation.

9.5.2 Area-Based Methods

The alternative to feature-based image registration is to match the images themselves, without explicitly

detecting objects within the image. Such area matching may be performed on the image as whole, or on

small patches extracted from the image.

Area-based matching has a number of limitations compared with feature-based matching (Zitova and

Flusser, 2003). Any distortions within the image affect the shape and size of objects within the image and,

consequently, the quality of the match. Similarly, since area matching is generally based on matching

pixel values, the matching process can be confounded by any change between the images, for example by

varying illumination or using different sensors.When using small image patches, if the patch is textureless

without any significant features, it can be matched with just about any other smooth area within the other

image, and often the matching is based more on noise or changes in shading rather than a true match. In

spite of these limitations, area-based matching is in common use.

9.5.2.1 Correlation Methods

The classical area matching method is cross-correlation. This extends Equation 6.40 by removing the

mean from the two images:

CCN i; j½ � ¼

X
x;y

f ½xþ i; yþ j��mf
� �

g½x; y��mg
� �

ffiX
x;y

f ½xþ i; yþ j��mf
� �2r ffiX

x;y
g½x; y��mg
� �2r ð9:44Þ

Although, for computational simplicity, the simple sum of absolute differences (Equation 6.24) or sum of

squared differences (Equation 6.25) is often substituted for the correlation as a measure of similarity. The

offset that gives the maximum correlation or minimum difference provides the best registration. When

looking for a smaller target within a larger image, this process is often called template matching. If the

target is sufficiently small, this can be implemented directly using filtering to produce an image of match

scores, where the local maxima above a threshold (or minima for difference methods) are the detected

locations of the target.

There are several limitations with correlation for image matching. It is generally restricted to a simple

translational model, although for correlating small patches it can tolerate small image imperfections. It is

also computationally expensive, especially when matching one image to another. While measuring the

similarity is straightforward, it is necessary to repeat this measurement over all possible offsets to find

the maximum. Since the correlation surface is usually not of particular interest, the computation may be

Reference
points

Target
points

Geometric
transformation

Model
parameters

Error

Update

Figure 9.25 Iterative update of registration model.

Geometric Transformations 299

reduced by restricting the number of different offsets that are measured. Such techniques use search

methods to find the optimum offset. This is complicated, however, by the fact that there may be several

local maxima so there is a danger of finding the wrong offset.

One technique commonly used to reduce the search complexity is to use a pyramidal approach to the

search. An image pyramid is produced by filtering and down-sampling the images to produce a series of

progressively lower resolution versions. These enable a wide range of offsets to be searched relatively

quickly for two reasons: the lower resolution images are significantly smaller, someasuring the similarity

for each offset is faster, and a large step size is used because each pixel is much larger. This enables the

global maximum to be found efficiently, even using an exhaustive search at the lowest resolution if

necessary. The estimated offset obtained from the low resolution imagesmay not be particularly accurate,

but can be refined by finding the maximum at progressively higher resolutions. These latter searches are

made more efficient by restricting the search region to the global maximum and can safely perform

restricted searches without worry of locking onto the wrong peak.

It is straightforward to perform the correlation formultiple offsets in parallel. Oneway of achieving this

is shown in Figure 9.26, where the 16 correlations within a 4� 4 search window are performed in parallel

in a single scan through the pair of images. One of the input images is offset relative to the other by a series

of shift registers and rowbuffers, with amultiply and accumulate (MAC) unit at each offset of interest. The

multiplication could just as easily be replaced by an absolute difference or squared difference. With a

pyramidal search, a block such as this can be reused for each level of the pyramid.

The correlation peak is found to the nearest pixel. To estimate the offset to subpixel accuracy, it is

necessary to interpolate between adjacent correlation values. Commonly a parabola is fitted between the

maximum pixel, CC½i0; j0�, and those on either side. The horizontal subpixel offset is then:

x0 ¼ i0þ CC½i0þ 1; j0��CC½i0�1; j0�
4CC½i0; j0��2 CC½i0þ 1; j0� þCC½i0�1; j0�ð Þ ð9:45Þ

and similarly for the vertical offset (Tian and Huhns, 1986). However, fitting a pyramid has been found to

be better (the autocorrelation of a piece-wise constant image has a pyramidal peak) (Bailey andLill, 1999;

Bailey, 2003). This gives the subpixel offset as:

x0 ¼ i0þ CC½i0þ 1; j0��CC½i0�1; j0�
2 CC½i0; j0��min CC½i0þ 1; j0�;CC½i0�1; j0�ð Þð Þ ð9:46Þ

Row buffer

Row buffer

Row buffer

f

g

Correlation outputs

MAC MAC MAC MAC

MAC MAC MAC MAC

MAC MAC MAC MAC

MAC MAC MAC MAC

Multiply and
accumulate

Figure 9.26 Calculating a 4� 4 block of cross correlations in parallel.

300 Design for Embedded Image Processing on FPGAs

Extending correlation-based matching to transformations more complex than simple translation quickly

becomes computationally intractable. Each transformation parameter adds an additional dimension to the

search space and effectively requires the image to be transformed for each iteration of the comparison.

9.5.2.2 Fourier Methods

Another approach to accelerating correlation is to perform the computation in the frequency domain.

Consider unnormalised correlation:

COR½i; j� ¼
X
x;y

f ½xþ i; yþ j�g½x; y� ð9:47Þ

Taking the two-dimensional discrete Fourier transform of Equation 9.47:

COR½u; v� ¼ F*½u; v�G½u; v� ð9:48Þ

converts the correlation to a simple product in the frequency domain, where u and v are the spatial

frequencies in the x and y directions respectively, and F* is the complex conjugate of F. Therefore, the

computation to perform an exhaustive searchmay be significantly reduced by taking the Fourier transform

of each image, calculating the product and then taking the inverse Fourier transform. (See Section 10.1 for

implementing the Fourier transform on an FPGA.) The limitations of using a simple unnormalised

correlation apply to using the Fourier transform to implement the correlation. It is not easy to incorporate

normalisation without destroying the simplicity of Equation 9.48.

Phase correlation reduces this problem by considering only the phase. If f is the offset version of g:

g½x; y� ¼ f ½xþ x0; yþ y0� ð9:49Þ

then from the shift theorem of the Fourier transform (Bracewell, 2000), in the frequency domain this

becomes:

G½u; v� ¼ F½u; v�e j2pðux0 þ vy0Þ ð9:50Þ

Taking the phase angle of the ratio of the two spectra gives:

ux0þ vy0 ¼ 1

2p
ffG½u; v�
F½u; v� ¼

1

2p
ffG½u; v��ffF½u; v�ð Þ

¼ 1

2p
ff F*½u; v�G½u; v�� � ð9:51Þ

There are two methods by which the offset may be estimated. The first is to normalise the magnitudes to

one and take the inverse Fourier transform:

F*½u; v�G½u; v�
kF*½u; v�G½u; v�k , d xþ x0; yþ y0½ � ð9:52Þ

where d½xþ x0; yþ y0� is a delta function at ð�x0;�y0Þ. Phase noise, combined with the fact that the

offset is not likely to be exactly an integer number of pixels, means that the output is not a delta function.

However, a search of the output for the maximum value will usually give the offset to the nearest pixel.

Geometric Transformations 301

The second approach is to fit a plane to the phase difference in Equation 9.51 using least squares. This

first requires unwrapping the phase, because the arctangent reduces the phase towithin � p. In practise,
the quality of the phase estimate at a given frequency will depend on the amplitude. Therefore, the fit

may be formed by weighting the phase samples by their amplitudes, or masking out those frequencies

with low amplitude or those that differ significantly in amplitude between the two images (Stone et al.,

1999; 2001).

Just using the Fourier transform is limited to pure translation, although the offset may be

estimated to subpixel accuracy. To extend the registration to include rotation and scaling requires

additional processing. Rotating an image will rotate its Fourier transform and scaling an image will

result in an inverse scale within the Fourier transform. Therefore, by converting the Fourier

transform from rectangular coordinates to log-polar coordinates (the radial axis is the logarithm

of the frequency), rotating the image corresponds to an angular shift and scaling the image results in

a radial shift (Reddy and Chatterji, 1996). The angle and scale factor may be found by correlation (or

even using a Fourier-based method to estimate the offset. The structure of the algorithm is shown in

Figure 9.27.

9.5.2.3 Gradient Methods

Rather than perform an exhaustive search in correlation space, gradient-based methods effectively

perform a hill climbing search using an estimate of the offset based on derivatives of the image

gradient. Expanding an offset image, f ðxþ x0; yþ y0Þ, about f ðx; yÞ using a two-dimensional Taylor

series gives:

gðx; yÞ ¼ f ðx; yÞþ x0
@f

@x
þ y0

@f

@y
þ 1

2!
x20

@2f

@x2
þ 2x0y0

@2f

@x@y
þ y20

@2f

@y2

� �
þ � � � ð9:53Þ

For small offsets, the Taylor series can be truncated (the second order and higher terms are considered

negligible and contribute to noise). Therefore, given estimates of the gradients, the offset may be

estimated from:

g i; j½ � ¼ f i; j½ � þ x0
@f

@x
þ y0

@f

@y
ð9:54Þ

where the gradientsmay be obtained from a central difference filter. Each pixel then provides a constraint;

since this over-determined system is linear in the offsets x0 and y0, it may be solved by least squares

minimisation (Lucas and Kanade, 1981).

FFT

FFT

log-polar map

log-polar map

Correlation

Rotate & scale
Fit phase

f

g

Angle
Scale

Offset

Figure 9.27 Fourier-based registration, including a rotation and scale factor.

302 Design for Embedded Image Processing on FPGAs

X
i; j

@f ½i; j�
@x

0
@

1
A

2 X
i; j

@f ½i; j�
@x

@f ½i; j�
@y

X
i; j

@f ½i; j�
@x

@f ½i; j�
@y

X
i; j

@f ½i; j�
@y

0
@

1
A

2

2
66666664

3
77777775

x0
y0

� 	
¼

X
i; j

@f ½i; j�
@x

g½i; j��f ½i; j�ð Þ
X
i; j

@f ½i; j�
@y

g½i; j��f ½i; j�ð Þ

2
66664

3
77775 ð9:55Þ

The Taylor series approximation may be improved by prefiltering the images with a low pass filter. The

derivatives can then be obtained by using a matching the derivative filter to the derivative of the prefilter

(Farid and Simoncelli, 2004). The optimal low order filter pairs are listed in Table 9.1. In two dimensions,

the filters are separable, resulting in a pipelined implementation similar to Figure 9.28.

Since the offset is only approximate (it neglects the high order series expansion terms) the

expansion may be repeated about the approximation. After the first approximation, the offset will be

closer, so the truncated Taylor series will be more accurate, enabling a more accurate estimate of the

offset to be obtained. Iterating the formulation will converge to the minimum error (Lucas and

Kanade, 1981).

Variations on this theme can manage more complex geometric transformations or use different

optimisation techniques to minimise the error (Baker and Matthews, 2004). More complex transforma-

tions follow the general iterative pattern of Figure 9.25. These, too, can be based on a pyramidal coarse-to-

fine search strategy to reduce the chances of becoming locked onto a local minimum (Thevenaz et al.,

1998). The initial match is based on large scale features, with the successive refinements at finer scales

making small corrections for finer details.

Table 9.1 Filter coefficients for optimal prefilters and derivative filters. (Reproduced with permission

from H. Farid and E.P. Simoncelli, “Differentiation of discrete multidimensional signals,” IEEE

Transactions on Image Processing, 13, 4, 496–508, 2004. � 2004 IEEE.)

Filter �3 �2 �1 0 1 2 3

Prefilter 0.229 879 0.540 242 0.229 879

Derivative �0.425 287 0.000 000 0.425 287

Prefilter 0.037 659 0.249 153 0.426 375 0.249 153 0.037 659

Derivative �0.104 550 �0.292 315 0.000 000 0.292 315 0.104 550

Prefilter 0.004 711 0.069 321 0.245 410 0.361 117 0.245 410 0.069 321 0.004 711

Derivative �0.018 708 �0.125 376 �0.193 091 0.000 000 0.192 091 0.125 376 0.018 708

MAC

MAC

MAC

MAC

MACPrefilter

Prefilter

Prefilter Prefilter

Derivative

Derivativef

g

Horizontal
filters

Vertical
filters

Least squares
accumulators

Matrix
solution

Figure 9.28 Basic approach of gradient-based registration.

Geometric Transformations 303

Registration is also used to combine data from difference sensor types. This is common in both remote

sensing and medical imaging. The basic image matching metrics of correlation or sum of absolute

differences do not perform very well at registering images where there are significant differences in

contrast. In these instances, ismore effective to find the transformation thatmaximisesmutual information

(Viola and Wells, 1997).

9.5.2.4 Optimal Filtering

When looking at subpixel registration involving pure translation, the gradient-based methods effectively

create a continuous surface through interpolation, which is then resampled with the desired offset. This is

then comparedwith the target image, as in Figure 9.25, tominimise the error. Expressing the interpolation

as a convolution in the form of Equation 9.15 gives:

ðx0; y0Þ ¼ argmin
ðx;yÞ

������g½i; j��X
m;n

hðx;yÞ½m; n�f ½i�m; j�m�
������2 ð9:56Þ

where hðx;yÞ½m; n� is the interpolation kernel for an offset of ðx; yÞ. Finding the offset that minimises this

error requires a search because the filter coefficients, and hence the relationship between the two images,

depends nonlinearly on the offset.

Predictive interpolation (Bailey and Lill, 1999) avoids the search by turning the problem around.

Rather than use an interpolation kernel that makes arbitrary assumptions about the image (such as

being band-limited or smooth), the optimal interpolation kernel is derived by predicting the pixel

values of the target image from the reference (Bailey and Gilman, 2007; Gilman and Bailey, 2007).

This solves:

g½i; j��f ½i; j� ¼
X

m;n„0;0
hðx0;y0Þ½m; n� f ½i�m; j�m��f ½i; j�ð Þ ð9:57Þ

where the subtraction of f ½i; j� enforces the partition of unity constraint (Unser, 2000)

X
m;n

h½m; n� ¼ 1 ð9:58Þ

Since Equation 9.57 is linear in the filter coefficients, it may be solved by least squares. Representing

Equation 9.57 in matrix form:

g ¼ Fh ð9:59Þ

where h are the filter coefficients arranged as a vector, and each line in F and g corresponds to one pixel in

the image. The least squares solution becomes:

h ¼ FTF
� ��1

FTg ð9:60Þ

Then, given the optimal interpolation filter, the problem becomes one of estimating the offset

from the filter coefficients. This may be obtained from a weighted sum of the filter coefficients

304 Design for Embedded Image Processing on FPGAs

(Bailey and Gilman, 2007; Gilman and Bailey, 2007) with the weights dependent only on the

coefficient index:

ðx0; y0Þ ¼
X
m;n

mhðx0;y0Þ½m; n�; nhðx0;y0Þ½m; n�� � ð9:61Þ

or

x0 ¼ wh ¼ w FTF
� ��1

FTg ð9:62Þ

where w is the matrix of constant weights. Predictive interpolation therefore gives a direct (non-

iterative) solution to estimating the offset between images to subpixel accuracy.

The cost of this approach is as follows: assume that the prediction window is k � k pixels, requiring

k2�1 filter coefficients to be calculated (h½0; 0� is not required). FTg requires k2�1 MACs and FTF

requires 1
2
k2ðk2�1Þ (because of symmetry). This grows very quickly with window size, especially as

windows with odd k do not perform as well (Bailey and Gilman, 2007). While only nineMAC units are

required in total for a 2� 2 window (Figure 9.29), this grows to 135 for 4� 4, and 665 for 6� 6.Most of

the hardware is required for building FTF. To reduce the hardware, it is necessary to reduce the pixel

clock and share theMACs. However, when registeringmultiple images,FTF and its inverse only need to

be calculated once.

While optimal filtering provides the offset to subpixel accuracy, the images must already be registered

to the nearest pixel (this can be relaxed slightly with larger windows). Again, a pyramidal coarse-to-fine

search or other registration methods may be used to give the initial approximation. The optimal filtering

approach is restricted to translation only, and cannot easily be extended to include more general

transformations.

9.5.3 Applications

There are many applications of image registration or related techniques. The applications are quite

diverse, with variations on some of the techniques described above used to address issues unique to that

application. While it is not possible to describe all of the applications in any detail, a brief overview of

some of the main applications is given.

Perhaps the most common is camera calibration, where it is desired to determine the geometric

transformation which describes the imaging model of the camera, including its pose. To define the

mapping between points within the real world, and pixels within the image, it is usually necessary to have

a target object with distinctive features in known physical locations. This simplifies feature detection and

the process becomes one of determining the camera model. Examples of a range of different models and

0,0 0,1

1,0 1,1

f

g

Row buffer

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

Matrix
solution Subpixel

offset

F g
T

F F
T

Figure 9.29 Predictive interpolation with a 2� 2 window.

Geometric Transformations 305

methods of solving them are given elsewhere (Brown, 1971; Tsai, 1987; Heikkila and Silven, 1997;

Devernay and Faugeras, 2001; Kannala and Brandt, 2004).

Image and video compression rely on reducing the redundancy inherent within an image or image

sequence. When encoding a video sequence, there is significant correlation from one frame to

the next that can be exploited to reduce the data volume. Therefore, rather than encode each image

independently, considerable compression may be obtained by encoding the difference between the

current and previous frame. This works well with static objects, but any motion creates a

misalignment, reducing the gains. To achieve good compression, it is necessary to compensate

for such motion. This is most commonly achieved by dividing the current frame into small blocks

(typically 8� 8 or 16� 16) and finding the best offset between each block and the corresponding

data in the previous frame. FPGAs have been the target for performing the matching at a rate that

enables real-time compression. For example, Wong et al. (2002) developed a system that could

perform the sum of absolute differences of a row or column of pixels in parallel. For each pair of

pixels, this determined which of the corresponding pixels was smaller, so it could be inverted before

being passed into an adder. All of the pixels were added, along with a correction term to convert

one’s complement to two’s complement, by a single large adder tree. To reduce propagation delay,

carry save adders were used, configured as a 33 to 2 reduction, followed by a final addition. To

accelerate finding the best matched block, Dubois et al. (2005) built a system that could perform a

random search with programmable block size. Yu et al. (2004) used a restricted two-step search to

reduce the search space by a factor of 15 over a full search, enabling a reduced number of processing

elements to be used.

Optical flow involves the estimation of motion fields within an image. This generally requires

matching small patches from one frame with the previous frame. In this way it is similar to motion

compensation for video coding. The difference is that with optical flow it is desired to have a coherent

flow field, rather than treat each patch independently. FPGA implementations of optical flow have

been reported by Diaz et al. (2004) and Wei et al. (2008).

Stereo imaging processes separate images from two spatially separated cameras to extract the

disparity or differences in relative position of objects between the two images. The disparity is

dependent on the range to the object of interest, enabling range data to be extracted. One of the

motivating applications is the real-time extraction of range data for driver assistance and collision

avoidance. The search for matches may be simplified with stereo imaging by exploiting epipolar

geometry. An object point, when combined with the two camera centres, defines a plane in three-

dimensional space. All points on that plane will be imaged to a single line in each of the captured

images. Therefore, the search for corresponding points may be restricted to a one-dimensional search

along these epipolar lines. This search process may be simplified by first rectifying the images to map

the epipolar lines onto the image scanlines.

A wide range of stereo matching algorithms can be used – here is a sampling of recent papers

which describe an FPGA implementation. Masrani and MacLean (2006) used correlation, with a

multiresolution search centred on the disparity detected in the previous frame, working on the

assumption that the disparity should not change significantly in one frame period. Longfield and

Chang (2009) used a census transform to reduce the cost of finding a match. The census transform

thresholds a local window with the central value, giving a binary template which may be matched

more easily. Rather than find a local match, Morris et al. (2009) used dynamic programming to find a

consistent set of matches across the whole row. Each potential match has a penalty given by the

absolute difference in pixel values, with additional penalty for occlusion (a point visible in only one

of the images).

Image super-resolution combines several low resolution images of a scene to create a single imagewith

higher spatial resolution. Super-resolution reconstruction typically requires three steps: registration of the

input images to subpixel accuracy; resampling the ensemble at the higher resolution; and inverse filtering

to reduce the blur resulting from the low resolution imaging process. Again, there is a wide range of

306 Design for Embedded Image Processing on FPGAs

techniques used for image super-resolution. Many are iterative and not amenable to real-time

implementation, although the algorithms may be accelerated using an FPGA as the computation

engine. The optimal filtering techniques have potential, not only for image registration, but also for

determining efficient resampling (interpolation) filters (Gilman, 2009; Gilman et al., 2010). Little has

been implemented so far on FPGAs. Perhaps one exception is the work of Bowen and Bouganis (2008),

although their work assumed that the images were already registered and only considered the image

combination stage.

Geometric Transformations 307

10

Linear Transforms

Linear transformations are often used to rearrange the data into a particular form. In particular they can

be used to separate different components of an image, for example separating signal from interference

or noise. In general, with a linear transform, each output value is a linear combination of all of the input

pixel values:

Q½u; v� ¼
X
x;y

w½u; v; x; y�I½x; y� ð10:1Þ

It extends and generalises local linear filtering of Equation 8.4 by removing the restriction of the window

and allowing a more general selection of weights.

Direct implementation of Equation 10.1 is very expensive. If the input image isN � N, then each output

value requires N2 multiplication and additions. For an N � N output, there are therefore N4 operations.

Many useful transforms are separable, in that they can be decomposed into separate, independent

transforms on the rows and columns. In this case, Equation 10.1 simplifies to:

Q½u; v� ¼
X
y

w½v; y�
�X

x

w½u; x�I½x; y�
�

ð10:2Þ

reducing the number of operations to 2N3. Separable transforms can be represented in matrix form as:

Q ¼ wIwT ð10:3Þ

where w, I, and Q are the weights and two-dimensional input and output images represented directly as

matrices. All of the transforms considered in this chapter are separable, so only the detailed implementa-

tion of the one-dimensional transform will be considered. To implement the two dimensional transform,

the architectures of Figures 9.5 and 9.6 can be used.

In many cases, the transformmatrix,w, may be further factorised into a cascade of simpler operations.

Such factorisations allow so-called fast transforms reducing the number of operations to order N2logN.

If the rows of w are orthogonal and normalised so that the length is one:

X
x

w½ui; x�w½uj ; x� ¼ 0; i 6¼ j

1; i ¼ j

�
ð10:4Þ

Design for Embedded Image Processing on FPGAs, First Edition. Donald G. Bailey.

� 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd.

then the transformation matrix is unitary and the transformation can be considered in terms of projecting

the input image onto a new set of coordinate axes. The new axes may be thought of as basis images or

component images, with the transformed values indicating howmuch of each basis image, Bu;v½x; y�, is in
the original image. Thus:

I½x; y� ¼
X
u;v

Bu;v½x; y�Q½u; v� ð10:5Þ

In this context, Equation 10.1 is sometimes called the analysis equation, because it is analysing how

much of each basis image is present, and Equation 10.5 is called the synthesis equation, because it is

synthesising the image from the basis images.

10.1 Fourier Transform

The Fourier transform is one of themost commonly used linear transforms in image and signal processing.

It transforms the input image from a function of position ðx; yÞ to a function of spatial frequency ðu; vÞ in
the frequency domain:

w½u; v; x; y� ¼ 1

N
e�j2pðuxþ vyÞ=N

¼ 1ffiffiffiffi
N

p e�j2pux=N

0
@

1
A 1ffiffiffiffi

N
p e�j2pvy=N

0
@

1
A

¼ w½u; x�w½v; y�

ð10:6Þ

The factor of 1ffiffiffi
N

p is often left out of the forward transform and 1
N
is applied to the inverse transform. The

Fourier transform is clearly separable, and is complex valued in the frequency domain. The periodic

nature of the basis functions implies that the image is periodic in both space and frequency. That is:

w½�u; x� ¼ w½N�u; x�
¼ w*½u; x� ð10:7Þ

This is a consequence of both the image and frequency domains being sampled (Bracewell, 2000).

Although the origin in the frequency domain (corresponding toDC) is in the corner of the image, it is often

shifted to the centre for display purposes by scrolling the image by N=2 pixels both horizontally and

vertically. Equation 10.7 also implies that the Fourier transform of a real image is conjugate symmetric.

Two example images and their Fourier transforms are shown in Figure 10.1. On the top is a sinusoidal

intensity pattern. Its Fourier transform has three peaks, one for the DC or average pixel value, and one for

each of the positive and negative frequency components. This symmetry results from the Euler identity:

e j2pux=N ¼ cosð j2pux=NÞþ jsinð j2pux=NÞ
cosð j2pux=NÞ ¼ 1

2
e j2pux=N þ e�j2pux=N
� � ð10:8Þ

In general, an image with a periodic spatial pattern will have a set of peaks in the frequency domain,

corresponding to the frequencyof the pattern alongwith its harmonics (Bailey, 1993; 1997b). The position

of a peak in the frequency domain indicates the spatial frequency of the corresponding pattern in the

image, with the frequency proportional to the distance from the origin and the direction of the peak from

the origin corresponding to the direction of the sinusoidal variation. Rotating an object spatiallywill result

in its Fourier transform rotating by the same angle. The magnitude of the peaks corresponds to the

310 Design for Embedded Image Processing on FPGAs

amplitude of the pattern, and the phase of the frequency components contains information about the

position of the pattern in the image (shifting an object will only change the phase of the corresponding

frequency terms, not their amplitude). The shape of the peaks contains information about the shape and

size of patterns in the image, and the distribution of the peaks relates to the details of the object. For

example, sharp edges within the pattern will result in harmonics with amplitudes that drop in inverse

proportion with frequency. In general, the amplitude of natural images in the frequency domain drops

approximately in inverse proportion with frequency, primarily as a result of edges and other disconti-

nuitieswithin the images (Millane et al., 2003). In contrast to this, spatially uncorrelated randomnoise has

a uniform frequency distribution.

Some imaging modalities (for example magnetic resonance imaging and X-ray crystallography)

capture their data in the frequency domain and it must be converted to the spatial domain for visualisation.

In other applications, the desired image processing operation may be simpler to perform in the frequency

domain, requiring the use of a forward and inverse Fourier transform to switch between the spatial and

frequency domains.

10.1.1 Fast Fourier Transform

A fast Fourier transform (FFT) is an efficient implementation of the Fourier transform that results

from the factorisation of the transformation. First define:

WN ¼ e�j 2p=N ð10:9Þ

Then, by splitting the input into the odd and even samples:

fe½x2� ¼ f ½2x2�
fo½x2� ¼ f ½2x2 þ 1�

ð10:10Þ

Fourier
transform

Fourier
transform

Figure 10.1 Example Fourier transforms: Top: sinusoid; bottom: semi-regular pattern, themagnitude in

the frequency domain has been logarithmically transformed to show the detail more clearly.

Linear Transforms 311

the Fourier transform can be expanded as a sum of the Fourier transforms of the odd and even samples:

F½u� ¼
XN�1

x¼0

f ½x�Wux
N

¼
XN2�1

x2¼0

f ½2x2�W2ux2
N þ

XN2�1

x2¼0

f ½2x2 þ 1�Wuð2x2 þ 1Þ
N

¼
XN2�1

x2¼0

fe x2½ �Wux2
N

2

þWu
N

XN2�1

x2¼0

fo x2½ �Wux2
N

2

¼ Fe½u� þWu
NFo½u�

ð10:11Þ

A further simplification may be arrived at by considering periodicity and symmetry. Since the Fourier

transform is periodic, Fe uþ N
2

h i
¼ Fe u½ � and by symmetryW

uþ N
2

n ¼ �Wu
n. Therefore, the second half of

the frequency samples become:

F uþ N

2

2
4

3
5¼ Fe uþ N

2

2
4

3
5þW

uþN

2

N Fo uþN

2

2
4

3
5

¼ Fe u½ ��Wu
NFo u½ �

ð10:12Þ

which reuses the Fourier transforms of the first half, but with a change in sign. The Wu
N factors are

sometimes called twiddle factors. By recursively applying this same decomposition to Fe and Fo, the

log2N levels of the radix-2 decimation in time fast Fourier transform results. This is illustrated for N ¼ 8

in Figure 10.2. The computation at each level is split into a series of ‘butterfly’ computations, which can be

performed in place in a memory-based system.

The limitation of the decimation in time decomposition is that the input samples are in a bit-reversed

order if applied in place. The operations can be rearranged so that the input operations are sequential, in

which case the outputs are in a bit-reversed order.

WN
r

Fe

Fo

F W FoNe+
r

F WNe–
rFo

W
4

1

W
4

1

W
8

1

W
8

2

W
8

3

f [0]

f [2]

f [4]

f [6]

f [1]

f [3]

f [5]

f [7]

F[0]

F[2]

F[4]

F[6]

F[1]

F[3]

F[5]

F[7]

Level 1Level 2Level 3

Figure 10.2 Radix-2 decimation in time FFT. Right: basic butterfly operation.

312 Design for Embedded Image Processing on FPGAs

An alternative decomposition is decimation in frequency. Calculating the even and even frequency

components separately gives:

F½2u� ¼
XN�1

x¼0

f ½x�W2ux
N

¼
XN2�1

x¼0

f ½x�W2ux
N þ

XN2�1

x¼0

f

�
xþ N

2

	
W

2u
�
xþN

2

�
N

¼
XN2�1

x¼0

f x½ � þ f

�
xþ N

2

	0
@

1
AWux

N

2

ð10:13Þ

and

F½2uþ 1� ¼
XN�1

x¼0

f ½x�W ð2uþ 1Þx
N

¼
XN2�1

x¼0

f ½x�W2ux
N Wx

N�
XN2�1

x¼0

f

�
xþ N

2

	
W2ux

N Wx
N

¼
XN2�1

x¼0

f x½ ��f

�
xþ N

2

	0
@

1
AWx

NW
ux
N

2

ð10:14Þ

These are Fourier transforms of sequences which have half the length of the original sequence.

Repeating this recursively gives the decimation in frequency algorithm illustrated in Figure 10.3. The

input samples are ordered naturally, and the frequency samples use bit-reversed addressing as a

consequence of separating the outputs in terms of odd and even components. The main differences in

the calculation are the order of the groupings and that the twiddle factor is on the output of the butterfly

rather than the input.

In many applications, the scrambling of the frequency samples is of little consequence. If an FFT is

followed by a point operation in the frequency domain and then an inverse FFT, the frequency scrambling

W
4

1

W
4

1

W
8

1

W
8

2

W
8

3

f [0]

f [2]

f [4]

f [6]

f [1]

f [3]

f [5]

f [7]

F[0]

F[2]

F[4]

F[6]

F[1]

F[3]

F[5]

F[7]

WN
r

f
1

f
2

f f
21

+

()f f W
21

– N
r

Level 1 Level 2 Level 3

Figure 10.3 Radix-2 decimation in frequency FFT. Right: basic butterfly operation.

Linear Transforms 313

is of no consequence. Alternatively, if the transform is not performed in place, but goes from onememory

to another, then the order of the samples may be rearranged during the process.

Note that all of the operations illustrated in Figures 10.2 and 10.3 are on complex numbers. In

particular, each complex multiplication requires four real multiplications and two additions.

However, through factorisation, the number of multiplications can be reduced to three at the cost

of three more additions:

R1 þ jI1ð Þ R2 þ jI2ð Þ ¼ ðR1R2�I1I2Þþ jðR1I2 þ I1R2Þ
¼ R1ðR2�I2Þþ ðR1�I1ÞI2ð Þþ j ðR1�I1ÞI2 þ I1ðR2 þ I2Þð Þ

ð10:15Þ

Within the FFT, two of these additions are between constants, effectively trading onemultiplication for an

addition (see Figure 10.8).

Since each multiplication is effectively a rotation in the complex plane (WNj j ¼ 1), the complete

multiplication can be performed efficiently using CORDIC arithmetic (Despain, 1974; Sansaloni et al.,

2003). Efficiencies can be gained because the rotation angles are constants, so the decisions at each step

of the CORDIC algorithmmay bemade in advance rather than having towait for the signal to propagate

through to the sign bit (the zk register and logic are also eliminated, Section 5.4.3). However,

compensated CORDIC is required to prevent the magnitude from changing as the complex number

is rotated.

While the radix-2 algorithms (decomposing the transformation to a series of two point Fourier

transforms) are the simplest to understand, the number of multiplications may be reduced by using a

radix-4 algorithm. A four-point Fourier transform is:

F ¼
1 1 1 1

1 �j �1 j

1 �1 1 �1

1 j �1 �j

2
6664

3
7775f ð10:16Þ

and the multiplication by j is trivial. The radix-4 decimation in frequency algorithm extends Equa-

tions 10.13 and 10.14 by splitting the input into four sections, combining them using Equation 10.16 and

taking the N
4
-point transforms of the results to get the frequency samples decimated by four:

F½4u� ¼
XN4�1

x¼0

f x½ � þ f

�
xþ N

4

	
þ f

�
xþ N

2

	
þ f

�
xþ 3N

4

	0
@

1
AWux

N

4

F½4uþ 1� ¼
XN4�1

x¼0

f x½ ��jf

�
xþ N

4

	
�f

�
xþ N

2

	
þ jf

�
xþ 3N

4

	0
@

1
AWx

NW
ux
N

4

F½4uþ 2� ¼
XN4�1

x¼0

f x½ ��f

�
xþ N

4

	
þ f

�
xþ N

2

	
�f

�
xþ 3N

4

	0
@

1
AW2x

N Wux
N

4

F½4uþ 3� ¼ PN4�1

x¼0

f x½ � þ jf

�
xþ N

4

	
�f

�
xþ N

2

	
�jf

�
xþ 3N

4

	0
@

1
AW3x

N Wux
N

4

ð10:17Þ

The corresponding ‘butterfly’ is shown in Figure 10.4. Although such decimation can be extended to

higher radixes, little is gained beyond radix-4.

314 Design for Embedded Image Processing on FPGAs

There are several ways in which the FFT may be implemented given the above building blocks. If

resources are scarce, a single butterfly unit may be built, with the transformation performed in place in

memory (Figure 10.5). The data is first streamed intomemory (performing any permutation as necessary).

The data is then accessed from memory as needed for each butterfly operation, with the results written

back into memory. Bandwidth limitations limit the speed to one butterfly every two clock cycles for the

radix-2 and one butterfly every four clock cycles for the radix-4 operation. With the radix-4 butterfly, the

multiplier can be shared by moving it from within the butterfly to after the multiplexer, as shown in

Figure 10.5 (Sansaloni et al., 2003). With the radix-4 butterfly, the number of adders may also be reduced

bymultiplexing the input layer of Figure 10.4. The throughput (and latency)may be improved by splitting

the memory into multiple blocks (two for radix-2 and four for radix-4) to enable one operation to be

performed every clock cycle. The memory addressing becomes considerably more complex because to

ensure that the data will be available when it is needed, the transformation cannot be performed in place.

Thememory addressing required by the scheme in Figure 10.5 is relatively straightforward. A standard

counter may be used, with the address bits permuted depending on the FFT level. The read address for the

radix-2 decimation in frequency FFT is shown in Figure 10.6. Thewrite counter is the same, only delayed

by a few clock cycles depending on the latency of the butterfly and associated registers. The address

counters are similar for the other FFT implementations based on sharing a single butterfly.

eReR

eReR

eReR

eReR

mImI

mImI

mImI

mImI

WN
x

WN
2x

WN
3x

f x[]

f x[+]
N
2

f x[+]
N
4

f x[+]
4

N
4

point FFT

N
4

point FFT

N
4

point FFT

N
4

point FFT F u[4]

F u[4 +1]

F u[4 +2]

F u[4 +3]
3N

Figure 10.4 Radix-4 decimation in frequency butterfly with the real and imaginary components

shown explicitly.

Radix-2
butterfly

Radix-4
butterfly

yromemtroplauDyromemtroplauD

I I

Q Q

W
r

Figure 10.5 FFT with a single butterfly. Left: radix-2; right: radix-4 FFT.

>> > > >< < < < < 654321

LSBMSB Address counter

Memory address

FFT level

Figure 10.6 Memory read address counter for radix-2 decimation in frequency FFT.

Linear Transforms 315

Uzun et al. (2003; 2008) implemented several different butterfly implementations within a generic

framework using Handel-C. The speed and resources were compared between the implementations for a

number of butterfly units. Not surprisingly, the radix-4 algorithm was the fastest, but also consumed the

most resources.

If more resources are available, multiple butterflies may be implemented and the FFT pipelined to

increase the throughput. A range of radix-2 and radix-4 pipelined FFTapproaches have been reviewed by

He and Torkelson (1996). One of the more efficient pipelined implementations is the radix-22 scheme

illustrated in Figure 10.7. This uses a radix-2 butterflywith the stages in pairs effectively forming a radix-4

transform. It retains the simplicity of the reduced number of multipliers as the radix-4 algorithm, with

a single complexmultiplier only required after every second stage. At each stage, the first half of the clock

cycles feed the data through into the delay register without processing. The second half combines the

incoming datawith the delayed data, performing the butterfly.One of the butterfly outputs is fed directly

out to the next stage, while the other is fed back into the delay. It is finally output while the next block is

being loaded. Successive stages reduce the delay by a factor of two to give the interleaving as illustrated

in Figure 10.3. Control consists of the successive bits of a binary counter (delayed as necessary to

account for any pipeline delays). The pipelined FFT takes streamed data as input and produces a

streamed output (in bit-reversed order). The throughput of these arrangements is one clock cycle per

sample, with a latency of one row. FPGA-based implementations of this scheme have been described by

Sukhsawas and Benkrid (2004) and Saeed et al. (2009).

To perform an inverse FFT, the inverse transform matrix is the complex conjugate of the forward

transform. Thismeans that the same hardwaremay be used, with the exception that the complex conjugate

of the twiddle factors is used. Alternatively, the inverse FFT may be calculated by taking the complex

conjugate of the frequency domain signal and using a standard forward FFT. With either case the result

needs to be divided by N to obtain the original signal.

While an FFT is mathematically invertible, with inevitable round-off errors in twiddle factors and

truncating the results of themultiplication thismean that the result is only an approximation of the Fourier

transform. Consequently, taking the FFT and then the inverse FFT will not necessarily give exactly the

same result. The transform may be made invertible by using a lifting scheme to implement the twiddle

factor multiplications (Oraintara et al., 2002). The lifting scheme is compared with conventional

complex multiplication and the factorised multiplication of Equation 10.15 in Figure 10.8. The two

alternatives for the lifting scheme enable the absolute value of the coefficients to be kept less than one

(the final multiplication is a trivial sign change). One disadvantage of using the lifting scheme is that the

multiplications are performed in series rather than in parallel as with the other two methods, increasing

the latency.

Re Re Re

Im Im Im

WN
x

Delay N/2 Delay N/4

Multiply
by -j

Figure 10.7 Pipelined radix-22 implementation. Shown are the first two stages. This structure is

repeated with successive stages alternating.

316 Design for Embedded Image Processing on FPGAs

Although the lifting scheme still suffers from round-off and truncation errors, the errors are reversible if

the result of the multiplication is quantised before the associated addition. Running the system in reverse,

replacing the additions with subtractions, will give the original result provided that an identical

quantisation is performed.

To calculate the FFTof a two-dimensional image the Fourier transform can be taken of each of the rows,

and then of the columns of the result. Since each of the row transforms is of independent data, the two-

dimensional transform may be accelerated by performing multiple row transforms in parallel through

hardware duplication. Similarly, the column transforms may also be performed in parallel.

With real data, additional efficiencies may be gained by performing two FFTs at once. The Fourier

transformof a real signal is conjugate symmetric, that is the real parts of the Fourier transformare even and

the imaginary parts are odd. This allows a single FFT to take the Fourier transform of two sequences

simultaneously. Let two separate rows be f1½x� and f2½x�. A composite signal is formed by combining one

signal in the real part and the other in the imaginary:

g½x� ¼ f1½x� þ j f2½x� ð10:18Þ

The FFT is taken of the composite signal and the FFTof the individual components may be extracted as:

F1½u� ¼ G½u� þG*½�u�
2

¼ G½u� þG*½N�u�
2

F2½u� ¼ G½u��G*½�u�
2j

¼ G½u��G*½N�u�
2j

ð10:19Þ

This is effectively another level of butterfly operations, although with a different pattern. Similarly, when

performing the inverse FFT of a real image, two conjugate symmetric Fourier transforms may be

combined as:

G½u� ¼ F1½u� þ jF2½u� ð10:20Þ
before calculating the inverse.

When calculating the Fourier transform of a two-dimensional image, symmetry may also be

exploited when taking the Fourier transform of the columns. Columns 0 and N
2
will only have real data,

somay be transformed together with a single FFT. Columns u andN�uwill be complex conjugates of one

another, so will give related Fourier transforms:

F½u; v� ¼ F*½�u;�v� ¼ F*½N�u;N�v� ð10:21Þ

Therefore, only one of these needs to be calculated. Exploiting the symmetries of both row and column

transforms reduces the overall computation for the two-dimensional FFTof a real image by a factor of four.

eReR

mImI

cos

sin

Re Re

Im Im

±sin

±1

cos 1

sin

±

Re Re

Im Im

cos sin-

cos+sin

sin

Figure 10.8 Complex multiplication. Left: conventional multiplication; centre: factorised implemen-

tation using Equation 10.15; right: implemented using a lifting scheme.

Linear Transforms 317

When performing a two-dimensional FFT, a one-dimensional FFTmust be performed on all of the rows

(or columns) before repeating the FFT in the other direction. This requires storing the frequency domain

image into a frame buffer before performing the columnFFTs. Processing a streamed input, and assuming

that only half of the frequency domain needs to be calculated, the latencyof performing a two-dimensional

FFT is approximately one half of a frame time (from the time the last pixel is input towhen the last pixel is

output). Many operations (filtering for example) require only a point operation in the frequency domain.

Therefore, taking the inverse FFTof the columns can be pipelined with the forward FFT. Again, all of the

columns must be completed before taking the inverse FFT of the rows. Using Equation 10.20 to take

the inverse of two rows at oncewill give an overall latencyof frequency domain processing of just over one

frame time.

The assumption throughout this section has been thatN is a power of two.While other factorisations of

N can also result in fast algorithms, they lack the elegance and computational simplicity of those described

above for powers of two. Therefore, unless there is a particular need for a special size, the complexity of

developing the circuitry for such factorisations is generally notworthwhile.An alternative is to express the

Fourier transform in terms of a convolution, which can be calculated using a power of two FFT (Bergland,

1969). In one dimension:

F½u� ¼
XN�1

x¼0

f ½x�Wux
N

¼
XN�1

x¼0

f ½x�Wuxþðu2�u2 þ x2�x2Þ=2
N

¼W
u2=2
N

XN�1

x¼0

W
x2=2
N f ½x�

 �
W

�ðu�xÞ2=2
N

ð10:22Þ

The summation is now a convolution, whichmay be performed by using an FFTof length ~N � 2N of each

of the two sequences, taking their product and calculating the inverse FFTof the result.While this requires

calculating three longer FFTs, in many circumstances this is still preferable to calculating the Fourier

transform directly (especially if N is prime and cannot be factorised).

10.1.2 Filtering

Linear filters are implemented as a convolution in the image domain, using Equation 8.4. In the frequency

domain, this convolution becomes a product:

Q½u; v� ¼ W ½u; v�I½u; v� ð10:23Þ

whereW ½u; v� is the Fourier transform of the flipped filter kernel. Filtering may therefore be performed in

the frequency domain. For large kernel sizes, it is less expensive computationally to take the Fourier

transform (using an FFT), multiply by W½u; v� and take the inverse Fourier transform of the result.

The weighting in the frequency domain of Equation 10.23 implies that a linear filter may, therefore, be

considered in terms of its frequency response, as aweighting of the different frequency componentswithin

the image. In this context, a low pass filter will tend to smooth noise, because it will pass low frequencies

with little attenuation, and many images have most of their energy in the low frequency. Uncorrelated

noise has uniform frequency content, so attenuating the high frequencies will have only a small effect on

the image, but a more significant effect on the noise. The loss of high frequencies in the image will result

in a loss of fine detail which will, in general, blur the image. Edges and fine detail may be enhanced

by boosting the amplitudes of the higher frequencies, but this will also tend to amplify the noise within

the image.

318 Design for Embedded Image Processing on FPGAs

Oneparticular application offiltering in the frequencydomain is to removepattern noise froman image.

As described earlier, a regular pattern will exhibit a series of peaks within the frequency domain. These

peaksmaybe detected directly in the frequency domain andmasked out, as demonstrated in Figure 10.9. If

the pattern is added within the image, then filtering can remove the pattern. Here the pattern is part of the

background, so removing the pattern will also affect the object itself.

The opposite of removing pattern noise is filtering to detect regular patterns within the image. In this

case, it is the periodic peaks within the frequency domain that contain the information of interest. One

approach to enhancing the regular patterns is to use the image itself as the filter (Bailey, 1993; 1997b).

Multiplication by the magnitude in the frequency domain:

W ½u; v� ¼ I½u; v�j j ð10:24Þ
is a zero phase filter, so objects are not shifted. Self-filtering is demonstrated in Figure 10.10. The basic

self-filter will blur sharp edges, which have frequency content that rolls off inversely proportional

Mask

FFT

Inverse
FFT

Figure 10.9 Filtering to remove pattern noise. The frequency domain is shown logarithmically scaled

for clarity.

Self-filter

Figure 10.10 Self-filtering in the frequency domain using Equation 10.24.

Linear Transforms 319

to frequency. Thismay be compensated byweighting the filter with frequency to reduce the attenuation of

the harmonics:

W ½u; v� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
I½u; v�j j ð10:25Þ

In the example in Figure 10.9, the frequency domain was simply masked. This will also remove those

frequency components from the objects of interest. An alternative is to design the filter such that it

minimises the error after filtering. Consider an image, f ½x; y�, which has been corrupted by the addition of
noise, n½x; y� (uncorrelatedwith the input image). TheWiener filter is the optimal filter (in the least squares

sense) for recovering the original signal. The analysis is easiest to perform in the frequency domain: the

goal is to determine the filter W ½u; v� that minimises the error:

E2 ¼
X
u;v

F½u; v� þN½u; v�ð ÞW½u; v��F½u; v�k k2 ¼
X
u;v

FþNð ÞW�Fk k2

¼
X
u;v

F W�1ð Þ�NWk k2

¼
X
u;v

F W�1ð Þ�NWð Þ F W�1ð Þ�NWð Þ*
ð10:26Þ

This can be simplified by making the assumption that the filter is symmetric so that it does not shift the

image. Therefore, W is real, resulting in:

E2 ¼
X
u;v

FF* W�1ð Þ2 þNN*W2

 �

þ
X
u;v

FN* þNF*
� �

W W�1ð Þ ð10:27Þ

The expected value of the second summation is zero if the image and signal are uncorrelated. Therefore:

E2 ¼
X
u;v

Fk k2 W2�2W þ 1
� �þ Nk k2W2 ð10:28Þ

The error may be minimised by taking the derivative with respect to the filter:

dE2

dW
¼
X
u;v

2W Fk k2 þ Nk k2

 �

�2 Fk k2

 �

¼ 0 ð10:29Þ

The corresponding optimal filter is, therefore:

W u; v½ � ¼ F½u; v�k k2
F½u; v�k k2 þ N½u; v�k k2 ð10:30Þ

Given estimates of both the signal and noise spectra, the frequency response of the optimal filter can be

derived. If the noise is uncorrelated, then it will have a flat spectrum and will be a constant.

Equation 10.30 may be interpreted as follows: at the frequencies where the signal is much larger than

the noise, the frequency response of the filter will approach unity, passing the signal through.However, the

frequencies at which the signal is smaller than the noise will be attenuated, effectively reducing the noise

powerwhile having little effect on the total signal. TheWiener filter is effective are removing both random

noise as well as pattern noise.

10.1.3 Inverse Filtering

Closely related to filtering is inverse filtering. Here the goal is to remove the effects of filtering from an

image. A common application is removing blur, whether from the lens point spread function, or motion

320 Design for Embedded Image Processing on FPGAs

blur from a moving object or camera. Let b½x; y� be the blur point spread function, with corresponding

Fourier transform, B½u; v�. Also, let the desired unblurred image be f ½x; y�. In the frequency domain the

blurred image is given by:

G½u; v� ¼ F½u; v�B½u; v� ð10:31Þ

Assuming that the blur function is known, then the deblurred image should be able to be recovered as:

F̂ u; v½ � ¼ G½u; v�
B½u; v� ð10:32Þ

Unfortunately, this does not work. The output image fromEquation 10.32 appears to contain only random

noise. The reason is that B½u; v� goes to zero at some frequencies. This division by zero is undefined. Even

if B does not actually go to zero at any of the samples, the scaling of the corresponding frequencies

becomes arbitrarily large. For noiseless, infinite precision arithmetic, this would not pose a problem.

However, G½u; v� will inevitably have some level of noise added. Applying the inverse filter according to

Equation 10.32 will cause the noise to dominate the output.

One solution to this problem is to manipulate Equation 10.32 to avoid division by zero:

F̂ u; v½ � ¼ G u; v½ � 1

B½u; v� ¼ G
B*

Bk k2 � G
B*

Bk k2 þ k2
ð10:33Þ

where the first transformation is to make the denominator positive real and the second adds a positive

constant, k2, in the denominator to prevent division by zero. This effectively limits the gain of the noise.

The Wiener filter, which minimises the mean square error, gives the inverse filter as:

W u; v½ � ¼ B*½u; v� F½u; v�k k2
B½u; v�k k2 F½u; v�k k2 þ N½u; v�k k2 ¼

B*½u; v�

B½u; v�k k2 þ N½u; v�k k2
F½u; v�k k2

ð10:34Þ

which sets k2 optimally according to the signal-to-noise ratio at each frequency.

More complex techniques (usually iterative) are required when the blur function is not known. These

are beyond the scope of this book.

10.1.4 Interpolation

Imagesmay be interpolated by using the frequency domain. If it is assumed that the image is band-limited

(and sampled according to the Nyquist sampling criterion), then extending the image in the frequency

domain is trivial because the additional higher frequency samples will be zero. Therefore, an image

may be interpolated by taking its Fourier transform, padding with zeros and taking the inverse

Fourier transform.

Since padding will make the frequency domain image larger, taking the inverse Fourier transform will

take longer. This approach is equivalent to sinc interpolation of the input image. However, in

many imaging applications, the input image is not band-limited, therefore sinc interpolation will

not necessarily give the best results. Interpolating directly in the image domain (Section 9.3) is usually

more appropriate.

If multiple, slightly offset, images are available, then a simple approach to image super-resolution is

to use the information gleaned from the multiple images to resolve the aliasing, giving an increased

Linear Transforms 321

resolution (Tsai and Huang, 1984). As a result of aliasing, the value at each frequency sample will result

from a mixture of frequencies:

F½u; v� ¼
X
k;l

~F½u � kN; v � lN� ð10:35Þ

where ~F are the samples of the continuous frequency distribution of the original unsampled image.

Normally, once the frequency information has been aliased, it is impossible to distinguish between

the different frequency components that have been added together. However, when an image is offset, the

different aliased components will have a different phase shift (since the phase shift is proportional to

frequency). Therefore, given multiple offset images, it is possible to untangle the aliasing. Consider

enhancing the resolution by a factor of two. Then each image may be considered as:

Fi½u; v� � c~F½u; v�e jyi;0;0 þ ~F½N�u; v�e jyi;1;0

þ~F½u;N�v�e jyi;0;1 þ ~F½N�u;N�v�e jyi;1;1
ð10:36Þ

where it is assumed that the additional higher order alias terms are negligible. The phase terms are

determined directly from the offsets of each of the images (for example, using any of the techniques

of Section 9.5) and are effectively known (or can be estimated). Given four such images, then in

matrix form:

F1½u; v�
F2½u; v�
F3½u; v�
F4½u; v�

2
666664

3
777775
¼

e jy1;0;0 e jy1;1;0 e jy1;0;1 e jy1;1;1

e jy2;0;0 e jy2;1;0 e jy2;0;1 e jy2;1;1

e jy3;0;0 e jy3;1;0 e jy3;0;1 e jy3;1;1

e jy4;0;0 e jy4;1;0 e jy4;0;1 e jy4;1;1

2
666664

3
777775

~F½u; v�
~F½N�u; v�
~F½u;N�v�
~F½N�u;N�v�

2
666664

3
777775

ð10:37Þ

This equation may be inverted to resolve the aliased higher frequency components. (If more images are

available, a least squares inverse may be used to improve the estimate.) By padding the image with these

components and taking the inverse Fourier transform, the resolution may be improved.

10.1.5 Registration

As outlined in the previous chapter, images may be registered in the frequency domain. This requires

taking the Fourier transform of the two input images being registered. Using Equations 10.18 and 10.19,

these may be calculated in parallel using a single FFT. CORDIC arithmetic can then be used to obtain the

magnitude and phase angle of each frequency component. To estimate the offset, it is necessary to

determine the slope of the phase difference. The problem here is that the arctangent reduces the phase to

within � p, requiring the phase to be unwrapped.

In many applications it can be assumed that the phase varies slowly with frequency. The simplest

approach to phase unwrapping is to consider the phase of adjacent samples.Multiples of 2p are then added
to one of the samples until the absolute difference is less than p. In two dimensions, this may be applied

both horizontally and vertically, providing additional constraints.

One limitation with this approach is that, at some frequencies, the amplitude changes sign (consider for

example a sinc function). The phase shift between such points should be close to p rather than zero. A

second limitation is that when the magnitude is low, the phase angle becomes dominated by noise.

Consequently, only the phases for the low frequencies are reliably unwrapped unless more complex

methods are used.

322 Design for Embedded Image Processing on FPGAs

In the case of image registration, the phase difference should be planar. One approach to this is to fit a

plane to the phase difference. An alternative is to consider the phase shear (Stowers et al., 2010). From

Equation 9.51:

ux0 þ vy0 ¼ 1

2p
ff F*½u; v�G½u; v�� � ð10:38Þ

Let H½u; v� ¼ F*G. Then the phase difference between horizontally adjacent frequencies should be:

x0 ¼ 1

2p
ffH½uþ 1; v��ffH½u; v�ð Þ

¼ 1

2p
ff H½uþ 1; v�H*½u; v�ð Þ

ð10:39Þ

An amplitude weighted average of these is given by (Stowers et al., 2010):

x0 ¼ 1

2p
ff
X
u;v

H½uþ 1; v�H*½u; v� ð10:40Þ

and similarly for the vertical offset. The amplitude weighting will automatically give low weight to those

differences where the phase shifts by p, and the problem of phase wrapping is avoided by deferring the

arctangent to after the averaging.

Alternatively, histograms of the horizontal and vertical offsets estimated by Equation 10.39 may be

built to enable outliers to be eliminated before averaging.

10.1.6 Feature Extraction

The frequency domain can provide a rich source of features, particularly in representing the texture

within an image. The example in Figure 10.11 shows an electron micrograph of the surface of a pollen

grain. From the frequency domain, the dominant frequency and angle variationmay be easily measured

(Currie, 1995).

FFT

FFT

Figure 10.11 Frequency domain features: dominant frequency and angle distribution. Top: taking the

Fourier transform directly of the image; bottom: windowing the image first.

Linear Transforms 323

The top row of Figure 10.11 shows one of the limitations of using the discrete Fourier transform

(calculated via the FFT). Sampling in the frequency domain implicitly assumes that the image is periodic.

However, the pattern on the left and right edges of the image do not line up. These discontinuities result in

spectral leakage, the manifestation of which is the streaked appearance within the frequency domain.

Spectral leakage effects may be reduced by multiplying the input image by a window or apodization

function, which smoothly tapers to zero at the edges of the image:

f
_½x; y� ¼ f ½x; y�w½x; y� ð10:41Þ

This product becomes a convolution of Fourier transforms, so the default rectangular window will

convolve the true frequency content with a sinc function. It is the relatively high sidelobes of the sinc

function that results in spectral leakage, and the streaking and smearing in the frequency domain. The

consequences of using a windowing function are a reduction in the level of the sidelobes at the expense of

an increased main lobe. The reduction in side lobes directly reduces the spectral leakage, but the

wider main lobe results in reduced frequency resolution from the blurring within the frequency domain

(Harris, 1978).

The window function in the lower image in Figure 10.11 was a Tukey or tapered cosine window with

a ¼ 0:25:

w½x; y� ¼ w½x�w½y�

w½x� ¼

1

2

1þ cosp

�
2x

aN
�1

�!
; 0 	 x <

aN
2

1;
aN
2

	 x 	 ð2�aÞN
2

1

2

�
1þ cosp

�
2x

aN
�2�a

a

�!
;

ð2�aÞN
2

<x <N

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð10:42Þ

This window provides a compromise between maintaining good frequency resolution while reducing

spectral leakage.

For an FPGA implementation, the window function may be stored in a lookup table, and multiplied by

the incoming image as the first step before calculating the FFT. Due to symmetry, only N=2 entries are

required in the table. For the 25% Tukey window, this is reduced to N=8 entries.

10.1.7 Goertzel’s Algorithm

In some applications, only one or a few frequencies are of interest. In this case, Goertzel’s algorithm

(Goertzel, 1958) can require considerably fewer calculations than performing the full Fourier transform.

Consider a single frequency component of the Fourier transform:

Fu ¼
XN�1

x¼0

f ½x�Wux
N ¼

XN�1

x¼0

f ½x� W�u
N

� �ðN�xÞ

¼
XN�2

x¼0

f ½x� W�u
N

� �ðN�xÞ þ f ½N�1�
 !

W�u
N

ð10:43Þ

This is effectively a recursive calculation:

Fu½n� ¼ Fu½n�1� þ f ½n�ð ÞW�u
N ð10:44Þ

324 Design for Embedded Image Processing on FPGAs

It still requires one complex multiplication per sample, so does not gain anything computationally.

Looking at this recursion in the z-domain:

FuðzÞ
f ðzÞ ¼ W�u

N

1�W�u
N z�1

¼ W�u
N

1�W�u
N z�1

1�Wu
Nz

�1

1�Wu
Nz

�1

0
@

1
A

¼ 1

1�2 cos
2pu
N

z�1 þ z�2

W�u
N �z�1

� �
ð10:45Þ

The multiplication of the top and bottom by the complex conjugate of the denominator makes the

denominator coefficients real. Therefore, the first term can be implemented as a second order recursion

with real coefficients:

Su n½ � ¼ f n½ � þ 2 cos
2pu
N

Su n�1½ ��Su n�2½ � ð10:46Þ

and after theN samples have accumulated, the frequency termmay be calculated from the second term of

Equation 10.45 as:

Fu ¼ Su N�1½ � cos 2pu
N

�Su N�2½ �
� �

þ jSu N�2½ � sin 2pu
N

ð10:47Þ

An implementation of this is shown in Figure 10.12. Note that the intermediate registers need to be reset to

zero before the start of the calculation. The filter processes streamed data and produces the frequency

value after N input samples. N is not restricted to a power of two – the implementation of the algorithm is

independent of the number of samples (apart from the constant multipliers). If multiple frequencies must

be calculated, then this circuit can be duplicated for each frequency.

10.2 Discrete Cosine Transform

Closely related to the Fourier transform is the discrete cosine transform (DCT). Whereas the Fourier

transform has both sine and cosine components, the DCT is made purely from cosine terms. This is

achieved by enforcing even symmetry and enables the transform to be calculated with real rather than

complex numbers.

Mathematically, in one dimension the discrete cosine transform is:

F u½ � ¼
XN�1

x¼0

ffiffiffiffi
a
N

s
f x½ �cos

pu
�
xþ 1

2

�

N

0
BBBB@

1
CCCCA; a ¼ 1; u ¼ 0

2; otherwise

�
ð10:48Þ

f

cos
2πu

N

sin
2πu
N

Re

Im

Fu

×2

Figure 10.12 Implementation of Goertzel’s algorithm.

Linear Transforms 325

or in terms of Equation 10.2:

w u; x½ � ¼
ffiffiffiffi
a
N

r
cos

pu xþ 1

2

� �

N

0
BB@

1
CCA ð10:49Þ

The inverse is simply wT or:

f x½ � ¼
XN�1

u¼0

ffiffiffiffi
a
N

r
F u½ �cos

pu xþ 1

2

� �

N

0
BB@

1
CCA ð10:50Þ

Being separable, a two-dimensional DCT may be calculated by taking the one-dimensional transform of

the rows followed by the one-dimensional transform of the columns. While algorithms for direct

computation of the two-dimensional transform can be developed that require fewer arithmetic operations

than the separable transform (Feig and Winograd, 1992), the separable algorithm allows hardware to be

reused and results in a simpler implementation for streamed data.

Since it is closely related to the Fourier transform, there are also fast algorithms for calculating theDCT,

especially for powers of two. In fact, theDCT can be calculated using an FFTof length 4N, with the data in

the odd terms (mirroring the data to maintain even symmetry) and setting the even terms to zero. The

appropriate simplifications of the resulting FFT (removing unnecessary calculations) lead to efficient

algorithms for the DCT. Algorithms are discussed here for N ¼ 8, since this is the size most commonly

used for image and video coding. The most efficient algorithm for an eight-point DCT requires 11

multiplications (Loeffler et al., 1989) and is shown in Figure 10.13.

If a scaled DCT is acceptable, the number of multiplications can be reduced to five (Kovac and

Ranganathan, 1995) (Figure 10.14). With a scaled DCT, each frequency coefficient is scaled by an

arbitrary factor. When using the DCT for image compression, the coefficients are quantised. The

scale factor can be incorporated into the quantisation step without incurring any additional operations

simply by scaling the quantisation step size by scale factor. Agostini et al. (2001; 2005) have implemented

this on an FPGA for JPEG image compression. Their implementation had a throughput of one pixel per

clock cycle butwith a latencyof 48 clock cycles because they divided the algorithm into six blocks to share

hardware. The structure of the DCT is less regular than the FFT, making an elegant pipeline less practical.

However, one attempt at pipelining the scheme of Figure 10.14 is shown in Figure 10.15. Attempts have

been made to reuse hardware where practical, particularly the multiplier. This design maintains a

throughput of one pixel per clock cycle and has a latency of only nine clock cycles.

Rotate

Rotate

Rotate

16
cos

3

16
cos

16
2 cos

2

2

f [0]

f [2]

f [4]

f [6]

f [1]

f [3]

f [5]

f [7]

F[0]

F[2]

F[4]

F[6]

F[1]

F[3]

F[5]

F[7]

Figure 10.13 DCT with 11 multiplications. The Rotate box is a scaled rotation requiring three

multiplications and additions using Equation 10.15.

326 Design for Embedded Image Processing on FPGAs

The first four samples are stored in a fabric RAM and are read out in the next four samples to be

combined with the input. Using a RAM reduces the need for explicit multiplexing. Similarly, the constant

multipliers can also be stored in a fabric RAM, to enable sequential access. The assumption made here is

that the multiplication can be completed in a single clock cycle. If not, the multiplier will need to be

pipelined and additional delays inserted in the corresponding parallel paths. The scaled outputs are not in

natural order; for JPEG compression, this does not matter because the data will be reordered later using

a zigzag buffer.

Modern FPGAs have plentiful multipliers. This enables a far simpler and more elegant pipelined

design, as demonstrated in Figure 10.16. It simplymultiplies the incoming pixel values by the appropriate

DCT matrix coefficients and accumulates the results (Woods et al., 1998). One level of factorisation is

used to reduce the number ofmultiplications from eight to four. Eachmultiply and accumulate unit is reset

every four clock cycles and calculates a separate output frequency. The factorisation means that the even

and odd samples are calculated separately.

With block processing, all published systems operate on a block at a time. That is they process each of

the rows of a block, saving the results into a transpose buffer, and then use a second processor take theDCT

of the columns, as illustrated in Figure 10.17. The transpose buffer can be readily implemented using

a dual-port block RAM. One port is used towrite the results of the row transform, while the second port is

used to read the values in column order. The block RAM in most FPGAs is also sufficiently large to hold

two blocks of data, enabling bank switching to be incorporated directly within the single memory simply

by controlling the most significant address bit.

f [0]

f [2]

f [4]

f [6]

f [1]

f [3]

f [5]

f [7]

S[0]

S[2]

S[4]

S[6]

S[1]

S[3]

S[5]

S[7]

m
1

m
2

m
3

m
4

m
1

Figure 10.14 ScaledDCT (Kovac andRanganathan, 1995),where S½u� ¼ 4 cos ðup=16Þ � F½u�. The fixed
multipliers are m1 ¼ cos ð2p=8Þ, m2 ¼ cos ð3p=8Þ, m3 ¼ cos ðp=8Þ�cos ð3p=8Þ, m4 ¼ cos ðp=8Þþ
cos ð3p=8Þ.

f

fabric
RAM

mi

RAM

0-3 4-7

4-7

7-9
11

7-9

4-7

7

7-9

odd
9-16

8
9

9

7,8

7-9

13

11 even
6-8

5-6

5-8

6

7 9
8-12

7

8 10

9

9-13

12,14

7-11

S

11

10

11

9
11

9
11

8,10

8-10
12

10,11
13

[0,4,2,6,5,3,1,7]

Figure 10.15 Apipelined implementation of Figure 10.14. Numbers on registers andmultiplexers refer

to the clock cycle they are active relative to the input samples entering on clocks 0 to 7. The registers

should be clocked and the corresponding multiplexer inputs selected on these cycles.

Linear Transforms 327

An alternative approach with data streamed from the camera is to calculate the rowDCTs as the data is

streamed from the camera, storing the intermediate results in an on-chip cache. Once the eighth row

arrives, the data may be read from the cache in column order to perform the column DCTs. With either

approach, the cache needs to hold 14 rows of data (effectively seven row buffers for each of the row and

column transforms).With the latter approach, a transpose buffer is not required, but the cachemay need to

be a few bits wider to match the required precision of the intermediate result.

Similar circuits may be used for calculating the inverse DCT. Since the inverse uses the transposed

coefficient matrix, similar factorisations to the forward transform may also be used.

The application of the DCT to image and video coding is discussed in more detail in Section 10.4.

10.3 Wavelet Transform

One of the limitations of frequency domain transformations, such as the Fourier transform and cosine

transform, is that the resolution in the frequency domain is inversely proportional to that in the image

domain. This is illustrated in one dimension in Figure 10.18. Features which are narrow in space have

awide frequency bandwidth, and a narrow frequency (for example, a sinewave) has a wide spatial extent.

One implication of this is that to obtain good frequency resolution, it is necessary to have a large number

of samples in the image. Increasing the frequency resolution requires extending the width of the image.

However, in taking the Fourier transform, the direct location of features and objects within the image is

lost. Good spatial resolution of an object requires looking within a narrow window within the image,

which results in poor frequency resolution.

At low frequencies, the spatial resolution is inevitably poor anyway because of the long period.

However, the shorter periods of high frequencies makes higher spatial resolution more desirable. This is

achieved by dividing the position–frequency space as shown in the right hand panel of Figure 10.18. This

is achieved by wavelet analysis as follows. Firstly, the image is filtered, separating the low and high

frequency components. As a result of the reduction in bandwidth, these components can be down-sampled

by a factor of two by discarding every second sample. This gives the position–frequency resolution aspect

ratio seen in the figure for the high frequency components. This process is then recursively repeated on the

low frequency components giving the desired position–frequency resolution. The schematic of this

f

fabric
RAM

0-3 4-7

F

Coefficient
RAM

[0,2,4,6,1,3,5,7]

Figure 10.16 Using parallel multipliers to perform an eight-point DCT.

1D

DCT
1D

DCT

Transpose

buffer

Figure 10.17 Two-dimensional discrete cosine transform of a block.

328 Design for Embedded Image Processing on FPGAs

process in one dimension is given in Figure 10.19. Thewavelet transform effectively looks at the image at

a range of scales. For each level of the wavelet transform, the low pass filter outputs are often called the

approximation components, whereas the high pass filter outputs are the detail components.

With the Fourier transform, every frequency component depends on and is contributed to by every

pixel in the image. Conversely, the wavelet filters are usually local, finite impulse response filters. The

filters are therefore local, enabling spatial location to be maintained, while still separating the frequency

components.

The inverse wavelet transform (or wavelet synthesis) reconstructs the data by reversing the process

(Figure 10.19). Firstly, the coefficients are up-sampled by inserting zeros between the samples. These

zeros replace the samples discarded in the down-sampling process. The missing samples are then

effectively interpolated by the following low pass or high pass filter, depending on which band the signal

came from. The components are then added to give the output signal. This is repeated, going back through

the levels until the final output signal is reconstructed.

Low pass
filter

Low pass
filter

Low pass
filter

High pass
filter

High pass
filter

High pass
filter

2 2 2

2

2

2

Wavelet
coefficients

Image

Low pass
filter

Low pass
filter

Low pass
filter

High pass
filter

High pass
filter

High pass
filter

2 2 2

2

2

2 Wavelet
coefficients

Image

Figure 10.19 Wavelet transform in one dimension, with three decomposition levels shown. Top: wavelet

analysis or decomposition; bottom: reconstruction of the original signal, or synthesis.

