DESIGN FOR EMBEDDED
IMAGE PROCESSING
ON FPGAS

DESIGN FOR EMBEDDED
IMAGE PROCESSING
ON FPGAS

Donald G. Bailey
Massey University, New Zealand

<IEEE

John Wiley & Sons (Asia) Pte Ltd

This edition first published 2011
© 2011 John Wiley & Sons (Asia) Pte Ltd

Registered office
John Wiley & Sons (Asia) Pte Ltd, 1 Fusionopolis Walk, #07-01 Solaris South Tower, Singapore 138628

For details of our global editorial offices, for customer services and for information about how to apply for permission
to reuse the copyright material in this book please see our website at www.wiley.com.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as expressly
permitted by law, without either the prior written permission of the Publisher, or authorization through payment of the
appropriate photocopy fee to the Copyright Clearance Center. Requests for permission should be addressed to the
Publisher, John Wiley & Sons (Asia) Pte Ltd, 1 Fusionopolis Walk, #07-01 Solaris South Tower, Singapore 138628,
tel: 65-66438000, fax: 65-66438008, email: enquiry @wiley.com.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective
owners. The Publisher is not associated with any product or vendor mentioned in this book. This publication is
designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the
understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert
assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Bailey, Donald G. (Donald Graeme), 1962-
Design for embedded image processing on FPGAs / Donald G. Bailey.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-82849-6 (hardback)
1. Embedded computer systems. 2. Field programmable gate arrays. I. Title.
TK7895.E42B3264 2011
621.39°9-dc22 2011002991

Print ISBN: 978-0-470-82849-6
ePDF ISBN: 978-0-470-82850-2
oBook ISBN: 978-0-470-82851-9
ePub ISBN: 978-0-470-82852-6
Mobi ISBN: 978-1-118-07331-5

Set in 9/11 pt Times New Roman by Thomson Digital, Noida, India

Contents

Preface
Acknowledgements

1 Image Processing
1.1 Basic Definitions
1.2 Image Formation
1.3 Image Processing Operations
1.4 Example Application
1.5 Real-Time Image Processing
1.6 Embedded Image Processing
1.7 Serial Processing
1.8 Parallelism
1.9 Hardware Image Processing Systems

2 Field Programmable Gate Arrays

2.1 Programmable Logic

2.1.1 FPGAs vs. ASICs
2.2 FPGAs and Image Processing
2.3 Inside an FPGA

2.3.1 Logic

2.3.2 Interconnect

2.3.3 Input and Output

2.34 Clocking

2.3.5 Configuration

2.3.6 Power Consumption
2.4 FPGA Families and Features

2.4.1 Xilinx

2.4.2 Altera

2.4.3 Lattice Semiconductor

2.4.4 Achronix

2.4.5 SiliconBlue

2.4.6 Tabula

2.4.7 Actel

2.4.8 Atmel

xi

xvii

vi

Contents

249 QuickLogic
2.4.10 MathStar
24.11 Cypress
2.5 Choosing an FPGA or Development Board

3 Languages
3.1 Hardware Description Languages
3.2 Software-Based Languages
3.2.1 Structural Approaches
3.2.2 Augmented Languages
3.2.3 Native Compilation Techniques
3.3 Visual Languages
3.3.1 Behavioural
3.3.2 Dataflow
3.3.3 Hybrid
3.4 Summary

4 Design Process

4.1 Problem Specification

4.2 Algorithm Development
4.2.1 Algorithm Development Process
4.2.2 Algorithm Structure
4.2.3 FPGA Development Issues

4.3 Architecture Selection
4.3.1 System Level Architecture
4.3.2 Computational Architecture
4.3.3 Partitioning between Hardware and Software

4.4 System Implementation
4.4.1 Mapping to FPGA Resources
4.4.2 Algorithm Mapping Issues
4.4.3 Design Flow

4.5 Designing for Tuning and Debugging
4.5.1 Algorithm Tuning
4.5.2 System Debugging

5 Mapping Techniques

5.1 Timing Constraints
5.1.1 Low Level Pipelining
5.1.2 Process Synchronisation
5.1.3 Multiple Clock Domains

5.2 Memory Bandwidth Constraints
5.2.1 Memory Architectures
5.2.2 Caching
5.2.3 Row Buffering
5.2.4 Other Memory Structures

50
50
51
51

53
56
61
63
64
69
72
73
73
74
Tl

79
79
81
82
83
86
86
87
&9
93
96
97
100
101
102
102
104

107
107
107
110
111
113
113
116
117
118

Contents

vii

5.3 Resource Constraints
5.3.1 Resource Multiplexing
5.3.2 Resource Controllers
5.3.3 Reconfigurability
5.4 Computational Techniques
5.4.1 Number Systems
5.4.2 Lookup Tables
54.3 CORDIC
5.4.4 Approximations
5.4.5 Other Techniques
5.5 Summary

6 Point Operations
6.1 Point Operations on a Single Image

6.1.1 Contrast and Brightness Adjustment
6.1.2 Global Thresholding and Contouring
6.1.3 Lookup Table Implementation

6.2 Point Operations on Multiple Images
6.2.1 Image Averaging
6.2.2 Image Subtraction
6.2.3 Image Comparison
6.2.4 Intensity Scaling
6.2.5 Masking
6.3 Colour Image Processing
6.3.1 False Colouring
6.3.2 Colour Space Conversion
6.3.3 Colour Thresholding
6.3.4 Colour Correction
6.3.5 Colour Enhancement
6.4 Summary

7 Histogram Operations

7.1 Greyscale Histogram
7.1.1 Data Gathering
7.1.2 Histogram Equalisation
7.1.3 Automatic Exposure
7.1.4 Threshold Selection
7.1.5 Histogram Similarity

7.2 Multidimensional Histograms
7.2.1 Triangular Arrays
7.2.2 Multidimensional Statistics
7.2.3 Colour Segmentation
7.24 Colour Indexing
7.2.5 Texture Analysis

122
122
125
130
132
132
138
142
150
152
154

155
155
155
159
162
163
164
166
170
171
173
175
175
176
192
193
197
197

199
199
201
206
210
211
219
219
220
222
226
229
231

viii

Contents

8 Local Filters

8.1
8.2

8.3

8.4

8.5
8.6

8.7

8.8

Caching
Linear Filters
8.2.1 Noise Smoothing
8.2.2 Edge Detection
8.2.3 Edge Enhancement
8.2.4 Linear Filter Techniques
Nonlinear Filters
8.3.1 Edge Orientation
8.3.2 Non-maximal Suppression
8.3.3 Zero-Crossing Detection
Rank Filters
8.4.1 Rank Filter Sorting Networks
8.4.2 Adaptive Histogram Equalisation
Colour Filters
Morphological Filters
8.6.1 Binary Morphology
8.6.2 Greyscale Morphology
8.6.3 Colour Morphology
Adaptive Thresholding
8.7.1 Error Diffusion
Summary

9 Geometric Transformations

9.1

9.2
9.3

9.4
9.5

Forward Mapping
9.1.1 Separable Mapping
Reverse Mapping
Interpolation
9.3.1 Bilinear Interpolation
9.3.2 Bicubic Interpolation
9.3.3 Splines
9.3.4 Interpolating Compressed Data
Mapping Optimisations
Image Registration
9.5.1 Feature-Based Methods
9.5.2 Area-Based Methods
9.5.3 Applications

10 Linear Transforms

10.1

Fourier Transform

10.1.1 Fast Fourier Transform
10.1.2 Filtering

10.1.3 Inverse Filtering

10.1.4 Interpolation

10.1.5 Registration

233
233
239
239
241
243
243
248
250
251
252
252
255
260
261
264
264
269
270
271
271
273

275
276
277
282
285
286
288
290
292
292
294
295
299
305

309
310
311
318
320
321
322

Contents ix

10.1.6 Feature Extraction 323

10.1.7 Goertzel’s Algorithm 324

10.2 Discrete Cosine Transform 325
10.3 Wavelet Transform 328
10.3.1 Filter Implementations 330

10.3.2 Applications of the Wavelet Transform 335

10.4 Image and Video Coding 336
11 Blob Detection and Labelling 343
11.1 Bounding Box 343
11.2 Run-Length Coding 346
11.3 Chain Coding 347
11.3.1 Sequential Implementation 347

11.3.2 Single Pass Algorithms 348

11.3.3 Feature Extraction 350

11.4 Connected Component Labelling 352
11.4.1 Random Access Algorithms 353

11.4.2 Multiple-Pass Algorithms 353

11.4.3 Two-Pass Algorithms 354

11.4.4 Single-Pass Algorithms 356

11.4.5 Multiple Input Labels 358

11.4.6 Further Optimisations 358

11.5 Distance Transform 359
11.5.1 Morphological Approaches 360

11.5.2 Chamfer Distance 360

11.5.3 Separable Transform 362

11.5.4 Applications 365

11.5.5 Geodesic Distance Transform 365

11.6 Watershed Transform 366
11.6.1 Flow Algorithms 366

11.6.2 Immersion Algorithms 367

11.6.3 Applications 369

11.7 Hough Transform 370
11.7.1 Line Hough Transform 371

11.7.2 Circle Hough Transform 373

11.7.3 Generalised Hough Transform 374

11.8 Summary 375
12 Interfacing 377
12.1 Camera Input 378
12.1.1 Camera Interface Standards 378

12.1.2 Deinterlacing 383

12.1.3 Global and Rolling Shutter Correction 384

12.1.4 Bayer Pattern Processing 384

Contents

13

14

12.2

12.3

12.4

12.5

Display Output

12.2.1 Display Driver
12.2.2 Display Content
Serial Communication
12.3.1 PS2 Interface
1232 I’C

12.3.3 SPI

12.34 RS-232

12.3.5 USB

12.3.6 Ethernet

12.3.7 PCI Express
Memory

12.4.1 Static RAM
12.4.2 Dynamic RAM
12.4.3 Flash Memory
Summary

Testing, Tuning and Debugging

13.1

13.2

13.3
13.4

Design

13.1.1 Random Noise Sources
Implementation

13.2.1 Common Implementation Bugs
Tuning

Timing Closure

Example Applications

14.1
14.2

14.3

14.4

14.5

14.6

Coloured Region Tracking

Lens Distortion Correction

14.2.1 Characterising the Distortion
14.2.2 Correcting the Distortion
Foveal Sensor

14.3.1 Foveal Mapping

14.3.2 Using the Sensor

Range Imaging

14.4.1 Extending the Unambiguous Range
Real-Time Produce Grading

14.5.1 Software Algorithm

14.5.2 Hardware Implementation
Summary

References

Index

387
387
390
393
393
395
397
397
398
398
399
400
400
401
402
402

405
405
406
409
410
412
412

415
415
418
419
421
424
425
429
429
431
433
434
436
439

441

475

Preface

I think it is useful to provide a little background as to why and how this book came into being. This
will perhaps provide some insight into the way the material is structured, and why it is presented in the
way that it is.

Background

Firstly, a little bit of history. I have an extensive background in image processing, particularly in the areas
of image analysis, machine vision and robot vision, all strongly application-orientated areas. With over
25 years of applying image processing techniques to a wide range of problems, I have gained considerable
experience in algorithm development. This is not only at the image processing application level but also at
the image processing operation level. My approach to an application has usually been more pragmatic
than theoretical — I have focussed on developing image processing algorithms that solved the problem at
hand. Often this involved assembling sequences of existing image processing operations, but occasionally
it required developing new algorithms and techniques to solve particular aspects of the problem. Through
work on machine vision and robotics applications, I have become aware of some of the limitations of
software-based solutions, particularly in terms of speed and algorithm efficiency.

This led naturally to considering FPGAs as an implementation platform for embedded imaging
applications. Many image processing operations are inherently parallel and FPGAs provide program-
mable hardware, also inherently parallel. Therefore, it should be as simple as mapping one onto the other,
right? Well, when I started implementing image processing algorithms on FPGAs, I had lots of ideas, but
very little knowledge. I very soon found that there were a lot of tricks that were needed to create an efficient
design. Consequently, my students and I learned many of these the hard way, through trial and error.

With my basic training as an electronics engineer, I was readily able to adapt to the hardware mindset. [
have since discovered through observing my students, both at the undergraduate and postgraduate level,
that this is perhaps the biggest hurdle to an efficient implementation. Image processing is traditionally
thought of as a software domain task, whereas FPGA-based design is firmly in the hardware domain. To
bridge the gap, it is necessary to think of algorithms not on their own but more in terms of their underlying
computational architecture.

Implementing an image processing algorithm (or indeed any algorithm) on an FPGA, therefore,
consists of determining the underlying architecture of an algorithm, mapping that architecture onto the
resources available within an FPGA and finally mapping the algorithm onto the hardware architecture.
Unfortunately, there is very little material available to help those new to the area to get started. Even this
insight into the process is not actually stated anywhere, although it is implicitly followed (whether
consciously or not) by most people working in this area.

xii Preface

Available Literature

While there are many research papers published in conference proceedings and journals, there are only a
few that focus specifically on how to map image processing algorithms onto FPGAs. The research papers
found in the literature can be classified into several broad groups.

The first focuses on the FPGA architecture itself. Most of these provide an analysis of a range of
techniques relating to the structure and granularity of logic blocks, the routing networks and embedded
memories. As well as the FPGA structure, a wide range of topics is covered, including underlying
technology, power issues, the effects of process variability and dynamic reconfigurability. Many of these
papers are purely proposals or relate to prototype FPGAs rather than commercially available chips.
Although such papers are interesting in their own right and represent perfectly legitimate research topics,
very few of these papers are directly useful from an applications point of view. While they provide insights
into some of the features which might be available in the next generation of devices, most of the topics
within this group are at too low a level.

A second group of papers investigates the topic of reconfigurable computing. Here the focus is on how
an FPGA can be used to accelerate some computationally intensive task or range of tasks. While image
processing is one such task considered, most of the research relates more to high performance (and high
power) computing rather than low power embedded systems. Topics within this group include hardware
and software partitioning, hardware and software co-design, dynamic reconfigurability, communication
between an FPGA and CPU, comparisons between the performance of FPGAs, GPUs and CPUs, and the
design of operating systems and specific platforms for both reconfigurable computing applications and
research. Important principles and techniques can be gleaned from many of these papers, even though this
may not be their primary focus.

The next group of papers is closely related to the previous group and considers tools for programming
FPGAs and applications. The focus here is more on improving the productivity of the development
process. A wide range of hardware description languages have been proposed, with many modelled after
software languages such as C, Java and even Prolog. Many of these are developed as research tools, with
very few making it out of the laboratory to commercial availability. There has also been considerable
research on compilation techniques for mapping standard software languages to hardware. Such
compilers attempt to exploit techniques such as loop unrolling, strip mining and pipelining to produce
parallel hardware. Again, many of these papers describe important principles and techniques that can
result in more efficient hardware designs. However, current compilers are still relatively immature in the
level and kinds of parallelism that they can automatically exploit. They are also limited in that they can
only perform relatively simple transformations to the algorithm provided; they cannot redesign the
underlying algorithm.

The final group of papers focuses on a range of applications, including image processing and the
implementation of both image processing operations and systems. Unfortunately, as a result of page limits
and space constraints, many of these papers give the results of the implementation of various systems, but
present relatively few design details. Often the final product is described, without describing many of the
reasons or decisions that led to that design. Many of these designs cannot be recreated without acquiring
the specific platform and tools that were used, or inferring a lot of the missing details. While some of these
details may appear obvious in hindsight, without this knowledge many were far from obvious just from
reading the papers. The better papers in this group tended to have a tighter focus, considering the
implementation of a single image processing operation.

So while there may be a reasonable amount of material available, it is quite diffuse. In many cases, it is
necessary to know exactly what you are looking for, or just be lucky to find it.

Shortly after beginning in this area, my research students and I wrote down a list of topics and
techniques that we would have liked to have known when we started. As we progressed, our list grew. Our
intention from the start was to compile this material into a book to help others who, like us, were having to
learn things the hard way by themselves. Essentially, this book reflects our distilled experiences in this

Preface xiii

field, combined with techniques (both FPGA design and image processing) that have been gleaned from
the literature.

Intended Audience

This book is written primarily for those who are familiar with the basics of image processing and want to
consider implementing image processing using FPGAs. It accomplishes this by presenting the techniques
and approaches that we wished we knew when we were starting in this area. Perhaps the biggest hurdle is
switching from a software mindset to a hardware way of thinking. Very often, when programming
software, we do so without great consideration of the underlying architecture. Perhaps this is because the
architecture of most software processors is sufficiently similar that any differences are really only a second
order effect, regardless of how significant they may appear to a computer engineer. A good compiler is
able to map the algorithm in the programming language onto the architecture relatively efficiently, so we
can get away without thinking too much about such things. When programming hardware though,
architecture is everything. It is not simply a matter of porting the software onto hardware. The underlying
hardware architecture needs to be designed as well. In particular, programming hardware usually requires
transforming the algorithm into an appropriate parallel architecture, often with significant changes to the
algorithm itself. This is not something that the current generation of compilers is able to do because it
requires significant design rather than just decomposition of the dataflow. This book addresses this issue
by providing not only algorithms for image processing operations, but also underlying architectures that
can be used to implement them efficiently.

This book would also be useful to those who are familiar with programming and applying FPGAs to
other problems and are considering image processing applications. While many of the techniques are
relevant and applicable to a wide range of application areas, most of the focus and examples are taken from
image processing applications. Sufficient detail is given to make many of the algorithms and their
implementation clear. However, [would argue that learning image processing is more than just collecting
a set of algorithms, and there are any number of excellent image processing texts that provide these.
Imaging is a practical discipline that can be learned most effectively by doing, and a software environment
provides a significantly greater flexibility and interactivity than learning image processing via FPGAs.

That said, it is in the domain of embedded image processing where FPGAs come into their own. An
efficient, low power design requires that the techniques of both the hardware engineer and the software
engineer be integrated tightly within the final solution.

Outline of the Contents

This book aims to provide a comprehensive overview of algorithms and techniques for implementing
image processing algorithms on FPGAs, particularly for low and intermediate level vision. However, as
with design in any field, there is more than one way of achieving a particular task. Much of the emphasis
has been placed on stream-based approaches to implementing image processing, as these can efficiently
exploit parallelism when they can be used. This emphasis reflects my background and experience in the
area, and is not intended to be the last word on the topic.

A broad overview of image processing is presented in Chapter 1, with a brief historical context. Many of
the basic image processing terms are defined and the different stages of an image processing algorithm are
identified and illustrated with an example algorithm. The problem of real-time embedded image
processing is introduced, and the limitations of conventional serial processors for tackling this problem
are identified. High speed image processing must exploit the parallelism inherent in the processing of
images. A brief history of parallel image processing systems is reviewed to provide the context of using
FPGAs for image processing.

xiv Preface

FPGAs combine the advantages of both hardware and software systems, by providing reprogrammable
(hence flexible) hardware. Chapter 2 provides an introduction to FPGA technology. While some of this
will be more detailed than is necessary to implement algorithms, a basic knowledge of the building blocks
and underlying architecture is important to developing resource efficient solutions. The key features of
currently available FPGAs are reviewed in the context of implementing image processing algorithms.

FPGA-based design is hardware design, and this hardware needs to be represented using some form of
hardware description language. Some of the main languages are reviewed in Chapter 3, with particular
emphasis on the design flow for implementing algorithms. Traditional hardware description languages
such as VHDL and Verilog are quite low level in that all of the control has to be explicitly programmed.
The last 15 years has seen considerable research into more algorithm approaches to programming
hardware, based primarily on C. An overview of some of this research is presented, finishing with a brief
description of a number of commercial offerings.

The process of designing and implementing an image processing application on an FPGA is described
in detail in Chapter 4. Particular emphasis is given to the differences between designing for an FPGA-
based implementation and a standard software implementation. The critical initial step is to clearly define
the image processing problem that is being tackled. This must be in sufficient detail to provide a
specification that may be used to evaluate the solution. The procedure for developing the image processing
algorithm is described in detail, outlining the common stages within many image processing algorithms.
The resulting algorithm must then be used to define the system and computational architectures. The
mapping from an algorithm is more than simply porting the algorithm to a hardware description language.
Itis necessary to transform the algorithm to make efficient use of the resources available on the FPGA. The
final stage is to implement the algorithm by mapping it onto the computational architecture.

Three types of constraints on the mapping process are: limited processing time, limited access to data
and limited system resources. Chapter 5 describes several techniques for overcoming or alleviating these
constraints. Possible FPGA implementations are described of several data structures commonly found in
computer vision algorithms. These help to bridge the gap between a software and hardware implemen-
tation. Number representation and number systems are described within the context of image processing.
A range of efficient hardware computational techniques is discussed. Some of these techniques could be
considered the hardware equivalent of software libraries for efficiently implementing common functions.

The next section of this book describes the implementation of many common image processing
operations. Some of the design decisions and alternative ways of mapping the operations onto FPGAs are
considered. While reasonably comprehensive, particularly for low level image-to-image transformations,
it is impossible to cover every possible design. The examples discussed are intended to provide the
foundation for many other related operations.

Chapter 6 considers point operations, where the output depends only on the corresponding input pixel in
the input image(s). Both direct computation and lookup table approaches are described. With multiple
input images, techniques such as image averaging and background subtraction are discussed in detail. The
final section in this chapter extends the earlier discussion to the processing of colour images. Particular
topics given emphasis are colour space conversion, colour segmentation and colour balancing.

The implementation of histograms and histogram-based processing are discussed in Chapter 7.
Techniques of accumulating a histogram and then extracting data from the histogram are described in
some detail. Particular tasks are histogram equalisation, threshold selection and using histograms for
image matching. The concepts of standard one-dimensional histograms are extended to multidimensional
histograms. The use of clustering for colour segmentation and classification is discussed in some
detail. The chapter concludes with the use of features extracted from multidimensional histograms for
texture analysis.

Chapter 8 focuses considers a wide range of local filters, both linear and nonlinear. Particular emphasis
is given to caching techniques for a stream-based implementation and methods for efficiently handling the
processing around the image borders. Rank filters are described and a selection of associated sorting
network architectures reviewed. Morphological filters are another important class of filters. State machine

Preface XV

implementations of morphological filtering provide an alternative to the classic filter implementation.
Separability and both serial and parallel decomposition techniques are described that enable more
efficient implementations.

Image warping and related techniques are covered in Chapter 9. The forward and reverse mapping
approaches to geometric transformation are compared in some detail, with particular emphasis on
techniques for stream processing implementations. Interpolation is frequently associated with geometric
transformation. Hardware-based algorithms for bilinear, bicubic and spline based interpolation are
described. Related techniques of image registration are also described at the end of this chapter, including
a discussion of the scale invariant feature transform and super-resolution.

Chapter 10 introduces linear transforms, with a particular focus on the fast Fourier transform, the
discrete cosine transform and the wavelet transform. Both parallel and pipelined implementations of the
FFT and DCT are described. Filtering and inverse filtering in the frequency domain are discussed in some
detail. Lifting-based filtering is developed for the wavelet transform. This can reduce the logic
requirements by up to a factor of four over a direct finite impulse response implementation. The final
section in this chapter discusses the stages within image and video coding, and outlines some of the
techniques that can be used at each stage.

A selection of intermediate level operations relating to region detection and labelling is presented in
Chapter 11. Standard software algorithms for chain coding and connected component labelling are
adapted to give efficient streamed implementation. These can significantly reduce both the latency and
memory requirements of an application. Hardware implementaions of the distance transform, the
watershed transform and the Hough transform are also described.

Any embedded application must interface with the real world. A range of common peripherals is
described in Chapter 12, with suggestions on how they may be interfaced to an FPGA. Particular attention
is given to interfacing cameras and video output devices, although several other user interface and
memory devices are described. Image processing techniques for deinterlacing and Bayer pattern
demosaicing are reviewed.

The next chapter expands some of the issues with regard to testing and tuning that were introduced
earlier. Four areas are identified where an implementation might not behave in the intended manner.
These are faults in the design, bugs in the implementation, incorrect parameter selection and not
meeting timing constraints. Several checklists provide a guide and hints for testing and debugging an
algorithm on an FPGA.

Finally, a selection of case studies shows how the material and techniques described in the previous
chapters can be integrated within a complete application. These applications briefly show the design steps
and illustrate the mapping process at the whole algorithm level rather than purely at the operation level.
Many gains can be made by combining operations together within a compatible overall architecture. The
applications described are coloured region tracking for a gesture-based user interface, calibrating and
correcting barrel distortion in lenses, development of a foveal image sensor inspired by some of the
attributes of the human visual system, the processing to extract the range from a time of flight range
imaging system, and a machine vision system for real-time produce grading.

xvi Preface

_ (C) Image processing operation
I Filter 0 Register

Counter

Constant

[I1 Function block

[Frame buffer

— Single bit signal

= Multi-bit signal (a number)
=}= Signal concatenation

A —(?—B A -(?—B -{= Signal splitting
A-B

A>B D Multiplexer

Figure P.1 Conventions used in this book. Top left: representation of an image processing operation;
middle left: a block schematic representation of the function given by Equation P.1; bottom left:
representation of operators where the order of operands is important. Right: symbols used for various
blocks within block schematics.

Conventions Used

The contents of this book are independent of any particular FPGA or FPGA vendor, or any particular
hardware description language. The topic is already sufficiently specialised without narrowing the
audience further! As a result, many of the functions and operations are represented in block schematic
form. This enables a language independent representation, and places emphasis on a particular hardware
implementation of the algorithm in a way that is portable. The basic elements of these schematics are
illustrated in Figure P.1. 7 is generally used as the input of an image processing operation, with the output
image represented by Q.

With some mathematical operations, such as subtraction and comparison, the order of the operands is
important. In such cases, the first operand is indicated with a blob rather than an arrow, as shown on the
bottom in Figure P.1.

Consider a recursive filter operating on streamed data:

Qn _ {Iny |In_Qn—l| <T (Pl)

On—1 + k(I,—Qy—1), otherwise

where the subscript in this instance refers to the nth pixel in the streamed image. At a high level, this can be
considered as an image processing operation and represented by a single block, as shown in the top left of
Figure P.1. The low level implementation is given in the middle left panel. The input and output, / and Q,
are represented by registers — dark blocks, with optional register names in white; the subscripts have been
dropped because they are implicit with streamed operation. In some instances additional control inputs
may be shown: ck for clock enable, rsT for reset, and so on. Constants are represented as mid-grey blocks
and other function blocks with light grey background.

When representing logic functions in equations, V is used for logical OR and A for logical AND. This is
to avoid confusion with addition and multiplication.

Acknowledgements

I would like to acknowledge all those who have helped me to get me where I currently am in my
understanding of FPGA-based design. In particular, I would like to thank my research students
(David Johnson, Kim Gribbon, Chris Johnston, Aaron Bishell, Andreas Buhler and Ni Ma) who helped
to shape my thinking and approach to FPGA development as we struggled together to work out efficient
ways of implementing image processing algorithms. This book is as much a reflection of their work as it
is of mine.

Most of our algorithms were programmed for FPGAs using Handel-C and were tested on boards
provided by Celoxica Ltd. I would like to acknowledge the support provided by Roger Gook and his team,
originally with the Celoxica University Programme, and later with Agility Design Solutions. Roger
provided heavily discounted licences for the DK development suite, without which many of the ideas
presented in this book would not have been as fully explored.

Massey University has provided a supportive environment and the freedom for me to explore this field.
In particular, Serge Demidenko gave me the encouragement and the push to begin playing with FPGAs.
Since that time, he has been a source of both inspiration and challenging questions. Other colleagues who
have been of particular encouragement are Gourab Sen Gupta and Richard Harris. I would also like to
acknowledge Paul Lyons, who co-supervised a number of my students.

Early versions of some of the material in this book were presented as half-day tutorials at the IEEE
Region 10 Conference (TenCon) in 2005 in Melbourne, Australia, the IEEE International Conference on
Image Processing (ICIP) in 2007 in San Antonio, Texas, USA, and the 2010 Asian Conference on
Computer Vision (ACCV) in Queenstown, New Zealand. I would like to thank attendees at these
workshops for providing valuable feedback and stimulating discussion.

During 2008, I spent a sabbatical with the Circuits and Systems Group at Imperial College London, UK.
I am grateful to Peter Cheung, who hosted my visit, and provided a quiet office, free from distractions and
interruptions. It was here that I actually began writing, and got most of the text outlined at least. I would
particularly like to thank Peter Cheung, Christos Bouganis, Peter Sedcole and George Constantinides for
discussions and opportunities to bounce ideas off.

My wife, Robyn, has given me the freedom of many evenings and weekends over the two years since
then to complete this manuscript. [am grateful for both her patience and her support. She now knows that
field programmable gate arrays are not alligators with ray guns stalking the swamp. This book is dedicated
to her.

Donald Bailey

Figure 6.28 Temporal false colouring. Images taken at different times are assigned to different
channels, with the resultant output showing coloured regions where there are temporal differences

"‘-

u
Jll .l‘#
.
f:ta)"&
--

| Red LUT

Figure 6.29

Pseudocolour or false colour mapping using lookup tables

Figure 6.30 RGB colour space. Top left: combining red, green and blue primary colours; bottom: the
red, green and blue components of the colour image on the top right.

" uEa A BEPREEG A |
R | é.\
i

Figure 6.32 CMY colour space. Top left: combining yellow, magenta and cyan secondary colours;
bottom: the yellow, magenta and cyan components of the colour image on the top right.

Cr

Figure 6.34 YCDbCr colour space. Top left: the Ch—Cr colour plane at mid luminance; bottom: the
luminance and chrominance components of the colour image on the top right.

White
g G Y
L5
H
Gl
Black
Black

Figure 6.36 HSV and HLS colour spaces. Left: the HSV cone; centre: the HLS bi-cone; right: the hue
colour wheel.

Figure 6.37 HSV and HLS colour spaces. Top left: HSV hue colour wheel, with saturation increasing
with radius; middle row: the HSV hue, saturation and value components of the colour image on the top
right; bottom row: the HLS hue, saturation and lightness components.

620

0.0 460 »

0.00.10.2030405060.70.8
X

Figure 6.40 Chromaticity diagram. The numbers are wavelengths of monochromatic light in
nanometres.

1.0
0.9
0.8
0.7
0.6

0.4
0.3
0.2
0.1
0.0

N

0001020304050607080910

Figure 6.41 Device dependent r—g chromaticity.

=

Figure 6.43 Simple colour correction. Left: original image captured under incandescent lights,
resulting in a yellowish-red cast; centre: correcting assuming the average is grey, using Equation
6.86; right: correcting assuming the brightest pixel is white, using Equation 6.88.

Figure 6.44 Correcting using black, white and grey patches. Left: original image with the patches
marked; centre: stretching each channel to correct for black and white, using Equation 6.90; right:
adjusting the gamma of the red and blue channels using Equation 6.91 to make the grey patch grey.

A A
v X v i
L1
\ ' . N
L] L]
0 0 L
L1 L]
r L
0 U 0 U

Figure 7.24 Using a two-dimensional histogram for colour segmentation. Left: U—V histogram using
Equation 6.61; centre: after thresholding and labelling, used as a two-dimensional lookup table; right:
segmented image.

Image Processing

Vision is arguably the most important human sense. The processing and recording of visual data therefore
has significant importance. The earliest images are from prehistoric drawings on cave walls or carved on
stone monuments commonly associated with burial tombs. (It is not so much the medium that is important
here — anything else would not have survived to today). Such images consist of a mixture of both pictorial
and abstract representations. Improvements in technology enabled images to be recorded with more
realism, such as paintings by the masters. Images recorded in this manner are indirect in the sense that the
light intensity pattern is not used directly to produce the image. The development of chemical
photography in the early 1800s enabled direct image recording. This trend has continued with electronic
recording, first with analogue sensors, and subsequently with digital sensors, which include the analogue
to digital (A/D) conversion on the sensor chip.

Imaging sensors have not been restricted to the portion of the electromagnetic spectrum visible to the
human eye. Sensors have been developed to cover much of the electromagnetic spectrum from radio
waves through to X-rays and gamma rays. Other imaging modalities have been developed, including
ultrasound, and magnetic resonance imaging. In principle, any quantity that can be sensed can be used for
imaging — even dust rays (Auer, 1982).

Since vision is such an important sense, the processing of images has become important too, to augment
or enhance human vision. Images can be processed to enhance their subjective content, or to extract useful
information. While it is possible to process the optical signals that produce the images directly by using
lenses and optical filters, it is digital image processing — the processing of images by computer — that is the
focus of this book.

One of the earliest applications of digital image processing was for transmitting digitised newspaper
pictures across the Atlantic Ocean in the early 1920s (McFarlane, 1972). However, it was only with the
advent of digital computers with sufficient memory and processing power that digital image processing
became more widespread. The earliest recorded computer-based image processing was from 1957, when
a scanner was added to a computer at the National Bureau of Standards in the USA (Kirsch, 1998). It was
used for some of the early research on edge enhancement and pattern recognition. In the 1960s, the need
for processing large numbers of large images obtained from satellites and space exploration stimulated
image processing research at NASA’s Jet Propulsion Laboratory (Castleman, 1979). In parallel with this,
research in high energy particle physics led to a large number of cloud chamber photographs that had to be
interpreted to detect interesting events (Duff, 2000). As computers grew in power and reduced in cost,
there was an explosion in the range of applications for digital image processing, from industrial
inspection, to medical imaging.

Design for Embedded Image Processing on FPGAs, First Edition. Donald G. Bailey.
© 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd.

2 Design for Embedded Image Processing on FPGAs

1.1 Basic Definitions

More formally, an image is a spatial representation of an object, scene or other phenomenon (Haralick and
Shapiro, 1991). Examples of images include: a photograph, which is a pictorial record formed from the
light intensity pattern on an optical sensor; a radiograph, which is a representation of density formed
through exposure to X-rays transmitted through an object; a map, which is a spatial representation of
physical or cultural features; a video, which is a sequence of two-dimensional images through time. More
rigorously, an image is any continuous function of two or more variables defined on some bounded region
of a plane.

Such a definition is not particularly useful in terms of computer manipulation. A digital image is an
image in digital format, so that it is suitable for processing by computer. There are two important
characteristics of digital images. The first is spatial quantisation. Computers are unable to easily represent
arbitrary continuous functions, so the continuous function is sampled. The result is a series of discrete
picture elements, or pixels, for two-dimensional images, or volume elements, voxels, for three-
dimensional images. Sampling can result in an exact representation (in the sense that the underlying
continuous function may be recovered exactly) given a band-limited image and a sufficiently high sample
rate. The second characteristic of digital images is sample quantisation. This results in discrete values for
each pixel, enabling an integer representation. Common bit widths per pixel are 1 (binary images),
8 (greyscale images), and 24 (3 x 8 bits for colour images). Unlike sampling, value quantisation will
always result in an error between the representation and true value. In many circumstances, however, this
quantisation error or quantisation noise may be made smaller than the uncertainty in the true value
resulting from inevitable measurement noise.

In its basic form, a digital image is simply a two (or higher) dimensional array of numbers (usually
integers) which represents an object, or scene. Once in this form, an image may be readily manipulated by
a digital computer. It does not matter what the numbers represent, whether light intensity, reflectance,
distance to a point (or range), temperature, population density, elevation, rainfall, or any other
numerical quantity.

Image processing can therefore be defined as subjecting such an image to a series of mathematical
operations in order to obtain a desired result. This may be an enhanced image; the detection of some
critical feature or event; a measurement of an object or key feature within the image; a classification or
grading of objects within the image into one of two or more categories; or a description of the scene.

Image processing techniques are used in a number of related fields. While the principle focus of the
fields often differs, at the fundamental level many of the techniques remain the same. Some of the
distinctive characteristics are briefly outlined here.

Digital image processing is the general term used for the processing of images by computer in some way
or another.

Image enhancement involves improving the subjective quality of an image, or the detectability of objects
within the image (Haralick and Shapiro, 1991). The information that is enhanced is usually apparent in
the original image, but may not be clear. Examples of image enhancement include noise reduction,
contrast enhancement, edge sharpening and colour correction.

Image restoration goes one step further than image enhancement. It uses knowledge of the causes of the
degradation present in an image to create a model of the degradation process. This model is then used to
derive an inverse process that is used to restore the image. In many cases, the information in the image
has been degraded to the extent of being unrecognisable, for example severe blurring.

Image reconstruction involves restructuring the data that a available into a more useful form. Examples
are image super-resolution (reconstructing a high resolution image from a series of low resolution
images) and tomography (reconstructing a cross-section of an object from a series of projections).

Image analysis refers specifically to using computers to extract data from images. The result is usually
some form of measurement. In the past, this was almost exclusively two-dimensional imaging,

Image Processing 3

although with the advent of confocal microscopy and other advanced imaging techniques, this has
extended to three dimensions.

Pattern recognition is concerned with the identification of objects based on patterns in the measurements
(Haralick and Shapiro, 1991). There is a strong focus on statistical approaches, although syntactic and
structural methods are also used.

Computer vision tends to use a model-based approach to image processing. Mathematical models of both
the scene and the imaging process are used to derive a three-dimensional representation based on one or
more two-dimensional images of a scene. The use of models implicitly provides an interpretation of the
contents of the images obtained.

The fields are sometimes distinguished based on application:

Machine vision is using image processing as part of the control system for a machine (Schaffer, 1984).
Images are captured and analysed, and the results are used directly for controlling the machine while
performing a specific task. Real-time processing is often emphasised.

Remote sensing usually refers to the use of image analysis for obtaining geographical information, either
using satellite images or aerial photography.

Medical imaging encompasses a wide range of imaging modalities (X-ray, ultrasound, magnetic
resonance, etc.) concerned primarily with medical diagnosis and other medical applications. It involves
both image reconstruction to create meaningful images from the raw data gathered from the sensors,
and image analysis to extract useful information from the images.

Image and video coding focuses on the compression of an image or image sequence so that it occupies less
storage space or takes less time to transmit from one location to another. Compression is possible
because many images contain significant redundant information. In the reverse step, image decoding,
the full image or video is reconstructed from the compressed data.

1.2 Image Formation

While there are many possible sensors that can be used for imaging, the focus in this section is on optical
images, within the visible region of the electromagnetic spectrum. While the sensing technology may
differ significantly for other types of imaging, many of the imaging principles will be similar.

The first requirement to obtaining an image is some form of sensor to detect and quantify the
incoming light. In most applications, it is also necessary for the sensor to be directional, so that it responds
primarily to light arriving at the sensor from a particular direction. Without this direction sensitivity,
the sensor will effectively integrate the light arriving at the sensor from all directions. While such sensors
do have their applications, the directionality of a sensor enables a spatial distribution to be captured
more easily.

The classic approach to obtain directionality is through a pinhole as shown in Figure 1.1, where light
coming through the pinhole at some angle maps to a position on the sensor. If the sensor is an array then a
particular sensing element (a pixel) will collect light coming from a particular direction. The biggest

Sensor Sensor Sensor
\ Sensor
- cannin
. Collimator S nning
Pinhole mirror

Figure 1.1 Different image formation mechanisms: pinhole, lens, collimator, scanning mirror.

4 Design for Embedded Image Processing on FPGAs

limitation of a pinhole is that only limited light can pass through. This may be overcome using a lens,
which focuses the light coming from a particular direction to a point on the sensor. A similar focussing
effect may also be obtained by using an appropriately shaped concave mirror.

Two other approaches for constraining the directionality are also shown in Figure 1.1. A collimator
allows light from only one direction to pass through. Each channel through the collimator is effectively
two pinholes, one at the entrance, and one at the exit. Only light aligned with both the entrance and the exit
will pass through to the sensor. The collimator can be constructed mechanically, as illustrated in
Figure 1.1, or through a combination of lenses. Mechanical collimation is particularly useful for imaging
modalities such as X-rays, where diffraction through a lens is difficult or impossible. Another sensing
arrangement is to have a single sensing element, rather than an array. To form a two-dimensional image,
the single element must be mechanically scanned in the focal plane, or alternatively have light from a
different direction reflected towards the sensor using a scanning mirror. This latter approach is commonly
used with time-of-flight laser range scanners (Jarvis, 1983).

The sensor, or sensor array, converts the light intensity pattern into an electrical signal. The two most
common solid state sensor technologies are charge coupled device (CCD) and complementary metal
oxide semiconductor (CMOS) active pixel sensors (Fossum, 1993). The basic light sensing principle is
the same: an incoming photon liberates an electron within the silicon semiconductor through the
photoelectric effect. These photoelectrons are then accumulated during the exposure time before being
converted into a voltage for reading out.

Within the CCD sensor (Figure 1.2) a bias voltage is applied to one of the three phases of gate, creating a
potential well in the silicon substrate beneath the biased gates (MOS capacitors). These attract and store
the photoelectrons until they are read out. By biasing the next phase and reducing the bias on the current
phase, the charge is transferred to the next cell. This process is repeated, successively transferring the
charge from each pixel to a readout amplifier where it is converted to a voltage signal. The nature of the
readout process means that the pixels must be read out sequentially.

A CMOS sensor detects the light using a photodiode. However, rather than transferring the charge all
the way to the output, each pixel has a built in amplifier that amplifies the signal locally. This means that
the charge remains local to the sensing element, requiring a reset transistor to reset the accumulated charge
at the start of each integration cycle. The amplified signal is connected to the output via a row select
transistor and column lines. These make the pixels individually addressable, making it easier to read
sections of the array, or even accessing the pixels randomly.

Although the active pixel sensor technology was developed before CCDs, the need for local transistors
made early CMOS sensors impractical because the transistors consumed most of the area of the device
(Fossum, 1993). Therefore, CCD sensors gained early dominance in the market. However, the continual
reduction of feature sizes has meant that CMOS sensors became practical from the early 1990s. The early
CMOS sensors had lower sensitivity and higher noise than a similar format CCD sensor, although with
recent technological improvements there is now very little difference between the two families (Litwiller,
2005). Since they use the same process technology as standard CMOS devices, CMOS sensors also enable
other functions, such as A/D conversion, to be directly integrated on the same chip.

VDD

Photon +ve bias
(@)
o, ® O O Reset s
[] [] [] [] Phot 5
\ oton ~_ 3
Photoelectron Photodiode Row =
select

Figure 1.2 Sensor types. Left: the MOS capacitor sensor used by CCD cameras; right: a three-transistor
active pixel sensor used by CMOS cameras.

Image Processing 5

Humans are able to see in colour. There are three different types of colour receptors (cones) in the
human eye that respond differently to different wavelengths of light. If the wavelength dependence of a
receptor is Sk (4), and the light falling on the receptor contains a mix of light of different wavelengths,
C(4), then the response of that receptor will be given by the combination of the responses of all
different wavelengths:

Ri = JC(A)Sk(A)dA (1.1)

What is perceived as colour is the particular combination of responses from the three different types of
receptor. Many different wavelength distributions produce the same responses from the receptors, and
therefore are perceived as the same colour. In practise, it is a little more complicated than this. The
incoming light depends on the wavelength distribution of the source of the illumination, /(1), and the
wavelength dependent reflectivity, p(1), of the object being looked at. So Equation 1.1 becomes:

Ri = Jl(i)p(/l)Sk(/l)dl (12)

To reproduce a colour, it is only necessary to reproduce the associated combination of receptor responses.
This is accomplished in a television monitor by producing the corresponding mixture of red, green and
blue light.

To capture a colour image for human viewing, it is necessary to have three different colour receptors in
the sensor. Ideally, these should correspond to the spectral responses of the cones. However, since most of
what is seen has broad spectral characteristics, a precise match is not critical except when the illumination
source has a narrow spectral content (for example sodium vapour lamps or LED-based illumination
sources). Silicon has a broad spectral response, with a peak in the near infrared. Therefore, to obtain a
colour image, this response must be modified through appropriate colour filters.

Two approaches are commonly used to obtain a full colour image. The first is to separate the red, green
and blue components of the image using a prism and with dichroic filters. These components are then
captured using three separate sensor chips, one for each component. The need for three chips with precise
alignment makes such cameras relatively expensive. An alternative approach is to use a single chip, with
small filters integrated with each pixel. Since each pixel senses only one colour, the effective resolution of
the sensor is decreased. A full colour image is created by interpolating between the pixels of a component.
The most commonly used colour filter array is the Bayer pattern (Bayer, 1976), with filters to select the
red, green and blue primary colours. Other patterns are also possible, for example filtering the yellow,
magenta and cyan secondary colours (Parulski, 1985). Cameras using the secondary colours have better
low light sensitivity because the filters absorb less of the incoming light. However, the processing required
to produce the output gives a better signal-to-noise ratio from the primary filters than from secondary
filters (Parulski, 1985; Baer et al., 1999).

One further possibility that has been considered is to stack the red, green and blue sensors one on top of
the other (Lyon and Hubel, 2002; Gilblom e al., 2003). This relies on the fact that longer wavelengths of
light penetrate further into the silicon before being absorbed. Thus, by using photodiodes at different
depths, a full colour pixel may be obtained without explicit filtering.

Since most cameras produce video output signals, the most common format is the same as that of
television signals. A two-dimensional representation of the timing is illustrated in Figure 1.3. The image is
read out in raster format, with a horizontal blanking period at the end of each line. This was to turn off the
cathode ray tube (CRT) electron beam while it retraced to the start of the next line. During the horizontal
blanking, a horizontal synchronisation pulse controlled the timing. Similarly, after the last line is
displayed there is a vertical blanking period to turn off the CRT beam while it is retraced vertically.
Again, during the vertical blanking there is a vertical synchronisation pulse to control the vertical timing.

6 Design for Embedded Image Processing on FPGAs

Visible region

Figure 1.3 Regions within a scanned video image.

While such timing is not strictly necessary for digital cameras, at the sensor level there can also be
blanking periods at the end of each line and frame.

Television signals are interlaced. The scan lines for a frame are split into two fields, with the odd and
even lines produced and displayed in alternate fields. This effectively reduces the bandwidth required by
halving the frame rate without producing the associated annoying flicker. From an image processing
perspective, if every field is processed separately, this doubles the frame rate, albeit with reduced vertical
resolution. To process the whole frame, it is necessary to re-interlace the fields. This can produce artefacts;
when objects are moving within the scene, their location will be different in each of the two fields.
Cameras designed for imaging purposes (rather than consumer video) avoid this by producing a non-
interlaced or progressive scan output.

Cameras producing an analogue video signal require a frame grabber to capture digital images.
A frame grabber preprocesses the signal from the camera, amplifying it, separating the synchronisation
signals, and if necessary decoding the composite colour signal into its components. The analogue video
signal is digitised by an A/D converter (or three A/D converters for colour) and stored in memory for
later processing.

Digital cameras do much of this processing internally, directly producing a digital output. A digital
sensor chip will usually provide the video data and synchronisation signals in parallel. Cameras with a low
level interface will often serialise these signals (for example the Camera Link interface; AIA, 2004).
Higher level interfaces will sometimes compress and will usually split the data into packets for
transmission from the camera. The raw format is simply the digitised pixels; the colour filter array
processing is not performed for single chip cameras. Another common format is RGB; for single chip
sensors with a colour filter array, the pixels are interpolated to give a full colour value for each pixel. As the
human eye has a higher spatial resolution to brightness than to colour, it is common to convert the image to
YCbCr (Brown and Shepherd, 1995):

Y 65.481 128.553 24.966 | | R 16
Ch| =|-37797 —-74203 112.0 G| + |128 (1.3)
Cr 112.0 —93.786 —18.214| | B 128

Image Processing 7

v HHHH B g B
e O i O e e e e I I O s

4:4:4 YCbCr 4:2:2 YCbCr 4:2:0 YCbCr 4:1:1 YCbCr

Figure 1.4 Common YCbCr subsampling formats.

where the RGB components are normalised between 0 and 1, and the YCbCr components are 8-bit integer
values. The luminance component, Y, is always provided at the full sample rate, with the colour difference
signals, Cb and Cr provided at a reduced resolution. Several common subsampling formats are shown in
Figure 1.4. These show the size or resolution of each Ch and Cr pixel in terms of the Y pixels. For example,
in the 4:2:0 format, there is a single Cb and Cr value for each 2 x 2 block of Y values. To reproduce the
colour signal, the lower resolution Ch and Cr values are combined with multiple luminance values. For
image processing, it is usual to convert these back to RGB values using the inverse of Equation 1.3.

1.3 Image Processing Operations

After capturing the image, the next step is to process the image to achieve the desired result.

The sequence of image processing operations used to process an image from one state to another is
called an image processing algorithm. The term algorithm is sometimes a cause of confusion, since each
operation is also implemented through an algorithm in some programming language. This distinction
between application level algorithms and operation level algorithms is illustrated in Figure 1.5. Usually
the context will indicate in which sense the term is used.

As the input image is processed by the application level algorithm, it undergoes a series of
transformations. These are illustrated for a simple example in Figure 1.6. The input image consists
of an array of pixels. Each pixel, on its own, carries very little information, but there are a large number of
pixels. The individual pixel values represent high volume, but low value data. As the image is processed,
collections of pixels are grouped together. At this intermediate level, the data may still be represented in

using a 15x15 1 using a 15x15 1
| jith adjacent bac! jith adjacent bac!
rom the backgro rom the backgro

opening original Threshold

Y i 'n-|evemgo<?/ Y
Grayscale Subtract

for i=1 to rows
for j=1 to columns

diff = a[i,j]l-bl[i,]]
if dif < O

cl[i,j] =0 Operation-level
else algorithm

cli,jl =

Figure 1.5 Algorithms at two levels: application level and operation level.

8 Design for Embedded Image Processing on FPGAs

Low level Intermediate level High level
6 corners H |
> Hole area > 1 /:)i(ﬁg}? r;at

=760 pixels Al

Pixels Regions Features Description

Figure 1.6 Image transformations.

terms of pixels, but the pixel values usually have more meaning; for example, they may represent a label
associated with a region. At this intermediate level, the representation may depart from an explicit image
representation, with the regions represented by their boundaries (for example as a chain code or a set of
line segments) or their structure (for example as a quad tree). From each region, a set of features may be
extracted that characterise the region. Generally, there are a small number of features (relative to the
number of pixels within the region) and each feature contains significant information that can be used to
distinguish it from other regions or other objects that may be encountered. At the intermediate level, the
data becomes significantly lower in volume but higher in quality. Finally, at the high level, the feature data
is used to classify the object or scene into one of several categories, or to derive a description of the object
or scene.

Rather than focussing on the data, it is also possible to focus on the image processing operations. The
operations can be grouped according to the type of data that they process (Weems, 1991). This grouping is
sometimes referred to as an image processing pyramid (Downton and Crookes, 1998; Ratha and Jain,
1999), as represented in Figure 1.7. At the lowest level of the pyramid are preprocessing operations. These
are image-to-image transformations, with the purpose of enhancing the relevant information within the
image, while suppressing any irrelevant information. Examples of preprocessing operations are distortion
correction, contrast enhancement and filtering for noise reduction or edge detection. Segmentation
operations such as thresholding, colour detection, region growing and connected components labelling
occur at the boundary between the low and intermediate levels. The purpose of segmentation is to detect
objects or regions in an image, which have some common property. Segmentation is therefore an image to
region transformation. After segmentation comes classification. Features of each region are used to
identify objects or parts of objects, or to classify an object into one of several predefined categories.
Classification transforms the data from regions to features, and then to labels. The data is no longer image
based, but position information may be contained within the features, or be associated with the labels. At
the highest level is recognition, which derives a description or some other interpretation of the scene.

Recognition
Objects

Classification
Features Intermediate level

Segmentation
Pixels Low level

Preprocessing

Figure 1.7 Image processing pyramid.

Image Processing 9

1.4 Example Application

To illustrate the different stages of the processing, and how the different stages transform the image, the
problem of detecting blemishes on the surface of kiwifruit will be considered (this example application is
taken from Bailey, 1985). One of the problems frequently encountered with 100% grading is obtaining and
training sufficient graders. This is made worse for the kiwifruit industry because the grading season is very
short (typically only four to six weeks). Therefore, a pilot study was initiated to investigate the potential of
using image processing techniques to grade kiwifruit.

There are two main types of kiwifruit defects. The first are shape defects, where the shape of the
kiwifruit is distorted. With the exception of the Hayward protuberance, the fruit in this category are
rejected purely for cosmetic reasons. They will not be considered further in this example. The second class
of defects is that which involves surface blemishes or skin damage. With surface blemishes, there is a one
square centimetre allowance, provided the blemish is not excessively dark. However, if the skin is cracked
or broken or is infested with scale or mould, there is no size allowance and the fruit is reject. Since almost
all of the surface defects appear as darker regions on the surface of the fruit, a single algorithm was used to
detect both blemishes and damage.

In the pilot study, only a single view of the fruit was considered; a practical application would have to
inspect the complete surface of the fruit rather than just one view. Figure 1.8 shows the results of
processing a typical kiwifruit with a water stain blemish. The image was captured with the fruit against a
dark background to simplify segmentation, and diffuse lighting was used to reduce the visual texture
caused by the hairs on the kiwifruit. Diffuse light from the direction of the camera also makes the centre of
the fruit brighter than around the edges; this property is exploited in the algorithm.

The dataflow for the image processing algorithm is represented in Figure 1.9. The first three
operations preprocess the image to enhance the required information while suppressing the
information that is irrelevant for the grading problem. In practise, it is not necessary to suppress
all irrelevant information, but sufficient preprocessing is performed to ensure that subsequent
operations perform reliably. Firstly, a constant is subtracted from the image to segment the fruit from
the background; any pixel less than the constant is considered to be background and is set to zero.
This simple segmentation is made possible by using a dark background. The next step is to normalise
the intensity range to make the blemish measurements independent of fluctuations in illumination
and the exact shade of a particular piece of fruit. This is accomplished by expanding the pixel values
linearly to set the largest pixel value to 255. This effectively makes the blemish detection relative to
the particular shade of the individual fruit. The third preprocessing step is to filter the image to
remove the fine texture caused by the hairs on the surface of the fruit. A 3 x 3 median filter was used
because it removes the local intensity variations without affecting the larger features that must be
detected. It also makes the modelling stage more robust by significantly reducing the effects of noise
on the model.

The next stage of the algorithm is to compare the preprocessed image with an ideal model of an
unblemished fruit. The use of a standard fixed model is precluded by the normal variation in both the size
and shape of kiwifruit. It would be relatively expensive to normalise the image of the fruit to conform to a

00

Original Expanded Filtered Model Difference Blemishes

Figure 1.8 Steps within the processing of kiwifruit images (Bailey, 1985).

10 Design for Embedded Image Processing on FPGAs

Preprocessing

4 N\
Background Contrast Median |
subtraction expansion filter
. J
v
4 N\
Convex N Median N Find
hull filter Subtract --’[maximum
. J
Modelling Classification
4 N\
Threshold —b[Area
. J

Feature extraction

Figure 1.9 Image processing algorithm for detecting surface defects on kiwifruit (Bailey, 1985).

standard model, or to transform a model to match the fruit. Instead, a dynamic model is created from the
image of the fruit. This works on the principle of removing the defects, followed by subtraction to see what
has been removed (Batchelor, 1979). Such a dynamic model has the advantage of always being perfectly
aligned with the fruit being examined both in position and in shape and size. A simple model can be
created efficiently by taking the convex hull of the non-zero pixels along each row within the image. It
relies on the lighting arrangement that causes the pixel values to decrease towards the edges of the fruit
because of the changing angle of the surface normal. Therefore, the expected profile of an unblemished
kiwifruit is convex, apart from noise caused by the hairs on the fruit. The convex hull fills in the pixels
associated with defects by setting their values based on the surrounding unblemished regions of the fruit.
The accuracy of the model may be improved either by applying a median filter after the convex hull to
smooth the minor discrepancies between the rows, or by applying a second pass of the convex hull to each
column in the image (Bailey, 1985).

The preprocessed image is subtracted from the model to obtain the surface defects. (The contrast of
this difference image has been expanded in Figure 1.8 to make the subtle variations clearer.) A pixel
value in this defect image represents how much that pixel had to be filled to obtain the model, and is
therefore a measure of how dark that pixel is compared with the surrounding area. Some minor
variations can be seen resulting from noise remaining after the prefiltering. These minor variations are
insignificant, and should be ignored. The defect image is thresholded to detect the significant changes
resulting from any blemish.

Two features are extracted from the processed images. The first is the maximum value of the difference
image. This is used to detect damage on the fruit, or to determine if a blemish is excessively dark. If the
maximum difference is larger than a preset threshold, then the fruit is rejected. The second feature is the
area of the blemish image after thresholding. For blemishes, an area less than one square centimetre is
acceptable; larger than this, the fruit is rejected because the blemish is outside the allowance.

Three threshold levels must be determined within this algorithm. The first is the background level
subtracted during preprocessing. This is set from looking at the maximum background level when
processing several images. The remaining two thresholds relate directly to the classification. The point
defect threshold determines how large the difference needs to be to reject the fruit. The second is the area
defect threshold for detecting blemished pixels. These thresholds were determined by examining several
fruit that spanned the range from acceptable, through marginal, to reject fruit. The thresholds were then set
to minimise the classification errors (Bailey, 1985).

This example is typical of a real-time inspection application. It illustrates the different stages of the
processing, and demonstrates how the image and information are transformed as the image is processed.

Image Processing 11

This application has mainly low and intermediate level operations; the high level classification step is
relatively trivial. As will be seen later, this makes such an algorithm a good candidate for hardware
implementation on a FPGA (field programmable gate array).

1.5 Real-Time Image Processing

A real-time system is one in which the response to an event must occur within a specific time, otherwise
the system is considered to have failed (Dougherty and Laplante, 1985). From an image processing
perspective, a real-time imaging system is one that regularly captures images, analyses those images to
obtain some data, and then uses that data to control some activity. All of the processing must occur within a
predefined time (often, but not always, the image capture frame rate). Examples of real-time image
processing systems abound. In machine vision systems, the image processing algorithm is used for either
inspection or process control. Some robot vision systems use vision for path planning or to control the
robot in some way where the timing is critical. Autonomous vehicle control requires vision or some other
form of sensing for vehicle navigation or collision avoidance in a dynamic environment. In video
transmission systems, successive frames must be transmitted and displayed in the right sequence and with
minimum jitter to avoid a loss of quality of the resultant video.

Real-time systems are categorised into two types: hard and soft real time. A hard real-time system is
one in which the complete system is considered to have failed if the output is not produced within the
required time. An example is using vision for grading items on a conveyor belt. The grading decision must
be made before the item reaches the actuation point, where the item is directed one way or another
depending on the grading result. If the result is not available by this time, the system has failed. On the
other hand, a soft real-time system is one in which the complete system does not fail if the deadline is not
met, but the performance deteriorates. An example is video transmission via the internet. If the next frame
is delayed or cannot be decoded in time, the quality of the resultant video deteriorates. Such a system is
soft real time, because although the deadline was not met, an output could still be produced, and the
complete system did not fail.

From a signal processing perspective, real time can mean that the processing of a sample must be
completed before the next sample arrives (Kehtarnavaz and Gamadia, 2006). For video processing, this
means that the total processing per pixel must be completed within a pixel sample time. Of course, not all
of the processing for a single pixel can be completed before the next pixel arrives, because many image
processing operations require data from many pixels for each output pixel. However, this provides a limit
on the average processing rate, including any overhead associated with temporarily storing pixel values
that will be used later (Kehtarnavaz and Gamadia, 2006).

A system that is not real time may have components that are real time. For instance, in interfacing to a
camera, an imaging system must do something with each pixel as it is produced by the camera — either
process it in some way, or store it into a frame buffer — before the next pixel arrives. If not, then the data for
that pixel is lost. Whether this is a hard or soft real-time process depends on the context. While missing
pixels would cause the quality of an image to deteriorate (implying soft real time), the loss of quality may
have a significant negative impact on the performance of the imaging application (implying that image
capture is a hard real-time task). Similarly, when providing pixels for display, if the required pixel data is
not provided in time, that region of the display would appear blank. In the case of image capture and
display, the deadlines are in the order of tens of nanoseconds, requiring such components to be
implemented in hardware.

The requirement for the whole image processing algorithm to have a bounded execution time implies
that each operation must also have a bounded execution time. This characteristic rules out certain classes
of operation level algorithms from real-time processing. In particular, operations that are based on
iterative or recursive algorithms can only be used if they can be guaranteed to converge satisfactorily
within a predefined number of iterations, for the whole range of inputs that may be encountered.

12 Design for Embedded Image Processing on FPGAs

One approach to guaranteeing a fixed response time is to make the imaging system synchronous. Such a
system schedules each operation or step to execute at a particular time. This is suitable if the inputs occur at
regular (or fixed) intervals, for example the successive frames from a video camera. However, synchro-
nous systems cannot be used reliably when events occur randomly, especially when the minimum time
between events is less than the processing time for each event.

The time between events may be significantly less than the required response time. A common example
of this is a conveyor-based inspection system. The time between items on the conveyor may be
significantly less than the time between the inspection point and the actuator. There are two ways of
handling this situation. The first is to constrain all of the processing to take place during the time between
successive items arriving at the inspection point, effectively providing a much tighter real-time constraint.
If this new time constraint cannot be achieved then the alternative is to use distributed or parallel
processing to maintain the original time constraint, but spread the execution over several processors. This
can enable the time constraint to be met, by increasing the throughput to meet the desired event rate.

A common misconception of real-time systems, and real-time imaging systems in particular, is that they
require high speed or high performance (Dougherty and Laplante, 1985). The required response time
depends on the application and is primarily dependent on the underlying process to which the image
processing is being applied. For example, areal-time coastal monitoring system looking at the movement of
sand bars may require analysis times in the order of days or even weeks. Such an application would probably
notrequire high speed! Whether or notreal-time imaging requires high performance computing depends on
the complexity of the algorithm. Conversely, an imaging application that requires high performance
computing may not necessarily be real time (for example complex iterative reconstruction algorithms).

1.6 Embedded Image Processing

An embedded system is a computer system that is embedded within a product or component. Conse-
quently, an embedded system is usually designed to perform one specific task, or a small range of specific
tasks (Catsoulis, 2005), often with real-time constraints. An obvious example of an embedded image
processing system is a digital camera. There the imaging functions include exposure and focus control,
displaying a preview, and managing image compression and decompression.

Embedded vision is also useful for smart cameras, where the camera not only captures the image, but
also processes it to extract information as required by the application. Examples of where this would be
useful are “intelligent” surveillance systems, industrial inspection or control, robot vision, and so on.

A requirement of many embedded systems is that they need to be of small size, and light weight. Many
run off batteries, and are therefore required to operate with low power. Even those that are not battery
operated usually have limited power available.

1.7 Serial Processing

Traditional image processing platforms are based on a serial computer architecture. In its basic form, such
an architecture performs all of the computation serially by breaking the operation level algorithm down to
a sequence of arithmetic or logic operations that are performed by the ALU (arithmetic logic unit).
The rest of the CPU (central processing unit) is then designed to feed the ALU with the required data.
The algorithm is compiled into a sequence of instructions, which are used to control the specific operation
performed by the CPU and ALU during each clock cycle. The basic operation of the CPU is therefore to
fetch an instruction from memory, decode the instruction to determine the operation to perform, and
execute the instruction.

All of the advances in mainstream computer architecture have been developed to improve performance
by squeezing more data through the narrow bottleneck between the memory and the ALU (the so-called
von Neumann bottleneck; Backus 1978).

Image Processing 13

The obvious approach is to increase the clock speed, and hence the rate at which instructions are
executed. Tremendous gains have been made in this area, with top clock speeds of several GHz being the
norm for computing platforms. Such increases have come primarily as the result of reductions in
propagation delay brought about through advances in semiconductor technology reducing both transistor
feature sizes and the supply voltage. This is not without its problems, however, and one consequence of a
higher clock speed is significantly increased power consumption by the CPU.

While the speeds of bulk memory have also increased, they have not kept pace with increasing CPU
speeds. This has caused problems in reading both instructions and data from the system memory at the
required rate. Caching techniques have been developed to buffer both instructions and data in a smaller
high speed memory that can keep pace with the CPU. The problem then is how to maximise the likelihood
that the required data will be in the cache memory rather than the slower main memory. Cache misses
(where the data is not in cache memory) can result in a significant degradation in processor performance
because the CPU is sitting idle waiting for the data to be retrieved.

Both instructions and data need to be accessed from the main memory. One obvious improvement is to
use a Harvard architecture, which doubles the effective memory bandwidth by using separate memories
for instructions and data. This can give a speed improvement by up to a factor of two. A similar
improvement may be obtained with a single main memory, using separate caches for instructions and data.

Another approach is to increase the width of the ALU, so that more data is processed in each clock cycle.
This gives obvious improvements for wider data word lengths (for example double precision floating-
point numbers) because each number may be loaded and processed in a fewer clock cycles. However,
when the natural word length is narrower, such is typically encountered in image processing, the
performance improvement is not as great unless data memory bandwidth is the limiting factor. When the
data path is wider than the word length, it is also possible to design the ALU to operate as a vector
processor. Multiple data words are packed into a single processor word allowing the ALU to perform the
same operation simultaneously on several data items (for example using the Intel MMX instructions;
Peleg et al., 1997). This can be particularly effective for low level image processing operations where the
same operation is performed on each pixel.

The speed of the fetch/decode/execute cycle may be improved by pipelining the separate phases. Thus,
while one instruction is being executed, the next instruction is being decoded, and the instruction after that
is being fetched. Depending on the complexity of the instructions, there may also be phases (and pipeline
stages) for reading data from memory and writing the results to memory. Such pipelining is effective when
executing long sequences of instructions without branches. However, instruction pipelining becomes
more complex with loops or branches that break the regular sequence. This necessitates flushing the
instruction pipeline to remove the successive instructions that have been incorrectly loaded and then
loading the correct instructions. Techniques have been developed to attempt to minimise time lost through
pipeline flushing. Branch prediction tries to anticipate which path will be taken at a branch, and increases
the likelihood that the correct instructions will be loaded. Speculative execution, executes the instructions
that have been loaded in the pipeline already, so that the time is not lost if the branch is predicted correctly.
If the branch is incorrectly predicted, the results of the speculative execution are discarded.

Other instruction set architectures have been designed to increase the CPU throughput. RISC (reduced
instruction set computer) architectures do this by simplifying the instructions, enabling a higher clock
speed. VLIW (very large instruction word) architectures enable multiple independent instructions to
execute in parallel, in an effort to maximise the utilisation of all parts of the CPU.

More recently, multiple core architectures have become mainstream. These enable multiple threads
within an application to execute in parallel on separate processor cores (Geer, 2005). These can give some
improvement for image processing applications, provided that the application has been developed
carefully to support multiple threads. If care is not taken, the memory bandwidth in accessing the image
can still be a bottleneck.

While impressive performance gains have been achieved, with serial processors, time is usually the
critical resource. This is because serial processors can only do one thing at a time. VLIW and multicore

14 Design for Embedded Image Processing on FPGAs

processors are beginning to overcome this limitation, but, even so, they are still serially bound. Some
problems do not fit well onto serial processors, for example, those for which the processing does not scale
linearly with the number of inputs, or where the complexity of the problem is such that it remains
intractable (or impractical) given current processor speeds.

Another recent development is the GPU (graphics processing unit), a processor customised primarily
for graphics rendering, and initially driven by the high-end video game market. The primary function
performed by a GPU is to take vertex data representing triangular patches within the scene and produce the
corresponding output pixels, which are stored in a frame buffer. Native operations include texture
mapping, pixel shading, z-buffering and blending, and anti-aliasing. Early GPUs had dedicated pipelines
for each of these stages, which restricted their use for wider application. More recent devices are
programmable, enabling them to be used for image processing (Cope et al., 2005) or other computation-
ally intensive tasks (Manocha, 2005). The speed gain is achieved through a combination of data pipelining
and lightweight multithreading (NVIDIA, 2006). Data pipelining reduces the need to write temporary
results to memory only to read them in again to perform further processing. Instead, results are written to
sets of local registers where they may be accessed in parallel. Multithreading splits the task into several
small steps that can be implemented in parallel, which is easy to achieve for low level image processing
operations where the independent processing of pixels maps well to the GPU architecture. Lightweight
threads reduce the overhead of switching the context from one thread to the next. Therefore, when one
thread stalls waiting for data, the context can be rapidly switched to another thread to keep the processing
units fully used. GPUs can give significant improvements over CPUs for algorithms that are easily
parallelised, especially where data access is not the bottleneck (Cope et al., 2005). However, power
considerations rule them out for many embedded vision applications.

For low power, or embedded vision applications, the size and power requirements of a standard serial
processor are impractical in many cases. Lowering the clock speed can reduce the power significantly, but
on a serial processor will also limit the algorithms that can be implemented in real time. To retain the
computing power while lowering the clock speed requires multiple parallel processors.

1.8 Parallelism

In principle, every step within any algorithm may be implemented on a separate processor, resulting in a
fully parallel implementation. However, if the algorithm is predominantly sequential, with every step
within the algorithm dependent on the data from the previous step, then little can be gained in terms of
reducing the response time. To be practical for parallel implementation, an algorithm has to have a
significant number of steps that may be implemented in parallel. This is referred to as Amdahl’s law
(Amdahl, 1967). Let s be the proportion of the algorithm that is constrained to run serially (the
housekeeping and other sequential components) and p the proportion of the algorithm that may be
implemented in parallel over N processors. The best possible speedup that can be obtained is then:

s+p N
Speedup < = 1.4
peedip = 1 £ 1+ (N-1)s (14)

The equality will only be achieved if there is no additional overhead (for example communication or other
housekeeping) introduced as a result of parallelisation. This speedup is always less than the number of
parallel processors, and will be limited by the proportion of the algorithm that must be serially executed:

1
Limit Speedup = — (1.5)
N— oo S

Therefore, to achieve any significant speedup, the proportion of the algorithm that can be
implemented in parallel must also be significant. Fortunately, image processing is inherently parallel,

Image Processing 15

Operation 1 Operation 2 Operation 3 Operation 4

Processor 1 Processor 2 Processor 3 Processor 4

Figure 1.10 Temporal parallelism exploited using a processor pipeline.

especially at the low and intermediate levels of the processing pyramid. This parallelism shows in a
number of ways.

Virtually all image processing algorithms consist of a sequence of image processing operations. This is
aform of temporal parallelism. Such a structure suggests using a separate processor for each operation, as
shown in Figure 1.10. This is a pipelined architecture. It works a little like a production line in that the data
passes through each of the stages as it is processed. Each processor applies its operation and passes the
result to the next stage. If each successive processor has to wait until the previous processor completes its
processing, this arrangement will not reduce the total processing time, or the response time. However, the
throughput can increase, because while the second processor is working on the output of operation 1,
processor 1 can begin processing the next image. When processing images, data can usually begin to be
output from an operation long before the complete image has been processed by that operation. The time
between when data is first input to an operation and the corresponding output is available is the latency of
that operation. The latency is lowest when each operation only uses input pixel values from a small, local
neighbourhood because each output only requires data from a few input pixel values. Operations that
require the whole image to calculate an output pixel value will have a higher latency. Operation pipelining
can give significant performance improvements when all of the operations have low latency, because a
downstream processor may begin performing its operation before the upstream processors have
completed. This can give benefits, not only for multiprocessor systems, but also for software-based
systems using a separate thread for each process (McLaughlin, 2000) because the user can begin to see the
results before the whole image has been processed. Of course, in a software system using a single core, the
total response time will not normally be decreased, although there may be some improvement resulting
from switching to another thread while waiting for data from slower external memory when it is not
available in the cache. In a hardware system, however, the total response time is given by the sum of the
latencies of each of the stages plus the time to input in the whole image. If the individual latencies are small
compared to the time required to load the image, then the speedup factor can be significant, approaching
the number of processors in the pipeline.

Two difficulties can be encountered with using pipelining for more complex image processing
algorithms (Duff, 2000). The first is with multiple parallel paths. If, for example, Processor 4 in
Figure 1.10 also takes as input the results output from processor 1 then the data must be properly
synchronised to allow for the latencies of the other processors in the parallel path. For synchronous
processing, this is simply a delay line, but synchronisation becomes considerably more complex when the
latencies of the parallel operations are variable. A greater difficulty is handling feedback, either with
explicitly iterative algorithms, or implicitly where the parameters of the earlier processors adapt to the
results produced in later stages.

A lot of the parallelism within an operation level algorithm is in the form of loops. The outermost loop
within each operation usually iterates over the pixels within the image, because many operations perform
the same function independently on many pixels. This is spatial parallelism, which may be exploited by
partitioning the image and using a separate processor to perform the operation on each partition. Common
partitioning schemes split the image into blocks of rows, blocks of columns, or rectangular blocks, as
illustrated in Figure 1.11. For video processing, the image sequence may also be partitioned in time, by
assigning successive frames to separate processors (Downton and Crookes, 1998).

16 Design for Embedded Image Processing on FPGAs

Row partitioning Column partitioning Block partitioning
Figure 1.11 Spatial parallelism exploited by partitioning the image.

In the extreme case, a separate processor may be allocated to each pixel within the image (for example
the MPP; Batcher, 1980). Dedicating a processor to each pixel can facilitate some very efficient
algorithms. For example, image filtering may be performed in only a few clock cycles. However, one
problem with such parallelism is the overhead required to distribute the image data to and from each of the
processors. Many algorithms for massively parallel processors assume that the data is already available at
the start.

The important consideration when partitioning the image is to minimise the communication between
processors, which corresponds to minimising the communication between the different partitions. For low
level image processing operations, the performance improvement approaches the number of processors.
However, the performance will degrade as a result of any communication overheads or contention when
accessing shared resources. Consequently, each processor must have some local memory to reduce any
delays associated with contention for global memory. Partitioning is therefore most beneficial when the
operations only require data from within a local region, where local is defined by the partition boundaries.
If the operations performed within each region are identical, this leads to a SIMD (single instruction,
multiple data) parallel processing architecture according to Flynn’s taxonomy (Flynn, 1972).

With some intermediate level operations, the processing time for each partition may vary significantly
depending on the content of the image within that region. A simple static, regular, partitioning strategy
will be less efficient in this instance because the worst-case performance must be allowed for when
allocating partitions to processors. As a result, many of the processors may be sitting idle for much of the
time. In such cases, better performance may be achieved by having more partitions than processors, and
using a processor farm approach (Downton and Crookes, 1998). Each partition is then allocated
dynamically to the next available processor. Again, it is important to minimise the communications
between processors.

For high level image processing operations, the data is no longer image based. However, data
partitioning methods can still be exploited by assigning a separate data structure, region, or object to
a separate processor. Such assignment generally requires the dynamic partitioning approach of a
processor farm.

Logical parallelism reuses the same functional block many times within an operation. This often
corresponds to inner loops within the algorithm implementing the operation. Logical parallelism is
exploited by executing each instance of the function block in parallel, effectively unrolling the inner loops.
Often the functions can be arranged in a regular structure, as illustrated in the examples in Figure 1.12. The
odd—even transposition network within a bubble sort (for example to sort the pixel values within a rank
window filter; Heygster, 1982; Hodgson et al., 1985) consists of a series of compare and swap function
blocks. Implementing the blocks in parallel gives a considerable speed improvement over iterating with a
single compare and swap block. A linear filter or convolution multiplies the pixel values within a window
by a set of weights, or filter coefficients. The multiply and accumulate block is repeated many times, and is
a classic example of logic parallelism.

Often the structure of the group of function blocks is quite regular, which, when combined with
pipelining, results in a synchronous systolic architecture (Kung, 1985). When properly implemented, such

Image Processing 17

Window pixel values

Min
Compare and swap

S1UBIOILB0D J8)|I4
senjeA jexid MopuIpp

) . Output
Sorted pixel values Multiply and accumulate value

Figure1.12 Examples of logical parallelism. Left: compare and swap within a bubble sorting odd—even
transposition network; right: multiply and accumulate within a linear filter.

architectures have a very low communication overhead, enabling significant speed improvements
resulting from multiple copies of the function block.

One of the common bottlenecks within image processing is the time, and bandwidth, required to read
the image from memory and write the resultant image to memory. Stream processing exploits this to
convert spatial parallelism into temporal parallelism. The image is read (and written) sequentially using a
raster scan often at arate of one pixel per clock cycle (Figure 1.13). It then performs all of its processing on
the pixels on-the-fly as they are being read or written. The individual operations with the operation level
algorithm are pipelined as necessary to maintain the required throughput. Data is cached locally to avoid
the need for parallel external data accesses. This is most effective if each operation uses input from a small
local neighbourhood, otherwise the caching requirements can be excessive. Stream processing also works
best when the time taken to process each pixel is constant. If the processing time is data dependent, it may
be necessary to insert FIFO (first-in, first-out) buffers on the input or output (or both) to maintain a constant
data rate. With stream processing, the response time is given by the sum of the time required to read or
write the image and the processing latency (the time between reading a pixel and producing its
corresponding output). For most operations the latency is small compared with loading the whole image,

Column
01234567 ..

Moy

NoO o W= O

VVYVVVVVVVYVYY=

Z

Row 0 Row 1 Row 2 Row N Row 0
[oT1]2].. Mo 1 2]..ImM[o]1]2]..ImM[o]1]2]..Im[o[1]2]..ImM[o]1]2]..]m] -
-

Time

Figure 1.13 Stream processing converts spatial parallelism into temporal parallelism.

18 Design for Embedded Image Processing on FPGAs

so if the whole application level algorithm can be implemented using stream processing the response time
is dominated by frame rate.

1.9 Hardware Image Processing Systems

In the previous section, it was not made explicit whether the processors that made up the parallel systems
were a set of standard serial processors, or dedicated hardware implementing the parallel functions. In
theory, it makes little difference, as long as the parallelism is implemented efficiently, and the
communication overheads are kept low.

Early serial computer systems were too slow for processing images of any size or in any volume. The
regular structure of images led to designs for hardware systems to exploit the parallelism because
hardware systems are inherently parallel. Many of the earliest systems were based on having a relatively
simple processing element (PE) at each pixel. Unger (Unger, 1958) proposed a system based on a
4-connected square grid for processing binary images. Although the hardware for each PE was relatively
simple, he demonstrated that many useful low level image processing operations could be performed.
Although this early system was not built (Duff, 2000), it inspired other similar architectures. Golay
proposed a system based on a hexagonal grid (Landsman et al., 1965; Golay, 1969) with the image cycled
through a single PE using stream processing. Such a system was ultimately built by Preston (Preston et al.,
1979). The CLIP series of image processors used a parallel set of PEs. The CLIP2 (Duff et al., 1973) used a
16 x 12 hexagonal array, and although it was able to perform some basic processing it was not practical for
real applications. The successor, CLIP4 (Duff, 2000) used a 96 x 96 array, and was able to operate on
greyscale images in a bit serial manner. A similar 128 x 128 array (the massively parallel processor) was
built by Batcher (Batcher, 1980); it also operated in a bit serial manner.

For capturing and display of video or images, even serial computers required a hardware system to
interface with the camera or display. These frame grabbers interfaced with the host computer system either
through direct memory access (DMA), or shared memory that was mapped within the address space of the
host. A basic frame grabber consisted of an A/D converter, a bank of memory capable of holding at least
one image frame, and a digital to analogue converter for image display. Many allowed basic point
operations to be applied through lookup tables on the image being captured or displayed. This simple
pipelining was extended to more sophisticated operations and completely pipelined image processing
systems, the most notable of which was the Datacube. Pipelining is less suitable for high level image
processing; hybrid systems were developed consisting of pipelined hardware for the preprocessing and an
array of serial processors (often transputers) for high level processing, such as in the Kiwivision system
(Clist and Valkenburg, 1994).

The early hardware systems were implemented with small and medium scale integrated circuits. The
advent of VLSI (very large scale integration) lowered the cost of hardware and dramatically increased the
speed and performance of the resulting systems. This led to a wider range of hardware architectures being
used and image processing operations being implemented (Offen, 1985). It is interesting to note that, as
technology has improved, the reducing feature sizes has meant that the cost of producing the masks has
increased, significantly increasing the proportion of the one-off costs relative to the cost of individual
devices. Consequently, the economics of VLSI production meant that only a limited range of circuits
(those general enough to warrant large production runs) saw widespread commercial use.

Hardware-based image processing systems are very fast, but their biggest problem is their relative
inflexibility. Once configured they perform their task very well, but it is difficult, if not impossible, to
reconfigure these systems if the nature of the task changes. In the 1980s, the introduction of FPGA (field
programmable gate array) technology opened new possibilities for digital logic design. FPGAs combine
the inherent parallel nature of hardware with the flexibility of software in that their functionality can be
reprogrammed or reconfigured. Early FPGAs were quite small in terms of the equivalent number of gates,
so they tended to be used primarily for providing flexible interconnect and interface logic (sometimes

Image Processing 19

called glue logic), and for implementing finite state machine-based controllers. Multiple FPGAs were
required to implement any significant image processing system. As FPGAs grew in power, hybrid systems
were developed where FPGAs were used as vision coprocessors or accelerators within a host computer
(for example the Splash-2 system; Athanas and Abbot, 1995). Modern FPGAs now have sufficient
resources to enable whole applications to be implemented on a single FPGA, making them an ideal choice
for embedded real-time vision systems.

2

Field Programmable Gate Arrays

In this chapter, the basic architectural features of FPGAs are examined. While a detailed understanding of
the internal architecture of an FPGA is not essential to programme them (the vendor-specific place and
route tools manage most of these details), a basic knowledge of the internal structure and how a design
maps onto that architecture can be used to develop a more efficient implementation.

2.1 Programmable Logic

The basic idea behind programmable hardware is to have a generic circuit where the functionality can be
programmed for a particular application. Conventional computers are based on this idea, where the ALU
can perform one of several operations based on a set of control signals. The limitation of an ALU is that it
can only perform one operation at a time. Therefore, a particular application must be broken into the
sequence of control signals for controlling the function of the ALU, along with the logic required to
provide the appropriate data to the inputs of the ALU. The sequence of controls is provided by a sequence
of programme instructions stored in the memory.

Programmable logic, on the other hand, represents the functionality as a circuit, where the particular
circuit can be programmed to meet the requirements of an application. The key distinction is that the
functionality is implemented as a parallel system, rather than sequential. Any logic function may be
implemented using a two-level minterm (OR of AND) representation. Therefore, it made sense that early
programmable logic devices consisted of a two-level programmable array architecture, such as that shown
on the left in Figure 2.1. Each of the inputs (and its inverse) can potentially be connected to the input of
each of a set of AND gates. Each circle represents a programmable connection between the corresponding
vertical and horizontal line, as shown in the bottom of Figure 2.1. A similar arrangement is used to connect
the output of each of the AND gates to the inputs of the OR gates. In practice, both input and output
sections use the same circuit since, from De Morgan’s theorem, the OR of ANDs can be implemented as
a NAND of NANDs. Sequential logic, such as counters and finite state machines can be implemented
with the addition of latches or flip-flops on the output, and appropriate feedback from the output back to
the input.

Simple programmable logic devices began appearing in the early 1970s, and were mainly used to
simplify circuits containing many discrete logic devices. The early devices were either mask program-
mable or fuse programmable. Mask-programmable devices were programmed at manufacture, effectively
hard wiring the programming using a metal mask. Fuse-programmable devices can be programmed by the
user, making such circuits field programmable. The programmable sections can consist either of fuses

Design for Embedded Image Processing on FPGAs, First Edition. Donald G. Bailey.
© 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd.

22 Design for Embedded Image Processing on FPGAs

L I I

M

0, 01 Qo 0, 01 Qo

Figure 2.1 Types of programmable logic array. Left: both the input AND and output OR sections
are programmable. Centre: PAL, with programmable AND section and fixed OR section; right:
PROM, with fixed AND section and programmable output OR section; bottom: interpretation of the
programmable sections.

where a higher than normal current is used to break a connection (blow the fuse in the conventional sense),
or more usually antifuses, where a thin insulating layer is broken down by applying a high voltage across
it, and it becomes conducting. Since blowing a fuse (or antifuse) is destructive, once programmed the
devices cannot be reprogrammed.

Such a programmable array provides full programming flexibility. However, it was soon realised that
advantages could be gained from having a less flexible array. If the output (OR) array is replaced by fixed
connections, so that each OR gate has a fixed number of AND gates connected to it, the result is
programmable array logic (PAL) and is illustrated in the centre panel of Figure 2.1. While this may appear
to reduce the number of connections, in practice the number of AND gates must be increased because the
AND terms cannot be shared between different outputs. However, restricting the programmability to just
one section does reduce the area, and the speed of the OR section is increased. The only limitation this
imposes on the logic function is the maximum number of terms that may be ORed together to give
a particular output. For all but the more complex circuits, this limitation is not significant, and even
when this limit is reached, multiple outputs may be used and combined to implement more complex
logic functions.

Another advance, in the mid 1980s, was to control each programmable connection with an EEPROM
(electrically erasable programmable read only memory) cell rather than a fuse. This enables the devices to
be cleared and reprogrammed. A key benefit is that the logic may be altered simply by reprogramming the
device. This opens possibilities for remote upgrading, without necessarily having the product returned to
the factory or service centre.

An alternative simplification to the PAL is to fix the AND section and make the OR section program-
mable, as shown in the right panel of Figure 2.1. This structure effectively results in a programmable read
only memory (PROM) or lookup table (LUT). Each AND gate will correspond to one combination of the
input signals, corresponding to exactly one line of the truth table representation of the function. So for
three inputs, there will be 2° or eight AND gates. The OR section is programmed to select the combination
of inputs required to give a high output. A lookup table may implement any arbitrary function of its inputs.
This gives PROMs considerable flexibility, although the circuit size grows exponentially with the number

Field Programmable Gate Arrays 23

L I I
%; %; Memory array
D X L
| oJL, oL oJL
A &) —_ L L, I, I
— oT¢ oIy oI
g /A - 1 Y
a | oTLe 0TL¢ 0T 8
2 I X L g
2| L~ o7 o7 o7 = 0
e D X mi 5
g | | — oTTg o713 oI >
[D/ — X L =
— 073 oTT¢ oI5 ®
L —2 X mi
— oT¢ oIy oI
L — —x X L
oTLs 0TL¢ 0T
() 0 Qo

Figure 2.2 PROM architectures. Left: implemented as memory; right: multiplexer tree.

of inputs, which restricts the usefulness of PROMs to where only a few inputs are required. Larger PROMs
are also much slower than dedicated logic circuits, and consume more power. For these reasons, large
PROMs are not often used for general programmable logic. However, the flexibility of the lookup table
architecture can be effective with a small number of inputs, making it the most commonly used building
block within FPGAs. In practise, a PROM is not implemented as shown in Figure 2.1. The programmable
OR connection is usually replaced by a programmed memory cell, which is connected to the output via a
pass transistor as shown in Figure 2.2. Alternatively, for a small number of inputs the programmed
memory cell may be connected to the output via a multiplexer tree.

The programmable logic described so far only has a limited number of inputs and outputs. The next step
in the development of programmable logic was to incorporate several blocks of logic on a single chip, with
programmable interconnections to enable more complex logic functions to be created. Two classes of
device resulted — complex programmable logic devices (CPLDs) based on the PAL architecture, and
FPGAs based on the LUT architecture. These differences mean that CPLDs have a higher density of logic
compared to interconnect, whereas the logic blocks within FPGAs are smaller and the architecture is more
dominated by interconnects. The other main difference between CPLDs and FPGAs is that CPLDs tend to
be flash-programmable, whereas the programme or configuration for most FPGAs is usually held in static
memory cells. This makes the configuration volatile, requiring it to be reloaded each time the device is
powered on. The configuration data is contained in a configuration file which is used to programme
the system.

Both CPLDs and FPGAs were introduced in the mid 1980s, and were initially used primarily as glue
logic on printed circuit boards to flexibly interconnect a range of other components. However, as device
densities increased, FPGAs began to dominate because of the increased flexibility that came primarily
through the more flexible interconnect structure. Current FPGAs have sufficient logic resources (and
associated interconnect routing) to implement even complex applications on a single chip. More recent
trends have led to the integration of specific functional blocks within the FPGA, including multipliers,
memories, high speed input—output interfaces, and even serial processor cores (Leong, 2008). Imple-
menting such commonly used features as dedicated blocks frees up the programmable logic resources that
would otherwise be required. It also increases the speed and reduces the power consumption compared
with implementing those functions out of general purpose programmable logic.

24 Design for Embedded Image Processing on FPGAs

2.1.1 FPGAs vs. ASICs

Programmability comes at a cost, however. If an FPGA-based implementation is compared with the same
implementation in dedicated hardware as an application specific integrated circuit (ASIC), the FPGA
requires more silicon, is slower, and requires more power. This should not come as a surprise — a custom
made circuit will always be smaller than a generic circuit for a number of reasons. Firstly, the custom
circuit only needs to consist of the gates that are required for the application, whereas the programmable
circuit will inevitably have components that are not used, or not used in the best possible way. Secondly, a
programmable interconnect is not required in a custom circuit; the logic is just wired where it is needed.
The interconnect logic must also be sufficiently flexible to allow a wide range of designs, so again it will
only be partially used in any particular configuration. Thirdly, the programmable hardware requires extra
configuration logic, which also consumes a significant proportion of the chip real estate. Taking all these
factors into consideration, an FPGA requires 20—40 times the silicon area of an equivalent ASIC (Kuon
and Rose, 2006). Itis at the higher end of this range for designs dominated by logic, and at the lower end of
the range for those applications that make significant use multiplier blocks and memories, where the
programmable blocks are bigger.

In terms of speed, the flexibility of programmable logic means that it will always be slower than
a custom circuit. Also, since programmable circuits are larger, they will have more capacitance, reducing
the maximum clock speed. On custom hardware, the wiring delays can be minimised by placing
connected components as close as possible to each other. The need for programmable interconnect on
FPGAs means the logic blocks are spaced further apart, so it takes longer for the signals to travel from one
block to another. This is made worse by the fact that designs tend to be more scattered over the resources
available by the automated place and route tools. Finally, every interconnection switch that a signal passes
through also introduces a delay. Therefore, an ASIC will typically be three to four times faster than an
FPGA (Kuon and Rose, 2006) for the same level of technology.

An FPGA will also consume about 10—15 times more dynamic power than a comparable ASIC (Kuon
and Rose, 2006). The main causes of the large disparity in power dissipation are the increased capacitance
and the larger number of transistors that must be switched.

In spite of these disadvantages, FPGAs do have significant advantages over ASICs, particularly with
digital systems. The mask and design costs of ASICs are significantly higher, although the cost per chip is
significantly lower (Figure 2.3). This makes ASICs only economical where high volumes are required, or
where the speed cannot be matched by an FPGA. With each new technology generation the capabilities of
FPGAs increase, moving the crossover point to higher and higher volumes. FPGAs also enable a shorter
time to market, both because of the shorter design period and because the reconfigurability allows the design
to be modified relatively late into the design cycle. The fact that the design may also be reconfigured in the
field can also extend the useful lifetime of a product based on FPGAs. The future is likely to see an increased
use of reconfigurability within ASICs to address these issues (Rutenbar et al., 2001).

Unit A
Cost
ASICs

: Structured
ASICs

FPGAs _
500 -5k “50K vVolume

Figure 2.3 The relative costs of FPGAs, ASICs and structured ASICs.

Field Programmable Gate Arrays 25

Structured ASIC approaches, which effectively take an FPGA design and replace it with the same logic
(hardwired) and fixed routing, can also overcome some of these problems. A structured ASIC consists of
a predefined sea of gates, with the interconnections added later. This effectively makes them mask-
programmed FPGAs. Fabrication of the user’s device consists of adding from two to six metal layers
forming the interconnection wiring between the gates. The initial cost is lower because the design and
mask costs for the underlying silicon can be shared over a large number of devices, and only the metal
interconnection layers need to be added to make a functioning device.

Both Altera (with HardCopy; Altera, 2009a) and Xilinx (with EasyPath; Krishnan, 2005) provide
services based on their high end FPGA families for converting an FPGA implementation into a structured
ASIC. The underlying sea of gates for these reflects the underlying architecture of the FPGA on which
they are based. Such devices provide significant cost reductions for volume production, while achieving
a 50% improvement in performance at less than half the power of the FPGA design they are based on
(Leong, 2008). NEC Electronics Corporation also provides an embedded gate array service (NEC, 2009).
This is based in a generic sea of gates, with the logic designs mapped onto these gates.

For prototyping, and designs where a relatively small number of units is required, the programmability
and low cost of FPGAs makes them the device of choice.

2.2 FPGAs and Image Processing

Since an FPGA implements the logic required by an application by building separate hardware for each
function, FPGAs are inherently parallel. This gives them the speed that results from a hardware design
while retaining the reprogrammable flexibility of software at a relatively low cost. This makes FPGAs
well suited to image processing, particularly at the low and intermediate levels where they are able to
exploit the parallelism inherent in images. FPGAs can readily implement most of the forms of parallelism
discussed in Section 1.8.

For a pipelined architecture, separate hardware is built for each image processing operation in the
pipeline. In a data synchronous system, data is simply passed from the output of one operation to the input
of the next. If the data is not synchronous, appropriate buffers may be incorporated between the operations
to manage variations in dataflow or access patterns.

Spatial parallelism may be exploited by building multiple copies of the processing hardware and
assigning different image partitions to each of the copies. The extreme case of spatial parallelism consists
of building a separate processor for each pixel. This is not really practical for all but very small images; for
realistic sized images, such massive parallelism does not map well onto current FPGAs, simply because
the number of pixels within images exceeds the resources available within an FPGA.

Logical parallelism within an image processing operation is well suited to FPGA implementation, and
itis here where many image processing algorithms may be accelerated significantly. This is accomplished
by unrolling the inner loops, so that rather than performing the operations sequentially, parallel hardware
is used.

Streaming feeds image data serially through a single function block. This maps well to a hardware
implementation, especially when interfacing directly to a camera or display where the images are
naturally streamed. If all of the operations are able to be implemented using stream processing, then the
implementation of the whole algorithm as a single streamed pipeline results in a very efficient imple-
mentation. With stream processing, pipelining is usually required to achieve the required throughput.

The ability to make significant use of parallelism has significant implications when building embedded
vision systems. Performing multiple operations in parallel enables the clock speed to be lowered
significantly. A VGA resolution video streamed from a camera at 30 frames per second produces
approximately 10 million pixels per second (although the clock speed is usually higher to account for the
blanking periods). Any significant processing requires many operations to be performed for each pixel,
requiring a conventional serial processor to have a much higher clock frequency. A streamed pipelined

26 Design for Embedded Image Processing on FPGAs

system implemented on an FPGA can often be operated at the native pixel input (or output) clock
frequency. This corresponds to a reduction in clock speed over a serial processor of two orders of
magnitude or more. The dynamic power consumption of a system is directly related to the clock
frequency, so a slower clock results in a significantly lower power design.

If the whole algorithm can be implemented on a single FPGA, the resulting system has a small form
factor. Designs with only two or three chips are possible, enabling the whole image processing system
to be embedded with the sensor. This enables smart sensors and smart cameras to be built, where the
intelligence of the system is built within the camera (Leeser et al., 2004; Mosqueron et al., 2007). The
result is that vision can then be embedded within many applications as a versatile sensor.

2.3 Inside an FPGA

So, what exactly is inside an FPGA? Figure 2.4 shows the basic structure and essential components of a
generic FPGA. The programmable logic consists of a set of fine-grained blocks that are used to implement
the logic of the application. This is sometimes called the fabric of the FPGA. The logic blocks are usually
based on a lookup table architecture, enabling them to implement any arbitrary function of the inputs. The
logic blocks are typically tiled in a grid structure and interconnected via a programmable routing matrix
that enables the blocks to be connected in arbitrary configurations. The input and output (I/O) blocks
interface between the internals or core of the FPGA and external devices. The routing means that virtually
any signal can be routed to any I/O pin of the device.

In addition to these basic features, most FPGAs provide some form of clock synchronisation to control
the timing of a clock signal relative to an external source. A clock distribution network provides
clock signals to all parts of the FPGA while limiting the clock skew between different sections of a design.
There is also some dedicated logic for loading the configuration into the FPGA. This logic does not
directly form part of the user’s design, but is the overhead required for FPGAs to be programmable and
provides the mechanisms for loading the user’s design onto an FPGA.

Each of these components is examined in a little more detail in the following sections.

g5
ga.
~ 0

,_
[}

@
5

b
b
b

Clock
control

Configuration
control

Figure 2.4 The basic architecture of an FPGA.

Field Programmable Gate Arrays 27

2.3.1 Logic

The smallest unit of logic within the FPGA is a logic cell. This is the finest grain logic unit producing
a single bit output. It typically consists of a small LUT and a latch on the output, as represented in
Figure 2.5. A common terminology is to refer to a three-input LUT as a 3-LUT, and similarly for other
LUT sizes. The latch is used to register the output. On some FPGAs, both outputs may be provided, as in
Figure 2.5; on others, a multiplexer may be used to select whether the registered or unregistered signal is
output. The registers can be used for building finite state machines, counters, and for registering data
within pipelined systems.

The LUT can implement any arbitrary function of its inputs. More complex functions can be
implemented by cascading multiple levels of LUTs by connecting the output, X, to the input of the
next layer. FPGA manufacturers face a trade-off in choosing the size of the LUTs. Consider implementing
a simple two-input AND gate. With a large LUT, a significant fraction of the logic would be unused.
Smaller LUTs would achieve a higher usage of resources. However, when implementing complex
functions with small LUTs, multiple logic cells would have to be cascaded, which can significantly
increase the propagation delay. For complex functions, using a larger LUT would be preferable. To
balance this, the silicon area of the table grows exponentially with the number of inputs, so at some stage it
is more efficient to split a complex function over multiple LUTs. A larger LUT also has a longer
propagation delay than a smaller table because of the extra levels in the multiplexer tree. Early studies
showed that the optimum size is for the LUT to have four to six inputs (Kouloheris and El Gamal, 1991;
Singh et al., 1992). Early FPGAs used 3-LUTs and 4-LUTs. However, as device scales have shrunk, the
proportion of the total propagation delay used by the routing matrix has increased. This has led to larger
LUTs in more recent devices, for example recent Xilinx devices use 6-LUTs. Another approach taken is to
combine two basic lookup tables, sharing some of the inputs, but allow the logic to be partitioned between
the two outputs according to the application (Hutton et al., 2004).

Itis also usual to combine multiple logic cells into a logic block or tile, as in Figure 2.4. All of the logic
cells within a block share common control signals, for example, common clock and clock enable signals.
In alogic block, the outputs are directly available as inputs to other logic cells within the same block. The
resulting direct connections reduce the number of signals that need to be routed through the interconnect
matrix, reducing the propagation delay on the critical path. A small number of additional dedicated
multiplexers allow more complex functions to be synthesised by combining adjacent LUTs to effectively
create a larger LUT. Studies have shown that the optimal logic block size is four to ten logic cells (Ahmed
and Rose, 2000).

Many of the early FPGAs were homogenous in that there was only one type of logic resource. However,
as FPGAs developed and moved from being used primarily as glue logic to compute resources in their own

Siq
a|gqewwelboid

ILo7992977

Clk CE

Inputs

Figure 2.5 A logic cell is the basic building block of an FPGA.

28 Design for Embedded Image Processing on FPGAs

right, implementing many functions using fine-grained logic was expensive. This has led to a more
heterogeneous architecture, with a range of more complex coarser-grained building blocks.

Addition is acommonly performed operation. On an FPGA, a full adder would require two 3-LUTs, one
to produce the sum and one to produce the carry. With a ripple adder, the propagation of the carry signal
through the routing matrix is more likely to form the critical path. Since addition is such a common
operation, many manufacturers provide additional circuitry within logic cells (or logic blocks) to reduce
the resources required and significantly reduce the critical path for carry propagation. This usually
consists of dedicated logic to detect the carry (so only one LUT is needed per bit of addition) and
a dedicated direct connection for the carry signal between adjacent logic cells.

Multiplication is also a common operation in digital signal processing (DSP). A multiplier can be
implemented using logic blocks to perform a series of additions, either sequentially or in parallel.
Sequentially, multiplication is time consuming, requiring one clock cycle for each bit of the multiplier to
perform the associated addition. Implementing the multiplication in parallel improves the timing, but
consumes significant resources. Therefore, it is common in FPGAs targeting DSP and other compute
intensive applications to have dedicated multiply or multiply and accumulate blocks.

On a fine-grained FPGA, all of the storage is within the flip-flops in the logic cells. While this is suitable
for data that is accessed frequently, the storage space is limited, making it expensive for storing larger
volumes of data. Rather than require the use of off-chip memories, many FPGAs have had small blocks of
memory added on-chip for intermediate storage and buffers. This can be implemented in two ways —either
by adding dedicated memory blocks (block RAM) or by adapting the structure of the logic cells to enable
them to be used as a random access memory rather than as LUTs; such memory is called fabric RAM
because itis made from the “fabric” of the FPGA. A high bandwidth is maintained by keeping the memory
blocks small, enabling independent access to each block. Many of the memory blocks are also dual-port,
simplifying the construction of FIFO buffers and custom caches. True dual-port allows independent
reading and writing on each of the ports. Some memories are only simple dual-port, where one port is
write only and one port is read only.

Often, some parts of an application benefit from the parallelism offered by an FPGA, and other parts are
more efficiently implemented using a serial processor. In these latter cases, a serial processor may be
constructed from the fabric of the FPGA. The delays associated with programmable logic and intercon-
nect will limit the clock speed of such a processor. Therefore several high end FPGA families implement
a high performance serial processor as a hardware block on the FPGA.

To summarise, fine-grained homogenous FPGAs consist of a sea of identical logic blocks. However,
most current FPGAs have moved away from this homogenous structure, with a heterogeneous mixture of
both fine-grained logic blocks and larger coarse-grained blocks targeted for accelerating commonly used
operations. This has both advantages and disadvantages in terms of design. Heterogeneous systems will
generally be faster because the coarse-grained blocks will not have the same level of overhead that comes
with fine-grained flexibility. However, heterogeneous devices are also harder to programme, and if the mix
of specialised blocks is not right much of the functionality may remain underused.

2.3.2 Interconnect

The purpose of the programmable interconnect is to flexibly enable the different logic blocks to be
connected to implement the desired functionality. Obviously it is impractical to provide a dedicated
direct connection from every possible output to every possible input. In any given application, only a
very small fraction of these connections would be required; however, any of the connections potentially
may be required. The solution is to have a smaller set of connection resources (routing lines) that can be
shared flexibly to create the connections required for a given application, a little like the cables in a
telephone network.

Since the interconnect takes up room on the silicon, there is a compromise. If only a few routing lines are
provided, more space is available for logic, but complex circuits cannot be constructed because of

Field Programmable Gate Arrays 29

insufficient interconnection resources. Alternatively, if too many routing lines are provided, many will not
be used, and this reduces the area available for logic. There is an optimum somewhere in between these
extremes, where sufficient routing lines are available for most applications, without using too much space.

The connection network for most FPGAs is based on a grid structure, similar to that shown in Figure 2.4.
At each grid intersection some form of crossbar switch enables programmable connection between the
horizontal and vertical routing lines.

Another factor that needs to be considered is the propagation delay through the interconnection
network. Each switch that the signal passes through will add to the delay. This has led to a segmented
structure, where not every routing line is switched at every junction. Also, dedicated direct connections
can be provided between adjacent logic blocks to reduce the number of signals that need to go via the
interconnect matrix. While having a range of different interconnection resources improves the flexibility
and speed, it can make the process of finding good routes significantly more complex, especially for
designs which use most of the logic available on the FPGA.

It is important that only a single output is driving a routing line. If two outputs are connected together,
with one high and the other low, the power supply will effectively be shorted, causing damage to the chip.
One of the roles of the FPGA programming tools is to ensure that this never happens. Devices that use bus
structures for routing must limit the current of driving transistors, or use open drain and passive pull-up.
Both approaches affect the speed and power dissipation.

2.3.3 Input and Output

Input and output blocks enable the connection of signals between the FPGA and external devices. The
flexibility of FPGAs requires them to be able to connect to a wide range of other components. Most of
the I/0 pins can be programmed as inputs, outputs, or both, and be connected directly to the internal
logic of the FPGA, or pass via registers. This range of functionality may be provided by a generic /O
block such as that shown in Figure 2.6, with each multiplexer controlled by a programmable
configuration bit. The main complexity of I/O arises from the large number of different signalling
standards used by different devices and ensuring appropriate synchronisation between the FPGA and
the off-chip components.

Perhaps the most common signalling standard is Low Voltage Transistor—Transistor Logic (LVTTL) or
Low Voltage CMOS (LVCMOS), which are suitable for general purpose 3.3V signals. FPGAs will almost
certainly require a separate power supply for the I/O pins because the I/O voltages are often larger than the
core supply voltage. Some standards may also require an external voltage reference to determine the
threshold level between a logical 0 and 1. The voltage supply and reference levels will usually apply to a
group or bank of I/O pins.

It is important when interfacing high speed signals to consider transmission line effects. A general
rule of thumb is that any connection longer than about one-eighth of the rise time should have

Output enable ﬁ:
OE
g T

Input - ?

Buffers and
drivers

Figure 2.6 Generic input/output block.

30 Design for Embedded Image Processing on FPGAs

appropriate termination to minimise signal reflections. As FPGAs have become larger and faster, it has
become common practise to provide programmable on-chip termination. If not provided, it is necessary to
ensure that appropriate termination is built off-chip for fast switching signals.

Just as dedicated logic blocks are provided in some FPGAs for commonly used functions, many
newer FPGAs may also include dedicated I/0O hardware to manage some commonly used connections
and protocols. One example is the logic required to interface to double data rate (DDR) memories.
Two data bits are transferred per clock cycle on each I/0 pin, one on clock high and one on clock low.
Multiplexing and de-multiplexing are built into the I/O block, enabling the internal circuitry to operate
atthe clock rate rather than twice the clock rate. Differential signalling is commonly used for high speed
communication because it is less sensitive to noise and cross-talk. This improved noise immunity
enables a lower signalling voltage to be used, reducing the power requirements. Most of the recent
FPGAs include the logic for managing low voltage differential signalling (LVDS), which requires two
I/0 pins for each bit.

High speed serial standards have signalling rates higher than the maximum clock speed supported by
the core of the FPGA. Support for such standards requires incorporation of parallel-to-serial converters on
outputs and serial-to-parallel converters on inputs. The serialisation and deserialisation (SERDES) logic
enables the FPGA to run at a lower speed than required by the communication data rate.

Many high level communication protocols would require significant FPGA resources simply to manage
the protocol. While this can be implemented in the fabric of the FPGA, the design is often quite complex
and is better implemented using a dedicated interface chip. Such chips typically manage the media access
control (MAC) and physical signalling (PHY) requiring only standard logic signals in their interface with
the FPGA. Some FPGAs incorporate dedicated MAC and PHY circuitry for commonly used commu-
nications protocols, such as PCI express and Gigabit Ethernet.

Most FPGAs provide a range of both general purpose and dedicated I/O connections.

2.3.4 Clocking

FPGAs are designed primarily as synchronous devices, so require a clock signal. Although multiple
clocks may be used in a design, registers, synchronous memories and I/0 blocks can only be controlled by
one clock. A clock domain consists of all the circuitry that is controlled by a particular clock.

Since a clock drives a lot of inputs potentially over the whole of the FPGA, there are two special
characteristics of clock lines that distinguish them from other interconnections on an FPGA. Firstly, it is
important that all registers in a clock domain are clocked simultaneously. Clock skew is the difference in
arrival time of the clock signal at successive registers in a design (Friedman, 2001). Any skew will reduce
the timing margin and impact the maximum clock speed of a design. Although skew can be minimised by
using H-tree or X-tree clock distribution networks, these do not fit well with the grid based structure of
FPGAs (Lamoureux and Wilton, 2006). Instead, a spine and ribs structure is typically used (Figure 2.7),

1 H
 H
[
H|H

o H
Y HH
[H
[H

Figure 2.7 Clock distribution networks. Left: H-tree structure; right: spine and ribs structure.

Field Programmable Gate Arrays 31

where the clock is distributed to rows using a spine and then to the elements on the row using the ribs
(Lamoureux and Wilton, 2006). A series of buffers is used within the distribution network to manage the
high fan-out. In practise, it is a little more complex than this, as the network must cater for multiple clock
domains, and many FPGAs also have a mixture of local clocks and global clocks.

Delay locked loops (DLLs) are used to minimise the skew and to synchronise clocks with external
sources. These dynamically adjust a programmable delay to align the clock edge with an external
reference. A side effect is making the output duty cycle 50% and providing quadrature phase clock signals.
While the delay locked loop will match the input frequency, phase locked loops (PLLs) can also be used to
synthesise different clock frequencies by multiplying a reference clock by an integer ratio.

2.3.5 Configuration

All of the switches, structures and options within the FPGA are controlled by configuration bits. Most
commonly, the configuration data is contained within the FPGA in static memory (SRAM) cells, although
flash-programmed devices are available from some manufacturers. Flash-programmed FPGAs are non-
volatile, retaining their configuration after power-off, so they can immediately begin working after
powering-on. Static memory based FPGAs lose their configuration on power-off, requiring the configu-
ration file to be reloaded every time the system is powered on. Static memory had the advantage of being
infinitely reprogrammable; flash memory typically has a limited number of write cycles.

An FPGA is configured by loading the configuration file into the internal memory. This is usually
accomplished by streaming the configuration file onto the FPGA either serially, or in parallel 8, 16 or in
some cases 32 bits at a time. In a stand-alone system, the configuration file is usually contained within an
external flash memory, such as that shown in Figure 2.8, with the board set up to automatically configure
the FPGA on power-on. FPGAs can also be programmed serially via a JTAG (Joint Test Action Group)
interface, and this interface is commonly used when programming an FPGA from a host computer system.
The need to transfer the configuration into the FPGA each time the system is powered exposes the
configuration file making the intellectual property contained within vulnerable to piracy or reverse
engineering. The higher end FPGAs overcome this limitation by encrypting the configuration file and
decrypting the configuration once it is within the FPGA.

FPGA s can also be reconfigured at any time after power-on. Since the configuration controls all aspects
of the operation of the FPGA, it is necessary to suspend operation and restart it after the new configuration
is loaded. No state information can be retained from one configuration to the next — all of the flip-flops are
reset and all memories are usually initialised according to the new configuration. Therefore, any state
information must be saved off-chip and reloaded after reconfiguration.

Some FPGAs can be partially reconfigured. The internal static memory controlling the configuration is
addressed via internal registers, allowing the configuration for part of the FPGA to be accessed and
changed. As before, this cannot be done while that part of the FPGA is operating; however, the rest of the

Configuration
ROM
SRAM
————p Dbased
FPGA

Figure 2.8 Configuration of static RAM-based FPGAs.

32 Design for Embedded Image Processing on FPGAs

FPGA can continue executing normally. Partial reconfiguration requires the layout of the design to be
structured in such a way that the blocks being reconfigured are within a small area on the FPGA to
facilitate loading at run-time.

Some FPGA s also support read-back of the configuration from the FPGA. This feature can be useful for
debugging a design, given appropriate tools, but is generally not used in normal operation.

2.3.6 Power Consumption

In embedded applications, the power consumption of the system, and in particular of the FPGA, is of
importance. The power dissipated by an FPGA can be split into two components: static power and
dynamic power. Dynamic power is the power required for switching signals from O to 1 and vice versa.
Conversely, static power is that consumed when not switching, simply by virtue of the device being
switched on. Most FPGAs are based on CMOS technology. A CMOS inverter, the most basic CMOS
circuit, is shown in Figure 2.9. It consists of a P-channel pull-up transistor and an N-channel pull-down
transistor. Only one of the transistors is on at any one time, and since the MOS transistors have a very high
off-resistance, CMOS circuits typically have very low static power dissipation.

Any significant power is only dissipated when the output changes state. This results from two main
sources (Sarwar, 1997). The first is from charging the capacitance on the output line. The capacitance
results from the inputs of any gates connected to the output, combined with the stray capacitance
associated with the wiring between the output and any downstream inputs. The power required is given by

P =NCV},f (2.1)

where N is the average number of outputs that are changing in each clock cycle, C is the average
capacitance on each output and f is the clock frequency. For an embedded system, the power consumption
may be reduced by considering each of the terms of Equation 2.1:

¢ by limiting the number of outputs that change with each clock cycle;

e by minimising the fan-out from each gate and minimising the use of long wires (to keep the
capacitance lower);

¢ by reducing the power supply voltage (although the developer has little control over this, it has been
reducing with each technology generation); and

¢ by reducing the clock frequency.

In terms of a given design, reducing the clock frequency probably has the most significant effect on
reducing the power consumption, as it is often the clock signal itself that dissipates the most power. It is
toggling with every cycle, and because the clock distribution network extends over the whole FPGA it also
has a high capacitance. Minimising the number of clock domains and keeping the logic associated with
each clock domain together can also help to limit the power used by the clock circuitry.

Input :} Output

Figure 2.9 CMOS inverter.

Field Programmable Gate Arrays 33

The second component of dynamic power dissipation results from the fact that as one transistor is
switching off, the other is switching on. During the transition there is a brief interval when both transistors
are partially on and there is a conduction path between Vpp and Vsg. For fast transition rates, power
dissipation from this source is typically much lower than that from charging the load capacitance. The
flow-through current can be minimised by keeping the input rise time short, which can be managed by
limiting the fan-out from the driving source. This flow-through current is becoming more important with
reducing Vpp because the threshold voltages of the P- and N-channel transistors are brought closer
together and both transistors are partially on for a wider proportion of the input voltage swing.

The static power dissipation arises from leakage currents from five different sources (Unsal and Koren,
2003) of which the subthreshold leakage is dominant. This is the leakage current through the transistor
when the gate voltage is below the switching threshold and the transistor should be switched off. As
the feature size and supply voltage of devices is scaled down, the threshold voltage must also be scaled
down to maintain device speed. Unfortunately, the subthreshold leakage current scales exponentially with
decreasing threshold voltage, so the leakage current contributes to an increasing proportion of the total
power dissipation with each technology generation (Kao et al., 2002; Unsal and Koren, 2003).

Several techniques can mitigate against this increase in subthreshold leakage current (Kao et al., 2002).
One is to use a higher threshold voltage in the sections of the circuit where the speed is not critical, and
only use low threshold devices on the critical path. Another technique is to switch off sections of the
circuit which are not being used, or at least place them on standby. Both of these techniques are used by
FPGA manufacturers.

The user’s design can significantly affect the power dissipated by an FPGA. In general, minimising the
clock frequency and minimising the number of signals that transition every clock cycle can significantly
reduce power dissipation. There may be limited control over the length of the interconnections, as much of
this is managed automatically by the vendor’s place and route tools. However, these tools are also
programmed to minimise the length of the interconnections.

Another factor that can influence the design of embedded systems is the large current burst drawn from
the power supply when the device is switched on. This results from the activity that takes place as the
FPGA is configured. It is essential that the power supplies be able to handle this peak current, and not just
the average required for normal operation. This is of particular concern in low power, battery operated
devices where the peak current may be limited.

2.4 FPGA Families and Features

In the previous section the architectural features of FPGAs were reviewed in a general way. In this section,
the particular characteristics of devices from several manufacturers are considered in more detail. The two
main FPGA manufacturers in terms of market share are Xilinx and Altera, although there are several
others that provide FPGAs. The current offerings from each of these are described in turn. Of particular
interest from an image processing perspective is the size of the device in terms of logic resources,
embedded memories, embedded multipliers or DSP blocks, and whether or not the device includes
a processor core. (Note, where a processor core is not available, it is still possible to implement a soft
processor using the logic resources.) For each family the range of resources across the different family
members is listed. In the number of logic cells, 1k represents 1000 cells. The RAM size is given in bits,
where 1 K = 1024 bits. The total RAM figures represent the dedicated block RAM available on the FPGA,
and do not include fabric RAM. The descriptions given are by necessity brief; more details may be found
in the data sheets or product guides referred to; these are available from the manufacturer’s web sites.

2.4.1 Xilinx

Xilinx was one of the first developers of field programmable gate array technology. It has had a number
of families of devices, with the two current families being the Spartan series and the Virtex series.

34 Design for Embedded Image Processing on FPGAs

The main difference between the two families is that the Spartan devices are designed primarily for low
cost, and the Virtex devices are designed primarily for high performance. Both families are discussed here
chronologically, outlining the key features that have been added with each succeeding generation. In the
newest generation, the 7 Series devices, the Spartan family is replaced by the Artix and Kintex families.
Within each generation, a range of device sizes is available. The key characteristics are summarised in
Table 2.1 with more details to be found from the data sheets (the shaded lines in the table represent
“mature” devices that are no longer recommended for new designs).

24.1.1 Virtex and Spartan-II

Although the Virtex and Spartan-II are now obsolete, it is instructive to look at their architecture to see the
evolution with successive generations. Both the Virtex and Spartan-II are structurally similar, so will be
described together.

The basic logic cell is a 4-LUT. Each logic cell also has a flip-flop on the output. However, a
bypass input is also provided allowing the LUT to be bypassed, enabling the LUT and flip-flop to be
used independently. A dedicated multiplexer combines the outputs of two adjacent logic cells to
implement a 5-LUT or a 4:1 multiplexer. (Xilinx calls this pair of logic cells a slice.) Another
multiplexer enables two slices to be combined, to implement a 6-LUT or 8:1 multiplexer. Additional
logic is provided to accelerate arithmetic operations. The carry chain includes multiplexers for carry
generation and propagation, along with an XOR gate to enable a full adder to be implemented within
a single logic cell, as demonstrated in Figure 2.10. The carry chain propagates vertically up the
columns within the FPGA. Each logic cell also provides a dedicated AND gate to reduce the logic
required to implement multiplication.

Each logic cell can also be configured as a 16 x 1 bit fabric RAM or as a 16-bit shift register. The two
logic cells within a slice may be combined to implement a dual-port memory. This fabric RAM is useful
for storing coefficients or other small data structures where the memory depth is shallow. In addition to the
fine-grained fabric RAM, both the Virtex and Spartan-II contain blocks of dual-port memory, where each
block contains 4096 bits. The aspect ratio may be configured between 4096 x 1 to 256 x 16, making it
useful for implementing row buffers and larger FIFO buffers.

There is a range of interconnection resources between the logic blocks. There are direct
connections within a logic block and to adjacent logic blocks horizontally, enabling the logic cells
to be chained efficiently. In addition to the direct connections, the routing matrix provides four types
of connections:

« single length lines connecting adjacent tiles, both horizontally and vertically;

e hex lines that span six tiles, with a connection after three tiles;

¢ buffered long lines that span the whole chip, both horizontally and vertically; and
 horizontal bus lines. These can be driven by tri-state buffers within the logic blocks.

LUT _E);;T
= — um .) OT—19] >~ Sum
CmT @ iout CmED J— Cou

Figure 2.10 Left: logic required to implement a full adder with a single logic cell; right: a two-bit
multiplication in a single logic cell. (Adapted from Elzinga et al. (2000); reproduced by permission of
Xilinx, Inc.)

35

Field Programmable Gate Arrays

TLXTIS

— 0966—00L 8% + 81 XST INEONVI 9ST Puqed YTTcI-A6L1 8 9 wu 87 (BQT10T XUITX) L-XSMIA
TLXTIS

— 9107—88C 8 + 81 XST WLENSS 9ST PuUqed AyLy—{9¥ 8§ TXGI09 wu () (POT0T “XUILX) 9-XSUIA
(£1uo 1X4) TLXTIS

ObPDdd 9S01-C¢ 8% + 81X ST NSI-M9€6 9ST ouqed STyl 8§ TXGIg uu 69 (J800T “XUI[LX) G-XMIA
(ATuo X.1) 9¢ X TIS

SovOdd 96—C¢ 8v +8I X8I NLGM8Y9 $9 duUqed Y00TACI 8 v wu 06 (9800T “XUI[TX) H-XSMIA

9¢ X TIS Q00T

SOvDdd vl 81 X 81 INS'L-39IT 8TI PHqed Y 888T 3 4 wu 06/w €10 Xur[ryK) o1d [[-XoMIA
9¢ X TIS

— 891 81 X 81 MSTI-NMTL 8T DU NE¢6TCIS 8 v wi g/ ero (BLOOT XUIIX) TI-XOMIA
91 X 96T

— — — MSTINMTE b9 duqed NLTLT ¥ v wr zz°0 (100T Xurrx) XoMIA
TLXTIS

— 0PSI—0T1 8% + 81 XST WG6Z-NET 9ST Puqed Y 4STA61 3 9 wu gz (BQ10T “XUIIX) L-XSpury]
TLXTIS

— 00L-0F 8¢ +8IXST NTI-MOTL 95T OHqed YOTTAII 8 9 wu g (eQ10T XUIIX) L-XDIY
9¢ X TIS

— W8I+ 8y +8I X8I WLVIPPI 9ST PUARd YT6AT § TxGlIog wu G (9600T ‘xurrx) 9-ueneds

9¢ X TIS (P8OOT “XuI(rx)

— 9ZI-¥8 8y +8IX81 NTTINST $9 ©Ouqed NLpA¢g 3 4 wu 06 dsd I11-ueneds
9¢ X TIS

— YOIt 81 X 81 NS T-MTL 9 PUGed Y993 G'T 3 4 wu 06 (9800 “xur[rx) TIr-ueiredg
91 X 96T

— — — 95— 91 ¥9 ouqed Y ¢'G—Teh ¥ 14 wil 81°0 (98007 “xur[rx) [I-ueneds

S[D ozIg
108s9001d sYoo1g 4SA 71§ 4Sd VY [e10L AZIS INVY o130 oo 9ziS ILN1 $S9001d UOIJBIQUAN) pue A[Twe

SoIIWIE} YDA XUI[IX oY} JO SoNSLd0RIRY) [T AqEL

36 Design for Embedded Image Processing on FPGAs

In addition to these, there are global routing resources to distribute several clocks and other global
signals (such as reset) with low skew. The clock drivers use a delay locked loop to synchronise skew free
to either an external or internal source. The drivers can also divide down the signal or provide multiple
phases if necessary.

Configuration of the FPGA is based on a frame structure, where each frame is associated with a column
(or part of a column) within the FPGA. This enables partial reconfiguration of the FPGA, on a frame by
frame basis. The configuration can also be read back from the FPGA for verification or debugging.
Readback will also read the contents of any user registers (the flip-flops within I/O blocks or logic cells),
and RAM (both fabric RAM and block RAM).

2.4.1.2 Virtex-II

Many of the changes in moving to the Virtex-1II were relatively minor. The structure of each logic cell was
basically unchanged, although a logic block is now made up of eight logic cells grouped in four slices of
two logic cells each. As before, the logic cells may also be configured as fabric RAM or shift registers.
An additional OR gate was added per slice to enable implementation of large sum of products chains
(Xilinx, 2007b). Each logic cell can be configured as a 4-input AND gate, with the carry chain used to
parallel adjacent logic cells to give wider input AND gates. The OR is placed at the top of each slice and
can be linked horizontally to arbitrary widths. Dedicated multiplier blocks (18 x 18) were introduced with
the Virtex-1I, accelerating DSP and other compute applications.

The size of the block RAMs was increased to 18 Kbits, with configurable aspect ratio from 16 K x 1 to
512 x 36. The extra bits can be can be used as additional storage, although they are intended as parity bits.
However, the user is required to implement any parity generation and checking logic.

There was a small change to the hierarchical routing resources. The single lines were replaced with
double lines which connect over one or two tiles, both horizontally and vertically. The direct connections
were also extended to allow direct connection to diagonally adjacent logic blocks.

The clock network was also augmented with local clocks associated primarily with I/Os. The clock
drivers were augmented to include phase locked loops to enable frequency synthesis by a ratio of integers.
The I/O blocks were enhanced to provide digitally controlled termination and direct support for
differential I/O and double data rate standards.

The Virtex-II Pro added a number of additional coarse-grained blocks (Xilinx, 2007b). A key new
feature was the introduction of a PowerPC processor core to accelerate high performance computing
applications. Another new feature to facilitate high speed communication was the multigigabit transceiver
cores (called RocketIO by Xilinx). These cores include SERDES logic to enable the communication to
take place at a much higher clock speed than is used internally for the logic.

2.4.1.3 Virtex-4 and Spartan-II1

The previous generation of FPGAs saw an increase in the use of coarser grained block for implementing
specific functions. However, different applications require a different mix of these blocks. For example
DSP applications make extensive use of hardware multiplication; communication applications require the
high speed connectivity; image processing makes extensive use of the internal RAM for buffering.
Therefore, to provide a good mix of features targeted at specific application areas, Xilinx provides several
FPGA s within each family that have a different mix of coarse-grained blocks. From an image processing
perspective, of particular interest are the devices that provide a focus on logic, block memories, and in
some imaging applications, DSP resources.

The biggest change within the logic blocks is that only half of the slices may now be used as fabric RAM
or as a shift register. All of the slices within a logic block still have fast carry chains. All of the devices have
multiplier blocks, although the Virtex-4 devices also include a 48-bit post-adder and accumulator, and the
Spartan-III add to this an 18-bit pre-adder on one of the multiplier inputs. Both families use 18 Kbit block

Field Programmable Gate Arrays 37

RAMs, although the Virtex 4 also provides built-in logic to operate the block RAM as a FIFO without
using additional logic resources.

The interconnect resources are the similar to those provided with the previous generation devices. Two
notable exceptions are that the long lines only connect to every sixth tile, and the horizontal busses and
associated tri-state buffers are no longer provided.

The clock managers introduced with the Virtex-II have been extended to the Spartan family as well.
Similarly, the programmable I/O termination, support for differential signalling and double data rate
interface have been extended to both families.

The Virtex-4 FX branch also includes the PowerPC core, high speed transceiver blocks and an Ethernet
MAC. The Virtex-4 also introduces an internal configuration access port that makes the configuration
memory of the clock managers and high speed I/O ports accessible from internal to the FPGA. This
enables these devices to be reconfigured directly from within the fabric of the FPGA, or through the
embedded processor. Also introduced with the Virtex-4 is encryption of the configuration file to prevent
the design from being copied or reverse engineered. The decryption key is stored in volatile memory,
which requires a battery backup to retain when the system is powered off.

The Spartan-3AN includes a serial flash memory on chip that can be used to configure the FPGA
(Xilinx, 2009b). This has sufficient capacity for two complete configuration files, plus additional capacity
for user applications.

2.4.1.4 Virtex-5

In the Virtex-5, the size of the logic cell increased to a 6-LUT, which may be fragmented to two 5-LUTs
(sharing common inputs). The logic block architecture has four LUTS per slice, and two slices per logic
block. As with the Virtex-4, only one of the slices can be configured as fabric RAM or a shift register.
However, the increase to four LUTs per slice allows the fabric RAM to be configured as quad-port (using
all four logic cells as separate interfaces), although only one port has read and write capability; the other
ports are read only. A logic cell can be configured as a programmable 32-bit or dual 16-bit shift register.

The size of the block RAMs has been increased to 36 Kbits per block. The aspect ratio may be
configured from 32K x 1 to 1024 x 36 as full dual-port, or as 512 x 72 simple dual-port. The block can
also be partitioned as two independent 18 Kbit memories. Optional 64-bit error correction circuitry is built
in, enabling detection of 2-bit errors and correction of single-bit errors.

New to the Virtex-5 are PCI express endpoint blocks in some branches of the family. This can simplify
connection with other devices, or a host computer through the PCI express interface.

24.1.5 Virtex-6 and Spartan-6

The latest members of the Xilinx FPGA families available at the time of writing are the Spartan-6 and
Virtex-6. These extend the storage per logic cell to two flip-flops. While all of the logic cells within the
Virtex-6 provide arithmetic logic and carry chains, only half of those within the Spartan-6 do so. Similarly,
approximately half of the Virtex-6 logic cells can be used as fabric RAM or shift registers, while only
approximately one quarter of the Spartan-6 logic cells can be configured to do so.

The interconnect model within the Spartan-6 has also been changed to give more focus on local routing.
The horizontal and vertical long-lines have been removed, with the following resources now available
(Xilinx, 2010b):

e direct connections back to the inputs within the same logic block;

e single hop, to adjacent tiles horizontally and vertically;

¢ double hop, to two tiles away horizontally and vertically, or one tile diagonally;
¢ quad hop, to four tiles away horizontally and vertically, or two tiles diagonally.

38 Design for Embedded Image Processing on FPGAs

While the Virtex-6 block RAMs have integrated FIFO logic and support for error correction, this has not
been migrated to the Spartan family. However, new with the Spartan-6 is an integrated memory control
block that simplifies the interface to common memory types. This transparently hides the buffering and
control with high speed high bandwidth DDR connections (Xilinx, 2010c). The PCI express endpoint
blocks and high speed transceivers previously only present in the Virtex family have now been migrated to
some of the Spartan-6 FPGAs. It is interesting that Xilinx has not continued the FX series with the
PowerPC processor into the Virtex-6 generation.

2.4.1.6 Virtex-7, Artix-7 and Kintex-7

Xilinx has recently announced its 7 Series of devices. This latest generation of Xilinx FPGAs all share
a common underlying architecture, designed to simplify the portability of a design from one family to the
other. At the logic level, the Xilinx-7 Series is similar to the Virtex-6, but implemented in an advanced
28 nm process technology. This gives improved performance while at the same time giving significant
power savings over previous generations. The main differences between the families are the size of the
devices and the target market. The Artix-7 family is optimised for low cost and power and is designed with
a small footprint targeting high volume embedded applications. As before, the Virtex-7 family is targeted
for highest performance and capacity. The Kintex-7 family sits between the other two families, giving
a balance between cost and performance.

A new feature added with the 7 Series is a general purpose analogue to digital converter that gives
12 bits resolution at up to one mega-samples per second. While too slow for video, these A/D converters
would be useful in many embedded control applications.

2.4.2 Altera

Altera currently provides three families of FPGAs: the low cost Cyclone series, the mid range Arria series
and the high performance Stratix series (Table 2.2). The original Stratix used the same logic architecture
as the Cyclone, but with the Stratix IT Altera introduced a new adaptive logic module (Hutton et al., 2004).
None of the current families incorporate a processor core within the logic; the last to do so was the
Excalibur FPGA, based on the now obsolete Apex20K family. In terms of embedded processors, Altera
has focussed its efforts on its soft-core NIOS processor. However, the Excalibur is included in Table 2.2 for
comparison.

2.4.2.1 Cyclone

The Cyclone series was designed for low cost applications, making it well suited for commodity
embedded devices. This includes embedded image processing applications, especially distributed vision
systems where a large number of sensors is required.

The basic logic cell is a 4-LUT with a register on the output. However, for arithmetic operations,
the 4-LUT is partitioned into four 2-LUTs, enabling a full adder to be implemented using a single
logic cell. Both the sum and the carry are implemented efficiently as a carry-select adder, with two
2-LUTs calculating each the sum and carry on the input signals, both without and with carry. These
outputs are multiplexed by the carry-in, as demonstrated in Figure 2.11. This speeds up the addition
or subtraction of wide operands because the LUTs are not in the critical path and the carry signals
are generated in parallel for each section. A logic block consists of ten logic cells arranged vertically
in a column.

In addition to the logic blocks, there are also blocks of dual-port memory, with 4608 bits per block. The
aspectratio of each port can be configured from 4096 x 1 up to 128 x 36, although the largest width is only

39

Field Programmable Gate Arrays

¥9 + S X ¢ 0¥ X CIS
— 081-00¢ —6%X6 INES-IN6C OP9 -OUqed Y L8OI16€EC 01 NTY Indup g wugg (20107 ‘BINY) A X1RDS
CLXAT
9€ X9¢ X T 9¢ X 96T
— 191-8v —6X6X%X8 INTT-INE9 0¥9 PUqed Y STE—6C 01 NTY indup 8 wu o (PO10OT ‘BIANY) Al XDBDS
CLXAT
9€ X9¢ X T 9¢ X 96T
— ClI=LT —6X6X%X8 INPVI-IN8'T 0C¢ -duqed JSEI—61 01 NTY Indup g wu g9 (J800T ‘BINNY) 111 X1ens
9¢ X 9¢ Pl XAy
TS + 8I X8I X ¥ 9¢ X 8¢C1
— 96—l 6%X6x%X8 IN6'8A0Iy 81 XT¢E ATLA9 8 NTY indup g wu Qg (LOOT “eINVY) 11 X1eNns
9¢ X 9¢ Pl XAy
¢S + 8I X8I X ¥ 9¢ X 8¢CI
— 9 6%X6X%X8 N L=31 668 81 X ¢ A6L7401 0l % wuoel (900T ‘eINY) X1ENS
9€ X9¢ X T 9¢€ X 96T
— 6—6¢ —6X6X%X8 INE8E8L OF9 OMHqed Y COI—9 01 TV indup g wugy (00T ‘BIAY) XD II BUIY
9¢ X 9¢ Yl XAy
¢S + 8I X8I X ¥ 9¢ X 8¢C1
- P01 6%X6X%X8 INEVT-INTT 81 X T¢ A9€A8 8 TV ndup g w6 (8800C ‘BINNY) XD BLIY
81 X8I
- 99¢—S1 6X6X%XT INEO0LE 9¢X9ST N0SIAE9 91 ¥ wu(9 (4010T ‘BIY) Al QUOPAD
81 X8I
— 88C—¢C 6X6X%X7¢C NS EAVIY 9¢X96C N6IIAATS 91 % wugy (PYOOT ‘BIANY) III QUO[IAD
81 X8I
— 0S1=¢I1 6X6X7¢C INTTILIT 9¢€ X 8T AY919v 91 % w06 (9800€ ‘eINNY) II 2U0[oAD
— — — A BCBS 9¢ X 8CI A0C36C 0l ¥ wuogl (q800€ ‘eIa11Y) QUO[IKD
LCTOINEY - — A9STHATE 91 X 8CI AveEAy (0] % wr g0 (200T ‘e1NY) MqIeoxy
10Ss001g SYoolg dSA 9zIS dSA VY 101 9ZIS NV S[[PD o180 9zIS Yool 9zIS L1 SSed0id UOTJRIOURL) PUE A[TUe]

SaIIWE} VDI IV SY) JO SONSLAIORIRY) 7T AR

40 Design for Embedded Image Processing on FPGAs

Block C; _{ §
/é\o— Cellyf—~ So

© 171 Block C;,

Cell;f~ S1 Data,

T3

Ao—l Cell,| S2

11
p—»]

A3 Celly—~Ss

T3
—

Cell,[S4

57

Cout

17

A—
B1—

T

¥
Coo Co1

Z
|
!