PositionPositionPosition

S
p

a
tia

l fre
q

u
e

n
c
y

Image Wavelet transformFourier transform

S
p
a

tia
l fre

q
u
e
n
c
y

S
p
a

tia
l fre

q
u

e
n

c
y

Figure 10.18 Trade-off between spatial and frequency resolution, illustrated in one dimension.

Left: image samples; centre: frequency samples from Fourier transform; right: trade-off from thewavelet

transform.

Linear Transforms 329

Let the analysis filters in the z-domain be:

aLPðzÞ ¼
X
i

aLP½i�z�i

aHPðzÞ ¼
X
i

aHP½i�z�i
ð10:51Þ

where a½i� are the filter coefficients and z�1 corresponds to a one sample delay. Similarly, let the synthesis

filters be sLPðzÞ and sHPðzÞ. It is necessary that the analysis and synthesis filters be pair-wise comple-

mentary, so that information is not lost when filtering. Since the filters are not ideal low pass and high pass

filters, down-sampling will introduce aliasing within the resultant components. However, given appro-

priatelymatched filters, the aliasing introduced by the each filter is exactly cancelled by the reconstruction

filters. These two conditions can be expressed mathematically as (Daubechies and Sweldens, 1998):

aLPðzÞsLPðzÞþ aHPðzÞsHPðzÞ ¼ 2

aLPðzÞsLPð�zÞþ aHPðzÞsHPð�zÞ ¼ 0
ð10:52Þ

These imply that the analysis and synthesis filters be related by (Daubechies and Sweldens, 1998):

aLPðzÞ ¼ �z sHPð�zÞ
aHPðzÞ ¼ z sLPð�zÞ ð10:53Þ

While it is possible for the analysis and synthesis filters to be the same (apart from reversing the order of

the filter coefficients), and indeedmanywavelet families do use the same filters for analysis and synthesis,

such filters cannot be symmetrical.With image processing, use of symmetrical filters is preferred because

they prevent movement of features, enabling coefficients to be directly related to the position of features

within the image. Therefore, the symmetric biorthogonal family of wavelet filters is often used in image

processing applications.

Wavelets, unlike the Fourier transform, do not assume anything beyond the end of the data. They are

localised, so any edge effects will be localised to the few pixels on the edge of the image. However, since

the finite impulse response filter implementing thewavelet transform is a convolution, the output is longer

than the input. Consequently, the data size grows with each iteration. Since the biorthogonal filters are

symmetric, a symmetric extension of the input imagewould result in a symmetric response. Therefore, the

data beyond the edge of the image does not need to be recorded. This makes the output sequence the same

length as the input. The techniques outlined in Section 8.1 can be used to provide the mirroring.

Wavelets can be readily extended to two dimensions by applying the filter separably to the rows and

columns. Each level divides the image into four bands: the LL approximation band, and HL, LH and HH

detail bands. The two-dimensional transform is applied recursively to the to the LL band, as illustrated in

Figure 10.20 for a three level decomposition. In practise, the high and low pass filters are not separated as

shown here. Since the filters are implemented in parallel, the outputs are more often interleaved, with the

even samples corresponding to the low pass filter outputs and the odd samples corresponding to the high

pass outputs.

10.3.1 Filter Implementations

10.3.1.1 Direct

The obvious direct approach of implementing thewavelet filters is shown in Figure 10.21. Separate filters

are used for analysis and synthesis (they are shown together here for illustration). Down-sampling is

330 Design for Embedded Image Processing on FPGAs

achieved by enabling the clock on the filter output registers, L andH, only every second clock cycle. The

input is, therefore, one sample per clock cycle, with the output two samples (one from each of the low pass

and high pass filters) every two clock cycles. The corresponding synthesis filter up-samples the wavelet

signals by inserting zeros between the samples. The synthesis filter shown here uses the transpose

structure so that only a single set of registers is required.

With the direct implementation, quantisation of the filter coefficients will mean that the coefficients

no longer satisfy Equation 10.52. Consequently, the reconstructed output will not necessarily match the

input exactly.

10.3.1.2 Polyphase Filters

The main inefficiency of the direct filters is that every second sample calculated by the analysis filter

is discarded, and every second sample into the synthesis filter is a zero, so the corresponding

operation is redundant. Consider rearranging the filter equation of Equation 10.51 to separate the odd

and even components:

aðzÞ ¼
X
i

a½i�z�i

¼
X
i

a½2i�z�2i þ
X
i

a½2iþ 1�z�ð2iþ 1Þ

¼ aevenðz2Þþ z�1aoddðz2Þ

ð10:54Þ

LL3
HL2

HH2LH2

HL1

HH1LH1

HL3

HH3LH3

Figure 10.20 Two-dimensional wavelet transform of an image. Left: input image; centre: wavelet

transform (using the Haar wavelet); right: position of the decomposition components for each level.

(Photo courtesy of Robyn Bailey).

CE

CE
aHP[-2]

aLP[-2]

sLP[2] sLP[1] sLP[0] sLP[-1] sLP[-2]

sHP[2] sHP[1] sHP[0] sHP[-1] sHP[-2]

aHP[-1]

aLP[-1]

aHP[0]

aLP[0]

aHP[1]

aLP[1]

aHP[2]

aLP[2]

H

L

I

0

0

Q

0

0

1

1

SynthesisAnalysis

Figure 10.21 Direct implementation of the analysis and synthesis wavelet filters.

Linear Transforms 331

The two-component filters now operate at the lower sample rate, allowing the number of operations to be

halved. The basic idea is shown schematically on the top of Figure 10.22.

For the analysis filter, this still means that all of the multiplications are performed in a single clock

cycle, but only need to be evaluated every second cycle. The hardware may be reduced by calculating the

even and odd filters in alternate clock cycles. The result of the even filter is held for one cycle and added to

that from the odd filter.

For the synthesis filter, the incoming data is only clocked every second cycle. On the output, the results

are produced alternately by the even and odd filters. This enables a single filter to be used, by just

multiplexing the coefficients.

For a given wavelet, the filter coefficients are constant. Therefore, the multiplexers selecting the filter

coefficients can be optimised away, resulting in a very efficient implementation. Only a single side of the

wavelet filtering is shown in Figure 10.22; two such circuits are required, one of the low pass filter and one

for the high pass filter.

10.3.1.3 Lifting Scheme

The filtering can be optimised further. The designs so far assume that the low and high pass filters are

independent. However, these filters are closely related because they are pair-wise complementary. The

polyphase filters for both the low and high pass filtering may be written in matrix form:

L

H

� 	
¼ aLPevenðzÞ aLPoddðzÞ

aHPevenðzÞ aHPoddðzÞ
� 	

Ieven

Iodd

� 	
ð10:55Þ

The relationship between the filters allows this filter matrix to be factorised (Daubechies and

Sweldens, 1998):

aLPevenðzÞ aLPoddðzÞ
aHPevenðzÞ aHPoddðzÞ
� 	

¼ k 0

0 k�1

� 	Y
i

aiðzÞ 1

1 0

� 	
ð10:56Þ

where each of the aiðzÞ is usually a constant or first order filter. Each of the terms on the right is a lifting

step, resulting in the implementation of Figure 10.23. In general, this will reduce the number of

multiplications by a further factor of two.

A second advantage of using lifting steps is that even with quantisation of the filter coefficients and

rounding of the outputs of the aiðzÞfilters, the output is perfectly recoverable. This is because the synthesis
filter just undoes the steps of the analysis filter, subtracting off the terms that were added in.

CE

CE

CECE

a[-2] s[-2]a[0] s[0]a[2] s[2]

a[-1] s[-1]a[1] s[1]a[3] s[3]

I

Q

sisehtnySsisylanA

2

2

seven(z)aeven(z)aeven(z)

z-1 z-1

2

2

o

e

o

e

o

e

o

e

o

e

o

e

sodd (z)aodd (z)

Figure 10.22 Polyphase filter architecture. Top: basic idea of polyphase filters; bottom: hardware

implementation.

332 Design for Embedded Image Processing on FPGAs

Any quantisationwithin the synthesis filter will be exactly the same as that in the analysis filter, recreating

the data back along the filter chain.

In this context, the scaling terms (by k and k�1) can also be implemented using lifting steps as well, to

enable rounding errors from the scaling to also be recovered exactly (Daubechies and Sweldens, 1998):

k 0

0 k�1

" #
¼

1 k�k2

0 1

" #
1 0

�k�1 1

" #
1 k�1

0 1

" #
1 0

1 1

" #

¼
1 0

�1 1

" #
1 1�k�1

0 1

" #
1 0

k 1

" #
1 k�2�k�1

0 1

" # ð10:57Þ

This requires three extra lifting steps, since the first step is in parallel with the last filtering step, so can be

combined with it. If wavelet coding is being used for lossy image compression, the L and H outputs will

be quantised. In this case, the scaling terms can be incorporated into the quantisation stage without any

additional operations.

One limitation of using lifting for implementing the wavelet transform is that all of the operations

are now in series, rather than in parallel as with the direct and polyphase implementations. Consequently,

the latency is increased relative to the direct or polyphase implementations, although the filters can readily

be pipelined to maintain the required throughput.

An implementation of the 9/7 biorthogonal wavelet analysis filter is shown in the centre panel of

Figure 10.24, which shows fivemultiplications and eight additions in series on the critical path. (Note that

all of the registers are clocked only every second cycle.) Huang et al. (2004) address the problem of

increased latency by identifying the critical path, and replace multiplications (which tend to be the most

time consuming operation) on the critical path with a multiplication by the inverse on the corresponding

parallel path. One implementation which removes all but two of the multiplications and half of the

additions from the critical path is shown in the bottomof Figure 10.24.Note that this implementation loses

the prefect reconstruction property of the standard lifting scheme.

Rather than rearrange the circuit, the latency can be accepted, with pipelining used to maintain the

throughput. All of the filtering is performed after down-sampling, so the filters only process one sample

every second clock cycle. Since each stage of the filter has the same architecture, this allows the filter to

be half the length, with the second half using the second clock cycle. Alternatively, the full filter could be

implemented with two rows (or columns) transformed in parallel if the input bandwidth allows. Another

possibility is to feed the low pass output back to the input and use the spare cycles for subsequent levels

within the decomposition (Liao et al., 2004).

10.3.1.4 Two-Dimensional Implementations

The descriptions above were for one-dimensional filters. When extending to two dimensions, three

approaches are commonly used. The simplest approach is to alternate the row and column processing.

This requires processing all of the rows first, saving the intermediate results in off-chip RAM.

I Q

Analysis Synthesis

2

2

a z
1
() a z

1
()a z

3
() a z

3
()a z

2
() a z

4
()a z

4
() a z

2
()

z-1

z-12

2

k
kk-1

k-1

H

L

Figure 10.23 Lifting implementation of wavelet filters.

Linear Transforms 333

The columns are then processed, returning the results to off-chipmemory. This procedure is then repeated

for the LL band for each level of decomposition. Since each row and column is processed independently,

the direct separable approach is easy to accelerate through multiple parallel processors, subject of course

to memory bandwidth limitations.

A second approach is to begin the column processing as the processed row data becomes available.

This requires replacing delays within the filter with on-chip row buffers, enabling all of the columns to

be processed in parallel (Chrysafis and Ortega, 2000). This fits the stream processing model and

completely transforms the image as it is being streamed into the FPGA. If the wavelet transform is the

end of the processing, the wavelet coefficients can be streamed to off-chip memory as they are

calculated. However, if further processing is required, additional caching is required to hold the results

from the lower decomposition levels while the transformation is being performed on the higher levels.

The amount of synchronisation memory grows rapidly with the number of decomposition levels

(Chrysafis and Ortega, 2000). The line processing approach is also a little harder to parallelise. Like the

separable approach, multiple rows may be processed in parallel. Processing rows in pairs will also

provide the data for column processing two samples at a time. This makes full use of the available clock

cycles on the down-sampled data. Alternatively, the spare cyclesmay be used for processing subsequent

decomposition levels (Liao et al., 2004). One aspect to consider is that, rather than multiplexing

individual registers, using dual-port fabric RAM builds in the multiplexers for free and may reduce the

resources required.

The on-chip memory requirements of the line processing approach may be reduced by dividing the

image into blocks and transforming the image a block at a time. The input blocks need to overlap because

data from adjacent blocks is required to correctly calculate the pixels around the block boundaries. The

block processing approach is also readily parallelisable, although coordination is requiredwhen accessing

those pixels which are shared between blocks. However, if the resources allow, it is simpler to use line

processing rather than process multiple blocks in parallel.

Angelopoulou et al. (2006; 2008) compared these threemethods for FPGA implementation. The direct

separable approach used the fewest resources because it was the simplest architecture, but also took the

I

I

I

2

2z-1 H

H

H

L

L

L

a z(1+) b z(1+)
-1 c z(1+) d z(1+)

-1

a

a-1

b

a b-1-1

c

b c-1 -1

d

c d-1 -1

CE

CE

CE

CE

CE

CE

CE

CE

CE

CE

CE

CE

CE

CE

CE

CE

a
b
c
d
k

=-1.586134342

=-0.052980119

= 0.882911076

= 0.443506852

= 1.149604398

k

k

abcdk

k-1

k-1

abck-1

Figure 10.24 Implementation of the 9/7 biorthogonal analysis wavelet filter. Top: basic lifting

schematic; centre: hardware implementation; bottom: removing multipliers from the critical path.

334 Design for Embedded Image Processing on FPGAs

longest because the datamust be accessedmultiple times. The best in terms of total time and powerwas the

line buffered approach. Block-based processing has smallest memory requirement, but has the most

complex logic because of the need to manage the block boundaries.

10.3.2 Applications of the Wavelet Transform

Aswith theFourier transform,waveletshaveawide rangeofapplicationswithin imageprocessing.Whilea

fulldiscussion isbeyondthe scopeof thisbook, someof themainapplications are introduced in this section.

One of the most significant applications of the wavelet transform is in image compression. The steps

involved in compressing images are described more fully in Section 10.4. The wavelet transform is used

primarily to decorrelate the data. Adjacent pixels in many images are similar and this is exploited by

separating the approximation and detail components. As demonstrated in Figure 10.20, the image is

sparse within the wavelet domain, with many detail coefficients zero or close to zero. Truncating these

coefficients provides an effective means of lossy compression that has a low impact on the perceived

image quality.

If an image has noise added, this noisewill bemost noticeable in the detail coefficients. Noisewill affect

all of the coefficients, but since the wavelet representation is generally sparse, setting the coefficients

below a threshold to zerowill remove the noise from those terms.When the image is reconstructedwith an

inverse wavelet transform, the noise will be reduced. This is called hard thresholding and has the

characteristic that it preserves features such as peak heights (Donoho and Johnstone, 1994).An alternative

approach is soft thresholding, where all of the wavelet coefficients are shrunk towards zero (the two

approaches are compared in Figure 10.25). Soft thresholding tends to give a smoother fit and does not

result in the same level of lumpiness that normally results from smoothing noise (Donoho, 1995). The

threshold for both methods is proportional to the noise standard deviation in the image. These simple

approaches assume that all coefficients are independent. However, there is a strong correlation between

detail coefficients at different levels of decomposition. More sophisticated denoising techniques take into

consideration these correlations (Sendur and Selesnick, 2002), giving better noise reduction.

Multiscale processing has been mentioned in several contexts throughout this book. Wavelets provide

a natural framework formultiscale object detection (Strickland andHahn, 1997), although relatively little

work has been reported on FPGA implementations.

A final application considered here is the fusion of images from different sources. It will be assumed

that the images have already been registered; this topic has been covered in some detail in the previous

chapter. Image fusion is therefore concerned primarilywith combining the data from each of the images in

a way that provides a higher quality (in some sense of the word) output image. This can range from

simple averaging to reduce noise, through to combining data from disparate imaging modalities (for

example positron emission tomography and magnetic resonance images, or multiple spectral bands) and

image super-resolution, where the output data has higher resolution than the input. In the context of

wavelet processing, each of the registered input images is decomposed through thewavelet transform, the

InIn

OutOut

thrthr
-thr-thr

Figure 10.25 Thresholding of wavelet coefficients for denoising. Left: hard thresholding; right:

soft thresholding.

Linear Transforms 335

wavelet coefficients are then merged in someway and the result inversewavelet transformed (Pajares and

de la Cruz, 2004).

If the coefficients are simply averaged, then thewavelet transform (being linear) is not necessary unless

the images are of different resolution. Onemethod of merging thewavelet coefficients that is surprisingly

effectiveis tosimplyselect thecoefficientwith themaximumabsolutevaluefromthe input images.Thiscan

readilybeextendedtofilteringwithin thewaveletdomainbeforeselecting,orusingconsistencyverification

to ensure that groups of adjacent coefficients are consistently selected from the same image (Pajares andde

la Cruz, 2004). A classic example of image fusion is focus extension in microscopy of extended objects.

With a thick object, the complete object cannot be brought into focus simultaneously – as the focus is

adjusted, different parts of the object come into and out of focus. The in-focus components of each image

will have higher local contrast, resulting in a larger magnitudewithin the detail coefficients. Selecting the

components with the maximum absolute values will select the parts of the image that are most in focus

within the set, with the fused output image having an extended focus range (Forster et al., 2004).

10.4 Image and Video Coding

The information content within images and video may be compressed to reduce the volume of data for

storage, or to reduce the bandwidth required to transmit data from one point to another (for example over a

network). Images are able to be compressed because they contain significant redundancy.

There are at least four types of redundancy within images. Spatial redundancy results from the high

correlationbetweenadjacentpixels.Sinceadjacentpixels are likely tocomefromthesameobject,knowing

the value of one pixel can enable the value of adjacent pixels to be predicted. Similarly, there is temporal

redundancy between the frames in a video sequence. Successive frames are likely to be very similar,

especially if there is limited movement within the sequence. If any movement can be estimated, then the

correlation can be increased further through motion compensation. Spectral redundancy reflects the

correlation between the colour components of a standard RGB image, especially when looking at natural

scenes. Finally, psycho-visual redundancy results from the fact that the human visual system has limited

resolution, both spatially and in terms of intensity, and is tolerant of errors or noisewithin textured regions.

All of these factors enable image data to be compressed by reducing the redundancy. The six basic steps

commonly used in compressing an image or video sequence are listed in Figure 10.26. These are outlined

briefly in the following paragraphs.

Colour conversion

Prediction

Transformation

Quantisation

Run-length coding

Entropy coding

Figure 10.26 Steps within image or video compression.

336 Design for Embedded Image Processing on FPGAs

10.4.1.1 Colour Conversion

Colour images are usually converted from RGB to YCbCr for two reasons. Firstly, most of the variation

within images is in intensity. Therefore, the conversion will concentrate most of the signal energy

into the luminance component. The weights used for the RGB to YCbCr conversion (Section 6.3)

correspond to the relative sensitivities of the human visual system, and this transformation is used with

many codecs. Alternatively, the reversible colour transform of Equation 6.57 can also be used by JPEG

2000 (ISO, 2000).

The lower colour spatial resolution of the humanvisual system enables the chrominance components to

down-sampled by a factor of twowithout any significant loss of subjective quality. This down-sampling is

optional and is automatically handled with wavelet-based compression by the first wavelet scale.

10.4.1.2 Prediction

Prediction uses the pixels already available to predict the value of the next pixel (or block of pixels). The

residual, or prediction error, has a tighter distribution enabling it to be coded with fewer bits. It is most

commonly used with lossless coding methods, where prediction can typically give 2:1 compression.

However, it is less often used directlywith lossy image coding. Lossy JPEG coding only uses prediction of

the DC component between horizontally adjacent blocks. Prediction is used in intra-frame coding within

H.264 with a number of different prediction modes.

One of the most common uses of prediction is in inter-frame coding of video. A video sequence is

usually divided into groups of pictures (Figure 10.27). The first frame within the group is coded

independently of the other frames using intra-frame coding, and is denoted an I-frame. Then, motion

compensated forward prediction is used to predict each P-frame from the previous I- or P-frame. Finally,

bi-directional (both forward and backward) prediction is then used to predict the intervening frames,

denoted B-frames. The B-frames usually require the least data because the backward prediction is

effective at predicting the background when objects havemoved away. The number of P- and B-frames in

each group of pictures depends on the particular codec and application.

Motion compensated prediction divides the image into 8� 8 or 16� 16 blocks and usually uses the sum

of absolute differences to find the offset thatminimises the prediction error (as described in Section 9.5.2).

This is an effective method of reducing the redundancy when the motion is within the search window.

Since the B-frames require the following P-frame (or I-frame), the frames are not transmitted in their

natural order, but the order inwhich they are required to decode the sequence. Thismeans that the encoder

must be able to hold several uncompressed B-frames until the following P-frame (or I-frame) is available.

The decoder is a little simpler, in that it always only needs to hold the two frames used for providing

motion compensated source data.

To be most effective, it is necessary for the encoder to decode the frame before using it to make

a prediction so that the data will match that available at the receiver. Otherwise, any quantisation errors in

I IB B BB B BP P

Forward prediction

Backward prediction

Figure 10.27 Prediction within a group of pictures, showing the relationships between I, P and

B frames.

Linear Transforms 337

the prediction will not be taken into account and can propagate from one P-frame to the next. This

decoding requires an inverse transform to convert the quantised coefficients back to pixel values.

Unfortunately, the encoder has little control over the implementation of the inverse transform in the

receiver.With a single image codec, this does not matter, but with video the differences in round-off error

can accumulate from frame to frame, causing the prediction made at the receiver to drift. This requires

care with the design of the inverse transform used at both the encoder and receiver (Reznik et al., 2007).

10.4.1.3 Transformation

The primary purpose of image transformationwithin an image coding context is to concentrate the energy

into as few components as possible. This exploits the spatial correlation within images. Different

compression methods use different transformations. Two of the most commonly used transforms are the

discrete cosine transform, used with JPEG, MPEG, and the wavelet transform, used with JPEG 2000.

The discrete cosine transform is close to the optimal linear transform for decorrelating the pixel values.

This makes it an obvious choice for image compression. However, with global transforms every

coefficient depends on every input pixel. Therefore, the image is usually divided into smaller blocks,

which are transformed independently. JPEG performs a discrete cosine transform on 8� 8 blocks. One

limitation of dividing the image into blocks is that, since each block is encoded independently, there is

a loss of coherence at block boundaries. After quantisation, this can lead to blocking artefacts – the

appearance of false edges at block boundaries, especially at high compression rates. These can be reduced

to some extent by filtering the image after decoding (Vinh and Kim, 2010).

The wavelet transform operates locally rather than globally, reducing the need to split the image into

blocks. JPEG 2000 allows large images to be split into large blocks or tiles to reduce the memory

requirements when coding or decoding. Wavelets compact most of the energy into the low frequency

coefficients, giving good energy compaction. The high frequency components are concentrated on edges,

with a significant number of small or zero coefficients, enabling effective compression.

Another advantage ofusing thewavelet transform is that it is easy to reconstruct anoutput image at a range

of different scales simply by choosing which level of wavelet coefficients are used in the reconstruction.

10.4.1.4 Quantisation

Transformation just rearranges the data, which is completely recoverable via the corresponding

inverse transformation (in practise, if the coefficients are not integers, then rounding errors can make

the transformation irreversible). The next step in the coding process, quantisation, is lossy in that the

reconstructed image will only be an approximation to the original. However, it is the quantisation of

the coefficients that can enable the volume of data used to represent the image to be compressed

significantly. With coarser quantisation steps, fewer values are used and the greater the compression.

However, more information will be lost and this can reduce the quality of the reconstructed image

or video.

Quantisation divides the range of input values into a number of discrete bins by specifying a set of

increasing threshold levels. It is this many-to-one mapping that makes quantisation irreversible. When

reconstructing the value, the centre value for the bin is usually used. The difference between the original

value and the reconstructed output is the error or noise introduced by the quantisation process. Since it is

usually the transform coefficients that are quantised rather than the input pixel values, the errors do not

normally appear as random noise within the image. Typically, quantisation errors show in the image as

blurring of fine detail and ringing around sharp edges.

The optimal quantiser adjusts the quantisation thresholds tominimise themean square error for a given

number of quantisation levels. This makes the bins smaller where there are many similar values, reducing

the error, at the expense of increasing the error where there are fewer values. This tends to make the bin

338 Design for Embedded Image Processing on FPGAs

occupancymore uniform, reducing the gains of entropy coding. The optimal quantiser is data dependent,

so requires the levels to be transmitted with the compressed data, reducing compression efficiency. A

similar effectmay be achievedwithout the overhead by using a predefined nonlinearmapping followed by

uniform quantisation (where the threshold levels are equally spaced). For image compression, however,

the gains from using optimal quantisation are not sufficiently significant to warrant the additional

complexity; it is easier to simply use uniform quantisationwith a finer step size and rely on entropy coding

to exploit the fact that some bins are relatively empty.

For image compression, different transformed coefficients have different visual significance, so

different quantisation step sizes are used for each coefficient. JPEG has tables specifying the quantisation

step sizes for each coefficient; ‘standard’ tables are given in Figure 10.28 (ISO, 1992; Wallace, 1992). If

the DCT coefficients are C½u; v� and the quantisation table is Q½u; v�, then the quantised coefficients are:

Ĉ u; v½ � ¼ round
C½u; v�
Q½u; v�
� �

ð10:58Þ

Any scale factors associated with the DCT can be directly included into the quantisation step. This

requires two tables to be used: one for actually performing the quantisation and the other which is saved

with the data as part of the JPEG output file.

A single quality factor parameter can be used to scale the quantisation step size to control the

compression (and consequently the image quality). The implementationwithin the open source IJG JPEG

codec uses a quality factor, QF, that varies from 1 to 100 to scale the standard quantisation tables

as follows:

Q̂ u; v½ � ¼
round

50Q½u; v�
QF

0
@

1
A; QF < 50

round Q u; v½ � 2�QF

50

0
@

1
A

0
@

1
A; 50 	 QF

8>>>>>>><
>>>>>>>:

ð10:59Þ

with any values that go to zero set to 1.

JPEG2000 uses a bit-plane coding approach to control quality. In the output data stream, the data is

encoded in bit-plane order with the most significant bit encoded first, through to the least significant bit

last. The EBCOTalgorithm (Taubman, 2000) divides the tree into blocks and performs coding inmultiple

passes at eachwavelet layer to ensure that the bits are in order of their significance in terms of contributing

to the quality of the final image. This enables the coding for each block to be truncated optimally to

minimise the distortion while controlling the bit-rate of the final output stream. One FPGA implementa-

tion of EBCOT algorithm has been described by Gangadhar and Bhatia (2003).

64

68

78

72 92 99

101121

100

120103

103

103109

104 113

112

92

95 98

64

62

61

55

55

29

69

8087

87

77

60

56

56

57

16 16

16

58

51

51

81

40

40

26

17

18

14

14

14

49

24

24

24

19

13

37

35

12 12

22

22

11 10

56

66

99

99

99

99

99

99

99

99

9999

9999

9999

99

99

99

99

9999

9999

9999

9999

99

99

99

99

9999

9999

9999

9999

99

99

99

99

9999

99

9999

9999

9999

66

47

47

26

26

17

18

18 24

24

21

64

62

61

55

54

44

43

29

63

60

56

53

45

42

30

28

59

57

52

46

41

31

27

16

58

51

47

40

32

26

17

15

50

48

39

33

25

18

14

7

49

38

34

24

19

13

8

6

37

35

23

20

12

9

5

2

36

22

21

11

10

4

3

1

Figure 10.28 JPEG compression (ISO, 1992). Left: standard luminance and chrominance quantisation

tables; right: zigzag coding order.

Linear Transforms 339

10.4.1.5 Run-Length Coding

Line drawings, and other related graphics, have a limited number of pixel values, and these often occur in

long runs. This makes run-length encoding of such images an effective compression technique.

Many transform techniques have a large proportion of the coefficients close to zero. Having a dead

band – a wider bin for zero – gives more zero coefficients and enables run-length coding to be used to

compress successive runs of zeros. This is used in twoways: one is true run-length coding,where a symbol

and count are output; the other is to have a special zero-to-end symbol, which indicates that all of the

remaining symbols to the end of the block are zero. This latter approach is effective both with the block-

based coding used by JPEG and also with wavelet coding, eliminating whole trees of zero coefficients,

especially for the more significant bits when bit-plane coding is used.

With block-based coding, many of the high frequency components are zero. These can be placed at the

end of the block by storing the coefficients in the zigzag order shown in Figure 10.28. This enables many

coefficients to be compressed by a single zero-to-end symbol. Zigzag reordering may be implemented

efficiently by having a lookup table on the address lines, as shown in Figure 10.29. If the coefficients are

not in their natural order, for example if theDCTproduces a permuted output, then the zigzag lookup table

can also take this into account. A similar lookup table based addressing technique can be used when

decoding the images.

10.4.1.6 Entropy Coding

The final stage within the coding process is entropy coding. This assigns a variable length code to each

symbol in the output stream based on frequency of occurrence. Symbols which appear frequently are

given short codes, while the less common symbols are given longer codes. The entropy of a stream is:

E ¼ �
X
x

pðxÞ log2pðxÞ ð10:60Þ

where pðxÞ is the probability of thexth symbol. The entropy gives a lower bound on the average number of

bits used to represent the symbols. For N different symbols, the entropy will be between zero and log2 N,

with the maximum occurring when all symbols are equally probable.

One of the most common forms of entropy coding is Huffman coding (Huffman, 1952). This uses the

optimum number of bits for each symbol. The Huffman code is built by sorting the symbols in order of

probability and building a tree by successively combining the two symbols with the least probability. The

length of each branch is the number of bits needed for the corresponding symbol. The main limitation of

Huffman coding is that an integer number of bits is required for each symbol. Consequently, the average

symbol length will be greater than the entropy. In particular, symbols with probability greater than 50%

will always require one bit, even though the entropy is lower. This may be improved by groupingmultiple

symbols together and encoding symbol groups. A second limitation is that an overhead is incurred in

representing the coding table (the mapping between a symbol and its code) since this is data dependent.

Although there is no default Huffman table in JPEG, a typical table is providedwith the standard based on

a large number of images. Using this table saves having to gather the statistics from the image before

coding. There are techniques for efficient compression of the coding table (Body and Bailey, 1998),

although these are not currently used by any standard.

Address
Zigzag

LUT

Coefficient

block
Coefficient stream

Figure 10.29 Implementation of zigzag reordering.

340 Design for Embedded Image Processing on FPGAs

JPEG combines the run lengthwith the size of the coefficient to form an 8-bit symbol which is Huffman

coded, followed by the actual coefficient.A block diagramof a possibleHuffman codingmodule for JPEG

compression is shown in Figure 10.30. The run length of zeros is provided with each non-zero coefficient

as input. The encoding block determines the length of the value, Vlength, and encodes it in the available

bits, Value. The value length is combined with the zero run length, giving an 8-bit symbol for Huffman

coding. The coded symbol is restricted to 16 bits length, so a lookup table based approach therefore

requires a 256� (16 þ 4) lookup table to provide theCode and associated length,Clength. TheCode and

Value are concatenated and barrel shifted to align with the Remaining bits. The lengths are added to the

BitsLeft with the carry used to determine how many bytes are shifted out.

Using a custom table with JPEG requires performing the initial coding steps without the final Huffman

coding. The symbols and quantised coefficients need to be saved in a frame buffer while a histogram is

used to gather the statistics on the particular symbols used. The histogram then needs to be sorted and the

Huffman tree built. The final step is then to Huffman encode the data from the frame buffer.

A table approach can also be used for Huffman decoding. Brute force decoding would require 216

entries to perform the decoding. However, by segmenting the address space (decoding fewer bits at a

time), smaller tables can be used, although at the expense of more clock cycles (Body and Bailey, 1998).

This is practical because run-length coding of the zeros means that a value need not be decoded every

clock cycle. An alternative approach has been described by Sun and Lee (2003) based on counting the

number of leading ones and using this to select the table for decoding. This works because the longer code

words tend to begin with a relatively long sequence of ones.

Arithmetic coding removes the restriction of having an integer number of bits per symbol. It encodes the

whole stream as an extended binary number, representing a proportion between 0 and 1 (Rissanen, 1976;

Langdon, 1984;Witten et al., 1987). Each symbol successively divides the remaining space in proportion

to its probability. The key to an efficient implementation is to work with finite precision and output the

leading bits once they can no longer be affected. Using finite precision (and rounding) introduces a small

overhead over the theoretical minimum length. There is also an overhead associated with specifying the

symbol probabilities.

The basic structure of an arithmetic coder is shown in Figure 10.31. The Start andWidth registers hold

the start and width of the current range. At the start of coding they are initialised to 0 and 1 respectively.

The symbol to be coded is looked up in a table to determine the start and width of the symbol. These are

scaled by the current Width to give the new Start and Width remaining. The renormalisation block

Zero
run length

Coefficient
value

Encoding

Barrel shift

Byte shifter

VlengthValueCode Clength

Huffman
LUT

}
}

}

Remaining BitsLeft

Carry

Bytes out

Figure 10.30 Huffman coding for JPEG.

Linear Transforms 341

renormalises the variables and outputs completed bits. The carry propagation records the number of

successive Ones output, because a carry can cause these to switch to zeros (Witten et al., 1987).

The overhead associated with initially specifying the initial probabilities may be overcome by adaptive

coding. This builds the table of probabilities as the data arrives. While adaptive coding can be used with

either Huffman or arithmetic coding, it is less convenient with Huffman coding because changing the

symbol probabilities requires completely rebuilding the code tree. Since arithmetic coding works directly

with the probabilities, this is less of a problem. There are two approaches to adaptive coding. The first is to

assume each symbol is equally likely (with a count of one), with the count incremented and probabilities

adjusted as the symbols arrive. There is an overhead resulting from overweighting rare symbols at the

start. The second approach is to have an empty table, except for an escape symbol, which is used to

introduce each new symbol.

Adaptive coding is good for very short sequences where the overhead of the table can be larger than the

actual sequence itself, especially if there is a large number of symbols compared to the length of sequence.

It also works well for long sequences because the statistics approach the optimum for the data, although

there is an overhead at the start while the table is adapting to the true probabilities. If the statistics are not

stationary, then periodic rescaling of the counts (for example dividing them all by a power of two) enables

the probabilities to track that of the more recent data.

One final class of compression methods that will be mentioned briefly is that of dynamic dictionary

based methods. These allow sequences of symbols to be combined and represented as a single symbol.

The original method in this class is LZ77 (Ziv and Lempel, 1977), which uses as its dictionary a window

into the past samples. A sequence of symbols that has already been encountered is coded as an offset plus

length. LZ77 is combinedwith Huffman coding to give theDEFLATE algorithm (Deutsch, 1996), used to

encode PNG image files. The search through past entries can be accelerated through the use of a hash table

to locate potential candidate strings.Alternatively, a systolic arraymay be used to perform the search (Abd

Elghany et al., 2007). A related variation is the LZWalgorithm (Welch, 1984), which explicitly builds a

dictionary on-the-fly by extending existing sequences each time a new combination is encountered. LZW

is used to compress GIF image files.

WidthStart

Bits out

Symbol
start

width

Renormalisation

Cumulative
probability

Symbol

Carry propagation

Ones

Figure 10.31 Basic structure of arithmetic coding.

342 Design for Embedded Image Processing on FPGAs

11

Blob Detection and Labelling

Segmentation divides an image into regions which have a common property. One common approach to

segmentation is to enhance the common property through filtering, followed by thresholding to detect

the pixels which have the enhanced property. Filtering has been covered in Chapter 8 and various forms

of thresholding in Sections 6.1.2, 6.2.3, 7.2.3 and 8.7. However, these operations have processed the

pixels individually (using local context in the case of filters). To analyse the image it is necessary to

associate groups of related pixels to one another. This enables data on complete objects to be extracted

from the groups of pixels.

Image processing operations that transform the image from individual pixels to objects are, therefore,

intermediate level operations. Since the input data is still in terms of pixels, it is desirablewhere possible to

use stream-based processing. The output consists of a set of blobs or blob descriptions, and may not

necessarily be in the form of pixels.

Of the many approaches for blob detection and labelling, only the bounding box, run-length coding,

chain coding and connected components analysis are considered here. FPGA implementation of other

region-based analysis techniques, such as the distance transform, watershed transform and Hough

transform, are considered at the end of this chapter.

11.1 Bounding Box

The bounding box of a set of pixels is the smallest rectangular box aligned with the pixel axes that

contains all of the detected points. It is assumed that the input pixel stream has been thresholded or

segmented by preprocessing operations. Let Ci be the set of pixels associated with object i. Then the

bounding box of Ci is:

xmin;i ¼ min xpjðxp; ypÞ 2 Ci

� �
xmax;i ¼ max xpjðxp; ypÞ 2 Ci

� �
ymin;i ¼ min ypjðxp; ypÞ 2 Ci

� �
ymax;i ¼ max ypjðxp; ypÞ 2 Ci

� �
ð11:1Þ

Initially assume that the input image is binary; the case ofmultiple labels is considered after presenting the

basic circuit. Figure 11.1 shows the basic stream processing implementation. In the frame blanking period

Design for Embedded Image Processing on FPGAs, First Edition. Donald G. Bailey.

� 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd.

before the image is processed, init is set to one. The shaded block is only clocked for detected pixels, so

that background pixels are effectively ignored. The init register provides initialisation when the first pixel

is detected, by forcing the address of that pixel to be loaded into the xmin, xmax, ymin and ymax registers.

Since the image is scanned in raster order, the first pixel detectedwill provide the ymin value. The y value of

every detected pixel is clocked into the ymax register because the last pixel detected in the framewill have

the largest y. After the first pixel detected, the x value is compared with xmin and xmax with the

corresponding value adjusted if extended. At the end of the frame, the four registers indicate the extent of

the object pixels within the image.

The basic implementation can be readily extended to process multiple input pixels per clock cycle

(Figure 11.2). It is easiest if the number of pixels processed simultaneously is a power of two. The x

address then contains only the most significant bits of the address, and two decoders are required to

determine the least significant bits of the leftmost and rightmost of the pixels coming in simultaneously.

These decoders can easily be built from the lookup tables within the FPGA. A similar approach can be

used if multiple rows are processed simultaneously.

If there are multiple input classes, they can all be processed in parallel. Rather than build separate

hardware for each class, the fact that each input pixel can only have one label implies that the update logic

can be reused. The registers can then bemultiplexed by the label of the incoming pixel. Unfortunately, the

multiplexerswill usemore resources than the actual update logic. The alternative is to replace the registers

with RAMand use the built-in RAMaddressing to perform themultiplexing. The RAMs forxmin andxmax

need to be dual-port, because the value needs to be read for the comparison. Since there is typically only a

small number of labels, using fabric RAMgives a resource efficient implementation. Figure 11.3 assumes

that a late write is not available, so the label and x value need to be buffered for writing in the following

clock cycle. Otherwise, the hardware follows much the same form as the basic implementation in

Figure 11.1.

Using memory-based processing makes it difficult to process multiple input pixels simultaneously,

because only one label can be read or written in each clock cycle. Therefore, to processmultiple pixels per

clock cycle it is necessary to have multiple copies of the hardware and to combine the results at the end of

the frame.

0

x
min

CE

x
max

CE

y
min

CE

y
max init

CE

CE

x

y

Pixel input

Address

Figure 11.1 Basic bounding box implementation.

x
min

CE

x
max

CE

CE

x
MSB

Input
pixels

Left

Right

} }

init

Figure 11.2 Processing multiple horizontal pixels simultaneously.

344 Design for Embedded Image Processing on FPGAs

From the bounding box, it is easy to derive the centre position, size and aspect ratio of the object:

centre ¼ xmax þ xmin

2
;
ymax þ ymin

2

� �
ð11:2Þ

size ¼ xmax�xmin þ 1; ymax�ymin þ 1ð Þ ð11:3Þ

aspect ratio ¼ ymax�ymin þ 1

xmax�xmin þ 1
ð11:4Þ

However, the basic bounding box is unable to distinguish the orientation of long thin objects, as

demonstrated in Figure 11.4. The basic system of Figure 11.1 can be extended to give orientation if

required.Consider an object orientated top-right to bottom-left. The registerxmin is adjusted onmost rows,

whereas xmax is only adjusted on the few rows at the top. The converse is true for an object orientated top-

left to bottom-right. One method of discriminating between the two is to maintain an accumulator, acc,

and increment it whenever xmin is adjusted and decrement it whenever xmax is adjusted. At the end of the

frame, the sign of the accumulator indicates the orientation of the object. For long thin objects, this enables

the angle to be estimated as:

angle � signðaccÞ*arctan ymax�ymin

xmax�xmin

� �
ð11:5Þ

The main limitation of simply using the bounding box to extract the extent of an object is that the

measurements are sensitive to noise. Any noise on the boundary at the extreme points will affect the limits

and, consequently, the measurements derived in Equations 11.2 to 11.5. An isolated noise point away

from the object can result in a spurious bounding box, givingmeaningless results. Therefore, it is essential

x
min

x
max

y
min

y
max

w
addr

x

y

Pixel label

Address

0
x

init

W
ADDR

W
ADDR

R
ADDR

R
ADDR

R
ADDR

WE WE W
ADDR

W
ADDR

WE W
ADDR

WE

Figure 11.3 Bounding box of multiple labels in parallel.

Figure 11.4 The bounding box cannot directly distinguish the orientation of long thin objects.

Blob Detection and Labelling 345

to apply appropriate filtering to remove noise before using the bounding box. Note that if amorphological

opening with a circular or rectangular structuring element is used to remove isolated points, it is sufficient

to just perform the erosion, because the effects of the dilation can be taken into account by adjusting

Equations 11.2 to 11.5.

The biggest advantage of a simple bounding box is the low processing cost. Therefore, if

the noise can be successfully filtered, it provides an efficient method of extracting some basic

object parameters.

11.2 Run-Length Coding

Many intermediate level image processing algorithms require more than one pass through the image. In

this case, memory bandwidth is often the bottleneck on the speed of the processing. For some image

processing operations, this may be overcome by processing runs of pixels as a unit, rather than processing

individual pixels. In all but a few pathological cases, there are significantly fewer runs than there are

pixels, allowing a significant acceleration of processing.

There are a number of different ways in which the runs can be encoded, as demonstrated in

Figure 11.5. The standard approach used with image compression is to record each run as a (class,

length) pair. However, if subsequent processing considers the connectivity between adjacent rows, then

the absolute position is only implicit with this representation. An alternative is to record the absolute

position of the transitions with a (class, start) pair, with the length given implicitly by the difference

between adjacent starts. In the case that the input image is binary, it is only necessary to record the start

and end of each run of object pixels and not code the background. In this case, it is also necessary to have

an additional symbol to indicate the end of a line when it is a background pixel. This helps to identify

blank lines and is necessary to prevent the second and third lines from Figure 11.5 from being

considered as part of the same line.

Since each row is coded independently, multiple rows may be processed in parallel by building

multiple processors.

The application of run-length coding for blob detection and labelling is considered briefly in the

following two sections. Run-length coding can also be used for texture characterisation; in particular the

distribution of run-lengths can be used to discriminate different textures. Directly run-length encoding a

grey-level image is not as powerful as other texture analysis methods (Conners and Harlow, 1980).

However, when applied to a binary image, it can be useful for providing statistical information on

object sizes.

Another common application of run-length coding is for image compression (Brown and Shepherd,

1995).When an image has only a few distinct greyscale values or colours, it may be applied directly on the

pixels. For general images, run-length coding is not usually effective on its own because adjacent pixels

seldom have identical values. However, when the image is transformed, many of the coefficients are

truncated to zero. Here run-length coding of the zeros can significantly reduce the number of coefficients

that need to be stored.

0 1 2 3 4 5 6 7 8 9

(0,10)
(0,2)(1,3)(0,5)
(0,7)(1,3)
(0,1)(1,5)(0,4)
(1,2)(0,2)(1,6)
(0,10)

(class,length) (class,start)
(0,0)
(0,0)(1,2)(0,5)
(0,0)(1,7)
(0,0)(1,1)(0,6)
(1,0)(0,2)(1,4)
(0,0)

(start,end)
e

(2,4)e
(7,9)
(1,5)e
(0,1)(4,9)
e

Figure 11.5 Different schemes for run-length encoding.

346 Design for Embedded Image Processing on FPGAs

11.3 Chain Coding

One common intermediate level representation of image regions is to encode each region by its

boundary. This reduces each two-dimensional shape to a one-dimensional boundary encodedwithin the

two-dimensional space. This has advantages over a conventional image representation. The volume of

data is significantly reduced in many applications, especially where the regions are large and have

relatively smooth boundaries. This reduction in data can lead to efficient processing algorithms for

extracting region features.

There are several different boundary representations (Wilson, 1997), of which the most common is the

Freeman chain code (Freeman, 1961). Each pixel is coded with the direction of the next pixel in the

sequence, as demonstrated in Figure 11.6. The chain code follows the object pixels on the boundary,

keeping the background on the left. Consequently, the outside boundary is traversed clockwise and holes

are coded anti-clockwise. Amain alternative code is the crack code, which follows the cracks between the

object and background pixels, as shown on the right in Figure 11.6.

11.3.1 Sequential Implementation

A standard software algorithm for chain coding is to perform a raster scan of the image until an

unprocessed boundary is encountered. Then scanning is suspendedwhile the object boundary is traced and

the chain code for the object built. This proceeds from a current boundary pixel looking at the neighbours

sequentially in a clockwise order to find the next boundary pixel, and adding the corresponding link to the

chain code.The traced pixels are alsomarked as processed to prevent them frombeing detected again later.

Boundary following continues until the first pixel is reached and the complete boundary has been traced.

At this point, the raster scan is resumed looking for another unmarked boundary pixel.

Such an algorithm does not fit within a stream processing implementation because it requires random

access to the image. Although part of the algorithm involves a raster scan through the image, this is

suspended whenever an object is encountered. The time taken to process the image also depends on image

complexity; each pixel is loaded once during the raster scan, while approximately two pixels are read and

one pixel is written for each boundary pixel detected during the boundary scan. An approach similar to this

was implemented on anFPGAbyHedberg et al. (2007).Note that in someapplications, the chain code does

not actually have to be saved; features such as area, perimeter, centre of gravity and the bounding box canbe

calculated directly as the boundary is scanned.

The scanning process may be accelerated by using run-length codes as an intermediary (Kim et al.,

1988). In the first pass, the image is run-length encoded and the run adjacency determined. The boundary

0
0 0 0

0 0

0

0

0

0

0

0

0

0
0

0

1

1 1

11

1

1

1

1

1

1

1

1

1

1
1

1

1
2

2

2

2

2

2 2

2

2

2

2

2 2 2

2

2

2

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3
3

3

4

4

4

5
5

5

5

6

6

6

6

0

123

4

5 6 7

0

1

2

3

7

7

7

7

7

7

(2,1) 0070712766657335543423221
(3,2) 567711334

(2,1) 0003003011030333323032121
23232212211211101

(3,3) 3300012122

Figure 11.6 Boundary representations. Left: chain code; right: crack code. The filled circle represents

the start point of the boundary.

Blob Detection and Labelling 347

scan can then be deferred to a second pass, where it is nowpotentially faster because runs can be processed

rather than individual pixels.

11.3.2 Single Pass Algorithms

Even better is to perform the whole process in one pass during the raster scan. The basic principle is to

maintain a set of chain code fragments and grow both ends of each chain fragment as each row is scanned.

In this way, all of the chains are built up in parallel as the image is streamed in.

This has significant implications in terms ofmemory requirements.When only one chain is encoded at a

time and the chain is built in one direction only (by tracking around the edge of the blob), the chain links

can simply be stored sequentially in an array. Linking from one chain link to the next is implicit in the

sequential addressing. However, when multiple fragments are being built simultaneously, with both the

start and the end being extended, it is necessary to use some form of linked list. The storage space required

for the linking is often significantly larger than the storage required for the chain code itself.

The basic principle is illustrated in Figure 11.7. As the image is scanned, each edge is detected and the

chain code built within the context of the previous row.Consider the scan of the second line in this example.

Two separate objects are encountered andchains begun. Even though thesebelong to the sameobject, this is

not knownat this stage. In general, theremaybemultiple starts for eachboundary, occurring at the local tops

of the object andbackground (Cederberg, 1979).As the next line is scanned, the chains are extendedonboth

the left and right ends. On the third line, a new edge is started for the concavity that will eventually become

the hole. The two fragments from the original two chains also merge and the corresponding chains linked.

If the two fragments belong to two different start points, one of the start points must be deleted.

Several software approaches using this basic technique are described in the literature. Cederberg (1979)

scanned a 3� 3 window through the image to generate the chain links and only coded the left and right

fragments, as illustrated by the arrows on the left in Figure 11.7.He did not consider linking the fragments.

Chakravarty (1981) also scanned a 3� 3window through the image and added segments built to a list. The

algorithm involved a search to match corresponding segments as they are constructed. Shih and Wong

(1992) used a similar approach to extendmid-crack codes, using a lookup table of the pixelswithin a 3� 3

window to derive the segments to be added.Mandler andOberlander (1990) used a 2� 2window to detect

the corners in a crack code, which were then linked together in a single scan through the image. Their

technique did not require thresholding the image first and derived the boundaries of each connected region

of the samepixel value. Thismeant that each boundary is coded twice: once for the pixel value on each side

of the crack. Zingaretti et al. (1998) performed a similar encoding of greyscale images. Their technique

00

0
1

1
2

2

34

5 6

7

7

7

edgeNew

edgeNewedgeNew

Merge

00(2,1)
(8,1)

701
72
00(2,1)

(8,1)

712
6

5(3,2)34

0070(2,1)1
7(8,1)2

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

109

Figure 11.7 Growing a chain code with stream processing. Left: solid circles represent the starting

points of new edges, with the lines showing the direction that the fragments are extended from these

starting points, until the paths merge at the hollow circles. Right: how the boundary is built for the first

three rows of the object.

348 Design for Embedded Image Processing on FPGAs

used a form of run length coding, looking up a 3� 2 block of run lengths to create temporary chain

fragments and linking these together as the image was scanned.

In a stream processing environment, it is unnecessary to actually perform the run-length coding first.

This can be achieved by performing run-length coding of the cracks between pixels rather than the pixels

themselves, with a simple linking mechanism from one row to the next (Bailey, 2010a). Since the linking

primarily takes place at corners, this can be considered as a variation of the method described byMandler

and Oberlander, (1990). This hybrid crack run-length code is demonstrated on the left in Figure 11.8. It

consists of the length of a horizontal run, plus one bit indicating whether the crack at the end of the run

links up to the previous row, or down to the next row.

The crack run-length chain can be built by scanning a 2� 2window through the image, as shown on the

left in Figure 11.9. The pattern of pixels within the window provides the control signals for the linking

circuitry on the right. With a binary image, the four bits within the window can conveniently be decoded

from an arbitrary combination of patterns to produce each control signal with a single LUT.

0:(2,1)
1:(8,1)

2,5
8,9

0:(2,1)
1:(8,1)

1,2
8,10

0:(2,1)
1:(8,1)
2:(5,3)

1,10

5,3

3↓

0 1 2 3 4 5 6 7 8 9 10 11

2↓

-2↓

1↓

1↓

1↑

1↑

1↑

1↑

1↑

1↑

0↑

0↑

-1↑

-1↑

-1↑

-1↑

-2↑

-2↑

0↑

0↑

0↑

0↑

1↓

0↓

0↓
0↓

0↓

-1↓

-1↓-1↓

1↓

Segments LinksEnds

1

1

1

1

0: 1

3

0

4

8

2

6

7

3

3

7

7

9

9

7

3

00

0

0

04

4

5

5

5

0: 0

0: 4

0: 8

0: 5

2: 9

1: 2

1: 6

1: 3

1: 7

2
2

2

2

26

6

8

11

11

10

10

10

2: 10 0: 11

3↓

2↓

0↓

-2↓

1↓

1↓

5
3↓(2,1) 0↓0↓0↓1↓1↓0↑1↑2↓

-2↑-1↓-1↑-1↑1↓
1↑0↑

−2↓ 0↓ 1↓ 1↑ 1↑ –1↑(5,3)

-1↓-1↓
0↑-1↑0↑-2↑

Figure 11.8 Raster-based crack run-length coding. Left: the coding of the regions. Right: building the

linked lists representing the boundary, showing the first three lines of cracks.

hold_le

hold_x

hold_seg

Row buffer

Links

Segs

Ends

ADDR

ADDR

ADDR

ADDR

DATA

DATA

READ

WRITE

row_buff_le

ADDR ADDR

READWRITE

ADDR ADDR

READWRITE

row_buff_seg

Context

Control

new_le

new_seg

x

y

=

Figure 11.9 Block diagram of raster-based crack code follower.

Blob Detection and Labelling 349

In addition to the row buffer required to form the input window, two other row buffers are also required

to record the segment and link numbers at the ends of each fragment formed, as indicated along the

bottom of each scan in Figure 11.8. The link entry row buffer (row_buff_le) holds the ends of the links

from the previous row and the segment row buffer (row_buff_seg) allows the mergers to be detected and

processed appropriately.

Looking at the linking first, at the start of a crack run-length, the x position is latched into hold_x. If the

link comes from the previous row, the le from the rowbuffer is held, otherwise a new link entry is allocated

and saved in the row buffer and held in hold_le. At the end of the run, either the link from the previous line

is read from the rowbuffer or another new link is created, and the run-length datawritten to theLinks table.

If a newsegmentwas created (bothendsof the run linkdown to thenext row) it is alsonecessary toallocate

a new start pointer and save the position (either x or hold_x depending on the direction) and link entry into

theSegments table. If amerge occurs (both endsof the run link to the previous row) it is necessary to check if

the segments that are linked belong to the same segment or different segments. At the start of the run, the

segment number is read from the row buffer and held in hold_seg. This is compared with the segment

number at the end of the run. If they are the same, the boundary is completed, otherwise the segments are

merged and one of the segment pointers is discarded. This requires updating the segment number in the row

buffer corresponding to the opposite end of the discarded segment. The Ends table, indexed by the segment

number, is used to keep track of the column numbers of the current ends of each segment.

With an early read (thememory is read in themiddle of the clock cycle) and latewrite, thewhole process

can operate at one pixel per clock cycle (Bailey, 2010a). With a little extra logic, the segment entries

that are discarded through merging can be recycled reducing the size of the Segments and Ends tables.

The Links table requires one entry for each vertical crack within each object (the horizontal cracks are

represented by the run lengths). In theworst case, this is the same as the number of pixels in the image (for

alternating black andwhite lines), although formost realistic images of interest, the size of the table can be

considerably smaller.

If necessary, the crack run-length code can be converted to a conventional crack code or Freeman chain

code for subsequent processing. However,much of the processingmay be able to be performed directly on

the crack run-length code.

An image of the region may be reconstructed from the boundary code by drawing the boundary

within an empty image and filling between the boundary pixels using a raster scan, producing a streamed

output image.

11.3.3 Feature Extraction

Since the boundary contains information about the shape of a region, many features or parameters may be

derived directly from the chain code (or other boundary code). The most obvious measurement from the

chain code is the perimeter of the object. Unfortunately, simply counting the number of steps within

the chain or crack code will overestimate the perimeter length because of quantisation effects. The error

in the estimate also depends on the angle of the boundarywithin the image. To overcome this problem, it is

necessary to smooth the boundary by measuring the distance between points k steps on either side, and

assigning the average as the step size at each link (Proffitt and Rosen, 1979):

Perimeter ¼ 1

k

X
i

ffi
ðyi þ k�yiÞ2 þ ðxi þ k�xiÞ2

q
ð11:6Þ

For long straight boundaries, increasing k can reduce the error in the estimate of the perimeter to an

arbitrarily low level. However, this will result in cutting corners. Consequently, making k too large will

underestimate the perimeter. For objects with rough boundaries, the perimeter will depend on the scale of

the measurement, enabling a fractal dimension to be calculated as a feature.

350 Design for Embedded Image Processing on FPGAs

Corners can be defined as regions of extreme curvature. Again, the quantisation effects on the boundary

mean that the local curvature is quite noisy and can be smoothed by considering points k links apart. A

simple corner measure at a point is the difference in angle between the points k links before the current

point and k links after the current point (Figure 11.10).

Dyi ¼ tan�1 yi þ k�yi

xi þ k�xi
�tan�1 yi�yi�k

xi�xi�k

ð11:7Þ

Since k is a small integer and the steps are integers, the angles may be determined by table lookup. (For

example, with k ¼ 3,�3 � yi þ 3�yi, xi þ 3�xi � 3, requiring only four bits from each of Dx and Dy, or
eight input bits total for the lookup table to implement tan�1.) The peaks in Dyi that are over a predefined
angle are defined as corners. A more sophisticated corner measure that takes into account the length over

which the angle changes is given by Freeman and Davis (1977).

Measuring the area of a region consists of counting the number of pixels within the boundary. This may

be obtained directly from the boundary by using contour integration (Freeman, 1961). It is important to

note that the chain code is on one side of the boundary, so it will underestimate the area of regions and

overestimate the area of holes unless the part pixels outside the chain are taken into account. The crack

code does not have the same problem. Expressing it in terms of the crack codes:

Area ¼
þ

chain

1dxdy ¼
X
j

Xj
i

Dxi

 !
Dyj ð11:8Þ

This is amenable to direct calculation from the crack run-length codes. The area is generally much less

sensitive than the perimeter to digitisation errors and noise.

Note that blobs will have a positive area, while holes will have a negative area. This enables external

and internal boundaries to be distinguished, enabling the number of holes, and the Euler number to

be calculated.

The centre of gravity may be determined from the contour integral for the first moment:

xCOG ¼ Sx

Area
; where Sx ¼

þ
chain

xdxdy ¼ 1

2

X
i

x2i Dyi

yCOG ¼ Sy

Area
; where Sy ¼

þ
chain

ydxdy ¼ 1

2

X
i

xiðyi�1 þ yiÞDyi
ð11:9Þ

Higher order moments may be calculated in a similar way.

i

i+ki–k

Δθ
i

Figure 11.10 Measuring curvature for detecting corners.

Blob Detection and Labelling 351

The convex hull may also be determined from the boundary code. Consider each link consisting of an

arbitrary offset, ðDxi;DyiÞ. Point i on the boundary is concave if:

DxiDyi�1 � Dxi�1Dyi ð11:10Þ

The point may then be eliminated by combining it with the previous point:

ðDxi�1;Dyi�1Þ <== ðDxi�1;Dyi�1Þ þ ðDxi;DyiÞ ð11:11Þ

If this is performed for every pair of adjacent points until no further points can be eliminated, then the

remaining points are the vertices of the minimum convex polygon containing the region. (Note that holes

will reduce to nothing since they are concave. To obtain the convex hull of a hole, the left and right hand

sides of Equation 11.10 need to be swapped.)

From the convex hull, the depth of the baysmay be determined, enabling a concavity analysis approach

to separating touching convex objects (Bailey, 1992). The principle is that a convex object should have no

significant concavities, so a concavity indicatesmultiple touching objects. From the deepest concavity, an

opposite concavity is found and the object separated along the line connecting them. This is repeated until

no significant concavities remain.

From the convex hull, theminimumarea enclosing rectanglemay be determined (Freeman andShapira,

1975). Theminimumarea enclosing rectangle has one side coincidentwith theminimumconvex polygon,

so each edge can be tested in turn to find the extent of the region both parallel to and perpendicular to that

edge. The extents that give the smallest area correspond to the minimum area enclosing rectangle.

The bounding box (aligned with the pixel axes) can be found from a simple scan around the boundary,

finding the extreme points in each direction.

Chain codes may also be used for boundary or shape matching (Freeman, 1974). Although a full

description is beyond the scope of this work, the basic principles are briefly outlined. If the complete

boundary is being compared, a series of shape features may be extracted from the boundary and also the

boundaries of candidate matches. Those with wildly different feature vectors can be eliminated. Those

with similar feature vectors may be compared in more detail using correlation to determine the quality of

fit. If the match is on partial boundaries, a chain code can be broken into multiple segments based on prior

knowledge of the problem. For example, in a jigsaw-type problem, appropriate segmentation pointswould

be sharp corners (Freeman, 1974). These fragments are then matched as before, using simple features to

eliminate obvious mismatches and to find approximate matches that can be investigated further.

One set of shape features that may be extracted from boundary codes are Fourier descriptors. For a

closed boundary, the shape is periodic, enabling analysis by Fourier series (Zhang and Lu, 2002). While

any function of the boundary points could be used, the simplest is the radius from the centre of gravity as a

function of angle. The main limitation of this is that the shape must be fairly simple for the function to be

single-valued. A arbitrary shape can be represented directly by its x and y coordinates, as a complex

number: xðtÞ þ iyðtÞ, as a function of length along the perimeter, t. Alternatively, the angle of the tangent

as a function of length can be used, normalised to make it periodic (Zahn and Roskies, 1972). Whichever

features are used, the shapemay be represented by the low order Fourier series coefficients. Themethod is

also relatively insensitive to quantisation noise and with normalisation can be used for rotation and scale

invariant matching. The simple and complex number-based Fourier descriptors also allow the smoothed

boundary to be reconstructed from a few coefficients.

11.4 Connected Component Labelling

While chain coding concentrates on the boundaries, an alternative approach labels the pixels within the

connected components. Each set of connected pixels is assigned a unique label, enabling the pixels

associated with a region to be isolated and features of that region to be extracted.

352 Design for Embedded Image Processing on FPGAs

11.4.1 Random Access Algorithms

There are several distinct approaches to connected components labelling. One is based on boundary

scanning (Chang et al., 2004), effectively determining the boundary and then filling in the object pixels

inside the boundarywith a unique label. In this approach, like chain coding, the image is scanned in a raster

fashion until an unlabelled object pixel is encountered. A new label is assigned to this object and the

boundary is scanned. Rather than extract chain codes of the boundary, the boundary pixels are assigned

the new label.When the raster scan is resumed, these boundary labels are propagated internally to label the

pixels associated with the object. Hedberg et al. (2007) implemented this algorithm on an FPGA. The

main limitation of this approach is that the boundary scan requires random access to the image, requiring

the complete image to be available in a frame buffer. The advantage of such an implementation is that the

memory required by the labelling process is smaller than conventional connected components labelling

because fewer bits are required to store the labels. In a typical case, the processing is also faster than

standard two-pass algorithms (described shortly) because all of the processing is performed in a single

pass plus the time associated with the boundary scanning. Some features can also be extracted directly

during the boundary scan phase (for example any features that may be extracted from the boundary codes

can be extracted at this stage).

An alternative to scanning around the boundary of an object is to perform a flood–fill operationwhen an

unlabelled pixel is encountered during the raster scan (AbuBaker et al., 2007). A flood fill suspends the

raster scan and defines the unlabelled pixel as a seed pixel for the new region. It then fills all pixels

connected to the seed pixelwith the allocated label. A row can be filled easily, with connected pixels in the

rows immediately above and below added to a stack. Then, when no more unlabelled pixels are found

adjacent to the current row, the seed is replaced by the top of stack and flooding continues. By carefully

choosing which pixels are pushed onto the stack, an efficient algorithm can be obtained (AbuBaker et al.,

2007). Again, the limitation is that the flood–fill phase requires random access to the image, requiring the

complete image to be available in a frame buffer.

11.4.2 Multiple-Pass Algorithms

To avoid the need for random access processing, the alternative is to propagate labels from previously

labelled connected pixels. The basic idea is illustrated in Figure 11.11. When an object pixel is

encountered during the initial raster scan, its neighbours to the left and above are examined. If all are

background pixels, a new label is assigned. Otherwise, the minimum non-zero (non-background) label is

propagated to the current pixel. This is accomplished by having the input multiplexer select the Label

during the first pass. If Label is the minimum non-zero value, then the new label is used and Label is

incremented. For U shaped objects, multiple labels are assigned to a single connected component. At

the bottom of the U, the minimum of the two labels is selected and propagated. However, the pixels that

have already been labelled with the non-minimum label must be relabelled. The simplest method of

accomplishing this is to perform a second, reverse raster scan through the image, this time from the

bottom-right corner back up through the image. In the second pass (and subsequent passes) the input

Row buffer

Neighbourhood

I

Q

Label

Minimum non-zero

A B C

D

First pass Second pass

A B C

D ?
ABC

DI

Figure 11.11 Multipass connected components labelling. Left: neighbourhood context, with the dotted

lines showing the scan direction; right: label propagation.

Blob Detection and Labelling 353

multiplexer is switched to the input pixel, effectively including it within the neighbourhood. The second

pass propagates the minimum non-zero label back up the branch, replacing the larger initial label. For

W shaped objects and spirals, additional forward and reverse passes through the imagemay be required to

propagate the minimum label to all pixels within the connected component. Therefore, the process is

iterated until there are no further changes within the image.

This iterative, multipass approach to connected component labelling has been implemented on an

FPGA (Crookes and Benkrid, 1999; Benkrid et al., 2003b). The main advantage of this approach is that

the circuitry is very simple and quite small. It also requires no intermediate storage (apart from the

frame buffer) – all necessary information is stored in the intermediate images. However, the main

problem is that the number of passes through the image depends on the complexity of the connected

components and is indeterminate at the start of processing. Therefore, there is potentially a large latency

as a result of processing. The image must also be stored in a frame buffer, although the second and

subsequent passes may be performed in place.

11.4.3 Two-Pass Algorithms

This label propagation may be reduced to two passes by explicitly keeping track of the pairs of equivalent

labels whenever two parts of a component with a single label merge. The classic software algorithm

(Rosenfeld and Pfaltz, 1966) does just this and is illustrated with a simple example in Figure 11.12. The

first pass is similar to the first pass of the multipass algorithm as described above: as the image is scanned,

if none of the previously processed neighbours has a label, a new label is assigned as before. If the

neighbourhood contains only one label, that label is propagated to the current pixel. At the bottom of U
shaped regions, however, there will be two different labels within the neighbourhood. These labels are

equivalent in that they are associated with the same connected component. One of the labels (usually the

smaller) will be retained and all instances of the redundant label must be converted to the current label.

Rather than usemultiple additional passes to propagate the change through the image, the fact that the two

labels are equivalent is recorded in an equivalence table. At the end of the first pass, all of the equivalences

are resolved and a lookup table createdwhichmaps the initial temporary labels to the final label. The issue

of equivalence resolution has received much attention in the literature and is the main area of difference

between many related algorithms (Wu et al., 2005; He et al., 2007). Awide range of techniques has been

used to reduce thememory requirements of the data structures used to represent the equivalence table and

to speed the search for equivalent labels. A second raster scan through the image then uses the lookup table

to assign the final label to each object within the image.

An early implementation of the standard two-pass algorithm (Rachakonda et al., 1995) used a bank-

switched algorithm structure to enable every frame to be processed. As the initial labelling pass was

performed on one image, the relabelling pass was performed on the previous image. An implementation of

the standard two-pass algorithm using Handel-C is described by Jablonski and Gorgon (2004), where they

show how the software algorithm is ported and refined to exploit parallelism.

1

11
1
11

2
22
222

22 222

1

1
1
1

2
2
2

2 2
5
5

3
3
33

44

1

1

0

2

2

3

0
1
2
3
4
5

1

1

0

2

2

2

0
1
2
3
4
5

Initial labelling Equivalences Lookup table Final labelling

Figure 11.12 Connected component labelling process. From the left: the initial labelling after the first

pass; the equivalence or merger table; the lookup table after resolving equivalences; the final labelling

after the second pass.

354 Design for Embedded Image Processing on FPGAs

The key to an efficient implementation is to have an efficient approach to resolving equivalences.When

a new label is created, its entry in the equivalence table is set to point to itself. Then whenever a merger

occurs, the larger label is set to point to the smaller label. While this is adequate in the simple example

shown in Figure 11.12, the one labelmaymergewith several others, making it necessary to store the labels

as sets. One approach is to scan through the table every time two regions merge to update the labels to the

new equivalent label. However, this cannot be accomplished in a single clock cycle, preventing its use

within a streamed implementation.

One approach is to partially resolve the mergers with each row (Bailey and Johnston, 2007). This is

outlined in Figure 11.13. The basic idea is to prevent the redundant label from propagating further and

resulting in additional mergers. To accomplish this, it is necessary to use the merger table to replace any

instances of the redundant label that have been saved into the row buffer with the current label being used

for that region. The merger control block initialises the entry in the merger table when a new label is

allocated. A merger can only occur when pixel B is background and C has a different label to A or D. In

this case, the merger table is updated so that the larger label is translated to the smaller label which is

propagated. (The merger table must be dual-port to allow this update while the row buffer output is being

translated.) The multiplexers on the input of B and C ensure that the redundant label within the

neighbourhood is replaced by the minimum label.

Oneminor problem remains – if there is a sequence ofmergerswith the larger label on the left, as shown

in the second region in Figure 11.12, then the merger table contains a chain of links from one label to the

next. In this case, a single lookup in the merger table is insufficient to return the current label. (It can

be shown that if the smaller label is on the left, this problem does not occur; Bailey and Johnston, 2007).