Figure2.11 Carry select adder as implemented by Altera. (Adapted from Altera, 2008b; reproduced by
permission of Altera Corporation. Altera is a trademark and service mark of Altera Corporation in the
United States and other countries. Altera products are the intellectual property of Altera Corporation and
are protected by copyright laws and one or more U.S. and foreign patents and patent applications.)

available as simple dual-port. Each memory block can also be configured as a bank of tapped shift
registers, with up to 36 outputs from a combination of taps and parallel registers.

Associated with each logic block is a local interconnect, which connects between logic cells within
ablock, or between adjacent blocks in the same row. More distant connections are made by driving horizontal
and vertical lines which extend to the local interconnects of other logic blocks up to four tiles away.

In addition to the local data interconnects, there is a global clock network, which distributes up to eight
clocks throughout the FPGA. The Cyclone has two phase locked loops, which can be used to synthesise
clock signals by multiplying a signal by a ratio of integers. The PLL can also provide a programmable
phase shift.

The basic I/0 structure of the Cyclone is similar to that in Figure 2.6. A group of I/O blocks has a local
interconnect in much the same way as the logic blocks, and it is primarily through this that the I/Os are
connected to the logic. Selected I/Os have integrated circuitry to interface to DDR memories.
Differential signalling support is also provided, although with an external resistor network for
providing appropriate termination.

Configuration is based on a SRAM cell, which is programmed by serially loading the configuration
data, either through dedicated pins or through the JTAG interface. The Cyclone FPGAs are not partially
reconfigurable; the complete configuration must be loaded.

2.4.2.2 Stratix

The basic structure of the Stratix FPGA is similar to that of the Cyclone. The logic block also consists of
ten 4-LUTs, with local interconnect. The biggest difference is the inclusion of DSP blocks, and a wider
range of memory block sizes.

Each DSP block consists of a 36 x 36 bit multiplier. One of the unique features of this multiplier is that it
can be segmented, enabling four parallel 18 x 18 multiplications, or eight parallel 9 x 9 multiplications.
This latter feature is particularly useful for image processing, where 9-bit multiplications are suitable in
many image processing operations. The 18 x 18 and 9 x 9 multiplications can operate with an associated
52-bit accumulator, making them suitable for DSP applications.

In addition to the 4608-bit memory block provided by the Cyclone, the Stratix also provides 576 bit and
72 Kbyte blocks. A 576-bit memory may be configured with aspect ratios from 512 x 1 to 32 x 18, with

Field Programmable Gate Arrays 41

separate independent read and write ports. The two ports can be of different widths and in different clock
domains, enabling them to be used as small FIFO buffers, or converting between parallel and serial data
for lower speed serial I/O. The 72 Kbyte sized dual-port blocks can be configured with aspect ratios from
64K x 9 up to 4K x 144 (although the largest data width is only simple dual-port). This makes them
suitable for storing larger data tables, or even buffering part of an image. Having a range of memory sizes
enables the best size to be selected for an application without wasting too many resources.

The interconnect matrix of the Stratix extends that of the Cyclone by adding additional higher speed
lines that span eight rows or columns from a logic block, and high speed lines that span 24 tiles
horizontally or 16 columns vertically. The clock network is also significantly enhanced, with 16 global
clocks and a number of regional clocks which drive each quarter of the FPGA. These enable up to 48
independent clock domains to be implemented on the FPGA. The phase locked loops of the Stratix can
be reconfigured on-the-fly, enabling the clock frequencies and delays to be dynamically adjusted by
an application.

The Stratix provides direct support for double date rate (DDR) memories and quad data rate (QDR)
memories with two reads and two writes per clock cycle. This simplifies interfacing to external high speed
memories. On-chip termination is provided for differential signalling, with dedicated high speed
SERDES blocks for high speed serial signalling.

In addition to the serial configuration modes of the Cyclone, the Stratix can also be reconfigured in
parallel, significantly reducing the configuration time, especially for the larger devices. It also has
aregister which can be used to control which of up to eight configurations is loaded, supporting dynamic
update and reconfiguration of the FPGA with a small number of components. Partial reconfigurability is
limited to reprogramming the phase locked loops.

2.4.2.3 Cyclone II, III and IV

The successive generations of the Cyclone family are based on much the same architecture as the original
Cyclone. The basic logic cell is still a 4-LUT with a register on the output, although the logic block is
extended to 16 logic cells. However, the use of the logic cell for performing arithmetic has been changed.
Rather than use the carry select adder of the original Cyclone, a simpler ripple carry adder is used. The
logic cell is splitinto two 3-LUTs; one implements the sum and the other the carry. The carry-out connects
directly to the carry-in of the next logic cell in the chain.

The new generations incorporate dedicated hardware multiplication blocks. These are not as fully
featured as the DSP blocks within the Stratix series, but accelerate designs where small multipliers are
used. Each multiplier block can perform a single multiplication of two 18-bit numbers, or two multi-
plications of 9-bit numbers.

In the Cyclone II, the embedded memory blocks are the same size as the Cyclone. However, the Cyclone
III and IV double the size of each block RAM to 9 Kbits. This can be configured with aspect ratios from
8K x 1 to 256 x 36, although only simple dual-port is supported with the widest memory.

The interconnect with the original Cyclone was restricted to short local distances. These have been
extended in the later generations to include higher speed horizontal lines which span 24 tiles, and vertical
lines which span 16 tiles.

With each generation, the number of PLLs and global clock lines increases. The Cyclone III extends the
size of the PLL multiplier and divider from 32 to 256, and the Cyclone I'V extends this further to 512. This
enables finer resolution clock frequencies to be synthesised with each succeeding generation. Both
the Cyclone III and IV allow the PLLs to be reconfigured at run-time without having to reconfigure the
entire FPGA.

The performance of the I/O blocks improves with each succeeding generation. The Cyclone III
introduces programmable on-chip termination of outputs, although inputs still require external termina-
tion. From the Cyclone II onwards, support for memory interfaces is extended to QDR memories.

42 Design for Embedded Image Processing on FPGAs

PCI express is also supported, although this requires an external PHY and an internal soft intellectual
property core (available from Altera) to implement the required endpoint logic in the FPGA. The Cyclone
IV GX introduces up to eight high speed transceivers, with SERDES logic built into the I/O block. Also
included within the Cyclone IV GX is a hard-wired endpoint for PCI express, including the buffering and
control logic and PHY-MAC layer.

From the Cyclone II, the configuration data can be compressed to reduce the configuration file size by
up to 55%, depending on the complexity of the design and device use. The FPGA then decompresses the
data as it is streamed into the FPGA. This can reduce reconfiguration times by up to a factor of two.
Configuration compression is only supported with serial reconfiguration. The Cyclone III and IV also
provide the option of parallel configuration, up to 16 bits per clock cycle.

2.4.2.4 Stratix II, III and IV

With the Stratix II, Altera replaced the standard 4-LUT logic cell with an adaptive logic module (ALM)
(Hutton et al., 2004). The key idea behind the adaptive logic module is that when a large LUT is used,
much of the logic is often unutilised. By being able to adaptively adjust the effective size of the LUTs, the
logic resources within the logic cell may be better used. This increases the effective logic density without
a significant penalty in terms of chip area and routing overhead. It also has the advantage that larger
functions which share common inputs may be packed within a single adaptive structure. In the Stratix IT
ALM, up to eight inputs may be combined with two adaptive LUTs to produce two outputs. The various
combinations are (Altera, 2007):

¢ two independent 4-LUTs;

e a 5-LUT and 3-LUT within independent inputs;

e asingle 6-LUT;

¢ two independent 5-LUTs, with two inputs shared between the LUTs;

e two 6-LUTs with the same function, with four inputs shared between the LUTs.

As well as the adaptive LUTs, each logic cell also contains two full-adders, enabling two result bits to be
generated by each logic cell. Both the LUT's and adders may be used in a design, for example to apply logic
to the inputs before adding, or even to use the result of the addition to select one of the inputs. This enables,
for example, three input adders to be constructed, or very efficient implementation of functions such as
(Altera, 2007):

0 =min(X,Y) 22)
= (X<Y)?X:Y '

The outputs from the logic cell (from either the LUTs or the adders) can be optionally registered, with
two registers per logic cell. The Stratix II has eight ALMs per logic block; this is increased to ten for the
Stratix III and IV.

In the Stratix II, the ALMs can only implement logic. From the Stratix III on, some of the logic
blocks can be configured as simple dual-port fabric RAMs. In the Stratix III, a logic cell may be
configured as a 16 x 2 RAM, whereas in the Stratix IV it can be configured as a 64 x 1 RAM.
The fabric RAM replaces the small 576-bit memory blocks that were available in the Stratix and
Stratix II. The size of the other memory blocks was also changed with the Stratix III and I'V. The size
of the intermediate blocks was doubled, implementing RAMs from 8 K x 1 to 256 x 36. The size of
the large blocks was reduced significantly, with each block implementing sizes from 16 K x 8 up to
2 K x 72. Again, the block memories are true dual-port except for the widest data words, where only
simple dual-port is supported. Although parity bits are provided, if they are to be used for error

Field Programmable Gate Arrays 43

detection and correction the user must provide the appropriate logic. The Stratix IV provides a
hardware block for setting the parity bits and correction of single bit errors when the block RAM is
64 bits wide.

The architecture of the multipliers in the Stratix II is much the same as those in the original Stratix,
although rounding and saturation units were introduced. These can significantly reduce the logic required
to manage overflow in particular. In the Stratix III the multipliers were redesigned to natively support
9x9,12x 12, 18 x 18 and 36 x 36 multiplications. The DSP blocks can also be configured to provide
a 54 x 54 bit multiplier to support double precision floating point multiplication. However, rounding and
saturation logic is only provided on 18-bit multiplications.

The interconnect structure was simplified a little from the Stratix, by removing the intermediate length
lines. The routing resources are made up of:

e connections within a logic block through the local interconnect;

e direct connections between horizontally adjacent logic blocks;

e carry and register chains directly from one block to another vertically;

e horizontal and vertical connections from a logic block that span up to four tiles in each of the four
directions horizontally and vertically;

e fast horizontal connections that span 24 tiles left and right. This was reduced to 20 tiles left and right for

the Stratix III and IV;

fast vertical connections that span 16 tiles up and down. This was reduced to 12 tiles up and down for the

Stratix III and IV.

In terms of I/O resources, each generation saw a general improvement in speeds available. Full on-chip
termination of both input and outputs was introduced with the Stratix IIL. In the Stratix IV, dedicated
circuitry was introduced to support a range of high-speed communication standards, including PCI
express and gigabit Ethernet.

With the Stratix II, Altera introduced both compression and encryption of the configuration file. The
decryption key is stored internally in non-volatile memory. Stratix devices do not support configuration
read-back or partial reconfiguration (other than of the clock circuitry).

2.4.2.5 Arria and Arria I1

The Arria and Arria II families are basically the same as the Stratix IT and Stratix IV respectively, but with
enhanced high speed transceiver blocks designed primarily for serial communication applications. Since
these features are less relevant for image processing, they are not described further here.

2.4.2.6 Stratix V

With the recently announced Stratix V, Altera has made a number of minor changes over previous
generations. The ALM has been redesigned to improve logic utilisation. It is now able to implement
many seven input LUT functions. The number of registers per ALM has been doubled to four. The
increased availability of registers will improve the speed of heavily pipelined designs and this is
likely to be of benefit in high speed image processing applications. The DSP block has been
redesigned to natively support variable precision from 9 x 9 (three of which can be built with a single
DSP block) up to 54 x 54 (which requires four DSP blocks). The small sizes will be of value for
image filtering, while the large size is sufficient to implement double precision floating point for
numeric intensive applications.

Another area where there is significant change is the size of memory blocks. The ability to
use some ALMs as fabric memory has been retained, but the block RAMs are now only available in

44 Design for Embedded Image Processing on FPGAs

20 Kbit blocks rather than the 9K and 144 K of the Stratix IV. The 20 Kbit blocks support error
correction, and both fabric RAM and block RAM can be configured as dual-port RAM, FIFO or
shift registers.

An increased range of hard intellectual property blocks is available. Most of these provide direct
hardware implementation for high speed communication protocols, in particular PCI Express. This
speeds the design, and reduces logic resources and system power requirements.

Partial reconfigurability is not currently available (at the time of writing) but full support for partial
reconfigurability is planned in future releases of Altera’s Quartus software tools.

2.4.3 Lattice Semiconductor

Lattice Semiconductor produces a number of FPGA families (Table 2.3). Its current families are the
ECP series designed for low cost applications, the corresponding non-volatile XP series and the
high performance SC/M family. The Lattice Semiconductor documentation does not list the process
technology, so that is not listed in the table.

Table 2.3 Characteristics of the Lattice FPGA families

Family and Generation LUT Block Logic Cells RAM Size Total RAM DSP Size DSPp

Size Size Blocks
LatticeECP 4 8 1.5k-32k Fabric: 128 18K—498K 8x9x9 0-8
(Lattice, 2008a) 256 x 36 4x18x18
36 x 36
LatticeECP2 4 8 6k-95k Fabric: 64 55K-52M 8x9x9 6-42
(Lattice, 2008b) 512 x 36 4x18x18
36 x 36
LatticeECP3 4 8 17k-149k Fabric: 64 700K-6.7M 8x9x9 12-160
(Lattice, 2010) 512 x 36 4x18x18
18 x 36
LatticeXP 4 8 3k-20k Fabric: 128 54K-396 K — —
(Lattice, 2007) 256 x 36
LatticeXP2 4 8 5k—40k Fabric: 64 166K-885K 8x9x9 3-8
(Lattice, 2008d) 512 x 36 4x18x18
36 x 36
LatticeSC/M 4 8 15k-115k Fabric: 128 1M-7.8M — —
(Lattice, 2008¢) 512 x 36

2431 ECP

The LatticeECP is based on a4-LUT with a carry chain to speed arithmetic operations and a flip-flop on the
output of each logic cell. Adjacent cells form a slice, with four slices combining to make a logic block.
Additional multiplexers associated with each cell enable adjacent cells to be combined to create 5-LUTs,
6-LUTs or a 7-LUT within a single logic block. The carry logic enables one bit of addition or subtraction
per logic cell. Some of the logic blocks can be configured as fabric RAM, with the LUTs within each slice

Field Programmable Gate Arrays 45

providing a 16 x 2 single-port memory. Adjacent slices may be combined to create either a wider memory
or add a second port, giving a simple dual-port fabric RAM.

In addition to the fabric RAM, there are 9 Kbit blocks of RAM with configurable aspect ratio from
8K x 1upto256 x 36. The block RAMs are true dual-port, except for the widest data width (x36) which
is only simple dual-port.

DSP blocks enable multiplication at a range of data sizes from 9-36 bits wide. The smaller sizes can
combine the multiplication with an accumulator which has an extra 16 guard bits (giving a total of 34 bits
for 9 x 9, and 52 bits for 18 x 18).

The system has four global clocks, plus an additional four local clocks in each quadrant of the FPGA.
On the FPGA are up to four phase locked loops which can be used to provide the global clock signals.
Dynamic clock multiplexers enable the application to switch between different clock sources at run-time
without glitches.

As with most FPGAs, a wide range of 1/0 standards is supported. Adjacent I/O blocks can be combined
to provide support differential signalling. Multiplexing is provided on inputs and outputs to enable
interface with DDR memories. A delay locked loop is used to provide the required clock alignment for the
memory strobe signals.

Lattice Semiconductor provides an internal logic analyser which is accessible through the JTAG
interface. The necessary logic to support the logic analyser must be added to the user design at
compile time.

24.3.2 ECP2 and ECP3

With the next generations of the ECP, the logic blocks were restructured. In the ECP2, carry chains and
output flip-flops are only available in three of the four slices within each logic block. The size of the fabric
RAM from those blocks that supported it was also reduced. However, the size of the block RAMs was
increased to 18 Kbits with configurable aspect ratio. As with the ECP, this is true dual-port except for the
widest data widths.

With the ECP2, Lattice Semiconductor introduced high speed SERDES blocks to support high speed
serial connections. The logic also includes the corresponding physical coding sublayer including PCI
express and Gigabit Ethernet. Designs use a combination of dedicated hardware and user logic to manage
the protocol.

The DSP block was been completely redesigned for the ECP3 to optimise its speed. The input registers
are connected as a shift register to simplify the moving of coefficients or samples when filtering. This is
followed by a set of multipliers which can be configured to manage the range of word sizes from 9 x 9 to
18 x 36. A set of pipeline registers separates the multipliers and an adder network and accumulators.

The clock network of the ECP2 consists of eight global clocks, and an additional four local clocks are
available in each quadrant of the FPGA. This was extended in the ECP3 by splitting the FPGA into up to
36 local clock regions (depending on the size of the FPGA) with eight local clocks available in each region.

Configuration file encryption was introduced with the ECP2, as was dual boot support. This enables
two configuration files to be present in the configuration ROM. If one configuration file fails to load for
some reason, the FPGA will automatically switch to the other configuration file. Therefore, if an error
occurs during a remote configuration update (into the configuration ROM), there is always a working
configuration file available.

2.4.3.3 XP and XP2

The LatticeXP has basically the same architecture as the LatticeECP, with the exception that there are no
multiplication blocks. The XP also contains on-chip a non-volatile flash memory that may be used for
configuring the FPGA on power-up. This saves the need for an external flash memory for configuration,

46 Design for Embedded Image Processing on FPGAs

reducing the chip count. It is also faster because the transfer from the flash memory to the SRAM-based
configuration memory has a significantly higher bandwidth. A further benefit is that it provides some
protection of the intellectual property because the configuration file is not visible every time the FPGA is
powered on.

The LatticeXP also has a sleep mode, where the logic is disabled, and the outputs are tri-stated. In sleep
mode, the current is reduced by up to three orders of magnitude over the normal running mode. The
advantage of sleep mode over powering off is that normal functionality may be resumed very quickly.
Note though, that the block RAM and register contents are not maintained during sleep.

Similar to the XP, the LatticeXP2 is a version of the LatticeECP2 with built-in flash. It has been
optimised further over the LatticeXP so that configuration from the internal flash only takes a few
microseconds, making the FPGA virtually instant-on. It is also possible to transfer the contents of the
block RAMs back into the flash memory without changing the rest of the configuration. The internal flash
memory may be updated while the device is running normally, enabling live update of the device
configuration. The XP2 also includes a configuration decryption block to provide additional design
security. This enables the configuration file to be encrypted before transferring it to the FPGA, whether to
the on-chip flash memory or direct to the SRAM configuration memory.

2434 SCPM

The LatticeSCP/M family is designed primarily for high speed communications applications. The internal
architecture is much the same as the ECP series. The main difference is in the advanced high speed I/0
blocks incorporated into the SC/M family. These are implemented as hard ASIC blocks integrated onto
the FPGA. A flexible hardware PHY supports a number of high speed communications standards
including PCI express and gigabit Ethernet. Programmable on-chip termination reduces the need for
external termination resistances on both inputs and outputs.

A novel feature added by the LatticeSCP/M is a microprocessor interface. This enables the FPGA to be
placed on the microprocessor’s bus, enabling high speed configuration or direct processing of data as
a hardware coprocessor. This is a viable alternative to providing a series of FPGAs with a built-in
Pprocessor.

2.4.4 Achronix

A relative newcomer in FPGA terms is the Achronix Speedster. This claims to be the world’s fastest FPGA
(Achronix, 2009), with clock speeds up to 1.5 GHz. These speeds are obtained through extensive
pipelining — even the routing is broken into short pipelined segments to reduce the capacitance and enable
high clock speeds. Internally, the FPGA is self-synchronous, by combining clock and data together to
create a data token. The development tools map a conventional synchronous design onto the fine-grained
pipelined architecture. The characteristics of the Speedster are summarised in Table 2.4, with key features
described in more detail below.

Table 2.4 Characteristics of the Achronix Speedster family

Family Process LUT Block Logic Cells RAM Size Total RAM DSP Size DSP
Technology Size Size Blocks
Speedster 65 nm 4 8 25k-164k Fabric: 128 1.2M-9.8M 2x9x9 50-270
(Achronix, 512 x 36 18 x 18

2009)

Field Programmable Gate Arrays 47

The logic cell consists of a conventional 4-LUT. These can be combined in pairs to create a 5-LUT.
Half of the logic cells also have carry chain logic for implementing arithmetic operations. The output
of each cell has a flip-flop that can be used either for storage or pipelining. To achieve high speed,
there is a maximum of one level of logic per pipeline stage. A logic block consists of eight logic
cells. This may be configured either as logic, or as a 16 x 8 simple dual-port RAM. Each logic block
also has a clock domain converter which facilitates transfer of data tokens from one clock domain
to another.

Two other block types are included in the Speedster FPGA. The first is an 18 Kbit dual-port block RAM
with configurable aspect ratio from 16 K x 1 to 512 x 36. The extra bits may be used for error correction,
although this must be implemented through user logic. The second block type is a hardware 18 x 18
multiplication, which can be split into two 9 x 9 multiplies. Both blocks operate at up to 1.5 GHz.

The Speedster supports a wide range of 1/0 standards, including both differential and DDR signalling.
For high speed I/Os, both input and output termination is provided on-chip, with the actual impedance
value being set by external resistances on dedicated control pins. High speed serialisation and
deserialisation enable serial data rates of up to 10.3 Gbps, with standards such as PCI express, gigabit
Ethernet, SATA and so on supported directly in hardware.

Device configuration is either serial or parallel (8 bits wide). For serial configuration up to four serial
flash devices may connected simultaneously, reducing the configuration time by a factor of four.
Configuration encryption is supported, with the key stored in non-volatile memory.

2.4.5 SiliconBlue

Another recent newcomer to FPGAs is SiliconBlue Technologies. It has a series of low power FPGAs
suitable for embedded applications (Table 2.5). The logic cell consists of a 4-LUT combined with carry
logic and a flip-flop. A logic block is made up of eight logic cells. In addition to the logic, the FPGA also
contains a number of simple dual-port block RAMs. The 1/0O block is similar to the basic block shown
in Figure 2.6, although DDR and differential signalling are supported on some I/Os. Although the
configuration is static RAM based, the iCE65 FPGAs have on chip a non-volatile memory that can
optionally be used to reconfigure the device.

The low power of the iCE65 makes it well suited to battery powered embedded applications. The low
power is achieved by keeping the clock rate as low as possible, or putting the FPGA into sleep mode when
not processing data. Typical power dissipation when operating at 32 MHz (suitable for pipeline-based
image processing from a camera) is 20 mW.

Table 2.5 Characteristics of the SiliconBlue iCE65 family

Family Process LUT Block Logic Cells RAMssize Total RAM
Technology Size Size

iCE65 (SiliconBlue, 2009) 65nm 4 8 35k-7.8k 256x16 80K-128K

2.4.6 Tabula

Tabula is a new entrant in the FPGA area, announcing its ABAX family of programmable logic early in
2010. Tabula has taken a completely new approach to solving the problem of device densities and speed.
The ABAX has a three-dimensional architecture, enabling it to stack more logic into a given area.
However, since three-dimensional logic devices are still not yet practical, it is using a novel approach with
time as the third dimension, which Tabula has called a SpaceTime architecture (Tabula, 2010b). The basic
principle is to dynamically reconfigure the whole device (logic, memory and even interconnect) with

48 Design for Embedded Image Processing on FPGAs

Table 2.6 Characteristics of the Tabula ABAX family

Family Process Logic Block Logic RAM Total DSP Size DSP
Technology Cell Size Cells Size RAM Blocks
ABAX 40nm 4:1mux 16 27k-79k 64x9 44M 18 x 18 + 44 0-160
(Tabula, 2009, 2K x 18
2010a) 4K x 18

every clock cycle (up to 1.6 GHz) enabling each block to be used for multiple different functions. This
reuse reduces the number of logic blocks actually required and also shortens interconnect paths, resulting
in a faster and more compact design. The key characteristics are summarised in Table 2.6.

The rapid reconfiguration is achieved by having a stack of up to eight active configurations available.
The user clock is multiplied up by the number of active configurations to give the internal system clock.
Then with each internal system clock cycle the active configuration is cycled between those available.
Thus each component is effectively being time-multiplexed up to eight times each user clock cycle.

At the time of writing, full data was not available on the internal components of the ABAX FPGA.
The logic cell appears to be based on a 4:1 multiplexer, but may be more general than this. Four of these are
grouped into a slice, with associated arithmetic logic. A logic block appears to consist of four slices, giving
atotal of 16 logic cells per tile. However, since each block is used for different functions up to eight times
per user clock cycle, the effective logic densities are up to eight times the physical densities listed in
Table 2.6. On the output of each logic cell is a number of flip-flops to enable communication between the
different time slices.

On the FPGA, there are three different sizes of block memory. The small 64 x 9 blocks can be used
either as a register file or as a 6-LUT. The medium sized dual-port block can be configured from
16 K x 2 to 2K x 18. It also has built-in FIFO control, reducing the logic needed to implement FIFO
buffers. The large size blocks are single port with aspect ratio from 36 K x 2 to 4 K x 18. Dividing the
user clock cycle into up to eight internal time slices also means that a standard single-port memory
can be accessed up to eight times every user clock cycle, effectively creating a multiport memory with
a large number of ports. The DSP block performs a pre-addition, an 18 x 18 multiplication, followed
by a 44 bit sum. Like the rest of the FPGA, it is capable of running at up to 1.6 GHz with the internal
system clock.

A wide range of I/O standards is supported, including DDR and LVDS signalling. High speed serial
links have built in SERDES logic, although the protocols must be managed with user logic.

Although the primary target market is DSP for wireless networking, the ABAX devices should also
perform well in an image or video processing context.

2.4.7 Actel

Actel provides a range of low power FPGAs, making them ideally suited for embedded applications.
There are three main families: the Axcelerator, the ProASIC3 and the IGLOO. Also included in Table 2.7
for comparison is the SmartFusion family, which includes an ARM processor and programmable
analogue circuitry in addition to a ProASIC3 based FPGA block.

The Axcelerator family is one-time programmable using anti-fuse technology. Once programmed, it
cannot be reprogrammed. A big advantage of one-time configuration is that it can begin operating
immediately on power-on. The basic logic cell is a 4:1 multiplexer, which makes it different from the other
cellslooked at so far. Associated with each multiplexer is additional logic, including a carry chain, to make
a full adder. A logic block consists of four such cells combined with two flip-flops. Although the logic is

Field Programmable Gate Arrays 49

Table 2.7 Characteristics of the Actel FPGA families

Family and Process Logic Cell Block Logic RAM Size Total RAM Processor

Generation Technology Size Cells

Axcelerator 0.15um 4:1 multiplexer 4 1.3k-22k 128 x36 18 K-288K —
(Actel, 2009)

ProASIC3 130 nm 3-LUT 1 384-75k 256x18 0-504K —
(Actel, 2008b)

IGLOO 130 nm 3-LUT 1 384-75k 256x18 0-504K —
(Actel, 2008a)

SmartFusion 130 nm 3-LUT 1 15k-12k 256 x 18 36K-108K ARM
(Actel, 2010) Cortex-M3

quite fine grained, it is relatively rich in memory resources, with a number of 4608-bit memory blocks.
These memories are simple dual-port with configurable aspectratio from4 K x 1to 128 x 36. The routing
within the Axcelerator is relatively fast because the fuses do not introduce delay in the same way that pass
transistors do. The lack of reprogrammability makes the Axcelerator best suited in embedded designs only
where the functionality is not going to change.

The other families are based on flash memory programmed FPGAs. These also have the advantage that
they are immediately ready on power-on, but with the ability to be reprogrammed if necessary. The basic
logic element consists of a 3-LUT, which can also be configured as a D flip-flop. This makes them very fine
grained and quite homogenous logically. Within the FPGA is a single block of 128 x 8 of user flash and a
number of 4608-bit block RAMs. These can be configured from 4 K x 1to 256 x 18 and are true dual-port
within the ProASIC3 or simple dual-port within the IGLOO. The IGLOO also has hardware logic to use
the RAMs as FIFO buffers. The larger devices are able to implement a 32-bit ARM processor as a soft-core
block. While both families are low power, the IGLOO is designed particularly for ultra low power
applications, making it ideal for embedded vision sensors. Both families are available in very small
footprint packages (as small as 3 mm x 3 mm) making for an extremely compact design.

2.4.8 Atmel

The Atmel devices are relatively old technology, although they are still available. The main features are
summarised in Table 2.8. The relatively small size of the FPGA (in terms of logic resources) limits what
they can be used for in terms of image processing applications.

Table 2.8 Characteristics of the Atmel FPGA families

Family and Process LUT Block Logic RAM Total DSP Processor

Generation Technology Size Size Cells Size RAM Size

AT40K 0.35um 3 2 25623k 32x4 2K-18K — —
(Atmel, 2006)

FPLIC 0.35um 3 2 25623k 32x4 2K-18K 8x8 AVR

(Atmel, 2008) 36 Kbytes In AVR

50 Design for Embedded Image Processing on FPGAs

The logic cell consists of a 3-LUT, which are grouped two to alogic block. This enables a4-LUT or full-
adder to be implemented from each logic block. Each logic block also contains a single flip-flop. Small
dual-port RAMs are distributed through the logic giving a relatively homogenous architecture. The
devices are partially reconfigurable, enabling adaptive systems to be constructed where blocks of the
design can be overwritten after the initial programming.

The FPLIC combines an AT40K FPGA with an 8-bit AVR microcontroller and 36 Kbytes of static RAM
for the microcontroller instruction and data memory.

2.4.9 QuickLogic

QuickLogic used to make a range of FPGAs; its most recent family was the Eclipse (Table 2.9). Because of
their age, the devices were relatively small, making them less suitable for many image processing
applications. Their distinctive feature was that the logic was not LUT based, but consisted of a mixture of
difference size AND gates and small multiplexers.

More recently, QuickLogic has moved from the FPGA market to providing much higher level
application blocks that can be combined and customised for specific applications. A radiation tolerant
version of the Eclipse is provided from Aeroflex that would be suitable for space-based applications.

Table 2.9 Characteristics of the QuickLogic FPGA families

Family and Generation Process Logic Block Logic RAM Total Multiplier
Technology Cell Size Cells Size RAM
Eclipse 0.25um Other 1 960-4032 128 x 18 45K-81K —
(QuickLogic, 2007b)
Eclipse II 0.18um Other 1 128-1536 128 x 18 9K-54K 8§x8
(QuickLogic, 2007a) + 16
Aeroflex UT6325 0.25um Other 1 1536 128 x 18 54K —

(Aeroflex, 2008)

2.4.10 MathStar

An alternative approach to programmable logic is taken by MathStar with its Arrix Field Programmable
Object Array (MathStar, 2007). Itis like an FPGA, but rather than the fine-grained logic blocks, it consists
of a set of much coarser-grained building blocks. The advantage of this is that the coarse-grained blocks
may be implemented more efficiently than building complex logic out of LUTs. However, unless the mix
of blocks matches that required by an application, the resulting design may make poor use of the available
resources. MathStar targets applications where there is significant mathematical computation (including
image and signal processing) that can effectively make use of the coarser-grained blocks.

The Arrix is a 16-bit device in that all data paths are 16 bits wide rather than working with each bit
individually as is the case with FPGAs. The available building blocks are:

¢ Anarithmetic and logic unit (ALU). These have a 16-bit data path and can perform addition, subtraction
and a wide range of logic functions. The ALUs are controlled by a reconfigurable state machine. The
control bits which specify the operation come with the data.

¢ A multiply and accumulate block, that performs a 16 x 16 multiply, with a 40-bit accumulator.

o Aregister file that contains a 64 x 20 simple dual-port memory. The register file can also be configured
as a 6-LUT (producing 20 outputs) or as a FIFO buffer.

Field Programmable Gate Arrays 51

¢ A block RAM. Each block is a single-port 2048 x 76 memory.

¢ An external RAM interface that facilitates connection to external DDR memories.

¢ A general I/O interface.

¢ A high-speed LVDS block with separate transmitters and receivers. These have built-in FIFO buffers to
manage the flow of data onto and off the chip.

Two forms of interconnect are used: nearest neighbour and shared longer lines. The longer lines must be
registered, giving them a latency of at least one clock cycle (longer for longer distances). Such pipelining
enables a high clock speed to be maintained regardless of the length of interconnection. Each interconnect
path is 21 bits wide: 16 bits for the data, one bit to indicate valid data and four control bits are used to
control the ALU function.

While not strictly an FPGA, it is appropriate to use the Arrix for image processing applications.

2.4.11 Cypress

Cypress Semiconductor provides a series of three programmable system-on-chip systems. They combine an
8-bit, 16-bit or 32-bit microcontroller with a range of relatively high level analogue and digital building
blocks or peripherals. Again, the blocks are too high level to classify them as FPGAs, and the underlying
system is based primarily on the microcontroller rather than programmable logic. While these devices are
less suited toreal-time image processing applications, they may be appropriate when combining serial image
processing (performed by the microcontroller) with a range of other sensors in a low cost sensor network.

Cypress Semiconductor also makes a wide range of peripherals (USB, wireless nodes, etc.) that provide
arelatively simple way of integrating these functions within an FPGA system. Some of these are discussed
in more detail in Chapter 12.

2.5 Choosing an FPGA or Development Board

Many FPGA manufacturers also sell development boards or evaluation boards. These boards often consist
of an FPGA with a set of peripherals to demonstrate the capabilities of the device within a range of targeted
applications. In particular, most boards provide some form of external memory and some means of
interfacing with a host computer (even if it is just for the downloading of configuration files). Other than
this, the specific set of peripherals can vary widely depending on the target application and market. Boards
aimed for education use tend to be lower cost, often with a smaller FPGA and a wide range of peripherals,
enabling them to be used for laboratory instruction.

With the large range of both FPGAs and development boards available, how does one choose the right
system? Unfortunately, there is no easy answer to this, because the requirements vary widely depending
on the target application, and whether or not a development system or product is being built.

For image processing, the development system should have the largest FPGA that can be afforded, with
sufficient peripherals to enable a wide range of applications to be considered and programmed. Some
essentials for any image processing application:

¢ There needs to be some method for getting images into the FPGA system. Depending on the intended
input source, there are a number of possibilities here. To come from an analogue video camera, some
form of codec is necessary to decode the composite video signal into its colour components and to
digitise those components. Some systems provide a codec to digitise VGA signals, allowing the capture
of images produced by another computer system. Common interface standards to connect to digital
cameras include USB, Firewire and Cameralink. Most development boards have a USB interface
(although actually getting to the video stream is more complex than just the physical interface), but few
will have other camera inputs.

52 Design for Embedded Image Processing on FPGAs

¢ The development board must have some method of displaying the results of image processing. While
the final implementation may not require image display, it is essential to be able to see the output image
while debugging. Either a VGA output or digital video interface (DVI) is suitable.

e The system must have sufficient memory to buffer one or more frames of video data. While the final
application may not require a frame buffer, just capturing and displaying an image will require buffering
the frame unless the camera and display are synchronised. Only the largest FPGAs have sufficient
on-chip memory to buffer a whole image, and this memory is probably better used for other purposes in
most applications. Therefore it is usually necessary for the frame buffer to be in off-chip memory.
Dynamic memory has a variable latency, making it less suitable for high speed random access, although
is suited for stream processing where the access pattern is known in advance. Static memory has faster
access, although is generally available in smaller blocks. Working with two or more banks of static
memory can often simplify an algorithm by increasing the memory bandwidth.

For systems where the FPGA is installed as a card within a standard PC, the host computer usually
manages the image capture and display. The interface between the FPGA and host is usually through PCI
express. Managing the interface with the host computer can use considerable resources on the FPGA.
Depending on the application, the interface may also be a bandwidth bottleneck within the system.

When implementing a target embedded product, power and size are often the critical constraints. This
will involve eliminating any peripherals that are unnecessary in the final application. However, for
debugging it may be useful to have additional peripherals accessible through an expansion port. To
minimise the cost of a product, it is desirable to reduce the size of the FPGA used. However, it is important
to keep in mind upgrades that may require a larger FPGA. Many families have several different footprints
for each size FPGA. Choosing a footprint that allows a larger FPGA to be substituted will reduce the
retooling costs if a larger FPGA is required in later models.

3

Languages

In Chapter 2, alow level view of the architecture of FPGAs was presented. To programme an FPGA at this
level, itis necessary to break down the design into the fine-grained logic blocks available on the FPGA and
build up the logic required by the application from these blocks. There are two main problems with
representing designs at this level. Firstly, designing at such a low level is both tedious and error prone.
Secondly, the portability would be limited to FPGAs that had the same basic architecture and logic block
granularity. While it is possible to programme FPGAs at this level, it is akin to programming a
microprocessor in assembly language. It may be appropriate for the parts of the design where the timing
and resource use are critical. However, for most applications, this is too low level, and this is also the case
for most image processing designs based on FPGAs.

Fortunately, the tools for implementing algorithms and systems on FPGAs enable working at a higher
level. Implementing a working design requires several key steps, as illustrated by the generic design flow
in Figure 3.1. Firstly, the design must be coded in some human readable form. This represents the design
using a hardware description language (HDL) and captures the essential aspects of the design that enables
it to be both simulated and synthesised onto an FPGA. Design representation is the primary focus of this
chapter. Although many HDLs are based on software languages, they are not software but instead describe
the hardware required to implement the design. For an FPGA implementation of an algorithm it is
necessary to describe not only the algorithm, but also the hardware used to implement it. Most
development environments enable the hardware description to be ‘compiled’ and simulated at the
logical level to verify that it behaves in the intended manner.

Synthesis takes the logical representation describing the hardware and converts it to a device or gate
level net-list representing the actual hardware that is to be constructed on the FPGA. This form defines the
circuits in terms of basic building blocks, both at the logic gate level and in terms of the primitives
available on the FPGA if they have been used within the description. It also defines the interconnectivity
between the building blocks. For interchange between different tools, a net-list is often represented using
EDIF (electronic design interchange format). Synthesis constraints control aspects of the synthesis
process, such as whether to: optimise for speed or area; automatically extract and optimise finite state
machines; force set and reset to operate synchronously; and so on. Gate level functional simulation verifies
that the design has been synthesised correctly, and provides more information on the specific low level
characteristics of the circuit than the higher level simulation.

The next stage is to map the net-list onto the target FGPA. There are two phases to this process. Mapping
determines how the logic maps onto the specific components available on FPGA. In particular, this phase
partitions the logic of the design into the LUTs, splitting complex logic over several LUTs, or merging
logic to fit within a single LUT where appropriate. The place and route phase then associates these

Design for Embedded Image Processing on FPGAs, First Edition. Donald G. Bailey.
© 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd.

54 Design for Embedded Image Processing on FPGAs

Ve Y
Design
I\ J
<
<
v
- N
Representation
\ / ()
»| Behavioural and
v " functional simulation
D e A \ /
Synthesis > Synthesis
constraints
J \ 7 ()
. Gate level
v " simulation
~ - N \ /
Implementation > LEE
) P>
constraints Place and route
J - ()
. Timing
v i simulation
- a \ /
Configuration file
generation
N\ < (h
‘ In-system
{ v verification
e A > g
Implementation
I\ J

Figure 3.1 Steps to implementing a design on an FPGA.

mapped components with particular logic blocks on the FPGA and determines the routing required to
connect the logic blocks, memories and I/Os. Implementation constraints direct the placement of logic to
specific blocks, in particular associating inputs and outputs with specified pins. They also specify the
required timing, which is used to guide the placement and routing of critical nets. Once the design has been
mapped onto the FPGA, more accurate estimates of the circuit timing are available based on the lengths of
the connections, fan-outs and particular resources that are used to implement the logic function.

The final stage is to generate the configuration file required to programme the FPGA. During
development, the configuration file can be loaded onto the target system to verify that the design works
as intended and that it correctly interacts with the other components within the system. In the deployed
system, the FPGA is programmed by automatically loading the configuration file from flash memory
on power-on.

As can be seen from Figure 3.1, implementing a design on an FPGA is quite different from
implementing a design in software, even on a processor within an embedded system. It requires a
hardware mindset, even during the initial design. However, image processing is usually considered to be
a software development task. Successful implementation of algorithms on an FPGA therefore requires a
mix of both software (algorithmic) and hardware (logic circuit design) skills.

Most FPGA-based design is carried out at an intermediate level that is a mixture of both algorithmic and
circuit level design. The implementation of synchronous systems is usually performed at the register
transfer level (RTL). As illustrated in Figure 3.2, this structures the application as a series of alternating
blocks of logic and registers. The structure is not necessarily linear, as implied by Figure 3.2; from a
computational perspective, the primary purpose of each block of logic is to determine the next value that
will be stored into the registers on its outputs. It can take its inputs from anywhere: other registers, I/O pins
or internal memory blocks. As demonstrated in Figure 3.2, inputs, outputs and memory accesses may be

Languages 55

/0 Memory 1/10

Logic Logic Logic

sia)sibay
siasibay

siasibay

siasibay

Figure 3.2 Basic structure of any application — logic interspersed with registers.

either direct or via registers. The blocks of logic are not directly clocked; all of the clocking is through
the registers (and also the memory if it is synchronous). Therefore, the signals must propagate through the
logic before they can be clocked into the registers. This limits the clock speed of the design to the
propagation delay through the most complex block.

The art of implementing an algorithm on an FPGA therefore falls to decomposing the algorithm into a
sequence of register transfers, and determining the appropriate logic between each register. Note that,
unlike implementing algorithms in software, each logic block operates in parallel. This usually requires
adapting the algorithm from a conventional sequential form into one that can exploit the parallelism
available from hardware.

Implicit within Figure 3.2 is the control logic required to sequence the steps within the algorithm.
Depending on the algorithm and its implementation, not all of the registers may necessarily be updated at
every clock cycle. This can be achieved by using the clock enable for the registers to control when they are
updated. Also, the computation to produce a value for a register may not necessarily be the same every
cycle. This requires a multiplexer on the inputs of the registers to select the appropriate computation
depending on the current stage within the algorithm. These are made more explicit in Figure 3.3, with
control logic providing the clock enable and multiplexer selection signals. Implicit within the compute
logic are any memory elements that may be used to perform part of the computation, or provide cached
input or output data.

The distinction between control logic and compute logic can help with the transition from an algorithm
to hardware. The control logic determines what is computed (or more precisely which computation gets
saved in which register — in hardware, the logic is always adjusting its output to reflect changes on its
inputs), while the compute logic actually performs the computation.

Since the computation is often context dependent, acommon implementation of the control logic is as a
finite state machine, with the context encoded in the states. Figure 3.4 gives two examples of simple
finite state machines. The one on the left illustrates how a sequential algorithm may be implemented on

Inputs

—4 11 =
l_ Compute logic

Control
logic

!

Outputs

Figure 3.3 A rearrangement of Figure 3.2 to explicitly separate the control and compute logic.

56 Design for Embedded Image Processing on FPGAs

(BB) o

Figure 3.4 Example finite state machines. Left: a repeating sequential process; right: a pipelined stream
process.

parallel hardware. The algorithm consists of four steps, each of which take exactly one clock cycle, and when
the algorithm has completed the fourth step, it returns to the start (perhaps operating on the next data item).
The finite state machine on the right represents the typical structure for the control for a three-stage pipelined
stream process with one clock cycle per pixel. The algorithm begins in the Wait state, waiting for the first
pixel. When the first pixel arrives, the next two states are initialisation, priming the processing pipeline. Once
primed, the pipeline stays within the Run state while pixel data is arriving. At the end of each block of data,
the state machine transitions to the Tidy states where the pipeline is flushed, completing the calculations for
the last pixels to arrive. It then returns to the Wait state, waiting for the first pixel on the next block.

The transitions from one state to the next may be determined by input (control) signals or, for more
complex algorithms, determined by the data being processed, as reflected in Figure 3.3. In practise, an
algorithm is decomposed into a series of modules. Rather than control everything with a single large finite
state machine, the control logic is also modularised, with a separate state machine for each module.

Having looked at the basic structure of an algorithm when implemented on an FPGA, the next step is to
look at the representation of the algorithm being programmed onto the FPGA.

3.1 Hardware Description Languages

The traditional approach to describing electronic circuits is through schematic diagrams. These provide a
graphical representation of the components and connectivity. They are best used for representing smaller
designs at the transistor and gate level. For higher level designs, they represent modules and packages as
block diagrams. Modern schematic capture tools integrate circuit simulation and printed circuit board
layout, making them invaluable for the production of physical systems. High end tools also integrate
hardware description languages allowing the complete development and modelling of systems containing
FPGAs and other programmable hardware. However, the level of abstraction of schematic diagrams is
typically too low for representing complex algorithmic designs. At the lowest level, they can represent
logic circuits as transistors and logic gates. At the register transfer level, a schematic representation is
structural, as a collection of components or block diagram, rather than clearly representing the behaviour
or algorithm. This makes them difficult to navigate for algorithmic designs, because the behaviour is not
particularly transparent from a structural representation.

From these roots, hardware description languages evolved in the 1980s to address some of the
limitations and shortcomings of schematic representations, and to provide a standard representation of the
behaviour of a circuit. Since hardware is inherently parallel, it is necessary for an HDL to be able to specify
and model concurrent behaviour down to the logic gate level. This makes HDLs quite different from
conventional software languages, which are primarily sequential.

Languages 57

The two main HDLs are VHDL (very high speed integrated circuit HDL) and Verilog, both of which
have since been made into IEEE standards (the current standards are IEEE, 2009, 2006a, respectively).
Their original purpose was for documenting and modelling electronic systems. Both are hierarchical
structural languages in that they describe the hardware structurally in terms of logic blocks and their
interconnections. They also allow a behavioural description of the functionality of the circuit, rather than
necessarily having to specifically identify the logic circuits. A behavioural description, as its name
implies, describes how the circuit is to behave, or respond to changes on its inputs. It is, therefore, the role
of the synthesis tools to determine the actual logic required to implement the specified behaviour.

The primary focus of VHDL and Verilog is for verification and simulation of logic circuits. Therefore,
modules can readily be written in either language for testing the functionality of the circuits described.
Through the design of appropriate test benches, this allows the design to be thoroughly tested for
correctness before it is synthesised. The complexity of synthesising a circuit from its behavioural
description limits what can be synthesised. Structural designs can be readily synthesised, as can
behavioural descriptions that conform to an RTL coding style. However, these restrictions mean that
many of the constructs available within both languages are not synthesisable.

3.1.1.1 VHDL

VHDL has its roots in the US Department of Defence and was built on the Ada language. VHDL therefore
inherits many of the characteristics of Ada, including being strongly typed and having a tendency to be
somewhat verbose. The synthesisable subset of VHDL is specified in (IEEE, 2004).

Perhaps the best way to briefly describe the language is to demonstrate its functionality through a
simple example. This will implement the recursive streamed filter with input / and output Q:

Qn _ {Im ‘In_Qn—1‘<t

3.1
Qn—l + k(ln*Qn—l)7 otherwise ()

where k and ¢ are constants. The corresponding schematic for this is shown in Figure 3.5. One VHDL
representation of this is given in Listing 3.1.

Listing 3.1 VHDL implementation of the filter illustrated in Figure 3.5

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

constant PIXEL_WID : integer := 8;

subtype PIXEL_VALUE is STD_LOGIC_VECTOR (PIXEL_WID-1 downto 0) ;

subtype SIGNED_PIXEL is STD_LOGIC_VECTOR (PIXEL_WID downto 0) ;

subtype SIGNED_PROD is STD_LOGIC_VECTOR (PIXEL_WID*2 downto 0) ;
9 endpackage globals;

1
2
3
4 package globals is
5
6
7
8

12 library IEEE;

13 use IEEE.STD_LOGIC_1164.ALL;
14 use IEEE.STD_LOGIC_ARITH.ALL;
15 use IEEE.STD_LOGIC_SIGNED.ALL;
16 useglobals.ALL;

18 entityfilter is
19 generic (k : SIGNED_PIXEL; -- Fixedpoint fraction-1tol

58

Design for Embedded Image Processing on FPGAs

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

t : PIXEL_VALUE :="00001010"); -- Threshold level
port (clk, ce : in STD_LOGIC;
data_in : in PIXEL_VALUE;
data_out : out PIXEL_VALUE) ;
end entity filter;

architecture filter_implement of filter is
component absv
port (s_in : in SIGNED_PIXEL;
u_out : out PIXEL_VALUE) ;
end component;

signal diff : SIGNED_PIXEL;
signal g, av : PIXEL_VALUE;

begin
abs_1 : absv port map(diff, av) ; -- Structural style
diff <= ('0’ & data_in) - (‘0’ & q) ; -- Concurrent style

data_out <=qg;

process (clk) -- Behavioural style
variable prod : SIGNED_PRODUCT;

begin
if rising edge(clk) andce = ‘1’ then

if av< t then
g <= data_in;

else
prod:=diff * k;
g <=d + prod (PIXEL_WID*2 downto PIXEL_WID+1) ;

end if;

end if;
end process;
end architecture filter_implement;

The main features of VHDL will be demonstrated through a line-by-line explanation of the code in
Listing 3.1. The first two lines indicate that the following code will make use of definitions from within the
STD_LOGIC_1164 package within the TEEE library. The basic representation of a single bit wire is
STD_LOGIC, which can represent not only logic 0 and 1, but a range of other levels as well including a
weak high or low, high impedance, and undefined. When synthesised, this will be either O or 1 (or high
impedance if the output of a tristate buffer), but the other states are useful for detecting errors during
simulation. A multi-bit number is represented by the type STD_LOGIC_VECTOR.

data_in

absv

Figure 3.5 Schematic representation of Equation 3.1.

Languages 59

Since VHDL is strongly typed, the types of every operand and the result to which it is assigned must
match exactly; any mismatch will result in a compiler error. This helps to ensure the correctness and
internal consistency of the specification, but does mean that the developer has to do extra work to make
everything match. To simplify this, a package is defined in lines 4-9, which defines the width of a pixel,
and a number of types used within the project. Normally the package will be in a separate file and be used
by all of the files within the project, effectively centralising the definitions. In this case itis included within
the same file for compactness.

Lines 1216 list the packages that will be used in the following definitions. The STD_LOGIC_ARITH
overloads the definitions of arithmetic operations for the STD_LOGIC_VECTOR types, and these are
extended in STD_LOGIC_SIGNED for signed arithmetic. Line 16 includes the package containing our
type definitions.

Every block within VHDL consists of two parts: an ent i ty (lines 18-24), which defines the block and
its interfaces, and an architecture (lines 27-54), which describes the implementation. Within the
entity, generic defines parameters of the ent 1ty —in this case the filter gain and threshold value. The
threshold t is given a default value of 10. Rather than enter the value as a bit string, the conversion function
CONV_TO_STD_LOGIC_VECTOR () defined in STD_LOGIC_ARITH can be used. A value needs to
be given for k when the filter is instantiated and, if a value is given for t, it will override the default.
Making them generic generalises the code. The port defines all of the data connections for the block.
Here, a clock and clock enable signals are required to control the register internal to the filter. The data
input and output are defined as PIXEL_VALUE, making use of the previously defined type. Note that the
generic items must be constants; if they are to be controlled by other logic they need to be specified
within the port list to enable them to be connected with whatever is controlling their value. The ent ity
definition contains all that is required to connect the filter to other components within the design.

The architecture block defines the implementation of the entity. An entity may have
several architecturesassociated with it, each describing a different implementation. The head of the
architecture block defines the components and signals used within the architecture.
A component is any other external entity that will be instantiated within the body of the
architecture. In the example here, lines 28-31 define the absolute value block in Figure 3.5, which
is going to be instantiated by another VHDL entity called absv. Lines 33 and 34 define the signals
used within this implementation; these are labels for any internal wires or registers. The names here
correspond to the labels within Figure 3.5.

There are three distinct coding styles that can be used within the body of an architecture. The first
style is a structural style. This builds up a design by instantiating and connecting a number of
component blocks. On line 37, an instance of the absv component called abs_1 is incorporated
into the design. The port map defines the connections to the component instance; here diff is
connected to the s_in port and av to the u_out output. A purely structural implementation would
describe everything in this manner, using a hierarchy of connected components in much the same way that
the schematic diagram would represent the circuit. More complex structural implementations can use
generate statements and loops to instantiate multiple copies of a component for example to build
multi-bit circuits from single bit components.

The second programming style is illustrated in lines 39 and 40. It places more focus on the flow of data
through the block, and describes the implementation in terms of concurrent signal assignments.
Whenever any of the signals on the right hand side changes, the corresponding statement is evaluated
with the resultimmediately assigned to the lefthand side. Line 39 subtracts g from data_ intoproduce the
signal labelled dif £. Itis necessary to concatenate a 0 bit to the front of each of the terms to be able to
represent the sign of the result. Line 40 connects the output port of the filter to the output of the register.

The third programming style defines the implementation in terms of its behaviour through one or more
process statements. Each process block is executed whenever any of the signals within its
sensitivity list changes. The process on lines 42 to 53 will be executed whenever c1k changes.
The statements within a process block are executed sequentially, making it a little more like a

60 Design for Embedded Image Processing on FPGAs

conventional programming language. If written in an RTL style, such a behavioural description can be
converted to the corresponding logic by the synthesis tools. Within the header, any variables used
withinthe process are defined. Avariableisalittlelike a signal, with the difference being that an
assignment to a variable takes place immediately within the process, whereas any assignment to
signalsis made whenever a wait statement or the end of the process is reached. At that point, all
signal assignments within the process are made concurrently; up to that point, all signals will have
the value when execution of the process started. That is variable assignments are made
sequentially, whereas signal assignments are concurrent.

The i f statement on line 45 specifies that the enclosed statements are only executed on the rising edge
of the clock when the clock enable is set (the rising_edge function is defined in STD_
LOGIC_1164). Consequently, any signal assignments within this block will be synchronous,
implying that a register is required. The if on lines 46 to 51 imply a multiplexer, with each branch
providing an appropriate input for the signal (register) g. Line 49 performs the multiplication and
assigns the result to the variable prod. The multiplication operation is defined in STD_LOGIC_SIGNED
to perform a signed multiplication, producing a full precision output. The least significant bits are
truncated and the result accumulated in g in line 50.

As can be seen, the different programming styles may be mixed within any given design. All statements
within the architecture are executed concurrently, in the sense that whenever any of the inputs
change, the corresponding statement is evaluated.

While this example illustrates many of the features and characteristics of VHDL, it is by no means
exhaustive. The interested reader should consult the standard (IEEE, 2004; 2009), the documentation for
their synthesis tool or other references on VHDL (for example Bhasker, 1999; Ashenden, 2008).

3.1.1.2 Verilog

Verilog has many of the same features as VHDL. However, in contrast with VHDL which has its roots in
Ada, Verilog is loosely modelled after C. Consequently, Verilog is more compact that VHDL. Again, as
primarily a modelling language, not all language constructs are synthesisable (IEEE, 2005).

Each block within a design is specified as a module, with associated input and output ports.
A structural design defines its operation by referencing lower level modules, and describes the
interconnections between the module instances.

Within the module, there are two types of variables: wire and reg. A wire is as it sounds, a wire,
while a reg is a variable that holds its value until it is changed (this is often, but not necessarily, associated
with a flip-flop). Wider variables are created as arrays of bits. An a s sign statement performs continuous
assignment. Whenever any variable on the right hand side of such a statement changes, the assignment is
evaluated to determine the new value for the left hand side. The assignments are effectively all concurrent;
the order that they appear within the module is immaterial.

An initial block contains sequential statements, with the block executing once on initialisation. An
always block similarly executes a block of sequential statements whenever one of the variables in its
sensitivity list changes. Within such blocks, there are two types of assignment: sequential, where the left
hand side is updated immediately; and concurrent which waits until the next time unit or clock cycle, when
all such assignments are made in parallel.

As with VHDL, a range of programming styles may be used. A full description of Verilog is beyond
the scope of this book. The interested reader is referred to the standards (IEEE, 2005; 2006a) or other
language references (for example Bhasker, 2005).

3.1.1.3 Summary

Standard HDLs are very good at describing the structure of a hardware design. Structural descriptions
generally give the best performance, using the minimum of resources (if optimised appropriately

Languages 61

by the designer). This makes them good for developing libraries of intellectual property (IP) blocks that
may be instantiated many times or in many designs. However, design at the structural level is quite low
level and can be very tedious. At a higher level, HDLs can model functionality through a behavioural
specification. This describes what the circuit does, without necessarily specifying how it is to be
implemented. Consequently, the designer generally has less control, so although the design is at a higher
level, it is relying on the synthesis tools to derive an efficient implementation. Only the subset of
behavioural descriptions that conform to an RTL style is synthesisable.

The low level of HDLs makes exploration of the design space (the trade-offs between area, speed,
latency and throughput) more difficult. It is time consuming enough to programme one design, let alone
several different designs to investigate the effects of different levels of loop unrolling and pipelining.

HDLs, by necessity, are general purpose and allow considerable control over how the circuit is
implemented. This is both an advantage and a disadvantage. The advantage is that the developer can target
specific structures available on the FPGA, or optimise the design for speed or resources required by
programming in particular ways. By giving the designer control over every aspect of the design, fast and
efficient designs are possible. The disadvantage is that the designer must control everything in quite fine
detail, including both the data and control flows. The flexibility comes from the relatively low-level
constructs, but programming at this level requires a lot of basic bookkeeping. This makes complex
algorithmic programming more difficult.

The low level of programming is also not always particularly transparent. Very similar behavioural
constructs map to latches or multiplexers. While a structural design can specify registers explicitly, they
tend to be implicit in the behavioural programming style. These characteristics require close attention be
paid at the low level, and has a strong focus on the hardware rather than the algorithm. Compared to
software-based languages, HDLs are a lot like programming in assembly language.

3.2 Software-Based Languages

In an attempt to overcome this problem, over the last fifteen years considerable research has gone into the
synthesis of hardware from high level languages, in particular from C. The rationale behind this is twofold.
Firstly, it enables existing software to be easily ported or recompiled to a hardware implementation. Many
algorithmic designs are first developed and tested using C or MATLAB®. Once working, the design is then
often re-entered manually into an HDL after which it is necessary to verify and refine the design manually.
This process is both time consuming and error-prone. Having a single source that can be compiled to both
hardware and software would speed the development process considerably. It would also enable the
partitioning of the final implementation between hardware and software to be explored more easily. The
time critical and easily parallelisable components can be compiled to hardware, with the more sequential
components compiled as software. A second motivation is to raise the level of abstraction to make
hardware design more like software design, making it more accessible to software engineers (Alston and
Madahar, 2002).

Unfortunately, there are significant differences between hardware and software that pose significant
challenges to describing a hardware implementation using a software language. Five areas of difference
identified by Edwards (2005; 2006) are concurrency, having a model of time, data types, memory model
and communication patterns.

Hardware is inherently concurrent, with each step or computation performed by separate hardware. In
contrast, software performs its computation by reusing a central processor, making software inherently
serial. As indicated in Chapter 1, software processors introduce parallelism at a range of levels: at the
instruction level through wide instruction words (effectively issuing several instructions in parallel),
temporally, through instruction pipelining (with successive instructions overlapping by being in
different phases of the fetch/decode/execute cycle), through to coarse grained parallelism introduced
by splitting the application into several relatively independent processes and using a separate thread

62 Design for Embedded Image Processing on FPGAs

for each. The fine-grained parallelism at the instruction level is closer to that of hardware, but is
controlled by the particular architecture of the processor. The compiler just needs to map the high level
statements to the given processing architecture. At this level the algorithm is primarily sequential,
although compilers can (and do) exploit dependencies between instructions to maximise parallelism.
At the thread or process level, the coarse-grained model does not match the fine-grained concurrency of
hardware, but maps closer to having separate blocks of hardware for each thread or process.

Time and timing is absent from most software programming models. The sequential processing model
of software ensures causality within an instruction sequence (Edwards, 2006), although this becomes
more complex and less deterministic with multithreaded execution and task switching. However, the time
taken for each task is not considered by the language. In contrast, hardware, and especially synchronous
hardware, is often governed by strict timing constraints. Many hardware interactions must be controlled at
the clock level and representing these with a high level software language can be difficult.

The data word width of a hardware system is usually optimised to the specific task being performed.
In contrast, software languages have fixed word widths (8, 16, 32, 64 bits) related more to the underlying
architecture than the computation being performed. Two approaches to this are to modify the language to
allow the word width to be explicitly specified, or to make use of the object orientated features (Java or
C++) to define new types and associated operators. Virtually all software languages support floating-
point computation, and floating-point numbers have been the mainstay of scientific computing, including
image and signal processing, for some time. However, until recently floating-point number representa-
tions have been avoided on FPGAs because of the cost of implementing the more complex hardware. It is
only with higher capacity FPGAs and higher level languages that floating-point calculations have become
practical in hardware for other than very specialised tasks.

The memory model of software is very different to that used within hardware systems. Software treats
memory as a single large block. The compiler may map some local variables to registers, but the software
model has everything stored in memory. This allows memory to be allocated to a process dynamically,
with the associated memory block referenced by its address. C even allows efficient memory traversal
algorithms through pointer arithmetic. In hardware, many local variables are not implemented in memory,
but directly as registers. Memory is often fragmented into a large number of small, independent blocks.
In such an environment, pointers have very little meaning, and dynamic allocation of memory resources is
difficult, if not impossible. This has a direct impact on the algorithms that can readily be used or compiled
to hardware.

The differences in memory structure also directly impact communication mechanisms between parallel
processes. Software generally uses shared memory (including mailboxes) to communicate between
processes. Such a model is sensible where there is only a single CPU (or small number of CPUs), and the
processes cannot communicate directly. In hardware systems, parallel processes are truly concurrent and
can therefore communicate directly. In data-synchronous systems, such as streamed pipelining, com-
munication is often implicit, or through simple token passing. More complex systems can use FIFO
buffers or other synchronising and communication mechanisms. In many hardware systems, the
communication relies on dedicated hardware. This is particularly the case when communicating between
clock domains.

Another major difference between hardware and software relates to the representation and execution of
an algorithm. In software, an algorithm is represented as a sequence of instructions, stored in memory.
A program counter points to the current instruction in memory, and a memory-based stack can be used to
maintain state information, including any local variables. This allows algorithms to be implemented using
recursion where within a procedure the state can be saved and the procedure called again. In hardware, the
algorithm is represented by physical hardware connections. Saving the current algorithm state is difficult,
making recursive algorithms impractical in hardware. Any such recursion within an algorithm must be
remapped to iteration to allow a practical implementation.

In spite of these significant differences, three approaches have been used to develop synthesis tools
from high level languages. One is to use the host language to create and manipulate a structural

Languages 63

representation of the circuit constructed. This is effectively using the high level language to simply
model the hardware, rather than directly specifying it. The second is to modify or extend the syntax
of a high level language to provide constructs that enable it to be used to describe hardware
(Todman et al., 2005; Edwards, 2006). The third approach is to use a standard high level language
and requires the compiler to automatically extract parallelism from the design and appropriately map it
to hardware. These three approaches are described in more detail with some examples of each of these
approaches. Much of the literature reports experimental work, although there are now several
commercial offerings.

3.2.1 Structural Approaches

Structural approaches work at describing the design using a structural model, rather than algorithmically.
These are primarily tools that mimic the structural designs of conventional HDLs but within a standard
programming language making the language and design more accessible to software engineers. They
are able to use the programming constructs of the host language to automate some design tasks, or to
facilitate parameterisation more naturally than standard HDLs. The other advantage of using a high level
language is that it more readily enables targeting the result to either software or hardware, facilitating the
partitioning of the design.

3.21.1 JHDL

JHDL (Bellows and Hutchings, 1998; Hutchings et al., 1999) is a Java-based hardware description
language developed by the Configurable Computing Laboratory at the Brigham Young University. It
began as a tool to experiment with run-time reconfigurability (Bellows and Hutchings, 2001) and was
extended to synthesise the designs, targeting Xilinx FPGAs. It is based on a structural design, which is
described programmatically using Java, with sets of classes representing objects, and wires. The
integrated environment then allows the circuits to be simulated to verify and debug operation. Tools
within the environment allow the manipulation of the design, including the placing of components on
the FPGA (floor planning). The design is then compiled to an EDIF net-list which the FPGA vendor’s tools
then place and route to produce the bitstream.

The main limitation of the original tool was that it used purely a structural design model. While this
enabled smaller and faster designs to be produced more quickly than conventional tools, design of
complex control circuits and finite state machines was awkward. This led to the incorporation of
behavioural synthesis (Wirthlin et al., 2001). Here the behavioural code is written in two key Java
methods of the class associated with the module, which are then compiled by the Java tools. The Java
byte codes are analysed to extract both the data flow and control flow from which the circuit
is synthesised.

Although the documentation and papers talk about a technology mapping phase (where the platform
independent representation is mapped to the resources of a specific FPGA technology), the environment
currently supports only Xilinx FPGAs up to the Virtex II.

3.2.1.2 Quartz

Quartz (Pell and Luk, 2005) is a structural hardware description language based on block composition.
This allows concise descriptions which can be manipulated by formal reasoning to prove the correctness
of the implementation. One of the focuses of this work was on parameterised pipelines for exploring
power consumption. The motivation for the work was to create efficient parameterised libraries, so the
representation was compiled to structural VHDL.

64 Design for Embedded Image Processing on FPGAs

3.2.1.3 HIDE

Crookes et al. (1998;2000) extended their earlier work on implementing image algebra-based systems on
transputers (Crookes et al., 1989) and other parallel processing systems to target FPGAs. The approach
taken was to have a library of primitive operations, with corresponding hardware implementation, and use
a Prolog-based system of rules to construct the final system automatically from the image algebra
representation. The work was later extended to provide a range of low level implementations (bit-serial,
parallel, signed-digit) to enable low level architectural exploration without having to change the high level
program representation (Benkrid et al., 2000).

A later incarnation of the language, HIDE4K (Benkrid, 2000; Benkrid et al., 2002b) extended this
rule-based approach to hardware skeletons, effectively a set of high level library constructs for building
more complex operations. The image processing problem is represented as a directed acyclic graph of
basic image processing operations, which is then matched to skeletons to get the framework for the
implementation. The components within the skeleton are then instantiated from a library of optimised
basic building blocks (line buffers, adders, multipliers, absolute value units, and so on) depending on the
particular image processing operations being used. Although the HIDE language can produce platform
independent VHDL with the vender tools implementing the design, it was found that higher clock speeds
and better packing density could be achieved with libraries that target a particular FPGA (Benkrid et al.,
2006). The platform specific libraries perform an initial placement, producing an EDIF net-list which is
mapped to the FPGA.

The use of a skeleton library allows the user to specify a high level description of the operations, which
are then internally translated to a structural representation, with the detailed implementation complexity
hidden from the user (Benkrid and Benkrid, 2008). While more flexible than a pure library-based
approach, it still requires that the design be able to be mapped to the available skeletons.

3.2.2 Augmented Languages

The second approach is to modify the syntax of the high level language to effectively convert it into a
hardware description language (Todman et al., 2005). Particular extensions are the ability to specify
concurrency and associated communication mechanisms, and to include hardware specific constructs
such as RAMs, ROMs and variable data bit widths. With this approach the responsibility of mapping the
algorithm onto hardware still rests primarily with the designer. Fully exploiting parallelism often requires
significant changes to the algorithm to handle hardware constraints. This, of course, requires the developer
to be familiar with hardware design. However, a wider range of parallelisation techniques can be
exploited, enabling the design to be optimised for real-time operation. The advantage of using a high level
language rather than a more conventional HDL is that much of the low level bookkeeping is abstracted
from the developer. However, since this still allows some control at the lower levels, it really provides an
intermediate level of abstraction and control. While some of the changes to the language may appear
relatively superficial, the introduction of parallel constructs significantly modifies the language and the
way that it is programmed. This requires the programmer to modify their thinking — it is still important to
think in terms of hardware.

3.2.2.1 SystemC

SystemC (IEEE, 2006b) is a modelling language based on C++. System languages can be used for
modelling a complete system, including both hardware and software components. SystemC decomposes
the system into a set of modules, which are connected using ports. In this way it represents the structure of
the system. A class library is defined which provides the components used to build up the system. Derived
classes can then be used to implement the system directly using C++-. The expressive functionality is

Languages 65

similar to VHDL or Verilog, with each module containing processes that run concurrently, with the code
inside each process executing sequentially. Like processes in VHDL, SystemC processes are triggered
through events (changes on particular signals), perform some action, and then suspend execution. In this
way, the language can also operate at the behavioural level. Although the system is structurally based, the
behavioural description is written using standard C++.

One of the features of SystemC is the separation of the computation from the communication. This
allows a move to a higher level of communication between processes through transaction level modelling
(Swan, 2006). At the register transfer level, a communication takes place using a set of signals between the
communicating modules, and a series of signal assignments and read operations on the wires of the bus.
A transaction level model would represent the complete transaction with a single function call containing
the request and response. Modelling at a higher level both simplifies the design and increases the speed of
simulation by up to two orders of magnitude.

SystemC contains hardware orientated data types and directly supports fixed-point arithmetic. This
raises the level of abstraction from conventional HDLs, because appropriate rounding and overflow
operations can much more easily and transparently be specified. Although designed primarily as a
modelling language, a subset of SystemC (including at the behavioural level) can be synthesised for FPGA
implementation. Although early synthesis work was experimental (Economakos et al., 2001), most
electronic design automation (EDA) vendors now provide tools for synthesis from SystemC.

3.2.22 ASC

ASC (A Stream Compiler) (Mencer et al., 2003; Mencer, 2006) also uses C++ classes to represent
hardware data types and provides a layered approach to the design at the algorithm, architecture,
arithmetic and gate level. The focus is primarily for the development and design space exploration of
hardware accelerators to augment a standard serial processor.

The approach taken is to convert iteration through an array into a hardware stream process. At the
algorithm analysis level, the developer is responsible for performing the associated loop transformations
and selecting the appropriate architecture and data structures. The architecture generation is defined by the
resulting ASC code. A set of C++ classes define the variable types (integer, fixed-point and floating-
point), the data width, with the specific hardware number representation and storage type (register, stream,
on-chip memory or off-chip memory) specified through an attribute. These attributes allow the design
space to be explored simply by changing the appropriate attribute at the higher level, rather than having to
specifically redesign everything at the low level. A library approach is used for the generation of
arithmetic modules, with the specific format and storage defined by an extensive library. Compilation of
the code produces either an executable that simulates the design at either the word level or bit level, or
produces the circuit in the form of an EDIF net-list. Each module can be constrained on the basis of area,
latency or throughput, enabling exploration of the design space from within the one framework.

Processing as streams simplifies the interface between the host processor and the accelerator. Data
from the host is streamed into input FIFOs at the head of the stream and streamed from output FIFOs at
the output.

3.2.2.3 SA-C

Single assignment C (Draper et al., 2000; Bohm et al., 2001; 2002; Draper et al., 2002; Najjar et al., 2003)
is a high level variant of C specifically designed for image processing applications. It was originally
developed as an accelerator for within the Khoros image processing framework (Hammes e? al., 1999)
and fits well with the low level image processing operations for which it is targeted.

There are three main differences between regular C and SA-C (Draper et al., 2000). Firstly, hardware data
types are introduced. In particular, variable width integer and fixed-point numbers enable the data width to be

66 Design for Embedded Image Processing on FPGAs

tailored to the application. Standard floating-point and Boolean types are also supported. Secondly, arrays
are natively supported, with associated control constructs for simply looping through multidimensional
arrays and for scanning windows through arrays. Such constructs not only provide a higher level
representation but also makes analysis of array accessing easier for the compiler. Looping through an
array also maps naturally to a streamed style of architecture. Thirdly, aspects of C that do not fit well with
FPGA hardware are eliminated. Pointers are not allowed (they are less necessary with the powerful new array
iterators) and recursion is prohibited. The language also enforces single assignment semantics (each variable
may only be written to once), which facilitates analysis of the dataflow, and enables a one-to-one
correspondence between each variable and wires on the FPGA (registers are not required to hold a variable,
except for pipelining to improve throughput). All of these features enable the dataflow to be analysed and
optimised by the compiler to result in an efficient mapping to the FPGA architecture.

The computational architecture is splitinto three levels. The firstis the data generator, which is responsible
for streaming the data in from memory as required by the loop. This includes buffering data from one window
position to the next. SA-C does not, however, infer or build row buffers, but reduces the number of reads by
processing multiple rows across the image simultaneously (Draper et al., 2001). The second level is the loop
body, which performs the processing on the data as the image is scanned. The single assignment restriction
enables producer and consumer relationships to be identified at the image level, enabling two or more loops
to be combined, minimising the number of times that the data needs to be transferred between the host (or
memory) and the FPGA. This optimisation is effectively inferring a streamed pipeline from the dataflow. The
third level is the data collector, which stores the results back to external memory.

The compactness of a SA-C representation is illustrated in Listing 3.2 for the implementation of a Prewitt
edge detection filter (Bohm ef /., 2002). Line 1 declares a procedure that takes as input a two dimensional
image of 8-bit unsigned integers, and produces a 16-bit unsigned image result. Lines 2 and 3 declare and
initialise the Prewitt masks. An image is declared on line 4, which is assigned the result of scanninga 3 x 3
window through the input image (lines—10). The body of the loop (lines 6-8) is executed for each window
position. An inner loop (lines 7 and 8) iterates in parallel (the dot operator) through the two masks and the
pixels within the window. The sum functions on line 8 reduce the pixel by pixel products to two numbers,
one for each of the masks. These are assigned to the 16-bit integer variables dfdx and dfdy. Line 9
combines these values together to create the magnitude, which is then used to build up the array M.

Listing 3.2 SA-C code for a Prewitt edge detector (With kind permission from Springer Science +
Business Media: Journal of Supercomputing, “Mapping a single assignment programming language to
reconfigurable systems,” 21, © 2002, 119, W. Bohm, J. Hammes, B. Draper et al., Figure 2.)

1 intl6 [:,:] main (uint8 Image[:, :]) {

2 1miEil@ w[3,3] = {({=1,=1,=1}, {0, @, 0, {1, i, 1)}z
3 intl6 VvI[3,3] ={{-1, 0,1}, {-1, 0, 1}, {-1, 0, 13}};
4 intlé M[:,:] =

5 for windowW[3,3] in Image {

6 intl6 dfdy, intlé6 dfdx =

7 forhinHdot winWdot v inV

8 return (sum(h*w) , sum(v*w)) ;

9 intl6 magnitude = sqgrt (dfdy*dfdy +dfdx*dfdx) ;
0 } return (array (magnitude)) ;

1 } return (M) ;

The language can be compiled for serial processing, for simulation and debugging on a conventional
processor, or via VHDL to target hardware. The mapping to hardware is facilitated by a library of
constructs for implementing each of the components.

Languages 67

The lack of a while statement makes other types of operations more difficult. However, the array access
mechanisms are efficient for implementing operations that require a scan through the image and provide a
higher level representation for those tasks than regular C.

3.2.24 AIRT

An early commercial C to HDL compiler was AIRT (for Algorithm to Register Transfer), marketed by
Frontier Design. It extends C with fixed-point data types (Johnson and Defossez, 1999). AIRT creates a
processor like architecture and uses a VLIW type processor to direct and schedule the operations
(Johnson, 2000). The tools allow interactive exploration of different processor architectures during the
design. One of the features is the ability to import predefined components (intellectual property cores) into
the C programme as function calls. These map to a structural representation in VHDL, allowing optimised
code to be directly incorporated into the design. However, as an early generation language, it has not
survived (Martin and Smith, 2009).

3.2.2.5 Mitrion-C

Mitrion-C (Mohl, 2006) is a parallel C dialect marketed by Mitrionics specifically targeted towards high
performance computing (including image processing). Like SA-C, it is based on the single assignment
semantic to simplify extraction of parallelism from the code. Every statement returns a value and performs
an assignment, including loops and conditionals. The only effect that a loop or block has on the rest of the
programme is through the return value. This enables loops to be executed independently of other parts of
the programme. Within a block, all assignments are parallel. The language supports a wide range of types,
including variable sized integers and floating-point numbers. Collections of types include lists, vectors
and streams. Memory accesses are synchronised through the use of instance tokens, which guarantee the
sequential order of accesses.

The basic concept of Mitrion-C is that everything is parallel. Using this concept, a Mitrion virtual
processor is created and the language is compiled to that. For an FPGA, the algorithm is accelerated to the
maximum extent by unrolling loops (effectively creating multiple parallel processors) until the FPGA is
filled. The latest version of their compiler will take the same source code and target an FPGA, GPU or
multithreaded CPU exploiting the parallel capabilities of the target platform.

3.2.2.6 Handel-C

One of the difficulties with multiple parallel processes is ensuring reliable communication between them.
Simply using shared registers or shared memory only works if the processes are synchronised. One
approach is to use the communicating sequential processes (CSP) model described by Hoare (1985). This
model requires all communication channels between processes to be unidirectional, point-to-point and
blocking. That is the processes at both the sending and receiving end of the channel will wait until the
communication successfully takes place before continuing. Using CSP primitives, it is possible to build
more complex communication methods, including buffered communication.

The Occam programming language was the first to implement CSP for communication between
parallel processes, and as a parallel language this was readily adapted to programming FPGAs (Page and
Luk, 1991). Converting the Occam language (and the CSP model) to use a C-like syntax led to Handel-C
(Page, 1996).

The Handel-C language was commercialised by Celoxica through the DK Design Suite (an integrated
compiler and clock accurate simulator) and quickly established a strong following in the academic
community. In 2006, the Handel-C development tools were passed to Agility Design Solutions. In 2009
Agility ceased trading and Mentor Graphics acquired Handel-C and the DK Design Suite.

68 Design for Embedded Image Processing on FPGAs

Handel-C (Mentor, 2010b) extends a subset of C with variable word length integer variables, bit
manipulation operations, hardware architectural components (ports, interfaces, RAMs, ROMs), con-
structs for specifying concurrency through parallel blocks and channel communication between parallel
processes. While pointers are allowed, pointer arithmetic is not supported by the language.

The language also provides powerful recursive macros for constructing repetitive complex circuits (for
example variable width multiplication and division, or CORDIC calculations). A distinctive feature of
Handel-C is that every assignment takes exactly one clock cycle. The resulting strongly timed syn-
chronous design is therefore implicitly at the register transfer level, although using a higher level
algorithmic syntax. The compiler internally builds a state machine using a token passing scheme to
control the execution and sequencing of commands. The compiler therefore reduces the burden of
designing the control logic, as it is implicit in the language constructs. In other respects, though, it is still
the responsibility of the developer to identify and exploit parallelism and create pipelines where
appropriate. This makes Handel-C an intermediate-level rather than a high-level language. However,
even this is sufficient to give significant design productivity over programming in VHDL.

Listing 3.3 A Handel-C code fragment to implement the filter shown in Figure 3.5

1 #include <stdlib.hch>
2
3 macro expr t = 10;
4 macro expr k = 128; / /fixed point number /256
5
6 macro expr absv (si) =
7 (unsigned) (((si<0) ? -si: si) <- (width(si) -1));
8
9 macro proc filter (data_in, data_out) {
10 macro expr dw = width (data_in) ;
11 unsigned int (dw) i, g;
12 signal <int (dw+1) > diff;
13 do par {
14 data_in ? i; //Stream input through data_in
15 diff = (signed) ((0@1) - (0@Q)) ;
16 if (absv(diff) <t)
17 a=1;
18 else
19 g += (unsigned) (adjs(diff, dw*2+1) *k)\\ (dw+1) ;
20 data_out ! g; //Stream output through data_out
21 } while (1) ;
22 }

A Handel-C implementation of the circuit in Figure 3.5 is given in Listing 3.3. Lines 3 and 4 define
constants for the threshold level and filter gain. The absolute value block is implemented by the macro
expression on lines 6 and 7. Since Handel-C is strongly typed, it is necessary to cast the result to unsigned.
width (si) is acompile time constant that gives the bit width of s1i; the expression here is taking the
least significant bits, reducing the width by one. The actual filter is represented by the macro procedure on
lines 9-22. The arguments of a macro procedure are passed by reference, so any operations on the
parameter within the procedure will be directly accessing the caller’s arguments. The parameters of macro
procedures are untyped, deriving their type from the arguments. This allows macro procedures to be more
easily parameterised, whereas the parameters of standard functions must be explicitly typed. Line 10

illustrates one mechanism for such parameterisation by defining dw to be the width of the argument.

Languages 69

This is used in the following lines to declare the variables i and g, and the signal di £ f£. Note that signals
in Handel-C have a different meaning to those in VHDL. Here a signal corresponds to an unregistered
wire. Lines 13-21 contain an infinite loop. The par specifies that all of the statements within the loop
are executed in parallel. The data is streamed into the filter through the channel read from data_in
on line 14, with the result streamed out through the channel data_out on line 20. Since these are all
executing in parallel, if input data is not available or the downstream process is not ready, then the
corresponding channel operation will block, stalling the process until the input data is available and the
output transferred. In this way, the filter is automatically self-synchronising with the upstream and
downstream processes using the CSP model. Lines 15-19 implement the actual filter. Line 15 takes the
difference between the input and output. To prevent losing the sign of the result, the widths of the variables
are increased by concatenating (@) a 0 on the front. Since di £ f is a signal, the result is not registered, so
this does not take any clock cycles. A signal is used here to reuse the result in multiple places (in lines 16
and 19). Line 19 is effectively executing g += diff * k; however the output of the multiplication in
Handel-C is the same size as the inputs, so di f £ needs to be sign extended (adjsisdefinedinstdlib.
hch) to the desired width. Since k is a constant, it will automatically be made the right width. The resultis
cast to unsigned and the least significant bits dropped (\ \) to make it the right width and type for adding to
g. While the strong typing is good for detecting errors, the need for casting when the variable widths
change can reduce the readability of the code.

The Handel-C source can either be compiled to VHDL, or directly to an EDIF net-list. Vendor tools are
then used to place and route the design for the target FPGA. These can be integrated within the DK Design
Suite as custom build commands, producing the configuration file as the output.

3.2.2.7 Handel-C Derivatives

One of the limitations of Handel-C is that once a program has been developed with the strict timing model, it
can be very time consuming to rearrange the algorithm. This makes exploration of the design space more
difficult. Haydn-C (Coutinho and Luk, 2003) overcomes this problem by having two distinct formats. One
is a strict timing model and structure that closely follows Handel-C, and indeed is compiled to hardware by
using Handel-C as an intermediate language. The other format is an untimed dataflow graph that represents
the algorithm itself. From this form, the algorithm may be transformed into a range of different structures,
enabling exploration of pipelining, loop unrolling, resource allocation and scheduling. A single design can
then be used to create a range of implementations guided by a set of annotations in the code. This enables a
very flexible exploration of the design space without sacrificing the strict timing model.

Bach-C (Yamada et al., 1999; Kambe et al., 2001) is very similar to Handel-C, and with similar design
goals. The main difference is that Bach-C does not have timed semantics. This allows for greater
optimisation within each thread. Synchronisation is performed using either synchronous channels (like
Handel-C) or asynchronous channels (effectively shared variables or memory).

3.2.3 Native Compilation Techniques

An alternative approach to those described in the previous section is to use standard software source code,
and require the compiler to automatically extract parallelism from the design and map the design to
hardware. The compilation process may be guided, either with annotations within the source or constraint
files that control and optimise the mapping process (Todman et /., 2005). Common optimisations include
loop unrolling and automatic pipelining based on an analysis of the algorithm dataflow. By hiding
the hardware constraints from the designer, the lower level hardware design is abstracted away, enabling
the developer to focus primarily on the algorithm development. Note that the significant differences
between the way in which software and hardware are implemented may place some limitations on how
the algorithm is coded or restrictions on the language to enable the compiler to identify constructs that

70 Design for Embedded Image Processing on FPGAs

may be parallelised. However, most of the work in making the design suitable for FPGA implementation is
moved from the designer to the compiler. One of the limitations of this approach is that the compiler is
effectively optimising a sequential algorithm, and only the obvious forms of parallelism may be extracted
and exploited. The underlying algorithm is still sequential. However, for low level image processing, this
approach has been shown to be effective (for example, Streams-C; Gokhale et al., 2000).

3.23.1 Transmogrifier C

One of the early efforts at a C to FPGA compiler was Transmogrifier C (Galloway, 1995). It supported a
very limited subset of C (no multiplication, division, pointers, arrays or structures). One extension to
regular C was the use of pragmas to specify the number of bits used by integers. It provided a simple
behavioural method of describing a hardware circuit. The timing semantic was also very simple — there
was one clock cycle for each function call and one for each loop iteration. Transmogrifier C was
more recently reincarnated as FPGA C on Sourceforge.

3.2.3.2 SUIF-Based Compilers

The SUIF (Stanford University Intermediate Format) compiler system (Wilson e? al., 1994; Hall et al.,
1996) is a framework designed within Stanford University for collaborative research on parallelising
compilers. The framework has been used as the basis for experimental work on compiling from C
to HDLs.

The NAPA C compiler (Gokhale and Stone, 1998) works on standard C code and targets the NAPA
platform, which consists of a RISC processor coupled with an adaptive logic array. Sections of code can be
marked with pragmas to target execution on either the RISC processor or the reconfigurable logic. The
compiler pipelines loops targeted for hardware to accelerate their execution.

Streams-C (Gokhale et al., 2000) is an extension of NAPA C to efficiently handle pipelined stream
computing. As such, it is able to exploit the parallelism associated with processing streams, with
pipeline optimisations performed automatically by the compiler. Directives are added as comment-
based annotations that declare processes, streams and signals, and to assign resources to these on the
FPGA. A process is a computational block that operates on streamed data. The compiler builds a state
machine to control the flow of data through the process pipeline. A library of functions is provided for
basic stream manipulations (opening, reading, writing and closing). These link successive processes,
including those running on a host serial processor, with inter-process communication based on the CSP
model. The same source can be compiled for sequential execution (using threads for each process) or to
synthesizable VHDL for FPGA implementation.

One fruitful area of parallelisation is loop unrolling and pipelining. SPC (Weinhardt and Luk, 2001b)
takes standard C input and performs loop transformation compiling to a net-list, with the vendor tools used
for place and route. ROCCC (Buyukkurt et al., 2006) similarly takes standard C and compiles to VHDL.
ROCCC is designed to manage and pipeline two-dimensional arrays and the access patterns required for
image processing filters. Smart buffers are used to cache data required in subsequent rows to increase data
reuse and reduce the number of memory accesses.

3.2.3.3 Impulse C

Impulse C (Pellerin and Thibault, 2005) is a commercial offering, from Impulse Accelerated Technolo-
gies, that follows along the lines of Streams-C. Following the CSP model, the application is divided by
the programmer into a set of processes which communicate with one another through streams. This allows
the processors with high computation density to be implemented on an FPGA, with the remainder of the
application implemented on a serial processor (Pellerin ef al., 2005). The development tools (called

Languages 71

CoDeveloper) compile modules either to software or to hardware, using a library of streaming
functions for software—hardware and hardware-hardware communication. The compiler automati-
cally extracts parallelism, pipelines the design and builds the controlling state machine for each
hardware process. However, the developer must still structure the code in a way that maximises the use
of hardware resources.

3.2.3.4 Dime-C and DimeTalk

Dime-C (Genest et al., 2007) is a C to VHDL compiler provided by Nallatech. It aims to be ANSI
compliant, but does not allow pointers, structures, and some types of loop or switch statements that can be
expressed in other ways. The code can be compiled using standard software compilers for testing and
debugging the algorithm. When compiled for hardware, pragmas are used to annotate the code to indicate
to the compiler sections that contain significant parallelism. The compiler automatically parallelises and
pipelines the code when possible.

The compiler can be run on its own or as part of DimeTalk IDE. DimeTalk (Sanderson, 2004) enables
the communication between processes both within and between FPGAs to be designed at the conceptual
level and it generates the required synthesisable code. Communication is based on a lightweight network
architecture for connecting the various modules, with data transferred using a custom, low overhead
packet-based protocol.

3.2.3.5 Catapault C

Catapault C (Bollaert, 2008) is a high level synthesis tool provided by Mentor Graphics. It uses
standard, untimed C++ code allowing the design to be directly specified at the algorithmic level. It has
no specific concurrency constructs — any concurrency is automatically extracted at the compilation and
optimisation stage. The only restriction on the language is that everything must be determinable at
compile time. This means dynamic memory allocation and recursion cannot be used. The language is
extended with a class library that supports variable bit-width integers and fixed-point real numbers, as
needed for an efficient hardware design. As standard C++ code, the algorithm can be tested and
validated within the standard software environment before synthesising to hardware. Of all the
languages reviewed here, Catapault C is the most compliant with C (or C++) in terms of what it
is able to synthesise.

The compilation to hardware is controlled by the user by specifying timing and resource constraints.
These, combined with characterisations of the target technology, are used to optimise the mapping to
hardware through loop unrolling, loop merging, and pipelining. The tools provide several views of the
algorithm and its performance, allowing the user to interactively adjust the constraints to efficiently
explore the design space without having to rewrite the source code. During synthesis, the communication
mechanisms between the different modules are automatically chosen based on the access patterns (stream
FIFO, bank-switched memories, round robin memories and other interleaving constructs). The control
logic required to schedule and sequence all of the modules is also built automatically. Synthesis then
converts the C4++ code to RTL in VHDL, Verilog or SystemC, which can then be used to directly generate
hardware either for FPGA or ASIC implementation.

3.2.3.6 MATLAB® Based

Many image and signal processing algorithms are first developed and tested in MATLAB®. Therefore,
considerable development time would be saved if the MATLAB® code could be synthesised directly to an
FPGA. The MATCH project aimed to do exactly this (Banerjee et al., 2000).

72 Design for Embedded Image Processing on FPGAs

Firstly, the MATLAB® code is analysed to determine the operations performed and the data
types. This is complicated by the fact that MATLAB® is dynamically typed, with the type changing
depending on the results of any assignments. For many operations there are optimised cores (Banerjee
et al., 2000), otherwise the code is mapped to sequential code on the FPGA. Matrix operations
are expanded out into loops, with complex expressions broken down to simpler expressions. The loops
are then pipelined to accelerate the computation. Since most processing in MATLAB® is on large arrays,
the input and output arrays are assumed to be in external memory. Speed, therefore, is dominated by
memory references (Haldar et al., 2001a; 2001b). The floating-point calculations used by MATLAB® are
converted to fixed-point for computation on the FPGA (Nayak ez al., 2001; Banerjee et al., 2003). This
significantly reduces the hardware and, if the bit width can also be reduced, multiple array elements may
be packed into a single memory location, improving the bandwidth. The algorithm is compiled to the
target FPGA via VHDL.

Since MATCH was developed, its technology was transferred to a start-up company, AccelChip. In
2006, Xilinx acquired AccelChip and the technology is now available as AccelDSP (Xilinx, 2009a). The
design flow still follows the principles outlined above. The MATLAB® code has to follow a particular
coding style that assumes streamed input and output data. The floating-point design is converted to fixed-
point and verified for fidelity with the original floating-point model. The fixed-point model is then
converted to RTL and a test bench created for validation. Acceleration optimisations performed by
AccelDSP include partial or full loop unrolling, mapping of variables (arrays) to memory and pipelining.
The final design can also be compiled to a block for use with Xilinx System Generator (described in the
next section).

Another MATLAB®-based tool is Compaan/Laura (Harriss et al., 2002; Stefanov et al., 2004).
This toolset converts a sequential MATLAB® design into a network of independent processes, which
is more dataflow orientated. The revised processing model is easier to map to hardware. The
data flows from one process to another using blocking FIFOs to ensure correct computation order.
Within each process, optimisations such as loop unrolling and skewing are used to improve
the implementation.

3.3 Visual Languages

An alternative to representing an algorithm textually is to use a graphical programming environment
and its associated visual language. A visual programming language is one which uses a visual
representation to augment what is normally represented purely with text. Textual programming
languages are a one-dimensional sequence of commands or statements, which matches the needs of
a serial processing environment with a linear program memory architecture. However, programming
FPGAs efficiently requires parallel and concurrent programming. A visual language offers multidi-
mensionality (Chang et al., 1999), enabling both spatial and temporal semantic relationships to be
expressed more clearly.

At the low level, a schematic diagram is a form of visual language. It enables a network of components
to be created with connections between the components indicated by wires. In a textual language, each
wire becomes a net name, with the circuit represented by a net-list. Connections are made by listing the net
names associated with each port of the component (for example structural VHDL).

Many of the control structures of complex logic systems are based on finite state machines. These can
readily be represented graphically using state transition diagrams, such as those shown in Figure 3.4.
Therefore, a natural tool for creating and editing finite state machines could be based around the direct
editing of the associated state transition diagrams. One example of such a tool is StateCAD, which is part
of the Xilinx toolset. While such tools are good for creating finite state machines, this only forms part of
the control structure for the complete design.

A range of higher level techniques are reviewed in the following sections.

Languages 73

3.3.1 Behavioural
3.3.1.1 vVHDL

Visual VHDL (vVHDL) (Miller-Karlow and Golin, 1992; Golin et al, 1993) provides a visual
representation of VHDL, with different shaped icons and boxes representing concurrent and sequential
processes. Otherwise, it provides much the same features as VHDL. Advantages of the graphical
representation are that it overcomes the syntax problems associated with VHDL and provides better
insight into the function of a design by distinguishing between sequential and concurrent processes
(Miller-Karlow and Golin, 1992).

3.3.2 Dataflow

At a higher level of abstraction, both parallelism and pipelining are well represented using a dataflow
graph. The parallel nature of FPGAs results in a better fit with dataflow languages, both visual and text
based. Indeed, most image and signal processing algorithms are often represented graphically by block
diagrams with blocks representing operations on the data, and connections between the blocks indicating
the flow of data. Dataflow graphs expose the parallelism of an algorithm, while imposing minimal
constraints on the execution order (Buck and Lee, 1993). This allows an appropriate set of hardware
processors to be defined for the dataflow. All of the compilers of text-based serial languages (described in
the previous section) that automatically extract and exploit the parallelism use some form of dataflow
analysis of the algorithm to identify dependencies and parallelism.

This has led to the obvious approach of directly representing image processing algorithms graphically
using some form of dataflow language. This can be at two levels: building the algorithm from image
processing operations, and at the lower level of dataflow within the individual operations.

3.3.2.1 Khoros Based

Khoros is a software-based image processing environment (Williams and Rasure, 1990), of which Cantata
is the dataflow-based graphical programming tool. Within Cantata, each image processing operation is
represented by a block, with the blocks wired together according to the dataflow. There have been several
research projects using Khoros diagrams as a front-end for targeting FPGA implementations (Hoisko
et al., 1996; Levine et al., 1999; Ong et al., 2001).

The basic approach is to have a library of HDL primitives for each Khoros function (Levine et al.,
1999). The application can then be compiled by piecing together these primitives based on the dataflow.
Since the latency of each primitive is known, synchronising delays can automatically be inserted in
parallel paths. Adding a new operation requires providing the underlying code in both C/C++ for the
software environment and VHDL for the hardware implementation. These must be functionally
equivalent to ensure that the hardware produced will gave the same results as the software algorithm
(Ong et al.,2001). This is achieved by using the same fixed-point C/C++ code and compiling it to VHDL
to create the library primitives using the AIRT compiler.

3.3.2.2 Simulink Based

Simulink is a graphical dataflow-based programming environment within MATLAB®. It is widely used
for DSP-based design and is also applicable for stream-based image processing designs. A number of
systems leverage off the environment by providing Simulink block sets for targeting FPGA-based designs.
Examples are System Generator from Xilinx (Hwang et al., 2001), DSP builder from Altera (2010c),
Synplity DSP from Synplicity (Balakrishnan and Eddington, 2007), and Simulink’s own HDL Coder

74 Design for Embedded Image Processing on FPGAs

directly from MathWorks (2010). A brief comparison of some of these tools is performed by
(Zoss et al., 2011)—there can be quite significant differences in both resources used and processing
time between the different tools for the same design. Using the Simulink environment allows application
developers without a detailed knowledge and experience of the hardware to produce efficient imple-
mentations relatively quickly and effectively. The modelling environment offered by Simulink (and
MATLAB®) provides accurate simulation of the design that is considerably faster than that provided by
conventional HDLs.

The design flow involves developing the algorithm within MATLAB® and then representing the
algorithm graphically within Simulink. At this stage, the specific block sets are used for targeting the
design to an FPGA. The design can then be thoroughly tested with bit-level accuracy within the Simulink
environment, before being compiled directly to an FPGA. Many of the blocks are parameterisable,
allowing the data width and other parameters to be tuned for the design. The block sets from Xilinx and
Altera specifically target the advanced DSP features within their respective FPGAs, resulting in an
efficient design and use of resources. For example, Altera provides a block set specifically targeted for
video and image processing (Altera, 2010f).

The library-based approach hides many of the low level implementation details within the block sets. If
all of the blocks required by an application are in the library, then this can be an efficient design approach.
However, if a high level block is not available, itis necessary to use quite low level blocks to implement the
design, which significantly increases the design complexity and reduces the transparency.

3.3.2.3 Others

LabVIEW is another dataflow-based programming environment. While targeted more for control
applications, it can also be used for image processing. LabVIEW provides a set of blocks which have
both a software and hardware implementation (National Instruments, 2005). The software implementa-
tion is used within the LabVIEW environment for simulating the design, while the hardware implemen-
tation is used when targeting an FPGA. When producing an FPGA implementation, the tools effectively
use a library-based approach. Again, this has the limitation that only functions available within the library
may be used for the design.

Another visual language is the PixelStreams graphical interface to Handel-C (Mentor, 2010c). It uses a
library approach to provide arange of image processing operations in a stream based graphical environment.
Each operation is written in Handel-C, so is readily extensible. The operations are connected using a
consistent stream based interface which consists of a number of control flags and a range of data variables:
pixel values, coordinates, and synchronisation pulses. The common interface makes the operations plug and
play, with the resulting system compiled and implemented by the underlying Handel-C compiler.

3.3.3 Hybrid

While dataflow languages provide a good match for a parallel hardware implementation, unless the
control can be embedded with the data, the control tends to be hidden. Directly expressing complex
control within a dataflow language can be clumsy. Therefore, a hybrid approach can give improvement,
where a dataflow representation is used for streaming data and a finite state machine can be used for
designing the more complex control.

3.3.3.1 VERTIPH

The Visual Environment for Real Time Image Processing in Hardware (VERTIPH) (Johnston et al., 2004;
2006a; Johnston, 2009) is the approach that Massey University is investigating to address this issue.
The representation of a design is divided into three main views. At the top, the architecture view

Languages 75

provides a high level dataflow representation of the image processing algorithm in a manner similar to that
used by Khoros or PixelStreams. The computational view is a timed dataflow representation of the
computations required to implement each operation; this is at a similar level to that of the inner blocks
within a Simulink representation. Finally, the scheduling view uses augmented state transition diagrams
for providing the complex control, for scheduling each of the computational blocks and for managing
shared resources.

The architecture view comprises a hierarchical block and wire representation of the algorithm
(Johnston, 2009). The top level gives an overall view of the complete algorithm. Since the top view
must be constructed first, VERTIPH enforces a top-down design. If necessary, each architectural block
can be decomposed into a networked collection of either other architectural blocks or computational
blocks as illustrated in Figure 3.6. The hierarchical nature of architectural blocks enables resources to be
encapsulated with their controlling processes (for example a bank-switched frame buffer). Although such
encapsulation is not enforced by the language, it follows good design principles for hiding complexity
from where it is not needed, and helps to improve the reusability and maintainability of components. The
wires between blocks can carry both data and control signals. The connections also use a hierarchical data
structure (similar to structs in C) to hide unnecessary details from the diagram. An example architectural
view is shown in Figure 3.7. Note that the control flow (shown in grey) flows in a different direction to the
dataflow in many cases. Image processing specialists who never develop their own operations can use the
architectural view to assemble predefined library modules into their design.

The computational view specifies the arithmetic and logic operations required to implement each block
within the design. To encourage functional decomposition, it is also hierarchical, allowing computational
blocks to be used in place of operation blocks. Like the architectural view, the computational view follows
a dataflow style, but also introduces control constructs (loops and conditional executions) using a
graphical representation modified from Nassi—Shneiderman diagrams (Nassi and Shneiderman, 1973).
The control structures enclose the operations that they control, making the structure more evident.

Root architecture view
P> | |] b
Block containing Block containing
architecture blocks computational blocks
D =D D
ne 4 D— —D
. > D>
Computational
view for a B
computational
block N | I |

Figure 3.6 Hierarchical structure of a VERTIPH design. (Johnston, 2009; Reproduced by permission of
C. Johnston.)

76 Design for Embedded Image Processing on FPGAs

pixels Frame | pixels " pixels _
p| Camera > » Bilinear » Video
i buffer . ! :
interface > < interpolation diiver
address |_Manager |address pA
undistorted
address distorted
— Barrel address
Keyboard N :
interface distortion »| distortion
correction
parameter

Figure 3.7 VERTIPH architectural view for lens distortion correction. (Johnston et al., 2004;
Reproduced by permission of C. Johnston.)

The syntax also introduces a strict timing semantic, with each operation assigned to a particular clock
cycle, with the horizontal axis used to indicate time whereas the vertical axis indicates concurrency. The
visual structure more clearly conveys the intention of the code, with a clear distinction between sequential,
parallel and pipelined operations. The VERTIPH computational view for Figure 3.5 is illustrated
in Figure 3.8.

VERTIPH is unique in its representation of pipelines. All other languages consider pipelines as a
special case of concurrent operations, reflecting the fact that each stage of the pipeline operates
concurrently. However, from a dataflow perspective a pipeline is really a sequential construct. The fact
that other data is also being processed in the other stages is immaterial to the dataflow (Johnston ez al.,
2010). Separating the sequential semantic aspects from the concurrent syntactic aspects significantly
improves the transparency of the design. The representation used clearly shows the timing, throughput and
latency of the design. Exploration of the design at this level is facilitated by giving the designer to direct
control over the pipeline phasing. Having an explicit representation of the pipeline can also aid with
pipeline control, enabling priming, flushing and stalling circuitry to be instantiated automatically in many
cases (Johnston et al., 2010).

The third view within VERTIPH is the scheduling view. The primary purpose of this view is to control
when each of the computational blocks is executed, and to manage resource contentions. For simple
systems, the resource and scheduling view is not necessary; all of the controls may be specified by using
conditional structures directly within the individual computational views. However, as the system grows in
complexity, this can become unwieldy, especially as one change may require consequent changes in other
computational blocks. Centralising the high level control in a single view makes the process
more manageable. The scheduling view has two parts (Johnston et al., 2008). The first part consists of
one or more state transition diagrams. These may be controlled by either external events or internal counters.

if (abs(data_in-q)<t)

pD data_in data_out B
data_in : data_out
q=d
+D d q b
else I |

data_in " : data_out
a=q+k*(d-q)
D d q

Figure 3.8 VERTIPH computational view for the filter shown in Figure 3.5.

Languages 77

In each state, one or more processes (computational blocks) may be scheduled to execute. The second
part of the view indicates which processes are associated with each state. When multiple processes
are associated with a state, these may be scheduled sequentially, concurrently, or as a pipeline. When
multiple processes share a common resource, potential conflicts may arise. Many resource conflicts
are simplified by encapsulating the resource and its conflict resolution processes within a single
architectural block.

At the time of writing, the VERTIPH language does not include a simulator or compiler, but the
language is described here to give a flavour of the approaches that can be taken for implementing image
processing systems.

3.4 Summary

Four quite different approaches to programming an FPGA have been presented in this chapter. Hardware
description languages (VHDL and Verilog) are good at describing hardware, and are inherently
concurrent. Their main limitation is that they require programming at the structural level or register
transfer level, which is quite different from the algorithmic approach to representing image processing
algorithms. Consequently, the algorithm is usually developed within a software environment, leaving the
laborious and error-prone task of translating it from the software into the HDL.

Conventional software languages, such as C and MATLAB®, are much better for representing
algorithms, so if the translation step from software to HDL can be avoided, significant gains in
productivity can be achieved. Two approaches are taken for using these languages to programme FPGAs.
One is to extend the language to enable it to describe hardware, by adding concurrent constructs. The
result is a software-based hardware description language — it retains the algorithmic structure, but is able
to describe concurrent hardware. The conversion from software to hardware is then one of refinement,
rather than rewriting the algorithm from scratch. The other approach is to leave the language unchanged,
but to enhance the compiler to automatically identify and extract any parallelism from within the
algorithm. The limitation of this approach is than many algorithms are represented serially, and are
optimised for implementation on serial processors. While there may be parallelism that can be exploited,
unless the underlying algorithm is essentially parallel it is not going to give the most efficient solution. The
danger here is that the wrong algorithm is being parallelised and parallelising serial algorithms is
not trivial.

The fourth approach is to use some form of visual language to represent the operation of the
hardware. For many image processing algorithms, a dataflow representation exposes the natural
parallelism inherent within the algorithm. One limitation of visual languages is that the representation
is significantly more expansive (requires more screen real-estate), making it harder to maintain an
overall view of the whole algorithm. In exposing the flow of data through the system, the control flow
can also become obscured.

None of the current offerings is perfect (Martin and Smith, 2009). Which is best? The answer depends
on the goals. A solution hand crafted in an HDL using a structural coding style will generally give the
smallest and fastest design, although the development process is very time consuming. Using a C-based
language gives higher productivity, but this often comes at the expense of a larger and slower design. The
compiler orientated approaches will usually enable a faster exploration of different architectures, as these
can often be set up as compiler constraints. Library-based approaches (whether using a textual or visual
language) can be very efficient if all of the required functions are available within the library. The design
then becomes one of piecing together library components, which usually have implementations that have
been optimised for a particular family of FPGA.

In the Massey University laboratory, a combination of VHDL and Handel-C is used. VHDL is used
primarily for developing interfaces to external components where precise control is required. All of the
algorithmic design is in Handel-C, which is an intermediate level C-based hardware description language.

78 Design for Embedded Image Processing on FPGAs

This gives significant productivity gains over VHDL through its higher level algorithmic representation,
but also enables control at the lower levels where necessary.

Itis important to keep in mind that FPGA-based development is hardware design. Design for hardware
and for software requires different skills. Even if a C-based language is used to represent the design, it is
important to keep in mind the architecture that is being built or is implied by the algorithm. Not all
software algorithms map well to hardware. For example, recursion is not available unless hardware is
explicitly built for saving the context and recalling it again later (Skliarova and Sklyarov, 2009). Under
real-time constraints, there is limited access to memory. These and many other aspects of hardware design
usually require that the algorithm be transformed rather than simply mapped to hardware. Again, this
requires a hardware orientated mindset.

Image processing algorithm development, however, is usually considered software design. Therefore,
the development of efficient FPGA-based image processing systems requires a mix of both hardware and
software engineering skills. The differences between these is explored in more detail in the next chapter.

4

Design Process

The process of developing an embedded image processing application involves four steps or stages
(Gribbon et al., 2007). The relationship between these is illustrated in Figure 4.1. The problem
specification clearly defines the problem in such a way that the success of the proposed solution can
be measured. The algorithm development step determines the sequence of image processing operations
required to transform the expected input image or images into the desired result. Architecture selection
involves determining the computational structure of the processors that are required to execute the
algorithm at both the application and operation levels. Finally, system implementation is the process
of mapping the algorithm onto the selected architecture, including construction and testing of the
final system.

Ithas been observed that the development of complex algorithms on FPGAs is sensitive to the quality of
the implementation (Herbordt et al., 2007). To gain a significant speed improvement over a software
implementation, it is necessary that a significant fraction of the algorithm can be parallelised. Often the
speedup obtained from implementing an application on an FPGA is disappointing. One of the main factors
is that it is not merely sufficient to port an algorithm from software onto an FPGA implementation. To
obtain an effective and efficient solution, it is necessary for the computation and the computational
architecture to be well matched. While algorithm development is usually considered part of the software
engineering realm, the design of the processing architecture is firmly in the domain of hardware
engineering. Consequently, FPGA-based image processing requires a mix of both skill sets. To fully
exploit the resources available on an FPGA, the system implementation stage often requires changes to
both the algorithm and the architecture. As a result, the development process is usually iterative, rather
than performed as discrete distinct steps as implied by Figure 4.1.

In the description of each of the stages below, the important tasks within each step are identified and
explained. In particular, the differences between designing for implementation on an FPGA and on a
standard software-based system are highlighted.

4.1 Problem Specification

Deriving a detailed specification of the problem or application is arguably the most important step,
regardless of whether the resultant system is software or hardware based. Without an adequate
specification of the problem, it is impossible to measure how well the problem has been solved. It is
impossible to know when a project has been completed when ‘completed’ has not been defined!

Design for Embedded Image Processing on FPGAs, First Edition. Donald G. Bailey.
© 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd.

80 Design for Embedded Image Processing on FPGAs

Problem
Specification

Architecture
Selection

Algorithm
Development

System
Implementation

Figure 4.1 The relationship between the four main steps of the design process.

Within image processing, it is common to have a relatively vague description of the problem.
For example, a produce inspection problem may be described as inspecting the produce in order to
remove blemished and damaged produce. While this may be the aim, such a description is of limited
value from an engineering design perspective. In an engineering context, determining the problem
specification is usually called requirements analysis. To be useful, the problem specification needs to be
specific, complete, achievable and measurable (DAU, 2001). These will be defined more fully in the
following paragraphs.

A problem specification should clearly describe the problem rather than the solution. It should cover
what the system needs to do and why it needs to do it, but should not cover how the system should be
implemented; that is the result of the whole design process. For the specification to be specific, it will need
to address at least three areas (DAU, 2001). The first is the system functionality — what the system needs to
be able to do. In animage processing application, it needs to specify the desired result of image processing.
Secondly, the performance of the system must be addressed — how well must it perform the functions. For
real-time image processing, important aspects of this are the maximum allowable latency and the number
of images or frames that must be processed every second. If the problem involves classification, then for
non-trivial problems it will be inevitable that the system will make misclassifications. If the decision is
binary, the allowable failure rate should be specified in terms of both false acceptance and false rejection
rates. The third area of consideration is the environment in which the system will operate. Applied image
processing consists of more than just the image processing algorithm; it is a systems engineering problem
that requires consideration and specification of the complete system (Bailey, 1988). Other important
aspects to consider include (Batchelor and Whelan, 1994): lighting, optics and interfacing with supporting
hardware and machinery. The relationships between the image processing system and the rest of the
system need to be carefully elucidated and defined.

To illustrate some of these points, consider the kiwi fruit grading application introduced in Section 1.4.
The system had to detect both blemished and damaged fruit based on their visible surface characteristics.
The output was a binary decision: whether the fruit was acceptable or not. The minimum processing rate,
to work in with the grading lines at the time, was four kiwifruit per second, although the latency could be
several seconds if necessary. The initial pilot investigated prescreening the fruit (Bailey, 1985), rather than
performing a full grading. To enable the manual grading line to operate at close to full capacity, the
proportion of reject fruit at the output needed to be less than 3% of the total. Profitability required
minimising the number of false rejects, so when in doubt the system needed to err on the side of retaining
fruit with the false acceptances removed by the manual grading stage. It was also desirable to integrate
the system at the front of the existing grading line rather than as a separate stand-alone grading
system. The system therefore required a mechanism for removing rejected fruit from the grading line.

Design Process 81

Note that almost as much of this specification relates to the working environment as to the image
processing requirements.

The problem specification must be complete. It should consider not only the normal operation, but
should also consider how the system should behave in exceptional circumstances. If the system is
interactive, then the interface between the user and the system needs to be clearly defined, at least in terms
of functionality. The specification should also consider not only the operation of the system, but also
address the desired reliability and the required maintenance over the expected life of the system. Again, all
aspects of the system should be addressed, not just the image processing components.

The system as defined by the problem specification must be achievable. In a research context, it is
essential that the research questions can be answered by the research. For a development project, the final
system must be technically achievable at an affordable cost.

Finally, the problem specification must be measurable. This enables the resultant system to be
evaluated objectively to verify that it satisfies the specification. Consequently, the requirements
should be quantitative, and should avoid vague words such as excessive, sufficient, resistant and so on
(DAU, 2001). It is important to determine the constraints on the system. For embedded real-time systems,
this includes the frame rate, system latency, size, weight, power and cost constraints. The resulting set of
requirements must be mutually consistent. A distinction should be made between hard constraints (those
that are essential for successful operation or completion of the project) and soft constraints (those that are
considered desirable, but may be relaxed if necessary in the final system). Inevitably, there will be conflicts
between the different constraints, particularly with real-time processing. A common trade-off occurs
between speed and accuracy (Kehtarnavaz and Gamadia, 2006). These conflicts must be resolved before
the development begins.

Successful specification of the problem requires comprehensive knowledge of the problem or task to
which image processing is being applied. This knowledge is important, since it increases the
likelihood that the application level algorithm will be robust. It is used to select the representative
set of sample images that will be used to develop and test the imaging algorithm. During the algorithm
development process, it also guides the selection of the image features that are measured. Without
such problem knowledge, it is easy to make invalid assumptions about the nature of the task. There is
always a danger that a resultant algorithm will work well for the specific cases that were used to
develop it, but not be sufficiently general or robust to be of practical use. Often the system developer
has limited knowledge of the problem. In such cases, it is essential to have regular feedback and
verification from the client or other problem domain expert, particularly during the algorithm
development phase.

4.2 Algorithm Development

The task of image processing algorithm development is to find a sequence of image processing operations
that transform the input image into the desired result. Algorithm development is a form of problem solving
activity, and therefore usually follows heuristic development principles (Ngan, 1992). Like all problem
solving tasks, there is not a unique solution. The usual way of progressing is to find an initial solution and
then refine it until it meets the functionality required by the problem specification.

Before the algorithm can be developed, it is necessary to capture a set of sample images. These should
be representative of the imaging task that is to be performed and should be captured under conditions that
match as closely as possible the conditions under which the system is expected to operate.

In scenarios where it is possible to control the lighting (machine vision for example) then choosing
appropriate lighting is essential to simplify the task (Uber, 1986; Batchelor, 1994). In some applications,
much of the problem can be solved using structured lighting techniques (such as projecting a grid onto the
scene; Will and Pennington, 1972). Conversely, inadequate lighting can make segmentation more difficult
by reducing contrast, illuminating the background or object unevenly, saturating part of the scene, or

82 Design for Embedded Image Processing on FPGAs

introducing shadows or specular reflections that may be mistaken for other objects (Bailey, 1988). If the
lighting is likely to be variable (for example mobile robotics or video surveillance using natural lighting)
then it is essential that the set of sample images include images captured under the full range of lighting
conditions that the system is expected to work under.

4.2.1 Algorithm Development Process

Once the sample images have been captured, one or two of these are used to develop the initial sequence
of image processing operations. Developing an image processing algorithm is not as straightforward as it
sounds. There are many imaging tasks that humans can perform with ease, that are difficult for computer-
based image processing. One classic example is face recognition, something humans can do naturally,
without thinking, whereas it is a difficult computer vision problem. This dichotomy is sometimes called
the ‘trap of the two-legged existence theorem’ (Hunt, 1983). Because humans can perform the task, it is
known that a solution to the problem exists. However, finding that solution (or indeed any solution) in the
context of computer vision can be very difficult. While significant advances have been made in
understanding how the human brain and visual system works, this does not necessarily lead to
algorithmic solutions any more than understanding how a computer works can lead to programming
it for a specific task.

One of the difficulties is that there is still little underlying theory for developing image processing
algorithms. While attempts have been made to formulate the process within a more theoretical framework,
for example in terms of mathematical morphology (Vogt, 1986) or statistics (Therrien et al., 1986), these
are incomplete. Even within such frameworks, algorithm development remains largely a heuristic (trial
and error) process (Bailey and Hodgson, 1988). An operation is chosen from those available and applied to
the image. If it performs satisfactorily, it is kept and an operation is found for the next step. However, if the
operation does not achieve the desired result, another is tried in its place. Algorithm development must
rely heavily on using the human visual system to evaluate the results of applying each operation. The
experience of the developer plays a significant role in this process. The brute force search for a solution to
the algorithm development problem can be significantly streamlined by the application of appropriate
heuristics (Ngan, 1992).

This process requires an interactive image processing system that supports such experimentation
(Brumfitt, 1984). The algorithm development environment needs to have available a wide range of
different operations, because it is generally not known in advance which operations will be required in
any particular application. It also needs to support the development and integration of new operations
should a particular operation not be supplied with the development environment. It requires an
appropriate image display for viewing and evaluating the effects of an operation on an image. The
processing time of each operation must be sufficiently short so as not to distract the developer from their
task. It has been suggested that within the development environment operations should take no longer
than about fifteen seconds (Cady et al., 1981). It is also desirable to have some form of scripting
capability, to avoid the need for re-entering complex sequences of commands when testing the algorithm
on different images.

The sequence of operations within an algorithm generally follows that outlined in Section 1.3.
However, the particular operations required depend strongly on the image processing task. The order
in which the operations are added to the algorithm may not necessarily correspond to the order that they
appear in the final algorithm. For example in the kiwifruit grading application described in Section 1.4,
the key step that forms the basis of the algorithm is using the convex hull to create the dynamic model.
After this was tested, it was necessary to introduce the background subtraction and noise filtering as
preprocessing steps to make the modelling work reliably. Later, while testing the algorithm on a range of
images, the contrast normalisation step was introduced into the algorithm to compensate for the fact that
some fruit were naturally darker or lighter than others were.

Design Process 83

4.2.2 Algorithm Structure

The remainder of this section briefly reviews the operations that may be used at each stage within the
algorithm, with particular emphasis on how the operations work together to give a robust algorithm. There
are many good references that review image processing operations and their functionality (Pratt, 1978; Jain,
1989; Castleman, 1996; Russ, 2002; Gonzalez and Woods, 2004; 2008; Solomon and Breckon, 2011). The
FPGA implementation of many of these operations is considered in more detail in Chapters 6-11. Here, the
focus is on where the operations fit within the application level algorithm.

Appropriate preprocessing is essential to make the algorithm robust to the variations encountered
within the range of images. The primary goal of preprocessing is to enhance the information or features of
interest in the scene while suppressing irrelevant information. However, the necessity of an operation in a
particular application depends strongly on the detailed properties and characteristics of the operations that
follow in the algorithm.

Physical or environmental constraints may mean that the input images are not ideal. To compensate for
deficiencies in the image capture process, preprocessing can be used: to remove background or dark
current noise; to correct for nonlinearity in the image transfer function; to correct for distortion caused by
optics or camera angle; and to compensate for deficiencies in illumination. Image filtering may be used to
smooth noise or to enhance and detect edges, lines and other image features. Examples of some of these
preprocessing operations are illustrated in Figure 4.2.

One way of suppressing irrelevant information is to normalise the image content. Intensity normal-
isation, such as contrast expansion or histogram equalisation can be used to compensate for variations in
lighting, reflectivity or contrast. Position and size normalisation may be used to centre, orientate and scale
an image or object to match a template or model. This may require an initial segmentation to first locate
the object.

Segmentation is the processes of splitting the image into its meaningful components. This can vary from
separating objects from the background to separating an image into its constituent parts. Segmentation can
be based on intensity, colour, texture or any other local property of the pixel values. There are two broad
approaches to segmentation, as shown in Table 4.1. Edge-based methods focus on detecting the
boundaries between regions, with the regions defined implicitly by the enclosing boundaries. They
usually use edge detection or gradient filters to detect edges and then link the significant edges to form the
boundaries. Region-based methods work the other way around. They effectively classify pixels as
belonging to one class of objects or another based on some local property, with the edges determined
implicitly by changes in property at the region boundary. They are characterised by filtering (to enhance or
detect the property used for segmentation; Randen and Husoy, 1999) followed by thresholding or
statistical classification methods to assign each pixel to a region. Both edge and region based methods can
be performed either globally or incrementally (Bailey, 1991). Global methods perform the segmentation
by processing every pixel in the image. Incremental methods only operate locally on the part of the image
that is being segmented. They are usually initialised with a seed pixel and work by extending the
associated edge or region by adding neighbouring pixels until a termination condition is met. Segmenta-
tion may also involve using techniques for separating touching objects such as concavity analysis,
watershed segmentation and Hough transform.

The next stage within the algorithm is to extract any required information from the image. In image
analysis applications, the measurements are the desired output from the image processing procedure. The
measurements may be tangible (physical size, intensity) or abstract (for example, the fractal dimension to
quantify roughness (Brown, 1987) or the average response to a particular filter to characterise texture
(Randen and Husoy, 1999)). Most tangible measurements require the imaging system to be calibrated to
determine the relationship between pixel measurements and real world measurements.

In other applications, a set of image or object feature measurements is used to characterise or classify
the image or object. Boundary features are properties of the edges of the object (such as contrast) while
region features are properties of the pixels within the region (colour, texture, shading). Shape features

84 Design for Embedded Image Processing on FPGAs

' ‘ i I
el New Zezland s
e v o v ol ILINL
Correcting distortion Correcting distortion Compensating for
from camera angle from optics uneven illumination

Background removal

Figure 4.2 Example preprocessing operations.

consider the whole object (area, height, width, perimeter, enclosing rectangle, number of corners, convex
hull area and perimeter, moments, best-fit ellipse, Fourier descriptors etc.). Virtually anything that can be
measured, or can be derived from multiple measurements, can be used as a feature. The set of measured
features makes up a multidimensional feature vector, with each feature corresponding to a dimension.

Table 4.1 Image segmentation methods

Edge-Based Segmentation Region-Based Segmentation

Global processing Edge detection and linking Thresholding
Incremental processing Boundary tracking Region growing

Design Process 85

Classification is the process of recognising or assigning meaning to an object based on the measured
feature vector. Each point in the feature space represents a particular combination of feature values. When
an appropriate set of features is chosen, the feature vectors for objects within a class should be similar and
fall in the same region of feature space. The classification process therefore involves clustering or
segmentation within the feature space. With such a large number of possible features to choose, the
feature space potentially has a high dimensionality. However, there is often a strong correlation between
many of the features. Choosing the best features to use can be a bit of an art. The goal in selecting the
feature set is to choose only as many features as are necessary to distinguish the objects as unambiguously
as possible. Obviously, a starting point is to look at the features used to distinguish the objects of interest.
An analysis of the covariance can help to identify significant correlations between the features. Where
there are strong correlations, consider replacing one or more of the features by a derived feature. For
example, the length and width of an object are often correlated, especially as the scale changes. In this
case more information can often be obtained from the aspect ratio (length divided by width) than either
the length or width. Unless the size or some other feature is used directly to distinguish between classes, it
is often better to use dimensionless derived features such as aspect ratio, compactness and so on. Principal
components analysis and related techniques can help to identify the features that account for most of the
variance in the population.

Given a set of feature vectors (for example those derived from the set of sample images) there is a wide
range of techniques used to perform the classification: decision trees, feature template-based classifica-
tion, Bayesian classification, neural networks, and support vector machines, amongst many others. In
most applications, each object within the set of sample images has an associated desired classification.
These associations form the training data for the classification. Training is the process of determining the
classification parameters that minimise the classification errors. This may be as simple as determining the
average feature vector for the objects belonging to each class for feature template classification, or as
complex as determining the optimum set of weights for a neural network.

Some applications have no training data but a large number of samples. Unsupervised classification is
the process of determining the classes purely from an analysis of the resultant feature vectors. It derives the
classification by looking for groups or clusters of samples within the data provided. One example of an
unsupervised classifier is K-means clustering (Leeser et al., 2000).

Finally, the data that is extracted may require further processing depending on the application. For
example, a Kalman filter may be used for object tracking (Kalman, 1960), or in mobile robotics the data
may be used to update a map or to plan a route through the scene. In many computer vision applications,
the data derived from the image is used to update the parameters of an underlying model representing
the scene.

Once the initial algorithm has been developed, often on only a small set of images, the next step is to
refine the algorithm using a wider range of images. The algorithm is tested on the remaining images within
the representative sample to ensure that it is able to handle all of the expected conditions in the correct
manner. Algorithm refinement is most likely to affect the preprocessing operations to make the complete
algorithm more robust. Particular care should be taken to check the algorithm over the full range of
lighting conditions that it is expected to operate under.

Very few algorithms are perfect. There are two key points where the algorithm is most likely to fail. The
first is segmentation failure, where the object is not correctly segmented from the background. Often a
partial segmentation is worse than a complete failure, because the features obtained will generally not
reflect those of the complete object. With any segmentation failure, it is important to re-evaluate any
assumptions that are made about the task or scene to check that they are not the cause of the failure, and
correct these if necessary. If the problem is caused by poor contrast or noise, this may require further
preprocessing to correct, or even redesign of the image capture system to obtain better starting images. If
possible, the algorithm should detect whether or not the segmentation was successful, or at least act
appropriately when it encounters errors. Remember the ‘garbage in, garbage out’ principle — if the image
quality is very low, the algorithm is not likely to work reliably.

86 Design for Embedded Image Processing on FPGAs

The second point of failure is classification failure, which can have several causes. The first, and
probably most common, is when the feature vector distributions for two or more classes are not completely
separated. In the region of overlap in feature space, it is impossible to distinguish to which class an
unknown feature vector belongs. One solution is to find an additional feature (or combination of features)
that is able to better discriminate between the overlapping classes. Misclassification can also result from
under-training, where insufficient samples are used to represent each of the classes adequately. As aresult,
the region of feature space associated with one or more classes in inaccurately represented. A particular
danger occurs if the samples in the training set are not representative and the set of feature vectors obtained
is biased in some way. The opposite of under-training is over-training. This can be a particular problem
with neural network-based classifiers. An over-trained classifier gives excellent results on the set of
images used for training, but gives very poor results on previously unseen images. The classifier is able to
recognise the training examples but does not generalise well to other examples of the same class. A fourth
cause of classification failure results from using an inappropriate classifier, which does not have the power
to make the required distinctions. An example is a neural network with insufficient nodes in the hidden
layer, or using linear discriminant analysis when the classes cannot be separated using hyperplanes.
Finally, faulty or inaccurate segmentation may result in feature vectors that are outliers of the correct
distribution. Such outliers can have an undue influence over the training of some classifiers (for example,
support vector machines) and should be eliminated before training.

4.2.3 FPGA Development Issues

The image processing algorithm cannot be developed directly on the FPGA. The main reason is that the
development cycle times are far too long to allow interactive design. Assuming that an implementation of
the desired operation is available in a hardware description language, the compilation and place and route
times required to map it onto an FPGA are prohibitive.

Therefore, the algorithm first needs to be developed in a software environment. For this, any image
processing algorithm development environment that satisfies the requirements described in the previous
sectionis suitable. Such an environment will usually be distinct from the FPGA development environment.

One of the advantages of separating the algorithm development from the FPGA implementation is that
the application level algorithm can be thoroughly tested before the complex task of mapping the algorithm
onto the target hardware. Such testing is often much easier to perform within the software-based image
processing environment, which has been designed to facilitate this purpose. Testing the hardware
implementation then becomes a matter of verifying that each of the image processing operations has
been implemented correctly. If the operations behave correctly, then the whole image processing
algorithm will also function in the same way as the software version.

The algorithm development process does not stand alone. The implementation process, as described
shortly, is often iterative as the algorithm is modified to make all of the operations architecturally
compatible. Whenever any changes are made to the image processing algorithm, it is necessary to retest
the algorithm to ensure that it still performs satisfactorily.

Some algorithm testing must be deferred to the final implementation. Evaluating the effectiveness of an
image processing algorithm on a continuous, noisy, real-time video stream is difficult in any environment.

The output from the algorithm development step is the sequence of image processing operations
required to transform the input image or images into the desired form. It has been tested (within the
software-based image processing environment) and shown to meet the relevant accuracy and robustness
specifications for the application.

4.3 Architecture Selection

Once an initial algorithm has been developed, it is necessary to define the implementation architecture. It
is important to obtain a good match between the architecture and both the application level and operation

Design Process 87

level algorithms. A poor match makes inefficient use of the available resources on the FPGA and can limit
the extent to which the algorithm may be accelerated. Consequently, the system may not meet the targeted
speed requirements or the design may require a larger FPGA than is really needed.

The architecture can be considered at two distinct levels. The system level architecture is concerned
primarily with the relationship and connections between the components of the system. Three aspects of
the system architecture are of primary importance: the relationship between the FPGA and any other
processing elements (whether they be a standard computer, or DSP); the nature of any peripherals and how
they are connected; and the nature and structure of external memory within the system. The computational
architecture is concerned primarily with how the computation of the algorithm is performed. This includes
the forms of parallelism that are being exploited and the split between using hardware and software for
implementing the algorithm.

On a software-based image processing system, the computational architecture is fixed and the system
architecture is generally predefined. For an FPGA based system, however, nothing is provided and all
aspects of the architecture must be developed. Once exception to this is perhaps the use of development
boards for prototyping, where much of the system level architecture is fixed by the board vendor.

4.3.1 System Level Architecture

Perhaps the biggest factor of the system architecture is whether the system has a conventional serial
computer as a host processor or whether the FPGA stands alone. Compton and Hauck (Compton and
Hauck, 2002) identified four distinct ways in which programmable logic could be coupled with a host
computer system within this spectrum, as illustrated in Figure 4.3. Todman et al. (2005) added a fifth
coupling architecture: that of a CPU embedded within the FPGA (either as an embedded hard-wired core
or as a soft core built from the FPGA fabric).

In the most closely coupled arrangement, the programmable logic provides reconfigurable functions
units integrated within the host CPU. This requires that the programmable logic be built inside the
processor and allows instructions to be customised according to the application that is being executed
(Hauck et al., 2004). The purpose is to accelerate key instructions within the host processor, while
retaining the simplicity of the standard software processing model. Data is usually passed between the
reconfigurable logic and CPU through shared registers (Compton and Hauck, 2002).

With modern FPGAs, this approach may be readily taken by building the processor from the logic
within the FPGA (the fifth architecture identified by Todman et al., 2005). Such a processor may be
augmented with whatever custom instructions the developer requires. However, one limitation of building
a custom processor is that the developer also needs to build all of the associated tools (optimising

Mem =i FPGA Mem
FPGA DMA FPGA
CPU - o o)
L
[i
2 —
2 System bus §
Integrated Coprocessor Multiprocessor Standalone

Figure4.3 Coupling between a host processor and an FPGA. (K. Compton and S. Hauck. ‘“‘Reconfigur-
able computing: A survey of systems and software,” ACM Computing Surveys, Vol. 34: 171-210, © 2002
Association for Computing Machinery, Inc. Reprinted by permission.)

88 Design for Embedded Image Processing on FPGAs

compilers, etc.). This may be overcome by using vendor provided soft-core processors, such as the NIOS
IT with Altera FPGAs, or MicroBlaze with Xilinx FPGAs. The NIOS allows the provided processor to be
augmented with custom instructions. One limitation of custom instructions is the restriction in the amount
of data that may be passed to or from the function unit with each instruction, and the limited time that is
available to complete the processing. It is usually necessary to stall the main processor if the custom
instruction takes a long time to execute.

In the next more loosely coupled configuration, an FPGA can be used as a coprocessor (Miyamori and
Olukotun, 1998), to accelerate particular types of operations in much the same way that a floating-
point coprocessor accelerates floating-point operations within a standard CPU. In this configuration, the
FPGA-based processing unit is usually larger than an ALU or similar functional unit within the host. The
coprocessor operates on its data relatively independently of the main processor. The main processor
provides the data to be processed (either directly or indirectly) and then triggers the coprocessor to begin
executing. The results are then returned after completion (Compton and Hauck, 2002). The operations
performed can run for many clock cycles without intervention from the host processor. This allows the
host to continue with other tasks, while waiting for the coprocessor to complete. Note that the FPGA-based
coprocessor has access to the data from the host’s cache.

Using dedicated hardware as a coprocessor is most commonly used when the main application is
implemented within software, but time critical or computationally dense sections of an algorithm are
accelerated through direct hardware implementation. There may also be multiple hardware processors,
each developed to accelerate a critical part of the algorithm.

In the next loosely coupled arrangement, the FPGA system effectively behaves as an additional
processor in a multiprocessor system (Compton and Hauck, 2002). This requires the FPGA system to
process large sections of an application independently of the host to be the most effective. The FPGA
system sits on the system bus, with DMA used to transfer data from the host system memory into local
memory. Depending on the processing performed, the results can either be transferred back to the host
through DMA, or via registers within the FPGA that are mapped into the address space of the host.
The host system configures the FPGA, indicates where the data to be processed is located, and triggers
the FPGA system to begin its execution. When processing is complete, this is signalled back to the
host processor.