The links may be unchained by a second backwards scan along each row. However, the data stored in the

row buffer does not need to be changed as long as the entries in the merger table are unchained to all point

to the smallest label for each region. Thismay also be accomplished by scanning through themerger table

to unchain the links. The affected linksmay be accessed quickly by pushing the pair ofmerged labels onto

a stack whenever the larger label is on the left (Bailey and Johnston, 2007). Then, at the end of the row,

during the horizontal blanking period, the pairs are popped off the stack (effectively jumping to the key

locations back along the row) and the merger table updated. With pipelining, unchaining requires one

clock cycle per stack entry (Bailey and Johnston, 2007).

At the end of the first pass, it is necessary to reconcile chains of mergers that have taken place on

different rows. A single pass through the table from the smallest label through to the largest is sufficient. If

the entry in the table is not pointing to itself, only a single additional read is required to obtain the final

label. If desired, the labels may also be renumbered consecutively during this pass. Each initial label will

therefore require one or two reads and one write to the merger table.

The second pass through the image simply uses themerger table as a lookup table to translate the initial

labels to the final label used for each connected component.

In software, the second pass can be accelerated by using run-length coding (He et al., 2008), because in

general there will be fewer runs than pixels. In hardware though, little is gained unless the image is

already run-length encoded by a previous operation. Otherwise the pixels still have to be read one by

one, and all of the processing for each pixel takes place in a single clock cycle (although several rows

Neighbourhood

I

Q

Label

Label selection

ABC

D Merger
table

Chain
stack

Merger
control

Row buffer

Input stream

Initial labels

Figure 11.13 First-pass logic required to efficiently implement merging.

Blob Detection and Labelling 355

can be run-length encoded in parallel; Trein et al., 2007). If a streamed output image is required, the only

advantage of run-length encoding is to reduce the size of the intermediate frame buffer. However, if the

output is an image in a frame buffer rather than streamed, then run-length coding can provide additional

acceleration (Appiah andHunter, 2005).During the first pass, in addition to storing the temporary labels in

a frame buffer, the image is run-length coded. Then, during the second relabelling pass, only the runs with

labels that need to be changed need processing.All of the backgroundpixels and runswith the correct label

can be skipped.

The algorithms considered so far are largely sequential. This is because labelling is not a local

operation – distant pixels could potentially be connected, requiring the same label. This has led to a

range of parallel architectures to speed up the label propagation (Alnuweiri and Prasanna, 1992). The

major limitation of many of these approaches is that they require a large number of processors, making

their implementation on an FPGAvery resource intensive. It is also usually assumed that the image data

has been preloaded onto the processors. When processing streamed images, much of the system must

remain idle while the image is loaded in. The bandwidth bottleneck destroys the gains obtained by

exploiting parallelism. One technique that may be exploited by an FPGA implementation is to divide

the image into non-overlapping blocks. A separate processor is then used to label each of the blocks in

parallel. In the merger resolution step, it is also necessary to consider links between adjacent blocks.

This requires local communication between the processors for adjacent blocks. The second pass,

relabelling each block with the final label can also be performed on each block in parallel.

11.4.4 Single-Pass Algorithms

The global nature of connected components labelling requires a minimum of two passes through the

image to produce a labelled image. Frequently, connected components labelling is followed by feature

extraction from each region, with the labelling operation used to distinguish between separate regions. In

such cases, it is not actually necessary to produce the labelled image as long as the correct feature data for

each region can be determined.

The basic principle behind single-pass approaches is to extract the data required to calculate the features

during the first pass (Bailey, 1991). This requires a set of data tables to accumulate the data. When two

regions merge, the data associated with each of the regions is also merged. Therefore, at the end of the

image scan feature data has been accumulated for each of the connected component.

The data that needs to be maintained depends on the features that are being extracted from

each connected component. The restriction on which features can be accumulated on-the-fly is

governed by the fact that there must be a simple way to combine the raw data for each region when a

merger occurs.

. If only the number of regions is required, this can be determined with a single global counter. Each

time a new label is assigned, the counter is incremented, and when two regions merge the counter

is decremented.
. Formeasuring the area of each region, a separate counter ismaintained for each label.When two regions

are merged, the corresponding counts are combined.
. For determining the centre of gravity of the region, or any other moment-based feature, the sums of

the x and y coordinates are maintained. (For higher order moments, sums of powers of x and y

coordinates are kept.) The corresponding sums are simply added on merging to give the new sum for

the combined region. At the end of the image, centre of gravity may be obtained by normalising the

sums by the blob area:

ðxcog; ycogÞ ¼
P

xP
1
;

P
yP
1

� �
ð11:12Þ

356 Design for Embedded Image Processing on FPGAs

. Similarly, higher order moments may be obtained by appropriately combining the accumulated sums.

This includes features such as the orientation and size of the best fit ellipse.
. To obtain the bounding box of each region, the extreme coordinates of the pixels added are recorded.

Onmerging, the combined boundsmay be obtained by using theminimumormaximum as necessary of

the subcomponents.
. The average colour or pixel value may be calculated by adding the pixel values associated with each

region into an accumulator and normalising by the area at the end of the scan. Similarly higher order

statistics, such as variance (or covariance for colour images), skew and kurtosis, may be accumulated by

summing powers of each pixel value and deriving the feature value from the accumulated data at the end

of the image.
. Other, more complex, features such as perimeter may require additional operations (such as edge

detection) prior to accumulating data.

Obviously, some features are not able to be calculated incrementally. In this case, it is necessary derive the

labelled image prior to feature extraction.

When single-pass processing is possible, the architecture of Figure 11.13 can be extended to give

Figure 11.14 (Bailey and Johnston, 2007; Bailey et al., 2008). The data table can be implemented with

single-port memory by reading the data associated with a label into a register and performing the updates

in the register. On amerger, themerged entry can be read from the data table and combinedwith the data in

the register. Then, on the first background pixel after the blob, the datamay bewritten back to the data table

(Bailey and Johnston, 2007). The object data is then available from the data table at the end of the frame.

The main limitation with this approach is that the size of the data and merger tables depends on the

number of initial labels within the image. In the worst case, this is proportional to the area of the image,

where the maximum number of labels is one quarter of the number of pixels.

Since the initial labels are not actually being saved (apart from the previous row in the row buffer), the

number of labels in active use at any one time is proportional to the width of the image not the area.

Therefore, the memory used by the data table and merger tables is being used ineffectively. The memory

requirements of the system can be optimised by recycling labels that are no longer used (Lumia et al.,

1983; Khanna et al., 2002).

The approach taken in Bailey et al. (2008) and Ma et al. (2008) is to completely relabel each row.

Several changes are required to the architecture of Figure 11.14. The equivalence table is split into two

tables (Figure 11.15), with the merger table reflecting equivalences between labels on the same row and a

translation table to convert the labels used in previous row to those used in the current row.Twomerger and

data tables are also required, for reasons that will be outlined shortly. There are also some significant

changes to the logic and operation of the system.

Firstly, the label selection code is a little more complex. A new label is assigned each time a region is

first encountered on a row. Pixels from the previous row (in registers A, B and C) all need to be updated

with the current label and the translation is recorded in the translation table. Secondly, the merger table is

Neighbourhood

I

Label

Label selection

ABC

D Merger
table

Data
table

Chain
stack

Merger
control

Row buffer

Input stream

x y, , pixel value, etc as needed for feature calculation

Figure 11.14 Single-pass connected components analysis.

Blob Detection and Labelling 357

only updatedwhen two regionswhich have different current row labelsmerge;many regionmergers result

in translations rather than requiring themerger table to be updated. It can be shown that the larger labelwill

always be on the left for thosemergers that require updating themerger table (Ma et al., 2008). Therefore,

all mergers must be pushed onto the chain stack for resolution at the end of the row. Thirdly, the merger

table is only applicable for a row, rather than the whole image. Two tables are therefore required: one for

mapping mergers from the previous row (out of the row buffer) and one for recording mergers on the

current row. At the end of the row (after unchaining), these tables are then swapped. The translation table,

since it is specific to the row being translated, is discarded and rebuilt each row. Fourthly, two sets of data

tables are required because the indexes change with every row. Whenever an entry is made within the

translation table, the corresponding data is taken from the previous row’s data table and combinedwith the

data for the current row. Any data not transferred has no pixels on the current row and therefore represents

a completed objects. Such data is available for subsequent feature processing at the end of each row.

Trein et al. (2007; 2008) took a slightly different approach. On the input, they run-length code up to 32

pixels in parallel, enabling a slower clock speed to be used to sequentially process the run-length encoded

data. When regions merge, a pointer from the redundant label is linked to the label that is kept; however,

chaining is not discussed. To keep the data table small, a garbage collector detects when a region

has been completely scanned, outputs the resulting region data and adds the released label to a queue

for reuse.

11.4.5 Multiple Input Labels

In all of the discussion above, it has been assumed that the input image is binary. If, instead, the inputwas a

labelled image, for example from multilevel thresholding or colour segmentation, then the processing

outlined above needs to be extended. A na€ıve approach would be to build a separate processor for each

label. However, since each incoming pixel can only have one label, the hardware of a single processormay

be augmented to handle multiple input labels.

Themain change is that the labelling process should only propagate labels within regionswith the same

input label. Any different input label is considered as background. This requires that the input label must

also be cached in the row buffer. Equality comparisons with the input label are required to create a

foreground and background based on the incoming pixel. Since both foreground and background are

being labelled, potentially twice as many labels are required. Consequently, the merger table and data

tables need to be twice as large. Otherwise, the processing is the same as the single label case.

11.4.6 Further Optimisations

If the regions being labelled or extracted are convex, then further simplifications are possible. Since there

are no U shapes (this would be non-convex), a relatively simple label propagation is sufficient to

Neighbourhood

I

Label

Label selection

ABC

D Merger
table

Data
table

Chain
stack

Merger
control

Row buffer

Translation

x y, , pixel value, etc as needed for feature calculation Data output
for completed
regions

Figure 11.15 Single-pass connected components analysis with label reuse.

358 Design for Embedded Image Processing on FPGAs

completely label the image in a single pass. Themerger logic associatedwith the previous techniques is no

longer required. The only slight complication arises withy shaped regions, such as the left hand object in

Figure 11.12. This can occur along the top left edge of convex objects and it is necessary to prevent a new

label frombeing assigned.One solution to overcoming this problem is to defer labelling the pixels in a row

until the first background pixel is encountered.A simple approach is to run-length encode the pixels stored

in the row buffer and output the streamed labelled image as it is being reconstructed from the row buffer.

11.5 Distance Transform

Another formof labelling object pixels is provided by the distance transform. This labels each object pixel

with its distance to the nearest background pixel. Different distance metrics result in different distance

transforms. The Euclidean distance corresponds with how distances are measured in the real world. It is

based on the L2 norm and is given by:

jDx;Dyj jjL2 ¼
ffi
ðDxÞ2 þ ðDyÞ2

q
ð11:13Þ

One difficultywith using the Euclidean distance is that it is difficult to determinewhich pixel is actually the

closest background pixel without testing them all. This is complicated by the fact that images are sampled

with a rectangular sampling grid. Two other distancemetrics which are easier to calculate are the city block

or Manhattan distance metric and the chessboard metric. The city block distance is based on the L1 norm:

jDx;Dyj jjL1 ¼ Dxj j þ Dyj j ð11:14Þ

This counts the number of horizontal and vertical pixel steps, considering neighbouring pixels which are

four-connected. As a result, diagonal distances are overestimated because a diagonal step counts as two

pixels. The chessboard metric is based on the L1 norm:

jDx;Dyj jjL1 ¼ max Dxj j; Dyj jð Þ ð11:15Þ

This is so called because it counts the number of steps a king would take on a chessboard. This considers

pixels to be eight-connected, so underestimates diagonal distances because a diagonal connection only

counts as one step.

These threemetrics are compared in Figure 11.16. It can be clearly seen that the non-Euclideanmetrics

are anisotropic. This has led to a wide range of other metrics that give better approximation to the

Euclidean distance, while retaining the ease of calculation of the other distance metrics.

Figure 11.16 Comparison of distance metrics (contour lines have been added for illustration). Left:

Euclidean, L2; centre: city block, L1; right: chessboard, L1.

Blob Detection and Labelling 359

Obviously, direct calculation of the distance transform by measuring the distance of every

object pixel from every background pixel and selecting the minimum is impractical. Therefore,

several different methods have been developed to efficiently calculate the distance transform of a

binary image.

11.5.1 Morphological Approaches

One approach is to successively erode the object using a series of morphological filters. If each pass

removes one layer of pixels, then the distance of a pixel from the boundary is the number of passes

required for an object pixel to become part of the background. The chessboard distance is obtained by

eroding with a 3� 3 square structuring element, whereas the city block distance is obtained by eroding

with a five element þ shaped structuring element. A closer approximation to Euclidean distance

may be obtained by alternating the square and cross elements with successive iterations (Russ, 2002),

which results in an octagonal shaped pattern. The main limitation of such algorithms is that many

iterations are required to completely label an image. On an FPGA, the iterations may be implemented

as a pipeline up to a certain distance (determined by the number of processors which are constructed).

Beyond that distance, it is necessary to save the result as an intermediate image and feed the image

back through.

To improve the approximation to a Euclidean distance, a larger structuring element needs to be used.

This may be accomplished by having a series of different sized circular structuring elements applied in

parallel (Waltz andGarnaoui, 1994b). Such a stack of structuring elements is equivalent to using greyscale

morphologywith a conical shaped structuring element.While using a conical structuring element directly

is expensive, by decomposing it into a sequence of smaller structuring elements, it can be made

computationally more feasible (Huang and Mitchell, 1994). However, for arbitrary sized objects, it is

still necessary to iterate using finite sized structuring element.

11.5.2 Chamfer Distance

The iterative approach of morphological filters may be simplified by making the observation that

successive layers will be adjacent. This allows the distance to be calculated through local propagations

using stream processing (Borgefors, 1986; Butt and Maragos, 1998). The result is the chamfer

distance transform.

Two raster scanned passes through the image are required. The first pass is a normal raster scan and

propagates the distances from the top and left boundaries into the object.

Q1½x; y� ¼
0; I½x; y� ¼ 0

min
Q1½x; y�1� þ a;Q1½x�1; y� þ a;

Q1½x�1; y�1� þ b;Q1½x þ 1; y�1� þ b

 !
; otherwise

8><
>: ð11:16Þ

The second pass is a reverse raster scan, propagating the distance from the bottom and right boundaries.

Q2½x; y� ¼ min
Q1½x; y�;Q2½x; y þ 1� þ a;Q2½x þ 1; y� þ a;

Q2½x þ 1; y þ 1� þ b;Q2½x�1; y þ 1� þ b

 !
ð11:17Þ

An implementation of the chamfer distance transform is given in Figure 11.17. A frame buffer is

required to hold the distances between passes. Note that the streamed output is in a reverse raster scan

format. An FPGA-based implementation of such a distance transform is given in (Hezel et al., 2002).

360 Design for Embedded Image Processing on FPGAs

Higher throughput can be obtained by using separate hardware for each pass, with a bank switched

frame buffer in between.

Different values of a and b will result in different distance metrics. The chessboard distance results

when a ¼ b ¼ 1. Using only four-connected points (a ¼ 1, b ¼ 1) gives the city block distance. Closer

approximation to the Euclidean distance is given with a ¼ 1 and b ¼ ffiffiffi
2

p
. To maintain integer arithmetic,

the best approximation for small integers is given with a ¼ 3 and b ¼ 4, and dividing the result by three.

Since the division by three is not easy in hardware, the result can either be left undivided, or using a ¼ 2

and b ¼ 3, dividing the result by two (a right shift by one bit). The chamfer distance metric is given by:

jDx;Dyj jjCa;b
¼ bmin Dx;Dyð Þ þ a Dx�Dyj j
¼ ð2a þ bÞL1�ða þ bÞL1 ð11:18Þ

A closer approximation to the Euclidean distancemay be obtained by using a larger window size. A 5� 5

window, with weights as shown in Figure 11.18, with a ¼ 5, b ¼ 7 and c ¼ 11, gives the best

approximation with small integer weights (Borgefors, 1986; Butt and Maragos, 1998). (Weights are

not required for the blank spaces because these are multiples of smaller increments.)

The two-pass chamfer distance algorithm may be adapted to measure Euclidean distance by

propagating vectors ðDx;DyÞ instead of scalar distances. However, to correctly propagate the distance
to all points requires three passes through the image (Danielsson, 1980; Ragnemalm, 1993; Bailey,

2004). The intermediate frame buffer also needs to be wider because it needs to store the vector. A

further limitation is that because of the discrete nature of images, local propagation of vectors can leave

some points with a small error relative (less than one pixel) to the Euclidean distance (Cuisenaire and

Macq, 1999).

The chamfer distance transform may be further accelerated by processing multiple lines in parallel

(Trieu and Maruyama, 2006). This requires sufficient memory bandwidth to read data for several lines

simultaneously. (Horizontal data packing is more usual, but by staggering the horizontal accesses and

Row buffer

Neighbourhood

I Q

First pass

Second pass

Min

Min

Min Min

a b

1

1

2

2

Pass

?

+a

+a

+b+b

+a

+a

+b+b

I

Frame
buffer

Figure 11.17 3� 3 chamfer distance transform. Left: propagation increments with each pass; right:

hardware implementation reusing the circuitry between the passes.

First pass

Second pass

?

+a

+a

+b+b

+a

+a

+b+b

I

+c

+c

+c

+c

+c

+c

+c

+c

Figure 11.18 Masks for a 5� 5 chamfer distance transform.

Blob Detection and Labelling 361

using short FIFOs, the same effect can be achieved.) The processor for each successive linemust be offset,

as shown in Figure 11.19, so that it is working with available data on the previous line. Depending on the

frame buffer access pattern, short FIFOs may be required to delay the data for successive rows and to

assemble the processed data for saving back to memory. Only the single row that overlaps between the

strips needs to be cached in a rowbuffer. The same approach can also be applied to the reverse scan through

the image.

11.5.3 Separable Transform

In most applications, the chamfer distance is sufficiently close to the Euclidean distance to be acceptable.

If, however, the true Euclidean distance transform is required, it may be obtained by using a separable

algorithm (Hirata, 1996; Maurer et al., 2003; Bailey, 2004). This relies on the fact that squaring

Equation 11.13 gives:

jDx;Dyj jj2L2 ¼ ðDxÞ2 þ ðDyÞ2 ð11:19Þ

which is separable. This allows the one-dimensional distance squared transform to be obtained of each

row first, and then of each column of the result. The processing also only requires integer arithmetic, since

Dx andDy are integers. If the actual distance is required (rather than distance squared), then a square root
operation may be pipelined on the output of the column processing. Since each row (and then column) is

processed independently, the algorithm is readily parallelisable, and is also easily extendable to three or

higher dimensional images.

The first stage, processing along the rows, requires two passes, one in the forward direction and once in

the reverse direction. The pass in the forward direction determines the distance from the left edge of the

object and the reverse pass updates with the distance from the right edge. The processing for each of the

two passes is:

Q1½x; y� ¼ 0; I½x; y� ¼ 0

Q1½x�1; y� þ 1; otherwise

	

Q2½x; y� ¼ min Q1½x; y�;Q1½x þ 1; y� þ 1ð Þ
ð11:20Þ

At the start of each passQ1 andQ2 need to be initialised based on the boundary condition. If it is assumed

that outside the image is background, they need to be initialised to zero, otherwise they need to be

initialised to the maximum value. The circuit for implementing the scanning is given in Figure 11.20.

Since the input, I, is binary, the multiplexer reduces to a set of AND gates. The addition of one in

the feedback loop needs to be performed with saturation, especially if the outside of the image is

considered to be object. Note that the data is read from the row buffer in reverse order during the

?
?

?
?

Scan direction

Frame
buffer

Row buffer

Figure 11.19 Processing multiple lines in parallel with the chamfer distance.

362 Design for Embedded Image Processing on FPGAs

second pass. Therefore, if directly processing streamed data, the row buffer needs to be able to hold two

rows, or a pair of row buffers with bank switching can be used. Since the column processing stage requires

the distances squared, these can be calculated directly using incremental processing techniques to avoid

the multiplication (Section 5.4.5) as shown in the bottom of Figure 11.20.

The column processing is a little more complex. Finding the minimum distance at a point requires

evaluating Equation 11.19 for each row and determining the minimum:

D2½x; y� ¼ min
yi

Q2
2½x; yi� þ y�yið Þ2

� �
ð11:21Þ

Rather than test every possible row within the column to find the minimum, it can be observed that the

contributions fromany two rows (say y1 and y2) are ordered. LetD
2
1 ¼ Q2

2½x; y1� andD2
2 ¼ Q2

2½x; y2�. Then,
as shown in Figure 11.21, the distances from these two points divide the column into two at y01;2 where:

D2
1 þ y1�y01;2

� �2
¼ D2

2 þ y2�y01;2
� �2

ð11:22Þ

I

I

Q
1

Q
2

1

1 1

1

2 2

Min

Min

Row buffer

Row buffer

0=0=
≠0 ≠0

0 01 14 49 916

0 01 12 23 34

0 01 4 9 16 25 36 49

0 01 2 3 4 5 6 7

First pass

First pass

First pass

Second pass

Second pass

Second pass

Q
1

2 Q
2

2

Figure 11.20 Row transform for the separable Euclidean distance transform. Top: performing the

distance transform on each row; bottom: the distance squared transform using incremental update; left:

example showing the result for a simple example.

y
1

y
1

y
1́,2

yyy
2

y
3

y
2

D
1

2

D
1

2

D
2

2

D
3

2

D
2

2

y
1
dominates y

1
dominatesy

2
dominates y

3
dominates

Figure 11.21 Regions of influence. Left: two rows on a column; right: adding a third row that results in

row y2 having no influence. (With kind permission from Springer Science þ Business Media: Lecture

Notes in Computer Science, “An efficient Euclidean distance transform”, 3322,� 2004, 394–408, D.G.

Bailey, Figure 7).

Blob Detection and Labelling 363

Solving for the boundary of influence gives:

y01;2 ¼ D2
2�D2

1 þ y22�y21
2ðy2�y1Þ

¼ 1

2

D2
2�D2

1

y2�y1
þ y2 þ y1

0
@

1
A

ð11:23Þ

The logic for implementing the column process calculating the distance transform is shown in

Figure 11.22. The row number is used to read the row distance squared from the frame buffer. These

are combined with the Previous values to give the boundary of influence using Equation 11.23. Note that

the division only needs to be an integer division because the row numbers are only integers and it is

only necessary to determinewhich two rows the boundary falls between. If the boundary is greater than

that on the top of the stack (cached in the y0TOS register) then the Previous values are pushed onto the

stack, y is incremented and the next value read from memory. If less than or equal, then the Previous

values have no influence, so the top of the stack is popped off into the Previous and y0TOS registers and
the comparison repeated.

Although y is not necessarily incremented with every clock cycle, the number of clock cycles required

for the first pass through the column is at most twice the number of rows. Therefore, to process one pixel

per clock cycle, two such units must operate in parallel. The sporadic nature of frame buffer reads can be

smoothed by reading from the frame buffer into a FIFO and accessing the distance values from the FIFO

as necessary.

At the end of the first pass down the column, the stack contains a list of all of the regions of influence in

order. It is then simply a case of treating the stack as a queue, with each section used to directly calculate

the distance.When the end of the region of influence is reached, the next section is simply pulled from the

queue until the bottom of the column is reached. The result is a streamed output image, with a vertical scan

pattern rather than the conventional raster scan.

Row processing is actually the same operation as column processing. The simpler algorithm results

from the prior distances all being zero for the background and infinite for the object. Therefore, the only

pixels that have influence are the background points at each end of the groups of object pixels on a row,

with the boundary of influence at the midpoint of each connected sets of pixels.

As described here, the row processing has a latency of two row lengths as a result of the combination of

the forward and reverse pass. The latency may be reduced to one half a row time by also performing the

second pass in the forward direction. During the first pass, the correct distance is generated for pixels up to

Frame
buffer

Q
2

2
Q
2

2

y

y

y
i

Previous

Stack

Stack

y
T́OS

y´

Calculate
y´

Advance x
2

=

Pop

D
2

Figure 11.22 Column transform for the separable Euclidean distance transform. Left: first pass

determining the regions of influence; right: second pass, expanding the regions of influence to give

the distance.

364 Design for Embedded Image Processing on FPGAs

the midpoint. Therefore, these do not need to be tested again. However, the midpoint is not determined

until the first background pixel is reached at the end of the object.At this point, the second pass can go back

to the midpoint and relabel the last half of the object, counting down rather than up.

The latency of processing a column, as described above, is two column times (the worst case time it

takes for the first pass down the column). This may be reduced slightly by beginning the second pass

through the image before the first pass has been completed.

The separability of the transform implies that all of the rowsmust be processed before beginning any of

the columns. However, this is not necessarily the case. As with separable warping (Section 9.1.1), the two

stages can be combined. Rather than process each column separately, they can be processed in parallel,

with the stacks built in parallel as the data is streamed from the row processing. This ismore complexwith

the distance transform because the volume of data required to hold the stacks would almost certainly

require use of external memory. If the outside of the image can be considered background, the worst case

latency would be just over half a frame, with conventional raster scanned input and output streams. The

improved latency comes at the cost ofmore complexmemorymanagement. However, if outside the image

is considered object, then it is necessary to process the complete frame in theworst case before any pixels

can be output (for example if the only background pixel is in the bottom right corner in the image).

Since each row and each column are processed independently, an approach to accelerating the

algorithm is by operating several processors in parallel. The main limitation to processing speed is

governed by memory bandwidth for the input, intermediate storage and output streams.

11.5.4 Applications

The distance transform has a number of applications in image processing (Fabbri et al., 2008). One use is

to derive features or shape descriptors of objects. Statistics of the distances within an object, such asmean

and standard deviation, are effective size and shape measures. Ridges within the distance transform

correspond to the medial axis or skeleton of the object (Arcelli and Di Baja, 1985). The distance to the

medial axis is therefore half the width or thickness of the object at that point. Extending this further, local

maxima correspond to centres of largest inscribed ‘circles’.

If objects within the image each have only a single local maximum in their distance transform, then the

distance transform can be used to provide a count of the number of objects within the image even if

adjacent objects are touching. This conceptmay be extended to the separation of touching objects through

the watershed transform (see the next section).

Fast binary morphological filtering can be accomplished by thresholding the distance transformed

image. Rather than perform several iterations with a small structuring element, the distance transform

effectively performs these all in one step, with the thresholding selecting the particular iteration.

The distance transform can be used for robust templatematching (Hezel et al., 2002) or shapematching

(Arias-Estrada and Rodriguez-Palacios, 2002). The basic principle here is to compare the distance

transformed images rather than simple binary images. This makes the matching less sensitive to small

differences in shape, resulting for example from minor errors in segmentation.

11.5.5 Geodesic Distance Transform

Avariation on the distance transform is the geodesic distance. The geodesic distance between two points

within a region is defined as the shortest path between those two points that lies completely within the

region. Any of the previously defined distance metrics may be used, but rather than measure the distance

from the boundary, the distance from an arbitrary set of points is used. The previously described methods

need to be modified to measure the geodesic distance.

Morphological methods use a series of constrained dilations beginning with the starting or seed pixels.

The input is dilated from the seed pixels, with each iteration ANDed with the shape of the region to

Blob Detection and Labelling 365

constrain the path to liewithin the object. The distance from a seed point to an arbitrary point is the number

of dilations required to include that point within the growing region.

Using larger conical structuring elements to perform multiple iterations in a single step does not work

with this approach because a larger step may violate the constraint of remaining within the region.

The chamfer distance transform can also be used to calculate the geodesic distance. In general, two

passes will not be sufficient for the distances to propagate around concavities in the region. The back and

forth passes must be iterated until there is no further change.

Unfortunately, the constrained distance propagation cannot be easily achieved using streamprocessing.

An approach that requires randomaccess to the image can be built on a variation ofDijkstra’s shortest path

algorithm (Dijkstra, 1959). The seed pixels are marked within the image and are inserted into a FIFO

queue. Then, pixels are extracted from the queue and their unmarked neighbours determined. These

neighbours are marked with the incremented distance and their locations added to the end of the FIFO

queue. The queue therefore implements a breadth-first search,which ensures that all pixels of one distance

are processed and labelled before any of a greater distance. A Euclidean distance transform may be

approximated by selecting four-neighbour or eight-neighbour propagation depending on the level. A

potentially large FIFO queue is required to correctly process an arbitrary image. During the second phase,

pixelsare accessed in a randomorder. Searching for theunmarkedneighbours requiresmultiple accesses to

memory. An FPGA implementation of this algorithm was described by Trieu and Maruyama (2008).

Rather than use a FIFO queue, it is also possible to use chain codes as an intermediate step (Vincent,

1991). Propagating chain codes reduces the number of memory accesses because the location of

unmarked pixels can come directly from the chain code, and only a single access is required to verify

that the pixel is unmarked and apply the distance label.

One application of the geodesic distance is for navigation and path planning for robotics (Sudha and

Mohan, 2008). The geodesic distance transform enables both obstacle avoidance and determining the

shortest or lowest cost path from source to destination.

11.6 Watershed Transform

The watershed transform is closely related to connected components labelling. It considers the pixel

values of an image as a topographicalmap and segments an image based on the topographical watersheds.

There are two main approaches to determining the watersheds. The first is to consider a droplet of water

falling on each pixel within the image. The droplet will flow downhill until it reaches a basin where it will

stop. The image is segmented based on grouping together all of the pixels that flow into the same basin.

The second approach reverses this process and starts with the basins, gradually raising the water level

creating lakes of pixels associated with each basin. When two separate lakes meet, a barrier is built

between them; this barrier is the watershed (Vincent and Soille, 1991).

11.6.1 Flow Algorithms

The first approach can be implemented in much the sameway as connected components analysis (Bailey,

1991). The structure of the implementation is illustrated in Figure 11.23. The input stream of pixel values

is augmented with an initial label of zero (unlabelled). With eight-connectivity, the neighbourhood must

be extended to a 3� 3 window to enable the direction of the minimum neighbour to be determined. If

ambiguous, one of the neighbours can be chosen arbitrarily (or the gradient within the neighbourhood

could be used to resolve the ambiguity; Bailey, 1991). If no pixels are less than the central pixel, it is a new

local minimum (basin) and is assigned a label if it does not already have one. Otherwise a pixel is

connected to its neighbourhood minimum. If neither is labelled, a new label is assigned to both pixels. If

one is labelled, the label is propagated to the other pixel. If both are labelled, then a merger occurs; this is

recorded in a merger table, in the same way as with connected components labelling.

366 Design for Embedded Image Processing on FPGAs

The merger table is a little more complicated than with connected component labelling, because

potentially two accesses need to be made to update the labels emerging from the row buffer. This can be

handled by running the merger table at twice the clock speed, or by using two parallel merger tables with

identical entries. A further possibility is a lazy caching arrangement, where a label is translated only if

necessary (if it is the centre pixel or the neighbourhood minimum).

If a labelled image is required, then two passes through the image are necessary. The first pass performs

an initial labelling and determines the connectivity. The initial labels are then saved in a frame buffer, as

shown in Figure 11.23, and the merger table used to provide a final consistently labelled image in the

second pass. Alternatively, if the data for each region can be extracted in the first pass (as with single pass

connected components analysis in Section 11.4), then the frame buffer is not required but can be replaced

with a data table (Bailey, 1991).

One limitation of the above algorithm is that it does not divide plateauswhich lie on awatershed evenly.

Usually the whole of a plateau is assigned to a single label. Generally it is better to divide plateaus down

the ‘middle’ with half being assigned to each watershed. This can be accomplished by distance

transforming any plateaus, assigning pixels to the minimum that is the closest. This is a geodesic

distance transform, which requires two or more passes through the image. This approach was taken by

Trieu andMaruyama (Trieu andMaruyama, 2006; 2007), wheremultiple backward and forward scans are

taken to calculate the geodesic distance transform of the plateaus where necessary. Because of the large

volume of data that needs to be maintained, all of the data structures were kept in external memory. To

accelerate their algorithm, they hadmultiplememory banks and processedmultiple rows in parallel using

the scheme introduced in Figure 11.19. This approach also has its own limitations; in particular, the

number of back and forward scans through the image.

Trieu and Maruyama (Trieu and Maruyama, 2008) adapted the distance transform described in the

previous section. The new scheme requires four processing phases. The first phase is a raster scan to

identify the plateau boundaries with smaller pixel values. The locations of these boundary pixels are

placed in a FIFO queue. In the second phase, the FIFO is used to propagate the boundary pixels distance

transforming the plateaus. The third phase is another raster scan, which locates local minima and

unlabelled plateaus, which must correspond to the basins. When a basin is found, the raster scan is

suspended and the FIFO queue is used again to propagate the labels for each region (this is the fourth

phase).Once the region is completed, the all pixelswhich drain into that basin have been segmented, so the

raster scan of phase three is resumed.

11.6.2 Immersion Algorithms

The ‘traditional’ immersion approach to determining the watershed begins with the basins and increases

the water level sequentially throughout the whole image, adding pixels to adjacent connected regions.

0

I }

Initial
label

Row buffer

Row buffer
Merger
table

Merger
control

Neighbourhood

Determine
direction

Label
selection

Pixel
values

Labels
Label

update Label

Input stream

Frame
buffer

Figure 11.23 Stream-based implementation of watershed segmentation.

Blob Detection and Labelling 367

This process considers the pixels within the image in strict pixel value order. Approached na€ıvely, this
would require one pass through the image for each pixel value (requiring 2N passes for an N-bit image).

Since these successive passes through the image are in the same order, they can be pipelined, although this

comes at the cost of one processor for each different pixel value within the image.

The alternative is to sort the pixels in the image into increasing order. Traditional sorting algorithms

do not scale well with the size of the image, but, since the pixel values are discrete, fast methods that

are linear with the number of pixels are possible. A bin sort can sort all of the pixels in a single pass

through the image. This requires having 2N bins. As the image is scanned, the coordinates of each

pixel are added to the corresponding bin. Potentially, each bin could be the size of the image, although

the total number in all of the bins is, of course, identical to the size of the image. The standard

approach to avoid this overhead is to obtain a histogram of the image first, so that it is known in

advance how many pixels occupy each bin. The cumulative histogram then gives the address in bin

memory of the end of each bin. If the cumulative histogram is offset by one pixel value, so the count

for pixel 0 is address 1, and so on, then the cumulative histogram will act as address translation for the

incoming pixel values. As shown in Figure 11.24, the incoming pixel value is looked up in the

cumulative histogram and used to store the pixel address in the bin memory. The bin memory address

is incremented and written back to the cumulative histogram so that it will point to the next location.

At the end of the image, the cumulative translation memory again contains the cumulative histogram

and all of the pixels are sorted.

While the histogram-based bin sort is memory efficient, a disadvantage is that it requires two

passes through the image. The first pass is to accumulate the histogram, which can be performed in

parallel with the data being streamed into the frame buffer. The second pass does the actual pixel

sorting. An alternative approach that avoids the need to pre-allocate the bin memory is to use an array

of linked lists, one for each bin (De Smet, 2010). With a linked list, it is not necessary to know the bin

size in advance.

A circuit for the construction of the linked lists is shown in Figure 11.25. Prior to processing the input

stream, the entries in the Tail array need to be set to zero. (If the size of the input stream is not a power of

two, they could be set to an invalid address after the end of the stream, for example all ones.)When the first

pixel value of a particular value comes in, the corresponding Tail entry will be zero, so the pixel address

stored in the corresponding Head entry. Otherwise the address is stored in the linked list at the entry

Frame
buffer

PORT 1PORT 2

Cumulative
histogram

Address

Accumulate
histogram

1 Bin
memory

R
D

D
A

A
T

A
D

Figure 11.24 Bin sort, using the cumulative histogram for bin addressing.

Address

0

0 Bin
linked

list

Bin
linked

list

R
D

D
A

A
T

A
D

Head

P1P2

Tail

I

=
=

=

CE

CE

Linked list pointers

S
R

CE

Figure 11.25 Bin sort using an array of linked lists.

368 Design for Embedded Image Processing on FPGAs

pointed to by the Tail. In both cases, Tail is updated with the new address. If the Tail is initialised to zero, a

little bit of additional logic is required to distinguish the case when a true zero address is written into the

Tail register. This may be done as illustrated in Figure 11.25, or alternatively an additional bit could be

added to the width of Tail to indicate this.

Since only one Head or Tail register is accessed at a time, they can be stored in either fabric RAM or

block RAM.Head only needs to be single port, while Tailwill need to be dual-port. The image addresses

do not need to be stored explicitly because the linked list is structured such that the bin address

corresponds to the image address. The pixel values also do not need to be saved within the bins because

this is implicit with the linked list structure as each different pixel value has a separate linked list.

However, since the neighbours need to be examined, this will require storing the image within a frame

buffer. Construction of the linked list is easily parallelisable if memory bandwidth allows. Since bin

addressing corresponds to image addressing, the image may be split vertically into a number of blocks,

which are processed in parallel. At the end, it is then necessary to add the links between the blocks for each

pixel value.

When performing the immersion, pixels are accessed in the order of pixel value from the sorted list

or queue. Pixels are taken from the queue and added to the existing boundaries if an adjacent pixel has a

lower level. The label is propagated from adjacent labelled pixels. If no smaller labelled pixels are in

the neighbourhood, the pixels are added to a second queue to perform the geodesic distance transform of

the plateau. Any unlabelled pixels remaining after this process are new basins, so are assigned a new label.

An FPGA implementation of this process is described by Rambabu et al. (2002; Rambabu and

Chakrabarti, 2007).

11.6.3 Applications

The primary use of thewatershed transform is in segmentation.After applying an edge detection operator,

the edges become ridges in the imagewhich become thewatersheds separating the regions. Thewatershed

will tend to divide the image along the edges between regions. One limitation is that any noise within the

image will create false edges, with consequent over-segmentation. This can be partially addressed by

smoothing before segmentation and ignoring edges below a threshold height. When using the immersion

method, the threshold may be implemented by allowing adjacent regions to join if the basin depth is less

than the threshold below the current immersion level. This process is illustrated for a noisy image in

Figure 11.26.

Smoothing
filter

Edge
detection

Watershed
segmentation

I Q

Figure 11.26 Watershed segmentation. Images from the left: original input image; Gaussian filtered

with s ¼ 2:3; edge detection using the range within a 3� 3 window; watershed segmentation merging

adjacent regions with a threshold of five.

Blob Detection and Labelling 369

Another application of the watershed transform is to separate touching objects, as illustrated in

Figure 11.27. The basic principle is that convex objects (and some non-convex objects) will have a

single peak when distance transformed. Therefore, if multiple objects are touching, then a blob will

have multiple peaks within its distance transform. Inverting the distance transform will convert the

peaks to basins, where the watershed transform will associate each pixel within a blob with the basin

into which it flows. The one failure in Figure 11.27 is for the non-convex object, which has two peaks

in its distance transform. Again, it is necessary to use a small threshold because with discrete images

the distance transform can have small peaks along a diagonal ridge. However, when applying the

watershed transform after a distance transform, there will be no plateaus. This can simplify the

algorithm considerably.

The watershed transform can be used in other applications where detecting peaks is of interest. One

example of this is detecting the peaks following a Hough transform, described in the following section.

Inverting the image will convert peaks to basins, allowing them to be individually labelled.

11.7 Hough Transform

TheHough transform is a technique for detecting objects or features from detected edges within an image

(Illingworth and Kittler, 1988; Leavers, 1993). While originally proposed for lines (Hough, 1962), it can

readily be extended to any shape that can be parameterised. The basic idea behind the Hough transform is

represented in Figure 11.28. Firstly, the image is processed to detect edges within the image. Each edge

pixel then votes for all of the sets of parameters with which it is compatible, that is an object with those

Original Distance transformed Segmented

Figure 11.27 Watershed segmentation for separating touching objects. Left: original image; centre:

applying the 3,4 chamfer distance transform; right: original with watershed boundaries overlaid.

Edge image

Image space Parameter space

Hough
transform

Object
parameters

Detected
objects

Votes

Peak
detection

Reconstruction

Figure 11.28 The principle behind using the Hough transform to detect objects.

370 Design for Embedded Image Processing on FPGAs

parameters would have an edge pixel at that point. This voting process is effectively accumulating a

multidimensional histogram within parameter space. Sets of parameters which have a large number of

votes have significant support for the corresponding objects within the image. Therefore, detecting peaks

within parameter space determines potential objects within the image. Candidate objects can then be

reconstructed from their parameters, and verified.

The idea of voting means that the complete object does not need to be present within the image.

There only needs to be enough of the object to create a significant peak. The Hough transform

therefore copes well with occlusion. Noise and other false edges with the image will vote for

random sets of parameters, which will overall receive relatively little support. Therefore, the

Hough transform is also insensitive to noise. This makes it a powerful technique for object or

feature detection.

11.7.1 Line Hough Transform

Lines are arguably the simplest image feature, being described by only two parameters. The standard

equation for a line is:

y ¼ mx þ c ð11:24Þ

with parameters m and c. A detected edge point, ðx; yÞ will, therefore, vote for points along the line:

c ¼ y�mx ð11:25Þ

in fm; cg parameter space. Such a parameterisation is suitable for lines which are approximately

horizontal, but vertical lines have large (potentially infinite) values of m and c. Such non-uniformity

makes both vote recording and peak detection expensive and impractical. A more usual parameterisation

of lines (Duda and Hart, 1972) is:

x cos y þ y sin y ¼ r ð11:26Þ

where y is the angle of the line and r represents the closest distance between the line and the image origin.

A point ðx; yÞ votes for points along sinusoids in fy; rg parameter space. This process is illustratedwith an

example in Figure 11.29.

H
o
riz

o
n
ta

l lin
e
s

V
e
rtic

a
l lin

e
s

Figure 11.29 Using the Hough transform to detect the gridlines of a graph. From the left: input

image; after thresholding and thinning the lines; Hough transform; detected gridlines overlaid on the

original image.

Blob Detection and Labelling 371

11.7.1.1 Parameter Calculation

The main problemwith the Hough transform is its computational expense. This comes from two sources.

The first is the calculation of the sine and cosine to determine the sets of parameters where each point

votes. Normally y is incremented from 0 to p and the corresponding r calculated from Equation 11.26.

Since the values of y are fixed by the bin spacing, thevalues of siny and cosy can be obtained from a lookup

table. These then need to bemultiplied by the detected pixel location, as shown in Figure 11.30. The size of

the lookup tables can be reduced by a factor of four (for y in the range from 0 to p
4
) with a little extra logic

and exploiting trigonometric identities (Cucchiara et al., 1998).

Mayasandra et al. (2005) used a bit-serial distributed arithmetic implementation that enabled the

addition to be combined with the lookup table, with a shift and add accumulator to perform the

multiplication. This significantly reduces the hardware at the cost of taking several clock cycles to

calculate each point. (Thiswas addressed by havingmultiple processors to calculate all angles in parallel.)

Lee and Evagelos (2008) used the architecture of Figure 11.30 using the logarithmic number system to

avoid multiplications. They then converted from the logarithmic to standard binary for performing the

final addition.

Alternatively, a CORDIC rotator of Equation 5.35 could be used to perform the whole computation of

Equation 11.26. This option was used by Karabernou et al. (2005).

The parameter space could also be modified to simplify the calculation of the accumulator

points. This is one of the advantages of the linear parameterisation of Equation 11.25, as incremental

update can be used to calculate the intercepts for successive slopes. Tagzout et al. (2001) used a

modified version of Equation 11.26 and used the small angle approximation of sine and cosine to

enable incremental calculations to calculate the parameters for a series of angles. However, they still

needed to reinitialise the calculation periodically, about every 10 degrees, to prevent accumulation

of errors.

11.7.1.2 Vote Accumulation

The second problem with the Hough transform is the memory access bandwidth associated with

incrementing the bins in parameter space as the votes are accumulated. Each detected pixel in the

image votes for many bins within parameter space, with each vote requiring two accesses to memory

(a read and a write). The parameter memory will usually be off-chip, which contributes to the bandwidth

problem. If parameter space is coarsely quantised, then it may fit within distributed on-chip block RAMs.

This would allowmultiple bins to be updated in parallel, at the expense ofmultiple processors to calculate

the line parameters.

The adaptive Hough transform reduces thememory requirements by performing theHough transform in

twoormore passes (Illingworth andKittler, 1987). The first pass uses a relatively coarse quantisation tofind

the significant peaks, but gives the parameters butwith low accuracy.A second pass uses a higher resolution

quantisation within those specific detected areas to refine the parameters. The adaptive approach

significantly reduces both the total computational burden and the memory requirements, enabling it to

be implemented with on-chip memory. Obviously the edge data needs to be buffered between passes.

Detected
pixels FIFO

θ
ρcosθ

sinθ
x

y

LUT

r
et

e
m

ar
a

P
m

e
m

o
ry

R
D

D
A

NI
D

T
U

O
D

1

Figure 11.30 Vote accumulator for line Hough transform.

372 Design for Embedded Image Processing on FPGAs

Thememory bandwidth issuemay be addressed by not accumulating votes for every angle. Edge pixels

are usually detected using an edge detection scheme that can also give the edge orientation. Knowing the

edge orientation restricts the accumulation to a single angle (or small range of angles). Not only does this

reduce the number of calculations, but it also reduces the clutter within parameter space, making peak

detection more reliable. This approach has been used to accelerate FPGA implementations (Cucchiara

et al., 1998; Karabernou et al., 2005).

Figure 11.30 also shows a FIFO buffer on the incoming detected pixel locations. Although the

proportion of detected pixels is relatively low for normal images, these pixels tend to be clustered rather

than evenly distributed. A FIFO buffer allows the Hough transform accumulation to run relatively

independently of the pixel detection process.

11.7.1.3 Finding Peaks and Object Features

A single scan through the parameter space with a window is suitable for finding the peaks. A peak

detection filter can be implemented with a small (3� 3) window. If necessary, adjacent counts can be

combined to give the centre of gravity of the peak with increased resolution. During the peak scan pass, it

is also useful to clear the accumulatormemory to prepare it for the next image. This is easy to dowith dual-

port on-chip memory, but is a little harder with off-chip memory.

While the location of a peak gives the parameters of the corresponding line, often this corresponds with

only a line segment within the image. It is therefore necessary to search along the length of each line

detected to find the start and end points. These extended operations are not discussed in many FPGA

implementations. One exception is that of Nagata and Maruyama (2004). To give good processing

throughput, the stages of edge detection, parameter accumulation, peak detection and line endpoint

detection were pipelined.

11.7.2 Circle Hough Transform

Detecting circles (or circular arcs) within an image requires a parameterisation of the circle (Yuen et al.,

1990). The commonly used parameterisation is in terms of the circle centre and radius fxc; yc; rg:

ðx�xcÞ2 þ ðy�ycÞ2 ¼ r2 ð11:27Þ

With three parameters, the parameter space needs to be three-dimensional, with each detected point in the

image voting for parameters on the surface of a cone. The increased dimensionality exacerbates the

computational and bandwidth problems of the Hough transform.

Since two of the parameters relate directly to the position of the circle, the three-dimensional Hough

transform may be recast as a three-dimensional convolution (Hollitt, 2009). The conventional

approach of accumulating votes is equivalent to convolving the two-dimensional image of detected

points with a three-dimensional conical surface. The convolution may be implemented in the

frequency domain by taking the two-dimensional Fourier transform of the input image, multiplying

it by the precalculated three-dimensional Fourier transform of the cone, and then calculating the

inverse Fourier transform.

As with the line Hough transform, detecting the orientation of the edge helps to reduce the

computational dimensionality. The direction of steepest gradient will point either towards or away from

the centre of the circle. Rather than accumulate on the surface of a cone, this reduces to accumulating

points along a ray in three-dimensional space. Incremental update can be used to simplify the calculation

of successive points along this ray. The reduction in number of spurious points accumulated will also

reduce the clutter within parameter space. However, small errors in estimating the edge orientation will

mean that the peak is a little less focussed, particularly with larger radii.

Blob Detection and Labelling 373

However, the reduction in clutter allows a further reduction in dimensionality. Rather than draw the rays

in three-dimensional space, the parameter space can be reduced to two dimensions by projecting along

the radius axis (Bailey, 1992). A two-step process can then be used to determine the three parameters

(Illingworth and Kittler, 1987; Davies, 1988); this is illustrated with an example in Figure 11.31. The first

step is the two-dimensional projected Hough transform accumulating the rays towards the circle centre.

Thesewill reinforce at the circle centre, enabling two of the parameters to be determined. The radius may

then be determined from a one-dimensional Hough transform (histogram) of the distances of each point

from the detected centres.

The two-pass approach requires that the list of detected points be buffered between passes. However,

this is typically only a small fraction of thewhole image, somay be stored efficiently (using chain codes is

one possibility). Projecting the lines results in a fuzzy blob around the circle centres. When the peaks are

found, these need to be smoothed (for example by calculating the centre of gravity) to obtain a better

estimate of the peak location. In the second pass, several radius histograms may be accumulated in

parallel, with the peak and the few radii on either side averaged to obtain the circle radius.

11.7.3 Generalised Hough Transform

The techniques described above can be generalised to arbitrarily shaped objects (Ballard, 1981). The

object being detected is represented by a template, which is then parameterised by position and maybe

also by scale and orientation. The generalised Hough transform is, therefore, a form of edge-based

template matching.

Maruyama (2004) describes an FPGA implementation of a generalised Hough transform. The system

was able to detect over 100 shapes per image using a two-stage process. The first stage uses reduced

resolution (by a factor of 16� 16) to locate and identify a shape approximately. The second stage uses full

resolution, but focussed on the particular area and shape. This enabled frame rates between 13 and 26

frames per second for VGA resolution images (640� 480).

Geninatti et al. (2009) used a variation of the generalised Hough transform to estimate the relative

rotation between successive frames within a video sequence. To reduce the processing, only the DC

components of MPEG compressed images were used, making the effective resolution 44� 36 pixels.

1

1
1

2
2

2 3

3

3

r

r

r

t
n

u
o

C
t

n
u

o
C

t
n

u
o

C

Figure 11.31 Two-step circle Hough transform. Left: original image; centre top: two-dimensional

transform to detect circle centres; right: radius histograms about the detected centres; centre bottom:

detected circles overlaid on the original image.

374 Design for Embedded Image Processing on FPGAs

11.8 Summary

The processing required for blob detection and labelling falls within the intermediate processing level

within the image processing pyramid. The input is all in the form of image data, with the output in terms of

segmented regions or even data extracted from those regions. While there are many possible algorithms

for all of these operations, the primary focus in this chapter has been on stream processing. However, the

non-local nature of labelling means that stream processing is not always possible.

The bounding box focuses purely on extracting size and shape information from each object based on

simple pixel labelling. Consequently non-connected pixels are considered to belong to the same object if

they have the same label. Full connected components labelling is required to take into consideration the

connectivity. Producing a labelled image requires at least two passes, although if all of the required region

data can be extracted in the first pass then the second pass is unnecessary.

Chain coding is an alternative region labelling approach, which defines regions by their boundaries,

rather than explicitly associating pixels with regions. Chain coding can be accomplished in a single

streamed pass, although this requires some quite complex memory management. Subsequent data

extraction then works with the one-dimensional chains rather than the two-dimensional image.

Related intermediate level operations developed in this chapter were the distance transform, the

watershed transform and the Hough transform. All can be used as part of segmentation or to extract data

from an image. These require either multiple streamed passes through the image, or random access. (With

the Hough transform, the random access is within parameter space.)

While other intermediate and high level image processing operations can also be implemented in

hardware on an FPGA, these operations were selected as representative operations where significant

benefits can be gained by exploiting parallelism. This does not mean that other image processing

operations cannot be implemented in hardware. However, with many higher level operations, the

processing often becomes data dependent. If implemented in hardware, separate hardware must be

developed to handle each of the cases. As a result, the hardware is often sitting idle, waiting for the specific

cases required to trigger its operation. There comes a point when the acceleration of the algorithm through

hardware implementation becomes too expensive and complex relative to a software implementation.

Blob Detection and Labelling 375

12

Interfacing

An image processing system never stands alone. This is particularly the case for an embedded vision

system, which is usually designed for one specific purpose or task. Therefore, there are usually one or

more peripheral devices connected to the FPGA implementing the system.

Each device connected to the FPGA must have an appropriate interface within the FPGA. This is

responsible for passing any data to or from the rest of the logic, including any format conversions required

between the peripheral and the processor implementing the algorithm within the FPGA. It is also

responsible for providing any control signals required by the peripheral device. This may range from a

clock signal and simple handshaking through to complex protocol management.Many peripheral devices

require initialisation or configuration through the setting of control registers.

The interface logic may be thought of as a device driver, shielding the image processing hardware from

much of the lower level complexities of the physical interface (Bailey et al., 2006). The primary focus of

this chapter is on some of the techniques associated with the design of such interfaces. The term device

driver may be a little misleading in this context, as it is referring primarily to interface hardware. If the

system is made of a mix of programmable hardware and software, then the interface between them will

also be in the form of a software device driver (Williams, 2009).

It is also useful within this context to consider the interaction between the FPGA system and the user.

On a hosted system, the host computer will performmany of these tasks, using the host operating system.

On a stand-alone system, however, all of these functions must be performed on the FPGA. One advantage

of including an embedded processor is to provide a high level software environment for managing user

interaction. Such tasks tend to be control-centric,making themmore difficult to implement directlywithin

the FPGA fabric. Most user interaction is not time critical, so hardware acceleration is usually not

necessary. However, in some applications, particularly in the context of real-time debugging, it may be

desirable to implement some of these functions directly in hardware (Bailey et al., 2006; Buhler, 2007).

This is a secondary focus of this chapter.

Many embedded applications are designed for performing a single task. Once configured, it is usually

not necessary to change the configuration (apart from upgrading the application). Where dynamic

configuration is used, it is most likely to be between predefined variants of an algorithm that are designed

for specific conditions. Through reconfigurability, the algorithm is adapted to the current conditions.

However, another use of FPGAs is for computation acceleration. In such cases, reconfigurability is more

important depending on the particular task or task mix that is currently being executed. In this case it is

important for the host system to be able to allocate a task ormix of tasks to an FPGA. This usually requires

operating system support (Wigley andKearney, 2001; So, 2007). Such techniques are beyond the scope of

this book.

Design for Embedded Image Processing on FPGAs, First Edition. Donald G. Bailey.

� 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd.

Before getting into details, there is one further general consideration that warrants discussion. Many

external devices have their own natural clock frequency. It makes sense to interface with the device at its

natural frequency. This will usually require that the low level driver span clock domains. The part of the

interface that interacts directly with the hardwarewill be in the hardware clock domain. However, the part

that connects to the core of the system will be in the main system clock domain. Since the domains are

relatively asynchronous, it is important to consider the reliable communication between the domains, as

discussed in more detail in Section 5.1.3. Buffer design is also important to ensure data is not lost in the

transfer between domains.

12.1 Camera Input

In an embedded vision system, it is usually necessary to connect to a camera or other video input. There is

quite a wide range of different camera formats and communication protocols, and each has its own

interfacing requirements.While it is impossible to describe them all in anydetail, the broad characteristics

ofmost of them are introduced in the next section. Subsequent sections discuss particular interface issues:

combining data from interlaced frames in the presence ofmotion; correcting the distortion associatedwith

rolling shutter; and recovering colour data from a raw image captured with a Bayer pattern.

12.1.1 Camera Interface Standards

12.1.1.1 Analogue Video

Amonochrome analogue camera encodes thevideo signal as an analoguevoltage level that is proportional

to the light intensity at a point in a scene. The output follows an interlaced raster scan, with the horizontal

position coded with time, as illustrated in Figure 12.1. Sync pulses at the end of every scan line and every

field are used to synchronise the system.

There are three common techniques for representing colour information. Component video has three

separate signals, one for each of the red, green and blue components. S-video (also called Y/C) has two

signals, one for the luminance and one for the chrominance. The two components of the chrominance are

typically encoded by modulating a colour subcarrier with quadrature modulation (the SECAM standard

uses frequencymodulation instead). Composite video combines the luminance and chrominance together

as a single signal.

There is also a range of different video standards. For NTSC, the signal consists of 525 scan lines

(480 with actual video data) with a frame rate of 60Hz. However, in both PAL and SECAM the signal has

625 lines (576 active) at a frame rate of 50Hz.

Figure 12.2 is a block diagram showing the steps in the conversion of a composite video signal to

digital before processing on an FPGA. The conversion to digital is shown here as the last step, but this

can be moved to anywhere within the processing chain. Technically, it is possible to directly convert the

incoming composite video signal to digital and perform all of synchronisation and colour separation

Black

White

Sync t

Figure 12.1 Analogue video signal. Left: input scene; right: video signal for the marked line. (Photo

courtesy of Robyn Bailey.)

378 Design for Embedded Image Processing on FPGAs

within the FPGA. However, this is not recommended because the processing is quite complex and

would use considerable resources on the FPGA. The required processing is also different depending

on the particular video standard that is input. Instead, using an analogue video decoder chip will

perform all of these functions, and most will automatically detect the signal standard and perform the

appropriate processing.

Communication with the codec usually has two forms. The digital video stream, along with the pixel

clock, horizontal and vertical sync signals are available in parallel and can be connected directly to the

FPGA.Codec configuration (setting the gain, saturation control, signal standard, output format) and status

query is often through a separate interface. Since this is much lower speed, a serial communication

protocol such as I2C is often used. Interfacing to I2C is described in more detail in Section 12.3.2.

12.1.1.2 Direct Interface

Analogue cameras are increasingly being displaced by digital video cameras. These allow a much wider

range of resolutions and directly provide a digital signal. In an embedded device, the best approach is to

interface directly to the digital sensor chip. Direct interface is usually much the same as connecting to an

analogue codec. The digital pixels are streamed from the sensor, with line and frame valid signals. Sensor

configuration (shutter speed, triggering, gain control, windowing, subsampling mode) is controlled

through a set of registers. Again a lower speed serial communication protocol is often used for this.

In a CMOS sensor each of the pixels are potentially individually addressable. Although such in

interface is not usually provided to the user, several operating modes exploit this ability. Some of these

modes commonly made available to the user are:

. Windowing. Rather than read out the entire image each frame, windowing allows a rectangular region

of interest to be selected and only those pixels are read out. This allows the frame rate to be increased by

reducing the area of the sensor that is read out. One application of this is object tracking in situations

where the object being tracked only occupies a small fraction of the image area.
. Skipping. An alternative to windowing is skipping, where the number of pixels read out is reduced by

skipping entire rows or columns. This reduces the pixel count without affecting the field of view.
. Binning. Rather than skipping pixels, adjacent pixels can be combined together. This has two

advantages over skipping. Firstly, it reduces aliasing around sharp edges because adding adjacent

bins is a form of low pass filtering. Secondly, since each pixel contributes to the output, binning can

improve the sensitivity in low light conditions. Binning often has a lower frame rate because internally

multiple pixels must be addressed to produce each output pixel.

A disadvantage of direct connection to the sensor is that the signal path between the sensor and FPGA

must be kept short to maintain close control over timing and signal integrity. The alternative to direct

connection is to use off-the-shelf cameras with standard interfaces.

Clamping

and gain

control

Sync

separation

Chrominance

separation &

demodulation

RGB

matrix

Anti-alias

filters

A/D

conversion

Composite

video

Y
U
V

R
G
B

HS VS Digital video

stream

Figure 12.2 Typical functions performed by an analogue video codec.

Interfacing 379

12.1.1.3 Firewire and USB

Many consumer cameras have a USB or Firewire interface. These can be more difficult to interface

directly to an FPGA. This is particularly so for USB, which relies on a host processor to manage the low

level protocol. Firewire, on the other hand, is a peer-to-peer communication link and does not require a

host processor for data transfer.

With both Firewire and USB, direct connection and signalling by the FPGA are impractical and will

make inefficient use of resources. The best approach is to use an external chip that manages the physical

signalling (a PHYchip). Such chipsmanage the high speed electrical signalling and convert the serial data

into parallel data. The FPGA interfaces to the PHY chip at a speed that is easier to handle. However, this is

still complex to interface because of the complexity of the protocols.

This is particularly so for USB, where the FPGA has to act as the host controller for the USB camera.

It is also necessary to build considerable logic for managing the communication protocols. This ranges

from sending packets to set up the image capture, to receiving and interpreting the video data packets from

the camera. A further complexity is that some inexpensive webcams use proprietary protocols and

compression – interfacing to these requires reverse engineering the USB protocols, not a trivial task!

To connect a USB camera to an FPGA, the simplest approach is to have an embedded processor

and interface to it through the appropriate software drivers. If it is necessary to connect directly from

the FPGA logic to the USB, it is best to obtain an intellectual property (IP) block that manages all of the

USB protocol details.

Interfacing with a Firewire camera is a little easier. Again it is necessary to use the PHY chip. The

interface is made easier by a link layer controller (LLC) chip, which manages the communications

protocol, CRC checking and provides a FIFO buffer for data. Some manufacturers provide integrated

PHY and LLC, which provide a set of control registers through a microprocessor type of interface, and

provide direct access to the streamed data through a DMA style of interface These can be connected

directly to an FPGA, with a relatively simple controller to manage the application data built within

the FPGA logic.

Firewire, as defined by the IEEE 1394 standard, divides all activity on the Firewire bus into 125ms
cycles. Each cycle is initiated by one of the nodes designated as the cycle master, which broadcasts a start

packet allowing all other devices to synchronise with the bus. The remainder of the cycle is split amongst

two types of data transfer. Isochronous transfers occur first; these are broadcast transfers designed for

transferring large blocks of data. Up to 80%of the cycle time can be spent on isochronous transfers, shared

amongst all the devices using the bus. The remaining time is for asynchronous transfers, which are point-

to-point, with error recovery available.

Within this structure, there are two commonly used video standards or protocols that are used to control

the device and transfer of video data. Industrial or machine vision cameras generally use the DCAM

specification (1394 Trade Association, 2004), for the transfer of raw video data without audio. Many

consumer devices use the AV/C (audio video control) protocol, also specified by the 1394 Trade

Association. This defines the behaviour of digital audio-visual devices. The two protocols are quite

independent and are not interoperable. The DCAM protocol is described here; the greater complexity of

AV/C (because it must handle a wider range of devices) is beyond the scope of this section.

The DCAM protocol specifies a set of enquiry and command registers within the camera. The enquiry

registers are queried and command registers set through asynchronous Firewire transfers. These allow the

capabilities of the particular camera to be determined, and the camera to be initialised for the desired video

mode, frame rate and other camera parameters (gain, white balance, shutter control, iris and focus control,

and any other controls that may be offered by the camera). It is also necessary to set the isochronous

channel number and bandwidth for transferring the video data and initiate the image capture process. The

camera then streams the requested video data isochronously until instructed to stop. Since the

asynchronous and isochronous transfers are independent, it is possible to communicate with the camera

while it is streaming video data.

380 Design for Embedded Image Processing on FPGAs

Overall, there are two initialisation phases in connecting to a Firewire camera. The first is to set up the

Firewire LLC and the second is to set up the camera.With amicroprocessor interface, unless an embedded

processor is being used, it is necessary to build a small controller on the FPGA that provides the register

address and corresponding data to set up the Firewire chipset. Figure 12.3 shows basic structure of a

simple controller. The initialisation data is held in a ROM (implemented using fabric RAM). If the

registers can be programmed sequentially, the counter steps through the ROM providing the data

associated with each address. If the registers must be accessed multiple times, or in a random order, then

the alternative is to store both the LLC address and data within the ROM and use the counter to access

these sequentially.

A similar type of structure can be used to initialise the camera. The difference is that this data is sent via

asynchronous Firewire transfers. The process is easiest if a specific camerawith known properties is being

used. Otherwise, it is necessary to send a set of queries to the camera to first determine whether or not the

camera supports the desired modes. The more complex logic required to manage a range of different

cameras and to send the appropriate setup commands is probably best handled through a serial processor

rather than within the fabric of the FPGA.

One example of a description of a dual camera system interfaced with an FPGA is described

by Akeila and Morris (2008). They connected two Firewire cameras to an FPGA as part of a stereo

matching system.

12.1.1.4 Camera Link

While USB, and to a lesser extent Firewire, are targeted primarily at the consumer market, when

connecting to a digital frame grabber within an industrial vision system, the Camera Link interface

(AIA, 2004) is more common.

Camera Link is based on National Semiconductor’s Channel Link technology. A single Channel Link

connection provides one-way transmission of 28 data signals and an associated clock over five LVDS

pairs. One pair is used for the clock, while the 28 data signals are multiplexed over the remaining four

LVDS pairs. This requires a 7 : 1 serialisation of the data presented on the inputs.

The base configuration for Camera Link camera is shown in Figure 12.4. It has (AIA, 2004) one Channel

Link connection, with the 28 bits allocated as 24 bits for pixel data (three 8-bit pixels or two 12-bit pixels)

and4bitscontainingframe,lineandpixeldatavalidsignals.Thepixelclockhasamaximumofrateof85MHz.

In addition, there are four LVDS pairs from the frame grabber to the camera for general purpose camera

control. The use of these is defined by the particular camera manufacturer. Finally, two LVDS pairs are

provided for asynchronous serial communication between the camera and frame grabber. The serial

communication is relatively low speed – the specifications say that a minimum rate of 9600 baud must

be supported.

For higher bandwidth, the medium configuration adds an additional Channel Link connection for an

additional 24 bits of pixel data. The full configuration adds a thirdChannel Link, giving a total of 64 bits of

Firewire

LLC

DATAADDR

Firewire

LLC

DATAADDR

retnuoCretnuoC

DATAADDR

Initialisation

data (ROM)

DATAADDR

Initialisation

data (ROM)

}

Figure 12.3 A simple controller for setting the link layer controller registers through a microprocessor

interface. Left: sequential register addresses; right: register addresses in random order.

Interfacing 381

pixel data. This may allow, for example, up to eight pixels to be transmitted in parallel from the camera

with each pixel clock cycle.

Modern FPGAs provide direct support for LVDS signalling. For the high speed pixel data, there are two

choices. One is to use a Channel Link receiver chip to deserialise the high speed data and provide the pixel

data to the FPGA in parallel. Alternatively, since there is no complex protocol involved, the multiplexed

signals could be connected directly to the high speed inputs of the FPGA and the built-in SERDES blocks

used to perform the 7:1 deserialisation and demultiplexing.

12.1.1.5 GigE Vision

Higher performance devices are tending towards using gigabit Ethernet for data communication. High

speed or larger area image sensors are no exception. GigEVision is a camera interface standard developed

by the Automated Imaging Association that uses gigabit Ethernet for the transport of video data and

sending control information to the camera. Because it builds on the back of the gigabit Ethernet standard,

it is able to make use of low cost standard cables and connectors. These allow data transfer at rates of 100

Mpixels per second over distances up to 100 metres.

The GigE Vision standard has four elements to it. A control protocol defines the communication

required to control or configure the camera. A stream protocol defines how the image data is transferred

from the camera to the host system. Both of these protocols run over UDP. A device discoverymechanism

provides a way of identifying which GigE Vision devices are connected and obtaining their Internet

addresses. Finally, anXMLdescription file provides an online data sheet that specifies the camera controls

and image formats available from the device. The structure of this XML data sheet is defined by the

GenICam standard (EMVA, 2009).

The design of a GigE Vision based system is an advanced topic and a detailed discussion

of all of the issues is beyond the scope of this book. Only a brief overview is provided in the

following paragraphs.

The complexities of the Ethernet protocol make a pure FPGA implementation difficult. To connect a

GigEVision camera to an FPGAwould use a significant fraction of the FPGA resources just to receive the

data. A reference design is available fromSensor to Image (2009c) for a GigEVision receiver that streams

data in from a camera and displays the resultant video on a VGA output. In most embedded vision

applications, it would be more practical to build the FPGA system within the camera and perform any

processing before sending the results to a host system using GigE Vision. Sensor to Image also provides

reference designs for GigE Vision transmitters for both Xilinx and Altera FPGAs (Sensor to Image,

2009a; 2009b).

Valid

R

G

B

Pixel clock

Camera

control

(4)

Rx

Tx

C
a

m
e

ra
 L

in
k
 c

a
m

e
ra

Configuration

and status

Sensor

R

G

B

CLK

VALID

Figure 12.4 Base configuration for a Camera Link camera.

382 Design for Embedded Image Processing on FPGAs

The basic structure of a GigE Vision system is shown in Figure 12.5. Unless the FPGA has a built-in

gigabit Ethernet PHY this must be provided as an external chip. The MAC core may either be internal or

external to the FPGA. TheGigE coremanages the low level networking features, routing the video stream

to or from the frame buffer memory. The control protocol is routed to the embedded processor, which

manages the camera configuration in software. When acting as a camera, the system also needs to

interface with the sensor. This also provides an interface to the embedded processor for control of the

actual camera and to thememory controller for saving the images to the frame buffer. In such a system, the

embedded processor also makes available to the GigE Vision side the GenICam-based XML data sheet

describing the capabilities of the camera. Not shown in Figure 12.5 is the image processing that adds value

to the system!