For image processing, the performance is strongly influenced by the I/0 bandwidth, the amount of
local memory available and its arrangement (Benitez, 2002). The independent processor arrangement
also maps well to the image processing pyramid introduced in Figure 1.7, with the lower level
operations implemented directly in hardware, and with software used to implement the higher level
operations.

In the final configuration, the FPGA operates independently of the host system, which may not even be
connected. In this arrangement, the communication with the host is generally sporadic and of relatively
low bandwidth. In the stand-alone configuration, usually all of the processing is performed by the FPGA,
including any embedded software processor it may contain.

Within image processing, where a large degree of parallelism can be exploited by the operation level
algorithms, either multiprocessor or stand-alone configurations are usually the most appropriate. The
integrated and coprocessor configurations are usually too tightly coupled to fully exploit parallelism in
low level image processing operations.

For high performance computing applications, the hosted multiprocessor configuration is the most
common. For image processing, the hostis usually responsible for image capture and display, and any user
interaction. The host operating system needs to be augmented to enable it to reconfigure the FPGA
(Andrews et al., 2004). This is usually dynamic reconfiguration, allowing the host to change the FPGA
configuration depending on the application (Wigley and Kearney, 2001; Sedcole et al., 2007). The host
operating system is also responsible for distributing tasks between the serial processor and the FPGA
system (Steiger et al., 2004; Lubbers and Platzner, 2007), and synchronising communications between all
of the processes (both hardware and software) (Mignolet et al., 2003; So, 2007).

Design Process 89

The stand-alone configuration performs all or most of the work on the FPGA. This does not necessarily
mean that there is no serial processor. Some modern FPGAs have a processor built into them, or it is
always possible to include a soft-core processor within the fabric of the FPGA. However, the FPGA is
responsible for any image capture and display. Any user interaction must also be built into the FPGA,
either as hardware modules, or using the serial processor. Unlike on a conventional serial processor, an
FPGA has no operating system (Bailey et al., 2006). If there is an embedded serial processor, this may
have an operating system running on it, but the drivers will be limited to common peripherals. Much of the
low level interfacing must be built in hardware, and if this is to be interfaced to the processor, device
drivers must be written. If no serial processor is used, all of the user interface must be built in hardware
(Buhler, 2007).

For debugging and initial development, the stand-alone configuration may have a host computer. This
can be used for directly downloading the FPGA configuration and may provide some support for
debugging. However, for normal running the FPGA configuration is often loaded directly from flash
memory, avoiding the need for a host processor.

Also at the system level is the memory architecture. A key factor to consider is the degree of coupling
between the memory, FPGA and any CPU. Only some of the arrangements are shown in Figure 4.3.
Distinction also needs to be made between shared system memory and memory local to the FPGA. For
local memory, the technology is also an important consideration. Many high speed memories, especially
those with large capacity, operate most efficiently in burst mode. In this mode, a predefined number of
successive memory locations may be read or written in successive clock cycles. Dynamic memories
require separate addressing of the row and column within the memory, sometimes with several clock
cycles between the row address and the column address. Dynamic memories also must be refreshed
regularly, with access to the memory unavailable during the refresh period.

Other memory technologies may allow random access on successive clock cycles, although for high
speed operation they are often pipelined with the address having to be provided one or two clock cycles
before the data is available. This may have implications for the speed of some operation level algorithms,
especially where the memory address is data dependent.

4.3.2 Computational Architecture

The computational architecture defines how the computational aspects of the algorithm are implemented.
A particular focus is the form of parallelism being exploited to achieve the algorithm acceleration. Not all
aspects of the algorithm may be amenable to hardware implementation, so a later section focuses more on
the split of the application level algorithm between hardware and software execution.

4.3.2.1 Stream Processing

The main bottleneck of software-based image processing is that it is memory bound. An operation reads
the pixel values from memory, processes them, and writes the results back to memory. Since each
operation performs this, the speed of the algorithm will be largely limited by the number and speed of
memory accesses. Stream processing can overcome this bottleneck by pipelining operations. The input
data is read once from memory, or streamed from the camera and passed into the first operation. Rather
than write the results back to main memory, they are directly passed on to the next operation. This will
eliminate at least two memory accesses for each stage of the pipeline: writing the results and reading them
again as input for the next operation. The benefits of streaming can therefore be significant.

For embedded vision applications, at some stage the data must initially be read from the camera. If
possible, as much processing should be performed on this data while it is passing through the FPGA before
it is written to memory. If the whole application can be implemented as a single streamed pipeline then it
may not even be necessary to use a frame buffer to hold the image data. Similarly, if an image is being

90 Design for Embedded Image Processing on FPGAs

displayed, the pixels need to be streamed to the display. Again, much benefit can be gained by performing
as much processing on-the-fly as the data is being streamed out.

One of the key characteristics of stream processing is a fixed clock rate, usually one clock cycle per pixel.
This clock rate is constrained by the input (from a video camera) or output (to a display). At the input, each
pixel must be processed as it arrives, otherwise the data is lost. Similarly, a pixel must be produced on the
outputateach clock cycle; otherwise there will be no data to display and the output will appear blank for that
pixel. Consequently, the design of stream processing systems is synchronous, at least on the input and
output. If every stage of the pipeline can be operated synchronously, then the design is simplified.

Stream processing is well suited to low level image processing operations, such as point operations and
local filters, where processing can be performed during a raster scan through the image. If an operation, for
example a filter, requires data from more than one pixel, it is necessary to design local buffers for each
operation to cache the necessary data. This is because the synchronous nature of stream processing limits
memory access to one read or write per clock cycle. To satisfy this constraint, the algorithms for some
operations may need to be significantly redesigned from that conventionally used in software. The fixed
timing constraint arising from the predetermined constant throughput of stream processing may be
overcome by using low level pipelining. This splits a more complex calculation over several clock cycles
while maintaining the throughput of one pixel per clock cycle.

4.3.2.2 Systolic Arrays and Wavefront Processing

The idea of stream processing may be extended further to systolic arrays (Kung, 1985). A systolic array is
a one or two dimensional array of processors, with data streamed in and passed between adjacent
processors at each clock cycle. It is this latter characteristic that gives systolic arrays their name. Since the
communication is regular and local, communication overheads are low. A systolic array differs from
pipeline processing in that data may flow in any direction, depending on the type of computation being
performed. For many systolic arrays, the processing elements in the array are often relatively simple and
perform the same operation at each clock cycle. This makes systolic arrays well suited to FPGA
implementation.

The difference between a systolic array and a wavefront array is that systolic arrays are globally
synchronous, whereas wavefront arrays are asynchronous. A wavefront array therefore requires hand-
shaking with each data transfer. This means that a wavefront array is self-timed and is able to operate as
fast as the data is able to be processed. Unfortunately, such asynchronous systems are not well suited to
implementation on synchronous FPGAs. However, they may be able to be implemented by self-timed
architectures such as the Achronix Speedster (Section 2.4.4).

Systolic arrays work best where the processing is recursive with a regular data structure. The systolic
array effectively unrolls the recursive loop to exploit concurrency in a way that uses pipelining to make use
of the regular data structure. This makes such an architecture well suited for matrix operations (Kung and
Leiserson, 1978) and for implementing many low level image processing operations (Kung and Webb,
1986). They are most suited where the operations are relatively simple and regular, such as filtering
(Hwang and Jong, 1990; Diamantaras and Kung, 1997; Torres-Huitzil and Arias-Estrada, 2004),
connected component labelling (Nicol, 1995; Ranganathan et al., 1995) and computing the Fourier
transform (Nash, 2005). However, a single array is not well matched for implementing a complete
application level image processing algorithm. The streamed nature of the inputs and outputs means that a
systolic array processor would fit well with stream processing.

4.3.2.3 Random Access Processing

In contrast with stream processing, random access processing allows pixels to be accessed from anywhere
in the memory as needed by an operation. Consequently, there are no explicit requirements in the pattern

Design Process 91

of data access. It requires the image to be available in a frame buffer rather than as an input stream.
Random access processing relaxes the hard timing constraint associated with stream processing. If
necessary, several clock cycles may be used to process each pixel accessed or output.

Random access processing is, therefore, most similar to software processing. Consequently, it is
generally easier to map a software algorithm to random access processing than to stream processing.
However, simply porting a software algorithm to hardware using random access processing will generally
give disappointing performance. This is because the underlying software algorithm will usually be
memory bound and performance will be limited by memory bandwidth. Where possible, steps must be
taken to minimise the number of memory accesses by using local buffers. It may also be necessary to
design an appropriate memory architecture to increase the memory bandwidth. Some of these mapping
techniques are described in the next chapter.

For complex algorithms, the output may not be regular in the sense that there may be a variable number
of clock cycles for each pixel produced. This can make it more difficult to synchronise the dataflow
between successive operations in the application level algorithm. Therefore, it may be necessary to design
synchronisation buffers to manage the uneven data flows. If the inputs and outputs are in a sequential
order, then a FIFO buffer provides such synchronisation. Otherwise, synchronisation may require a
frame buffer.

The clock speed for random access designs is generally not constrained. Therefore, the throughput can
be increased by maximising the clock speed. This may be accomplished by using low level pipelining to
reduce the combinatorial delay. The operation level algorithm may be further accelerated by examining
the dataflow to identify parallel branches and implementing such operations in parallel.

One form of this data parallelism is to partition different parts of the image to separate processors. This
requires multiple copies of the hardware, one for each parallel processor. Each copy will usually have its
own local memory to avoid problems with limited bandwidth. However, when considering such
parallelism, it is also important to consider not only the operation being parallelised, but also the
operations before and after it in the processing chain. One overhead to consider is that required to transfer
the data from system memory (such as a frame buffer) to local memory and back. If care is not taken, these
overheads can remove much of the performance improvement gained by partitioning the processing.
Often the processor will need to be idle during the data transfer phase unless there are sufficient memory
resources to enable some form of bank switching to be used.

4.3.2.4 Massively Parallel Architectures

The extreme case of such data parallelism is to use a massively parallel architecture. Such architectures
exploit the fact that many image processing operations consist of a series of operations performed
independently on each pixel. In software, the outermost loop for such operations will iterate through the
pixels within the image. A massively parallel architecture effectively unrolls this outermost loop and
implements the iterations on each pixel in parallel. The result is a separate processor for each pixel or
block of pixels. A massively parallel processor is able to process whole images in a few clock cycles,
regardless of the size of the image. Algorithms that rely primarily on local information can readily be
mapped onto such architectures.

While nice in theory, there are two limitations to massively parallel architectures. The first is the
communication bottleneck. Massively parallel algorithms work well when the data is already present
within the processors. However, getting the data into the array (from the camera) and out of the array (to a
display if necessary) can often take longer than the actual processing of the image. A second
communication problem occurs if the processing requires sending or receiving data from outside a
local region. The communications must either be broken down into a series of local steps, with the
processors spending a significant proportion of their time forwarding data, or a hierarchical communica-
tion scheme established for longer distance communication and data collection.

92 Design for Embedded Image Processing on FPGAs

The second limitation is that a massively parallel processor requires significant resources on the FPGA,
even if each processor is relatively simple. This limits the use of such architectures to small images, or
allocating a block of pixels to each processor. For example, both the communication and resource
limitations are reduced by allocating one processor to each column or row of pixels within the image.

As aresult of these limitations, massively parallel architectures are not considered in detail any further
in this book.

4.3.2.5 Hybrid Processing

The best performance can usually be achieved when the whole application can be implemented in a single
processing mode and memory access to a frame buffer is minimised. This may require considerable
redesign and development of the operation level algorithms to make them architecturally compatible. It
may also require modifying the application level algorithm to avoid using operations that do not integrate
well with the others.

In some applications, it may not be possible to implement the entire algorithm using stream processing.
In such cases, it may be necessary to combine stream and random access processing. The introduction
of one or more frame buffers will usually increase the latency of the algorithm. However, for some
operations where each output pixel may depend on data from anywhere within the image, this cannot
be avoided. With hybrid processing, frame buffer access may be minimised by maximising the use of
stream processing.

4.3.2.6 Computational Architecture Design

The key to an efficient hardware implementation is not to port an existing serial algorithm, but to transform
the algorithm to produce the computational architecture. There are two stages to this process (before
implementation), as shown in Figure 4.4.

The first stage is to analyse the algorithm for the underlying algorithmic architecture. In this process, it
is important to look at the whole algorithm, not just the individual operations. This is because gains can be
made by considering the interactions between operations, especially if the operations can be made
architecturally compatible. A dataflow analysis is one common method of identifying the underlying
computational architecture (Johnston et al., 2006b; Sen et al., 2007). This allows the developer to get an
overview of the design and investigate how it can be modified. In this process of analysing the algorithm,
the underlying algorithm needs to be changed or transformed to one that is more readily able to map
efficiently to a hardware implementation.

Several such transformations may be applied to the algorithm (Bailey and Johnston, 2010). The first is
to convert as many operations as possible to pipelined stream processing to eliminate intervening frame
buffers. Any operation that may be implemented by processing the data in a raster-scanned order through
the image can be streamed. Some algorithms that are not naturally streamed may be redesigned to use
stream processing (for example chain coding, as described in Section 11.3).

Software (" Identify) Design
algorithm algorithm computational
_ architecture) architecture

)
System
Implementation
-~

A 4
A

Figure 4.4 Transforming an algorithm to produce the computational architecture.

Design Process 93

The iterations present in many loops may readily be parallelised. Loop unrolling replaces the innermost
loops of an algorithm with multiple sequential copies of the operations within the loop construct. This
allows longer pipelines to be constructed at the expense of additional hardware. With many image
processing operations, these innermost loops are inherently parallel (for example weighting the pixels
within a linear filter) and it is only the sequential nature of a serial processor that requires a loop. Strip
mining is related to loop unrolling in that it creates multiple parallel copies of the loop body. The
difference is that each copy operates on a different section of the data. The computation is accelerated by
partitioning the input data over different hardware processors.

A less common transformation is strip rolling and multiplexing. Sometimes, after strip mining, only one
of the parallel processing units is active in any clock cycle. For example, using stream processing to find
the bounding boxes of objects requires operating on multiple objects in parallel. However, a pixel can only
belong to one object, so in any clock cycle, only one bounding box processor will be operating. In this case,
strip rolling replaces the multiple processing units with a single processor that is multiplexed between the
different instances.

In some algorithms, it is possible to rearrange the order of the operations to simplify the processing
complexity, or even eliminate some steps. A classic example of this is greyscale morphological filtering
followed by thresholding. This sequence of operations is equivalent to thresholding first, followed by
binary morphological filtering. The algorithms for binary filtering are significantly simpler than those for
greyscale filtering, resulting in considerable hardware savings and often a reduction in latency.

The data can sometimes be coded to reduce the volume, and hence the processing speed. Run length
coding is a good example. After the data has been run length coded, whole runs of pixels can be processed
as a group, rather than as individual pixels. For example, Appiah et al. (2008) used run length coding to
accelerate the second pass through the image for connected components labelling.

Gains can often be made by substituting one or more image processing operations with other,
functionally similar, operations. Substitutions may involve approximating operations with similar
but computationally less expensive operations. Common examples are replacing the L, norm in the
Sobel filter with the computationally simpler L; or L.. norm (Abdou and Pratt, 1979), or modifying
the coefficients used for colour space conversion to be powers of two (Sen Gupta et al., 2004).
Note that substituting an operation may change the results of the algorithm. The resulting algorithm
will be functionally similar but not necessarily equivalent. In many applications, this does not matter,
and the substitution may enable other transformations to be applied to improve the computational
efficiency.

The second stage is to design the computational architecture that is implied by the algorithm
architecture. This may require further transformation of the algorithm to result in a resource efficient
architecture that can effectively exploit the parallelism available through a hardware implementation.
Some of the techniques that may be used for this will be described in more detail in the next chapter.
Operation specific caching of data ensures that data which is used multiple times will be available when
needed. Low level pipelining and retiming can be used to reduce the combinatorial delay and increase the
clock speed. It is also necessary to select appropriate hardware structures that correspond with data
structures used in the software algorithm.

The design process can be iterative with the algorithm and architecture mappings being updated as
different design decisions are made. However, with a thorough design at this stage, the final step of
mapping the algorithm onto the architecture to obtain the resultant implementation is straightforward.

4.3.3 Partitioning between Hardware and Software

Low level image processing operations that can readily exploit parallelism are ideal for hardware
implementation. Such operations are relatively slow when implemented in software simply because of the
volume of data that needs to be processed.

94 Design for Embedded Image Processing on FPGAs

However, not all algorithms map well to a hardware implementation. Tasks that have dynamically
variable length loops can be clumsy to implement in hardware. Those with complex control sequences
(Compton and Hauck, 2002) are more efficiently implemented in software. Such tasks are characterised
by large amounts of complex code that is primarily sequential in nature. If implemented in directly in
hardware, this would require significant resources because each operation in the sequence would need to
be implemented with a separate hardware block. If there is little scope for exploiting parallelism, much of
the hardware will be sitting idle much of the time. The same applies for functions that are only called
occasionally, for example once or twice per frame (or less). These tasks or operations can be implemented
more easily and more efficiently in software.

Two broad classes of tasks or operations that are best implemented in software are high level image
processing operations (for example object tracking; Arias-Estrada and Rodriguez-Palacios, 2002) and
managing complex communications protocols. High level image processing operations are characterised
by a lower volume of data and more complex control patterns. Many provide limited opportunities for
exploiting parallelism and often the computation path is dependent on the data being processed. Similarly,
communications such as TCP/IP require a complex protocol stack that can be unwieldy to implement in
hardware. While it is possible to implement these tasks in hardware (see, for example Dollas et al., 2005,
for a TCP/IP implementation), it can be more efficient in terms of resource utilisation to implement them
in software. Software also has the advantage that it is generally easier to programme.

The approach taken to partitioning the application between hardware and software will depend
significantly on the system level architecture and, in particular, the level of coupling between the software
processor and programmable logic. The software processor may consist of a separate CPU or be integrated
on the FPGA as a hardware core (such as the PowerPC core within the Xilinx Virtex Pro) or as a soft core
implemented using the FPGAs programmable logic. There is also a wide range of standard processor
cores available that have FPGA implementations, including common microcontrollers (8051, 68HC11,
PIC) and digital signal processors (320C25). One advantage of using a standard processor is that all of the
application development tools for that processor can be used. In particular, using the integrated high level
language development and emulation tools for the processor can speed code development and debugging
of the software components.

Therefore, the choice is not just whether to implement the application in either software or hardware.
There is a spectrum of partitioning of the application between the two, ranging between full software and
full hardware implementations as illustrated in Figure 4.5.

At the instruction level of granularity, the application can be largely implemented in software, with the
FPGA used to implement custom instructions. This allows the programme to ‘call” hardware acceleration
blocks (Arnold and Corporaal, 2001). For image processing, it is impractical to implement the whole
algorithm this way. However, this approach can be used to augment the processor for the software
component of the application where groups of instructions are clumsy or inefficient when implemented
purely in software.

Software

ey aily Custom
Task processor
Custom || partitioning
instructions
FPGA Hardware

only

Figure 4.5 Spectrum of hardware and software mix. Note that the CPU can be either external or
integrated within the FPGA.

Design Process 95

The partitioning can also be at the task level of granularity, where whole tasks are assigned either to a
software or hardware processor. The hardware and software tasks operate relatively independently of each
other, only communicating when necessary. This would allow, for example, the image capture and low
level image processing operations to be implemented in hardware, with the results being passed to high
level image processing operations implemented in software.

If the software tasks are of low complexity, then an alternative to using a full CPU is to design a
simplified serial processor. This can be either a lightweight soft core (such as the picoBlaze) or a
completely custom processor. One limitation to using a custom processor is that compilers and other
development tools will not be available and the software for the processor must generally be written in
assembly language. At the extreme end, the sequential components of the algorithm could be imple-
mented using a finite state machine. Quite sophisticated, memory-based, finite state machines can be
implemented with a small resource footprint (Sklyarov, 2002; Sklyarov and Skliarova, 2008), effectively
making them custom processors.

Regardless of the level of partitioning, it is essential to clearly define the interface and communication
mechanisms between the hardware and software components. In particular, it is necessary to design the
synchronisation and data exchange mechanisms to facilitate the smooth flow of data. In the final design, it
is also important to take into account the communication overhead between the hardware and software
portions of the design.

One advantage of using a standard processor is the availability of standard operating systems such as
Linux. Using an operating system such as embedded Linux has an advantage that all of the features of the
standard operating system are available, subject to the limitations of the memory available within the
system (Williams, 2009). It also provides a familiar development environment for the software
components, including the ability to develop and test the software on one platform before transferring
it to the FPGA. One feature of particular interest is that Linux has a full TCP/IP stack enabling the
complete system to be networked relatively easily. This can significantly extend the functionality of
the system, even if the software processor is not used directly for the application. Having a TCP/IP
interface enables:

e an efficient means of communicating images and other data between devices in a distributed system;

e a Web interface for control and setting of algorithm parameters, and for viewing the results of
processing;

¢ remote debugging through telnet, and even mounting the file system across the network;

o the ability to remotely update the configuration.

A minor disadvantage of using an embedded Linux is that even a minimal system will require off-chip
RAM. A minimal Linux kernel will require approximately 4 MB of additional flash memory and 16 MB of
DDR system memory. The system memory should be solely for the use of the embedded processor and be
separate from any memory directly accessed from the user logic on the FPGA. As the number of support
applications (within Linux) is increased, the memory requirements (both flash and RAM) will increase
accordingly. The boot process of the system is as follows (Figure 4.6) (Gregori, 2009):

1. The FPGA configuration is loaded from flash memory. This configures the FPGA, including the
processor on the FPGA.

2. When the system starts running, the processor executes the boot loader from the flash memory.

3. The boot loader decompresses both the Linux kernel and the root file system from flash, and copies
them into RAM.

4. Using the RAM image, the processor starts execution of the Linux kernel and associated services.

When interfacing between the hardware and software running under embedded Linux, it is best to make
the interface through a Linux device driver (Williams, 2009). While it is possible to interface directly from

96 Design for Embedded Image Processing on FPGAs

Flash memory @y FPGA ® System RAM
Configuration _/
file CPU / Linux kernel
Boot loader 4®/ ®
Compressed Root
Linux kernel ©) file system
Compressed
root file system User memory

Figure 4.6 Embedded Linux boot process.

the software to the hardware, using a device driver will make access to the hardware more portable, and
make the interface easier to maintain and manage. The Linux kernel effectively provides an API and will
provide locking and serialisation on the device.

One limitation of using a multitasking operating system is the variable latency of the software
components, especially if virtual memory is used. Care must be taken when using such systems in a hard
real-time context, especially where software latency is critical. In other cases an embedded Linux can
simplify the development and debugging, especially of stand-alone systems.

The key requirement of architecture selection is choosing the most appropriate architecture for the
algorithm, both at the computational and system levels. In an embedded application, most of the
performance gains come through exploiting parallelism. Power considerations often require maintaining
alow clock speed. Careful design of the image processing algorithm can often allow the low level vision to
operate at the input or output video rate, which is often up to two orders of magnitude slower than current
high end serial processors.

Image capture and display almost always operate on streamed data. Therefore, as much processing as
possible should be performed on-the-fly either as the image is streamed in, or streamed out. This will
minimise the number of memory accesses required and the sequential nature of the accesses will simplify
memory system design.

4.4 System Implementation

The final stage within the design process is system implementation. This is where the image processing
algorithm is mapped onto the chosen hardware resources as defined by the architecture. The steps here
differ significantly from software-based design, where implementation primarily consists of coding the
algorithm. An FPGA-based implementation requires designing the specific hardware that will perform the
required image processing operations.

Not all of the operations in the algorithm will necessarily map well to hardware. To gain maximum
benefit of the parallelism offered by the FPGA, all of the individual operations must be architecturally
compatible. If the image processing algorithm has not been developed with the computational architecture
in mind, then it may be necessary to modify the algorithm so that the operations better match the selected
architecture. This may require the selection of alternative operations where necessary.

The application level algorithm is created at a relatively high level of abstraction, in terms of individual
image processing operations. Some of these operations can be quite complex, and all have their own
operation level algorithms at a lower level of abstraction. Many of these operations can be implemented
using several possible algorithms. The operations within the software-based image processing environ-
ment will have been optimised for serial implementation within that environment. Simply porting that
algorithm onto the FPGA will generally give relatively poor performance, because it will still be

Design Process 97

predominantly a serial algorithm. Sometimes the serial algorithm may have a relatively simple
transformation to make it suitable for parallel hardware. More often, however, the underlying algorithm
may need to be completely redesigned to make it more suitable for FPGA implementation, as described in
the previous section. In this case, it may be better to first re-implement the operation using the new
algorithm within the image processing environment, where it can be tested more easily, rather than
attempt to directly develop and test it on the FPGA.

Since each image processing operation is considerably simpler than the complete application, this can
make the implementation easier to test and debug. Standard test bench techniques can be used to exercise
the operation through simulation within the FPGA development environment. For individual operations,
most of these tests require a much smaller range of possible inputs than the complete application, so most
operations can be tested with relatively small data sets rather than with complete images. The FPGA
development platform is also implemented on a standard serial computer, so the simulation of a parallel
architecture on a serial computer is usually quite time consuming. This is especially the case for clock-
accurate simulations of complex circuits with large data sets (images). Therefore, it is better to test as
much of each operation as possible using much smaller data sets.

If the algorithm for an operation is complex, or the mapping from software to hardware is not
straightforward, incremental implementation techniques are recommended. For this, each stage or block
of the algorithm is simulated as it is completed, rather than leaving testing of the complete operation to the
end. This approach generally enables errors in the implementation to be found earlier and corrected
more easily.

Another task that is required for FPGA-based designs is to develop the interface logic required by
peripherals attached to the FPGA. Intellectual property cores may be available for some devices, such as
common memory chips, USB ports and so on. For others, these will need to be developed as part of the
implementation process. Example interfaces for some specific devices are developed in Chapter 12. These
interface blocks may be thought of as device drivers within a conventional operating system. Even if
the design uses an embedded CPU running a conventional operating system such as Linux, it will still be
necessary to develop the hardware interface between the processor and the external device.

Despite efforts to make programming FPGAs more accessible and more like software engineering
(Alston and Madahar, 2002), efficient FPGA programming is still very difficult. It is important to realise
that programming FPGAs is hardware design, not software design. Although the languages may look like
software, the compilers use the language statements to create the corresponding hardware. Rather than
executing the statements on a common, shared, ALU, each statement builds independent, parallel,
hardware. Concurrency and parallelism are implicit in the hardware that is built and the compilers have to
build additional control circuitry to make them execute sequential algorithms (Page and Luk, 1991).
Consequently, sequential algorithms ported from software will by default run sequentially, usually at a
significantly lower clock speed than high end CPUs. Some compilers can automatically make minor
changes to the algorithm to exploit some of the parallelism available, and this is often sufficient to
compensate for the lower clock speed. However, the algorithm is still largely sequential unless it has been
specifically adapted for parallel execution. The software-like languages are in reality hardware descrip-
tion languages, and efficient design requires a hardware mindset.

4.4.1 Mapping to FPGA Resources

While it is not necessary to perform the design at the transistor or gate level, it is important to be aware of
how the resources of the FPGA are used to implement the design, whether explicitly or implicitly.

Both arithmetic and logic functions are implemented as combinatorial hardware using the configurable
logic blocks on the FPGA. Depending on the size of the lookup tables, each logic cell can implement any
arbitrary logic function of between three and seven binary inputs, with or without a register on the output.
Functions with more inputs are implemented by cascading two or more logic cells.

98 Design for Embedded Image Processing on FPGAs

A simple logic function, such as AND or OR between two N-bit operands may be implemented using N
LUTs, one for each bit of the operands. For more complex logic operations, the number of LUTs required
will depend primarily on the number of inputs rather than the actual complexity of the logic. In many
situations, logical inversion may be obtained for free, simply by modifying the contents of the
corresponding LUTSs.

Addition and subtraction also map onto combinatorial logic. The carry propagation may be im-
plemented using circuits for ripple carry, or more advanced look-ahead carry or carry select designs
(Hauck et al., 2000). Most FPGAs implement dedicated carry chain logic that can be used to speed up
carry propagation by reducing routing delays and avoiding the need for additional hardware to implement
the carry logic. Counters are simply adders (usually adding a constant) combined with a register to hold
the current count value.

Relational operators compare the relative values of two numbers. The simplest is testing for equality or
inequality, which requires a bit-wise comparison using exclusive NOR, and combining all of the outputs
with a single gate to test that all bits in the two numbers are equal. A comparison operation may be
implemented efficiently using a subtraction and testing the sign bit. This has longer latency than testing for
equality because of the carry propagation. Therefore, if the algorithm involves any loops, tests should be
made for equality rather than comparison, if possible, to give the smallest and fastest circuit.

Multiplication can be performed using a combination of shift and addition. If time is not important, this
can be implemented serially using not much more logic than an adder. Unrolling the loop results in an
array of adders that combines the partial products in parallel. Although, in principle, the length of the carry
propagation may be reduced using a Wallace (Wallace, 1964) or Dadda (Dadda, 1965) adder tree, in
practise this gives a larger and slower implementation than using the dedicated carry logic of the FPGA
(Rajagopalan and Sutton, 2001). Additional logic is required to perform the carry save additions, and the
structure is not as regular as a simple series of adders resulting in increased routing delays. If necessary, the
parallel multipliers can be pipelined to increase the throughput. Most current devices (especially those
targeted at DSP applications) have dedicated hardware multiplication circuits. These provide faster and
smaller multipliers because they do not suffer from FPGA routing delays between stages. However, the
multipliers are available only in fixed bit widths. A single multiplier may readily be used for smaller sized
words, but for larger word widths either several multipliers must be combined or a narrower multiplier
supplemented with programmable fabric logic to make up the width.

In principle, division is only slightly more complex than multiplication, with a combination of shift and
subtraction to generate each bit of the quotient. With the standard long division algorithm (for unsigned
divisor and dividend), if the result of the test subtraction is positive the quotient bit is 1 and the result of the
test subtraction retained. However, if the test subtraction result is negative then the corresponding quotient
bitis 0 and the test subtraction discarded, restoring the partial remainder to a positive value. This requires
that the carry from each subtraction must completely propagate through the partial remainder before the
sign bit can be determined. The algorithm speed may be improved (Bailey, 2006) by using non-restoring
division, which allows the partial remainder to go negative. With this scheme, the divisor is added rather
than subtracted for negative partial remainders. The major limitation to the speed of division is the
propagation delay of the carry rippling through the whole partial remainder at each iteration. An obvious
solution is to reduce the number of iterations by determining more quotient bits per iteration (using a
higher radix). Another approach is to reduce the propagation delay by reducing the length of the critical
path. The SRT algorithm (named after Sweeney, Robertson (1958) and Tocher (1958)) achieves this by
introducing redundancy in the quotient digit set. This gives an overlap in selecting between adjacent
digits, which allows a quotient digit to be determined from an approximation of the partial remainder
(hence does not need to wait for the carry to propagate fully). Two disadvantages of the SRT method are
that the divisor must be normalised (so that the MSB is 1) and the quotient digits must be converted to
standard binary, both of which require additional logic and time. All of these algorithms may be
implemented sequentially to reduce hardware requirements at the expense of throughput, or can be
pipelined to increase the throughput. There are also many other advanced algorithms (Tatas et al., 2002;

Design Process 99

Select, Select,
Data, Data,
Select, Select,
Data, Data,
Select, Select,
Data, Data,

Figure 4.7 Multiplexer circuits for data selection. Left: using positive logic; right: using negative logic.

Trummer, 2005). An alternative approach if high speed multipliers are available is to take the reciprocal of
the divisor (using lookup tables or fast iterative methods) and then multiply.

In all of the operations described so far, if one of the operators is always a constant, the hardware can
be simplified. This can often result in a reduction in both the logic required and the propagation delay of
the circuits.

Another logic circuit that is commonly a part of FPGA designs is the multiplexer. These are required
when writing to a register or memory from multiple hardware blocks to select the data source being
written. A multiplexer is also required on the address lines of memory to select the address source when
accessing memory from multiple points in the hardware. Typically, two input bits are required for each bit
of the source word (Figure 4.7); one bit for the data value, and one bit to select or gate that source to the
output. When many sources are used, the multiplexers may require a significant fraction of the FPGA
resources available. There are two types of multiplexer commonly used, corresponding to the use of
positive and negative logic (the differences are shown in Figure 4.7). With positive logic, the default
output is 0 and a logic 1 is used to gate (or select) the inputs

Out =V (Data; N Select;) (4.1)

1

With negative logic, the levels of the input and output are inverted making the default output a 1. De
Morgan’s theorem is used to convert the expression into a product of sums form:

Out =V (Data; A Select;)
1
Out = A (Data; v Select;) (42)
This would normally have little effect on the operation of the circuit (provided the correct polarity select
signals are generated) except when multiple sources are enabled simultaneously. In this error condition,
the logic levels from the two sources are combined; for positive logic the output is the OR of the enabled
inputs, whereas for negative logic it is the AND of the inputs.

Modern FPGAs also provide memory resources at arange of granularities. At the lowest level, registers
may be built up of from the flip-flops associated with the logic blocks. In most devices, each logic cell has
one flip-flop available on its output, so an N-bit register would require N logic cells. The outputs of these
flip-flops are always available for use by other logic, so all of the registers in an array would be available at
every clock cycle. An array constructed of registers, if accessed using a variable index, would require one
or more multiplexers on the output to select the data from the required register. Similarly, writing to an
array may also require a multiplexer on the input of each register in the array.

The LUTs within the logic cells of some FPGAs can also be configured as fabric memory, providing 16,
32, or 64 memory locations depending on the available size of the LUTs. These are true memories, with
the address decoding and data multiplexing performed using dedicated logic within the logic cell. Note
that only one bit is accessible for either reading or writing per clock cycle. Some FPGAs allow the inputs to
an adjacent logic cell to be configured as a second port, enabling two accesses per clock cycle. Multiple
logic cells can be combined in parallel to create arbitrary width memories. In doing so, each parallel

100 Design for Embedded Image Processing on FPGAs

memory will share the same address inputs. Fabric RAM is best suited for small, shallow memories
because any increase in the depth requires the use of external decoding and multiplexing. Examples where
fabric RAM would be used include storing coefficients or parameters that do not have to be accessed
simultaneously, and short FIFO buffers.

Modern FPGAs also have available larger blocks of RAM. These generally have flexible word widths
from 1 to over 64 bits wide. Most such RAM blocks are dual-port. The size makes them well suited for row
buffers for image processing, for larger size FIFO buffers or for distributed data caching. The RAM can
also be used as instruction and data memory for internal CPUs (both hard and soft core).

Some of the larger FPGAs have sufficient memory blocks to hold whole images on chip. However,
image frame buffers are more likely to be held off-chip. The number of parallel external RAMs (and
ROMs) and their size are limited only by the I/O resources available. Off-chip RAM can also be used for
other large blocks of intermediate data storage or be used by an internal CPU to hold data and instructions
for larger programmes.

A software processor, if used, can be implemented either on the FPGA or as a separate chip. Large
modern FPGAs have sufficient resources on chip not to need an external processor. However, when using
an operating system such as an embedded Linux, an external memory is essential.

4.4.2 Algorithm Mapping Issues

As mentioned earlier in this chapter, mapping is not simply a matter of porting the set of operation level
algorithms onto the FPGA, unless they were developed with hardware in mind. The key thing is to map
what the software is doing by adapting the algorithm to the hardware.

Again, it is important to keep in mind the different levels of abstraction. At the higher level, the
application level algorithm should be thoroughly tested on a software-based platform before mapping the
operations to hardware. In some situations, it may be necessary to substitute different image processing
operations to maintain a uniform computational architecture if possible. Generally, though, the applica-
tion level algorithm should not change much through the mapping process.

Mapping the individual image processing operations is a different story. The operation level algorithm
may change significantly to exploit parallelism. For some operations, the transformation from a serial to
parallel algorithm is reasonably straightforward, while for others a completely new approach, and
algorithm, may need to be developed.

During the mapping process, it can be worthwhile to consider not just the operations on their own, but
also as a sequence. It may be possible to simplify the processing by combining adjacent operations and
developing an algorithm for the composite operation. An example of this is illustrated in Section 11.4
with connected components analysis. In other instances, it may be possible to simplify the processing by
splitting a single operation into a sequence of simpler operations. An example of this is splitting a
separable filter into two simpler filters. In some situations, swapping the order of operations can reduce the
hardware requirements. For example, following a greyscale morphological filter with thresholding
requires a more complex filter than its equivalent of first performing the thresholding and then using a
binary morphological filter.

One of the major issues facing the algorithm mapping process for embedded, real-time image
processing is meeting the various constraints. There are three main constraints facing the system
designer: timing constraints, memory bandwidth constraints and resource constraints.

Any real-time application will have timing constraints. These are of two types: throughput and latency.
Stream processing has a throughput constraint, usually of processing one pixel every clock cycle. If this
rate is not maintained, then data streamed from the camera may be lost, or data streamed to the display may
be missing. Since the processing performed per pixel will usually take significantly longer than one clock
cycle, it is necessary to use pipelining to maintain the throughput. The other timing constraint is latency.
This is the maximum permissible time from when the image is captured until the results are output or an

Design Process 101

action is performed. Latency is particularly important for real-time control applications where image
processing is used to provide feedback used to control the state. Delays in the feedback of a control system
(caused in this case by the latency of the processing) will limit the response time of the closed loop
system and can make control more difficult. In particular, excessive delay can compromise the stability
of the system.

Closely related to the timing constraint is the memory bandwidth constraint. Each memory port may
only be accessed once per clock cycle. On-chip memory is usually less of a problem because such memory
consists of a number of relatively small blocks, each of which can be accessed independently. Oft-chip
memory, on the other hand, tends to be in larger monolithic blocks. Operations where the computation
order does not correspond to the raster order usually require the whole frame to be buffered. The large size
of the image buffer generally restricts the frame buffer to be in off-chip memory. Consequently, it can be
difficult to read more than one pixel per clock cycle. This can be further complicated by pipelined memory
architectures, where the address needs to be provided several clock cycles before the data is available.
Operations where the next memory location depends on the results of processing at the current location
(for example chain coding) exacerbate this problem. For the memory bandwidth not to seriously limit
the processing speed, it is often necessary to transfer data from off-chip memory into multiple blocks of
on-chip memory where the bandwidth constraints are more relaxed.

The third area of constraint relates to the resources available on the FPGA. The cost of an FPGA
generally increases with increasing size (in terms of the number of logic blocks, memory etc.). When
targeting a commercial application, to minimise the product cost it is desirable to use an FPGA that is only
as large as necessary. However, even the largest FPGA has finite resources. It is therefore important to
make efficient use of the available resources. Using fewer resources can also improve the timing in two
ways. The first, and more obvious, is that an algorithm that uses fewer resources will generally have a
shorter delay simply because of the shallower logic depth. The second is that a more regular design will be
easier toroute on the FPGA, and will have a shorter routing delay. As the design approaches the capacity of
the FPGA, it becomes increasingly harder to route efficiently and the maximum clock speed of the design
decreases.

A second issue relating to resources is contention between shared resources. A parallel implementation
will have multiple parallel blocks working concurrently. In particular, only one process can access
memory or write to a register in any clock cycle. Concurrent access to shared resources must either be
scheduled to avoid conflicts, or additional arbitration circuitry must be designed to restrict access to a
single process. Arbitration has the side effect of delaying some processes, making it more difficult to
determine the exact timing of tasks.

Techniques for addressing timing, bandwidth and resource constraints are discussed in more detail in
the next chapter.

4.4.3 Design Flow

A more detailed sequence of steps for the design process that we follow in our research group is shown
in Figure 4.8. The image processing algorithm is developed either using VIPS (Bailey and Hodgson, 1988)
or MATLAB® (Gonzalez and Woods, 2004; Solomon and Breckon, 2011). Both are rich algorithm
development environments. VIPS was designed specifically for image processing; MATLAB® is more
general, but with the image processing toolbox is also targeted for imaging applications. Both are
extensible, operations for VIPS are written in C-++-, whereas for MATLAB® extensions may be written
in C or as MATLAB® scripts (m-files).

At Massey University Handel-C has been used for the hardware description language because it
describes hardware at a higher level of abstraction than Verilog or VHDL. It also allows hardware to be
described at a low level where necessary. Where possible, Handel-C is also used for any device drivers.
VHDL is only used at the very lowest levels, where Handel-C does not provide sufficient control over the
detailed implementation.

102 Design for Embedded Image Processing on FPGAs

4 Y
Problem
specification
. J
(Develop image),
processing algorithm ‘I
| (VIPS / MATLAB®)
(" Select system and) Redesign algorithm
computational for operations
___architectures) (C/C++/ MATLAB®)
A
Devel i q) B
evzﬁse?:wce Map algorithm P
(Handel-C / VHDL) to architecture ¢ X
J— —
Implement design [€
(Handel-C) <
. J
4 ¢ Y 4 Y
; ; »| Behavioural and
Compile design " | functional simulation
- J - J
4 ¢ Y 4 Y
»| Speed and resource
Place and route > verification —
. J . J
4 ¢ Y 4 Y
Implement on .
target device v System debug
. J . J

Figure 4.8 Design flow for FPGA-based implementation of image processing algorithms.

Incremental development techniques are used. As each operation is mapped to Handel-C, the simulator
within the development environment is used to verify that the operation functions correctly. If each
operation performs as designed, then the complete application level algorithm will function as developed
and tested within the image processing environment.

FPGA vendor tools are used to place and route the design onto the FPGA resources. The output from this
process will indicate whether there are sufficient resources available on the target FPGA. It also provides
timing information based on the actual resources used. Feedback from this process is used to modify the
algorithms or implementation where necessary to meet timing constraints.

The final step is to download the configuration file onto the target device for system testing. As part of
the debugging process, sections may require re-implementation, remapping or, in the worst case,
redevelopment.

4.5 Designing for Tuning and Debugging

4.5.1 Algorithm Tuning

Many application level algorithms require tuning to function correctly. Most algorithms have threshold
levels or other parameters that must be optimised to obtain the best performance.

Design Process 103

If these parameters are hard wired into the implementation, then whenever a parameter is changed, the
whole algorithm needs to be recompiled and remapped to hardware — a process that is very time
consuming. Therefore, it is best to store these parameters in registers, where they may be readily modified.
While it is technically possible to modify the register values directly in the bitstream before downloading
onto the FPGA, for example using JBits (Guccione et al., 1999) or RapidSmith (Lavin et al., 2010) with
Xilinx FPGAs, Xilinx is currently the only manufacturer to provide the tools for doing this (Graham et al.,
2001). In some ways, tuning an algorithm is a little like tuning a car. Recompiling the application is a little
like rebuilding the complete engine each time an adjustment is required. Modifying the bitstream is like
turning the engine off, making the adjustments, and then restarting the engine with each modification.
Instead, itis much more convenient to tune the engine while itis running. Similarly, the best time to modify
many of an algorithm’s parameter values is while the algorithm is running.

Changing parameters dynamically requires building the hardware to update the parameters. It also
requires some form of user interface that enables the developer to adjust or provide new values. When
running in a hosted configuration, the host system can provide the user interface and write the control
parameters to registers on the FPGA. However, with a stand-alone configuration, the user interface must
also be built on the FPGA. This can be either in hardware or on an embedded processor. At the minimum, it
must provide a mechanism for selecting and modifying the parameters. With many applications, though, it
is usually necessary to provide additional information on the context of the parameters being adjusted.
This often involves displaying the image or other data structures at intermediate stages within the
algorithm, as illustrated in Figure 4.9 for a simple colour tracking application.

In this application, the complete algorithm can be implemented using stream processing, without the
need of a frame buffer. However, to set the threshold levels used to detect the coloured targets, it may be

User
R (interface
A 4 y
PR
RGB to YCbCr
conversion Accumulate
— histogram
A 4
Colour Threshold Accumulate
thresholding levels Cb-Cr histogram
Morphological
filter — LI Frame
buffer
Bounding
box A 4
;[_/ .| Box overlay Histogram
v “| generator display
v
Control .
Display
D N —
Actual application Additional tuning requirements

Figure 4.9 Algorithm tuning may require considerable additional hardware to provide appropriate
feedback or interaction with the user.

104 Design for Embedded Image Processing on FPGAs

necessary to display histograms of red, green and blue components of the image, or of the YChCr
components used for colour thresholding. Since the primary thresholding will be performed in the Ch—Cr
plane, it is also useful to accumulate and display a two-dimensional Ch—Cr histogram of the image. One
way of setting the threshold levels is to click on the coloured objects of interest in the input image and use
these to initialise or adjust the threshold levels. It is also useful to see the output image after thresholding to
see the effects of adjusting the levels, particularly on the boundaries of coloured regions. Similarly, it is
also useful to see the effects of the morphological filter in cleaning up the misclassification noise. Finally,
it may be useful to include a box generator to overlay the bounding boxes of the detected regions over the
top of the original image (or indeed after any of the other processing stages).

Although this example probably provides more contextual information than is really needed, it does
illustrate that the additional logic and resources required to support tuning may actually be more extensive
than those of the original application. One way to manage these extra requirements is to use two separate
FPGA configurations — one for tuning and the other for running the application. The tuning configuration
does not need all of the application logic, for example the final control block in Figure 4.9 may be omitted.
The tuning configuration can then store the tuning parameters in flash memory (or other non-volatile
memory) where they can be retrieved by the actual application configuration.

4.5.2 System Debugging

In many ways, the requirements for debugging the algorithm and system are similar to tuning. In
particular, it may be important to see the results of processing after each of the operations to verify that
each operation is functioning correctly. This may require the stand-alone configuration to support video
output even if the application does not explicitly require it.

System failure can be the result of two main causes. The first is algorithm failure and the second is a
result of not meeting timing constraints.

Since it is much harder to debug a failing algorithm in hardware than it is in software, it is important to
ensure that the algorithm is working correctly in software before mapping it onto the FPGA. Itis essential
that any modifications made to the operation level algorithms during the mapping process be tested in
software to ensure that the changes do not affect the correct functioning. However, while it is possible to
test the individual operations to check that they function correctly, it is not possible to exhaustively test the
complete application level algorithm. In many real-time video processing applications, every image thatis
processed is different. Failures, therefore, should not be a result of the algorithm not working at all, but be
intermittent failures resulting from the algorithm not being completely robust.

Unfortunately, the intermittent nature of such algorithm failures makes them hard to detect. Many, if not
most, of the images should be processed correctly. Therefore, to investigate the failures, it is necessary to
capture the images that cause the algorithm to fail. One way of accomplishing this is to store each of the
images before it is processed. Then when a failure occurs during testing, the input image that caused
the failure will be available for testing. Such testing is actually easier to perform in software, either in the
image processing development environment or through simulation of the hardware in the FPGA
development environment.

Algorithm debugging in hardware is much more complex. Additional user controls may be required to
freeze the input image to enable closer examination of what is happening for a particular input. It may be
important to view the image after any of the operations, not just the output. This may require stepping
through the algorithm one operation at a time, not only in the forward direction, but also stepping
backwards through the algorithm to locate the operation that is causing the algorithm to fail. The
additional hardware to support these controls is shown in Figure 4.10.

Note that if stream processing is used, it is not necessary to have a frame buffer on the output; the output
is generated on-the-fly and routed to the display driver. However, non-streamed operations or non-image
based information may require a frame buffer to display the results.

Design Process 105

Frame

butar 1 Display

Operation|) .[Operation|) |Operation
Camera 1 2 3

Figure 4.10 Instrumenting an image processing algorithm for debugging. The frame buffer enables the
input image to be frozen and fed through the algorithm. The results of any of the steps may be routed to the
display (stream processing is assumed here).

At a lower level, debugging the internals of an operation is more difficult. Again, it is emphasised that
such debugging should be performed in software or through simulation if possible. The advantage of
software debugging is that in software each clock cycle does relatively little compared with hardware
where a large number of operations are performed in parallel, and the system state can change
considerably (Graham, 2001).

Simulation is only as reliable as the simulation model used. The models can be validated by directly
comparing the results of simulation with hardware execution over the full range of situations that may be
encountered (Graham, 2001). This is particularly useful for identifying problems (both functional and
timing) associated with device drivers or other interfaces.

If the design must be debugged in hardware, there are a number of ways in which this may be performed
(Graham et al., 2001). Perhaps the simplest approach is to route key signals to unused I/O ports to make
them observable from outside the FPGA. An external oscilloscope or logic analyser is then required to
monitor the signals. This concept may be extended further by embedding a logic analyser within the
design. Both Xilinx (ChipScope; Xilinx, 2008a) and Altera (SignalTap; Altera, 2008e) provide cores that
use memory within the FPGA to record internal signals, and later read these recorded signals out to an
external companion software package. It is also possible to build dedicated hardware to perform a similar
function, recording signals of interest within a block RAM and using the configuration readback
mechanism to obtain the data. One limitation of modifying the circuit to include signal probes and
additional signal recording hardware is that that these can affect how the connections are routed on the
FPGA. These affect the timing and can even change the critical paths, possibly masking or creating subtle
timing problems that may occur when the modifications are either present or absent (Graham, 2001;
Tombs et al., 2004).

Configuration readback can be used to sample the complete state of a design at one instant. The
difficulty with this approach is to associate the logical design with the hardware state of the mapped
resources on the FPGA. Signal names, or even the circuit, can be altered for optimisation or other reasons,
and with fabric RAM the address pins may be reordered to improve design routability (Graham, 2001). In
spite of these limitations, configuration readback provides the widest observability of the design (Graham,
2001). It is possible to add only a little logic to stop and restart execution by gating the clock (Tombs ez al.,
2004). These features enable hardware single stepping and, with a little extra logic to detect key events,
can effectively provide hardware breakpoints. A key limitation of readback-based methods is that they
require the clock to be stopped. This makes them impractical for timing verification and, in particular, for
testing of real-time systems. For example, data streamed from a camera or output to a display must be
routed via a frame buffer to allow the execution to be stopped and restarted without losing external context
and synchronisation.

One technique that enables internal timing to be verified while repeatedly stopping the design to
enable configuration readback has been described by Vuillemin ez al. (1996). By double stepping the design
(advancing the clock two cycles at a time), the second cycle can run at full speed, with normal timing.

106 Design for Embedded Image Processing on FPGAs

The system can then be stopped after the second cycle and the configuration read back out to detect timing
failures. To verify the timing of the complete design, two execution cycles are required, one for the even
cycles and one for the odd cycles (Graham, 2001).

In any complex design, it is important that provision for tuning and debugging be considered as part of
the design process, rather than something that is added to the implementation at the end.

Mapping Techniques

The previous chapter described the process of designing an embedded image processing application for
implementation on an FPGA. Part of the implementation process involves mapping the algorithm onto the
resources of the FPGA. Three types of constraints to this mapping process were identified as timing
(limited processing time), memory bandwidth (limited access to data) and resource (limited system
resources) constraints (Gribbon et al., 2005; 2006). In this chapter, a selection of techniques for
overcoming or alleviating these constraints is described in more detail.

5.1 Timing Constraints

The data rate requirements of real-time applications impose a strict timing constraint. At video rates, all
required processing for each pixel must be performed at the pixel clock rate (or faster). This generally
requires low level pipelining to meet this constraint.

When considering stream processing, it is convenient to distinguish between processes that are source
driven and those that are sink driven, because each has slightly different requirements on the processing
structure (Johnston et al., 2008). With a source-driven process, the timing is constrained primarily by the
rate at which data is produced by the source. The processing hardware has no direct control over the data
arrival. The system needs to respond to the data and control events as they arrive. For video data, the events
of concern are new pixels, newline and newframe events. Based on the event, different parts of the
algorithm need to run; for example, when a new frame is received, registers and tables may need to be
reset. The processors in source-driven systems are usually triggered by external events.

Conversely, a sink-driven process is controlled primarily by the rate at which data is consumed. An
example of this is displaying images and other graphics on a screen. In this case, processors must be
scheduled to provide the correct control signals and data to drive the screen. Processors in a sink-driven
system are often triggered to run at specified times, using internal events. Another form of timing
constraint occurs when asynchronous processes need to synchronise to exchange data.

5.1.1 Low Level Pipelining

In all non-trivial applications, the propagation delay of the logic required to implement all the image
processing operations exceeds the pixel clock rate. Pipelining splits the logic into smaller blocks, spread
over multiple clock cycles, reducing the propagation delay in any one clock cycle. This allows the design
to be clocked faster in order to meet timing constraints.

Design for Embedded Image Processing on FPGAs, First Edition. Donald G. Bailey.
© 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd.

108 Design for Embedded Image Processing on FPGAs

Figure 5.1 A simple pipelining example. Top: performing the calculation in one clock cycle; middle: a
two-stage pipeline; bottom: spreading the calculation over four clock cycles.

Consider a simple example. Suppose that the following quadratic must be evaluated for a range of
values of x at every clock cycle:

y=ax*+bx+c
=(axx+b)xx+c

(5.1)

If implemented within a single clock cycle, as shown in the top panel of Figure 5.1, the propagation delay
is that of two multiplications and two additions. If this is too long, the calculations may be spread over two
clock cycles, as shown in the middle panel. Register y; splits the computation path allowing the second
multiplication and addition to be moved into a second clock cycle. Note that register x is also required to
delay the input for the second clock cycle. Without it, the new value of x on the input would be used in the
second multiplication, giving the wrong result. The propagation delay per clock cycle is almost halved,
although a small additional propagation delay is introduced with the additional register. The two-stage
pipeline would enable the clock speed to be almost doubled. Operating as a pipeline, the throughput is
increased as a result of the higher clock speed. One new calculation begins every clock cycle, even though
each calculation now takes two clock cycles. This increase in throughput comes at the expense of a small
increase in latency, which is the total time the calculation takes. This is a result of the small increase in total
propagation delay.

Pipelining may result in a small increase in logic block usage. This results from the need to introduce
registers to construct the pipeline stages. These registers are implemented using flip-flops within the logic
blocks. They are typically mapped onto unused flip-flops within the logic cells that are already used for
implementing the logic. For example, the flip-flops to implement y; will most likely be mapped to the flip-
flops on the output of the logic cells implementing the adder. Register x; does not correspond to any logic
outputs, although it may be mapped to unused flip-flips of other logic within the design.

Mapping Techniques 109

In the bottom panel of Figure 5.1 the pipeline is extended further, splitting the calculation over four
clock cycles. This time, however, the clock period cannot be halved because the propagation delay of the
multiplication is significantly longer than that of the adder. Stages 1 and 3 of the pipeline, containing the
multipliers, will govern the maximum clock frequency. Consequently, although the maximum throughput
can be increased a little, there is a larger increase in the latency because stages 2 and 4 have significant
timing slack.

This imbalance in the propagation delay in different stages may be improved through retiming
(Leiserson and Saxe, 1991). This requires some of the logic from the multiplication to be moved from
stages 1 and 3 through registers y; and y; to stages 2 and 4, respectively. Depending on the logic that is
shifted, and how it is shifted, there may be a significant increase in the number of flip-flops required as a
result of retiming. Performing such fine-grained retiming manually can be tedious and error prone.
Fortunately, retiming can be automated, for example it is provided as an optimisation option when
compiling Handel-C designs (Mentor, 2010a). Retiming can even move the registers within the relatively
deep logic created for multipliers and dividers; places that are not accessible within the source code. Such
automated retiming can make debugging more difficult because it affects both the timing and the visibility
of the intermediate signals.

Ifretiming is not available, or practical (for example where the output is fed back to the input of the same
circuit for the next clock cycle), there are several techniques that can be used to reduce the logic depth
(Mentor, 2010b). Of the arithmetic operations, division produces the deepest logic, followed by
multiplication. Multiplication and division by constants (especially powers of two) can often be replaced
by shifts or shifts and adds, while modulo operations based on powers of two can be replaced by simple bit
selection. While long multiplication and division can be implemented efficiently with a loop, if a high
throughput is required, the loop can be unrolled and pipelined (Bailey, 2006), with each loop iteration put
in a separate pipeline stage. The ripple carry used for wide adders can increase the depth of the logic. Carry
propagation can be pipelined by using narrower adders and propagating the carry on the next clock cycle.
If carried to the extreme, this results in a form of carry save adder (see Parhami (2000) for some of
the different adder structures). Greater than and less than comparisons are based on subtraction. If they
can be replaced with equality comparisons, the logic depth can be reduced because the carry chain is no
longer required.

Although a pipeline is a parallel computational structure in that each stage has separate hardware that
operates in parallel with all of the other stages, from a dataflow perspective it is better to think of pipelines
as sequential structures (Johnston et al., 2006b; 2010). Directly associated with the sequential processing
is the pipeline latency. This is the time from when data is input until the corresponding output is produced.
This view of latency is primarily a source-driven concept.

From a sink-driven perspective, the latency implies that data must be input to the pipeline at a
predetermined time before the output is required. This period is referred to as priming the pipeline.
If the output is synchronous, priming can be scheduled to begin a preset time before data is required at
the output. Unfortunately, this is not an option when data is requested asynchronously by a sink. In this
case, it is necessary to prime the pipeline with data and then szall the pipeline in a primed state until
the data is requested at the output. This is discussed in more detail in the next section on
synchronization. Source-driven processes may also be stalled if valid data is not available on every
clock cycle.

During priming, the output is invalid, while the valid data propagates through the pipeline.
The corresponding period at the end of processing is pipeline flushing, continuing the processing after
the last valid data has been input until the corresponding data is output. Note that this use of the term
pipeline flushing differs from that used with instruction pipelining of the fetch/decode/execute cycle;
there flushing refers to the dumping of the existing, invalid, contents of the pipeline after a branch is taken,
and repriming with valid data. The consequence of both priming and flushing is that the pipelined process
must be clocked for more clock cycles than there are data elements.

110 Design for Embedded Image Processing on FPGAs

5.1.2 Process Synchronisation

Whenever there are operations working in parallel, a recurring problem is the coordination of
behaviour and communications between the different processes. This is relatively easy if all of the
operations are streamed within a pipeline. However, it is more difficult for random access or hybrid
processing modes, especially where the latencies may be different or where the time taken by the
operations may vary. When there is a mix of processing modes, it is often necessary to synchronise the
data transfer between operations.

If all of the external events driving the system are regular and each operation has a constant processing
time or latency, then global scheduling can be used. This can be accomplished by using a global counter to
keep track of events and the algorithm state, as shown in Figure 5.2. The various operations are then
scheduled by determining when each operation requires its data and matching the count. An example of
global scheduling is processing an image on-the-fly as it is being displayed. Each line is the same length,
with regular and synchronous events — the horizontal and vertical sync pulses. This enables the processing
for each line to be scheduled to start so that the pipeline is primed when the data must be available for
output to the display. Global scheduling requires all of the operations in the algorithm to be both
predictable in their execution time, and tightly coupled.

Other communication and synchronisation methods must be used when each operation or module is
loosely coupled. For source-driven processes, one way to achieve this is to associate a ‘data valid’ flag or
token with the output. This token is then used to control the downstream operations or processes, by either
stalling the process or continuing to run but ignoring the invalid data and marking the corresponding
outputs as being invalid. For sink-driven applications, in addition to the data valid flag propagated
downstream, it is also necessary to have a ‘wait’ flag or token propagated upstream (Mentor, 2010c). This
is asserted when a processor is unable to accept further data on its input and requests the upstream process
to stop providing data. Depending on the nature of each operation, it may be necessary to use FIFO buffers
to smooth the flow of data between the processes. In particular, use of such buffers can simplify the
management of pipeline priming and flushing. The interface between the operations within the Pixel-
Streams library is based primarily on this form of synchronisation (Mentor, 2010c), and enables the
operations to be kept separate and developed independently.

Another mechanism that allows point-to-point communication and synchronisation between concur-
rent processes is the CSP (communicating sequential processes) model (Hoare, 1985). One process is the
transmitter, the other is the receiver, and they are connected by a data channel. Both processes must be
ready before the communication or data transfer takes place. If one process is not ready, the other process
will block or stall until both ends of the channel are ready. Thus, a CSP channel will ensure that both
processes are synchronised at the point of data transfer. Channels can be used to pass data between
operations in a pipeline, where they will automatically synchronise the processes. The fact that channels
block when they are not ready allows them to be used with both source and sink driven pipelines.
With source-driven flow, the downstream operations will stall when data is not available at the input.

System

counter
| Tlme1 ! | Time, | ! | Time, | ! | Time, | !

Event Event Event Event

Figure 5.2 Global scheduling derives synchronisation signals from a global counter.

Mapping Techniques 111

Send Receive

H.—T—“ Complete
Complete

Figure 5.3 Channel synchronisation logic. (Adapted from Page and Luk, 1991.)

With sink-driven flow, the upstream operations will automatically prime and, then when the data is not
read from the output, will stall waiting for the available data to be transferred. Note that because channels
can block the execution of a process, care must be taken to avoid deadlocks caused by circular
dependencies (Coffman et al., 1971).

An example of channel synchronisation logic is shown in Figure 5.3. Identical logic is used to
synchronise both the sender and receiver, so only the send logic will be described. If the receiver is not
ready, then the Send signal is latched to remember that data is waiting to transfer. The Complete signal is
clocked low to indicate that the sending process should wait. When the receiver becomes ready, the data
will be transferred into the register on the next clock edge and the Complete signal is latched high for one
clock cycle.

Combining the channel with a FIFO buffer will relax the timing constraints. It allows a source process to
continue producing outputs until the FIFO buffer is full before it stalls. Similarly, a sink process will read
available data from the FIFO buffer until the buffer is empty before it stalls.

The use of FIFO buffers enables operations with variable latency to be combined within a pipeline. In
many video-based applications, where data is read from a camera or written to a display, the blanking
intervals between rows and between frames can occupy a significant proportion of the total time. The strict
timing of one pixel per clock cycle may be relaxed somewhat by enabling operations to work ahead during
the blanking period, storing the results in a FIFO buffer, which can then be used to smooth out the timing
bumps later.

5.1.3 Multiple Clock Domains

With some designs, using separate clocks and even different clock frequencies in different parts of a
design are unavoidable. This is particularly the case when interfacing with external devices that provide
their own clock. It makes sense to use the most natural clock frequency for each device or task, with
different sections of the design running in separate clock domains. A problem then arises when
communicating or passing data between clock domains, especially when the two clocks are independent,
or when receiving asynchronous signals externally from the FPGA.

If the input of a flip-flop is changing when the flip-flop is clocked (violating the flip-flop’s setup
or hold times) the flip-flop can enter a metastable state where the output is neither a 0 nor a 1. When
in this state, the output will eventually resolve to either a O or 1, but this can take an indeterminate
time. Any logic connected to the output of the flip-flop will be affected, but because the resolution
can take an arbitrarily long time, there is a danger that with the propagation delay through the logic,
the setup times of downstream flip-flops may also be violated. The probability of staying in the
metastable state decreases exponentially with time, so waiting for one clock cycle is usually
sufficient to resolve the metastability. A synchroniser does just this; the output is fed to the input of

112 Design for Embedded Image Processing on FPGAs

Sending clock domain Receiving clock domain

Request Data

Latch Available

Data

Data . :I 1
Received : ! - \Acknowledge

Figure 5.4 Bidirectional handshaking circuit for data synchronisation across clock domains.

a second flip-flop. The reliability of a synchroniser is expressed as the mean time between failures
(Dike and Burton, 1999):

eT/’E

Twisfr

MTBF =

(5.2)

where 7 is the settling time constant of the flip-flop, T is the period of the settling window allowed for
metastability to resolve; the numerator gives the probability that any metastability will be resolved within
the period 7. Ty is the effective width of the metastability window and is related to the setup and hold times
of the flip-flop, fs is the frequency of the synchroniser’s clock, and fris the frequency of asynchronous data
transitions on the clock domain boundary. The denominator of Equation 5.2 is the rate at which metastable
transitions are generated. 7 is usually chosen so that the MTBF is at least ten times the expected life of the
product (Ginosar, 2003). This is usually satisfied by setting 7 to be one clock period.

To guarantee that data is transferred regardless of the relative clock frequencies of the transmitter and
receiver, bidirectional synchronised handshaking is required (Ginosar, 2003). Such a circuit is shown in
Figure 5.4. As the data is latched at the sending end, the Request line is toggled to indicate that new data is
available. This Request signal is synchronised using two flip-flops. The resolution time is one clock period
less the propagation delay of the exclusive OR gate and the setup time on the clock enable of the data latch.
The exclusive OR gate detects the transition on the Request line, which is then used to enable the clock on
the data latch (the data from the sending clock domain will have been stable for at least one clock cycle and
does not require separate synchronisation), and provides a single pulse out on the Data Available line. An
Acknowledge signal is sent back to the sending domain, where again it is synchronised and a Data Received
pulse generated. It is only after this signal has been received that new data may be safely latched into the
sending register. Otherwise, new data may overwrite the old in the sending data register before the contents
have been latched at the receiver.

This whole process can take either three or four clock cycles of the slowest clock domain, limiting the
throughput to this rate. If the sending domain is always slower, then the acknowledgement logic may
be saved by limiting the input to send every three clock cycles. The danger with this, though, is that if the
clock rates are later changed, the synchronisation may no longer be valid (Ginosar, 2003).

An alternative approach based on using dual-port fabric RAM as a form of FIFO buffer is shown in
Figure 5.5. The RAM has one port in each clock domain and enables data to be queued while the
synchronisation signal is sent from one domain to the other. This enables a sustained throughput of one
data element per slow clock cycle. The most significant bit of the sending domain’s address counter is sent
across the domain boundary using a pair of synchronisation flip-flops to resolve metastability. This is then
used to indicate when one block of data (half of the RAM) is available and the receiver can start to read.
A small amount of logic prevents the address counter from addressing past the end of the available block.
To provide safe transfer regardless of which clock domain is slower, both address counters should be
interlinked to make access to the two halves of the address space mutually exclusive.

Mapping Techniques 113

Sending domain Receiving domain

I
|
]
— : —
I
|
I
:
MSB |
! Block
1 Available

Figure 5.5 Transfer from a slower sending domain using a dual-port RAM.

5.2 Memory Bandwidth Constraints

Some operations require images to be partially or wholly buffered. While current high-capacity devices
have sufficient on-chip memory to buffer a single image, in most applications it is poor use of this valuable
resource to simply use it as an image buffer. For this reason, image frames and other large data sets are
more usually stored in off-chip memory. This effectively places large amounts of data behind limited
bandwidth and serialised (at the data word level) connections.

For this reason, it is essential to process as much of the data as possible while it passes through the
FPGA, and to limit the data traffic between the FPGA and external devices. The standard software
approach is to read each pixel required by an operation from memory, apply the operation and write the
results back to memory. This is then repeated for every pixel within the image. A similar process is
repeated for every operation that is applied to the image. The continual reading from and writing to
memory may be avoided in many places by using a pipelined stream processing architecture.

Some operations cannot achieve this and may require an appropriate design of the memory architecture
to overcome bandwidth problems. Other operations may be modified to cache data that is reused. For
example, row buffering is a form of caching where pixel values read at one time are saved for reuse when
processing subsequent rows.

5.2.1 Memory Architectures

The simplest way to increase memory bandwidth is to have multiple parallel memory systems. If each
memory system has separate address and data connections to the FPGA, then each can be accessed
independently and in parallel.

The crudest approach is to have multiple copies of the image in separate memory banks. Each bank can
then be accessed independently to read the required data. For off-chip memory this is not the most memory
efficient architecture, but it can be effective for on-chip caching when multiple processors require
independent access to the same data.

With many operations, it is likely that adjacent pixels need to be accessed simultaneously.
By partitioning the address space over multiple banks, for example using one memory bank for odd
addresses and one for even addresses, adjacent addresses may be accessed simultaneously. This can be
applied to both the row and column addresses, so, for example, four banks could be used to access the four
pixels within a 2 x 2 block (top panel of Figure 5.6). Rather than simply partitioning the memory, the
addresses may be scrambled to enable a larger number of useful subsets to be accessed simultaneously
(Lee, 1988; Kim and Kumar, 1989). For example, the bottom panel of Figure 5.6 enables four adjacent
pixels in either a row or a column to be accessed simultaneously. It also allows the main diagonal and the
anti-diagonal of a 4 x 4 block, and many (but not all) 2 x 2 blocks to be accessed concurrently (Kim and

114 Design for Embedded Image Processing on FPGAs

Row Column Column
- o[1]o]1
13 2|3]2]3| Simple
ZI(o]1]0]1 partitioning
2
Memory address 213|213
Row Column Column
L8 2[sol
= I
D* 2 |[3]2]1]o Scrambled
2
Memory address 1]0]8]2

Figure 5.6 Memory partitioning schemes. Top: simple partitioning allows access of 2 x 2 blocks;
bottom: scrambling the address allows row, column and main diagonal access.

Kumar, 1989). Itis not possible to have all4 x 1,1 x 4 and 2 x 2 blocks all simultaneously accessible with
only four memory banks. This can be accomplished with five banks, although the address logic is
considerably more complex as it requires division and modulo 5 remainders (Park, 1986). In addition to
the partitioning and scrambling logic, a series of multiplexers is also required to route the address and data
lines to the appropriate memory bank.

A further approach to increasing bandwidth is to increase the word width of the memory. Each memory
access will then read or write several pixels. This is effectively connecting multiple banks in parallel but
using a single set of address lines common to all banks. Additional circuitry, as shown in Figure 5.7, is
usually required to pack the multiple pixels before writing to memory, and to unpack the pixels after
reading, which can increase the propagation delay or latency of this scheme. Data packing is effective
when pixels that are required simultaneously or on successive clock cycles are packed together. This will
be the case when reading or writing streamed images.

Another common use of multiple memory banks is bank switching or double buffering. Bank switching
is used between two successive image processing operations to decouple the memory access patterns. This
makes it useful when pipelining random access image processing operations, or with the hybrid processing
mode to connect between stream processing and random access processing. It uses two coupled memory
banks, as shown in Figure 5.8. The upstream process has access to one bank to write its results while the
downstream process accesses data from within a second bank. When the frame is complete, the role of the
two banks is reversed, making the data just loaded by the upstream process available to the downstream
process. Bank switching therefore adds one frame period to the latency of the algorithm.

If the upstream and downstream processes have different frame rates, or are not completely
synchronised, then the two processes will want to swap banks at different times. If the bank switching
is forced by one process when the other is not ready, this can result in tearing artefacts, with part of

Off-chip

Figure 5.7 Packing multiple pixels per memory location.

Mapping Techniques 115

Downstream
process

Upstream
process

Select

Figure 5.8 Bank switching or double buffering.

the frame containing old data and part new. This problem may be overcome by triple buffering, using a
third bank to completely separate the reading and the writing (Khan et al., 2009). This has the obvious
implication of increasing the component count of the system and will use a larger number of I/O pins.

Bandwidth can also be increased by using multiport memory. Here the increase is gained by allowing
two or more concurrent accesses to the same block of memory through separate address and data ports.
While this is fine in principle, in practise it is not used with external memory systems because multiport
memory is more specialised and consequently considerably more expensive.

A more practical approach to mimic multiport memory is to run the memory at a higher clock speed
than the rest of the system. The resulting design will allow two or three accesses to memory within a single
system clock period. The memory clock should be synchronised with the system clock to avoid
synchronisation issues. Double data rate (DDR) memory is one example of memory that allows two
data transfers per clock cycle, using both the falling and rising edges of the clock. A higher frequency
RAM clock is only practical for systems with a relatively low clock speed, or with high speed memories.

Alternatively, the complete design could be run at the higher clock speed, with the data entering the
processing pipeline every several clock cycles. Such approaches are called multiphase designs, with
several clock cycles or phases associated with the pixel clock. Multiphase designs not only increase
the bandwidth, but can also reduce computational hardware by reusing the hardware in different phases.
The extreme is multiphase design is the Tabula ABAX FPGA, where the complete logic of the FPGA is
changed in each of up to eight phases (Section 2.4.6).

5.2.1.1 Memory Technologies

It is generally best to use static memory for frame buffers, especially where they are accessed randomly
and frequently. Static memory is faster than dynamic memory and is usually lower power. However,
because it uses six transistors per bit rather than the one used by dynamic memory it is also more
expensive. Many modern high speed static memories have been designed for use as instruction and data
caches for high end serial computers. Consequently, they operate best in a burst mode and can take one or
more clock cycles to switch between reading and writing (bus turnaround). Zero bus turnaround (ZBT)
memories are designed with no dead period, enabling true low latency random access. This makes them
easier to interface to an application, making them a good choice for frame buffers.

Dynamic memory is better for large volumes of data where there is not a strict time constraint. This is
because dynamic memory is slower and generally requires several clock cycles latency from when the
address is supplied to when the data is available. Dynamic memories have their highest bandwidth when
operated in burst mode, with a series of reads or writes on the same row. They are also significantly harder
to interface to for two reasons. They must be refreshed periodically (usually every 64 ms) by accessing
every row once within this period. The internal structure means that when a row is accessed, all values on
that row are available internally, with the column address selecting the entry on the row. Because of this

116 Design for Embedded Image Processing on FPGAs

segmented address structure, the row address is required before the column address. Usually, the row and
column addresses share the same pins. All of these factors mean that some form of caching may be
required to smooth the flow of data to or from the memory.

5.2.2 Caching

A cache memory is a small memory located close to a processor that holds data loaded from an external
data source, or results that have been previously calculated. It provides rapidly accessible temporary
storage for data that is used multiple times. The benefit of a cache is that it has faster access than re-reading
the data from external memory (or hard disk) or recomputing the data from original values.

On an FPGA, a cache can be used to buffer accesses to external memory, particularly memory with a
relatively long latency or access time, or operates in burst mode. In this capacity, it can also be used to
smooth the flow of data between off-chip memory and the application. The cache can significantly reduce
the bandwidth required between the FPGA and memory if the data in the cache is used multiple times
(Weinhardt and Luk, 2001a). In some applications, the cache is positioned between the processor and the
main memory, as shown in Figure 5.9, with accesses made to the cache rather than the memory. The cache
controller in this case is then responsible for ensuring that the required data will be available in the cache.
A separate cache is often used to hold the results to be written back to memory. With some operations, for
example clustering or classifier training algorithms, the task may be accelerated by using multiple parallel
processors working independently from the same data. Since the block RAMs on the FPGA can all be
accessed independently, the cache bandwidth can be increased by having multiple separate copies of the
cached data (Liu et al., 2008), one for each process. This allows each process to access the data without
conflict with other processes. Whether there is a single results cache or multiple distributed results caches
will depend primarily on how the results are reused by the processes. In Figure 5.9 itis assumed that results
are only reused locally.

One possible structure for the caches is an extended FIFO buffer. With a conventional FIFO buffer, only
the item at the head of the buffer is available, and when it is read it is removed from the buffer. However, if
the access and deletion operations are separated, and the addressing made external so that not just the head
of the buffer is accessible, then the extended FIFO buffer can be used as a cache (Sedcole, 2006). With this
arrangement, data is loaded into the buffer in logical blocks. Addressing is relative to the head of the
buffer, allowing local logical addressing and data reuse. When the processing of a block is completed, the
whole block is removed from the head of the FIFO buffer, giving the next block the focus.

Another arrangement is to have the cache in parallel with the external memory, as shown in Figure 5.10,
rather than in series. This allows data to be read from the cache in parallel with the memory, increasing the
bandwidth. The cache can be loaded either by copying the data as it is loaded from memory or by the
process explicitly saving the data that it may require later into the cache.

Off-chip Off-chip
RAM RAM
[IY)
QB!
h 2 1 L J L 4 I
Input | |Result Input | |Results | Input [[Results| | Input | [Result
Cache| [Cache Cache| |Cache| [Cache| | Cache| | Cache| [Cache
¥ L) ¥ L) ¥ L) ¥ L)
Processes Process Process Process

Figure 5.9 Caching as an interface to memory. Left: a single cache is shared between processes; right:
data is duplicated in multiple input caches, but each process has a separate results cache.

Mapping Techniques 117

Off-chip Off-chip
RAM RAM
Cache [« Cache
‘ v ‘ f v
Process Process

Figure 5.10 Parallel caches.

5.2.3 Row Buffering

One common form of caching is row buffering. Consider a 3 x 3 window filter — each output sample is a
function of the nine pixel values within the window. Without caching, nine pixels must be read for each
window position (each clock cycle for stream processing) and each pixel must be read nine times as the
window is scanned through the image. Pixels adjacent horizontally are required in successive clock cycles,
so may be buffered and delayed in registers. This reduces the number of reads to three pixels every clock
cycle. A row buffer caches the pixel values of previous rows to avoid having to read the pixel values in again
(Figure 5.11). A 3 x 3 filter spans three rows, the current row and two previous rows; a new pixel isread in on
the current row, so two row buffers are required to cache the pixel values of the previous two rows.

Each row buffer effectively delays the input by one row. An obvious implementation of such a digital
delay would be to use an N-stage shift register, where N is the width of the image. There are several
problems with such an implementation on an FPGA. Firstly, a shift register is made up of a chain of
registers, where each bit uses a flip-flop. Each logic cell only has one flip-flop, so a row buffer would use a
significant proportion of the FPGAs resources. Some FPGAs allow the logic cells to be configured as shift
registers. This would use fewer of the available resources, since each cell could provide a delay of up to 16
(or 32 for the Virtex 5; Xilinx, 2008f) clock cycles.

A better use of resources would be to use a block RAM as a row buffer. Block RAMs cannot be directly
configured as shift registers (one exception is Altera’s Cyclone and Stratix devices), although most of the
newer FPGAs can configure them as FIFO buffers, which can be arranged to provide an equivalent
functionality. Those that natively provide FIFO buffers will automatically manage the addressing of the
RAM. Otherwise, a FIFO buffer may be built from a dual-port memory, as shown in Figure 5.12. Two
counters are needed, one for providing the address for writing to the memory and one for reading.
The memory is used as a circular buffer, with the first address appearing sequentially after the last address
within the memory. For blocks of memory that are a power of two long, this is achieved by allowing the
address counters to wrap around. If the memory is other than a power of two long, then the counter has to

Row buffer
Row buffer

- Input stream

[T
[1
[T =——=>Scan

Window Window

Figure 5.11 Row buffering caches the previous rows so they do not need to be read in again.

118 Design for Embedded Image Processing on FPGAs

1 i = I ¥
e
Wrize—l_c|:> \r <:L_1—Read
Full Empty
CE | CE
—*| Dual-port [*—

Dt — RAN [—)

out

Figure 5.12 Circular memory based FIFO buffer. The full and empty detection logic is not required for
use as a row buffer.

be modified to reset to O after the last address is reached. A small amount of logic is also required to detect
when the buffer is full or empty, although for use as a row buffer this is not necessary. The buffer is empty
when the read and write addresses are identical, and full if incrementing the write address would make it
equal to the read address.

A FIFO buffer can be used as a shift register as follows. Assume that the buffer is initially empty.
A series of N writes to the FIFO buffer will advance the write position to N locations ahead of the read
position. Then, if a read and write are preformed simultaneously every clock cycle, the value read will be
delayed from that written by N clock cycles. If the counters are provided explicitly, then resetting the read
counter to 0 and the write counter to N would create an N-stage shift register. Since both counters are
incremented at the same time, a single counter could be used, with an adder to offset it by N to get the write
address. If the size of the RAM is exactly the same as the width of the image then the read address will
always be the same as the write address, simplifying the circuit further.

Note thathaving multiple buffersin parallel, suchasin Figure 5.11,1is the same as a single bufferbut witha
wider data path. If implemented using separate RAM blocks, the address counters may be shared.

In many applications, it is necessary to maintain a column address, even if only for the purposes of
reading from or writing to a frame buffer. This column address may be used to index the buffer rather than
using a separate counter. The buffer is then no longer circular, but is automatically indexed to the current
position in the image.

5.2.4 Other Memory Structures

With current technologies, memory is inherently a serial device. Although internally, data is stored in
parallel, with a separate latch (or capacitor for dynamic memory) per bit stored. (While some more recent
dynamic RAMs can store multiple bits per capacitor using different levels, this does not affect
the argument here.) However, the addressing and access mechanisms mean that only one memory
location can be selected for reading or writing at a time. Multiple data items can, therefore, only be
accessed serially.

FIFO and circular buffers have been described in some detail in the previous section on row buffering.
A FIFO buffer allows data items to be visited twice, the first time when the data items are loaded into the
buffer, and the second time when they are retrieved.

Other useful memory structures are stacks, linked lists, trees and hash tables.

5.2.4.1 Stacks

Stacks also allow data items to be visited twice, although the second time the items are accessed in the
reverse order. Items are pushed onto a stack by storing them in successive memory locations. When an

Mapping Techniques 119

Data >

Full CE_R/W
Empty & 0P

Push

Pop

Figure 5.13 Implementation of a stack.

item is popped from the stack, the most recently saved item is retrieved first. Stacks are, therefore, a form
of first-in last-out or last-in first-out queue.

A stack can be implemented using a single-port memory, combined with a single address counter as the
stack pointer, SP, as shown in Figure 5.13. It is usual for the stack pointer to address the next available free
location. A push writes to the top of stack, as pointed to by SP and increments the stack pointer to point to
the next free location. A pop needs to decrement the stack pointer before reading to access the data on the
top of the stack.

In the implementation shown above, a multiplexer is used to add either 1 or —1 to SP depending on
whether a Push or Pop operation is used respectively. A Push uses SP directly as the RAM address,
whereas a Pop uses the decremented SP as the address. The stack is empty if the address is zero; in this
condition, a Pop is not allowed because there is nothing left on the stack to pop. Note that the test for zero
can be implemented by simply taking the NOR of all of the bits. The stack is full after the last memory
element is written. Incrementing SP will wrap it past the end. This is prevented by making SP one bit
longer than needed to address the memory. The stack is then full when the most significant bit of SP is set.

5.2.4.2 Linked Lists

A linked list is useful for maintaining a dynamic collection of data items. Each item is stored in a separate
location in the memory; however, successive items are not necessarily in sequential memory locations.
Associated with each item is a pointer to the next item (a pointer to an item is just the memory address of
that item), resulting in an implicit ordering of the items within the list. Linked lists have an advantage over
arrays when inserting an item into the list. To insert an item into an array, all the successive items in the
array must be moved to new memory locations to make space at the appropriate position in the array.
However, with a linked list, the new item can be stored in any free memory location and the pointers
adjusted to put it into the correct place in the sequence. Similarly, when deleting an item from an array, all
subsequent items must be shifted back. With a list it is only necessary to adjust the pointers to skip the item
that is removed.

The first item in the list is called the head of the list. The last item in the list has a null pointer, @,
indicating that there is no next item. On software systems, O is often used as the null pointer because 0 is
not usually a valid data address. However, on FPGAs 0 usually is a valid data address. This may be
resolved either by using a separate flag to indicate a null pointer, or by not using location 0 to hold data.
The former approach requires one extra bit per pointer to contain the null pointer flag but it does mean that
only one bit needs to be tested to determine if it is a null pointer. Not using location 0 reduces the number of
items that may be stored in a block of memory by one item and a null pointer can be tested by checking if
all bits are 0.

120 Design for Embedded Image Processing on FPGAs

Free—FA—F3—>F2—F1—J Free—F3—F2—F1—Q
Head—D1—D2—D3—Q Head—D1—D2—D4—D3—0
F3 | & F3 | e1—
D2 .—D D2 —
- (e > [0
Fl1 (@ F1 @;
F2 | & F2 | &+
DI | o] DI J
F4 | o D4 e

Figure 5.14 Inserting an element into a linked list. Changed links are shown in bold.

One problem with linked lists is keeping track of which memory locations are free. There are two
approaches to solving this problem. One is to maintain a series of one bit registers indicating that a
memory location is free. Associated with this is a priority encoder to translate the first 1 into the
corresponding address. While this is suitable for short lists, it can quickly get expensive as the address
space gets larger. A second approach is to reuse the linking mechanism to maintain a second list of unused
entries. This requires that the memory be initialised with the links before being used.

Inserting new data into a list requires four memory accesses (Figure 5.14). Assume that itis necessary to
insert the new data item, D4, after D2 and that there is currently a pointer to D2. Also assume that unused
entries are in a list pointed to by Free. The first access is to read the pointer associated with D2 (the pointer
to D3). The pointer is then changed to point to the head of the free list (which will become the new data
item), and is written back to D2. The item pointed to by the head of the free list (the pointer associated with
F4) becomes the new head, so it must be read from the memory. Finally, the new data and pointer to D3 is
written to the new element.

To implement even this relatively simple operation on an FPGA would require a finite state machine to
sequence each of the steps. The controlling state machine would require a series of branches to manage
each different operation: initialisation, traversing a list, insertion and deletion. Since each operation will
require several clock cycles, it will be necessary to include synchronisation logic between the linked list
and the rest of the design.

Note that the sequential ordering means it is necessary to insert an item either after a specified item in
the list or at the head of the list. Items cannot be directly inserted before a specified item because there is no
direct reference to the previous item in a list. The previous item points to the specified item; to insert an
entry this pointer needs to be changed to point to the new item. With a singly linked list, the only way to
locate the previous item is to sequentially scan through the list from the head.

This limitation can be overcome by using a doubly linked list; this has bidirectional links, to both the
previous and the next items in the list. Having the extra link also means that extra memory accesses are
required when inserting and deleting links. The extra pointer associated with each data item would also
require a wider memory.

5.2.4.3 Trees

Another data structure commonly used in computer vision to represent hierarchically structured data is a
tree. An example tree is shown on the left in Figure 5.15. The node at the top of the tree is called the root
node; node A is the root in this example. The nodes immediately below a node are called the c/ild nodes.
Forexample, D, E and F are children of B, and B is their parent. Nodes that have no children are /eaf nodes.
In this example, D, F, G, I, J and K are the leaf nodes.

Mapping Techniques 121

Figure 5.15 A representation of a tree.

In a general tree, a node can have an arbitrary number of children. Therefore, it is inconvenient for a
node to point to all of its children. One general representation of a tree is as a form of two-dimensional
linked list. Every node has two pointers: one to its first child (or null if it is a leaf node) and one to its next
sibling. In this way, all of the children of a node are contained in a linked list. This approach to representing
a tree is shown in Figure 5.15.

Note that this method is suitable for navigating from the root of a tree down to a node, but there is no
pointer from a child to its parent so navigating back up the tree is more difficult. This may be overcome by
using doubly linked lists, but would require every node to maintain three pointers. A more efficient
alternative in many applications is to use a separate memory structure to remember the context of a node.
When performing a depth-first traversal of the tree, a stack can be used to remember parent nodes. As the
link from a node to its first child is taken, a pointer to the node can be pushed onto a stack. Then to move
back up the tree after reaching a leaf, it is only necessary to pop the most recently visited parent from the
stack. The stack therefore provides the required link from a child back to its parent. If performing a
breadth-first search, it is more appropriate to use a FIFO queue. As a node is visited, if it has any children
the pointer to the first child node is stored in the queue. Then when the last child is reached, the first entry in
the queue is the next node to visit.

One particular type of tree deserves special mention is a binary tree. It has at most two children, so for a
binary tree it is possible to (and indeed useful to) directly point to the two children rather than having a list
to represent the children.

5.2.4.4 Hash Tables

A sparse array is an array with a large address space, but only a small proportion of the array has data at any
one time. If the whole array is reserved, this can be wasteful of the memory resources available on an
FPGA. While the memory requirement of the array may be significantly reduced using a linked list or tree
to represent the occupied data elements, these structures incur a significant overhead of having to search
through the list or tree to find a particular element.

An alternative approach is to store the data using a hash table. As shown in Figure 5.16, the original
address is mapped using a hash function to a much smaller address space, that of the hash table, where the
data is actually stored. The reduction memory comes at the cost of evaluating the hash function. In most
applications, this cost can be lower than that of searching through a linked list or tree.

A good hash function is one that maps the different input addresses that are actually used to different
slots within the hash table. If the input addresses can be considered random, then a simple and effective
hash function can be to use a subset of the bits of the input address. However, if the set of input addresses is
likely to be clustered, then a good hash function will distribute these to quite different slots to reduce the

122 Design for Embedded Image Processing on FPGAs

Hash
Address g Address og PRSI

Hash Hash
table function
mapping

Figure 5.16 Address hashing. Left: original sparse address space; centre: using a hash function to
reduce address space; right: the mapping between address spaces by the hash function.

chance that multiple input addresses will map to the same slot. For this reason, a common technique is to
base the hash function on a pseudorandom number generator, using the input address as the seed. This will
tend to map the input addresses randomly throughout the hash table.

Inevitably, though, there will be address collisions, with multiple input addresses mapping to acommon
slots. There are two main approaches for resolving such collisions. One is to store multiple elements per
slot, using a linked list for example. This requires additional data structures to the hash table. Another
alternative is to use a so-called open addressing scheme to store the data in the next available slot
(Peterson, 1957). Both methods require a search in the event of collisions. The search is kept small by
ensuring that the used slots are randomly distributed and the hash table is not too full. Open addressing is
sensitive to the fill factor of the hash table (the proportion of slots that are used) and it is generally better to
keep the maximum fill factor below about 75%. There are several advanced techniques (Askitis, 2009)
that can be used to increase the fill factor, but these generally come at the expense of more complex
hash functions.

A hash table can be considered as a form of associative memory. The sparse addressing of hash tables
makes them appropriate for implementing caches. When a hash table is used for a cache, whenever a
collision occurs the previous entry can be discarded, avoiding the need for searching.

The input addresses do not necessarily need to be memory locations, but could be strings or other
complex data structures that are reduced using the hash function to provide an index into the hash table.

5.3 Resource Constraints

The finite number of available resources in the system such as function blocks or local and off-chip RAM
imposes a constraint. On an FPGA, there may be a number of concurrent processes that need access to a
particular resource in a given clock cycle, which can result in contention, or undefined behaviour if both
are permitted access.

5.3.1 Resource Multiplexing

An expensive resource may be shared between multiple parts of a design by using a multiplexer. There
are three conditions required for this to be practical. Firstly, the cost of the resource must be less than
the cost of the multiplexers required to share the resource. For example, sharing an adder in most
instances is not practical because the cost of building a separate adder will usually be less that the cost
of the multiplexers required to share the adder. However, sharing a complex functional block may well
be practical. The second condition is that the resource must only be partially used in each of the
locations that it is used. If the instances of the resource are fully used, then sharing a single instance
between the multiple locations will slow the system down. The third consideration is the timing of
when the resource is required. If the resource must be used simultaneously in multiple parts of the
design, then multiple copies must be used.

Mapping Techniques 123

[Task 1] [Task 2| [Task 3] [Task 4]

(] B

1 v .

[Task 1] [Task 2| [Task 3] [Task 4]
i

| Resource 1| |Resource 2|

| Resource 1| |Resource 2|

Figure 5.17 Sharing a pool of resources amongst several tasks. Left: using multiplexers; right:
using busses.

The limitation of sharing a resource is that multiple simultaneous accesses to the resource are
prohibited. Sharing often requires associating some form of arbitration logic with the resource to manage
the access; some of the options for this are explored in more detail in the next section.

An option when only a few instances of a resource are required simultaneously with instances required
by many tasks is to have a pool of resources. This approach is illustrated in Figure 5.17. When the resource
pool is shared by a large number of tasks, the multiplexing requirements can become prohibitive.
An alternative is to connect to the resources via busses. Note that the busses are additional resources that
must also be shared, because only one task or resource may use a bus at a time.

Sometimes, careful analysis of a problem can identify potential for resource sharing where it may
not be immediately obvious. Consider obtaining the bounding boxes of a set of objects from a
streamed input image consisting of labelled pixels, where the label indicates the associated object (see
also Section 11.1). Since each object can appear anywhere in the image, and the bounding boxes for
different objects may overlap, it is necessary to build the bounding boxes for each label in parallel.
The computational structure for performing this is shown on the left in Figure 5.18. This has a separate
processor for each label, building the bounding box for that label. A multiplexer is required on the
output to access the data for a particular label for downstream processing. Careful analysis reveals that
it is not the processor that needs to be separate for each label, because any given pixel input will have
only one label, but rather it is the data that must be maintained separately for each label. Only a single
bounding box processor is needed and this may be multiplexed between the different labels.
Equivalently, the data registers for each label need to be multiplexed for the single instance of the
bounding box processor. Multiplexing more than a few data registers can get quite expensive. Where
the memory bandwidth allows, an efficient alternative is to use a RAM rather than registers because
the RAM addressing effectively provides the multiplexing for free.

Bounding
box processor

Bounding

Bounding

Bounding
box processor

Data

Building the data Accessing Bounding Data|,
the data box processor] | RAM

Figure 5.18 Sharing data with a resource. Left: processing each label with a separate bounding box
processor; right: sharing a single processor but with separate data registers, which can be efficiently
implemented using a RAM.

124 Design for Embedded Image Processing on FPGAs

5.3.1.1 Busses

The example in Figure 5.17 highlights one of the problems with using multiplexers to connect multiple
outputs to multiple inputs. Each input requires a multiplexer, with the width of the multiplexer dependent
on the number of outputs connected. The complexity is therefore proportional to the product of the number
of inputs and the number of outputs. This does not scale well as a new input or output is added.

Such growth in complexity may be overcome by using a bus as shown in the top of Figure 5.19. With a
bus, all of the inputs are connected directly to the bus, while the outputs are connected via a tri-state buffer.
Enabling an output connects it to the bus, while disabling it disconnects it. The logic scales well, with each
new device requiring only a tri-state buffer to connect.

This reduction in logic does not come without a cost. Firstly, with multiplexers, each connection is
independent of the others. A bus, however, is shared amongst all of the devices connected to it. While a bus
does allow any output to be connected to any input (in fact it connects to all of the inputs), only one output
may be connected at a time. If multiple outputs attempt to connect simultaneously to the bus, this could

potentially damage the FPGA (if the outputs were in opposite states). Therefore, an additional hidden cost
is the arbitration logic required to control access to the bus.

vE b 14 vk

ST sl [vs%|[5s¢
= = = =
Y Y Y Y
Distributed
multiplexer cell
& =Ermg
I .
T O T O T O T O
S S S S
T3 T 3 T 3 T 3
S S S S
] by by]

Bus

rBy
rig

UJ o
mo

UJ o
mo
21qvury |

UJ le—g
mo —
a1qur |—

UJ le—g
mo
a1qur |—

a1qur |—

Figure 5.19 Bus structures. Top: connecting to the bus with tri-state buffers; middle: implementing

a bus as a distributed multiplexer; bottom: implementing a bus as a shared multiplexer. (Sedcole, 2006;
reproduced by permission of P. Sedcole.)

Mapping Techniques 125

Unfortunately, not many FPGAs have an internal bus structure with the associated tri-state buffers.
An equivalent functionality may be constructed using the FPGAs logic resources (Sedcole, 2006), as
shown in the middle of Figure 5.19. The bus is replaced by two signals, one propagating to the right and the
other to the left. An enabled output from a device is ORed onto both signals, to connect it to devices in both
directions. An input is taken as the OR of both signals. Such an arrangement is effectively a distributed
multiplexer; if the expression on the input is expanded, it is simply the OR of the enabled outputs.
If multiple outputs are enabled, the signal on all of the inputs may not be what was intended, but it will not
damage the FPGA.

The disadvantage of the distributed multiplexer is that it requires the devices to be in a particular
physical order on the FPGA. This was not a problem where it was initially proposed — for connecting
dynamically reconfigurable functional blocks to a design (Sedcole, 2006). There the logic for each block
connecting to the ‘bus’ was constrained to a particular region of the FPGA. For general use, a bus may be
simply constructed using a shared multiplexer, as shown in the bottom of Figure 5.19.

When a bus is used to communicate between processes, it may be necessary for each process to
have a FIFO buffer on its both its input and output (Sedcole, 2006). Appropriately sized buffers
reduce the time lost when stalled waiting for the bus. This becomes particularly important with high
bus use to cope with time varying demand while maintaining the required average throughput for
each process.

5.3.2 Resource Controllers

There are potential resource conflicts whenever a resource is shared between several concurrent blocks.
Any task that requires exclusive access to the resource can cause a conflict. Some common examples are:

e Writing to a register: Only one block may write to a register in any clock cycle. The output of the
register, though, is available to multiple blocks simultaneously.

Accessing memory, whether reading or writing: A multiport memory may only have one access per port.
The different ports may write to different memory locations, writing to the same location from multiple
ports will result in undefined behaviour.

¢ Sending data to a shared function block for processing: Note that if the block is pipelined, it may be
processing several items of data simultaneously, each at different stages within the pipeline.
Writing to a bus: While a bus may be used to connect to another resource, the bus is a resource in its own
right, since only one output may write to the bus at a time.

Since the conflicts may occur between quite different parts of the design that may be executing
independently, none of these conflicts can be detected by a compiler. The compiler can only detect
potential conflicts through the resource being connected in multiple places and, as a result, it builds the
multiplexer needed to connect to the shared resource. The conflicts are run-time events; therefore, they
must be detected and resolved as they occur.

A good design principle is to reduce the coupling as much as possible between parallel sections of an
algorithm. This will tend to reduce the number of unnecessary conflicts. However, some coupling between
sections is inevitable, especially where expensive resources are shared.

One way of systematically managing the potential conflicts is to encapsulate the resource with a
resource manager (Vanmeerbeeck ef al., 2001) and access the resource via a set of predefined interfaces, as
shown in Figure 5.20. If necessary, the interface should include handshaking signals to indicate that a
request to access the resource is granted. Combining the resource with its manager in this way makes the
design easier to maintain, as it is only the manager process that interacts directly with the resource. It also
makes it easier to change the conflict resolution strategy because it is in one place, rather than distributed
throughout the code wherever the resource is accessed.

126 Design for Embedded Image Processing on FPGAs

Resource manager

Req —|

Ack <+

Data =% 1 R

T Conflict
Arbitration

Req —
Ack +—

Data =]

Req —

Ack + > —> Resource

Data =] >
T

Interfaces

Figure 5.20 Encapsulating a resource with a resource manager simplifies the design.

For example, Figure 5.21 shows a possible implementation of the double-buffered bank switching
introduced in Figure 5.8. In this example, the conflict resolution mechanism is scheduled separate
access, so no handshaking is required. The State variable controls which RAM bank is being written to
and which is being read from at any one time. The specific banks are hidden from the tasks performing
the access. The upstream task just writes to the write port as though it was ordinary memory, and the
resource controller directs the request to the appropriate RAM bank. Similarly, when the downstream
task reads from the buffer, it is directed to the other bank. The main difference between access via the
controller and direct access to a dedicated RAM bank is the slight increase in propagation delay through
the multiplexers.

A CSP model (Hoare, 1985) is another approach for managing the communication between the
resource controller and the processes that require access to the resource. This effectively uses a channel for
each read and write port, with the process blocking until the communication can take place. The blocking
is achieved in hardware by using a handshake signal to indicate that the data has been transferred.

RAM 1 RAM 2
Write ADDR __ DATA CE_R/W| ADDR __ DATA CE__R/W| Read
port port
Addr 1 Addr
Data

g i
Lpa lpsy

Req

Control

Figure 5.21 Resource manager for bank switched memories.

Mapping Techniques 127

5.3.2.1 Conflict Arbitration

A conflict occurs when multiple processes attempt to access a resource at the same time. If there is no
conflict resolution in place, the default will be for all of the processes to access the resource
simultaneously. The multiplexers used to share the resource will prevent any physical damage to the
FPGA (although care needs to be taken with busses). However, the multiple selections will be combined in
a manner that depends on the multiplexer design (Figure 4.7). Generally, this will have undesired results
and could be a cause of bugs within the algorithm that could be difficult to locate.

With conflict resolution, only one process will be granted access to the resource and the other processes
will be denied access. These processes must wait for the resource to become free before continuing. While
it may be possible to perform some other task while waiting, this can be hard to implement in practise. In
some circumstances, it may be possible to queue the access (for example using a FIFO buffer) and
continue if processing time is critical. It is more usual, however, simply to stall or block the process until
the resource becomes free.

The simplest form of conflict resolution is scheduled access. With this, conflict is avoided by designing
the algorithm such that the accesses are separated or scheduled to occur at different times. In the bank-
switch example above, accesses to each bank of RAM are separated in time. While data is being stored in
one bank, it is being consumed from the other. At the end of the frame, the control signal is toggled to
switch the roles of the banks. When stream processing is used, a shared resource may be available to other
processes during the horizontal or vertical blanking periods. If multiple processes need to use the resource,
simple synchronisation mechanisms may be used to pass access from one process to the next.

Scheduled access can also be employed at a fine grain by using a multiphase pipeline. Consider
normalising the colour components of YCbCr data (Johnston et al., 2005b) (on the left in Figure 5.22):
each of Cb and Cr are divided by Y to normalise for intensity as part of a stream processing pipeline:

Ch,=Cb/Y
Cr, =Cr/Y (5-3)
The divider is a relatively expensive resource, so sharing its access may be desirable. Since the pixel clock
is often slow compared with the capabilities of modern FPGAs, the clock frequency can be doubled,
creating a two-phase pipeline. New data is then presented at the input (and is available at the output) on
every second clock cycle. However, with two clock cycles available to process every pixel, the divider
(and other resources) can now be shared, as shown on the right in Figure 5.22. In one phase, Cb is divided
by Y and stored in Cb,,, and in the other phase Cr is similarly processed. If necessary, the divider can be
pipelined to meet the tighter timing constraints, since each of Cb and Cr are being processed in separate
clock cycles. It is only necessary to use the appropriate phase of clock to latch the results into the
corresponding output register.

When the processes are able to be synchronised, scheduled access works well and is easy to implement.
However, scheduling requires knowing in advance when the accesses will occur. It is difficult to schedule
asynchronous accesses (asynchronous in the sense that they can occur in any clock cycle; the underlying
resources must be in one clock domain so are still driven by a common clock).

= B

Phase

Figure 5.22 Sharing a divider in a two-phase pipeline.

128 Design for Embedded Image Processing on FPGAs

Select; —___

Req, ‘ﬁ:)—»Ackz Select,)
Data,

Out

Reqs Acks Selects
Datay
Req, Acky Select,
Data,

Figure 5.23 Priority-based conflict resolution. Left: a simple prioritised acknowledgement; right: a
prioritised multiplexer.

With asynchronous accesses, it is necessary to build hardware to resolve the conflict. The type of
hardware required depends on the duration of the access. If the duration is only a single clock cycle, then
relatively simple conflict resolution such as a simple prioritised acknowledgement (left panel of
Figure 5.23) may be used. With a prioritised access, different parts of the algorithm have different
priority with respect to accessing a resource. The highest priority section is guaranteed access, while a
lower priority section can only gain access if the resource is not being used by a higher priority section.
That is:

i-1
Ack; = Req; N (v Reqj) (5.4)
j=

where a smaller subscript corresponds to a higher priority. The implementation shown in Figure 5.23 is
suitable for providing a clock enable signal for a register or some other circuit where the output is sampled
on the clock. This is because the propagation delays of the circuit generating the Reg signals mean that
there can be hazards on the Ack outputs. If such hazards must be avoided, then the Ack outputs can be
registered, delaying the acknowledgement until the following clock cycle.

One example of a prioritised access is the prioritised multiplexer shown in the right panel of Figure 5.23.
The output will correspond to the highest priority selected input. This could be used, for example, in
selecting the pixel to display. Only one pixel may be displayed at any location and a standard multiplexer
would combine the pixel values if multiple inputs were selected. By assigning each source a priority, only
asingle value will be selected. This effectively creates a series of layers or overlays on the display, with the
background (lower priority) layers only being visible when a foreground layer is not selected.

Another example of prioritised access is lookahead caching. Consider a streamed operation that
requires zero, one or two accesses to memory in a clock cycle depending on the local context. Also assume
that the average number of memory accesses per clock cycle is less than or equal to one. The operation
may be splitinto two processes: one that produces the streamed output at one pixel per clock cycle, and one
that looks ahead to where two accesses are required and preloads one of those values into a cache. The
output process will have the higher priority for memory access because it must produce its streamed output
on time. The cache process, however, can access memory whenever the output process does not require it.

If the conflict duration is for many clock cycles, then a semaphore is required to lock out other tasks
while one task has access. Equation 5.4 then becomes:

7
Ack; = Req; A <,'V1 Reqj) A (Sema Vv Release) (5.5)
d

Mapping Techniques 129

—>

= -
Req, * ’D_. Ack, Regy —y
TRy
=
= —

Req,

Re
93 Reqs

DI
B

Req,

Release LM Release

Figure 5.24 A prioritised semaphore. Left: a single semaphore flag; right: a separate flag for each task,
to indicate which task currently has the semaphore.

Req,

O 0 0

where the first two terms determine the prioritised input as before. The third term selects the prioritised
input if either the semaphore, Sema, is not set or when the semaphore is released. In the latter case, the
highest priority waiting task is then acknowledged. Sema is effectively a flag that indicates whether a
resource is currently being used (on the left in Figure 5.24). Any request will set the semaphore, which will
remain set until released. The new value of the semaphore, Semd’, is:

N -
Semd = (j;/l Reqj) V (Sema A Release) (5.6)

When a request is acknowledged, the semaphore is set, which prevents further requests from being
acknowledged. Note that this also means that the Ack output only goes high for one clock cycle to
acknowledge the request. Again, with this circuit there may be hazards on the Ack outputs, which may be
removed if necessary by adding a register on each output.

If it is necessary to know which task has the semaphore, one method is to hold the corresponding Ack
output high while that task has access. This requires a separate flag for each task, as shown on the right in
Figure 5.24, where each flag is set by:

i—1 N -
Ack{ = (Reql» A ({Vl Req,-) A (_\/lAckj Vv Release)) vV (Acki A Release) (5.7)
j= -

This works on the same principle as before, with any of the semaphores blocking the requests until the
Release input is asserted. With this circuit, once a lower priority task gains the semaphore, it will block a
high priority task. If necessary, it may be modified further to enable a high priority task to pre-empt a lower
priority task:

— —— _
Ack] = l_\/l Regq; A ((Reqi A %leckj> V (Reg; A Release) v (Acki A Release)> (5.8)
= j=

Care must be taken when using semaphores to prevent deadlock. A deadlock may occur when the
following four conditions are all true (Coffman et al., 1971):

¢ Tasks claim exclusive control of the resources they require.
¢ Tasks hold resources already allocated while waiting for additional resources.

130 Design for Embedded Image Processing on FPGAs

¢ Resources cannot be forcibly removed by other tasks. They must be released by tasks using the resource.
¢ Thereisacircularchain of tasks, where each task holds resources that are being requested by another task.

Deadlock may be prevented by ensuring that any one of these conditions is false. For complex systems,
this is perhaps easiest achieved by requiring tasks to request all of the resources they require
simultaneously. If not all of the resources are available, then none of the resources are allocated. This
requires modification of semaphore circuit to couple the requests. It still does not necessarily avoid
deadlocks unless care is taken with the priority ordering. For example, consider two tasks that both require
the same two resources simultaneously. If the priority order is different for the two resources, then,
because of the prioritisation, each task will prevent the other from gaining one of the resources, resulting in
a deadlock.

5.3.3 Reconfigurability

In most applications, a single configuration is loaded onto the FPGA prior to executing the application.
This configuration is retained, unchanged, until the application is completed. Such systems are called
compile-time reconfigurable, because the functionality of the entire system is determined at compile time
and remains unchanged for the duration of the application (Hadley and Hutchings, 1995).

Sometimes, however, there are insufficient resources on the FPGA to hold all of a design. Since the
FPGA is programmable, the hardware can be reprogrammed or reconfigured dynamically, while still
executing an application. Such systems are termed run-time reconfigurable (Hadley and Hutchings,
1995). This requires the algorithm to be split into multiple sequential sections, where the only link
between the sections is the partially processed data. Since the configuration data for an FPGA includes the
initial values of any registers and the contents of on-chip memory, any data that must be maintained from
the old configuration to the new must be stored off-chip (Villasenor et al., 1996) to prevent it from being
overwritten. Unfortunately, reconfiguring the entire FPGA can take a significant time— large FPGAs
typically have reconfiguration times of tens to hundreds of milliseconds. This latency must be taken into
account in any application. With smaller FPGAs, the reconfiguration time may be acceptable (Villasenor
et al., 1995; 1996). The latency is usually less important when switching from one application to another,
for example between an application used for tuning the image processing algorithm parameters and the
application that runs the actual algorithm.

The time required to reconfigure the whole FPGA has spurred research into partially reconfigurable
systems, where only a part of the FPGA is reprogrammed. Partial reconfiguration has two advantages over
reconfiguring the entire FPGA. The first is that the configuration data for part of the FPGA is smaller than
that for the whole chip, so will usually take significantly less time to load than a complete configuration
file. It also has the advantage that the rest of a design can continue to operate while part of the design is
being reconfigured. Not all FPGAs are partially reconfigurable; the bitstream must be able to split into a
series of frames, with each frame including an address that specifies its target location within the FPGA. At
present only some of the devices with the Xilinx range and the older Atmel AT40K support partial
reconfiguration.

Partial reconfiguration requires a modular design, as shown in Figure 5.25, with a static core and a
set of dynamic modules (Mesquita et al., 2003). The static core usually deals with interface and
control functions and holds the partial results, while the reconfigurable modules typically provide the
computation. The dynamic modules can be loaded or changed as necessary at run-time, a little
like overlays or dynamic link libraries in a software system (Horta et al., 2002). Only the portion
of the FPGA being loaded needs to be stopped during reconfiguration; the rest of the design can
continue executing.

Between the dynamic modules and the static core, a standard interface must be designed to
enable each dynamic module to communicate with the core or with other modules (Sedcole, 2006).

Mapping Techniques 131

a|npow
olweuiqg
a|npow
olweuiqg
a|npow
olweuAg

Static core

Figure 5.25 Designing for partial reconfigurability. A set of dynamic modules ‘plug in’ to the
static core.

Common communication mechanisms are to use a shared bus (Hagemeyer et al., 2007) or predefined
pipeline ports connecting from one module to the next (Sedcole et al., 2003). Both need to be in standard
locations to enable them to connect correctly when the module is loaded.

Two types of partial reconfiguration have been considered in the literature. One restricts the
reconfigurable modules to being a fixed size that can be mapped to a small number of predefined
locations. The other allows modules to be of variable size and be placed more flexibly within the
reconfigurable region. The more flexible placement introduces two problems. Firstly, the heterogeneity of
resources restricts possible locations that a dynamic module may be loaded on the FPGA. The control
algorithm must not only search for a space sufficiently large to hold a module, but the space must also have
the required resources in the right place. Secondly, with the loading and unloading of modules, it is
possible for the free space to become fragmented. To overcome this, it is necessary to make the modules
dynamically relocatable (Koester et al., 2007). To relocate a module (Dumitriu et al., 2009) it must first be
stopped or stalled, then disconnected from the core. The current state (registers and memory) must be read
back from the FPGA, before writing the module (including its state) to a new location, where it is
reconnected to the core, and restarted.

Partial reconfigurability allows adaptive algorithms. Consider an intelligent surveillance camera
tracking vehicles on a busy road. The lighting and conditions in the scene can vary significantly with
time, requiring different algorithms for optimal operation (Sedcole et al, 2007). These different
subalgorithms may be designed and implemented as modules. By having the part of the algorithm that
monitors the conditions in the static core, it can select the most appropriate modules and load them into the
FPGA based on the context.

Simmler et al. (2000) have taken this one step further. Rather than consider switching between tasks
that are part of the same application, they propose switching between tasks associated with different
applications running on the FPGA. Multitasking requires suspending one task and resuming a previously
suspended task. The state of a task is represented by the contents of the registers and memory contained
within the FPGA (or dynamic module in the case of partial reconfigurability). Therefore, the configuration
must be read back from the FPGA to record the state or context. To accurately record the state, the task
must be suspended while reading the configuration and while reloading it. However, not all FPGAs
support readback, and therefore not all will support dynamic task switching.

At present, the tools to support partial dynamic configuration are quite low level. Each module must be
developed with quite tight placement constraints to keep the module within a restricted region and to
ensure that the communication interfaces are in defined locations. The system core also requires similar
placement constraints to keep out of the reconfigurable region and to fix the communication interfaces.
Xilinx provides an internal configuration access port (ICAP) to enable an embedded CPU to dynamically
reconfigure part of the FPGA (Blodget et al., 2003). This can also be accessed directly by logic for partial
reconfiguration without requiring a CPU (Lai and Diessel, 2009).

132 Design for Embedded Image Processing on FPGAs

Regardless of whether full or partial reconfigurability is used, run-time reconfigurability can be used to
extend the resources available on the FPGA. This can allow a smaller FPGA to be used for the application,
reducing both the cost and power requirements.

5.4 Computational Techniques

An FPGA implementation is amenable to a wider range of computational techniques than a software
implementation. Some of the computational considerations and techniques are reviewed in this section.

5.4.1 Number Systems

In any image processing computation, the numerical values of the pixels, coordinates, features and other
numerical data must be represented and manipulated. There is a wide range of number systems that can be
used. A full discussion of the range of number systems and associated logic circuits for performing basic
arithmetic operations is beyond the scope of this book. The interested reader should refer to one of the
many good books available on computer arithmetic (for example Parhami, 2000).

Arguably, the most common representation is based on binary or base-two numbers. As shown in
Figure 5.26, a positive binary integer, B, is represented by a set of N binary digits, b;, where each digit
represents a successive power of two. The numerical value of the number is then:

N—1
B=> b2 (5.9)
i=0

In most software representations, N is fixed by the underlying computer architecture at 8, 16, 32, or 64. On
an FPGA, however, there is no necessity to constrain the representation to these widths. In fact, the
hardware requirements can often be significantly reduced by tailoring the width of the numbers to the
range of values that need to be represented (Constantinides et al., 2001). For example, for a 640 x 480
image the row and column coordinates can be represented by 9-bit and 10-bit integers respectively.

When representing signed integers, there are three common methods. The first is the sign-magnitude
representation. This uses a sign bit to indicate whether the number is positive or negative, and the
remaining N — 1 bits to represent the magnitude (absolute value) of the number. With this representation,
addition and subtraction are slightly complicated because the actual operation performed will depend on
the combination of sign bits and the relative magnitudes of the numbers. Multiplication and division are
simpler, as the sign and magnitude bits can be operated on separately. The range of numbers represented is
from —(2V='—1) to 2Y~!—1. Note that there are two representations for zero: —0 and + 0.

The two’s complement representation is the format most commonly used by computers. Numbers in the
range —2"~! to —2¥~'—1 are represented modulo 2V, which maps the negative numbers into the range

2N=1 to —2N—1. This is equivalent to giving the most significant bit a negative weight:
N-2
B=—by 2"+ b2 (5.10)

i=0

27 20 25 2% 23 92 ol 0
[T oo oo]

Figure 5.26 Binary number representation.

Mapping Techniques 133

Therefore, negative numbers can be identified by a 1 in the most significant bit. Addition and subtraction
of two’s complement numbers is exactly the same as for unsigned numbers, which is why the two’s
complement representation is so attractive. Multiplication is a little more complex; it has to take into
account that the most significant bit is negative.

The third representation is offset binary, where an offset or bias is added to all of the numbers:

N—1

B = Offset + Y _ b2’ (5.11)
i=0

where Offset is usually (but not always) 2V~!. Offset binary is commonly used in image processing to
display negative pixel values. It is not possible to display negative intensities, so offsetting zero to mid-
grey shows negative values as darker and positive values as lighter. Offset binary is also frequently used
with A/D converters to enable them to handle negative voltages. Most A/D converters are unipolar and will
only convert positive voltages (or currents). By adding a bias to a bipolar signal, negative voltages can be
made positive enabling them to be successfully converted. A limitation with offset binary is that the offset
needs to be taken into account when performing any arithmetic.

5.4.1.1 Real Numbers

One limitation of integer representations is their inability to represent real numbers. This may be
overcome by scaling the integer by a fraction, so that the integer represents the number of fractions. If the
fraction is made a negative power of two, for example 27, then the result is fixed-point notation. The
resulting number is then:

N-2
Brp =B x27% = £ py_ 2V 1k 4 Zb,-zf*" (5.12)
i=0

where the integer B can be either unsigned or signed (usually two’s complement). A convenient shorthand
notation for the format of a fixed-point number is UN.k or SN.k, where the letter is either U or S to indicate
an unsigned or signed N-bit integer is used with & fraction bits. As seen in Figure 5.27, the N-bit integer
representation of the fixed-point number corresponds to shifting it k bits to the left.

Most real numbers can only be represented approximately with a fixed-point representation. While
increasing the number of bits to the right of the binary point will increase the accuracy of
the approximation, many even relatively simple numbers cannot be represented exactly with a finite
number of bits. For example, the fraction % has an infinitely repeating binary representation,
0.01010101010101. . ., so any fixed-point (or even floating-point) representation will only ever be

£24 23 92 ol 20 ol 92 93

[oxTbcTbsTba [oafbal i o]

Figure 5.27 Fixed-point number representation with resolution 2. Shifting the number 3 bits to the
left gives the corresponding integer representation. This number is of type U8.3 or S8.3 depending on
whether the weight of the most significant bit was positive or negative respectively.

134 Design for Embedded Image Processing on FPGAs

an approximation. The absolute error of the representation, or resolution, will be determined by the
position of the binary point.

The advantage of a fixed-point representation over a more complex floating-point representation is that
the location of the binary point is fixed. All arithmetic operations are the same as for integers, apart from
aligning the binary point for addition and subtraction. This corresponds to an arithmetic shift, by a fixed
number of bits since the location of the binary point is fixed. Such a shift is effectively free in hardware
(it is simply a case of routing the signals appropriately).

A problem with fixed-point numbers is that they have limited dynamic range. The fixed location of the
binary point fixes the resolution, so while they are able to represent some real numbers, the underlying
representation is still as an integer. The same representation is unable to represent both very small and very
large numbers. This may be overcome by allowing the location of the binary point to be variable, which
requires another parameter. A floating-point number therefore has two components: the mantissa or
significand, which are the binary digits of the number, and the exponent, which gives the power of two that
the significand is multiplied by, and effectively specifies the position of the binary point.

The floating-point representation is still an approximation to a real number. The absolute error will vary
depending on the position of the binary point. However, the relative error of the representation will be
constant regardless of the size of the number and is determined by the number of bits in the significand.
Increasing the number of bits in the significand will increase the accuracy of the approximation. The
relative error of the representation should not be confused with the relative error after an operation.
Consider, for example, subtracting two very similar numbers. Many of the significant bits will cancel,
giving a much larger relative error for the difference.

Even when a number can be represented exactly, in general it will not be unique; the number six, for
example, can be represented with a 4-bit significand as 0.011 x 2* =0.110 x 2> =1.100 x 2% To give a
unique representation, a normalised floating-point number has a 1 in the most significant bit of the
significand. Requiring numbers to be normalised will maximise the number of significant digits within a
number, and consequently minimise any errors in the approximation. However, a big disadvantage is that
there is no representation for zero (Goldberg, 1991). It also requires a sign-magnitude representation of
the significand because the two’s complement representation of a negative number would have a leading 1
regardless of the position of the binary point.

The normalised representation therefore has the significand greater than or equal to 1, and less than 2.
Since the leading digitis always 1, it can be assumed, giving an extra bit of resolution for free. The significand
bits therefore represent a binary fraction. The number of bits used for the exponent will determine the
dynamic range of numbers (the ratio between the largest and smallest number) that can be represented. While
it could potentially be represented using two’s complement, an offset binary representation is commonly
used because it enables a simpler unsigned integer comparison to be used for comparing magnitudes. The
common representation is shown in Figure 5.28, giving the floating-point number, F, as

Np
F= (—l)x pExponent (1 Jrzbjzj)
=1
where (5.13)

N.—1
Exponent = Zef 27— (2Nt
=0

24 23 22 91 20 9-19-29-39-49-59-69-72-89-99-10
I8 2 2 7 2 2 2 8 o P O o
Sign Exponent Significand

Figure 5.28 Floating-point representation.

Mapping Techniques 135

Nj is the number of bits in the significant and N, is the number of bits in the exponent. The term subtracted
from the exponent is the standard offset or bias that balances the dynamic range so that both a number and its
reciprocal may be represented.

The IEEE standard for floating-point numbers (IEEE, 2008) enables reproducibility of floating-point
calculations between machines. It does this by specifying the representation (how the bits are encoded)
making the floating-point numbers portable. For example, a single precision (32 bit) floating-point
number uses 1 bit for the sign, 8 bits for the exponent with an offset of 127, and 24 bits (including the
implicit leading 1) for the significand. Two exponent values are reserved for special cases. All zeros are
used to represent denormalised numbers (numbers smaller than the smallest normalised number),
including zero. All ones are used to represent overflow, infinity and not a number (NaN — for example
the result of 0/0 or v/—1). The standard also specifies how operations should be performed, so that the
same calculation should give the same result regardless of the processor performing the computation.

When performing an image processing calculation on an FPGA, the size of the significand and
exponent can be tailored to the accuracy of the calculation being performed, to reduce the hardware
required. The consequence of this, however, is that the result will, in general, be different from performing
the same calculation in software using the IEEE standard. As with fixed-point, this requires a careful
analysis of the approximation errors to ensure that the results are meaningful.

Multiplication and division are the most straightforward operations for floating-point numbers. For
multiplication, the significands are multiplied and the exponents added. If the resulting significand is
greater than two, renormalisation requires shifting it one bit to the right and incrementing the exponent.
The product will have more digits than can be represented, so the result must also be rounded to the
required number of digits. The sum of the two exponents will include two offsets, so one must be
subtracted off. The sign of the output is the exclusive-OR of the input sign bits. Additional logic is required
to detect underflow, overflow and handle other error conditions such as processing infinities and NaNs.
Division is similar except the significands are divided and the exponents subtracted, and renormalisation
may involve a left shift.

Addition and subtraction are more complex. As with the sign-magnitude representation, the actual
operation performed will also depend on the signs of the inputs. The numbers must be aligned so that the
exponents are the same. This will involve shifting the significand of the smaller number to the right by the
difference in the exponents. When implemented on an FPGA, such a shift is either slow (performed as a
series of smaller shifts) or expensive (implemented as a large number of wide multiplexers). If available, a
multiplier block may also be used to perform the shift (Gigliotti, 2004). Itis necessary to keep an extra bitin
the shifted smaller number (a guard bit) to reduce the error introduced by the operation (Goldberg, 1991).
The significands are then added or subtracted depending on the operation and the result renormalised. If two
similar numbers are subtracted, many of the most significant bits may cancel. Renormalisation therefore
requires determining the position of the leftmost one, moving this to the most significant bit (both operations
may be combined by using the prioritised multiplexer shown in Figure 5.24) and adjusting the exponent
accordingly. Again, additional logic is required to handle error conditions.

Floating-point operations require significantly more resources than the corresponding fixed-point
operations. It is not that floating point operations are that complicated, but managing the exceptions
requires a large proportion of the logic, especially if compliance to the IEEE standard is required. For this
reason, most developers prefer to use fixed-point unless the wider dynamic range of floating-point is
needed for an application. Where dynamic range is required, one compromise that has been proposed is to
use two fixed-point ranges (Ewe et al., 2004, 2005).

5.4.1.2 Logarithmic Number System

An alternative to floating-point is the logarithmic number system, first proposed by Kingsbury and Rayner
(1971). This achieves a wide dynamic range by representing a number by its logarithm. A sign-magnitude

136 Design for Embedded Image Processing on FPGAs

representation is required because a real logarithm is not defined for negative numbers. The logarithm of
zero is also not defined; this requires either a separate flag, a special code or approximating zero by the
smallest available number.

The logarithms are usually base-two, although using another base will simply scale the logarithm. The
logarithm is represented using fixed-point notation, with N, bits for the integer component and N bits for
the fractional component. The integer component will be the same value as the exponent for a normalised
floating-point representation (apart from the offset).

The attraction of the logarithmic number system is that multiplication and division are simple additions
and subtractions. If Ly = log, A and Lg = log, B then multiplication becomes:

log,(A x B) =log, A+1log, B=Ls +Lg (5.14)

Addition and subtraction, however, are more complex. Without loss of generality, assume that A > B.
Then:

B
log,(A £ B) :log2A(1 + Z)

:10g2A+10g2(1 + 21°gz<B/A>) (5.15)
= Ly+logy (1 + 20714
This requires two functions to represent the second term, one for addition:
log; (A +B) = La + faaa(Lg—La)
: (5.16)
where Sada(r) =log,(1+2")
and one for subtraction:
log,(A—B) = Ly + fsun(Lp—La)
? (5.17)

where Ssup(r) =log, (1-2")

These functions can either be evaluated directly (by calculating 2", performing the addition or subtraction,
then taking the logarithm), by using table lookup or by piece-wise polynomial approximation (Fu et al.,
2006). Since A > B then 25214 will be between 0 and 1. Therefore, f4 4, will be relatively well behaved,
although fs,,;, is more difficult as log, 0 is not defined. The size of the tables depends on Ny, and by cleverly
using interpolation can be made of reasonable size (Lewis, 1990).

As would be expected, if the computation involves more multiplications and divisions than additions
and subtractions then the logarithmic number representation has advantages over floating-point, in terms
of both resource requirements and speed (Haselman, 2005; Haselman et al., 2005).

5.4.1.3 Residue Number Systems

A residue number system is a system for reducing the complexity of integer arithmetic by using modulo
arithmetic. A set of k co-prime moduli, {M, M5, ... M}, is used and an integer, X, is represented by its
residues or remainders with respect to each modulus: {xy,xs, ... xx}. That is:

X =nM;+ x; (518)

Mapping Techniques 137

where each 7; is an integer and each Xx; is a positive integer. Negative values of X may be handled just as
easily because modulo arithmetic is used. The representation is unique for:

k
0<X< HM,-
i
(5.19)

=

1 1
or — M;
i=1

N |
0|

k
HMi <X<
i=1

1

Addition, subtraction and multiplication are performed respectively by using modulo addition, subtrac-
tion and multiplication independently on each of the residues. This makes the residue number system
attractive for FPGA implementation (Tomczak, 2006) because it replaces a single wide integer with a set
of smaller integers, and the calculations on each of the residues may be implemented in parallel. This can
reduce both the propagation delay and logic footprint compared with using wide adders and multipliers.

A disadvantage of the residue number system, however, is that division is impractical. The main
application is in digital filtering, which consists of fixed-point multiplications and additions, so the lack of
division is not serious.

To be useful, it is necessary to be able to convert from the residue number system back to binary.
This is performed using the Chinese remainder theorem or variants (Wang, 1998). A common choice
of moduli is {2"—1,2",2" 4+ 1} (Wang et al., 2002), for which the logic required to perform modulo
arithmetic is only marginally more complex than for performing standard arithmetic. For this set,
there are also efficient techniques for converting between binary and the equivalent residue number
representation (Fu et al., 2008).

5.4.1.4 Redundant Representations

Arithmetic operations are slow compared to simple logic operations because of the propagation delay
associated with the carry from one digit to the next. Another technique that can be used to speed arithmetic
is the use of a redundant representation. A redundant number system is one that has more digits than the
size of the radix (Avizienis, 1961). Standard binary (radix-2) uses the digits b; € {0, 1}. A commonly used
redundant system is a signed digit representation, where b; € {—1,0,1}.

With redundancy, carry propagation may be considerably shortened, giving significant speed im-
provements for additions. A particular signed digit representation that maximises the number of zeroes in
the number is the canonical signed digit form (Arno and Wheeler, 1993). This has at least one zero
between every non-zero digit, so has at least half of its digits zero. The carry from adding two canonical
signed digit numbers will propagate at most one bit. Minimising the number of digits will also reduce the
number of partial products when multiplying numbers (Koc and Johnson, 1994).

The disadvantage of redundant representations is that the additional digits require wider signals (at least
two bits are required for the radix-2 signed digit representation), wider registers for storing the numbers
and, usually, more logic to process the wider signals. While addition of two canonical signed digit
numbers will give a signed digit representation, additional logic and propagation delay may be required to
convert the result back to canonical form. With any redundant representation, additional logic is required
to convert any output back to normal binary.

The signed digit idea can be extended further, for example to b; € {—2,—1,0, 1,2} (Sam and Gupta,
1990), to further improve the performance of multipliers in particular. The trade-off is primarily between
incremental performance improvements and rapidly increasing circuit complexity. An asymmetric signed
digit representation using the digits b; € {—1,0, 1, 3} has been proposed for reducing the number of non-
zero digits (Kamp et al., 2006). It also has the advantage that each digit only requires two bits to represent;
a single 4-LUT is sufficient to perform an arbitrary operation on two digits (Kamp et al., 20006).

138 Design for Embedded Image Processing on FPGAs

Signed digits form the basis of the Booth multiplication algorithm (Booth, 1951), which uses a
combination of addition (+ 1) and subtraction (—1) and nothing (0) to reduce the number of additions
required. It is also used by non-restoring division algorithms to avoid having to restore the result when
a test subtraction gives a negative result (Bailey, 2006). Redundancy is exploited by SRT division
techniques (Robertson, 1958; Tocher, 1958) by giving an overlap when selecting the correct quotient
digit. The overlap means that the quotient digit may be determined from an approximation of the
partial remainder and does not need to wait for the carry to propagate fully. Similar techniques have
also been applied to shift and add methods for the calculation of logarithms and exponentials (Nielsen
and Muller, 1996).

5.4.2 Lookup Tables

Many functions can be quite expensive to calculate. In some circumstances, an alternative is to
precalculate the function for the range of expected inputs and store the results in a table. Then, rather
than calculate the function, the input is simply looked up in the table, which will return the result.

There are two primary instances when the use of lookup tables can be particularly valuable. The first is
when the latency of performing the calculation exceeds the available time constraint. Using a lookup table
requires a single clock cycle for the memory access regardless of the complexity of the function. The
second is when the complexity of the calculation is such that excessive resources are used on the FPGA.
A lookup table only requires a memory sufficiently large to provide an accurate representation of
the function.

There are two measures commonly used for assessing the accuracy of the representation. Let f(x)
be the function that is being approximated and f(x) the approximation in the domain @ < x < b. The
error of the approximation is then:

e(x) = F(x) —f(x) (5.20)
The total squared error between the function and its approximation is then:

b
SE = Jsz(x)dx (5.21)

a

A small squared error is one indication of a good approximation.

One limitation of using the square error to measure the difference between the function and its
approximation is that minimising the total error can make the absolute error large at some points.
Therefore, it is usually better to minimise the maximum absolute error (de Dinechin and Tisserand, 2001),
given by:

MaxE = max |e(x)| (5.22)

a<x<b

The difference between minimising the squared error and maximum error is illustrated in Figure 5.29, in
particular in the first segment.

With lookup tables, there is a trade-off between accuracy and the size of the table. While lookup tables
can be very efficient for low to moderate accuracy, they do not scale well, with the table size increasing
exponentially with the width of the input. Practical table sizes require reducing the accuracy of the input.
This can be achieved simply by dropping the least significant bits. It is not necessary to round the input, as
the content of the table can be set to give the best result over the domain implied by the bits that are kept.

Mapping Techniques 139

f@ A . f@ A . F@) 4
fx X
>
ie)
©
3
X,
3
]
2
35
g8 2 3 = x g8 2 3 = x
&(x) A
&(x) A &(x) A
m g
S} J x

Figure 5.29 Approximating a function by lookup table. Left: minimising the mean square error of
the function; centre and right: minimising the maximum error; right: reducing the error by increasing the
table size.

This is clearly shown in the centre panel of Figure 5.29, where the table entry is set to the middle of the
range for a particular bit combination. The error depends on the slope of f(x), with the maximum slope
determining the number of bits required on the input to achieve a particular accuracy on the output.

5.4.2.1 Interpolated Lookup Tables

Observe that the error function consists of a set of approximately linear segments. This can be exploited by
using linear interpolation. Rather than each entry in the table being a constant, each entry can be a line
segment containing an intercept, ¢, and slope, m. The most significant bits are looked up to get the
intercept and slope for the corresponding segment, with the least significant bits used to scale the slope to
interpolate the values:

flx) = C[x|MSB] +m[x|MSB] X X|zsp (5.23)

The linear segment approximation and corresponding hardware (Mencer and Luk, 2004) are shown in
Figure 5.30. The lookup tables for the intercept and slope have the same addresses. Such tables in parallel
are effectively a single table with a wider data path. Note that it is not necessary for the piece-wise linear
segments to be continuous; smaller errors can in general be obtained by fitting each segment indepen-
dently. The slope with the smallest error in the sense of Equation 5.22 will, in general, be the slope between
the two endpoints, with the segment offset so that the maximum error within the segment is the negative of
the error at the ends, as shown on the right in Figure 5.30. Additional errors (not shown in the figure) will
arise from truncation of the least significant bits after the multiplication and also the finite precision of the
slopes stored in the table.

An interpolated table effectively trades the size of the lookup table for increased computational
resources and latency. The accuracy of the approximation will depend on the curvature or the second
derivative of f(x).

Where the curvature is higher, a smaller step size (more bits used to look up the segment) is required to
maintain accuracy. However, over much of the table, the accuracy is more than adequate and a larger step
size could be used. A variable step size (effectively varying the partition between the most significant bits
looked up and the least significant bits used for the interpolation) can significantly reduce the table size

140 Design for Embedded Image Processing on FPGAs

s 2 =& = 2 £)
£(x) A -€ x
[. .
" > S

Figure 5.30 Linearly interpolated lookup table. The table contains both the slope and the intercept.
Centre: the computational architecture; right: method of construction that minimises the maximum error.