Real-time operation is achieved on the host systemby using a dedicated device driver. This bypasses the

standard TCP/IP protocol stack for the video stream, instead transferring the data directly to the

application using DMA transfers. This eliminates any CPU overhead from the handling the actual video

data as it is transferred.

12.1.2 Deinterlacing

Most analogue cameras use an interlaced scan. The frame is split into two fields, with the even rows

scanned in the first field and the odd rows scanned in the second. For a stationary object or camera, this

presents no problem, but if either the camera or objects within the scene are moving, then there is a

displacement between the two fields.

There are two problems associated with interlacing. The first is the interlace artefacts associated with

object motion relative to the camera. The second is associated with scan-rate conversion, for example

when displaying video from a 25 frame per second PAL camera on a 60Hz non-interlaced VGA display.

Consider first the conversion from an interlaced scan to progressive scan, with the output frame rate

being double that of the input (so each field is converted to a full frame). Each input field only has half of

the lines available. Let the nth field be Inðx; yÞ, where the missing lines are Inðx; yÞ ¼ 0 for

ymod 2 6¼ nmod 2. The problem is then to estimate the data within the missing lines. This is an

interpolation problem, with solutions involving both spatial and temporal interpolation.

There is a wide range of methods that may be applied to this problem (de Haan and Bellers, 1998), with

the more complex methods detecting the motion of objects within the scene and using motion

compensated interpolation. One of the simplest methods that gives reasonable results on many images

is a simple three-point median filter:

Qn½x; y� ¼
(
In½x; y�; ymod 2 ¼ nmod 2

median In½x; y� 1�; In�1½x; y�; In½x; y þ 1�ð Þ; ymod 2 6¼ nmod 2
ð12:1Þ

For static scenes, this is effectively just providing a median filter on the missing rows. This will have little

effect on edges, but may cause a small reduction in fine detail. Where there is motion, the previous field

GigE

PHY

GigE

core

Memory

controller

Embedded

processor

FPGA

Frame

buffer

GigE

MAC

core

GigE Vision

camera

or

Host

system

Ethernet

cable

Camera

interface

Figure 12.5 Structure of a GigE Vision based system.

Interfacing 383

may be incompatiblewith the current field as a result of themotion of edges. In this case, the pixel from the

previous fieldwill be quite different from the adjacent pixels in the current field. Themedianwill therefore

select either the pixel above or the pixel below to replace the incompatible pixel.

When performing frame rate conversion as well, then the best approach is to use full temporal

interpolation. This detects the motion of objects and renders the object in an appropriate position

according to the current frame time and object motion. If, however, a small amount of inter-frame judder

can be tolerated, then the three-point median approach of Equation 12.1 can also be applied. To avoid

tearing artefacts, it is necessary to work with complete fields. Equation 12.1 is simply applied to the two

most recent complete fields at the start of the output frame. Incoming fields are simply buffered while the

output is being produced. For example, to convert from 50 interlaced fields per second to 60 progressive

frames per second, it is necessary to buffer four fields: the two that are currently being interlaced

for the display and two to allow for an incoming field to be completed while the output frame is still

being produced.

12.1.3 Global and Rolling Shutter Correction

The exposure time within a CMOS sensor is from the time that the pixel reset is released until the pixel

value is read out. With global shuttering, all pixels are released simultaneously. The consequence is that

pixels read out earlier will have a shorter exposure than those read out later. For short exposure times, there

can be a significant difference in exposure between the first and last row read out, resulting in the top of the

image being under-exposed and the bottom of the image being over-exposed.

This problemmay be overcome in twoways. One is to use an external mechanical shutter to expose the

image for a constant time. The alternative is to use an electronic rolling shutter. The reset for each row is

successively released so that the time between release and readout is constant for each row. While this

solves one problem, it introduces another.

If any objects within the scene are moving (or if the camera is moving or even panning) then since the

different rows are exposed at different times, the output image will appear distorted. The nature of this

distortion will depend on the relative motion between objects in the scene. For a stationary camera, any

stationary background is unaffected. Any downwards motion will result in objects appearing stretched

vertically, while upwards motion will result in vertical compression. Sideways motion will result in a

shearing of the object. More complexmotions, for example resulting from the panning of the camera, can

result in additional rotation of objects within the image as a result of the change in perspective. Additional

effects can be observed with light variations, for example when the scene is illuminated by fluorescent

lights (Nicklin et al., 2007) where the periodic variation of light intensity appears as a distinct banding

within the image.

Compensation for the rolling shutter requiresmodelling both the image capture process and the relative

motion between objects and the camera (Geyer et al., 2005). A global correction is only applicable if the

scene is stationary and the camera motion can be modelled (Nicklin et al., 2007; Liang et al., 2008).

Otherwise, the motion of individual objects must be determined with the position of each object in each

frame corrected accordingly. This is still an area of active research, with detailed algorithms not available

at present apart for simple cases such as global motion.

12.1.4 Bayer Pattern Processing

Most single-chip cameras obtain a colour image by filtering the light falling on each pixel using a colour

filter array – essentially amosaic offilters. Themost commonpattern is theBayer pattern (Bayer, 1976), as

shown in Figure 12.6. Each pixel receives light only of a single colour, with half of the pixels green, one

quarter red and one quarter blue. Therefore, to form a full colour image, it is necessary to interpolate the

384 Design for Embedded Image Processing on FPGAs

missing values in each of the component images so that there is an RGB value for each pixel. This

interpolation process is sometimes called demosaicing, because it is removing the mosaic of the colour

filter array. The interpolation filters are spatially dependent because the particular filter function depends

on the position within the mosaic.

The simplest form of filtering is nearest neighbour interpolation. For the red and blue components, this

is accomplished by duplicating the available component within each 2� 2 block. Within the green

component, the missing pixels may be obtained either from above or to the left. While nearest neighbour

interpolation is simple, it does not really improve the resolution, with the image appearing blocky,

particularly along edges. This requires a 2� 2 window, with multiplexers to route the buffered pixels to

the appropriate colour channels, as shown on the left in Figure 12.7.

An improvement may be gained by using linear interpolation. The missing red and blue components

with two horizontal or vertical neighbours are obtained by averaging the adjacent pixels vertically. Those

in the middle of a block are obtained by averaging the four neighbouring values. This requires a 3� 3

window, as shown in Figure 12.7. The vertical averagemay be reused to reduce the computation required.

The divide by two from the averaging is free in hardware.

Using linear interpolation can result in blurring of edges and fine detail. Since a different filter is applied

to each colour channel, this can result in colour fringes around sharp edges and fine lines. To reduce the

blurring and consequent colour artefacts, it is necessary to detect the orientation of any features within the

image, and perform any interpolation in the direction along the edges rather than perpendicular to them.

This is complicated by the fact that only one colour component is available for each pixel.

To obtain an accurate estimate of the position of the edge, a much larger window and significantly

more computation is required. There are many more complex algorithms described in the literature; a

few examples are mentioned here. The ratio between the colour components at each pixel can be

iteratively adjusted to make them consistent on each side of an edge (Kimmel, 1999). While this method

handles edges reasonably well, the underlying assumption is that there are several consistent samples on

each side of an edge. This is not the case with textured regions and fine detail results in colour fringing

effects. This approach of enforcing consistency between colour channels is taken further by Gunturk

et al., (2002), where the image is first decomposed into low and high frequency bands using a form of

R

R

R

R

R

R

R

R

R

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

B

B

B

B

B

B

B

B

B

R

R

R

R

R

R

R

R

R

B

B

B

B

B

B

B

B

B

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

≡

Figure 12.6 Bayer pattern. Left: raw image captured; right: component colour images.

G1
G2
R

B

G1
G2
R

B

G G

G1

G2

R

B

G1
G2
R

B

I
IR R

G G

B B÷2 ÷2

÷2

÷2

Row buffer Row buffer

Row buffer

Figure 12.7 Basic Bayer pattern processing. Left: nearest neighbour interpolation; right: linear

interpolation. The letters within the multiplexers refer to the current output position, where G1 is the

green pixel on the red row and G2 is the green pixel on the blue row.

Interfacing 385

wavelet transform before applying consistency constraints within each band. An alternative to

interpolation is extrapolation. The missing value is estimated by extrapolating in each of the four

directions and using a classifier to select the best result (Randhawa and Li, 2005). A limitation of this

approach is that it requires a very large window, making it less practical for FPGA implementation.

The final result will inevitably be a compromise between interpolation quality and the computation and

memory resources required. One relatively simple algorithm that provides significantly better results

than simple interpolation with only modest increases in computation is that by Hsia (2004). An edge

directed weighting is used for the green channel, with simple interpolation used for the red and blue

channels. However, the results are then enhanced using a local contrast-based gain to reduce blurring

across edges.

Firstly, the edge directed weighting requires the horizontal and vertical edge strengths to be estimated:

DH ¼ G½x� 1; y� �G½x þ 1; y�j j ð12:2Þ

DV ¼ G½x; y� 1� �G½x; y þ 1�j j ð12:3Þ

Then, these are used to weight the horizontal and vertical averages:

Ĝ x; y½ � ¼ DV
DV þ DH

G½x� 1; y� þ G½x þ 1; y�ð Þ
2

þ DH
DV þ DH

G½x; y� 1� þ G½x; y þ 1�ð Þ
2

ð12:4Þ

If the denominator is zero, then the two weights are made equal at 0.5.

The interpolated output values are scaled by the local contrast based gain, which is calculated

horizontally to reduce the number of row buffers required (Hsia, 2004). The gain term, K, is:

K x; y½ � ¼ 4I½x; y�
I½x� 2; y� þ Q½x� 1; y� þ I½x; y� þ I½x þ 2; y� ð12:5Þ

where Q½x� 1; y� is the previously calculated output for the colour channel corresponding to the input

pixels. The final value is the product of Equations 12.4 and 12.5. A similar gain term is used for the

interpolated red and blue channels.

A direct implementation of this scheme is shown in Figure 12.8. The outputs are fed back through a

multiplexer to selectQ½x� 1; y� for the channel that determines the gain term.The effectivewindow size is

5� 3, requiring only two row buffers as with the simple bilinear interpolation.

One limitation of this circuit from a real-time implementation is the feedback term used to

calculate the local gain. The propagation delay through the division, multiplication and two multiplexers

cannot be pipelined, and will therefore limit the maximum pixel clock rate. Potential alternatives for

K are:

K3 x; y½ � ¼ 3I½x; y�
I½x� 2; y� þ I½x; y� þ I½x þ 2; y� ð12:6Þ

or

K5 x; y½ � ¼ 5I½x; y�
I½x� 2; y� þ I½x; y� 2� þ I½x; y� þ I½x þ 2; y� þ I½x; y þ 2� ð12:7Þ

386 Design for Embedded Image Processing on FPGAs

although this latter gain termwill require an additional two rowbuffers. Themultiplication by three or five

may be performed by a single addition either before or after the division.

This circuit of Figure 12.8 may be simplified by reusing parts of the filter and factorising Equation 12.4

to give Figure 12.9. The local gain term uses Equation 12.6 to remove the feedback and the number of

multiplications byKwas reduced from four to twoby observing that only two of the resultswill be used for

any particular output. An additional stage of pipelining has been added to perform the division and

multiplications in separate clock cycles.

12.2 Display Output

Just as image capture is important for an embedded image processing system, most imaging systems also

need to be able to display images, even if just for debugging. There are two components to displaying an

image, or indeed any other graphics, on an output from an FPGA. The first is the display driver that that

controls the timing and generates the synchronisation signals for the display device. The second is

generating the content, that is controlling what gets displayed where and when.

12.2.1 Display Driver

The basic timing for video signals was introduced in Figure 1.3. The image is sent to a display in a raster

scanned format. At the end of each line of active video data there is a blanking period (Figure 12.10).

During this blanking period, a synchronisation pulse is used to indicate to the monitor to begin the next

line. For CRT monitors, the blanking period is typically 20% of the scan time for each row. This allows

G1
G2
R

B

G

G1
G2
R

B

I

R

G

B

÷4

÷2

÷2

÷

÷

÷

| |

| |

K

ΔH

ΔV

Row buffer

Row buffer

Figure 12.8 Direct implementation of the demosaicing scheme of Equations 12.4 and 12.5.

G1
G2
R

B

G

G1
G2
R

B

I
R

G

B÷2
÷2

÷2

÷

÷

| |

| |

K

G

G

×2

ΔH

ΔV
Row buffer

Row buffer

Figure 12.9 Simplified logic for colour filter array demosaicing.

Interfacing 387

time for the scanning electron beam to be repositioned for the next line. A similar timing structure is used

at the end of each frame to synchronise the monitor for displaying the next frame.

The Video Electronics Standards Association has defined a set of formulae which define the detailed

timing for a given resolution and refresh rate known as the coordinated video timing (CVT) standard

(VESA, 2003). (Anumber of legacy industry standard timings are also listed in (VESA, 2007).)Within the

CVT standard, there are two sets of timings: one for traditional CRT type monitors and one for more

modern flat panel displays that do not require the long blanking period. The latter timings significantly

reduce the horizontal blanking period, increasing the available bandwidth for active video and signifi-

cantly reducing the pixel clock frequency. The polarity of the horizontal and vertical sync pulses indicate

whether the CRT timing, the reduced blanking interval timing or a legacy timing mode is used. The CVT

standard also indicates to the monitor the target aspect ratio by the duration of the vertical sync pulse.

A number of common formats are listed in Table 12.1, along with the timing parameters for a refresh

rate of 60Hz. Parameters for other refresh rates may be obtained from standard tables or from a

spreadsheet associated with the CVT standard.

HSync

Video

Active video

hcroptnorFhcropkcaB

Blanking

Figure 12.10 Horizontal video timing.

Table 12.1 Timing data for several common screen resolutions for a refresh rate of 60Hz (VESA, 2003;

2007)

Pixel

clock

Visible

width

Front

porch

Horiz.

sync

Back

porch

Whole

line

Visible

height

Front

porch

Vert.

sync

Back

porch

Whole

frame

Sync

polarity

MHz Pixels Lines Horiz. Vert.

25.175 640 16 96 48 800 480 10 2 33 525 Neg Neg

40.00 800 40 128 88 1056 600 1 4 23 628 Pos Pos

65.00 1024 24 136 160 1344 768 3 6 29 806 Neg Neg

81.75 1152 64 120 184 1520 864 3 4 26 897 Neg Pos

108.00 1280 96 112 312 1800 960 1 3 36 1000 Pos Pos

108.00 1280 38 112 248 1688 1024 1 3 38 1066 Pos Pos

85.50 1360 64 112 256 1792 768 3 6 18 795 Pos Pos

121.75 1400 88 144 232 1864 1050 3 4 32 1089 Neg Pos

101.00 1400 48 32 80 1560 1050 3 4 23 1080 Pos Neg

106.50 1440 80 152 232 1904 900 3 6 25 934 Neg Pos

162.00 1600 64 192 304 2160 1200 1 3 46 1250 Pos Pos

119.00 1680 48 32 80 1840 1050 3 6 21 1080 Pos Neg

138.50 1920 48 32 80 2080 1080 3 5 23 1111 Pos Neg

154.00 1920 48 32 80 2080 1200 3 6 26 1235 Pos Neg

184.75 1920 48 32 80 2080 1440 3 4 34 1481 Pos Neg

156.75 2048 48 32 80 2208 1152 3 5 25 1185 Pos Neg

241.50 2560 48 32 80 2720 1440 3 5 33 1481 Pos Neg

268.50 2560 48 32 80 2720 1600 3 6 37 1646 Pos Neg

388 Design for Embedded Image Processing on FPGAs

The timing can easily be produced by two counters, one for the horizontal timing along each row and

one for the vertical timing, as shown in Figure 12.11. The count is simply comparedwith the times that the

key events are required to generate the appropriate timing signals. Rather than use less than and greater

than to comparewhen the counter is in a particular range, tests for equality reduce the logic. This requires

an additional single bit register which is set at the start of the signal and cleared at the end. The vertical

counter is enabled only when the horizontal counter is reset at the end of each line. The vertical sync pulse

is also synchronised with the leading edge of the horizontal sync pulse (VESA, 2007). It is usual for the

counters to begin at zero at the start of the addressable active region. In this case, the end of the blanking

will correspond to the total, so one of the comparisons may be eliminated. However, if any stream

processing pipelines require priming it may be convenient to advance the origin to simplify the

programming logic.

12.2.1.1 VGA Output

The VGA output connector provides the display with analogue signal video signals for each of the red,

green, and blue components. These require a high speed D/A converter for each channel. For simple

displays, with only one or two bits per channel, these signals may be provided reasonably simply using a

resistor divider chain. However, for image display the simplest approach is to use a video digital to

analogue chip, which is available from several manufacturers.

In addition to thepixeldata, separate horizontal andvertical sync signals alsoneed tobe sent.Theseneed

tobeof appropriatepolarity, according to the resolutionanddisplaymodeused.CVTstandard timingshave

positive sync pulses on the horizontal sync and negative pulses (normally high) on the vertical sync.

Reduced blanking timings reverse these. Legacymodesmay have both horizontal and vertical sync pulses

high (or low). The sync pulses may be driven directly by the FPGA using 3.3V TTL level signals.

The VGA connector also provides an I2C channel for communication between the host and the display.

This is normally used for plug and play functionality, to enable the host to determinewhich resolutions and

refresh rates are supported and for setting various display parameters. Generally it is not necessary to use

this channel for driving the display from the FPGA provided that the particular resolution and refresh rate

are supported.

12.2.1.2 DVI Output

One limitation of the VGA signal is that it is analogue, and therefore subject to noise. This becomes more

acute at higher resolutions,which requires a higher pixel clock. The digital visual interface (DVI) standard

(DDWG, 1999) overcomes this limitation by transmitting the signal digitally.

The red, green and blue pixel values are transmitted serialised using a transition minimised digital

signalling (TDMS) scheme. This converts each eight bits of input data into a 10 bit sequence using a code

RST

x RSTCE

y

HBlank start-1

HBlank end-1

HSync start-1

HSync end-1

VBlank start-1

VBlank end-1

VSync start-1

VSync end-1

VTotal-1HTotal-1 ==

==

==

==

==

HBCE

HSCE

VBCE

VSCE

Figure 12.11 Circuit for producing the timing signals for a video display.

Interfacing 389

that minimises the number of transitions and also averages out the DC level over the long term.

The encoded signals are transmitted using a single ended differential pair. As a result of serialisation, the

bit clock is 10 times higher than the pixel clock. Since there can be a wide range of clock frequencies

(depending on the resolution and refresh rate), a pixel clock is also transmitted on a separate channel.

Four additional 10 bit code words are reserved for synchronisation. These are transmitted during the

blanking periodwith the particular codeword dependent on a pair of control signals. These control signals

are normally zeros, however, on the blue channel, the control signal is made up of the horizontal and

vertical sync signals.

The DVI connector comes in a number of configurations that differ in which signals are connected.

The single-link digital connector contains the three data signals described above plus an I2C-based data

channel for communication as described within Section 12.2.1.1. The maximum pixel clock frequency is

165MHz. This is where the reduced blanking timings come in useful – they increase the useful bandwidth

enabling a lower clock frequency to be used.Where the pixel clock exceeds themaximum, additional pins

are used to provide a dual link, with two pixels transmitted in parallel each clock cycle. For backwards

compatibility, the analogue video signals can also be provided, enabling a simple adaptor to be used with

both digital and analogue monitors.

While the 8/10 bit encoding could potentially be performed on the FPGA (for example using a lookup

table), a SERDES block would be required by each channel to meet the required data rates. DVI

transmitter chips are also availablewhich remove this logic from the FPGAwith just a parallel data output

for each channel.

12.2.1.3 Television Output

An analogue television signal combines the red, green and blue signals together, producing luminance and

chrominance components, with the chrominance signals used tomodulate a subcarrier. The processing for

this is best performed using an external composite video signal codec.

For digital television connections, the HDMI standard interface using RGB mode is compatible with

DVI and just requires a suitable adaptor.

12.2.2 Display Content

The second part of displaying any output is to produce the content that is required at the appropriate time.

In particular, this requires producing each output pixel value at the correct time for the corresponding

object or image to appear on the display.

The conventional approach used in software-based systems is to represent the content that is to be

displayed as an array of data within memory (a frame buffer). This is then streamed to the display as

required. The limitation of this approach is that the data to be displayed is calculated and written to a

memory. Then, the contents of that memory is periodically read and streamed out to the display. To reduce

flicker effects when updating the contents, a double buffering scheme is often used. A copy is made of the

display image, which is then updated independently of what is being displayed, and then rapidly written

back to the frame buffer to change the display smoothly. The cost of such an approach is that a significant

fraction of the timemay be spent reading from andwriting tomemory. Arbitration logic is also required to

avoid access conflicts with the process that is reading from the frame buffer to actually display the image.

Using random access processing on an FPGA, like its software counterpart, requires a frame buffer to

hold the image being displayed.Generally, double buffering, or bank switching, is also used to give a clean

display and meet the bandwidth requirements of both image generation and display driver processes.

However, using stream processing on an FPGA provides an alternative approach. By synchronising the

image processingwith the display driver, it is possible to perform amuch of the processing on the data as it

is being displayed. To guarantee that the data is always available when it is needed it is necessary that the

390 Design for Embedded Image Processing on FPGAs

processing has a fixed latency. The processing is then started in advance of when it is required. This is

made possible since the display driver produces regular, predictable signals, enabling the processing to be

begun at precisely the right time. The fixed latency requirement may also be relaxed if necessary by

introducing a FIFO buffer to take up any slack. In such cases the blanking periods at the end of each line

and each frame may be used to catch up and refill the FIFO buffer.

Even within such a rigid processing regime, considerable flexibility is possible. For example, the

display can be segmented, with different images or stages within the process displayed in each section.

12.2.2.1 Windows

This concept may be extended further to display each image within a separate window on the display.

Dynamic windows allow the content to be resized and repositioned, giving greater flexibility over

fixed image locations (Bailey et al., 2006). Each window requires a separate data structure containing

the window properties, including a z-index which controls the order they appear on the display

(Buhler, 2007).

The basic principle of on-the-fly display may be extended to the display of window contents if the

processing latency is kept small. If two windows are overlapping, it is necessary switch the generation

from one process to another as the scanline moves from one window to the next. Since the processing for

each window will be sharing the hardware, the timing of such a context switch must take place within the

width of thewindow border. Since the images may be offset vertically relative to one another between the

windows, this may require additional caching to retain the context of both windows for the next row.

12.2.2.2 Buttons and Other Widgets

In a windowing environment, it is also necessary to be able to display buttons and other widgets to control

the processes. Each widget is contained within a window, and within each window the widgets are not

overlapping. This allows a single instance of the display hardware for each type of widget to be

multiplexed amongst all instances of that widget. This allows the widget to be produced on-the-fly as it is

required for display.

From a hardware perspective, this is best managed by using a memory to hold the data structure

for each type of widget (Buhler, 2007). In that way, the multiplexing is performed efficiently through

memory addressing.

In addition to displayingwidgets, it is also necessary for the user to interact with them– that iswhat they

are there for! In a conventional frame buffer-based system, it is necessary to perform a hierarchical search

through the display objects to determine which widget is at the current cursor location. With on-the-fly

processing, as the cursor is displayed, thewidget at the cursor location is also being indexed and displayed.

This facilitates a very simple widget processing regime, because the widget at the location of the cursor

can automatically receive any associated user interactions. If the widget control is implemented in

hardware, such interactions can take place directly with the widget, again multiplexing a single hardware

controller between all of the instances of a particular widget. Alternatively, the widget index and relative

cursor position may be passed to a software process for performing more complex interactions.

12.2.2.3 Character Generation

It may be useful to have textual or other annotations associated with a window. This may be useful

for labelling objects or regions of interest, or displaying textual debugging information. While text could

be displayed in a frame buffer, this is inefficient in terms of memory usage and makes dynamic update

more difficult.

Interfacing 391

Amore efficient approach is to represent the text directly as ASCII codes and interpret these on-the-fly

to produce the bitmaps that need to be displayed. Character generation logic is simplified if character

locations are restricted to a grid, but more general positioning can be accommodated. The process is

outlined in Figure 12.12. The display driver produces the position of the current pixel being displayed. The

window processor receives this and, based on which window is currently visible at that location (if any),

selects the annotation data associated with the window and then provides the offset based on window

position and character generation latency for the annotation processor. The annotation processor then

detects the leading edge of each character and outputs the ASCII code and rowwithin the character to the

character generator. The line of pixels is read from the character generator bitmap and is ORed into the

output shift register, combining it with any other characters that are also being produced. The shift register

shifts the bits out sequentially, producing the character glyph on the display. The window processor

detects the trailing edge of the window and resets the shift register at the appropriate time to clip the

character to within the window borders. Of course, there are many more details that have been skipped

within this simplified explanation (Buhler, 2007).

12.2.2.4 Arbitration Issues

With several processes producing output for the display, it is essential to combine these together

appropriately. A relatively simple priority stack can be used to determine which process produces the

pixel for the display, as illustrated in Figure 12.13. Thewindow processing determines whichwindow and

associated components are being displayed at any location. If no window is at the current pixel, then the

background is displayed by default.Within awindow, the background or image if it is an imagewindow is

the next layer. On top of this comes any textual annotation andwidgets. At the highest priority is themouse

cursor layer. Any object on a higher priority layer will either mask (or modify) the underlying layers.

Window

processor

Annotation

data

Window

data

Annotation

processor

Character

bitmap

LUT

Shift register

Display

driver

Character generator
Bitstream

to display

arbitration
x
y

offset
character

row
}

RESETclipping

Figure 12.12 Character generation process.

Screen layer - background

Mouse cursor layer

Frame layer - background

Widget layer

Frame layer - image

Widget layer

Text / annotation layer

Frame layer - image

Widget layer

Text / annotation layerWindow 3

Window 1

Window 2

Figure 12.13 Window layering showing the arbitration priority. (Reproduced with permission from

D.G.Bailey et al., “GATEOS:Awindowing operating system for FPGAs,” IEEE InternationalWorkshop

on Electronic Design Test and Applications, 405– 409, 2006. � 2006 IEEE.)

392 Design for Embedded Image Processing on FPGAs

12.3 Serial Communication

Many peripheral devices communicate using some form of serial communications. This section briefly

describes the most common of these, along with related FPGA implementation issues.

12.3.1 PS2 Interface

The PS2 is a low speed serial connection designed primarily for communication between a computer and

keyboard or mouse. Since the PS2 protocol is much easier to work with than the more modern USB

standard, it has become the method of choice for connecting a mouse or keyboard directly to an FPGA.

Since the underlying PS2 protocol is the same for both the keyboard and mouse (Chapweske, 2003),

it is described first. The specific communication is then described for interfacing with a mouse

and keyboard.

The PS2 connector provides a 5 Volt supply to power the keyboard or mouse and also has data and

clock signals. The data and clock signals use an open collector interface. These can be implemented

on the FPGA by using tristate output control to drive the output pin low when needed and use an

internal pull-up resistor on the input to pull the signal to its default high state (Figure 12.14). If the

pull-up voltage is too low, or the pull-up resistor is too strong, then an external pull-up resistor may

be used.

Both the clock and data signals are only driven when transferring data; in the idle state, both lines are

at their default high state. The clock signal (typically 10–16 kHz) is always generated by the PS2 device,

so if the FPGA wants to send a command to the device it must signal with a request to send (RTS)

pattern. This consists of pulling the clock signal low for at least 100 microseconds, then pulling the data

signal low and releasing the clock. This instructs the device to begin transmitting a clock enabling the

FPGA to transmit data.

Each packet, whether transmitting or receiving, consists of 11 clock cycles from the device

(Figure 12.15):

. a start bit, which is always low (the RTS from the FPGA provides the initial start bit for FPGA to device

communication);
. eight data bits, sent least significant bit first;
. a parity bit, using odd parity (the number of ones in the data bits plus parity bit is odd);
. a stop bit, which is always high;
. and a final acknowledge bit, sent by the device only when the FPGA is transmitting data to the device.

When the FPGA is transmitting data to the keyboard or mouse, the data line should be changed

while the clock signal is low and be held while the clock is high. When receiving data from the device,

the opposite occurs: the data changes while the clock is high and can be read on the falling edge of

the clock.

OE
OE

I/O I/O

Data inData in

VCCO

+5V

00
4.7kΩ

120Ω

SendSend

Data outData out

Figure 12.14 Implementation of an open collector or passive pull-up data bus. Left: using an internal

pull-up resistor; right: with external pull-up resistor.

Interfacing 393

On the FPGA, the communication can be managed by a simple state machine; a skeleton implemen-

tation is given in Figure 12.16. The main control comes from the clock input from the device.

A synchronising flip-flop is required to prevent metastability problems on the input (it is not needed

on the data line because it is synchronous with the clock). The AND gate then detects the falling edge and

produces a single pulse used to enable the finite state machine and the rest of the circuit through the clock

enable pins on appropriate registers. This enables the driver to be operated in themain clock domain that is

directly using the data. For transmit, the length of the RTS pulse may be determined by a counter. On the

data side, a single shift register can be used to clock data in and out, with a single parity generator/checker

switched between the input or the output. The output multiplexer selects the source of the current output

bit. The state machine also has control inputs from the input data line (for checking start and stop bits) and

from the parity checker.

12.3.1.1 Mouse

To use the mouse, the FPGAmust first confirm that a mouse is connected to the PS2 port. This consists of

sending a sequence of commands to the mouse and checking the response. A selection of the main

commands is listed in Table 12.2. The mouse may be operated in one of several modes, the most useful of

which is probably the streamingmode,where themouse reports any changes in position or button status. If

the mouse has a scroll wheel, it may also be enabled by sending the appropriate sequence.

When in streaming mode, whenever the mouse is moved or a button is pressed or released the mouse

streams three byte packets, as listed in Table 12.3. If themouse has been successfully put into scroll wheel

mode (device type reports as 0x03), the data packet is four bytes long. The movements are all relative to

the previously reported position, with the X and Ymovements represented using 9-bit two’s complement

offsets. If the offset exceeds � 255 then the corresponding overflow bit is set. The scroll wheel movement

is a 4-bit two’s complement offset, contained in the fourth byte.

Synchronising

flip-flop

Clock
RTS

tfi
h

S

CP

Data

Parity

Start/Stop

Data byte

Controlling

FSM

Figure 12.16 Skeleton implementation for a PS2 driver.

0
D

1
D

2
D

3
D

4
D

5
D

6
D

7
D

y ti r
a

P

tr
at

S

p
ot

S

k
c

A

S
T

R

Clock

Clock

Clock

Data

Data

Data

FPGA

Device

Device

Transmit

Receive

Figure 12.15 PS2 communication sequences. Top: transmission from FPGA to device; bottom:

receiving from the device.

394 Design for Embedded Image Processing on FPGAs

12.3.1.2 Keyboard

Akeyboard is detected by sending a reset command to the PS2 port. After the self test response is received,

sending a read device type command (Table 12.2) should result in a two-byte device type of 0xAB, 0x83.

Whenever a key is pressed, the corresponding scan code (listed in Figure 12.17) is transmitted by the

keyboard to the host. While the key is held down, the keyboard will periodically resend the scan code.

When the key is released, a key-up scan code is sent, which for one-byte codes consists of 0xF0 followed

by the scan code, and for two-byte codes, the 0xF0 comes after the 0xE0. The keyboard does not take into

account whether or not the Ctrl, Shift or Alt keys are down – it is the responsibility of the host to account

for these when interpreting the scan codes. If ASCII input is required, these scan codes may be converted

to ASCII using a lookup table, combined with the shift status.

The indicator LEDs on the keyboardmay be set by sending the command 0xED followed by a data byte

with Scroll Lock in bit 0, Num Lock in bit 1 and Caps Lock in bit 2.

12.3.2 I2C

Many devices and interface chips are configured using an Inter IC (I2C) bus (NXP, 2007) or related

communications protocol (for example, SMBus and PMBus used within computer systems). This is a two

wire serial bus,with a data line (SDA) and clock line (SCL).Many devicesmay be connected on the single

bus, including multiple bus masters, with each device on the bus individually addressable. The bus

supports multiple data rates, from 100 kbit/s up to 3.4Mbit/s, with the speed limited by the slowest device

on the bus.When connecting to peripherals from anFPGA, it is assumed here that there is only a single bus

Table 12.2 Main mouse commands and responses

FPGA Mouse

Reset 0xFF 0xFA Acknowledge

0xAA Passed self test or 0xFC (error)

0x00 Device type of standard mouse

Set scroll wheel mode 0xF3 0xFA

0xC8 0xFA

0xF3 0xFA

0x64 0xFA

0xF3 0xFA

0x50 0xFA

Read device type 0xF2 0xFA Acknowledge

0x03 If scrolling is supported, otherwise 0x00

Enable reporting 0xF4 0xFA Acknowledge

Table 12.3 Mouse data packet in streaming mode

MSB 6 5 4 3 2 1 LSB

Byte 1 Y overflow X overflow Y sign X sign 1 Middle

button

Right

button

Left

button

Byte 2 X movement

Byte 3 Y movement

Byte 4

(scroll only)

Z movement

Interfacing 395

master – the FPGA, and that it will be programmed to run at the speed of the slowest peripheral. (To handle

the more complex case of multiple bus masters, consult the I2C specifications; NXP, 2007.)

The bus lines normally use a passive pull-up (like the PS2 port; Figure 12.14), although active pull-up

may be used when operating with a single master and none of the devices will stretch the clock. The clock

signal is always generated by the master, which also initiates and terminates any data transfer. Normally,

the data signal is only allowed to changewhile the clock signal is low. The exception to this is indicating a

start condition (S) or a stop condition (P). Each byte transferred requires nine clock cycles: eight to

transfer data bits (MSB first) and one to acknowledge.

A transfer is initiated by the master (the FPGA) signalling a start condition: pulling SDA low while the

clock is high. The first byte in any data transfer is always sent by the bus master and consists of the 7-bit

address of the slave device and a R=W bit. This is then acknowledged by the addressed slave pulling

SDA low for the ninth clock cycle. The remainder of the transfer depends on whether the master signalled

a read or a write (Figure 12.18). When the FPGA is writing, each byte transferred is acknowledged

by the slave, unless there is some error condition (for example it was not able to understand a command

that was sent). At the end of the transfer, the master signals a stop condition (a rising edge on SDA after

the clock has gone high) or another start condition if it wishes tomake another transfer.When reading from

the device, after the first address byte the slave begins transmitting data which is acknowledged by the

FPGA. After the last byte, the FPGA sends a negative acknowledgement followed by the stop or repeated

start condition.

There are four conditions that can lead to a negative acknowledgement (NXP, 2007), indicating that the

transfer should be aborted:

. Therewas no slave on the buswith the specified address. Since therewill be no response, the default will

be for the bus to stay high.
. The slave device is not ready to communicate or cannot receive any more data from the master.

0E

` ~

0D

TAB

58

Cap Lock

12

Shift

14

Ctrl
E0 2F

Menu
E0 11

Alt
E0 1F

Window
E0 27

Window
E0 14

Ctrl
11

Alt

16

1 !

15

Q

1C

A

1A

Z

1E

2 @

1D

W

1B

S

22

X

05

F1

26

3 #

24

E

23

D

21

C

06

F2

25

4 $

2D

R

2B

F

2A

V

04

F3

2E

5 %

2C

T

34

G

32

B

29

Space

0C

F4

36

6 ^

35

Y

33

H

31

N

3D

7 &

3C

U

3B

J

3A

M

03

F5

3E

8 *

43

I

42

K

41

, <

0B

F6

46

9 (

44

O

4B

L

49

. >

83

F7

45

0)

4D

P

4C

; :

4A

/ ?

0A

F8

4E

- _

54

[{

52

’ ”

01

F9

55

+ =

5B

] }

5A

Enter

59

Shift

09

F10

5D

\ |

78

F11

66

Bksp

07

F12
E0 37

Power

E0 70

Ins

E0 71

Del

E0 6B

Left

(1)

Print

E0 3F

Sleep

E0 6C

Home

E0 69

End

E0 72

Down

7E

Scroll

E0 5E

Wake

E0 7D

PgUp

E0 7A

PgDn

E0 74

Right

(2)

Pause
77

Num

6C

7

6B

4

69

1

E0 4A

/

75

8

73

5

72

2

70

0

7C

*

7D

9

74

6

7A

3

71

.

7B

-

79

+

E0 5A

Ent

76

ESC

E0 75

Up

Figure 12.17 Keyboard scan-code numbers in hexadecimal. (1) E0 12 E0 7C; (2) E1 14 77.

FPGA SDA

FPGA SDA

FPGA SCL

Slave SDA

Slave SDA

Transmit

Receive

Ack Ack AckR/WS P

Byte 1 Byte 2 Byte 3

A6 A0 D7 D7D0 D0...

Figure 12.18 I2C communication sequence. Top: writing to the device; bottom: reading.

396 Design for Embedded Image Processing on FPGAs

. The data sent to the slave was invalid, out of range or otherwise not understood by the slave.

. When the master is receiving data from a slave, to indicate that no more data should be transmitted.

Many I2C devices are register based, in that data is written to, or read from, a numbered register on the

device.Awrite is straightforward – the FPGA sends thewrite to the slave, followed by the register address,

then the data written to that register. Reading from a register is a little more involved. Firstly the FPGA

needs to send awrite to the slave and thenwrite the register address. Then the FPGA sends a repeated start

condition to terminate the first transaction and begin a newone. This consists of sending a read to the slave,

and then the slave returns the contents of the register addressed in the first message.

An FPGA implementation of I2C is made easier by the FPGA being the bus master and providing the

clock signal. The clock signal can be produced simply by dividing down the clock within the main clock

domain. A finite state machine may be used to control the driver, using a circuit similar to Figure 12.16

(obviously the parity generator and checker are not required). The control is a little more complex as a

result of slave addressing.However, the driver can be kept reasonably simple by separating the driver from

the data interpretation.

12.3.3 SPI

Another serial bus architecture is the serial peripheral interface (SPI). It is sometimes used with sensors

and is commonly used as an interface to serial memories. It is both simpler and faster than I2C, although it

has no formal protocols and there are several variations. The basic structure of the interface is as shown in

Figure 12.19. The master selects the slave device and then data is communicated in synchronisation with

the clock. To accessmultiple slaves, each slave requires its own separate slave select (SS) pin, although the

clock and data lines can be shared. The data transfer is full duplex, with MoSi being the master output/

slave input and SoMi the slave output/master input, although both lines do not always carry meaningful

data simultaneously. Themeaning of the data transferred, and even the size of the transfer, is dependent on

the size of the device. Therefore, it is necessary to consult with the manufacturer’s documentation on the

specific commands and protocols used in order to design an appropriate driver for the peripheral.

Within an FPGA-based system, an SPI interface can be used to provide the configuration data

for the FPGA. The application may require access to the SPI bus if the application has the ability to

reprogram the configuration memory. It may also provide other non-volatile data storage as required by

the particular application.

12.3.4 RS-232

Another common serial interface is RS-232.While inmany applications it has been superseded byUSB, it

still remains popular because of its simplicity and is a standard peripheral in many microcontroller chips.

While technically RS-232 refers to the particular electrical signalling standard, it is often uses

synonymously for asynchronous serial communication, and this is primarily the sense used here.

Master Slave

SCLK

MoSi

SoMi

SS

Figure 12.19 Serial peripheral interface.

Interfacing 397

To convert from normal logic levels to RS-232 levels, an appropriate interface chip is used, for

example the MAX232 from Maxim Integrated Products. The need for a common ground limits the

length of an RS-232 cable. In an industrial setting, the differential signalling of RS-422 (or RS-485 for

multidrop) are more robust.

Asynchronous communication is so-named because it does not use a clock signal. Before transmission,

the data line is held in an idle state, (a logical 1). Transmission is started by sending a start bit (logic 0); the

falling edge is used to synchronise the receiver to the transmitter. Following the start bit, five to eight data

bits are sent, followed by an optional parity bit, and finally one to two stop bits (logic 1) which are used to

synchronise with the next word transmitted. The following timing and data framing parameters must be

agreed between the transmitter and receiver before transmission:

. the clock frequency;

. the number of data bits and the order in which they are sent (MSB or LSB first);

. whether to use a parity bit and, if so, whether odd or even parity is used;

. the number of stop bits (the minimum time before a new transmission may begin).

A half-duplex connection uses a single data line for both transmitting and receiving. This requires

hardware handshaking to control the direction of the data transfer. The handshaking is asymmetric, using

separate signal lines. One end is designated as a data terminal and it signals its desire to transmit by setting

the request to send (RTS) signal low. This is acknowledged by a reply on the clear to send (CTS) line. Full-

duplex uses separate independent data lines for transmitting and receiving.

The implementation of asynchronous communication with a predefined set of parameters is a straight

forward extension of the circuit of Figure 12.16. However, being able to change the parameters at run-time

makes the system significantly more complex.

12.3.5 USB

Asmentioned earlier, interfacing to devices usingUSB is quite complex. For simple serial communication,

the simplest approach is to connect to an integrated USB chip that enables asynchronous serial data to be

streamed directly to it.Many such devices have a built-in microcontroller whichmanages the details of the

USB protocols. The alternative is to use a soft-core processor on the FPGA to manage the communication

and protocols. It is generally not worth the effort interfacing hardware directly to a USB connection.

12.3.6 Ethernet

The use of high speed Ethernet was introduced earlier in this chapter with the GigE Vision camera

interface protocol. To recap, the communication interface requires a PHY for managing the physical

signalling and a MAC core for encapsulating the data with the required Ethernet headers and controlling

data transmission and reception. The use of Ethernet for point-to-point communication is relatively

straightforward, althoughwriting a driver for interfacing between the rest of the design and the Ethernet is

not for the faint-hearted. Fortunately, logic cores are available to do most of the hard work.

Using an Ethernet connection to connect to the Internet adds a whole new layer of complexity.

Communication on the Internet is based on the TCP/IP protocol. This is, in fact, a suite or stack of

protocols (Roberts, 1996), where the Internet protocol (IP) encapsulates data transmitted with a header

that describes the particular protocol, which is then transmitted (as payload) over Ethernet. Several of the

core protocols of the Internet protocol suite are:

. The transmission control protocol (TCP) is one of the most commonly used IP protocols for the

transmission of data on the Internet. It establishes andmaintains a virtual streamconnection between the

398 Design for Embedded Image Processing on FPGAs

two hosts, onwhich reliable bidirectional transfer of datamay take place. The protocol hasmechanisms

for detecting dropped or corrupted packets and automatically retransmitting the data until it is

received correctly.
. The user datagram protocol (UDP) provides a lightweight mechanism for the transmission of data

packets from one host to another. While there is a checksum for checking data integrity, there is no

mechanism for ensuring reliable delivery. UDP is used for time sensitive applications where the

overhead of retransmitting lost or missing data is unacceptable, for example streamed media.
. The Internet controlmessage protocol (ICMP)works behind the scenes to communicate status and error

messages between hosts and routers in an Internet-based network.
. The address resolution protocol (ARP)maps an IP address to an Ethernet address to enable the packet to

be sent to the correct destination on an Ethernet-based network.

On top ofUDPandTCPare the application layer protocols, which specify how the actual data content is

transferred for a particular application, such as file transfer, mail, news, domain name resolution, Web

(HTTP), and so on.

While all of these component protocols could be implemented in hardware (Dollas et al., 2005), the

complexity of the layered architecture can quickly become unwieldy. Consequently, the Internet protocol

is probably best managed by a software-based protocol stack, with the Ethernet MAC implemented in

hardware using the FPGA logic.

As outlined in Section 4.3.3, one advantage of equipping an embedded systemwith a full TCP/IP stack

is that it provides a genericmechanism for remote communication. AWeb interface allows remote control

and setting of algorithm parameters. The results, including images, can be readily displayed directly

through a Web interface. An Internet connection also allows the FPGA configuration to be remotely

updated, providing a ready path for upgrades.

12.3.7 PCI Express

PCI express is the latest standard for connecting to peripheralswithin a high speed computer system (Wilen

et al., 2003). Previous generations of the peripheral component interconnect (PCI) bus were parallel, with

32 or 64 data lines. However, as the bus speed is increased, two problems are encountered: increased cross-

talk from the coupling between adjacent signal lines and increased skew between data lines resulting from

small differences in path length. In switching to a serial connection, PCI express solves the skew problem

(although amuch higher clock rate is required tomaintain the bandwidth) and uses differential signalling to

significantly reduce the effects of cross-talk. The other significant change is that while PCI is a bus, shared

by all peripherals, PCI express is a point-to-point connection with separate transmit and receive, avoiding

overheads associated with bus arbitration and contention.

Each differential pair operates at 2.525GBit/s, with a transmit and receive pair called a lane. Clocking is

embedded within the signal by using 10 bits to encode each eight bits of data. This limits the length of

consecutive zeros or ones to provide edges for a phase locked loop to recover the clock. (The new PCI

express version 3 achieves the same effect with reduced overhead by scrambling the data first and using

130 bits to encode each 128 bits of data.) Higher bandwidth connections can runmultiple lanes in parallel,

with successive bytes sent down successive lanes.

At the link layer, additional overheads are introduced for CRC-based error detection and packet

acknowledgements. Each data packet is kept in the transmit buffer until acknowledgement is received.

This allows packets signalled as corrupt to be automatically resent.

Higher layers of the protocol create virtual links between the components that share the underlying

physical link. This is implemented through a transaction layer, where each transaction consists of a

request followed by a response. Between the request and response, the link is available for other traffic.

Flow control uses a credit-based scheme where the receiver advertises the space available within the

Interfacing 399

receive buffer as credit. The transmitter keeps track of its remaining credit and must stop transmitting

before the buffer is full. As the receiver processes data and removes it from the buffer, it restores credit to

the transmitting device.

PCI express ismost commonly used to interface between an FPGAboard and its host computer system,

enabling the rapid transfer of data in high performance computing applications. Recent FPGAs have

built in PCI express ports, with logic cores available for interfacing between the rest of the logic of

the application.

12.4 Memory

Inmany applications, it is necessary to usememory external to the FPGA for frame buffers and other large

memory blocks. External memory is also required when running an embedded processor with an

operating system such as Linux. There are two main types of memory: static and dynamic. The issues

involved in interfacing with these are described in turn.

A common issue, particularly with high speedmemories (in particular DDRmemories) is ensuring that

any signal skew in the parallel data and address lines does not violate setup and hold times.

12.4.1 Static RAM

Static memory stores each bit using a latch. Each memory bit therefore requires a minimum of four

transistors, with an additional two transistors used for accessing the latch for reading and writing. This is

considerably larger than the one transistor used by dynamic memory, making it more expensive to

manufacture. Its advantage is its speed, making it commonly used for intermediate memory sizes (in the

low megabyte range), such as commonly used by cache memories in high end computer systems.

Almost all high speed synchronous memories are pipelined. Therefore, when reading, the data is

available several clock cycles after the address is provided, although the memory has a throughput of one

memory access per clock cycle. This access latency must be built into the design of the application. This

makes external memories a little more difficult to use than internal block RAMs.

Usually when writing, both the address and data must be applied at the same time. Consequently, when

following a read by a write, there is a dead time to allow the read to complete before the data pins are

available for providing the data to be written. If using such memories in a design, this dead time must be

taken into account in the timing budget.While suchmemoriesmay be suitable for reading or writing large

blocks, such as might be encountered when streaming an image to or from a frame buffer, they are

unsuitable for two-phase designs, where reads and writes may be alternated.

Zero bus turnaround (ZBT) memories have no dead period between writes and reads. This is

accomplished by providing the data to be written after the address, as shown in Figure 12.20. The

ability to switch between reads and writes from one cycle to the next makes ZBT memories significantly

A0

Q0

A1

D1

A2

D2

A3

Q3

A4

Q4

A5

Q5

A6

D6

A7

Q7

A8

D8

A9

D9

Addr

Data

Clock

OE

R/W

CS

Figure 12.20 Typical timing for a pipelined ZBT static memory with two clock cycles latency.

400 Design for Embedded Image Processing on FPGAs

easier to interface to an application. The data to be written may be delayed within the FPGA if necessary

by using a pipeline.

12.4.2 Dynamic RAM

Dynamic memory, because of its lower cost, is best suited for larger volumes of memory. It uses a single

transistor per memory cell, with the data stored as charge on a capacitor. Since the charge leaks off the

capacitor, it must be refreshed at least once every 64ms to prevent the data from being lost. To achieve this

with large memories, dynamic memories are structured so that a complete row (within the two

dimensional memory array) is refreshed at a time. The availability of a whole row at a time leads to

a pagedmemory structure,where a row is selected first, and then the columnwithin that row is read fromor

written to.

Interface to a chip is controlled through a sequence of commands which are provided through a set of

control pins. A typical command sequence is as follows:

. An activate command selects the memory row to use. The address lines specify which row is selected.

Activating a row reads the row into the column sense amplifiers, enabling the data within that row to be

accessed. It also has the side effect of refreshing the charge on the capacitors within that row. Row

activation typically takes several clock cycles.
. Once activated, read and write commands may be made to that row.With a read or write command, the

address lines specify the column that is to be read or written. A read or write has several clock cycles

latency, however these are pipelined, enabling one access per clock cycle to data on that row. When

writing, the data must be provided with the address, so there is a bus turnaround delay when switching

from reads towrites. Operating in burstmode enables several successivememory locations to be read or

written with a single command. This is exploited with DDR memories, giving two reads or writes per

clock cycle, one on each edge of the clock.
. Before selecting another memory row, it is necessary to close the row with a precharge command. This

returns the sense amplifiers to an idle state ready to sense the next row.
. A refresh command refreshes one row ofmemory. An internal counter ismaintained so that the rows are

refreshed in sequence. The refresh command internally activates a row, waits for sufficient time for the

charge on the capacitors to be refreshed, and then returns the line to the idle state. While it is possible to

do this manually, having a refresh command simplifies the memory controller.

There is considerable latency, especially when moving from one row to another. To help alleviate this,

most DRAMchips havemultiple banks ofmemory internally, so that one bankmay be used whilewaiting

for row activation or precharging within another bank.

Reading or writing from a dynamic memory is, therefore, not a simple matter of providing the address

and data. The complex sequence of operations to access a particular memory and ensure that the memory

is kept refreshed requires a memory controller. Some new FPGAs incorporate dedicated hardware

memory controllers to simplify access (Xilinx, 2010c). Otherwise it is necessary to build the memory

controller from the fabric of the FPGA.

If using dynamic memory for a frame buffer, it works best with streaming mode because there will be

many sequential accesses to the same row. Streamed access by columns (for example with the FFT) is

generally not practical because of the large latencies to switch from onememory row to another. Thismay

be overcome to some extent by creating a mapping between logical memory and physical memory to

increase the number of sequential accesses to the same page. However, such techniques complicate the

system design. A similar problem is encountered with random access processing. In such systems, it may

be necessary to maintain a static memory as a frame buffer in addition to the dynamic memory. If the

access pattern is known in advance, then a smaller cache may be built on the FPGA.

Interfacing 401

DIMMs (dual in line memory modules) consist of a number of dynamic RAM chips mounted on a

printed circuit board to give a wider data width. These are commonly used with conventional computer

systems, but can also be used with FPGAs.

12.4.3 Flash Memory

Flashmemory is non-volatile, making it useful for storing data required by an applicationwhile the FPGA

is switched off, or when switching from one configuration file to another. The basic mechanism is to have

charge stored on a floating gate transistor, which results in a change in transistor threshold voltage,

enabling the different states to be identified (Pavan et al., 1997). Programming consists of injecting charge

onto the floating gate, while erasing removes the charge. There are twomain types of flash memory based

on how these transistors are arranged: NOR flash and NAND flash.

NORflash is similar to regularmemory,with address and data lines allowing individual transistors to be

read or written using a random access memory pattern. Read access times are reasonably fast, although

writes are very slow in comparison with static or dynamic memories, and this must be taken into account

by the application. Erasure is on a block by block basis, and is also very slow. Erasing a block sets all the

bits to ones, and writing can only change ones to zeros. To change a zero to a one requires erasing the

complete block, losing any data contained within it.

NAND flash arranges the transistors differently to enable a higher packing density (resulting in lower

cost). The consequence is that NAND flash has page or sector-based structure, making it better suited for

sequential access than random access. Programming individual bytes and random access are difficult, but

programming and erasing blocks is significantly faster thanNORflash (Micron, 2010). Internally, reading

copies thewhole block from non-volatile storage into buffer register (typically 25ms) fromwhich the data

can then be streamed out (typically 25 ns per byte or word). Similarly, writing streams the data into the

buffer register (25 ns per transfer) fromwhich thewhole block is programmed at once (200–500ms). Since
NAND flash memories are orientated to sequential access, the data pins are usually multiplexed to carry

commands and the page address.

NAND flash requires error checking and correction to ensure data integrity. Each block usually has a

number of spare bytes that can be used for storing error correction codes. However, it is up to the controller

to implement any error checking and correction. It is also important to check the status after a program or

erase operation to confirm that the operation has completed successfully. If not successful, such blocks

should be marked as bad and not be used. Micron provides VHDL code that may be used for the basis of a

NAND flash controller (Micron, 2007).

12.5 Summary

This chapter has reviewed some basic interfacing issues particularly related to embedded vision

applications.

A camera or input sensor is perhaps the key peripheral in a vision system. The most straightforward

approach is to interface directly with the sensor chip. This gives the lowest latency and avoidsmany of the

complications of interfacing with the USB or Firewire connection of consumer cameras. An issue with

CMOS sensors is characterising and correcting the distortions introduced by rolling shutter-based

electronic shuttering. This is a complex problem that depends on the motion of both object and camera.

When interfacing directly with a colour sensor, it is also necessary for the FPGA to recreate the full colour

image by interpolating the values of the missing colour channels.

Image display is another important capability, even if it is just used for debugging and system tuning.

A simple display is relatively easy to generate, although an analogue output will require external digital to

analogue converters. A DVI output keeps the system all digital, although it will require more logic on the

402 Design for Embedded Image Processing on FPGAs

FPGA and high speed SERDES interfaces to produce the serial signals. Alternatively, a DVI transmitter

chip offloads the logic at the expense of increased component count.

Some issues with display content generation have been discussed briefly. In particular, techniques for

window and character generation have been outlined.

A range of serial communication protocols have been outlined. The control channel for many devices

(including cameras and displays) is usually over a relatively low speed serial link. The slower speedmakes

the design easier, with simple interfaces able to be built with relatively few resources. Higher speed

connections such as gigabit Ethernet and PCI express are significantly more complex and should be built

using intellectual property blocks.While both will be less common in embedded vision applications, PCI

express is commonly used to interface between a host computer system and an FPGA in a high

performance reconfigurable computing platform.

Finally, issues with interfacing to external memories have been considered briefly. The main

complication is the memory latency with pipelined access. This is particularly acute with dynamic

memory, which requires a page be selected before it is accessed. Careful design of the system, and in

particular thememory controller, is required to prevent the acceleration gained elsewhere in the algorithm

from being lost due to memory bandwidth limitations.

Interfacing 403

13

Testing, Tuning and Debugging

In any application, it is the fortunate developer who can get the system to function as desired on its first

attempt. Inevitably, there are errors in either the design or implementation that require the algorithm to be

tuned or debugged.

There are four main causes for an algorithm not behaving in the intended manner that are addressed

briefly in this chapter. These are:

. Design errors. This encompasses a range of issues including faulty logic and the algorithm being

unsuitable or not sufficiently robust for the task. A rigorous design process should eliminate such errors

before reaching the FPGA implementation stage. However, many development applications follow a

less formal design-as-you-go process, where such design errors can be expected!
. Implementation errors. Syntax errors such as spelling mistakes, incorrect operations and misplaced

parentheses will usually (but not always) fail to compile. More subtle errors result from the

implementation not matching the design. These include errors in the mapping of operations onto the

FPGA, such as not correctly taking into account the latency. Particular problems can relate to conflicts

between subsystems working in parallel.
. Tuning errors. In this class, the algorithm is basically correct, but the parameters are such that it does

not behave in the intended manner. Tuning involves finding the set of parameters that gives the best

performance.
. Timing errors. These result from the algorithm being logically correct, but being clocked too fast for

the propagation delays of the logic. Systems run at the limit of their performancemay fail intermittently

as setup and hold times of registers are violated.

A range of techniqueswere discussed fromadesign perspective in Section 4.5. Thesewill not be examined

again in this chapter in any detail, although they will be reviewed as appropriate under each of the

categories above.

13.1 Design

As outlined in Chapter 4, the design of an image processing algorithm for a particular task is a heuristic

process. It requires considerable experimentation to develop the sequence of image processing operations

to achieve the desired result. A software-based image processing system provides the level of user

interaction required to try different operations and examine the results.

Design for Embedded Image Processing on FPGAs, First Edition. Donald G. Bailey.

� 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd.

The main issue with algorithm design is how to go about testing a complex algorithm. In all but trivial

cases, it is impossible to test an algorithm exhaustively. No algorithm is perfect; all will have flaws or

limitations. The primary role of testing is, therefore, to determine the useable limits of the algorithm and

determine its robustness.

The conventional approach to testing digital logic is to develop a test bench which exercises all of the

components of the design and validates that the design is correct. With image and video processing,

however, this approach is impractical because of the large input space. A single low resolution, 256� 256

greyscale (8 bit) image has a total of 524 288 bits. This gives 2524288 different images. While only a small

fraction of these are ‘useful’ in any sense of theword, and, of those, even fewer imagesmay be relevant to a

particular task, the number of images likely to be encountered in any application is still impractically large

to test exhaustively. By today’s standards, a 256� 256 image is small. Larger images and image

sequences (video) contain even more raw data, compounding the problem.

Testingan imageprocessingalgorithmthereforeonlyconsidersa selectionof sample images. Inaddition

toa rangeof typical cases, it is important touse imageswhich test theboundariesofcorrectoperation.When

using imageprocessing todetectdefects, it isparticularlyuseful tohavea largeproportionof the test images

near theclassificationboundaries. Ifnecessary, theavailable imagesmaybemodifiedartificially tosimulate

the effects of changes in lighting, to adjust the contrast or modify the noise characteristics.

Test patterns and noise sources may be used to create test images or modify existing sample images to

simulate effects which may occur rarely. For example, uneven lighting may be simulated by adding an

intensity wedge to an image. The noise sensitivity of an algorithm may be tested by adding increasing

levels of randomnoise to an image to determine the level at which the algorithm becomes too unreliable to

be usable.

While some testing may be performed in software, in some applications the system must be tested on-

line to achieve a suitably wide range of inputs. However, before getting this far, the developer should

be fairly certain that the algorithm is not going to change significantly. Most of the adjustments should be

parameter tuning rather thanwholesale algorithmchanges (unless of course the testing determines that the

algorithm is not sufficiently robust or is otherwise deficient in some way).

13.1.1 Random Noise Sources

When adding noise to an image, it is necessary to have a source of random numbers. Two main types of

random number generators may be implemented on an FPGA: true random number generators and

pseudorandom number generators. Two techniques for generating true random numbers (Danger et al.,

2007; Tsoi et al., 2007) are to rely onmetastability (deliberately violating setup and hold times) so that the

output is effectively random, and to sample a high speed clock signal with a slow but unstable clock. The

jitter of the latter makes the sampled clock random. Two limitations of true randomnumber generators are

that the bit generation frequency is relatively low and that the sequence cannot be regenerated without

storing it.

Pseudorandomnumber generators produce deterministic sequenceswhich passmanyof the tests of true

random numbers. These work by maintaining a Boolean state vector, x, with the next state determined as

some function of the current state. The output vector, y, is also some function of the current state. Themost

common form of hardware-based random sequence generator is a linear recurrence generator, where the

function is given by the matrix:

xn þ 1 ¼ Axn
yn ¼ Bxn

ð13:1Þ

with all of the operations performed using modulo-2 arithmetic. With this multiplication becomes an

AND gate and addition becomes exclusive OR. Since matricesA and B are constant, this is equivalent to

406 Design for Embedded Image Processing on FPGAs

each state variable being the exclusiveOR of some combination of the state variables, as shown on the left

in Figure 13.1.With appropriate selection ofA, the length of the sequence is 2N�1, whereN is the number

of bits in the state vector. Such sequences are calledmaximal length sequences. The�1 comes from the

fact that a statevector of zerowill always produce a zero result using such a linear combination. Therefore,

it is essential to initialise the state vector to be other than all zeros, otherwise a random sequencewill not be

generated. An implementation of Equation 13.1 optimised for FPGA implementation is described by

Thomas and Luk (2005). The multiplication of each row of A was implemented using a single 4-LUTon

the FPGA to combine up to four state variable bits to produce each output bit, giving a resource efficient

implementation.

One class of linear recurrence generator is the linear feedback shift register (LFSR), which uses

the feedback for only one state variable, with the others obtained by shifting the bits along. Although

multiple bits may be obtained from an LFSR, as shown in the right in Figure 13.1, the problem is that

the bits are related by a simple shift and are not independent. This problemmay be addressed in a number

of ways.

. Use several such generators (with different feedback combinations), each producing one bit output.

If the generators have coprime maximal lengths, then the length of the output sequence will be the

product of the lengths.
. Combine multiple bits together (using a B matrix) to improve the independence. The bits combined

should be random rather than in a sequence.
. Taking k bits output every k clock cycles. This ensures that an independent set of bits is provided each

time. A variation on this is to shift the data by k positions each clock cycle. This effectively uses Ak

rather than A as the state transition matrix. An example is shown in Figure 13.2 for k ¼ 2.
. A combination of the above can be used to improve the statistical properties of the output.

A=

A=

B=

B=
1 1 0 0
0 0 1 1
1 0 0 1
1 0 1 1

0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0

0
1 0 0 1

10 1

0
0 0 0 1

00 1

Figure 13.1 Linear recurrence random number generators. Left: general case with N ¼ 4; right: linear

feedback shift register with two output bits.

x1

x1

x1

x2

x2

x2

x3

x3

x3

x4

x4

x4

x5

x5

x5

x6

x6

x6

x7

x7

x7

x8

x8

x8

x9

x9

x9

x10

x10

x10

Figure 13.2 Producing multiple output bits by shifting several positions each clock cycle. Top: original

10-stage LFSR shifted by one bit; bottom left: shifted by two bits; bottom right: rearranged to show

coupled LFSR implementation.

Testing, Tuning and Debugging 407

Looking inmore detail at Figure 13.2, one 10-stagemaximal length LFSR is represented by the feedback:

x1 x0 ¼ x10 � x7 ð13:2Þ

which on the next clock cycle is clocked into x1.When shifting everything by two places it is necessary to

have two sets of feedback, representing successive shifts:

x2 x0 ¼ x10 � x7
x1 x�1 ¼ x9 � x6

ð13:3Þ

This may be readily extended to shifting any number of places. When shifting multiple places, the state

bits fall into distinct groups, each of which is a standard shift register but with cross-coupled feedback,

as demonstrated on the bottom right in Figure 13.2. As long as k is not a factor of 2N�1, then the length
before the sequence repeats is unchanged. Obviously for image processing N ¼ 10 is far too small. For

practical use, the sequence length should be significantly longer than the number of pixels in the image.

(For N ¼ 31 the following all give maximal length sequences: x31 � x3, x31 � x6, x31 � x7, x31 � x13,

x31 � x18, x31 � x24, x31 � x25, and x31 � x28. For N ¼ 32, there are no two feedback maximal length

combinations, but there are many four feedback combinations including x32 � x19 � x18 � x13,

x32 � x27 � x24 � x12, x32 � x29 � x17 � x15, and x32 � x31 � x23 � x10.)

The numbers produced by most pseudorandom number generators have a uniform distribution.

To produce numbers with a different distribution (for example Gaussian) then a lookup table containing

the inverse cumulative distribution can be used to transform the input to the corresponding output. This

follows the same procedure as histogram shaping illustrated in Figure 7.14. If necessary, to maintain

precision, an interpolated lookup table (Section 5.4.2) can be used to map wider data words.

For a Gaussian distributed sequence of random numbers, with programmable mean and variance, an

alternative is to use a single lookup table to generate a normal distribution (m ¼ 0, s2 ¼ 1), then scale this

by the standard deviation and offset by the mean:

g ¼ sr þ m; r 2 Nð0; 1Þ ð13:4Þ

Since the transformation from uniform to normal distribution is symmetric, the resolution can be doubled

for the same size lookup table, with the MSB used to select addition or subtraction, as shown in

Figure 13.3.

If multiple correlated numbers need to be generated, then Equation 13.4 may be adapted by scaling

vectors:

g ¼ Sr þ l ð13:5Þ
where

SST ¼ S ð13:6Þ

Uniform
random
number

LUT

μσ

}

MSB

Figure 13.3 Gaussian random number generator.

408 Design for Embedded Image Processing on FPGAs

andR is the covariancematrix. For a given covariancematrix, S is not unique andmay be derived bymany

techniques. To generate n correlated output numbers, the multiplication by S requires n2 individual

multiplications. Alternatively, n2 lookup tables can be used to produce the scaled Gaussians (Thomas and

Luk, 2009), which are then added with the mean vectors. That is, Equation 13.5 is expanded to:

gi ¼
X
j

Si; j rj þ mi ð13:7Þ

where each term within the summation is generated by a separate lookup table.

As well as noise images, other test patterns can also be generated and used for testing algorithms or for

modifying images to test a wider range of circumstances.

13.2 Implementation

The mapping from the initial software representation to a hardware implementation can introduce errors

within the algorithm. Rather than test the complete application level algorithm as a unit, it is far easier to

test each image processing operation and verify that it is behaving as designed.

Verifying each operation level algorithm is simpler than verifying the complete application level

algorithm in one step. This is because it is easier to test each operation more thoroughly when directly

providing input to that operation. When testing as a sequence, some states or combinations may be

difficult or impossible to test given the preceding operations. If each operation behaves the same as its

software counterpart, then the complete algorithm should also operate correctly. Testing consists of

providing one or more images which exercise each aspect of the algorithm and validate that the correct

output is being produced.

While the algorithm can be validated through simulation, this is often quite slow for complex designs.

This is another reason for testing each operation individually before combining them to create

the application level algorithm. Conventional simulators operate from a hardware perspective and

usually provide the waveforms of selected signals. Although this can be useful for validating timing and

synchronisation, it is less useful for algorithm debugging, which is best achieved with a software

style debugger.

A structure for testing the operation of an algorithm on an FPGA is given in Figure 13.4. It consists of

two main sections. The communication with the host is used to load test images into the frame buffer and

retrieve the output images. If resources on the FPGA are tight, this may be implemented as a separate

configuration from the actual test operation. The second section is the stream interface, which is used to

interface between the test image(s) in the frame buffer and the operation under test. It is responsible for

reading the data from the frame buffer and converting it into a pixel stream as required for testing the

operation. It simulates image capture and any necessary processing steps prior to the operation under test.

It also takes the output stream and stores the results back into the frame buffer (or another frame buffer

depending on resources available and memory bandwidth). The output is then retrieved from the frame

buffer by the host and compared with the expected output (produced for example by running the software

Frame
buffer

Operation
under test

Communication
with host

Stream
interface

Figure 13.4 Configuration for testing each image processing operation.

Testing, Tuning and Debugging 409

version of the algorithm on the host). Any differences indicate potential errors in the implementation.

The lack of differences is only significant if the input image exercises all parts of the algorithm.

Testing the algorithm with a low clock frequency will also remove potential timing issues from the

test. This enables the test for functionality to be separated from potential clock rate and propagation

delay issues.

While such a system can provide a pass or fail indication, it is of limited value in debugging the

algorithm. Several methods of debugging were outlined in Section 4.5.2. To review, these are:

. Route key signals to unused I/O ports. This makes them observable from outside the FPGA, enabling

monitoring by an external oscilloscope or logic analyser.
. Embedding a logic analyser within the design. Both Xilinx (ChipScope; Xilinx, 2008a) and Altera

(SignalTap; Altera, 2008e) provide embedded logic analysers with their development toolsets. These

can monitor selected signals, recording their history in block memory enabling later readout and

analysis with associated tools.
. Stop the system and read back the configuration to analyse the logic state at the time the system was

stopped. When using a hosted system, one of the main limitations is the latency in transferring data

between the FPGA and the host system.
. This can be augmented with a small amount of additional logic to enable hardware single-stepping by

gating the clock (Tombs et al., 2004). Using logic to detect key events can provide the system

with hardware breakpoints. Iskander et al. (2010) extended this idea by controlling the process with an

on-chip microprocessor that uses a software style debugging interface for debugging the hardware in

place. They used the internal ICAP port of Xilinx FPGAs to read back selected variables to provide true

hardware debugging.

Of course, any combination of these techniques can be used, combined with simulation of the operation

within the development environment.

13.2.1 Common Implementation Bugs

Experience has shown that there are a number of common bugs which occur during the implementation

phase. This list is not exhaustive, but serves as a guide for investigating possible causes of malfunctions.

Hardware allows the bit widths of variables to be adjusted tominimise the hardware resources required.

A common cause of errors is to underestimate the number of bits required by an application. There are two

main consequences of having too few bits: overflow and underflow. Overflow occurs when the numbers

exceed the available range. With most arithmetic operations, the effect of overflow is for the numbers to

wrap around, becoming completely meaningless. During debugging and development, additional logic

can be added to detect overflow. This requires adding an additional bit, xMSB þ 1, to a register. Overflow is

then detected as:

Overflow ¼ xMSB þ 1; for unsigned data

xMSB þ 1 � xMSB; for signed data

�
ð13:8Þ

After thoroughly testing the algorithm, the extra test hardware can be removed in the final implementa-

tion. Overflow can be corrected by adding extra bits, or by rescaling the numbers.

At the other extreme, underflow occurs when too many bits have been truncated from the least

significant end. The effect of underflow is a loss of precision. Underflow occurs primarily when working

with fixed-point designs, or when using multiplication and division. It also shows when reducing the size

of lookup tables to reduce resources. Underflow is harder to test for with hardware. During the

development stages (in software) a range of designs can be compared with different numbers of least

410 Design for Embedded Image Processing on FPGAs

significant bits to check that the errors that arise through truncation are acceptable. Underflow can also be

affected by the order inwhich arithmetic operations are performed, especially when using a floating-point

representation. Some applications may require one or more additional least significant guard bits during

intermediate steps to reduce the loss of precision.

Both overflow and underflow reflect incomplete or inadequate exploration during the design stages of

the project.

Closely related to overflow is the wraparound of array indices (unless this is intentional). A similar

problem occurs in C programming, especially when using pointers and pointer arithmetic. Apart from the

fact that such errors are errors whether in hardware or software, in a hardware system the effects are

usually less severe. In software, with its monolithic memory structure, extending past the end of an array

will go into followingmemory and can corrupt completely unrelated variables. In hardware, the effects are

usually local. If the array is not a power of two, then there may be no effect if the hardware past the end of

the array does not exist. Otherwise extending past the end of an array will usually wrap back to the start.

The localisation of such errors can make them easier to track and locate in hardware than software.

If necessary, additional hardware may be built which detects array bounds errors (and overflow of the

index variable).

Another error relating to data word length is misalignment of data words when performing fixed-point

operations. Most hardware description languages have integers as a native type (even if implemented as a

bit array), but do not have direct support for fixed-point numbers. It is over to the user to remember the

implicit location of the binary point and align the operands appropriately when performing arithmetic

operations. Themanual processing required canmake alignment tedious to check andmisalignment bugs

difficult to locate. Errors are easily introduced when changing the size or precision of a variable and not

updating all instances of its use. Thismay be overcome to some extent by using appropriate parameterised

macros to maintain the representation and manage the alignment. The design of an appropriate test bench

should detect the presence of any data misalignment errors.

The parallel nature of FPGA-based designs can result in additional bugs not commonly encountered in

software-based systems. One of the most common of these is to write to a register (or access to any other

shared resource) simultaneously from multiple parallel threads. The synthesiser will normally build a

multiplexer to select the inputs, and if multiple inputs are selected the result may be a combination of

them.Hardware can be added to a design to detect whenmultiple inputs are selected simultaneouslywhen

the multiplexer has been added explicitly to the design (for example using a structural programming

style). However, when using a behavioural programming style, suchmultiplexers are added implicitly and

it will be difficult, if not impossible, to detect the selection of multiple inputs.

Multiplexing errors result from bugs within the control logic. These can be caused by the parallel

streams not being synchronised properly or by failure to build appropriate arbitration logic. Explicitly

building in arbitration (Section 5.3.2) can provide error signals when a parallel thread is blocked from

using a resource.

Pipelines with multiple parallel data paths can also suffer from synchronisation problems. Temporal

misalignment can occur not only within an operation level algorithm but also within the higher

application level algorithm, making such errors hard to detect. Most hardware description languages

treat pipelining as simply another case of parallelism and rely on the developer to implement the correct

pipeline control (in particular priming and flushing). The higher level, C-based languages, where the

compiler automatically detects parallelism from the dataflow and implements pipelining, are better in

this regard.

Synchronisation between clock domains is another complex issue prone to error. If throughput is not

critical, a channelmay be used, but for higher throughput (for example sending pixel data) use of a FIFO is

essential. The resulting non-uniform data rate on the receiving side of the transfer can cause a wide range

of synchronisation and control issues.

To summarise this section, if the software version of the algorithm behaves correctly then there are two

primary sources of error within the corresponding hardware implementation. The first relates to

Testing, Tuning and Debugging 411

customisation of data word widths and the second relates to the use of parallelism with consequent

synchronisation and conflict issues.

13.3 Tuning

Most algorithms require some tuning of parameter values such as threshold levels to optimise their

performance. The requirements for tuning an algorithm were covered in some detail in Section 4.5.1.

The basic structure for algorithm tuning is shown in Figure 13.5.

Firstly, a mechanismmust be provided for dynamically changing the algorithm parameters. Recompil-

ing the application each time a parameter is changed is not particularly practical and methods of

modifying the parameter through directly manipulating the configuration file are not particularly

transparent or portable. Altera provides a mechanism where selected register and memory contents

may be changed or editedmanually within the system (Altera, 2008e). A standard approach used bymany

ASICs is to provide a set of addressable control and status registers. These provide a flexible mechanism

for directly setting algorithm parameters and can also be used for monitoring the algorithm status. These

registers are usually accessed either via a low speed serial interface or a microprocessor style interface

with parallel address and control busses.

The second key requirement is some form of user interface for manipulating the parameter and

visualising the results of the changes. On a hosted system, the host computer can readily provide such a

user interface. If the two are connected via a high speed interface such as PCI express, then the host may

also display resultant image data as well. Otherwise it may be beneficial to provide some form of image

display directly from the FPGA. On a stand-alone system, such a user interface may be implemented

through an embedded processor. Otherwise the complete interfacewill need to be implemented directly in

hardware (Buhler, 2007).

13.4 Timing Closure

Timing is a critical issue in any high performance design. Timing closure is the step of taking a

functionally correct design and getting a working implementation that meets the desired operating speed

and timing constraints.

Timing closure has become more difficult with each successive technology generation. Older FPGAs

were relatively small, so both the complexity and the speed of a design were limited. Modern FPGAs are

significantly larger and capable of being clocked at a much higher speed. Consequently, the scale of

applications being implemented on FPGAs has grown, not only in complexity but also in target operating

speed. Consider for example image processing. Clock speeds from video cameras are relatively low and

many early implementations of image processing on FPGA focussed on simple image processing

Parameters

CE

CE

CE

CE

Algorithm
being
tuned

Image
displayAddress

decoder

Input
image/video

User
interface

DATA

ADDR

Figure 13.5 Generic structure for algorithm tuning.

412 Design for Embedded Image Processing on FPGAs

operations and small local filters. However, the resolution of digital cameras has increased significantly in

recent years. To maintain video frame rates, this has required a corresponding increase in pixel clock

frequency by almost an order ofmagnitude. The complexity of image processing algorithms implemented

on FPGAs has also grown. As a result, bigger and faster designs are being implemented on bigger and

faster chips.

There are two aspects or components to timing closure: one is ensuring that the design on the FPGA can

be clocked at the desired rate and the other is meeting the timing constraints of devices external to the

FPGA. As device scales have shrunk, an increasing proportion of the propagation delay between registers

on the FPGA is coming from the routing (Altera, 2009b). With high clock speeds and large FPGAs, the

propagation delay from one side of the chip to the other can exceed the clock period. Therefore, it is

essential to keep related logic together to minimise propagation delay. When interfacing to peripherals

external to the FPGA, it is important to have the logic placed relatively close to the associated I/O pins. I/O

drivers also introduce a significant propagation delay, as do the relatively long tracks on the printed circuit

board (PCB) between the FPGA and peripheral. For high speed devices, such as DDR memory, even the

skew between parallel signal lines becomes significant (this is whymany high speed peripherals are going

to even higher speed, serial connections with the clock embedded with the signal). Fortunately, many of

these problems, at least within the FPGA, are managed by the FPGAvendor’s tools, which can optimise

the placement and routing of designs based on timing constraints specified by the developer.

The tools also provide a timing report which details the timing characteristics of the design. Such a

report is based on a static timing analysis – after the design has been placed and routed on the FPGA, the

propagation delay through each component and routing wire can be modelled and analysed against the

timing constraints. The report will identify any timing violations, the associated critical paths

and determine the maximum operating frequency of a design. However, there are three limitations of

such an analysis.

The timing analysis is usually based on the worst case conditions. This usually corresponds with the

performance of the slowest device, operating at the maximum temperature and minimum power supply

voltage. Consequently, passing under these conditions will guarantee that the propagation delay will be

shorter than the clock period, taking into account register setup times and any clock skew. With modern

high speed devices it is also necessary to repeat the analysis under best case conditions (Simpson, 2010)

(fastest device, operating at theminimum temperature andmaximumpower supply voltage) to ensure that

register hold times are also met, given the worst case clock uncertainty or skew.

The second limitation is that the timing analysis is only as good as the constraints provided by the

user. If a path has no timing constraint, it will not be analysed and any timing violation will not be

reported. This can cause a design to fail. Timing constraints are used not only for timing analysis, but are

also used by the place and route engine to determine where to focus its effort and optimisations during

fitting. Changing any of the source files will change the placement seed, resulting in a different initial

placement. Changing the timing constraints in general will change the order in which paths are

optimised, resulting in a different layout and different timing. It is important to specify realistic timing

constraints. If too tight, then the compile times can increase significantly as the place and route tools try

to satisfy the constraints. Timing constraints are also essential when interfacing to external devices.

In setting such constraints, it is also important to take into account the propagation delay of the PCB

tracks and clock skew.

The third limitation of static timing analysis is that it can only identify errors within a synchronous

design.Withmultiple clock domains, the clocks in each domain are usually relatively asynchronous. Even

when operating at the same frequency, unless one clock is locked to the other, the phase relationship

between them is unknown and cannot be relied on when directly transferring data from one domain to the

other. When the frequencies are different, the relative phase is always changing, so specifying timing

constraints between domains is virtually impossible. Therefore, it is essential that appropriate synchro-

nisation logic be built whenever signals traverse clock domains. Suitable synchronisation logic was

described in Section 5.1.3.

Testing, Tuning and Debugging 413

Designs that pass timing analysis but have timing errors typically do so for two reasons. The first is that

an appropriate time constraint was not set for the path. With multiphase designs, the setting of suitable

constraints is complicated by the fact that the clock might not be enabled on every clock cycle. In such

cases it may be perfectly legitimate for the propagation delay to take up to two or three clock cycles before

the register is enabled. Specifying such paths as multicycle paths in the constraints file aligns the

constraints with reality. (It also avoids unnecessary effort on the part of the place and route tools trying to

reduce the propagation delay to smaller than it needs to be.) The second problem ismetastability resulting

from asynchronous signals. This is caused by inadequate synchronisation of signals between clock

domains. Problems caused by asynchronous signals can bemuch harder to detect and debug because they

are often intermittent.

If a design is failing timing constraints, consider the following checklist:

. Use realistic timing constraints. Specifying a higher clock speed will result in a faster design up to a

certain point. This comes at the cost of increased optimisation effort giving larger compile times. Setting

the desired clock frequency beyond that which can realistically be achievedwill drastically increase the

compile times, without achieving timing closure. As the device use increases, the achievable clock

speeds tend to reduce because there is less freedom available in optimising the critical paths.
. Identifymulticycle or false paths. These can give false failurewarnings. They also cause the compiler to

spend unnecessary effort trying to make these paths conform to the timing constraint.
. Use low level pipelining. Deep logic has a long propagation delay andmay need to be pipelined tomeet

performance targets. Also consider pipelining the control path, as this can also add to the propagation

delay, especially with a series of nested conditional statements. Assigning to a register from multiple

sources will build a multiplexer on the register input increasing the number of layers of logic.

Propagation delay can be decreased if separate registers are used for each instance if the design allows.
. Reduce high fanout. A signal that is used in a large number of places may be subjected to excessive

delay, especially if the signal is distributed over awide area of the chip. Duplicating the driving registers

in different parts of the design can reduce the fanout and increase the locality of the design.
. Register I/O signals. When working with high speed signals, both inputs and outputs should be

registeredwithin the I/O blocks. Related signals should use the same I/O bankswhere possible to reduce

differences in propagation delay. Some FPGAs have programmable delays in the I/O blocks to balance

small differences in delay.
. Use modular design with incremental compilation. If the compile times are excessively long, split the

design intomodules and use incremental compilation. For this, eachmodule is compiled separately and

the layout within modules is not changed when bringing the modules together under the top layer.

The reduced compilation times come at the expense of poorer performance for signals spanning

between modules (Simpson, 2010). Where possible, module inputs and outputs should also be

registered so that the only delay between them is the inter-module routing. Incremental compilation

can also result in reduced flexibility in optimising the placement and routing of the top layer of

the design. Such techniques can therefore become less effective as the design approaches the capacity of

the FPGA.

To conclude, timing and timing closure are not just considerations at the end of the implementation,

but need to be considered at all aspects of a design, from the initial specification all theway through design

and implementation.

414 Design for Embedded Image Processing on FPGAs

14

Example Applications

In the earlier chapters, much of the focus in describing FPGA implementation was on individual image

processing operations, rather than complete applications. This final chapter shows how the individual

operations tie together within an application. Of particular interest are some of the optimisations used to

reduce hardware or processing time.

14.1 Coloured Region Tracking

In this application, it was desired to create a gesture-based user input. Rather than operate in a

completely unstructured environment, it was decided to use coloured paddles to provide the input

gestures (Johnston et al., 2005b). One of the goalswas tominimise resource use to enable the remainder of

the FPGA to be used for the application being controlled (Johnston et al., 2005a).

The basic structure of the algorithm is shown in Figure 14.1. The basic stepswithin the applicationwere

to use the distinctive colours of the paddles to segment them from the background. A simple bounding box

was then used to determine the paddle locations. The remainder of this section details the algorithm and

the optimisations made to reduce the size of the implementation.

This application was implemented on an RC100 board from Celoxica Ltd. The board uses a Xilinx

XC2S200 Spartan II FPGA and has a number of peripheral devices on the board, including a video

codec chip. The codec digitised the composite video signal from the camera and provided a stream of

16-bit colour (RGB565) pixels to the FPGA. The codec provided a 27MHz pixel clock, with one pixel

every two clock cycles.

Two counters were implemented to keep track of the input, one to count the pixels on the row, x, and the

other to count the row number, y. Both were reset at the end of the respective blanking intervals. The

control signals for driving the rest of the application were derived from these counters.

The first stage is to identify the colour of the pixels in the incoming pixel stream. As described in

Section 6.3.3, the RGB colour space is not the most suitable for colour segmentation. The RGB pixel

values were therefore converted to a form of YCbCr to separate the luminance from the chrominance.

Since the output is not intended for human viewing, the exact YCbCr matrix conversion is not necessary.

Design for Embedded Image Processing on FPGAs, First Edition. Donald G. Bailey.

� 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd.

Instead, the simplified YUV colour space of Equation 6.61 was used:

Y

U

V

2
6664

3
7775 ¼

1
4

1
2

1
4

1
4

� 1
2

1
4

1
2

0 � 1
2

2
6664

3
7775

R

G

B

2
6664

3
7775 ð14:1Þ

which can implement the conversion with four additions, as shown in Figure 6.35. The fact thatG has one

more bit that R and B does not matter as all three values are treated at binary fractions. The resultant YUV

components each have seven bits. However, since the transformation is linear, scaling the intensity will

scale all three RGB components and, consequently, also the YUV components. Therefore, dividingU and

V by Y would provide true intensity normalisation:

U0 ¼ U

Y

V 0 ¼ V

Y

ð14:2Þ

Unfortunately, with the definition in Equation 14.1, V can exceed Y for some colours, and V 0 goes outside
the range �1 to 1. Therefore, an alternative definition was used for the luminance:

Y 0 ¼ maxðR;G;BÞ ð14:3Þ

This normalises U0 and V 0 to the range � 1
2
to 1

2
. While such intensity scaling removes the intensity

dependence, it also has a side effect of reducing colour specificity. After normalisation, all colours with a

similar hue are mapped to the same range. Normalisation therefore introduces a trade-off between

insensitivity to intensity and colour selectivity.

The next step in the process is colour segmentation. This detects pixels within a box within Y 0U0V 0

colour space. Rather than build a set of comparators for each colour detected, a variation on the lookup

table approach of Figure 6.42 is used. The divisions of Equation 14.2 are relatively expensive (although

with the two-phase input clock, a single divider could be shared between the two channels, as shown in

Figure 5.22). The divisions are avoided by using the lookup table to perform the division. This is

accomplished by concatenating the Y 0 with theU and V , respectively, as shown on the left in Figure 14.2,

and setting the table contents based onEquation 14.2. Of course, during tuningwhen the colour thresholds

are set, the division is required to initialise the LUTs.

To minimise the resource use, it was decided to fit both lookup tables in a single dual-port block RAM

(Johnston et al., 2005a). On the target FPGA, each block RAM is 4 Kbits in size. To detect four colours in

parallel, the memory needs to be four bits wide. Therefore, the 4 Kbit RAM allows 512 entries for each

table, or nine address bits to be divided between the Y 0 and UV components. Since colour resolution is

more important than precise intensity normalisation, six bits were used for each ofU and V and three bits

were allocated to Y 0. While this gives only an approximate result, the three bits are sufficient to give some

degree of intensity normalisation.

Capture
image

Colour
conversion

Colour
segmentation

Object
recognition

ApplicationFiltering

Figure 14.1 Steps within a colour tracking algorithm.

416 Design for Embedded Image Processing on FPGAs

As the paddles are always lighter coloured, theminimum threshold forY 0 is always above the 50% level.

This allows four bits to be used from Y 0, with the three least significant bits passed to the lookup table and
the most significant by used directly to control the AND gate. This optimisation is shown on the right in

Figure 14.2.

Each coloured object was recognised by finding the bounding box of the corresponding label. However,

since the bounding box is sensitive to noise, a 3� 3 erosion filter was used to remove isolated noise pixels.

These commonly occur on the boundaries between colours, or around specular highlights where the pixel

values saturate. The 3� 3 filter is separable, decomposing into a 3� 1 horizontal filter followed by a 1� 3

vertical filter. The row buffers are indexed directly by the pixel counter, x, rather than needing an

additional counter. Although erosion shrinks the size of each region, it is not necessary to dilate the image

again – it does not affect the centre of the bounding box, and if necessary this can be taken into account

when interpreting the bounding box dimensions.

The bounding box implementation of Figure 11.3 is used to determine the bounding box of all the labels

in parallel. Fabric RAM is used to avoid the explicit need for amultiplexer.With a two-phase clock, only a

single-port RAM is required, reducing the resource requirements. Each LUT gives a 16-bit deep RAM.

With four bits used to represent the label, one bit for each colour, it is unnecessary to explicitly convert this

to binary. The raw four-bit label is used to directly address the RAM. As described in Section 11.1, each

bounding box is augmented with a counter to determine the orientation of long thin objects.

The timing for the coloured region tracking pipeline is shown in Figure 14.3. Signals from the codec are

valid on the rising edge of the 27MHz codec produced clock. The CREF signal produced by the codec is

high when pixel data is available (every second cycle). The x register is also incremented in this phase, so

that it remains constant between phase 1when the rowbuffer and bounding box are read andwhen they are

written in phase 2.

The pipeline timing shows the pixel processing. Additional processing is performed at the end of each

line and frame. After each row, the pixel counter is reset and the row counter incremented. A state variable

used for determining the orientation is also reset. At the end of each field, the data for each bounding box is

transmitted to the main clock domain over a channel (all of the image processing is performed directly in

the codec’s clock domain). After transmission, the bounding box data is reset for the next field.

The tracking algorithm locates up to four programmed colours in each field at either 50 or 60 fields per

second (depending on whether a PAL or NTSC camera is connected). All of the processing is performed

}

}

Y U′
LUT
Y V′
LUT

Colour
conversion

Y ′
U
V

R
G
B

Label }
}

}

Y U′
LUT
Y V′
LUT

Y ′

U
V

Label

MSB

Figure 14.2 Colour segmentation and labelling. Left: basic idea of joint lookup tables; right: gaining an

extra bit of precision for Y 0.

fromRead
codec

RGB-YUV
conversion

Label
pixels

1×3
(vertical)
erosion

3×1
(horizontal)

erosion

Read
bounding

statebox

Update
bounding

statebox

Increment
x

fromRead
bufferrow

toWrite
bufferrow

Check
limitsx

Clock

CREF

2Phase2Phase2Phase2Phase 1Phase1Phase1Phase

Figure 14.3 Pixel timing for coloured region tracking.

Example Applications 417

on-the-fly as the data is streamed in. The only pixel buffering is two block RAMs used as row buffers for

the vertical erosion filter. The complete tracking system used less than 10% of the logic resources of the

FPGA (and 3/14 of the block RAMs), leaving the remainder of the system to be used for the application.

14.2 Lens Distortion Correction

Many low cost lenses used in a lot of image processing applications suffer from lens distortion. Such

distortion results from the magnification of the lens not being uniform across the field of view; this is

particularly prevalent with wide angle lenses. In many imaging applications, inexpensive wide angle

lenses are used because of space and cost constraints. An example of the form of distortion is shown in

Figure 14.4 (it has been exaggerated here for effect). This next application looks at characterising and

correcting the lens distortion in images being displayed.

Lens distortion is usually modelled using a radially dependent magnification:

rq ¼ riMf ðriÞ ð14:4Þ
where

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ð14:5Þ

is the radius about the centre of the distortion in the input image,

rq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
ð14:6Þ

is the radius of the corresponding point in the output image and Mf is the magnification of the forward

mapping. The magnification function is often modelled as a generic radial Taylor series:

Mf ðriÞ ¼ 1 þ k1r2i þ k2r4i þ � � � ð14:7Þ

There are two points of note. Firstly, the centre of distortion (the origin in these equations) is not

necessarily in the centre of the image (Willson andShafer, 1994). Twoparameters are therefore required to

represent the distortion centre, ðx0; y0Þ. Secondly, for many lenses, a simple first order model is sufficient

to account for much of the distortion (Li and Lavest, 1996) even when the distortion is quite severe. With

the truncated series, the subscript will be dropped from the k parameter.

Equation 14.4 represents the forward mapping. From this equation, the inverse (the reverse mapping)

may be obtained as another radially dependent magnification:

ri ¼ rqMrðk; rqÞ ð14:8Þ

Input image Output image

Figure 14.4 Lens distortion correction.

418 Design for Embedded Image Processing on FPGAs

Lens distortion correction can be broken into two phases: the first is calibration, which determines the

distortion parameters (x0, y0, and k), and the second is to use the distortion model and calibration

parameters to correct the distortion within an image.

14.2.1 Characterising the Distortion

Since the calibration process is not time critical, it is best performed using a software-based system.

However, out of interest, an FPGA implementation is presented here. Calibration can use a separate

configuration file to distortion correction since both processes do not need to operate concurrently.

While there are a number of methods that can be used to calibrate lens distortion, a variation of the

‘plumb line’ originally proposed by (Brown, 1971) is used here. It is based on the premise thatwithout lens

distortion straight lines should be straight under projection. Any deviation from straightness is, therefore,

an indication of distortion (Fryer et al., 1994; Devernay and Faugeras, 2001). Many algorithms for

determining the distortion parameters are iterative. Here a direct, non-iterative method will be used.

The basic principle (Bailey, 2002) is to capture an image of a rectangular grid and fit a parabola to each

of the gridlines. The quadratic term of the parabola indicates the degree of curvature. Lines through the

centre of distortion will be straight, allowing the centre to be estimated from where the sign of the

quadratic term changes. The distortion parameter is then derived to make the curved lines straight.

Assuming that the gridlines are approximately one pixel wide, the algorithm for detecting both sets of

gridlines is outlined in Figure 14.5. While thresholding can detect the gridlines, the resulting lines are

often thicker than a single pixel. Two sets of filters in parallel are used to solve this problem. The gridlines

are separated by using two small one-dimensional erosion filters: a vertical 1� 3 erosion will remove the

horizontal gridlines and a horizontal 3� 1 erosion will remove the vertical gridlines. A second pair of

filters (one horizontal and one vertical) operates on the original image to detect the local minimum pixel

positions. This is masked with the detected gridlines to select the best pixel. With both sets of filters, the

horizontal filters follow the first rowbuffer to offset themby one line, giving correct temporal alignment of

the outputs. Similarly, the output of the vertical filters is delayed by one clock cycle for alignment.

In the output, there may still be the occasional double pixel, or the occasional missing pixel where the

gridlines cross. To correct for this, a small 3� 3 cleaning filter is used. For horizontal lines, to bridge

narrow gaps if there is a pixel detected in the left and right of the window, but not in the centre column, a

linking pixel is added. To reduce the thickness of double wide lines, if two pixels are adjacent vertically

then one is removed. A similar filter is used for cleaning vertical lines. The filters are given in Figure 14.6.

I

H

V

Row buffer

Row buffer

Row buffer

Row buffer
thr

1 3 local minimum×

1 3 erosion×

3×1 local minimum

3×1 erosion

Gridline
detection

Figure 14.5 Algorithm for grid detection.

Example Applications 419

A version of connected components analysis is then used to label each gridline and extract the data

required to determine the parabola coefficients. The single pass algorithm given in Section 11.4.4 can be

simplified, because the number of labels is relatively small and unchaining is not necessary.

Firstly consider the horizontal gridlines. The parabola fitted to each gridline is:

y ¼ ax2 þ bx þ c ð14:9Þ

Using a least squares fit to determine the coefficients requires solving:

X
x4

X
x3

X
x2

X
x3

X
x2

X
x

X
x2

X
x

X
1

2
666664

3
777775

a

b

c

2
6664

3
7775 ¼

X
x2y

X
xy

X
y

2
666664

3
777775

ð14:10Þ

This poses a number of problems from an implementation perspective. Consider a 1024� 1024 image

with 1024 pixels across each row. The sum of x4 requires 48 bits to represent. Defining the origin in the

centre of the image improves this, reducing the representation to 44 bits. A second problem is the wide

range in scales between the terms. Both problems may be solved by scaling x and y by a power of two, so

that the absolute value at the edges of the image is between one and two. In this case, scaling by 28 allows a

20-bit representation for all numbers (12 integer bits and eight fraction bits).

If each horizontal line has a pixel in every column, then the matrix on the left of Equation 14.10 is

actually a constant and does not need to be accumulated. The inverse can also be calculated off-line and

hardwired into the implementation, enabling the coefficients to be calculated as a weighted combination

of the terms on the right hand side. Incremental update can be used calculate
P

xy,
P

x2y, and
P

xy2

without multiplications.

The centre of distortion is determined fromwhere the quadratic term of the set of parabolas goes to zero.

Therefore, the horizontal gridlines can be used to calculate y0 and the vertical gridlines to calculate x0.

Solving for where the curvature is zero from the horizontal gridlines gives:

y0 ¼
X

ca
X

c�
X

a
X

c2X
ca
X

1�
X

a
X

c
ð14:11Þ

and similarly for the vertical gridlines. After determining the centre, each of the parabola coefficients

needs to be adjusted to the new origin:

x̂¼ x� x0
ŷ¼ y� y0

ð14:12Þ

Q
Q

Row buffer Row buffer

Row buffer
Row buffer

VH

Figure 14.6 Filters for filling in small gaps and thinning doublewide lines. Left: for horizontal gridlines;

right: for vertical gridlines.

420 Design for Embedded Image Processing on FPGAs

Substituting into Equation 14.9 for the horizontal gridlines adjusts the parabola coefficients for the

new origin:

ŷ ¼ aðx̂ þ x0Þ2 þ bðx̂ þ x0Þ þ c�y0

¼ ax̂2 þ ð2ax0 þ bÞx̂ þ ðax20 þ bx0 þ c�y0Þ
ð14:13Þ

Each gridline can then be used to estimate the distortion parameter (Bailey, 2002):

k ¼ �a

cð3ac þ 3b2 þ 1Þ ð14:14Þ

Since each gridline (both horizontal and vertical) provides a separate estimate of the distortion parameter,

the estimates can be combined by averaging. Aweighted average should be used because the division by c

in the denominator makes the estimate less accurate near the centre of the image. Therefore:

k ¼
P �a

3ac þ 3b2 þ 1P
c

ð14:15Þ

If necessary, additional steps can be taken to also calibrate the perspective distortion associated with the

camera not being perpendicular to the grid (Bailey, 2002; Bailey and Sen Gupta, 2010).

Apart from the initial image processing and connected components labelling, much of the computation

in this application is probably best performed in software, since it is largely sequential in nature. This

could either be through an embedded processor or through a custom processor with an instruction set

designed specifically for the types of computation used.

14.2.2 Correcting the Distortion

A number of papers have been written on the correction of radial distortion using FPGAs. Three different

approaches have been taken to this problem. The first (Oh and Kim, 2008) transforms the incoming

distorted image on-the-fly, resulting in a corrected image being stored in a frame buffer on the output. The

second (Eadie et al., 2002; Gribbon et al., 2003) transforms the output image on-the-fly, taking the input

from the frame buffer. The third approach transforms the image from one buffer to another. This allows

the technique to exploit symmetry to reuse computation (Ngo and Asari, 2005) or divide the image

into tiles to reuse pixel values for interpolation without running into memory bandwidth problems

(Bellas et al., 2009).

A range of different distortion models have also been used, from a two-dimensional polynomial warp

(Eadie et al., 2002), to a high order radial distortion model (Ngo and Asari, 2005; Oh and Kim, 2008), to

the simple first order model described in the previous section (Gribbon et al., 2003) to a dedicated model

of fish-eye distortion (Bellas et al., 2009). Most implementations used bilinear interpolation, although

Bellas et al. (2009) used the more demanding bicubic interpolation.

The approach taken here is to correct a distorted image on-the-fly as it is being displayed from a frame

buffer. This requires the reversemapping to determinewhere each output pixel is to come from in the input

image. Substituting Equations 14.4 and 14.7 into Equation 14.8 gives:

Mrðk; rqÞ ¼ ri

rq
¼ 1

Mf

¼ 1

1 þ kr2i

¼ 1

1 þ kM2
r r

2
q

ð14:16Þ

therefore

Mr þ kr2qM
3
r ¼ 1 ð14:17Þ

Example Applications 421

The reverse magnification function depends on the product kr2q rather than each of the terms separately.

Therefore, a single magnification function can be implemented and used for different values of k.
Secondly, it is not necessary to take the square root to calculate rq as in Equation 14.6; this simplifies the

computational requirements of determining the mapping.

Incremental calculation can be used to calculate r2q. From Equation 14.6:

r2q ¼ u2 þ v2 ð14:18Þ

Moving from one pixel to the next:

ðu þ 1Þ2 ¼ u2 þ 2u þ 1 ð14:19Þ

just requires a single addition (since the 1 can be placed in the least significant bit when u is shifted). A

similar calculation can be used when moving from one line to the next during the horizontal blanking

interval.

Solving Equation 14.17 for the reverse magnification function gives:

Mrðk; rqÞ ¼ Mrðkr2qÞ ¼
1

3kr2qW
�W ð14:20Þ

where

W ¼ 3

ffi
1

4 kr2q
� �2 þ 1

27 kr2q
� �3

vuut � 1

2kr2q

vuuut ð14:21Þ

Clearly this is clearly impractical to calculate on-the-fly. This function is plotted in Figure 14.7. Since it is

quite smooth, it may be implemented efficiently using either an interpolated lookup table or multipartite

tables (Section 5.4.2).

The accuracy of the representation depends on the desired accuracy in the corrected image. For a

1024� 1024 image, the maximum radius is approximately 725 pixels in the corner of the image.

Therefore, to achieve better than one pixel accuracy at the corners of the image, themagnification needs to

have at least 10 bits accuracy. To maintain good accuracy, it is desired to represent the magnitude with at

0 0.2 0.4 0.6
0.6

0.7

0.8

0.8

0.9

1.0

1.0

Mr

κrq
2

Figure 14.7 Reverse magnification function.

422 Design for Embedded Image Processing on FPGAs

least 15 bits accuracy. For kr2q in the range of 0 to 1, direct lookup table implementation would require 215

entries. An interpolated lookup table only requires 28 entries, but needs a multiplication to perform

the interpolation.

The next step is to use the magnification function to scale the radius. One approach for achieving this

(Ngo and Asari, 2005) is to use a CORDIC engine to convert the output Cartesian coordinates to polar

coordinates, scale the radius by the magnification function and then use a second CORDIC engine to

convert polar coordinates back to Cartesian coordinates in the input image. However, such transforma-

tions are unnecessary because the angle does not change. From similar triangles, scaling the radius can be

achieved simply by scaling the u and v components directly:

x ¼ uMr

y ¼ vMr
ð14:22Þ

The resulting pipeline is shown in Figure 14.8. At the start of the frame, the v and v2 registers are initialised

based on the location of the origin. Similarly, u and u2 are initialised at the start of each line, with v and v2

updated for the next line. The interpolated lookup table was implemented using a single 256� 16 dual-

port block RAMas described in Section 5.4.2. The�3 in the u line is to account for the pipeline latency; u

is incremented three times while determining the magnification factor. An alternative to the subtraction is

to add three pipeline registers to the u line before multiplying by the magnification factor.

The last stage is to use the calculated position in the input image to derive the corresponding output

pixel value. For this, bilinear interpolation was used (Gribbon and Bailey, 2004). Any of the techniques

described in Section 9.3.1 could be used. Caching is simplified by the fact that the magnification factor is

less than one. This means that of the four pixel values required for bilinear interpolation, at least two (and

usually three) will be in common with the previous position or previous row. Therefore, with appropriate

caching, only one or two new pixel values will need to be loaded to calculate each output pixel value. This

can be achieved using caching with preload, using the circuit in Figure 14.9. The operation is as follows.

The row caches store data based on the two least significant bits of the corresponding row address (yi).

The cache row records the two LSBs of the row that was most recently loaded for each column, to enable

the preload to load the next free row.As each data is extracted from the cache, the cache control determines

which new location to fetch from memory based on the current location, and next row to load.

Having multiple parallel cache rows enables all the required pixels for the interpolation window to be

accessed in parallel in a similar manner to window filters. Firstly, the incoming pixel coordinates are split

into their integer and fractional components. To access the pixels from the cache, xi is compared with

the previous value and, if different, the values from column xi þ 1 are read from all four cache rows.

u2

u
0

2

v2

v
0

2

κrq
2

κ
1

3

vv
0

uu
0

×2+1

×2+1

}

Mr()

LUT

κrq
2

Mr

x

y

Interpolated lookup table

Output image

coordinates

Distorted input

coordinates

Figure 14.8 Pipeline for correcting lens distortion.

Example Applications 423

Values from the previous column are shifted along, giving a 2� 4 window into the input image. The two

least significant bits of yi are used to select the required rows for the 2� 2 window. These values are then

weighted according to the fractional parts to produce the output pixel value. The pipeline from the input

coordinates to the output pixel value has three stages.

To prime the row caches will require the first row to be loaded three times. This may be accomplished

during the vertical blanking period before the first row is output. Similarly, it is necessary to prime each row

by loading the first pixel twice. The extra control logic required to achieve the priming is not shown here.

This application has shown how an imagewith lens distortion may be corrected on-the-fly as it is being

displayed. To correct the image on-the-fly as it is being loaded from the camera will require quite a

different transformation. A related example, that of introducing a predefined distortion into an image

being captured is shown in the next section.

14.3 Foveal Sensor

Low cost high resolution sensors (up to 10megapixels and larger) are now becoming commonplace. This

presents both a bonus and a problem for image processing. The increased resolution means that more

accurate and higher quality results can be produced. However, there is also a significantly increased

computational cost to achieve these results, especially when real-time constraints have to be met.

Therefore, there is often a trade-off between quality of results and processing requirements.

Single high resolution images may be readily processed in real time on an FPGA if stream processing

can be used. However, any algorithm that requires multiple frames will require significant off-chip

memory and large associated memory bandwidth. Simply reducing the data volume by reducing the

resolution can result in a critical loss of information. In many applications (for example tracking and

pattern recognition), high resolution is only required in a small region of the image, although a wide field

of view is important to maintain context. One solution to this dilemma is to use a foveated window.

Inspired by the human visual system, this maintains high resolution in the fovea, with resolution

decreasing in the periphery. It has been shown that such a variable spatial resolution can reduce thevolume

of data in tracking applications by a factor of 22 (Martinez and Altamirano, 2006) to 64 (Bailey and

Bouganis, 2009b) without a severely affecting the tracking performance. Several researchers have

investigated foveal mappings using FPGAs.

Traditionally, a log-polar mapping has been used for foveal vision in software to mimic the change

of resolution within the human visual system (Wilson and Hodgson, 1992; Traver and Pla, 2003). The

log-polar map is both rotation and scale invariant once the fovea is positioned on a common key

point. Arribas and Macia (1999) implemented a log-polar mapping using an FPGA that was able to

xf

yf

Row cache #0

Cache row

=

Read
control

Row cache #1

Row cache #2

Row cache #3

Qx

y

}

}

0 21 3 0 21 30 21 3 0 21 3

Frame
buffer

Cache
control

xi

yi

1

Figure 14.9 Bilinear interpolation for lens distortion correction.

424 Design for Embedded Image Processing on FPGAs

achieve real-time performance. They represented themapping as a full lookup table from each input pixel

to the corresponding output pixel. The imagewasmapped from a frame buffer rather than directly as it was

streamed from the camera.

The complexities of processing a log-polar image have led many researchers to work with Cartesian

approximations. Camacho et al. (1998) used a pyramidal-based fovea with each successive level

decreasing the resolution by a factor of two towards the periphery, giving a form of stepped log-Cartesian

topology. Ovod et al. (2005) implemented multiple fovea, allowing multiple objects to be tracked

simultaneously, although their system only allowed two levels of resolution: fovea and periphery.

Martinez and Altamirano (2006) used high resolution rectangular sampling within the fovea and

approximated a log-polar mapping in the periphery by mapping multiple square rings to a rectangular

output image using simple subsampling. Bailey and Bouganis (2008) introduced a family of Cartesian

foveal mappings with continuously variable resolution. To minimise latency, the foveal image was

mapped on-the-fly as the pixels were streamed from the camera.

An important part of foveal vision systems is the use of active vision techniques (mechanical or

electronic-based systems) to ensure that the high resolution part of the sensor corresponds to the region of

the scene where it can be most effective. Active vision requires minimising the latency between image

capture and repositioning the fovea, because delays may degrade the performance of the application and

limit the stability of this control loop. The lower resolution of the foveal images can significantly increase

their processing rate, enabling real-time camera control.

A CMOS sensor with a wide angle lens enables a wide field of view without a loss of resolution

compared to that of a standard camera. CMOS sensors also allow an arbitrary rectangular window of the

sensor to be selectively read out; this window may be positioned anywhere within the active area of the

camera. Repositioning the window from one frame to the next provides the digital equivalent of pan and

tilt, without the physical latency andmotion blur associatedwith physicallymoving the camera. An active

foveal vision system based on this mechanism (Bailey andBouganis, 2008; 2009a; 2009c) is illustrated in

Figure 14.10. The pixelswithin thewindow undergo a fovealmapping to give a reduced resolution image.

This image is then processed to extract the required data and to determine the best position to relocate the

window to within the CMOS sensor for the next frame.

14.3.1 Foveal Mapping

A separable foveal mapping (Bailey and Bouganis, 2009a) will be used because it is easier to implement

and it has been demonstrated through simulations (Bailey and Bouganis, 2009b) that its performance in

tracking applications is similar tomore complex radialmappings. Themapping herewill map a 512� 512

window to a 64� 64 foveal image. An example of the foveal mapping for:

x ¼ u þ 7

32
u2signðuÞ

y ¼ v þ 7

32
v2signðvÞ ð14:23Þ

Window
control

Image
processing

Foveal
mapping

Output
data

Window

Sensor

Figure 14.10 Active vision architecture using a foveal mapping.

Example Applications 425

is illustrated in Figure 14.11. Note that due to the symmetry of the mapping, signed coordinates are used,

with the origin in the centre of the images.

In the previous section, a reverse mapping was used to correct for lens distortion. Here it is desirable to

use a forward mapping for several reasons. Firstly, it saves the need for a frame buffer to hold the much

larger input image. Secondly, the forward mapping enables the image to be transformed on-the-fly as it is

streamed from the camera, significantly reducing the latency. Thirdly, the reduction in resolution in the

periphery requires a spatially variant anti-aliasing filter. This can easily be incorporated into the forward

mapping as described in Section 9.1.

The basic architecture of the forward mapping is shown in Figure 14.12. In the first stage, the incoming

pixels are mapped into their correct column and accumulated until the output pixel is completed

horizontally. It is then passed to the Y mapping, which adds it to the appropriate column accumulator

(stored in the row buffer). Once each row is completed vertically, the completed output pixels are

normalised (the accumulated total is divided by the area) and saved to the foveal image buffer.

Since each output pixel is contributed to bymany input pixels, it is necessary for each pixel accumulator,

Acc, to consist of two component registers: one to accumulate the pixel value,Acc:V , and one to accumulate

the area (or number of pixels), Acc:A. It can therefore be considered as a vector:

Acc ¼ Acc:V
Acc:A

� �
ð14:24Þ

Figure 14.11 Example foveal mapping. Left: original 512� 512 image; centre: after the foveal map to

64� 64; right: reconstructed to the original size, showing the reduction in resolution in the periphery.

(Reproduced with permission from D.G. Bailey and C.S. Bouganis, “Reconfigurable foveated active

vision system,” International Conference on Sensing Technology, 162–169, 2008. � 2008 IEEE.)

Accumulator Row buffer
Foveal
image
buffer

X mapping Y mapping

Normalise

x
y

I

u
v

mapf

mapf

Figure 14.12 Architecture of the separable foveal mapping. (Reproduced with permission from D.G.

Bailey and C.S. Bouganis, “Implementation of a foveal vision mapping,” International Conference on

Field Programmable Technology, 22–29, 2009. � 2009 IEEE.)

426 Design for Embedded Image Processing on FPGAs

For a continuously variable resolution function, some input pixels will need to be split between adjacent

output pixels. Although Figure 14.12 indicates a forward mapping, it is actually more convenient to

implement this by using a reverse mapping function. The index of the current output pixel being

accumulated is looked up in a table to obtain the position of its edge in the input image (this is a reverse

mapping). The input pixels can then be accumulated until this edge is reached, with the last fraction of a

pixel added before the accumulated pixel is passed to the next stage. An advantage of using the reverse

mapping function is that the output image has fewer pixels, so the table is significantly smaller. It also

manages the splitting of the input pixel more naturally (Bailey and Bouganis, 2009a). The circuit for

implementing the foveal mapping is shown in Figure 14.13.

Consider firstly theXmapping. If an incoming pixel is not split, it is simply added to the accumulator. A

split pixel is detected if the input pixel position matches the integer part of the edge of the output pixel. In

that case the fractional part of the edge, wx, is used to weight the incoming pixel, which is combined with

the accumulator and passed to the output register Px. The remainder of the pixel is used to update the

accumulator:

Acc ¼
Acc þ I

1

� �
; if not split

ð1�wxÞ
I

1

� �
; if split

8>>><
>>>:

ð14:25Þ

and

Px ¼ Acc þ wx
I

1

� �
ð14:26Þ

Since wx is typically only a few bits, it can be implemented efficiently in the FPGA fabric using adders

rather than dedicated multipliers. The incoming pixel area is always one, so a multiplier for that is

not required.

A token passing mechanism is used to indicate that valid data is available. Therefore, since a pixel is

completed whenever a split occurs, Tx is asserted and the current value of u is registered with it.

Acc[] array

mapr

mapr

Acc

=

=

Px

CE Py

CE

CE

CE

CE

CE
CE

CE

CE

CEEC

CE

Edgex

Edgey

Tin
Tx

Ty
wx

wy

÷

I

x

y

u u
v v

1

Split

Split

Row end

CE

ECEC

}

}

Foveal
image
buffer

Q

Addr

NormalisationY mappingX mapping

S

S

S

S

Figure 14.13 Detailed foveal mapping circuit. (Adapted from Bailey and Bouganis, 2009a.)

Example Applications 427

The Y mapping is very similar to the X mapping logic. The difference is that the pixels are

accumulated in columns, although the data is still streamed horizontally. Therefore all columns are

mapped in parallel, with the accumulators maintained in a memory-based array. The incoming u selects

the accumulator to add the newdata to,with the accumulated datawritten back to the array in the following

clock cycle:

Acc½u� ¼ Acc½u� þ Px; if not split

ð1�wyÞPx; if split

�
ð14:27Þ

and

Py ¼ Acc½u� þ wyPx ð14:28Þ

with corresponding output valid token, Ty. Since the mapping is separable, on a split row, all of the pixels

will be split. The v counter is only incremented at the end of split rows, with an AND gate over the bits of

the u address used to detect the end of row.

The final processing stage is to normalise the accumulated pixel value by the area to obtain the average

input value within region spanned by each output pixel:

Q u; v½ � ¼ Py:V

Py:A
ð14:29Þ

The division may be implemented efficiently using eight iterations (for eight 8 bits output) of a non-

restoring division algorithm (Bailey, 2006). If necessary, the division can be pipelined to achieve the

desired clock frequency.

If desired, the circuit can be optimised further (Bailey andBouganis, 2009a). Since the Ymapping only

uses the map lookup table at the end of each row, a single table can readily be shared between the X and Y

mapping sections, as demonstrated on the left in Figure 14.14. Themapping is also symmetrical, therefore

only one half needs to be stored in the table. This requires additional logic to mirror the input and foveal

coordinates. The fraction also needs to be subtracted from one for the first half of the table to reflect this

mirroring. With mirroring, the end of the row is no longer detected by the mapping, so this must be

detected explicitly. The mirroring logic is shown on the right in Figure 14.14.

These optimisations reduce the memory required by the lookup table by a factor of four. An

additional benefit is that it the foveal mapping itself is changed dynamically, it only needs to be changed

in one place.

mapr mapr

= =
x x

Sx Sx

wx

wx

y ySy Sy

wy

wy

u u
v v

}
}

Splits

Sign

Sign

End of row/frame

1 1
0

0

1

1

Figure 14.14 Sharing the mapping between the X and Ymapping sections. Left: simple sharing; right:

reducing the map LUT size by mirroring.

428 Design for Embedded Image Processing on FPGAs

14.3.2 Using the Sensor

The primary applications of a foveal sensor are in pattern recognition and tracking. In this section, the use

of the sensor for object tracking is described briefly. When tracking an object, it is desired to centre the

fovea on the target as it moves through the scene. The following stages are required within any tracking

system (Bailey and Bouganis, 2009b):

1. The high resolution fovea is positioned on the expected position of the target within the image. Precise

positioning is not essential because the lower resolution periphery enables a small image to be used

while still maintaining a wide field of view.

2. The target is detected within the foveal image. Any standard object detection technique, such as

filtering, thresholding, or colour detection can be used. Processing is relatively quick because of the

small image size.

3. The true location of the target is estimated, based on the fact that the image is distorted. Note that

standard correlation and registration-based techniques will give a biased result because of the

distortion introduced in the mapping. However, for a given mapping, this bias may be estimated

and compensated for. If using the centre of gravity, it is necessary to take into account the size and

position of each pixel and weight accordingly (Bailey and Bouganis, 2009b).

4. The detected target is fed into a tracking system (for example a Kalman filter; Lee and Salcic, 1997;

Liu et al., 2007) and the next location of the target is predicted. This is then used to reposition the

window for the next image captured.

Using a foveal sensor has a number of advantages over a conventional sensor in this application. It

allows a lower resolution image to be processed, which allows more complex processing with reduced

latency. For tracking, the latency requirements make it important that the input image is converted to a

foveal image on-the-fly. Multiple targets can be tracked by alternating the fovea between the targets with

successive images captured (this reduces the effective frame rate for each target).

14.4 Range Imaging

Standard imaging techniques only obtain two-dimensional data of a scene. To capture a three-dimensional

image, it is also necessary to estimate the range of each pixel. Two commonly used techniques

for obtaining the range are stereo imaging, which captures two images of the scene from slightly

different viewpoints and uses the disparity between the views to estimate the range, and time of flight

imaging, which transmits a light signal and measures the round trip propagation time of the light from

the source to each point in the scene and back to the sensor. Time of flight sensing is considered in

this example.

The distance to each point on an object is:

d ¼ ct

2
ð14:30Þ

where t is the round trip propagation time and c is the speed of light. Since it is difficult tomeasure the time

of flight for a large number of pixels simultaneously, it is more usual tomodulate the amplitude of the light

sourcewith a sinusoid andmeasure the phase shift of the envelope of the returned light (for example using

synchronous detection). The distance from Equation 14.30 then becomes:

d ¼ c

2f
k þ y

2p

� 	
ð14:31Þ

Example Applications 429

where f is the modulation frequency, y is the measured phase shift and k is an integer number of complete

cycles (to account for the phase ambiguity). Since k is unknown, it is usually assumed to be zero, with a

maximum unambiguous range of:

dmax ¼ c

4pf
ð14:32Þ

Two image capture modalities are commonly used. Heterodyne imaging (Jongenelen et al., 2008) uses

slightly differentmodulation frequencies at the transmitter and sensor. The result is a beat frequency as the

phase changes slowlywith time. Capturing a sequence of images spaced exactly over one cycle of the beat

waveform enables the phase at each pixel to be determined using a single bin Fourier transform. The

alternative, homodyne imaging (Jongenelen et al., 2010), uses identical frequencies for the transmitter

and sensor. The phase of the transmitter is offset from that of the receiver successively by a fixed amount

each frame, again enabling a single bin Fourier transform to be used to measure the phase delay. In both

cases, the frequency synthesis features of the FPGA can be used to provide phase locked clocks for both

the light source and the sensor.

Given a sequence of images, Ii½x; y�, taking the temporal Fourier transform at each pixel:

F½x; y� ¼
XN�1

i¼0

Ii½x; y�e�j2pi=N

¼
XN�1

i¼0

Ii cos
2pi
N

0
@

1
A� j

XN�1

i¼0

Ii sin
2pi
N

0
@

1
A

ð14:33Þ

gives the phase shift:

y x; y½ � ¼ tan�1 Im F½x; y�f g
Re F½x; y�f g ¼ tan�1

� PN�1

i¼0

Ii sin
2pi
N

 �
PN�1

i¼0

Ii cos
2pi
N

 � ð14:34Þ

and amplitude:

A x; y½ � ¼ F½x; y�j j ¼

ffi
XN�1

i¼0

Ii cos
2pi
N

� 	 !2

þ
XN�1

i¼0

Ii sin
2pi
N

� 	 !2
vuut ð14:35Þ

The phase shift is proportional to the range, and the amplitude provides a standard intensity image.

A direct implementation of this is given on the left in Figure 14.15. The sine and cosine values can be

obtained from a small table (only N entries are needed) or, since they are constant for each whole frame,

sin

LUT

cos

LUT

i

Ii Ii
÷

atan

LUT
θ

θ
C
rotator

ORDIC C
rotator

ORDIC A

2π
N

Figure 14.15 Calculating the phase shift at each pixel. Left: direct implementation of Equation 14.34;

right: recursive implementation using CORDIC.

430 Design for Embedded Image Processing on FPGAs

may be loaded into registers at the start of each successive frame. Obviously, if N ¼ 4 everything is

simplified since the sine and cosine terms are �1, 0 or 1 and no multiplication is needed. However, the

general case is considered here.

As each frame is streamed from the sensor, it is scaled by the sine and cosine terms and added into a

complex accumulator image. For small images, the accumulator image may be held on-chip in block

RAM. However, for larger images, it will need to be off-chip in a frame buffer. On the Nth frame, the

imaginary component is divided by the real component and the arctangent taken. This can be through a

suitable lookup table, which can also include the scale factor required to directly give the range.

Additional logic is also required to obtain the amplitude from Equation 14.35. Alternatively, the division,

arctangent and amplitude calculation may be performed by a single CORDIC unit.

The processing may be simplified by rearranging Equation 14.33 into recursive form. Firstly define:

Fn ¼
Xn
i¼0

Iie
j2pðn þ 1�iÞ=N

¼ Fn�1 þ Ið Þe j2p=N

ð14:36Þ

then

F ¼ FN�1 ¼
XN�1

i¼0

Iie
j2pðN�iÞ=N ¼

XN�1

i¼0

Iie
�j2pi=N ð14:37Þ

The recursive multiplication by e j2p=N corresponds to a rotation and may be implemented either using a

complex multiplication (Figure 10.8) or by using a compensated CORDIC rotator operating in rotation

mode (Section 5.4.3). Either way, since the multiplication is by a constant, it can be optimised to reduce

the required logic. To calculate both the angle andmagnitude, a secondCORDIC rotatormay be used, this

time operating in vectoring mode. This does not need to use compensated CORDIC because scaling the

amplitudewill scale all pixels equally. The scale factor to convert the angle to a range can also be built into

the CORDIC angle tables to avoid the need for an additional multiplication.

If using a running Fourier transform to obtain an update every frame, the accumulation of Equa-

tion 14.33 should be used with Ii�IN as input. The recursive form of Equation 14.36 is only marginally

stable (Duda, 2010) and any rounding or truncation errors maymake it unstable with errors accumulating

and growing exponentially.

14.4.1 Extending the Unambiguous Range

The unambiguous range is limited by assuming k ¼ 0 in Equation 14.31. While simply reducing the

modulation frequency will extend the range, this comes at the cost of reduced accuracy. However, by

making two measurements with different modulation frequencies, the unambiguous range can be

extended (Jongenelen et al., 2010; 2011). Let j be the phase represented as a binary fraction:

j ¼ y
2p

ð14:38Þ

then with two measurements, Equation 14.31 is extended to:

d ¼ c

2f1
k1 þ j1ð Þ ¼ c

2f2
k2 þ j2ð Þ ð14:39Þ

Example Applications 431

where k1 and k2 represent the number of times the phase terms j1 and j2 have wrapped respectively. Let

the ratio between the two frequencies be expressed as a ratio of co-prime integers:

f1

f2
¼ M1

M2

ð14:40Þ

To determine the range, it is necessary to solve Equation 14.39 for 0 � k1 < M1 and 0 � k2 < M2.

Unfortunately, it is not as simple as this since, as a result of inevitable noise in the measurements, the two

estimates may not match exactly.

The na€ıve approach is to evaluate all combinations ofk1 andk2 to find the combination that has the smallest

absolute difference. While this will find the closest match, it involves significant unnecessary computation.

This problem is closely related to the conversion from a residue number system to standard binary.

Given two residues, x1 and x2 in co-prime bases M1 and M2, the goal is to calculate:

X ¼ n1M1 þ x1 ¼ n2M2 þ x2 ð14:41Þ

where n1 and n2 are integers. The solution given by the modified Chinese remainder theorem (Wang,

1998) can be found directly as:

X ¼ x2 þ M2 lðx1�x2Þð Þ mod M1ð Þ ð14:42Þ

where l is an integer such that:

lM2ð Þ mod M1 ¼ 1 ð14:43Þ

Comparing Equations 14.41 and 14.42, it can be seen that the right hand term is effectively calculating the

unknown multiplier, n2, and l is the multiplicative inverse ofM2. SinceM1 andM2 are co-prime, such an

inverse will always exist.

The difference with range disambiguation is thatM2j1 andM1j2 are not integers and that the result is

not necessarily exactly equal. However, Equation 14.42 can be applied in several steps (Jongenelen et al.,

2011). Firstly the difference term is calculated:

e ¼ M1j2�M2j1 ð14:44Þ

This should be an integer, but may not be because of noise. Forcing it to an integer by rounding enables k1
to be calculated:

k1 ¼ lroundðeÞð Þ mod M1 ð14:45Þ

Next, a weighted average of the two estimates is obtained:

X ¼ ð1�wÞ M2k1 þ M2j1ð Þ þ w M1k2 þ M1j2ð Þ
¼ M2k1 þ M2j1 þ w M1j2 �M2j1ð Þ þ M1k2 �M2k1ð Þð Þ
¼ M2k1 þ M2j1 þ w e� roundðeÞð Þ

ð14:46Þ

wherew is chosen to reduce the variance by taking aweighted average of the two estimates. The third line

saves having to explicitly calculate k2. Finally, the range may be calculated as:

d ¼ c

2 gcd f1; f2ð Þ
X

M1M2

ð14:47Þ

432 Design for Embedded Image Processing on FPGAs

To simplify the calculation further, f1 and f2 can be chosen so that l is a power of two (Jongenelen et al.,
2010). For example, ifM2 ¼ M1 þ 1 orM2 ¼ 1 then l ¼ 1. Furthermore,M1 andM2 are usually small

integers; their size is limited by noise to ensure that Equation 14.45 gives the correct result formost pixels.

Therefore, the multiplications in Equation 14.44 can be implemented directly as one or two additions.

Alternatively, if the angles are produced by CORDIC units, the scale factor may be built in with the angle,

giving M2j1 and M1j2 directly.

Finally, the noise in the phase estimate will be approximately inversely proportional to the amplitude

(Frank et al., 2009). Therefore, the weight, w, in Equation 14.46 is derived to favour the signal with the

stronger amplitude (Jongenelen et al., 2011):

w ¼ M2A2

M1A1 þ M2A2

ð14:48Þ

An implementation of the extended range processing is shown in Figure 14.16. In practise, the integration

time can be divided between the two modulation frequencies (Jongenelen et al., 2011), with the phase

offsets for each image set so that they fall in different frequency bins for the Fourier transform. The system

therefore requires two phase decoder units operating in parallel. The output intensity image is formed

from the weighted combination of the two component images.

The two time consuming blocks within this circuit are the division to calculate w and the following

multiplication to weight the error term. These may be pipelined, if necessary, to achieve the required

throughput. Best results (in terms of range accuracy) are obtained if the two frequencies are both high and

with approximately the same integration time allocated to each frequency (Jongenelen et al., 2011).

Under these circumstances, w � 0:5 and both the division and multiplication can be removed (multipli-

cation by 0.5 is just a right shift).

This example has shown the application of embedded image processing in enhancing a sensor. The use

of an FPGA to perform the image processing has off-loaded the burden from the system using the data.

Subsequent processing of the range image may be performed either by the host system or as downstream

processing on the FPGA.

14.5 Real-Time Produce Grading

This final application describes a machine vision system for the grading of asparagus by weight. The goal

was to estimate theweight of each spear and perform simple quality grading at up to 15 pieces per second.

While the original algorithms (Bailey et al., 2004; Bailey, 2011a) were written in C and were able to

execute sufficiently fast on a desktop machine for real-time operation, this application would be an ideal

candidate for FPGA implementation within a smart camera.

While there is significantly more to a machine vision application than just the image processing, the

mechanical handling, lighting and image capture arrangement are beyond the scope of the discussion here.

÷

round mod

M
1

M
2

A
1

A
2

φ
1

φ
2 X

e

w

k
1×λ

Phase
decoder

Phase
decoder

Ii

A

Figure 14.16 Logic for range disambiguation using two modulation frequencies.

Example Applications 433

The focus herewill be solely on implementing the image processing algorithm on an FPGA.More details

on other aspects of the project are given elsewhere (Bailey et al., 2001; 2004; Mercer et al., 2002; Bailey,

2011a). The basic principle behind estimating theweight of each asparagus spear is to treat each spear as a

generalised cylinder and estimate its volume bymeasuring its projections in two perpendicular views. The

weight is then estimated as:

Weight /
X
x

D2
1½x� þ D2

2½x� ð14:49Þ

where x is the pixel position along the length of the spear, and D1 and D2 are the diameters of each view.

The constant of proportionality is determined through calibration. The long, thin nature of asparagus

enables multiple views to be captured in a single image by using a series of mirrors to divide the field

of view.

14.5.1 Software Algorithm

The structure of the software algorithm is shown in Figure 14.17 with images at various stages of the

algorithm shown in Figure 14.18. Images are captured asynchronously, when triggered by the cups

carrying the asparagus passing over a sensor. Cups are identified by counting them, with cup 0 causing an

indicator LED to light up. Since images are buffered with variable latency before processing, it was

necessary to use a visual indication to associate each imagewith a particular cup. The first processing step

was to check for the presence of this indicator and for the presence of a spear on the cup. The spear was

detected by calculating the mean and standard deviation within the one pixel wide window indicated in

Figure 14.18. If no spear was present, processing was aborted for that image.

If a spear was detected, the exposure was checked by building a histogram of the input image and

determining the pixel value associated with the 99.6th percentile, essentially using the algorithm

described in Section 7.1.3. This was used to automatically adjust the camera exposure by a small

increment. The spear was segmented from the background by first performing a contrast enhancement

using a lookup table, filtering to remove specular highlights with a 9� 1 horizontal greyscale morpho-

logical closing. The background intensity was estimated by averaging the pixels in each column within

Capture
image

Check
indicator

Check
presence

Check
exposure

Camera
control

Enhance
contrast

Remove
highlights

Subtract
background Threshold

Filter to
clean

Measure
diameters

Check
ovality

Check
field cut

Check
straightness

Check
base

Segmentation

Weight
estimation

Quality
control

Figure 14.17 Machine vision application for grading asparagus.

434 Design for Embedded Image Processing on FPGAs

each three views within the image. This background was subtracted and the contrast expanded using:

p̂i x; y½ � ¼
0; pi½x; y� � mi½x�
pi½x; y� � mi½x�
255� mi½x�

; pi½x; y� > mi½x�

8><
>: ð14:50Þ

where pi is a pixel value in the ith view and mi is the corresponding column mean. This image

was thresholded with a constant threshold level and then cleaned using a series of binary morphological

filters: a vertical 1� 9 opening was followed by a horizontal 5� 1 opening and a 5� 1 closing. The

pixels in each column were counted for the two perpendicular views to enable the volume to be estimated

using Equation 14.49.

Finally, a quality grading was performed using four simple tests. Firstly, the ovality of the spear was

estimated by measuring the diameter at the base of the spear in each of the three views. The ovality ratio

was the minimum diameter divided by the maximum diameter, after compensating for the change in

magnification in the centre view. Secondly, the angle of the basewas checked in each of the three views for

the presence of a field cut, with the pixel position required to remove the cut determined. A diagonal field

cut is clearly seen in the bottom left panel of Figure 14.18. Thirdly, the straightness of the spear is

evaluated bymeasuring the variance of the spear centreline in the y coordinate. Fourthly, the presence of a

white base is detected in the central view. The greyscale image is filtered horizontally with an 11� 1

minimum filter before reducing the intensity profile to one dimension by calculating the median of each

row. This profile is then checked for a dip, indicating the presence of a white base, as illustrated in the

bottom right panel of Figure 14.18.

Figure 14.18 Images at various stages through the asparagus grading algorithm. Top left: captured

image with indicator region and asparagus detection window overlaid; top right: after contrast enhance-

ment; middle left: after background subtraction; middle right: after thresholding and cleaning; bottom

left; side image showing field cut at base; bottom right: detecting white stalk.

Example Applications 435

14.5.2 Hardware Implementation

In mapping the algorithm to hardware, there are a number of optimisations and simplifications that

may be made to exploit parallelism. Only the image processing steps for the weight estimation and

the filtering required for checking the base of the spear will be implemented in hardware. The output is a

set of one-dimensional data, consisting of the edge positions of the spear in each view, along with the

intensity profile from the central view. The quality control checks only need to be performed once per

frame and are more control orientated, so can be implemented in software using the preprocessed one-

dimensional data.

To minimise the memory requirements, as much as possible of the processing will be performed as the

data is streamed in from the camera. However, since the processing consists of amix of row orientated and

column orientated processing, a frame buffer will be necessary. The detailed implementation of the

algorithm is shown in Figure 14.19 and is described in the following paragraphs.

CE

CE

CE

CE

y

Min MinMin Min

Max Max Max Max

LUT

248

192 1024

CE

Exposure
control

CE

I

Frame
buffer

×2

×4

×16 ÷160

÷2
15

÷32

÷8

Column buffer

Column buffer

Column buffer

Column buffer

Column buffer

9×1 greyscale closing

1×9
closing

5×1
opening
/ closing

µi

Column buffer

Delay
(5 columns
+9 pixels)

Column median
Edge detection

start

end

| | | |

80

x2

weight

10

1

0

1

0

1

0

}}

}

Bank-switched histogram

MSB

CE

÷2

Background
subtraction

and
thresholding

CE

Figure 14.19 Schematic of the FPGA implementation.

436 Design for Embedded Image Processing on FPGAs

Of the initial processing checks, the check for the indicator LED is no longer necessary. Since the

images are processed directly as they are streamed from the camera, this signal can be fed directly to the

FPGA rather than capturing it via the image. The check for the presence of an asparagus spear will need to

be deferred because it relies on the middle view. Processing will need to begin assuming that a spear is

present; the results are discarded if it is later not found. For the exposure check, rather than build a

histogram then determine the 99.6th percentile and check to see whether it is in range, the processing can

be simplified by checking whether the incoming pixels are within range and accumulating them

accordingly. In software the threshold levels were 192 and 250. By adjusting the upper threshold to

248 (binary 11111000) the comparison may be simply formed by ANDing the upper five bits. Similarly,

comparingwith 192 (binary 11000000) reduces to a two-input ANDgate. These signals are used to enable

the clocks of two counters, to count the pixels above the respective thresholds. The 99.6th percentile is

somewhat arbitrary; it is equivalent to two lines of pixels in a 640� 480 image. Adjusting this to 1024

simplifies the checking logic; at the end of the frame, if a spear is present, the counts are compared with

1024 (a simple check of the upper bits of the counter) for exposure control.

The contrast enhancement used a fixed lookup table in software. The incoming streammay be processed

in exactly the sameway, with a lookup table implemented using a block RAM.The 9� 1 greyscale closing

may be pipelined from the output of the lookup table. The erosion and dilation are implemented using the

filter structure fromFigure 8.39. Subsequent processing requires a column of data to remove the average. A

bank of 160 row buffers could be used, but to fit this on-chip would require a large FPGA. Therefore, the

image is streamed to an off-chip frame buffer. AZBTRAMclocked at twice the pixel clockwould avoid the

need for a bank switched memory. Alternatively, two pixels could be packed into each memory location,

although this would require a row buffer on the input or column buffer on the output.

After each image panel has been loaded into the frame buffer (160 columns) the columnprocessingmay

begin. This streams the data out of the frame buffer by column for each third of the image. The first step is

to calculate the column average, which is then subtracted from each pixel in that column. The pixel data is

accumulated and also stored in a column buffer. At the end of each column, the total is divided by 160 and

clocked into the mean register, mi. This division by a constant may be implemented efficiently with three

adders (multiplying by 205/215 and eliminating a common subexpression) as shown in Figure 14.19.

If only a binary image was required, the normalisation division of Equation 14.50 may be avoided by

rearranging the threshold:

pi½x; y� � mi½x�
255� mi½x�

> Thr

pi½x; y� > mi½x� þ 255�mi½x�ð ÞThr
ð14:51Þ

and since the threshold is constant (40/256) it may be implemented by a single addition

(�32/256 þ � 8/256). The subtraction from 255 is simply a one’s complement. Although the greyscale

values are used to derive the profile for the quality grading, the pixel values without the background

subtracted would be just as good, since the primary purpose of the background subtraction is to

segment the spear. The background subtraction and thresholding is effectively implementing an

adaptive threshold.

The presence checkmay be implemented by testingmi in the appropriate columnof the central panel. If it

is above a predefined threshold, then the presence of a spear is indicated (this is not shown in Figure 14.19).

The binary morphological filters for cleaning the image may also be significantly simplified because

they are one dimensional. The 1� 9 vertical closing is normally implemented as an erosion followed by a

dilation. The nine-inputANDgate performs the erosion and sets the output register when nine consecutive

ones are detected. The output is held at one until the zero propagates through to the end of the chain; this is

effectively performing the dilation, using the same shift registers.

Rather than use another frame buffer to switch back to row processing, the 5� 1 horizontal cleaning

filters are implemented in parallel using column buffers to cache the previous columns along the row.

Example Applications 437

Rather than perform the opening and closing as two separate operations, both operations are performed in

parallel: a sequence of five consecutive ones will switch the output to a one, and a sequence of five zeros

will switch the output to a zero. While this filter is not identical to that used in software, it has the same

intent of removing sequences of fewer than five ones or zeros.

The next step is to determine the row numbers corresponding to the top and bottom edges of the

asparagus spear in each column. A binary transition detector is used to clock the row counter, y, into the

start and end registers. This is complicated slightly by the fact that occasionally spears in adjacent cups

are also detected near the edge of the image, as illustrated in Figure 14.20. The region detected near the

centre of the panel corresponds to the correct region to bemeasured.A second detected region replaces the

first only if it is nearer to the centre of the panel, that is if:

y� 80j j < end � 80j j ð14:52Þ

At the end of the column, the edge values are transferred to a pair of output registers. The squared

difference is also added to theweight accumulator only for the side images, evaluating Equation 14.49 for

the current spear. If a hardware multiplier was not available, the squaring could be performed efficiently

using a sequential algorithm since it only needs to be calculated once per column.