(Lee et al., 2003b; Lachowicz and Pfleiderer, 2008). The cost is a little more logic to manage the variable
partitioning. The variable step size approach may be extended to functions of two variables (Nagayama
et al., 2008). With two variables, it is essential to partition the space carefully to avoid excessive table
sizes, especially for higher precision outputs.

If the approximation is made continuous, as shown in Figure 5.31, and dual-port memory is
available for implementing the lookup table, then the slope table is not needed. The current intercept
and the next intercept are both looked up using separate ports, and the slope calculated from the
difference (Gribbon et al., 2003):

fx)=¢ (Xlaas) + (¢ [Xlasp + 1] —¢[X[ysa]) 27 x X|p5 (5.24)
where 27 is the weight of the least significant bit used to address the lookup table. The 2 is a bit shift,
which s free in hardware (hence it is not shown in Figure 5.31). The approximation error may be slightly

larger than if each segment is fitted independently, but this will only occur if the second derivative
changes sign, as shown between the first two segments in Figure 5.31.

@)

£(x) A

N .
J 2

Figure 5.31 Linearly interpolated lookup table using dual-port RAM. The slope is calculated from
successive table entries.

Mapping Techniques 141

For higher accuracy, each segment of the table may be represented by a higher order polynomial
approximation. This extends Equation 5.23 to:

d

F) =" pi[xluss) x (¥lpsp)" (5.25)

i=0

where d is the order of the polynomial with coefficients p,. In practise, to control the accumulation of
round-off errors, the polynomial should be evaluated using Horner’s method:

flx) = ((Pd X X|;5p +Pd*l) X X|gp+) X X|55 +Po (5.26)

For each segment, the optimum polynomial coefficients may be determined using Remez’s exchange
algorithm (Lee et al., 2003a). As with a linear approximation, the table size can often be significantly
reduced by using non-uniform segment widths at the expense of additional decoding logic (Lee et al.,
2003a). A higher order polynomial requires fewer segments to fit to a given level of accuracy, but requires
more multipliers and, therefore, more resources. Itis possible to implement a second order approximation
using only a single multiplier by making careful use of lookup tables (Detrey and de Dinechin, 2004).

5.4.2.2 Bipartite and Multipartite Tables

Observe that in Figure 5.30 the slope of the last two segments is very similar. This is often the case,
especially with smoothly varying functions. The average slope of the last two segments would also
give reasonable errors. If the offsets resulting from multiplying the slope by the least significant bits were
stored in a table, the multiplication can be avoided. Unfortunately, if the offsets were stored for every
segment, the length of the offset table would be the same as looking up every value. However, since the
offsets for adjacent segments are similar (because the slopes are similar) then several of these offsets can
be shared between segments, giving a significant reduction in the size of the table.

This is the same concept that is used in tables of logarithms (Hassler and Takagi, 1995). Consider a
standard four digit (decimal) table of logarithms. Such a table would require 10* or 10 000 entries. Instead,
it is arranged as a two-dimensional grid, with 100 rows indexed by the first two digits and 10 columns
indexed by the third digit. A second table, which contains offsets, has the same 100 rows indexed by the
first two digits, also with 10 columns, but this time indexed by the fourth digit. The same offsets apply to
the whole row of the first table. This dual table approach only requires 1000 entries in each table, for a total
of 2000 entries. The savings are even greater than first appear, because the numbers in the second table are
smaller, so the bit width can be narrower.

This approach to bipartite tables (Das Sarma and Matula, 1995; Hassler and Takagi, 1995) is shown in
Figure 5.32. In this example, the eight segments are split into two groups of four for the offset table. Note
that at this scale the bipartite method is not particularly effective for the left group, but works well for the
right group where the slopes are similar. In general, the input word is split into three approximately equal
groups of bits. The most significant two groups are used to index the main table, and define the segments.
The most significant and least significant groups are used to give the offsets that apply to the set of
segments defined by the first group.

Since no multiplication is used, only an addition, bipartite tables are fast and relatively resource
efficient. In addition, since the offsets are usually small, the width of the offset table is usually less than
that of the main table. If the value in the main table represents the centre of the segment, the entries in
the offset table may be made symmetrical. With a little extra logic, this symmetry may be exploited to
halve the size of the offset table (Schulte and Stine, 1997). One of the input bits indicates whether
the input value is in the left or right part of a segment. It can therefore be used to invert (using exclusive

142 Design for Embedded Image Processing on FPGAs

@4 ‘
B4 MSB!
B VSB: (LSB
= Y
LUTs]
§829g2383 +
£(x) A
f -
j \ > i f
X

Figure 5.32 Bipartite lookup tables. Right: symmetry is exploited to reduce the table size.

OR gates) the other address bits within the segment to get the corresponding symmetrical position. The
offset from the table is also inverted to give the symmetrical offset, as shown on the right in Figure 5.32.

This idea may be extended further to give multiple tables in parallel (Stine and Schulte, 1999; de
Dinechin and Tisserand, 2001), which enables the size of the tables to be reduced further, at the cost of an
increased number of additions.

Overall, it has been shown (Boullis et al., 2001; Mencer and Luk, 2004) that for short inputs (up to
about 8—10 bits) a direct table lookup is best. For intermediate size inputs (10—12 bits) the bipartite
tables require the smallest resources. However, for larger inputs (12-20 bits) interpolated lookup tables
are the best compromise.

5.4.3 CORDIC

CORDIC (Coordinate Rotation Digital Computer; Volder, 1959) is an iterative technique for evaluating
elementary functions. It was originally developed for trigonometric functions (Volder, 1959), but was later
generalised to include hyperbolic functions and multiplication and division (Walther, 1971). For
trigonometric functions, each iteration is based on rotating a vector (x, y) by an angle 0y:

{xkﬂ} _ {cos Or *Sinﬂ {xk} (5.27)

Vi+1 sinO; cosO ||y«

The trick is choosing the angle and rearranging Equation 5.27 so that the factors within the matrix are
successive negative powers of two, enabling the multiplications to be performed by simple shifts.

Xie+1 | _ 1 1 —ditan O | | xx
Yk+1 | cos Oy | ditan Oy 1 Vi

Sl

d, 27k 1 Vi

(5.28)

where the direction of rotation, dy, is + 1 for an anticlockwise rotation and —1 for a clockwise rotation,
and the angle is given by:

tan 0 = 27* (5.29)

Mapping Techniques 143

After a series of K rotations, the total angle rotated is the sum of the angles of the individual rotations:

>

0= djtan~'27F (5.30)
0

~
Il

The total angle will depend on the particular rotation directions chosen at each iteration. Therefore, it is
useful to have an additional register (labelled z) to accumulate the angle.
Xk K-1
[} =[I{Vi+2*

The resultant vector is:
1 —dy 2k [X() :|
1 % d 27" 1 Yo
{cos 0 —sin@} {xo]
=G|
sinf cosf || yo

where the scale factor, G, is the gain of the rotation and is constant for a given number of iterations.

(5.31)

K—1
G=]] V1i+27%* ~ 164676 (5.32)
k=0

The iterations are, therefore:

Ny1 = Xk — di 27Ky
Yi+1 =Yk +di 27 x, (5.33)

Zk41 = Zx —dp tan”! (2’1‘)

with the corresponding circuit shown in Figure 5.33. On Load, the initial values are loaded into the x, y and
z registers, and k is reset to zero. Then with every clock cycle, one iteration of summations is performed
and k incremented. Note that it is necessary for the summations and the registers to have an extra log, N
guard bits to protect against the accumulation of rounding errors (Walther, 1971). The most expensive part
of this circuit is the shifters, which are often implemented using multiplexers. If the FPGA has available
spare multipliers, these may be used to perform the barrel shifts (Gigliotti, 2004). A small ROM is required
to store the small number of angles given by Equation 5.29. There are two modes for choosing the
direction of rotation at each step (Volder, 1959): rotation mode and vectoring mode.

ROM tan~ 27
>>k
>>k ¥
Xo Yo go
- d,
Load [I ,
} Mode
Sign bits

Figure 5.33 Iterative hardware implementation of the CORDIC algorithm.

144 Design for Embedded Image Processing on FPGAs

The rotation mode starts with an angle in the z register and reduces this angle to zero by choosing dj. as the
sign of the z register as the vector is rotated:

dy = sign(z) (5.34)
The result after K iterations is:
xg = G(xo cos zg—yg sin zp)
vk = G(x sin zg + yo cos zp) (5.35)

Z[(ZO

This converges (zx can be made to go to zero within the precision of the calculation; Walther, 1971) if:

K—1
O— > 0; < Ok (5.36)

j=k+1

In other words, if the angle is zero, and a rotation moves it away, the remaining rotations must be able to
move it back to zero again. In this case, the series converges because:

tan "' 27 < 2tan~' 270+ (5.37)

For Equation 5.33 the domain of convergence is:
K-1
20l <) tan~'27F ~ 99.88° (5.38)
k=0

Starting with xo = 1/G and y, = 0, the rotation mode can be used to calculate the sine and cosine of the
angle in z,. It may also be used to rotate a vector by an angle, subject to the extension of the magnitude by a
factor of G. For angles larger than 90°, the easiest solution is to perform an initial rotation by 180°:

Xo = —X_1
Yo =—Y-1 (5.39)
Z0 — 20 + 180°

The second mode of operation is vectoring mode. This chooses d as the opposite of the sign of the y
register, determining the angle required to reduce y to zero:

dj. = —sign(yc) (5.40)
which gives the result:

xk =G x(2)+y(2)
vk =0

zx = zo +tan”! (y—o)
X0

This has the same domain of convergence as the rotation mode, given in Equation 5.38. Therefore, if xo < 0
it is necessary to bring the vector within range by rotating by 180° (Equation 5.39). The vectoring mode

(5.41)

Mapping Techniques 145

effectively converts a vector from rectangular to polar coordinates. If x, and y, are both small, then rounding
errors can become significant, especially in the calculation of the arctangent (Kota and Cavallaro, 1993). If
necessary, this may be solved by renormalizing x; and y, by scaling by a power of two (a left shift).
With both the rotation mode and vectoring mode, each iteration improves the accuracy of the angle by
approximately one binary digit.
An additional mode of operation has been suggested by Andraka (1998) for determining arcsine or
arccosine. It starts with xo =1 and y, =0 and rotates in the direction given by:

dy = sign(s—yx) (5.42)

where s is the sine of the angle. The result after converging is:

Xk =/ G2x3—s

Yk =58
.1 N
Zx = zp—Ssin —_—
G.X()

This result would be simpler if initialised with xo = 1/G. This mode is effective for |s/Gxg| < 0.98.
Outside this range, the gain of the rotation can cause the wrong direction to be chosen, leading to
convergence failure (Andraka, 1998). An alternative two-step approach to calculating arcsine and
arccosine will be described shortly.

One way of speeding up CORDIC is to consider the Taylor series expansions for sine and cosine for
small angles (Walther, 2000):

(5.43)

.o L, Ly -
sinf =01 60+1200 + ..l =0
(5.44)

1
u’ T

1
0=1--0
cos 2 +
After N/2 iterations in the rotation mode, the angle in the z register is such that 67 is less than the
significance of the least significant guard bit, so can be ignored. The remaining N/2 iterations may be
replaced by small multiplications:

XN = XN/27ZN/2Vk
[(5.45)
YN = YN/2 Tt ZNj2 Xk

(The assumption here is that the angle is in radians.) Note that the same technique cannot be applied in the
vectoring mode because it relies on the angle approaching zero.

The implementation in Figure 5.33 is word-serial in that each clock cycle performs one iteration at the
word level. Other implementations are the bit-serial (Andraka, 1998) and the unrolled parallel versions
(Wang et al., 1996; Andraka, 1998). The bit-serial implementation uses significantly fewer resources, but
requires N clock cycles per iteration, where N is the width of the registers. The unrolled implementation
(Figure 5.34) uses separate hardware for each iteration and can perform one complete calculation per
clock cycle. Unrolling enables two simplifications to the design. Firstly, the shifts at each iteration are
fixed and can be implemented simply by wiring the appropriate bits to the inputs to the adders. Secondly,
the angles that are added are constants, simplifying the z adders.

146 Design for Embedded Image Processing on FPGAs

Xq Yo Mode 2z
5 *
S %2 <
F T agts
F 7o
H

Figure 5.34 Unrolled CORDIC implementation.

The propagation delay of the unrolled implementation is long because the carry must propagate all of
the way to the sign bit at each iteration before selecting the next operation. However, the design can be
readily pipelined with a throughput of one calculation per clock cycle. Several attempts have been made
atreducing the latency by investigating ways of overcoming the carry propagation. It cannot be solved
using redundant arithmetic, because to determine the sign bit with redundant arithmetic it is still
necessary to propagate the carry. Two approaches have been developed, although they only work in
rotation mode. The first is to work with the absolute value in the z register and detect the sign changes
(Dawid and Meyr, 1992), which can be done with redundant arithmetic, working from the most
significant bit down, significantly improving the delay. The second approach relies on the fact that the
angles added to the z register are constant, enabling dj to be predicted, significantly reducing the latency
(Timmermann et al., 1992).

5.4.3.1 Compensated CORDIC

A major limitation of the CORDIC technique is the rotation gain. If necessary, this constant factor may be
removed by a multiplication either before or after the CORDIC calculation. Compensated CORDIC
algorithms integrate this multiplication within the basic CORDIC algorithm in different ways.

Conceptually the simplest (and the original compensated CORDIC algorithm) is to introduce a scale
factor of the form 1 + 2% with each iteration (Despain, 1974). The sign is chosen so that the combined
gain approaches one. This can be generalised in two ways. The first is by applying the scale factor only on
some iterations, and choosing the terms so that the gain is two, enabling it to be removed with a simple
shift. Since the signs are predetermined, this results in only a small increase in the propagation delay,
although the circuit complexity is considerable increased.

The second approach is to repeat the iterations for some angles to drive the total gain, G, to two
(Ahmed, 1982). This uses the same hardware as the original CORDIC, with only a little extra logic
required to control the iterations. The disadvantage is that it takes significantly longer than the
uncompensated algorithm. A hybrid approach is to use a mixture of additional iterations and scale
factor terms to reduce the total logic required (Haviland and Tuszynski, 1980). This is probably best
applied to the unrolled implementation.

Mapping Techniques 147

Another approach is to use a double rotation (Villalba ez al., 1995). This technique is only applicable to
the rotation mode; it performs two rotations in parallel (with different angles) and combines the results.
Consider rotating by an angle (0 + f5):

X5 = G(xo(cos 0 cos f — sin O sin f§) — yo(sin 6 cos ff + cos 0 sin f))

5.46
Yo = G(xo(sin 0 cos f + cos 0sin) + yo(cos 0 cos § — sin O sin f3)) (5:46)
Similarly, rotating by an angle (0 — f§) gives:
Xy = G(xo(cos 0 cos ff + sin Osin) — yo(sin O cos f — cos Osin f3)) (5.47)
¥y = G(xo(sin 0 cos f — cos Osin) + yo(cos 6 cos ff + sin O sin f3)) '
Then adding these two results cancels the terms containing sin f3:
1, :
3 (xx+xy) = G(xq cos 0 cos f—yq sin 0 cos f§)
' (5.48)
3 (ya+yy) = G(xosin 0 cos B+ yg cos O cos)

Therefore, by setting cos § = 1/G, the gain term can be completely cancelled. It takes the same time to
perform the double rotation as the original CORDIC apart from the extra addition at the end. However, it
does require twice the hardware to perform the two rotations in parallel, and this technique does not work
for the vectoring mode.

5.4.3.2 Linear CORDIC

So far the discussion of CORDIC has been in a circular coordinate space. The CORDIC iterations may
also be applied in a linear space (Walther, 1971):

Xk+1 = Xk
Vi1 =y +di2 7 x, (5.49)
Zks1 = zp—d 27

Again, either the rotation mode or vectoring mode may be used. Rotation mode for linear CORDIC
reduces z to zero using Equation 5.34, and in doing so is performing a variation on long multiplication with
the result:

XKk = X0
Yk = Yo + XoZo (5.50)
Zg = 0

The domain of convergence depends on the initial value of k.

K—1
20| < Y 27K m2iH (5.51)
k=k;

148 Design for Embedded Image Processing on FPGAs

Vectoring mode reduces y to zero using Equation 5.40 and effectively performs the same algorithm as non-
restoring division, with the result:

XKk = X0
=0
K . (5.52)
ZK =Zo+ —
X0

Usually, k; = 1 for which Equation 5.52 will converge provided yy < xo. Note that there is no scale factor
or gain term associated with linear CORDIC.

5.4.3.3 Hyperbolic CORDIC

Walther (Walther, 1971) also unified CORDIC with a hyperbolic coordinate space. The corresponding
iterations are then:

X1 = Xk + dk2 e
Vi1 =Yk +di2 x (5.53)
Zk4+1 = zp—dy tanh’l(Z"‘)

There are convergence issues with these iterations that require certain iterations to be repeated
(k=4,13,40,...,k., 3k, +1,...)(Walther, 1971). Note, too, that the iterations start with k = 1 because
—1 < tanhx < 1.

Subject to these limitations, operating in rotation mode gives the result:

xx = Gp(xo cosh zg + yo sinh zg)
vk = Gp(xp sinh zg + yo cosh zp) (5.54)

ZK =0

where the gain factor (including the repeated iterations) is:
K-1
Gy =[] V1-2* ~ 082816 (5.55)
k=1

and the domain of convergence is:
K—1
|zl <) tanh~'27F &~ 1.118 (5.56)
k=1
Operating in vectoring mode gives the result:
Xk = Gy\/x3—Y3

yk =0

(5.57)
Zx = 20 +tanh™! <y_o)

X0

Mapping Techniques 149

As with circular CORDIC, the gain may be compensated either by appropriate initialisation of the x or y
register (for rotation mode) or by introducing additional, compensating operations. Much of the
discussion of compensated CORDIC above may be adapted to hyperbolic coordinates.

The CORDIC iterations from the different coordinate systems may be combined to use the same
hardware (with a multiplexer to select the input to the x register). With all three modes available, other
common functions may also be calculated (Walther, 1971):

sinf

sinhf
ho =" .
tanh 0 wosh0 (5.59)
exp x = sinh x 4 cosh x (5.60)
i x—1
Inx =2tanh™ | — (5.61)
x+1

= (e) (Y 50)

Other common functions that may be calculated in two steps are:

sin~'x = tan™" (\/%7) (5.63)

2

cos 'x = tan”! (-) (5.64)
X

5.4.3.4 CORDIC Variations and Generalisations

The basis behind CORDIC is to reduce multiplications by an arbitrary number to a shift by constraining
the system to powers of two. This can be extended to the direct calculation of other functions. For example,
looking at logarithmic functions (Specker, 1965), the relation:

Inx(1+2%) =Inx+1In(1+2) (5.65)

allows a shift and add algorithm for the calculation of logarithms. The idea is to successively reduce x to one
by a series of multiplications, and adding the corresponding logarithm terms obtained from a small table.

150 Design for Embedded Image Processing on FPGAs

The iteration is given by:
X1 =xk (1+d27F)

(5.66)
Zk41 = zk—ln(l +d/(2_k)
1, xe+x2 %<1
where di = T (5.67)
0, otherwise
will converge for 0.4195 < xp < 1 to:
xg =1
: (5.68)

zxg = zo+1InXxg

Alternatively, if a factor of (l—dk2’k) is used, then the iteration converges for 1 < xy < 3.4627. The
iteration of Equation 5.66 may also be readily adapted to taking logarithms in other bases simply by
changing the table of constants added to the z register. The algorithm can also be run the other way, by
reducing z; to zero, giving the exponential function.

Muller (1985) showed that this iteration shared the same theory as the CORDIC iteration and placed
them within the same framework. Since trigonometric functions can be derived from complex ex-
ponentials using the Euler identity:

e/’ = cos0+sinf (5.69)
the iteration of Equation 5.66, can be generalised to use complex numbers (Bajard et al., 1994) enabling
trigonometric functions to be calculated without the gain factors associated with CORDIC. Another
advantage of this implementation is that it allows redundant arithmetic to be used (Nielsen and Muller,
1996) by exploiting the fact that if d; € {—1,0, 1} then there is an overlap between the selection ranges
for the dj.. This means than only the few most significant bits need to be calculated in order to determine the
next digit, reducing the effects of carry propagation delay.

While the CORDIC and other related shift-and-add based algorithms have relatively simple circuitry,
their main limitation is their relatively slow rate of convergence. Each iteration gives only a single bit
improvement of the result. A further limitation is that only a few elementary functions may be calculated.
More complex or composite functions require the evaluation of many elementary functions.

5.4.4 Approximations

An alternative to direct function evaluation is to approximate the function with another simpler function
that gives a similar result over some domain of interest. One popular method of approximating functions is
to use a minimax polynomial. This chooses the polynomial coefficients to minimise the maximum
approximation error within the domain of interest:

flx) = Z ax' (5.70)

Typically, Remez’s exchange algorithm is used to find the coefficients. However, such coefficients do not
take into account the fact that it is desirable to perform the calculation with limited precision or small
multipliers, and simply rounding the coefficients may not give the coefficients with minimum error
(Brisebarre et al., 2006). This requires a search for the appropriate coefficients.

Mapping Techniques 151

For low precision outputs (less than 14-20 bits) table lookup methods are both faster and more efficient
(Sidahao et al., 2003). However, the resources to implement a lookup table grow exponentially with
output precision, whereas those required for polynomial approximations grow only linearly.

An extension of polynomial approximations are rational approximations where:

N .
>aix!
=0

f(x) (5.71)

== .
Z b,‘.x’
i=0

Fora given level of accuracy, alower order rational polynomial is required (Koren and Zinaty, 1990) than a
regular polynomial, although it does require a division operation. This makes rational polynomial
approximations best suited for high precision.

A further approach forhigh precisionis to use aniterative approximation. This starts with an approximate
solution and with each iteration improves the accuracy. A common approach is the Newton—Raphson
iteration, which is a root-finding algorithm. The Newton—Raphson iteration is given by:

f(xk)
I (x)

Xik+1 = Xp— (572)

It works, as illustrated in Figure 5.35, by projecting the slope at x;. to obtain a more accurate estimate.
Newton—Raphson has quadratic convergence. This means that if the input is close to the solution, the
relative error will square with each iteration. This effectively means that the number of significant bits will
approximately double with each iteration.
For example, to evaluate the square root of an input number, X, an equation is formed for which v/X
is a root:

flx)=x*-X=0 (5.73)

Then, the iteration is formed from Equation 5.72:

oy _x,%—X
Kl =Xk
5.74
(o, x (5.74)
=— | x —
2 k Xk

>

fn

=V

Xk Xi+1

Figure 5.35 Newton—Raphson iteration.

152 Design for Embedded Image Processing on FPGAs

Note that the iteration of Equation 5.74 requires a division, which is relatively expensive. A variation on
this technique is to rearrange the equation to be solved. For example:

VX = \% (5.75)

so solving 1/+/X enables v/X to be calculated with a final multiplication. The corresponding function to
solve would be:

flx) =x7=X=0 (5.76)
with the corresponding iteration:
Xk+1 =X Y X
k+1 = Xk _zx;:;
(5.77)
=—Xi (3fx,%X)

Although Equation 5.77 is more complex than Equation 5.74, it does not involve a division and can almost
certainly be implemented with lower latency.

The number of iterations required to reach a desired level of accuracy depends on the accuracy of
the initial estimate. Therefore, other techniques, such as lookup tables or other approximations, are
helpful to give a more accurate initial approximation and hence reduce the number of iterations
(Schwarz and Flynn, 1993). Since the iteration for many functions is a polynomial (for example
Equation 5.77), the same hardware may be used to form the initial approximation using a low order
polynomial (Habegger et al., 2010).

5.4.5 Other Techniques
5.4.5.1 Bit-Serial Processing

In situations where resources are scarce but latency is less of an issue, bit-serial processing can provide a
solution. Conventionally, operations are performed a whole word at a time, processing all of the bits within
a data word in parallel. In contrast to this, bit-serial techniques process the data one bit per clock cycle
(Denyer and Renshaw, 1985). This requires serialising the input data and processing the data as a serial bit-
stream. The order that the bits should be presented (least significant bit first, or most significant bit first)
will depend on which input bits affect which output bits (Andraka, 1996). For example, most arithmetic
operations should be presented least significant bit first because carry propagates from the lower bits to the
higher bits. This is illustrated in Figure 5.36 for a bit-serial adder.

Processing only one bit at a time can significantly reduce the propagation delay, although more
clock cycles are required to process the whole word. For many operations, bit-serial processing can
lead to efficient pipelined designs or systolic structures. Another significant advantage of bit-serial
designs is that, because the logic is more compact, routing is also simplified and more efficient (Isshiki
and Dai, 1995).

A compromise between bit-serial and word-parallel systems is digit-serial designs (Parhi, 1991).
These process a small number of bits (a digit) in parallel but have the digits presented serially. This
can reduce the high clock speeds required for bit-serial designs while maintaining efficient use of
logic resources. Digit-serial designs therefore fall within the spectrum between bit-serial and word-
parallel systems.

Mapping Techniques 153

Full L e Sum
B——» Adder

LSB

Figure 5.36 Bit-serial adder.

5.4.5.2 Incremental Update

Another technique that may be employed, particularly with stream processing, is incremental update.
Rather than perform a complete calculation independently for each pixel, incremental update exploits the
fact that often part of the calculation performed for the previous pixel may be reused. A classic example
(Gribbon et al., 2003) is the calculation of x* or y* where x and y are pixel coordinates. When moving to
the next pixel, the identity:

(x+1)? =x>+2x+1 (5.78)

can be used to maintain the value of x* without performing a multiplication. The same concept may be
extended to calculate higher order moments (Chan et al., 1996).

A similar technique may be used to determine the input location for an affine transformation
incrementally. Consider the transformation:

X
X A B C
il y (5.79)
y D E FJ||
The input location corresponding to the next pixel in the scan line is then given by:
X <x+A
DR (5.80)

Note that in this case it may be necessary to keep extra guard digits to prevent accumulation of round-off
errors in the approximation of A and D.

Another common example of incremental update is with local filters. As the window moves from one
pixel to the next, there is a significant overlap between the corresponding input windows. Many of the
pixels within the window will be the same as the window moves. This may be exploited, for example, by
median filters by maintaining a histogram of the values within the window and updating the histogram
only for the pixels that change (Garibotto and Lambarelli, 1979; Huang et al., 1979; Fahmy et al., 2005).

5.4.5.3 Separability

Image processing often involves operations that require inputs from two (or more) dimensions. Separable
operations are those that can split the two-dimensional operations into separate operations in each of the X

154 Design for Embedded Image Processing on FPGAs

and Y dimensions. The separate one-dimensional operations are usually significantly simpler than the
composite two-dimensional operation. The most common application of separability is with filters, but it
can also be applied to two-dimensional transformations such as the fast Fourier transform (FFT), or be
used with image warping (Catmull and Smith, 1980).

5.5 Summary

This chapter has reviewed a range of techniques for mapping from a software algorithm to a hardware
implementation. These techniques may be considered as a set of design patterns that provides ways of
overcoming common problems or constraints encountered in the mapping process (DeHon et al., 2004;
Gribbon et al., 2005; 2006).

Timing constraints focussed particularly on the limited time available for performing the required
operations. One technique for improving throughput is to use low level pipelining. Another timing issue
encountered with concurrent systems is the synchronisation of the different processes. For synchronous
processes, global scheduling can derive synchronisation signals from a global counter. With asynchronous
systems one synchronisation technique is to use a channel based on CSP. If necessary, a FIFO can be used
to smooth the flow of data between processes.

Memory bandwidth constraints result from the fact that only one memory access may be made per clock
cycle. A range of techniques were reviewed that improved the bandwidth of external memories. The
largest effect can be obtained by caching data on the FPGA where the data may be distributed over several
parallel block RAMs, significantly increasing the bandwidth. Custom caching can significantly reduce the
number of times that the data needs to be loaded into the FPGA.

The third form of constraint was for resources. Any concurrent system with shared resources will face
contention when a resource is used by multiple processes. The resource needs to be multiplexed between
the various processes, with appropriate conflict arbitration. This is best managed by combining the
resource with its manager. Efficient use of the limited logic and memory resources available on an FPGA
requires appropriate data structures and computational techniques to be used by the algorithm. If
necessary, the FPGA can be dynamically reconfigured to switch from one task to another. While partial
reconfigurability has received a lot of research, not every FPGA supports it, and those that do require quite
low level programming to manage the placement constraints.

The next several chapters explore how these may be specifically applied to mapping image processing
operations onto an FPGA. Every operation may be implemented in many different ways. However, the
primary focus is on stream processing where appropriate. This is because, for an embedded system,
the data is inevitably streamed from a camera or other device. If the data is processed as it is streamed in,
the memory requirements of the algorithm can often be significantly reduced. Using stream processing
does place a strict time constraint of a one pixel per clock cycle (although this may be relaxed a little for
slower pixel clocks by using multiphase techniques), so not every operation may be able to be streamed.

6

Point Operations

Beginning with this chapter, the focus is on how specific image processing operations may be
implemented on an FPGA. The next few chapters describe preprocessing and other low level operations.
Later chapters move to intermediate level operations.

An assumption in the next few chapters (unless stated otherwise) is that the N-bit pixels represent
unsigned values from 0 to V = 2¥—1. Most of the examples here will be given with N = 8 bits.

6.1 Point Operations on a Single Image

The simplest class of image processing operations is that of point operations. They are so named because
the output value for a pixel depends only on the corresponding pixel value of the input image:

Olx,y] =f(I[x,y)) (6.1)

where f is some arbitrary function. Since the output value depends only on the input value and not on the
location of the pixel in the image, point operations may be represented by a mapping or transfer function,
as shown in Figure 6.1.

From a hardware implementation perspective, point operations may be easily implemented in any
processing mode. However, because each operation is applied exactly once to each pixel in the image, the
simplest approach is to systematically pass each input pixel through a single hardware block implement-
ing the function. This corresponds to the streamed mode of processing and is illustrated in the right panel
of Figure 6.1. Since each pixel is processed independently, point operations can also be easily
implemented in parallel. The image may be partitioned and a separate processor used with each partition.

In spite of their simplicity, point operations have wide use in terms of contrast enhancement,
segmentation, colour filtering, change detection, masking and many other applications.

If the subsequent imaging operation requires random access of pixels (for example from a frame
buffer), the hardware block implementing the point operation may be placed between the source and
subsequent operation. In this way, as the pixels are read, they are transformed by the point operation as
required for the subsequent process.

6.1.1 Contrast and Brightness Adjustment

One interpretation of the mapping function is to consider its effect on the brightness and contrast of the
image. To make an image brighter, the output pixel value needs to be increased. This may be accomplished

Design for Embedded Image Processing on FPGAs, First Edition. Donald G. Bailey.
© 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd.

156 Design for Embedded Image Processing on FPGAs

Figure 6.1 A point operation maps the input pixel value, /, to the output value, Q, via an arbitrary
mapping function, f. Right: implementation of a point operation using stream processing.

Figure 6.2 Increasing the brightness of an image by adding a constant.

by adding a constant, as illustrated in Figure 6.2. Similarly, an image may be made darker by decreasing
the pixel value, which may be accomplished by subtracting a constant. In practise, adjusting the brightness
is more complicated than this because the human visual system is nonlinear and does not consider each
point in an image in isolation but relative to its context within the overall image. This is shown in the
optical illusion in Figure 6.3, where the band through the image appears brighter on the left and darker on
the right (actually the pixel value is the same).

The contrast of an image is affected or adjusted by the slope of the mapping function. A slope greater
than one corresponds to an increase in the contrast (Figure 6.4) and a slope less than one corresponds to
a contrast reduction. This may be accomplished by multiplying by a constant greater than or less than
one respectively.

A relatively simple point operation for adjusting both the brightness and contrast is:

Q=al+b=a(l+V) (6.2)
where a and b are arbitrary constants that control the brightness and contrast. One issue is what to do when

the value for Q exceeds the range of representable values. For example, with an eight bit per pixel
representation, what should be output if Q is outside the range of 0-255? The default of just taking the

Figure 6.3 Brightness illusion.

Point Operations 157

Figure 6.4 Increasing the contrast of the image.

eight least significant bits and ignoring any overflow would cause values outside this range to wrap around.
If the goal is to enhance the brightness or contrast of an image, this is seldom the desired effect. More
sensible would be for the output to saturate or clip to the limits. Note that clipping the output is
not invertible.

Clipping requires building hardware to detect when the limits are exceeded and adjust the output
accordingly. This is shown in block diagram form in Figure 6.5. Note that either the brightness or contrast
operation may be performed first depending on the form of Equation 6.2.

On the left in Figure 6.5, the clipping tests are performed after the calculation of Equation 6.2. This
means the propagation delay for the complete operation includes the time required for the clipping test. If,
however, the clipping test was performed on the input, it would be computed in parallel with the contrast
enhancement operation (as shown on the right), and the propagation delay would be reduced. The clip
limits referred to the input are:

0-b V—b
) Imax
a a

(6.3)

Inin =

This form is most practical if the gain and offset values are constant, so that the input range can be
determined at compile time.

This circuit may be further simplified by relying on the fact V = 2V —1. With positive gain, it is only the
offset that can cause the result to go negative. Using the second form of Equation 6.2, the sign bit of the
addition can be used to set the output to zero. Similarly, the carry from the multiplication can be used to
clip to the maximum by setting all the bits to one. This scheme is shown in Figure 6.6.

Further optimisations may be made. Obviously if the gain and offset are constant then the multiplication
may be replaced by a series of fixed additions. Representing the gain in canonical signed digit form will
reduce the number of terms that need to be added.

Clipping

1sequo)

oy}
=
Q
=
5
[0]
&
O,
2]

Figure 6.5 Schematic representation of a simple contrast enhancement operation. Right: improving the
performance by moving the comparisons to the input.

158 Design for Embedded Image Processing on FPGAs

Figure 6.6 Simplified circuit. The sign bit from the addition sets the result to zero if the number is
negative, and the carry from the multiplication sets the result to all ones.

A common contrast enhancement method is to derive the gain and offset from the minimum and
maximum values available in the input image. The contrast is then maximised by stretching the pixel
values to occupy the full range of available pixel values. This obviously requires that the whole image be
read to determine the extreme pixel values, with consequent timing issues. Such issues are discussed in
Section 7.1.2 with histogram equalisation, another adaptive contrast enhancement technique.

A contrast reversal is obtained if the slope of the transfer function is negative. For example to invert the
image, a gain of —1 is used, as shown in Figure 6.7, where:

0=V-1=(2"-1)-1=1 (6:4)

Logically, this may be obtained by taking the one’s complement (inverting each bit) of the input.

The transformation does not necessarily have to be linear. The same principle applies with a nonlinear
mapping: raising or lowering the output will increase or decrease the brightness of the corresponding
pixels; slopes greater than one correspond to a local increase in contrast, while slopes less than one
correspond to a decrease in contrast; a negative slope will result in contrast inversion. A nonlinear
mapping allows different effects at different intensities.

A common mapping is the gamma transformation. This is easier to represent when considering
normalised values (where Qy and Iy represent fractions between zero and one).

On =1y (6.5)

The gamma curve was designed primarily to compensate for nonlinearities in the transfer function at
various stages within the imaging system. For example, the relationship between the drive voltage of
a cathode ray tube (CRT) and the output intensity is not linear, but is instead a power law. Therefore,
acompensating gamma curve is required to make the contrast appear more natural on the display. (This is
complicated by the fact that our eyes are not linearly sensitive to intensity either.)

The effects of the gamma transformation can be seen in Figure 6.8. When 7 is less than one, the curve
moves up, increasing the overall brightness of the image. From the slope of the curve, the contrast is

Figure 6.7 Inverting an image (Photo courtesy of Robyn Bailey).

Point Operations 159

Figure 6.8 The effects of a gamma transformation.

increased for smaller pixel values at the expense of the lighter pixels, which have reduced contrast. For y
greater than one, the opposite occurs. The image becomes darker and the contrast is enhanced in the lighter
regions at the expense of the darker regions.

A sigmoid curve is also sometimes used to selectively enhance the contrast of the mid-tones at the
expense of the highlights and shadows (Braun and Fairchild, 1999).

6.1.2 Global Thresholding and Contouring

Thresholding, in its basic form, compares each pixel in the image with a threshold level and assigns the
output to true or false (white or black) as shown in Figure 6.9. Since each pixel is treated identically,
thresholding is a point operation.

1, I>thr
= (6.6)
0, I<thr

Figure 6.9 Simple global thresholding.

160 Design for Embedded Image Processing on FPGAs

Figure 6.10 Global thresholding is not always appropriate. Left: input image; centre: optimum
threshold for the bottom of the image; right: optimum threshold for the top of the image.

Thresholding effectively classifies each pixel into one of two classes and is commonly used to segment
between object and background. An appropriate threshold level can often be selected by analysing the
statistics of the image, for example as contained in a histogram of pixel values. Several such threshold
selection methods are described in Section 7.1.4 under histogram processing.

Sometimes, however, a single global threshold does not suit the whole image. Consider the example in
Figure 6.10. The optimum threshold for one part of the image is not the optimum for other parts. Using
a global threshold to process such images will involve a compromise in the quality of the thresholding of
some region. A point operation is unsuitable to process such images, because to give good results over the
whole image the operation needs to take into account not only the input pixel value but also the local context.
Such images require adaptive thresholding, a form local filtering, and is considered further in Section 8.7.

Simple thresholding may be generalised to operate with more than one threshold level.

2, thry <1
0=<1, thry <I<thr (67)
0, I<thr

An example of this is shown in Figure 6.11. Here, two thresholds have been used to separate the image into
three regions: the background, the cards and the pips. Each output pixel is assigned a label based on its
relationship to the two threshold levels.

In this example, the darkest region is never adjacent to the lightest region. This it not the case in
Figure 6.12, where the interior of the white bubbles is black. There is also a gradation in contrast between
the white and black giving a ring of pixels within the bubbles detected as the intermediate background
level. However, even if there was a sharp change in contrast between the black and white, many of

P

L 4
ROy
R

¥

*
*
o

& &
e 2

thry thry 1

Figure 6.11 Multilevel thresholding.

Point Operations 161

Figure 6.12 Misclassification problem with multilevel thresholding. Left: original image; centre:
classifying the three ranges; right: the background level labelled with white to show the misclassifications
within each bubble.

the boundary pixels are still likely to have intermediate levels. This is because images are area sampled;
the pixel value is proportional to the average light falling within the area of the pixel. Therefore, if the
boundary falls within a pixel, as illustrated in Figure 6.13, part of the pixel will be white and part
black, resulting in intermediate pixel values. Any blurring or lens defocus will exacerbate this effect.

Consequently, with multilevel thresholding, it is inevitable that some of the boundary pixels will fall
between the thresholds and will be assigned an incorrect label. Such misclassifications require the
information from the context (filtering) either as preprocessing before the thresholding, or after thresh-
olding to reclassify the incorrect incorrectly labelled pixels.

Another form of multilevel thresholding is contouring. This selects pixel values within a range, as seen
in Figure 6.14, and requires a minor modification to Equation 6.7:

0, thr2 S 1
0= 1, thry <1 < thr, (68)
0, I<thr

Contouring is so named because, in an image with slowly varying pixel values, the pixels selected appear
like contour lines on a map. However, contouring is less effective on high contrast edges, because it is
detecting the intermediate pixel values illustrated in Figure 6.14. For a given threshold range, only a few
edge pixels may fall within the range, and there is no guarantee that these pixels would be connected.
While the pixels detected are likely to be edge pixels (depending on the threshold range), contouring
makes a poor edge detector because it lacks the context required to give connectivity.

As the output after thresholding is binary, it only requires a single bit of storage per pixel. (More bits
would be required for the output from multilevel thresholding, although this is usually significantly less
than that of the input image.) Therefore, if an image is able to be successfully thresholded as it is streamed
from the camera, the memory requirements for buffering the image are significantly reduced.

Figure 6.13 Edge pixels have an intermediate pixel value.

162 Design for Embedded Image Processing on FPGAs

s ive
*r v |
¢ 4w AN

thr thr, 7

Figure 6.14 Contouring selects pixels within a range of pixel values.

6.1.3 Lookup Table Implementation

Most of the point operations considered so far are relatively simple mappings and can be implemented
directly using logic. More complex mappings, such as gamma adjustment, require considerable logic to
implement directly. If necessary, if such operations were implemented in logic, pipelining can be used to
improve the speed.

Since the output value depends only on the input, the mapping for any point operation can be
precalculated and stored in a lookup table. Then it is simply a case of using the input pixel value to index
into the table to find the corresponding output. An example of this is shown in Figure 6.15.

The biggest advantage of a lookup table implementation is the constant access time, regardless of the
complexity of the function. The size of the table depends on the width of the input stream, with each extra
bit on the input doubling the size of the table.

A disadvantage of using a lookup table is that once the table has been set, the mapping is fixed. If the
mapping is parameterised (for example contrast enhancement or thresholding) then it is also necessary to
build logic to construct the lookup table before the frame is processed. Constructing the table will use the
same (or similar) logic as implementing the point operation directly. The only difference is that timing is
less critical. In a system with a software coprocessor, it may also be possible to construct the table in
software rather than building hardware to calculate the table values.

If the parameter can be reduced to a small number of predefined values, then one alternative is to use the
parameter to select between several preset lookup tables (as shown on the left in Figure 6.16). This is
achieved by concatenating the parameter with the input pixel value to form the table address. Another
possibility for more complex parameterised functions is to combine one or more lookup tables with logic,
as shown for the gamma mapping on the right in Figure 6.16.

A sequence of two or more point operations is in itself a point operation. For example, contrast
enhancement followed by thresholding is equivalent to thresholding with a different threshold level.

Figure 6.15 Performing an arbitrary mapping using a lookup table.

Point Operations 163

-

log exp
m LUT ° LUT _’E

Parameter

Figure 6.16 Parameterised lookup tables. Left: using the parameter as an address; right: combining
tables with logic (implementing the gamma mapping).

This property of point operations implies that a complex sequence of point operations may be replaced by
a single lookup table that implements the whole sequence in a single clock cycle.

6.2 Point Operations on Multiple Images

Point operations can be applied not only to single images, but also between multiple images. For this,
Equation 6.1 is extended to:

Q[x7y} :f(ll[xvy]’lz[xvy}w"7Ik[x7yD (69)

Corresponding pixels of the images are combined by an arbitrary function, f, to give the output pixel value
at the corresponding pixel location.

There are two main ways in which multi-image point operations are used. One is between two or more
images derived from the same input image. A variation of this is between images derived from different,
but synchronised, sensors. Stream processing requires that the streams for each of the images be
synchronised. If the processing branches prior to the point operation have different latencies, then it
will be necessary to introduce a delay within the faster branches to equalise the latency with the slowest
branch. This is shown in Figure 6.17 for a three-input point operation. Note that the delay does not
necessarily need to follow the faster process (as with Process 2); it may be inserted before it (as with
Process 3), or even distributed throughout the process. However, keeping the delay together enables
a more efficient implementation using shift registers or a FIFO buffer.

The other way is to apply the point operation between images captured at different times. This requires
one or more frame buffers to hold the data from previous frames, as shown in Figure 6.18. Direct
sequential access operates directly on the input image and one or more previous images. Recursive access
feeds the output image back to be combined in some way with the incoming input image. In both cases, the
frame buffer is used for both reading and writing. Some of the techniques of Section 5.2.1 may need to be
used to enable the multiple parallel accesses.

Process 1
Latency 4

_1.[Process 2 | |Delay
Latency A, | | =2,

L Delay| | Process 3
M—As| | Latency A3

Point
Operation

Figure 6.17 Two-image point operation applied to the same input image. A delay is inserted into the
faster branch to equalise the latency.

164 Design for Embedded Image Processing on FPGAs
Point Point Frame
Operation Operation buffer

Figure 6.18 Two-image point operation applied to successive images. Left: sequential access; right:
recursive access. A frame buffer is required to hold the image from the previous frame.

Frame
buffer

Just as single image point operations may be implemented using a lookup table, lookup tables may also
be used to implement multiple image point operations. The table input or address is formed by
concatenating the individual inputs. The main limitation of this approach is that the memory requirement
of a table grows exponentially with the number of address lines. This makes multiple input point operation
lookup tables impractical for all but the most complex operations, or where the latency is critical. As with
single input lookup tables, the latency of multiple input LUTs is constant at one clock cycle.

While there are potentially many multi-image point operations, this section focuses primarily on some
of the more common ones.

6.2.1 Image Averaging

Real images inevitably contain noise, both from the imaging process and also from quantisation when
creating a digital image. Let the captured image be the sum of the ideal, noise-free image and anoise image:

11x,3] = I[x,y] +n[x,y] (6.10)

By definition, the noise-free image is the same from frame to frame. Let the noise have zero mean, and be
independent from frame to frame:

E(nifx, Ylmjlx,y]) =0 fori#j (6.11)

where E is the expectation operator. The signal-to-noise ratio (SNR) of the noisy image is then defined by
the ratio of the energy in the signal to the energy in the noise. One definition of this is:

a2
SNR; = —3 (6.12)
n
If several images of the same scene are averaged:
Qlx,3] = > wili[x,y] (6.13)
i
where:
dowi=1 (6.14)
i
then:

Olx,y] =Y willx,)]+ Y win[x,)]
7 i (6.15)

=1I[x,y] +#lx,y]

Point Operations 165

The image content is the same from frame to frame, so will reinforce when added. However, since the
individual noise images are independent, the noise in one frame will partially cancel the noise in other
frames. The noise variance will therefore decrease and is given by (Mitra, 1998):

o2 = r;'%Zw? (6.16)
i

If averaging a constant number of images, N, the greatest noise reduction is given when the weights are all
equal. The output signal-to-noise ratio is then:

Q
~

SNRy =

A:N;%:NXSNRI (6.17)

Q
=N

Note that the signal-to-noise ratio depends on the noise variance. The noise amplitude will therefore
decrease by V/N.

There is also a limitation with averaging multiple frames to reduce quantisation noise. If the noise from
other sources (before quantisation) is significantly less than one pixel value, then the quantisation noise
will be similar from one frame to the next. The noise term will no longer be independent and the reduction
given by Equation 6.16 will no longer apply. On the other hand, if the noise standard deviation from other
sources has a standard deviation larger than one pixel value, then the quantisation noise will be
independent and will be reduced by averaging.

The main problem with averaging multiple frames is the requirement to store the previous N—1 frames
in order to perform the averaging. Alternatively, this limitation may be overcome if the output frame rate is
reduced by a factor of N. In this latter case, the images are accumulated until N have been summed, then
the accumulator is reset to begin accumulation of the next N.

To overcome this limitation, one technique is to have an exponentially decreasing sequence of weights.

O] = S a(1-a)'Tix.y] (6.18)

i=0

This may be implemented efficiently by calculating the result recursively:

Qi[xvﬂ = (1_“)Qi*1 [xvy] + otl,-[x,y]

(6.19)
= Qi*l [X,y] + a(li[xv y}iQifl [X,y])
The output noise variance, from Equation 6.16, is then given by:
00
02 = 0%2&2(1—1)21

i=0

, o (6.20)
=0,

with the resulting signal-to-noise ratio:

2 2
SNRy = (&—1)—’ (6.21)

166 Design for Embedded Image Processing on FPGAs

Frame

Figure 6.19 An implementation of weighted image averaging using Equation 6.19.

By equating Equation 6.21 with Equation 6.17, the weight to give an equivalent noise smoothing to
averaging N images is:
2

o= Nrl (6.22)
The assumption with this analysis is that no additional noise is introduced by the averaging process. In
practise, the result of multiplication by o will require truncating the result. This will introduce additional
noise, limiting the improvement in signal-to-noise ratio. To reduce this additional noise, it is necessary to
maintain additional guard bits on the accumulator image.

An example implementation of Equation 6.19 is shown in Figure 6.19. Since the frame buffer will
almost certainly be off-chip memory, one of the schemes of Section 5.2.1 will need to be used to enable the
accumulated image to be both read and written for each pixel. For practical reasons, o can be made a power
of two, enabling the multiplication to be implemented with a fixed binary shift. If & = 27 then the
effective noise averaging window, from Equation 6.22, is:

2
N==—-1=2k1_ (6.23)
o

In most applications, this restriction is not a problem.

6.2.2 Image Subtraction

The main purpose for subtracting images is to determine the similarity between two images. Two global
metrics are commonly used to gauge similarity: the sum of absolute differences (SAD):

SAD = | [x,y]~L[x,)| (6.24)
x,y
and the sum of squared differences (SSD):

SSD =y (h[x,y]~Lx,)])’ (6.25)

X,y

By squaring the difference, the SSD effectively gives more weight to large differences.
One application of these metrics is in image registration. The spatial offset of one of the images is
adjusted to obtain an estimate of the similarity as a function of position.

SSDi,j] = (hlx+i,y+j1—hlx,y])* (6.26)

X,y

Point Operations 167

Figure 6.20 Image subtraction to detect change. Left: original scene; centre: the changed scene; right:
the difference image (offset to represent zero difference as a mid-grey).

The offset corresponding to the minimum SAD or SSD is therefore the offset that makes the images most
similar, and therefore provides an estimate of the relative position of the images to the nearest pixel. Image
registration is discussed in more detail in Section 9.5.

Another application of image subtraction is to detect changes within the scene. This is illustrated in
Figure 6.20. Where there is no change, the difference between pixel values will be zero and any changes in
the image will result in non-zero difference. This allows not only the addition or removal of objects to be
detected, but also subtle shifts in the position of the object, which result in differences at intensity edges
within the image.

Offsetting the pixel values so that no difference is represented by mid-grey enables both positive and
negative differences to be represented. Any small shift in the image contents between the compared
frames results in a bas relief effect, as seen in the difference image in Figure 6.20. Analysing the pixel
values and thickness of these features enable even subpixel shifts to be detected.

Note that it is important when subtracting images taken at different times that the lighting remains
constant or the images be normalised. This is particularly difficult with outdoor scenes, where there is little
control over the lighting. There are two basic approaches to managing this problem. One is to take
differences only between images closely spaced in time, where it is assumed that conditions do not change
significantly from frame to frame, and the other is to maintain a dynamic estimate of the background that
adapts as conditions change.

The principle behind frame differencing is that, when an object moves, part of the background in the
previous image becomes obscured, resulting in a change in pixel value (assuming the object and
background have different pixel values). One of the limitations of frame differencing is that there will
also be a difference where the object was, as the background is uncovered. This is shown clearly in
Figure 6.21. While in this case the previous position and current position can be distinguished by the sign
of the difference, in general, with a complex background and objects this will not be the case. Significant
differences are detected by thresholding the absolute difference. Double differencing (Kameda and
Minoh, 1996) then detects regions that are common between successive difference images using a logical
AND. It therefore detects objects that are arriving in the first difference and leaving in the second.

Although the double difference requires data from three frames, the recursive architecture introduced in
Figure 6.19 can be readily adapted, as illustrated in Figure 6.22. The input pixel value is augmented with
one extra bit (A) to indicate that the pixel has been detected as different between the last two frames. This
difference bit is then combined with the difference bit stored with the previous frame to give the detected
output pixels.

For more slowly moving objects (that obscure the background for several successive images) it
is necessary that the object has sufficient texture to create differences in both difference frames.
Double differencing has been applied to vehicle detection using an FPGA implementation (Cucchiara
et al., 1999).

168 Design for Embedded Image Processing on FPGAs

‘ ’ 12
1 5 1011 1
3 Q

S

2
S
4

Figure 6.21 Double difference approach. Top: three successive input images; middle: differences
between successive images; bottom, left and centre: absolute differences above the threshold; bottom,
right: the double difference.

The alternative is to construct a model of the static background and take the difference between each
successive image and the background. To account for changing conditions, it is necessary for the
background image (or model) to be adaptive. Such background models can vary significantly in
complexity (Mclvor et al., 2001).

The simplest model is to represent the background image by the mean (Heikkila and Silven, 1999) or
median (Cutler and Davis, 1998) of the previous several images. The median is less sensitive to outliers,

Frame

Detected
pixels

Figure 6.22 Implementing double differencing.

Point Operations 169

but requires maintaining a large number of images to calculate. The mean, however, can be estimated
using the recursive update of Equation 6.19. In this equation, « controls how quickly changes to the scene
are updated into the background. Larger values of o result in faster adaption of the background and rapid
assimilation of objects into the background, but may result in artefacts of trails behind moving objects as
they are partially assimilated into the background (Heikkila and Silven, 1999).

A problem with such a simple model is that it is unable to cope with regions of the image that are
naturally variable, for example leaves fluttering in the wind. By estimating the variance associated with
each pixel, pixels that vary significantly may be either masked out or only be detected as foreground object
pixels if the difference exceeds three standard deviations (Orwell et al., 1999). Equation 6.19 may be
adapted to efficiently derive an estimate of the variance:

a7 bey] = (1=e)ap_ [x,y] + T, ¥ = Qilx,) (6.27)

Calculating the standard deviation requires taking the square root of the variance. A simpler alternative is
to replace the standard deviation with the mean absolute deviation:

difx,y] = (1=a)di1 [x,y] + o Li[x, y) = Qifx.]| (6.28)

Again, the recursive architecture of Figure 6.19 can be extended to detect foreground pixels. Figure 6.23
replicates the mean update logic to calculate the mean absolute deviation. All pixels that differ from the
mean by more than three deviations are detected as foreground pixels. As before, itis desirable to have o to
be a power of two to reduce the logic. The multiplication of the deviation by three can also be implemented
with a shift and add.

A limitation of the mean and variance approach is that the large variance (or mean absolute deviation) is
often the result of two or more different distributions being represented by a pixel. For example, with a flag
waving in the wind a pixel may alternate between the background and one of the colours on the flag. More
sophisticated models account for the bimodal and multimodal pixel value distributions resulting from
such effects. They represent each pixel by a weighted mixture of Gaussians (Stauffer and Grimson, 1999).
To be effective, the mixture and Gaussian parameters need to be updated online as each image is acquired.
The basic approach (Stauffer and Grimson, 1999) is to determine which of the Gaussians is represented by
the current pixel (starting with the Gaussian that has the most weight). If it is within 2.5 standard deviations
of the mean of one of the Gaussians, the pixel value is incorporated into that Gaussian, using
Equations 6.19 and 6.27. The weights for all of the Gaussians in the mixture are updated using
a similar weighted update, increasing the weight of the matched Gaussian and decreasing the weights
of the others. If none of the Gaussians in the mixture matches the current pixel, the Gaussian with the least
weight is discarded and replaced by a new Gaussian with a large standard deviation and low weight. The
most probable Gaussians are considered background and the lowest weight Gaussians represent new
events, so are considered to be foreground object pixels.

Frame
buffer
)
+
o Y
O~ e
7 TAD > . Detected
S \/ foreground

Figure 6.23 Detecting foreground pixels using the mean and mean absolute deviation.

170 Design for Embedded Image Processing on FPGAs

A significant advantage of the mixture model over a single Gaussian occurs when an object stops long
enough to become part of the background, and then moves away again. The single Gaussian model will
gradually drift to the new pixel value and then drift away again, resulting in an object being detected for
a considerable time after it moves. With the mixture model, however, the mean does not drift, but a new
distribution is begun for the object. When this receives sufficient weight, it is considered background. The
model for the original background is retained, so when the object moves again, the pixels are correctly
classified as background.

Typically, three to five Gaussians are used to model most images (Mclvor et al., 2001). An FPGA
implementation would be a relatively straightforward extension of Figure 6.23. Using more terms for each
pixel requires more storage and logic to maintain the model. This may require multiple external RAM
banks to give the required memory width. Alternatively, the frame rate can be reduced to enable sequential
memory locations to be used for the component distributions. Appiah and Hunter (2005) have
implemented a slightly simpler version of multimodal background modelling using a fixed width rather
than explicitly modelling Gaussians. Their implementation considered both greyscale and colour images.

Other, more advanced and more complex methods of background estimation and subtraction have been
reviewed by Piccardi (2004).

6.2.3 Image Comparison

Image addition and subtraction of successive images may be considered as a form of temporal filtering.
Another type of filter useful for background estimation is to select the median (Cutler and Davis, 1998),
maximum or minimum pixel value of successive images. The median is used in a similar manner to
image averaging as described earlier. A problem with using the median, however, is that multiple
images must be stored to enable its calculation on a pixel-by-pixel basis. The memory storage and
consequent bandwidth issues restrict the usefulness of median calculation to short time windows for
real-time operation.

If it is desired to detect dark objects moving against a light background, then the maximum of
successive images may be able to estimate the background (Shilton and Bailey, 2006). Sufficient images
must be combined so that for each pixel, at least one image within the set contains a background pixel.
This may be implemented directly with the recursive architecture.

Mf[xvy] =max(M,-,1[x,y],I,~[x,y]) (629)

This makes using the maximum (or conversely using the minimum to estimate a dark background with
light objects) practical. Only the maximum (or minimum) found so far needs to be stored.

Two limitations of Equation 6.29 are that any outlier will automatically become part of the background
and, if conditions change, the background is unable to adapt. These may be overcome by building a decay
into the expression:

Mi[xay} :max(aM,-,l[x,y],Il-[x,y]) (630)
where « is slightly less than one. The multiplication may be replaced by a subtraction by choosing:
a=1-27% (6.31)

When working with the minimum, such a multiplication does not work as well. In this case, it is necessary
to invert the image before scaling, so that the decay is toward white rather than black:

mie,y] = min (2" =1) = (¥ =1)=mi [x,)]), £,)
o (6.32)
= min <o¢m,-,1 [x,¥], Ii[x, y})

Point Operations 171

Frame

Background
stream

Figure 6.24 Estimating a light background using a recursive maximum.

In practise, the inversion may be performed efficiently by taking the one’s complement. Expressing
Equation 6.32 in terms of its dual puts it in the same form as Equation 6.30:

my[x,y] = max(otm,-,l[x,y}, ,-[x,y]) (6.33)

The disadvantage of the multiplication is that the amount of the decay depends on the pixel value. An
alternative is simply to subtract a constant:

M;[x,y] = max(M;_[x,y]—A, L]x,y]) (6.34)

where A is related to the expected noise level. The constant offset may also be used for estimating a dark
background:

m;[x,y] = min(m;_[x,y] + A, Li[x,y]) (6.35)

An implementation of this using the recursive architecture is shown in Figure 6.24.
Image comparison is also used for adaptive thresholding. Instead of using a constant global threshold as
in Equation 6.6, the threshold level is made to depend on the local context:

(6.36)
0, I[x,y] < thr[x,y]

L I[x,y] > thrlx,y]
QOlx,y] = {
Equivalently, the comparison may be performed by subtracting the two images and then using a single
global threshold.
Determining the threshold from the context requires some form of local filtering. Adaptive thresholding
are therefore discussed in more detail in Section 8.7 in the context of filters.

6.2.4 Intensity Scaling

Multiplication or division can be used to selectively enhance the contrast within an image. One image is
usually the input image being enhanced, and the other image represents the pixel dependent gain. As
described earlier, a gain greater than one will increase the contrast and a gain less than one will reduce the
contrast. The gain image is often obtained by preprocessing the input image in some way.

One application of pixel-by-pixel division is correcting for non-uniform pixel sensitivity within the
image sensor, or vignetting caused by the lens. If the pixel response is nonlinear, then correction requires
characterising the nonlinearity function, which is potentially different for each pixel (Sawchuk, 1977).
Fortunately, most modern solid-state sensors are linear, enabling a simpler correction. The basic principle

172 Design for Embedded Image Processing on FPGAs

is to characterise the response by capturing an image of a uniform field. This approach is also able to
correct for uneven illumination, provided the illumination is unchanged in the images being corrected.

Firstly, it is necessary to capture a reference image of a uniform field or a plain, non-textured
background. Since the image should be uniform, any variation in pixel value is a result of deficiencies in
the capture process, whether caused by variations in sensor gain or illumination. An image of a scene can
then be corrected by dividing by the reference image (Aikens et al., 1989):

Ix,y]

O] = K sy

(6.37)

where the constant & controls the dynamic range of the output image and is chosen so that the full range of
pixel values is used. If the input and reference images are captured under identical conditions, then k is
typically set to 255 (or V). For practical implementation, k can be combined with the reference image to
avoid the extra operation. After calibration, the reference image does not change. Therefore, the
processing complexity of Equation 6.37 may be reduced by converting the division to a multiplication
and precalculating k/Ref[x, y].

For best accuracy, when capturing the reference image the exposure should be as large as possible
without actually causing any pixels to saturate. In practise, a uniform illumination field is difficult to
achieve (Schoonees and Palmer, 2009) but a similar reference image may be obtained by processing a
sequence of images of a moving background containing a modulation pattern. The processing enables the
variations caused by the imaging process to be separated from the variations in the illumination
(Schoonees and Palmer, 2009).

Note that any errors or noise present in the reference image will be introduced into the image through
Equation 6.37. It is therefore important to minimise the noise. This may be accomplished, if necessary, by
averaging several images or applying an appropriate noise smoothing filter.

Once calibrated, the reference image needs to be stored so that it can be made available as needed for
processing. The large size of an image requires an external memory to use as a frame buffer in most
circumstances. However, as the reference image is generally slowly varying, it can be compressed
readily. A simple compression scheme would be to down-sample the reference image and reconstruct
the reference using interpolation. Down-sampling by a factor of 8 or 16 would give a significant data
reduction, enabling the reference to be stored directly on the FPGA. See Section 9.3 for an
implementation of the reference reconstruction process.

When considering only vignetting, an alternative approach is to model the intensity fall off with radius
(Goldman and Chen, 2005). The model can then be used to perform the correction, rather than requiring
a reference image.

Other applications of normalisation include colour balancing and colour space conversion. For
example, calculating the colour saturation requires normalising by the intensity. This, and other related
colour transformations are described in more detail in Section 6.3.

Correlation is another image operation that requires multiplication of images on a pixel-by-pixel basis.
The resulting product is then summed over the image:

COR = Ii[x,ylL[x,y] (6.38)

X,y

Like the sum of squares or absolute differences, this is a measure of the similarity of two images, with a
larger correlation indicating a better match. Like the sum of differences, correlation is also used for
image registration, by adjusting the offset of one of the images to maximise the correlation. It can be
shown that correlation is closely related to the minimum square difference (Jain, 1989). Expanding
Equation 6.25 gives:

Point Operations 173

SSD =" (I [x,y]~h[x,y])’

Xy

= Z (17 [,y + B v, y] =20 [x, ¥ [x,) (6.39)

=" Blxol+ Y Blx.y]-2C0R
X,y Y

The first two terms are constant when registering images, so maximising the correlation is equivalent to
minimising the sum of squared difference.

The problem with simple correlation for image registration is that images are finite. Therefore, if the
image is darker on one side than the other, this can introduce a bias that offsets the correlation peak. This
may be overcome by normalising the correlation by the overlap area and average pixel value (Jain, 1989):

> fle+iy+)lelxy]

B W—Z,y;[m’w} VZ T

This requires maintaining three accumulators for each correlation output: one for fg, one for /2 and one
for g. The division and square root are only performed at the end of the image, rather than at every pixel,
so their speed is much less critical.

CORyli,] (6.40)

6.2.5 Masking

The final operation that will be considered in this section is image masking. In its most basic form it
consists of a logical AND or OR operation. Masking is commonly used to select a region of an image to
process, while ignoring irrelevant regions within the image. The choice to use an AND or OR depends on
the desired level for the background. ANDing with zero will result in a black background, while ORing
with one will make the background white. These options are shown schematically in Figure 6.25.

Logical OR and AND can also be used to combine multiple regions into a single image. OR is used with
a black background and AND with a white background. The result is a generalisation of multiplexing,
using a set of mask images to select the corresponding image data for the output.

One application of this is image compositing, creating a single image from a series of offset images, for
example when making a panorama from a series of panned images. To ensure a good result, it is necessary
to correct for lens and other distortions and to ensure accurate registration in the region of overlap.

Figure 6.25 Masking, with setting of the background to black or white.

174 Design for Embedded Image Processing on FPGAs

2

Al S B
2
Wi Wy

Figure 6.26 Merging of images in the overlap region. The weights corresponding to the input images are
shown for the section A-B.

Where the scene geometry is known, this may be accomplished by rectifying the images (Bailey and
Shand, 1996). If the images are subject to vignetting, the seams between the images can be visible.
Correcting for vignetting (Goldman and Chen, 2005) can significantly improve the results by making the
pixel values of on each side of the join similar.

Rather than switch from one image to the other at the border between the images, the seam resulting
from mismatched pixel values between the images may be significantly reduced by merging the images in
the region of the overlap. Consider two overlapping frames, I; and I,, as illustrated in Figure 6.26. In the
region of overlap the two frames are merged with a smooth transition from one to the other. The weights
applied to each of the images, w; and w; respectively, depend on the width of overlap, which may vary
from image to image, and also with position within the image.

One relatively simple technique is to apply the distance transform to each of the mask images. This
labels each pixel within the mask image with the distance to the nearest edge of the mask (distance
transforms are covered later in Section 11.5). The weights may then be calculated from the distance
transformed masks, D; and D;:

D, D,

W =———, W, = =1-w 6.41
"D +D, 7 Di+D, : (6.41)
The output image is then given by:
0 =wili +wl,
:Wlll +(1*Wl)12 (642)

=1+ w ([1 —12)

An implementation of Equation 6.42 suitable for streamed operation is shown in Figure 6.27. Note that
these operations are applied for each pixel within the image. The rearrangement in Equation 6.42 reduces

Figure 6.27 Schematic for merging images, given distance weighted masks.

Point Operations 175

the computation to a single division to calculate the weight and a single multiplication to combine the two
images. The calculation may require pipelining to meet timing constraints.

6.3 Colour Image Processing

Colour image processing is a logical extension to the processing of greyscale images. The main difference
is that each pixel consists of a vector of components rather than a scalar. A vector-based image can be
defined as I, where:

I[x,y] = {L[x,y], blx,y, 53 [x,)]} (6.43)
Il [X,y]

I[X,y] = 12[X7y] (644)
13[x7y]

and I}, I, I are the component images. If the colour image is split into its component parts, then a point
operation on a colour image can be considered to be a point operation on multiple images.

The most common native representation of an image is for each pixel to have red, green and blue
components, Irgs{R, G, B}, corresponding approximately with the sensitivity of the cones within the
human visual system. As described in Section 1.2, a colour image is usually formed by capturing images
with sensors that are selectively sensitive to the red, green and blue regions of the spectrum. Colour is
typically represented by a three-dimensional vector, and the most common standard is to have eight bits
per component, resulting in a 24-bit colour system.