If desired, additional accumulators could be added to calculate the columnvariance for each view, used

to evaluate the spear straightness. This would require two accumulators and a counter, and a squarer and

a division.

straightness ¼
P

start þ endð Þ2P
1

�
P

start þ endð ÞP
1

� 	2

ð14:53Þ

Again, the squarer and division can use sequential algorithm over several clock cycles.

The final processing step is to calculate the median of the pixel values in each column of the central

view. The greyscale values are delayed to compensate for the latency of the filters and the edge detection

block. The most efficient way of calculating the median of a variable number of pixels is through

accumulating a histogram and finding the 50th percentile. The row counter, y, is compared against spear

edges and only the pixels within the spear are accumulated by enabling the clock of the histogram

accumulator. A counter also counts the pixels which are accumulated. When the column is complete, the

histogram is summed to find the 50th percentile. This requires two histogram banks to be used, while the

median is being found from one bank, the other bank is accumulating the histogram of the next column.

The problemhere is that there are only 160 clock cycles available for each column, requiring two bins to

be summed every clock cycle. In the implementation in Figure 14.19, two histogram bins are stored in

each memory location. Address n holds the counts for histogram bins n and 255�n. When accumulating

the histogram, if themost significant bit of the pixel value is set, the least significant bits are inverted to get

Figure 14.20 Spears visible and detected from adjacent cups.

438 Design for Embedded Image Processing on FPGAs

the address. The most significant bit is also used to control the multiplexers which determine which bin is

incremented.When determining the median, the two bins are accumulated separately, using the y counter

as the address until half the total count is reached. This is effectively scanning from both ends of the

histogram in parallel until the 50th percentile is located. If the upper bin is reached first, y is inverted to

obtain the correct median value. While scanning for the median, the write port is used to reset the

histogram count to zero to ready it for the next column.

Not shown in Figure 14.19 is much of the control logic. Various registers need to be reset at the start of

the row (or column or image) and others are only latched at the end of a column. In controlling these,

allowance must also be made for the latencies of the preceding stages within the pipeline. It is also

necessary to account for the horizontal and vertical blanking periods when controlling the various

modules and determining the latencies. Also not shown are how the outputs are sent to the serial processor.

This depends on whether the processor is implemented on the FPGA or is external. However, because of

the relatively low data rate (three numbers per column), this is not particularly difficult.

While quite a complex algorithm, it can still readily be implemented on an FPGA by successively

designing each image processing component and piecing these together. A hardware implementation has

allowed a number of optimisations that were not available in software, including the simplification of a

number of the filters. This example demonstrates that even quite complex machine vision algorithms can

be targeted to an FPGA implementation.

14.6 Summary

This chapter has illustrated the design of a number of embedded image processing systems implemented

using FPGAs. They have varied from the relatively simple to the complex. There has not been sufficient

space available to go through the complete design process, including the false starts andmistakes.What is

presented here is an overview of some of the aspects of the completed design. It is hoped that these have

demonstrated a range of the techniques covered in this book.

Overall, I trust that this book has provided both a solid foundation and will continue to provide a useful

reference in your design. It is now over to you to build on this foundation, in the development of your own

embedded image processing applications based on field programmable gate arrays.

Example Applications 439

References

1394 Trade Association (2004) 1394-based Digital Camera Specification, Vol. Version 1.31, 1394 Trade Association.

Abd Elghany, M.A., Salama, A.E. and Khalil, A.H. (2007) Design and implementation of FPGA-based systolic array

for LZ data compression. IEEE International Symposium on Circuits and Systems (ISCAS 2007), New Orleans,

Louisiana, USA (27–30 May, 2007), pp. 3691–3695. doi: 10.1109/ISCAS.2007.378644

Abdou, I.E. and Pratt, W.K. (1979) Quantitative design and evaluation of edge enhancement/thresholding edge

detectors. Proceedings of the IEEE, 67 (5), 753–763. doi: 10.1109/PROC.1979.11325

AbuBaker, A., Qahwaji, R., Ipson, S. and Saleh, M. (2007) One scan connected component labeling technique. IEEE

International Conference on Signal Processing and Communications (ICSPC 2007), Dubai, United Arab Emirates

(24–27 November, 2007), pp. 1283–1286. doi: 10.1109/ICSPC.2007.4728561

Achronix (2009) Speedster FPGA Family, Vol. DS001 Rev 1.1, Achronix Semiconductor Corporation.

Actel (2008a) IGLOO Low-Power Flash FPGAs, vol. v1.3, Actel Corporation.

Actel (2008b) ProASIC3 Flash Family FPGAs, vol. v1.0, Actel Corporation.

Actel (2009) Axcelerator Family FPGAs, vol. c2.8, Actel Corporation.

Actel (2010) Actel’s SmartFusion Intelligent Mixed-Signal FPGAs, Vol. Rev 1, Actel Corporation.

Aeroflex (2008) UT6325 RadTol Eclipse FPGA Data Sheet, Aeroflex Incorporated.

Agostini, L.V., Silva, I.S. and Bampi, S. (2001) Pipelined fast 2DDCTarchitecture for JPEG image compression. 14th

Symposium on Integrated Circuits and Systems Design, Pirenopolis, Brazil (10–15 September, 2001), pp. 226–231.

doi: 10.1109/SBCCI.2001.953032

Agostini, L.V., Porto,R.C., Bampi, S. andSilva, I.S. (2005)AFPGAbased design of amultiplierless and fully pipelined

JPEG compressor. 8th Euromicro Conference on Digital System Design, Porto, Portugal (30 August–3 September,

2005), pp. 210–213. doi: 10.1109/DSD.2005.6

Ahmed, H.M. (1982) Signal processing algorithms and architectures. PhD Thesis, Electrical Engineering Department,

Stanford University, California, USA.

Ahmed, E. and Rose, J. (2000) The effect of LUTand cluster size on deep-submicron FPGA performance and density.

International Symposium on Field Programmable Gate Arrays, Monterey, California, USA (10–11 February, 2000),

pp. 3–12. doi: 10.1145/329166.329171

AIA (2004) Camera Link Specifications, Vol. Version 1.1., Automated Imaging Association.

Aikens, R.S., Agard, D.A. and Sedat, J.W. (1989) Solid-state imagers for microscopy, in Methods in Cell Biology,

vol. 29 (eds Y.L. Wangand D.L. Taylor), Academic Press, New York, pp. 291–313.

Akeila, H. and Morris, J. (2008) High resolution stereo in real time, in Robot Vision, Second International Workshop,

Auckland, New Zealand (18–20 February, 2008). Lecture Notes in Computer Science, vol. LNCS 4931, Springer,

pp. 72–84. doi: 10.1007/978-3-540-78157-8_6

Al-Hasani, F., Bainbridge-Smith, A. and Hayes, M. (2011) A new sub-expression elimination algorithm using zero

dominant representations. 6th International Symposium on Electronic Design, Test and Applications, Queenstown,

New Zealand (17–19 January, 2011), pp. 45–50. doi: 10.1109/DELTA.2001.18

Design for Embedded Image Processing on FPGAs, First Edition. Donald G. Bailey.

� 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd.

Alnuweiri, H.M. and Prasanna, V.K. (1992) Parallel architectures and algorithms for image component labeling. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 14 (10), 1014–1034. doi: 10.1109/34.159904

Alston, I. andMadahar, B. (2002) FromC to netlists: hardware engineering for software engineers? IEE Electronics &

Communication Engineering Journal, 14 (4), 165–173. doi: 10.1049/ecej:20020404

Altera (2002) Excalibur Device Overview, vol. DS-EXCARM-2.0, Altera Corporation.

Altera (2006) Stratix Device Handbook, vol. S5V1-3.4, Altera Corporation.

Altera (2007) Stratix II Device Handbook, vol. SII5V1-4.3, Altera Corporation.

Altera (2008a) Arria GX Device Handbook, vol. AGX5V1-1.3, Altera Corporation.

Altera (2008b) Cyclone Device Handbook, vol. C5V1-2.4, Altera Corporation.

Altera (2008c) Cyclone II Device Handbook, vol. CII5V1-3.3, Altera Corporation.

Altera (2008d) Cyclone III Device Handbook, vol. CIII5V1-2.1, Altera Corporation.

Altera (2008e) Quartus II Development Software Handbook, Version 8.1, vol. 3, Altera Corporation.

Altera (2008f) Stratix III Device Handbook, vol. SIII5V1-1.6, Altera Corporation.

Altera (2009a) Generating Functionally Equivalent FPGAs and ASICs with a Single Set of RTL and Synthesis/Timing

Constraints, White Paper, Altera Corporation.

Altera (2009b) Timing Closure Methodology for Advanced FPGA Designs, Application note AN-584-1.0., Altera

Corporation.

Altera (2010a) Arria II GX Device Handbook, vol. IIAGX5V1-2.0, Altera Corporation.

Altera (2010b) Cyclone IV Device Handbook, vol. CYIV-5V1-1.1, Altera Corporation.

Altera (2010c) DSP Builder Handbook Volume 1: Introduction to DSP Builder, vol. HB_DSPB_INTRO_1.0, Altera

Corporation.

Altera (2010d) Stratix IV Device Handbook, vol. SIV5V1-4.0, Altera Corporation.

Altera (2010e) Stratix V Device Handbook, vol. STX5 1.1, Altera Corporation.

Altera (2010f) Video and Image Processing Suite User Guide, vol. UG-VIPSUITE-10.0, Altera Corporation.

Amdahl, G.M. (1967) Validity of the single processor approach to achieving large scale computing capabilities. AFIPS

Spring Joint Computer Conference, Atlantic City, New Jersey, USA, vol. 30 (18–20 April, 1967) pp. 483–485.

doi: 10.1145/1465482.1465560

Andraka, R. (1996) Building a high performance bit serial processor in an FPGA. 1996 On-Chip System Design

Conference (Design SuperCon), Santa Clara, USA (January, 1996), pp. 5.1–5.21.

Andraka, R. (1998) A survey of CORDIC algorithms for FPGA based computers. ACM/SIGDA Sixth International

Symposium on Field Programmable Gate Arrays,Monterey, California, USA (22–25 February, 1998), pp. 191–200.

doi: 10.1145/275107.275139

Andrews, D., Niehaus, D. and Ashenden, P. (2004) Programming models for hybrid CPU/FPGA chips. IEEE

Computer, 37 (1), 118–120. doi: 10.1109/MC.2004.1260732

Angelopoulou, M., Masselos, K., Cheung, P. and Andreopoulos, Y. (2006) A comparison of 2-D discrete wavelet

transform computation schedules on FPGAs. International Conference on Field Programmable Technology,

Bangkok, Thailand (13–15 December, 2006), pp. 181–188. doi: 10.1109/FPT.2006.270310

Angelopoulou, M.E., Cheung, P.Y.K., Masselos, K. and Andreopoulos, Y. (2008) Implementation and comparison of

the 5/3 lifting 2D discrete wavelet transform computation schedules on FPGAs. Journal of Signal Processing

Systems, 51 (1), 3–21. doi: 10.1007/s11265-007-0139-5

Appiah, K. and Hunter, A. (2005) A single-chip FPGA implementation of real-time adaptive backgroundmodel. IEEE

International Conference on Field-Programmable Technology, Singapore (11–14 December, 2005), pp. 95–102.

doi: 10.1109/FPT.2005.1568531

Appiah, K., Hunter, A., Dickenson, P. and Owens, J. (2008) A run-length based connected component algorithm

for FPGA implementation. International Conference on Field Programmable Technology, Taipei, Taiwan

(7–10 December, 2008), pp. 177–184. doi: 10.1109/FPT.2008.4762381

Arcelli, C. and Di Baja, G.S. (1985) A width independent fast thinning algorithm. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 7 (4), 463–474. doi: 10.1109/TPAMI.1985.4767685

Arias-Estrada, M. and Rodr�ıguez-Palacios, E. (2002) An FPGA co-processor for real-time visual tracking, in

International Conference on Field Programmable Logic and Applications, Montpellier, France (2–4 September,

2002), Lecture Notes in Computer Science, vol. LNCS 2438, Springer, pp. 710–719. doi: 10.1007/3-540-46117-

5_73

Arno, S. and Wheeler, F.S. (1993) Signed digit representations of minimal Hamming weight. IEEE Transactions on

Computers, 42 (8), 1007–1010. doi: 10.1109/12.238495

442 References

Arnold, M. and Corporaal, H. (2001) Designing domain-specific processors. Ninth International Symposium on

Hardware Software Codesign, Copenhagen, Denmark (25–27April, 2001), pp. 61–66. doi: 10.1145/371636.371677

Arribas, P.C. and Maci�a, F.M.H. (1999) FPGA implementation of a log-polar algorithm for real time applications.

Conference on Design of Circuits and Integrated Systems, Mallorca, Spain (16–19 November, 1999), pp. 63–68.

Ashenden, P.J. (2008) The Designer’s Guide to VHDL, 3rd edn, Morgan Kaufmann Publishers, Burlington,

Massachusetts, USA.

Askitis, N. (2009) Fast and compact hash tables for integer keys. Thirty-Second Australasian Computer Science

Conference (ACSC 2009), Wellington, New Zealand, vol. CRPIT 91 (January 19–23, 2009), pp. 101–110.

Astola, J., Haavisto, P., Heinonen, P. and Neuvo, Y. (1988) Median type filters for color signals. IEEE International

Symposium on Circuits and Systems, Espoo, Finland, vol. 2 (7–9 June, 1988), pp. 1753–1756. doi: 10.1109/

ISCAS.1988.15274

Astola, J., Haavisto, P. and Neuvo, Y. (1990) Vector median filters. Proceedings of the IEEE, 78 (4), 678–689.

doi: 10.1109/5.54807

Ataman, E., Aatre, V.K. and Wong, K.M. (1980) A fast method for real-time median filtering. IEEE Transactions on

Acoustics, Speech and Signal Processing, 28 (4), 415–420. doi: 10.1109/TASSP.1980.1163426

Athanas, P.M. and Abbot, A.L. (1995) Real-time image processing on a custom computing platform. IEEE Computer,

28 (2), 16–25. doi: 10.1109/2.347995

Atmel (2006) AT40KAL Series FPGA, vol. 2818F-FPGA-07/06, Atmel Corporation.

Atmel (2008) AT94KAL Series Field Programmable System Level Integrated Circuit, vol. 1138I-FPLI-1/08, Atmel

Corporation.

Auer, S. (1982) Imaging by dust rays: a dust ray camera. Optica Acta, 29 (10), 1421–1426. doi: 10.1080/713820766

Avizienis, A. (1961) Signed-digit number representation for fast parallel arithmetic. IRE Transactions on Electronic

Computers, EC-10 (3), 389–400. doi: 10.1109/TEC.1961.5219227

Backus, J. (1978) Can programming be liberated from the von Neumann style?: a functional style and its algebra of

programs. Communications of the ACM, 21 (8), 613–641. doi: 10.1145/359576.359579

Baer, R.L., Holland, W.D., Holm, J.M. and Vora, P.L. (1999) Comparison of primary and complementary color filters

for CCD-based digital photography, in Sensors, Cameras, and Applications for Digital Photography, San Jose,

California, USA (January 27–28, 1999), vol. 3650, SPIE, pp. 16–25. doi: 10.1117/12.342859

Bailey, D.G. (1985) Hardware and software developments for applied digital image processing. PhD Thesis,

Department of Electrical and Electronic Engineering, University of Canterbury: Christchurch, New Zealand.

Bailey, D.G. (1988) Machine vision: a multi-disciplinary systems engineering problem, in Hybrid Image and Signal

Processing, Orlando, Florida, USA (7–8 April, 1988), vol. 939, SPIE, pp. 148–155.

Bailey, D.G. (1990) A rank based edge enhancement filter. 5th New Zealand Image ProcessingWorkshop, Palmerston

North, New Zealand (9–10 August, 1990), pp. 42–47.

Bailey, D.G. (1991) Raster based region growing. 6th New Zealand Image Processing Workshop, Lower Hutt,

New Zealand (29–30 August, 1991), pp. 21–26.

Bailey, D.G. (1992) Segmentation of touching objects. 7th New Zealand Image Processing Workshop, Christchurch,

New Zealand (26–28 August, 1992), pp. 195–200.

Bailey, D.G. (1993) Frequency domain self-filtering for pattern detection. First NewZealandConference on Image and

Vision Computing, Auckland, New Zealand (16–18 August, 1993), pp. 237–243.

Bailey, D.G. (1995) Pixel calibration techniques. New Zealand Image and Vision Computing ’95 Workshop, Lincoln,

New Zealand (28–29 August, 1995), pp. 37–42.

Bailey, D.G. (1997a) Colour plane synchronisation in colour error diffusion. IEEE International Conference on Image

Processing, Santa Barbara, California, USA, vol. 1 (26–29 October, 1997) pp. 818–821. doi: 10.1109/

ICIP.1997.648089

Bailey, D.G. (1997b) Detecting regular patterns using frequency domain self-filtering. IEEE International Conference

on Image Processing, Santa Barbara, California, USA, vol. 1 (26–29 October, 1997), pp. 440–443. doi: 10.1109/

ICIP.1997.647801

Bailey, D.G. (2002) A new approach to lens distortion correction. Image and Vision Computing New Zealand

(IVCNZ’02), Auckland, New Zealand (26–28 November, 2002), pp. 59–64.

Bailey, D.G. (2003) Sub-pixel estimation of local extrema. Image and Vision Computing New Zealand (IVCNZ’03),

Palmerston North, New Zealand (26–28 November, 2003), pp. 414–419.

Bailey, D.G. (2004) An efficient Euclidean distance transform, in International Workshop on Combinatorial Image

Analysis, Auckland, New Zealand (1–3 December, 2004), Lecture Notes in Computer Science, vol. LNCS 3322,

Springer, pp. 394–408. doi: 10.1007/b103936

References 443

Bailey, D.G. (2006) Space efficient division on FPGAs. Electronics New Zealand Conference (ENZCon’06),

Christchurch, New Zealand (13–14 November, 2006), pp. 206–211.

Bailey, D.G. (2010a) Chain coding streamed images through crack run-length encoding. Image and Vision Computing

New Zealand (IVCNZ 2010), Queenstown, New Zealand (8–9 November, 2010), pp. 155–160.

Bailey, D.G. (2010b) Efficient implementation of greyscale morphological filters. International Conference on Field

Programmable Technology (FPT 2010), Beijing, China (8–10 December, 2010), pp. 421–424.

Bailey, D.G. (2011a) Automatic produce grading system, in Machine Vision Handbook (ed. B. Batchelor), Springer.

doi: 10.1007/978-1-84996-169-1_29

Bailey, D.G. (2011b) Image border management for FPGA based filters. 6th International Symposium on Electronic Design,

Test and Applications, Queenstown, New Zealand (17–19 January, 2011), pp. 144–149. doi: 10.1109/DELTA.2011.34

Bailey, D.G. and Bouganis, C.S. (2008) Reconfigurable foveated active vision system. in International Conference on

Sensing Technology, Tainan, Taiwan (30 November–3 December, 2008), pp. 162–169. doi: 10.1109/

ICSENST.2008.4757093

Bailey,D.G. andBouganis, C.S. (2009a) Implementation of a foveal visionmapping. International Conference on Field

Programmable Technology (FPT’09), Sydney, Australia (9–11 December, 2009), pp. 22–29. doi: 10.1109/

FPT.2009.5377646

Bailey, D.G. and Bouganis, C.S. (2009b) Tracking performance of a foveated vision system. International Conference

onAutonomousRobots andAgents (ICARA2009),Wellington, NewZealand (10–12February, 2009), pp. 414–419.

doi: 10.1109/ICARA.2000.4804029

Bailey, D.G. and Bouganis, C.S. (2009c) Vision sensor with an active digital fovea, in Recent Advances in Sensing

Technology, Lecture Notes in Electrical Engineering, vol. LNEE 49 (eds. S.C. Mukhopadhyay, G. Sen Gupta and

R.Y.M. Huang), Springer-Verlag, pp. 91–111. doi: 10.1007/978-3-642-00578-7_6

Bailey, D.G. and Gilman, A. (2007) Bias of higher order predictive interpolation for sub-pixel registration. 6th

International Conference on Information, Communications and Signal Processing, Singapore (10–13 December,

2007), pp. 1–5. doi: 10.1109/ICICS.2007.4449703

Bailey, D.G. and Hodgson, R.M. (1985) Range filters: local intensity subrange filters and their properties. Image and

Vision Computing, 3 (3), 99–110. doi: 10.1016/0262-8856(85)90058-7

Bailey, D.G. andHodgson, R.M. (1988)VIPS – a digital image processing algorithmdevelopment environment. Image

and Vision Computing, 6 (3), 176–184. doi: 10.1016/0262-8856(88)90024-8

Bailey, D.G. and Johnston, C.T. (2007) Single pass connected components analysis. Image and Vision Computing

New Zealand (IVCNZ), Hamilton, New Zealand (5–7 December, 2007), pp. 282–287.

Bailey, D.G. and Johnston, C.T. (2010) Algorithm transformation for FPGA implementation. 5th IEEE International

Symposium on Electronic Design, Test and Applications (DELTA 2010), Ho Chi Minh City, Vietnam

(13–15 January, 2010), pp. 77–81. doi: 10.1109/DELTA.2010.17

Bailey, D.G. and Lill, T.H. (1999) Image registration methods for resolution improvement. Image and Vision

Computing New Zealand (IVCNZ), Christchurch, New Zealand (30–31 August, 1999) pp. 91–96.

Bailey, D.G. and SenGupta, G. (2010)Automated camera calibration for robot soccer, inRobotic Soccer (ed. V. Papic),

In-Tech, Vukovar, Croatia, pp. 311–336.

Bailey, D.G. and Shand, R.D. (1996) Determining large scale sandbar behaviour. IEEE International Conference on

Image Processing, Lausanne, Switzerland, vol. 2 (16–19 September, 1996), pp. 637–640. doi: 10.1109/

ICIP.1996.560958

Bailey, D.G., Hodgson, R.M. and McNeill, S.J. (1984) Local filters in digital image processing. National Electronics

Conference (NELCON), Christchurch, New Zealand, vol. 21 (22–24 August, 1984), pp. 95–100.

Bailey, D.G., Mercer, K.A., Plaw, C., Ball, R. and Barraclough, H. (2001) Three dimensional vision for real-time

produce grading, in Machine Vision and Three-Dimensional Imaging Systems for Inspection and Metrology II,

Boston, Massachusetts, USA, (29–30 October, 2001), vol. 4567, SPIE, pp. 171–178. doi: 10.1117/12.455254

Bailey, D.G., Mercer, K.A., Plaw, C., Ball, R. and Barraclough, H. (2004) High speed weight estimation by image

analysis. 2004 New Zealand National Conference on Non Destructive Testing, Palmerston North, New Zealand

(27–29 July, 2004), pp. 89–96.

Bailey, D.G., Seal, J.R. and Sen Gupta, G. (2005) Nonparametric calibration for catadioptric stereo. Image and Vision

Computing New Zealand (IVCNZ’05), Dunedin, New Zealand (28–29 November, 2005), pp. 404–409.

Bailey, D.G., Gribbon, K. and Johnston, C. (2006) GATOS: a windowing operating system for FPGAs. 3rd IEEE

International Workshop on Electronic Design, Test, and Applications (DELTA 2006), Kuala Lumpur, Malaysia

(17–19 January, 2006), pp. 405–409. doi: 10.1109/DELTA.2006.51

444 References

Bailey, D.G., Johnston, C.T. and Ma, N. (2008) Connected components analysis of streamed images. International

Conference on Field Programmable Logic and Applications (FPL 2008), Heidelberg, Germany (8–10 September,

2008), pp. 679–682. doi: 10.1109/FPL.2008.4630038

Bajard, J.C., Kla, S. andMuller, J.M. (1994) BKM: a new hardware algorithm for complex elementary functions. IEEE

Transactions on Computers, 43 (8), 955–963. doi: 10.1109/12.295857

Baker, S. and Matthews, I. (2004) Lucas–Kanade 20 years on: a unifying framework. International Journal of

Computer Vision, 56 (3), 221–255. doi: 10.1023/B:VISI.0000011205.11775.fd

Balakrishnan, S. and Eddington, C. (2007) Efficient DSP algorithm development for FPGA and ASIC technologies,

White paper. Synopsis Incorporated.

Ballard, D.H. (1981) Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition, 13 (2),

111–122. doi: 10.1016/0031-3203(81)90009-1

Banerjee, P., Shenoy, N., Choudhary, A., Hauck, S., Bachmann, C., Haldar, M., Joisha, P., Jones, A., Kanhare, A.,

Nayak, A., Periyacheri, S., Walkden, M. and Zaretsky, D. (2000) A MATLAB compiler for distributed, heteroge-

neous, reconfigurable computing systems. 2000 IEEE Symposium on Field-Programmable Custom Computing

Machines, Napa Valley, California, USA (17–19 April, 2000) pp. 39–48. doi: 10.1109/FPGA.2000.903391

Banerjee, P., Bagchi, D., Haldar, M., Nayak, A., Kim, V. and Uribe, R. (2003) Automatic conversion of floating point

MATLAB programs into fixed point FPGA based hardware design. 11th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM 2003), Napa, California, USA (9–11 April, 2003),

pp. 263–264. doi: 10.1109/FPGA.2003.1227262

Barnett, V. (1976)Ordering ofmultivariate data. Journal of the Royal Statistical Society Series A - Statistics in Society,

139 (3), 318–355. doi: 10.2307/2344839

Barni, M. (1997) A fast algorithm for 1-norm vector median filtering. IEEE Transactions on Image Processing, 6 (10),

1452–1455. doi: 10.1109/83.624972

Barni, M., Buti, F., Bartolini, F. and Cappellini, V. (2000) A quasi-Euclidean norm to speed up vector median filtering.

IEEE Transactions on Image Processing, 9 (10), 1704–1709. doi: 10.1109/83.869182

Batchelor, B.G. (1979) Streak and spot detection in digital pictures. Electronics Letters, 15 (12), 352–353.

doi: 10.1049/el:19790250

Batchelor, B.G. (1994) HyperCard lighting advisor. in Machine Vision Applications, Architectures, and Systems

Integration III, Boston, Massachusetts, USA (31 October–2 November, 1994), vol. 2347, SPIE, pp. 180–188.

doi: 10.1117/12.188730

Batchelor, B.G. and Whelan, P.F. (1994) Machine vision systems: proverbs, principles, prejudices and priorities,

in Machine Vision Applications, Architectures and Systems Integration III, Boston, Massachusetts, USA

(31 October–2 November, 1994), vol. 2347, SPIE, pp. 374–383. doi: 10.1117/12.188748

Batcher, K.E. (1980) Design of a massively parallel processor. IEEE Transactions on Computers,C-29 (9), 836–849.

doi: 10.1109/TC.1980.1675684

Bayer, B.E. (1976) Color imaging array, United States of America patent 3971065.

Bednar, J.B. andWatt, T.L. (1984)Alpha trimmedmeans and their relationship tomedian filters. IEEETransactions on

Acoustics, Speech and Signal Processing, 32 (1), 145–153. doi: 10.1109/TASSP.1984.1164279

Beis, J.S. and Lowe, D.G. (1997) Shape indexing using approximate nearest-neighbour search in high-dimensional

spaces. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico

(17–19 June, 1997), pp. 1000–1006. doi: 10.1109/CVPR.1997.609451

Bellas, N., Chai, S.M., Dwyer, M. and Linzmeier, D. (2009) Real-time fisheye lens distortion correction using

automatically generated streaming accelerators. 17th IEEESymposiumon Field Programmable CustomComputing

Machines (FCCM), Napa, California, USA (5–7 April, 2009), pp. 149–156. doi: 10.1109/FCCM.2009.16

Bellows, P. and Hutchings, B. (1998) JHDL-an HDL for reconfigurable systems. IEEE Symposium on Field-

Programmable Custom Computing Machines, Napa Valley, California, USA (15–17 April, 1998), pp. 175–184.

doi: 10.1109/FPGA.1998.707895

Bellows, P. and Hutchings, B. (2001) Designing run-time reconfigurable systems with JHDL. Journal of VLSI Signal

Processing, 28 (1), 29–45. doi: 10.1023/A:1008107104782

Benitez, D. (2002) Performance of remote FPGA-based coprocessors for image-processing applications. Euromicro

Symposium on Digital System Design, Dortmund, Germany (4–6 September, 2002) pp. 268–275. doi: 10.1109/

DSD.2002.1115378

Benkrid, K. (2000) Design and implementation of a high level FPGA based coprocessor for image and video

processing. PhD Thesis, Department of Computer Science, Queen’s University of Belfast: Belfast.

References 445

Benkrid, A. and Benkrid, K. (2008) HIDEþ: a logic based hardware development environment. Engineering Letters,

16 (3), 460–468.

Benkrid,K. andCrookes, D. (2003)Newbit-level algorithm for general purposemedian filtering. Journal of Electronic

Imaging, 12 (2), 263–269. doi: 10.1117/1.1557153

Benkrid, K., Crookes, D., Smith, J. and Benkrid, A. (2000) High level programming for real time FPGA based video

processing. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’00), Istanbul,

Turkey, vol. 6 (5–9 June, 2000), pp. 3227–3230. doi: 10.1109/ICASSP.2000.860087

Benkrid, K., Crookes, D. and Benkrid, A. (2002a) Design and implementation of a novel algorithm for general purpose

median filtering on FPGAs. IEEE International Symposium on Circuits and Systems (ISCAS 2002), Phoenix,

Arizona, vol. 4 (26–29 May, 2002), pp. 425–428. doi: 10.1109/ISCAS.2002.1010482

Benkrid, K., Crookes, D., Benkrid, A. and Belkacemi, S. (2002b) A Prolog-based hardware development environment,

in International Conference on Field Programmable Logic and Applications, Montpellier, France (2–4 September,

2002), Lecture Notes in Computer Science, vol. LNCS 2438, Springer, pp. 370–380. doi: 10.1007/3-540-46117-

5_39

Benkrid, A., Benkrid, K. and Crookes, D. (2003a) A novel FIR filter architecture for efficient signal boundary handling

on Xilinx VIRTEX FPGAs. 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines

(FCCM 2003), Napa, California, USA (9–11 April, 2003), pp. 273–275. doi: 10.1109/FPGA.2003.1227267

Benkrid, K., Sukhsawas, S., Crookes, D. and Benkrid, A. (2003b) An FPGA-based image connected component

labeller, in International Conference on Field Programmable Logic andApplications (FPL 2003), Lisbon, Portugal

(1–3 September, 2003), Lecture Notes in Computer Science, vol. LNCS 2778, Springer, pp. 1012–1015. doi:

10.1007/b12007

Benkrid, K., Belkacemi, S. and Benkrid, A. (2006) HIDE: a hardware intelligent description environment. Micro-

processors and Microsystems, 6 (30), 283–300. doi: 10.1016/j.micpro.2006.02.005

Bergland, G.D. (1969) A guided tour of the fast Fourier transform. IEEE Spectrum, 6 (7), 41–52. doi: 10.1109/

MSPEC.1969.5213896

Bhasker, J. (1999) A VHDL primer, 3rd edn, Prentice-Hall, New Jersey.

Bhasker, J. (2005) A Verilog HDL Primer, 3rd edn, Star Galaxy Publishing.

Blodget, B., McMillan, S. and Lysaght, P. (2003) A lightweight approach for embedded reconfiguration of FPGAs.

Design, Automation and Test in Europe Conference and Exhibition (DATE’03), Munich, Germany (3–7 March,

2003), pp. 399–400. doi: 10.1109/DATE.2003.10160

Body,N.B. andBailey,D.G. (1998)Efficient representation and decodingof staticHuffman code tables in a very lowbit

rate environment. IEEE International Conference on Image Processing, Chicago, Illinois, USA, vol. 3 (4–7October,

1998), pp. 90–94. doi: 10.1109/ICIP.1998.727139

Bohm,A.P.W.,Draper,B.,Najjar,W.,Hammes, J.,Rinker,R., Chawathe,M.andRoss,C. (2001)One-step compilationof

image processing applications to FPGAs. IEEE Symposium on Field-Programmable Custom Computing Machines

(FCCM’01), Rohnert Park, California, USA (30 April–2 May, 2001), pp. 209–218. doi: 10.1109/FCCM.2001.32

Bohm, W., Hammes, J., Draper, B., Chawathe, M., Ross, C., Rinker, R. and Najjar, W. (2002) Mapping a single

assignment programming language to reconfigurable systems. Journal of Supercomputing, 21 (2), 117–130. doi:

10.1023/A:1013623303037

Bollaert, T. (2008) Catapult synthesis: a practical introduction to interactive C synthesis, in High-Level Synthesis

(eds P. Coussy and A. Morawiec), Springer, The Netherlands, pp. 29–52. doi: 10.1007/978-1-4020-8588-8_3

Booth, A.D. (1951) A signed binary multiplication technique. Quarterly Journal of Mechanics and Applied

Mathematics, 4 (2), 236–240. doi: 10.1093/qjmam/4.2.236

Borgefors, G. (1986) Distance transformations in digital images. Computer Vision, Graphics, and Image Processing,

34 (3), 344–371. doi: 10.1016/S0734-189X(86)80047-0

Bouganis, C.S., Constantinides, G.A. and Cheung, P.Y.K. (2005) A novel 2D filter design methodology for

heterogeneous devices. 13th Annual IEEE Symposium on Field-Programmable Custom Computing Machines

(FCCM 2005), Napa, California, USA (18–20 April, 2005), pp. 13–22. doi: 10.1109/FCCM.2005.10

Boullis, N., Mencer, O., Luk, W. and Styles, H. (2001) Pipelined function evaluation on FPGAs. IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM’01), Rohnert Park, California, USA (30 April–2 May,

2001), pp. 304–306. doi: 10.1109/FCCM.2001.37

Bovik, A.C., Huang, T.S. and Munson, D.C. (1983) A generalisation of median filtering using linear combinations of

order statistics. IEEE Transactions on Acoustics, Speech and Signal Processing, 31 (6), 1342–1349. doi: 10.1109/

TASSP.1983.1164247

446 References

Bowen, O. and Bouganis, C.S. (2008) Real-time image super resolution using an FPGA. International Conference on

Field Programmable Logic andApplications (FPL 2008), Heidelberg, Germany (8–10 September, 2008), pp. 89–94.

doi: 10.1109/FPL.2008.4629913

Bracewell, R.N. (2000) The Fourier Transform and its Applications, 3 edn, McGraw Hill, New York.

Braun, G.J. and Fairchild, M.D. (1999) Image lightness rescaling using sigmoidal contrast enhancement functions.

Journal of Electronic Imaging, 8 (4), 380–393. doi: 10.1117/1.482706

Brisebarre, N., Muller, J.M. and Tisserand, A. (2006) Computingmachine-efficient polynomial approximations. ACM

Transactions on Mathematical Software, 32 (2), 236–256. doi: 10.1145/1141885.1141890

Brown, D.C. (1971) Close range camera calibration. Photogrammetric Engineering, 37 (8), 855–866.

Brown, S.R. (1987) A note on the description of surface roughness using fractal dimension. Geophysical Research

Letters, 14 (11), 1095–1098.

Brown, L.G. (1992) A survey of image registration techniques. ACM Computing Surveys, 24 (4), 325–376.

doi: 10.1145/146370.146374

Brown, C.W. and Shepherd, B.J. (1995) Graphics File Formats: Reference and Guide, Manning, Greenwich,

Connecticut, USA.

Brumfitt, P.J. (1984) Environments for image processing algorithm development. Image and Vision Computing, 2 (4),

198–203. doi: 10.1016/0262-8856(84)90023-4

Buck, J.T. and Lee, E.A. (1993) Scheduling dynamic dataflow graphs with bounded memory using the token flow

model. IEEE International Conference on Acoustics, Speech and Signal Processing,Minneapolis,Minnesota, USA,

vol. 1 (27–30 April, 1993), pp. 429–432. doi: 10.1109/ICASSP.1993.319147

Buhler, A. (2007) GateOS: a minimalist windowing environment and operating system for FPGAs. Master of

Engineering Thesis, Institute of Information Sciences and Technology, Massey University, Palmerston North,

New Zealand. hdl: 10179/667

Bunnik, H.M.W., Bailey, D.G. and Mawson, A.J. (2006) Objective colour measurement of tomatoes and limes. Image

and Vision Computing New Zealand (IVCNZ’06), Great Barrier Island, New Zealand (27–29 November, 2006),

pp. 263–268.

Burdeniuk, A., To, K.N., Lim, C.C. and Liebelt, M.J. (2010) An event-assisted sequencer to accelerate matrix

algorithms. 5th IEEE International Symposium on Electronic Design, Test and Applications (DELTA 2010), HoChi

Minh City, Vietnam (13–15 January, 2010), pp. 158–163. doi: 10.1109/DELTA.2010.12

Butt, M.A. and Maragos, P. (1998) Optimal design of chamfer distance transforms. IEEE Transactions on Image

Processing, 7 (10), 1477–1484. doi: 10.1109/83.718487

Buyukkurt, B., Guo, Z. and Najjar, W.A. (2006) Impact of loop unrolling on area, throughput and clock frequency in

ROCCC: C to VHDL compiler for FPGAs, in Second International Workshop on Reconfigurable Computing (ARC

2006), Delft, The Netherlands, (1–3March, 2006), Lecture Notes in Computer Science, vol. LNCS 3985, Springer,

pp. 401–412. doi: 10.1007/11802839_48

Cady, F.M., Hodgson, R.M., Pairman, D., Rodgers, M.A. and Atkinson, G.J. (1981) Interactive image processing

software for a microcomputer. IEE Proceedings E: Computers and Digital Techniques, 128 (4), 165–171. doi:

10.1049/ip-e:19810030

Camacho, P., Arrebola, F. and Sadoval, F. (1998) Multiresolution sensors with adaptive structure. 24th Annual

Conference of the IEEE Industrial Electronics Society (IECON ’98), Aachen, Germany, vol. 2 (31 August–

4 September, 1998), pp. 1230–1235. doi: 10.1109/IECON.1998.724279

Canny, J. (1986) A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 8 (6), 679–698. doi: 10.1109/TPAMI.1986.4767851

Carlotto, M.J. (1987) Histogram analysis using a scale-space approach. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 9 (1), 121–129. doi: 10.1109/TPAMI.1987.4767877

Castleman, K.R. (1979) Digital Image Processing, Prentice Hall, Englewood Cliffs, NJ.

Castleman, K.R. (1996) Digital Image Processing, 1st edn, Prentice-Hall, New Jersey.

Catmull, E. and Smith, A.R. (1980) 3-D transformations of images in scanline order. ACM SIGGRAPH Computer

Graphics, 14 (3), 279–285. doi: 10.1145/965105.807505

Catsoulis, J. (2005) Designing Embedded Hardware, 2nd edn, O’Reilly.

Cederberg, R.T.L. (1979) Chain link coding and segmentation for raster scan devices. Computer Graphics and Image

Processing, 10 (3), 224–234. doi: 10.1016/0146-664X(79)90002-9

Celebi, M.E. and Aslandogan, Y.A. (2008) Robust switching vector median filter for impulsive noise removal. Journal

of Electronic Imaging, 17 (4), 043006-1-9. doi: 10.1117/1.2991415

References 447

Chai, D. and Bouzerdoum, A. (2000) A Bayesian approach to skin color classification in YCbCr color space. IEEE

Region 10 Conference (TENCON 2000), Kuala Lumpur, Malaysia, vol. 2 (24–27 September, 2000), pp. 421–424.

doi: 10.1109/TENCON.2000.888774

Chakrabarti, C. and Wang, L.Y. (1994) Novel sorting network-based architectures for rank order filters. IEEE

Transactions on VLSI Systems, 2 (4), 502–507. doi: 10.1109/92.335027

Chakravarty, I. (1981)A single-pass, chain generating algorithm for region boundaries.ComputerGraphics and Image

Processing, 15 (2), 182–193. doi: 10.1016/0146-664X(81)90078-2

Chan, F.H.Y., Lam, F.K., Li, H.F. and Liu, J.G. (1996) An all adder systolic structure for fast computation of moments.

Journal of VLSI Signal Processing, 12 (2), 159–175. doi: 10.1007/BF00924524

Chandrasekaran, R. and Tamir, A. (1989) Open questions concerning Weiszfeld’s algorithm for the Fermat–Weber

location problem. Mathematical Programming, 44 (1–3), 293–295. doi: 10.1007/BF01587094

Chang, L. and Hern�andez-Palancar, J. (2009) A hardware architecture for SIFT candidate keypoints detection, in 14th

Iberoamerican Conference on Pattern Recognition, Guadalajara, Mexico, Lecture Notes in Computer Science,

vol. LNCS 5856, Springer, pp. 95–102. doi: 10.1007/978-3-642-10268-4_11

Chang, S.K., Barnett,M.M., Levialdi, S.,Marriott, K., Pfeiffer, J.J. and Tanimoto, S.L. (1999) The future of visual languages.

IEEESymposiumonVisualLanguages,Tokyo, Japan (13–16September, 1999), pp. 58–61. doi: 10.1109/VL.1999.795875

Chang, F., Chen, C.J. and Lu, C.J. (2004)A linear-time component-labeling algorithm using contour tracing technique.

Computer Vision and Image Understanding, 93 (2), 206–220. doi: 10.1016/j.cviu.2003.09.002

Chanussot, J., Paindavoine,M. andLambert, P. (1999)Real timevectormedian like filter: FPGAdesign and application

to color image filtering. IEEE International Conference on Image Processing (ICIP’99), Kobe, Japan, vol. 2

(24–28 October, 1999), pp. 414–418. doi: 10.1109/ICIP.1999.822929

Chapweske, A. (2003) The PS/2 Mouse/Keyboard Protocol. Available from http://www.computer-engineering.org

[cited 20 July, 2006].

Choo, C. and Verma, P. (2008) A real-time bit-serial rank filter implementation using Xilinx FPGA, in Real-Time Image

Processing2008, San Jose,California,USA(28–29 January, 2008)vol. 6811, SPIE, pp. 68110F-1-8. doi: 10.1117/12.765789

Chrysafis, C. and Ortega, A. (2000) Line-based, reduced memory, wavelet image compression. IEEE Transactions on

Image Processing, 9 (3), 378–389. doi: 10.1109/83.826776

Claus, C., Huitl, R., Rausch, J. and Stechele, W. (2009) Optimizing the SUSAN corner detection algorithm

for a high speed FPGA implementation. International Conference on Field Programmable Logic and Applications

(FPL), Prague, Czech Republic (31 August–2 September, 2009), pp. 138–145. doi: 10.1109/FPL.2009.5272492

Clist, R.S. and Valkenburg, R.J. (1994) Close coupling of a multiple-instruction-multiple-data (MIMD) system to a

MAXbus pipeline: the Kiwivision MTM multitransputer architecture, in Machine Vision Applications, Architec-

tures and Systems Integration III, Boston, Massachusetts, USA (31 October–2 November, 1994), vol. 2347, SPIE,

pp. 106–114. doi: 10.1117/12.188723

Coffman, E.G., Elphick, M. and Shoshani, A. (1971) System deadlocks. ACM Computing Surveys, 3 (2), 67–78.

doi: 10.1145/356586.356588

Comer, M. and Delp, E. (1999) Morphological operations for color image processing. Journal of Electronic Imaging,

8 (3), 279–289. doi: 10.1117/1.482677

Compton, K. and Hauck, S. (2002) Reconfigurable computing: a survey of systems and software. ACM Computing

Surveys, 34 (2), 171–210. doi: 10.1145/508352.508353

Conners, R.W. andHarlow, C.A. (1980)A theoretical comparison of texture algorithms. IEEETransactions on Pattern

Analysis and Machine Intelligence, 2 (3), 204–223. doi: 10.1109/TPAMI.1980.4767008

Constantinides, G.A., Cheung, P.Y.K. and Luk, W. (2001) The multiple wordlength paradigm. IEEE Symposium on

Field Programmable Custom Computing Machines (FCCM’01), Rohnert Park, California, USA (30 April–2 May,

2001), pp. 51–60. doi: 10.1109/FCCM.2001.46

Cope, B., Cheung, P.Y.K., Luk, W. and Witt, S. (2005) Have GPUs made FPGAs redundant in the field of video

processing? IEEE International Conference on Field-Programmable Technology, Singapore (11–14 December,

2005), pp. 111–118. doi: 10.1109/FPT.2005.1568533

Coutinho, J.G.F. and Luk, W. (2003) Source-directed transformations for hardware compilation. IEEE International

Conference on Field-Programmable Technology (FPT), Tokyo, Japan (15–17 December, 2003), pp. 278–285. doi:

10.1109/FPT.2003.1275758

Crookes, D. and Benkrid, K. (1999) An FPGA implementation of image component labelling, in Reconfigurable

Technology: FPGAs for Computing and Applications, Boston, Massachusetts, USA (20–21 September, 1999),

vol. 3844, SPIE, pp. 17–23. doi: 10.1117/12.359538

448 References

Crookes, D., Morrow, P.J. andMcParland, P.J. (1989) An algebra-based language for image processing on transputers. Third

International Conference on Image Processing and its Applications, Warwick, UK (18–20 July, 1989), pp. 457–461.

Crookes, D., Alotaibi, K., Bouridane, A., Donachy, P. and Benkrid, A. (1998) An environment for generating FPGA

architectures for image algebra-based algorithms. 1998 International Conference on Image Processing (ICIP 98),

Chicago, Illinois, USA, vol. 3 (4–7 October, 1998), pp. 990–994. doi: 10.1109/ICIP.1998.999082

Crookes,D., Benkrid,K., Bouridane, A.,Alotaibi,K. andBenkrid,A. (2000)Design and implementation of a high level

programming environment for FPGA-based image processing. IEE Proceedings Vision, Image and Signal

Processing, 147 (4), 377–384. doi: 10.1049/ip-vis:20000579

Crow, F.C. (1984) Summed-area tables for texture mapping. SIGGRAPH’84 International Conference on Computer

Graphics and Interactive Techniques,Minneapolis, Minnesota, USA (23–27 July, 1984), pp. 207–212. doi: 10.1145/

800031.808600

Cucchiara, R., Neri, G. and Piccardi,M. (1998) A real-time hardware implementation of the Hough transform. Journal

of Systems Architecture, 45 (1), 31–45. doi: 10.1016/S1383-7621(97)00071-4

Cucchiara, R., Onfiani, P., Prati, A. and Scarabottolo, N. (1999) Segmentation of moving objects at frame rate: a

dedicated hardware solution. Seventh International Conference on Image Processing and its Applications,

Manchester, UK, vol. Conf Publ 465 (13–15 July, 1999), pp. 138–142. doi: 10.1049/cp:19990297

Cuisenaire, O. and Macq, B. (1999) Fast Euclidean distance transformation by propagation using multiple neighbour-

hoods. Computer Vision and Image Understanding, 76 (2), 163–172. doi: 10.1006/cviu.1999.0783

Currie, A.J. (1995). Differentiating apple sports by pollen ultrastructure. Master of Horticultrual Science Thesis,

Massey University, Palmerston North, New Zealand.

Cutler, R. andDavis, L. (1998)View-based detection andanalysis of periodicmotion. Fourteenth InternationalConference on

Pattern Recognition, Brisbane, Australia, vol. 1 (16–20 August, 1998), pp. 495–500. doi: 10.1109/ICPR.1998.711189

Dadda, L. (1965) Some schemes for parallel multipliers. Alta Frequenza, 34 (5), 349–356.

Danger, J.L., Guilley, S. and Hoogvorst, P. (2007) Fast true random generator in FPGAs. IEEENortheastWorkshop on

Circuits and Systems, Montreal, Canada (5–8 August, 2007), pp. 506–509. doi: 10.1109/NEWCAS.2007.4487970

Danielsson, P.E. (1980) Euclidean distance mapping. Computer Graphics and Image Processing, 14 (3), 227–248.

doi: 10.1016/0146-664X(80)90054-4

Danielsson, P.E. (1981) Getting the median faster. Computer Graphics and Image Processing, 17 (1), 71–78.

doi: 10.1016/S0146-664X(81)80010-X

Das Sarma, D. and Matula, D.W. (1995) Faithful bipartite ROM reciprocal tables. 12th Symposium on Computer

Arithmetic, Bath, UK (19–21 July, 1995), pp. 17–28. doi: 10.1109/ARITH.1995.465381

DAU (2001) Systems Engineering Fundamentals, Defense Acquisition University Press, Fort Belvoir, Virginia, USA.

Daubechies, I. andSweldens,W. (1998) Factoringwavelet transforms into lifting steps. Journal of FourierAnalysis and

Applications, 4 (3), 247–269. doi: 10.1007/BF02476026

Davies, E.R. (1988) A modified Hough scheme for general circle location. Pattern Recognition Letters, 7 (1), 37–43.

doi: 10.1016/0167-8655(88)90042-6

Davies, E.R. (1999) High precision discrete model of median shifts. Seventh International Conference on Image

Processing and its Applications, Manchester, UK, vol. 1 (13–15 July, 1999), pp. 197–201.

Davies, E.R. (2000) Accuracy of multichannel median filter. Electronics Letters, 36 (25), 2068–2069. doi: 10.1049/

el:20001465

Davies, E.R. (2008) Stable bi-level and multi-level thresholding of images using a new global transformation. IET

Computer Vision, 2 (2), 60–74. doi: 10.1049/iet-cvi:20070071

Dawid, H. and Meyr, H. (1992) VLSI implementation of the CORDIC algorithm using redundant arithmetic. IEEE

International Symposium on Circuits and Systems (ISCAS ’92), San Diego, California, USA, vol. 3 (10–13 May,

1992), pp. 1089–1092. doi: 10.1109/ISCAS.1992.230290

DDWG (1999) Digital Visual Interface (DVI), Revision 1.0., Digital Display Working Group.

de Dinechin, F. and Tisserand, A. (2001) Some improvements on multipartite table methods. IEEE Symposium on

Computer Arithmetic, Vail, Colorado, USA (11–13 June, 2001), pp. 128–135. doi: 10.1109/ARITH.2001.930112

de Haan, G. and Bellers, E.B. (1998) Deinterlacing – an overview. Proceedings of the IEEE, 86 (9), 1839–1857.

doi: 10.1109/5.705528

De Smet, P. (2010) Optimized high speed pixel sorting and its application in watershed based image segmentation.

Pattern Recognition, 43 (7), 2359–2366. doi: 10.1016/j.patcog.2010.01.014

DeHon, A., Adams, J., DeLorimier, M., Kapre, N., Matsuda, Y., Naeimi, H., Vanier, M., and Wrighton, M. (2004)

Design patterns for reconfigurable computing. 12th Annual IEEE Symposium on Field-Programmable Custom

References 449

Computing Machines (FCCM 2004), Napa Valley, California, USA (20–23 April, 2004), pp. 13–23. doi: 10.1109/

FCCM.2004.29

Dempster, A.G. andMacleod,M.D. (1994) Constant integer multiplication usingminimum adders. IEE Proceedings –

Circuits, Devices and Systems, 141 (5), 407–413. doi: 10.1049/ip-cds:19941191

Denyer, P.B. and Renshaw, D. (1985) VLSI Signal Processing; a Bit-Serial Approach, Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.

Despain, A.M. (1974) Fourier transformcomputers usingCORDIC iterations. IEEETransactions onComputers,C-23

(10), 993–1001. doi: 10.1109/T-C.1974.223800

Detrey, J. and de Dinechin, F. (2004) Second order function approximation using a single multiplication on FPGAs, in

14th International Conference on Field Programmable Logic and Application, Antwerp, Belgium (29 August–1

September, 2004), LectureNotes inComputer Science, vol. LNCS3203, Springer, pp. 221–230. doi: 10.1007/b99787

Deutsch, P. (1996) DEFLATE Compressed Data Format Specification Version 1.3, Aladdin Enterprises.

Devernay, F. and Faugeras, O. (2001) Straight lines have to be straight.Machine Vision and Applications, 13, 14–24.

doi: 10.1007/PL00013269

Diamantaras, K.I. andKung, S.Y. (1997) A linear systolic array for real-timemorphological image processing. Journal

of VLSI Signal Processing, 17 (1), 43–55. doi: 10.1023/A:1007996916499

Diaz, J., Ros,E.,Mota, S., Carrillo, R. andAgis,R. (2004)Real timeopticalflowprocessing system, in14th International

Conference on Field Programmable Logic and Application, Antwerp, Belgium (29 August–1 September, 2004),

Lecture Notes in Computer Science, vol. LNCS 3203, Springer, pp. 617–626. doi: 10.1007/b99787

Dijkstra, E.W. (1959)A note on two problems in connexionwith graphs.NumerischeMathematik, 1 (1), 269–271. doi:

10.1007/BF01386390

Dike, C. and Burton, E. (1999) Miller and noise effects in a synchronizing flip-flop. IEEE Journal of Solid-State

Circuits, 34 (6), 849–855. doi: 10.1109/4.766819

Dollas, A., Ermis, I., Koidis, I., Zisis, I. and Kachris, C. (2005) An open TCP/IP core for reconfigurable logic. 13th

Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM 2005), Napa, California,

USA (18–20 April, 2005), pp. 297–298. doi: 10.1109/FCCM.2005.20

Donoho, D.L. (1995) De-noising by soft-thresholding. IEEE Transactions on Information Theory, 41 (3), 613–627.

doi: 10.1109/18.382009

Donoho, D.L. and Johnstone, I.M. (1994) Threshold selection for wavelet shrinkage of noisy data. 16th Annual

International Conference of the IEEE Engineering in Medicine and Biology Society, Baltimore, Maryland, USA,

vol. 1 (3–6 November, 1994), pp. A24–A25. doi: 10.1109/IEMBS.1994.412133

Dougherty, E.R. and Laplante, P.A. (1985) Introduction to Real Time Imaging, The International Society for Optical

Engineering, Washington.

Downton, A. and Crookes, D. (1998) Parallel architectures for image processing. IEE Electronics & Communication

Engineering Journal, 10 (3), 139–151. doi: 10.1049/ecej:19980307

Doyle, W. (1962) Operations useful for similarity invariant pattern recognition. Journal of the Association for

Computing Machinery, 9 (2), 259–267. doi: 10.1145/321119.321123

Draper, B., Najjar, W., Bohm, W., Hammes, J., Rinker, B., Ross, C., Chawathe, M. and Bins, J. (2000) Compiling and

optimizing image processing algorithms for FPGAs. Fifth IEEE InternationalWorkshop onComputer Architectures

for Machine Perception, Padova, Italy (11–13 September, 2000), pp. 222–231. doi: 10.1109/CAMP.2000.875981

Draper, B.A., Bohm,A.P.W., Hammes, J., Najjar,W.A., Beveridge, J.R., Ross, C., Chawathe,M., Desai,M. andBins, J.

(2001) Compiling SA-C programs to FPGAs: performance results, in Second International Workshop on Computer

Vision Systems, Vancouver, Canada (7–8 July, 2001), Lecture Notes in Computer Science, vol. LNCS 2095,

Springer, pp. 220–235. doi: 10.1007/3-540-48222-9_15

Draper, B.A., Beveridge, J.R., Bohm, A.P.W., Ross, C. and Chawathe, M. (2002) Implementing image applications on

FPGAs. 16th International Conference on Pattern Recognition, Quebec, Canada, vol. 3 (11–15 August, 2002),

pp. 265–268. doi: 10.1109/ICPR.2002.1047845

Draper, B.A., Beveridge, J.R., Bohm, A.P.W., Ross, C. and Chawathe, M. (2003) Accelerated image processing on

FPGAs. IEEE Transactions on Image Processing, 12 (12), 1543–1551. doi: 10.1109/TIP.2003.819226

Dubois, J., Mattavelli, M., Pierrefeu, L. and Miteran, J. (2005) Configurable motion-estimation hardware accelerator

module for theMPEG-4 reference hardware description platform. IEEE International Conference on Image Processing

(ICIP 2005), Genoa, Italy, vol. 3 (11–14 September, 2005), pp. 1040–1043. doi: 10.1109/ICIP.2005.1530573

Duda, K. (2010) Accurate, guaranteed stable, sliding discrete Fourier transform. IEEE Signal Processing Magazine,

27 (10), 124–127. doi: 10.1109/MSP.2010.938088

450 References

Duda, R.O. and Hart, P.E. (1972) Use of the Hough transformation to detect lines and curves in pictures. Commu-

nications of the ACM, 15 (1), 11–15. doi: 10.1145/361237.361242

Duff, M.J.B. (2000) Thirty years of parallel image processing, in Vector and Parallel Processing (VECPAR 2000),

Porto, Portugal (21–23 June, 2000), Lecture Notes in Computer Science, vol. LNCS 1981, Springer, pp. 419–438.

doi: 10.1007/3-540-44942-6_35

Duff, M.J.B.,Watson, D.M., Fountain, T.J. and Shaw, G.K. (1973) A cellular logic array for image processing.Pattern

Recognition, 5 (3), 229–240. doi: 10.1016/0031-3203(73)90045-9

Dumitriu, V., Marcantonio, D. and Kirischian, L. (2009) Run-time component relocation in partially-reconfigurable

FPGAs. International Conference on Computational Science and Engineering (CSE’09), Vancouver, Canada, vol. 2

(29–31 August, 2009), pp. 909–914. doi: 10.1109/CSE.2009.493

Duncan,D.B. andLeeson,G. (1999)Cost effective real-timemulti-spectral digital video imaging, in Sensors,Cameras,

and Systems for Scientific/Industrial Applications, San Jose, California, USA (25–26 January, 1999), vol. 3649,

SPIE, pp. 100–108. doi: 10.1117/12.347065

Eadie, D., Shevlin, F.O. and Nisbet, A. (2002) Correction of geometric image distortion using FPGAs, inOpto-Ireland

2002: Optical Metrology, Imaging, and Machine Vision, Galway, Ireland (5–6 September, 2002), vol. 4877, SPIE,

pp. 28–37. doi: 10.1117/12.463765

Economakos, G., Oikonomakos, P., Panagopoulos, I., Poulakis, I. and Papakonstantinou, G. (2001) Behavioral

synthesis with SystemC. Design, Automation and Test in Europe, Conference and Exhibition, Munich, Germany

(13–16 March, 2001), pp. 21–25. doi: 10.1109/DATE.2001.914995

Edwards, S.A. (2005) The challenges of hardware synthesis from C-like languages. Design, Automation and Test in

Europe, Munich, Germany, vol. 1 (7–11 March, 2005), pp. 66–67. doi: 10.1109/DATE.2005.307

Edwards, S.A. (2006) The challenges of synthesizing hardware from C-Like languages. IEEE Design & Test of

Computers, 23 (5), 375–383. doi: 10.1109/MDT.2006.134

Ehlers, M. (1991) Multisensor image fusion techniques in remote sensing. ISPRS Journal of Photogrammetry and

Remote Sensing, 46 (1), 19–30. doi: 10.1016/0924-2716(91)90003-E

Elzinga, S., Lin, J. and Singhal, V. (2000) Design tips for HDL implementation of arithmetic functions, Application

note XAPP215 (v1.0). Xilinx Inc.

EMVA (2009) GenICam Standard, Vol. 2.0., European Machine Vision Association.

Eschbach, R. and Knox, K.T. (1991) Error-diffusion algorithmwith edge enhancement. Journal of the Optical Society

of America A, 8 (12), 1844–1850. doi: 10.1364/JOSAA.8.001844

Evemy, J.D., Allerton, D.J. and Zaluska, E.J. (1990) Stream processing architecture for real-time implementation of

perspective spatial transformations. IEE Proceedings I: Communications, Speech and Vision, 137 (3), 123–128.

Ewe, C.T., Cheung, P.Y.K. and Constantinides, G.A. (2004) Dual fixed-point: an efficient alternative to floating-point

computation, in 14th International Conference on Field Programmable Logic andApplications, Antwerp, Belgium

(29 August–1 September, 2004), Lecture Notes in Computer Science, vol. LNCS 3203, Springer, pp. 200–208.

doi: 10.1007/b99787

Ewe, C.T., Cheung, P.Y.K. and Constantinides, G.A. (2005) Error modelling of dual fixed-point arithmetic and its

application in field programmable logic. International Conference on Field Programmable Logic and Applications,

Tampere, Finland (24–26 August, 2005), pp. 124–129. doi: 10.1109/FPL.2005.1515710

Fabbri, R., Costa, L.D.F., Torelli, J.C. and Bruno, O.M. (2008) 2D Euclidean distance transform algorithms: A

comparative survey, ACM Computing Surveys, 40 (1), Article #2 (44 pages). doi: 10.1145/1322432.1322434

Fahmy, S.A., Cheung, P.Y.K. and Luk,W. (2005) Novel FPGA-based implementation of median and weightedmedian

filters for image processing. International Conference on Field Programmable Logic and Applications, Tampere,

Finland (24–26 August, 2005), pp. 142–147. doi: 10.1109/FPL.2005.1515713

Fant, K.M. (1986) A nonaliasing, real-time spatial transform technique. IEEE Computer Graphics and Applications,

6 (1), 71–80. doi: 10.1109/MCG.1986.276613

Farid, H. and Simoncelli, E.P. (2004) Differentiation of discrete multidimensional signals. IEEE Transactions on

Image Processing, 13 (4), 496–508. doi: 10.1109/TIP.2004.823819

Feig, E. and Winograd, S. (1992) Fast algorithms for the discrete cosine transform. IEEE Transactions on Signal

Processing, 40 (9), 2174–2193. doi: 10.1109/78.157218

Ferrari, L.A. and Park, J.H. (1997) An efficient spline basis for multi-dimensional applications: image interpolation.

IEEE International Symposium on Circuits and Systems, Hong Kong, vol. 1 (9–12 June, 1997), pp. 757–760.

doi: 10.1109/ISCAS.1997.609003

Ferrari, L.A., Park, J.H., Healey, A. and Leeman, S. (1999) Interpolation using a fast spline transform (FST). IEEE

Transactions on Circuits and Systems I: Fundamental Theory and Applications, 46 (8), 891–906. doi: 10.1109/

81.780371

References 451

Finlayson,G.D.,Drew,M.S. andFunt,B.V. (1994)Color constancy: generalized diagonal transforms suffice. Journal of

the Optical Society of America A, 11 (11), 3011–3019. doi: 10.1364/JOSAA.11.003011

Finlayson,G.D.,Hordley,S.D. andHubel,P.M. (2001)Colorbycorrelation: a simple, unifying framework for color constancy.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20 (11), 1209–1221. doi: 10.1109/34.969113

Fitch, J.P., Coyle, E.J. and Gallagher, N.C. (1984)Median filtering by threshold decomposition. IEEE Transactions on

Acoustics, Speech and Signal Processing, 32 (6), 1183–1188. doi: 10.1109/TASSP.1984.1164468

Fitch, J.P., Coyle, E.J. and Gallagher, N.C. (1985) Threshold decomposition of multidimensional ranked order

operations. IEEE Transactions on Circuits and Systems, 32 (5), 445–450. doi: 10.1109/TCS.1985.1085740

Floyd, R.W. and Steinberg, L. (1975) An adaptive algorithm for spatial grey scale, in Society for Information Display

Symposium Digest of Technical Papers, Society for Information Display, Campbell, California, pp. 36–37.

Flynn, M. (1972) Some computer organizations and their effectiveness. IEEE Transactions on Computers, C-21 (9),

948–960. doi: 10.1109/TC.1972.5009071

Foley, J.D. and Van Dam, A. (1982) Fundamentals of Interactive Computer Graphics, Addison-Wesley, Reading,

Massachusetts.

Forster, B., Van De Ville, D., Berent, J., Sage, D. and Unser, M. (2004) Complex wavelets for extended depth-

of-field: A new method for the fusion of multichannel microscopy images. Microscopy Research and Technique,

65 (1–2), 33–42. doi: 10.1002/jemt.20092

Fossum, E.R. (1993) Active pixel sensors: are CCDs dinosaurs? in Charge-Coupled Devices and Solid State Optical

Sensors III, San Jose, California, USA (2–3 February, 1993), vol. 1900, SPIE, pp. 2–14. doi: 10.1117/12.148585

Frank,M., Plaue,M.,Rapp,H.,Köthe,U., Jähne,B. andHamprecht, F.A. (2009)Theoretical and experimental error analysis

of continuous-wave time-of-flight range cameras. Optical Engineering, 48 (1), 013601- 1-16. doi: 10.1117/1.3070634

Freeman, H. (1961) On the encoding of arbitrary geometric configurations. IRE Transactions on Electronic

Computers, 10 (2), 260–268. doi: 10.1109/TEC.1961.5219197

Freeman, H. (1974) Computer processing of line-drawing images. ACM Computing Surveys, 6 (1), 57–97.

doi: 10.1145/356625.356627

Freeman, H. and Davis, L.S. (1977) A corner finding algorithm for chain coded curves. IEEE Transactions on

Computers, 26 (3), 297–303. doi: 10.1109/TC.1977.1674825

Freeman, H. and Shapira, R. (1975) Determining theminimum area encasing rectangle for an arbitrary enclosed curve.

Communications of the ACM, 18 (7), 409–413. doi: 10.1145/360881.360919

Frei, W. (1977) Image enhancement by histogram hyperbolisation. Computer Graphics and Image Processing, 6 (3),

286–294. doi: 10.1016/S0146-664X(77)80030-0

Friedman, E.G. (2001)Clock distribution networks in synchronous digital integrated circuits.Proceedings of the IEEE,

89 (5), 665–692. doi: 10.1109/5.929649

Fryer, J.G., Clarke, T.A. and Chen, J. (1994) Lens distortion for simple C-mount lenses. International Archives of

Photogrammetry and Remote Sensing, 30 (5), 97–101.

Fu, H., Mencer, O. and Luk, W. (2006) Comparing floating-point and logarithmic number representations for

reconfigurable acceleration. International Conference on Field Programmable Technology, Bangkok, Thailand

(13–15 December, 2006), pp. 337–340. doi: 10.1109/FPT.2006.270342

Fu, H., Mencer, O. and Luk, W. (2008) Optimizing residue arithmetic on FPGAs. International Conference on Field

Programmable Technology, Taipei, Taiwan (7–10 December, 2008), pp. 41–48. doi: 10.1109/FPT.2008.4762364

Funt, B., Barnard, K. andMartin, L. (1998) Is machine colour constancy good enough? in 5th EuropeanConference on

Computer Vision (ECCV’98), Freiburg,Germany (2–6 June, 1998), LectureNotes in Computer Science, vol. LNCS

1406, Springer, pp. 445–459. doi: 10.1007/BFb0055655

Galloway, D. (1995) The Transmogrifier C hardware description language and compiler for FPGAs. IEEE Symposium

on FPGAs for Custom ComputingMachines, Napa Valley, California, USA (19–21 April, 1995), pp. 136–144. doi:

10.1109/FPGA.1995.477419

Gangadhar,M. andBhatia, D. (2003) FPGAbasedEBCOTarchitecture for JPEG2000. IEEE International Conference

on Field-Programmable Technology (FPT), Tokyo, Japan (15–17 December, 2003), pp. 228–233. doi: 10.1109/

FPT.2003.1275752

Garibotto, G. and Lambarelli, L. (1979) Fast online implementation of two-dimensional median filtering. Electronics

Letters, 15 (1), 24–25. doi: 10.1049/el:19790018

Gasteratos, I., Gasteratos, A. and Andreadis, I. (2006) An algorithm for adaptive mean filtering and its hardware

implementation. Journal of VLSI Signal Processing, 44 (1–2), 63–78. doi: 10.1007/s11265-006-5920-3

Geer, D. (2005) Chip makers turn to multicore processors. Computer, 38 (5), 11–13. doi: 10.1109/MC.2005.160

452 References

Genest, G., Chamberlain, R. and Bruce, R. (2007) Programming an FPGA-based super computer using a C-to-VHDL

compiler: DIME-C. Second NASA/ESAConference on Adaptive Hardware and Systems (AHS 2007), Edinburgh,

UK (5–8 August, 2007), pp. 280–286. doi: 10.1109/AHS.2007.89

Geninatti, S.R., Benitez, J.I.B., Calvio, M.H., Mata, N.G. and Luna, J.G. (2009) FPGA implementation of the

generalized Hough transform. International Conference on Reconfigurable Computing and FPGAs (ReConFig ’09),

Cancun, Quintana Roo, Mexico (9–11 December, 2009), pp. 172–177. doi: 10.1109/ReConFig.2009.78

Gershon, R., Jepson, A.D. and Tsotsos, J.K. (1987) From [R,G,B] to surface reflectance: computing color constant

descriptors in images. International Joint Conference on Artificial Intelligence, Milan, Italy, vol. 2 (23–29 August,

1987), pp. 755–758.

Geyer, C., Meingast, M. and Sastry, S. (2005) Geometric models of rolling-shutter cameras. 6th Workshop on

Omnidirectional Vision, Camera Networks and Non-classical Cameras (OMNIVIS05), Beijing, China (21 October,

2005), pp. 12–19.

Gigliotti, P. (2004) Implementing Barrel Shifters Using Multipliers, Application note XAPP195 (v1.1), Xilinx Inc.

Gilblom, D.L., Yoo, S.K. and Ventura, P. (2003) Real-time color imaging with a CMOS sensor having stacked

photodiodes, in Ultrahigh- and High-Speed Photography, Photonics, and Videography, San Diego, California,

USA (7 August, 2003), vol. 5210, SPIE, pp. 105–115. doi: 10.1117/12.506206

Gilman, A. (2009) Least-squares optimal interpolation for direct image super-resolution. PhD Thesis, School of

Engineering and Advanced Technology, Massey University, Palmerston North. hdl: 10179/893

Gilman, A. and Bailey, D.G. (2007) Noise characteristics of higher order predictive interpolation for sub-pixel

registration. IEEE Symposium on Signal Processing and Information Technology, Cairo, Egypt (15–18 December,

2007), pp. 269–274. doi: 10.1109/ISSPIT.2007.4458153

Gilman,A., Bailey, D. andMarsland, S. (2010) Least-squares optimal interpolation for fast image super-resolution. 5th

IEEE International Symposium on Electronic Design, Test and Applications (DELTA 2010), Ho Chi Minh City,

Vietnam (13–15 January, 2010), pp. 29–34. doi: 10.1109/DELTA.2010.59

Ginosar, R. (2003) Fourteenways to fool your synchronizer. Ninth International SymposiumonAsynchronousCircuits

and Systems, Vancouver, Canada (12–15 May, 2003), pp. 89–96. doi: 10.1109/ASYNC.2003.1199169

Gionis, A., Indyk, P. and Motwani, R. (1999) Similarity search in high dimensions via hashing. 25th International

Conference on Very Large Data Bases, Edinburgh, UK (7–10 September, 1999), pp. 518–529.

Goertzel, G. (1958) An algorithm for the evaluation of finite trigonometric series. The American Mathematical

Monthly, 65 (1), 34–35.

Goetcherian, V. (1980) From binary to grey tone imaging processing using fuzzy logic concepts. Pattern Recognition,

12 (1), 7–15. doi: 10.1016/0031-3203(80)90049-7

Gokhale, M.B. and Stone, J.M. (1998) NAPA C: compiling for a hybrid RISC/FPGA architecture. IEEE Symposium

on FPGAs for Custom Computing Machines, Napa Valley, California, USA (15–17 April, 1998), pp. 126–135.

doi: 10.1109/FPGA.1998.707890

Gokhale, M., Stone, J., Arnold, J. and Kalinowski, M. (2000) Stream-oriented FPGA computing in the Streams-C high

level language. IEEE Symposium on Field-Programmable Custom Computing Machines, Napa Valley, California,

USA (17–19 April, 2000), pp. 49–56. doi: 10.1109/FPGA.2000.903392

Golay, M.J.E. (1969) Hexagonal parallel pattern transformations. IEEE Transactions on Computers, C-18 (8),

733–740.

Goldberg, D. (1991) What every computer scientist should know about floating-point arithmetic. ACM Computing

Surveys, 23 (1), 6–48. doi: 10.1145/103162.103163

Goldman, D.B. and Chen, J.H. (2005) Vignette and exposure calibration and compensation. Tenth IEEE International

Conference on Computer Vision (ICCV 2005), Beijing, China, vol. 1 (17–21 October, 2005), pp. 899–906.

doi: 10.1109/ICCV.2005.249

Golin, E.J., Feng, A.C., Huang, L. and Hughes, E. (1993) Avisual design environment. 1993 IEEE/ACM International

Computer-Aided Design (ICCAD-93), Santa Clara, California, USA (7–11 November, 1993), pp. 364–367.

doi: 10.1109/ICCAD.1993.580082

Gonzalez, R.C. and Woods, R.E. (2004) Digital Image Processing, Using MATLAB, Pearson Prentice Hall.

Gonzalez, R.C. and Woods, R.E. (2008) Digital Image Processing, 3rd edn, Prentice-Hall, New Jersey.

Graham, P.S. (2001) Logical hardware debuggers for FPGA-based systems. PhD Thesis, Department of Electrical and

Computer Engineering, Brigham Young University.

Graham, P., Nelson, B. and Hutchings, B. (2001) Instrumenting bitstreams for debugging FPGA circuits. IEEE

Symposium on Field Programmable Custom Computing Machines (FCCM’01), Rohnert Park, California, USA

(30 April–2 May, 2001), pp. 41–50. doi: 10.1109/FCCM.2001.26

References 453

Gregori, S. (2009) Full Linux on FPGA, in Embedded Computing Conference, Winterthur, Switzerland, pp 4B2

(26 May, 2009).

Gribbon, K.T. and Bailey, D.G. (2004) A novel approach to real time bilinear interpolation. 2nd IEEE International

Workshop on Electronic Design, Test, and Applications (DELTA 2004), Perth, Australia (28–30 January, 2004),

pp. 126–131. doi: 10.1109/DELTA.2004.10055

Gribbon, K.T., Johnston, C.T. and Bailey, D.G. (2003) A real-time FPGA implementation of a barrel distortion

correction algorithm with bilinear interpolation. Image and Vision Computing New Zealand (IVCNZ’03),

Palmerston North, New Zealand (26–28 November, 2003), pp. 408–413.

Gribbon, K.T., Bailey, D.G. and Johnston, C.T. (2004) Colour edge enhancement. Image and Vision Computing

New Zealand (IVCNZ’04), Akaroa, New Zealand (21–23 November, 2004), pp. 291–296.

Gribbon, K.T., Johnston, C.T. and Bailey, D.G. (2005) Design patterns for image processing algorithm development on

FPGAs. IEEE Region 10 Conference (IEEE Tencon’05), Melbourne, Australia (21–24 November, 2005).

doi: 10.1109/TENCON.2005.301109

Gribbon, K.T., Johnston, C.T. and Bailey, D.G. (2006) Using design patterns to overcome image processing constraints

on FPGAs. 3rd IEEE International Workshop on Electronic Design, Test, and Applications (DELTA 2006), Kuala

Lumpur, Malaysia (17–19 January, 2006), pp. 47–53. doi: 10.1109/DELTA.2006.93

Gribbon, K.T., Bailey, D.G. and Bainbridge-Smith, A. (2007)Development issues in using FPGAs for image processing.

Image and Vision Computing New Zealand (IVCNZ), Hamilton, New Zealand (5–7 December, 2007), pp. 217–222.

Guccione, S., Levi, D. and Sundararajan, P. (1999) JBits: Java based interface for reconfigurable computing. Military

and Aerospace Applications of Programmable Devices and Technologies International Conference, Laurel,

Maryland, USA (28–30 September, 1999).

Gunturk, B.K., Altunbasak, Y. and Mersereau, R.M. (2002) Color plane interpolation using alternating projections.

IEEE Transactions on Image Processing, 11 (9), 997–1013. doi: 10.1109/TIP.2002.801121

Habegger, A., Stahel, A., Goette, J. and Jacomet, M. (2010) An efficient hardware implementation of a reciprocal unit.

5th IEEE International Symposium on Electronic Design, Test and Applications (DELTA 2010), Ho Chi Minh City,

Vietnam (13–15 January, 2010), pp. 183–187. doi: 10.1109/DELTA.2010.65

Hadley, J.D. and Hutchings, B.L. (1995) Design methodologies for partially reconfigured systems. IEEE Symposium

on FPGAs for Custom Computing Machines, Napa Valley, California, USA (19–21 April, 1995), pp. 78–84. doi:

10.1109/FPGA.1995.477412

Hagemeyer, J., Kettelhoit, B., Koestner, K. and Porrmann, M. (2007) Design of homogeneous communication

infrastructures for partially reconfigurable FPGAs. 2007 International Conference onEngineering ofReconfigurable

Systems (ERSA’07), Las Vegas, USA (25–28 June, 2007).

Haldar, M., Nayak, A., Choudhary, A. and Banerjee, P. (2001a) Automated synthesis of pipelined designs on FPGAs for

signal and image processing applications described in MATLAB(R). Asia and South Pacific Design Automation

Conference (ASP-DAC), Yokohama, Japan (30 January–2 February, 2001), pp. 645–648. doi: 10.1145/370155.370572

Haldar,M., Nayak, A., Shenoy, N., Choudhary, A. andBanerjee, P. (2001b) FPGAhardware synthesis fromMATLAB.

in Fourteenth International Conference on VLSI Design, Bangalore, India (3–7 January, 2001), pp. 299–304.

doi: 10.1109/ICVD.2001.902676

Hall, M.W., Anderson, J.M., Amarasinghe, S.P., Murphy, B.R., Liao, S.W., Bugnion, E. and Lam, M.S. (1996)

Maximizingmultiprocessor performancewith the SUIF compiler.Computer, 29 (12), 84–89. doi: 10.1109/2.546613

Hammes, J.P., Draper, B.A. and B€ohm,A.P.W. (1999) Sassy: a language and optimizing compiler for image processing

on reconfigurable computing systems, in First International Conference on Computer Vision Systems (ICVS’99),

Las Palmas, Spain (13–15 January, 1999), Lecture Notes in Computer Science, vol. LNCS 1542, Springer,

pp. 83–97. doi: 10.1007/3-540-49256-9_6

Haralick, R.M. and Shapiro, L.G. (1991) Glossary of computer vision terms. Pattern Recognition, 24 (1), 69–93.

doi: 10.1016/0031-3203(91)90117-N

Haralick, R.M., Shanmugam, K. and Dinstein, I.H. (1973) Textural features for image classification. IEEE Transac-

tions on Systems, Man and Cybernetics, 3 (6), 610–621. doi: 10.1109/TSMC.1973.4309314

Harber, R. and Neudeck, S.B.G. (1985) VLSI implementation of a fast rank order filtering algorithm. IEEE

International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’85), Tampa, Florida, USA (March

26–29, 1985) pp. 1396–1399.

Harris, F.J. (1978) On the use of windows for harmonic analysis with the discrete Fourier transform.Proceedings of the

IEEE 66 (1), 51–83. doi: 10.1109/PROC.1978.10837

Harriss, T.,Walke, R., Kienhuis, B. andDeprettere, E. (2002) Compilation fromMatlab to process networks realized in

FPGA. Design Automation for Embedded Systems, 7 (4), 385–403. doi: 10.1023/A:1020367508848

454 References

Hartley, R. (1991) Optimization of canonic signed digit multipliers for filter design. IEEE International Symposium on

Circuits and Systems, Singapore, vol. 4 (11–14 June, 1991) pp. 1992–1995. doi: 10.1109/ISCAS.1991.176054

Haselman, M. (2005) A comparison of floating point and logarithmic number systems for FPGAs. Master of Science

Thesis, Department of Electrical Engineering, University of Washington.

Haselman, M., Beauchamp, M., Wood, A., Hauck, S., Underwood, K. and Hemmert, K.S. (2005) A comparison of

floating point and logarithmic number systems for FPGAs. 13th Annual IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM 2005), Napa, California, USA (18–20 April, 2005), pp. 181–190. doi:

10.1109/FCCM.2005.6

Hassler, H. and Takagi, N. (1995) Function evaluation by table look-up and addition. 12th Symposium on Computer

Arithmetic, Bath, UK (19–21 July, 1995), pp. 10–16. doi: 10.1109/ARITH.1995.465382

Hauck, S., Hosler, M.M. and Fry, T.W. (2000) High-performance carry chains for FPGAs. IEEE Transactions on VLSI

Systems, 8 (2), 138–147. doi: 10.1109/92.831434

Hauck, S., Fry, T.W., Hosler, M.M. and Kao, J.P. (2004) The Chimaera reconfigurable functional unit. IEEE

Transactions on VLSI Systems, 12 (2), 206–217. doi: 10.1109/TVLSI.2003.821545

Haviland, G.L. and Tuszynski, A.A. (1980) A CORDIC arithmetic processor chip. IEEE Journal of Solid-State

Circuits, 15 (1), 4–15. doi: 10.1109/JSSC.1980.1051332

He, S. and Torkelson, M. (1996) A new approach to pipeline FFT processor. 10th International Parallel Processing

Symposium (IPPS’96), Honolulu, Hawaii, USA (15–19April, 1996), pp. 766–770. doi: 10.1109/IPPS.1996.508145

He, L., Chao, Y. and Suzuki, K. (2007) A linear-time two-scan labelling algorithm. IEEE International Conference on

Image Processing (ICIP 2007), San Antonio, Texas, USA, vol. 5 (16–19 September, 2007), pp. 241–244.

doi: 10.1109/ICIP.2007.4379810

He, L., Chao, Y. and Suzuki, K. (2008) A run-based two-scan labeling algorithm. IEEE Transactions on Image

Processing, 17 (5), 749–756. doi: 10.1109/TIP.2008.919369

Hedberg, H., Kristensen, F. and Owall, V. (2007) Implementation of a labeling algorithm based on contour tracingwith

feature extraction. IEEE International Symposiumon Circuits and Systems (ISCAS 2007), NewOrleans, Louisiana,

USA (27–30 May, 2007), pp. 1101–1104. doi: 10.1109/ISCAS.2007.378202

Heikkila, J. and Silven, O. (1997) A four-step camera calibration procedure with implicit correction. IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico (17–19 June, 1997),

pp. 1106–1112. doi: 10.1109/CVPR.1997.609468

Heikkila, J. and Silven, O. (1999) A real-time system formonitoring of cyclists and pedestrians. Second IEEEWorkshop

on Visual Surveillance, Fort Collins, Colorado, USA (26 June, 1999), pp. 74–81. doi: 10.1109/VS.1999.780271

Herbordt, M.C., VanCourt, T., Gu, Y., Sukhwani, B., Conti, A., Model, J. and DiSabello, D (2007) Achieving high

performance with FPGA-based computing. IEEE Computer, 40 (3), 50–57. doi: 10.1109/MC.2007.79

Heygster, G. (1982) Rank filters in digital image processing. Computer Graphics and Image Processing, 19 (2),

148–164. doi: 10.1016/0146-664X(82)90105-8

Hezel, S., Kugel, A., Manner, R. and Gavrila, D.M. (2002) FPGA-based template matching using distance transforms.

Symposium on Field-Programmable Custom Computing Machines, Napa, California, USA (22–24 April, 2002),

pp. 89–97. doi: 10.1109/FPGA.2002.1106664

Hirata, T. (1996) A unified linear-time algorithm for computing distancemaps. Information Processing Letters, 58 (3),

129–133. doi: 10.1016/0020-0190(96)00049-X

Hoare, C.A.R. (1985) Communicating Sequential Processes, Prentice-Hall International, London, UK.

Hodgson, R.M., Bailey, D.G., Naylor, M.J., Ng, A.L.M. and McNeill, S.J. (1985) Properties, implementations and

applications of rank filters. Image and Vision Computing, 3 (1), 3–14. doi: 10.1016/0262-8856(85)90037-X

Hoffmann, G. (2000) CIE colour space. Available from http://www.fho-emden.de/�hoffmann/ciexyz29082000.pdf

[cited 24 January, 2010].

Hoisko, S., Hakkarainen, H., Vihavainen, K. and Isoaho, J. (1996) Specification, hardware implementation and prototyping

environment for image processing algorithms. IEEE International Symposium on Circuits and Systems (ISCAS ’96),

Atlanta, Georgia, USA, vol. 4 (12–15 May, 1996), pp. 834–837. doi: 10.1109/ISCAS.1996.542154

Hollitt, C. (2009) Reduction of computational complexity of Hough transforms using a convolution approach. 24th

International Conference Image and Vision Computing New Zealand (IVCNZ ’09), Wellington, New Zealand

(23–25 November, 2009), pp. 373–378. doi: 10.1109/IVCNZ.2009.5378379

Horta, E.L., Lockwood, J.W., Taylor, D.E. and Parlour, D. (2002) Dynamic hardware plugins in an FPGAwith partial

run-time reconfiguration. ACM IEEE Design Automation Conference, New Orleans, Louisiana, USA (10–14 June,

2002), pp. 343–348. doi: 10.1145/513918.514007

References 455

Hough, P.V.C. (1962)Method andmeans for recognizing complex patterns, United States of America patent 3069654.

Hsia, S.C. (2004) Fast high-quality color-filter-array interpolation method for digital camera systems. Journal of

Electronic Imaging, 13 (1), 244–247. doi: 10.1117/1.1631443

Huang, C.T. and Mitchell, O.R. (1994) A Euclidean distance transform using grayscale morphology decomposition.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 16 (4), 443–448. doi: 10.1109/34.277600

Huang, T.S., Yang, G.Y. and Tang, G.Y. (1979) A fast two dimensional median filtering algorithm. IEEE Transactions

on Acoustics, Speech and Signal Processing, 27 (1), 13–18. doi: 10.1109/TASSP.1979.1163188

Huang, C.T., Tseng, P.C. and Chen, L.G. (2004) Flipping structure: an efficient VLSI architecture for lifting-based

discrete wavelet transform. IEEE Transactions on Signal Processing, 52 (4), 1080–1089. doi: 10.1109/

TSP.2004.823509

Hudson, R.D., Lehn, D.I. and Athanas, P.M. (1998) A run-time reconfigurable engine for image interpolation. IEEE

Symposium on FPGAs for Custom Computing Machines, Napa Valley, California, USA (15–17 April, 1998),

pp. 88–95. doi: 10.1109/FPGA.1998.707886

Huffman, D.A. (1952) A method for the construction of minimum-redundancy codes. Proceedings of the IRE 40 (9),

1098–1101. doi: 10.1109/JRPROC.1952.273898

Hummel, R.A. (1975) Histogrammodification techniques.Computer Graphics and Image Processing, 4 (3), 209–224.

doi: 10.1016/0146-664X(75)90009-X

Hummel, R.A. (1977) Image enhancement by histogram transformation. Computer Graphics and Image Processing,

6 (2), 184–195. doi: 10.1016/S0146-664X(77)80011-7

Hunt, B.R. (1983)Digital image processing.Advances inElectronics andElectronPhysics, 60, 161–221. doi: 10.1016/

S0065-2539(08)60890-2

Hutchings, B., Bellows, P., Hawkins, J., Hemmert, S., Nelson, B. and Rytting, M. (1999) A CAD suite for high-

performance FPGA design. IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’99),

Napa Valley, California, USA (21–23 April, 1999), pp. 12–24. doi: 10.1109/FPGA.1999.803663

Hutton, M., Schleicher, J., Lewis, D., Pedersen, B., Yuan, R., Kaptanoglu, S., Baeckler, G., Ratchev, B., Padalia, K.,

Bourgeault,M., Lee,A.,Kim,H. andSaini, R. (2004) ImprovingFPGAperformance and area using an adaptive logic

module, in 14th International Conference on Field Programmable Logic and Applications, Antwerp, Belgium

(29 August–1 September, 2004), Lecture Notes in Computer Science, vol. LNCS 3203, Springer, pp. 135–144.

doi: 10.1007/b99787

Hwang, J.N. and Jong, J.M. (1990) Systolic architecture for 2-D rank order filtering. International Conference on

ApplicationSpecificArrayProcessors, Princeton,New Jersey,USA (5–7September, 1990), pp. 90–99. doi: 10.1109/

ASAP.1990.145446

Hwang, J., Milne, B., Shirazi, N. and Stroomer, J.D. (2001) System level tools for DSP in FPGAs, in Field-

Programmable Logic and Applications, Belfast, UK (27–29 August, 2001), Lecture Notes in Computer Science,

vol. LNCS 2147, Springer, pp. 534–543. doi: 10.1007/3-540-44687-7_55

IEEE (2004) IEC62050-2005 First edition 2005-07 IEEEStd 1076 6 IEEEStandard forVHDLRegister Transfer Level

(RTL) Synthesis. IEEE/IEC. doi: 10.1109/IEEESTD.2004.94802

IEEE (2005) IEC 62142-2005 First edition 2005-06 IEEE Std 1364.1Verilog Register Transfer Level Synthesis. IEEE/

IEC. doi: 10.1109/IEEESTD.2005.339572

IEEE (2006a) 1364-2005 IEEE Standard for Verilog Hardware Description Language. IEEE. doi: 10.1109/

IEEESTD.2006.99495

IEEE (2006b) 1666-2005 IEEE Standard System C Language Reference Manual. IEEE. doi: 10.1109/

IEEESTD.2006.99475

IEEE (2008) 754-2008 IEEE Standard for Floating-Point Arithmetic. IEEE. doi: 10.1109/IEEESTD.2008.4610935

IEEE (2009) 1076-2008 IEEE Standard VHDL Language Reference Manual. IEEE. doi: 10.1109/

IEEESTD.2009.4772740

Illingworth, J. and Kittler, J. (1987) The adaptive Hough transform. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 9 (5), 690–698. doi: 10.1109/TPAMI.1987.4767964

Illingworth, J. and Kittler, J. (1988) A survey of the Hough transform. Computer Vision, Graphics, and Image

Processing, 44 (1), 87–116. doi: 10.1016/S0734-189X(88)80033-1

Irturk, A., Benson, B. and Kastner, R. (2008) Automatic generation of decomposition based matrix inversion

architectures. International Conference on Field Programmable Technology, Taipei, Taiwan (7–10 December,

2008), pp. 373–376. doi: 10.1109/FPT.2008.4762421

Iskander, Y., Craven, S., Chandrasekharan, A., Rajagopalan, S., Subbarayan, G. Frangieh, T. and Patterson, C. (2010)

Using partial reconfiguration and high-level models to accelerate FPGA design validation. International Conference

on Field Programmable Technology (FPT 2010), Beijing, China (8–10 December, 2010), pp. 341–344.

456 References

ISO (1992) Digital compression and coding of continuous-tone still images – requirements and guidelines, ISO/IEC

10918-1.

ISO (2000) JPEG 2000 image coding system – part 1: core coding system, ISO/IEC 15444-1:2000.

Isshiki, T. and Dai, W.W.M. (1995) High-level bit-serial datapath synthesis for multi-FPGA systems. International

Symposium on Field Programmable Gate Arrays,Monterey, California, USA (12–14 February, 1995), pp. 167–173.

doi: 10.1145/201310.201336

Jablonski, M. and Gorgon, M. (2004) Handel-C implementation of classical component labelling algorithm. 2004

Euromicro Symposium on Digital System Design (DSD 2004), Rennes, France (31 August–3 September, 2004),

pp. 387–393. doi: 10.1109/DSD.2004.1333301

Jain, A.K. (1989) Fundamentals of Image Processing, Prentice Hall, Englewood Cliffs, New Jersey.

Jarvis, R.A. (1983) A perspective on range finding techniques for computer vision. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 5 (2), 122–139. doi: 10.1109/TPAMI.1983.4767365

Jiulun, F. and Winxin, X. (1997) Minimum error thresholding: a note. Pattern Recognition Letters, 18 (8), 705–709.

doi: 10.1016/S0167-8655(97)00059-7

Johnson, D. and Defossez, M. (1999) Programming a Xilinx FPGA in “C”. Xcell Journal (34), 26–30.

Johnson, D. (2000) Architectural synthesis from behavioral code to implementation in a Xilinx FPGA. Xcell Journal

(36), 23–25.

Johnston, C.T. (2009) VERTIPH: a visual environment for real-time image processing on hardware. PhD Thesis,

School of Engineering and Advanced Technology, Massey University: Palmerston North. hdl: 10179/1219

Johnston, C.T., Bailey, D.G., Lyons, P. and Gribbon, K.T. (2004) Formalisation of a visual environment for real time

image processing in hardware (VERTIPH). Image and Vision Computing New Zealand (IVCNZ’04), Akaroa,

New Zealand (21–23 November, 2004), pp. 297–302.

Johnston, C.T., Bailey, D.G. and Gribbon, K.T. (2005a) Optimisation of a colour segmentation and tracking algorithm

for real-time FPGA implementation. Image and Vision Computing New Zealand (IVCNZ’05), Dunedin, New

Zealand (28–29 November, 2005), pp. 422–427.

Johnston, C.T., Gribbon, K.T. and Bailey, D.G. (2005b) FPGA based remote object tracking for real-time control.

International Conference on Sensing Technology, Palmerston North, New Zealand (21–23 November, 2005),

pp. 66–71.

Johnston, C.T., Bailey, D.G. and Lyons, P. (2006a) A visual environment for real time image processing in hardware

(VERTIPH). EURASIP Journal on Embedded Systems, 2006, no. Article ID 72962. doi: 10.1155/ES/2006/72962

Johnston, C.T., Bailey, D.G. and Lyons, P. (2006b) Towards a visual notation for pipelining in a visual programming

language for programming FPGAs. 7th International Conference of the NZ chapter of the ACM’s Special Interest

Group on Human-Computer Interaction (CHINZ 2006), Christchurch, New Zealand (6–7 July, 2006), ACM

International Conference Proceeding Series, vol. 158, pp. 1–9. doi: 10.1145/1152760.1152761

Johnston, C.T., Lyons, P. and Bailey, D.G. (2008) A visual notation for processor and resource scheduling. IEEE

International Symposium on Electronic Design, Test and Applications (DELTA 2008), Hong Kong (23–25 January,

2008), pp. 296–301. doi: 10.1109/DELTA.2008.76

Johnston, C.T., Bailey, D.G. and Lyons, P. (2010) Notations for multiphase pipelines. 5th IEEE International

Symposium on Electronic Design, Test and Applications (DELTA 2010), Ho Chi Minh City, Vietnam (13–15

January, 2010), pp. 212–216. doi: 10.1109/DELTA.2010.29

Jongenelen, A.P.P., Carnegie, D.A., Dorrington, A.A. and Payne, A.D. (2008) Heterodyne range imaging in real-time.

International Conference on Sensing Technology, Tainan, Taiwan (30 November–3 December, 2008), pp. 57–62.

doi: 10.1109/ICSENST.2008.4757073

Jongenelen, A.P.P., Bailey, D.G., Payne, A.D., Carnegie, D.A. and Dorrington, A.A. (2010) Efficient FPGA

implementation of homodyne-based time of flight range imaging. Journal of Real-Time Image Processing. doi:

10.1007/s11554-010-0173-6

Jongenelen, A.P.P., Bailey, D.G., Payne, A.D., Dorrington, A.A. and Carnegie, D.A. (2011) Analysis of errors in ToF

range imaging with dual-frequency modulation. IEEE Transactions on Instrumentation and Measurement, 60 (5),

1861–1868. doi: 10.1109/TIM.2010.2089190

Justusson, B.I. (1981)Median filtering: statistical properties, in Two Dimensional Digital Signal Processing II, Topics

in Applied Physics, vol. 43 (ed. T.S. Huang), Springer-Verlag, Berlin, pp. 161–196. doi: 10.1007/BFb0057597

Kakumanua, P., Makrogiannisa, S. and Bourbakis, N. (2007) A survey of skin-color modeling and detection methods.

Pattern Recognition, 40 (3), 1106–1122. doi: 10.1016/j.patcog.2006.06.010

Kalman, R.E. (1960) A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82 (1),

35–45.

References 457

Kambe, T., Yamada, A., Nishida, K., Okada, K., Ohnishi, M., Kay, A., Boca, P., Zammit, V. and Nomura, T. (2001)

AC-based synthesis system, Bach, and its application. 2001Asia and South PacificDesign Automation Conference,

Yokohama, Japan (2001), pp. 151–155. doi: 10.1145/370155.370309

Kameda, Y. and Minoh, M. (1996) A human motion estimation method using 3-successive video frames.

International Conference on Virtual Systems and Multimedia (VSMM’96), Gifu, Japan (18–20 September,

1996), pp. 135–140.

Kamp, W.H.M., McLoughlin, I.V. and Bainbridge-Smith, A. (2006) An exploration of redundant number representa-

tions in FPGA. Electronics NewZealand Conference (ENZCon’06), Christchurch, NewZealand (27–29November,

2006), pp. 63–68.

Kannala, J. and Brandt, S. (2004) A generic camera calibration method for fish-eye lenses. 17th International

Conference on Pattern Recognition (ICPR 2004), Surrey, UK, vol. 1 (23–26 August, 2004) pp. 10–13. doi: 10.1109/

ICPR.2004.1333993

Kao, J., Narendra, S. and Chandrakasan, A. (2002) Subthreshold leakage modeling and reduction techniques. IEEE/

ACM International Conference on Computer Aided Design, San Jose, California, USA (10–14 November, 2002),

pp. 141–148. doi: 10.1145/774572.774593

Kapura, J.N., Sahoob, P.K. and Wong, A.K.C. (1985) A new method for gray-level picture thresholding using the

entropy of the histogram. Computer Vision, Graphics, and Image Processing, 29 (3), 273–285. doi: 10.1016/0734-

189X(85)90125-2

Karabernou, S.M., Kessal, L. and Terranti, F. (2005) Real-time FPGA implementation of Hough transform using

gradient and CORDIC algorithm. Image and Vision Computing, 23 (11), 1009–1017. doi: 10.1016/j.

imavis.2005.07.004

Kawada, S. andMaruyama, T. (2007) An approach for applying large filters on large images using FPGA. International

Conference on Field Programmable Technology, Kitakyushu, Japan (12–14 December, 2007), pp. 201–208.

doi: 10.1109/FPT.2007.4439250

Kehtarnavaz, N. andGamadia,M. (2006) Real-time image and video processing: from research to reality. Synthesis Lectures

on Image, Video and Multimedia Processing. Morgan & Claypool. doi: 10.2200/S00021ED1V01Y200604IVM005

Keys, R.G. (1981) Cubic convolution interpolation for digital image processing. IEEE Transactions on Acoustics,

Speech and Signal Processing, 29 (6), 1153–1160. doi: 10.1109/TASSP.1981.1163711

Khan, S., Bailey, D. and Sen Gupta, G. (2009) Simulation of triple buffer scheme (comparison with double buffering

scheme). 2nd International Conference on Computer and Electrical Engineering (ICCEE 2009), Dubai, UAE, vol. 2

(28–30 December, 2009), pp. 403–407. doi: 10.1109/ICCEE.2009.226

Khanna, V., Gupta, P. and Hwang, C.J. (2002) Finding connected components in digital images by aggressive reuse of

labels. Image and Vision Computing, 20 (8), 557–568. doi: 10.1016/S0262-8856(02)00044-6

Kim,K. andKumar, V.K.P. (1989) Parallelmemory systems for image processing. IEEEComputer SocietyConference

on Computer Vision and Pattern Recognition, San Diego, California, USA (4–8 June, 1989), pp. 654–659.

doi: 10.1109/CVPR.1989.37915

Kim, S.D., Lee, J.H. and Kim, J.K. (1988) A new chain-coding algorithm for binary images using run-length codes.

Computer Vision, Graphics, and Image Processing, 41 (1), 114–128. doi: 10.1016/0734-189X(88)90121-1

Kimmel, R. (1999) Demosaicing: image reconstruction from color CCD samples. IEEE Transactions on Image

Processing, 8 (9), 1221–1228. doi: 10.1109/83.784434

Kingsbury, N.G. and Rayner, P.J.W. (1971) Digital filtering using logarithmic arithmetic. Electronics Letters, 7 (2),

56–58. doi: 10.1049/el:19710039

Kirsch, R.A. (1998) SEAC and the start of image processing at the National Bureau of Standards. IEEE Annals of the

History of Computing, 20 (2), 7–13. doi: 10.1109/85.667290

Kittler, J. and Illingworth, J. (1986) Minimum error thresholding. Pattern Recognition, 19 (1), 41–47. doi: 10.1016/

0031-3203(86)90030-0

Knuth, D.E. (1987) Digital halftones by dot diffusion. ACM Transactions on Graphics, 6 (4), 245–273. doi: 10.1145/

35039.35040

Koc, C.K. and Johnson, S. (1994) Multiplication of signed-digit numbers. Electronics Letters, 30 (11), 840–841.

doi: 10.1049/el:19940623

Koester, M., Kalte, H., Porrmann, M. and R€uckert, U. (2007) Defragmentation algorithms for partially reconfigurable

hardware. Thirteenth International Conference on Very Large Scale Integration of System on Chip, Perth, Australia,

IFIP Advances in Information and Communication Technology, vol. IFIP 240 (17–19 October, 2007), pp. 41–53.

doi: 10.1007/978-0-387-73661-7_4

458 References

Kokufuta, K. and Maruyama, T. (2009) Real-time processing of local contrast enhancement on FPGA. International

Conference on Field Programmable Logic and Applications (FPL), Prague, Czech Republic (31 August–

2 September, 2009), pp. 288–293. doi: 10.1109/FPL.2009.5272284

Koren, I. and Zinaty, O. (1990) Evaluating elementary functions in a numerical coprocessor based on rational

approximations. IEEE Transactions on Computers, 39 (8), 1030–1037. doi: 10.1109/12.57042

Kota, K. and Cavallaro, J.R. (1993) Numerical accuracy and hardware tradeoffs for CORDIC arithmetic for special-

purpose processors, IEEE Transactions on Computers, vol. 42, no. 7, pp. 769–779. doi:10.1109/12.237718

Kouloheris, J.L. and El Gamal, A. (1991) FPGA performance versus cell granularity. IEEECustom Integrated Circuits

Conference, San Diego, California, USA, pp. 6.2/1-6.2/4 (12–15 May, 1991). doi: 10.1109/CICC.1991.164048

Kovac, M. and Ranganathan, N. (1995) JAGUAR: a fully pipelined VLSI architecture for JPEG image compression

standard. Proceedings of the IEEE, 83 (2), 247–258. doi: 10.1109/5.364464

Krishnan, G. (2005) Flexibility with EasyPath FPGAs. Xcell Journal (55), 96–99.

Kung, S. (1985) VLSI array processors. IEEE ASSP Magazine, 2 (3), 4–22.

Kung, H.T. and Leiserson, C.E. (1978) Systolic Arrays (for VLSI). Symposium on Sparse Matrix Computations,

Knoxville, Tennessee, USA (2–3 November, 1978), pp. 256–282.

Kung, H.T. and Webb, J.A. (1986) Mapping image processing operations onto a linear systolic machine. Distributed

Computing, 1 (4), 246–257. doi: 10.1007/BF01660036

Kuon, I. and Rose, J. (2006) Measuring the gap between FPGAs and ASICs. International Symposium on Field

Programmable Gate Arrays, Monterey, California, USA (22–24 February, 2006), pp. 21–30. doi: 10.1145/

1117201.1117205

Kurak, C.W. (1991) Adaptive histogram equalization: a parallel implementation. Fourth Annual IEEE Symposium

Computer-Based Medical Systems, Baltimore, Maryland, USA (12–14 May, 1991), pp. 192–199. doi: 10.1109/

CBMS.1991.128965

Lachowicz, S. and Pfleiderer, H.J. (2008) Fast evaluation of the square root and other nonlinear functions in FPGA.

IEEE International Symposium on Electronic Design, Test and Applications (DELTA 2008), Hong Kong (23–25

January, 2008), pp. 474–477. doi: 10.1109/DELTA.2008.119

Lai, V. and Diessel, O. (2009) ICAP-I: a reusable interface for the internal reconfiguration of Xilinx FPGAs.

International Conference on Field Programmable Technology (FPT’09), Sydney, Australia (9–11 December,

2009), pp. 357–360. doi: 10.1109/FPT.2009.5377616

Lamoureux, J. and Wilton, S.J.E. (2006) FPGA clock network architecture: flexibility vs. area and power, in.

International Symposium on Field Programmable Gate Arrays, Monterey, California, USA (22–24 February,

2006), pp. 101–108. doi: 10.1145/1117201.1117216

Landsman, R.M., Scott, L.B. and Golay, M.J.E. (1965) Apparatus for counting bi-nucleate lymphocytes in blood,

United States of America patent 3214574.

Langdon, G.G. (1984) An introduction to arithmetic coding. IBM Journal of Research and Development, 28 (2),

135–149. doi: 10.1147/rd.282.0135

Lattice (2007) LatticeXP Family Data Sheet, Vol. DS1001 V05.1., Lattice Semiconductor Corporation.

Lattice (2008a) LatticeECP/EC Family Data Sheet, Vol. DS1000 V02.7., Lattice Semiconductor Corporation.

Lattice (2008b) LatticeECP2/M Family Data Sheet, Vol. DS1006 V03.3., Lattice Semiconductor Corporation.

Lattice (2008c) LatticeSC/M Family Data Sheet, Vol. DS1004 V02.2., Lattice Semiconductor Corporation.

Lattice (2008d) LatticeXP2 Family Data Sheet, Vol. DS1009 V01.6., Lattice Semiconductor Corporation.

Lattice (2010) LatticeECP3 Family Data Sheet, Vol. DS1021 V01.6., Lattice Semiconductor Corporation.

Lavin, C., Padilla, M., Lundrigan, P., Nelson, B. and Hutchings, B. (2010) Rapid prototyping tools for FPGA designs:

RapidSmith, in International Conference on Field Programmable Technology (FPT 2010), Beijing, China,

pp 353–356 (8–10 December, 2010). doi:10.1109/FPT.2010.5681429

Leavers, V.F. (1993) Which Hough transform? Computer Vision, Graphics, and Image Processing: Image Under-

standing, 58 (2), 250–264. doi: 10.1006/ciun.1993.1041

Lee, D. (1988) Scrambled storage for parallel memory systems. 15th Annual International Symposium on Computer

Architecture, Honolulu, Hawaii, USA (30 May–2 June, 1988), pp. 232–239. doi: 10.1109/ISCA.1988.5233

Lee, P. and Evagelos, A. (2008) An implementation of a multiplierless Hough transform on an FPGA platform using

hybrid-log arithmetic, in Real-Time Image Processing 2008, San Jose, California, USA (28–29 January, 2008),

vol. 6811, SPIE, pp. 68110G-1-10. doi: 10.1117/12.766459

Lee, H. and Park, R.H. (1990) Comments on An optimal multiple threshold scheme for image segmentation. IEEE

Transactions on Systems, Man and Cybernetics, 20 (3), 741–742. doi: 10.1109/21.57290

Lee, C.R. and Salcic, Z. (1997)High-performance FPGA-based implementation ofKalman filter.Microprocessors and

Microsystems, 21 (4), 257–265. doi: 10.1016/S0141-9331(97)00040-9

References 459

Lee, D.U., Luk, W., Villasenor, J. and Cheung, P.Y.K. (2003a) Hierarchical segmentation schemes for function

evaluation. in IEEE International Conference on Field-Programmable Technology (FPT), Tokyo, Japan (15–17

December, 2003), pp. 92–99. doi: 10.1109/FPT.2003.1275736

Lee, D.U., Luk, W., Villasenor, J. and Cheung, P.Y.K. (2003b) Non-uniform segmentation for hardware function

evaluation, in International Conference on Field Programmable Logic and Applications (FPL 2003), Lisbon,

Portugal (September 1–3, 2003), Lecture Notes in Computer Science, vol. LNCS 2778, Springer, pp. 796–807. doi:

10.1007/b12007

Leeser, M., Miller, S. and Yu, H. (2004) Smart camera based on reconfigurable hardware enables diverse real-time

applications. 12th Annual IEEE Symposium on Field-Programmable Custom ComputingMachines (FCCM 2004),

Napa, California, USA (20–23 April, 2004), pp. 147–155. doi: 10.1109/FCCM.2004.53

Leeser, M., Theiler, J., Estlick, M., and Szymanski, J.J. (2000) Design tradeoffs in a hardware implementation of the

K-means clustering algorithm. 2000 IEEESensorArray andMultichannel Signal ProcessingWorkshop,Cambridge,

Massachusetts (16–17 March, 2000), pp 520–524. doi: 10.1109/SAM.2000.878063

Leiserson, C.E. and Saxe, J.B. (1991) Retiming synchronous circuitry. Algorithmica, 6 (1–6), 5–35. doi: 10.1007/

BF01759032

Leong, P.H.W. (2008) Recent trends in FPGA architectures and applications. IEEE International Symposium

on Electronic Design, Test and Applications (DELTA 2008), Hong Kong (23–25 January, 2008), pp. 137–141.

doi: 10.1109/DELTA.2008.14

Levine, B., Natarajan, S., Tan, C., Newport, D. and Bouldin, D. (1999) Mapping of an automated target recognition

application from a graphical software environment to FPGA-based reconfigurable hardware. IEEE Symposium on

Field-ProgrammableCustomComputingMachines (FCCM’99),NapaValley, California,USA (21–23April, 1999),

pp. 292–293. doi: 10.1109/FPGA.1999.803702

Lewis, D.M. (1990) An architecture for addition and subtraction of long word length numbers in the logarithmic

number system. IEEE Transactions on Computers, 39 (11), 1325–1336. doi: 10.1109/12.61042

Li,Y. andChu,W. (1996)A newnon-restoring square root algorithmand its VLSI implementations. IEEE International

Conference on Computer Design: VLSI in Computers and Processors, ICCD ’96 Austin, Texas, USA (7–9 October,

1996), pp. 538–544. doi: 10.1109/ICCD.1996.563604

Li, M. and Lavest, J.M. (1996) Some aspects of zoom lens camera calibration. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 18 (11), 1105–1110. doi: 10.1109/34.544080

Liang, C.K., Chang, L.W. and Chen, H.H. (2008) Analysis and compensation of rolling shutter effect. IEEE

Transactions on Image Processing, 17 (8), 1323–1330. doi: 10.1109/TIP.2008.925384

Liao, H., Mandal, M.K. and Cockburn, B.F. (2004) Efficient architectures for 1-D and 2-D lifting-based wavelet

transforms. IEEE Transactions on Signal Processing, 52 (5), 1315–1326. doi: 10.1109/TSP.2004.826175

Lin, K.C. (2005) On improvement of the computation speed of Otsu’s image thresholding. Journal of Electronic

Imaging, 14 (2), 023011- 1-12. doi: 10.1117/1.1902997

Lindeberg, T. (1994) Scale-space theory: a basic tool for analysing structures at different scales. Journal of Applied

Statistics, 21 (2), 225–270. doi: 10.1080/757582976

Litwiller, D. (2005) CMOS vs. CCD: maturing technologies, maturing markets. Photonics Spectra, 2005 (8), 54–59.

Liu, Y., Bouganis, C.S. and Cheung, P.Y.K. (2007) Efficient mapping of a Kalman filter into an FPGA using Taylor

expansion. International Conference on Field Programmable Logic and Applications (FPL 2007), Amsterdam, The

Netherlands (27–29 August, 2007), pp. 345–350. doi: 10.1109/FPL.2007.4380670

Liu, Q., Constantinides, G.A., Masselos, K. and Cheung, P.Y.K. (2008) Combining data reuse exploitation with data-

level parallelization for FPGA targeted hardware compilation: a geometric programming framework. International

Conference on Field Programmable Logic and Applications (FPL 2008), Heidelberg, Germany (8–10 September,

2008), pp. 179–184. doi: 10.1109/FPL.2008.4629928

Loeffler, C., Ligtenberg,A. andMoschytz,G.S. (1989) Practical fast 1-DDCTalgorithmswith 11multiplications. 1989

International Conference on Acoustics, Speech, and Signal Processing (ICASSP-89), Glasgow, UK, vol. 2 (23–26

May, 1989) pp. 988–991. doi: 10.1109/ICASSP.1989.266596

Longfield, S. and Chang, M.L. (2009) A parameterized stereo vision core for FPGAs. 17th IEEE Symposium on Field

Programmable Custom Computing Machines (FCCM), Napa, California, USA (5–7 April, 2009) pp. 263–265.

doi: 10.1109/FCCM.2009.32

Lowe, D.G. (1999) Object recognition from local scale-invariant features. Seventh IEEE International Conference on

Computer Vision, Corfu, Greece, vol. 2 (20–27 September, 1999), pp. 1150–1157. doi: 10.1109/ICCV.1999.790410

Lowe, D.G. (2004) Distinctive image features from scale-invariant keypoints. International Journal of Computer

Vision, 60 (2), 91–110. doi: 10.1023/B:VISI.0000029664.99615.94

460 References

Lu,W.S.,Wang,H.P. andAntoniou,A. (1990)Design of two-dimensional FIR digital filters by using the singular-value

decomposition. IEEE Transactions on Circuits and Systems, 37 (1), 35–46. doi: 10.1109/31.45689

Lubbers, E. and Platzner, M. (2007) ReconOS: an RTOS supporting hard- and software threads. International

Conference on Field Programmable Logic and Applications (FPL 2007), Amsterdam, The Netherlands (27–29

August, 2007), pp. 441–446. doi: 10.1109/FPL.2007.4380686

Lucas, B.D. and Kanade, T. (1981) An iterative image registration technique with an application to stereo vision. 7th

International Joint Conference on Artificial Intelligence, Vancouver, British Columbia, Canada (24–28 August,

1981), pp. 674–679.

Lucke, L.E. andParhi, K.K. (1992) Parallel structures for rank order and stack filters. IEEE InternationalConference on

Acoustics, Speech and Signal Processing (ICASSP-92), San Francisco, California,USA, vol. 5 (23–26March, 1992)

pp. 645–648. doi: 10.1109/ICASSP.1992.226513

Lumia, R., Shapiro, L. and Zuniga, O. (1983) A new connected components algorithm for virtual memory computers.

Computer Vision, Graphics and Image Processing, 22 (2), 287–300. doi: 10.1016/0734-189X(83)90071-3

Lyon, R.F. and Hubel, P.M. (2002) Eyeing the camera: into the next century. Tenth Color Imaging Conference: Color

Science and Engineering Systems, Technologies, Applications, Scottsdale, Arizona, USA (November 12–15, 2002),

pp. 349–355.

Ma, N., Bailey, D. and Johnston, C. (2008) Optimised single pass connected components analysis. International

Conference on Field Programmable Technology, Taipei, Taiwan (8–10December, 2008), pp. 185–192. doi: 10.1109/

FPT.2008.4762382

Mahalanobis, P.C. (1936) On the generalised distance in statistics. Proceedings of the National Institute of Sciences of

India, 2 (1), 49–55.

Mandler, E. and Oberlander, M.F. (1990) One-pass encoding of connected components in multivalued images. 10th

International Conference on Pattern Recognition, Atlantic City, New Jersey, USA, vol. 2 (16–21 June, 1990),

pp. 64–69. doi: 10.1109/ICPR.1990.119331

Manocha, D. (2005) General-purpose computations using graphics processors.Computer, 38 (8), 85–88. doi: 10.1109/

MC.2005.261

Marr, D. and Hildreth, E. (1980) Theory of edge detection. Proceedings of the Royal Society of London, Series B,

Biological Sciences, 207 (1167), 187–217. doi: 10.1098/rspb.1980.0020

Martin, G. and Smith, G. (2009) High-level synthesis: past, present, and future. IEEE Design & Test of Computers,

26 (4), 18–25. doi: 10.1109/MDT.2009.83

Martinez, J. and Altamirano, L. (2006) FPGA-based pipeline architecture to transform Cartesian images into

foveal images by using a new foveation approach. IEEE International Conference on Reconfigurable

Computing and FPGA’s, San Luis Potosi, Mexico (20–22 September, 2006), pp. 227–236. doi: 10.1109/

RECONF.2006.307774

Martinez-Peiro, M., Boemo, E.I. and Wanhammar, L. (2002) Design of high-speed multiplierless filters using a

nonrecursive signed common subexpression algorithm. IEEE Transactions on Circuits and Systems II: Analog and

Digital Signal Processing, 49 (3), 196–203. doi: 10.1109/TCSII.2002.1013866

Maruyama, T. (2004) Real-time computation of the generalizedHough transform, in 14th International Conference on

Field Programmable Logic and Application, Antwerp, Belgium (29 August–1 September, 2004), Lecture Notes in

Computer Science, vol. LNCS 3203, Springer, pp. 980–985. doi: 10.1007/b99787

Masrani, D.K. and MacLean, W.J. (2006) A real-time large disparity range stereo-system using FPGAs, in 7th Asian

Conference onComputerVision (ACCV2006), Hyderabad, India (13–16 January, 2006),LectureNotes inComputer

Science, vol. LNCS 3852, Springer, pp. 42–51. doi: 10.1007/11612704_5

MathStar (2007) ArrixTM Family FPOATM Architecture Guide, vol. V1.02., MathStar Incorporated.

MathWorks (2010) Simulink HDL Coder 2 User’s Guide. The MathWorks Inc.

Maurer, C.R., Qi, R. and Raghavan, V. (2003) A linear time algorithm for computing exact Euclidean distance

transforms of binary images in arbitrary dimensions. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 25 (2), 265–270. doi: 10.1109/TPAMI.2003.1177156

Mayasandra, K., Salehi, S., Wang,W. and Ladak, H.M. (2005) A distributed arithmetic hardware architecture for real-

time Hough-transform-based segmentation. Canadian Journal of Electrical and Computer Engineering, 30 (4),

201–205. doi: 10.1109/CJECE.2005.1541752

McCollum, A.J., Bowman, C.C., Daniels, P.A. and Batchelor, B.G. (1988) A histogrammodification unit for real-time

image enhancement.Computer Vision,Graphics and ImageProcessing, 42 (3), 387–398. doi: 10.1016/S0734-189X

(88)80047-1

References 461

McDonnell, M.J. (1981) Box filtering techniques. Computer Graphics and Image Processing, 17 (1), 65–70.

doi: 10.1016/S0146-664X(81)80009-3

McFarlane, M.D. (1972) Digital pictures fifty years ago. Proceedings of the IEEE, 60 (7), 768–770.

McIvor, A., Zang, Q. and Klette, R. (2001) The background subtraction problem for video surveillance systems, in

International Workshop on Robot Vision (RobVis 2001), Auckland, New Zealand (16–18 February, 2001), Lecture

Notes in Computer Science, vol. LNCS 1998, Springer, pp. 176–183. doi: 10.1007/3-540-44690-7_22

McLaughlin, J. (2000) The development of a Java image processing framework.Master of TechnologyThesis, Institute

of Information Sciences and Technology, Massey University: Palmerston North, New Zealand.

Mencer,O. (2006)ASC: a streamcompiler for computingwith FPGAs. IEEETransactions onComputer-AidedDesign

of Integrated Circuits and Systems, 25 (9), 1603–1617. doi: 10.1109/TCAD.2005.857377

Mencer, O. and Luk,W. (2004) Parameterized high throughput function evaluation for FPGAs. Journal of VLSI Signal

Processing, 36 (1), 17–25. doi: 10.1023/B:VLSI.0000008067.31043.35

Mencer, O., Pearce, D.J., Howes, L.W. and Luk, W. (2003) Design space exploration with A Stream Compiler. 2003

IEEE International Conference on Field-Programmable Technology (FPT 2003), Tokyo, Japan (15–17 December,

2003), pp. 270–277. doi: 10.1109/FPT.2003.1275757

Mentor (2010a) DK User Manual, Vol. Release v5.3_2., Mentor Graphics Corporation.

Mentor (2010b) Handel-C Language Reference Manual, Vol. Release v5.3_2., Mentor Graphics Corporation.

Mentor (2010c) PixelStreams User Manual, Vol. Release v5.3_2., Mentor Graphics Corporation.

Mercer, K., Bailey, D.G., Plaw, C., Ball, R. and Barraclough, H. (2002) Intelligent actuators for a high speed grading

system. Ninth Electronics New Zealand Conference (ENZCon’02), Dunedin, New Zealand (14–15 November,

2002), pp. 61–65.

Mesquita, D., Moraes, F., Palma, J., Möller, L. and Calazans, N. (2003) Remote and partial reconfiguration of FPGAs:

tools and trends. International Parallel and Distributed Processing Symposium, Nice, France (22–26April, 2003), p.

8. doi: 10.1109/IPDPS.2003.1213326

Micron (2007) Micron NAND flash controller via Xilinx Spartan-3 FPGA, Vol. TN-29-06 Revision B., Micron

Technologies Inc.

Micron (2010) NAND Flash 101: an introduction to NAND flash and how to design it into your next product, Vol. TN-

29-19 Revision B., Micron Technology, Inc.

Mignolet, J.Y., Nollet, V., Coene, P., Verkest, D., Vernalde, S. and Lauwereins, R. (2003) Infrastructure for design and

management of relocatable tasks in a heterogeneous reconfigurable system-on-chip. Design, Automation and Test in

Europe (DATE’03), Munich, Germany (3–7 March, 2003), pp. 986–991. doi: 10.1109/DATE.2003.10020

Millane, R.P., Alzaidi, S. and Hsiao, W.H. (2003) Scaling and power spectra of natural images. Image and Vision

Computing New Zealand (IVCNZ’03), Palmerston North, New Zealand (26–28 November, 2003), pp. 148–153.

Miller-Karlow, D.L. and Golin, E.J. (1992) vVHDL: a visual hardware description language. 1992 IEEEWorkshop on

Visual Languages, Seattle, Washington, USA (15–18 September, 1992), pp. 133–139. doi: 10.1109/

WVL.1992.275773

Mitra, S.K. (1998) Digital signal processing: a computer-based approach, McGraw-Hill, Singapore.

Miyamori, T. and Olukotun, U. (1998) A quantitative analysis of reconfigurable coprocessors for multimedia

applications. IEEE Symposium on FPGAs for Custom Computing Machines, Napa Valley, California, USA

(15–17 April, 1998), pp. 2–11. doi: 10.1109/FPGA.1998.707876

Mohl, S. (2006) The Mitrion-C programming language, Vol. 1.3.0-001., Mitrionics.

Morris, J., Jawed, K., Gimel’farb, G. and Khan, T. (2009) Breaking the ‘ton’: achieving 1% depth accuracy from stereo

in real time. 24th International Conference Image and Vision Computing New Zealand (IVCNZ ’09), Wellington,

New Zealand (23–25 November, 2009), pp. 142–147. doi: 10.1109/IVCNZ.2009.5378423

Mosqueron, R., Dubois, J. and Paindavoine, M. (2007) High-speed smart camera with high resolution. EURASIP

Journal on Embedded Systems, 2007, no. Article ID 24163. doi: 10.1155/2007/24163

Muller, J.M. (1985) Discrete basis and computation of elementary functions. IEEE Transactions on Computers,C-34

(9), 857–862. doi: 10.1109/TC.1985.1676643

Nagata, N. and Maruyama, T. (2004) Real-time detection of line segments using the line Hough transform. IEEE

International Conference on Field-Programmable Technology, Brisbane, Australia (6–8 December, 2004),

pp. 89–96. doi: 10.1109/FPT.2004.1393255

Nagayama, S., Sasao, T. and Butler, J.T. (2008) Numerical function generators using bilinear interpolation.

International Conference on Field Programmable Logic and Applications (FPL 2008), Heidelberg, Germany

(8–10 September, 2008), pp. 463–466. doi: 10.1109/FPL.2008.4629984

462 References

Najjar, W.A., B€ohm, W., Draper, B.A., Hammes, J., Rinker, R., Beveridge, J.R., Chawathe, M. and Ross, C. (2003)

High-level language abstraction for reconfigurable computing. IEEE Computer, 36 (8), 63–69. doi: 10.1109/

MC.2003.1220583

Nakagawa,Y. andRosenfeld,A. (1978)Anote on the use of localMIN andMAXoperations in digital picture processing.

IEEE Transactions on Systems, Man and Cybernetics, 8 (8), 632–635. doi: 10.1109/TSMC.1978.4310040

Narendra, P.M. (1981) A separable median filter for image noise smoothing. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 3 (1), 20–29. doi: 10.1109/TPAMI.1981.4767047

Nash, J.G. (2005) Systolic architecture for computing the discrete Fourier transform on FPGAs. 13th Annual

IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM 2005), Napa, California, USA

(18–20 April, 2005), pp. 305–306. doi: 10.1109/FCCM.2005.60

Nassi, I. and Shneiderman,B. (1973) Flowchart techniques for structured programming.ACMSIGPLANNotices, 8 (8),

12–26. doi: 10.1145/953349.953350

National Instruments (2005) Creating Custom Hardware with LabVIEW: NI LabVIEW FPGA Module, National

Instruments.

Nayak, A., Haldar, M., Choudhary, A. and Banerjee, P. (2001) Precision and error analysis of MATLAB applications

during automated hardware synthesis for FPGAs.Design,Automation andTest in Europe,Munich,Germany (13–16

April, 2001), pp. 722–728. doi: 10.1109/DATE.2001.915108

NEC (2009) Gate Arrays and Embedded Arrays, vol. A18258EJ7V0PF, NEC Electronics Corporation.

Ngan, P.M. (1992) The development of a visual language for image processing applications. PhD Thesis, Computer

Science, Massey University: Palmerston North, New Zealand.

Ngo, H.T. and Asari, V.K. (2005) A pipelined architecture for real-time correction of barrel distortion in wide-angle

camera images. IEEE Transactions on Circuits and Systems for Video Technology, 15 (3), 436–444. doi: 10.1109/

TCSVT.2004.842609

Nicklin, S.P., Fisher, R.D. and Middleton, R.H. (2007) Rolling shutter image compensation, in RoboCup 2006: Robot

Soccer World Cup X, Lecture Notes in Artificial Intelligence, vol. LNAI 4434, Springer, pp. 402–409. doi: 10.1007/

978-3-540-74024-7_39

Nicol, C.J. (1995) A systolic approach for real time connected component labeling. Computer Vision and Image

Understanding, 61 (1), 17–31. doi: 10.1006/cviu.1995.1002

Nielsen, A.M. and Muller, J.M. (1996) On-line algorithms for computing exponentials and logarithms, in Second

International Euro-Par Conference, Lyon, France (26–29 August, 1996), Lecture Notes in Computer Science,

vol. LNCS 1124, Springer, pp. 165–174. doi: 10.1007/BFb0024699

Nilsson, M., Dahl, M. and Claesson, I. (2005a) Gray-scale image enhancement using the SMQT. IEEE International

Conference on Image Processing (ICIP ’05), Genoa, Italy, vol. 1 (11–14 September, 2005), pp. 933–936.

doi: 10.1109/ICIP.2005.1529905

Nilsson, M., Dahl, M. and Claesson, I. (2005b) The successive mean quantization transform. IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP ’05), Philadelphia, Pennsylvania, USA, vol. 4

(18–23 March, 2005), pp. 429–432. doi: 10.1109/ICASSP.2005.1416037

Nilsson,M., Sattar, F., Chng,H.K. andClaesson, I. (2005c)Automatic enhancement and subjective evaluation of dental

X-ray images using the SMQT. 5th International Conference on Information, Communications and Signal

Processing, Bangkok, Thailand (6–9 December, 2005), pp. 1448–1451. doi: 10.1109/ICICS.2005.1689298

Noble, J.A. (1988)Findingcorners. ImageandVisionComputing,6 (2), 121–128. doi: 10.1016/0262-8856(88)90007-8

Nodes, T.A. andGallagher, N.C. (1982)Median filters: somemodifications and their properties. IEEE Transactions on

Acoustics, Speech and Signal Processing, 30 (5), 739–746. doi: 10.1109/TASSP.1982.1163951

Nuño-Maganda, M. and Arias-Estrada, M. (2005) Real-time FPGA-based architecture for bicubic interpolation: an

application for digital image scaling. International Conference on Reconfigurable Computing and FPGAs, Puebla

City, Mexico (28–30 September, 2005), p. 8. doi: 10.1109/ReConFig.2005.34

NVIDIA (2006) Technical Brief – NVIDIA GeForce 8800 GPU Architecture Overview, NVIDIA Corporation.

NXP (2007) I2C-Bus Specification and User Manual, Vol. UM10204 Rev. 03., NXP Semiconductors.

Offen, R.J. (1985) VLSI Image Processing, Collins, London.

Oh, S. and Kim, G. (2008) An architecture for on-the-fly correction of radial distortion using FPGA, in Real-Time

Image Processing 2008, San Jose, California, USA (28–29 January, 2008), vol. 6811, SPIE, pp. 68110X-1-9.

doi: 10.1117/12.767125

Ong, S.W., Kerkiz, N., Srijanto, B., Langston, M.C.T., Newport, D. and Bouldin, D. (2001) Automatic mapping of

multiple applications to multiple adaptive computing systems. 9th Annual IEEE Symposium on Field-Programma-

ble Custom ComputingMachines (FCCM ’01), Rohnert Park, California, USA (30 April–2 May, 2001), pp. 10–20.

doi: 10.1109/FCCM.2001.15

References 463

Oraintara, S., Chen, Y.J. and Nguyen, T.Q. (2002) Integer fast Fourier transform. IEEE Transactions on Signal

Processing, 50 (3), 607–618. doi: 10.1109/78.984749

Orwell, J., Remagnino, P. and Jones, G.A. (1999) Multi-camera colour tracking. Second IEEE Workshop on Visual

Surveillance, Fort Collins, Colorado, USA (26 June, 1999), pp. 14–21. doi: 10.1109/VS.1999.780264

Ostresh, L.M. (1978) On the convergence of a class of iterative methods for solving the Weber location problem.

Operations Research, 26 (4), 597–609. doi: 10.1287/opre.26.4.597

Otsu, N. (1979) A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and

Cybernetics, 9 (1), 62–66. doi: 10.1109/TSMC.1979.4310076

Ovod, V.I., Baxter, C.R., Massie, M.A. and McCarley, P.L. (2005) Advanced image processing package for FPGA-

based re-programmable miniature electronics, in Infrared Technology and Applications XXXI, Orlando, Florida,

USA (28 March–1 April, 2005), vol. 5783, SPIE, pp. 304–315. doi: 10.1117/12.603019

Page, I. (1996) Closing the gap between hardware and software: hardware-software cosynthesis at Oxford. IEE

Colloquium on Hardware-Software Cosynthesis for Reconfigurable Systems (Digest No: 1996/036), Bristol, UK

(22 February, 1996), pp. 2/1––12 doi: 10.1049/ic:19960221

Page, I. and Luk, W. (1991) Compiling Occam into field-programmable gate arrays. Field Programmable Logic and

Applications, Oxford, UK (4–6 September, 1991), pp. 271–283.

Pajares, G. and de la Cruz, J.M. (2004)Awavelet-based image fusion tutorial.Pattern Recognition, 37 (9), 1855–1872.

doi: 10.1016/j.patcog.2004.03.010

Parhami, B. (2000) Computer Arithmetic: Algorithms and Hardware Designs, Oxford University Press, New York.

Parhi, K.K. (1991) A systematic approach for design of digit-serial signal processing architectures. IEEE Transactions

on Circuits and Systems, 38 (4), 358–375. doi: 10.1109/31.75394

Park, J.W. (1986) An efficient memory system for image processing. IEEE Transactions on Computers, 35 (7),

669–674. doi: 10.1109/TC.1986.1676813

Parulski, K.A. (1985) Color filters and processing alternatives for one-chip cameras. IEEE Transactions on Electron

Devices, 32 (8), 1381–1389. doi: 10.1109/T-ED.1985.22133

Pavan, P., Bez, R., Olivo, P. and Zanoni, E. (1997) Flash memory cells-an overview. Proceedings of the IEEE, 85 (8),

1248–1271. doi: 10.1109/5.622505

Peleg, A., Wilkie, S. and Weiser, U. (1997) Intel MMX for multimedia PCs. Communications of the ACM, 40 (1),

24–38. doi: 10.1145/242857.242865

Pell, O. and Luk, W. (2005) Quartz: a framework for correct and efficient reconfigurable design. International

Conference on Reconfigurable Computing and FPGAs (ReConFig 2005), Puebla City, Mexico (28–30 September,

2005), p. 8. doi: 10.1109/RECONFIG.2005.32

Pellerin, D. and Thibault, S. (2005) Practical FPGA programming in C, Parson Education, Upper Saddle River,

New Jersey, USA.

Pellerin, D., Edvenson, G., Shenoy, K. and Isaacs, D. (2005) Accelerating PowerPC software applications. Xcell

Journal (55), 82–87.

Peterson, W.W. (1957) Addressing for random-access storage. IBM Journal of Research and Development, 1 (2),

130–146.

Pettersson, N. and Petersson, L. (2005) Online stereo calibration using FPGAs. IEEE Intelligent Vehicles Symposium,

Las Vegas, Nevada, USA (6–8 June, 2005), pp. 55–60. doi: 10.1109/IVS.2005.1505077

Piccardi,M. (2004)Background subtraction techniques: a review. IEEE InternationalConference on Systems,Man and

Cybernetics, The Hague, The Netherlands, vol. 4 (10–13 October, 2004), pp. 3099–3104. doi: 10.1109/

ICSMC.2004.1400815

Pizer, S.M.,Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A.,Greer, T., Romeny, B.t.H., Zimmerman, J.B. and

Zuiderveld, K. (1987) Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image

Processing, 39 (3), 355–368. doi: 10.1016/S0734-189X(87)80186-X

Porikli, F. (2008)Reshuffling: a fast algorithm for filteringwith arbitrary kernels, inReal-Time ImageProcessing 2008,

San Jose, California, USA (28–29 January, 2008), vol. 6811, SPIE, pp. 68110M-1-10. doi: 10.1117/12.772114

Potkonjak, M., Srivastava, M.B. and Chandrakasan, A.P. (1996) Multiple constant multiplications: efficient and

versatile framework and algorithms for exploring common subexpression elimination. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 15 (2), 151–165. doi: 10.1109/43.486662

Pratt, W.K. (1978) Digital Image Processing, John Wiley & Sons, Inc., New York.

Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling,W.T. (1993)Numerical Recipes in C: The Art Of Scientific

Computing, Cambridge University Press.

464 References

Preston, K., Duff, M.J.B., Levialdi, S., Norgren, P.E. and Toriwaki, J. (1979) Basics of cellular logic with some

applications in medical image processing. Proceedings of the IEEE, 67 (5), 826–856.

Prewitt, J.M.S. andMendelsohn,M.L. (1966)The analysis of cell images.Annals of theNewYorkAcademyof Sciences,

128 (3), 1035–1053. doi: 10.1111/j.1749-6632.1965.tb11715.x

Proffitt, D. and Rosen, D. (1979) Metrication errors and coding efficiency of chain encoding schemes for the

representation of lines and edges.Computer Graphics and Image Processing, 10 (4), 318–332. doi: 10.1016/S0146-

664X(79)80041-6

Punchihewa, A., Bailey, D.G. and Hodgson, R.M. (2005) Colour reproduction performance of JPEG and

JPEG2000 codecs. 8th International Symposium on DSP and Communication Systems, (DSPCS’2005) and 4th

Workshop on the Internet, Telecommunications and Signal Processing, (WITSP’2005), Noosa Heads, Australia

(19–21 December, 2005), pp. 312–317.

QuickLogic (2007a) Eclipse II Family Data Sheet, Vol. Rev R., QuickLogic Corporation.

QuickLogic (2007b) Eclipse Family Data Sheet, Vol. Rev F., QuickLogic Corporation.

Rachakonda, R.V., Athanas, P.M. and Abbott, A.L. (1995) High-speed region detection and labeling using an FPGA-

based custom computing platform, in Field Programmable Logic and Applications, Oxford, UK (29 August–1

September, 1995), Lecture Notes in Computer Science, vol. LNCS 975, Springer, pp. 86–93. doi: 10.1007/3-540-

60294-1_101

Ragnemalm, I. (1993) The Euclidean distance transformation in arbitrary dimensions. Pattern Recognition Letters,

14 (11), 883–888. doi: 10.1016/0167-8655(93)90152-4

Rajagopalan, K. and Sutton, P. (2001) A flexible multiplication unit for an FPGA logic block. IEEE International

Symposium on Circuits and Systems (ISCAS 2001), Sydney, Australia, vol. 4 (6–9 May, 2001), pp. 546–549.

doi: 10.1109/ISCAS.2001.922295

Rambabu, C. and Chakrabarti, I. (2007) An efficient immersion-based watershed transform method and its prototype

architecture. Journal of Systems Architecture, 53 (4), 210–226. doi: 10.1016/j.sysarc.2005.12.005

Rambabu, C., Chakrabarti, L. and Mahanta, A. (2002) An efficient architecture for an improved watershed algorithm

and its FPGA implementation. IEEE International Conference on Field-Programmable Technology (FPT), Hong

Kong (16–18 December, 2002), pp. 370–373. doi: 10.1109/FPT.2002.1188713

Randen, T. and Husoy, J.H. (1999) Filtering for texture classification: a comparative study. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 21 (4), 291–310. doi: 10.1109/34.761261

Randhawa, S. and Li, J.S. (2005) CFA demosaicking with improved colour edge preservation. IEEE Region 10

Conference (IEEE Tencon’05), Melbourne, Australia (21–24 November, 2005). doi: 10.1109/

TENCON.2005.301070

Ranganathan, N., Mehrotra, R. and Subramanian, S. (1995) A high speed systolic architecture for labeling connected

components in an image. IEEE Transactions on Systems, Man and Cybernetics, 25 (3), 415–423. doi: 10.1109/

21.364855

Ratha, N.K. and Jain, A.K. (1999) Computer vision algorithms on reconfigurable logic arrays. IEEE Transactions on

Parallel and Distributed Systems, 10 (1), 29–43. doi: 10.1109/71.744833

Reddy, B.S. and Chatterji, B.N. (1996) An FFT-based technique for translation, rotation, and scale-invariant image

registration. IEEE Transactions on Image Processing, 5 (8), 1266–1271. doi: 10.1109/83.506761

Reulke, R., Meysel, F. and Bauer, S. (2008) Situation analysis and atypical event detection with multiple cameras and

multi-object tracking. Robot Vision, Auckland, New Zealand (18–20 February, 2008), Lecture Notes in Computer

Science, vol. LNCS 4931, Springer, pp. 234–247. doi: 10.1007/978-3-540-78157-8_18

Reznik, Y.A., Hinds, A.T., Zhang, C., Yu, L. and Ni, Z. (2007) Efficient fixed-point approximations of the 8�8 inverse

discrete cosine transform. Applications of Digital Image Processing XXX, San Diego, California, USA, vol. 6696,

SPIE, p. 669617. doi: 10.1117/12.740228

Ridler, T.W. and Calvard, S. (1978) Picture thresholding using an iterative selection method. IEEE Transactions on

Systems, Man and Cybernetics, 8 (8), 630–632. doi: 10.1109/TSMC.1978.4310039

Rissanen, J.J. (1976) Generalized Kraft inequality and arithmetic coding. IBM Journal of Research and Development,

20 (3), 198–203. doi: 10.1147/rd.203.0198

Roberts, D. (1996) Internet Protocols Handbook, Coriolis Group Books.

Robertson, J.E. (1958) A new class of digital division methods. IRE Transactions on Electronic Computers,EC-7 (3),

218–222. doi: 10.1109/TEC.1958.5222579

Rosenfeld, A. and de la Torre, P. (1983) Histogram concavity analysis as an aid in threshold selection. IEEE

Transactions on Systems, Man and Cybernetics, 13 (3), 231–235.

References 465

Rosenfeld, A. and Pfaltz, J. (1966) Sequential operations in digital picture processing. Journal of the Association for

Computing Machinery, 13 (4), 471–494. doi: 10.1145/321356.321357

Russ, J.C. (2002) The Image Processing Handbook, 4th edn, CRC Press, Boca Raton, Florida.

Rutenbar, R.A., Baron,M., Daniel, T., Jayaraman, R., Or-Bach, Z., Rose, J. and Sechen, C. (2001) (When) will FPGAs

kill ASICs? 38th annualDesignAutomationConference, LasVegas, Nevada,USA (18–22 June, 2001), pp. 321–322.

doi: 10.1145/378239.378499

Saeed, A., Elbably, M., Abdelfadeel, G. and Eladawy, M.I. (2009) Efficient FPGA implementation of FFT/IFFT

processor. International Journal of Circuits, Systems and Signal Processing, 3 (3), 103–110.

Sam, H. and Gupta, A. (1990) A generalized multibit recoding of two’s complement binary numbers and its proof with

application in multiplier implementations. IEEE Transactions on Computers, 39 (8), 1006–1015. doi: 10.1109/12.57039

Sanderson, C. (2004) Simplify FPGA application design with DIMEtalk. Xcell Journal, 51, 104–107.

Sansaloni, T., Perez-Pascual, A. and Valls, J. (2003) Area-efficient FPGA-based FFT processor. Electronics Letters,

39 (19), 1369–1370. doi: 10.1049/el:20030892

Sarwar, A. (1997) CMOSpower consumption andCpd calculation, ApplicationNote: SCAA035B. Texas Instruments.

Sawchuk, A.A. (1977) Real-time correction of intensity nonlinearities in imaging systems. IEEE Transactions on

Computers, 26 (1), 34–39. doi: 10.1109/TC.1977.5009271

Schaffer, G. (1984) Machine vision: a sense for computer integrated manufacturing. American Machinist, 128 (6),

101–129.

Schoonees, J.A. and Palmer, T. (2009) Camera shading calibration using a spatially modulated field. Image and

Vision Computing New Zealand (IVCNZ 2009), Wellington, New Zealand (23–25 November, 2009), pp. 191–196.

doi: 10.1109/IVCNZ.2009.5378412

Schulte, M.J. and Stine, J.E. (1997) Symmetric bipartite tables for accurate function approximation. 13th IEEE

Symposium on Computer Arithmetic, Asilomar, California, USA (6–9 July, 1997), pp. 175–183. doi: 10.1109/

ARITH.1997.614893

Schwarz, E.M. and Flynn,M.J. (1993)Hardware starting approximation for the square root operation. 11th Symposium

on Computer Arithmetic, Windsor, Ontario, Canada (29 June–2 July, 1993), pp. 103–111. doi: 10.1109/

ARITH.1993.378103

Sedcole, P. (2006) Reconfigurable platform-based design in FPGAs for video image processing. PhD Thesis,

Department of Electrical and Electronic Engineering, Imperial College, London, UK.

Sedcole, N.P., Cheung, P.Y.K., Constantinides, G.A. and Luk, W. (2003) A reconfigurable platform for real-time

embedded video image processing. International Conference on Field Programmable Logic and Applications (FPL

2003), Lisbon, Portugal (1–3 September, 2003), Lecture Notes in Computer Science, vol. LNCS 2778, Springer,

pp. 606–615. doi: 10.1007/b12007

Sedcole, P., Cheung, P.Y.K., Constantinides, G.A. and Luk, W. (2007) Run-time integration of reconfigurable video

processing systems. IEEE Transactions on VLSI Systems, 15 (9), 1003–1016. doi: 10.1109/TVLSI.2007.902203

Sen, M., Corretjer, I., Haim, F., Saha, S., Schlessman, J., Lv, T., Bhattacharyya, S.S. and Wolf, W. (2007) Dataflow-

based mapping of computer vision algorithms onto FPGAs. EURASIP Journal on Embedded Systems, 2007, no.

Article ID 49236. doi: 10.1155/2007/49236

Sen Gupta, G.,Win, T.A., Messom, C., Demidenko, S. andMukhopadhyay, S. (2003) Defect analysis of grit-blasted or

spray painted surface using vision sensing techniques. Image and Vision Computing New Zealand (IVCNZ’03),

Palmerston North, New Zealand (26–28 November, 2003), pp. 18–23.

Sen Gupta, G., Bailey, D. andMessom, C. (2004) A new colour-space for efficient and robust segmentation. Image and

Vision Computing New Zealand (IVCNZ’04), Akaroa, New Zealand (21–23 November, 2004), pp. 315–320.

SenGupta, G. and Bailey, D. (2008)Discrete YUV look-up tables for fast colour segmentation for robotic applications.

IEEE Canadian Conference on Electrical and Computer Engineering (CCECE 2008), Niagara Falls, Canada

(4–7 May, 2008), pp. 963–968. doi: 10.1109/CCECE.2008.4564679

Sendur, L. and Selesnick, I.W. (2002) Bivariate shrinkage functions for wavelet-based denoising exploiting interscale

dependency. IEEE Transactions on Signal Processing, 50 (11), 2744–2756. doi: 10.1109/TSP.2002.804091

Sensor to Image (2009a) GigE Receiver Reference Design Description, vol. X-1.0.2, Sensor to Image GmbH.

Sensor to Image (2009b) GigE Vision Reference Design, vol. A-0.2.3, Sensor to Image GmbH.

Sensor to Image (2009c) GigE Vision Reference Design Description, vol. X-1.0.4, Sensor to Image GmbH.

Serra, J. (1986) Introduction to mathematical morphology. Computer Vision, Graphics and Image Processing, 35 (3),

283–305. doi: 10.1016/0734-189X(86)90002-2

Sezgin,M. and Sankur, B. (2004) Survey over image thresholding techniques and quantitative performance evaluation.

Journal of Electronic Imaging, 13 (1), 146–165. doi: 10.1117/1.1631315

466 References

Shamos, M.I. (1978) Robust picture processing operators and their implementation as circuits. ARPA Image

Understanding Workshop, Pittsburgh, Pennsylvania, USA (November, 1978), pp. 127–129.

Shih, F.Y. andWong,W.T. (1992) A new single-pass algorithm for extracting the mid-crack codes of multiple regions.

Journal of Visual Communication and Image Representation, 3 (3), 217–224. doi: 10.1016/1047-3203(92)90018-O

Shilton, A. and Bailey, D. (2006) Drogue tracking by image processing for study of laboratory scale pond hydraulics.

Journal of Flow Measurement and Instrumentation, 17 (1), 69–74. doi: 10.1016/j.flowmeasinst.2005.04.002

Sidahao, N., Constantinides, G.A. and Cheung, P.Y.K. (2003) Architectures for function evaluation on FPGAs.

International Symposium on Circuits and Systems (ISCAS ’03), Bangkok, Thailand, vol. 2 (25–28 May, 2003),

pp. 804–807. doi: 10.1109/ISCAS.2003.1206096

SiliconBlue (2009) iCE65 Ultra Low-Power mobileFPGAFamily, vol. v2.0.1, SiliconBlue Technologies Corporation.

Simmler, H., Levinson, L. andM€anner, R. (2000)Multitasking on FPGA coprocessors. 10th International Conference

onField Programmable Logic andApplications, Villach,Austria (27–30August, 2000), LectureNotes inComputer

Science, vol. LNCS 1896, Springer, pp. 121–130. doi: 10.1007/3-540-44614-1_13

Simpson, P. (2010)FPGADesign: Best Practices for Team-BasedDesign, Springer. doi: 10.1007/978-1-4419-6339-0_1

Singh, S., Rose, J., Chow, P. and Lewis, D. (1992) The effect of logic block architecture on FPGA performance. IEEE

Journal of Solid-State Circuits, 27 (3), 281–287. doi: 10.1109/4.121549

Skliarova, I. and Sklyarov, V. (2009) Recursion in reconfigurable computing: A survey of implementation approaches.

International Conference on Field Programmable Logic and Applications (FPL), Prague, Czech Republic

(31 August–2 September, 2009), pp. 224–229. doi: 10.1109/FPL.2009.5272304

Sklyarov, V. (2002) Reconfigurable models of finite state machines and their implementation in FPGAs. Journal of

Systems Architecture, 47 (14–15), 1043–1064. doi: 10.1016/S1383-7621(02)00067-X

Sklyarov, V. and Skliarova, I. (2008) Design and implementation of parallel hierarchical finite state machines. Second

International Conference on Communications and Electronics (ICCE 2008), Hoi an, Vietnam (4–6 June, 2008),

pp. 33–38. doi: 10.1109/CCE.2008.4578929

So, H.K.H. (2007) BORPH: An operating system for FPGA-based reconfigurable computers. PhD Thesis, Electrical

Engineering and Computer Sciences, University of California, Berkley.

Solomon, C. and Breckon, T. (2011)Fundamentals of Digital Image Processing: A practical approach with examples

in Matlab. Wiley-Blackwell.

Specker, W.H. (1965) A class of algorithms for ln(x), exp(x), sin(x), cos(x), tan�1(x) and cot�1(x). IEEE Transactions

on Electronic Computers, EC-14 (1), 85–86. doi: 10.1109/PGEC.1965.264066

Stauffer, C. and Grimson,W.E.L. (1999) Adaptive backgroundmixturemodels for real-time tracking. IEEEComputer

Society Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, USA, vol. 2 (23–25 June,

1999), pp. 246–252. doi: 10.1109/CVPR.1999.784637

Stefanov, T., Zissulescu, C., Turjan, A., Kienhuis, B. and Deprette, E. (2004) System design using Khan process

networks: the Compaan/Laura approach. Design, Automation and Test in Europe Conference and Exhibition, Paris,

France, vol. 1 (16–20 February, 2004), pp. 340–345. doi: 10.1109/DATE.2004.1268870

Steiger, C., Walder, H. and Platzner, M. (2004) Operating systems for reconfigurable embedded platforms: online

scheduling of real-time tasks. IEEE Transactions on Computers, 53 (11), 1393–1407. doi: 10.1109/TC.2004.99

Stine, J.E. and Schulte,M.J. (1999) The symmetric table additionmethod for accurate function approximation. Journal

of VLSI Signal Processing, 21 (2), 167–177. doi: 10.1023/A:1008004523235

Stokes, M., Anderson, M., Chandrasekar, S. and Motta, R. (1996) A standard default color space for the internet –

sRGB. Available from http://www.w3.org/Graphics/Color/sRGB [cited 12 January, 2010].

Stone, H., Orchard, M. and Chang, E.C. (1999) Subpixel registration of images. Thirty-Third Asilomar Conference on

Signals, Systems, and Computers, Monterey, California, USA, vol. 2 (24–27 October, 1999), pp. 1446–1452. doi:

10.1109/ACSSC.1999.831945

Stone, H.S., Orchard, M.T., Chang, E.C. and Martucci, S.A. (2001) A fast direct Fourier-based algorithm for subpixel

registration of images. IEEE Transactions on Geoscience and Remote Sensing, 39 (10), 2235–2243. doi: 10.1109/

36.957286

Stowers, J., Hayes, M. and Bainbridge-Smith, A. (2010) Phase correlation using shear average for image registration.

Image and Vision Computing New Zealand, Queenstown, New Zealand (8–9 November, 2010).

Strickland, R.N. and Hahn, H.I. (1997) Wavelet transform methods for object detection and recovery. IEEE

Transactions on Image Processing, 6 (5), 724–735. doi: 10.1109/83.568929

Suciu, R.E. and Reeves, A.P. (1982) A comparison of differential and moment based edge detectors. IEEE Computer

Society Conference on Pattern Recognition and Image Processing, Las Vegas, Nevada, USA (14–17 June, 1982),

pp. 97–102.

References 467

Sudha, N. and Mohan, A.R. (2008) Design of a hardware accelerator for path planning on the Euclidean distance

transform. Journal of Systems Architecture, 54 (1–2), pp. 253–264. doi: 10.1016/j.sysarc.2007.06.003

Sukhsawas, S. and Benkrid, K. (2004) A high-level implementation of a high performance pipeline FFT on Virtex-E

FPGAs. IEEE Computer society Annual Symposium on VLSI, Lafayette, Louisiana, USA (19–20 February, 2004),

pp. 229–232. doi: 10.1109/ISVLSI.2004.1339538

Sun, S.H. and Lee, S.J. (2003) A JPEG chip for image compression and decompression. The Journal of VLSI Signal

Processing, 35 (1), 43–60. doi: 10.1023/A:1023383820503

Swain, M.J. and Ballard, D.H. (1991) Colour indexing. International Journal of Computer Vision, 7 (1), 11–32.

doi: 10.1007/BF00130487

Swan, S. (2006) SystemC transaction level models and RTL verification. 43rd ACM/IEEE Design Automation

Conference, San Francisco, California, USA (24–28 July, 2006), pp. 90–92. doi: 10.1109/DAC.2006.229170

Swenson, R.L. and Dimond, K.R. (1999) A hardware FPGA implementation of a 2D median filter using a novel rank

adjustment technique. Seventh International Conference on Image Processing And Its Applications, Manchester,

UK, vol. Conf Publ 465 (13–15 July, 1999), pp. 103–106. doi: 10.1049/cp:19990290

Tabula (2009) Abax� Family Overview. Tabula Inc.

Tabula (2010a) Abax� Product Family Overview. Tabula Inc.

Tabula (2010b) Tabula SpaceTime� architecture White paper. Tabula Inc.

Tagzout, S., Achour, K. and Djekoune, O. (2001) Hough transform algorithm for FPGA implementation. Signal

Processing, 81 (6), 1295–1301. doi: 10.1016/S0165-1684(00)00248-6

Tahir,M.A., Bouridane,A., Kurugollu, F. andAmira,A. (2003a)AnFPGAbased coprocessor for calculating grey level

co-occurrence matrix. IEEE International Symposium on Micro-NanoMechatronics and Human Science, Cairo,

Egypt, vol. 2 (27–30 December, 2003), pp. 868–871. doi: 10.1109/MWSCAS.2003.1562424

Tahir,M.A., Roula,M.A., Bouridane,A.,Kurugollu, F. andAmira,A. (2003b)AnFPGAbased co-processor forGLCM

texture features measurement. 10th IEEE International Conference on Electronics, Circuits and Systems, Sharjah,

United Arab Emirates, vol. 3 (14–17 December, 2003), pp. 1006–1009. doi: 10.1109/ICECS.2003.1301679

Tang, K., Astola, J. and Neuvo, Y. (1994) Multichannel edge enhancement in color image processing. IEEE

Transactions on Circuits and Systems for Video Technology, 4 (5), 468–479. doi: 10.1109/76.322994

Tatas, K., Soudris, D.J., Siomos, D., Dasygenis, M. and Thanailakis, A. (2002) A novel division algorithm for parallel

and sequential processing. 9th International Conference on Electronics, Circuits and Systems, Dubrovnik, Croatia,

vol. 2 (15–18 September, 2002), pp. 553–556. doi: 10.1109/ICECS.2002.1046225

Taubman, D. (2000) High performance scalable image compression with EBCOT. IEEE Transactions on Image

Processing, 9 (7), 1158–1170. doi: 10.1109/83.847830

Therrien, C.W., Quatieri, T.F. and Dudgeon, D.E. (1986) Statistical model-based algorithms for image analysis.

Proceedings of the IEEE 74 (4), 532–551.

Thevenaz, P., Ruttimann, U.E. and Unser, M. (1998) A pyramid approach to subpixel registration based on intensity.

IEEE Transactions on Image Processing, 7 (1), 27–41. doi: 10.1109/83.650848

Thomas, D.B. and Luk, W. (2005) High quality uniform random number generation through LUT optimised linear

recurrences. IEEE International Conference on Field-Programmable Technology, Singapore (11–14 December,

2005), pp. 61–68. doi: 10.1109/FPT.2005.1568526

Thomas, D.B. and Luk, W. (2009) Using FPGA resources for direct generation of multivariate Gaussian random

numbers. International Conference on Field Programmable Technology (FPT’09), Sydney, Australia

(9–11 December, 2009), pp. 344–347. doi: 10.1109/FPT.2009.5377680

Tian, Q. and Huhns, M.N. (1986) Algorithms for sub-pixel registration. Computer Vision, Graphics and Image

Processing, 35 (2), 220–233. doi: 10.1016/0734-189X(86)90028-9

Timmermann, D., Hahn, H. and Hosticka, B.J. (1992) Low latency time CORDIC algorithms. IEEE Transactions on

Computers, 41 (8), 1010–1015. doi: 10.1109/12.156543

Tocher, K.D. (1958) Techniques of multiplication and division for automatic binary divider. Quarterly Journal of

Mechanics and Applied Mathematics, 11 (3), 364–384. doi: 10.1093/qjmam/11.3.364

Todman, T.J., Constantinides, G.A., Wilton, S.J.E., Mencer, O., Luk, W. and Cheung, P.Y.K. (2005) Reconfigur-

able computing: architectures and design methods. IEE Proceedings Computers and Digital Techniques, 152

(2), 193–207. doi: 10.1049/ip-cdt:20045086

Toledo, F., Martinez, J.J., Garrigos, J., Ferrandez, J. and Rodellar, V. (2006) Skin color detection for real time mobile

applications. International Conference on Field Programmable Logic and Applications (FPL’06), Madrid, Spain

(28–30 August, 2006), pp. 721–724. doi: 10.1109/FPL.2006.311299

468 References

Tombs, J., Aguirre Echanove,M.A.,Munoz, F., Baena, V., Torralba, A., Fernandez-Leon, A. and Tortosa, F. (2004) The

implementation of an FPGA hardware debugger system with minimal system overhead. 14th International

Conference on Field Programmable Logic and Application, Antwerp, Belgium (29 August–1 September,

2004), Lecture Notes in Computer Science, vol. LNCS 3203, Springer, pp. 1062–1066. doi: 10.1007/b99787

Tomczak, T. (2006) Residue arithmetic in FPGA matrices. International Conference on Dependability of Computer

Systems, Szklarska Poreba, Poland (25–27May, 2006), pp. 297–305. doi: 10.1109/DEPCOS-RELCOMEX.2006.43

Torres-Huitzil, C. and Arias-Estrada, M. (2004) Real-time image processing with a compact FPGA-based systolic

architecture. Real-Time Imaging, 10 (3), 177–187. doi: 10.1016/j.rti.2004.06.001

Traver, V.J. and Pla, F. (2003) The log-polar image representation in pattern recognition tasks. First Iberian Conference

on Pattern Recognition and ImageAnalysis,Mallorca, Spain (4–6 June, 2003), pp. 1032–1040. doi: 10.1007/b12122

Trein, J., Schwarzbacher, A.T., Hoppe, B., Noffz, K.H. and Trenschel, T. (2007) Development of a FPGA based real-

time blob analysis circuit. Irish Signals and SystemsConference, Derry, UK (13–14 September, 2007), pp. 121–126.

Trein, J., Schwarzbacher, A.T. and Hoppe, B. (2008) FPGA implementation of a single pass real-time blob

analysis using run length encoding. in MPC-Workshop, Ravensburg-Weingarten, Germany (1 February, 2008),

pp. 71–77.

Trieu, D.B.K. and Maruyama, T. (2006) Implementation of a parallel and pipelined watershed algorithm on FPGA.

International Conference on Field Programmable Logic and Applications (FPL’06), Madrid, Spain (28–30 August,

2006), pp. 561–566. doi: 10.1109/FPL.2006.311267

Trieu, D.B.K. and Maruyama, T. (2007) A pipeline implementation of a watershed algorithm on FPGA. International

Conference on Field Programmable Logic and Applications (FPL 2007), Amsterdam, The Netherlands

(27–29 August, 2007), pp. 714–717. doi: 10.1109/FPL.2007.4380752

Trieu, D.B.K. andMaruyama, T. (2008) An implementation of a watershed algorithm based on connected components

on FPGA. International Conference on Field Programmable Technology, Taipei, Taiwan (7–10 December, 2008),

pp. 253-256. doi: 10.1109/FPT.2008.4762391

Trummer, R.K.L. (2005) A high-performance data-dependent hardware integer divider. Masters Thesis, University of

Salzburg, Salzburg, Austria.

Trussell, H.J. (1979) Comments on ‘‘Picture thresholding using an iterative selection method’’. IEEE Transactions on

Systems, Man and Cybernetics, 9 (5), 311–1311 doi: 10.1109/TSMC.1979.4310204

Tsai, R.Y. (1987) Aversatile camera calibration technique for high-accuracy 3D machine vision metrology using off-

the-shelf TV cameras and lenses. IEEE Journal of Robotics and Automation, 3 (4), 323–344. doi: 10.1109/

JRA.1987.1087109

Tsai, R.Y. and Huang, T.S. (1984) Multiframe image restoration and registration, Advances in Computer Vision and

Image Processing, vol. 1, JAI Press, pp. 317–339.

Tsoi, K.H., Leung, K.H. and Leong, P.H.W. (2007) High performance physical random number generator. IET

Computers and Digital Techniques, 1 (4), 349–352. doi: 10.1049/iet-cdt:20050173

Turk, M.A. and Pentland, A.P. (1991) Face recognition using eigenfaces. IEEE Conference on Computer Vision and

Pattern Recognition (CVPR’91), Maui, Hawaii, USA (3–6 June, 1991), pp. 586–591. doi: 10.1109/

CVPR.1991.139758

Uber, G.T. (1986) Illumination methods for machine vision. Optics, Illumination, and Image Sensing for Machine

Vision, Cambridge, Massachusetts, USA (30–31 October, 1986), vol. 728, SPIE, pp. 93–102.

Unger, S.H. (1958) A computer oriented toward spatial problems. Proceedings of the IRE, 46 (10), 1744–1750. doi:

10.1109/JRPROC.1958.286755

Unsal, O.S. andKoren, I. (2003) System-level power-aware design techniques in real-time systems.Proceedings of the

IEEE, 91 (7), 1055–1069. doi: 10.1109/JPROC.2003.814617

Unser,M. (2000) Sampling - 50 years after Shannon.Proceedings of the IEEE, 88 (4), 569–587. doi: 10.1109/5.843002

Unser, M., Aldroubi, A. and Eden, M. (1991) Fast B-spline transforms for continuous image representation and

interpolation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13 (3), 277–285. doi: 10.1109/

34.75515

Uzun, I.S. and Bouridane, A.A.A. (2003) FPGA implementations of fast Fourier transforms for real-time signal and

image processing. IEEE International Conference on Field-Programmable Technology (FPT), Tokyo, Japan (15–17

December, 2003), pp. 102–109. doi: 10.1109/FPT.2003.1275737

Uzun, I.S., Amira, A. and Bouridane, A. (2005) FPGA implementations of fast Fourier transforms for real-time signal

and image processing. IEE Proceedings – Vision, Image and Signal Processing, 152 (3), 283–296. doi: 10.1049/ip-

vis:20041114

References 469

Vanmeerbeeck, G., Schaumont, P., Vernalde, S., Engels, M. and Bolsens, I. (2001) Hardware/software partitioning of

embedded system in OCAPI-xl. International Conference on Hardware Software Codesign, Copenhagen, Denmark

(25–27 April, 2001), pp. 30–35. doi: 10.1145/371636.371665

Velten, J. and Kummert, A. (2002) FPGA-based implementation of variable sized structuring elements for 2D binary

morphological operations. IEEE International Workshop on Electronic Design, Test, and Applications (DELTA),

Christchurch, New Zealand (29–31 January, 2002), pp. 309–312. doi: 10.1109/DELTA.2002.994636

VESA (2003) Coordinated Video Timings Standard, Version 1.1., Video Electronics Standards Association.

VESA (2007) VESA and Industry Standards and Guidelines for Computer Display Monitor Timing (DMT),

Version 1.0, Revision 11, Video Electronics Standards Association.

Vezhnevets, V., Sazonov, V. and Andreeva, A. (2003) A survey on pixel-based skin color detection techniques.

Graphicon-2003, Moscow, pp. 85–92.

Villalba, J., Hidalgo, J.A., Zapata, E.L., Antelo, E. and Bruguera, J.D. (1995) CORDIC architectures with parallel

compensation of the scale factor. International Conference on Application Specific Array Processors, Strasbourg,

France (24–26 July, 1995), pp. 258–269. doi: 10.1109/ASAP.1995.522930

Villasenor, J., Jones, C. and Schoner, B. (1995) Video communications using rapidly reconfigurable hardware. IEEE

Transactions on Circuits and Systems for Video Technology, 5 (6), 565–567. doi: 10.1109/76.475899

Villasenor, J., Schoner, B., Chia, K.N., Zapata. C., Kim, H.J., Jones, C., Lansing, S. and Mangione-Smith, B. (1996)

Configurable computing solutions for automatic target recognition. IEEE Symposium on FPGAs for Custom

ComputingMachines, NapaValley, California,USA (17–19April, 1996), pp. 70–79. doi: 10.1109/FPGA.1996.564749

Vincent, L. (1991) Exact Euclidean distance function by chain propagations. IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, Maui, Hawaii, USA (3–6 June, 1991), pp. 520–525. doi: 10.1109/

CVPR.1991.139746

Vincent, L. and Soille, P. (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 13 (6), 583–598. doi: 10.1109/34.87344

Vinh, T.Q. and Kim, Y.C. (2010) Edge-preserving algorithm for block artifact reduction and its pipelined architecture.

ETRI Journal, 32 (3), 380–389. doi: 10.4218/etrij.10.0109.0290

Viola, P. and Wells, W.M. (1997) Alignment by maximization of mutual information. International Journal of

Computer Vision, 24 (2), 137–154. doi: 10.1023/A:1007958904918

Vogt,R.C. (1986)Formalised approaches to image algorithmdevelopment usingmathematicalmorphology.Vision’86,

Detroit, Michigan, USA, pp. 5/17–5/37 (3–5 June, 1986).

Volder, J.E. (1959) The CORDIC trigonometric computing technique. IRE Transactions on Electronic Computers,

EC-8 (3), 330–334. doi: 10.1109/TEC.1959.5222693

Vuillemin, J.E., Bertin, P., Roncin,D., Shand,M., Touati, H.H. andBoucard, P. (1996) Programmable activememories:

reconfigurable systems come of age. IEEE Transactions on VLSI Systems, 4 (1), 56–69. doi: 10.1109/92.486081

Wallace, C.S. (1964) A suggestion for a fast multiplier. IEEE Transactions on Electronic Computers, 13 (1), 14–17.

doi: 10.1109/PGEC.1964.263830

Wallace, G.K. (1992) The JPEG still picture compression standard. IEEE Transactions on Consumer Electronics, 38

(1), 17–34. doi: 10.1109/30.125072

Walther, J.S. (1971) A unified algorithm for elementary functions. in Spring Joint Computer Conference, Atlantic City,

New Jersey, USA (18–20 May, 1971), pp. 379–385.

Walther, J.S. (2000) The story of unified CORDIC. Journal of VLSI Signal Processing, 25 (2), 107–112. doi: 10.1023/

A:1008162721424

Waltz, F.M. (1994a) Application of SKIPSM to binary template matching, in Machine Vision Applications,

Architectures, and Systems Integration III, Boston, Massachusetts, USA (31 October–2 November, 1994),

vol. 2347, SPIE, pp. 417–427. doi: 10.1117/12.188752

Waltz, F.M. (1994b)Application of SKIPSM to grey-levelmorphology, inMachineVision Applications, Architectures,

and Systems Integration III, Boston, Massachusetts, USA (31 October–2 November, 1994), vol. 2347, SPIE,

pp. 428–435. doi: 10.1117/12.188754

Waltz, F.M. (1994c) Separated-kernel image processing using finite-state machines (SKIPSM), in Machine Vision

Applications, Architectures, and Systems Integration III, Boston, Massachusetts, USA (31 October–2 November,

1994), vol. 2347, SPIE, pp. 386–395. doi: 10.1117/12.188749

Waltz, F.M. (1995) Application of SKIPSM to binary correlation, inMachine Vision Applications, Architectures, and

Systems Integration IV, Philadelphia, USA (23–24 October, 1995), vol. 2597, SPIE, pp. 82–91. doi: 10.1117/

12.223967

470 References

Waltz, F.M. and Garnaoui, H.H. (1994a) Application of SKIPSM to binary morphology, in Machine Vision

Applications, Architectures, and Systems Integration III, Boston, Massachusetts, USA (31 October–2 November,

1994), vol. 2347, SPIE, pp. 396–407. doi: 10.1117/12.188750

Waltz, F.M. andGarnaoui, H.H. (1994b) Fast computation of the grassfire transform using SKIPSM, inMachine Vision

Applications, Architectures and System Integration III, Boston, Massachusetts, USA (31 October–2 November,

1994), vol. 2347, SPIE, pp. 408–416. doi: 10.1117/12.188751

Waltz, F.M., Hack, R. and Batchelor, B.G. (1998) Fast efficient algorithms for 3x3 ranked filters using finite-state

machines, in Machine Vision Systems for Inspection and Metrology VII, Boston, Massachusetts, USA (4–5

November, 1998), vol. 3521, SPIE, pp. 278–287. doi: 10.1117/12.326970

Wang, Y. (1998) New Chinese remainder theorems. Thirty-Second Asilomar Conference on Signals, Systems &

Computers, Pacific Grove, California, USA, vol. 1 (1–4 November, 1998), pp. 165–171. doi: 10.1109/

ACSSC.1998.750847

Wang, S., Piuri, V. and Swartzlander, E.E. (1996) A unified view of CORDIC processor design. IEEE 39th Midwest

Symposium on Circuits and Systems, Ames, Iowa, USA, vol. 2 (18–21 August, 1996), pp. 852–855. doi: 10.1109/

MWSCAS.1996.588050

Wang, Y., Song, X., Aboulhamid, M. and Shen, H. (2002) Adder based residue to binary number converters for

(2n�1, 2n, 2nþ 1). IEEE Transactions on Signal Processing, 50 (7), 1772–1779. doi: 10.1109/

TSP.2002.1011216

Wang, J., Hall-Holt, O., Konecny, P. and Kaufman, A.E. (2005) Per pixel camera calibration for 3D range scanning, in

Videometrics VIII, San Jose, California, USA (18–20 January, 2005), vol. 5665, SPIE, pp. 342–352. doi: 10.1117/

12.586209

Weems, C.C. (1991) Architectural requirements of image understanding with respect to parallel processing.

Proceedings of the IEEE 79 (4), 537–547. doi: 10.1109/5.92046

Wei, Z., Lee, D.J., Nelson, B.E., Archibald, J.K. and Edwards, B.B. (2008) FPGA-based embedded motion estimation

sensor. International Journal of Reconfigurable Computing, 2008, no. Article ID 636145. doi: 10.1155/2008/636145

Weinhardt, M. and Luk, W. (2001a) Memory access optimisation for reconfigurable systems. IEE Proceedings

Computers and Digital Techniques, 148 (3), 105–112. doi: 10.1049/ip-cdt:20010514

Weinhardt, M. and Luk, W. (2001b) Pipeline vectorization. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 20 (2), 234–248. doi: 10.1109/43.908452

Welch, T.A. (1984) A technique for high-performance data compression. IEEE Computer, 17 (6), 8–19. doi: 10.1109/

MC.1984.1659158

Wendt, P.D., Coyle, E.J. and Gallagher, N.C. (1986) Stack filters. IEEE Transactions on Acoustics, Speech and Signal

Processing, 34 (4), 898–911. doi: 10.1109/TASSP.1986.1164871

Weszka, J.S.,Nagel, R.N. andRosenfeld,A. (1974)A threshold selection technique. IEEETransactions onComputers,

23 (12), 1322–1326. doi: 10.1109/T-C.1974.223858

Wigley, G. and Kearney, D. (2001) The development of an operating system for reconfigurable computing. IEEE

Symposium on Field-Programmable Custom Computing Machines (FCCM’01), Rohnert Park, California, USA

(30 April–2 May, 2001), pp. 249–250. doi: 10.1109/FCCM.2001.43

Wilen, A., Schade, J.P. and Thornburg, R. (2003) Introduction to PCI Express: A Hardware and Software Developer’s

Guide, Intel Press.

Will, P.M. and Pennington, K.S. (1972) Grid coding: a novel technique for image processing.Proceedings of the IEEE,

60 (6), 669–680. doi: 10.1109/PROC.1972.8726

Williams, L. (1983) Pyramidal parametrics. ACM SIGGRAPH Computer Graphics, 17 (3), 1–11. doi: 10.1145/

964967.801126

Williams, J. (2009) Embedded Linux on Xilinx MicroBlaze. Xilinx University Program and PetaLogix Professor’s

Workshop Series. PetaLogix Qld Pty Ltd.

Williams, C.S. and Rasure, J.R. (1990) Avisual language for image processing. IEEEWorkshop on Visual Languages,

Skokie, Illinois, USA (4–6 October, 1990), pp. 86–91. doi: 10.1109/WVL.1990.128387

Willson, R.G. and Shafer, S.A. (1994) What is the center of the image? Journal of the Optical Society of America A,

11 (11), pp. 2946–2955. doi: 10.1364/JOSAA.11.002946

Wilson, G.R. (1997) Properties of contour codes. IEE Proceedings Vision, Image and Signal Processing, 144 (3),

145–149. doi: 10.1049/ip-vis:19971159

Wilson, H.R. and Giese, S.C. (1977) Threshold visibility of frequency gradient patterns. Vision Research, 17 (10),

1177–1190. doi: 10.1016/0042-6989(77)90152-3

References 471

Wilson, J.C. and Hodgson, R.M. (1992) Log-polar mapping applied to pattern representation and recognition,

Computer Vision and Image Processing, Academic Press, pp. 245–277.

Wilson, R.P., French, R.S.,Wilson, C.S., Amarasinghe, S.P., Anderson, J.M., Tjiang, S.W.K., Liao, S.W., Tseng, C.W.,

Hall, M.W., Lam, M.S. and Hennessy, J.L. (1994) SUIF: an infrastructure for research on parallelizing and

optimizing compilers. ACM SIGPLAN Notices, 29 (12), 31–37. doi: 10.1145/193209.193217

Wirthlin, M.J., Hutchings, B.L. and Worth, C. (2001) Synthesizing RTL hardware from Java byte codes, in Field-

Programmable Logic and Applications (FPL 2001), Belfast, UK (27–29August, 2001), Lecture Notes in Computer

Science, vol. LNCS 2147, Springer, pp. 123–132. doi: 10.1007/3-540-44687-7_13

Witten, I.H., Neal, R.M. andCleary, J.G. (1987)Arithmetic coding for data compression.Communications of the ACM,

30 (6), 520–540. doi: 10.1145/214762.214771

Wolberg, G. (1990) Digital Image Warping, IEEE Computer Society Press, Los Alamitos, California.

Wolberg, G. and Boult, T.E. (1989) Separable image warping with spatial lookup tables. ACM SIGGRAPH Computer

Graphics, 23 (3), 369–378. doi: 10.1145/74334.74371

Wolberg, G., Sueyllam, H.M., Ismail, M.A. and Ahmed, K.M. (2000) One-dimensional resampling with inverse and

forward mapping functions. Journal of Graphics Tools, 5, 11–33.

Wong, S., Vassiliadis, S. and Cotofana, S. (2002) A sum of absolute differences implementation in FPGA hardware.

28th Euromicro Conference, Dortmund, Germany (4–6 September, 2002), pp. 183–188. doi: 10.1109/

EURMIC.2002.1046155

Woods, R., Trainor, D. andHeron, J.P. (1998)Applying anXC6200 to real-time image processing. IEEEDesign&Test

of Computers, 15 (1), 30–38. doi: 10.1109/54.655180

Wu, K., Otoo, E. and Shoshani, A. (2005) Optimizing connected component labelling algorithms, inMedical Imaging

2005: Image Processing, San Diego, California, USA (15–17 February, 2005), vol. 5747, SPIE, pp. 1965–1976.

doi: 10.1117/12.596105

Xilinx (2001) VirtexTM 2.5V Field Programmable Gate Arrays, Vol. DS003 (v2.5), Xilinx Inc.

Xilinx (2007a) Virtex-II Platform FPGAs: Complete Data Sheet, Vol. DS031 (v3.5), Xilinx Inc.

Xilinx (2007b) Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet, Vol. DS083 (v4.7),

Xilinx Inc.

Xilinx (2008a) Spartan-3 FPGA Family Data Sheet, Vol. DS099 (v2.4), Xilinx Inc.

Xilinx (2008b) Spartan-II FPGA Family Data Sheet, Vol. DS001 (v2.8), Xilinx Inc.

Xilinx (2008c) Virtex-4 FPGA User Guide, Vol. UG070 (v2.6), Xilinx Inc.

Xilinx (2008d) Virtex-5 FPGA User Guide, Vol. UG190 (v4.4), Xilinx Inc.

Xilinx (2008e) Spartan-3A DSP FPGA Family Data Sheet, Vol. DS610 (v2.1), Xilinx Inc.

Xilinx (2008f) ChipScope Pro 10.1 Software and Cores User Guide, Vol. UG029, Xilinx Inc.

Xilinx (2009a) Spartan-6 Family Overview, Vol. DS160 (V1.0), Xilinx Inc.

Xilinx (2009b) Spartan-3AN FPGA In-System Flash User Guide, Vol. UG333 (v2.1), Xilinx Inc.

Xilinx (2009c) AccelDSP Synthesis Tool User Guide, Vol. UG634 (v11.4), Xilinx Inc.

Xilinx (2010a) 7 Series Overview, Vol. DS150 (V1.0), Xilinx Inc.

Xilinx (2010b) Spartan-6 FPGA CLB User Guide, Vol. UG384 (v1.1), Xilinx Inc.

Xilinx (2010c) Spartan-6 FPGA Memory Controller, vol. UG388 (v2. 1), Xilinx Inc.

Xilinx (2010d) Virtex-6 Family Overview, Vol. DS150 (V2.2), Xilinx Inc.

Yamada, A., Nishida, K., Sakurai, R., Kay, A., Nomura, T. and Kambe, T. (1999) Hardware synthesis with the Bach

system. 1999 IEEE International Symposium on Circuits and Systems (ISCAS ’99), Orlando, Florida, USA, vol. 6

(30 May–2 June, 1999), pp. 366–369. doi: 10.1109/ISCAS.1999.780171

Yao, L., Feng,H., Zhu, Y., Jiang, Z., Zhao, D., and Feng,W. (2009)An architecture of optimised SIFT feature detection

for an FPGA implementation of an image matcher. International Conference on Field-Programmable Technology

(FPT 2009), Sydney, Australia (9–11 December, 2009), pp. 30–37. doi: 10.1109/FPT.2009.5377651

Yu, N., Kim, K. and Salcic, Z. (2004) A new motion estimation algorithm for mobile real-time video and its FPGA

implementation. IEEE Region 10 Conference (TENCON), Chiang Mai, Thailand, vol. 1 (21–24 November, 2004),

pp. 383–386. doi: 10.1109/TENCON.2004.1414437

Yuen, H.K., Princen, J., Illingworth, J. and Kittler, J. (1990) Comparative study of Hough transformmethods for circle

finding. Image and Vision Computing, 8 (1), 71–77. doi: 10.1016/0262-8856(90)90059-E

Zahn, C.T. and Roskies, R.Z. (1972) Fourier descriptors for plane closed curves. IEEE Transactions on Computers,

21 (3), 269–281. doi: 10.1109/TC.1972.5008949

472 References

Zhang, D. and Lu, G. (2002) A comparative study of Fourier descriptors for shape representation and retrieval. 5th

Asian Conference on Computer Vision, Melbourne, Australia (23–25 January, 2002), pp. 646–651.

Zingaretti, P., Gasparroni, M. and Vecci, L. (1998) Fast chain coding of region boundaries. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 20 (4), 407–415. doi: 10.1109/34.677272

Zitova, B. and Flusser, J. (2003) Image registration methods: a survey. Image and Vision Computing, 21 (11),

977–1000. doi: 10.1145/146370.146374

Ziv, J. and Lempel, A. (1977) A universal algorithm for sequential data compression. IEEE Transactions on

Information Theory, 23 (3), 337–343. doi: 10.1109/TIT.1977.1055714

Zoss, R., Habegger, A., Bandi, V., Goette, J. and Jacomet, M. (2011) Comparing signal processing hardware-synthesis

methods based on the Matlab tool-chain, in 6th International Symposium on Electronic Design, Test and

Applications, Queenstown, New Zealand, pp 281–286 (17–19 January, 2011). doi: 10.1109/DELTA.2011.58

References 473

Index

Page numbers appearing in bold refer to definitions or significant sections within the document where the topic is

covered in some depth (for example section headings).

A/D conversion 1, 4, 6, 18, 38, 133, 195, 378

A|RT 67

ABAX 47, 115

Achronix 46, 90

Actel 48

adaptive coding 342

adaptive histogram equalisation 260–61

adaptive thresholding See thresholding

affine transformation 153, 279, 293, 294, 297

algorithm development 69, 78, 79, 81–6, 101

environment 82

aliasing 279, 321, 330, 379

Altera 38–44, 74, 117, 410, 412

ALU 12, 21, 50, 51, 88, 97, 223

Amdahl’s law 14

anti-alias 14, 379

Apex20K 38

apodization function 324

approximation components 329, 330, 335

arbitration 101, 123, 124, 127–30, 154, 390, 392,

399, 411

architecture selection 79, 86–96

Arithmetic coding 341–2

Arria 43

Artix 38

ASC 65

ASIC 24, 46, 71

associative memory 122, 287

asymmetric signed digit 137

AT40K 50

Atmel 49

Axcelerator 48

Bach-C 69

background model 168–70

background subtraction 82, 168, 271, 435, 437

bandwidth constraints 13, 91, 101, 113–8, 154,

277, 287, 289, 334, 346, 365, 369, 372, 373,

403, 409, 421

bank switching 91, 114, 126, 220, 278, 281, 327, 354,

363, 390

barrel shift 143, 341

Bayer pattern 5, 378, 384–7

Bayesian classification 85, 228–9

bin sort 368

binary search 205, 212, 258

binary tree 121

binning 379

bipartite tables 141–2

bit-reversed 258, 312, 313

bit-serial 64, 145, 152, 259, 372

blemish 9, 80, 175

blob detection 343–75

block RAM 28, 33, 105, 116, 154, 193, 261, 273, 281,

287, 327, 372, 416, 437

Booth multiplication 138

bottleneck problem 278

bounding box 93, 104, 123, 343–6, 347, 352, 357, 375,

415, 417

B-splines 290

bubble sort 16, 255, 256

busses 29, 37, 46, 65, 88, 123, 124–5, 127, 131, 199,

395, 412

cache 13, 17, 28, 55, 70, 88, 90, 113, 116–8, 122, 128,

278, 287, 289, 328, 391, 400, 401, 423

row buffer 117–8, 233–41, 243, 248, 261, 358,

362, 423

calibration 83, 172, 178, 195, 295, 305, 419–21,

434

Design for Embedded Image Processing on FPGAs, First Edition. Donald G. Bailey.

� 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd.

camera See also sensor

analogue 6, 51, 378, 383

single chip 5, 6, 384

three chip 5

Camera Link 6, 51, 381

Canny edge detector 251

canonical signed digit 137, 157, 246

carry propagation 28, 98, 109, 137, 146, 150, 342

carry save adder 98, 109, 306

carry select adder 41, 98

Catapault C 71

census transform 306

centre of gravity 250, 295, 347, 351, 352, 356, 373,

374, 429

chain code 8, 92, 101, 343, 347–52, 353, 366, 374, 375

feature extraction 350–52

change detection 155, 167

character generation 391–2

Chinese remainder theorem 137, 432

CIE L�a�b� 190–92, 264

CIE L�u�v� 190–192, 264

CIE xyY 188–90

CIE XYZ 188–92

circular buffer 117, 118, 235

city block distance 225, 231, 359, 360, 361

classification 2, 8, 10, 80, 85, 175, 211, 219, 224, 229,

231, 255, 406

unsupervised 85

classification failure 86

clock domain 30, 32, 62, 111–3, 127, 378, 394, 397,

411, 413, 417

closing 265–9, 272, 434, 435, 437, 438

clustering 85, 116, 226, 228

CMYK 179–80

coding 3, 182, 183, 306, 326, 333, 336–42

collimator 4

colour 5, 83, 175–92, 219, 222, 283, 357, 378

balancing 172, 220, 227

classification 222, 228

constancy 194

conversion 6, 93, 172, 176–92, 220, 337, 415

correction 2, 193–7, 226

detection 8, 188, 429

enhancement 188, 197

histogram 227, 230, See also histogram

indexing 229–30

normalisation 127, 416

segmentation 226–9, 358, 416

thresholding 104, 181, 192–3, 226–7, 416

tracking 103, 415–8

colour filter array See Bayer pattern

colour filtering See filter

colour profile 178

common sub-expression 246, 247, 437

communicating sequential processes See CSP

Compaan / Laura 72

compensated CORDIC 146–7, 149, 314, 431

complex multiplication 314

compositing 173

compression See coding

computational architecture 66, 79, 87, 89–92, 96, 100

computer vision 3

concavity analysis 83, 352

concurrency 56, 60, 61, 64, 68, 71, 76, 90, 97, 110,

122, 125

configuration 31, 36, 47, 48, 88, 95, 104, 105, 130–32,

377, 397, 409, 410

configuration file 23, 31, 37, 40, 43, 45, 51, 54, 69, 102,

402, 419

configuration read-back 32

conflict arbitration See arbitration

connected components

analysis 100, 343, 356–8, 366, 420

labelling 8, 90, 93, 227, 352–9, 366, 421

contour integration 351

contouring 161, 193

contouring artefacts 272, 280

contrast enhancement 2, 8, 155–8, 162, 171, 181, 206,

210, 260, 434, 437

contrast normalisation 82, 206

convex hull 10, 82, 84, 215, 216, 352

co-occurrence matrix 231, 232

CORDIC 68, 142–50, 187, 226, 250, 251, 263, 296,

314, 322, 372, 423, 431, 433

correlation 85, 172, 181, 192, 222, 231, 269, 271,

299–300, 302, 306, 335, 336, 338, 352, 429

normalised 173

phase 301

covariance 85, 222, 357, 409

CPLDs 23

CPU 12, 62, 67, 87, 94, 97, 100, 131, 383

CSP 67, 70, 110, 126, 154

cubic spline See interpolation

cumulative histogram See histogram

custom instructions 88, 94

custom processor 87, 95, 421

Cyclone 38–42, 117

Cypress 51

Dadda adder tree 98

dataflow 9, 25, 66, 69, 73–4, 91, 92, 109, 411

DDR 30, 95, 115

De Morgan’s theorem 21, 99, 264

deadlock 111, 129

deblurring 2, 243, 254, 262, 320

debugging 32, 36, 52, 66, 71, 89, 94, 95, 102, 104–6,

109, 377, 387, 391, 402, 405–14

decimation in frequency 313, 314, 315

decimation in time 312

decision tree 85

476 Index

delay locked loop 31

demosaicing See Bayer pattern

design flow 53, 72, 74, 101–102

design patterns 154

detail components 329, 330, 335

device driver 89, 95, 97, 101, 105, 377, 383

digital image 2

digit-serial 152

Dijkstra’s algorithm 366

dilation 264–70, 346, 365, 437

Dime-C 71

discrete cosine transform 325–38

distance transform 174, 343, 359–66, 367, 370, 375

chamfer 360–62, 366

Euclidean 362–5

geodesic 365–6

distortion correction 8, 76, 83, 173, 275, 284, 289, 378,

384, 418–24

DMA 18, 88, 380, 383

domain of convergence 144, 145, 147, 148

double buffering 114, 390

double differencing 167

DSP builder 73

dual-port 28, 34, 37, 38, 40–42, 44, 45, 47–50, 100,

112, 117, 140, 200, 208, 220, 235, 281, 284, 287,

327, 334, 344, 355, 369, 373, 416, 423

DVI 52, 389–90, 402

dynamic memory 52, 89, 115, 118, 401

dynamic reconfiguration 88, 130, 292, 377

EasyPath 25

EBCOT 339

Eclipse 50

edge detection 241–3, 263, 357, 369, 373, 438

edge enhancement 2, 243

EDIF 53, 63–5, 69

EEPROM 22

eigen-faces 224

eigen-image 224

eigenvectors 223, 224

embedded system 12, 25, 32, 54, 81, 95, 154, 377,

399, 439

enclosing rectangle 84, 352

enhancing 254

entropy 206, 213, 215, 218, 231, 340

entropy coding 339, 340–42

epipolar lines 275, 306

erosion 264–70, 346, 360, 417–9, 437

error diffusion 271–3

Ethernet 30, 382–3, 398–9, 403

Euclidean distance 192, 223, 225, 263, 359, 360

Euclidean distance transform 362–5, 366

Euler identity 150, 310

Euler number 351

exponential 138, 150

fabric 26, 28, 30, 37, 87, 98, 247, 377, 381

fabric RAM 28, 33, 34, 100, 105, 112, 261, 292, 327,

334, 344, 381

false colour 175–6

feature detection 233, 295–6, 305, 371

feature matching 295, 297, 299, 303

feature vector 84, 86, 352

features 8, 10, 81, 83, 224, 231, 241, 265, 295, 303,

323, 328, 335, 347, 350, 356, 365, 370, 373, 385

FFT 154, 311–8, 322, 326, 401

FIFO buffer 17, 28, 34, 41, 48, 62, 65, 71, 72, 91, 100,

110, 112, 116, 118, 125, 154, 163, 280, 287, 362,

364, 366, 367, 373, 380, 391, 411

filter 233–75

anti-alias 279, 282, 426

box 239, 246, 247, 249, 260, 271, 284, 292

colour 5, 224, 261–4, 270, 273

derivative 303

DoG 242, 252, 295

edge detection 8, 66, 83, 233, 241–3, 249, 254

edge enhancement 83, 219, 228, 233, 243, 249,

254, 262

edge orientation 250, 373

frequency domain 318–21

gated 249, 254

Gaussian 240–41, 246–7, 271, 295

inverse 320–21

kernel 239, 240, 241, 242, 246, 318

line detection 233

linear 16, 93, 206, 239–48, 273, 309, 318–21

LoG 241, 252

maximum 253, 258–9, 269

median 9, 153, 224, 236, 253, 262, 383

minimum 253, 258–9, 269, 435

morphological 93, 100, 104, 227, 264–70, 273, 360,

435, 437

noise 8, 82, 83, 172, 233, 239–41, 248, 249, 253,

264, 319, 346, 369

optimal 304–305, 320

polyphase 331

rank 16, 236, 252–9, 261, 273

separable 100, 154, 245–6, 247, 258, 266, 296

symmetric 244, 246, 247, 320, 330

temporal 170, 383, 430

trimmed 248, 261

finite impulse response 239, 291, 329, 330

finite state machine 19, 27, 55–6, 63, 72, 74, 95, 120,

267, 270, 394

Firewire 51, 380, 402

fixed-point 65, 67, 71–3, 133, 135–7, 182, 246, 291,

298, 410, 411

flash memory 31, 37, 45, 49, 54, 89, 95, 104, 402

floating-point 13, 62, 65, 67, 88, 134, 136, 182, 410

flood fill 353

flushing 13, 56, 76, 109, 110, 237, 238, 411

Index 477

fold-over 279

forward mapping 275–82, 293, 418, 426, 427

Fourier correlation 301–302

Fourier descriptors 84, 352

Fourier transform 90, 239, 240, 310–25, 328, 329, 373,

430, 431, 433

foveal vision 424–9

FPLIC 50

fractal 83, 350

frame buffer 11, 52, 89, 91, 92, 100, 104, 115, 163, 197,

278, 364, 390, 400, 409, 436

frame grabber 6, 18, 381

frame rate 6, 11, 18, 81, 165, 170, 374, 378, 379, 380,

413, 429

conversion 114, 384

frequency response 239, 318, 320

fuse-programmable 21

fuzzy representation 269

gamma transformation 158, 162, 177, 196, 197

Gaussian mixture model 169, 213

geodesic distance 365

geometric median 225

glue logic 19, 23, 27

Goertzel’s algorithm 324–5

GPU 14, 67

guard bit 45, 135, 143, 145, 153, 166, 244, 293, 410

Haar wavelet 331

Handel-C 67–9, 74, 77, 101, 109, 316, 354

HardCopy 25

hardware breakpoints 105, 410

hardware engineering 64, 78, 79

Harvard architecture 13

hash table 121–2, 297, 342

Haydn-C 69

HDL Coder 73

heterodyne imaging 430

HIDE 64

histogram 104, 153, 160, 199–232, 255, 296, 323, 341,

374, 434, 438

2D 220, 226, 227, 229, 231, 232

back-projection 230

colour See colour

cumulative 204, 205, 212, 214, 218, 257, 260, 368

inverse cumulative 205

multi-dimensional 219–32, 371

histogram equalisation 83, 158, 181, 206–210, 219,

260–61

histogram shaping 209, 408

HLS 184–6, 193, 197

homodyne imaging 430

homogeneity 231

horizontal blanking 5, 111, 127, 237, 281, 287, 355,

387, 422, 439

Horner’s method 141

hosted configuration 88, 103

Hough transform 83, 298, 343, 370–74, 375

circle 373–4

generalised 374

line 371–3

HSV 184–8, 193, 197, 226, 264

Huffman coding 340, 342

human visual system 82, 156, 175–7, 180, 181, 242,

336, 337, 424

hyperbolic functions 142, 148

I2C 379, 389, 390, 395–7

ICAP port 131, 410

iCE65 47

IGLOO 48

illumination 5, 9, 83, 172, 177, 188, 192, 193–4, 219,

292, 299, See also lighting

image

analysis 2, 83, 211

boundary 236–9, 280, 286, 330, 365

coding See coding

definition 2

enhancement 2

fusion 335

processing 2

reconstruction See reconstruction

restoration See restoration

Impulse C 70

incremental update 153, 203, 214, 218, 292, 293, 363,

372, 373, 420, 422

infinite impulse response 239, 290

inspection 10, 11, 12, 80

instruction pipelining 13, 61, 109

interconnect 18, 23, 28, 258, 399

interlaced 6, 378, 383–4

interpolation 280, 281, 282, 285–92, 321–2, 329, 383

bicubic 288–9, 291, 292, 421

bilinear 284, 286–8, 289, 292, 386, 421, 423

cubic spline 290–92

kernel 285, 288, 292, 304

linear 290, 385

nearest neighbour 285, 290, 385

optimal 304

sinc 288, 321

tri-linear 283

JHDL 63

JPEG 326, 337–41

JPEG2000 180, 182, 337–9

JTAG 31, 40, 45

Kalman filter 85, 429

keyboard 395

Khoros 73, 75

478 Index

Kintex 38

K-means clustering 85

label 8, 123, 160, 192, 201, 227, 228, 417, 420

labelling 174, 343–75, 391

LabVIEW 74

laser scanner 4

latency 15, 17, 51, 80, 81, 100, 109, 138, 152, 237, 278,

318, 333, 391, 400

Lattice Semiconductor 44–6

LatticeECP 44

LatticeSCP/M 46

LatticeXP 45

leaf 120

lens 4, 76, 161, 171, 320, 418, 425

distortion See distortion

lifting scheme 316, 332–3

lighting 10, 80–83, 85, 131, 167, 226, 406, 433,

See also illumination

diffuse 9

structured 81

linear feedback shift register 407

linear recurrence generator 406

linked list 119–20, 121, 122, 348, 368

Linux 95, 97, 100, 400

logarithm 135, 138, 149, 213, 215, 302

logarithmic number system 135–6, 372

logic analyser 45, 105, 410

logic cell 27, 33, 34, 38, 97, 99, 117

logical parallelism See parallelism

look-ahead carry 98

lookup table 18, 22, 27, 97, 138–42, 151,

162–3, 164, 176, 193, 208, 268, 280, 289,

340, 341, 354, 355

2D 227

bipartite 141–2

interpolated 139–41, 142, 292, 408, 422, 423

loop unrolling 16, 25, 61, 67, 69–72, 90, 91, 93, 98,

109, 234

LVCMOS 29

LVDS 30, 381

LVTTL 29

machine vision 3, 11, 81, 380, 433–9

Mahalanobis distance 223

masking 155, 169, 173–4, 302, 319, 320,

392, 419

mask-programmable 21

massively parallel 16, 18, 91–2

MATCH 71

MathStar 50

matrix inversion 290

matrix multiplication 181, 189

matrix operations 72, 90, 223, 298

maximal length sequences 407

medial axis 365

median filter See filter

medical imaging 3

memory refresh 89, 115, 401

metastability 111, 112, 394, 406, 414

MicroBlaze 88, 297

minimax polynomial 150

minimum convex polygon 352

minterm 21

mip-map 283

Mitrion-C 67

MMX 13

modelling 9, 56, 64, 74, 82, 168, 170, 172, 213, 292,

297–9, 384, 418

motion compensation 306, 336, 337

mouse 394–5

MPEG 338, 374

multipartite tables 141–2, 422

multi-phase 76, 115, 127, 154, 244, 255, 287, 414

multiplexer tree 23

NAND flash 402

NAPA C 70

neural network 85, 86

Newton–Raphson 151

NIOS 38, 88

noise reduction 2, 164, 233, 239–41, 248, 253,

261, 335

non-restoring division 98, 138, 148, 428

NOR flash 402

normalise 9, 83, 167, 172, 275

normalised floating-point 134, 136

null pointer 119

Nyquist sampling 321

object tracking 85, 94, 131, 379, 415–8, 424, 429

offset binary 133, 134

one’s complement 158, 171, 221, 306, 437

opening 264–9, 346, 435, 438

optical flow 306

OR decomposition 270

panorama 173

parallelism 14–7, 55, 62, 73, 87, 91, 97

logical 16, 25

spatial 15, 17, 25

temporal 15, 17

Partial reconfiguration See reconfiguration

pattern recognition 3, 424, 429

PCI express 30, 52, 399–400, 403, 412

peak detection 206, 213, 226, 241, 296, 300, 370, 371,

373, 374

perspective distortion 421

perspective transformation 275, 283, 293, 294

phase locked loop 31, 399

Index 479

phase shear 323

phase unwrapping 322

PHY 30, 42, 46, 380, 383, 398

picoBlaze 95

piecewise constant 300

piecewise cubic 288, 290

piecewise linear 139

piecewise polynomial 136

pinhole sensor 3

pipeline 14, 15, 17, 25, 27, 56, 66, 76, 89, 107–109,

115, 411, 417

pixel 2

PixelStreams 74, 75, 110

place and route 21, 24, 33, 53, 63, 69, 70, 86, 102,

413, 414

point operation 18

polynomial approximation 141, 151

polyphase filters See filter

power 14, 23, 26, 30, 52, 63, 81, 132

dynamic 32

static 32

PowerPC 36, 94

preprocessing 8, 83–4, 85, 161, 171, 271, 343

Prewitt filter 66, 249

priming 56, 76, 109, 110, 237, 287, 389, 411, 424

principal components analysis 85, 223–4

priority encoder 120, 128, 205, 392

ProASIC3 48

problem knowledge 81

problem specification 79–81, 86, 414

programmable array logic 22

progressive scan 6, 383

protocol stack 94, 383, 398, 399

PS2 protocol 393–5

pyramid

image 283, 284, 300, 303, 305, 425

QDR 41

quad-port 37

quadratic convergence 151

quality factor 339

quantisation 2, 164, 210, 220, 221, 317, 326, 331, 332,

338–9, 350, 372

error 2, 272, 298, 337, 338

noise 2, 165, 338, 352

table 339

Quartz 63

QuickLogic 50

random access processing 90–91, 92, 110, 114, 155,

287, 347, 353, 366, 390, 401

random number generators 406–409

range imaging 429

rational approximation 151

raw format 6

readback 36, 43, 105, 131

real-time 3, 11, 12, 14, 19, 51, 64, 78, 80, 81, 96, 100,

104, 105, 107, 170, 306, 307, 377, 383, 386, 424,

425, 433

reciprocal 99, 135

recognition 8

face 82, 224

object 224

pattern See pattern recognition

reconfigurability

compile-time 130

partial 32, 36, 40, 41, 43, 44, 50, 130, 131, 154

run-time 130

reconstruction 2, 12

redundancy 336

redundant arithmetic 146, 150

redundant representation 137–8

region 8

region growing 8

region of interest 379

region of support 285, 288, 289, 290

registration 166, 172, 173, 175, 294–308, 322–3,

335, 429

Remez’s exchange algorithm 141, 150

remote sensing 3, 175

renormalisation 135, 144, 341

requirements analysis 80

residue number system 136–7, 432

resource constraints 71, 101, 122–31, 409

resource pool 123

restoration 2

retiming 93, 109

reverse mapping 275, 281, 282–4, 292–4, 418, 421,

426, 427

reversible colour transform 182, 337

RGB 6, 7, 177–8, 179–82, 184–90, 192, 194, 220, 224,

229, 273, 336, 337, 385, 390, 415

RGB565 178, 415

ripple carry 41, 98, 109

RISC architecture 13

robot vision 11

ROCCC 70

RocketIO 36

rolling shutter 378, 384

root 120

rotation

image 275, 276, 278, 284, 289, 302,

310, 374

invariant 230, 352, 424

rotation mode 143–9, 431

row buffer See cache

RS-232 397–8

RTL 54, 57, 61, 71

run length coding 93, 340, 341, 343, 346, 347, 349,

350, 355, 359

480 Index

SA-C 65, 67

salt and pepper noise 253

sampling 2

scale invariant 295, 352, 424

scale invariant feature transform 295

segmentation 8, 9, 81, 83–4, 155, 188, 226–9, 232, 343,

352, 369, 415

segmentation failure 85

self-filter 319

semaphore 128–9

sensor See also camera

CCD 4

CMOS 4, 379, 384, 402, 425

Foveon 5

separability 154, 250, 268, 277, 286, 309, 326, 365

separable median 260

separaility 334

SERDES 30, 36, 41, 42, 45, 48, 382, 390, 403

serial peripheral interface 397

series decomposition 246, 267

SGLDM 231–2

shape matching 352, 365

signal skew 26, 30, 399, 400, 413

signal to noise ratio 5, 164, 165, 248, 321

signed digit 64, 137

significand 134

sign-magnitude 132, 134, 135

SiliconBlue 47

SIMD architecture 16

similarity 166, 172, 299

histogram 219, 229

simple dual-port See dual-port

Simulink 73

single stepping 105

singular value decomposition 246

sink driven 107, 109, 110

skeleton 365

Skipping 379

smart camera 26, 433

Sobel filter 93, 249–50

software engineering 61, 78, 79, 97

sorting network 16, 253, 255–9

source driven 107, 109, 110

Spartan 34–8

spatial frequency 310

spatial parallelism See parallelism

SPC 70

spectral leakage 324

Speedster 46, 90

square root 149, 151, 169, 173, 203, 213, 218, 263,

296, 362, 422

sRGB 177, 190

SRT division 98, 138

stack 62, 118–9, 121, 353, 355, 358, 364

stack filter 257

stalling 14, 69, 76, 88, 109, 110, 125, 127

standalone configuration 88, 103, 377, 412

StateCAD 72

static memory 23, 31, 52, 115, 400

static timing analysis 413

stereo imaging 275, 306, 381, 429

Stratix 40–44, 117

stream processing 17, 25, 89–90, 92, 100, 103, 107,

113, 117, 123, 127, 153, 163, 278, 292, 334, 343,

349, 360, 389, 390, 424

Streams-C 70

strip-mining 93

structuring element 264, 265, 266, 268, 269, 270, 346,

360, 365

sub-threshold leakage 33

subtraction 10

successive mean quantisation transform 210

sum of absolute differences 166, 299, 304, 306, 337

sum of squared differences 166, 173, 299

summed area table 283

super-resolution 2, 306, 321, 335

support vector machine 85, 86

surface defect 9

synchronisation 15, 69, 95, 110–11, 115, 120, 127, 154,

397, 409, 411

buffer 91, 334

signal 26, 29, 112, 413

video 5, 105, 378, 387, 390

synchroniser 111

synchronous 12, 15, 25, 30, 54, 62, 90, 109, 110, 154,

394, 413

synthesis 53, 57, 60, 61

System Generator 73

SystemC 64, 71

systolic array 16, 90, 152, 257, 342

Tabula 47, 115

Taylor series 145, 288, 302, 303, 418

TCP/IP 94, 95, 383, 398, 399

template matching 269, 299, 306, 365, 374

temporal parallelism See parallelism

test bench 57, 72, 97, 406, 409, 411

texture 9, 83, 167, 231–2, 323, 346

threshold decomposition 257, 258, 261, 269

threshold selection 160, 206, 211–9, 255

thresholding 8, 10, 83, 93, 100, 159–61, 162, 167,

192–3, 199, 201, 252, 257, 335, 343, 365, 419, 429

adaptive 160, 171, 219, 271–2, 295, 437

colour See colour

multi-level 161, 255, 358

timing closure 412–4

timing constraints 62, 71, 90, 91, 100, 102, 104,

107–13, 127, 175, 258, 412, 413, 414

token passing 62, 68, 110, 427

training 85, 86, 116, 228, 229

Index 481

Transmogrifier C 70

transpose buffer 327

transpose structure 243, 244, 246, 259, 270, 331

tree 8, 120–21, 297, 339, 340

trigonometric functions 142, 150

triple buffering 115

Tukey window 324

tuning 102–104, 130, 402, 412, 416

twiddle factors 312, 313, 316

two’s complement 132, 134, 306, 394

USB 51, 97, 380, 393, 397, 398, 402

vector median 225, 261

vectoring mode 143–8, 431

Verilog 60, 65, 71, 77, 101

vertical blanking 6, 111, 127, 219, 237, 343,

388, 424, 439

VERTIPH 74–7

VGA resolution 25, 374, 388

VHDL 57–60, 63–73, 77, 101, 402

video coding See coding

video timing 5

vignetting 171, 172, 174, 292

Virtex 34–8, 63, 117

VLIW architecture 13

von Neumann bottleneck 12

voxel 2

vVHDL 73

Wallace adder tree 98

warping 154, 275, 278, 279, 280, 282, 284, 293, 365

watershed 83, 343, 365, 366–70, 375

wavelet

analysis 328, 333

filters 236, 329, 330–34

synthesis 329

transform 328–36, 338, 386

web interface 95, 399

Weiszfeld’s algorithm 225

Wiener filter 320, 321

Xilinx 27, 33–8, 63, 72, 74, 103, 130, 410, 415

YCbCr 6, 104, 127, 180–83, 187, 192, 226, 229, 264,

337, 415

YIQ 180–81, 224

YUV 180–84, 224, 228, 264, 416

ZBT memory 115, 400, 437

zero-crossing 252

zooming 275, 276, 289, 292

482 Index

	front matter
	color plate
	1. Image Processing
	2. Field Programmable Gate Arrays
	3. Languages
	4. Design Process
	5. Mapping Techniques
	6. Point Operations
	7. Histogram Operations
	8. Local Filters
	9. Geometric Transformations
	10. Linear Transforms
	11. Blob Detection and Labelling
	12. Interfacing
	13. Testing, Tuning and Debugging
	14. Example Applications
	References
	Index