Sensors are not solely restricted to the visible region of the electromagnetic spectrum. Each spectral
band conveys different information about the properties of the object being imaged. Such multispectral
imaging, particularly in the infrared, has been found useful in a wide range of applications, including land
use and vegetation classification in remote sensing (Ehlers, 1991) and produce grading (Duncan and
Leeson, 1999) for detecting blemishes that may not be as apparent in the visible spectrum.

Colour image processing, therefore, involves the processing of such vector-valued images.

6.3.1 False Colouring

The first operation considered is false colouring. This is so named because the colours seen in the output
image are false in that they do not reflect the true underlying colour of the scene. The purpose of false
colouring is to make apparent to a human viewer that which may not be apparent or visible in the original
image. It is seldom used as part of an automatic image processing algorithm.

False colouring is applied in two distinct ways. The first is to map the non-visible components of a
multispectral image into the visible region of the spectrum. This enables human viewing (and interpretation)
of the resultant image. For example, in remote sensing, different types of vegetation have different spectral
signatures that are most obvious in the near infrared, red and green components (Duncan and Leeson, 1999).
Therefore, a mapping commonly used within remote sensing is to map these onto the red, green and blue
components respectively of the output image or display. The resulting colours are not the same as seen by the
unaided human eye. However, they do allow subtle distinctions to be more readily seen and distinguished.

A related technique is to combine different images of the same scene as the different components of
a colour image. One example where this has been used is to verify the correct registration of images taken
from different viewpoints (Reulke et al., 2008). The images from each viewpoint are registered to a
common coordinate system, and when combined, they should align. Any registration errors will show as
coloured fringes. A similar application is to combine images taken at different times as different

176 Design for Embedded Image Processing on FPGAs

12 f2 ‘
1 1Q 1011 1Q

Figure 6.28 Temporal false colouring. Images taken at different times are assigned to different
channels, with the resultant output showing coloured regions where there are temporal differences.
(See colour version of this figure in colour plate section)

components, as shown in Figure 6.28. Common regions within the set will show up as grey because they
have equal red, green and blue components. However, any differences will cause an imbalance in the
components, resulting in a coloured output. In the example here (Figure 6.28), dark objects appear in their
complimentary colour: the dark second hand in the red channel appears cyan, dark in the green channel
appears magenta, and dark in the blue channel appears yellow.

The second way in which false colouring is commonly used is to map a greyscale image onto a colour
image. Each pixel value is assigned a separate colour. This is implemented by using a lookup table to
produce each of the red, green and blue components, as shown in Figure 6.29. Its usefulness relies on the
ability of the human visual system to more readily distinguish colours than shades of grey, particularly
when the local contrast is different (see, for example, Figure 6.3). An appropriate pseudocolour both
enhances the contrast, and can facilitate the manual selection of an appropriate threshold level.

6.3.2 Colour Space Conversion

While the RGB colour space is native to most display devices, it is not necessarily the most natural to work
in. Colour space conversion involves transforming one vector representation into another that makes

Point Operations 177

Red LUT
—
A
Green
LUT
4 Blue LUT
>

»
'

Figure 6.29 Pseudocolour or false colour mapping using lookup tables. (See colour version of
this figure in colour plate section)

subsequent analysis or processing easier. Colour space conversion is a point operation, since each pixel is
operated on independently.

6.3.2.1 RGB

The RGB colour space is referred to as additive, because a colour is made by adding particular levels of
red, green and blue light. Figure 6.30 illustrates this with the RGB components of a colour image.

The RGB colour components (whether from capture or display) are device dependent. In a scene
captured by a camera, the colour vector for each pixel depends not only on the colour in the scene and
the illumination, but also on the spectral response of the filters used to measure the red, green and blue
components. Similarly, the actual colour produced on a display will depend on the spectral content of the
red, green and blue light sources within the display. Therefore, there are many difterent RGB colour spaces
depending on the particular wavelengths (or spectral mix) used for each of the red, green and blue primaries.

Two variations of RGB are of particular note. The first is 16-bit RGB. This is used where the entire
colour vector must be contained within 16 bits, usually as a result of bandwidth limitations. With 16-bit
RGB, five bits are allocated for each of the R and B components, and six bits are allocated for G (to take
into account the increased sensitivity of the human visual system to green). To convert from 16-bit to
24-bit RGB, rather than append zeros, it is better to append the two (for G) or three (for R and B) most
significant bits of the component as shown in Figure 6.31.

The main limitation of the RGB colour space is that it is device dependent. To combat this, a device
independent colour space was defined: SRGB (Stokes e? al., 1996). This is a defacto standard for consumer
colour devices, including cameras, printers and displays. It not only defines the specific colours of the
three primaries used for red, green and blue, but also defines a nonlinear gamma-like mapping between the
intensity and the numerical values that closely approximates the response of CRT-based displays.

178 Design for Embedded Image Processing on FPGAs

Figure 6.30 RGB colour space. Top left: combining red, green and blue primary colours; bottom: the
red, green and blue components of the colour image on the top right. (See colour version of this figure in
colour plate section)

Conversion from a device-dependent RGB to sRGB requires first multiplying the device dependent
colour vector by a 3 x 3 matrix that depends on the red, green and blue spectral characteristics of the
device. This transformation, determined by calibration, is sometimes called the colour profile of the
device. The result of the transformation represents a vector of normalised (between zero and one) linear
RGB values. Any component that is outside this range is outside the gamut of colours that may be
reproduced within SRGB and is clipped to fall within this range. Each component, Cy, is then mapped
from linear RGB to sRGB values by (Stokes et al., 1996):

12.92Cyges, Cyrce < 0.0031308
CysrG = (6.45)

1.055CY24.—0.055, Cngros > 0.0031308

The final values can then be represented as 8-bit quantities by scaling by 255.
Equation 6.45 can be easily inverted to remove the gamma component and return to linear components:

Cns
éRngB ' Cnrep < 0.04045

Cnrep = c 0055 24 (6.46)
% . Cnrgp > 0.04045

565

- IH?HI IIIBIII
HEEEEEE EEEEEEEE EEEEEEEE

888 |

Figure 6.31 Converting from RGB565 to RGB88S.

Point Operations 179

6.3.2.2 CMY and CMYK

In printing, rather than actively producing light, the image begins with the white paper, and colour is
produced by filtering or blocking some of the colour. The subtractive primaries are cyan, magenta and
yellow, and usually consist of appropriate inks, dyes or filters. Consider the yellow dye; it will allow the
red and green spectral components to pass through, but will attenuate the blue, making that part of the
scene appear yellow. The more yellow, the more the blue is attenuated, the yellower the scene will appear.
Similarly, the magenta dye attenuates the green spectral component, and the cyan dye attenuates the red
component. A CMY image is therefore formed from the cyan, magenta and yellow components:

ICMY = {C7M7 Y}

Therefore, as illustrated in Figure 6.32, the colours of a scene may be produced by mixing different
quantities of yellow, magenta and cyan dyes to give the required spectral content at each point. If the RGB
components are normalised then the corresponding normalised CMY components are approximately
given by:

Cy = 1—-Ry
My = 1-Gy (6.47)
Yy = 1-By

The exact relationship depends on the spectral content of the RGB components and the spectral
transmissivity of the CMY components. While the simple conversion of Equation 6.47 works reasonably
well with lighter, unsaturated colours, it becomes less accurate for darker and more saturated colours
where one (or more) of the CMY components is larger. There are two reasons for this. Firstly, the
attenuation is not linear with the amount of dye used, but is exponential. This makes the relationship
approximately linear for lower levels of CMY components, but deviates more for the higher levels.
Consequently, a particular spectral component cannot be completely removed, making it difficult to
produce fully saturated colours and dark colours. The second reason is that equal levels of yellow, magenta

Figure 6.32 CMY colour space. Top left: combining yellow, magenta and cyan secondary colours;
bottom: the yellow, magenta and cyan components of the colour image on the top right. (See colour
version of this figure in colour plate section)

180 Design for Embedded Image Processing on FPGAs

and cyan seldom result in a flat spectral response. Both of these factors make black appear as a muddy
colour often with a colour cast.

In printing, this problem is overcome with the addition of a black dye, resulting in the CMYK colour
space. Equal amounts of yellow, magenta and cyan dyes are replaced by the appropriate amount of black
dye. This changes the approximate conversion from Equation 6.47 to:

Ky = 1—-max(Ry, Gy, By)

Cy = 1—Ky—Ry = max(Ry, Gy, By)—Ry
My = 1—Ky—Gy = max(Ry, Gy, By)—Gy
Yy = 1—Ky—By = max(Ry, Gy, By)—By

(6.48)

Note that one of the CMYK components will always be zero. Other than for printing, the CMY or CMYK
colours spaces are not often used for image processing.

6.3.2.3 YUYV, YIQ and YCbCr

When colour television was introduced, backward compatibility with existing black and white television
was desired. The luminance signal, Y, is a combination of RGB components, with the colour provided by
two colour difference signals, B—Y and R—Y. Assuming normalised RGB, the image can be represented
in YUV colour space, Iypy = {Y, U, V}, with the components given by:

Y = 0.299R 4 0.587G +0.114B
U =0.492(B—Y) (6.49)
V =0.877(R—Y)

The particular weights given for the Y component reflect the relative sensitivities of the human visual
system. Representing Equation 6.49 in matrix form gives:

Y 0.299 0587 0.1141[R
U|=]-0147 —0280 0436 |G (6.50)
1% 0.615 —0.515 —0.100] | B

The range of the V component is from —0.615 to 0.615, which requires an extra bit to represent. When
processing digitally, it is more common to adjust the scale factors of the U and V components so both are in
the range —0.5 to 0.5 (for example as used by the JPEG2000 standard (ISO, 2000)). This makes the
transform matrix:

Y 0299 0587 0.1147[R
U|=|-0169 —0331 0500 |G (6.51)
1% 0.500 —0.419 —0.081] B

The YIQ colour space is very similar to the YUYV, except for different weights in Equation 6.50:

Y 0.299 0587 0.1147[R
I|=1059% -0275 —0321||G (6.52)
0 0212 —0523 0311] | B

Point Operations 181

The difference is that the chrominance components (U, V) are rotated by 33 degrees. This requires a full
matrix multiplication (nine multiplications) rather than the five of Equation 6.49. The advantage gained is
a reduction in bandwidth required for television broadcasting because the human visual system is less
sensitive to the Q component than to the / component. The YIQ colour space, however, is seldom used for
digital image processing.

Strictly speaking, the YUV colour space is an analogue representation. The corresponding digital
representation is called YCbCr, with Iycpc, = {Y, Ch, Cr}. There are two commonly used YCbCr
formats: one scales the values by less than 255 to give 8-bit quantities with headroom and footroom and
offsets the chrominance components to enable an unsigned representation:

Y 65.481 128.553 24.966] [Ry 16
Ch| =|—-37797 —-74.203 112.0 Gy | +|128 (6.53)
Cr 112.0 —93.786 —18.214 | | By 128

and the other uses the full range of 8-bit outputs for each of the components. This latter case is often used
with 8-bit input images (from 0-255) where the headroom and footroom are not considered as important
as maximising the dynamic range:

Y 0299 0587 0.1147][R 0
Cb| =1-0.169 —0.331 0500 |G| + | 128 (6.54)
Cr 0.500 -0.419 —-0.081] | B 128

The implementation of Equation 6.54 will be considered here. This matrix can be factorised to use four
multiplications:

Y =0.299(R—G) +0.114(B—G) + G

0.5
Cb=—"—"(B-Y)+128 =0.564(B—Y) + 128
(1-0.114) (6.55)
cr—— 03 (R—Y)+128 = 0.713(R—Y) + 128
"~ (1-0.299) o

with the implementation shown in Figure 6.33. The inverse similarly requires four non-trivial
multiplications.

R 1 0 1.402 Y
G|=|1 -0344 —0714] | Cb—128 (6.56)
B 1 1772 0 Cr—128

Since the multiplications are by constants, they may be implemented efficiently using a few additions. The
addition and subtraction of 128 can be accomplished by just inverting the most significant bit. The YCbCr
components of a colour image are illustrated in Figure 6.34.

From an image processing perspective, the advantage of using YUV or YCbCr over RGB is the
reduction in correlation between the channels. This is particularly useful with colour thresholding as
described in the next section. It also simplifies the enhancement of colour images. For example, contrast
enhancement (such as histogram equalisation) may be performed on the ¥ component of the image.

182 Design for Embedded Image Processing on FPGAs

Figure 6.33 Left: conversion from RGB to YCbCer; right: conversion from YCbCr to RGB.

There are two limitations of the YUV (or YCbCr colour space). The first is that the transformation is a
(distorted) rotation of the RGB coordinates. The scale factors are chosen to ensure that every RGB
combination has a legal YCbCr representation; however, the converse is not true. Some combinations of
YCbCr fall outside the legal range of RGB values. The implication is that more bits must be kept in the
YCbCr representation if the transform is to be reversed. Note that this cannot be avoided when using
rotation based transformation of the colour space.

The second limitation is that it requires either floating-point or fixed-point multiplications to perform
the transformation. This problem is primarily caused by the different weights for the ¥ component, which
are based on human perception of the luminance. From an image processing point of view, this is often less
relevant and can be relaxed.

The obvious solution to this problem is to restrict the coefficients to powers of two. There are several
ways of accomplishing this. One is the reversible colour transform (RCT) used by lossless coding in
JPEG2000 (ISO, 2000). This has:

R+2G+B
Y_{ 4 J
(6.57)
Cr=R-G
Ch =B-G

Figure 6.34 YCbCr colour space. Top left: the Ch—Cr colour plane at mid luminance; bottom: the
luminance and chrominance components of the colour image on the top right. (See colour version of this
figure in colour plate section)

Point Operations 183

where | | represents truncation. Although information appears to be lost by the truncation, it is retained in
the other two terms and can be recovered exactly (hence reversible colour transform). The Cr and Cb terms
would appear to require an extra bit to prevent wrap around, and this is mandated in the JPEG2000
standard, but this is actually unnecessary, since the Y term provides sufficient information to resolve the
ambiguity. The reverse transformation is:

R :Y*{CFZCbJ

(6.58)
G=Cr+G
B=Ch+G

While this solution is good from a coding perspective, for many image processing algorithms the
ambiguity between positive and negative values of Cr and Ch would need to be resolved by retaining the
extra bit.

The RCT is not orthogonal; in particular, there is a strong correlation caused by the significant sharing
of the G component. One YUV-like orthogonal transformation is (Sen Gupta et al., 2004; Sen Gupta and
Bailey, 2008):

Y 1 1 1 R
Ul=11 =2 1 G (6.59)
\% 1 0 -1 B

A similar transformation is:
Y 1 2 1 R
Ul=11 -1 1 G (6.60)
\% 1 0 -1 B

The problem with these is that the inverse transformations require division by three. An orthogonal
transformation that uses powers of two for both the forward and inverse transformations is not possible. A
minor adjustment to Equations 6.59 and 6.60 gives a simple transform that is nearly orthogonal and is also
easily inverted. Here it is represented in normalised form:

Y 11 1||R

N)
vl =14 4 ile (661)
1% %07%3

This may be further factorised to reduce the complete transformation to four additions, with the +2
performed by a shift, which is free in hardware. The implementation of this, and its inverse:

R 11 1Y
Gl=1|1 -1 o||U (6.62)
B 1 1 —1]Lv

are shown in Figure 6.35.

184 Design for Embedded Image Processing on FPGAs

+—
| e O

Figure 6.35 A multiplier-less YUV-like transformation and its inverse.

6.3.2.4 HSYV and HLS

The RGB or YUV colour spaces do not reflect the psychological way in which colour is interpreted or
thought about. When a colour is interpreted, it is considered primarily in terms of its hue and the strength
of the colour (saturation) rather than the individual RGB components. Therefore, it is reasonable to have
a colour space with hue, saturation and intensity as the three components. Two such colour spaces are
Iysv = {H,S, V} (hue, saturation and value) and Iy s = {H, L, S} (hue, lightness, and saturation) (Foley
and Van Dam, 1982).

The HSV colour space is typically represented as a cone as shown in the left panel of Figure 6.36. The
hue represents the angle around the cone, resulting in the colour wheel on the right panel of Figure 6.36. By
definition, the black-white axis up the centre of the cone has a hue of zero. The remainder of the colour
wheel is split into three sectors based on which component is the maximum, and the proportion between
the other two components is used to give the angle. This is illustrated graphically in the colour wheel in
Figure 6.36.

Mathematically, the hue is defined as:

0, R=G=B
(G—B)60° .
d360°, R>G,B
max(R, G, B)—min(R,G,B) . 1=
H= (B—R)60° L120°. G>RB (6.63)
max (R, G, B)—min(R, G, B) ’ =
(R—G)60°

240° B>R,G
max (R, G,B)—min(R, G, B) + ’ =

_G
o+ .
White «@ T,
G__ Y

y=xew

@
bl
min=R

Black
Black

Figure 6.36 HSV and HLS colour spaces. Left: the HSV cone; centre: the HLS bi-cone; right: the hue
colour wheel. (See colour version of this figure in colour plate section)

Point Operations 185

With a binary number system, the use of degrees (or even radians) is inconvenient. There are two
alternatives. One is to normalise the angle so that a complete cycle goes from zero to one, which
maximises the hue resolution for a given number of bits and avoids the need to manage wraparound of
values outside the range of 0-360°. This may be preferable when performing many manipulations on the
hue. The other is to represent 60° by a power of two (for example 64) to simplify the multiplication. It also
makes it easier to convert back to RGB.

The value is similar to Y, except that equal weight is given to the red, green and blue components, rather
than weighting them based on human perception. The V component represents the height up the cone. The
value is usually represented normalised between zero and one.

Vy = max(RN,GMBN) (664)

The saturation represents the strength of the colour and is represented by the radius of the cone relative to
the maximum radius for a given value:

0, max(R,G,B) =0

Susy = 4 max(R, G, B)—min(R, G, B)) (6.65)
, otherwise
max(R, G, B)

This normalisation means only the value changes as the intensity of the image is scaled. The HSV
components of a sample image are shown in the middle row of Figure 6.37. Note that for greys in the
input image the hue is meaningless, because even a small amount of noise on the components will
determine the hue.

The HLS representation is slightly different from the HSV colour space in that it is a bi-cone rather than
a cone, as seen in the centre panel of Figure 6.36. The main advantage of HLS over HSV is that it is
symmetric with respect to black and white. The hue is the same for both representations, given by
Equation 6.63, but the lightness and saturation differ from the HSV space. Again, the lightness and
saturation are usually represented as normalised values.

LN = %(max(RN, GN7 BN) + IIliIl(RN7 GN7 BN)) (666)
0, Ly=0
max(R, G,B)—min(R, G, B)
2L 5 Ly <%
Shis = v (6.67)

max(R, G, B)—min(R, G, B)
2—-2Ly ’

Ly >

The HLS components of the sample image are shown in the bottom row of Figure 6.37.

Equation 6.66 places fully saturated primary colours at half lightness, at the intersection of the two
cones. In general, this makes L less than V, although this has no real consequence from an image
processing perspective.

186 Design for Embedded Image Processing on FPGAs

Figure 6.37 HSV and HLS colour spaces. Top left: HSV hue colour wheel, with saturation increasing
with radius; middle row: the HSV hue, saturation and value components of the colour image on the top
right; bottom row: the HLS hue, saturation and lightness components. (See colour version of this figure
in colour plate section)

The major limitation of HLS is that the saturation is only constant with scaling lightness only in the
lower cone (Ly < %). This gives the anomaly that pastel colours can appear as fully saturated. In particular,
this can be seen in the lighter areas of Figure 6.37, where the saturation is high.

For these reasons, only the implementation of HSV will be considered here. Figure 6.38 shows an
implementation of the conversion from RGB to HSV. The minimum and maximum components are
determined from the sign bits of the differences between the input colour channels. These differences need
to be calculated anyway to give the numerators of Equation 6.63, so this information is effectively
obtained for free. Apart from the multiplexers to select the minimum and maximum components, the main
complexity is the two dividers for normalising the hue and the saturation. The colour wheel is rotated so
that a hue of zero corresponds to magenta to save the modulo normalisation when the maximum pixel is
red. To achieve this, the offset added to the hue is given by:

Offset = 256 - Bipax + 128 - Gax + 64 (6.68)

with the hue taking a value between zero and 383. If necessary, this can be shifted back by subtracting 64,
and then adding 384 if the result goes negative.

To convert HSV back to RGB, the three most significant bits of the hue represent the sector, hence can
be used to select the appropriate values for the RGB components:

Point Operations 187

~ * o * >

X .4
bits
W Gmin Bmin ax| Gmax
q

Sign *
(@)

A

Max

G

L]
(|)
YvYyYY
TOTL—W6

0,

Min

P

YvYyYV9

<19

Figure 6.38 Conversion from RGB to HSV.

{V,V—VS,V—VSH;sp}, Hysp =0
{V,V—VS(I—HLSB),V—VS}, Hysp = 1
{V—VSHs3,V,V—VS}, Hysp =2

Irgs = (6.69)
{V-VS,V,V—VS(1—Hisp)}, Huspg =3
{V—VS,V—VSH;sp,V}, Hysp = 4
{V—-VS(1—Hysg),V-VS,V}, Hysg =5

where the least significant bits of hue are considered as a fraction. An implementation of Equation 6.69 is
shown in Figure 6.39.

A form of hue and saturation may also be derived from the YCbCr colour space by converting the
chrominance components into polar coordinates (Punchihewa et al., 2005). This may be readily
implemented using a CORDIC transformation.

(6.70)

hIRGIL

&

&

A{n»wm—\ogmbwm—\o/ﬂinhww—\o

il

Figure 6.39 Conversion from HSV to RGB.

188 Design for Embedded Image Processing on FPGAs

S =+\/cp+cr (6.71)

In this form, the saturation will scale with intensity, which is generally not desired. To make the saturation
more meaningful, it is necessary to scale the saturation by either the Y or the maximum RGB component
so that it is not intensity dependent.

The HSV colour space is useful in image processing for colour detection and enhancement. The
advantage gained is the intensity independence of hue and saturation, enabling more robust segmentation.
One limitation, however, is the need to have a correct colour balance. The hue (and also the saturation to
a lesser degree) is affected by any colour cast, especially for colours with low saturation. Section 6.3.4
considers correcting the colour balance of an image.

In some applications, only one part of the colour wheel is of interest. For example, many fruits vary in
colour from green to yellow or red. In this case the sectors between green and red are of particular interest,
whereas outside this range it less important. In these cases, a simplified substitute for hue may be used. For
example, when analysing the colour of limes, colours in the range from green (chlorophyll dominates) to
yellow (carotenoids dominate) are important (Bunnik et al., 2006); these may be captured by a ratio of the

components:
R

Hoy = (6.72)
This measure ranges from zero for pure green to one for yellow, enabling the health of the fruit to be
assessed. Such a measure is less suitable for reds (such as would be encountered when grading tomatoes,
where the red pigmented lycopene dominates), because the red component can be much larger than the
green. A small change in the green component can result in a large change in the measure. An alternative
hue measure that is more uniform is (Bunnik et al., 2006):
R-G
Ho-r=—— 6.73
r e (673)
which ranges from —1 for pure greens through O for yellow to + 1 for pure reds. Note that, as with the hue,
both the measures of Equations 6.72 and 6.73 require the correct scaling or balance between the red and
green channels to accurately reflect the colour.
In other applications, other colour distinctions may be important, enabling similar simplifications to
be used.

6.3.2.5 CIE XYZ and xyY

The limitation, as mentioned before, of RGB is that it is device dependent. In 1931, the International
Commission on Illumination (CIE) established the XYZ standard colour space. The X, Y and Z are
imaginary (in the sense that they do not correspond to any real illumination) tristimulus values chosen
such that the Y corresponds with perceived intensity, and all possible visible colours are represented by a
combination of positive values of XYZ (Hoffmann, 2000). (It is impossible to produce all visible colours
with only three real sources.)

One limitation of a three-dimensional colour space is that it is difficult to represent graphically in two
dimensions. Since the underlying colour does not change with changing intensity, a normalised colour
space I,- = {x,y,z} may be derived:

X
X=—
X+Y+z
Y
YTX+r+z (6.74)
z

Point Operations 189

620

0.0 T T T T T T T T T
0.00.10.2030405060.70.8
X

Figure 6.40 Chromaticity diagram. The numbers are wavelengths of monochromatic light in nano-
metres. (See colour version of this figure in colour plate section)

which then allows the colour or chromaticity to be represented by two of the components.

The x—y plane is usually used to define the colour, resulting in the chromaticity diagram of
Figure 6.40. Given two points on the chromaticity diagram corresponding to two colour sources, a
linear combination of those sources will lie on a straight line between those points. Therefore, any
three points, corresponding for example to red, green and blue light sources, can be mixed to produce
only the colours within the triangle defined by those three points. To go outside the triangle would
require one (or more) of the sources to have a negative intensity, which is clearly impossible. The
triangle, therefore, defines the gamut of colours that can be produced by those primaries, for example
on a display.

To convert from a chromaticity back to XYZ tristimulus values, it is also necessary to know the
intensity, Y, resulting in the xyY representation. The X and Z values may be recovered from

X=—x

(6.75)

Z =—(1-x-y)

<~ <~

With any linear tristimulus colour space, the component values may be transformed into any other
linear colour space simply by a matrix multiplication (Hoffmann, 2000). The matrix used depends,
of course, on the spectral characteristics of the particular components used. For example, the
primaries used in HDTV have the chromaticity values listed in Table 6.1. The white point defines the
chromaticity coordinates of white, defined as the colour observed when all three RGB components
are equal.

The corresponding transformation matrix and its inverse can then be derived as (Hoffmann, 2000):

R 32410 —1.5374 —-0.49847 [X
G| =|—-0.9692 1.8760 0.0416 | | Y (6.76)
B 0.0556 —0.2040 1.0570] [Z

190

Design for Embedded Image Processing on FPGAs

Table 6.1 Chromaticity values for HDTV and sSRGB

b y z
Red 0.6400 0.3300 0.0300
Green 0.3000 0.6000 0.1000
Blue 0.1500 0.0600 0.7900
White point 0.3127 0.3290 0.3583
X 0.4124 0.3576 0.18057 [R
Y| =102126 0.7152 0.0722 | | G
Z 0.0193 0.1192 09505 | B

(6.77)

If device independence is not a requirement, a device-dependent chromaticity may also be formed. This
normalises the RGB components in a similar manner to Equation 6.74:

R

"TRYG+B
G

8 R+G+B
B

b=— " 1 4g
R+G+B

with the device dependent r—g chromaticity shown in Figure 6.41.

6.3.2.6 CIE L*a*b* and CIE L*u*v*

(6.78)

One limitation of the colour spaces mentioned so far is that they are not perceptually uniform. In
estimating colour differences or colour errors, it is useful if the distance between two points is a measure of

1.0
0.9
0.8
0.7
0.6 1
0.5
0.4
0.3
0.2
0.1

0.0
0.00.10.20.30.405060.708091.0
r

Figure 6.41 Device dependent r—g chromaticity. (See colour version of this figure in colour

plate section)

Point Operations 191

the perceived colour difference. Several colour spaces have been derived from the CIE XYZ space that are
perceptually more uniform. Two considered here are the CIE L*a*b* and CIE L*u*v* colour spaces.

The L*a*b* space is defined relative to a reference white point {X,,, ¥,,, Z, } and introduces the following
nonlinearity to make the space more uniform:

6\ 3
1/3 el
o e (5)
£(C) = X (6.79)
1 @ C +i otherwise
3\ 6 29’

The conversion is to Ipgspr = {L*, a*, b*} is then:

L* = 116f(Y/Y,)—16
a* = 500(f(X/X,)—f(Y/Y,)) (6.80)
b* =200(f(Y/Yx)—f(Z/Z,))

resulting in the lightness, L*, ranging from 0 to 100. A different range may be arranged by appropriate
scaling. The a* axis goes from green (negative) to red or magenta (positive), and the b* axis goes from blue
(negative) to yellow (positive).

The function, f, may be implemented using a lookup table, although three will be required to convert
one pixel per clock cycle, one for each component. If the reference white point does not change, the
division can be combined into the tables.

The inverse conversion:

L*+16
/%) ==
a*
X/X,) = — +f(Y/Y,
SX[Xn) = 556+ (Y /Ya) (6.81)
b
f(Z/Zn) :f(Y/Yn)fzioo
requires three divisions before inverting Equation 6.79:
6
3
sy, 1(0) > 5
C= (6.82)

6\’ 16 .
3(@) (f(C)fm), otherwise

which is again best implemented as a lookup table. The resultant components then need to be
scaled by the reference white point components, which can again be combined into the lookup table
if constant.

The L*u*v* colour space was designed to be a little easier to calculate than L*a*b*, although on an
FPGA there may be little difference. The lightness is the same as Equation 6.80, with the two chrominance
components given by:

w* =13L*(u' —u',)

6.83
vE = 13L*(vV—v',) (683)

192 Design for Embedded Image Processing on FPGAs

J = 4x
X+ 15Y+43Z

where / oy (6.84)

U TXF15Y +32

The chrominance components range from —100 to 100. Again, a more convenient range may be achieved
by scaling L*.
Conversion from L*u*v* back to XYZ is:

!l u* +/
T
y* ,
V=
3 3
Yol =) 1x, 1#<8
(3) s
Y = \
L*+16\°
- k
Yn(116), L*>8
X_y9u’
4y
1234/ —20v/
z:y# (6.85)

The colour difference between two points in either the L*a*b* or L*u*v* colour space may be
determined by calculating the Euclidean distance between the corresponding vectors.

6.3.3 Colour Thresholding

Colour thresholding, like scalar thresholding, assigns a label to each pixel. With colour images, the
purpose is to detect which pixels belong to each of a set of colours of interest. The output of colour
thresholding is an image of labels, with each label corresponding to a colour class.

A computationally simple approach is to associate a rectangular box in the colour coordinates with
a colour class. This corresponds to using a pair of thresholds for each component to define the boundaries
of the box along that component.

Itis generally not appropriate to use RGB space for this unless the illumination is fixed. This is because
there is a strong correlation between the red, green and blue components, and all three will scale with
illumination. This means that as the intensity changes, points will move diagonally in RGB space,
requiring the box to be large. Consequently, only a few very different colours can be detected, and there is
poor discrimination between colours.

Converting to YCbCr will give some improvement because rectangular boxes aligned with the YCbCr
axes will be diagonal in RGB space. However, the chrominance components still scale with the
luminance. Better discrimination may be obtained by scaling the chrominance by the luminance, or
alternatively scaling the chrominance components by the maximum of the red, green and blue
components (Johnston et al., 2005b).

Point Operations 193

1 .
0 Yim Y >
1
(j T Chyp1 Chypp >
0 Cryp Cryp >
Y
B or
Cbh
- 7
Cr
- r

Figure 6.42 Colour thresholding. Left: comparisons required for each colour class using a rectangular
block; right: lookup table approach, with one lookup table per colour channel, detects multiple classes in
parallel.

Alternatively, the thresholding may be performed directly in the HSV colour space where the hue and
saturation are independent of the luminance. Note that the HLS colour space is usually less suitable than
HSV because the saturation changes with lightness when the lightness is greater than 50%.

The implementation of colour thresholding extends the contouring operation of Equation 6.8 and
Figure 6.14 to each of the three channels, as shown in the left in Figure 6.42. This circuit will need to be
repeated for each colour class to be detected.

An alternative is to use a lookup table to implement the thresholding. This requires a separate
LUT for each channel, but has the advantage that multiple classes may be segmented simultaneously
by having a separate bit-plane associated with each colour class in the lookup tables (Sen Gupta
et al., 2004).

The set of pixel values corresponding to a colour class do not necessarily need to fall within a
rectangular box aligned with the component axes. However, the logic becomes increasingly more
complex to handle arbitrary shaped regions. One approach is to use a single large lookup table taking as
input the concatenated components of the colour input vector (Sen Gupta et al., 2003). The mapping can
then be arbitrarily complex and can include any necessary colour space conversions. Unfortunately, such
a lookup table is prohibitively large (2** = 16 777 216 entries for 24-bit colour) and would need to be
implemented in external memory. The table size may be reduced by using fewer bits of the input at the cost
of poorer discrimination.

A composite approach can also be used. For example, Johnston ef al. (2005a) use two lookup tables,
for each of Ch and Cr, and combine the normalisation division by Y into those tables, with a reduced
number of bits. The resultant tables had only 512 entries of four bits (for four colour classes) enabling both
tables to be contained within a single 4 Kbit block RAM.

6.3.4 Colour Correction

The colour of each pixel observed in an image depends not only on the spectral reflectivity of the
corresponding object point, but also on the illumination. For example, the colours of objects within a scene
illuminated by incandescent light can be quite different from those illuminated by fluorescent light. For
outdoor scenes, the spectral characteristics of the illumination depend on whether the object is illuminated
by sunlight, or in shadow, or whether the sky is clear or overcast, or even on the time of day.

194 Design for Embedded Image Processing on FPGAs

The colour constancy problem is that of estimating how the scene would appear given canonical
illumination. Unfortunately, without prior knowledge of the illumination, this is an ill-posed problem. In
practise, it is not necessary to estimate the full spectral characteristics of the illumination; it is sufficient to
remove the effects of varying illumination on the image. Colour correction involves transforming the
RGB value of each pixel in the image to remove the effects of illumination. In general, this requires
determining the components of a 3 x 3 linear transformation matrix. However, given that the spectral
distribution at the sensor is the product of the reflectivity and illumination distributions, this is often
simplified to a diagonal matrix, independently scaling the R, G, and B components (Finlayson e? al.,
1994). Note that if any of the components are saturated, this will result in an additional colour change that
cannot easily be corrected.

Perhaps the simplest model is to assume that, on average, the image is achromatic (Finlayson et al.,
2001). This implies that the average colour within the image should be grey. The effective illumination
colour is then given by the mean of the red, green and blue components of the image. Correction is
performed by dividing by the mean value and scaling to ensure that all pixel values are within the range of
allowed values.

R
G =kG/ug (6.86)
B

where RGB are the corrected colour components and the scaling factor, k, that maximises the output
contrast is given by:

. MR He Hp
k=V 6.87
i max(R) 'max(G) 'max(B) (6.87)
Xy xu Xy

where V = 2V —1. Alternatively, the scaling factor can be set to V/2 (Funt et al., 1998), although this has
the danger that one or more of the components may saturate.

The major limitation of this approach is that if the image contains a dominant colour, the estimate of the
illumination colour will be biased towards that colour (Gershon et al., 1987). As a result, a colour cast
complementary to the dominant colour will be introduced into the image. This is clearly seen in the centre
panel of Figure 6.43, where a bluish cast is introduced. As it is not known in general whether or not there is
a dominant colour, this approach to colour correction is impractical.

Figure 6.43 Simple colour correction. Left: original image captured under incandescent lights,
resulting in a yellowish-red cast; centre: correcting assuming the average is grey, using Equation
6.86; right: correcting assuming the brightest pixel is white, using Equation 6.88. (See colour version
of this figure in colour plate section)

Point Operations 195

Another assumption that is sometimes used for colour correction is that the image contains at least one
white pixel within the image, and that the white region is the brightest in the image. In this case, the white
pixel may be found simply by finding the maximum of each component. Since this should be white
(achromatic, with all components equal), the input image can be corrected by scaling each component by
its corresponding maximum (Funt ef al., 1998):

R =VR/ nlaix(R)
G=VG/ n}ix(G) (6.88)
B=vB/ ngx(B)

The results of this scheme are shown in the right panel of Figure 6.43.

One limitation of this approach is that it is easy for the assumptions to be violated. If the white pixel is
the brightest in the image, there is a strong possibility that one or more of the channels will be saturated at
V. The true value of that component will be underestimated, affecting the correction. In many cases, the
brightest point in an image is the result of specular reflection with the resulting pixel affected by the colour
of the reflecting surface. Also, basing the correction on a single pixel will inevitably introduce noise into
the estimate of the illumination colour, affecting the accuracy of any correction. These limitations may be
mitigated by requiring a region of adjacent pixels be detected, and using the mean of that region. The logic
for detection, however, becomes considerably more complex.

The brightest object in the image may not be white, and if it is white it may not be pure white. If the
colour is slightly off-white, making it white will introduce a cast. This limitation is harder to overcome,
because it is impossible to distinguish between an off-white surface or slightly coloured illumination.

This approach may be extended by deliberately placing a white patch within the image. If the
illumination and camera settings do not change with time, this may even be captured off-line as
a calibration image. The white patch can then be detected either automatically, or by having the patch
in a known location, or by manually selecting the region of interest. Let 4,y be the mean of the pixels
within the white patch, then the correction may be performed as:

R = VR/MR(White)
G= VG/”G(white) (689)
B=VB / KB (white)

If the white patch is not the brightest region within the image (for example, a light grey is used instead to
prevent any of the components of the calibration patch from saturating), then the V in Equation 6.89 may
be replaced by k similar to Equation 6.86.

This will ensure that the white patch will appear achromatic. However, the camera may also introduce
a DC offset in the output (for example as an offset in the amplifier or A/D converter, or not completely
estimating the dark current). The colour correction may be enhanced by introducing a black patch into
the model. Let yp4.1) be the mean of the pixels within the black patch. A colour correction using both
patches is:

Rov R—[iR(biack)
HR(white) — MR (black)

R G— ,

G-V .u'i(black) (6.90)
K6 (white) ~HG(black)

Bov B—Uppiack)

KB (white) — KB (black)

196 Design for Embedded Image Processing on FPGAs

Figure 6.44 Correcting using black, white and grey patches. Left: original image with the patches
marked; centre: stretching each channel to correct for black and white, using Equation 6.90; right:
adjusting the gamma of the red and blue channels using Equation 6.91 to make the grey patch grey. (See
colour version of this figure in colour plate section)

The results of this correction are shown in the centre panel of Figure 6.44.

If the calibration performed off-line, then the colour correction is making a brightness and
contrast adjustment to each of the channels, as described in Section 6.1.1. If the calibration is
performed on-line, then the best approach is to place the black and white patches at the top of the
image, so the mean values may be used to correct the rest of the image. Otherwise, the whole image
needs to be stored in a frame buffer to enable the whole image to be corrected. If the illumination is
changing slowly, then it may be sufficient to use the channel gains and offsets calculated from the
previous frame.

A more sophisticated model adds a third mid-grey patch, with mean value fi,,y). This allows slight
variations in gamma to be corrected between the channels. The green pixel value is left unchanged, but
a gamma correction is applied to the red and blue channels to make the components equal for the grey
patch. Considering just the red component (a similar equation results for blue):

. R— . TR
R=v| Rk (6.91)
KR (white) — KR (black)

In K (grey) —HG(black)
K6 (white) — MG (black)
where YR =
In (MR(grey) ~HR(black) >

KR (white) — MR (black)

(6.92)

The results of adjusting the gamma are shown in the right panel of Figure 6.44.

Correcting for grey requires the addition of two gamma correction blocks, one for each of red and blue
as shown in Figure 6.45. The circuit for these is complicated by the fact that the gamma values are not
constant, but are a result of calibration. If implemented on-line, the calculation of the gamma is also
required. However, since this is only performed once per frame, it is probably best implemented in
software rather than directly in hardware. In that case, the software can also calculate the values for
a lookup table implementation of the gamma correction blocks.

There is a wide range of more complex illumination estimation methods, which are not considered
here. Several of these are discussed elsewhere (Funt et al., 1998; Finlayson et al., 2001).

Point Operations 197

Figure 6.45 Implementing colour correction; the various parameters are stored in registers. Overflow
detection and clipping has been omitted for clarity.

6.3.5 Colour Enhancement

When performing colour enhancement, is often easier to work in HSV or HLS space. Since the hue
represents the basic colour, generally it is left unchanged (unless correcting colour errors as described
above). Colours can be made move vivid by increasing the saturation. This can be achieved by multiplying
by a constant, or using a gamma enhancement (with y < 1). Overall the contrast of the image may be
enhanced by enhancing the lightness or value component.

6.4 Summary

Point operations are some of the simplest to implement on an FPGA because each output pixel value
depends only on the corresponding input pixel value. This enables them to be implemented using any
processing mode. Since there are no dependencies between pixels, point operations can readily be
parallelised by building multiple processing units. It is also common to pipeline point operations,
processing data as it is being read from or written to memory.

Point operations on a single image are primarily concerned with adjusting the brightness or contrast (or
equivalently adjusting the colour balance or contrast of a colour image). Thresholding is another common
point operation, used for segmenting an image on the basis of intensity or colour. Any point operation may
be directly implemented using a lookup table, giving constant processing time regardless of the
complexity of the operation.

Point operations may also be applied between multiple images. Virtually any operation may be applied
between the pixels of the images being combined. Most commonly, these are images captured at different
times, so requires frame buffering to store the history. A common architecture is recursive processing,
where a newly acquired image is combined with one or more images held in a frame buffer, with the result
written back to the frame buffer.

The simplicity of point operations is also one of the main limitations. Frequently, global data is required
to set appropriate parameters (for example for contrast stretching or selecting an appropriate threshold
level). The use of histograms to capture and derive some of these parameters is described in the next
chapter. A point operation considers each pixel in isolation and does not take into account context. Local
filters, where the output pixel value is dependent on several pixels within a local neighbourhood, are
described in Chapter 8.

7

Histogram Operations

As indicated in the previous chapter, the parameters for many point operations can be derived from
the histogram of pixel values of the image. This chapter is divided into to two parts: the first
considers greyscale histograms and some of their applications, and the second extends this to
multidimensional histograms.

7.1 Greyscale Histogram

The histogram of a greyscale image, as shown in Figure 7.1, gives a count of the number of pixels in an
image as a function of pixel value.

- 1, Ix,y =i
H[j = ; { 0, otherwise (7.1)

There are two main steps associated with using histograms for image processing. The first step is to
build the histogram, and the second is to extract data from the histogram and use it for processing the
image. Building the histogram is discussed in this section, whereas the applications are described in
subsequent sections.

To build the histogram, it is necessary to accumulate the counts for each pixel value, as indicated in
Equation 7.1. Since each pixel must be visited once, building the histogram is ideally suited to stream
processing. To accumulate the pixel count for each pixel value requires maintaining the count so far for
each value. This may be accomplished by an array of counters, with the input pixel used to enable the clock
of the corresponding counter (Figure 7.2). The output counts need to be indexed using a bus or multiplexer.

A disadvantage of this approach is that the decoding and output multiplexing are relatively expensive.
The decoder of the input pixel stream may be re-used as part of the output multiplexer; however, the
number of different pixel values (or histogram bins) means that a large amount of logic cannot be avoided.
The counters and associated registers must also be built using the logic resources of the FPGA, with each
counter register built from flip-flops. This approach is, therefore, best suited if only a few counters are
required (for example after thresholding), or if processing requires the individual counters to be accessed
in parallel.

Each pixel can have only one pixel value, so only one counter is incremented in any clock cycle. This
implies that the accumulators may be implemented in memory. Incrementing an accumulator requires
reading the associated memory location, adding one, and writing the sum back to memory. This requires a

Design for Embedded Image Processing on FPGAs, First Edition. Donald G. Bailey.
© 2011 John Wiley & Sons (Asia) Pte Ltd. Published 2011 by John Wiley & Sons (Asia) Pte Ltd.

200 Design for Embedded Image Processing on FPGAs

0 128 255
Pixel value

Figure 7.1 An image and its histogram.

i

CE
retCounterg

CE
rerCounter,

CE
rsyCounter, L Count

CE
J RSTCounter3

1op0o2aq

CE
JW - Countery,
L Index

Clear

Figure 7.2 Histogram accumulator built from counters.

dual-port memory, with one port being used to read the memory and one port to write the result. This
scheme is shown in Figure 7.3. Memory is effectively a multiplexed register bank. However, from an
implementation perspective, the multiplexers are built within the memory addressing, so significantly
fewer logic resources are required.

Histogram memory

Port 2

3 3

Port 1

©

»
»

Figure 7.3 Histogram accumulation using dual-port memory.

Histogram Operations 201

One disadvantage of the memory-based approach is that resetting the registers at the start of a frame
requires sequentially cycling through memory locations to set them to zero. With the register-based
approach of Figure 7.2, all of the registers may be reset in parallel.

The circuit of Figure 7.3 requires a late write to the second port. This requires the timing to allow the
data to be read near the start of the clock cycle, so the incremented value may be written at the end of the
clock cycle. This may be readily achieved with asynchronous memory or by delaying the write pulse for
synchronous memory.

If a late write is not available, then both the pixel value and the accumulated count must be buffered in
registers to enable the updated count to be written in the following clock cycle. It is slightly more
complicated than this, as shown in Figure 7.4, because if the subsequent pixel has the same value, the count
read from memory will not have been updated yet. This requires checking if the current pixel is the same as
the previous value, and if so incrementing the registered value rather than that read from memory.

As each pixel is processed independently, it is also possible to partition the image over several parallel
accumulators (Figure 7.5). This approach then requires a final pass through the accumulators to combine
the results from each partition to give the histogram for the complete image.

The circuitry that processes the histogram to extract data from it must operate on the same histogram.
Similarly, the circuitry that resets the histogram must also be connected to the histogram memory. These
require multiplexing the address and data lines to the appropriate data structures. These multiplexers are
assumed in the following sections.

7.1.1 Data Gathering

Histograms may be used to gather data from the objects within the image. Consider an image of a single
object, and that object can be separated from the background by thresholding. Then the area of the object is
simply given by the number of pixels detected by thresholding. This may be obtained from the histogram
of the corresponding binary image. Obviously, it is unnecessary to build a complete histogram for this
case, a single counter will suffice (compare with Figure 7.2). However, if the threshold level is obtained by
processing the histogram, then the area may be found directly from the histogram without necessarily
thresholding the input image:

Tax
Area(lmin <I< Imax) = H[l] (72)

i=lnin

This idea may be generalised to measuring the area of many objects within an image. If the image is
processed in such a way that the pixels associated with each object within the image are assigned a unique
label, then each histogram bin will be associated with a different label, effectively giving the area of
each object.

Histogranﬁ memory
Port 1 I Port 2

Figure 7.4 Performing histogram accumulation with caching when late write is not available.

202 Design for Embedded Image Processing on FPGAs

accumulator

Histogram

I accumulator

Histogram
Partitioned I acoumulator :I-: Total
Image m N Histogram y Histogram

Histogram
accumulator

Figure 7.5 Partitioning the accumulation over several parallel processors.

Other useful statistics of the image, such as the mean and variance, may be extracted from the
histogram, rather than directly from the image. While these may be calculated directly from the image, if
the statistics are taken from a restricted range of pixel values that is chosen dynamically, it is more efficient
to obtain the histogram as an intermediate step.

The mean pixel value of an image is given by:

%1[X,y] > iH]]
SENND SR 7T

Xy

with the variance as:

X (Uxyl-m) X (i) HE] X PH
o == =~ =~ —H; (7:4)

i SHi Sl

The last form of Equation 7.4 allows the variance to be calculated in parallel with the mean, rather than
having to calculate the mean first. Often, the mean and variance within a restricted range of pixel values is
required rather than over the full range. In this case, the summations of Equations 7.3 and 7.4 are
performed over that range (i, to iyqy)-

A direct implementation of these summations is shown in Figure 7.6. The start signal selects i,,;, into i
and resets the summations to zero. On subsequent clock cycles, H[i] is read and added to the appropriate
accumulators. If the delay through the multiplications is too long, then this may be pipelined. When
i reaches iy, the final summation is performed and the divisions to calculate the mean and variance
carried out. Again, if the divisions take too long, they may be pipelined. The Done output goes high to
indicate the completion of the calculation.

Histogram
memory

Start

Figure 7.6 Calculating the mean and variance from a range of values within the histogram.

Histogram Operations 203

While the divisions on the output cannot easily be avoided, it is possible to share the hardware for a
single division between the two calculations. The division can also be pipelined if necessary. If the
standard deviation is required (rather than the variance) then a square root operation must be applied to the
variance output. This may be accomplished with less logic than the division (Li and Chu, 1996).

The multiplications associated with the summations may be eliminated by using incremental update.
Firstly, consider the summation, where K is an arbitrary constant:

Z(Kfi)H[i] = KZH[i]fZiH[i] (7.5)

1

Therefore:
_ o 2 (K=D)H][]
w=K— W (7.6)
Similarly:
S (K—i)’H[i] > i*H]i] > iH[i] i > HIi]
VIR ST ST Il a7
=07 + w2 2K, + K?
= ‘7% + (MI_K)Z
Therefore:
S (K-IPHE (SK-DHI
7= S HI - S HIi (7:8)
Next, consider the incremental calculation of Equations 7.5 and 7.7:
S (K—iH[= Y (K—i)H]i
' Kl—l K-1 (7'9)
=Y (K=1)=)H[i] + Y _Hli]
From
™ (K—i)—1 P[] = g (K—iPH[-2 ™ (k-] + f Hlil (7.10)
K K—-1
> (K—i)’H[i] =) (K—i)*Hl]
K-1 K—1 K—1
= Z((Kfi)fl)zH[i] +2Z(K7i)H[i]fZH[i] (7.11)
K—1 K—

1 K—1
=S"((K-1)—i)’H]i] + 22((1@ 1)—i)H[i] + ZH[i]

204 Design for Embedded Image Processing on FPGAs

Histogram
memory —

Start

Figure 7.7 Using incremental calculations for the mean and variance.

Therefore, starting K with 7,,,;, and incrementing until i, allows the summations to be performed without
any multiplications (the factor of two in Equation 7.11 is simply implemented with a left shift). The
resulting circuit is shown in Figure 7.7.

The circuits of Figures 7.6 and 7.7 are fine if only a single calculation is required. However, if the mean
and variance are required for several different ranges, then the repeated summation can become a time
bottleneck. If timing becomes a problem, then this may be overcome by building sum tables that contain
cumulative moments of the histogram:

Sojl = Y HI
SiH[j] = Z]:iH[i] (7.12)
S,H[j] = ZizH[i}

The first, SoH, is also called the cumulative histogram, an example of which is shown in Figure 7.8. These
tables require a single pass through the histogram to construct and, after that, the mean and variance of any
range may be calculated with two accesses to each table:

1unod aAle|INnwnNy
N
o
o
o
o
1

30000
20000
10000
O -
0 128 255 0 128 255
Pixel value Pixel value

Figure 7.8 Left: a histogram; right: its cumulative histogram.

Histogram Operations 205

. . SlH[imuxlfslH[iminfu
m < I < =
H (lmm - lmaX) SOH[imux] 7S0H [iminf 1}

. A . . 2 (713)
Uz(imin <I< ima\c) _ SZH[lmax]7S2H [lminfl} _ SIH[lmax]fslH[lminfu
! - : SOH[imax] _SOH [imin_ 1} SOH[imax] _SOH [imin_ 1}

Higher order moments (skew and kurtosis) may also be calculated in a similar manner by extension of the
above circuit.

The statistical range of pixel values within an image is probably best calculated directly from the image
as it is streamed. However, if the histogram is already available for other processing then it is a simple
manner to extract the range from the histogram. The minimum pixel value, /,,,;,, is the smallest index that
has a non-zero count, and the maximum pixel value, ., is the largest. A common operation using the
range is contrast expansion using Equation 6.2 with:

b= Imin
a=—2v (7.14)

1, max -1 min

Calculating the median of an image is probably easiest using the cumulative histogram of the image. The
image median is defined as the bin that contains the fiftieth percentile. Ideally, an inverse cumulative
histogram could be used; this maps from the cumulative count back to the corresponding pixel value.
However, this can be derived from the cumulative histogram:

N
med; = min {SOH[i] > 7”} (7.15)
where Np is the number of pixels in the image and:
SoH[V] = Np (7.16)

Rather than scan through the histogram to find the median, Equation 7.15 may be solved with a binary
search, with each successive iteration giving one bit of the median.
The image median may be generalised to determine the median value within a range of pixel values:

(7.17)

SoH|i, SoH |ipin—1
mfi'd](iz11in <I< imgx) _ mjn {S()H[l] > 0 [lmax} + S0 [lmm }}
i

2

The architecture of Figure 7.2 may be adapted to build the cumulative histogram directly (Fahmy et al.,
2005). Figure 7.9 demonstrates how this works. The decoder enables the clock of all of the counters
greater than or equal to the pixel value, causing them to be incremented. After the whole image has been
accumulated, the counters represent the cumulative histogram. As the outputs of all these counters are
available, they can be compared with the median count (indicated by ‘50%’ in the figure) in parallel.
The priority encoder finds the minimum output that has a one, as required by Equation 7.15, and returns the
corresponding index.

Another statistic that requires the histogram is the mode. The mode is defined as the index of the
highest peak within the histogram. This requires a single scan through the histogram, for example as
in Figure 7.10.

206 Design for Embedded Image Processing on FPGAs

CE
'9 e Counter2

> Median
Counter3

Jopoous Alloug

Figure 7.9 Parallel architecture for measuring the median.

There are two limitations to this approach for finding the mode. If the histogram is multimodal, only the
global mode is found. The global mode is the one with the highest peak, which is not necessarily the most
significant peak. Finding multiple peaks requires detecting the significant valleys and finding the mode
between these valleys. Valley detection is described in Section 7.1.4 on threshold selection.

A second limitation is that histograms tend to be noisy. This is clearly seen in Figure 7.1. Consequently,
the mode may not necessarily be representative of the true location of the peak. The accuracy of the peak
location may be improved through filtering the histogram before finding the mode. A one-dimensional
linear smoothing filter may be pipelined between reading the histogram values and finding the maximum.
Suitable filters are described in detail in the next chapter. Note that care must be taken when designing the
filter response to avoid bias being introduced if the peak is skewed.

7.1.2 Histogram Equalisation

Histogram equalisation is a contrast enhancement or contrast normalisation technique. It uses the
histogram to construct a monotonic mapping that results in a flattened output histogram. From an
information theoretic perspective, histogram equalisation attempts to maximise the entropy of an image
by making each pixel value in the output equally probable.

From a contrast enhancement perspective, the assumption behind histogram equalisation is that
the peaks of the input histogram contain the information of interest and the contrast between the
peaks is of lesser importance. To make the output histogram flat, it is necessary to reduce the average
height of the peaks by spreading the pixel values out. This increases the contrast of these regions.
The valleys between the peaks are compressed to raise the average value, effectively reducing the
contrast of these features.

These factors are clearly seen in Figure 7.11, where the regions with counts greater than the average are
enhanced at the expense of those below the average. In this image, the effect has been to enhance the
contrast within the background material; this is probably not the intended consequence for this image,

Histogram
memory

Figure 7.10 Finding the mode of a histogram.

Histogram Operations 207

128 255
Pixel value
128 255
Pixel value

Figure 7.11 Histogram equalisation. Top: input image with its histogram; bottom: the image and
histogram after histogram equalisation. The grey line on the histograms shows the average ‘flat’ level.

where it would have been more useful to enhance the contrast between the regions. However, in many
applications, histogram equalisation gives a useful contrast enhancement.

Note that the main peak of the output histogram is exactly the same height as that of the input. This is a
consequence of using a point operation to perform the mapping, which requires all pixels with one value in
the input to map to the same value in the output. The average is obtained by spacing consecutive input
values to more separated values in the output. The opposite occurs for bins with counts below the average.
Several consecutive input pixel values may map to the same output pixel.

A flatter histogram may be obtained by using local information to distribute the pixels with an input
value with a large count over a range of output pixel values (Hummel, 1975; 1977) although such
operations are technically filters rather than point operations.

The mapping for performing histogram equalisation is the normalised cumulative histogram. Intui-
tively, if the input bin count is greater than the average, the slope of the mapping will be greater than one,
and conversely if less than the average. Normalisation requires scaling the histogram by the number of
pixels, so that the output maps to the maximum pixel value (V).

The associated division operation is the most expensive part of histogram equalisation, although it can
readily be pipelined. An alternative to division is to calculate the inverse off-line (since the number of

208 Design for Embedded Image Processing on FPGAs

Quotient LUT

@_'Histogram
memory bsign 08 CtEmemory

7Y - 5

Figure 7.12 Using repeated subtraction to avoid division for histogram equalisation.

pixels in an image is constant) and use a multiplication. Another alternative is to arrange the region of the
image that the histogram is taken of to result in a scale factor that is a power of two. The region used is best
taken from the centre of the image, with the assumption that the values not accumulated will follow the
same statistics.

The division may be performed using repeated subtraction. This takes advantage of the fact that the
cumulative histogram is monotonic to extend the calculations performed at lower pixel values to higher
values. Therefore, the repeated subtractions calculate the mapping at the same time as the total is
accumulating.

The architecture for this is shown in Figure 7.12. The counters map and i are initialised to zero, and the
sum is initialised to —scale (or —scale/2 for rounding) where:

Np
=— N
scale v (7.18)

If the accumulated sum, which represents the current remainder, is negative then the count from the next
histogram bin is accumulated. However, if the accumulated sum is positive, the scale factor is subtracted
from the sum and the quotient incremented. When the index 7 is incremented, the previous value is also
saved as i,. As a histogram bin is accumulated, the current quotient, map, is saved at the index i,. For 8-bit
images, map will be incremented at most 255 times, and 257 clock cycles are required to read the input
histogram and write the mapping into the lookup table.

There are several control issues associated with histogram equalisation, or indeed any other histogram
processing. Firstly, the circuitry for building the histogram (for example from Figure 7.3 or Figure 7.4)
must be combined with that for building the mapping used to perform the histogram equalisation
(Figure 7.12). This will require appropriate multiplexers in the address and data lines. It is also necessary
to reset the histogram accumulators to zero before the next frame. This may be accomplished in parallel
with building the map, by using the histogram memory write port, as shown in Figure 7.12.

Secondly, there is a similar resource sharing issue with the mapping associated with performing the
histogram equalisation. The lookup table must be shared between the circuit for building the mapping
(Figure 7.12) and applying the mapping to the image. Each of these processes only requires a single port,
so use of a dual-port memory would simplify the sharing. Otherwise, the map address lines would require
an appropriate multiplexer, with additional control required to provide the memory read or write signal.

Thirdly, the registers for building the map (in Figure 7.12) may be initialised to appropriate values while
the histogram is being built.

Finally, since construction of the histogram equalisation map requires data from the complete image, it
is necessary to buffer the image before the mapping is applied, as shown in the left panel of Figure 7.13. In
many instances, the image changes relatively slowly. An approximation in these circumstances is to apply
the mapping acquired from the previous frame while building the histogram for the current frame
(McCollum et al., 1988), as illustrated in the right panel of Figure 7.13. The consequence is that
the histogram equalisation might not be quite correct, but there is a significant savings in both resources
(the frame buffer is not required) and latency.

Histogram Operations

209

Frame | |Mapping
buffer LUT
Histogram

accumulator

Mapping
Lot [

Histogram
accumulator

Figure7.13 Using the histogram for histogram equalisation. Left: buffering the frame during histogram
accumulation; right: directly applying table from the last image to the current image.

The procedure for histogram equalisation may readily be adapted to perform other histogram
transformations, for example hyperbolisation (Frei, 1977). It is even possible to derive a target histogram
from one image and apply a mapping to another image such that the histogram of the output image
approximates that of the target. The basic procedure for this is illustrated graphically in Figure 7.14.

Count
Target histogram

0

0

A

Input histogram

Figure 7.14 Determining the mapping to produce an arbitrary output histogram shape by matching
cumulative histograms. Top: target histogram and cumulative histogram; right: input histogram and
cumulative histogram; top right: building the mapping; bottom: output image and output histogram (with
target histogram in the background).

210 Design for Embedded Image Processing on FPGAs

\4

Figure 7.15 Determining the output code or pixel value using the successive mean quantisation
transform. Centre: the resultant mapping; right: applying the mapping to the input image. (Adapted with
permission from M. Nilsson et al., “The successive mean quantization transform,” IEEE International
Conference on Acoustics, Speech and Signal Processing, 4, 429-432, 2005. © 2005 IEEE.)

To derive a monotonic mapping, it is necessary for all of the pixels less than or equal to a pixel value in the
input image to map to values that are less than or equal to the corresponding output value. This may
be achieved by mapping the cumulative histogram of the input to the cumulative histogram of the target.
As with histogram equalisation, the output histogram approximates the target on average, as shown in the
bottom of Figure 7.14.

The circuit of Figure 7.12 may be adapted to calculate this mapping. Rather than subtract off the
constant scale, the value to be subtracted may be obtained from the target histogram, Hr [map] (assuming
that both images have the same area).

Related to histogram equalisation is the successive mean quantisation transform (Nilsson et al., 2005b).
This works by using a series of means to derive successive threshold levels that define successive bits of
the output pixel value. Initially, the whole range of pixel values is defined as a single partition. The mean
value of the pixels within a partition is used to split the partition into two at the next level, with the
corresponding output bit defined by the partition to which a pixel is assigned. This partitioning process is
shown in Figure 7.15. Sum tables may be used to calculate successive means efficiently using
Equation 7.13.

It has been demonstrated that, in many applications, the successive mean quantisation transform
provides a subjectively better enhancement than histogram equalisation, because it preserves the gross
structure of the histogram and does not over-enhance the image (Nilsson et al., 2005a; 2005c¢). In the
context of the successive mean quantisation transform, histogram equalisation corresponds to succes-
sively partitioning using the median rather than the mean.

7.1.3 Automatic Exposure

Related to contrast enhancement is automatic exposure. This involves using data obtained from the
captured image to modify the image capture process to optimise the resultant images. In sensors with
electronic shuttering, this may require adjusting the control signals that determine the exposure time. It
may also involve automatically adjusting the aperture or even controlling the intensity of the light source.

The histogram of the captured image is able to provide useful data for gauging the quality of the
exposure. If the maximum pixel value within the image is significantly less than V, then the image is not
making the best use of the available dynamic range. This may be improved by increasing the exposure. On
the other hand, if the image contains a large number of pixels with pixel value V, then there may be
important detail lost through saturation. This may be corrected by reducing the exposure.

Histogram Operations 211

A
10001 cC > O
i =] Q <
2 g 2
800 e & 3
i ®
o 600 S @
o) i @ o
g o
= 4001

128
Pixel value

Figure 7.16 Using the histogram for exposure. Left: example image; right: histogram with its 99.6th
percentile shown, along with the acceptable bounds.

Although the maximum pixel value may be determined without needing a histogram, there are two
major limitations to using the maximum pixel value to assess exposure. Firstly, the maximum value is
likely to be a result of noise and may not reflect the true peak of intensities within the image. Secondly, the
maximum pixel value may actually reach V without being saturated. In many images, the maximum value
may result from specular reflections or other highlights that are not significant from an image processing
point of view.

An alternative approach is to use the histogram to find the pixel value of the 99th percentile (Bailey
et al., 2004) (or even higher depending on the image content). If the histogram is flat, the 99th percentile
should have a value of about 252 for an 8-bit image. However, most histograms are non-uniform, and in
many applications there may be variability from one frame to the next that must be tolerated.

One approach is to have a target acceptable range for the given level. Consider the image in Figure 7.16.
The histogram clearly shows that some pixels are saturated (from the peak at 255). These are the specular
reflections and highlights in the figure on the left, and no information of importance is lost if these are
saturated. However, the 99.6th percentile (allowing for the equivalent of two rows worth of pixels to be
saturated) is within the allowed band of 192-250, indicating that the exposure for this image is acceptable.
In this application, the large dead-band allowed for the considerable variability in the produce from one
image to the next, while ensuring that an adequate exposure was maintained.

When determining if the exposure is acceptable, it is faster to accumulate the histogram counts starting
from the maximum pixel value and counting down, rather than counting up from zero.

Note that changing the camera exposure will not affect the current image. It may also be best to adjust
the exposure incrementally over several images rather than in a single step, especially if the object being
imaged changes from one image to the next.

7.1.4 Threshold Selection

The purpose of thresholding is to segment the image into two (or more) classes based on pixel value. While
it is possible to consider connectivity and other issues (Sezgin and Sankur, 2004), there is a wide range of
threshold selection techniques that calculate a threshold level from the histogram rather than the image
(Sezgin and Sankur, 2004). Consider an obvious case, where the pixel values of each class are well
separated; the resulting pixel value histogram is multimodal. This implies that the distributions of each of
the classes, and hence the best places to threshold the image, may be determined by analysing the
histogram. Since selecting an appropriate threshold is a common task in many image analysis applica-
tions, many of the key methods for dynamically determining the threshold from a histogram will be
reviewed.

212 Design for Embedded Image Processing on FPGAs

The most common case is separating objects from a background, where there are two classes: object and
background. If the proportion of object pixels is known then the corresponding threshold level may be
determined from the inverse cumulative histogram (Doyle, 1962). This may be found from the cumulative
histogram in two ways.

The first is to scan through cumulative histogram until the desired proportion is reached. In fact, it is not
necessary to actually build the cumulative histogram; the histogram counts may be accumulated until the
desired total is reached.

T = max {SoH[i] < Nops }
= ml?x {iH{l] < Nabj} o

The second approach, if the cumulative histogram is available, is to solve Equation 7.19 using a binary
search, as described earlier for finding the median.

In many cases, however, the number of object pixels in not known in advance, but is determined as a
result of thresholding. An alternative that is more tolerant of variation in the number of object pixels is to
set the threshold a given number of standard deviations from the mean:

T =y +o0; (7.20)

where « is chosen empirically based on knowledge of the image being thresholded.

When separating objects from the background, the histogram is often bimodal, with the peaks
representing the distributions of object and background pixel values. If the peaks are clearly separated
and do not overlap, choosing an appropriate threshold between the peaks is relatively trivial. In most cases,
however, the peaks are often broad, with significant overlap between the distributions, as in the image in
Figure 7.17. When the histogram has distinct peaks, an appropriate threshold is somewhere in the valley
between the peaks. Finding the ‘best’ threshold is complicated by the fact that the histogram is seldom
smooth. Both the peaks and the valley between them are noisy, so simply choosing the deepest valley can
result in considerable variation from one image to the next.

One approach to this problem is to smooth the histogram to make the valley between the peaks clearer.
This was first proposed by Prewitt and Mendelsohn (1966). The histogram is repeatedly filtered with a

uno)

0 128 255
Pixel value

Figure 7.17 An image of objects against a background and its corresponding histogram.

Histogram Operations 213

narrow filter until there are only two maxima; the threshold is then in the valley between the peaks. That is,
it will be the only pixel value in the histogram that satisfies:

H[T—1] > H[T] < H[T +1] (7.21)

A variation on this theme is to record the location of the peaks and valleys and track these through a range
of filter widths. This results in a range of thresholds, depending on the scale of filtering (Carlotto, 1987).
Such a multiscale approach suits multilevel thresholding, or the threshold at the lowest scale (most
smoothed) may be tracked up the scales to refine it. A disadvantage of such approaches is the repeated
filtering required to obtain the necessary smoothness, or range of scales in the latter case.

An alternative approach s to fita curve to the histogram. A common assumption is that the shape of each
of the modes is a Gaussian distribution, modelling the histogram as a sum of Gaussians:
