

Exploring BeagleBone

Derekk Molloy

p g gExploring BeagleeBoneExploring BeagleeBone

Tools and Techniques for Building with
Embeddded Linux®

Exploring BeagleBone

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-93512-5
ISBN: 978-1-118-93513-2 (ebk)
ISBN: 978-1-118-93521-7 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or
108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or autho-
rization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed
to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties,
including without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation.
If improperly wired, circuits described in this work may possibly cause damage to the device or physical injury. This
work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other profes-
sional services. If professional assistance is required, the services of a competent professional person should be sought.
Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or
website is referred to in this work as a citation and/or a potential source of further information does not mean that
the author or the publisher endorses the information the organization or website may provide or recommendations
it may make. Further, readers should be aware that Internet websites listed in this work may have changed or disap-
peared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014951016

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or
its affi liates, in the United States and other countries, and may not be used without written permission. Linux is a
registered trademark of Linus Torvalds. All other trademarks are the property of their respective owners. John Wiley
& Sons, Inc. is not associated with any product or vendor mentioned in this book.

To Sally, Daragh, Eoghan, Aidan, and Sarah

(in order of age, not preference!)

vii

 About thhe Author

Dr. Derek Molloy is a senior lecturer in the School of Electronic Engineering,
Faculty of Engineering and Computing, Dublin City University, Ireland. He
lectures at undergraduate and postgraduate levels in object‐oriented program-
ming with embedded systems, digital and analog electronics, and 3D computer
graphics. His research contributions are largely in the fi elds of computer and
machine vision, 3D graphics and visualization, and e‐Learning.

 Derek produces a popular YouTube series on the BeagleBone platform and a
wide variety of embedded Linux topics. His videos have introduced millions
of people to the BeagleBone, embedded Linux, and digital electronics topics.
In 2013, he launched a personal web/blog site, visited by thousands of people
every day, which integrates his YouTube videos with support materials, source
code, and user discussion.

 Derek has received several awards for teaching and learning. He was the
winner of the 2012 Irish Learning Technology Association (ILTA) national award
for Innovation in Teaching and Learning for his learning-by-doing approach to
undergraduate engineering education, which utilizes electronic kits and online
video content. In 2012, he was also awarded the Dublin City University President's
Award for Excellence in Teaching and Learning, as a result of fervent nominationsgg
from his students and peers.

 You can learn more about Derek and his work at his personal website
www.derekmolloy.ie .

ix

 About the Technicaal Editors

Jason Kridner is the Software Community Development Manager for Sitara
ARM processors at Texas Instruments Incorporated (TI). During his over 20‐year
tenure with TI, he has become an active leader in TI's open source initiative
and played an integral role in creating open‐source development tools such
as BeagleBoard, BeagleBoard‐xM BeagleBone, and now BeagleBone Black, a
credit‐card‐sized Linux computer platform based on TI's 1 GHz Sitara AM335x
ARM® Cortex‐A8 processor that runs Android 4.0 and Ubuntu software. As
a high‐profi le industry expert, Kridner has engaged audiences at a variety of
industry and developer shows including Maker Faire, OSCON, CES, Design,
Android Builders Summit, Linux Collaboration Summit, and the Embedded
Linux Conference.

Robert Zhu is a principal development manager at Microsoft for the Windows
Operating System Group. He is an expert in OS leading‐edge development,
research, and design in computer engineering such as kernel, device driver,
and board support packages. Robert also gives training classes to OEMs on
driver development and Windows OS research. Before working for Microsoft,
he was with Digital Equipment Corporation (DEC), USA, as senior software
engineer on the 64‐bit DEC Alpha platform for workstation server optimiza-
tion and performance tuning for Windows, and a software lead with Motorola
Wireless Division, Canada. He obtained his master of computer science at the
University of Washington; his master of computing and electrical engineering at
Simon Fraser University (SFU), Canada; his bachelor of engineering at Tsinghua
University; and did postgraduate work at SFU School of Engineering Science,
Canada. Robert was a co‐author on Windows Phone 7 Programming for Android
and iOS Developers , as well as Windows Phone Programming Essentials and Learn
2D Game Development with C#. ##

xi

Credits

Acquisitions Editor
Jim Minatel

Project Editor
Adaobi Obi Tulton

Technical Editors
Rob Zhu
Jason Kridner

Production Editor
Dassi Zeidel

Copy Editor
Luann Rouff

Manager of Content Development
and Assembly
Mary Beth Wakefi eld

Marketing Director
David Mayhew

Marketing Manager
Carrie Sherrill

Professional Technology & Strategy
Director
Barry Pruett

Business Manager
Amy Knies

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Patrick Redmond

Proofreader
Amy J. Schneider

Indexer
John Sleeva

Cover Designer
Wiley

Cover Image
Courtesy of Derek Molloy

xiii

 Acknowledgmentsdgments

 Thank you to everyone at Wiley Publishing for their outstanding work on this
project: to Mary E. James, for encouraging me to take on this project, and for
allowing me the latitude to develop a book that engages in deeper learning;
to Jim Minatel for his expert support and help throughout the development of
this book; to Adaobi Obi Tulton, the project editor, for keeping everything on
track and for having the patience to deal with my many, many questions—I
greatly appreciate her hard work, diligence, encouragement, and support; to
Dassi Zeidel, the production editor, for her hard work in tying everything
together to create such a polished fi nal product; to Luann Rouff, the copy edi-
tor, for meticulously translating this book into readable U.S. English, and for
adding all those Oxford commas! Thanks to the technical editors, Robert Zhu
(Microsoft) and Jason Kridner (BeagleBoard.org Foundation), for their expert
review and constructive feedback on the technical content in this book. Thanks
also to Cathy Wicks (Texas Instruments) and Nuria Llin (Texas Instruments)
for their advice and support in the development of this book.

 Thank you also to the thousands of people who take the time to comment
on my YouTube videos, blog, and website articles. I truly appreciate all of the
feedback, advice, and comments—it has really helped in the development of
the topics in this book.

 The School of Electronic Engineering, Dublin City University, is a great place
to work, largely because of its esprit de corps, and its commitment to rigorous,
innovative, and accessible engineering education. Thanks to Patrick McNally,
Head of School, and all of my colleagues in the school for supporting, encour-
aging, and even tolerating me in the development of this book. Thanks to (my
brother) David Molloy for his expert software advice and support. Thanks,
David, for keeping me grounded! Thanks to Jennifer Bruton for her meticulous

xiv Acknowledgmentsv

and expert review of the circuits, software, and content in this book. Thanks,
Jennifer, for listening! Thanks to Noel Murphy for his rigorous review of the
hardware chapters—he clearly missed his calling as a technical copy editor!
Thanks also to Martin Collier, Pascal Landais, Michele Pringle, Robert Sadleir,
Ronan Scaife, and John Whelan for their expertise, support, and advice, which
I sought on numerous occasions.

 My biggest thank‐you must, of course, go to my own family. This book was
written over seven months, predominantly at night and on weekends. Thanks
to my wife, Sally, and our children, Daragh, Eoghan, Aidan, and Sarah, for put-
ting up with me while I was writing this book. Thank you, Mam, Dad, David,
and Catriona for your lifelong inspiration, support, and encouragement. Finally,
thank you to my extended family for graciously excusing my absence at family
events for the past seven months—I have no excuses now!

xv

Introduction xxv

Part I BeagleBone Basics 1

Chapter 1 The BeagleBone Hardware 3

Introduction to the Platform 3
Who Should Use the BeagleBone 5
When to Use the BeagleBone 6
When You Should Not Use the BeagleBone 6

BeagleBone Documentation 7
The BeagleBone Hardware 8

BeagleBone Versions 9
The BeagleBone Black Hardware 11

BeagleBone Accessories 14
Highly Recommended Accessories 14

Micro‐SD Card (for Flashing the BBB) 14
External 5V Power Supply (for Flashing and Peripherals) 15
Ethernet Cable (for Network Connection) 15
HDMI Cable (for Connection to Monitors/Televisions) 15
USB to Serial UART TTL 3.3 V (for Finding Problems) 16

Optional Accessories 17
USB Hub (to Connect Several USB Devices to a USB Host) 17
Micro-HDMI to VGA adapters (for VGA Video and Sound) 17
Wi-Fi Adapters (for Wireless Networking) 18
USB Webcam (for Capturing Images and Streaming Video) 18
USB Keyboard and Mouse (for General-Purpose Computing) 18

Capes 19
How to Destroy Your BeagleBone! 20
Summary 22
Support 22

CContents

xvi Contents

Chapter 2 The BeagleBone Black Software 23

Linux on the BeagleBone 24
Linux Distributions 24

Communicating with the BBB 25
Installing Drivers 26
Network Connections 26

Internet‐over‐USB 26
Regular Ethernet 29
Ethernet Crossover Cable 30

Communicating with the BBB 31
Serial Connection over USB 31
Serial Connection with the USB‐to‐TTL 3.3 V Cable 33
Connecting through Secure Shell (SSH) 33
Secure Shell Connections using PuTTY 34
Chrome Apps: Secure Shell Client 34
Transferring Files Using PuTTY/psftp over SSH 35

Controlling the BeagleBone 37
Basic Linux Commands 37

First Steps 37
Basic File System Commands 38
Environment Variables 40

Basic File Editing 41
What Time Is It? 42
Package Management 44
Interacting with the BBB On‐board LEDs 45
Shutdown 47

Node.js, Cloud9, and BoneScript 48
Introduction to Node.js 48
Introduction to the Cloud9 IDE 50
Introduction to BoneScript 51

Summary 52
Further Reading 53

Chapter 3 Exploring Embedded Linux Systems 55

Embedded Linux Basics 55
What Embedded Linux Offers 57
Is Linux Open Source and Free? 57

Booting the BeagleBone 58
The BeagleBone Bootloaders 58
Kernel Space and User Space 62
System V init (SysVinit) 63

Managing Linux Systems 67
The Super User 67
System Administration 68

The Linux File System 68
Linking to Files and Directories 69
Users and Groups 71

 Contents xvii

File System Permissions 74
Exploring the File System 75

Commands for File Systems 75
find and whereis 81
more or less 82

Linux Commands 82
Standard Input and Output Redirection (>, >>, and <) 82
Pipes (| and tee) 83
Filter Commands (from sort to xargs) 84
echo and cat 86
diff 87
tar 88
md5sum 88

Linux Processes 89
Controlling Linux Processes 89
Foreground and Background Processes 90
The BusyBox Multi‐call Binary 92

Other Linux Topics 93
Git 93

Getting Started with Git 94
Cloning a Repository (git clone) 95
Getting the Status (git status) 96
Adding to the Staging Area (git add) 96
Committing to the Local Repository (git commit) 97
Pushing to the Remote Repository (git push) 97

Advanced Git 98
Creating a Branch (git branch) 98
Merging the Branch (git merge) 100
Deleting a Branch (git branch ‐d) 100

Conclusions on Git 101
Desktop Virtualization 102
Code for This Book 103
Summary 104
Further Reading 104

Chapter 4 Interfacing Electronics 105

Recommended Equipment 105
Digital Multimeter 106
Oscilloscopes 106

Basic Circuit Principles 108
Voltage, Current, Resistance, and Ohm’s Law 109
Voltage Division 110
Current Division 112
Implementing Circuits on a Breadboard 113
Digital Multimeters (DMMs) and Breadboards 114
Example Circuit: Voltage Regulation 115

Discrete Components 117

xviii Contents

Diodes 117
Light‐Emitting Diodes (LEDs) 118
Smoothing and Decoupling Capacitors 121
Transistors 123

Transistors as Switches 124
Field Effect Transistors (FETs) as Switches 127

Optocouplers/Opto‐isolators 128
Switches and Buttons 130

Hysteresis 132
Logic Gates 133

Floating Inputs 137
Pull‐Up and Pull‐Down Resistors 138
Open‐Collector and Open‐Drain Outputs 139
Interconnecting Gates 140

Analog‐to‐Digital Conversion 141
Sampling Rate 142
Quantization 142
Operational Amplifi ers 143

Ideal Operational Amplifiers 143
Negative Feedback and Voltage Follower 146
Positive Feedback 146

Concluding Advice 147
Summary 147
Further Reading 148

Chapter 5 Practical BeagleBone Programming 149

Introduction 149
Performance of Different Languages 150
Setting the BBB CPU Frequency 153

Scripting Languages 153
Scripting Language Options 154
Bash 155
Perl 157
Python 158

JavaScript and Java 161
JavaScript and Node.js on the BBB 161
Java on the BBB 164

C and C++ on the BeagleBone 167
C and C++ Language Overview 169

Compiling and Linking 170
Writing the Shortest C/C++ Program 172
Variables and Operators in C/C++ 174
Pointers in C/C++ 177
C‐Style Strings 180

LED Flashing Application in C 181
The C of C++ 183

First Example and Strings in C++ 183

 Contents xix

Passing by Value, Pointer, and Reference 185
Flashing the LEDs Using C++ (non‐OO) 186

Writing Your Own Multi‐Call Binary 186
C++ with Classes 187

Overview of Object‐Oriented Programming 188
Classes and Objects 188
Encapsulation 189
Inheritance 190

Object‐Oriented LED Flashing Code 191
/Proc—Process Information File System 195
GLIBC and Syscall 195

Summary 197
Further Reading 197

Part II Interfacing, Controlling, and Communicating 199

Chapter 6 Interfacing to the BeagleBone Input/Outputs 201

General‐Purpose Input/Outputs 201
Introduction to GPIO Interfacing 202
GPIO Digital Output 204
GPIO Digital Input 207
GPIO Confi guration 208

Internal Pull‐up and Pull‐down Resistors 208
GPIO Pin Configuration Settings 209

C++ Control of GPIOs 214
The Linux Device Tree 219

The Flattened Device Tree (FDT) 219
Device Tree Overlays (DTOs) 221

Writing an Overlay 221
Compiling and Deploying an Overlay 222

The BBB Cape Manager 222
Loading a Device Tree Overlay 223
Removing an Overlay 225
Loading an Overlay on Boot 226

Analog Inputs and Outputs 226
Analog Inputs 226

Enabling the Analog Inputs 227
Input Application—A Simple Light Meter 228

Analog Outputs (PWM) 231
Output Application—Controlling a Servo Motor 233

Advanced GPIO Topics 235
More C++ Programming 235

Callback Functions 235
POSIX Threads 236
Linux poll (sys/poll.h) 238

Enhanced GPIO Class 239
GPIO‐KEYS 243

xx Contentsx

Using GPIOs without Using sudo 247
Summary 248
Further Reading 249

Chapter 7 Cross‐Compilation and the Eclipse IDE 251

Setting Up a Cross‐Compilation Toolchain 251
A Toolchain for Debian 252

Testing the Toolchain 254
Cross‐Compilation with Third‐Party Libraries (Multiarch) 255
Installing a Change Root 257

Installing an armhf Change Root 257
Emulating the armhf Architecture 258

Cross‐Compilation Using Eclipse 260
Installing Eclipse on Desktop Linux 260
Confi guring Eclipse for Cross‐Compilation 261
Remote System Explorer 263
Integrating GitHub into Eclipse 265
Remote Debugging 266
Automatic Documentation (Doxygen) 269

Adding Doxygen Support in Eclipse 270
Building Debian for the BBB 271
Summary 273
Further Reading 274

Chapter 8 Interfacing to the BeagleBone Buses 275

Introduction to Bus Communication 276
I2C 276

I2C Hardware 277
The ADXL345 Accelerometer 279
Using Linux I2C‐Tools 280

i2cdetect 280
i2cdump 281
i2cget 283
i2cset 285

I2C Communication in C 286
Wrapping I2C Devices with C++ Classes 288

SPI 291
SPI Hardware 291
SPI on the BBB 293

Enabling the First SPI Bus (SPI0) 294
Testing the SPI Bus 295

A First SPI Application (74HC595) 296
Wiring the 74HC595 Circuit 296
SPI Communication Using C 297

Bidirectional SPI Communication in C++ 300
The Second SPI Bus (SPI1) 301
The ADXL345 SPI Interface 301
Connecting the ADXL345 to the BBB 302

 Contents xxi

Wrapping SPI Devices with C++ Classes 303
Three‐Wire SPI Communication 307

Multiple SPI Slave Devices on the BBB 308
UART 309

UARTs on the BBB 310
The Arduino UART Example 312
BeagleBone to Arduino Serial Communication 314

Echoing the Minicom Program 314
UART Echo Example in C 316

UART Command Control of an Arduino 318
Logic‐Level Translation 321
Summary 324
Further Reading 324

Chapter 9 Interacting with the Physical Environment 325

Interfacing to Actuators 326
DC Motors 327

A BBB DC Motor Driver Circuit 329
Controlling a DC Motor Using sysfs 330
Controlling a DC Motor Using C++ 331

Stepper Motors 333
The EasyDriver Stepper Motor Driver 334
A BBB Stepper Motor Driver Circuit 335
Controlling a Stepper Motor Using C++ 336

Relays 338
Interfacing to Analog Sensors 340

Protecting the BBB ADC Inputs 342
Diode Clamping 342
Op‐Amp Clamping 343

Analog Sensor Signal Conditioning 345
Scaling Using Voltage Division 345
Signal Offsetting and Scaling 346

Analog Interfacing Examples 349
Infrared Distance Sensing 349
ADXL335 Conditioning Example 353

Interfacing to Display Modules 354
Seven‐Segment Displays 354
Character LCD Modules 359

Remote Control BeagleBone 363
Managing Services with Systemd 364
BBB Serial Connection to Desktop 366
Starting a Custom Service on Boot 369
Bluetooth 370

Installing an Adapter 370
Loadable Kernel Modules 371
Configuring a Bluetooth Adapter 372
Making the BBB Discoverable 373

xxii Contents

Android Application Development with Bluetooth 374
Building Dynamic Linked Libraries 376
Summary 376
Further Reading 377

Part III Advanced BeagleBone Systems 379

Chapter 10 The Internet of Things 381

The Internet of Things (IoT) 382
More Sensors (Things!) 384

A Room Temperature Sensor 384
Texas Instruments SensorTag 385

Connecting to Bluetooth Smart Devices 385
Building a Linux Package 386
Controlling a Bluetooth Smart Device 387

The BeagleBone as a Web Server 388
Installing a Web Server 389
Configuring an Apache Web Server 389
Creating Web Pages and Web Scripts 390
PHP on the BeagleBone 392
Replacing Bone101 with the Custom Web Server 393

A C/C++ Web Client 394
Network Communications Primer 395
A C/C++ Web Client 396
Secure Communication Using OpenSSL 398

The BeagleBone as a Web Sensor 399
ThingSpeak 400
The Linux Cron Scheduler 402

System crontab 402
User crontab 404

Xively 405
Getting Started with Xively's PaaS 406
The Xively C Library 407

Sending E-mail from the BBB 409
If This Then That (IFTTT) 411

The C++ Client/Server 412
Managing Remote IoT Devices 415

BeagleBone Remote Monitoring 416
Linux Watchdog Timer 416

IoT Physical Networking 418
The BeagleBone and Wi-Fi 418

Wireless Network Adapters 419
Static IP Addresses 422
Power over Ethernet (PoE) 423

PoE Power Extraction Modules (PEMs) (Advanced Topic) 424
Summary 425
Further Reading 426
Note 426

 Contents xxiii

Chapter 11 BeagleBone with a Rich User Interface 427

Rich UI BBB Architectures 428
The BBB as a General‐Purpose Computer 428

Connecting a Bluetooth Input Peripheral 430
BBB with a LCD Touch Screen Cape 431
Virtual Network Computing (VNC) 432

VNC Using VNC Viewer 433
VNC with Xming and PuTTY 433
VNC with a Linux Desktop Computer 434

Fat‐Client Applications 435
Rich UI Application Development 435

Introduction to GTK+ on the BBB 436
The “Hello World” GTK+ Application 436
The Event‐Driven Programming Model 437
The GTK+ Temperature Application 438

Introduction to Qt on the BBB 441
Installing Qt Development Tools on the BBB 442
The “Hello World” Qt Application 442

Qt Primer 444
Qt Concepts 444

The QObject Class 445
Signals and Slots 446

Qt Development Tools 447
A Qt Temperature Sensor GUI Application 448
Simple Qt Cross‐Platform Development 453

Remote UI Application Development 455
Fat‐Client Qt GUI Application 455
Multi‐Threaded Server Applications 458
A Multi‐Threaded Temperature Service 461
The Fat‐Client as a Server 463

Parsing Stream Data 465
The BBB Client Application 467

Cross‐Compiling Qt Applications 468
Building the Qt Libraries from Source 470
Remote Deploying a Test Application 470

Summary 471
Further Reading 472

Chapter 12 Images, Video, and Audio 473

Capturing Images and Video 474
USB Webcams 474
Video4Linux2 (V4L2) 476

Image Capture Utility 477
Video4Linux2 Utilities 479
Writing Video4Linux2 Programs 480

Streaming Video 482
Image Processing and Computer Vision 483

xxiv Contentsv

Image Processing with OpenCV 484
Computer Vision with OpenCV 486
Boost 489

BeagleBone Audio 489
Core Audio Software Tools 490
Audio Devices for the BBB 491

HDMI and USB Audio Playback Devices 491
Internet Radio Playback 493
Recording Audio 494
Audio Network Streaming 496
Bluetooth A2DP Audio 496

Text‐to‐Speech 499
Online Text-to-Speech 499
Offline Text-to-Speech 500
A Bluetooth Speaking Clock and Temperature Sensor 500

Summary 502
Further Reading 502

Chapter 13 Real‐Time BeagleBone Interfacing 503

Real‐Time BeagleBone 504
Real‐Time Kernels 504
Real‐Time Hardware Solutions 505

The PRU‐ICSS Architecture 506
Important Documents 508

Getting Started with the PRU‐ICSS 508
PRU‐ICSS Enhanced GPIOs 509
PRU‐ICSS Device Tree Overlay 509
The PRU‐ICSS Package 511
A First PRU Program 512

The PRU‐ICSS in Detail 516
Registers 516
Local and Global Memory 517
PRU Assembly Instruction Set 519

Applications of the PRU‐ICSS 521
PRU‐ICSS Performance Tests 522
Utilizing Regular Linux GPIOs 522
A PRU PWM Generator 525
A PRU Sine Wave Generator 527
An Ultrasonic Sensor Application 530

Additional PRU‐ICSS Tools 535
The PRU Debugger 535
The TI PRU C Compiler 536

Summary 538
Further Reading 539

Index 541

xxv

 Introoduction

 The BeagleBone is amazing! Given the proliferation of smartphones, the idea
of holding in one hand a computer that is capable of performing two billion
instructions per second is easy to take for granted—but the fact that you can
modify the hardware and software of such a small yet powerful device and
adapt it to suit your own needs and create your own inventions is nothing short
of amazing. Even better, you can purchase it for as little as $45–$55.

 The BeagleBone board on its own is too complex a device to be used by a
general audience; it is the ability of the BeagleBone to run embedded Linux that
makes the resulting platform accessible, adaptable, and powerful. Together,
Linux and embedded systems enable ease of development for devices that
can meet future challenges in smart buildings, the Internet of Things (IoT),
robotics, smart energy, smart cities, human‐computer interaction (HCI), cyber‐
physical systems, 3D printing, advanced vehicular systems, and many, many
more applications.

 The integration of high‐level Linux software and low‐level electronics repre-
sents a paradigm shift in embedded systems development. It is revolutionary
that you can build a low‐level electronics circuit and then install a Linux web
server, using only a few short commands, so that the circuit can be controlled
over the Internet. You can easily use the BeagleBone as a general‐purpose Linux
computer, but it is vastly more challenging and interesting to get underneath
the hood and fully interface it to electronic circuits of your own design—and
that is where this book comes in!

 This book should have widespread appeal for inventors, makers, students,
entrepreneurs, hackers, artists, dreamers—in short, anybody who wants to bring

xxvi Introduction

the power of embedded Linux to their products, inventions, creations, or projects
and truly understand the BeagleBone in detail. This is not a recipe book—with
few exceptions, everything demonstrated here is explained at a level that will
enable you to design, build, and debug your own extensions of the concepts
presented here. Nor is there any grand design project at the end of this book
for which you must purchase a prescribed set of components and peripherals
in order to achieve a very specifi c outcome. Rather, this book is about provid-
ing you with enough background knowledge and “under‐the‐hood” technical
details to enable and motivate your own explorations.

 I strongly believe in learning by doing, so I present low‐cost, widely available
hardware examples in order that you can follow along. Using these hands‐on
examples, I describe what each step means in detail, so that when you substitute
your own hardware components, modules, and peripherals you will be able to
adapt the content in this book to suit your needs. As for that grand project or
invention—that is left up to you and your imagination!

 When writing this book I had the following aims and objectives:

■ To explain embedded Linux and its interaction with electronic circuits—
taking you through the topics from mystery to mastery!

■ To provide in‐depth information and instruction on the Linux, electron-
ics, and programming skills that are required to master a pretty wide and
comprehensive variety of topics in this domain.

■ To create a collection of practical “Hello World” hardware and software
examples on each and every topic in the book, from low‐level interfacing,
general‐purpose input/outputs (GPIOs), analog‐to‐digital converters
(ADCs), buses, and UARTs, to high‐level libraries such as OpenCV, Qt,
and complex and powerful topics, such as real‐time interfacing with the
PRU‐ICSS.

■ To ensure that each circuit and segment of code is specifi cally designed
to work on the BeagleBone. Every single circuit and code example in this
book was built and tested on the BeagleBone.

■ To use the “Hello World” examples to build a library of code that you
can use and adapt for your own BeagleBone projects.

■ To make all of the code available on GitHub in an easy‐to‐use form.

■ To support this book with strong digital content, such as the videos
on the DerekMolloyDCU YouTube channel, and a custom website
www.exploringbeaglebone.com , which has been developed specifi cally
to support this book.

■ To ensure that by the end of this book you have everything you need to
imagine, create, and build advanced BeagleBone projects.

 Introduction xxvii

 Why the BeagleBone Black?

 The BeagleBone Black is a powerful single‐board computer (SBC), and while there
are other SBCs available on the market such as the Raspberry PI and the Intel
Galileo, the BeagleBone has one key differentiator—it was built to be interfaced
to! For example, the BeagleBone's microprocessor even contains two additional
on‐chip microcontrollers that can be used for real‐time interfacing—an area in
which other Linux SBCs have signifi cant diffi culty.

 Unlike most other SBCs, the BeagleBone is fully open source hardware. The
BeagleBoard.org Foundation provides source schematics, hardware layout, a
full bill of materials, and technical reference manuals, enabling you to modify
the design of the BeagleBone platform and integrate it into your own product.
In fact, you can even fork the hardware design on Upverter (www.upverter.com(() m

under a Creative Commons Attribution‐ShareAlike license (see tiny.cc/ebb002
for the full schematics). This is a very useful feature should you decide to take
your newest invention to market!

 How This Book Is Structured

 There is no doubt that some of the topics in this book are quite complex—the
BeagleBone is a complex device! However, everything that you need to master
the device is present in the book within three major parts:

■ Part I: BeagleBone Basics

■ Part II: Interfacing, Controlling, and Communicating

■ Part III: Advanced BeagleBone Systems

 In the fi rst part in the book, I introduce the hardware and software of the
BeagleBone platform in Chapters 1 and 2, and subsequently provide three
primer chapters:

■ Chapter 3 : Exploring Embedded Linux Systems

■ Chapter 4 : Interfacing Electronics

■ Chapter 5 : Practical BeagleBone Programming

 If you are a Linux expert, electronics wizard, and/or software guru, then feel
free to skip the primer chapters; however, for everyone else I have put in place a
concise but detailed set of materials to ensure that you gain all the knowledge
required to effectively and safely interface to the BeagleBone.

 In the second part of the book, Chapters 6 to 9, I provide detailed informa-
tion on interfacing to the BeagleBone GPIOs, analog inputs, buses (I2 C, SPI),
UART devices, and USB peripherals. You'll learn how you can confi gure a

xxviii Introduction

cross‐compilation environment so that you can build large‐scale software appli-
cations for the BeagleBone. This part also describes how you can combine
hardware and software in order to provide the BeagleBone with the ability to
interact effectively with its physical environment.

 The fi nal part of the book, Chapters 10 to 13, describe how the BeagleBone
can be used for advanced applications such as Internet of Things (IoT); rich
user interfaces; images, video, and audio; and real‐time interfacing. Along
the way you will meet many technologies, including TCP/IP, ThingSpeak,
Xively, PoE, Wi‐Fi, Bluetooth, cron, Apache, PHP, e‐mail, IFTTT, VNC,
GTK+, Qt, XML, multi‐threading, client/server programming, V4L2, video
streaming, OpenCV, Boost, USB audio, Bluetooth A2DP, text‐to‐speech, and
the PRU‐ICSS.

 Conventions Used in This Book

 This book is fi lled with source code examples and snippets that you can use to
build your own applications. Code and commands are shown as follows:

 This is what source code looks like.

 When presenting work performed in a Linux terminal it is often necessary
to display both input and output in a single example. A bold type is used to
distinguish the user input from the output—for example:

 molloyd@beaglebone:~$ ping www.exploringbeaglebone.com
 PING lb1.reg365.net (195.7.226.20) 56(84) bytes of data.
 64 bytes from lb1.reg365.net (195.7.226.20): icmp_req=1 ttl=55 time=25.6 ms
 64 bytes from lb1.reg365.net (195.7.226.20): icmp_req=2 ttl=55 time=25.6 ms
 ...

 The $ prompt indicates that a regular Linux user is executing a command,
and a # prompt indicates that a Linux superuser is executing a command. The
ellipsis symbol “ ... ” is used whenever code or output not vital to understanding
a topic has been cut. Editing the output like this enables you to focus on only
the most useful information. You are encouraged to repeat the steps in this book
yourself, whereupon you will see the full output. In addition, the full source
code for all examples is provided along with the book.

 There are some additional styles in the text. For example:

■ New terms and important words appear in italics when introduced.

■ Keyboard strokes appear like this: Ctrl+C.

■ All URLs in the book refer to HTTP addresses and appear like this:
www.exploringbeaglebone.com .

 Introduction xxix

■ A URL shortening service is used to create aliases for long URLs that are
presented in the book. These aliases have the form tiny.cc/ebb102 (e.g.,
link two in Chapter 1). Should the link address change after this book is
published, the alias will be updated.

 There are several features used in this book to identify when content is of
particular importance or when additional information is available:

W A R N I N G This type of feature contains important information that can help you

avoid damaging your BeagleBone.

N O T E This type of feature contains useful additional information, such as links to

digital resources and useful tips, which can make it easier to understand the task at

hand.

 FEATURE TITLE

 This type of feature goes into detail about the current topic or a related topic.

 What You'll Need

 Ideally you should have a BeagleBone Black before you begin reading this book
so that you can follow along with the numerous examples in the text. Presently
the board is manufactured by both CircuitCo and Embest—the boards from
either manufacturer are compatible with the designs and operations in this
book. You can purchase one of the boards in the U.S. from online stores such as
Adafruit Industries, Digi‐Key, Mouser, SparkFun, and Jameco Electronics. They
are available internationally from stores such as Farnell, Radionics, Watterott,
and Tigal.

 A full list of recommended and optional accessories for the BeagleBone is
provided in Chapter 1—if you do not yet have a BeagleBone, it would be worth
reading that chapter before placing an order. In addition, each chapter contains
a list of the electronics components and modules required if you wish to fol-
low along with the text. The book website provides details about where these
components can be acquired.

 Errata

 We have worked really hard to ensure that this book is error free; however, it is
always possible that some were overlooked. A full list of errata is available on
each chapter's web page at the companion website. If you fi nd any errors in the

xxx Introductionx

text or in the source code examples, I would be grateful if you could please use
the companion website to send them to me so that I can update the web page
errata list and the source code examples in the code repository.

 Digital Content and Source Code

 The primary companion site for this book is www.exploringbeaglebone.com . It
is maintained by the book's author and contains videos, source code examples,
and links to further reading. Each chapter has its own individual web page.
In the unlikely event that the website is unavailable, you can fi nd the code at
www.wiley.com/go/exploringbeaglebone.

 I have provided all of the source code through GitHub, which allows you
to download the code to your BeagleBone with one command. You can also
easily view the code online at tiny.cc/ebb001 . Downloading the source code
to your BeagleBone is as straightforward as typing the following at the Linux
shell prompt:

 $ git clone https://github.com/derekmolloy/exploringBB.git

 If you have never used Git before, don't worry—it is explained in detail in
Chapter 3 . Now, on with the adventures!

Exploring BeagleBone

 Par t

 I
 BeagleBonne Basics BeagleBonne Basics

 In This Part

 Chapter 1 : The BeagleBone Hardware
 Chapter 2 : The BeagleBone Black Software
 Chapter 3 : Exploring Embedded Linux Systems
 Chapter 4 : Interfacing Electronics
 Chapter 5 : Practical BeagleBone Programming

3

 In this chapter, you are introduced to the BeagleBone platform hardware. The
chapter focuses on the BeagleBone Black and the various subsystems and physical
inputs/outputs of the board. In addition, the chapter lists accessories that can
be very helpful in developing your own BeagleBone‐based projects. By the end
of this chapter, you should have an appreciation of the power and complexity
of this computing platform. You should also be aware of the fi rst steps to take
to protect your board from physical damage.

 Introduction to the Platform

 The BeagleBone is a compact, low‐cost, open‐source Linux computing platform
that can be used to build complex applications that interface high‐level software
and low‐level electronic circuits. It is an ideal platform for prototyping project
and product designs that take advantage of the power and freedom of Linux,
combined with direct access to input/output pins and buses, allowing you to
interface with electronics components, modules, and USB devices. The charac-
teristics of the BeagleBone platform are that it

■ is powerful, as it contains a processor that can perform up to 2 billion
instructions per second,

■ is low‐cost, available for as little as $45–$55,

 C H A P T E R

 1

 The BeagleBone Hardware Hardware

4 Part I ■ BeagleBone Basics

■ supports many standard interfaces for electronics devices,
■ uses little power, running at between 1 W (idle) and 2.3 W (peak),
■ is expandable through the use of daughterboards and USB devices,
■ is supported by a huge community of innovators and enthusiasts, and
■ is open‐hardware and supports open‐software tools and applications.

 The BeagleBone runs the Linux operating system, which means that you can
use many open‐source software libraries and applications directly with it. Open‐
source software driver availability also enables you to interface devices such as
USB cameras, keyboards and Wi‐Fi adapters with your project, without having
to source proprietary alternatives. Therefore, you have access to comprehensive
libraries of code that have been built by a talented open‐source community;
however, it is important to remember that the code typically comes without any
type of warranty or guarantee. If there are problems, then you have to rely on
the good nature of the community to resolve them. Of course, you could also
fi x the problems yourself and make the solutions publicly available.

 The BeagleBone platform is formed by the integration of a high‐performance
microprocessor on a printed circuit board (PCB) and an extensive software ecosys-
tem. The physical PCB is not a complete product; rather it is a prototype reference
design that you can use to build a complete product. It is an open‐hardware platform,
meaning that you can download and use the BeagleBone hardware schematics and
layout directly within your own product design. In fact, despite the impressive
capability of the BeagleBone platform, it does not fully expose all of the features
and interfaces of the Texas Instruments Sitara AM335x microprocessor.

 One impressive feature of the BeagleBone is that its functionality can be
extended with daughterboards, called capes , that connect to the P8 and P9
headers (the two black 2×23 connector rows in Figure 1-1). You can design your

 Figure 1-1: The BeagleBone Black computing platform (revision C board with printed pin labels)

 Chapter 1 ■ The BeagleBone Hardware 5

own capes and attach them securely to your BeagleBone using these headers.
In addition, many capes are available for purchase that can be used to expand
the functionality of your BeagleBone platform. Some examples of these are
described toward the end of this chapter.

 The BeagleBone PCBs were designed by Gerald Coley, a co‐founder of the
BeagleBoard.org Foundation. However, the boards, and several of its capes,
are manufactured by CircuitCo (www.circuitco.com((). The PCB layout for the
BeagleBone Black was also created by CircuitCo. Recently, Element14 (www((
.element14.com) has begun manufacturing a BeagleBoard.org-compliant version m

of the BeagleBone Black. Therefore, when you purchase a BeagleBone board,
you are not purchasing it from BeagleBoard.org; rather, BeagleBoard.org is the
focal point for a community of developers and users.

N O T E CircuitCo has provided a short video of the BeagleBone Black manufacturing

process at tiny.cc/ebb101 —it highlights the complexity of the device and the

work that goes into its manufacture.

 Who Should Use the BeagleBone

 Anybody who wishes to transform an engineering concept into a real interactive
electronics product, project, prototype, or work of art should consider using the
BeagleBone. That said, integrating high‐level software and low‐level electron-
ics is not an easy task. However, the diffi culty involved in an implementation
depends on the level of sophistication that the project demands.

 The BeagleBone community is working hard to ensure that the BeagleBone
platform is accessible by everyone who is interested in integrating it into their
projects, whether they are students, makers, artists, or hobbyists. Tools and
software development environments, such as Jason Kridner’s BoneScript library
(Kridner is a co‐founder of BeagleBoard.org and a technical editor of this book)
and the Cloud9 integrated development environment (IDE), enable users to
write and build code directly in a web browser that is capable of controlling
electronics hardware. BoneScript is introduced in Chapter 2 . Developments like
Blockly (code.google.com/p/blockly) and Snap (snap.berkeley.edu) have
the potential to be integrated with BoneScript to further improve accessibility
for new users.

 For more advanced users, with electronics or computing knowledge, the
BeagleBone platform enables additional development and customization to
meet specifi c project needs. Again, such customization is not trivial: You may
be an electronics expert, but high‐level software programming and/or the Linux
operating system might cause you diffi culty. Or, you may be a programming
guru but you have never wired an LED! This book aims to cater to all types
of users, providing each type of reader with enough Linux, electronics, and
software exposure to ensure that you can be productive, regardless of your
previous experience level.

6 Part I ■ BeagleBone Basics

 When to Use the BeagleBone

 The BeagleBone is perfectly placed for the integration of high‐level software
and low‐level electronics in any type of project. Whether you are planning to
build an automated home management system, robot, smart display, sensor
network, vending machine, or Internet‐connected work of interactive art, the
BeagleBone has the processing power to do whatever you can imagine of an
embedded device.

 The major advantage of the BeagleBone over more traditional embedded
systems, such as the Arduino, PIC, and AVR microcontrollers, is apparent when
you leverage the Linux OS for your projects. For example, if you built a home
automation system using the BeagleBone and you then decided that you wanted
to make certain information available on the Internet, you could simply install
the Apache web server. You could then use server‐side scripting or your favorite
programming language to interface with your home automation system in order
to capture and share the information. Alternatively, your project might require
secure remote shell access. In that case, you could install a secure shell (SSH)
server, simply by using the Linux command sudo apt‐get install sshd (these
commands are covered in Chapter 2). This could potentially save you weeks
of development work. In addition, you have the comfort of knowing that the
same software is running securely on millions of machines around the world.

 Linux also provides you with device driver support for many USB peripherals
and adapters, making it possible for you to connect cameras, Wi‐Fi adapters,
and other low‐cost consumer peripherals directly to your platform, without the
need for complex and/or expensive software driver development.

 When You Should Not Use the BeagleBone

 The Linux OS was not designed for real‐time or predictable processing. Its ker-
nel is not preemptive, which means that once the processor begins executing
kernel code it cannot be interrupted. This would be problematic if, for example,
you wished to sample a sensor precisely every one millionth of a second. If the
precise time arises to take a sample and the kernel is busy with a different task,
then it cannot be interrupted. Therefore, in its default state, the BeagleBone is
not an ideal platform for real‐time systems applications. Real‐time versions of
Linux are available, but they are currently targeted at very experienced Linux
developers. However, the BeagleBone does have an on‐board solution that goes
some way toward resolving this problem. Within the BeagleBone’s AM335x,
there are two on‐board microcontrollers, called Programmable Real‐time Units
(PRUs), which can be programmed for real‐time interfacing applications. This
is an advanced topic that is described in Chapter 13 .

 There are low‐cost dedicated solutions available for real‐time sampling
and control tasks (such as the TI Stellaris ARM platform) that may be more

 Chapter 1 ■ The BeagleBone Hardware 7

appropriate. It is also important to remember that you can interconnect such
real‐time microcontrollers to the BeagleBone via electrical buses (e.g., I 2 C, UART,
CAN bus, and Ethernet) and have the BeagleBone act as the central processor
for a distributed control system. This concept is described in Chapter 9 and
Chapter 10 .

 The second application type that the BeagleBone platform will fi nd diffi cult is
that of playing high‐defi nition video. The processing overhead of software decod-
ing and playing encoded video streams is immense, and is beyond the capability
of the BeagleBone at high‐defi nition video resolutions. The Raspberry Pi (www((
.raspberrypi.org) board has this capability because its Broadcom BCM2835
processor 1 was designed for multimedia applications, and it has a hardware
implementation of H.264/MPG‐4 and MPG‐2/VC‐1 (via additional license)
decoders and encoders. For applications such as running XMBC home media
center (www.xbmc.org((), you are better off purchasing a Raspberry Pi (Model
B+), but for building advanced applications that interface to electronics, the
BeagleBone is a clear choice.

 BeagleBone Documentation

 This book integrates my experiences in developing with the BeagleBone platform
along with supporting background materials on embedded Linux, software
development, and general electronics, to create an in‐depth guide to building
with this platform. However, it is simply not possible to cover everything in
just one book, so I have avoided restating information that is listed in the key
documents and websites described in this section. The fi rst starting point for
supporting documentation is always the following:

■ The BeagleBoard.org website: This provides the main support for this
platform, with software guides, community links, and downloads to sup-
port your development. An excellent “Getting Started” guide and blog is
available at the website www.beagleboard.org.

 A huge amount of documentation is available on the BeagleBone platform,
but the most important documents are as follows:

■ BeagleBone Black System Reference Manual (SRM): This is the core
document that describes the BeagleBone Black hardware. Authored by
Gerald Coley, it is a comprehensive document that is complex in parts,
but it is important that you have a copy along with this book. It is a live
document, approximately 125 pages, that is released with every new revi-
sion of the BeagleBone. It is available free from the BeagleBone “Getting
Started” web page.

1 See www.broadcom.com/products/BCM2835 for further details.

8 Part I ■ BeagleBone Basics

■ Sitara AM335x Cortex‐A8 Technical Reference Manual (TRM): The key
component of the BeagleBone is its Texas Instruments microprocessor,
and this document contains anything you could possibly want to know
about its internal workings. The AM335x is a complex device, and that is
refl ected in the length of the TRM—4,727 pages! If you need to understand
something about the inner workings of the microprocessor or the device
confi guration on the BeagleBone, it is likely that the answer is contained
in this document. I refer to tables in the TRM throughout this book so that
hopefully you will become familiar with the language contained therein.
This document is available free from www.ti.com/product/am3358.

 Key websites are also available to support your learning on this platform,
with combinations of tutorials, discussion forums, sample code libraries, Linux
distributions, and project ideas to stimulate your creative side. Here is a selec-
tion of important websites:

■ The website for this book: www.exploringbeaglebone.com

■ My personal blog site: www.derekmolloy.ie

■ The eLinux.org website: www.elinux.org

■ The eewiki: www.eewiki.net

■ Hipstercircuits.com: www.hipstercircuits.com

■ OZ9AEC: www.oz9aec.net

 Getting started with the BeagleBone platform software is described in Chapter 2 .
The remainder of this chapter discusses the BeagleBone PCB itself, explaining
the functionality that is available, summarizing the SRM, and providing some
examples of the types of peripherals and capes that you might like to connect
to the BeagleBone.

 The BeagleBone Hardware

 At its heart, the BeagleBone Black uses the Texas Instruments Sitara AM335x
Cortex A8 ARM microprocessor. While the BeagleBone Black is the focus of
this book, multiple boards have been developed by BeagleBoard.org, including
BeagleBoard, BeagleBoard XM, BeagleBone, BeagleBone Black, and the Arduino
Tre (BeagleBoard and Arduino combined on a single board). The BeagleBone is
discussed in detail in the next section, but here are some summary details on
the different boards (in historical order):

■ (2008) BeagleBoard ($125): The original open‐hardware ARM‐based
development board that had HD video support. It has a 720 MHz ARM
A8 processor but no on‐board Ethernet.

 Chapter 1 ■ The BeagleBone Hardware 9

■ (2010) BeagleBoard xM ($149): Similar to BeagleBoard, except with a
1 GHz ARM (AM37x) processor, 512 MB memory, four USB ports, and
Ethernet support. Despite the low cost of the new BeagleBone boards,
the BeagleBoard xM is very popular for its C64+TMDSP core for digital
signal processing (DSP) applications.

■ (2011) BeagleBone ($89): Smaller footprint than the BeagleBoard. It has a
720 MHz processor and 256 MB memory, Ethernet support, and low-level/
output (e.g., analog to digital converters), but no on-board video support.

■ (2013) BeagleBone Black ($45–$55): This board enhances the BeagleBone
with a 1 GHz processor, 512 MB of DDR3 memory, Ethernet, eMMC stor-
age, and HDMI video support.

 The BeagleBone Black platform is the focus of this book, mainly due to its
feature set and price point in comparison to the other offerings; however, most
of the discussion in this book applies generally to all platforms.

 BeagleBone Versions

 As just mentioned, two versions of the BeagleBone are available: the older
BeagleBone White (BBW), or just BeagleBone; and the newer BeagleBone Black
(BBB). Both boards have a very small form factor, fi tting neatly inside an Altoids
mint tin, as shown in Figure 1-2 (a). Traditionally, Altoids tins have been upcycled
by engineers as a low‐cost housing for electronics projects. Given the complex-
ity of the BeagleBone boards, it is impressive that they fi t inside the tin—it also
helps to explain the rounded corners on the BeagleBone boards! Holes can be
formed in the case to provide access to the board connectors, but of course it
is necessary to electrically insulate the aluminum tin before using it to house
your board.

(a) (b)

 Figure 1-2: (a) The BeagleBone Black (BBB) in an Altoids tin box; (b) the BeagleBone White
(BBW)

10 Part I 0 ■ BeagleBone Basics

Table 1-1: The BeagleBone Black (BBB) vs. the BeagleBone White (BBW)

FEATURE BEAGLEBONE BLACK (BBB)

BEAGLEBONE

WHITE (BBW)

Price About $45–$55 About $89

Processor 1 GHz AM335x 720 Mhz AM3359

Memory 512 MB DDR3 (faster 1.6 GB/s and lower
power)

256 MB DDR2

Storage On‐board 2 GB eMMC (4 GB eMMC on
the Revision C board) and micro‐SD
card slot

Micro‐SD card slot
only

Video On‐board HDMI No on‐board HDMI.
Optional cape
available.

Debugging JTAG header present but not
populated

JTAG over USB
available

Serial Connection TTL header present but separate cable
needed

Serial over USB

Input/Output Headers Almost the same, but fewer GPIO pins might be available due to
eMMC and HDMI functionality on the BBB

 To achieve such a small form factor, the components are densely placed on
the BeagleBone, and a six‐layer PCB is used to achieve interconnects. As an
example, the AM335x (ZCZ) processors used on the BeagleBone platforms have
a ball grid array of 324 pins, with a 0.80 mm ball pitch.

 Table 1-1 lists the main differences between the BBB boards and the BBW
boards. The fi rst obvious difference is the price. Despite the improvement in
specifi cation, the BBB is just over half the price of the BBW, and is very com-
petitively priced with other embedded Linux boards, such as the Raspberry Pi
(Model B+).

 The manufacture cost of the BBB was reduced by removing certain functionality
from the BBW, such as the USB serial connection, USB JTAG debug emulation,
and a power expansion header. However, the step‐up in functionality to include
on‐board eMMC storage, HDMI video output, twice the memory, and a faster
processor for just over half the price means that the BBB represents particularly
impressive value for the money. It is clear that the BBB has reached a price/
performance sweet spot that has made it an exceptionally popular platform.
The eLinux.org website maintains a record of board shipment numbers that cur-
rently indicates 13,000 boards are shipping per month from CircuitCo. Despite
this fact, demand continues to outstrip supply, and recently new manufacturers
have come on‐stream to help with meeting this demand.

 Chapter 1 ■ The BeagleBone Hardware 11

 The BeagleBone Black Hardware

 Figure 1-3 and Figure 1-4 detail the core systems of the BBB. The fi rst set of
callouts, 1 to 8, identify and describe the key systems on the BBB. The micro-
processor on the BBB is a Texas Instruments Sitara AM335x Cortex A8 ARM

 Figure 1-3: Table of BBB subsystems and connectors

12 Part I ■ BeagleBone Basics

Microprocessor.2 It is a RISC (reduced instruction set computing) processor, so at
1,000 MHz the processor executes 2,000 million instructions per second (MIPS).
The processor runs at about 1 W idle and 2.3 W for heavy processing loads.

2 Earlier BBB boards used an XAM3359AZCZ100 processor, but more recent boards
(Rev B) use the AM3358BZCZ100. The feature set that is exposed to the BBB platform
is the same, so the notation AM335x is used.

 Figure 1-4: The BeagleBone Black (BBB) top and bottom views

 Chapter 1 ■ The BeagleBone Hardware 13

 The next set of callouts, 9 to 19, identifi es the various connectors on the BBB,
their physical characteristics, and their function. For connector 18, the JTAG
connector, there are 20 pre‐tinned pads. You need to purchase a connector (such
as Samtec FTR‐110‐03‐G‐D‐06) for this and carefully solder it to the board. In
addition, you need a JTAG interface and associated debug software. The BBW
has on‐board USB JTAG support.

 If you would like these images for your own reference, Figures 1-3 , 1-4 , and 1-5
are available as a high‐resolution PDF poster prints at the chapter web page:
www.exploringbeaglebone.com/chapter1/ .

 Figure 1-5 details the various inputs and outputs that are available on the
P8 and P9 headers. There are 92 pins in total on these headers (2×46); however,
not all are available for general‐purpose input/outputs (GPIOs). Several of the
connections have a fi xed confi guration:

■ Eight pins are connected to “digital” ground.

 Figure 1-5: Table of functionality available on the P8 and P9 headers

14 Part I 4 ■ BeagleBone Basics

■ Nine pins are required for the analog inputs (seven inputs, ground, and
1.8 V reference voltage).

■ Six pins are allocated to voltage supplies: 3.3 V (up to 250 mA), 5 V system
(up to 250 mA) and 5 V VDD (up to 1 A if powered via DC Jack—power can
be supplied to the board via the VDD_5 V pins).

■ Two are allocated to one of the I 2 C buses.

■ Two are allocated to the power and reset buttons.

 The remaining 65 connectors are available to be multiplexed to many different
functions, several of which are listed in Figure 1-5 . The function of each of these
input/output types is discussed in Chapter 6 and Chapter 8 .

 BeagleBone Accessories

 The BBB board is packaged with a USB 2.0 cable (micro‐USB plug to USB A plug),
which is used to connect the BBB (via the USB Client Connector) to a desktop
computer. It does not come with a micro‐SD card, as the Linux installation is
already present on the board’s eMMC. It will boot to Linux directly out of the
box. The BBW is packaged with a micro‐SD card, as it has no on‐board eMMC.

 Highly Recommended Accessories

 The following accessories are recommended for purchase along with your BBB
board. If you are planning to carry out development work with the BBB, then
you should probably have all of them.

 Micro‐SD Card (for Flashing the BBB)

 A micro‐SD card enables you to write new Linux images to your BBB. If you
accidently damage the Linux fi le system during your experimentation with
the BBB, the micro‐SD card will enable you to restore your system. Ideally,
you should have two dedicated SD cards, one for a boot image and one for a
fl asher image.

 Purchase a micro‐SD card of at least 4 GB capacity. You may also require a
micro‐SD‐to‐SD adapter so that it can be used in your computer’s card reader.
Many micro‐SD cards are bundled with the adapter, which is a cheaper option than
purchasing them separately. The micro‐SD card should be of Class 10 or greater,
as the faster read/write speed will save you time in writing images in particu-
lar. A blank micro‐SD card can also be used for additional fi le system storage
(discussed in Chapter 3), so the greater the card capacity the better.

 Chapter 1 ■ The BeagleBone Hardware 15

 External 5V Power Supply (for Flashing and Peripherals)

 You can power the BBB directly using the USB connection from your desktop/
laptop computer to the USB client connector on the BBB. For getting started with
the BBB, that is perfectly fi ne; however, once you begin to connect accessories
such as Wi‐Fi adapters, USB cameras, or on‐board displays, it is possible that
the power available over USB will not be suffi cient for your confi guration. Some
early BBB boards would not fl ash a new system image correctly without being
connected to an external 5 V power supply.

 You can purchase a 5 V DC regulated switching power supply that plugs
directly into a mains supply. It should have a minimum DC output current
of 1 A; however, you should aim for a 2 A current supply (2 A × 5 V = 10 W) if
possible. The 5 V barrel connector (5.5 mm diameter) from the supply should
be center positive. If you plan on running multiple BBBs simultaneously,
then you will need to power them using external power supplies (barrel or
USB), as connecting two BBBs to your PC simultaneously requires careful
software confi guration and can cause Internet connectivity instabilities
under Windows.

 Ethernet Cable (for Network Connection)

 The BBB can use a special networking mode, called Internet‐over‐USB, to cre-
ate a virtual network between the BBB and your desktop; however, if you are
connecting the BBB to your home network, then don’t forget to purchase a Cat5
network patch cable to connect your BBB to the network using its RJ-45 10/100
Ethernet connector. If you are planning to use more than one BBB simultane-
ously, you could invest in a low‐cost four‐port switch, which can be placed close
to your desktop computer (see Chapter 2).

 HDMI Cable (for Connection to Monitors/Televisions)

 The BBB has a HDMI framer and can be easily connected to a monitor or tele-
vision that has a HDMI or DVI connector. The BBB has a micro‐HDMI socket
(HDMI‐D), so be careful to match that to your monitor/television type (usually
HDMI‐A or DVI‐D). The cable you are likely to need is a “HDMI‐Micro‐D Plug
to HDMI‐A Male Plug.” A 1.8 m (6 ft.) cable should cost no more than $10. Be
very careful with your purchase—a HDMI‐C (mini‐HDMI) connector will not
fi t the BBB.

 Alternatively, you can purchase a low‐cost ($3) micro‐HDMI (HDMI‐D) plug
to regular HDMI (HDMI‐A) socket adapters or micro‐HDMI (HDMI‐D) plug
to DVI‐D socket adapter cables. These enable you to use regular‐size HDMI‐A
or to connect to DVI‐D devices, respectively (see Figure 1-6 (a)).

16 Part I 6 ■ BeagleBone Basics

 USB to Serial UART TTL 3.3 V (for Finding Problems)

 The USB‐to‐serial UART TTL serial cable is one accessory that is really useful
when there are problems with the Linux distribution on your board. I fi nd
it invaluable when fi nding and fi xing problems with my students’ boards. It
connects to the 6 pin J1 header, which is beside the P9 header on the BBB. The
black side of the cable is connected to pin 1 (the white dot) and the green side is
closest to the USB host connector (see Figure 1-7). Only three pins are used on
the BBB: pin 1 ground (black), pin 4 receive (orange), and pin 5 transmit (yellow).

(a) (b)

 Figure 1-6: (a) BBB connected to micro‐HDMI‐to‐HDMI adapter and then to a low‐cost
HDMI‐A‐to‐DVI‐D cable (b) A micro‐HDMI‐to‐VGA adapter with audio line output

 Figure 1-7: The USB‐to‐TTL 3.3V serial cable and its connection to the BBB (connection colors
are black, brown, red, orange, yellow, and green)

 Please ensure that you purchase the 3.3 V level version and ideally purchase
a version with a six‐way 0.1” female header pre‐attached (it does sell with only
bare wires, which I purchased by accident!). This cable contains a chipset and

 Chapter 1 ■ The BeagleBone Hardware 17

requires that you install drivers on your desktop computer, creating a new COM
port. The FTDI TTL‐232R‐3V3 cable works very well and provides a very stable
connection (about $20). See tiny.cc/ebb102 for the datasheet and the “VCP”
link to the software drivers for this adapter cable.

 If you are planning to fl ash your own images to the BBB or if you have a
board that is not booting, I recommend that you purchase one of these cables.
The use of this cable is discussed in Chapter 2 and Chapter 3 .

 Optional Accessories

 The following sections describe optional accessories that you may need, depend-
ing on the applications that you are developing (see Figure 1-8).

(a) (b) (c)

 Figure 1-8: (a) USB Wi‐Fi adapters; (b) the Logitech C920 camera; and (c) a Velleman USB hub
(bus powered)

 USB Hub (to Connect Several USB Devices to a USB Host)

 If you are planning to connect more than one USB device to the BBB at the
same time, then you will need a USB hub. USB hubs are either bus powered or
externally powered. Externally powered hubs are more expensive; however, if
you are powering several power‐hungry adapters (Wi‐Fi in particular), then you
may need a powered hub. Ensure that you plug the USB hub into the BBB host
connector before powering on the BBB. I have tried different brands of USB hub
and they have all worked without diffi culty.

 Micro-HDMI to VGA adapters (for VGA Video and Sound)

 Several low‐cost micro‐HDMI‐to‐VGA adapters are for sale (e.g., on Amazon or
eBay) for converting the HDMI output to a VGA output. As well as providing for
VGA video output, many of these connectors provide a separate 3.5 mm audio
line out, which can be used if you wish to play audio using your BBB, without

18 Part I 8 ■ BeagleBone Basics

requiring a television, high‐end amplifi er, or monitor (see Figure 1-6 (b)). There
are also USB audio adapters available that can provide high‐quality playback
and recording functionality. These adapters and their usage are described in
Chapter 12 .

 Wi-Fi Adapters (for Wireless Networking)

 Many different Wi‐Fi adapters are available, such as those in Figure 1-8 (a);
however, not all adapters will work on the BBB. The Linux distribution and
the chipset inside the adapter will determine the likelihood of success.
You can find a list of adapters that are confirmed as working at tiny.cc/
ebb103 . However, please be aware that manufacturers can change chipsets
within the same product and that buying an adapter from the list does not
guarantee that it will work. You are more likely to succeed if you can con-
firm the chipset in the adapter you are planning to purchase, and evaluate
that against the list. Wi‐Fi configuration and applications are discussed in
detail in Chapter 10 , which tests a range of different low‐cost adapters that
are widely available.

 USB Webcam (for Capturing Images and Streaming Video)

 Attaching a USB webcam can be a low‐cost method of integrating image and
video capture into your BBB projects. In addition, utilizing Linux libraries such
as Video 4 Linux and Open Source Computer Vision (OpenCV) enables you to
build “seeing” applications.

 In Chapter 12 , different webcams are examined, but the text focuses on the
use of the Logitech C920 webcam in particular for video streaming applica-
tions (see Figure 1-8 (b)). It is a relatively pricey webcam (at about $70) but it is
capable of streaming full HD video directly using the BBB, as it has H.264/
MPG‐4 hardware encoding built into the camera. This greatly reduces the
workload for the BBB, allowing the processor to be available for other tasks.
As with Wi‐Fi adapters, it would be useful to confi rm that a webcam works
with the BBB before you purchase it for that specifi c purpose. I test several
camera types in Chapter 12 .

 USB Keyboard and Mouse (for General-Purpose Computing)

 It is possible to connect a USB keyboard and mouse separately to a USB hub or
to use a 2.4 GHz wireless keyboard and mouse combination. Very small wireless
handheld combinations are available, such as the Rii 174 Mini, Rii i10, and eSynic
mini, all of which include a handheld keyboard with integrated touchpad. A
USB Bluetooth adapter is also useful for connecting peripherals to the BBB. A
similar Bluetooth keyboard/touchpad is used in Chapter 11 .

 Chapter 1 ■ The BeagleBone Hardware 19

 Capes

 Capes are daughterboards that can be attached to the P8/P9 expansion headers on
the BeagleBone. They are called capes (as in Superman’s cape!) due to the shape of
the boards as they wrap around the RJ-45 Ethernet connector. You can connect up
to four capes at any one time, when they are compatible with each other.

 Some capes use a signifi cant number of pins. For example, you will look
at the LCD4 cape in Chapter 11 . It uses the P8 header pins 27 through 46 and
some of the analog inputs for its buttons and resistive touch interface. If you are
using the eMMC for booting the BBB, then very few pins remain for GPIO use.
In addition, the LCD cape does not carry forward the pin headers. Figure 1-9
shows two views of this cape when connected to the BBB, running the standard
BBB Debian Linux distribution.

 Figure 1-9: The LCD4 cape (top and bottom view)

 More than 50 capes are currently available for the BeagleBone; a full list can
be found at www.beagleboard.org/cape . Here is a selection of some example
capes that you might fi nd useful in your projects (see Figure 1-10):

■ The LCD capes are available in different sizes: 7” (800×480), 4” (480×272),
and 3” (320×240), with the 4” version captured in Figure 1-9 . They have
resistive touch screens, meaning you use a stylus (or fi ngernail) to interact
with the screens. This is different than the capacitive touch screens on
recent phones/tablets.

■ The Adafruit Proto cape is a low‐cost (∼$10) bare cape, which you can
use to transfer your breadboard design to a more solid platform. Several
other breadboard and prototyping capes are available.

■ The Replicape ($179) is an impressive open‐source 3D printer cape that
has fi ve stepper motor drivers, including micro‐stepping support. See
www.thing‐printer.com for more information.

■ The Valent F(x) LOGi‐Bone FPGA development board cape ($89) adds FPGA
capabilities to the BBB with a Spartan 6 LX9. FPGAs provide programmable

20 Part I 0 ■ BeagleBone Basics

logic blocks that allow for very fast I/O operations, but does so with an
increase in complexity. This cape also provides an Arduino header, enabling
it to interface directly to shields that have been developed for the Arduino
platform. This cape is discussed briefl y at the beginning of Chapter 13 .

■ There are camera capes such as the 3.1MP Camera cape from www
.beagleboardtoys.com that provides an alternative to USB webcams;
however, it cannot be used at the same time as the eMMC, so the BBB
must be booted from the micro‐SD card.

(a) (b)

(d)(c)

 Figure 1-10: (a) The Proto cape; (b) Valent F(x) LOGi‐Bone; (c) Camera cape; and (d) Adafruit BBB
case

 You have to be very careful about compatibility when interconnecting capes.
There is a compatibility table covering the more common capes at tiny.cc/
ebb104 . The preceding list is just a small selection. Many more capes are avail-
able and it is likely that additional capes will be developed over time.

 How to Destroy Your BeagleBone!

 The BBB and BBW are complex and delicate devices that are very easily dam-
aged if you do not show due care. If you are moving up from boards like the
Arduino to the BeagleBone platform, then you have to be especially careful

 Chapter 1 ■ The BeagleBone Hardware 21

when connecting circuits that you built for that platform to the BBB. Unlike the
Arduino Uno, the microprocessor on the BBB cannot be replaced. If you damage
the microprocessor, you will have to buy a new board!

 Here are some things that you should never do:

■ Do not shut the BBB down by pulling out the power jack/USB power.
You should shut down the board correctly using a software shutdown
(e.g., by pressing the power button once) or by holding the power but-
ton for about eight seconds for a “hard” power down. This enables the
PMIC to shut down the board correctly. If you have to remove power by
disconnecting the power supply, hold the reset button while doing so in
order to lower system power usage.

■ Do not place a powered BBB on metal surfaces (e.g., aluminum‐fi nish
computers) or on worktops with stray/cut‐off wire segments, resistors,
etc. If you short the pins on the P8/P9 headers you can easily destroy
your board. You can buy a case from suppliers such as Adafruit (see
Figure 1-10 (d)). Alternatively, you can attach small rubber feet to the BBB.

■ Do not connect circuits that source/sink other than very low currents
from/to the P8/P9 headers. The maximum current that you can source
from many of these header pins is 4‐6 mA and the maximum current you
can sink is 8 mA. The power rail and ground pins can source and sink
larger currents. The Arduino allows currents of 40 mA on each input/
output. This issue is covered in Chapter 4 and Chapter 6 .

■ The GPIO pins are 3.3 V tolerant (the ADCs are 1.8 V tolerant). Do not con-
nect a circuit that is powered at 5 V or you will destroy the board. This is
discussed in Chapter 4 , Chapter 6 , and Chapter 8 .

■ Do not connect circuits that apply power to the P8/P9 pins while the BBB
is not powered on. Make sure that all self‐powered interfacing circuits are
gated by the 3.3 V supply line. This is covered in Chapter 6 .

 Here are two steps that you should always follow:

■ Carefully check the pin numbers that you are using. There are 46 pins in
each header, and it is very easy to plug into header connector 21 instead of
19. For connections in the middle of the headers, I always count twice—up
from the left and down from the right. In addition, there is a very useful
set of P8/P9 labels available at tiny.cc/ebb105 that you can print at 100%
scale and attach to your BBB, as illustrated in Figure 1-1 .

■ Read the SRM in detail before connecting complex circuits of your own
design to the BBB.

 If your BBB is dead and it is your fault, then I’m afraid that after you per-
form all of the checks at www.beagleboard.org/support , you will have to

22 Part I ■ BeagleBone Basics

purchase a new board. If it is not your fault, then see the BBB SRM manual and
www.beagleboard.org/support website to return a defective board for repair
by requesting a return merchandise authorization (RMA) number.

 Summary

 After completing this chapter, you should be able to:

■ Describe the capability of the BeagleBone and its suitability for different
project types.

■ Source the important documents that will assist you in working with the
BBB platform.

■ Describe the major hardware systems and subsystems on the BBB.

■ Identify important accessories that you can buy to enhance the capability
of your BBB.

■ Have an appreciation of the power and complexity of the BBB as a physi-
cal computing platform.

■ Be aware of the fi rst steps to take in protecting your board from physical
damage.

 Support

 The key sources of additional support documentation are listed earlier in this
chapter. If you are having diffi culty with the BeagleBone platform and the issues
are not described in the documentation, then you should use these two resources:

■ The BeagleBoard Google Group, which is available at groups
.google.com/d/forum/beagleboard . Please read the frequently asked
questions (FAQs) and search the current questions before posting a new
question.

■ There is a live chat available at www.beagleboard.org/chat or directly
on the Beagle IRC channel (by joining #beagle on irc.freenode.net)
using a free IRC client such as X‐Chat for Linux, HexChat for Windows,
or Colloquy for Mac OS X.

 Please remember that the people in this group and IRC channel are commu-
nity members who volunteer their time to respond to questions.

23

 In this chapter, you are introduced to the Linux operating system and soft-
ware tools that can be used with the BeagleBone. This chapter aims to ensure
that you can connect to your BeagleBone and control it. By the end of this
chapter you should be able to “blink” a system LED having followed a step‐
by‐step guide that demonstrates how you can use Linux shell commands in a
Linux terminal window. In this chapter, you are also introduced to a library of
BeagleBone functions, called BoneScript, which can be used with Node.js and
the Cloud9 integrated development environment to build code that fl ashes the
same system LED.

 Equipment Required for This Chapter:

■ BeagleBone Black board

■ Supplied USB cable (USB A male to mini‐USB A male)

■ Micro‐SD card (4 GB or greater; Class 10+) (optional)

■ Network infrastructure and cabling (optional)

 Further details on this chapter are available at www.exploringbeaglebone
.com/chapter2/

 C H A P T E R

 2

 The BeagleBone Black Software Software

24 Part I 4 ■ BeagleBone Basics

 Linux on the BeagleBone

 A Linux distribution is a publicly available version of Linux that is packaged
with a set of software programs and tools. There are many different Linux dis-
tributions, which are typically focused on different applications. For example,
high‐end server owners might install Red Hat Enterprise, Debian, or OpenSUSE;
desktop users might install Ubuntu, Debian, Fedora, or Linux Mint. The list is
endless, but at the core of all distributions is a common Linux kernel, which
was conceived and created by Linus Torvalds in 1991.

 In deciding on a Linux distribution to use for your embedded system platform,
it would be sensible to choose one for which the following apply:

■ The distribution is stable and well supported.

■ There is a good package manager.

■ The distribution is lean and suited to a low storage footprint.

■ There is good community support for your particular device.

■ There is device driver support for any peripherals you wish to attach.

 Linux Distributions

 There are many different distributions of Linux for embedded system platforms,
including expensive proprietary versions for real‐time programming. At their
heart, they all use the mainline Linux kernel, but each distribution contains
different tools and confi gurations that result in quite different user experiences.
The main open‐source distributions used by the community on the BBB board
include Debian, Ångström, Ubuntu, and Arch Linux.

Debian (contraction of Debbie and Ian!) is a community‐driven Linux distribu-
tion that has an emphasis on open‐source development. There is no commercial
organization involved in the development of Debian; in fact, there is a formal
social contract (tiny.cc/ebb201) that states that Debian will remain entirely
free (as in software freedom). The Debian distribution is used for many of the
practical steps in this book and is recommended as the distribution of choice for
the BBB, as it is currently distributed with new BBB boards. In addition, Debian
is used throughout this book as the distribution for the Linux desktop computer,
as it provides excellent support for cross‐platform development through the
Embedded Debian (Emdebian) project (see n www.debian.org).

Ångström is a stable and lean Linux distribution that is widely used on embed-
ded systems. The team of developers behind Ångström is experienced in custom-
izing Linux distributions for embedded devices such as set‐top boxes, mobile
devices, and networking devices. Impressively, Ångström can scale down to
devices with only megabytes of fl ash storage. Ångström makes extensive use
of BusyBox , a multicall binary (a single executable that can do the job of many)x
used to create a compact version of command‐line utilities that are found on

 Chapter 2 ■ The BeagleBone Black Software 25

Linux systems. Many of my YouTube videos use Ångström, as it was the primary
distribution for the BeagleBone for quite some time.

Ubuntu is very closely related to Debian; in fact, it is described on the Ubuntu
website (www.ubuntu.com) as follows: “Debian is the rock upon which Ubuntu is m

built.” Ubuntu is one of the most popular desktop Linux distributions, mainly
because of its focus on making Linux more accessible to new users. It is easy to
install and has excellent desktop driver support, and there are binary distribu-
tions available for the BBB.

Arch Linux is a lightweight and fl exible Linux distribution that aims to “keep it
simple,” targeting competent Linux users in particular by giving them complete
control and responsibility over the system confi guration. There are pre‐built
versions of the Arch Linux distribution available for the BBB; however, compared
to the other distributions, it currently has less support for new Linux users with
the BBB platform (see www.archlinux.org).

N O T E Don’t be too worried that you might damage the Linux fi le system when you

are practicing with the BBB. In the worst case, you might have to write a new Linux

image to the board. It takes about 20–45 minutes to write the image to the board.

There is a guide to writing a new image to the BBB on this chapter’s web page at

www.exploringbeaglebone.com/chapter2/ .

 Communicating with the BBB

 When you are ready to try out your BBB, the fi rst thing you should do is con-
nect it to your desktop computer using the supplied USB lead. After you apply
power, the BBB will connect to the desktop in USB client mode. Once connected
and discovered, your fi le manager, such as Windows Explorer, will display the
contents of the BBB’s FAT partition, as shown in Figure 2-1 . The BeagleBoard.
org team has put together a really excellent HTML guide on getting started
with the BBB. You should double‐click the START.htm fi le to display the guide,
which is illustrated in Figure 2-1 , within a web browser.

 Figure 2-1: The BBB START.htm guide to setting up your BBB

26 Part I 6 ■ BeagleBone Basics

W A R N I N G Be very careful that you do not delete the fi les that appear in the

folder in Figure 2-1 , such as MLO , u‐boot.img , and uEnv.txt . These fi les are vital to

your BBB booting correctly. In future releases of Linux for the BBB, it is likely that such

fi les will move to the /boot directory on the Linux partition.

 Installing Drivers

 Follow the steps in the guide displayed in Figure 2-1 , which mainly involve
browsing to the Drivers folder and installing the correct version. Under Windows
you may receive Windows driver certifi cation warnings on multiple occasions.
Continue with the process and do not click Cancel . Under Windows 8, you may
have to restart the computer in a troubleshooting mode in order to disable “driver
signature enforcement”—please see the chapter web page. Once this process
is complete, several new devices are available on your desktop computer. For
example, you will now have the following devices:

■ Access to the FAT partition of the BBB (like a USB memory key).

■ Serial access to the BBB using a new Gadget Serial driver.

■ A Linux USB Ethernet/RNDIS Gadget (for Internet‐over‐USB). RNDIS stands
for Remote Network Driver Interface Specifi cation.

 The Windows Device Manager displays these new devices. Similar steps for
Linux and Macintosh desktop computers are available in the startup guide.
These new devices can be used to connect to the BBB.

 Network Connections

 There are three main ways to connect to and communicate with the BBB over
the network, each with its own advantages and disadvantages. The fi rst way is
to use Internet‐over‐USB , which creates a “private” virtual LAN using a singleB
USB cable. The second way is to use regular Ethernet, and the third is to use an
Ethernet crossover cable . Connecting to the BBB over a network can be a stumblinge
block for beginners. It is usually straightforward if you are working at home
with control of your own network; however, complex networks, such as those in
universities, can have multiple subnets for wired and wireless communication. In
such complex networks, routing restrictions may make it diffi cult, if not impos-
sible, to connect to the BBB over regular Ethernet. All three methods are suitable
for connecting your BBB to Windows, Macintosh, and Linux desktop machines.

 Internet‐over‐USB

 The standard BBB distributions provide support for Internet‐over‐USB using
the Linux USB Ethernet/RNDIS Gadget device. For new users, and for users
within complex network infrastructures, this is probably the best way to get
started with the BBB. For this setup you only need the BBB board, the supplied

 Chapter 2 ■ The BeagleBone Black Software 27

USB cable, and access to a desktop computer, ideally with administrator access
levels. Table 2-1 describes the advantages and disadvantages of Internet‐over‐
USB for connecting to the BBB.

Table 2-1: Advantages and Disadvantages of BBB Internet‐over‐USB

ADVANTAGES DISADVANTAGES

Provides a good stable network setup for
beginners.

Without signifi cant eff ort, you are limited to
a single BBB per desktop.

When you do not have access to, or control
of, network infrastructure hardware you can
still connect the BBB to the Internet.

Network sharing confi guration can be
diffi cult, especially on Macintosh desktop
computers. Additional confi guration must
also be performed on the BBB.

Power is supplied by your desktop machine
over USB.

Your desktop machine must be running in
order to transfer data to/from the Internet.

N O T E By default, with Internet‐over‐USB, the BBB has the fi xed IP address 192.168.7.2

and the desktop machine has the fi xed address 192.168.7.1.

 For example, if you fully installed the BBB drivers under Windows, you should
now have a new network connection (Start ➢ type view Network Connections).s

Figure 2-2 captures a typical Network Connections window under Windows.
In this case, “Local Area Connection 9” is the Linux USB Ethernet/RNDIS
Gadget. The desktop computer remains connected to your regular LAN, which
provides access to the Internet, and to a new “private” LAN that contains only
your desktop computer (192.168.7.1) and your BBB (192.168.7.2). You can open a
web browser and connect to the BBB’s web server by typing 192.168.7.2 in the
address bar, as illustrated in Figure 2-2 .

 Figure 2-2: Windows Network Connections with Internet‐over‐USB connection LAN 9, and a
web browser connection

28 Part I 8 ■ BeagleBone Basics

 At this point you can connect to the BBB’s web server using a web browser,
so you have a fully functional private network; however, you may also want the
BBB to have full direct access to the Internet so that you can download fi les and
update Linux software directly on the BBB. To do this, you need to share your main
network adapter, so that traffi c from the BBB can be routed through your desktop
machine to the Internet. For example, under Windows use the following steps:

 1. Choose your desktop/laptop network adapter that provides you with
Internet access. Right‐click it and choose Properties.

 2. In the dialog that appears, as shown on the left‐hand side of Figure 2-3 , click
the Sharing tab at the top and enable the option Allow other network users . . .

 3. In the drop‐down list, choose your BBB private LAN (e.g., referring back
to Figure 2-2 , this is “Local Area Connection 9”). Click OK.

 4. Right‐click the BBB private LAN (e.g., LAN 9) and select Properties.

 5. Double‐click Internet Protocol Version 4. In this dialog, select Obtain an IP
address automatically and enable Obtain DNS server address automati-
cally (see Figure 2-3 on the right‐hand side).

 6. Click OK and then OK again to save the confi gurations.

 Figure 2-3: Configuring the Network Connection Sharing Properties under Windows

 If all goes well, you will not have noticed any difference at this point and you
should be able to reload the web page that is shown in Figure 2-2 . The impact of
the last two steps can only be appreciated when you open a terminal connection
to the BBB. A link to a video guide for confi guring network sharing for Mac OS
X is available at tiny.cc/ebb202 .

W A R N I N G If you are planning to jump ahead, there is one more step to complete

before your BBB will be able to “see” the Internet. This change, which has to be made

directly on the BBB, is covered in the section titled “What Time Is It?”

 Chapter 2 ■ The BeagleBone Black Software 29

 Regular Ethernet

 By “regular” Ethernet, I mean connecting the BBB to a network in the same way
that you would connect your desktop computer using a wired connection. For
the home user and power user, regular Ethernet is probably the best solution
for networking and connecting to the BBB. Table 2-2 lists the advantages and
disadvantages of using this type of connection. The main issue is the complex-
ity of the network—if you understand your network confi guration and have
access to the router settings, then this is by far the best confi guration. If your
network router is distant from your desktop computer, you can use a small
network switch, which can be purchased for as little as $10–$20. Alternatively,
you could purchase a wireless access point with integrated multiport router,
for $25–$35. This is useful for wireless BBB applications and also for extending
the range of your wireless network.

Table 2-2: Regular BBB Ethernet Advantages and Disadvantages

ADVANTAGES DISADVANTAGES

You have full control over IP address settings
and dynamic/static IP settings.

You might need administrative control or
knowledge of the network infrastructure.

You can connect and interconnect many BBBs
to a single network (including wireless devices).

The BBB needs a source of power (which
can be a mains‐powered adapter).

The BBB can connect to the Internet without a
desktop computer being powered on.

The setup is more complex for beginners
if the network structure is complex.

 The fi rst challenge with this confi guration is fi nding your BBB on the net-
work. By default, the BBB is confi gured to request a Dynamic Host Confi guration

 NETWORK SHARING FOR LINUX DESK TOP USERS

 The settings for a Linux desktop to enable network sharing are as follows:

 1. With the Internet‐over‐USB device attached, type ifconfig or ip addr in a

terminal, which results in a display of the attached network interfaces.

 2. Find your main adapter (e.g., eth0) and Internet‐over‐USB adapter (e.g., eth1).

 3. Use the iptables program to configure the Linux kernel firewall rules:

molloyd@debian:~$ sudo iptables --table nat --append
POSTROUTING --out‐interface eth0 ‐j MASQUERADE
molloyd@debian:~$ sudo iptables --append FORWARD --in‐
interface eth1 ‐j ACCEPT

 4. Then, use the following command to turn on IP forwarding:

 molloyd@debian:~$ sudo sh ‐c "echo 1 > /proc/sys/net/ipv4/
ip_forward"

30 Part I 0 ■ BeagleBone Basics

Protocol (DHCP) IP address. In a home network environment this service is
usually provided by a DHCP server that is running on the integrated Modem‐
Firewall‐Router‐LAN (or some similar confi guration) that connects the home
to an Internet Service Provider (ISP).

DHCP servers issue IP addresses dynamically from a pool of addresses for
a fi xed time interval, called the lease time , which is specifi ed in your DHCP e
confi guration. When this lease expires, your BBB is allocated a different IP
address the next time it connects to your network. This can be frustrating, as
you may have to search for your BBB on the network again. It is possible to set
the IP address of your BBB to be static , so that it is fi xed at the same addressc
each time the board connects. Wireless connections and static IP connections
are discussed in Chapter 10 .

 There are a few different ways to fi nd your BBB’s dynamic IP address:

■ Use a web browser to access your home router (often address 192.168.1.1,
192.168.0.1, or 10.0.0.1). Log in and look under a menu such as “Status”
for the “DHCP Table.” You should see an entry that details the allocated
IP address, the physical MAC address, and the lease time remaining for
a device with host name “beaglebone,” for example:

 Leased Table
 IP Address MAC Address Client Host Name Register Information
 192.168.1.116 c8:a0:30:c0:6b:48 beaglebone Remains 23:59:51

■ Use a port‐scanning tool like nmap under Linux or the Zenmap GUI version
that is available for Windows (see tiny.cc/ebb203). The command nmap
‐T4 ‐F 192.168.1.* will scan for devices on a subnet. You are searching
for an entry that has three or four open ports (e.g., 22 for SSH, 80 for the
BBB guide, 8080 for the Apache web server, and 3000 for the Cloud 9 IDE).
It may also identify itself with Texas Instruments.

■ You could use a Serial‐over‐USB connection to connect to the BBB and type
ifconfig to fi nd the IP address. The address is the “inet addr” associated
with the eth0 adapter. This is discussed shortly.

 Once you have the IP address, you can test that it is valid by entering it in the
address bar of your web browser— 192.168.1.116 in the example above. Your
browser should display the page that is shown in Figure 2-2 .

 Ethernet Crossover Cable

 An Ethernet crossover cable is a cable that has been modified to enable two
Ethernet devices to be connected directly together, without the need for
an Ethernet switch. It can be purchased as a cable or as a plug‐in adapter.
If you have an RJ-45 crimping tool, you could even make one by swap-
ping the transmit pair (green, white/green) with the receive pair (orange,

 Chapter 2 ■ The BeagleBone Black Software 31

white/orange) on one end of a 10Base‐T or 100Base‐TX Ethernet cable (the
Gigabit Ethernet cable is different). Many desktop machines have an automatic
crossover detection function (Auto‐MDIX) that enables a regular Ethernet
cable to be used. Similar to the Internet‐over‐USB network configuration,
this connection type can be used when you do not have access to network
infrastructure and/or where the Internet‐over‐USB network configuration is
not working correctly. Table 2-3 describes the advantages and disadvantages
of this connection type.

Table 2-3: Crossover Cable Network Advantages and Disadvantages

ADVANTAGES DISADVANTAGES

When you do not have access to network
infrastructure hardware you can still con-
nect to the BBB.

If your desktop machine has only one
network adapter then you will lose access
to the Internet. It is best used with a device
that has multiple adapters.

BBB may have Internet access if the desktop
has two network adapters.

BBB still needs a source of power (can be a
mains‐powered adapter).

Provides a reasonably stable network setup. Requires a specialized Ethernet crossover
cable or adapter, unless your desktop has
Auto‐MDIX.

 Communicating with the BBB

 Once you have networked the BBB, the next thing you might want to do is
communicate with the BBB. You can connect to the BBB using either a serial
connection over USB, USB‐to‐TTL, or a network connection, such as that just
discussed. The network connection should be your main focus, as that type of
connection provides your BBB with full Internet access. The serial connection is
generally used as a fallback connection when problems arise with the network
connection. As such, you may skip the next section, but the information is here
as a reference for when problems arise.

N O T E The default superuser account for Ångström, Debian, and Arch Linux has

username root and no password (just press Enter). Ubuntu does not have a superuser

login by default—log in as ubuntu with the password temppwd .

 Serial Connection over USB

 If you installed the device drivers for the BBB in the previous section, the Gadget
Serial device will allow you to connect to the BBB directly using a terminal
emulator program. Serial connections are particularly useful when the BBB is
close to your desktop computer and connected via the USB cable. It is often a

32 Part I ■ BeagleBone Basics

fallback communications method when something goes wrong with the network
confi guration or software services on the BBB.

 To connect to the BBB via the serial connection, you need a terminal program.
Several third‐party applications are available for Windows, such as RealTerm
(tiny.cc/ebb204) and PuTTY (Y www.putty.org((). PuTTY is also used in the next
section. Most distributions of desktop Linux include a terminal program (try
Ctrl+Alt+T or use Alt+F2 and type gnome‐terminal under Debian). A terminal
emulator is included by default under Mac OS X (e.g., use screen /dev/tty
.usbmodemfa133 115200).

 To connect to the BBB over the USB serial connection you need to know some
information:

■ Port number: You can fi nd this by opening the Windows Device Manager
and searching under the Ports section. Figure 2-4 captures an example
Device Manager, where the Gadget Serial device is listed as COM20. This
will be different on different machines.

■ Speed of the connection: By default you need to enter 115,200 baud to
connect to the BBB.

■ Other information you may need for other terminal applications: Data
bits = 8; Stop bits = 1; Parity = none; and, Flow control = XON/XOFF.

 Figure 2-4: Windows Device Manager and opening a PuTTY serial connection to the BBB

 Save the confi guration with a session name so that it is available each time
you wish to connect. After you click Open, it is important that you press Enter
when the window appears . When connecting to Debian, you should see the fol-
lowing output:

 Debian GNU/Linux 7 beaglebone ttyGS0
 default username:password is [debian:temppwd]
 The IP Address for usb0 is: 192.168.7.2
 beaglebone login:

 which allows you to log in with username root . There is no password by default
(just press Enter).

 Chapter 2 ■ The BeagleBone Black Software 33

 On a Linux desktop computer you can install the screen program and con-
nect to the serial‐over‐USB device with the commands:

 molloyd@debian:~$ sudo apt‐get install screen
 molloyd@debian:~$ screen /dev/ttyUSB0/ 115200

 Serial Connection with the USB‐to‐TTL 3.3 V Cable

 For this serial connection type you need the specialized cable that is described
in Chapter 1 . Find the COM port from Windows Device Manager that is associ-
ated with a device called “USB Serial Port.” Plug in the cable to the 6‐pin con-
nector beside the P9 header (black lead to the white dot/J1). You can then open
a serial connection using PuTTY (115,200 baud) and you will see the same BBB
login prompt as above. However, when you reboot the board you will also see
the full console output as the BBB boots, which begins with:

 U-Boot 2013.10-00016-ga0e6bc6 (Feb 25 2014 - 10:27:54)
 I2C: ready
 DRAM: 512 MiB . . .

 This is the ultimate fallback connection, as it allows you to see what is hap-
pening during the boot process, which is described in the next chapter.

 Connecting through Secure Shell (SSH)

Secure Shell (SSH) is a very useful network protocol for secure encrypted com-
munication between network devices. You can use an SSH terminal client to
connect to the SSH server that is running on port 22 of the BBB, which allows
you to do the following:

■ Log in remotely to the BBB and execute commands.

■ Transfer fi les to and from the BBB using the SSH File Transfer Protocol (SFTP).

■ Forward X11 connections, which allows you to perform virtual network
computing (covered in Chapter 11).

 By default, the BBB Linux distributions run an SSH server (sshd((on Debian
and Dropbear on Ångström) that is bound to port 22. There are a few advantages
in having an SSH server available as the default method by which you log in
remotely to the BBB. In particular, you can open port 22 of the BBB to the Internet
using the port forwarding functionality of your router. Please ensure that you
set a password on the root user account before doing this. You can then remotely
log in to your BBB from anywhere in the world if you know the BBB’s IP address.
A service called dynamic DNS that is supported on most routers allows your
router to register its latest address with an online service. The online service
then maps a domain name of your choice to the latest IP address that your ISP

34 Part I 4 ■ BeagleBone Basics

has given you. The dynamic DNS service usually has an annual cost, for which
it will provide you with an address of the form dereksBBB.servicename.com .

 Secure Shell Connections using PuTTY

 PuTTY (www.putty.org(() was mentioned earlier as a way of connecting to the
BBB using serial‐over‐USB. PuTTY is a free, open‐source terminal emulator,
serial console, and SSH client that you can also use to connect to the BBB over
the network. PuTTY has a few very useful features:

■ It supports serial and SSH connections.

■ It installs an application called psftp that enables you to transfer fi les to
and from the BBB over the network from your desktop computer.

■ It supports SSH X11 forwarding, which is required in Chapter 11 .

 Figure 2-5 captures the PuTTY Confi guration settings: Choose SSH as the
connection type; enter the IP address for your BBB (192.168.7.2 if you are using
Internet‐over‐USB); accept Port 22 (the default); and then save the session with
a useful name for future use. Click Open and log in using your username and
password. You may get a security alert that warns about man‐in‐the‐middle
attacks, which may be a concern on insecure networks. Accept the fi ngerprint
and continue. Mac OS X users can run the Terminal application with very similar
settings (e.g., ssh ‐X root@192.168.7.2).

 Figure 2-5: PuTTY SSH Configuration settings beside an open SSH terminal connection

 You will see the basic commands that can be issued to the BBB later in this
chapter, but fi rst it is necessary to examine how you can transfer fi les to and
from the BBB.

 Chrome Apps: Secure Shell Client

 The Chrome web browser has support for Chrome Apps—applications that
behave like locally installed (or native) applications but are written in HTML5,

 Chapter 2 ■ The BeagleBone Black Software 35

JavaScript, and CSS. Many of these applications use Google’s Native Client
(NaCl, or Salt!), which is a sandbox for running compiled C/C++ applications
directly in the web browser, regardless of the OS. The benefi t of NaCl is that
applications can achieve near‐native performance levels, as they can contain
code that uses low‐level instructions.

 There is a very useful “terminal emulator and SSH client” Chrome App
available. Open a new tab on the Chrome browser and click the Apps icon.
Go to the Chrome Web Store and search the store for “Secure Shell.” Once it
is installed, it will appear as the Secure Shell App when you click the Apps
icon again. When you start up the Secure Shell App, you will have to set
the connection settings as in Figure 2-5 , and the application will appear as
in Figure 2-6 .

 Figure 2-6: The SSH Chrome App

 Transferring Files Using PuTTY/psftp over SSH

 The PuTTY installation also includes fi le transfer protocol (ftp) support that enables
you to transfer fi les to and from the BBB over your network connection. You
can start up the psftp (PuTTY secure fi le transfer protocol) application by typing
psftp in the Windows Start command text fi eld.

 At the psftp> prompt you can connect to the BBB by typing open root@192.168.7.2
(e.g., the BBB address for Internet‐over‐USB). Your desktop machine is now referred
to as the local machine and the BBB is referred to as the remote machine. When
you issue a command, you are typically issuing it on the remote machine. After
connecting you are placed in the home directory of the user account that you
used. Therefore, under the BBB Debian distribution, if you connect as root you
are placed in the /root directory.

 To transfer a single fi le c:\temp\test.txt from the local desktop computer to
the BBB you can use the following steps:

 psftp: no hostname specified; use "open host.name" to connect
 psftp> open root@192.168.7.2
 Using username "root". Debian GNU/Linux 7
 Remote working directory is /root
 psftp> lcd c:\temp
 New local directory is c:\temp

36 Part I 6 ■ BeagleBone Basics

 psftp> mkdir test
 mkdir /root/test: OK
 psftp> put test.txt
 local:test.txt => remote:/root/test.txt
 psftp> dir test.*
 Listing directory /root
 -rw-r--r-- 1 root root 6 May 15 04:17 test.txt

 Commands that are prefixed with an l refer to commands issued for the
local machine, e.g., lcd (local change directory) or lpwd (local print working
directory). To transfer a single file, the put command is issued, which transfers
the file from the local machine to the remote machine. The get command can
be used to transfer a file in reverse. To “put” or “get” multiple files you can
use the mput or mget commands. Use help if you have forgotten a command.

 If you are using a Linux client machine, you can use the command sftp instead
of psftp . Almost everything else remains the same. The sftp client application
is also installed on the BBB distribution by default, so you can reverse the order
of communication, that is having the BBB act as the client and another machine
as the server.

 Here are some useful hints and tips with the psftp / p sftp commands:

■ mget ‐r * will perform a recursive get of a directory. This is very useful
if you wish to transfer a folder that has several subfolders. The ‐r option
can also be used on get , put , and mput commands.

■ dir *.txt will apply a fi lter to display only the .txt fi les in the current
directory.

■ mv can be used to move a fi le/directory on the remote machine to a new
location on the remote machine.

■ reget can be used to resume a download that was interrupted. The par-
tially downloaded fi le must exist on the local machine.

■ The psftp command can be issued as a single line or a local script at the
command prompt. You could create a fi le test.scr that contains a set of
psftp commands to be issued. You can then execute psftp from the com-
mand prompt, passing the password using ‐pw and the script fi le using
‐b (or ‐be to continue on error, or ‐bc to display commands as they are
run), as follows:

 c:\temp>more test.scr
 lcd c:\temp\down
 cd /tmp/down
 mget *
 quit
 c:\temp>psftp root@192.168.7.2 ‐pw mypassword ‐b test.scr
 Using username "root".
 Remote working directory is /home/root . . .

 Chapter 2 ■ The BeagleBone Black Software 37

 Controlling the BeagleBone

 At this point you should be able to communicate with the BBB using an SSH
client application, so this section investigates the commands that you can issue
to interact with the BBB.

 Basic Linux Commands

 When you fi rst connect to the BBB with SSH you are prompted to log in. You
can log in with username root , which does not require a password:

 login as: root
 Debian GNU/Linux 7
 BeagleBoard.org BeagleBone Debian Image 2014-10-08
 Support/FAQ: http://elinux.org/Beagleboard:BeagleBoneBlack_Debian
 root@beaglebone:~#

 You are now connected to the BBB, and the Linux terminal is ready for your
command. The # prompt means that you are logged in to a superuser account
(discussed in Chapter 3). For a new Linux user this step can be quite daunting,
as it is not clear what arsenal of commands is at your disposal. This section
provides you with suffi cient Linux skills to get by. It is written as a reference
with examples, so that you can come back to it when you need help.

 First Steps

 The fi rst thing you might do is determine which version of Linux you are run-
ning. This can be useful when you are asking a question on a forum:

 root@beaglebone:~# uname ‐a
 Linux beaglebone 3.8.13-bone67 #1 SMP Wed Sep 24 21:30:03 UTC 2014 armv7l
GNU/Linux

 In this case, Linux 3.8.13 is being used, which was built for the ARMv.7 archi-
tecture on the date that is listed.

 The Linux kernel version is described by numbers in the form X.Y.Z . The X
number changes only very rarely (version 2.0 was released in 1996 and 3.0 in
2011). The Y value changes rarely, every two years or so (3.8 was released inY
February 2013 and 3.13 in January 2014). The Z value changes regularly.

 Next, you could use the passwd command to set a superuser account password: d

 root@beaglebone:~# passwd
 Enter new UNIX password:
 Retype new UNIX password:
 passwd: password updated successfully

 Table 2-4 lists other useful fi rst step commands.

38 Part I 8 ■ BeagleBone Basics

Table 2-4: Useful First Commands in Linux

COMMAND DESCRIPTION

more /etc/issue Returns the Linux distribution you are using

ps ‐p $$ Returns the shell you are currently using (e.g., bash)

whoami Returns who you are currently logged in as

uptime Returns how long the system has been running

top Lists all of the processes and programs executing. Press Ctrl+C
to close the view

 Basic File System Commands

 This section describes the basic commands that you will need in order to move
around on, and manipulate, a Linux fi le system. When using Debian and Ubuntu
user accounts, you often must prefi x the word sudo at the start of certain com-
mands. That is because sudo is a program that allows users to run programs
with the security privileges of the superuser. User accounts are discussed in the
next chapter. For the moment, the basic fi le system commands that you need
are listed in Table 2-5 .

Table 2-5: Basic File System Commands

NAME COMMAND

OPTIONS AND FURTHER

INFORMATION EXAMPLE(S)

List fi les ls ‐a shows all (including hidden fi les)
‐l displays long format
‐R gives a recursive listing
‐r gives a reverse listing
‐t sorts last modifi ed
‐S sorts by fi le size
‐h gives human readable fi le sizes

ls ‐al

Current
directory

pwd Print the working directory
‐P prints the physical location

pwd ‐P

Change
directory

cd Change directory
cd then Enter or cd ~/ takes you
to the home directory
cd / takes you to the fi le system
root
cd .. takes you up a level

cd /home/root
cd /

Make a
directory

mkdir Make a directory mkdir test

Delete a fi le
or directory

rm Delete a fi le
‐r recursive delete (use for
directories)
‐d remove empty directories

rm bad.txt
rm ‐r test

 Chapter 2 ■ The BeagleBone Black Software 39

NAME COMMAND

OPTIONS AND FURTHER

INFORMATION EXAMPLE(S)

Copy a fi le or
directory

cp ‐r recursive copy
‐u copy only if the source is newer
than the destination or the desti-
nation is missing
‐v verbose copy (i.e., show
output)

cp a.txt b.txt

cp ‐r test testa

Move a fi le
or directory

mv ‐i prompts before overwrite
No ‐r for directory. Moving to
the same directory performs a
renaming.

mv a.txt c.txt
mv test testb

Create an
empty fi le

touch Create an empty fi le or update the
modifi cation date of an existing
fi le.

touch d.txt

View content
of a fi le

more View the contents of a fi le. Use the
Space key for the next page.

more d.txt

Get the
calendar

cal Display a text‐based calendar. cal 01 2015

 That covers the basics but there is so much more!—the next chapter describes
fi le ownership, permissions, searching, I/O redirection, and more. The aim of
this section is to get you up and running. Table 2-6 describes a few shortcuts
that make life easier when working with most Linux shells.

Table 2-6: Some Time‐Saving Terminal Keyboard Shortcuts

SHORTCUT DESCRIPTION

Up arrow
(repeat)

Gives you the last command you typed, and then the previous commands
on repeated presses

Tab key Auto‐completes the fi le name, the directory name, or even the executable
command name. For example, to change to the Linux /tmp directory you
can type cd /t and then press Tab, which will auto‐complete the com-
mand to cd /tmp/ . If there are many options, press the Tab key again to
see all of the options as a list

Ctrl+A Brings you back to the start of the line you are typing

Ctrl+E Brings you to the end of the line you are typing

Ctrl+U Clears to the start of the line. Ctrl+E and then Ctrl+U clears the line

Ctrl+L Clears the screen

Ctrl+C Kills whatever process is currently running

Ctrl+Z Puts the current process into the background. Typing bg then leaves it run-
ning in the background, and fg then brings it back to the foreground. This
is discussed under Linux Processes in the next chapter

40 Part I 0 ■ BeagleBone Basics

 Here is an example that uses several of the commands in Table 2-5 to create
a directory called test in which an empty text fi le hello.txt is created. The
entire test directory is then copied to the /tmp directory, which is off the root
directory:

 root@beaglebone:~# cd ~/
 root@beaglebone:~# pwd
 /root
 root@beaglebone:~# mkdir test
 root@beaglebone:~# cd test
 root@beaglebone:~/test# touch hello.txt
 root@beaglebone:~/test# ls
 hello.txt
 root@beaglebone:~/test# cd ..
 root@beaglebone:~# cp ‐r test /tmp
 root@beaglebone:~# cd /tmp/test/
 root@beaglebone:/tmp/test# ls
 hello.txt

W A R N I N G Linux assumes that you know what you are doing! It will gladly allow

you to do a recursive deletion of your root directory when you are logged in as root (I

won’t list the command). Think before you type when logged in as root!

N O T E Sometimes it is possible to recover fi les that are lost through accidental dele-

tion if you use the extundelete command immediately after the deletion. Read the

command manual page carefully, then use steps, such as:

 molloyd@beaglebone:~/ $ sudo apt‐get install extundelete
 molloyd@beaglebone:~/ $ mkdir ~/undelete
 molloyd@beaglebone:~/ $ cd ~/undelete/
 molloyd@beaglebone:~/undelete$ sudo extundelete --restore‐all
--restore‐directory . /dev/mmcblk0p2

 Environment Variables

Environment variables are named values that describe the confi guration of your
Linux environment, such as the location of the executable fi les or your default
editor. To get an idea of the environment variables that are set on the BBB, issue
an env call, which provides you with a list of the environment variables on your
account. Here, env is called on the Debian BBB image:

 root@beaglebone:~# env
 TERM=xterm
 SHELL=/bin/bash
 SSH_CLIENT=192.168.7.1 18533 22

 Chapter 2 ■ The BeagleBone Black Software 41

 SSH_TTY=/dev/pts/3
 USER=root
 PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin . . .

 You can view and modify environment variables according to the
following example, which adds the /root directory to the PATH environment
variable:

 root@beaglebone:~# echo $PATH
 /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
 root@beaglebone:~# export PATH=$PATH:/root
 root@beaglebone:~# echo $PATH
 /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/root

 This change will be lost on reboot. Permanently setting environment variables
requires modifi cations to your .profile fi le when using sh, ksh, or bash shells,
and to your .login fi le when using csh or tcsh shells. To do this, you need to be
able to perform fi le editing in a Linux terminal window.

 Basic File Editing

 A variety of editors are available, but perhaps one of the easiest to use for new
users is also one of the most powerful—the GNU nano editor . You can start up
the editor by typing nano followed by the name of an existing or new fi lename;
for example, typing nano hello.txt will display the view captured in Figure 2-7
(after the text has been entered!). Typing nano ‐c hello.txt will also display
line numbers, which is very useful when debugging program code. You can
move freely around the fi le in the window using the arrow keys and edit or
write text at the cursor location. You can see some of the nano shortcut keys
listed on the bottom bar of the editor window, but there are many more, some
of which are presented in Table 2-7 .

 Figure 2-7: The GNU nano editor being used to edit an example file in a PuTTY Linux terminal
window

42 Part I ■ BeagleBone Basics

Table 2-7: Nano Shortcut Keys—A Quick Reference

KEYS COMMAND KEYS COMMAND

Ctrl+G Help Ctrl+Y Previous page

Ctrl+C Cancel Ctrl+_ or Ctrl+/ Go to line number

Ctrl+X Exit (prompts save) Alt+/ Go to end of fi le

Ctrl+L Enable long line
wrapping

Ctrl+6 Start marking text (then move
with arrows to highlight)

Ctrl+O Save Ctrl+K or Alt+6 Cut marked text

Arrows Move around Ctrl+U Paste text

Ctrl+A Go to start of line Ctrl+R Insert content of another fi le
(prompts for location of fi le)

Ctrl+E Go to end of line Ctrl+W Search for a string

Ctrl+Space Next word Alt+W Find next

Alt+Space Previous word Ctrl+D Delete character under cursor

Ctrl+V Next page Ctrl+K Delete entire line

N O T E Ctrl+K appears to delete the entire line but it actually removes the line to

a buff er, which can be pasted using Ctrl+U. This is a quick way of repeating multiple

lines. Also, Mac users may have to set the meta key in the Terminal application to get

the Alt functionality. Select Terminal ➢ Preferences ➢ Settings ➢ Keyboard, and

choose Use option as meta key.

 What Time Is It?

 A simple question like this causes more diffi culty than you can imagine. If you
type date at the shell prompt, you may get the following:

 root@beaglebone:~# date
 Thu May 15 06:55:54 UTC 2014

 which is many months out of date in this case, where the BBB connected to the
desktop PC using an Internet‐over‐USB connection. However, it is likely that
the date and time are correct if you are connected via “regular” Ethernet.

 If it is wrong, why did the BBB team not set the clock time on your board? The
answer is that they could not. Unlike a desktop PC, there is no battery backup on
the BBB to ensure that the BIOS settings are retained—in fact, there is no BIOS!
That topic will be examined in detail in the next chapter, but for the moment
you need a way to set the time, and for that you can use the NTP (Network Time
Protocol). The NTP is a networking protocol for synchronizing clocks between
computers. If your BBB has the correct time, that is only because your BBB is
obtaining it from your network.

 Chapter 2 ■ The BeagleBone Black Software 43

 BEAGLEBONE INTERNET‐OVER‐USB SETTINGS

 If you are using Internet‐over‐USB, then the call to ntpdate likely failed, as you need

to direct the IP traffi c from your BBB through your desktop machine. You must fi rst set

up network connection sharing as detailed earlier in the “Internet‐over‐USB” section.

Then, type the following in a BBB SSH terminal:

 root@beaglebone:~# ping 8.8.8.8
 connect: Network is unreachable
 root@beaglebone:~# /sbin/route add default gw 192.168.7.1
 root@beaglebone:~# ping 8.8.8.8
 PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
 64 bytes from 8.8.8.8: icmp_req=2 ttl=51 time=13.0 ms . . .

 This change means that all traffi c is being routed through your desktop computer

to the Internet. If this step fails you should check your Internet‐over‐USB sharing set-

tings (perhaps disable and re‐enable sharing). You should now be able to resolve

domain names too under Debian—for example:

 root@beaglebone:~# ping www.google.com
 PING www.google.com (74.125.138.106) 56(84) bytes of data.
 64 bytes from www.google.com (74.125.138.106): icmp_req=2 ttl=51
time=13.0 ms . . .

 If the preceding step fails then you may need to update your nameserver as

follows:

 root@beaglebone:~# echo "nameserver 8.8.8.8" >> /etc/resolv.conf

 This step should not be necessary if the resolv.conf fi le already contains name-

server entries. If you are still having problems, modify /etc/network/interfaces
and add the following line to the fi le:

 dns-nameservers 8.8.8.8

 If you are still having diffi culties, check whether your virus protection software is

preventing ping calls and network connection sharing.

 One way to set the date and time is to fi nd your closest NTP server pool by
going to www.pool.ntp.org (the closest server to me is ie.pool.ntp.org for
Ireland) and entering the following commands:

 root@beaglebone:/etc/network# date
 Thu May 15 07:28:21 UTC 2014
 root@beaglebone:/etc/network# /usr/sbin/ntpdate ‐b ‐s ‐u ie.pool.ntp.org
 root@beaglebone:/etc/network# date
 Sun Oct 12 19:07:37 UTC 2014

 The time is now correct, but that is only the case until you reboot. If this com-
mand failed (e.g., you received the message “Error resolving . . .”), then see the
following feature on the “BeagleBone Internet‐over‐USB Settings.”

44 Part I 4 ■ BeagleBone Basics

 After you set the time, you can set your time zone. Use the following com-
mand, which provides a text‐based user interface that allows you to choose your
location. The BBB is set for Irish Standard Time (IST) in this example:

 root@beaglebone:~# dpkg‐reconfigure tzdata
 root@beaglebone:~# date
 Mon Oct 13 00:16:47 IST 2014

 Package Management

 At the beginning of this chapter, a good package manager was listed as a key
feature of a suitable Linux distribution. A package manager is a set of software toolsr
that automate the process of installing, confi guring, upgrading, and removing
software packages from the Linux operating system. Different Linux distribu-
tions use different package managers: Ångström uses OPKG , Ubuntu and DebianG
use APT (Advanced Packaging Tool) over T DPKG (Debian Package Management
System), and Arch Linux uses Pacman . Each has its own usage syntax, but their
operation is largely similar. For example, the fi rst row in Table 2-8 lists the com-
mand for installing a package using different managers. The table also lists
other package management commands that can be used.

 Wavemon is a useful tool that you can use in confi guring Wi‐Fi connections
(see Chapter 10). If you execute the command you will see that the package is
not installed:

 root@beaglebone:~# wavemon
 -bash: wavemon: command not found

 The platform-specifi c (Debian in this case) package manager can be used to
install the package, once you determine the package name:

 root@beaglebone:~# apt‐cache search wavemon
 wavemon - Wireless Device Monitoring Application
 root@beaglebone:~# apt‐get install wavemon
 Reading package lists . . . Done . . .
 Setting up wavemon (0.7.5-3) . . .

 All of the settings described above are lost on reboot. You can use nano to edit your

.profile fi le (e.g., type nano ~/.profile) and add the following two lines to the

end of your .profile fi le:

 /sbin/route add default gw 192.168.7.1
 /usr/sbin/ntpdate -b -s -u ie.pool.ntp.org

 This addition will slow down the login process. Alternatively, you can use a script

such as the internetOverUSB script that is in the /chp02 directory of the GitHub

repository. It must be executed using the sudo command. The latter approach is pref-

erable if you are switching between “regular” Ethernet and Internet‐over‐USB.

 Chapter 2 ■ The BeagleBone Black Software 45

 The wavemon command now executes, but unfortunately it will not do any-
thing until you confi gure a wireless adapter (see Chapter 10):

 root@beaglebone:~# wavemon
 wavemon: no supported wireless interfaces found

N O T E Sometimes package installations fail, perhaps because another required

package is missing. There are force options available with the package commands to

override checks. (e.g., --force‐yes with the apt‐get command). Try to avoid force

options if possible, as having to use them is symptomatic of a diff erent problem. Typing

sudo apt‐get autoremove can be very useful when packages fail to install.

 Interacting with the BBB On‐board LEDs

 In this section you are going to examine how you can change the behavior of
the BBB on‐board user LEDs—the four blue LEDs in the top corner of the board.
Each LED provides information about the BBB’s state:

■ USR0 fl ashes in a heartbeat sequence, indicating the BBB is alive.

■ USR1 fl ashes during micro‐SD card activity.

Table 2-8: Common Package Management Commands (Using Nano as an Example Package)

COMMAND ÅNGSTRÖM DEBIAN/UBUNTU

Install a package. opkg install nano sudo apt‐get
install nano

Update the package index. opkg update sudo apt‐get update

Upgrade the packages on
your system.*

opkg upgrade sudo apt‐get upgrade

Is nano installed? opkg list‐installed
|grep nano

dpkg‐query ‐l
|grep nano

Is a package containing the
string nano available?

opkg list|grep
nano

apt‐cache search nano

Get more information about
a package.

opkg info nano apt‐cache show nano
apt‐cache policy nano

Get help. opkg apt‐get help

Download a package to the
current directory.

opkg download nano sudo apt‐get
download nano

Remove a package. opkg remove nano sudo apt‐get
remove nano

Clean up old packages. Nontrivial. Search for
“opkg‐clean script”

sudo apt‐get clean

 *It is not recommended that you do this. It can take quite some time to run (often several hours), and serious

issues can arise if the BBB runs out of space during the upgrade.

46 Part I 6 ■ BeagleBone Basics

■ USR2 fl ashes depending on the level of CPU activity.

■ USR3 fl ashes during eMMC activity.

 You can change the behavior of these LEDs to suit your own needs, but you will
temporarily lose this useful activity information.

Sysfs is a virtual fi le system that is available under recent Linux kernels. It
provides you with access to devices and drivers that would otherwise only be
accessible within a restricted kernel space. This topic is discussed in detail in
Chapter 6 ; however, at this point it would be useful to briefl y explore the mechan-
ics of how sysfs can be used to alter the behavior of the user LEDs.

 Using your SSH client, you can connect to the BBB and browse to the direc-
tory /sys/class/leds . The output is as follows:

 root@beaglebone:~# cd /sys/class/leds
 root@beaglebone:/sys/class/leds# ls
 beaglebone:green:usr0 beaglebone:green:usr2
 beaglebone:green:usr1 beaglebone:green:usr3

N O T E Sysfs directory locations can vary somewhat under diff erent versions of the

Linux kernel. Please check the web page associated with this chapter if the preceding

directory is not present on your Linux kernel.

 You can see the four (green!) LED sysfs mappings—usr0 , usr1 , usr2 , and usr3 .
You can change the directory to alter the properties of one of these LEDs—for
example, usr3 (use the Tab key to reduce typing):

 root@beaglebone:/sys/class/leds# cd beaglebone\:green\:usr3
 root@beaglebone:/sys/class/leds/beaglebone:green:usr3# ls
 brightness device max_brightness power subsystem trigger uevent

 Here you see various different fi le entries that give you further information and
access to settings. Please note that this section uses some commands that are
explained in detail in the next chapter.

 You can determine the current status of an LED by typing :

 root@beaglebone:/sys/class/leds/beaglebone:green:usr3# cat trigger
 none nand‐disk mmc0 [mmc1] timer oneshot heartbeat backlight gpio cpu0 . . .

 where you can see that the USR3 LED is confi gured to show activity on the mmc1
device—the eMMC. You can turn this trigger off by typing:

 root@beaglebone:/sys/class/leds/beaglebone:green:usr3# echo none > trigger

 and you will see that the LED stops fl ashing completely. You can use more
trigger to see the new state. Now that the LED trigger is off, you can turn the
USR3 LED fully on or off using:

 Chapter 2 ■ The BeagleBone Black Software 47

 root@beaglebone:/sys/class/leds/beaglebone:green:usr3# echo 1 > brightness
 root@beaglebone:/sys/class/leds/beaglebone:green:usr3# echo 0 > brightness

 You can even set the LED to fl ash at a time interval of your choosing. If you
watch carefully you will notice the dynamic nature of sysfs. If you perform an ls
command at this point, the directory will appear as follows, but will shortly change:

 root@beaglebone:/sys/class/leds/beaglebone:green:usr3# ls
 brightness device max_brightness power subsystem trigger uevent

 To make the LED fl ash you need to set the trigger to timer mode by typ-
ing echo timer > trigger . You will see the USR3 LED fl ash at a one‐secondr

interval. Notice that there are new delay _ on and delay _ off fi le entries in the
beaglebone:green:usr3 directory, as follows:

 root@beaglebone:/sys/class/leds/beaglebone:green:usr3# echo timer > trigger
 root@beaglebone:/sys/class/leds/beaglebone:green:usr3# ls
 brightness delay_on max_brightness subsystem uevent
 delay_off device power trigger

 The LED fl ash timer makes use of these new delay _ on time and delay _ off
time fi le entries. You can fi nd out more information about these values by using
the concatenate (catenate) command, for example:

 root@beaglebone:/sys/class/leds/beaglebone:green:usr3# cat delay_on
 500

 which reports the time delay in milliseconds. To make the USR3 LED fl ash at
10 Hz (i.e., on for 50 ms and off for 50 ms) you can use:

 root@beaglebone:/sys/class/leds/beaglebone:green:usr3# echo 50 > delay_on
 root@beaglebone:/sys/class/leds/beaglebone:green:usr3# echo 50 > delay_off

 Typing echo mmc1 > trigger returns the LED to its default state, which
results in the delay _ on and delay _ off fi le entries disappearing.

 Shutdown

W A R N I N G Physically disconnecting the power without allowing the kernel

to unmount the eMMC or the SD card can cause corruption of your fi le system. The

power management chip also needs to be informed of a shutdown.

 One fi nal issue to discuss in this section is the correct shutdown procedure
for your BBB, as improper shutdown can potentially corrupt the ext4 fi le system
and/or lead to increased boot times due to fi le system checks. Here are some
important points on shutting down, rebooting, and starting the BBB:

■ Typing shutdown ‐h now shuts down the board correctly. You can delayw

this by fi ve minutes by typing shutdown ‐h +5 .

48 Part I 8 ■ BeagleBone Basics

■ Typing reboot will reset and reboot the board correctly.

■ You can press the power button (see Figure 1‐4) once to “soft” (as in
software) shutdown the board correctly.

■ Holding the power button for approximately eight seconds performs a
hard system power down. This should be avoided unless the board is
frozen and will not soft shutdown.

■ Press the power button to start the board. Try to avoid physically discon-
necting and reconnecting the power jack or USB lead.

 If your project design is enclosed and you need an external soft power down,
it is possible to wire an external button to a BBB GPIO input and write a shell
script that runs on startup to poll the GPIO for an input. If that input occurs,
then /sbin/shutdown ‐h now can be called directly.

 Node.js, Cloud9, and BoneScript

 The BBB Linux distribution comes complete with a set of technologies that you
can use to quickly get started with developing software and hardware applica-
tions on the BBB. These are called Node.js, Cloud9, and BoneScript— Node.js is
a programming language, Cloud9 is a software development environment in
which you can write Node.js code, and BoneScript is a library of code for Node.js
that allows you to interact with BBB hardware.

 Introduction to Node.js

 Node.js is a platform for building network applications that uses the same
JavaScript engine as the Google Chrome web browser. JavaScript is the program-
ming language that is often used to create interactive interfaces within web pages.
Simply put, Node.js is JavaScript on the server side. Its runtime environment
and library of code enables you to run JavaScript code applications, without a
browser, directly at the Linux shell prompt.

 Node.js uses an event‐driven, nonblocking input/output model. Event‐driven
programming is commonplace in user‐interface programming. It essentially means
that the program’s fl ow of execution is driven by user actions or messages that
are transferred from other threads or processes. Interestingly, the fact that it uses
nonblocking I/O means that it is suitable for interfacing to the input/output pins
on your BBB, safely sharing resources with other applications. As with all new
languages, you should start with a “Hello World” example. Listing 2‐1 sends the
string “Hello World!” to the standard output, which is typically a Linux terminal.

 LISTING 2‐1: /chp02/HelloWorld.js

 console.log("Hello World!");

 Chapter 2 ■ The BeagleBone Black Software 49

 Open an SSH connection to the BBB, create a directory to contain the
HelloWorld.js fi le, and then enter the code from Listing 2‐1 using nano:

 root@beaglebone:~# cd ~/
 root@beaglebone:~# mkdir nodeTest
 root@beaglebone:~# cd nodeTest
 root@beaglebone:~/nodeTest# nano HelloWorld.js

 To execute this code, type node HelloWorld.js in the directory containing
the JavaScript fi le. You should see the following output:

 root@beaglebone:~/nodeTest# ls
 HelloWorld.js
 root@beaglebone:~/nodeTest# node HelloWorld.js
 Hello World!

 which should give you an idea of how you can write Node.js programs for the
BBB. The call to the node command works because the Node.js runtime environ-
ment is preinstalled on the BBB Linux image.

 A more complex Node.js example is provided in Listing 2‐2. It creates a web
server that runs on the BBB at port 5050 and serves a simple “Hello World”
message. Write the program code in the same /nodeTest directory:

 LISTING 2‐2: /chp02/SimpleWebServer.js

 // A Simple Example Node.js Webserver Running on Port 5050
 var http = require('http'); // require the http module
 var server = http.createServer(
 function(req,res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello from the BeagleBone Black!\n');
 });
 server.listen(5050);
 console.log('BBB Web Server running at http://192.168.7.2:5050/');

 The example code in Listing 2‐2 begins by requiring the Node.js http mod-
ule. It then calls the http.createServer() method, which returns an http.
Server object. The server.listen() method is called on the http.Server
object, where it causes the server to accept connections on a defi ned port
number (i.e., 5050). This method is asynchronous, meaning it does not have
to fi nish before the console.log() method is called on the next line. In fact,
unless you kill the process on the BBB, the server.listen() method will
listen forever. When a connection is made to port 5050, the server will call
the listening function, function(req,res) , to which is passed a copy of the
HTTP request and response references. In this case, the function responds
with a short plaintext message.

50 Part I 0 ■ BeagleBone Basics

 To execute this program you type node SimpleWebServer.js in the directory
containing the source code fi le, and you should get the following:

 root@beaglebone:~/nodeTest# ls
 HelloWorld.js SimpleWebServer.js
 root@beaglebone:~/nodeTest# node SimpleWebServer.js
 BBB Web Server running at http://192.168.7.2:5050/

 where the output indicates that the server is running and listening on port 5050.
You can then open a web browser and connect to this simple Node.js web server,
where you will see the output as shown in Figure 2-8 . You can use Ctrl+C to
kill the web server in the SSH window.

 Figure 2-8: Connecting to the Node.js web server

 Introduction to the Cloud9 IDE

 Wouldn’t it be great if there were a way to integrate the development of
Node.js code with the execution environment? That is where the Cloud9 IDE is
very useful. The Cloud9 integrated development environment (IDE) is an impres-
sive web‐based coding platform that supports many different programming
languages, including JavaScript and Node.js. It enables you to write, run, and
debug code directly within your web browser without installing any operat-
ing‐system‐specifi c tools or applications. If that is not impressive enough, the
Cloud9 service has a low enough overhead to run directly on the BBB, and it
comes preinstalled on the BBB Linux images.

 To use the Cloud9 IDE, open Google Chrome or Firefox and connect to your
BBB address on port 3000. For example, open 192.168.7.2:3000 using the address
bar as shown in Figure 2-9 . When you fi rst open Cloud9 it provides an excellent
introduction to the user interface and controls.

 Rather than having to write the code on your desktop machine and transfer
it to your BBB, the Cloud9 interface can save fi les directly on your BBB fi le
system and can even execute them too. In Figure 2-9 , a new .js fi le is created,
which contains the code in Listing 2‐2. You must save the fi le using File ➢ Save .
You can click the Run button to execute the application. If the Debugger win-
dow appears, click Resume. You can click the hyperlink in the output console
and the application output will be visible in the browser window that appears,
as in Figure 2-9 .

 Remember that this SimpleWebServer.js program is running on the BBB itself.
In fact, if you SSH into the BBB (or use the Cloud9 bash terminal window) and

 Chapter 2 ■ The BeagleBone Black Software 51

execute the following command (described in Chapter 3), you can see that the
application process is running as follows:

 root@beaglebone:~# ps aux|grep SimpleWebServer
 root 4186 0.3 2.2 . . . node . . . /var/lib/cloud9/EBB/SimpleWebServer.js

 Clicking the Stop button in the Cloud9 IDE will kill this process.

 Figure 2-9: The Cloud9 IDE (light theme) running on the BBB, executing the SimpleWebServer.js
example

N O T E The Cloud9 bash terminal window is a great alternative to PuTTY or the

Chrome SSH App for opening a SSH session. The bash terminal is automatically logged

in as root. Be careful of this fact if you are on an insecure network or are opening port

3000 on the BBB to the Internet.

 Introduction to BoneScript

 BoneScript is a library of BBB‐specifi c functionality that has been written for
Node.js by BeagleBoard.org co‐founder Jason Kridner. The BoneScript library
provides the type of input/output functionality that would be familiar to Arduino
users, but with the advantage that it sits on top of the network capabilities of
Node.js running on the BBB. There are detailed descriptions of BoneScript and
its functionality at tiny.cc/ebb205 .

 You can use BoneScript to build a simple application to change the state of
one of the system LEDs. The code in Listing 2‐3 fl ashes the BBB on‐board USR3
LED, once every second, by utilizing the BoneScript library.

52 Part I ■ BeagleBone Basics

 LISTING 2‐3: /chp02/BlinkLED3.js

 var b = require('bonescript'); // using BoneScript
 var LED3Pin = "USR3"; // USR3 is D5 on the BBB

 b.pinMode(LED3Pin, b.OUTPUT); // set up LED3Pin as an output
 var isOn = false; // isOn will be a Boolean flag
 setInterval(toggleLED, 500); // each half second call toggleLED()

 function toggleLED(){
 isOn = !isOn; // invert the isOn state on each call
 if (isOn) b.digitalWrite(LED3Pin, 1); // light the LED
 else b.digitalWrite(LED3Pin, 0); // turn off the LED
 console.log('LED On is: ' + isOn); // output the state
 }

 This program requires the bonescript module, which is now referred to in
the code as b —for example, by using b.someMethod() . Therefore, b.pinMode()
uses the string literal “USR3” to identify the pin that is to be set to output mode.
A temporary Boolean value isOn is used to retain the state of the LED in the
code. The Node.js asynchronous global function setInterval() is set up to call
the toggleLED() callback function every 500 ms. Each time the toggleLED()
function is called the isOn Boolean variable is inverted using the NOT operator
(i.e., !true=false and !false=true); you set the LED pin to high if the value of e

isOn is true, and low if its value is false; and the state is outputted to the console.
 This program can be executed directly within the Cloud9 IDE. However,

it is important to remember that you can still run programs that include the
BoneScript library calls directly at the Linux console. Therefore, for example,
if you transfer the BlinkLED3.js code to the BBB and execute it directly, it will
also work perfectly, fl ashing the USR3 LED once per second:

 root@beaglebone:~/nodeTest# node BlinkLED3.js
 LED On is: true
 LED On is: false . . .

 BoneScript is very useful for the rapid prototyping of systems, particularly
when those systems involve electronics that are to be connected to the Internet.
However, it is not ideal for high‐performance large‐scale applications—alternative
languages and approaches are described throughout this book for such applications.

 Summary

 After completing this chapter, you should be able to do the following:

■ Communicate with the BBB from your desktop computer using network
connections such as Internet‐over‐USB and regular Ethernet.

 Chapter 2 ■ The BeagleBone Black Software 53

■ Communicate with the BBB using fallback serial connections such as
Serial‐over‐USB or by using a custom USB‐to‐TTL 3.3 V cable.

■ Interact with and control the BBB using simple Linux commands.

■ Perform basic fi le editing using a Linux terminal.

■ Manage Linux packages and set the system time.

■ Use Linux sysfs to affect the state of BBB hardware.

■ Safely shut down and reboot the BBB.

■ Use Node.js, Cloud9, and BoneScript to write basic applications and code
that interacts with BBB hardware.

 Further Reading

 There are many links to websites and documents provided throughout this
chapter. The following additional links provide further information on the
topics covered:

■ The chapter web page includes a video on getting started with Internet‐over‐
USB and burning a new image to the SD card: www.exploringbeaglebone
.com/chapter2/

■ Node.js API documentation: nodejs.org/api/

■ BoneScript library guide: tiny.cc/ebb205

55

 This chapter exposes you to the core concepts, commands, and tools required
to effectively manage embedded Linux systems. The fi rst part of the chapter is
descriptive—it explains the basics of embedded Linux and of the Linux boot
process. After that, content on how to manage Linux systems is structured so
that you can perform the steps yourself. You are strongly encouraged to open a
terminal connection to your BeagleBone and follow along. Later in the chapter,
the Git source code management system is described. It is an important topic,
as the source code examples in this book are distributed via GitHub. Desktop
virtualization is also described, as it is very useful for cross‐platform develop-
ment in later chapters. The chapter fi nishes by describing how you can download
the source code examples for this book.

 Equipment Required for This Chapter:

■ BeagleBone Black with a terminal connection (see Chapter 2)

 Further details on this chapter are available at: www.exploringbeaglebone
.com/chapter3/

 Embedded Linux Basics

 First things fi rst: There is no such thing as embedded Linux! There is no special
version of the Linux kernel for embedded systems; it is just the mainline Linux

 C H A P T E R

 3

 Exploring Emmbedded

Linux Systemsx Systems

56 Part I 6 ■ BeagleBone Basics

kernel running on an embedded system. That said, the term embedded Linux
has broad and common use; therefore, it will be used here rather than a more
correct term, such as “Linux on an embedded system.”

 The word embedded in the term embedded Linux is used to convey the pres-
ence of an embedded system , a concept that can be loosely explained as some
type of computing hardware with integrated software that was designed for a
specifi c application. That contrasts somewhat with the personal computer (PC),
which is a general‐purpose device that is used for many applications, such
as web browsing, word processing, and playing games. The line is blurring
between embedded systems and general‐purpose computing devices—the
BBB can be both! However, here are some general characteristics of embed-
ded systems:

■ They tend to have specifi c and dedicated applications.
■ Processing power, memory availability and storage capabilities are often

limited.
■ They are generally part of a larger system that may be linked to external

sensors or actuators.
■ They often have a role for which reliability is critical (e.g., controls in cars,

airplanes, and medical equipment).

■ In many cases they work in real time, where their outputs are directly
related to current inputs (e.g., control systems).

 Embedded systems are present everywhere in everyday life. Examples
include vending machines, kitchen appliances, phones/smartphones, manu-
facturing/assembly lines, TVs, games consoles, cars (e.g., power steering,
security, engine management, tire pressure, reversing sensors), network
switches, routers, wireless access points, sound systems, medical monitor-
ing equipment, printers, building access controls, parking meters, smart
energy/water meters, watches, building tools, digital cameras, monitors,
tablets, e‐readers, anything robotic, smart card payment/access systems,
and many, many more.

 In recent years, there has been a huge proliferation of embedded Linux devices
in everyday life, thanks in part to the rapid evolution of smartphone technol-
ogy, which has helped drive down the unit price of ARM‐based processors.
ARM Holdings plc is a UK company that licenses the intellectual property of
its processor design; it does not manufacture chips. ARM Holdings licenses its
CPU model for a royalty of about 1–2% of the price of the processor, meaning
that if Texas Instruments (TI) sells its AM3358 (the processor on the BBB) for $5,
then they only have to pay a royalty fee of between fi ve and ten cents on each
processor sold. Despite what appears to be a low unit price, ARM Holdings
earned $1.1 billion in 2013, as their partners shipped 10 billion ARM core chips
in that period (ARM Holdings, 2014).

 Chapter 3 ■ Exploring Embedded Linux Systems 57

 What Embedded Linux Off ers

 There are many embedded platform types, each with its own advantages and
disadvantages. They range from low‐cost embedded platforms, with volume
prices of less than $1, such as the (8/16‐bit) Atmel AVR, Microchip PIC, and TI
Stellaris, to high‐cost specialized platforms, such as TI 32‐bit multicore DSPs
that can cost up to $160. These platforms are typically programmed in C and/or
assembly language, requiring that you have knowledge of the underlying sys-
tems architecture before you can develop useful applications. Embedded Linux
offers an alternative to these platforms, in that signifi cant knowledge of the
underlying architecture is not required in order to start building applications.
However, if you wish to interface to electronic modules or components, then
that knowledge will be required. Here are some of the reasons why embedded
Linux has seen such growth:

■ Linux is an effi cient and scalable OS, running on low‐cost consumer‐
oriented devices to expensive large‐scale servers. It has evolved over
many years, from when computers were far less powerful than today,
but it has retained many of the effi ciencies.

■ A huge number of open‐source programs and tools have already been
developed that can be readily deployed in an embedded application. If
you need a web server for your embedded application, you can install
the same one that you might use on a Linux server.

■ There is excellent open‐source support for many different peripherals and
devices, from network adapters to displays.

■ It is open‐source and does not require a fee for its use.

■ The kernel and application code is running worldwide on so many devices
that bugs are infrequent and are detected very quickly.

 One downside of embedded Linux is that it is not ideal for real‐time appli-
cations due to the OS overhead. Therefore, for high‐precision, fast‐response
applications, embedded Linux may not be the perfect solution. However, even
in real‐time applications, it is often used as the “central intelligence” and control
interface for a network array of dedicated real‐time sensors. In addition, there
are developments underway in real‐time operating system (RTOS(() Linux that aim
to use Linux in a preemptive way, interrupting the OS whenever required to
maintain a real‐time process. This is discussed in detail in Chapter 13.

 Is Linux Open Source and Free?

 Linux is released under the GNU GPL (General Public License), which grants
users the freedom to use and modify its code in any way—so, “free” gener-
ally refers to “freedom,” rather than “without cost.” In fact, some of the most

58 Part I 8 ■ BeagleBone Basics

expensive Linux distributions are those for embedded architectures. There is a
quick guide to the GPLv3 at www.gnu.org that lists the four freedoms that every
user should have (Smith, 2013):

 The freedom to use the software for any purpose;

 The freedom to change the software to suit your needs;

 The freedom to share the software with your friends and neighbors; and,

The freedom to share the changes you make.

Even if you are using a distribution that you downloaded “for free,” it can cost
you signifi cant effort to tailor libraries and device drivers to suit the particular
components and modules that you want to use in your product development.

 Booting the BeagleBone

 The fi rst thing you should see when you boot a desktop computer is the Unifi ed
Extensible Firmware Interface (UEFI), which provides legacy support for I BIOS (Basic
Input/Output System) services. The boot screen displays system information
and invites you to press a key to alter these settings. UEFI tests the hardware
components, such as the memory, and then loads the OS, typically from the
SSD/hard drive. Therefore, when a desktop computer is powered on, the UEFI/
BIOS performs the following steps:

■ Takes control of the computer’s processor

■ Initializes and tests the hardware components

■ Loads the OS off the SSD/hard drive

 The UEFI/BIOS provides an abstraction layer for the OS to interact with
the display and other input/output peripherals, such as the mouse/keyboard
and storage devices. Its settings are stored in NAND fl ash and battery‐backed
memory—you can see a small coin battery on the PC motherboard that maintains
the memory state and supports a real‐time system clock.

 The BeagleBone Bootloaders

 Like most embedded Linux devices, the BBB does not have a BIOS or battery‐
backed memory; instead, it uses a combination of bootloaders . A bootloader is
a very small (typically less than 128 KB) program that loads the OS; however,
the bootloader described here is a custom program that is tailored for each and
every embedded Linux board, including the BBB.

 Building a BBB‐specifi c bootloader is an advanced topic that requires you to
have a cross‐compiler toolchain installed on your desktop computer. That topic
is examined in Chapter 7 ; however, the key steps are as follows:

 Chapter 3 ■ Exploring Embedded Linux Systems 59

 1. The primary Linux bootloader that is used on the BBB is called Das
U‐Boot (Universal Bootloader). The source code for U‐Boot is downloaded
(git.denx.de/u‐boot/).

 2. The source code for U‐Boot is modifi ed using patches that have been
written specifi cally for the BBB (tiny.cc/ebb301).

 3. The BBB‐specifi c bootloader is then compiled to a binary fi le.

 4. A uEnv.txt boot confi guration text fi le is written that can be used to pass
parameters to the Linux kernel (tiny.cc/ebb302)

 These steps create three important fi les: u‐boot.img (∼360 KB), MLO (∼100 KB),
and uEnv.txt (<1 KB). If these fi lenames seem familiar, it is because you saw them
on the VFAT partition of your BBB the fi rst time you plugged it in. Importantly,
the u‐boot.img and x‐loader MLO fi les were built using a patched version of the
standard U‐Boot distribution that was built with full knowledge of the hardware
description of the BBB . These MLO , u‐boot.img , and uEnv.txt fi les are vital to
your BBB booting. The uEnv.txt fi le sets the boot parameters for your BBB. By
default, it contains information such as the console baud rate, cape options,
HDMI options, etc.

W A R N I N G The uEnv.txt fi le is visible on the fi le system that appears when

Windows Autoplay runs. Do not edit uEnv.txt using Microsoft WordPad. This fi le

requires Unix newline support. If you must edit uEnv.txt in Windows, install Notepad++

or a similar tool. Please be aware that changing uEnv.txt can prevent your board from

booting, so edits should only be performed when you are sure that they are necessary.

 The bootloaders perform the following critical functions, as illustrated in
Figure 3-1 , by linking the specifi c hardware of your board to the Linux OS:

■ They initialize the controllers (memory, graphics, I/O).
■ They prepare and allocate the system memory for the OS.
■ They locate the OS and provide the facility for loading it.
■ They load the OS and pass control to it.

 Here is a typical boot sequence that was captured by using the USB to 3V3
TTL serial cable that is introduced in Chapter 1 . The cable was attached to the
BBB J1 Header (black side to the white dot) and the terminal was used to capture
the boot sequence output:

 U-Boot 2013.10-00016-g6adb529 (Feb 06 2014 - 14:54:24)
 I2C: ready
 DRAM: 512 MiB
 Net: <ethaddr> not set. Validating first E-fuse MAC cpsw, usb_ether
 Hit any key to stop autoboot: 0
gpio: pin 53 (gpio 53) value is 1
 mmc0(part 0) is current device

60 Part I 0 ■ BeagleBone Basics

 mmc1(part 0) is current device
 gpio: pin 54 (gpio 54) value is 1
 SD/MMC found on device 1
reading uEnv.txt ...
reading /dtbs/am335x‐boneblack.dtb
 24884 bytes read in 10 ms (2.4 MiB/s)
 Kernel image @ 0x80300000 [0x000000 - 0x389fe8]
 ## Flattened Device Tree blob at 815f0000
 Booting using the fdt blob at 0x815f0000
 Using Device Tree in place at 815f0000, end 815f9133
Starting kernel ...
Uncompressing Linux... done, booting the kernel.
 [0.378480] omap2_mbox_probe: platform not supported
 [0.545287] tps65217-bl tps65217-bl: no platform data provided
 [0.608723] bone‐capemgr bone_capemgr.9: slot #0: No cape found
 ...
 Debian GNU/Linux 7 beaglebone ttyO0
 default username:password is [debian:temppwd]
 The IP Address for usb0 is: 192.168.7.2
 beaglebone login:

 Figure 3-1: The full boot sequence on the BBB

 Chapter 3 ■ Exploring Embedded Linux Systems 61

 You can see that the initial hardware state is set, but most messages will seem
quite mysterious for the moment. There are some important points to note:

■ After the SD card/eMMC is found, the uEnv.txt fi le is read.

■ The uenvcmd from your uEnv.txt fi le is executed.

■ The fi le /dtbs/am335x‐boneblack.dtb is read in. This fi le contains the BBB’s
compiled device tree description, which is discussed shortly. After this
description is read in, the fl attened device tree blob is placed in memory
at the address 0x815f0000 .

■ The kernel is decompressed and booted.

■ The Bone Cape Manager is the management system for the pluggable BBB
capes, which are described in Chapter 1 .

 READING MEMORY VALUES DIRECTLY (ADVANCED)

 On some ARM devices you can confi gure the MAC address dynamically using

uEnv.txt ; however, page 4,708 of the AM335x ARM Technical Reference Manual (TRM)

states that the “Device uses EFUSE registers mac_id0_lo and mac_id0_hi in the control

module for the Ethernet MAC address of the device” (Texas Instruments, 2013). These

values are stored in AM335x ROM and cannot be changed. The mac_id0_lo is at off set

630h from 0x44e10000 (see pg. 1,145) and mac_id0_hi is at off set 634h (see pg. 1,146).

You can see these memory addresses using a small program called devmem2 that can

be downloaded, built, and run as follows:

 root@beaglebone:/# cd ∼/
 root@beaglebone:∼# wget http://www.lartmaker.nl/lartware/port/devmem2.c
 root@beaglebone:∼# gcc devmem2.c ‐o devmem2
 root@beaglebone:∼# ./devmem2 0x44e10630
 Value at address 0x44E10630 (0xb6fd1630): 0xBF1F
 root@beaglebone:∼# ./devmem2 0x44e10634
 Value at address 0x44E10634 (0xb6fd8634): 0xAF30A0C8
 root@beaglebone:∼# ifconfig eth0
 eth0 Link encap:Ethernet HWaddr c8:a0:30:af:1f:bf

 The IP address matches the memory values, but in reverse order. Your BBB needs to be

connected to the Internet for these steps to work correctly.

 Das U‐Boot uses a board confi guration fi le called a device tree (also called a device
tree binary) containing the board‐specifi c information that the kernel requires yy
to boot the BBB. This fi le contains all the information needed to describe the
memory size, clock speeds, on‐board devices, and so on. This device tree binary
or DTB (the binary) is created from a DTS (the source) fi le using the Device Tree
Compiler (dtc). This topic is described in detail in Chapter 6 , when examiningc
how to interface to the BBB’s GPIOs.

62 Part I ■ BeagleBone Basics

 The DTS has the same syntax as the following extract, which details the four
user LED pins and one of the two I2 C buses on the BBB:

 am33xx_pinmux: pinmux@44e10800 {
 pinctrl-names = "default";
 pinctrl-0 = <&userled_pins>;

 userled_pins: pinmux_userled_pins {
 pinctrl-single,pins = <
 0x54 0x07 /* gpmc_a5.gpio1_21, OUTPUT │ MODE7 */
 0x58 0x17 /* gpmc_a6.gpio1_22, OUTPUT_PULLUP │ MODE7 */
 0x5c 0x07 /* gpmc_a7.gpio1_23, OUTPUT │ MODE7 */
 0x60 0x17 /* gpmc_a8.gpio1_24, OUTPUT_PULLUP │ MODE7 */
 >;
 };
 i2c0_pins: pinmux_i2c0_pins {
 pinctrl-single,pins = <
 0x188 0x70 /* i2c0_sda, SLEWCTRL_SLOW │ INPUT_PULLUP */
 0x18c 0x70 /* i2c0_scl, SLEWCTRL_SLOW │ INPUT_PULLUP */
 >;
 }; ...
 };

 The full description for the BBB device tree source for Linux 3.x.x is available
with the source code distribution of this book in the Chapter 3 directory. You
will see how to download this code at the end of the chapter. You can develop
your own additions and modifi cations to the description using device tree over-
lays (DTOs) , which can be installed in the) /lib/firmware directory of your BBB
Linux distributions. This tree structure is discussed in detail in Chapter 6 , when
custom circuits are interfaced to the BBB.

 Kernel Space and User Space

 The Linux kernel runs in an area of system memory called the kernel space, ande
regular user applications run in an area of system memory called user space.e
There is a hard boundary between these two spaces, preventing user applications
from accessing memory and resources that are required by the Linux kernel.
This helps prevent the Linux kernel from crashing due to badly written user
code, and also helps provide a degree of security.

 The Linux kernel “owns” and has full access to all the physical memory and
resources on the BBB. Therefore, you have to be careful that only the most stable
and trusted code is permitted to run in kernel space. You can see the structure
illustrated in Figure 3-2 , where user applications use the GNU C Library (glibc)cc
to make calls to the kernel’s system call interface. e

 A kernel module is an object fi le that contains code, which can be loaded and
unloaded from the kernel on demand. In many cases the kernel can even load

 Chapter 3 ■ Exploring Embedded Linux Systems 63

and unload modules while it is executing, without needing to reboot the BBB.
For example, if you plug a USB Wi‐Fi adapter into the BBB, it is possible for the
kernel to use a loadable kernel module (LKM) to utilize the adapter when it boots
up. You will fi rst see how to interact with LKMs in Chapter 9 , where Bluetooth
on the BBB is discussed. Without this modular capability, the Linux kernel
would be very large, as it would have to support every driver that would ever
be needed on the BBB. You would also have to rebuild the kernel every time
you wanted to add new hardware. The downside of LKMs is that driver fi les
have to be maintained for each device.

 The kernel services are then made available to the user space in a controlled
way through the use of system calls. The kernel also prevents individual user‐
space applications from confl icting with each other.

 As described in Figure 3-1 , U‐Boot passes control to the kernel after it has
been decompressed into memory. The kernel then mounts the root fi le system
(mmcroot((and mmcrootfstype are defi ned in uEnv.txt) .The kernel’s last step int

the boot process is to call init (/sbin/init on the BBB), which is the fi rst user‐
space process that is started, and the next topic to be discussed.

 System V init (SysVinit)

 Traditionally, the parent process that manages all systems and services for
Linux is called System V init (and systemd under Debian). It is responsible
for starting and stopping services (e.g., web server, SSH server) on the BBB,
and it does so depending on the current state, or runlevel , which might be

 Figure 3-2: The Linux user space and kernel space

64 Part I 4 ■ BeagleBone Basics

starting up, shutting down, and so on. The init process begins by read-
ing the confi guration fi le /etc/inittab , which defi nes details such as the
default runlevel (Level 2 on the BBB) and what to do in single‐user mode.
Single‐user mode is a stage during the boot process whereby exclusive access
to all resources is required by the superuser account, for tasks such as check-
ing the integrity of the fi le system using the fsck command. For example,
single‐user mode prevents other users from logging in and using the fi le
system while it is being checked.

 The runlevel defi nes the state of the BBB and controls which processes or
services are started by the init system. For example, under Debian, which uses
SystemV init, there are several runlevels, identifi ed as 0–6 and S (see Table 3-1).
When the init process begins, the runlevel starts at N (none). It then enters
runlevel S to initialize the system in single‐user mode, and fi nally enters one
of the multi‐user runlevels (2–5). On most distributions, runlevels 2 to 5 are
identical copies, so that you can customize them for your needs. You can fi nd
the current runlevel by typing the following:

 root@beaglebone:∼# runlevel
 N 5
 root@beaglebone:∼# who ‐r
 run-level 5 May 15 02:19

 In this case, the BBB is currently running at runlevel 5. You can change the
runlevel by typing init followed by the level number. For example, you can
reboot your BBB by typing the following:

 root@beaglebone:∼# init 6

Table 3-1: Runlevels on the BBB Debian Distribution

LEVEL DESCRIPTION EXAMPLE USE

0 Halt the system Shutdown scripts for all services

1 Single‐user mode For administrative functions such
as checking the fi le system

2–5 Multi‐user modes Regular multi‐user modes. Can
be confi gured to have diff erent
meanings by the administrator
account. All modes are the same
by default on the BBB.

6 Reboot the system Shutdown scripts for all services

S Startup scripts Single‐user mode on boot. Do
not change these links. Only for
scripts such as keyboard setup
that must run before root login.

 Chapter 3 ■ Exploring Embedded Linux Systems 65

 If you go to the /etc directory you can see the rc directories that relate to
the different runlevels:

 root@beaglebone:/etc# ls ‐d rc*
 rc.local rc1.d/ rc3.d/ rc5.d/ rcS.d/
 rc0.d/ rc2.d/ rc4.d/ rc6.d/ rcn-ee.conf

ls ‐d lists only directory entries (without listing their contents). The current
runlevel is 5, so you can see what scripts are run at this level:

 root@beaglebone:/etc# cd rc5.d
 root@beaglebone:/etc/rc5.d# ls ‐al
 ...
 lrwxrwxrwx 1 root root 17 Feb 18 22:56 S01rsyslog -> ../init.d/rsyslog
 lrwxrwxrwx 1 root root 14 Feb 18 22:55 S01sudo -> ../init.d/sudo
 lrwxrwxrwx 1 root root 17 Mar 1 14:21 S02apache2 -> ../init.d/apache2

 The concept of symbolic links is discussed shortly, but for now just be aware
that the entries in this directory are symbolic links to the related script in the
/etc/init.d directory. The fi rst letter S in the symbolic link name indicates that
the linked service is to be started. If the fi rst letter were K , it would indicate K

that the service should be stopped (killed). K scripts are always executed fi rstK

(in numerical/alphabetical order), followed by the S scripts. Therefore, in the
preceding listing, /init.d/sudo will be started before /init.d/apache2 . It may
be very important that one service starts before another, and this naming
convention enables you to ensure that it does. You have seen that the /etc/
rc5.d directory has symbolic links to the /etc/init.d directory. If you call
ls in the init.d directory, you can see the scripts for many of the services
on the BBB:

 root@beaglebone:/etc/rc5.d# cd /etc/init.d
 root@beaglebone:/etc/init.d# ls /etc/init.d
 ...
 rsyslog apache2 kmod
 saned avahi-daemon lightdm ...

N O T E You can boot into single‐user mode on the BBB by editing uEnv.txt and

adding the word single at the end of the mmcargs line. This places the BBB in “res-

cue mode,” which you might do for systems maintenance. Don’t make such a change

unless you are booting from the SD card or have access to a USB to 3V3 TTL cable, as

you need to be able to reverse the change. Typing Ctrl+D at the console will return you

to regular multi‐user mode.

 You can call the scripts in /etc/init.d manually. The Apache web server that is
running on the Debian image of the BBB is used as an example. Note that it may
be confi gured to run at port 8080, not the default port 80. Type 192.168.7.2:8080

66 Part I 6 ■ BeagleBone Basics

into your browser address bar to load this website. You can fi nd out the status
of this service by typing the following:

 root@beaglebone:∼# service apache2 status
 apache2.service - LSB: Start/stop apache2 web server
 Loaded: loaded (/etc/init.d/apache2)
 Active: active (running) since Wed, 19 Feb 2014 05:42:44 +0000;
 Process: 563 ExecStart=/etc/init.d/apache2 start (... SUCCESS)
 CGroup: name=systemd:/system/apache2.service
 - 853 /usr/sbin/apache2 -k start
 - 858 /usr/sbin/apache2 -k start
 - 862 /usr/sbin/apache2 -k start
 - 863 /usr/sbin/apache2 -k start

 In this case, it is running as four processes, to handle simultaneous calls from
multiple web browsers at the same time. You can manually control this service
by typing (as root from any location) commands such as the following:

 root@beaglebone:∼# /etc/init.d/apache2 stop
 [ok] Stopping apache2 (via systemctl): apache2.service.
 root@beaglebone:∼# /etc/init.d/apache2 start
 [ok] Starting apache2 (via systemctl): apache2.service.
 root@beaglebone:∼# /etc/init.d/apache2 restart
 [ok] Restarting apache2 (via systemctl): apache2.service.

 Often, reload and force‐reload service commands are also available in the
scripts. If you type more /etc/init.d/apache2 , you can view the source code
for the apache2 script. Approximately halfway through the script you will see
code that looks like “ case $1 in start...“ ,” which defi nes what happens when
it is passed the word start from the user input. When the S symbolic link is
created in the rc2.d–rc5.d directories, the /etc/init.d/apache2 script will be
called, just as if it were started manually. Similarly, when the K symbolic link isK

created in the rc0.d , d rc1.d , or d rc6.d directories, a call will be made to the stop
part of the script.

 Finally, you can remove a script from starting on boot by using:

 root@beaglebone:∼# update‐rc.d apache2 remove
 update-rc.d: using dependency based boot sequencing

 Or, conversely, add it according to its default settings:

 root@beaglebone:∼# update‐rc.d apache2 defaults
 update-rc.d: using dependency based boot sequencing

 Over time, the init system is being replaced by the systemd system manage-
ment daemon—a topic that is described in detail in Chapter 9 . The next step is
to look at the rest of the fi le system and the system administration commands
that you need to fully interact with the BBB’s Linux OS.

 Chapter 3 ■ Exploring Embedded Linux Systems 67

 Managing Linux Systems

 This section examines the Linux fi le system in more detail, building on the
commands and tools that you read about in the last chapter, to ensure that you
have full administrative control of the BBB. Please follow along with the steps
in this discussion.

 The Super User

 On Linux systems, the system administrator account has the highest level of
security access to all commands and fi les. Typically, this account is referred to
as the root account or superuser . Under Debian and Ångström, this user accountrr
has the login name root . Therefore, when you logged in to your BBB for the fi rstt
time using the root username in the last chapter, you were logged in as the
superuser. The Ubuntu distribution encourages users not to log in as root —in
fact, root login is not available by default; however, you can enable it by typing
sudo passwd root .

 It is recommended when performing general operations on a Linux system
that you try to avoid being logged in as the superuser; however, it is important
to also remember that when using the BBB, you are typically not running a
server with thousands of user accounts! In many applications, a single root
user account, with a non‐default password, is likely suffi cient. However, using
a non‐superuser account for your development work could protect you from
yourself—for example, from accidentally deleting the fi le system.

 Under many Linux distributions a special tool called sudo (su((peruser do) is o
used whenever you wish to perform system administration commands. The
tool will prompt you for the administrator password and then authorize you to
perform administrator operations for a short time period, also warning you that
“with great power comes great responsibility.” The next section discusses user
accounts management, but if you create a new user account and wish to allow
it to use the sudo tool, then the account name must be added to the sudoers fi le,
/etc/sudoers, by using the visudo tool (type visudo while logged in as root).
The BBB Debian distribution has the same sudo tool, but it allows root login
by default. Sudo works very well; however, it can make the redirection of the
output of a command more complex.

 There is another command in Linux that allows you to run a shell with a
s ubstitute u ser: su . Typing su ‐ (same as su ‐ root) opens a new shell witht

full superuser access, and it can be used as follows (this may not make sense
until you create user accounts, but it is here for reference):

 molloyd@beaglebone:∼$ whoami
 molloyd
 molloyd@beaglebone:∼$ su ‐

68 Part I 8 ■ BeagleBone Basics

 root@beaglebone:/home/molloyd# whoami
 root
 root@beaglebone:/home/molloyd# exit
 molloyd@beaglebone:∼$ whoami
 molloyd

 To enable the su command under Ubuntu, you must enable root login as
shown earlier in this section. To disable it again you can type sudo passwd
‐l root .

 System Administration

 The Linux fi le system is a hierarchy of directories that is used to organize fi les
on a Linux system. This section examines the ownership of fi les, the use of
symbolic links, and the concept of fi le system permissions.

 The Linux File System

 Linux uses data structures, called inodes , to represent fi le system objects such
as fi les and directories. When a Linux ext ended fi le system (e.g., ext3/ext4) is
created on a physical disk, an inode table is created. This table links to an inode
data structure for each fi le and directory on that physical disk. The inode data
structure for each fi le and directory stores information such as permission
attributes; pointers to raw physical disk block locations; time stamps; and link
counts. You can see this with an example by performing a listing ls ‐ail of
the root directory, where ‐i causes ls to display the inode indexes. You will see
the following for the /tmp directory entry:

 root@beaglebone:/# cd /
 root@beaglebone:/# ls ‐ail | grep tmp
 63490 drwxrwxrwt 8 root root 4096 Feb 24 20:17 tmp

 Therefore, 63490 is the /tmp directory’s inode index . If you enter the x /tmp direc-
tory by using cd , create a temporary fi le (a.txt), and perform t ls ‐ail , you will
see that the current (.) directory has the exact same inode index:

 root@beaglebone:/# cd /tmp
 root@beaglebone:/tmp# touch a.txt
 root@beaglebone:/tmp# ls ‐ail
 63490 drwxrwxrwt 5 root root 4096 Feb 23 22:17 .
 2 drwxr-xr-x 22 root root 4096 Feb 18 22:57 ..
 73743 -rw-r--r-- 1 root root 0 Feb 23 20:15 a.txt

 You can also see that the root directory (..) has the inode index of 2 and that a
text fi le a.txt also has an inode index. You cannot cd directly to an inode index,
as the inode index might not refer to a directory.

 Chapter 3 ■ Exploring Embedded Linux Systems 69

 Figure 3-3 illustrates several concepts in working with fi les under Linux.
The fi rst letter indicates the fi le type —for example, whether the listing is a (d) d

directory, (l) link, or (‐) regular fi le. There are also some other obscure fi le
types: (c) character special, (c b) block special, (b p) fi fo, and (p s) socket. Directories
and regular fi les do not need further explanation, but links need special
attention.

 Linking to Files and Directories

 There are two types of links in Linux: soft links and hard links . A soft link (or
symbolic link) is a fi le that refers to the location of another fi le or directory.kk
Hard links, conversely, link directly to the inode index, but they cannot
be linked to a directory. You can create a link using ln /path/to/file.txt
linkname . You create a symbolic link by adding ‐s to the call. To illustrate
the usage, the following example creates a soft link and a hard link to a fi le
/tmp/test.txt :

 root@beaglebone:∼# cd /tmp
 root@beaglebone:/tmp# touch test.txt
 root@beaglebone:/tmp# ln ‐s /tmp/test.txt softlink
 root@beaglebone:/tmp# ln /tmp/test.txt hardlink
 root@beaglebone:/tmp# ls ‐al
 total 8
 drwxrwxrwt 2 root root 4096 Feb 23 15:57 .
 drwxr-xr-x 22 root root 4096 Feb 18 22:57 ..

 Figure 3-3: Linux directory listing and file permissions

70 Part I 0 ■ BeagleBone Basics

 -rw-r--r-- 2 root root 0 Feb 23 15:57 hardlink
 lrwxrwxrwx 1 root root 13 Feb 23 15:57 softlink -> /tmp/test.txt
 -rw-r--r-- 2 root root 0 Feb 23 15:57 test.txt

 You can see there is a number 2 in front of the fi le test.txt (after the fi le per-
missions). This is the number of hard links that are associated with the fi le. This is a
count value that was incremented by one when the hard link, called “hardlink,”
was created. If you were to delete the hard link (e.g., using rm hardlink) thisk

counter would decrement back to 1. To illustrate the difference between soft
links and hard links, some text is added to the test.txt fi le:

 root@beaglebone:/tmp# echo "testing links" >> test.txt
 root@beaglebone:/tmp# more hardlink
 testing links
 root@beaglebone:/tmp# more softlink
 testing links
 root@beaglebone:/tmp# mkdir subdirectory
 root@beaglebone:/tmp# mv test.txt subdirectory/
 root@beaglebone:/tmp# more hardlink
 testing links
 root@beaglebone:/tmp# more softlink
 softlink: No such file or directory

 You can see that when the test.txt fi le is moved to the subdirectory, the soft
link breaks but the hard link still works perfectly. Therefore, symbolic links
are not updated when the linked fi le is moved, but hard links always refer to
the source, even if moved or removed. Just to illustrate the last point, the fi le
test.txt can be removed using the following:

 root@beaglebone:/tmp# rm subdirectory/test.txt
 root@beaglebone:/tmp# more hardlink
 testing links

 Yet, it still exists! And it will not be deleted until you delete the hard link called
“hardlink,” decrementing the link count to 0. Therefore, if a fi le or directory has
a hard link count of 0, and it is not being used by a process, it will be deleted.
In effect, the fi lename itself, test.txt , was just a hard link. Please note that
you cannot hard link across different fi le systems, as each fi le system will have
its own inode index table that starts at 1. Therefore, inode 63490, which is the
inode index of the /tmp directory, is likely describing something quite different
on another fi le system. Type the command man ln to see a particularly useful
guide on linking.

N O T E You can type history to list all previous commands that you have typed.

You can also use the keyboard combination Ctrl+R to get an interactive search of your

history to fi nd a recently used command. Pressing Enter will activate the command

and pressing Tab will place it on your command line, so that it can be modifi ed.

 Chapter 3 ■ Exploring Embedded Linux Systems 71

 Users and Groups

 Linux is a multi‐user OS, which uses the following three distinct classes to
manage access permissions:

■ User: You can create different user accounts on your BBB. This is very
useful if you wish to limit access to processes and areas of the fi le system.
The root user account is the superuser of the BBB and has access to every
fi le; so, for example, it may not be safe to run a public web server from
this account if it supports local scripting.

■ Group: User accounts may be fl agged as belonging to one or more groups,
whereby each group has different levels of access to different resources.

■ Others: All users of the BBB.

 You can create users at the Linux terminal. The full list of groups is available
by typing more /etc/group . The following example demonstrates how you can
create a new user account on the BBB and modify the properties of that account
to suit your needs.

 EXAMPLE: CREATING A NEW USER ACCOUNT ON THE BBB

 This example demonstrates how you can create a user account and then

retroactively change its properties, using the following steps:

1. The creation of a new user account called molloyd on the BBB

2. The retroactive addition of the account to the users group

3. The reset of the password for the new user account

4. Verifi cation that the account is working correctly

Step 1 : Create a user molloyd as follows:

 root@beaglebone:∼# adduser molloyd
 Adding user 'molloyd' ...
 Adding new group 'molloyd' (1001) ...
 Adding new user 'molloyd' (1003) with group 'molloyd' ...
 Creating home directory '/home/molloyd' ...
 Copying files from '/etc/skel' ...
 Enter new UNIX password:
 Enter the new value, or press ENTER for the default
 Full Name []: Derek Molloy
 Is the information correct? [Y/n] Y
 Adding new user 'molloyd' to extra groups ...

Step 2 : Retroactively add the user to another group as follows:

 root@beaglebone:∼# groupadd newgroup
 root@beaglebone:∼# adduser molloyd newgroup
 Adding user 'molloyd' to group 'newgroup' ...

72 Part I ■ BeagleBone Basics

 You can change the user and group ownership of a fi le using the ch ange
own ership chown command. The ch ange gr oup chgrp command can change
the group ownership of a fi le. Table 3-2 lists a few examples of the command
structure for chown and chgrp .

Table 3-2: Commands for Working with Users, Groups, and Permissions

COMMAND DESCRIPTION

chown molloyd a.txt

chown molloyd:users a.txt

chown ‐Rh molloyd /tmp/test

Change fi le owner.

Change owner and group at the same time.

Recursively change ownership of /tmp/test .

‐h aff ects symbolic links instead of referenced fi les.

chgrp users a.txt

chgrp ‐Rh users /tmp/test

Change group ownership of the fi le.

Recursively change with same ‐h as chown .

Step 3 : To reset the password if required, use the following:

 root@beaglebone:∼# passwd molloyd
 Enter new UNIX password:
 Retype new UNIX password:
 passwd: password updated successfully

 You can force the password to expire on login by using chage ‐d 0 molloyd .

The encrypted passwords are stored in the restricted fi le / etc / shadow , not the

public‐readable / etc / passwd fi le.

Step 4 : You can test the account by typing su molloyd from the root account (you

will not be prompted for a password going from root to molloyd , but you would the

other way around), or you can log in with a new Linux terminal (using pwd to p rint the

w orking w d irectory):d

 login as: molloyd
 molloyd@192.168.7.2's password:
 molloyd@beaglebone:∼$ pwd
 /home/molloyd
 molloyd@beaglebone:∼$ touch test.txt
 molloyd@beaglebone:∼$ ls ‐l
 -rw-r--r-- 1 molloyd users 0 Feb 23 18:37 test.txt
 molloyd@beaglebone:∼$ more /etc/group |grep newgroup
 newgroup:x:1005:molloyd

 You can see that the fi le has been created with the correct user and group id.

To delete an account, type userdel ‐r molloyd , where ‐r deletes the home

directory and any mail spool fi les.

 Chapter 3 ■ Exploring Embedded Linux Systems 73

COMMAND DESCRIPTION

chmod 600 a.txt

chmod ugo+rw a.txt

chmod a‐w a.txt

Change permissions (as in Figure 3-3) so user has
read/write access to the fi le; group or others have
no access.

Give users, group, and others read/write access to
a.txt .

Remove write access for all users using a , which
describes all (the set of users, group, and others).l

chmod ugo=rw a.txt Set the permissions for all to be read/write.

umask

umask ‐S

List the default permissions settings. Using ‐S
displays the umask in a more readable form.

umask 022

umask u=rwx,g=rx,o=rx

Change the default permissions on all newly
created fi les and directories. The two umask
commands here are equivalent. If you set this
mask value and create a fi le or directory, it will be:
drwxr‐xr‐x for the directory and ‐rw‐r––r––
for the fi le. You can set a user‐specifi c umask in the
account’s .login fi le.

chmod u+s myexe Set a special bit called the setuid bit (set user id on t
execute) and setgid bit (set group ID on execute) t ,
s , that allows a program to be executed as if by
another logged-in user, but with the permissions
of the fi le’s owner or group. For example, you could
use this to allow a particular program to execute as
if the root user account executed it.

chmod 6750 myexe

chmod u=rwxs,g=rxs,o=myexe

Set the setuid bit in an absolute way. Both examples
will give myexe the permissions ‐rwsr‐s--- ,
where both the setuid and setgid bits are set.

For security reasons, the setuid bit cannot be
applied to shell scripts.

stat /tmp/test.txt Provides very useful fi le system status information
for a fi le or directory, such as its physical device
and inode information; last access; and modify and
change times.

 The next example demonstrates how to change the ownership of a fi le. In
order for the example to work using the sudo tool, the user molloyd must be
present in the sudoers fi le, which is achieved by the root user executing the
single‐word command visudo . In the sudoers fi le, place an entry in the fi le,
such as the following:

 molloyd ALL=(ALL) ALL

74 Part I 4 ■ BeagleBone Basics

 File System Permissions

 The fi le system permissions state what levels of access each of these categories have
to a fi le or directory. The ch ange mod e command chmod allows a user to change
the access permissions for fi le system objects. You can specify the permissions
in a relative way, e.g., chmod a+w test.txt , would give all users write access
to a fi le test.txt but leave all other permissions the same. You can also apply
the permissions in an absolute way, e.g., chmod a=r test.txt , which would set
all users to only have read access to the fi le test.txt . Table 3-2 also lists some
example commands for working with users, groups, and permissions. The next
example demonstrates how to modify the fi le system permissions of a fi le using
the chmod command.

 EXAMPLE: CHANGING THE OWNERSHIP AND GROUP OF A FILE

 Use superuser access to change a fi le test.txt in the /tmp directory that is owned by

the user molloyd with the group users , to have owner root and group root :

 molloyd@beaglebone:∼$ cd /tmp
 molloyd@beaglebone:/tmp$ ls ‐l
 total 0
 -rw-r--r-- 1 molloyd users 0 Feb 24 23:48 test.txt
 molloyd@beaglebone:/tmp$ sudo chgrp root test.txt
 [sudo] password for molloyd:
 molloyd@beaglebone:/tmp$ sudo chown root test.txt
 molloyd@beaglebone:/tmp$ ls ‐l
 total 0
 ‐rw‐r––r–– 1 root root 0 Feb 24 23:48 test.txt

 EXAMPLE: USING CHMOD IN DIFFERENT FORMS

 Change a fi le “test2.txt” in the /tmp directory so that users and group members have readp
and write access, but others only have read access. Do this task in three diff erent ways.

 molloyd@beaglebone:/tmp$ touch test2.txt
 molloyd@beaglebone:/tmp$ ls ‐l
 ‐rw‐ r–– r–– 1 molloyd users 0 Feb 25 00:07 test2.txt
 molloyd@beaglebone:/tmp$ chmod g+w test2.txt
 molloyd@beaglebone:/tmp$ ls ‐l
 ‐rw‐ rw‐ r–– 1 molloyd users 0 Feb 25 00:07 test2.txt
 molloyd@beaglebone:/tmp$ chmod 664 test2.txt
 molloyd@beaglebone:/tmp$ ls ‐l
 ‐rw‐ rw‐ r–– 1 molloyd users 0 Feb 25 00:07 test2.txt
 molloyd@beaglebone:/tmp$ chmod u=rw,g=rw,o=r test2.txt
 molloyd@beaglebone:/tmp$ ls ‐l
 ‐rw‐ rw‐ r–– 1 molloyd users 0 Feb 25 00:07 test2.txt

 All three calls to chmod above have the exact same outcome.

 Chapter 3 ■ Exploring Embedded Linux Systems 75

 Here is an example of the last entry in Table 3-2 , the stat command:

 root@beaglebone:/tmp# stat test.txt
 File: 'test.txt'
 Size: 0 Blocks: 0 IO Block: 4096 regular empty file
 Device: b302h/45826d Inode: 72000 Links: 2
 Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
 Access: 2014-02-23 16:57:18.590773186 +0000
 Modify: 2014-02-23 16:57:18.590773186 +0000
 Change: 2014-02-23 16:57:47.520773190 +0000
 Birth: -

 Just to fi nish the discussion of Figure 3-3 : The example in the fi gure has 22
hard links to the fi le. For a directory this represents the number of subdirectories,
the parent directory (..), and itself (.). The entry is owned by root and it is in
the root group. The next entry of 4096 is the size required to store the metadata
about fi les contained in that directory (the minimum size is one sector, typically
4,096 bytes). ls ‐lh lists with (h) human‐readable fi le sizes.h

 One fi nal point: if you perform a directory listing ls ‐l in the root directory
you will see a t bit on the /tmp directory. This is called the sticky bit, mean-t
ing that write permission is not suffi cient to delete fi les. Therefore, in the /tmp
 directory any user can create fi les, but no user can delete another user’s fi les:

 molloyd@beaglebone:∼$ cd /
 molloyd@beaglebone:/$ ls ‐ld tmp
 drwxrwxrwt 5 root root 4096 Feb 23 21:17 tmp

 Exploring the File System

 Exploring the Linux fi le system can be daunting for new Linux users. If you go
to the top‐level directory using cd / on the BBB and type ls , you will get the
top‐level directory structure, of the following form:

 root@beaglebone:/# ls
 bin dev home lost+found mnt proc run selinux sys usr
 boot etc lib media opt root sbin srv tmp var

 What does it all mean? Well, each of these directories has a role, and if you
understand the roles, then you can start to get an idea of where to search for
confi guration fi les or the binary fi les that you need. Table 3-3 briefl y describes
the content of each top‐level Linux subdirectory.

 Commands for File Systems

 Commands for working with fi les and directories on fi le systems are described
in the previous section, but there are also commands for working with the fi le
system itself. The fi rst commands you should examine are df (remember as d isk

76 Part I 6 ■ BeagleBone Basics

Table 3-3: The Linux Top‐Level Directory

DIRECTORY DESCRIPTION

bin Contains the binary executables used by all of the users and is
present in the PATH environment variable by default. Another
directory, / usr/bin , contains executables that are not core to
booting or repairing the system

boot Contains the device tree binaries for the BBB

dev Contains the device nodes (linked to device drivers)

etc Confi guration fi les for the local system

home The user home directories (/ home/root can be the root user
home)

lib Contains the standard system libraries

lost+found After running fsck (fi le system check and repair) unlinked fi les
will appear here. The mklost+found command will recreate the
lost+found directory if it is deleted

media Used for mounting removable media, such as a micro-SD cards

mnt Typically used for mounting temporary fi le systems

opt A good place for installing third‐party (non‐core Linux) “optional”
software packages

proc This is a virtual fi le representation of processes running on the BBB
(for example, if you go into / proc and type cat iomem you can m
see the memory mapping addresses)

root The home directory of root account under the Debian distribution.
This is /home/root on other distributions

run Provides information about the running system since the last boot

sbin Contains executables for root user (superuser) system management

selinux Under Debian, relates to the security-enhanced Linux control
system

srv Stores data related to ftp, web servers, rsync, etc.

sys A directory containing a virtual fi le system that describes the
system sysfs. This is discussed in detail in Chapter 6

tmp Temporary fi les location. See the note on the t bit in the last
section

usr Contains application programs for all of the users and many
subdirectories such as /usr/include (C/C++ header fi les), /usr/
lib (C/C++ library fi les), /usr/src (Linux kernel source), /usr/
bin (user executables), /usr/local (similar to /usr but for local
users), and /usr/share (shared fi les and media between users)

var Contains variable fi les such as system logs

 Chapter 3 ■ Exploring Embedded Linux Systems 77

free) and ff mount . The df command provides you with an overview of the fi le
systems on the BBB. If you add the ‐T option, it also lists the fi le system types:

 root@beaglebone:/# df ‐T
 Filesystem Type 1K-blocks Used Available Use% Mounted on
 rootfs rootfs 1715936 1435760 174960 90% /
 udev devtmpfs 10240 0 10240 0% /dev
 tmpfs tmpfs 101052 1492 99560 2% /run
 /dev/disk/by-u ext4 1715936 1435760 174960 90% /
 tmpfs tmpfs 252620 0 252620 0% /dev/shm
 tmpfs tmpfs 252620 0 252620 0% /sys/fs/cgroup
 tmpfs tmpfs 5120 0 5120 0% /run/lock
 tmpfs tmpfs 102400 0 102400 0% /run/user
 /dev/mmcblk0p1 vfat 98094 87464 10630 90% /boot/uboot

 The df command is very useful for determining if you are running short on
disk space; you can see that the root fi le system rootfs is 90% used in this case,
with 175 MB available for additional installations. The rootfs is listed a second
time as /dev/disk/by‐uuid . . . , showing that it is an ext4 extended fi le system that
supports large disk sizes. Also listed are several temporary fi le system (tmpfs)
entries that actually refer to virtual fi le systems, which are mapped to the BBB’s
DDR3 memory. The /sys/fs entry is discussed in detail in Chapter 6 . In addition,
the last entry in the list is /dev/mmcblk0p1 and it has a 98 MB VFAT fi le system
partition of the BBB’s eMMC. This is the VFAT fi le system that appears when
you plug your BBB into the USB port of your desktop computer. You can see
that this fi le system /dev/mmcblk0p1 is mounted on (attached to) /boot/uboot .
You can cd /boot/uboot to list the contents, which you will recognize from
Chapter 2 when the BBB was attached to the desktop computer.

N O T E If you are running out of space on the BBB, check the system logs: /var/

log . You can clear a log by typing cat /dev/null > /var/log/messages (check

kern.log and syslog too), as it will empty the fi le without deleting it or resetting

the permissions. If your logs are fi lling up, it is symptomatic of a system problem.

 root@beaglebone:/# cd /boot/uboot/
 root@beaglebone:/boot/uboot# ls
 App LICENSE.txt SOC.sh dtbs scripts uInitrd
 BASIC_START.ht MLO START.htm dtbs_bak u-boot.img uInitrd_bak
 Docs README.htm autorun.inf initrd.bak uEnv.txt zImage
 Drivers README.md debug initrd.img uImage zImage_bak

 The list block devices command lsblk provides you with a concise list of the
block devices, such as eMMC and SD cards (if any), in a tree‐like structure. As
shown in the following output, you can see that mmcblk1 (the eMMC) has been
partitioned into two partitions: p1 , which is attached to /boot/uboot , and p2 ,
which is attached to the root of the fi le system /. / mmcblk1boot0 and 1 are the
eMMC boot partitions that are required for MLO and U‐Boot to do their jobs.

78 Part I 8 ■ BeagleBone Basics

 root@beaglebone:∼# lsblk
 NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
 mmcblk1boot0 179:16 0 1M 1 disk
 mmcblk1boot1 179:24 0 1M 1 disk
 mmcblk1 179:8 0 1.8G 0 disk
 │-mmcblk1p1 179:9 0 96M 0 part /boot/uboot
 '-mmcblk1p2 179:10 0 1.7G 0 part /

 The mount command provides you with further information about the fi le
system. Typing mount ‐l gives you detailed fi le system information (‐l with
labels) such as the following:

 root@beaglebone:/# mount ‐l
 sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime)
 proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)
 ...
 /dev/mmcblk0p1 on /boot/uboot type vfat (rw,relatime,fmask=0022,
 dmask=0022,codepage=437,iocharset=iso8859-1,shortname=mixed,
 errors=remount-ro) [boot]

 Table 3-4 describes some fi le system commands that you can use to manage
your fi le system.

 The micro‐SD slot on the BBB can be used as an additional storage device. This
is useful if you are capturing video data and not enough storage space exists on
the eMMC. The following two examples describe how the eMMC can be rescued
from an accidental corruption of the uEnv.txt fi le by booting Linux from the
SD card, and how a SD card can be used on the BBB for additional fi le storage.

Table 3-4: Useful Commands for File Systems

COMMAND DESCRIPTION

du ‐h /opt
du ‐hs /opt/ *

du ‐hc * .jpg

Disk usage—fi nd out how much space a directory tree
uses. Options: (‐h) human readable form; (‐s) summary;
(‐c) total. The last command fi nds the total size of the jpg
format fi les in the current directory.

df ‐h Display system disk space in (‐h) human-readable form.

lsblk List block devices.

dd if=test.img
of=/dev/mmcblkX

dd if=/dev/mmcblkX
of=test.img

dd converts and copies a fi le, where if is the input fi le
and of is the output fi le. You can use this command
under Linux to write an image to the SD card. This is
typically used under desktop Linux with the form

sudo dd if=./BBB*.img of=/dev/sdX

where /dev/sdX is the SD card reader/writer.

cat /proc/partitions List all registered partitions.

 Chapter 3 ■ Exploring Embedded Linux Systems 79

COMMAND DESCRIPTION

mkfs /dev/mmcblkXpX Make a Linux fi le system. See also mkfs.ext4 , mkfs.vfat .

fdisk ‐l Note that fdisk can be used to manage disks, create
partitions, delete partitions, etc. fdisk ‐l displays all
existing partitions.

badblocks /dev/
mmcblkX

Check for bad blocks on the SD card. SD cards have
wear-levelling controller circuitry. If you get errors, get a
new card—don’t record them using fsck . Run this with
root permissions and be aware it takes some time to run.

mount /media/store This will mount a partition if it is listed in /etc/fstab .

umount /media/store Unmount a partition. You will be informed if a fi le is open
on this partition.

 EXAMPLE: FIXING UENV.TXT PROBLEMS ON THE EMMC

 As discussed, the uEnv.txt fi le plays a very important role in the boot process. One

consequence of making edits to this fi le, which is necessary in later chapters, is that

an editing mistake (or a purposeful disabling of the eMMC) can prevent your BBB from

booting. If you see the prompt (initramfs) on your USB‐3.3V‐TTL serial connection,

then it is likely that your uEnv.txt fi le could not be parsed correctly.

 To edit this fi le after your board fails to boot from the eMMC, use an SD card boot

image and hold the boot button on power up until the user LEDs light. Importantly,

do not boot the BBB using a fl asher image, as it will overwrite the current data ont

your eMMC . If you do not have a boot image, download one from BeagleBoard.org.

Carefully label your boot and fl asher image SD cards, as mixing them up could result

in a loss of data.

 After booting with the SD card boot image, the following steps will give you access

to edit the uEnv.txt fi le that is on the eMMC:

 debian@arm:∼$ cd /mnt
 debian@arm:/mnt$ sudo mkdir vfat
 debian@arm:/mnt$ sudo mount /dev/mmcblk1p1 /mnt/vfat
 debian@arm:/mnt$ cd /mnt/vfat
 debian@arm:/mnt/vfat$ ls
 App Docs ID.txt MLO scripts u-boot.img
 autorun.inf Drivers initrd.img README.htm SOC.sh uEnv.txt
 debug dtbs LICENSE.txt README.md START.htm uInitrd
 debian@arm:/mnt/vfat$ sudo nano uEnv.txt
 debian@arm:/mnt/vfat$ sudo shutdown ‐h now

 Finally, remove the SD card and boot as normal from the eMMC.

 It is likely that the VFAT partition structure will be removed from future versions of

the BBB distribution—check the chapter web page for updates.

80 Part I 0 ■ BeagleBone Basics

 EXAMPLE: MOUNT AN SD CARD AS ADDITIONAL STORAGE ON THE BBB

 In this example the following steps are performed:

1. Mounting an SD card that is in the BBB SD card slot for additional removable fi le

storage

2. Formatting the fi le system to be a Linux ext4 fi le system

3. Mounting the SD card as /media/store

4. Checking how much storage is available on the card

 Note that these instructions vary according to the Linux distribution being used

and could change or become invalid depending on updates to the BBB. Check the

chapter web page if you are having diffi culties.

Step 1: In this example, the card is a 16 GB card taken straight from the package and

placed in the BBB’s micro‐SD card slot (while the BBB is running). You can see it by

typing the following:

 root@beaglebone:/# mount ‐l
 ...
 /dev/mmcblk1p1 on /media/6462-3062 type vfat rw,nosuid,nodev,relatime
 ,uid=1000,gid=1002,fmask=0022,dmask=0077,codepage=437,...

 It has been automatically mounted at /media/6462‐3062 with type vfat . Use the

following to check if there is any data on the card:

 root@beaglebone:/# cd /media/9016‐4EF8/
 root@beaglebone:/media/6462‐3062# ls ‐l
 total 0

 There are no fi les on the card.

Step 2: Next you should format it as an ext4 fi le system for use on the BBB. Be very

careful that you choose the correct device (e.g., mmcblk1p1 in this example). In

addition, if there is data on your SD card, then it will be lost as a result of the following

operations.

 root@beaglebone:/media/9016‐4EF8# cd /
 root@beaglebone:/# umount /dev/mmcblk1p1
 root@beaglebone:/# mkfs.ext4 /dev/mmcblk1p1
 mke2fs 1.42.5 (29-Jul-2012)
 OS type: Linux
 Block size=4096 (log=2)
 ...
 Writing superblocks and filesystem accounting information: done

Step 3: Next, you need to create a mount point for the card, /media/store , and

mount the card at that point using the mount command (‐t indicates the fi le type;

if it is omitted, mount will try to auto‐detect the fi le system type), passing the mount

 Chapter 3 ■ Exploring Embedded Linux Systems 81

point and the device name. You can then confi rm that it is there. The steps are as

follows:

 root@beaglebone:/# cd /
 root@beaglebone:/# mkdir /media/store
 root@beaglebone:/# mount ‐t ext4 /dev/mmcblk1p1 /media/store
 root@beaglebone:/# cd /media/store
 root@beaglebone:/media/store# ls
 lost+found
 root@beaglebone:/media/store# mount ‐l
 /dev/mmcblk1p1 on /media/store type ext4 (rw,relatime,data=ordered)

Step 4: To check how much capacity is available, type df ‐k , which results in:

 root@beaglebone:/media/store# df ‐k
 /dev/mmcblk1p1 15178708 37984 14363024 1% /media/store
 root@beaglebone:/media/store# touch test.txt
 root@beaglebone:/media/store# ls
 lost+found test.txt

 In this case, the 16 GB micro‐SD card now has 1% of its capacity used. The rest is

now available for use.

 There is a further step on the chapter web page that details how you can ensure

that the SD card is mounted automatically when the BBB is booted.

 fi nd and whereis

 The find command is very useful for searching a directory structure for a
particular fi le. It is incredibly comprehensive; type man find for a full list of
commands. For example, use the following to fi nd the C++ header fi le iostream
somewhere on the BBB fi le system (this may take a few seconds):

 root@beaglebone:/# cd /
 root@beaglebone:/# find ‐name iostream*
 ./usr/include/c++/4.6/iostream

 Using ‐iname instead of ‐name ignores upper/lowercase letters in the search
name. For example, the following command fi nds fi les with the extension .gz
that were modifi ed in the last 24 hours:

 root@beaglebone:/# find ‐ctime 1 ‐iname *.gz
 ./usr/share/man/man5/wavemonrc.5.gz ...

 The whereis command is different in that it can be used to search for a binary,
source code, and manual page for a program:

 root@beaglebone:∼# whereis find
 find: /usr/bin/find /usr/bin/X11/find /usr/share/man/man1/find.1.gz

82 Part I ■ BeagleBone Basics

 In this case, the binary command is in /usr/bin (X11 is a symbolic link to
the current directory .) and the man page is in /usr/share/man/man1 (stored in
gzip form to save space).

 more or less

 The more command has been used several times already, and you have likely
gleaned its use. It allows you to view a large fi le or output stream, one page at
a time. Therefore, to view a long fi le you can type more filename . For example,
there is a log fi le /var/log/dmesg that contains all the kernel output messages.
You can view this fi le line by line by typing more /var/log/dmesg . However, if g

you want to keep the display concise, use ‐5 to set the page length to be fi ve rows:

 root@beaglebone:∼# more ‐5 /var/log/dmesg
 [0.000000] Booting Linux on physical CPU 0x0
 [0.000000] Initializing cgroup subsys cpuset
 [0.000000] Initializing cgroup subsys cpu
 [0.000000] Initializing cgroup subsys cpuacct
 [0.000000] Linux version 3.13.4-bone5 (root@imx6q-sabrelite-1gb-0)
 --More--(1%)

 You can page through the content using the space bar and use the q key to
quit. There is an even more powerful command called less that you can access
by typing:

 root@beaglebone:∼# less /var/log/dmesg

 It gives you a fully interactive view using the keyboard; you can use the arrow
keys to move up and down through the text. There are too many options to
list; however, for example, you can page down using the space bar, search for a
string by typing / (e.g., type /usb to fi nd messages related to USB devices) and
then press the n key to go to the next match and the N key to go to the previous N

match. That only touches on the capability of the less command.

 Linux Commands

 When you are working at the Linux terminal and you type commands such as
date , the output of these commands is sent to the standard output. As a result,
the output is displayed in your terminal window.

 Standard Input and Output Redirection (>, >>, and <)

 It is possible to redirect the output to a fi le using redirection symbols > and >> . You
used the latter symbol earlier to add text to temporary fi les. The > symbol can
be used to send the output to a new fi le. For example:

 root@beaglebone:∼# cd /tmp
 root@beaglebone:/tmp# date > a.txt

 Chapter 3 ■ Exploring Embedded Linux Systems 83

 root@beaglebone:/tmp# more a.txt
 Wed Feb 26 15:41:12 UTC 2014
 root@beaglebone:/tmp# date > a.txt
 root@beaglebone:/tmp# more a.txt
 Wed Feb 26 15:41:25 UTC 2014

 The >> symbol indicates that you wish to append to the fi le. The following
example illustrates the use of >> with the new fi le a.txt :

 root@beaglebone:/tmp# date >> a.txt
 root@beaglebone:/tmp# more a.txt
 Wed Feb 26 15:41:25 UTC 2014
 Wed Feb 26 15:43:26 UTC 2014

 Standard input using the < symbol works in much the same way. The ‐e
enables parsing of escape characters, such as the return (\n) characters: n

 root@beaglebone:/tmp# echo ‐e "dog\ncat\nfish\nbird" > animals.txt
 root@beaglebone:/tmp# sort < animals.txt
 bird
 cat
 dog
 fish

 You can combine input and output redirection operations. Using the same
animals.txt fi le, you can perform operations such as:

 root@beaglebone:/tmp# sort < animals.txt > sorted.txt
 root@beaglebone:/tmp# more sorted.txt
 bird
 cat
 dog
 fish

 Pipes (| and tee)

 Simply put, pipes (|) allow you to connect Linux commands together. Just as you
redirected the output to a fi le, you can redirect the output of one command into
the input of another command. For examples, to list the root directory (from
anywhere on the system) and send (or “pipe”) the output into the sort com-
mand, where it is listed in reverse (‐r) order, use the following: r

 root@beaglebone:/# ls / | sort ‐r
 var
 usr
 ...
 boot
 bin

84 Part I 4 ■ BeagleBone Basics

 You can fi nd out which user installations in the /opt directory are occupying
the most disk space: du gives you the disk used. Passing the argument ‐d1 means
only list the sizes of 1 level below the current directory level, and ‐h means list
the values in human‐readable form. You can pipe this output into the sort fi lter
command to do a numeric sort in reverse order (largest at the top). Therefore,
the command looks like:

 root@beaglebone:/# cd /opt
 root@beaglebone:/opt# du ‐d1 ‐h | sort ‐nr
 74M .
 58M ./cloud9
 15M ./source
 1.1M ./scripts

 There is one more useful tool, tee, which allows you to both redirect an output
to a fi le and pass it on to the next command in the pipe (e.g., store and view).
Using the previous example, if you wanted to send the unsorted output of du
to a fi le but display a sorted output, you could enter the following:

 root@beaglebone:/opt# du ‐d1 ‐h | tee /tmp/unsorted.txt | sort ‐nr
 74M .
 58M ./cloud9
 15M ./source
 1.1M ./scripts
 root@beaglebone:/opt# more /tmp/unsorted.txt
 15M ./source
 1.1M ./scripts
 58M ./cloud9
 74M .

 You can also use tee to write the output to several fi les at the same time, as
shown in this example:

 root@beaglebone:/opt# du ‐d1 ‐h | tee /tmp/1.txt /tmp/2.txt /tmp/3.txt

 Filter Commands (from sort to xargs)

 There are fi ltering commands, each of which provides a useful function:

■ sort : This command has several options, including (‐r) sorts in reverse; (‐f)
ignores case; (‐d) uses dictionary sorting, ignoring punctuation; d (‐n) numericn

sort; (‐b) ignores blank space; (‐i) ignores control characters; (‐u) displays
duplicate lines only once; and (‐m) merges multiple inputs into a single output. m

■ wc (word count): This can be used to calculate the number of words, lines,
or characters in a stream. For example:

 root@beaglebone:/tmp# wc < animals.txt
 4 4 18

 Chapter 3 ■ Exploring Embedded Linux Systems 85

 This has returned that there are 4 lines, 4 words, and 18 characters. You
can select the values independently by using (‐l) for line count; (‐w) for w

word count; (‐m) for character count; and (m ‐c) for the byte count (which
would also be 18 in this case).

■ head : Displays the fi rst lines of the input. This is useful if you have a very
long fi le or stream of information and you want to examine only the fi rst
few lines. By default it will display the fi rst 10 lines. You can specify the
number of lines using the ‐n option. For example, to get the fi rst fi ve lines
of output of the dmesg command (display message or driver message),
which displays the message buffer of the kernel, you can use the following:

 root@beaglebone:/tmp# dmesg | head ‐n5
 [0.000000] Booting Linux on physical CPU 0x0
 [0.000000] Initializing cgroup subsys cpuset
 [0.000000] Initializing cgroup subsys cpu
 [0.000000] Initializing cgroup subsys cpuacct
 [0.000000] Linux version 3.13.4-bone5(root@imx6q-sabrelite-1gb-0)

■ tail : This is just like head except that it displays the last lines of a fi le or
stream. Using it in combination with dmesg provides useful output, as
shown here:

 root@beaglebone:/tmp# dmesg | tail ‐n2
 [36.123251] libphy: 4a101000.mdio:00 - Link is Up - 100/Full
 [36.123421] IPv6:ADDRCONF(NETDEV_CHANGE): eth0:link becomes ready

■ grep : A very powerful fi lter command that can parse lines using text
and regular expressions. You can use this command to fi lter output with
options, including (‐i) ignore case; (‐m 5) stop after fi ve matches; (‐q)
silent, will exit with return status 0 if any matches are found; (‐e) specify
a pattern; (‐c) print a count of matches; (‐o) print only the matching text;
and (‐l) list the fi lename of the fi le containing the match. For example,
the following examines the dmesg output for the fi rst three occurrences
of the string “usb,” using ‐i to ignore case:

 root@beaglebone:/tmp# dmesg |grep ‐i ‐m3 usb
 [1.948582] usbcore: registered new interface driver usbfs
 [1.948637] usbcore: registered new interface driver hub
 [1.948795] usbcore: registered new device driver usb

 You can combine pipes together. For example, you get the exact same output
by using head and displaying only the fi rst three lines of the grep output:

 root@beaglebone:/tmp# dmesg |grep ‐i usb |head ‐n3
 [1.948582] usbcore: registered new interface driver usbfs
 [1.948637] usbcore: registered new interface driver hub
 [1.948795] usbcore: registered new device driver usb

86 Part I 6 ■ BeagleBone Basics

■ xargs : This is a very powerful fi lter command that enables you to con-
struct an argument list that you use to call another command or tool. In
the following example, a text fi le args.txt that contains three strings is
used to create three new fi les. The output of cat is piped to xargs , where
it passes the three strings as arguments to the touch command, creating
three new fi les a.txt , b.txt , and c.txt :

 molloyd@beaglebone:∼$ echo "a.txt b.txt c.txt" > args.txt
 molloyd@beaglebone:∼$ cat args.txt | xargs touch
 molloyd@beaglebone:∼$ ls
 a.txt args.txt b.txt c.txt

 Other useful fi lter commands include awk (to program any type of fi lter), fmt
(to format text), uniq (to fi nd unique lines), and sed (to manipulate a stream).
These commands are beyond the scope of this text—for example, awk is a full
programming language! Table 3-5 describes a few useful piped commands to
give you some ideas of how you can use them.

Table 3-5: Pipe Examples for the BBB

COMMAND DESCRIPTION

du | sort ‐nr du returns the amount of disk used, and in this example it will list
the disk used by subdirectories off the current directory, sorting
them according to how much they store, with the largest at the top.

ls ‐lt | head Display the newest fi les in the current directory.

cat urls.txt
| xargs wget

Download the fi les, listed by URLs in a text fi le urls.txt .

 echo and cat

 The echo command simply echoes a string, output of a command, or a value
to the standard output. Here are a few examples:

 root@beaglebone:/tmp# echo 'hello'
 hello
 root@beaglebone:/tmp# echo "Today's date is $(date)"
 Today's date is Wed Feb 26 15:16:47 UTC 2014
 root@beaglebone:/tmp# echo $PATH
 /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

 In the fi rst case, a simple string is echoed. In the second case, the " " are pres-
ent as a command is issued within the echo call, and in the fi nal case the PATH
environment variable is echoed. The echo command also enables you to see the
exit status of a command using $? . For example:

 root@beaglebone:∼# ls /tmp
 test.txt

 Chapter 3 ■ Exploring Embedded Linux Systems 87

 root@beaglebone:∼# echo $?
 0
 root@beaglebone:∼# ls /madeupdirectory
 ls: cannot access /madeupdirectory: No such file or directory
 root@beaglebone:∼# echo $?
 2

 The exit status for date is 0 for a successful call and 2 for a directory that does
not exist. This can be very useful when you are writing scripts and your own
C/C++ programs that return a value from the main() function.

 The cat command (con cat enation) enables you to join two fi les together
at the command line. The following example uses echo to create two fi les
a.txt and b.txt ; cat concatenates the fi les to create a new fi le c.txt . You
need to use ‐e if you want to enable the interpretation of escape characters
in the string that is passed to echo . For example, “ \n ” adds a new line to
your output.

 root@beaglebone:/tmp# cd /tmp
 root@beaglebone:/tmp# echo "hello" >> a.txt
 root@beaglebone:/tmp# echo ‐e "to\nthe\nworld" >> b.txt
 root@beaglebone:/tmp# cat a.txt b.txt >> c.txt
 root@beaglebone:/tmp# more c.txt
 hello
 to
 the
 world

 diff

 The diff command enables you to easily fi nd the differences between two fi les.
It provides a very basic output:

 molloyd@beaglebone:∼$ echo ‐e "dog\nfish\nbird" > list1.txt
 molloyd@beaglebone:∼$ echo ‐e "dog\nshark\nbird" > list2.txt
 molloyd@beaglebone:∼$ diff list1.txt list2.txt
 2c2
 < fish

 > shark

 The value 2c2 in the output indicates that line 2 in the fi rst fi le c hanged to line
2 in the second fi le, and the change is that “fi sh” changed to “shark.” The char-
acter a would mean appended, and d would mean deleted. For a side‐by‐side
comparison, you can use

 molloyd@beaglebone:∼$ diff ‐y ‐W80 list1.txt list2.txt
 dog dog
 fish │ shark
 bird bird

88 Part I 8 ■ BeagleBone Basics

 where ‐y enables the side‐by‐side view, and ‐W80 sets the width of the display
to 80 characters.

 If you are looking for a more intuitive (but challenging) difference between
two fi les, you can use the vimdiff command, which shows a side‐by‐side com-
parison of the fi les using the vim (Vi IMproved) text editor (type vimdiff list1
.txt list2.txt and use the VI key sequence: Escape : q ! twice to quit, or
Escape : w q to save the changes and quit). Vim requires a lot of practice to be
used as a general editor.

 tar

 The tar command is an archiving utility that enables you to combine fi les and
directories into a single fi le (like an uncompressed zip fi le). This fi le can then
be compressed to save space. To archive and compress a directory of fi les, use

 molloyd@beaglebone:∼$ tar cvfz newArchiveName.tar.gz /tmp

 where (c) means new archive, (c v(() means verbosely list fi les, (v z) means compress
with gzip, and (f) means archive name follows. You might also see .tar.gz
 represented as .tgz . See Table 3-6 for more examples.

Table 3-6: Useful tar Commands

COMMAND DESCRIPTION

tar cvfz name.tar.gz Compress with gzip form.

tar cvfj name.tar.bz2 Compress with bzip2 compression (typically a
longer delay, but smaller, fi le).

tar xvf name.tar.gz Decompress gzip fi le (x indicates ex tract). It
will auto‐detect compression type (e.g., gzip,
bz2).

tar xvf name.tar /dir/
filename

Extract a single fi le from an archive. Works for
a single directory too. Use z and j as required.

tar rvf name.tar filename Add another fi le to the archive.

tar cfz name‐$(date +%d%m%y).
tar.gz /dir/filename

Create an archive with the current day’s date.
Very useful for scripts and cron job backups.
Note: There must be a space between date
and +%d%m%y.yy

 md5sum

 The md5sum command enables you to check the hash code, in order to verify
that the fi les have not been corrupted maliciously or accidentally in transit. In

 Chapter 3 ■ Exploring Embedded Linux Systems 89

the following example, the wavemon tool is downloaded as a .deb package, but
not installed. The md5sum command can be used to generate the md5 checksum:m

 root@beaglebone:∼# apt‐get download wavemon
 Get:1 Downloading wavemon 0.7.5-3 [52.1 kB]
 Fetched 52.1 kB in 0s (66.7 kB/s)
 root@beaglebone:∼# ls
 wavemon_0.7.5-3_armhf.deb
 root@beaglebone:∼# md5sum wavemon_0.7.5‐3_armhf.deb
 f70117682d2b148b11514337a622eb4c wavemon_0.7.5-3_armhf.deb

 You can now check this checksum against the offi cial checksum to ensure
you have a valid fi le that has not been tampered with. Unfortunately, it can be
diffi cult to fi nd the checksums for individual packages online. If it was installed
(as you did in Chapter 2), the checksum for wavemon is in /var/lib/dpkg/info/
wavemon.md5sums . You can install a utility under Debian called debsums to check
the integrity of the fi le and its constituent parts:

 root@beaglebone:∼# debsums wavemon_0.7.5‐3_armhf.deb
 /usr/bin/wavemon OK
 /usr/share/doc/wavemon/changelog.Debian.gz OK

 If you are building your own packages that you wish to distribute, it would
be useful to also distribute a checksum fi le.

 Linux Processes

 A process is an instance of a program that is running on the OS. You need to
be able to manage the processes that are running on your BBB, understand
foreground and background processes, and kill a process that becomes locked.

 Controlling Linux Processes

 The ps command lists the processes that are currently running on the BBB.
Typing ps shows that the BBB in the following example is running two processes,
the bash shell with process ID (PID) 2200 and the ps command itself, which is
running with PID 13507. The ps PID is different every time you run it:

 root@beaglebone:∼# ps
 PID TTY TIME CMD
 2200 pts/0 00:00:02 bash
 13507 pts/0 00:00:00 ps

 To see every process that is running on the system, use ps ax . In the next
example, it is fi ltered to look for the string “apache” to discover information
about the apache server process that is running on the BBB:

 root@beaglebone:/opt# ps ax|grep apache
 869 ? Ss 0:08 /usr/sbin/apache2 -k start

90 Part I 0 ■ BeagleBone Basics

 875 ? S 0:00 /usr/sbin/apache2 -k start
 879 ? Sl 0:00 /usr/sbin/apache2 -k start
 880 ? Sl 0:00 /usr/sbin/apache2 -k start
 13579 pts/0 S+ 0:00 grep apache

 Interestingly, apache2 appears four times, meaning there are four different
processes running for the web server, allowing it to handle multiple simultane-
ous connections.

 Foreground and Background Processes

 Linux is a multitasking OS that allows you to run processes in the background
while using a program that is running in the foreground . This concept is similard
to the behavior of a windowing system (e.g., Windows, Mac OS X)—for example,
the desktop clock will continue to update the time while you use a web browser.

 The same is true of applications that run in a terminal window. To demonstrate
that, here is a small segment of C code to display “Hello World!” every fi ve sec-
onds in a Linux terminal. Exactly how this works is covered in Chapter 5 , but for
the moment you can enter the code verbatim into a fi le called HelloWorldSleep.c
using the nano fi le editor.

 molloyd@beaglebone:∼$ cd ∼/
 molloyd@beaglebone:∼$ more HelloWorldSleep.c
 #include<unistd.h>
 #include<stdio.h>

 int main(){
 int x = 0;
 do{
 printf("Hello World!\n");
 sleep(5);
 }while(x++<100);
 }

 After saving the fi le as HelloWorldSleep.c , it can be compiled by typing the
following (‐o specifi es the executable fi le name):

 molloyd@beaglebone:∼$ gcc HelloWorldSleep.c ‐o HelloWorldSleep
 molloyd@beaglebone:∼$ ls ‐l
 total 12
 -rwxr-xr-x 1 molloyd users 5191 Feb 26 23:48 HelloWorldSleep
 -rw-r--r-- 1 molloyd users 147 Feb 26 23:48 HelloWorldSleep.c

 If this works correctly you will now have the source fi le and the executable
program called HelloWorldSleep (note that the executable x fl ag is set). It can
be run by typing the following:

 molloyd@beaglebone:∼$./HelloWorldSleep
 Hello World!
 Hello World!

 Chapter 3 ■ Exploring Embedded Linux Systems 91

 It will continue to output “Hello World!” every fi ve seconds. This applica-
tion can be killed using Ctrl+C. However, if you would like to run this in the
background, there are two ways to do that.

 The fi rst way is that, instead of using Ctrl+C to kill the process, use Ctrl+Z,
and then at the prompt use the bg (background) command:

 molloyd@beaglebone:∼$./HelloWorldSleep
 Hello World!
 Hello World!
 ̂Z
 [1]+ Stopped ./HelloWorldSleep
 molloyd@beaglebone:∼$ bg
 [1]+ ./HelloWorldSleep &
 molloyd@beaglebone:∼$ Hello World!
 Hello World!
 Hello World!

 You can see that when you type Ctrl+Z, the ̂ Z appears in the output. When
bg is entered, the program is placed in the background and continues to execute.
In fact, you can continue to use the terminal but it will be frustrating, as every
fi ve seconds “Hello World!” will appear. You can bring this process back into
the foreground using the fg command:

 molloyd@beaglebone:∼$ fg
 ./HelloWorldSleep
 Hello World!
 ̂C
 molloyd@beaglebone:∼$

 The application is killed when Ctrl+C is typed (appears as ^C above).
 The second way to place this application in the background is to execute the

application with an & symbol after the application name:

 molloyd@beaglebone:∼$./HelloWorldSleep &
 [1] 14442
 molloyd@beaglebone:∼$ Hello World!
 Hello World!

 It has been placed in the background with PID 14442 in this case. To stop the
process, you can use ps to fi nd the PID:

 molloyd@beaglebone:∼$ ps aux|grep Hello
 molloyd 14442 0.0 0.0 1176 308 pts/1 S Feb26 0:00 ./HelloWorldSleep
 molloyd 14478 0.0 0.1 1604 564 pts/1 S+ 00:01 0:00 grep Hello

 This process can be killed by using the kill command:

 molloyd@beaglebone:∼$ kill 14442
 [1]+ Terminated ./HelloWorldSleep

92 Part I ■ BeagleBone Basics

 You can confi rm that a process is dead by using ps again. If a process doesn’t
die, you can use a ‐9 argument, which ensures death (e.g., kill ‐9 14442). A
separate command, pkill , will kill a process based on its name, so in this case
you can kill the process as follows:

 root@beaglebone:∼# pkill HelloWorldSleep

 One more command worth mentioning is watch , which executes a command h

at a regular interval and shows the outcome full‐screen on the terminal. For
example, if you want to watch the kernel message log, you could use the following:

 root@beaglebone:∼# watch dmesg

 You can specify the time interval between each execution using ‐n followed
by the number of seconds. A good way to understand watch is to execute it as
follows:

 root@beaglebone:∼# watch ps a
 Every 1.0s: ps a Sat Mar 1 23:11:16 2014
 PID TTY STAT TIME COMMAND
 1234 pts/0 Ss 0:00 -bash
 5908 pts/0 S+ 0:00 watch -n 1 ps a
 5913 pts/0 S+ 0:00 watch -n 1 ps a
 5914 pts/0 S+ 0:00 sh -c ps a
 5915 pts/0 R+ 0:00 ps a

 You will see the PID of ps , sh , and h watch changing every one (1) second, mak-1

ing it clear that watch is actually executing the command (ps) by passing it to a
new shell using sh ‐c . The reason why watch appears twice in the list is that it
spawns itself temporarily at the exact moment that it executes ps a .

 The BusyBox Multi‐call Binary

 As discussed in Chapter 2 , BusyBox is a multi‐call binary that reduces overhead
by combining many commands inside a single busybox command. You can type
busybox to see the available utilities. It is used in varying degrees on Ångström
and Debian. If you look in the directory /usr/bin and type ls ‐al|grep busybox
 you will may see symbolic links like these:

 lrwxrwxrwx 1 root root 17 Mar 18 2013 time -> ../../bin/busybox
 lrwxrwxrwx 1 root root 17 Mar 18 2013 traceroute -> ../../bin/busybox
 lrwxrwxrwx 1 root root 17 Mar 18 2013 unzip -> ../../bin/busybox
 lrwxrwxrwx 1 root root 17 Mar 18 2013 wget -> ../../bin/busybox
 lrwxrwxrwx 1 root root 17 Mar 18 2013 xargs -> ../../bin/busybox

 All these utilities link back to the BusyBox executable. Therefore, when you
type time , the system calls BusyBox with the argument argv[0]=”/bin/usr/

 Chapter 3 ■ Exploring Embedded Linux Systems 93

time” (arguments are examined in the next chapter), allowing the multi‐call
binary to perform the correct task.

 Other Linux Topics

 At this point of the book you have covered the core commands for working with
Linux on the BBB; however, there is much more to cover on the topic of Linux.
For example: How do you confi gure a Wi‐Fi adapter? How do you use cron to
schedule jobs with the BBB? These topics and many others are detailed as you
work through the remaining chapters. For example, Wi‐Fi adapters and cron
jobs are covered in Chapter 10 , in the context of the Internet of Things.

 Git

 Simply put, Git is a system that enables you to track changes to the content of a
software project as it develops over time. Git was designed by Linus Torvalds
and is used today for mainline Linux kernel development. The word git is
U.K. slang for “a stupid, worthless person, or a despicable, unpleasant man.”
According to the Git FAQ on kernel.org (Git FAQ, 2013), Linus is quoted as
saying, “I’m an egotistical bastard, and I name all my projects after myself.
First ‘Linux’, now ‘Git.’” Despite the name, Git is an incredibly useful system
to understand, for two main reasons: You can use Git when developing your
own software, and you can gain an appreciation of how to work with Linux
kernel source distributions.

 Git is a distributed version control system (DVCS) for source control management.
A version control system (VCS) tracks and manages changes to documents of any
type. Typically, documents that have been changed are marked with revision
numbers and time stamps. It is possible to compare revisions and even revert
to older versions of the documents. There are two types of VCSs:

■ Centralized: These systems, such as Apache Subversion (SVN), work on
the basis that there is a single “master” copy of the project. The workfl ow
is quite straightforward: You pull down changes from a central server,
make your own changes, and then commit them back to the master copy.

■ Distributed: Using these systems, such as Git and Selenic Mercurial, you do
not pull down changes; rather you clone the entire repository , including its yy
entire history. The clone of the repository is just as complete as the master
copy and can even become the master copy if required. Thankfully, by
today’s standards, text documents and programming source code do not
occupy much disk space. Importantly, the DVCS model does not prevent
you from having a central master repository that everybody uses—have
a look at git.kernel.org.

94 Part I 4 ■ BeagleBone Basics

 The main advantages of a DVCS over a CVCS are that you can very quickly
commit and test changes locally, on your own system, without ever having to
push them to a master copy; however, changes can be pushed when they reach an
appropriate level of quality. The only signifi cant disadvantage is the amount of disk
space required to store the project and its entire history, which grows over time.

 Git is a DVCS that is focused on programming source control and manage-
ment. It enables you to create parallel developments that do not affect the
original. You can even revert to an older version of one of the source code
fi les, or an older version of the entire project. This is particularly useful in
large‐scale programming projects for which you may go down a development
pathway with the project that is ultimately unsuccessful. The facility for par-
allel development is also very important if you have several people working
on the same project.

 The project, with its associated fi les and history, is called a repository, and
a different version of the project is called a snapshot. Git is written in C, and t
while it originated from the need for version control tools in the development
of Linux kernel code, it is used by many other open‐source developments such
as Eclipse and Android.

 The easiest way to understand Git is to go through the steps of actually using
it. Therefore, the next section is structured as a step‐by‐step guide. Git is installed
on all standard distributions for the BBB, so you should be able to follow the
steps, directly at the terminal. GitHub is used in this book as the remote reposi-
tory for providing the source code examples. Except for pushing the source
code to the server, you can do everything in this guide without requiring an
account. GitHub provides free public repository accounts, but charges a fee for
private repositories, such as those that would be required for retaining intel-
lectual property rights.

N O T E If you are planning to write a large software project and do not wish to

make it publicly available on www.github.com or pay a subscription fee, you can

install your own rich user‐interface Git server, such as www.gitlab.org or www

.getgitorious.com .

 Getting Started with Git

 In this guide I create a repository called “test” on GitHub. Initially, it contains
only a README.md fi le with a short description of the test project.

 As shown in Figure 3-4 , nearly every operation is a local operation. A check-
sum is performed on every fi le in Git before it is stored. This ensures that Git
will be aware if a modifi cation is made outside Git itself, including fi le system
corruption. Git uses 40-character hash codes for the checksums. This helps Git
to keep track of changes between the local repository and remote repository,
which enables the range of local operations.

 Chapter 3 ■ Exploring Embedded Linux Systems 95

 Cloning a Repository (git clone)

 Cloning a repository means making a copy of all the fi les in the repository on
your local fi le system, as well as the history of changes to that project. You do
this operation only once. To clone the repository, issue the command git clone
followed by the fully formed repository name:

 $ cd ∼/
 $ git clone https://github.com/derekmolloy/test.git
 Cloning into 'test'...
 remote: Counting objects: 3, done.
 remote: Compressing objects: 100% (2/2), done.
 remote: Total 3 (delta 0), reused 0 (delta 0)
 Unpacking objects: 100% (3/3), done.

 You now have a full copy of the “test” repository. Your repository is just as
complete as the version on the GitHub server and if you were to deploy it over
a network, fi le system, other Git server, or even on a different GitHub account,
it could assume the role as the main version of this repository. While there is
no need for a central server, it is usually the case, as it enables multiple users to
check in source to a known master repository. The repository is created in the
test directory and it currently contains the following:

∼/test$ ls ‐al
 total 24
 drwxr-xr-x 3 root root 4096 Feb 22 01:08 .
 drwx------ 3 root root 4096 Feb 22 01:02 ..
 drwxr-xr-x 8 root root 4096 Feb 22 01:17 .git
 -rw-r--r-- 1 root root 61 Feb 21 23:42 README.md

 You can see the README.md fi le that was created and you can also see a hidden
subdirectory .git , which contains the following fi les and directories:

∼/test/.git$ ls
 COMMIT_EDITMSG HEAD branches description index logs packed-refs
 FETCH_HEAD ORIG_HEAD config hooks info objects refs

 The hidden .git folder is in the project’s root directory and it contains all of
the information about the repository, such as commit messages, logs, and the

 Figure 3-4: The basic Git workflow

96 Part I 6 ■ BeagleBone Basics

data objects. The “Further Reading” section at the end of this chapter directs
you to an excellent book on Git, which is freely available online. Thankfully, in
the following discussion you will not have to make changes in the .git direc-
tory structure, as you have Git commands to do that for you.

 Getting the Status (git status)

 Now that the repository exists, the next step is to add a new text fi le to the working
directory, where it will be it in an yy untracked state. When you call the command
git status , you can see a message stating that “untracked fi les” are present:

∼/test$ echo "Just some Text" > newfile.txt
∼/test$ git status
 # On branch master
 # Untracked files:
 # (use "git add <file>..." to include in what will be committed)
 # newfile.txt
 nothing added to commit but untracked files present ...

 The next step is to add these untracked fi les to the staging area . However, if
you did not want to add a set of fi les, you could also create a .gitignore fi le to
ignore those fi les. For example, this could be useful if you are building C/C++
projects and you decide that you do not want to add intermediate .o fi les. Here
is an example of creating a .gitignore fi le in order to ignore C/C++ .o fi les:

∼/test$ echo "*.o" > .gitignore
∼/test$ more .gitignore
 *.o
∼/test$ touch testobj.o
∼/test$ git status
 # On branch master
 # Untracked files:
 # (use "git add <file>..." to include in what will be committed)
 # .gitignore
 # newfile.txt
 nothing added to commit but untracked files present ...

 In this case, two fi les are untracked, but there is no mention of the testobj.o
fi le, as it is being correctly ignored.

 Adding to the Staging Area (git add)

 The fi les in the working directory can now be added to the staging area by typ-
ing git add . , which will add all the fi les in the working directory. However,
for clarity, each fi le is being added explicitly here:

∼/test$ git add .gitignore
∼/test$ git add newfile.txt

 Chapter 3 ■ Exploring Embedded Linux Systems 97

 The two fi les have been added from the working directory to the staging area.
The status of the repository can then be displayed using:

∼/test$ git status
 # On branch master
 # Changes to be committed:
 # (use "git reset HEAD <file>..." to unstage)
 # new file: .gitignore
 # new file: newfile.txt

 To delete/remove a fi le from the staging area you can use git rm somefile.ext .

 Committing to the Local Repository (git commit)

 Once you have added the fi les to the staging area, you can then “commit” the
changes from the staging area to the local git repository. First, you may wish to
add your name and e‐mail address variables, to make it clear who is committing
the changes to the repository:

∼/test$ git config –global user.name "Derek Molloy"
∼/test$ git config –global user.email derek@mailaccount.com

 These values are set against your Linux user account, so they will remain
when you next log in. You can see them if you type more ∼/.gitconfig . The
changes can be permanently committed to the local git repository using the
git commit command:

∼/test$ git commit ‐m "Testing the Repository"
 [master 46207db] Testing the Repository
 2 files changed, 2 insertions(+)
 create mode 100644 .gitignore
 create mode 100644 newfile.txt

 The changes will be fl agged with the username, and a message is also required.
If you wish to detail the message inline, you can use ‐m “the message” to set
the commit message.

N O T E The shortcut git commit ‐a will commit modifi ed fi les directly to the

staging area, without requiring a call to add. It does not add new fi les.

 Pushing to the Remote Repository (git push)

 To perform this step you must have your own GitHub account. The git push
command pushes any code updates to the remote repository. You must be reg-
istered to make changes to the remote repository for the changes to be applied.

98 Part I 8 ■ BeagleBone Basics

It can be called as follows (replace the user details and repository name with
your own account details):

∼/test$ git push
 Username for 'https://github.com': derekmolloy
 Password for 'https://derekmolloy@github.com':
 Counting objects: 7, done.
 Compressing objects: 100% (4/4), done.
 Writing objects: 100% (6/6), 666 bytes, done.
 Total 6 (delta 0), reused 0 (delta 0)
 To https://github.com/derekmolloy/test.git
 22df5ee..46207db master -> master

 Once the code has been pushed to the remote repository, you can pull changes
back to a local repository on any machine by issuing a git pull command from
within the local repository working directory:

∼/test$ git pull
 Already up-to-date.

 In this case everything is already up‐to‐date.

 Advanced Git

 Git supports the concept of branching, which allows you to work on multiple
different versions of the set of fi les within your project. For example, if you
wanted to develop a new feature in your project (Version 2) but maintain the
code in the current version (Version 1), you could create a new branch (Version 2).
New features and changes that are made to Version 2 will not affect the code
in Version 1. You can then easily switch between branches.

 Creating a Branch (git branch)

 Suppose, for example, you wanted to create a new branch called “mybranch”;
you can do so using the command git branch mybranch and then you can
switch to that branch using git checkout mybranch as shown here:

∼/test$ git branch mybranch
∼/test$ git checkout mybranch
 Switched to branch 'mybranch'

 Now, to demonstrate how this works, suppose a temporary fi le is added to
the repository called testmybranch.txt . This could be a new code fi le for your
project. You can see that the status of the branch makes it clear that there is an
untracked fi le in the working directory:

∼/test$ touch testmybranch.txt
∼/test$ ls

 Chapter 3 ■ Exploring Embedded Linux Systems 99

 README.md newfile.txt testmybranch.txt testobj.obj
∼/test$ git status
 # On branch mybranch
 # Untracked files:
 # (use "git add <file>..." to include in what will be committed)
 # testmybranch.txt
 nothing added to commit but untracked files present ...

 You can then add this new fi le to the staging area of the branch using the
same commands as before:

∼/test$ git add .
∼/test$ git status
 # On branch mybranch
 # Changes to be committed:
 # (use "git reset HEAD <file>..." to unstage)
 # new file: testmybranch.txt

 You can commit this change to the mybranch branch of the local repository.
This change will affect the mybranch branch but have no impact on the master
branch:

∼/test$ git commit ‐m "Test commit to mybranch"
 [mybranch 02eb0fb] Test commit to mybranch
 0 files changed
 create mode 100644 testmybranch.txt
∼/test$ git status
 # On branch mybranch
 nothing to commit (working directory clean)
∼/test$ ls
 README.md newfile.txt testmybranch.txt testobj.obj

 You can see from the preceding output that the fi le testmybranch.txt is com-
mitted to the local repository and you can see the fi le in the directory.

 If you now switch from the branch mybranch back to the master branch using
the call git checkout master , you will see that something interesting happens r

when you request the directory listing:

∼/test$ git checkout master
 Switched to branch 'master'
∼/test$ ls
 README.md newfile.txt testobj.obj

 Yes, the fi le testmybranch.txt has disappeared from the directory. It still
exists, but it is in a blob form inside the .git/objects directory. If you switch
back to the branch and list the directory, you will see the following:

∼/test$ git checkout mybranch
 Switched to branch 'mybranch'

100 Part I 0 ■ BeagleBone Basics

∼/test$ ls
 README.md newfile.txt testmybranch.txt testobj.obj

 The fi le now reappears. Therefore, you can see just how well integrated the
branching system is. At this point, you can go back to the master branch and
make changes to the original code without the changes in the mybranch branch
having any impact on the master code. Even if you change the code in the same
fi le, it has no effect on the original code in the master branch.

 Merging the Branch (git merge)

 What if you want to apply the changes that you made in the mybranch branch
to the master project? You can do this by using git merge :

∼/test$ git checkout master
 Switched to branch 'master'
∼/test$ git merge mybranch
 Updating 46207db..02eb0fb
 Fast-forward
 0 files changed
 create mode 100644 testmybranch.txt
∼/test$ git status
 # On branch master
 # Your branch is ahead of 'origin/master' by 1 commit.
 nothing to commit (working directory clean)
∼/test$ ls
 README.md newfile.txt testmybranch.txt testobj.obj

 Now the testmybranch.txt fi le is in the master branch and any changes
that were made to other documents in the master have been applied. The local
repository is now one commit ahead of the remote repository and you could
use a git push to update the remote repository.

 Deleting a Branch (git branch ‐d)

 If you wish to delete a branch, you can do so using the git branch ‐d mybranch
command:

∼/test$ git branch ‐d mybranch
 Deleted branch mybranch (was 02eb0fb).
∼/test$ ls
 README.md newfile.txt testmybranch.txt testobj.obj

 You can see that the fi le testmybranch.txt is still present in the master
project, and it should be, as the branch was merged with the master project. If
the branch was deleted before the merge was performed, then the fi le would
have been lost.

 Chapter 3 ■ Exploring Embedded Linux Systems 101

 Conclusions on Git

 Table 3-7 provides a summary of the main Git commands. At this point you
have seen the core use of Git, and hopefully you have been encouraged to use
Git in your own project development. If you are developing code directly on
the BBB, Git can be very useful, as you can easily push your developments to a
remote repository. That can be useful in backing up your code and redeploying
the code to multiple BBBs. At the end of this chapter, instructions are provided
for downloading the source code for this book using Git. Later in the book, you
will see how you can integrate Git with the Eclipse development environment
for general software management tasks.

Table 3-7: Summary of the Main Git Commands

OPERATION DESCRIPTION OPERATION DESCRIPTION

git clone Clone from the remote
repository.

git rm Delete a fi le or
directory from the
staging area.

git init Create a wholly new
repository.

git mv Move or rename a
fi le or folder in the
staging area.

git pull Merge changes from a
master repository.

git log Display a log of
commits. The project
history.

git fetch Find what has
changed in a master
repository without
merging.

git tag You can give a
commit a name, e.g.,
version 2.

git status Show the status of the
project.

git merge
[name]

Merge the branch.

git add Add a new fi le or edit
an existing fi le.

git show Get details about
the current or other
commit.

git diff Show the diff erences
that are to be
committed.

git branch
[name]

Create a new branch.
Use ‐d to delete.

git commit Commit to the
repository.

git checkout
[name]

Switch to a diff erent
branch.

git push Push changes from
the local repository to
a remote repository.

102 Part I ■ BeagleBone Basics

 Desktop Virtualization

 Desktop virtualization enables a single desktop computer to run multiple OS
instances simultaneously. It uses technology called hypervisors, which consist of s
hardware, fi rmware, and software elements, to create and run software‐emulated
machines, which are termed virtual machines (VMs). If you wish to run multiples
OS instances on a single computer, VMs provide an alternative to creating a
multi‐boot confi guration.

 In virtualization, there are usually two or more distinct OS instances. The host
OS is the one that was fi rst installed on the physical machine. The hypervisor
software is then used to create a guest OS within a virtual machine. Figure 3-5
captures a host Windows desktop computer running a guest Debian 64‐bit
Linux VM within a window.

 Figure 3-5: VirtualBox running Debian as a guest OS on a Windows host machine

 Many virtualization products are available, but most have signifi cant costs
and proprietary licenses and are limited in the type of guest and host OSs that
they support. Two of the most popular Linux desktop virtualization products
are VMware Player and VirtualBox . VMware Player (x www.vmware.com/products/((
player/) is provided by VMware and is available free of charge for personal use.
VirtualBox (www.virtualbox.org(() was created by Innotek, which was acquired
by Oracle, and is available under a GNU GLPv2 license (some features are avail-
able free under a proprietary license).

 Both products use hosted hypervisors (Type‐2) for virtualization, mean-
ing that they run within a regular OS, allowing you to use both machines

 Chapter 3 ■ Exploring Embedded Linux Systems 103

at the same time. VirtualBox is available to run on Windows, Mac OS X,
and Linux machines, and it can be used to host guest OSs such as Linux,
Windows, and Mac OS X. Currently, VMware Player is not available for
Mac OS X host installations; instead, you must purchase a product called
VMware Fusion.

 Both products are powerful and it is diffi cult to distinguish between them;
however, VirtualBox is released under a GPL and it supports a feature called
snapshots , which can be very useful. A user interface makes it possible to take a
snapshot of the guest OS that can be saved for later use. For example, you could
take a snapshot before you make a signifi cant confi guration change to your guest
OS, enabling you to roll back to that confi guration should problems arise. The
snapshot stores the VM settings, changes in the contents of the virtual disks,
and the memory state of the machine at that point in time. Therefore, when a
snapshot is restored, the VM continues running at the exact same point as when
the snapshot was taken.

 All Linux packages and software in this book are built using a Debian 64‐bit
desktop distribution that is installed within a VirtualBox VM. If you install the
VirtualBox “Guest Additions” you are able to copy‐and‐paste text between your
guest and host OSs, share directories, and even resize the VirtualBox guest OS
window dynamically. The chapter web page provides advice on installing a
Linux guest OS under a Windows host OS.

 Code for This Book

 Now that you have your Desktop Linux installation up and running under
VirtualBox, or you are running a regular Linux desktop installation,
you can download all of the source code, scripts, and documentation dis-
cussed in this book by opening a Linux console/terminal and typing the
following:

∼$ sudo apt‐get install git
 Reading package lists... Done
∼$ git clone https://github.com/derekmolloy/exploringBB.git
 Cloning into ...

 Under the Debian desktop distribution you need to add yourself to the sudoers
fi le before you can install Git. Type the following: su ‐ then visudo and add
the line molloyd ALL=(ALL:ALL) ALL underneath the %sudo line. If you wish
to download the code from within Windows or Mac OS X, a graphical user
interface is available from windows.github.com and mac.github.com that can
be used for working with GitHub repositories.

104 Part I 4 ■ BeagleBone Basics

N O T E If you have your own GitHub account, you can use its web interface to fork
this repository to your own account or you can watch the repository for updates and

changes. A GitHub account without private repositories is currently free of charge. In

addition, students and academics can apply for a free Micro account, which provides

for fi ve private repositories for two years.

 Summary

 After completing this chapter, you should be able to:

■ Describe the basic concept of an embedded Linux system.

■ Describe how an embedded Linux device, such as the BeagleBone, boots
the Linux OS.

■ Describe important Linux concepts, such as kernel space, user space, and
system initialization.

■ Perform system administration tasks on the BBB.

■ Use the BBB fi le system effectively.

■ Use a range of Linux commands for fi le and process management.

■ Manage your own software development projects using Git.

■ Install a Linux distribution on your desktop computer host OS using
desktop virtualization tools, such as VirtualBox.

■ Download the source code for this book using Git.

 Further Reading

 This chapter has provided a whirlwind introduction to embedded Linux, Linux
administration, Git, and virtualization. The following excellent texts can help
you close any gaps:

■ Christopher Hallinan’s Embedded Linux Primer: A Practical Real‐World
Approach , Second Edition (Upper Saddle River, NJ: Prentice Hall, 2011)

■ The Debian Policy Manual: tiny.cc/ebb303

■ To learn more about Git, start with a call to man gittutorial and then
if you need detailed information, see Scott Chacon’s excellent reference
Pro Git , at t www.git‐scm.com/book ; also available in paperback (New York:
Apress Media, 2009).

105

 This chapter introduces you to the type of practical electronics that you need
in order to work effectively and correctly with the BeagleBone platform. One
chapter cannot be a substitute for full textbooks on digital and analog electron-
ics; however, there are concepts with which you must be comfortable before
connecting electronics to the interface headers on the BeagleBone, as incorrect
confi gurations can easily destroy the board.

 Equipment Required for This Chapter:

■ Components for this chapter (if following along): The full list is provided
at the end of this chapter.

■ Digilent Analog Discovery or access to a digital multimeter, signal genera-
tor, and oscilloscope.

 Recommended Equipment

 When developing electronics circuits for the BBB platform, it is useful to have
the following tools so that you can analyze a circuit before you connect it to the
BBB inputs/outputs, in order to reduce the chance of damaging your board. In
particular, it would be useful if you had access to a digital multimeter and a
mixed-signal oscilloscope.

 C H A P T E R

 4

 Interfacing Electronics ectronics

106 Part I 6 ■ BeagleBone Basics

N O T E All of the following tools are listed to provide you with options to consider.

Please do your own homework and seek independent advice before choosing any

such product. In addition, none of the products listed in this book are the result of

any type of product placement agreement or request. All prices are approximate and

indicative only.

 Digital Multimeter

 A digital multimeter (DMM) is an invaluable tool when working with BBB circuits
for measuring voltage, current, and resistance/continuity. You possibly already
have one, but if not you should try to purchase one with the following features:

■ Auto power off: It is easy to waste batteries.

■ Auto range: It is vital that you can select different measurement ranges.
Mid‐price meters often have automatic range selection functionality that
can reduce the time required to take measurements.

■ Continuity testing: This should provide an audible beep unless there is
a break in the conductor (or excessive resistance).

■ True RMS readings: Most low‐cost meters use averaging to calculate
AC(~) current/voltage. True RMS meters process the readings using a true
root mean square (RMS) calculation, which makes it possible to account for
distortions in waveforms when taking readings. This is useful for analyzing
phase controlled equipment, solid‐state devices, motorized devices, etc.

■ Other useful options: Not strictly necessary but helpful are backlit dis-
plays; a measurement hold; large digit displays; a greater number of
signifi cant digits; PC connectivity (ideally opto‐isolated); temperature
probe; and diode testing.

■ Case: Look for a good‐quality rubberized plastic case.

 Generally, most of the preceding features are available on mid‐price DMMs
with a good level of accuracy (1% or better), high input impedances (>10 MΩ),
and good measurement ranges. High‐end multimeters mainly offer faster mea-
surement speed and greater levels of measurement accuracy; some may also
offer features such as measuring capacitance, frequency, temperature using an
infra‐red sensor, humidity, and transistor gain. Some of the best‐known brands
are Fluke, Tenma, Agilent, Extech, and Klein Tools.

 Oscilloscopes

 Standard DMMs provide you with a versatile tool that enables you to measure
average voltage, current, and resistance. Oscilloscopes typically only measure
voltage, but they enable you to see how the voltage changes with respect to time.

 Chapter 4 ■ Interfacing Electronics 107

You can typically view two or more voltage waveforms simultaneously that are
captured within a certain bandwidth and number of analog samples (memory).
The bandwidth defi nes the range of signal frequencies that an oscilloscope can
measure accurately (typically to the 3 dB point, i.e., the frequency at which a
sine wave amplitude is ~30% lower than its true amplitude). To achieve accurate
results, the number of analog samples needs to be a multiple of the bandwidth
(you will see why later in this chapter when the Nyquist rate is discussed); and
for modern oscilloscopes, this value is typically 4–5 times the bandwidth, so
a 25 MHz oscilloscope should have 100 million samples per second or greater.
The bandwidth and number of analog samples have the greatest infl uence on
the cost of an oscilloscope.

 Several low‐cost two‐channel oscilloscopes are available, such as those by
Owen PDS5022S 25 MHz (~$200), feature‐rich Siglent SDS1022DL 25 MHz (~$325),
Rigol DS1052 50 MHz (~$325), and Owen SDS6062 60 MHz (~$349). Prices rise
considerably as the bandwidth increases, to around $1,500 for a 300 MHz scope.
Agilent digital storage (DSOX) and mixed-signal (MSOX) series scopes would be
considered to be mid/high range and cost $3,000 (100 MHz) to $16,000 (1 GHz).
Mixed‐signal scopes also provide you with digital bus analysis tools. Remember
that mid‐range scopes also require good quality “fast” 10× probes, which attach
to your circuit.

 The Digilent Analog Discovery with Waveforms (see Figure 4-1) is used to
test all of the circuits in this chapter. The Analog Discovery is a USB oscil-
loscope, waveform generator, digital pattern generator, and logic analyzer for
the Windows environment. It is priced at $99 for U.S. students and is generally
available for $219. If you are starting out, or refreshing your electronics skills,
then it is a really great piece of equipment for the price.

N O T E I made a video on the use of this device that is available at the chapter

web page: www.exploringbeaglebone.com/chapter4 . It demonstrates three

diff erent measurement applications of the Analog Discovery: analog analysis of a

rectifi er diode; using the digital pattern generator and logic analyzer to investigate

the behavior of a JK fl ip‐fl op; and using the logic analyzer and its I 2 C interpreter to

connect to the BeagleBone I2 C bus and analyze how it behaves.

 The Analog Discovery is the tool used to generate all of the oscilloscope
plots that are presented in this book, as all examples have been implemented
using real circuits. The scope is limited to two channels at 5 MHz per channel
and 50 million samples per second, for both the waveform generator and the
differential oscilloscope. As such, it is mainly focused on students and learners;
however, it can also be useful in deciding upon “must‐have” features for your
next, more expensive, equipment.

 There are alternative mixed‐signal USB scopes, such as PicoScopes, which
range from $160 to $10,000 (www.picotech.com((), and the BitScope DSO, from

108 Part I 8 ■ BeagleBone Basics

$150 to $1,000 (www.bitscope.com((), which has Linux support. However, based
on the feature set that is currently available on USB oscilloscopes, it may be
the case that a bench scope with a USB logic analyzer (to provide mixed‐mode
functionality, such as the Saleae logic analyzer— www.saleae.com) provides them

best “bang for your buck.”

 Figure 4-1: The Waveforms application generating a signal and displaying the response from
the physical circuit

 Basic Circuit Principles

 Electronic circuits contain arrangements of components that can be described
as being either passive or active. Active components , such as transistors, are those s
that can adaptively control the fl ow of current, whereas passive components cannot
(e.g., resistors, capacitors, diodes). The challenge in building circuits is designing
a suitable arrangement of appropriate components. Fortunately, there are circuit
analysis equations to help you with this challenge.

 Chapter 4 ■ Interfacing Electronics 109

 Voltage, Current, Resistance, and Ohm’s Law

 The most important equation that you need to understand is Ohm’s Law. It is
simply stated as follows:

V I R= ×

where:

■ Voltage (V), measured in V volts , is the difference in potential energy that
forces electrical current to fl ow in the circuit. A water analogy is very
useful when thinking of voltage; many houses have a buffer tank of water
in the attic that is connected to the taps in the house. Water fl ows when
a tap is turned on, due to the height of the tank and the force of gravity.
If the tap were at the same height as the top of the tank of water, then no
water would fl ow, as there would be no potential energy. Voltage behaves
in much the same way; when a voltage on one side of a component, such
as a resistor, is greater than on the other side, then electrical current can
fl ow across the component.

■ Current (I), measured in I amps , is the fl ow of electrical charge. To continue
the water analogy, current would be the fl ow of water from the tank (with
a high potential) to the tap (with a lower potential). Remember that the tap
still has potential and water will fl ow out of the drain of the sink, unless
it is at ground level (GND). To put the level of current in context, when
we build circuits to interface with the BBB’s GPIOs, they usually source
or sink only about 5 mA, where a milliamp is one thousandth of an amp.

■ Resistance (R), measured in R ohms (Ω), discourages the fl ow of charge. A
resistor is a component that reduces the fl ow of current through the dis-
sipation of power. It does this in a linear fashion, where the power dis-
sipated in watts (W), is given by P V I= × or, alternatively by integrating
Ohm’s law: = =P I R V R/2 2 . The power is dissipated in the form of heat,
and all resistors have a maximum dissipated power rating. Common metalgg
fi lm or carbon resistors typically dissipate 0.125 W to 1 W, and the price
increases dramatically if this value has to exceed 3 W. To fi nish with the
water analogy, resistance is the friction between the water and the pipe,
which results in a heating effect and a reduction in the fl ow of water. This
resistance can be increased by increasing the surface area over which the
water has to pass, while maintaining the pipe’s cross‐sectional area (e.g.,
placing small pipes within the main pipe).

 For example, if you had to buy a resistor that limits the fl ow of current to
100 mA when using a 5 V supply, as illustrated in Figure 4-2 (a), which resistor
should you buy? The voltage dropped across the resistor, V RV , must be 5 V, as R

it is the only component in the circuit. Because V I RR R= × , it follows that the
resistor should have the value R V I/ 5V/100mA 50R R= = = Ω , and the power

110 Part I 0 ■ BeagleBone Basics

 Buying one through‐hole, fi xed‐value 50Ω metal‐fi lm resistor with a 1% toler-
ance (accuracy) costs about $0.10 for a 0.33 W resistor and $0.45 for a 1 W power
rating. You should be careful with the power rating of the resistors you use in
your circuits, as underspecifi ed resistors can blow. A 30 W resistor will cost $2.50
and can get extremely hot—not all resistors are created equally!

W A R N I N G Why would it be bad practice to connect a voltage supply’s positive

terminal to the negative terminal without a resistor? This is called a short circuit and t
it is the quickest way to damage a sensitive device like the BBB. Connection (hook‐

up) wire by its nature is a very good conductor, and it has a very small resistance. A

100 m (328 ft) roll of 0.6 mm (0.023") hook‐up wire has a total resistance of about 5Ω;

therefore, connecting a 6" length of connection wire between a BBB 3.3 V supply and

its GND terminal would in theory draw 433 A (I =I V/VV R = 3.3 V/0.0076Ω). In practice this

will not happen, but it would likely damage your BBB! Also, remember that LEDs do

not include a fi xed internal resistance and so behave somewhat like a short circuit

when forward‐biased. That topic is described later in this chapter.

 Voltage Division

 If the circuit in Figure 4-2 (a) is modifi ed to add another resistor in series as illus-
trated in Figure 4-2 (b), what will be the impact on the circuit?

■ Since one resistor is after the other (they’re in series), the total resistance
that the current must pass through to circulate in the circuit is the sum of
the two values: R R R1 2T = + .

■ The supply voltage must drop across the two resistors, so you can say that
V V Vsupply R R1 2= + . The voltage that drops across each resistor is inversely
proportional to the resistor’s value. This circuit is called a voltage divider. rr

 Figure 4-2: (a) Ohm’s law circuit example (b) Voltage divider example

dissipated by this resistor can be calculated using any of the general equations
P VI I R V R/2 2= = = as 0.5 W.

 Chapter 4 ■ Interfacing Electronics 111

 Suppose you want to calculate on paper the voltage value at point X in
Figure 4-2 (b) if R 1 = 25 Ω and R 2 = 75Ω. The total resistance in the circuit
is R 25 75T = + = 100Ω, and the total voltage drop across the resistors must
be 5 V; therefore, by using Ohm’s law, the current fl owing in the circuit is
I = V/R = 5V/100 Ω = 50 mA. If the resistance of R 1 is 25Ω, then the voltage
drop across V I R1 0.05A 25R1 = × = × Ω = 1.25 V and the voltage drop across
V I R1 0.05A 75R2 = × = × Ω = 3.75 V. You can see that the sum of these voltages is
5 V, thus obeying Kirchoff’s voltage law , which states that the sum of the voltagew
drops in a series circuit equals the total voltage applied.

 To answer the question fully: In this circuit, 1.25 V is dropped across R 1 and R
3.75 V is dropped across R 2, so what is the voltage at X ? To know that, youX
have to measure X with respect to some other point! If you measured X X withX
respect to the negative terminal of the supply, then the voltage drop is V X in X

Figure 4-2 (b) and it is the same as the voltage drop across R 2, so it is 3.75 V.
However, it would be equally as valid to ask the question “What is the voltage
at X with respect to the positive terminal of the supply?” In that case, it wouldX
be the negative of the voltage drop across R 1 (as R X is at 3.75 V with respect to X
the negative terminal and the positive terminal is at +5 V with respect to the
negative terminal); therefore, the voltage at X with respect to the positive ter-X
minal of the supply is –1.25 V.

 To calculate the value of V X in Figure 4-2 (b), the X voltage divider rule can be
generalized to the following:

= ×
+

V V
R

R R
2

1 2X

You can use this rule to determine a voltage V XVV , but unfortunately this con-XX

fi guration is quite limited in practice, because it is very likely that the circuit
to which you connect this voltage supply, V XVV , will itself have a resistance (orXX

load). This will alter the characteristic of your voltage divider circuit, changing
the voltage V XV . However, most circuits that follow voltage dividers are usually X

input circuits that have very high input impedances, and therefore the impact
on V XV will be minimal.X

 Figure 4-3 (a) captures a variable resistor , or rr potentiometer (pot), and an associ-
ated circuit where it is used as a standalone voltage divider. The resistance
between pins 1 and 3 is a fi xed value, 10 kΩ in the case of the blue multi‐turn
pot; however, the resistance between pins 3 and the wiper pin (pin 2) var-
ies between 0 Ω and 10 kΩ. Therefore, if the resistance between pins 2 and
3 is 2 kΩ, then the resistance between pins 1 and 2 will be 10 kΩ − 2 kΩ =
8 kΩ. In such a case, the output voltage, V outVV , will be 1 V and it can be varied tt

between 0 V and 5 V by turning the small screw on the pot, using a trim tool
or screwdriver.

112 Part I ■ BeagleBone Basics

 Current Division

 If the circuit is modifi ed as in Figure 4-3 (b) to place the two resistors in paral-
lel, then you now have a current divider circuit. Current will follow the path of
least resistance, so if R 1 = 100 R Ω and R 2 = 200Ω, then a greater proportion of
the current will travel through R 1. So, what is this proportion? In this case the R
voltage drop across R 1 and R R 2 is 5 V in both cases. Therefore, the current I 1II will
be I = V/R = 5V/100Ω = 50 mA and the current I 2I will be I = 5 V/200I Ω = 25 mA.
Therefore, twice as much current travels through the 100Ω resistor as the 200Ω
resistor. Clearly, current favors the path of least resistance.

Kirchoff’s current law states that the sum of currents entering a junction equals the
sum of currents exiting that junction. This means that I SI = I 1II + I 2II = 25 mA + 50 mA =
75 mA. The current divider rule can be stated generally as follows:

I I
R

R R
I I

R
R R

2
1 2

, and
1

1 21 2= ×
+

⎛
⎝⎜

⎞
⎠⎟ = ×

+
⎛
⎝⎜

⎞
⎠⎟

However, this requires that you know the value of the current I (I I ((SI in this case)
that is entering the junction. To calculate I SI directly, you need to calculate the
equivalent resistance (R ((T) of the two parallel resistors, which is given as follows:

= + =
×
+R R R

R
R R
R R

1 1 1
, or ,

T
T

1 2

1 2

1 2

This is 66.66 Ω in Figure 4-3 (b); therefore I SI = V/R = 5 V/66.66Ω = 75 mA, which
is consistent with the initial calculations.

 The power delivered by the supply:P VI 5V 0.075A 0.375W= = × = . This shouldWW
be equal to the sum of the power dissipated by R V R1 / 5/100 0.25W2 2= = = and
R V R2 / 5/200 0.125W2 2= = = , giving 0.375 W total, confi rming that the law of
conservation of energy applies!

 Figure 4-3: (a) Potentiometers and using a variable voltage supply (b) Current divider example

 Chapter 4 ■ Interfacing Electronics 113

 Implementing Circuits on a Breadboard

 The breadboard is a great platform for prototyping circuits and it works perfectly
with the BBB. Figure 4-4 illustrates a breadboard, describing how you can use
the two horizontal power rails for 3.3 V and 5 V power. Remember to bridge the
two ground rails on the board.

 Figure 4-4: The breadboard with a 7408 IC (quad two‐input AND gates)

 A good‐quality breadboard like that in Figure 4-4 (830 tie points) will cost
about $6 to $10. Giant breadboards (3,220 tie points) are available for about $20.
Here are some tips for using breadboards:

■ Whenever possible, place pin 1 of your ICs on the bottom left so that you
can easily debug your circuits. Always line up the pins carefully with the
breadboard holes before applying pressure and “clicking” it home. Also,
ICs need power!

■ Leaving a wire disconnected is not the same as connecting it to GND
(discussed later in this chapter).

■ Use a fl at‐head screwdriver to slowly lever ICs out of the breadboard
from both sides to avoid bending the IC’s legs.

■ Be careful not to bridge resistors and other components by placing two of
the pins in the same vertical rail. Also, trim resistor leads before placing
them in the board, as long resistor leads can accidentally touch and cause
circuit debugging headaches.

■ Momentary push buttons typically have four legs that are connected in two
pairs; make sure that you orient them correctly (use a DMM continuity test).

■ Staples make great bridge connections!
■ Some boards have a break in the power rails—bridge this where necessary.
■ Breadboards typically have 0.1" spacing (lead pitch) between the tie points,

which is 2.54 mm metric. Try to buy all components and connectors with

114 Part I 4 ■ BeagleBone Basics

that spacing. For ICs, choose the DIP package (the IC code ends with an
N); for other components, choose the “through‐hole” form.

■ Use the color of the hook‐up wire to mean something—e.g., use red for 5 V
and black for GND; it can really help when debugging circuits. Solid‐core
22AWG wire serves as perfect hook‐up wire and is available with many
different insulator colors. Pre‐formed jumper wire is available, but long
wires lead to messy circuits. A selection of hook‐up wire in different col-
ors and a good‐quality wire‐stripping tool enables the neatest and most
stable breadboard layouts.

 Digital Multimeters (DMMs) and Breadboards

 Measuring voltage, current and resistance is fairly straightforward once you
take a few rules into account (with reference to Figure 4-5):

■ DC voltage (DCV): is measured in parallel with (i.e., across) the compo-
nent that experiences the voltage drop. The meter should have the black
probe in the COM (common) DMM input.

■ DC current (DCA): is measured in series, so you will have to “break” the
connection in your circuit and wire the DMM as if it were a component
in series with the conductor in the circuit in which you are measuring
current. Use the black probe lead in COM and the red lead in the μAmA
input (or equivalent). Do not use the 10 A unfused input.

■ Resistance: cannot usually be measured in‐circuit, as other resistors or
components will act as parallel/series loads in your measurement. Isolate
the component and place your DMM red probe in the VΩVV input and set
the meter to measure Ω. The continuity test can be reasonably effectively
used in‐circuit, provided that it is de‐energized.

 Figure 4-5: Measuring voltage, current, and resistance

 Chapter 4 ■ Interfacing Electronics 115

 If your DMM is refusing to function, you may have blown the internal
fuse. Disconnect the DMM probes and open the meter to fi nd the small
glass fuse. If you have a second meter you can perform a continuity test to
determine whether it has blown. Replace it with a like value (or PTC)—not
a mains fuse!

W A R N I N G Measuring current directly across a voltage supply (even a 9 V

battery) with no load is the quickest way to blow the DMM fuse, as most are

rated at about 200 mA. Check that you have the probe in VΩ before measuring

voltage.

 Example Circuit: Voltage Regulation

 Now that you have read the principles, a more complex circuit is discussed in
this section, and then the components are examined in detail in the following
sections. Do not build the circuit in this section; it is intended as an example to
introduce the concept of interconnected components.

 A voltage regulator is a complex but easy‐to‐use device that accepts a varied
input voltage and outputs a constant voltage almost regardless of the attached
load, at a lower level than the input voltage. The voltage regulator maintains the
output voltage within a certain tolerance, preventing voltage variations from
damaging downstream electronics devices.

 The BBB has a very advanced Power Management IC (PMIC) that can supply
different voltage levels to different devices at different output pins. For example,
there is a 5 V output, a 3.3 V output, and a 1.8 V reference for the analog‐to‐digital
converters. You can use the 5 V and 3.3 V supplies on the BBB to drive your
circuits, but only within certain current supply limits. The BBB can supply up
to 1 A on the VDD_5V pins on the P9 header (pins 5 and 6) if the BBB is con-
nected to a DC power supply via the 5 V jack, and 250 mA on the DC_3.3V pins
(pins 3 and 4).

 If you wish to draw larger currents for applications like driving motors then
you may need to use voltage regulators like that in Figure 4-6 . You can build
this directly on a breadboard or you can purchase a “breadboard power supply
stick 5 V/3.3 V” from SparkFun (www.sparkfun.com(() for about $15.

 As shown in Figure 4-6 , the pin on the left of the regulator is the voltage sup-
ply input. When delivering a current of 500 mA, the KA7805/LM7805 voltage
regulator will accept an input voltage range of 8 V–20 V, and will output a voltage
(on the right) in the range of 4.8 V–5.2 V. The middle pin should be connected
to the ground rail. The aluminum plate at the back of the voltage regulator is
there to dissipate heat. The hole enables you to bolt on a heat sink, allowing for
greater output currents, of up to 1 A.

 The minimum input voltage required is about 8 V in order to drive the KA7805/
LM7805 voltage regulator. If your supply voltage is lower than that, then you

116 Part I 6 ■ BeagleBone Basics

could use a low‐dropout (LDO) voltage regulator, which can require a supply
as low as 6 V to operate a 5 V regulator. The implementation circuit in Figure 4-6
has the following additional components that enable it to deliver a clean and
steady 5 V, 1 A supply:

■ The diode ensures that if the supply is erroneously connected with the
wrong polarity (e.g., 9 V and GND are accidentally swapped), then the
circuit is protected from damage. Diodes like the 1N4001 (1 A supply) are
very low cost, but the downside is that there will be a small forward volt-
age drop (about 1 V@1 Amp) across the diode in advance of the regulator.

■ The switch can be used to power the circuit on or off. A slider switch
enables the circuit to remain continuously powered.

■ The Positive Temperature Coeffi cient (PTC) resettable fuse is very useful for
preventing damage from overcurrent faults, such as accidental short cir-
cuits or component failure. The PTC enables a holding current to pass with
only a small resistance (about 0.25Ω); but once a greater tripping current is
exceeded, the resistance increases rapidly, behaving like a circuit breaker.
When the power is removed, the PTC will cool (for a few seconds) and it
regains its pre‐tripped characteristics. In this circuit a 60R110 or equivalent
Polyfuse would be appropriate, as it has a holding current of 1.1 A and a
trip current of 2.2 A, at a maximum voltage of 60 V DC.

■ The 0.33μF capacitor is on the supply side of the regulator and the 0.1μF
capacitor is on the output side of the regulator. These are the values rec-
ommended in the datasheet to remove noise (ripple rejection) from the
supply. Capacitors are discussed shortly.

■ The LED and appropriate current-limiting resistor provide an indicator
light that makes it clear when the supply is powered. LEDs are also dis-
cussed shortly.

 Figure 4-6: The KA7805A/LM7805 voltage regulator and an example regulator circuit

 Chapter 4 ■ Interfacing Electronics 117

N O T E There are two main notations to represent current fl ow: The fi rst is electron
current fl ow and it is the fl ow of negative charge. The second is w conventional fl ow
notation and it is precisely the opposite—it is the fl ow of positive charge and it is

consistent with all semiconductor symbols. This book uses the conventional fl ow

notation to describe current fl ow direction.

 Discrete Components

 The previous example circuit used a number of discrete components to build a
standalone power supply circuit. In this section, the types of components that
compose the power supply circuit are discussed in more detail. These compo-
nents can be applied to many different circuit designs, and it is important to
discuss them now, as many of them are used in designing circuits that interface
to the BBB input/outputs in Chapter 6 .

 Diodes

 Simply put, a diode is a discrete semiconductor component that allows current to
pass in one direction but not the other. As the name suggests, a “semi” conduc-
tor is neither a conductor nor an insulator. Silicon is a semiconductive material,
but it becomes much more interesting when it is doped with an impurity, such as
phosphorus. Such a negative (n‐type) doping results in a weakly bound electron
in the valence band. It can also be positively doped (p‐type) to have a hole in
the valence band, using impurities such as boron. When you join a small block
of p‐type and n‐type doped silicon together, you get a pn‐junction —a diode!
The free electrons in the valence band of the n‐type silicon fl ow to the p‐type
silicon, creating a depletion layer and a potential barrier that must be overcome
before current can fl ow.

 When a diode is forward‐biased it allows current to fl ow through it; when it is
reverse‐biased, no current can fl ow. A diode is forward‐biased when the volt-
age on the anode (+ve(() terminal is greater than the voltage on the cathode (e −ve)e
terminal; however, the biasing must also exceed the depletion layer potential
barrier (knee voltage) before current can fl ow, which is typically between 0.5 V ee
and 0.7 V for a silicon diode. If the diode is reverse‐biased by applying a greater
voltage on the anode than the cathode, then almost no current can fl ow (maybe
1 nA or so). However, if the reverse‐biased voltage is increasingly raised, then
eventually the diode will break down and allow current to fl ow in the reverse
direction. If the current is low then this will not damage the diode—in fact,
a special diode called a Zener diode is designed to operate in this breakdown
region, and it can be confi gured to behave just like a voltage regulator.

 The 1N4001 is a low‐cost silicon diode that can be used in a simple circuit,
as illustrated in Figure 4-7 to demonstrate the use and behavior of diodes. The

118 Part I 8 ■ BeagleBone Basics

1N4001 has a peak reverse breakdown voltage of 50 V. In this circuit, a sine
wave is applied that alternates from +5 V to –5 V, using the waveform generator
of the Analog Discovery. When the V inVV voltage is positive and exceeds the knee
voltage, then current will fl ow and there will be a voltage drop across the load
resistor V load , which is slightly less than dd V inVV . There is a small voltage drop across
the diode V dVV and you can see from the oscilloscope measurements that this is
0.67V, which is within the expected range for a silicon diode.

 The diode is used in the circuit in Figure 4-6 as a reverse polarity protector.
It should be clear from the plot in Figure 4-7 why it is effective, as when V inVV is
negative, the V load is zero. This is because current cannot fl ow through the diode
when it is reverse‐biased. If the voltage exceeded the breakdown voltage for the
diode then current would fl ow; but since that is 50 V for the 1N4001, it will not
occur in this case. Note that the bottom right‐hand corner of Figure 4-7 shows
an XY‐plot of output voltage (y‐ axis) versus input voltage (x‐((axis). You can see
that for negative input voltage the output voltage is 0, but once the knee voltage
is reached (0.67 V), the output voltage increases linearly with the input voltage.
This circuit is called a half‐wave rectifi er . It is possible to connect four diodesrr
together in a bridge formation to create a full‐wave rectifi er.

 Figure 4-7: Circuit and behavior of a 1N4001 diode with a 5 V AC supply and a 1 kΩ load resistor

 Light‐Emitting Diodes (LEDs)

 A light‐emitting diode (LED) is a semiconductor‐based light source that is often
used as a state indication light in all types of devices. Today, high‐powered LEDs
are being used in car lights, in back lights for televisions, and even in place of
fi lament lights for general‐purpose lighting (e.g., home lighting, traffi c lights,
etc.) mainly due to their longevity and extremely high effi ciency in converting
electrical power to light output. LEDs provide very useful status and debug
information about your circuit, often used to indicate whether a state is true
or false.

 Chapter 4 ■ Interfacing Electronics 119

 Like diodes, LEDs are polarized . The symbol for an LED is illustrated in
Figure 4-8 . To cause an LED to light, the diode needs to be forward biased by
connecting the anode (+) to a more positive source than the cathode (–). For example,
the anode could be connected to +3.3 V and the cathode to GND; however, also
remember that the same effect would be achieved by connecting the anode to
0V and the cathode to –3.3 V.

 Figure 4-8 illustrates an LED that has one leg longer than the other. The lon-
ger leg is the anode (+) and the shorter leg is the cathode (–). The plastic LED
surround also has a fl at edge, which indicates the cathode (–) leg of the LED.
This fl at edge is particularly useful when the LED is in‐circuit and the legs
have been trimmed.

 LEDs have certain operating requirements, defi ned by a forward voltage and
a forward current . Every LED is different, and you need to reference the data-t
sheet of the LED to determine these values. An LED does not have a signifi cant
resistance, so if you were to connect the LED directly across your BBB’s 3.3 V
supply, the LED would act like a short circuit, and you would drive a very large
current through the LED, damaging it—but more important, damaging your
BBB! Therefore, to operate an LED within its limits you need a series resistor,
called a current-limiting resistor . Choose this value carefully to maximize the rr
light output of the LED and to protect the circuit.

W A R N I N G Do not connect LEDs directly to the GPIOs on the BeagleBone’s P8/

P9 headers without using current-limiting resistors and/or transistor switching, as you

will likely damage your board. The maximum current that the BBB can source from a

GPIO pin is about 4–6 mA.

 Referring to Figure 4-8 , if you are supplying the LED from the BBB’s 3.3 V
supply and you wish to have a forward voltage drop of 1.3 V across the LED, you
need the difference of 2 V to drop across the current‐limiting resistor. The LED

 Figure 4-8: LED example and a circuit to drive an LED with appropriate forward current and
voltage levels

120 Part I 0 ■ BeagleBone Basics

specifi cations require you to limit the current to 9 mA, so you need to calculate
a current‐limiting resistor value as follows:

 As V =V IR, then R = V/I = 2 V/0.009 A = 222I Ω

 Therefore, a circuit to light an LED would look like that in Figure 4-8 . Here
a 220Ω resistor is placed in series with the LED. The combination of the 3.3 V
supply and the resistor drives a current of 9 mA through the forward‐biased
LED; as with this current the resistor has a 2 V drop across it, then accordingly
the LED has a forward voltage drop of 1.3 V across it. Please note that this would
be fi ne if you were connecting to the BBB’s DC_3.3 V output, but it is not fi ne
for use with the BBB’s GPIOs, as the maximum current that the BBB can source
from a GPIO pin is about 4–6 mA. You will see a solution for this shortly, and
again in Chapter 6 .

 It is also worth mentioning that you should not dim LEDs by reducing the
voltage across the LED. An LED should be thought of as a current‐controlled
device, where driving a current through the LED causes the forward volt-
age drop. Therefore, trying to control an LED with a variable voltage will not
work as you might expect. To dim an LED you can use a pulse width modulated
(PWM) signal, essentially rapidly switching the LED on and off. For example,
if a rapid PWM signal is applied to the LED that is off for half of the time and
on for half of the time, then the LED will appear to be only emitting about half
of its regular operating condition light level. Our eyes don’t see the individual
changes if they are fast enough—they average over the light and dark interval
to see a constant, but dimmer illumination.

 Figure 4-9 illustrates a PWM square wave signal at different duty cycles. The
duty cycle is the percentage of time that the signal is high versus the time that
the signal is low. In this example, a high is represented by a voltage of 3.3 V and
a low by a voltage of 0 V. A duty cycle of 0% means that the signal is constantly
low, and a duty cycle of 100% means that the signal is constantly high.

 Figure 4-9: Duty cycles of pulse width modulation (PWM) signals

 PWM can be used to control the light level of LEDs, but it can also be used to
control the speed of DC motors, the position of servo motors, and many more
applications. You will see such an example in Chapter 6 when the built‐in PWM
functionality of the BBB is used.

 Chapter 4 ■ Interfacing Electronics 121

 The period (T) of a repeating signal (a periodic signal) is the time it takes to
complete a full cycle. In the example in Figure 4-9 , the period of the signal in all
three cases is 4 ms. The frequency (f(() of a periodic signal describes how often aff
signal goes through a full cycle in a given time period. Therefore, for a signal
with a period of 4 ms, it will cycle 250 times per second (1/0.004), which is 250
hertz (Hz). We can state that f (Hz) = 1/ f T (s) or T T (s) = 1/T f/ (Hz). Some high‐end f
DMMs measure frequency, but generally you use an oscilloscope to measure
frequency. PWM signals need to switch at a frequency to suit the device to be
controlled; typically, the frequency is in the kHz range for motor control.

 Smoothing and Decoupling Capacitors

 A capacitor is a passive electrical component that can be used to store electrical
energy between two insulated plates when there is a voltage difference between
them. The energy is stored in an electric fi eld between the two plates, with posi-
tive charge building on one plate and negative charge building on the other
plate. When the voltage difference is removed or reduced, then the capacitor
discharges its energy to a connected electrical circuit.

 For example, if you modifi ed the diode circuit in Figure 4-7 to add a 10μF smooth-
ing capacitor in parallel with the load resistor, the output voltage would appear
as shown in Figure 4-10 . When the diode is forward biased there is a potential
across the terminals of the capacitor and it quickly charges (while a current also
fl ows through the load resistor in parallel). When the diode is reverse biased,
there is no external supply generating a potential across the capacitor/resistor
combination, so the potential across the terminals of the capacitor (because of
its charge) causes a current to fl ow through the load resistor, and the capacitor
starts to discharge. The impact of this change is that there is now a more stable
voltage across the load resistor that varies between 2.758 V and 4.222 V (the ripple
voltage is 1.464 V), rather than between 0 V and 4.34 V.

 Figure 4-10: Circuit and behavior of a 1N4001 diode with a 5 V AC supply, 1 kΩ load, and parallel
10μF capacitor

122 Part I ■ BeagleBone Basics

 Capacitors use a dielectric material , such as ceramic, glass, paper, or plastic, to l
insulate the two charged plates. Two very common capacitor types are ceramic
and electrolytic capacitors. Ceramic capacitors are small and low cost and degrade
over time. Electrolytic capacitors can store much larger amounts of energy, but
also degrade over time. Glass, mica, and tantalum capacitors tend to be more
reliable, but are considerably more expensive.

 Figure 4-11 illustrates a 100 nF (0.1 μF) ceramic capacitor and a 47 μF electrolytic
capacitor. Note that the electrolytic capacitor is polarized , with the negative leadd
marked on the capacitor surface with a band; like the LED, the negative lead
is shorter than the positive lead. The numbering for capacitors is reasonably
straightforward; unfortunately, on ceramic capacitors it can be very small and
hard to read:

■ The fi rst number is the fi rst digit of the capacitor value.

■ The second number is the second digit of the capacitor value.

■ The third number is the number of zeroes, where the capacitor value is
in pF (picofarads).

■ Additional letters can be ignored for the moment, but represent the toler-
ance and voltage rating of the capacitor.

Therefore, for example:

■ 10 4 = 10 0000 pF = 100 nF = 0.1μF

■ 10 2 = 1,0 00 pF = 1 nF

■ 47 2 = 4,7 00 pF = 4.7 nF

 The voltage regulator circuit presented earlier (refer to Figure 4-6) used two
capacitors to smooth out the ripples in the supply by charging and discharging
in opposition to those ripples. Capacitors can also be used for a related function
known as decoupling.

 Figure 4-11: Ceramic (nonpolarized) and electrolytic (polarized) capacitors and an example
decoupling circuit

 Chapter 4 ■ Interfacing Electronics 123

Coupling is often an undesirable relationship that occurs between two parts
of a circuit due to the sharing of power supply connections. This relationship
means that if there is a sudden high power demand by one part of the circuit,
then the supply voltage will drop slightly, affecting the supply voltages of other
parts of the circuit. ICs impart a variable load on the power supply lines—in fact,
a load that can change very quickly, causing a high‐frequency voltage variation
on the supply lines to other ICs. As the number of ICs in the circuit increases,
the problem will be compounded.

 Small capacitors, known as decoupling capacitors , can act as a store of energy
that removes the noise signals that may be present on your supply lines as a
result of these IC load variations. An example circuit is illustrated in Figure 4-11 ,
where the larger 47μF capacitor fi lters out lower-frequency variations and the
0.1μF capacitors fi lter out higher-frequency noise. Ideally the leads on the 0.1μF
capacitors should be as short as possible to avoid producing undesirable effects
(relating to inductance) that will limit it from fi ltering the highest-level frequen-
cies. Even the surface‐mounted capacitors used on the BBB to decouple the ball
grid array (BGA) pins on the AM335x produce a small inductance of about
1–2 nH. As a result, one 0.1 μF capacitor is recommended for every two power
balls, and the traces (board tracks) have to be as “short as humanly possible”
(Texas Instruments, 2011).1 See tiny.cc/ebb401 for a full guide.

 Transistors

 Transistors are one of the core ingredients of the BBB’s microprocessor, and
indeed almost every other electronic system. Simply put, their function can be
to amplify a signal or to turn a signal on or off, whichever is required. The BBB
GPIOs can only handle very small currents, so we need transistors to help us
when interfacing them to electronic circuits that require larger currents to operate.

Bipolar junction transistors (BJTs), usually just called transistors , are formed by
adding another doped layer to a pn‐junction diode to form either a p‐n‐p or an
n‐p‐n transistor. There are other types of transistors, such as fi eld effect transis-
tors (FETs), that is discussed shortly. The name bipolar comes from the fact that
the current is carried by both electrons and holes. They have three terminals,
with the third terminal connected to the middle layer in the sandwich, which
is very narrow, as illustrated in Figure 4-12 .

 Figure 4-12 presents quite an amount of information about transistors, including
the naming of the terminals as the base (B), collector (C), and emitter (E). Despite
there being two main types of BJT transistor (NPN and PNP), the NPN transis-
tor is the most commonly used. In fact, the transistor examples in this chapter
all use a single BC547 NPN transistor.

 The BC547 is a 45 V, 100 mA general‐purpose transistor that is commonly
available, is low cost, and is provided in a leaded TO‐92 package. The identifi -
cation of the legs in the BC547 is provided in Figure 4-12 , but please be aware

124 Part I 4 ■ BeagleBone Basics

that this order is not consistent with all transistors—always check the datasheet!
The maximum V CEVV (aka V CEOVV) is 45 V and the maximum collector current (O I ((C)
is 100 mA for the BC547. It has a typical DC current gain (hFE) of between 180
and 520, depending on the group used (e.g., A, B, C). Those characteristics are
explained in the next sections.

 Figure 4-12: Bipolar junction transistors (BJTs)

 Transistors as Switches

N O T E For the remainder of this book, FETs rather than BJTs are used in the BBB

circuits for switching loads. If you become overwhelmed by the detail in this section,

skip ahead to FETs.

 Let’s examine the characteristics for the NPN transistor as illustrated in
Figure 4-12 (on the rightmost diagram). If the base‐emitter junction is forward
biased and a small current is entering the base (I ((B), then the behavior of a tran-B

sistor is such that a proportional but much larger current (I h IC FE B= ×) will be
allowed to fl ow into the collector terminal, as h FE will be a value of 180 to 520
for a transistor such as the BC547. Because I B is much smaller than I C , you canCC

also assume that I E is approximately equal to I C. C

 Figure 4-13 illustrates the example of a BJT being used as a switch. In part (a)
the voltage levels have been chosen to match those available on the BBB. The
resistor on the base is chosen to have a value of 2.2 kΩ, so that the base current
will be small (I = V/R((= (3.3 V − 0.7 V)/2200Ω which is about 1.2 mA). The resis-
tor on the collector is small, so the collector current will be reasonably large
(I = V/R((= (5 V – ~0.2 V)/100 Ω = 48 mA).

 Figure 4-13 (b) illustrates what happens when an input voltage of 3.3 V is
applied to the base terminal. The small base current causes the transistor to

 Chapter 4 ■ Interfacing Electronics 125

behave like a closed switch (with a very low resistance) between the collector
and the emitter. This means that the voltage drop across the collector‐emitter
will be almost zero and all of the voltage is dropped across the 100Ω load
resistor , causing a current to fl ow directly to ground through the emitter. Therr
transistor is saturated because it cannot pass any further current. Because there
is almost no voltage drop across the collector‐emitter, the output voltage, V outVV , tt

will be almost 0 V.

 Figure 4-13: The BJT as a switch

 Figure 4-13 (c) illustrates what happens when the input voltage V inVV = 0V is
applied to the base terminal and there is no base current. The transistor behaves
like an open switch (very large resistance). No current can fl ow through the
collector‐emitter junction, as this current is always a multiple of the base cur-
rent and the base current is zero; therefore, almost all of the voltage is dropped
across the collector‐emitter. In this case the output, V outVV , can be up to +5 V (thoughtt

as implied by the illustrated fl ow of I C through the output terminal, the exact
value of V outVV depends on the size of I CI , as any current fl owing through the 100CC Ω
resistor will cause a voltage drop across it).

 Therefore, the switch behaves somewhat like an inverter . If the input voltage rr
is 0 V, then the output voltage is +5 V, and if the input voltage is +3.3 V, then the
output voltage will be 0 V. You can see the actual measured values of this circuit
in Figure 4-14 , when the input voltage of 3.3 V is applied to the base terminal. In
this case the Analog Discovery Waveform Generator is used to output a 1 kHz
square wave, with an amplitude of 1.65 V and an offset of +1.65 V (forming a 0 V
to 3.3 V square wave signal), so it appears like a 3.3V source turning on and then
off, 1,000 times per second. All of the measurements in this fi gure were captured
with the input at 3.3 V. The base‐emitter junction is forward biased, and just
like the diode before, this will have a forward voltage of about 0.7 V. The actual
voltage drop across the base‐emitter is 0.83 V, so the voltage drop across the base

126 Part I 6 ■ BeagleBone Basics

resistor will be 2.440V. The actual base current is 1.1mA (I = V/R((= 2.44 V/2,185 Ω).
This current turns on the transistor, placing the transistor in saturation, so
the voltage drop across the collector‐emitter is very small (measured at 0.2 V).
Therefore, the collector current is 49.8 mA (I = V/R((= (4.93 V − 0.2 V)/96Ω approx.).
To choose an appropriate base resistor to place the BJT deep in saturation, use
the following practical formula:

R
V V

I h

()

(2 ())Base
B BE sat

C FE min

=
−

× ÷
()

()

For the case of a base supply of 3.3 V, with a collector current of 50 mA and a
minimum gain hFE(min) of 100, RBase= (3.27 – 0.83)/(2 × (0.05/100)) = 2,440 Ω.

 Figure 4-14: Realization of the transistor as a switch (saturation) and confirmation that all
relationships hold true

N O T E You can use the Analog Discovery’s diff erential input feature to “measure”

current by placing the probes on either side of a resistor (to measure the voltage across

it), and then creating a custom math channel that divides the waveform by the resis-

tor’s known resistance value. You then set the units to amps in the channel settings.

 You can fi nd all of these values in the transistor’s datasheet. V BE(SAT) is typi-
cally provided on a plot of V BEV versus I CI at room temperature, where we require
I C to be 50mA. The value of V BE(SAT) is between 0.6 V and 0.95 V for the BC547,
depending on the collector current and the room temperature. The resistor
value is further divided by two to ensure that the transistor is placed deep in
the saturation region (maximizing I C). Therefore, in this case a 2.2 kΩ resistor
is used, as it is the closest generally available nominal value.

 Why should you care about this with the BBB? Well, because the BBB can only
source or sink very small currents from its GPIO pins, you can connect the BBB
GPIO pin to the base of a transistor so that a very small current entering the

 Chapter 4 ■ Interfacing Electronics 127

base of the transistor can switch on a much larger current, with a much greater
voltage range. Remember that in the example in Figure 4-14 , a current of 1.1 mA
is able to switch on a large current of 49.8 mA (45 times larger, but still lower
than the 100 mA limit of the BC547). Using this transistor arrangement with the
BBB will allow a 5mA current at 3.3 V from a BBB GPIO to safely drive a 100mA
current at up to 45 V by choosing suitable resistor values.

 One constraint in using transistors to drive a circuit is that they have a maxi-
mum switching frequency. If you increase the frequency of the input signal to
the circuit in Figure 4-15 to 500 kHz, then the output is distorted, though it is
still switching from low to high. However, increasing this to 1 MHz means that
the controlled circuit never switches off.

 Figure 4-15: Frequency response of the BJT circuit (frequency is 500 kHz and 1 MHz)

 Field Eff ect Transistors (FETs) as Switches

 A simpler alternative to using BJTs as switches is to use fi eld effect transistors
(FETs). FETs are different from BJTs in that the fl ow of current in the load
circuit is controlled by the voltage, rather than the current, on the controlling
input. Therefore, it is said that FETs are voltage‐controlled devices and BJTs are
current‐controlled devices. The controlling input for a FET is called the gate (G)
and the controlled current fl ows between the drain (D) and the source (S).

 Figure 4-16 illustrates how you can use an n‐channel FET as a switch. Unlike
the BJT, the resistor on the controlling circuit (1 MΩ) is connected from the input
to GND, meaning that a very small current (I = V/R(() will fl ow to GND, but theRR
voltage at the gate will be the same as the V inVV voltage. A huge advantage of FETs
is that almost no current fl ows into the gate control input. However, the voltage
on the gate is what turns on and off the controlled current, I dI , which fl ows from dd

the drain to the source in this example.
 When the input voltage is high (3.3 V), the drain‐source current will fl ow

(I((D = 50 mA), so the voltage at the output terminal will be 0.17 V, but when the

128 Part I 8 ■ BeagleBone Basics

input voltage is low (0 V), no drain‐source current will fl ow. Just like the BJT, if
you were to measure the voltage at the drain terminal, the output voltage (V outVV)tt
would be high when the input voltage is low, and the output voltage would be
low when the input voltage is high, though again the actual value of the “high”
output voltage depends on the current drawn by the succeeding circuit.

 Figure 4-16: Field effect transistor (FET) as a switch

 The Fairchild Semiconductor BS270 N‐Channel Enhancement Mode FET
is a low‐cost device (~$0.10) in a TO‐92 package that is capable of supplying a
continuous drain current (I ((D) of up to 400 mA at a drain‐source voltage of upD

to 60 V. The current is considerably higher than the BJT circuit and it can do so
at a threshold voltage (V GSVV) of as low as 2.1 V. This makes it ideal for use with
the BBB, as the GPIO voltages are in range and the current required to switch
on the FET is about 3μA–6 μA depending on the gate resistor chosen. One
other feature of using a FET as a switch is that it can cope with much higher
switching frequencies, as shown in Figure 4-17 . Remember that in Figure 4-15
the BJT switching waveform is very distorted at 1MHz. It should be clear from
Figure 4-17 that the FET circuit is capable of dealing with much higher switching
frequencies than the BJT circuit.

 The BS270 also has a high‐current diode that is used to protect the gate from
the type of reverse inductive voltage surges that could arise if the FET were
driving a DC motor.

 Optocouplers/Opto‐isolators

Optocouplers (or opto‐isolators) are small, low‐cost digital switching devices that s
are used to isolate two electrical circuits from each other. This can be impor-
tant for your BBB circuits if you have a concern that a design problem with a

 Chapter 4 ■ Interfacing Electronics 129

connected circuit could possibly source or sink a large current from/to your
BBB. They are available in low‐cost (~$0.15) four‐pin DIP packages.

 Figure 4-17: Frequency response of the FET circuit as the switching frequency is set at 1 MHz
and 5 MHz

 Figure 4-18: Optocoupler (617A) circuit with the captured input and output characteristics

 An optocoupler uses an LED emitter that is placed close to a photodetector
transistor, separated by an insulating fi lm within a silicone dome. When a current
(I ((fI I) fl ows through the LED emitter legs, the light that falls on the photodetectorf

transistor from the LED allows a separate current (I ((cI) to fl ow through the collector‐cc

emitter legs of the photo detector transistor (see Figure 4-18). When the LED emitter
is off, no light falls on the photo detector transistor, and there will be almost no
collector emitter current (I ((cI). There is no electrical connection between one sidecc

of the package and the other, as the signal is transmitted only by light, providing
electrical isolation for up to 5,300 VRMS for an optocoupler such as the SFH617A.
You can even use PWM with optocouplers, as it is a binary on/off signal.

 Figure 4-18 illustrates an example optocoupler circuit and the resulting oscil-
loscope traces for the resistor and voltage values chosen. These values were
chosen to be consistent with those that you might use with the BBB. The resistor

130 Part I 0 ■ BeagleBone Basics

value of 470 Ω was chosen to allow the 3.3 V output to drive a forward cur-
rent I fI I of about 4.5 mA through the LED emitter. From the datasheet (Vishay f

Semiconductors, 2013),2 this results in a forward voltage of about 1.15 V across
the diode); R = V/I = (3.3 V I − 1.15 V)/0.0045 mA = 478Ω. Therefore, the circuit was
built using the closest nominal value of 470 Ω.

 The oscilloscope is displaying current by using the differential inputs of the
Analog Discovery to measure the voltage across the known resistor values, and
using two mathematical channels to divide by the resistance values. In Figure 4-18
you can see that I fI I is 4.571 mA and that f I cI is 2.766 mA. The proportionality of the
difference is the current transfer ratio (CTR) and it varies according to the level
of I fI I and the operating temperature. Therefore, the current transfer at 4.571 mAf

is 60.5% (I I100 /c f×), which is consistent with the datasheet. The rise time and
fall time are also consistent with the values in the datasheet of t r = 4.6μs and
t ft = 15 f μs. These values limit the switching frequency. Also, if it is important to
your circuit that you achieve a high CTR, there are optocouplers with built‐in
Darlington transistor confi gurations that result in CTRs of up to 2,000% (e.g.,
the 6N138 or HCPL2730). Finally, there are high‐linearity analog optocouplers
available (e.g., the HCNR200 from Avago) that can be used to optically isolate
analog signals.

 Switches and Buttons

 Other components with which you are likely to need to work are switches and
buttons. They come in many different forms: toggle, push button, selector, prox-
imity, joystick, reed, pressure, temperature, etc. However, they all work under
the same binary principles of either interrupting the fl ow of current (open) or
enabling the fl ow of current (closed). Figure 4-19 illustrates several different
common switch types and outlines their general connectivity.

 Momentary push button switches (SPST, single pole, single throw) like the
one illustrated in Figure 4-19 are either normally open (NO) or normally closed
(NC). NO means that you have to activate the switch to allow current to fl ow,
whereas NC means that when you activate the button, current does not fl ow. For
the particular push button illustrated, both pins 1 and both pins 2 are always
connected, and for the duration of time you press the button, all four pins are
connected together. Looking at slider switches (SPDT—single pole, double throw),
the common connection (COM) is connected to either 1 or 2 depending on the
slider position. In the case of microswitches and the high‐current push button,
the COM pin is connected to NC if the switch is pressed, and is connected to
NO if the switch is depressed. Finally, the rocker switch illustrated often has
an LED that lights when the switch is closed, connecting the power (VCC) leg
to the circuit (CCT) leg.

 All of these switch types suffer from mechanical switch bounce, which can be
extremely problematic when interfacing to microcontrollers like the BBB. Switches

 Chapter 4 ■ Interfacing Electronics 131

are mechanical devices and when they are pressed, the force of contact causes
the switch to repeatedly bounce from the contact on impact. It only bounces for
a small duration (typically milliseconds), but the duration is suffi cient for the
switch to apply a sequence of inputs to a microprocessor.

 Figure 4-19: Various switches and configurations

 Figure 4-20 (a) illustrates the problem in action using the rising/falling‐edge
trigger condition of the Analog Discovery Oscilloscope. A momentary push
button is placed in a simple series circuit with a 10 kΩ resistor and the voltage
is measured across the resistor. When the switch hits the contact, the output is
suddenly high, but the switch then bounces back from the contact and the volt-
age falls down again. After about 2–3 ms (or longer) it has almost fully settled.
Unfortunately, this small bounce can lead to false inputs to a digital circuit. For
example, if the threshold were 3 V, this may be read in as 101010101.

 There are a number of ways to deal with switch bounce in microprocessor
interfacing:

■ A low‐pass fi lter can be added in the form of a resistor‐capacitor circuit
as illustrated in Figure 4-20 (c) using a 1 μF capacitor. Unfortunately this
leads to delay in the input. If you examine the time base, it takes about
2 ms before the input reaches 1 V. Also, bounce conditions can delay this
further. These values are chosen using the RC time constant R Cτ = × , so
τ () = Ω × −s 1,000 10 F6 = 1 ms, which is the time taken to charge a capacitor
to ~63.2% or discharge it to ~36.8%. This value is marked on Figure 4-20 (b).

■ Software may be written so that after a rising edge occurs, it delays a few
milliseconds and then reads the “real” state.

■ For slider switches (SPDT), an SR‐latch can be used.

■ For momentary push button switches (SPSTs), a Schmitt trigger (74HC14N),
which is discussed in the next section, can be used with an RC low‐pass
fi lter as in Figure 4-20 (c).

132 Part I ■ BeagleBone Basics

N O T E There are videos on debouncing SPDT and SPST switches on the web page

associated with this chapter: www.exploringbeaglebone.com/chapter4 .

 Hysteresis

Hysteresis is designed into electronic circuits to avoid rapid switching, which
would wear out circuits. A Schmitt trigger exhibits hysteresis, which means that
its output is dependent on the present input and the history of previous inputs.
This can be explained with an example of an oven baking a cake at 350 degrees
Fahrenheit:

■ Without hysteresis: The element would heat the oven to 350°F. Once 350°F
is achieved the element would switch off. It would cool below 350°F and
the element would switch on again. Rapid switching!

■ With hysteresis: The circuit would be designed to heat the oven to 360°F
and at that point the element would switch off. The oven would cool, but
it is not designed to switch back on until it reaches 340°F. The switching

 Figure 4-20: (a) Switch bouncing with no components other than the switch and 10 kΩ resistor
(b) Low‐pass filtered output at point B (c) A Schmitt trigger circuit (d) Output of the Schmitt
trigger circuit at point C, versus the input at pointC A

 Chapter 4 ■ Interfacing Electronics 133

would not be rapid, protecting the oven, but there would be a greater
variation in the baking temperature.

With an oven that is designed to have hysteresis, is the element on or off at 350°F? f
That depends on the history of inputs—it is on if the oven is heating; it is off if f
the oven is cooling.

 The Schmitt trigger in Figure 4-20 (c) exhibits the same type of behavior. The
V T+TT for the M74HC14 Schmitt trigger is 2.9 V and the V T−TT is 0.93 V when running
at a 5 V input, which means that a rising input voltage has to reach 2.9 V before
the output changes high, and a falling input voltage has to drop to 0.93 V before
the output changes low. Any bounce in the signal within this range is simply
ignored. The low‐pass fi lter reduces the possibility of high‐frequency bounces.
The response is presented in Figure 4-20 (d). Note that the time base is 1 ms per
division, illustrating how “clean” the output signal is. The confi guration uses
a pull‐up resistor, the need for which is discussed shortly.

 Logic Gates

Boolean algebra functions have only two possible outcomes, either true or false , e
which makes them ideal for developing a framework to describe electronic
circuits that are either on or off (f high or low). Logic gates perform these Boolean w
algebra functions and operations, forming the basis of the functionality inside
modern microprocessors, such as the AM335x in the BBB. Boolean values are
not the same as binary numbers—binary numbers are a base 2 representation
of whole and fractional numbers, whereas Boolean refers to a data type that
has only two possible values, either true or false.

 It is often the case that you will need to interface to different types of logic gates
and systems using the BBB’s GPIOs in order to perform an operation such as gating
an input or sending data to a shift register. Logic gates fall into two main categories:

■ Combinational logic: The current output is dependent on the current
inputs only (e.g., AND, OR, decoders, multiplexers, etc.).

■ Sequential logic: The current output is dependent on the current inputs
and previous inputs. They can be said to have different states, and what
happens with a given input depends on what state they are in (e.g., latches,
fl ip‐fl ops, memory, counters, etc.).

 BINARY NUMBERS

 Simply put, binary numbers are a system for representing numbers (whole or y
fractional) within a device whereby the only symbols available are 1s and 0s. That isy
a strong only, as when you are implementing binary circuits, you don’t have a minusyy

134 Part I 4 ■ BeagleBone Basics

 Combinational logic circuits will provide the same output for the same set
of inputs, regardless of the order in which the inputs are applied. Figure 4-21
illustrates the core combinational logic gates with their logic symbols, truth
tables, and IC numbers. The truth table provides the output that you will get
from the gate on applying the listed inputs.

N O T E You can fi nd a video on wiring an AND gate at the web page associated with

this chapter: www.exploringbeaglebone.com/chapter4 .

 ICs have a number that describes their manufacturer, function, logic family, and
package type. For example, the MM74HC08N in Figure 4-22 (a) has a manufacturer
code of MM (Fairchild Semiconductor), is a 7408 (quad two‐input AND gates),
is of the HC (CMOS) logic family, and is in an N (plastic dual in‐line) package.

 ICs are available in different package types. Figure 4-22 (a) shows to scale a
PDIP (plastic dual in‐line package) and a small outline package TSSOP (thin
shrink small outline package). There are many types: surface mount, fl at pack-
age, small outline package, chip‐scale package, and ball grid array (BGA). You
have to be careful when ordering ICs that you have the capability to use them.
DIP/PDIP ICs have perfect forms for prototyping on breadboards as they have a
0.1" leg spacing. There are adapter boards available for converting small outline

sign or a decimal point (binary point to be precise). Like decimal numbers, you use a

place‐weighted system to represent numbers of the form:

1001 (1 2) (0 2) (0 2) (1 2) 8 0 0 1 92
3 2 1 0

10= × + × + × + × = + + + =

 If you only have four bits to represent your numbers, then you can only represent

2 4 = 16 possible decimal numbers in the range 0–15. You can add and subtract num-

bers, just as you can in decimal, but you tend to add the negative value of the RHS of

the operation, instead of building subtraction circuits. Therefore, to perform 9 – 5, you

would typically perform 9 + (–5).To represent negative numbers, the 2’s complement

form is used. Essentially, this involves inverting the symbols in the binary representa-

tion of the number and adding 1, so –5 would be +5 (0101), inverted to (1010) + 1 =

10112 . Importantly, you need to know that this number is in 2’s complement form, oth-

erwise it could be mistaken for 11 10 . Therefore, to perform 9 – 5 on a four‐bit computer,

perform 9 + –5 = 1001 + (1011) = 10100. The four‐bit computer ignores the fi fth bit

(otherwise it would be a fi ve‐bit computer!), so the answer is 0100, which is 4 10 . See the

video at the chapter web page: www.exploringbeaglebone/chapter4 .

 To multiply by 2 you simply shift the binary digits left (inserting a zero on the right‐

most position), e.g., 4 10 = 0100 2 . Shift all the digits left, bringing in a 0 on the RHS, giv-

ing 1000 2 = 810 . Divide by 2 by shifting to the right.

 Finally, understanding binary makes the following infamous joke funny: “There are

10 types of people, those who understand binary and those who don’t!”—well, almost

funny!

 Chapter 4 ■ Interfacing Electronics 135

packages to 0.1" leg spacing. Unfortunately, BGA ICs, such as the AM335x, require
sophisticated equipment for soldering.

 Figure 4-21: General logic gates

 Figure 4-22: (a) IC package examples (b) The JK flip‐flop

 The family of currently available ICs is usually transistor‐transistor logic (TTL)
(with Low‐power Schottky (LS)) or some form of complementary metal‐oxide‐
semiconductor (CMOS). Table 4-1 compares these two families of 7408 ICs using
their respective datasheets. The propagation delay is the longest delay between
an input changing value and the output changing value for all possible inputs
to a logic gate. This delay limits the logic gate’s speed of operation.

 Figure 4-23 illustrates the acceptable input and output voltage levels for both
TTL and CMOS logic gates when VDDVV = 5 V. The noise margin is the absolute
difference between the output voltage levels and the input voltage levels. This
noise margin ensures that if the output of one logic gate is connected to the

136 Part I 6 ■ BeagleBone Basics

input of a second logic gate, that noise will not affect the input state. The CMOS
logic family input logic levels are dependent on the supply voltage, V DD , where DD

the high‐level threshold is 0.7 × V DD , and the low‐level threshold is 0.3 ×DD V DD.D

It should be clear from Figure 4-23 that there are differences in behavior. For
example, if the input voltage were 2.5 V, then the TTL gate would perceive a logic
high level, but the CMOS gate (@5 V) would perceive an undefi ned level. Also,
the output of a CMOS gate, with V DD = 3.3 V, would provide suffi cient output
voltage to trigger a logic high input on a TTL gate, but would not on a CMOS
gate with V DD = 5.0 V.

Table 4-1: Comparison of Two Commercially Available TTL and CMOS ICs for a 7408 Quadruple
Two‐input AND gates IC

CHARACTERISTIC SN74LS08N SN74HC08N

Family Texas TTL PDIP
Low‐power Schottky (LS)

Texas CMOS PDIP
High‐speed CMOS (HC)

V CCVV supply voltageC 4.5 V to 5.5 V (5 V typical) 2 V to 6 V

V IHVV high‐level input voltageH Min 2 V V CCVV @5 V Min = 3.5 VCC

V ILVV low‐level input voltage Max 0.8 V V CCVV @5 V Max = 1.5 VCC

Time propagation delay (T PDTT) Typical 12 ns(LH) 17.5 ns(HL) Typical 8 ns

Power (@5 V) 5 mW max 0.1 mW max

 Figure 4-23: Gate signal levels on the input and output of logic gates (a) TTL (b) CMOS at 5 V

 HC can support a wide range of voltage levels, including the BBB 3.3 V input/
outputs. The GND label is commonly used to indicate the ground supply voltage,
where V EE is often used for BJT‐based devices and V SSV for FET‐based devices.
Traditionally, V CCVV was used as the label for the positive supply voltage on BJT‐
based devices and V DD for FET‐based devices; however, it is now very common
to see V CCVV being used for both.

 Figure 4-22 (b) illustrates a sequential logic circuit, called a JK fl ip‐fl op. JK
fl ip‐fl ops are core building blocks in circuits such as counters. These differ from

 Chapter 4 ■ Interfacing Electronics 137

combinational logic circuits in that the current state is dependent on the current
inputs and the previous state. You can see from the truth table that if J = 0 and
K = 0 for the input, then the value of the output Qn will be the output value that
it was at the previous time step (it behaves like a one‐bit memory). A time step is
defi ned by the clock input (CLK), which is a square wave synchronizing signal.
The same type of timing signal is present on the BBB—it is the clock frequency,
and the clock goes through up to 1,000,000,000 square wave cycles per second!

N O T E The web page associated with this chapter has a video that explains JK

fl ip‐fl ops in detail, and a video on building a 555 timer circuit, which can be used as a

low‐frequency clock signal for testing logic circuits.

 Floating Inputs

 One very common mistake when working with digital logic circuits is to leave
unused logic gate inputs “fl oating,” or disconnected. The family of the chip has
a large impact on the outcome of this mistake. With the TTL logic families these
inputs will “fl oat” high and can be reasonably expected to be seen as logic‐high
inputs. With TTL ICs it is good practice to “tie” (i.e., connect) the inputs to ground
or the supply voltage, so that there is absolutely no doubt about the logic level
being asserted on the input at all times.

 With CMOS circuits the inputs are very sensitive to the high voltages that
can result from static electricity and electrical noise and should also never be
left fl oating. Figure 4-24 gives the likely output of an AND gate that is wired as
shown in the fi gure. The correct outcome is displayed in the “Required (A.B)”
column.

 Figure 4-24: An AND gate with the inputs accidentally left floating when the switches are open

 Unused CMOS inputs that are left fl oating (between V DD and GND) can
gradually charge up due to leakage current, and depending on the IC design
could provide false inputs, or waste power by causing a DC current to fl ow
(from V DD to GND). To solve this problem you can use pull‐up or pull‐down
resistors, depending on the desired input state (these are ordinary resistors

138 Part I 8 ■ BeagleBone Basics

with suitable values—it’s their role that is “pull up” or “pull down”), which are
described in the next section.

 Pull‐Up and Pull‐Down Resistors

 To avoid fl oating inputs, you can use pull‐up or pull‐down resistors as illustrated
in Figure 4-25 . Pull‐down resistors are used if you want to guarantee that the
inputs to the gate are low when the switches are open, and pull‐up resistors
are used if you want to guarantee that the inputs are high when the switches
are open.

 Figure 4-25: Pull‐down and pull‐up resistors, used to ensure that the switches do not create
floating inputs

 The resistors are important, because when the switch is closed, the switch
would form a short circuit to ground if they were omitted and replaced by lengths
of wire. The size of the pull‐down/up resistors is also important—their value
has to be low enough to solidly pull the input low/high when the switches are
open but high enough to prevent too much current fl owing when the switches
are closed. Ideal logic gates have infi nite impedance and any resistor value
(short of infi nite) would suffi ce. However, real logic gates leak current and you
have to overcome this leakage. To minimize power consumption, you should
choose the maximum value that actually pulls the input low/high. A 3.3 kΩ to
10 kΩ resistor will usually work perfectly, but 3.3 V will drive 1 mA to 0.33 mA
through them respectively and dissipate 3.3 mW to 1 mW of power respectively
when the switch is closed. For power‐sensitive applications you could test larger
resistors of 50 kΩ or greater.

 The BBB has weak internal pull‐up and pull‐down resistors that can be used
for this purpose. This is discussed in Chapter 6 . One other issue is that inputs
will have some stray capacitance to ground. Adding a resistor to the input
creates an RC low‐pass fi lter on the input signal that can delay input signals.
That is not important for manually pressed buttons, as the delay will be on the

 Chapter 4 ■ Interfacing Electronics 139

order of 0.1 μs for the preceding example, but it could affect the speed of digital
communication bus lines.

 Open‐Collector and Open‐Drain Outputs

 To this point in the chapter, all of the ICs have a regular output, where it is driven
very close to GND or the supply voltage of the IC (VCCVV). If you are connectingCC

to another IC or component that uses the same voltage level, then that should
be fi ne. However, if the fi rst IC had a supply voltage of 3.3 V and you needed to
drive the output into an IC that had a supply voltage of 5 V, then you may need
to perform level shifting. gg

 Many ICs are available in a form with open‐collector outputs , which are particu-s
larly useful for interfacing between different logic families and for level shifting.
This is because the output is not at a specifi c voltage level, but rather attached
to the base input of an NPN transistor that is inside the IC. The output of the IC
is the “open” collector of the transistor, and the emitter of the transistor is tied
to the IC’s GND. It is possible to use a FET (74HC03) instead of a BJT (74LS01)
inside the IC, and while the concept is the same it is called an open‐drain output. t
Figure 4-26 illustrates this concept and provides an example circuit using a
74HC03 (quad, two‐input NAND gates with open‐drain outputs) to drive a 5V
circuit. The advantage of the open‐drain confi guration is that CMOS ICs sup-
port the 3.3V level available on the BBB’s GPIOs. Essentially, the drain resistor
that is used in Figure 4-16 is placed outside the IC package, as illustrated in
Figure 4-26 , it has a value of 10 kΩ in this case.

 Interestingly, a NAND gate with one input tied high (or the two inputs tied
together) behaves like a NOT gate. In fact, NAND or NOR gates, each on their
own, can replicate the functionality of any of the logic gates, and for that reason
they are called universal gates .

 Figure 4-26: Open‐drain level‐shifting example

140 Part I 0 ■ BeagleBone Basics

 Open‐collector outputs are often used to connect multiple devices to a bus.
You will see this in Chapter 8 when the BBB’s I 2 C bus is described. When you
examine the truth table in the datasheet of an IC, such as the 74HC03, you will
see the letter Z used to represent the output (as in Figure 4-26). This means that
it is a high‐impedance output and the external pull‐up resistor can pull the
output to the high state.

 Interconnecting Gates

 To create useful circuits, logic gates are interconnected to other logic gates and
components. It is important to understand that there are limits to the intercon-
nect capabilities of gates.

 The fi rst limit is the ability of the logic gate to source or sink current.
When the output of a gate is logic high, it acts as a current source , providinge
current for connected logic gates or the LED shown in Figure 4-25 . If the
output of the gate is logic low, then the gate acts as a current sink , wherebyk
current fl ows into the output. Figure 4-27 (a) demonstrates this by placing
a current‐limiting resistor and an LED between V CCVV and the output of the
logic gate, with the LED cathode connected to the logic gate output. When
the output of the gate is high, there is no potential difference and the LED
will be off; but when the output is low, a potential difference is created and
current will fl ow through the LED and be sinked by the output of the logic
gate. According to the datasheet of the 74HC08, it has an output current limit
(I O) of ±25 mA, meaning that it can source or sink 25 mA. Exceeding theseO

values will damage the IC.
 It is often necessary to connect the output of a single (driving) gate to the

input of several other gates. Each of the connected gates will draw a current,
thus limiting the total number of connected gates. The fan‐out is the number
of gates that are connected to the output of the driving gate. As illustrated in
Figure 4-27 (b), for TTL the maximum fan‐out depends on the output (I ((O) and O

input current (I ((II) requirement values when the state is low (= I OL(max) /I)) IL(max)I) and)

the state is high (= I OH(max) /I)) IH(max)I). Choose the lower value, which is commonly)

10 or greater. The fan‐in of an IC is the number of inputs that it has. For the 7408
they are two‐input AND gates, so they have a fan‐in of 2.

 CMOS gate inputs have extremely large resistance and draw almost no
current, allowing for large fan‐out capability (>50); however, each input adds
a small capacitance (CL ≈ 3–10 pF) that must be charged and discharged by the
output of the previous stage. The greater the fan‐out, the greater the capaci-
tive load on the driving gate, which lengthens the propagation delay. For
example, the 74HC08 has a propagation delay (tpd) of about 11 ns and an input
capacitance (C I) of 3.5 pF (assuming for this example that this leads to tpd =
RC = 3.5 ns per connection). If one 78HC08 were driving 10 other similar gates,
and each added 3.5 ns of delay, then the propagation delay would increase

 Chapter 4 ■ Interfacing Electronics 141

to 11 10 3.5 46()+ × = ns of delay, reducing the maximum operating frequency
from 91 MHz to 22 MHz.

 Figure 4-27: (a) Sinking current on the output (b) TTL fan‐out example

 Analog‐to‐Digital Conversion

 The BBB has seven analog‐to‐digital converter (ADC) inputs that can be used
to take an analog signal and create a digital representation of this signal. This
enables us to connect many different types of sensors, such as distance sensors,
temperature sensors, light‐level sensors, and so on. However, you have to be
careful with these inputs, as they should not source or sink current, because the
analog outputs of the sensors are likely to be very sensitive to any additional
load in parallel with the output. To solve this problem you need to fi rst look at
how operational amplifi ers function.

 Analog signals are continuous signals that represent the measurement of
some physical phenomenon. For example, a microphone is an analog device,
generally known as transducer, that can be used to convert sound waves into
an electrical signal that, for example, varies between –5 V and +5 V depend-
ing on the amplitude of the sound wave. Analog signals use a continuous
range of values to represent information, but if you wish to process that
signal using your BBB, then you need a discrete digital representation of
the signal. This is one that is sampled at discrete instants in time, and sub-
sequently quantized to discrete values of voltage, or current—for example
audio signals will vary over time, so to sample a transducer signal in order
to digitally capture human speech (e.g., speech recognition), you need be
cognizant of two factors:

■ Sampling rate: Defi nes how often you are going to sample the signal.
Clearly, if you create a discrete digital sample by sampling the voltage
every one second, the speech will be indecipherable.

142 Part I ■ BeagleBone Basics

■ Sampling resolution: Defi nes the number of digital representations that
you have to represent the voltage at the point in time when the signal is
sampled. Clearly, if you had only one bit, you could only capture if the
signal were closer to +5 or –5 V, and again the speech signal would be
indecipherable.

 Sampling Rate

 To represent a continuous signal perfectly in a discrete form would require
an infi nite amount of digital data. Fortunately (!), there are limits to how well
human hearing performs and therefore we can place limits on the amount of
data to be discretized. For example, 44.1 kHz and 48 kHz are common digital
audio sampling rates for encoding MP3 fi les, which means that if you use the
former, you will have to store 44,100 samples of your transducer voltage every
second. The sample rate is generally determined by the need to preserve a
certain frequency content of the signal. For example, humans (particularly
children) can hear audio signals at frequencies from about 20 Hz up to about
20 kHz. Nyquist’s sampling theorem states that the sampling frequency must be at
least twice the highest frequency component present in the signal. Therefore,
if you wish to sample audio signals, you need to use a sampling rate of at
least twice 20 kHz, which is 40 kHz, which helps explain the magnitude of the
sampling rates used in encoding MP3 audio fi les (typically 44,100 samples per
second—i.e. 44.1 kS/s).

 Quantization

 The BBB has seven 12‐bit ADC inputs that work in the range of 0–1.8 V,
which means that there are 2 12 = 4,096 possible discrete representations
(numbers) for this sampling resolution. If the voltage is exactly 0 V, we can
use the decimal number 0 to represent it. If the voltage is exactly 1.8 V, we
can use the number 4,095 to represent it. So, what voltage does the decimal
number 1 represent? It is 1 1.8 /4096()× = 0.000439453125 V. Therefore, each
decimal number between 0 and 4,095 (4,096 values) represents a step of
about 0.44 mV.

 The preceding audio sampling example also illustrates one of the challenges
you face with the BBB. If the sensor outputs a voltage of –5 to +5 V, or more
commonly 0 V to +5 V, you need to alter that range to be between 0 and 1.8 V
to be compatible with the ADC. In Chapter 6 , you’ll look at how you can solve
this problem. A second and more complex problem is that we must not source
or sink current from/to the BBB’s ADC circuitry, and to solve that we need to
introduce a powerful concept that predates the digital computer, called the
operational amplifi er.

 Chapter 4 ■ Interfacing Electronics 143

 No real‐world op‐amp has an infi nite open‐loop gain, but voltage gains of
200,000 to 30,000,000 are commonplace. Such a gain can be treated as infi nite,
which means in theory that even a very small difference between the inputs
would lead to a completely impractical output. For example, a difference of
1V between V 1VV and V 2VV would lead to a voltage output of at least 200,000 V! If
that were really the case, I would now be issuing health warnings on the use
of the BBB! The output voltage is of course limited by the supply voltage (V CCVV +

and V CCVV − in Figure 4-28 (a)). Therefore, if you supply V CCVV + = +5 V and V CCVV − = 0 V

 Operational Amplifi ers

 Earlier in this chapter, the BJT transistor is described. Operational amplifi ers
(op‐amps) are composed from many BJTs or FETs within the one IC (e.g., the
LM741). They can be used to create several very useful circuits, one of which
you will need in Chapter 6 in order to safely and correctly read values from the
BBB’s analog‐to‐digital converters.

 Ideal Operational Amplifi ers

 Figure 4-28 (a) illustrates an ideal op‐amp, placed in a very basic circuit with no
feedback (aka open‐loop). The op‐amp has two inputs: a non‐inverting input (+)
and an inverting input (−), and it produces an output that is proportional to the
difference between them, i.e., V outVV = G(V 1VV – V 2VV) , where 22 V 1VV and V 2VV are the voltage
levels on these two inputs, respectively. Some of the characteristics of an ideal
op‐amp include the following:

■ An infi nite open‐loop gain, G

■ An infi nite input impedance

■ A zero output impedance

 Figure 4-28: (a) The ideal op‐amp (b) An open‐loop comparator example

144 Part I 4 ■ BeagleBone Basics

(GND) to an op‐amp using the BBB, the maximum real‐world output would be
in the range of 0 V to 5 V approximately, depending on the exact op‐amp used.
Likewise, a real‐world op‐amp does not have infi nite input impedance, but it is
in the range of 250 kΩ to 2 MΩ. The term impedance is used instead of resistance, e
as the input may be an AC rather than just a DC supply. Likewise, a zero output
impedance is not possible, but it will likely be <100 Ω.

 The LM358 Dual Operational Amplifi er is used for the following circuit
confi gurations (www.ti.com/product/lm358((). It is an eight‐pin IC in a PDIP
package that contains two op‐amps that have a typical open‐loop differential
voltage gain of 100 dB, which is 100,000 in voltage gain (voltage gain in dB =((20
× log (V outVV /V tt inVV)). One advantage of this IC is that it has a wide supply range, in
the range of 3 V to 32 V, meaning that you can use the BBB’s 3.3 V or 5 V power
rails. The LM358 can typically source up to 30 mA or sink up to 20 mA on the
output. See Figure 4-28 (b).

 The behavior of an open‐loop op‐amp is best explained with an example, which
is illustrated in Figure 4-28 (b). Please note that in this case the input is connected
to the inverting input of the op‐amp (−ve), rather than the non‐inverting inpute
(+ve((), which means that e V outVV will be positive when V inVV is lower than the reference
voltage. The circuit was built using the LM358, with a supply of VCCVV + = 5 V and
VCC–VV = 0 V (GND). A 100 k– Ω potentiometer was used to allow the voltage on the
+ve input to be varied. This is the voltage that we are effectively comparing the
input voltage with, so this circuit is called a comparator . When the voltage onrr
the –ve input is greater than the +ve input, by even a very small amount, the
output will quickly saturate in the negative direction to 0 V. When the voltage
on the –ve input is less than the voltage on the +ve input, then the output V outVV
will immediately saturate in the +ve direction to the maximum allowable by
this confi guration with the value of V CCVV applied.

 The actual output of this circuit can be seen in Figure 4-29 (a). In this view,
the potentiometer is adjusted to give a voltage on the V+ input of 1.116 V. When
V– is lower than this value, the output – V outVV is saturated to the maximum positive
value; in this case it is 3.816 V (LM358 positive saturation voltage). When V– is–
greater than 1.116 V, then the output V outVV saturates to the lowest value, which is
almost zero (–2 mV). Note the inversion that is taking place.

 If everything remains exactly the same but the potentiometer is adjusted to
give a different value for V+ , in this case 0.645 V, the output will be as shown+
in Figure 4-29 (b), where the duty cycle of the output V outVV will be different. This
comparator circuit could also be used to detect low voltage conditions—for
example, lighting a warning LED if a battery’s voltage output fell below a certain
value. The circuit example used in 4‐27(b) could be used to generate a PWM
signal with a controllable duty cycle, according to the controlling voltage V+. +

 The very large open‐loop gain means that op‐amps are generally used with
feedback, which is directed to the negative or positive op‐amp input. This
feedback opens up an enormous range of other applications for the op‐amp.

 F
ig

u
re

 4
-2

9
:

 O
ut

pu
t o

f t
he

 c
om

pa
ra

to
r c

irc
ui

t

145

146 Part I 6 ■ BeagleBone Basics

 Positive Feedback

 Negative feedback is the most common type of feedback used with op‐amps
due to its stabilizing impact. An op‐amp in a positive feedback confi guration
is one in which the output is returned to the positive non‐inverting input of
the op‐amp. In such a case the feedback signal supports the input signal. For
example, positive feedback can be used to add hysteresis to the open‐loop op‐
amp comparator circuit, by connecting V outVV to V+ through a positive feedback
resistor. This can be used to reduce the comparator’s response to noise on the
input signal.

 Negative Feedback and Voltage Follower

 Negative feedback is formed when you connect the output of an op‐amp (V outVV) backtt

to the inverting input (V–). When you apply a voltage (– V inVV) to the non‐invertingnn

input (V+) and increase it slowly, as + V inVV increases, then so would the difference
between V+ and V– ; however, the output voltage also increases according to–
G(V 1VV – V 2VV) and this feeds back into the V– input, causing the output voltage–
V outVV to be reduced. Essentially, the op‐amp attempts to keep the voltage on
the inverting (V–) input the same as the non‐inverting (– V+) input by adjusting+
the output. The impact of this action is that the value of V outVV is stabilized to be
the same as the V inVV voltage on V+ ; the higher the gain of the op‐amp, the closer+
this difference will be to zero.

 That action on its own is not very useful to us, except for the fact that the
current required to set the voltage on the input is very small, and the op‐amp
can control much larger currents on the output side. Because the negative feed-
back keeps the output voltage the same as the input voltage, the confi guration
as a whole has a gain of 1. This confi guration is known as a voltage follower, orrr
unity‐gain buffer , and is illustrated in Figure 4-30 . This confi guration is veryrr
important, as it is used in Chapter 6 to protect the ADC circuitry in the BBB,
and it is also used to ensure that the ADC reference voltage is not modifi ed by
connecting it to a circuit.

–

+

Vcc+

Vcc–
Vin

V–

Vout = Vin

Op-amp

GND

Small Current In Larger Current Out

Voltage Follower Gain = 1(a) 1 8
1OUT

1IN−

1IN+

GND

VCC

2OUT

2IN−

2IN+

LM358

+–

+ –

(b)

 Figure 4-30: The voltage follower op‐amp circuit

 Chapter 4 ■ Interfacing Electronics 147

 Concluding Advice

 There is a lot of material covered in this chapter. So to fi nish, here is some general
advice for working with electrical components and the BBB:

■ Never leave inputs fl oating. Use pull‐up/pull‐down resistors on all switches.
Check if unused IC pins need to be tied high/low.

■ Ensure that all of the GNDs in your circuit are connected.
■ Remember to power your chips with the correct voltage level.
■ Don’t assume that a new diode, FET, BJT, or logic gate has the same pin

layout as the previous component that you used.
■ Just like programming, build a simple circuit fi rst, test it, and then add

the next layer of complexity. Never assume something works!
■ Don’t leave wire joints and croc clip connections hanging where they could

touch off each other—the same for resistors on breadboards.
■ Use a fl at‐head screwdriver to remove ICs from breadboards, as it is very

easy to bend the IC legs beyond repair.
■ CMOS ICs are statically sensitive, so touching them with your fi ngers

may damage them, due to the buildup of static electricity on your body.
Touch the back of a computer or some grounding metal object before you
touch the ICs.

■ Don’t assume that components have exact or consistent values—in par-
ticular, transistor gains and resistor ranges.

 Summary

 After completing this chapter, you should be able to do the following:

■ Describe the basic principles of electrical circuit operation, build circuits
on breadboards, and measure voltage and current values

■ Use discrete components such as diodes, LEDs, transistors, and capacitors
in your own circuit designs

■ Use transistors and FETs as switches to control higher current and voltage
signals than would be possible by using the BBB outputs on their own

■ Interconnect and interface to logic gates, being particularly aware of the
issues that arise with “fl oating” inputs

■ Describe the principles of analog‐to‐digital conversion and design basic
operational‐amplifi er circuits

■ Combine all of these skills to build the type of circuits that are important
for safely interfacing to the BBB GPIOs and ADCs

148 Part I 8 ■ BeagleBone Basics

 Further Reading

 Documents and links for further reading have been listed throughout this
chapter, but there are some further reference documents:

■ T. R. Kuphaldt, “Lessons in Electric Circuits,” a free series of textbooks
on the subjects of electricity and electronics: www.ibiblio.org/kuphaldt/

electricCircuits/ .

■ All About Circuits: www.allaboutcircuits.com provides excellent appliedm

examples of many types of electronic circuits.

■ The Electronics Club: www.electronicsclub.info provides electronics
projects for beginners and for reference.

■ Neil Storey, Electronics: A Systems Approach, 5th ed., New York: Pearson, 2013.

 Here is a full list of the components that are used in this chapter:

■ Breadboard

■ Diodes: 1N4001, general‐purpose LED

■ Transistors: NPN: BC547, FET: BS270

■ Voltage regulator: KA7805/LM7805

■ PTC: 60R110

■ Button and Switch: General purpose SPST and SPDT

■ ICs: 74HC73N, 74HC03N, 74LS08N, 74HC08N, 74HC14, LM358N

■ Resistors: 1 MΩ, 2.2 kΩ, 2×10 kΩ, 50 kΩ, 100 Ω, 50Ω, 1 kΩ, 470Ω, 220 Ω, 100 kΩ
POT.

■ Capacitors: 10μF, 1μF, 0.33μF, 0.1μF.

■ Opto‐isolator: SFH617A

Notes

 1. Texas Instruments. (December 10, 2011). General hardware design/BGA PCB
design/BGA decoupling. Retrieved April 10, 2014, from Texas Instruments Wiki
tiny.cc/ebb402.

 2. Vishay Semiconductors. (January 14, 2013). SFH617A Datasheet. Retrieved April
13, 2014, from Vishay Semiconductors tiny.cc/ebb403.

149

 This chapter describes several different programming options for the BeagleBone,
including scripted and compiled languages. An LED fl ashing example is provided
in all of the languages so that you can investigate each language’s structure
and syntax. The advantages and disadvantages of each language are discussed
along with example uses. The chapter then focuses on the C/C++ programming
languages, describing the principles of these languages, and why object‐oriented
programming (OOP) is appropriate and necessary for the development of scal-
able embedded systems applications. Finally, the chapter details how you can
interface directly to the Linux kernel using the GNU C Library. A single chapter
can only touch the surface of programming languages, but this one is focused
on programming the BeagleBone. I have made my module notes about OOP
available at ee402.eeng.dcu.ie to support this chapter.

 Equipment Required for This Chapter:

■ BeagleBone Black with console connection (see Chapter 2)

■ Desktop Linux Installation (e.g., Debian in a VM—see Chapter 3)

 Introduction

 As discussed in Chapter 3 , embedded Linux is essentially “Linux on an embed-
ded system.” If your favorite programming language is available under Linux,
then it is also likely to be available for the BBB. So, is your favorite language

 C H A P T E R

 5

 Practical BeaagleBone

Programming ramming

150 Part I 0 ■ BeagleBone Basics

suitable for programming the BBB? That depends on what you intend to do with
the board. Are you interfacing to electronics devices/modules? Do you plan to
write rich user interfaces? Are you planning to write a device driver for Linux?
Is performance very important, or are you developing an early pre‐prototype?
Each of the answers to these questions will impact your decision regarding
which language you should use. In this chapter, you are introduced to several
different languages, and the advantages and disadvantages of each category of
language are outlined. As you read through the chapter, try to avoid focusing
on a favorite language, but instead use the correct language for the job at hand.

 How does programming on embedded systems compare to programming
on desktop computers? Here are some points to consider:

■ You should always write the clearest and cleanest code that is as main-
tainable as possible, just as you would on a desktop PC.

■ Don’t optimize your code until you are certain that it is complete.

■ You typically have to be more aware of how you are consuming resources
than when programming on the desktop computer. The size of data types
matters, and passing data correctly really matters. You have to be con-
cerned with memory availability, fi le system size, and data communication
availability/bandwidth.

■ You often have to learn about the underlying hardware platform. How
does it handle the connected hardware? What data buses are available?
How do you interface with the operating system and low‐level libraries?
Are there any real‐time constraints?

 For the upcoming discussion, it is assumed that you are planning to do some
type of physical computing—that is, interfacing to the different input or outputs on
the BBB. Therefore, the example that is used to describe the structure and syntax
of the different languages is a simple interfacing example. Before looking at the
languages themselves, we will begin with a brief performance evaluation of different
languages running on the BBB, in order to put the following discussions in context.

 Performance of Diff erent Languages

 Which language is the fastest on the BBB? Well, that is an incredibly emotive
and diffi cult question to answer. Different languages perform better on different
benchmarks and different tasks. In addition, a program written in a particular
language can be optimized for that language to the point that it is barely rec-
ognizable as the original code. Nor is speed of execution always an important
factor; you may be more concerned with memory usage, the portability of the
code, or the ability to quickly apply changes.

 However, if you are planning to develop high‐speed or real‐time number‐
crunching applications, then performance may be a key factor in your choice

 Chapter 5 ■ Practical BeagleBone Programming 151

of programming language. In addition, if you are setting out to learn a new
language, and you may possibly be developing algorithmically rich programs
in the future, then it may be useful to keep performance in mind.

 A simple test has been put in place on the BBB to determine the perfor-
mance of the languages discussed in this chapter. The test uses the n ‐body
benchmark (gravitational interaction of planets in the solar system) code from
benchmarksgame.alioth.debian.org . The code uses the exact same algorithm
for all languages and the BBB is running in the exact same state in all cases. The
test uses 5 million iterations of the algorithm to ensure that the script used for
timing does not have to be highly accurate. All of the programs gave the same
correct result, indicating that they all ran correctly and to completion. The test
is available in the book’s Git repository in the directory chp05/performance/ .
Note that you must have installed Java on the BBB in order to run all of the tests.
That is discussed later in this chapter. Use the following call to execute the test:

 /chp05/performance$./run
 Running the Tests:
 The C/C++ Code Example
 -0.169075164 -0.169083134
 It took 33 seconds to run the C/C++ test ...
 Finished Running the Benchmarks

 The results of the tests are displayed in Table 5-1 . In the fi rst column you can
see the results for the BBB, running at its top processor frequency of 1 GHz.
For this number‐crunching application, C++ performs the task in the shortest
time, taking 33 seconds to complete. This time has been weighted as one unit.
Therefore, Java takes 1.18 times longer to complete the same task, Node.js (for
BoneScript) 2.36 times longer, Perl 27.8 times longer, and Python 32.2 times
longer. The processing durations are provided in parentheses. As you move
across the columns you can see that this performance is relatively consistent,
even as the processor frequency is adjusted (discussed in the next section) or a
desktop i7 64‐bit processor is used.

Table 5-1: Numerical Computation Time for 5,000,000 Iterations of the n ‐Body Algorithm on a
BBB Debian Hard‐fl oat Image

VALUE BBB@1GHZ BBB@800MHZ BBB@300MHZ DEBIAN 64‐BIT I7 PC

C++ 1.00× (33s) 1.00× (42s) 1.00× (114s) 1.00× (0.821s)

C++11 1.15× (38s) 1.16× (48s) 1.16× (132s) 0.91× (0.746s)

Java 1.18× (39s) 1.16× (49s) 1.19× (134s) 1.24× (1.023s)

Node.js 2.36× (78s) 2.21× (93s) 2.19× (248s) 5.78× (4.523s)

Perl 27.8× (917s) 27.9× (1170s) 28.7× (3244s) 75.64× (62.1s)

Python 32.2× (1063s) 30.8× (1294s) 31.7× (3586s) 83.92× (68.9s)

152 Part I ■ BeagleBone Basics

 All of the programs use between 98% and 99% of the CPU while they are
executing. In addition, the C++ program used ∼0.1% of memory, the Java and
Node.js programs used ∼2.3% of memory, and the Python application used ∼ ∼0.8%
of memory while executing. The relative performance of Java and Node.js is
impressive given that code is compiled dynamically (“just‐in‐time”), which is
discussed later in this chapter. Any dynamic compilation latency is included in
the timings, as the test script includes the following Bash script code to calculate
the execution duration of each program:

 Duration="5000000"
 echo -e "\nThe C/C++ Code Example"
 T="$(date +%s%N)"
 ./n-body $Duration
 T="$(($(date +%s%N)-T))"
 T=$((T/1000000))
 echo "It took ${T} milliseconds to run the C/C++ test"

 The C++11 code is the version of the C++ programming language that was
approved in mid‐2011 (needs gcc 4.7+). This is discussed again in Chapter 7.
The program contains optimizations that are specifi c to this release of C++
and interestingly, while this version performs better on the desktop computer,
it underperforms on the BBB. The Java program uses the +AgressiveOpts fl ag
to enable performance optimization, and it was used because it did not involve
modifying the source code.

 The results for Python are particularly poor due to the algorithmic nature of
the problem. However, the benchmarks at (debian.org, 2013),1 indicate that the
range will be 9 to 100 times slower than the optimized C++ code for general
processing to algorithm‐rich code, respectively. If you are very comfortable
with Python and you would like to improve upon its performance, then you
can investigate Cython , which is a Python compiler that automatically removes
the dynamic typing capability and enables you to generate C code directly from
your Python code. On the Debian image you can enter apt‐get install cython
and apt‐get install python‐dev. vv

 The fi nal column provides the results for the same code running on a desktop
computer virtual machine (a 64‐bit Ubuntu 3.11.0 kernel in a VirtualBox VM,
allocated one thread on one core of an Intel i7@3.5 GHz processor and 10 GB of
RAM, with no processing cap). You can see that the relative performance of the
applications is broadly in line, but also note that the C++ program runs 40 times
faster on the single i7 thread than it does on the BBB at 1 GHz. Hopefully that
will help you frame your expectations with respect to the type of numerical
processing that is possible on a standard BBB, particularly when investigating
computationally expensive applications like signal processing and computer vision.

 As previously discussed, this is only one numerically-oriented benchmark
test, but it is somewhat indicative of the type of performance you should expect

 Chapter 5 ■ Practical BeagleBone Programming 153

from each language. There have been many studies on the performance of
languages; however, a recent and well‐specifi ed analysis by Hundt (2011) has
found that in terms of performance, “C++ wins out by a large margin. However,
it also required the most extensive tuning efforts, many of which were done
at a level of sophistication that would not be available to the average program-
mer” (Hundt, 2011).2

 Setting the BBB CPU Frequency

 In the previous section, the clock frequency of the BBB was adjusted dynami-
cally at run time. The BBB has various governors that can be used to profi le the
performance/power usage ratio. For example, if you were building a battery‐
powered BBB application that has low processing requirements, you could reduce
the clock frequency to conserve power. You can fi nd out information about the
current state of the BBB by typing the following:

 root@beaglebone:∼# cpufreq‐info
 ... available frequency steps: 300 MHz, 600 MHz, 800 MHz, 1000 MHz
 governors: conservative, ondemand, userspace, powersave, performance
 current CPU frequency is 1000 MHz (asserted by call to hardware).
 cpufreq stats: 300 MHz:95.04%, 600 MHz:0.15%, 800 MHz:0.05%,
 1000 MHz:4.76% (159)

 You can see that different governors are available, with the profi le names
conservative , ondemand , userspace , powersave , and performance . To enable
one of these governors type the following:

 root@beaglebone:∼# cpufreq‐set ‐g performance
 root@beaglebone:∼# cpufreq‐info
 current policy: frequency should be within 300 MHz and 1000 MHz.
 The governor "performance" may decide which speed to use
 root@beaglebone:∼# cpufreq‐set ‐f 800MHz
 root@beaglebone:∼# cpufreq‐info
 current CPU frequency is 800 MHz (asserted by call to hardware)

 These commands need to be executed with root privileges. If these tools
are not installed on your BBB, you can install the cpufrequtils package. The
default governor is ondemand , which will dynamically switch CPU frequencies
if the BBB reaches 95% of CPU load.

 Scripting Languages

 A scripting language is a computer programming language that is used to
specify script fi les, which are interpreted directly by a run‐time environment to
perform tasks. Many scripting languages are available, such as Bash, Perl, and

154 Part I 4 ■ BeagleBone Basics

Python, and these can be used to automate the execution of tasks on the BBB,
such as system administration, interaction, and even interfacing to electronic
components.

 Scripting Language Options

 Which scripting language should you choose for the BBB? There are many
strong opinions and it is a diffi cult topic, as Linux users tend to have a favorite
scripting language; however, you should choose the scripting language with
features that suit the task at hand. For example:

■ Bash scripting: Is a great choice for short scripts that do not require
advanced programming structures. Bash scripts are used extensively
in this book for small, well‐defi ned tasks, such as the timing code in the
previous section. You can use the Linux commands discussed in Chapter 3
in your Bash scripts.

■ Perl: Is a great choice for scripts that parse text documents or process
streams of data. It enables you to write straightforward scripts and even
supports the object‐oriented programming (OOP) paradigm, which is
discussed later in this chapter.

■ Python: Is great for scripts that need more complex structure and are
likely to be built upon or modifi ed in the future. Python supports the OOP
paradigm and dynamic typing, which is discussed shortly.

 These three scripting languages are available pre‐confi gured on the BBB
standard Debian image. It would be very useful to have some knowledge of all
of these scripting languages, as you may fi nd third‐party tools or libraries that
make your current project very straightforward. This section provides a brief
overview of each of these languages, including a concise segment of code that
performs the same function in each language. It fi nishes with a discussion about
the advantages and disadvantages of scripting languages in general.

N O T E All of the code that follows in this chapter is available in the associated

GitHub repository in the chp05 directory. If you have not done so already, use the

command git clone https://github.com/derekmolloy/exploringBB.git

in a Linux terminal window to clone this repository.

 In Chapter 2 an approach is described for changing the state of the on‐board
LEDs using Linux shell commands. It is possible to turn an LED on or off, and
even make it fl ash. For example, you can use:

 root@beaglebone:/sys/class/leds/beaglebone:green:usr3# echo none > trigger
 root@beaglebone:/sys/class/leds/beaglebone:green:usr3# echo 1 > brightness
 root@beaglebone:/sys/class/leds/beaglebone:green:usr3# echo 0 > brightness

 Chapter 5 ■ Practical BeagleBone Programming 155

 to turn a user LED on and off. This section examines how it is possible to do
the same tasks but in a structured programmatic form.

 Bash

 Bash scripts are a great choice for short scripts that do not require advanced
programming structures, and that is exactly the application to be developed
here. The fi rst program leverages the Linux console commands such as echo and
cat to create the concise script in Listing 5‐1 that enables you to choose, using
command‐line arguments, whether you wish to turn USR3 LED on or off, or
place it in a fl ashing mode. For example, using this script by calling ./bashLED
on would turn the USR3 LED on. It also provides you with the trigger status
information:

 LISTING 5‐1: chp05/bashLED/bashLED

 #!/bin/bash

 LED3_PATH=/sys/class/leds/beaglebone:green:usr3

 function removeTrigger

 {

 echo "none" >> "$LED3_PATH/trigger"

 }

 echo "Starting the LED Bash Script"

 if [$# != 1]; then

 echo "There is an incorrect number of arguments. Usage is:"

 echo -e " bashLED Command \n where command is one of "

 echo -e " on, off, flash or status \n e.g. bashLED on "

 exit 2

 fi

 echo "The LED Command that was passed is: $1"

 if ["$1" == "on"]; then

 echo "Turning the LED on"

 removeTrigger

 echo "1" >> "$LED3_PATH/brightness"

 elif ["$1" == "off"]; then

 echo "Turning the LED off"

 removeTrigger

 echo "0" >> "$LED3_PATH/brightness"

 elif ["$1" == "flash"]; then

 echo "Flashing the LED"

 removeTrigger

 echo "timer" >> "$LED3_PATH/trigger"

 echo "50" >> "$LED3_PATH/delay_on"

 echo "50" >> "$LED3_PATH/delay_off"

continues

156 Part I 6 ■ BeagleBone Basics

LISTING 5‐1: (continued)

 elif ["$1" == "status"]; then

 cat "$LED3_PATH/trigger";

 fi

 echo "End of the LED Bash Script"

 The script is available in the directory /chp05/bashLED . If you entered the
script manually using the nano editor, then the fi le needs to have the executable
fl ag set before it can be executed (the Git repository retains executable fl ags).
Therefore, to allow all users to execute this script, use the following:

 /chp05/bashLED$ chmod ugo+x bashLED

 What is happening within this script? First, all of these command scripts
begin with a sha‐bang #! followed by the name and location of the interpreter to
be used, so #!/bin/bash in this case. The fi le is just a regular text fi le, but the
sha‐bang is a magic‐number code to inform the OS that the fi le is an executable.
Next, the script defi nes the path to the LED for which you wish to change state
using the variable LED3_PATH . This allows the default value to be easily altered
if you wish to use a different user LED or path.

 The script contains a function called removeTrigger , mainly to demonstrate
how functions are structured within Bash scripting. This function is called
later in the script. Each if is terminated by a fi . The ; after the if state-
ment terminates that statement and allows the statement then to be placed
on the same line. The elif keyword means else if , which allows you to
have multiple comparisons within the one if block. The newline character
\n terminates statements.

N O T E If you happen to be writing scripts under Windows, do not use Windows

Notepad/WordPad to enter a Bash script. It will place a carriage return and line feed

at the end of each line, which will mean that you get an error message like “bad

interpreter” on the fi rst line of your scripts when they are executed under Linux. If

necessary, you can install and use Notepad++ under Windows.

 The fi rst if statement confi rms that the number of arguments passed to the
script ($#) is not equal to 1 . Remember that the correct way to call this script
is of the form ./bashLED on . Therefore, on will be the fi rst user argument
that is passed ($1) and there will be one argument in total. If there are no
arguments, then the correct usage will be displayed and the script will exit
with the return code 2 . This value is consistent with Linux system commands,
where an exit value of 2 indicates incorrect usage. Success is indicated by a
return value of 0 , so any other non‐zero return value generally indicates the
failure of a script.

 Chapter 5 ■ Practical BeagleBone Programming 157

 If the argument that was passed is on then the code displays a message;
calls the removeTrigger function; and writes the string “1” to the brightness
fi le in the LED3 /sys directory. The remaining functions modify the USR3
LED values in the same way as described in Chapter 2 . You can execute the
script as follows:

 /chp05/bashLED$./bashLED
 There are no arguments. Usage is:
 bashLED Command, where command is one of
 on, off, flash or status e.g., bashLED on
 /chp05/bashLED$./bashLED status
 The LED Command that was passed is: status
 [none] rc-feedback mmc0 mmc1 timer oneshot heartbeat backlight gpio cpu0
 /chp05/bashLED$ sudo ./bashLED on
 The LED Command that was passed is: on
 Turning the LED on
 /chp05/bashLED$ sudo ./bashLED flash
 /chp05/bashLED$ sudo ./bashLED off

 Notice that the script was prefi xed by sudo when it was called. This is
required, as the script was executed by the molloyd user account. The LED
sysfs directory is owned by the root account and regular users do not have
write access to change the state. For security reasons, you cannot use the
setuid bit on a script to set it to execute as root. If users had write access to
this script and its setuid bit was set as root, then they could inject any com-
mand that they wished into the script and would have de facto superuser
access to the system.

 A short script restoreDefaultLEDs is available in the repository chp05 direc-
tory. It returns the BBB LEDs back to their default states. For a comprehensive
online guide to Bash scripting, please see Mendel Cooper’s “Advanced Bash‐
Scripting Guide”: www.tldp.org/LDP/abs/html/ .

 Perl

 Perl is a feature‐rich scripting language that provides you with access to a huge
library of reusable modules and portability to other OSs (including Windows).
Perl is best known for its text processing and regular expressions modules. In
the late 1990s it was a very popular language for server‐side scripting for the
dynamic generation of web pages. Later it was superseded by technologies such
as Java servlets, Java Server Pages (JSP), and PHP. The language has evolved
since its birth in the 1980s and now includes support for the OOP paradigm.
Perl 5 (v14+) is installed by default on the BBB Debian Linux image. Listing 5‐2
provides a segment of a Perl example that has the same structure as the Bash
script, so it is not necessary to discuss it in detail. Apart from the syntax, very
little has actually changed in the translation to Perl.

158 Part I 8 ■ BeagleBone Basics

 LISTING 5‐2: chp05/perlLED/perlLED.pl (segment)

 #!/usr/bin/perl

 $LED3_PATH = "/sys/class/leds/beaglebone:green:usr3";

 $command = $ARGV[0];

 # Perl Write to LED3 function, the filename $_[0] is the first argument

 # and the value to write is the second argument $_[1]

 sub writeLED3{

 open(FILE, ">" . $LED3_PATH . $_[0])

 or die "Could not open the file, $!";

 print FILE $_[1] ;

 close(FILE);

 }

 sub removeTrigger{

 writeLED3 ("/trigger", "none");

 }

 print "Starting the LED Perl Script\n";

 # 0 means that there is exactly one argument

 if ($#ARGV != 0){

 print "There are an incorrect number of arguments. Usage is:\n";

 print " bashLED Command, where command is one of\n";

 print " on, off, flash or status e.g. bashLED on\n";

 exit 2;

 }

 print "The LED Command that was passed is: " . $command . "\n";

 if ($command eq "on"){

 print "Turning the LED on\n";

 removeTrigger();

 writeLED3 ("/brightness", "1");

 }

 ... //full listing available in chp05/perlLED/perlLED.pl

 A few small points are worth noting in the code: The “ <” or “ > ” sign on the
fi lename indicates whether the fi le is being opened for read or write access, respec-
tively; the arguments are passed as $ARGV[0...n] and the number of arguments
is available as the value $#ARGV ; a fi le open, followed by a read or write, and a fi le V

close are necessary to write the values to /sys ; and the arguments are passed to
the subroutine writeLED3 and these are received as the values $_[0] and $_[1] ,
which is not the most beautiful programming syntax, but it works perfectly well.
To execute this code, simply type sudo ./perlLED.pl on , as the sha‐bang identifi esn

the Perl interpreter. You could also execute it by typing perl perlLED.pl status .
 For a good resource about getting started with installing and using Perl 5,

see the guide “Learning Perl” at learn.perl.org .

 Python

 Python is a dynamic and strongly typed OOP language that was designed
to be easy to learn and understand. Dynamic typing means that you do not

 Chapter 5 ■ Practical BeagleBone Programming 159

have to associate a type (e.g., integer, character, string) with a variable; rather,
the value of the variable “remembers” its own type. Therefore, if you were
to create a variable x=5 , the variable x would behave as an integer; but if
you subsequently assign it using x=“test” , it would then behave like a
string. Statically typed languages such as C/C++ or Java would not allow the
re‐defi nition of a variable in this way (within the same scope). Strongly typed
means that the conversion of a variable from one type to another requires
an explicit conversion. The advantages of object‐oriented programming
structures are discussed later in this chapter. Python is installed by default
on the Debian BBB image. The Python example to fl ash the LED is provided
in Listing 5‐3.

 LISTING 5‐3: chp05/pythonLED/pythonLED.py

 #!/usr/bin/python

 import sys

 LED3_PATH = "/sys/class/leds/beaglebone:green:usr3"

 def writeLED (filename, value, path=LED3_PATH):

 "This function writes the passed value to the file in the path"

 fo = open(path + filename,"w")

 fo.write(value)

 fo.close()

 return

 def removeTrigger():

 writeLED (filename="/trigger", value="none")

 return

 print "Starting the LED Python Script"

 if len(sys.argv)!=2:

 print "There are an incorrect number of arguments"

 print " usage is: pythonLED.py command"

 print " where command is one of on, off, flash or status."

 sys.exit(2)

 if sys.argv[1]=="on":

 print "Turning the LED on"

 removeTrigger()

 writeLED (filename="/brightness", value="1")

 elif sys.argv[1]=="off":

 print "Turning the LED off"

 removeTrigger()

 writeLED (filename="/brightness", value="0")

 elif sys.argv[1]=="flash":

 print "Flashing the LED"

 writeLED (filename="/trigger", value="timer")

 writeLED (filename="/delay_on", value="50")

 writeLED (filename="/delay_off", value="50")
continues

160 Part I 0 ■ BeagleBone Basics

LISTING 5‐3: (continued)

 elif sys.argv[1]=="status":

 print "Getting the LED trigger status"

 fo = open(LED3_PATH + "/trigger", "r")

 print fo.read()

 fo.close()

 else:

 print "Invalid Command!"

 print "End of Python Script"

 The formatting of this code is important—in fact, Python enforces the layout of
your code by making indentation a structural element. For example, after the line
“ if len(sys.argv)!=2: ” the next few lines are “tabbed” in. If you did not tab in
one of the lines—for example, the sys.exit(2) line—then it would not be part of
the conditional if statement and the code would always exit at this point in the
program. To execute this example, in the pythonLED directory enter the following:

 /chp05/pythonLED$ sudo ./pythonLED.py flash
 Flashing the LED
 /chp05/pythonLED$./pythonLED.py status
 Getting the LED trigger status
 none rc-feedback mmc0 mmc1 [timer] oneshot heartbeat backlight gpio cpu0

 Python is very popular on the BBB, and most of the other books currently
available on the BBB use Python as the core programming language. A list of
books is provided at the end of this chapter. Compared to Perl, the syntax is
very straightforward and there is not too much to explain about the preceding
code, having explained the Bash and Perl versions.

 To conclude this discussion of scripting, there are several strong choices for
applications on the BBB. Table 5-2 lists some of the key advantages and disad-
vantages of command scripting on the BBB, when considered in the context of
the compiled languages which are discussed shortly.

Table 5-2: Advantages and Disadvantages of Command Scripting on the BBB

ADVANTAGES DISADVANTAGES

Perfect for automating Linux system
administration tasks that require calls to
Linux commands.

Performance is poor for complex numerical
or algorithmic tasks.

Easy to modify and adapt to changes.
Source code is always present and complex
toolchains (see Chapter 7) are not required
in order to make modifi cations. Generally,
nano is the only tool that you need.

Generally, relatively poor/slow
programming support for data structures,
graphical user interfaces, sockets, threads,
etc.

 Chapter 5 ■ Practical BeagleBone Programming 161

 JavaScript and Java

 With the interpreted languages just discussed, the source code text fi le is “exe-
cuted” by the user passing it to a run‐time interpreter, which then translates
or executes each line of code. JavaScript and Java have different life cycles and
are quite distinct languages.

 JavaScript and Node.js on the BBB

 As discussed in Chapter 2 , in the section “Node.js, Cloud9, and BoneScript,”
Node.js is JavaScript that is run on the server side. JavaScript is an interpreted
language by design; however, thanks to the V8 engine that was developed by
Google for their Chrome web browser, Node.js actually compiles JavaScript into
native machine instructions as it is loaded by the engine. This is called just‐in‐
time (JIT) compilation or dynamic translation . As demonstrated at the beginning
of this chapter, Node.js’s performance for the numerical computation tasks is
very impressive for an interpreted language.

 Listing 5-4 shows the same LED code example written using JavaScript and
executed by calling the nodejs executable:

 LISTING 5‐4: chp05/nodejsLED/nodejsLED.js

 // Ignore the first two arguments (nodejs and the program name)

 var myArgs = process.argv.slice(2);

 var LED3_PATH = "/sys/class/leds/beaglebone:green:usr3"

 function writeLED(filename, value, path){

 var fs = require('fs');

 try {

 // The next call must be syncronous, otherwise the timer will not work

 fs.writeFileSync(path+filename, value);

 }

 catch (err) {

continues

ADVANTAGES DISADVANTAGES

Generally, straightforward programming
syntax and structure that is reasonably easy
to learn when compared to languages like
C++ and Java.

Generally, poor support for complex
applications involving multiple, user‐
developed modules or components
(Python and Perl do support OOP).

Generally, quick turnaround in coding
solutions by occasional programmers.

Code is in the open. Direct access to view
your code can be an intellectual property or
a security concern.

Lack of development tools (e.g., refactoring).

162 Part I ■ BeagleBone Basics

 console.log("The Write Failed to the File: " + path+filename);

 }

 }

 function removeTrigger(){

 writeLED("/trigger", "none", LED3_PATH);

 }

 console.log("Starting the LED Node.js Program");

 if (myArgs[0]==null){

 console.log("There is an incorrect number of arguments.");

 console.log(" Usage is: nodejs nodejsLED.js command");

 console.log(" where command is one of: on, off, flash or status.");

 process.exit(2); //exits with the error code 2 (incorrect usage)

 }

 switch (myArgs[0]) {

 case 'on':

 console.log("Turning the LED On");

 removeTrigger();

 writeLED("/brightness", "1", LED3_PATH);

 break;

 case 'off':

 console.log("Turning the LED Off");

 removeTrigger();

 writeLED("/brightness", "0", LED3_PATH);

 break;

 case 'flash':

 console.log("Making the LED Flash");

 writeLED("/trigger", "timer", LED3_PATH);

 writeLED("/delay_on", "50", LED3_PATH);

 writeLED("/delay_off", "50", LED3_PATH);

 break;

 case 'status':

 console.log("Getting the LED Status");

 fs = require('fs');

 fs.readFile(LED3_PATH+"/trigger", 'utf8', function (err, data) {

 if (err) { return console.log(err); }

 console.log(data);

 });

 break;

 default:

 console.log("Invalid Command");

 }

 console.log("End of Node.js script");

 The code is available in the /chp05/nodejsLED / directory and it can be executed
by typing nodejs nodejsLED.js [option] . The code has been structured in
the same way as the previous examples and there are not too many syntactical
differences; however, there is one major difference between Node.js and other
languages: functions are called asynchronously . Up to this point, all of the languagesy

LISTING 5‐4: (continued)

 Chapter 5 ■ Practical BeagleBone Programming 163

discussed followed a sequential‐execution mode. Therefore, when a function
is called, the program counter (also known as the instruction pointer) enters that rr
function and does not reemerge until the function is complete. Consider, for
example, code like this:

 functionA();
 functionB();

 The functionA() is called and functionB() will not be called until functionA()
is fully complete. This is not the case in Node.js! In Node.js, functionA() is
called fi rst and then Node.js continues executing the subsequent code, including
entering functionB() , while the code in functionA() is still being executed.
This presents a serious diffi culty for the current application, with this segment
of code in particular:

 case 'flash':
 console.log("Making the LED Flash");
 writeLED("/trigger", "timer", LED3_PATH);
 writeLED("/delay_on", "50", LED3_PATH);
 writeLED("/delay_off", "50", LED3_PATH);
 break;

 The fi rst call to writeLED() sets up the sysfs fi le system (as described in
Chapter 2) to now contain new delay_on and delay_off fi le entries. However,
due to the asynchronous nature of the calls, the fi rst writeLED() call has not
fi nished setting up the fi le system before the next two writeLED() calls are
performed. This means that the delay_on and delay_off fi le system entries
are not found, and the code to write to them fails. You should test this by
changing the call near the top of the program from fs.writeFileSync(...)
to fs.writeFile(...) .

 To combat this issue you can synchronize (prevent threads from being
interrupted) the block of code where the three writeLED() functions are
called, ensuring that the functions are called sequentially. Alternatively, as
shown in this code example, you can use a special version of the Node.js
writeFile() function called writeFileSync() to ensure that the fi rst func-
tion call to modify the fi le system blocks the other writeFileSync() calls
from taking place.

 Node.js allows asynchronous calls because they help ensure that your code
is “lively.” For example, if you performed a database query, your code may be
able to do something else useful while awaiting the result. When the result is
available, a callback function is executed in order to process the received data.
This asynchronous structure is perfect for Internet‐attached applications, where
posts and requests are being made of websites and web services, and it is not
clear when a response will be received (if at all). Node.js has an event loop that
manages all the asynchronous calls, creating threads for each call as required,

164 Part I 4 ■ BeagleBone Basics

and ensuring that the callback functions are executed when an asynchronous
call completes its assigned tasks.

 Java on the BBB

 Up to this point in the chapter, interpreted languages are examined, meaning the
source code fi le (a text fi le) is executed using an interpreter or dynamic transla-
tor at run time. Importantly, the code exists in source code form, right up to the
point when it is executed using the interpreter.

 With traditional compiled languages , the source code (a text fi le) is translated
directly into machine code for a particular platform using a set of tools, which
we will call a compiler for the moment. The translation happens when the code
is being developed; once compiled, the code can be executed without needing
any additional run‐time tools.

 Java is a hybrid language: You write your Java code in a source fi le, e.g.,
example.java , which is a regular text fi le. The Java compiler (javac) compiles
and translates this source code into machine code instructions (called bytecodes) s
for a Java virtual machine (VM). Regular compiled code is not portable between
hardware architectures, but bytecode fi les (. class fi les) can be executed on any
platform that has an implementation of the Java VM. Originally, the Java VM
interpreted the bytecode fi les at run time; however, more recently, dynamic
translation is employed by the VM to convert the bytecodes into native machine
instructions at run time.

 The key advantage of this life cycle is that the compiled bytecode is portable
between platforms; and because it is compiled to a generic machine instruc-
tion code, the dynamic translation to “real” machine code is very effi cient. The
downside of this structure when compared to compiled languages is that the
VM adds overhead to the execution of the fi nal executable.

 Presently, there is no version of the Java Development Kit for embedded Linux,
which prevents you from compiling code directly on the BBB. In addition, the
Java Runtime Environment (JRE), which provides the Java virtual machine
(JVM), is not installed on the BBB by default.

N O T E Large installations such as the JRE might cause you to run out of space

on your BBB. You can fi nd the biggest packages that are installed on your dis-

tribution using the command dpkg‐query ‐Wf '${Installed‐Size}\

t${Package}\n' | sort ‐n . You can then remove large unused packages using

apt‐get remove .

 There is a full guide to installing the JRE on the BBB and the JDK on a
desktop Linux machine at the chapter web page. Listing 5‐5 provides a

 Chapter 5 ■ Practical BeagleBone Programming 165

source code example that is also available in the GitHub repository in byte-
code form.

 LISTING 5‐5: chp05/javaLED/LEDExample.java (Segment)

 package exploringBB;

 import java.io.*;

 public class LEDExample {

 private static String LED3 = "/sys/class/leds/beaglebone:green:usr3";

 private static void writeLED(String fname, String value, String path){

 try{

 BufferedWriter bw = new BufferedWriter(new FileWriter(path+fname));

 bw.write(value);

 bw.close();

 }

 catch(IOException e){

 System.err.println("Failed to access Sysfs: " + fname);

 }

 }

 private static void removeTrigger(){

 writeLED("/trigger", "none", LED3);

 }

 public static void main(String[] args) {

 System.out.println("Starting the LED Java Application");

 if(args.length!=1) {

 System.out.println("Incorrect number of arguments."); ...

 System.exit(2);

 }

 if(args[0].equalsIgnoreCase("On")││args[0].equalsIgnoreCase("Off")){

 System.out.println("Turning the LED " + args[0]);

 removeTrigger();

 writeLED("/brightness",args[0].equalsIgnoreCase("On")?"1":"0",LED3);

 }

 ... // full code available in the repository directory

 }

 }

 Early versions of Java suffered from poor computational performance; how-
ever, more recent versions take advantage of dynamic translation at run time
(just‐in‐time, or JIT, compilation) and, as demonstrated at the start of this chapter,
the performance was less than 20% slower (including dynamic translation) than
that of the natively compiled C++ code, with only a minor additional memory
overhead. Table 5-3 lists some of the advantages and disadvantages of using
Java for development on the BBB.

166 Part I 6 ■ BeagleBone Basics

 To execute a Java application under Debian/Ubuntu, where it needs access to
the /sys directory, you need the application to run with root access. Unfortunately,
because you need to pass the bytecode (.class) fi le to the Java VM, you have to
call sudo and create a temporary shell of the form sudo sh ‐c 'java myClass' .
However, because you set the environment variables for PATH and JAVA_HOME
within the user account, these will not be present in the root account. For example:

 /chp05/javaLED$ export TEST=test
 /chp05/javaLED$ sudo sh ‐c 'echo $TEST'
 /chp05/javaLED$ sudo ‐E sh ‐c 'echo $TEST'
 test

N O T E Instead of logging out and logging in again to apply profi le settings, you can

use the source command, which evaluates a fi le as a Tcl (Tool Command Language)

script to reload your .profile settings. Type source ∼/.profile .

 In the fi rst case, there was no output, as the TEST environment variable is not
passed to the root shell; however, the addition of ‐E means that the variable is
passed. Unfortunately, this will not work for PATH , because to prevent Trojan
horse application attacks, the root PATH is set in the /etc/sudoers fi le. Therefore,

Table 5-3: Advantages and Disadvantages of Java on the BBB

ADVANTAGES DISADVANTAGES

Code is portable. Code compiled on the
PC can be executed on the BBB or another
embedded Linux platform.

You cannot currently build your Java
applications directly on the BBB.

There is a vast and extensive library of code
available that can be fully integrated in your
project.

Executing as root is slightly diffi cult due to
required environment variables.

Full OOP support. It’s not suitable for scripting.

Can be used for user‐interface application
development on the BBB when it is
attached to a display.

Computational performance is very
respectable, but slower than optimized C/
C++ programs. Slightly heavier on memory.

Strong support for multi‐threading. Strictly typed and no unsigned integer
types.

Has automatic memory allocation and
de‐allocation using a garbage collector,
removing memory leak concerns.

Royalty payment required if deployed
to a platform that “involves or controls
hardware” (Oracle, 2014).3

Sandboxed applications do not have access
to system memory, registers or system calls
(except through /proc) or JNI (Java Native
Interface).

 Chapter 5 ■ Practical BeagleBone Programming 167

to execute your Java application, you have to modify the sudoers confi guration
fi le using sudo visudo and add the following modifi cations:

■ Change secure_path to include /usr/java/jre/bin/ .

■ Add the line Defaults env_keep += “JAVA_HOME” .

 The application can eventually be executed using the following:

 /chp05/javaLED$ sudo sh ‐c 'java exploringBB.LEDExample On'
 /chp05/javaLED$ sudo sh ‐c 'java exploringBB.LEDExample Off'

 C and C++ on the BeagleBone

 C++ was developed by Bjarne Stroustrup at Bell Labs (now AT&T Labs) during
1983–1985. It is based on the C language (named in 1972) that was developed
at AT&T for UNIX systems in the early 1970s (1969–1973) by Dennis Ritchie.
As well as adding an object‐oriented (OO) framework (originally called “C with
Classes”), C++ also improves the C language by adding features such as better
type checking. It quickly gained widespread usage, which was largely due to its
similarity to the C programming language syntax, and the fact that it allowed
existing C code to be used when possible. C++ is not a pure OO language but
rather a hybrid, having the organizational structure of OO languages but retain-
ing the effi ciencies of C, such as typed variables and pointers.

 Unlike Java, C++ is not “owned” by a single company. In 1998 the ISO
(International Organization for Standardization) committee adopted a world-
wide uniform language specifi cation that aimed to remove inconsistencies
between the various C++ compilers (Stroustrup, 1998).4 This standardization
continues today with C++11 approved by the ISO in 2011 (gcc 4.7+ supports the
fl ag ‐std=c++11) and more new features appearing in compilers today with the
approval of C++14 in August 2014.

 Why am I covering C and C++ in more detail than other languages in this book?

■ First, I believe that if you can understand the workings of C and C++, then
you can understand the workings of any language. In fact, most compilers
(Java native methods, Java virtual machine, JavaScript) and interpreters
(Bash, Perl, Python) are written in C.

■ At the beginning of this chapter, a signifi cant performance advantage of
C/C++ over other languages was described (yes, it was demonstrated
using only one random test!). It is also important to remember that the
same code running on the BBB at 1 GHz was 40 times slower than the
same code running on only one thread (two available on each core) of
one core (four available) of an Intel i7 3.5 GHz processor. Resources on
the BBB are not so plentiful that they can be wasted with ineffi ciencies.

168 Part I 8 ■ BeagleBone Basics

■ If you are to build upon the content of this book and develop your own
device drivers, or contribute to Linux kernel development, you need to
understand C and/or C++. Later in this chapter, code is provided that
demonstrates how you can communicate directly with Linux kernel space
using the GNU C Library (glibc).

■ Many of the application examples in this book such as streaming network
data and image processing use C++ and a comprehensive library of C++
code called Qt.

 Table 5-4 lists some advantages and disadvantages of using C/C++ on the BBB.
The next section reviews some of the fundamentals of C and C++ programming,
in order to ensure that you have the skills necessary for the remaining chapters
in this book. It is not possible to cover every aspect of C and C++ programming
in just one chapter of one book. The Further Reading section at the end of this
chapter directs you to recommended texts.

Table 5-4: Advantages and Disadvantages of C/C++ on the BBB

ADVANTAGES DISADVANTAGES

You can build code directly on the BBB or
you can cross‐compile code. The C/C++
languages are ISO standards, not owned by a
single vendor.

Compiled code is not portable. Code
compiled for your x86 desktop will not run
on the BBB ARM processor.

C++ has full support for procedural
programming, OOP, and support for generics
through the use of STL (Standard Template
Library).

Many consider the languages to be complex
to master. There is a tendency to need
to know everything before you can do
anything.

It gives the best computational performance,
especially if optimized; however,
optimization can be diffi cult and can reduce
the portability of your code.

The use of pointers and the low‐level control
available makes code prone to memory leaks.
With careful coding these can be avoided
and can lead to effi ciencies over dynamic
memory management schemes.

Can be used for user‐interface application
development on the BBB using third‐party
libraries. Libraries such as Qt and Boost
provide extensive additional libraries for
components, networking, etc.

By default, C and C++ do not support
graphical user interfaces, network sockets,
etc. Third‐party libraries are required.

Off ers low‐level access to glibc for
integrating with the Linux system. Programs
can be setuid to root.

Not suitable for scripting (there is a C shell,
csh, that does have syntax like C). Not ideal
for web development either.

The Linux kernel is written in C and having
knowledge of C/C++ can help if you ever
have to write device drivers or contribute to
Linux kernel development.

C++ attempts to span from low‐level to
high‐level programming tasks, but it can be
diffi cult to write very scalable enterprise or
web applications.

 Chapter 5 ■ Practical BeagleBone Programming 169

 The next section provides a revision of the core principles that have been
applied to examples on the BBB. It is intended to serve as an overview and a set
of reference examples that you can come back to again and again. It also focuses
on topics that cause my students diffi culties, pointing out common mistakes.
Also, please remember that course notes for my OOP module are publicly avail-
able at ee402.eeng.dcu.ie along with further support materials.

 C and C++ Language Overview

 The following examples can be edited using the nano editor and compiled on
the BBB directly using the gcc and g++ compilers, which are installed by default.
The code is in the directory chp05/overview .

 The fi rst example you should always write in any new language is “Hello
World.” Listing 5‐6 and 5‐7 provide C and C++ code respectively, for the purpose
of a direct comparison of the two languages.

 LISTING 5‐6: chp05/overview/helloworld.c

 #include <stdio.h>

 int main(int argc, char *argv[]){

 printf("Hello World!\n");

 return 0;

 }

 LISTING 5‐7: chp05/overview/helloworld.cpp

 #include<iostream>

 int main(int argc, char *argv[]){

 std::cout << "Hello World!" << std::endl;

 return 0;

 }

 The #include call is a pre‐processor directive that effectively loads the contents
of the stdio.h fi le (/usr/include/stdio.h) in the C case, and the iostream
header (/usr/include/c++/4.X/iostream) fi le in the C++ case, and copies and
pastes the code in at this exact point in your source code fi le. These header fi les
contain the function prototypes, enabling the compiler to link to and under-
stand the format of functions such as printf() in stdio.h and streams like
cout in iostream . The actual implementation of these functions is in shared
library dependencies. The angular brackets (< >) around the include fi lename
means that it is a standard, rather than a user‐defi ned include (which would
use double quotes).

 The main() function is the starting point of your application code. There
can only be one function called main() in your application. The int in front

170 Part I 0 ■ BeagleBone Basics

of main() indicates that the program will return a number back to the shell
prompt. As stated before, it is good to use 0 for successful completion, 2 for
invalid usage, and any other set of numbers to indicate failure conditions. This
value is returned to the shell prompt using the line return 0 in this case. The
main() function will return 0 by default. Remember that you can use echo $?
at the shell prompt to see the last value that was returned.

 The parameters of the main() function are int argc and char *argv[] . As you
saw in the scripting examples, the shell can pass arguments to your application,
providing the number of arguments (argc) and an array of strings (*argv[]).
In C/C++ the fi rst argument passed is argv[0] and it contains the name and
full path used to execute the application.

 The C code line printf(“Hello World!\n”); allows you to write to the Linux
shell, with the \n representing a new line. The printf() function provides you
with additional formatting instructions for outputting numbers, strings, etc.
Note that every statement is terminated by a semicolon.

 The C++ code line std::cout << "Hello World!" << std::endl; outputs
a string just like the printf() function. In this case cout represents the output
stream; and the function used is actually the << , which is called the output stream
operator . The syntax is discussed later, but rr std::cout means the output stream
in the namespace std . The endl (end line) representation is the same as \n . This
may seem more verbose, but you will see why it is useful later in the discussion
on C++ classes. These programs can be compiled and executed directly on the
BBB by typing the following:

 /chp05/overview$ gcc helloworld.c ‐o helloworldc
 /chp05/overview$./helloworldc
 Hello World!
 /chp05/overview$ g++ helloworld.cpp ‐o helloworldcpp
 /chp05/overview$./helloworldcpp
 Hello World!

 The sizes of the C and C++ executables are different to account for the differ-
ent header fi les, output functions, and exact compilers that are used:

 /chp05/overview$ ls ‐l helloworldc*
 ‐rwxr‐xr‐x 1 molloyd users 5053 Mar 14 12:23 helloworldc
 ‐rwxr‐xr‐x 1 molloyd users 6559 Mar 14 12:24 helloworldcpp

 Compiling and Linking

 You just saw how to build a C or C++ application, but there are a few interme-
diate steps that are not obvious in the preceding example, as the intermediate
stage outputs are not retained by default. Figure 5-1 illustrates the full build
process from preprocessing right through to linking.

 Chapter 5 ■ Practical BeagleBone Programming 171

 You can perform the steps in Figure 5-1 yourself. Here is an example of the
actual steps that were performed using the Helloworld.cpp code example. The
steps can be performed explicitly as follows, so that you can view the output
at each stage:

 /chp05/overview$ ls
 helloworld.cpp
 /chp05/overview$ g++ ‐E helloworld.cpp > processed.cpp
 /chp05/overview$ ls
 helloworld.cpp processed.cpp
 /chp05/overview$ g++ ‐S processed.cpp ‐o helloworld.s
 /chp05/overview$ ls
 helloworld.cpp helloworld.s processed.cpp
 /chp05/overview$ g++ ‐c helloworld.s
 /chp05/overview$ ls
 helloworld.cpp helloworld.o helloworld.s processed.cpp
 /chp05/overview$ g++ helloworld.o ‐o helloworld
 /chp05/overview$ ls
 helloworld helloworld.cpp helloworld.o helloworld.s processed.cpp
 /chp05/overview$./helloworld
 Hello World!

 You can see the text format output after preprocessing by typing less
processed.cpp , where you will see the necessary header fi les pasted in at the
top of your code. At the very bottom of the fi le you will fi nd your code. This
fi le is passed to the C/C++ compiler, which validates the code and generates
platform‐independent assembler code (.s). You can view this code by typing
less helloworld.s , as illustrated in Figure 5-1 .

 Figure 5-1: Building C/C++ applications on the BBB

172 Part I ■ BeagleBone Basics

 This .s text fi le is then passed to the assembler, which converts the platform‐
independent instructions into binary instructions for the BBB platform (the .o
fi le). You can see the assembly language code that was generated if you use the
objdump (object fi le dump) tool on the BBB by typing objdump ‐D helloworld.o, o

as illustrated in Figure 5-1 .
 Object fi les contain generalized binary assembly code that does not yet pro-

vide enough information to be executed on the BBB. However, after linking the
fi nal executable code, helloworld contains the target‐specifi c assembly language
code that has been combined with the libraries, statically and dynamically as
required—you can use the objdump tool again on the executable, which results
in the following output:

 /chp05/overview$ objdump ‐D helloworld | less
 helloworldcpp: file format elf32-littlearm
 Disassembly of section .interp:
 00008134 <.interp>:
 8134: 62696c2f rsbvs r6, r9, #12032 ; 0x2f00
 8138: 2d646c2f stclcs 12, cr6, [r4, #-188]! ; 0xffffff44
 813c: 756e696c strbvc r6, [lr, #-2412]! ; 0x96c
 ...

 The meaning of these instructions is another book in and of itself (see
infocenter.arm.com for reference documentation), but for example in this
case the mnemonic rsbvs refers to a type of reverse subtraction on the two of
the ARM processor’s 16, 32‐bit registers (labeled r0–r15). Finally, just so you are
aware, it is possible to disassemble executable code, in order that the source
code can be reverse engineered. For example:

 /chp05/overview$ objdump ‐S --disassemble helloworld > test.dump
 /chp05/overview$ less test.dump

 Writing the Shortest C/C++ Program

 Is the HelloWorld example the shortest program that can be written in C or
C++? No, Listing 5‐8 is the shortest valid C and C++ program.

 LISTING 5‐8: chp05/overview/short.c

 main(){}

 This is a fully functional C and C++ program that compiles with no errors
and works perfectly, albeit with no output. Therefore, in building a C/C++
program, there is no need for libraries; there is no need to specify a return
type for main() , as it defaults to int ; the main() function returns 0 by default
in C++ and a random number in C (see echo $? call below); and an empty

 Chapter 5 ■ Practical BeagleBone Programming 173

function is a valid function. This program will compile as a C or C++ pro-
gram as follows:

 /chp05/overview$ gcc short.c ‐o shortc
 /chp05/overview$ g++ short.c ‐o shortcpp
 /chp05/overview$ ls ‐l short*
 -rw-r--r-- 1 molloyd users 9 Mar 14 12:34 short.c
 -rwxr-xr-x 1 molloyd users 4912 Mar 14 12:40 shortc
 -rwxr-xr-x 1 molloyd users 5040 Mar 14 12:40 shortcpp
 /chp05/overview$./shortc
 /chp05/overview$ echo $?
 97
 /chp05/overview$./shortcpp
 /chp05/overview$ echo $?
 0

 This is one of the greatest weaknesses of C and C++. There is an assumption
that you know everything about the way the language works before you write
anything. In fact, aspects of the preceding example might be used by a program-
mer to demonstrate how clever they are, but they are actually demonstrating
poor practice in making their code unreadable by less “expert” programmers.
For example, if you rewrite the C++ code in short.cpp to include comments and
explicit statements, to create short2.cpp , and then compile both using the ‐O3
optimization fl ag, the output will be as follows:

 /chp05/overview$ more short.cpp
 main(){}
 /chp05/overview$ more short2.cpp
 // A really useless program, but a program nevertheless
 int main(int argc, char **argv){
 return 0;
 }
 /chp05/overview$ g++ ‐O3 short.cpp ‐o short1
 /chp05/overview$ g++ ‐O3 short2.cpp ‐o short2
 /chp05/overview$ ls ‐l short*
 -rw-r--r-- 1 molloyd users 9 Mar 14 13:20 short.cpp
 ‐rwxr‐xr‐x 1 molloyd users 5030 Mar 14 13:28 short1
 ‐rwxr‐xr‐x 1 molloyd users 5031 Mar 14 13:28 short2
 -rw-r--r-- 1 molloyd users 107 Mar 14 12:59 short2.cpp

 Note that the difference in the executable size is only one byte! Adding the
comment, the explicit return statement, the explicit return type, and explicit argu-
ments has had no impact on the size of the fi nal binary application. The binary
executable is one byte longer because the source fi lename is one byte longer (i.e.,
short2.cpp rather than short.cpp). However, the benefi t is that the actual func-
tionality of the code is much more readily understood by a novice programmer.

 You can build with the fl ag ‐static to statically link the libraries, rather than
the default form of linking dynamically with shared libraries. This means that

174 Part I 4 ■ BeagleBone Basics

the compiler and linker effectively place all the library routines required by
your code directly within the program executable:

 /chp05/overview$ g++ ‐O3 short.cpp ‐static ‐o shortst
 /chp05/overview$ ls ‐l shortst
 -rwxr-xr-x 1 molloyd users 455914 Mar 14 12:46 shortst

 It is clear that the program executable size has grown signifi cantly. One
advantage of this form is that the program can be executed by ARM systems
on which the C++ standard libraries are not installed.

 With dynamic linking, it is useful to note that you can discover which shared
library dependencies your compiled code is using, by calling ldd :

 /chp05/overview$ ldd short1
 libstdc++.so.6 => /usr/lib/arm‐linux‐gnueabihf /libstdc++.so.6 (0xb...)
 libm.so.6 => /lib/arm-linux-gnueabihf/libm.so.6 (0xb6ea4000)
 libgcc_s.so.1 => /lib/arm-linux-gnueabihf/libgcc_s.so.1 (0xb6e80000)
 libc.so.6 => /lib/arm-linux-gnueabihf/libc.so.6 (0xb6d9b000)
 /lib/ld-linux-armhf.so.3 (0xb6fc9000)

 You can see that the g++ compiler (and glibc) on the Debian image for the
BBB has been patched to support the generation of hard fl oating‐point (HardFP)
instructions by default. This allows for faster code execution with fl oating‐point
numbers than if it used the soft fl oating‐point ABI (application binary interface)
to emulate fl oating‐point support in software (SoftFP ABI).

 Variables and Operators in C/C++

 A variable is a data item stored in a block of memory that has been reserved for
it. The type of the variable defi nes the amount of memory reserved and how
it should behave (see Figure 5-2). This fi gure describes the output of the code
example sizeofvariables.c in Listing 5‐9.

 Figure 5-2: Memory allocation for variables running on the 32‐bit BBB

 Chapter 5 ■ Practical BeagleBone Programming 175

 Listing 5‐9 details various variables available in C/C++. When you create a
local variable c below, it is allocated a box/block of memory on the stack (prede-k
termined reserved fast memory) depending on its type. In this case, c is an int
value; therefore, four bytes (32 bits) of memory is allocated to store the value.
Assume that variables in C/C++ are initialized with random values; therefore,
in this case c = 545; replaces that initial random value by placing the number
545 in the box. It does not matter if you store the number 0 or 2,147,483,647
in this box: it will still occupy 32 bits of memory! Please note that there is no
guarantee regarding the ordering of local variable memory—it was fortuitously
linear in this particular example.

 LISTING 5‐9: chp05/overview/sizeofvariables.c

 #include<stdio.h>

 #include<stdbool.h> //required for the C bool typedef

 int main(){

 double a = 3.14159;

 float b = 25.0;

 int c = 545; //Note: variables are not = 0 by default!

 long int d = 123;

 char e = 'A';

 bool f = true; // no need for definition in C++

 printf("a val %.4f & size %d bytes (@addr %p).\n", a, sizeof(a),&a);

 printf("b val %4.2f & size %d bytes (@addr %p).\n", b, sizeof(b),&b);

 printf("c val %d (oct %o, hex %x) & " \

 "size %d bytes (@addr %p).\n", c, c, c, sizeof(c), &c);

 printf("d val %d & size %d bytes (@addr %p).\n", d, sizeof(d), &d);

 printf("e val %c & size %d bytes (@addr %p).\n", e, sizeof(e), &e);

 printf("f val %5d & size %d bytes (@addr %p).\n", f, sizeof(f), &f);

 }

 The function sizeof(c) returns the size of the type of the variable in bytes.
In this example, it will return 4 for the size of the int type. The &c call can be
read as the “ address of“ ” ff c . This provides the address of the fi rst byte that stores
the variable c , in this case returning 0xbe8d6688 . The %.4f on the fi rst line
means display the fl oating‐point number to four decimal places. Executing this
program on the BBB gives the following:

 /chp05/overview$./sizeofvariables
 a val 3.1416 & size 8 bytes (@addr 0xbe8d6690).
 b val 25.00 & size 4 bytes (@addr 0xbe8d668c).
 c val 545 (oct 1041, hex 221) & size 4 bytes (@addr 0xbe8d6688).
 d val 123 & size 4 bytes (@addr 0xbe8d6684).
 e val A & size 1 bytes (@addr 0xbe8d6683).
 f val 1 and size 1 bytes (@addr 0xbe8d6682).

176 Part I 6 ■ BeagleBone Basics

 The BBB has a 32‐bit microcontroller, so you are using four bytes to represent
the int type. The smallest unit of memory that you can allocate is one byte, so,
yes, you are representing a Boolean value with one byte, which could actually
store eight unique Boolean values. You can operate directly on variables using
operators. The program operators.c in Listing 5‐10 contains some points that
often cause diffi culty in C/C++:

 LISTING 5‐10: chp05/overview/operators.c

 #include<stdio.h>

 int main(){

 int a=1, b=2, c, d, e, g;

 float f=9.9999;

 c = ++a;

 printf("The value of c=%d and a=%d.\n", c, a);

 d = b++;

 printf("The value of d=%d and b=%d.\n", d, b);

 e = (int) f;

 printf("The value of f=%.2f and e=%d.\n", f, e);

 g = 'A';

 printf("The value of g=%d and g=%c.\n", g, g);

 return 0;

 }

 This will give the following output:

 /chp05/overview$./operators
 The value of c=2 and a=2.
 The value of d=2 and b=3.
 The value of f=10.00 and e=9.
 The value of g=65 and g=A.

 On the line c=++a; the value of a is pre‐incremented before the equals assign-
ment to c on the left‐hand side. Therefore, a was increased to 2 before assigning
the value to c , so this line is equivalent to two lines: a=a+1; c=a; . However,
on the line d=b++; the value of b is post‐incremented and is equivalent to two
lines: d=b; b=b+1; The value of d is assigned the value of b , which is 2 , before
the value of b is incremented to 3 .

 On the line e=(int)f; a C‐style cast is being used to convert a fl oating‐point
number into an integer value. Effectively, when programmers use a cast they are
notifying the compiler that they are aware that there will be a loss of precision
in the conversion of a fl oating‐point number to an int . The fractional part will
be truncated, so 9.9999 will be converted to e=9 , as the .9999 is removed by the
truncation. One other point to note is that the printf(“%.2f”,f) will display the
fl oating‐point variable to two decimal places, in contrast, rounding the value.

 Chapter 5 ■ Practical BeagleBone Programming 177

 On the line g='A' , g is assigned the ASCII equivalent value of capital A, which
is 65 . The printf(“%d %c”, g, g); will display either the int value of g if %d
 is used, or the ASCII character value of g if %c is used.

 A const keyword can be used to prevent a variable from being changed.
There is also a volatile keyword that is useful for notifying the compiler that a
particular variable might be changed outside its control, and that the compiler
should not apply any type of optimization to that value. This notifi cation is
useful on the BBB if the variable in question is shared with another process or
physical input/output.

 It is possible to defi ne your own type in C/C++ using the typedef keyword. f
For example, if you did not want to include the header fi le stdbool.h in the
sizeofvariables.c previous example, it would be possible to defi ne it in this
way instead:

 typedef char bool;
 #define true 1
 #define false 0

 Probably the most common and most misunderstood mistake in C/C++
programming is present in the following code segment:

 if (x=y){
 // perform a body statement Z
 }

 When will the body statement Z be performed? The answer is whenever y
is not equal to 0 (the current value of x is irrelevant!). The mistake is placing
a single = (assignment) instead of == (comparison) in the if statement. The
assignment operator returns the value on the RHS, which will be automatically
converted to true if y is not equal to 0 . If y is equal to zero, then a false value
will be returned. Java does not allow this error, as there is no implicit conver-
sion between 0 and false and 1 and true .

 Pointers in C/C++

 A pointer is a special type of variable that stores the address of another variable
in memory—we say that the pointer is “pointing at” that variable. Listing 5‐11
is a code example that demonstrates how you can create a pointer p and make
it point at the variable y :

 LISTING 5‐11: chp05/overview/pointers.c

 #include<stdio.h>

 int main(){

 int y = 1000;
continues

178 Part I 8 ■ BeagleBone Basics

LISTING 5‐11: (continued)

 int *p;

 p = &y;

 printf("The variable has value %d and the address %p.\n", y, &y);

 printf("The pointer stores %p and points at value %d.\n", p, *p);

 printf("The pointer has address %p and size %d.\n", &p, sizeof(p));

 return 0;

 }

 When this code is compiled and executed, it will give the following output:

 /chp05/overview$./pointers

 The variable has value 1000 and the address 0xbede26bc.

 The pointer stores 0xbede26bc and points at value 1000.

 The pointer has address 0xbede26b8 and size 4.

 So, what is happening in this example? Figure 5-3 illustrates the memory
locations and the steps involved. In Step 1, the variable y is created and assigned
the initial value of 1000 . A pointer p is then created with the dereference type
of int . In essence, this means that the pointer p is being established to point at
int values. In Step 2, the statement p = &y; means “let p equal the address of
y ,” which sets the value of p to be the 32‐bit address 0xbede26bc . We now say
that p is pointing at y . These two steps could have been combined using the
call int *p = &y; (i.e., create a pointer p of dereference type int and assign it
to the address of y).

 Figure 5-3: Example of pointers in C/C++ on the BBB (with 32‐bit addresses)

 Why does a pointer need a dereference type? For one example, if a pointer
needs to move to the next element in an array, then it needs to know whether
it should move by four bytes, eight bytes, etc. Also, in C++ you need to be able
to know how to deal with the data at the pointer based on its type. Listing 5‐12
is an example of working with pointers and arrays.

 Chapter 5 ■ Practical BeagleBone Programming 179

 LISTING 5‐12: chp05/overview/pointerarray.c

 #include<stdio.h>

 int main(){

 int x[5] = { 100, 200, 300, 400, 500 };

 int *p = &x[0], i;

 for(i=0; i<5; i++){

 (*(p++))++;

 }

 for(i=0; i<5; i++){

 printf("The value of x[%d] is %d\n", i, x[i]);

 }

 return 0;

 }

 This will give the output as follows:

 /chp05/overview$./pointerarray

 The value of x[0] is 101

 The value of x[1] is 201

 The value of x[2] is 301

 The value of x[3] is 401

 The value of x[4] is 501

 In this example, the pointer p is of dereference type int and it is set to point at the
fi rst element in an array of fi ve int values using the statement int *p = &x[0]; .
The line of code to focus on here is (*(p++))++; (this is why pointers have a bad
name!). Please note that the () are very important, as they set the order of opera-
tions. In this case the inner (p++) makes the pointer point at the next element in
the array; however, because it is a post‐increment, the increment happens after the
end of this line. Therefore, this entire line could be written as : (*p)++; p++; . The
(*p)++ means increment the value stored at the address, changing 100 to 101 on
the fi rst iteration of the for loop. Pointer notation can be complex, but remember
that the dereference type is needed because in this case the p++ call needs to know
to move four bytes forward in memory. If p were of dereference type double (i.e.,
double *p;), then the pointer would move by eight bytes when p++; is called.

 Part of the diffi culty of using pointers in C/C++ is understanding the order
of operations in C/C++, called the precedence of the operations. For example, if
you write the statement

 int x = 1 + 2 * 3;

 what will the value of x be? In this case it will be 7, because in C/C++ the mul-
tiplication operator has a higher level of precedence than the addition operator.
The same issue occurs if you believe that you are incrementing the value at x

180 Part I 0 ■ BeagleBone Basics

by the statement *x++ , as the ++ operator will be applied before the dereference
operator, incrementing the pointer and uselessly dereferencing x .

 There are approximately 58 operators in C++, with 18 different major precedence
levels. Even if you know the precedence table, you should still make it clear for
other users what you intend in a statement by using round brackets (()), which
have the highest precedence level after the scope resolution (::), increment (++),
and decrement (--) operators. Therefore, you should always write the following:

 int x = 1 + (2 * 3);

 Finally, on the topic of C pointers, there is also a void* pointer that can be
declared as void *p; , which effectively states that the pointer p does not have
a dereference type and it will have to be assigned at a later stage (see /chp05/
overview/void.c) using the following syntax:

 int a = 5;
 void *p = &a;
 printf("p points at address %p and value %d\n", p, *((int *)p));

 When executed, this code will give an output like the following:

 The pointer p points at address 0xbea546c8 and value 5

 Therefore, it is possible to cast a pointer from one deference type to another
and the void pointer can potentially be used to store a pointer of any dereference
type. In Chapter 6 void pointers are used to develop an enhanced GPIO interface.

 C‐Style Strings

 The C language has no built‐in string type but rather uses an array of the char-
acter type, terminated by the null character (\0), to represent a string. There is
a standard C library for strings that can be used as shown in Listing 5-13:

 LISTING 5‐13: chp05/overview/cstrings.c

 #include<stdio.h>

 #include<string.h>

 #include<stdlib.h>

 int main(){

 char a[20] = "hello ";

 char b[] = {'w','o','r','l','d','!','\0'}; // the \0 is important

 a[0]='H'; // set the first character to be H

 char *c = strcat(a,b); // join/concatenate a and b

 printf("The string c is: %s\n", c);

 printf("The length of c is: %d\n", strlen(c)); // call string length

 Chapter 5 ■ Practical BeagleBone Programming 181

 // find and replace the w with a W

 char *p = strchr(c,'w'); // returns pointer to first 'w' char

 *p = 'W';

 printf("The string c is now: %s\n", c);

 if (strcmp("cat", "dog")<=0){ // ==0 would be equal

 printf("cat comes before dog (lexiographically)\n");

 }

 //insert "to the" into middle of "Hello World!" string - very messy!

 char *d = " to the";

 char *cd = malloc(strlen(c) + strlen(d));

 memcpy(cd, c, 5);

 memcpy(cd+5, d, strlen(d));

 memcpy(cd+5+strlen(d), c+5, 6);

 printf("The cd string is: %s\n", cd);

 //tokenize cd string using spaces

 p = strtok(cd," ");

 while(p!=NULL){

 printf("Token:%s\n", p);

 p = strtok(NULL, " ");

 }

 return 0;

 }

 The code is explained by the comments within the example. When executed,
this code will give the following output:

 /chp05/overview$./cstrings
 The string c is: Hello world!
 The length of c is: 12
 The string c is now: Hello World!
 cat comes before dog (lexiographically)
 The cd string is: Hello to the World
 Token:Hello
 Token:to
 Token:the
 Token:World

 LED Flashing Application in C

 Now that you have covered enough C programming to get by, you can look at
how to write the LED fl ashing application in C. In Listing 5-14 the same structure
as the other examples has been retained:

 LISTING 5‐14: chp05/makeLED/makeLED.c

 #include<stdio.h>

 #include<stdlib.h>

 #include<string.h>
continues

182 Part I ■ BeagleBone Basics

LISTING 5‐14: (continued)

 #define LED3_PATH "/sys/class/leds/beaglebone:green:usr3"

 void writeLED(char filename[], char value[]); //function prototypes

 void removeTrigger();

 int main(int argc, char* argv[]){

 if(argc!=2){

 printf("Usage is makeLEDC and one of:\n");

 printf(" on, off, flash or status\n");

 printf(" e.g. makeLED flash\n");

 return 2;

 }

 printf("Starting the makeLED program\n");

 printf("The current LED Path is: " LED3_PATH "\n");

 // select whether command is on, off, flash or status

 if(strcmp(argv[1],"on")==0){

 printf("Turning the LED on\n");

 removeTrigger();

 writeLED("/brightness", "1");

 }

 else if (strcmp(argv[1],"off")==0){

 printf("Turning the LED off\n");

 removeTrigger();

 writeLED("/brightness", "0");

 }

 else if (strcmp(argv[1],"flash")==0){

 printf("Flashing the LED\n");

 writeLED("/trigger", "timer");

 writeLED("/delay_on", "50");

 writeLED("/delay_off", "50");

 }

 else if (strcmp(argv[1],"status")==0){

 FILE* fp; // see writeLED function below for description

 char fullFileName[100];

 char line[80];

 sprintf(fullFileName, LED3_PATH "/trigger");

 fp = fopen(fullFileName, "rt"); //reading text this time

 while (fgets(line, 80, fp) != NULL){

 printf("%s", line);

 }

 fclose(fp);

 }

 else{

 printf("Invalid command!\n");

 }

 printf("Finished the makeLED Program\n");

 return 0;

 }

 void writeLED(char filename[], char value[]){

 FILE* fp; // create a file pointer fp

 Chapter 5 ■ Practical BeagleBone Programming 183

 char fullFileName[100]; // to store the path and filename

 sprintf(fullFileName, LED3_PATH "%s", filename); // write path/name

 fp = fopen(fullFileName, "w+"); // open file for writing

 fprintf(fp, "%s", value); // send the value to the file

 fclose(fp); // close the file using the file pointer

 }

 void removeTrigger(){

 writeLED("/trigger", "none");

 }

 The only topic that you have not seen before is the use of fi les in C, but the
worked example should provide you with the information you need in the
writeLED() function. The FILE pointer fp points to a description of the fi le that
identifi es the stream, the read/write position, and its state. The fi le is opened
using the fopen() function that is defi ned in stdio.h , which returns a FILE
pointer. In this case it is being opened for write/update (w+((). The alternatives
would be as follows: read (r), write (w((), append (w a), read/update (r+), and append/
update (a+). If you are working with binary fi les you would append a b to the
state—e.g., “ w+b“ ” would open a new binary fi le for update (write and read). Also,
“ t ” can be used to explicitly state that the fi le is in text format.

 For a full reference of C functions available in the standard libraries, see
www.cplusplus.com/reference/ .

 The C of C++

 As discussed previously, the C++ language was built on the C language, add-
ing support for OOP classes; however, a few other differences are immediately
apparent when you start working with general C++ programming. Initially, the
biggest change that you will notice is the use of input/output streams and the
general use of strings.

 First Example and Strings in C++

 Listing 5-15 shows is the string example, rewritten to use the C++ string library:

 LISTING 5‐15: chp05/overview/cppstrings.cpp

 #include<iostream>

 #include<sstream> // to tokenize the string

 //#include<cstring> // how to include a c header if needed

 using namespace std;

 int main(){

 string a = "hello ";

 char temp[] = {'w','o','r','l','d','!','\0'}; //the \0 is important!

continues

184 Part I 4 ■ BeagleBone Basics

LISTING 5‐15: (continued)

 string b(temp);

 a[0]='H';

 string c = a + b;

 cout << "The string c is: " << c << endl;

 cout << "The length of c is: " << c.length() << endl;

 int loc = c.find_first_of('w');

 c.replace(loc,1,1,'W');

 cout << "The string c is now: " << c << endl;

 if (string("cat")< string("dog")){

 cout << "cat comes before dog (lexiographically)\n";

 }

 c.insert(5," to the");

 cout << "The c string is now: " << c << endl;

 // tokenize string using spaces - could use Boost.Tokenizer

 // or C++11 to improve syntax. Using stringstream this time.

 stringstream ss;

 ss << c; // put the c string on the stringstream

 string token;

 while(getline(ss, token, ' ')){

 cout << "Token: " << token << endl;

 }

 return 0;

 }

 Build this code by typing g++ cppstrings.cpp ‐o cppstrings . When executed,
this code gives the same output as the cstrings.c example. Some aspects are
more straightforward in C++ but there are some points worth mentioning.

 The code uses the iostream and m sstream header fi les, which are C++ headers. If m

you wish to use a C header fi le, you need to prepend the name with a “c”; therefore,
to use the C string.h header fi le you would use #include<cstring> . There is a
concept called namespaces in C++ that enables a programmer to limit a function or
class to a particular scope. In C++ all the standard library functions and classes
are limited to the standard namespace . You can explicitly identify that you wish toe
use a class from the std namespace by using std::string . However, that is quite
verbose. The alternative is to use the statement using namespace std; , which
brings the entire namespace into your code. Do not do this in one of your C++
header fi les, as it will pollute the namespace for anyone who uses your header fi le.

 The code uses cout , which is the standard output stream, and the output
stream operator (<<) to display strings. There is an equivalent standard input
stream (cin) and the input stream operator (>>). The output stream operator
“looks to” its right and identifi es the type of the data. It will display the data
depending on its type, so there is no need for %s , %d , %p , and so on, as you would

 Chapter 5 ■ Practical BeagleBone Programming 185

use in the printf() function. The endl stream manipulation function inserts
a newline character and fl ushes the stream.

 The string objects are manipulated in this example using + to append two
strings, and < or == to compare two strings. These operators are essentially func-
tions like append() and strcmp() . In C++ you can defi ne what these operators
do for your own data types (operator overloading).

 Passing by Value, Pointer, and Reference

 As you have seen with the code samples, functions enable us to write a section
of code that can be called several times, from different locations in our code.
There are three key ways of passing a value to a function:

■ Pass by value: This will create a new variable (val in the following code
example) and will store a copy of the value of the source variable (a) in
this new variable. Any changes to the variable val will not have any
impact on the source variable a . Pass by value can be used if you want
to prevent the original data from being modifi ed; however, a copy of the
data has to be made, and if you are passing a large array of data, such as
an image, then copying will have a memory and computational cost. An
alternative to pass by value is to pass by constant reference . In the follow-
ing example, a is also passed as the second argument to the function by
constant reference and is received as the value cr . The value cr can be
read in the function, but it cannot be modifi ed.

■ Pass by pointer: You can pass a pointer to the source data. Any modifi ca-
tions to the value at the pointer (ptr) will affect the source data. The call
to the function must pass an address (&b —address of b).

■ Pass by reference: In C++ you can pass a value by reference. The func-
tion determines whether an argument is to be passed by value or passed
by reference, through the use of the ampersand symbol. In the following
example, &ref indicates that the value c is to be passed by reference. Any
modifi cations to ref in the function will affect the value of c .

Here is a function with all four examples (passing.cpp):

 int afunction(int val, const int &cr, int *ptr, int &ref){
 val+=cr;
 // cr+=val; // not allowed because it is constant
 *ptr+=10;
 ref+=10;
 return val;
 }

 int main(){
 int a=100, b=200, c=300;
 int ret;
 ret = afunction(a, a, &b, c);

186 Part I 6 ■ BeagleBone Basics

 cout << "The value of a = " << a << endl;
 cout << "The value of b = " << b << endl;
 cout << "The value of c = " << c << endl;
 cout << "The return value is = " << ret << endl;
 return 0;
 }

 When executed, this code will result in the following output:

 /chp05/overview$./passing
 The value of a = 100
 The value of b = 210
 The value of c = 310
 The return value is = 200

 If you wish to pass a value to a function that is to be modifi ed by that function
in C++, then you can pass it by pointer or by reference; however, unless you are
passing a value that could be NULL , or you need to re‐assign the pointer in the
function (e.g., iterate over an array), then always use pass by reference. Now
you are ready to write the LED code in C++!

 Flashing the LEDs Using C++ (non‐OO)

 The C++ LED fl ashing code is available in makeLED.cpp in the /chp05/makeLED/
directory. As most of the code is very similar to the C example, it is not repeated
here. However, it is worth displaying the following segment, which is used to
open the fi le using the fstream fi le stream class. The output stream operator
(<<) in this case sends the string to fstream :

 void writeLED(string filename, string value){
 fstream fs;
 string path(LED3_PATH);
 fs.open((path + filename).c_str(), fstream::out);
 fs << value;
 fs.close();
 }

 The c_str() method returns a C++ string as a C string . Once again, this
code can be executed with root privileges.

 Writing Your Own Multi‐Call Binary

 In Chapter 3 , you saw how multi‐call binaries can be used in Linux to
build a single application that does the job of many. BusyBox was listed
as an example of one of these binaries. There is an example in the chp05/
makeLEDmulti directory called makeLEDmulti.cpp that uses the very first
command‐line argument to switch the functionality of the application based

 Chapter 5 ■ Practical BeagleBone Programming 187

on the command name that was called. The code has been modified to add
a small function:

 bool endsWith(string const &in, string const &comp){
 return (0==in.compare(in.length()-comp.length(),comp.length(),comp));
 }

 This function checks to see if the in string ends with the contents of the comp
string. This is important, because the application could be called using ./flashled
or . /chp05/makeLEDmulti/flashled , depending on its location. The switching
comparison then looks like the following:

 if(endsWith(cmd,"onled")){
 cout << "Turning the LED on" << endl;
 removeTrigger();
 writeLED("/brightness", "1");
 }

 If you list the fi les in the directory after calling ./build you will see the fol-
lowing fi les and symbolic links:

 /chp05/makeLEDmulti$ ls ‐l
 -rwxr-xr-x 1 molloyd users 542 Mar 8 02:37 build
 lrwxrwxrwx 1 molloyd users 12 Mar 8 02:44 flashled -> makeLEDmulti
 lrwxrwxrwx 1 molloyd users 12 Mar 8 02:44 ledstatus -> makeLEDmulti
 -rwxr-xr-x 1 molloyd users 11888 Mar 8 02:44 makeLEDmulti
 -rw-r--r-- 1 molloyd users 2477 Mar 8 02:43 makeLEDmulti.cpp
 lrwxrwxrwx 1 molloyd users 12 Mar 8 02:44 offled -> makeLEDmulti
 lrwxrwxrwx 1 molloyd users 12 Mar 8 02:44 onled -> makeLEDmulti

 Each one of these symbolic links looks like an individual command, even
though they link back to the same executable makeLEDmulti . The makeLEDmulti
parses argv[0] to determine which symbolic link was used. You can see the
impact of that here, where the symbolic links are called:

 /chp05/makeLEDmulti$ sudo ./onled
 The current LED Path is: /sys/class/leds/beaglebone:green:usr3
 Turning the LED on
 /chp05/makeLEDmulti$./ledstatus
 The current LED Path is: /sys/class/leds/beaglebone:green:usr3
 Current trigger details:
 [none] rc-feedback mmc0 mmc1 timer oneshot heartbeat ...

 C++ with Classes

 Object‐oriented programming is a programming approach (or paradigm) that
enables organizing software as a collection of objects, which consist of both data
and behavior. In contrast to the functional programming examples you have

188 Part I 8 ■ BeagleBone Basics

seen to this point, you don’t ask the question “what does it do?” fi rst, but rather,
“what is it?” In theory, this means that your code is written to allow for future
changes to the functionality, without having to redesign the structure of your
code. In addition, it should also mean that you can decompose your code into
modules that can be reused by you and others in future projects.

 Overview of Object‐Oriented Programming

 The following sections discuss a few key ideas that you have to understand
before you can write object‐oriented code.

 Classes and Objects

 Think about the concept of a television: You do not have to remove the case
to use it, as there are controls on the front and on the remote; you can still
understand the television, even if it is connected to a games console; it is
complete when you purchase it, with well‐defi ned external requirements,
such as power supply and signal inputs; and your television should not
crash! In many ways that description captures the properties that should be
present in a class.

 A class is a description. It should describe a well‐defi ned interface to your
code; represent a clear concept; be complete and well documented; and be
robust, with built‐in error checking. Class descriptions are built using two
building blocks:

■ States (or data): The state values of the class.

■ Methods (or behavior): How the class interacts with its data. Method
names usually include an action verb (e.g., setX()).

For example, here is pseudo‐code (i.e., not real C++ code) for an illustrative
Television class:

 class Television{
 int channelNumber;
 bool on;
 powerOn() { on = true; }
 powerOff(){ on = false;}
 changeChannel(int x) { channelNumber = x; }
 };

 Therefore, the example Television class has two states and three methods.
The benefi t of this structure is that you have tightly bound the states and meth-
ods together within a class structure. The powerOn() method means nothing
outside this class. In fact, you can write a powerOn() method in many different
classes without worrying about naming collisions.

 An object is the realization of the class description—an instance of a class. To
continue the analogy, the Television class is the blueprint that describes how you

 Chapter 5 ■ Practical BeagleBone Programming 189

would build a television, and a Television object is the physical realization of those n

plans into a physical television. In pseudo‐code this realization might look like this:

 void main(){
 Television dereksTV();
 Television johnsTV();
 dereksTV.powerOn();
 dereksTV.changeChannel(52);
 johnsTV.powerOn();
 johnsTV.changeChannel(1);
 }

 Therefore, dereksTV and johnsTV are objects of the Television class. Each
has its own independent state, so changing the channel on dereksTV has no
impact on johnsTV . To call a method, it must be prefi xed by the object name on
which it is to be called (e.g., johnsTV.powerOn()); calling the changeChannel()
method on johnsTV objects does not have any impact on the dereksTV object.

 In this book, a class name generally begins with a capital letter, e.g., Television ,
and an object generally begins with a lowercase letter, e.g., dereksTV . This is
consistent with the notation used in many languages, such as Java. Unfortunately,
the C++ standard library classes (e.g., string , sstream) do not follow this nam-m

ing convention.

 Encapsulation

Encapsulation is used to hide the mechanics of an object. In the physical tele-
vision analogy, encapsulation is provided by the box that protects the inner
electronic systems. However, you still have the remote control that will have a
direct impact on the way the inner workings function.

 In OOP, you can decide what workings are to be hidden (e.g., TV electron-
ics) using an access specifi er keyword called private , and what is to be part of e
the interface (TV remote control) using the access specifi er keyword public . It is c
good practice to always set the states of your class to be private, so that you can
control how they are modifi ed by public interface methods of your own design.
For example, the pseudo‐code might become the following:

 class Television{
 private:
 int channelNumber;
 bool on;
 remodulate_tuner();
 public:
 powerOn() { on = true; }
 powerOff(){ on = false;}
 changeChannel(int x) {
 channelNumber = x;
 remodulate_tuner();
 }
 };

190 Part I 0 ■ BeagleBone Basics

 Now the Television class has private state data (on , channelNumber) that
is affected only by the public interface methods (powerOn() , powerOff() ,
changeChannel()) and a private implementation method remodulate_tuner()
that cannot be called from outside the class.

 There are a number of advantages of this approach: First, users of this class
(another programmer) need not understand the inner workings of the Television
class; they just need to understand the public interface. Second, the author of
the Television class can modify and/or perfect the inner workings of the class
without affecting other programmers’ code.

 Inheritance

Inheritance is a feature of OOP that enables building class descriptions from other
class descriptions. Humans do this all the time; for, example, if you were asked,
“What is a duck?” you might respond with, “It’s a bird that swims, and it has a
bill instead of a beak.” This description is reasonably accurate, but it assumes
that the concept of a bird is also understood. Importantly, the description states
that the duck has the additional behavior of swimming, but also that it has the
replacement behavior of having a bill instead of a beak. You could loosely code
this with pseudo‐code as follows:

 class Bird{
 public:
 void fly();
 void describe() { cout << "Has a beak and can fly"; }
 };

 class Duck: public Bird{ // Duck IS-A Bird
 Bill bill;
 public:
 void swim();
 void describe() { cout << "Has a bill and can fly and swim"; }
 };

 In this case, you can create an object of the Duck class:

 int main(){
 Duck d; //creates the Duck instance object d
 d.swim(); //specific to the Duck class
 d.fly(); //inherited from the parent Bird class
 d.describe(); //describe() is inheritated and over-ridden in Duck
 //so, "Has a bill and can fly and swim" would appear
 }

 The example here illustrates why inheritance is so important. You can build
code by inheriting from, and adding to, a class description (e.g., swim()) , or
inheriting from a parent class and replacing a behavior (e.g., describe()) to
provide a more specifi c implementation—this is called overriding a method,

 Chapter 5 ■ Practical BeagleBone Programming 191

which is a type of polymorphism (multiple forms). Another form of polymor-
phism is called overloading, which means multiple methods can have the same
name, in the same class, disambiguated by the compiler by having different
parameter types.

 You can check that you have an inheritance relationship by the IS‐A test; for
example, a “duck is a bird” is valid, but a “bird is a duck” would be invalid
because not all birds are ducks. This contrasts to the IS‐A‐PART‐OF relationship;
for example, a “bill is a part of a duck.” An IS‐A‐PART‐OF relationship indicates
that the bill is a member/state of the class. Using this simple check can be very
useful when the class relationships become complex.

 You can also use pointers with objects of a class; for example, to dynamically
allocate memory for two Duck objects, you can use:

 int main(){

 Duck *a = new Duck();

 Bird *b = new Duck(); //a pointer of the parent can point to a child object

 b->describe(); //will actually describe a duck (if virtual)

 //b->swim(); //not allowed! Bird does not ‘know’ swim()

 }

 Interestingly, the Bird pointer b is permitted to point at a Duck object. As the
Duck class is a child of a Bird class, all of the methods that the Bird pointer can
call are “known” by the Duck object. Therefore the describe() method can be
called. The arrow notation (b‐>describe()) is simply a neater way of writing
(*b).describe() . In this case the Bird pointer b has the static type Bird and
the dynamic type Duck .

 One last point is that an additional access specifi er called protected can be used
through inheritance. If you wish to create a method or state in the parent class
that you want to be available to the child class but you do not want to make
public, then use the protected access specifi er.

N O T E Remember that I have notes available at ee402.eeng.dcu.ie on these

topics. In particular, Chapter 3 and 4 describe this topic in much greater detail, includ-

ing material on abstract classes, destructors, multiple inheritance, friend functions,

the standard template library (STL), etc.

 Object‐Oriented LED Flashing Code

 These OOP concepts can now be applied a real C++ application on the BBB, by
restructuring the functionally oriented C++ code into a class called LED , which
contains states and methods. One difference with the code that is presented in
Listing 5-16 is that it allows you to control the four user LEDs using the same
OO code. Therefore, using the LED class, four different LED instance objects
are created, each controlling one of the BBB’s four physical user LEDs.

192 Part I ■ BeagleBone Basics

 LISTING 5‐16: chp05/makeLEDOOP/makeLEDs.cpp

 #include<iostream>

 #include<fstream>

 #include<string>

 #include<sstream>

 using namespace std;

 #define LED_PATH "/sys/class/leds/beaglebone:green:usr"

 class LED{

 private:

 string path;

 int number;

 virtual void writeLED(string filename, string value);

 virtual void removeTrigger();

 public:

 LED(int number);

 virtual void turnOn();

 virtual void turnOff();

 virtual void flash(string delayms);

 virtual void outputState();

 virtual ~LED();

 };

 LED::LED(int number){

 this->number = number; // set number state to be the number passed

 // next part is easier with C++11 (see Chp.7) using to_string(number)

 ostringstream s; // using a stream to contruct the path

 s << LED_PATH << number; // append LED number to LED_PATH

 path = string(s.str()); // convert back from stream to string

 }

 void LED::writeLED(string filename, string value){

 ofstream fs;

 fs.open((path + filename).c_str());

 fs << value;

 fs.close();

 }

 void LED::removeTrigger(){

 writeLED("/trigger", "none");

 }

 void LED::turnOn(){

 cout << "Turning LED" << number << " on." << endl;

 removeTrigger();

 writeLED("/brightness", "1");

 }

 void LED::turnOff(){

 cout << "Turning LED" << number << " off." << endl;

 Chapter 5 ■ Practical BeagleBone Programming 193

 removeTrigger();

 writeLED("/brightness", "0");

 }

 void LED::flash(string delayms = "50"){

 cout << "Making LED" << number << " flash." << endl;

 writeLED("/trigger", "timer");

 writeLED("/delay_on", delayms);

 writeLED("/delay_off", delayms);

 }

 void LED::outputState(){

 ifstream fs;

 fs.open((path + "/trigger").c_str());

 string line;

 while(getline(fs,line)) cout << line << endl;

 fs.close();

 }

 LED::~LED(){ // A destructor - called when the object is destroyed

 cout << "destroying the LED with path: " << path << endl;

 }

 int main(int argc, char* argv[]){

 if(argc!=2){

 cout << "Usage is makeLEDs <command>" << endl;

 cout << " command is one of: on, off, flash or status" << endl;

 cout << " e.g. makeLEDs flash" << endl;

 }

 cout << "Starting the makeLEDs program" << endl;

 string cmd(argv[1]);

 // Create four LED objects and put them in an array

 LED leds[4] = { LED(0), LED(1), LED(2), LED(3) };

 // Do the same operation on all four LEDs - easily changed!

 for(int i=0; i<=3; i++){

 if(cmd=="on")leds[i].turnOn();

 else if(cmd=="off")leds[i].turnOff();

 else if(cmd=="flash")leds[i].flash("100"); //default is "50"

 else if(cmd=="status")leds[i].outputState();

 else{ cout << "Invalid command!" << endl; }

 }

 cout << "Finished the makeLEDs program" << endl;

 return 0;

 }

 This code can be built and executed by typing the following:

 /chp05/makeLEDOOP$./build
 /chp05/makeLEDOOP$./makeLEDs status
 /chp05/makeLEDOOP$ sudo ./makeLEDs flash
 /chp05/makeLEDOOP$ sudo ./makeLEDs off

194 Part I 4 ■ BeagleBone Basics

 There is a script in the directory /chp05 to return the LEDs to their standard
state, called restoreDefaultLEDs :

 /chp05$ sudo ./restoreDefaultLEDs

 This code is structured as a single class LED with private states for the
path and the number, and private implementation methods writeLED() and
removeTrigger() . These states and helper methods are not accessible outside
the class. The public interface methods are turnOn() , turnOff() , flash() , and
outputState() . There are two more public methods:

■ The fi rst is a constructor , which enables you to initialize the state of the
object. It is called by LED led(0) to create the object led of the LED class
with number 0 . This is very similar to the way that you assign initial val-
ues to an int , e.g., int x = 5; . A constructor must have the exact same
name as the class name (LED in this case) and it cannot return anything,
not even void .

■ The last is a destructor (∼((LED()∼). Like a constructor, it must have the exact
same name as the class name and is prefi xed by the tilde (∼(() character.∼
This method is called automatically when the object is being destroyed.
You can see this happening when you run the code sample.

 The keyword virtual is also new. You can think of this keyword as “allow-
ing overriding to take place when an object is dynamically bound.” It should
always be there (except for the constructor), unless you know that there will
defi nitely be no child class. Removing the virtual keyword will result in a
slight improvement in the performance of your code.

 The syntax void LED::turnOn(){...} is simply used to state that the
turnOn() method is the one associated with the LED class. It is possible
to have many classes in the one .cpp fi le, and it would be possible for two
classes to have a turnOn() method; therefore, the explicit association allows
you to inform the compiler of the correct relationship. I have written this
code in a single fi le, as it is the fi rst example. However, you will see in later
examples that it is better practice to break your code into header fi les (.h)
and implementation fi les (.cpp).

 Hopefully the layout of the C++ version of the LED fl ashing code is clear at
this point. The advantage of this OOP version is that you now have a structure
that can be built upon when you wish to provide additional functionality to
interact with the system LEDs. In a later chapter you will see how you can
build similar structures to wrap electronic modules such as accelerometers
and temperature sensors, and how to use the encapsulation property of OOP
to hide some of the more complex calculations from programmers that inter-
face to the code.

 Chapter 5 ■ Practical BeagleBone Programming 195

 /Proc—Process Information File System

 In Chapter 3 , the Linux directory structure is discussed and one of the directories
discussed is the /proc directory—the process information virtual fi le system.
It provides you with information about the run‐time state of the kernel and it
enables you to send control information to the kernel. In effect, it provides you
with a fi le‐based interface from user space to kernel space. There is a Linux ker-
nel guide to the /proc fi le system at tiny.cc/ebb501 . For example, if you type

 /proc# cat cpuinfo
 processor : 0
 model name : ARMv7 Processor rev 2 (v7l) ...

 it provides you with information on the CPU. Try some of the following: cat
uptime , cat interrupts , cat version in the same directory. The example,
chp05/proc/readUptime.cpp , provides an example program to read the system
uptime and calculate the percentage of system idle time.

 A program that is executed with superuser privileges can read or write to
fi les in /proc . However, you have to be careful with the consistency of fi les in
the /proc directory. The Linux kernel provides for atomic operations—instruc-
tions that execute without interruption. Certain “fi les” within /proc (such as
/proc/uptime) are totally atomic and cannot be interrupted while they are being
read; however, other fi les such as /proc/net/tcp are only atomic within each
row of the fi le, meaning that the fi le will change as it is being read, and therefore
simply reading the fi le may not provide a consistent snapshot.

 GLIBC and Syscall

 The Linux GNU C Library, glibc , provides an extensive set of wrapper functionsc
for system calls. It includes functionality for handling fi les, signals, mathematics,
processes, users, and much, much more. See tiny.cc/ebb502 for a full descrip-
tion of the GNU C Library. If there is an equivalent glibc function it is much
more straightforward to call this function than to parse the /proc entries. Here
is a simple C example that uses glibc:

 /chp05/proc$ more whologgedin.c
 #include<unistd.h>
 #include<stdio.h>
 int main(){
 printf("The user logged in is %s\n", getlogin());
 return 0;
 }
 /chp05/proc$ gcc whologgedin.c ‐o who
 /chp05/proc$./who
 The user logged in is molloyd

196 Part I 6 ■ BeagleBone Basics

 There are many, many glibc functions, but one function in particular deserves
some attention, and that is the syscall function, as it performs a general system
call using the arguments that you pass to the function. The fi rst argument is
a system call number, all of which are defi ned in /sys/syscall.h . You can
open this fi le (/usr/include/arm‐linux‐gnueabihf/sys/syscall.h) and
search for the numbers or you can use syscalls.kernelgrok.com to search
for numbers on your Linux kernel architecture. As illustrated in Listing 5‐17,
the syscall function can pass one or more arguments depending on the type
of syscall function.

 LISTING 5‐17: chp05/syscall/syscall.cpp

 #include<gnu/libc-version.h>

 #include<sys/syscall.h>

 #include<sys/types.h>

 #include<iostream>

 #include<signal.h>

 using namespace std;

 int main(){

 cout << "The GNU libc version is " << gnu_get_libc_version() << endl;

 // process id tid is thread identifier - see: sys/syscall.h

 pid_t tid; //pid_t is of type integer

 tid = syscall(SYS_gettid); // make system call to get process id

 cout << "The Current PID is: " << tid << endl;

 //can also get by calling getpid() function from signal.h

 cout << "The Current PID is: " << getpid() << endl;

 // Can get current UserID by using:

 int uid = syscall(SYS_getuid);

 cout << "It is being run by user with ID: " << uid << endl;

 // or getting the value from syscalls.kernelgrok.com

 uid = syscall(0xc7);

 cout << "It is being run by user with ID: " << uid << endl;

 return 0;

 }

 When executed, this code will result in the output

 /chp05/syscall$./syscall
 The GNU libc version is 2.13
 The Current PID is: 3625
 The Current PID is: 3625
 It is being run by user with ID: 1001
 It is being run by user with ID: 1001

 Chapter 5 ■ Practical BeagleBone Programming 197

 You can fi nd out which user account is 1001 as follows:

 /chp05/syscall$ cat /etc/passwd|grep "1001"
 molloyd:x:1001:100::/home/molloyd:/bin/bash

 Therefore, you can use C/C++ to make calls directly to Linux to using the
syscall function. You can call functions like chmod (see d /chp05/syscall/callchmod

.cpp) by passing the required properties as second and third arguments:

 int ret = syscall(SYS_chmod, "test.txt", 0777);

 Use syscalls.kernelgrok.com and search for chmod . You will see the eax is
0x0f (i.e., SYS_chmod defi ned in syscall.h), const char __user *filename is
“ test.txt ”, and mode_t mode is 0777 , which sets the text fi le to be executable
(‐rwxrwxrwx)—not a great idea!

 Summary

 After completing this chapter, you should be able to:

■ Describe the multitude of issues that would impact on your choice of
programming languages to use in building applications for the BBB.

■ Write basic scripting language program code on the BBB that interfaces
to the on‐board LEDs.

■ Compare and contrast scripting, hybrid, and compiled programming
languages, and their application to the BBB.

■ Write C code examples that interface to the BBB’s on‐board LEDs.

■ Wrap C code in C++ classes to provide greater program structure.

■ Write advanced C/C++ code that is capable of interfacing to Linux operat-
ing system commands.

 Further Reading

 Most of the sections in this chapter contain links to the relevant websites for
further reading and reference materials. Here is a list of some books on pro-
gramming that are relevant to the materials in this chapter:

■ Bad to the Bone: Crafting Electronics Systems with BeagleBone and BeagleBone
Black , Steven Barrett and Jason Kridner (Morgan & Claypool, 2013).k

198 Part I 8 ■ BeagleBone Basics

■ Getting Started with BeagleBone: Linux‐Powered Electronic Projects with Python
and JavaScript , Matt Richardson (MakerMedia, 2013).

■ Programming the BeagleBone Black: Getting Started with JavaScript and
BoneScript , Simon Monk (McGraw‐Hill/TAB Electronics, 2014).t

 Notes

 1. debian.org. (Dec. 1, 2013). The Computer Lanugage Benchmarks Game. Retrieved
Mar. 7, 2014, from Debian.org: http://benchmarksgame.alioth.debian.org/.

 2. Hundt, R. (2011). Loop Recognition in C++/Java/Go/Scala. Proceedings of Scala
Days 2011. Mountain View, CA: http://www.scala-lang.org/.

 3. Oracle. (Mar. 10, 2014). Java SE Embedded FAQ. Retrieved Mar. 10, 2014, from Oracle.
Com: http://www.oracle.com/technetwork/java/embedded/resources/
se-embeddocs/index.html.

 4. Stroustrup, B. (Oct. 14, 1998). International standard for the C++ programming lan-
guage published. Retrieved Mar. 18, 2014, from www.stroustrup.com: http://
www.stroustrup.com/iso_pressrelease2.html.

Par t

II
Interfacing, Conntrolling,

gand Commuunicatingand Commuunicating

Chapter 6: Interfacing to the BeagleBone Input/Outputs
Chapter 7: Cross-Compilation and the Eclipse IDE
Chapter 8: Interfacing to the BeagleBone Buses
Chapter 9: Interacting with the Physical Environment

201

This chapter integrates the Linux, programming, and electronics groundwork from
earlier chapters to show you how to build circuits and write programs that interface
to the BeagleBone’s single‐wire inputs and outputs. In this chapter, you will see
practical examples that explain how to use a general‐purpose input/output (GPIO) to
output a binary signal to switch on an LED, or to read in a binary input from a push
button. Also included are the steps required to read in an analog input and to send
out a pulse‐width modulated (PWM) output. Interfacing to GPIOs is a reasonably
complex topic due to a recent change incorporated into the Linux kernel. However,
the BBB has cape management features, and code is made available throughout this
chapter that you can use to make interfacing reasonably straightforward.

Equipment Required for This Chapter:

■ BeagleBone Black

■ Component set from Chapter 4 and a generic light‐dependent resistor

Further details on this chapter are available at www.exploringbeaglebone
.com/chapter6/.

General‐Purpose Input/Outputs

At this point in the book, you have seen how to administrate a Linux system,
write high‐level programming code, and build basic, but realistic, electronic

C H A P T E R

6

Interfacinng to the

BeagleBone Input/Outputs /Outputs

202 Part II ■ Interfacing, Controlling, and Communicating

interfacing circuits. It is now time to bring those different concepts together so
that you can build software applications that run on Linux in order to control,
or take input from, electronics circuits of your own design.

Introduction to GPIO Interfacing

It is possible to interface electronic circuits and modules to the BBB in several
different ways. For example:

■ Using the GPIOs on the BBB’s P8/P9 headers: This provides you with
versatility in terms of the type of circuits that you can connect and is the
subject of this chapter.

■ Using the buses (e.g., I2C, SPI), or UARTs on the P8/P9 headers: Bus
connections enable communications to complex modules such as sensors
and displays. This topic is discussed in Chapter 8.

■ Connecting USB modules (e.g., keyboards, Wi‐Fi): If Linux drivers are
available, many different electronic device types can be connected to the
BBB. Examples are provided in later chapters.

■ Communicating through Ethernet/Wi‐Fi/Bluetooth to electronics
modules: It is possible to build network‐attached sensors that commu-
nicate to the BBB using network connections. Chapter 9 fi rst introduces,
and Chapter 10 then focuses on, this topic.

The next step in working with the BBB is to connect it to circuits using the
GPIOs and analog inputs of the P8 and P9 expansion headers (as illustrated in
Figure 1‐4 in Chapter 1). The background material of earlier chapters is very
important, as this is a surprisingly complex topic that will take some time to get
used to, particularly the content on device tree overlays and pin multiplexing.
However, code and example circuits are provided throughout this chapter that
you can use to help you build your own circuits.

Figure 6-1 provides you with a fi rst view of the functionality of the inputs
and outputs on the BBB’s P8 and P9 headers. Many of these pins are multiplexed,
meaning they have many more functions than what is displayed in the fi gure.
The name listed typically describes the default operation of the pin.

This chapter discusses how you can interface to the BBB’s P8/P9 header pins
in the following different ways:

■ Digital output: How you can use a GPIO to turn an electrical circuit on or
off. The example uses an LED, but the principles hold true for any circuit
type; for example, you could even use a relay to turn on/off high‐powered
devices. A circuit is provided to ensure that you do not draw too much
current from a GPIO. A C++ class is developed to make software interfac-
ing straightforward and effi cient.

 Chapter 6 ■ Interfacing to the BeagleBone Input/Outputs 203

■ Digital input: How you can read in a digital output from an electrical
circuit into a software application running under Linux. Circuits are
provided to ensure that this is performed safely for the BBB. At the end
of the chapter, more advanced digital input that allows for very effi cient
detection of an input state change is also discussed.

■ Analog input: How you can read in an analog output from an electrical
circuit in the range of 0 V to 1.8 V using one of the BBB’s seven on‐board
analog‐to‐digital converters (ADCs). A circuit is provided to ensure that
you do not draw current from the reference supply, which would mean
that its voltage value could no longer be guaranteed.

■ Analog output: How you can use PWM to output a proportional signal
that can be used as an analog voltage level or as a control signal for certain
types of devices, such as servo motors.

Figure 6-1: The BBB P8/P9 headers with pin names, which describe each pin’s default
functionality

This chapter assumes that you have read Chapter 4—in particular, switching
circuits using FETs and the use of pull‐up/down resistors.

W A R N I N G Please be especially careful when working with the P8/P9 headers,

as incorrect connections can, and will, destroy your board. Please test all new circuits

204 Part II4 ■ Interfacing, Controlling, and Communicating

to ensure that their voltage and current levels are within range before connectingd
them to the headers. Also, please follow the advice on interfacing circuits using FETs,

optocouplers, and op‐amps, as described in this chapter.

GPIO Digital Output

The example output confi guration illustrated in Figure 6-2 uses a GPIO con-
nected to a FET in order to switch a circuit. As described in Chapter 4, when a
voltage is applied to the gate input of a FET, it will close the virtual drain‐source
“switch,” enabling current to fl ow from the 5 V supply through the 220Ω current-
limiting resistor, to GND through a lighting LED. The advantage of this type
of circuit is that it can be applied to many on/off digital output applications, as
the BS270 FET data sheet indicates that it can drive a constant current of up to
400 mA (and a pulsed current of up to 2 A) across the drain‐source at up to 60 V.
However, the maximum current is limited in this circuit by the FET (see the
note), and, because the SYS_5V pin (P9_07) can supply a maximum of 250 mA.
As an alternative, the VDD_5V (P9_05 and P9_06) can supply up to 1 A, but it is
only active if a power supply is plugged into the 5 V DC jack.

Figure 6-2: A FET‐driven LED circuit

BBB GPIOs are 3.3V tolerant and you can only source 4–6 mA and sink about
8 mA to each pin. In the example, it is safe to use the 5 V supply to drive the LED,
as the drain‐source circuit of the FET is never connected to the gate input. You will
also notice that, unlike the example in Chapter 4, there is no resistor on the gate of
the FET. It is not necessary in this particular case, because an internal pull‐down
resistor is enabled within the BBB, by default, on this pin. This is discussed shortly.

N O T E The BS270 can switch a maximum drain current of approximately 130 mA

at a gate voltage of 3.3 V. The high input impedance of the gate means that you

can use two BS270s in parallel to double the maximum current to approximately

260 mA at the same gate voltage. The BS270 can also be used as a gate driver for

Power FETs, which can switch much higher currents.

 Chapter 6 ■ Interfacing to the BeagleBone Input/Outputs 205

Once the circuit is built and attached to the BBB, you can boot the board
and control the LED using a Linux terminal. For the moment, you will have to
perform these operations as the root user. At the end of this chapter, a solution
is discussed to remove that restriction.

As described in Figure 6-1, the P9 header pin 23(P9_23) is GPIO1_17.
This means that it is GPIO 17 of 32 (0–31) on the second GPIO chip of four
(0–3). As there are 32 GPIOs on each GPIO chip, the internal GPIO number
corresponding to pin GPIO1_17 is calculated as follows: (1 × 32) + 17 = 49.
The total range will be 0 (GPIO0_0) to 127 (GPIO3_31), but as previously
discussed, not all AM335x GPIOs are available on the headers. GPIOs on
the P8 header can also be used, but to keep the fi gures concise the P9 header
GPIOs are chosen. To enable GPIO 49, use the following commands at the
Linux shell prompt:

root@beaglebone:∼# cd /sys/class/gpio
root@beaglebone:/sys/class/gpio# ls
export gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport
root@beaglebone:/sys/class/gpio# echo 49 > export
root@beaglebone:/sys/class/gpio# ls
export gpio49 gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

You can see that a new sysfs directory has appeared, and it can be used to
change the properties of the GPIO as follows:

root@beaglebone:/sys/class/gpio# cd gpio49
root@beaglebone:/sys/class/gpio/gpio49# ls ‐l
total 0
-rw-r--r-- 1 root root 4096 May 4 19:43 active_low
-rw-r--r-- 1 root root 4096 May 4 19:43 direction
-rw-r--r-- 1 root root 4096 May 4 19:43 edge
drwxr-xr-x 2 root root 0 May 4 19:43 power
lrwxrwxrwx 1 root root 0 May 4 19:43 subsystem -> ...
-rw-r--r-- 1 root root 4096 May 4 19:43 uevent
-rw-r--r-- 1 root root 4096 May 4 19:43 value
root@beaglebone:/sys/class/gpio/gpio49# cat direction
in
root@beaglebone:/sys/class/gpio/gpio49# echo out > direction
root@beaglebone:/sys/class/gpio/gpio49# cat direction
out

The GPIO is now set up as an output and the value can be changed, which
results in the LED being turned on and off:

root@beaglebone:/sys/class/gpio/gpio49# echo 1 > value
root@beaglebone:/sys/class/gpio/gpio49# echo 0 > value

If you wished at this point, you could remove the GPIO as follows:

root@beaglebone:/sys/class/gpio# echo 49 > unexport

206 Part II6 ■ Interfacing, Controlling, and Communicating

To test the performance of this approach, a short script to fl ash the LED as
quickly as possible, using a bash shell script, follows. This does not result in
a visible “blink,” as the LED is fl ashing faster than can be visibly observed;
however, it can be visualized using an oscilloscope.

∼/exploringbb/chp06/flash_script$ sudo su ‐s /bin/bash
/home/molloyd/exploringbb/chp06/flash_script# more flash.sh
#!/bin/bash
echo 49 > /sys/class/gpio/export
echo "out" > /sys/class/gpio/gpio49/direction
COUNTER=0
while [$COUNTER -lt 100000]; do
 echo 0 > /sys/class/gpio/gpio49/value
 echo 1 > /sys/class/gpio/gpio49/value
 let COUNTER=COUNTER+1
done
echo 49 > /sys/class/gpio/unexport
/home/molloyd/exploringbb/chp06/flash_script# ./flash.sh

N O T E When using sudo su on the BBB, you can use sudo su ‐s /bin/bash

to specify the specifi c shell that you would like, in order to have functionality such as

fi le completion using the Tab key.

You can see from the oscilloscope trace in Figure 6-3 that the output is cycling
every 0.45 ms approximately (although not all cycles are the same length), equat-
ing to a frequency of just over 2.2 kHz, which is not very high for an embedded
controller. In addition, the top command (executed in another Linux terminal
window) indicates that the CPU load for this script is 98.1%. You can also see
that the current driving the LED is 12 mA, which is large enough to damage the
BBB if this current were directly sourced from, or sinked to, the BBB GPIO itself.

Figure 6-3: Scope output measuring the current through the LED for the flash.sh script

A C++ class is presented later in this chapter that can be used to control a
GPIO and it achieves higher switching frequencies, but with similar CPU loads.

 Chapter 6 ■ Interfacing to the BeagleBone Input/Outputs 207

If you require a high‐frequency periodic switching signal, then PWM, which
is discussed later in this chapter, can be used. PWM can achieve frequencies of
1 MHz or higher, without a signifi cant CPU load. If you require a nonperiodic
output at a high frequency, then you will have to investigate the Programmable
Real‐Time Units (PRUs) in Chapter 13. However, many applications require
the activation of a switched circuit at low frequencies (e.g., controlling motors,
smart home control, etc.), and in such cases this confi guration is perfectly valid.

GPIO Digital Input

The next application is to use a GPIO as a digital input, which will enable soft-t
ware written on the BBB to read the state of a push button or any other logic
high/low input. This task is fi rst performed using a Linux terminal and then
it is performed using C/C++ code. The LED circuit can be left connected when
building this circuit.

The circuit shown in Figure 6-4 uses a normally‐open push button (SPST) that
is connected to the BBB pin 27 on the P9 header, which is GPIO3_19.

Figure 6-4: A GPIO button input example

You will notice that, having discussed the need for pull‐up or pull‐down
resistors on push button switches in Chapter 4, none are present in this circuit.
This is not accidental, as pin 27 on the P9 header is connected by default to GND
using an internal pull‐down resistor. This is discussed shortly. Use the following
steps to read the state of the button (i.e., either 0 or 1) using a Linux terminal:

root@beaglebone:/sys/class/gpio# echo 115 > export
root@beaglebone:/sys/class/gpio# cd gpio115
root@beaglebone:/sys/class/gpio/gpio115# ls ‐l
total 0
-rw-r--r-- 1 root root 4096 May 4 21:47 active_low
-rw-r--r-- 1 root root 4096 May 4 21:47 direction

208 Part II8 ■ Interfacing, Controlling, and Communicating

-rw-r--r-- 1 root root 4096 May 4 21:47 edge
drwxr-xr-x 2 root root 0 May 4 21:47 power
lrwxrwxrwx 1 root root 0 May 4 21:47 subsystem -> ...
-rw-r--r-- 1 root root 4096 May 4 21:47 uevent
-rw-r--r-- 1 root root 4096 May 4 21:47 value
root@beaglebone:/sys/class/gpio/gpio115# echo in > direction
root@beaglebone:/sys/class/gpio/gpio115# cat value
0
root@beaglebone:/sys/class/gpio/gpio115# cat value
1
root@beaglebone:/sys/class/gpio/gpio115# cat value
0

Therefore, the value is 1 when the button is pressed and 0 when it is released.
Each time you type cat value, you are polling the input to check the value. The
downside of this approach is that you will not identify a change in the value of
the input unless you constantly poll the value state.

Interestingly, if you connect nothing to P9_12, which is GPIO1_28 = GPIO
60, and enter the same sequence of commands, you will get a different output:

root@beaglebone:/sys/class/gpio# echo 60 > export
root@beaglebone:/sys/class/gpio# cd gpio60
root@beaglebone:/sys/class/gpio/gpio60# echo in > direction
root@beaglebone:/sys/class/gpio/gpio60# cat direction
in
root@beaglebone:/sys/class/gpio/gpio60# cat value
1

With nothing connected to this input, it registers a value of 1. That is because
this input is connected via an internal pull‐up resistor to the 3.3 V line. It should
be clear at this stage that you need to understand the GPIO confi guration, includ-
ing these internal resistors, in order to use the GPIO pins properly.

GPIO Confi guration

The importance of pull‐up and pull‐down resistors is discussed in some detail
in Chapter 4. They ensure that open switches do not allow a GPIO input to fl oat.
Such external resistors are typically “strong” pull‐up/down resistors in that
they “strongly” tie the input to a high/low value using relatively low resistance
values (e.g., 5–10 kΩ).

Internal Pull‐up and Pull‐down Resistors

The BBB has “weak” internal pull‐up and internal pull‐down resistors that can be
confi gured by setting internal registers in the AM335x using the Linux device
tree, which is discussed in the next section.

 Chapter 6 ■ Interfacing to the BeagleBone Input/Outputs 209

You can physically check whether an internal pull‐up or pull‐down resistor
is enabled on a pin by connecting a 100 kΩ resistor between the pin and GND
(as shown in Figure 6-5(a), where the shaded area represents functionality that
is internal to the AM335x), and then between the pin and the 3.3 V supply (as
shown in Figure 6-5(b)). If you connect a 100 kΩ resistor (the one I used had an
actual value of 98.6 kΩ) to P8_12 and measure the voltage across it, you will see
that the voltage drop is 0 V when the resistor is connected to GND, and I mea-
sured 2.739 V (not 3.3 V) when it was connected to the 3.3 V rail. This indicates
that there is an internal pull‐down resistor enabled, and the combination of
these resistors is behaving like a voltage divider circuit. You can even estimate
the value of the internal pull‐down resistor as in Figure 6-5(b).

Figure 6-5: Internal pull‐down resistor example, with an external resistor connected (a) from the
pin to GND, and (b) from the pin to the 3.3 V supply

Clearly P8_12, which is GPIO1_12, has an internal pull‐down resistor enabled,
but if you perform the same test on P8_26, which is GPIO1_29, you will get
a completely different response. When you connect the resistor as shown in
Figure 6-5(a) you will get a voltage drop of ∼2.624 V across the 100 k∼ Ω resistor,
and almost 0 V (∼((0.162 V) when you connect it as in Figure 6-5(b). That is because
P8_26 has an internal pull‐up resistor enabled. Performing the same calculations
gives an internal pull‐up resistor value of about 28.6 kΩ.

You need to factor these resistor values into the behavior of your input/
output circuits and you need to be able to alter the internal resistor confi gura-
tion in certain circumstances. For the next section, remember that the physical
measurements indicate that P8_12 has a pull‐down resistor, and P8_26 has a
pull‐up resistor, both enabled by default.

GPIO Pin Confi guration Settings

As well as confi guring pins to have either a pull‐up or a pull‐down resistor
confi guration, there are also seven different modes for each pin. This is called

210 Part II0 ■ Interfacing, Controlling, and Communicating

the multiplexer mode (mmode(() for the pin and it is set using a three‐digit binarye
number, as described in the fi rst row of Table 6-1. This table is based on informa-
tion provided in the AM335x TRM (GPIOs conf_<module>_<pin> ‐ Table 9‐60
of the TRM). Using these bit settings, you can construct a seven‐bit value that
can be used to confi gure the exact behavior of a GPIO pin within Linux using
device tree overlays, which is discussed shortly.

Table 6-1: GPIO Pin User‐Confi guration Settings

BIT AM335x FIELD DESCRIPTION

0,1,2 mmode The multiplexer mode: Using the three least‐signifi cant bits
you can select a mode between 0 and 7, e.g., 000=0, 111=7.
This enables each pin to have up to eight diff erent modes.

3 puden Enable internal pull‐up/pull‐down resistor: Enable=0,
Disable=1.

4 putypesel Select internal pull‐up or pull‐down form: Pull‐down=0,
Pull‐up=1.

5 rxactive Input Active: Receiver disabled=0, Input enabled=1. If this bit
is set high, the pin will be an input; otherwise, it will be an
output.

6 slewctrl Slew Control: Fast=0, Slow=1. Slew rate provides control over
the rise/fall time of an output. You would only set this value
to slow if you were using long interconnects, such as on I2C
buses.

N O T E There is a video on the use of these settings on the web page associated with

this chapter at www.exploringbeaglebone.com/chapter6/ and at tiny.cc/

ebb601 that you can refer to while reading this chapter.

The mmode is discussed shortly, but when working with GPIOs the mmode
will be 7, and therefore the most common hexadecimal values that are used to
confi gure a GPIO’s settings are as follows (bit 6 is the most signifi cant bit (MSB)
and is on the LHS):

■ 0x27 (0100111) Fast, Input, Pull‐Down, Enabled and Mux Mode 7

■ 0x37 (0110111) Fast, Input, Pull‐Up, Enabled, Mux Mode 7

■ 0x07 (0000111) Fast, Output, Pull‐down, Enabled, Mux Mode 7

■ 0x17 (0010111) Fast, Output, Pull‐up, Enabled, Mux Mode 7

These confi guration values are very useful, as they enable you to set the
pins into the exact operational mode that you require. The tables shown in
Figures 6-6 and 6-7 provide the most important information required when
interfacing the BBB. They have been generated using the BBB SRM, theM AM335x

F
ig

u
re

 6
-6

:
Th

e
BB

B
P8

 h
ea

de
r p

in
s

211

F
ig

u
re

 6
-7

:
Th

e
BB

B
P9

 h
ea

de
r p

in
s

212

 Chapter 6 ■ Interfacing to the BeagleBone Input/Outputs 213

TRM, and information that can be gleaned from the BBB Linux distribution.M
The fi gures illustrate the mmode options that are available on each of the BBB’s
P8 and P9 headers. They are available in PDF form in the GitHub repository
(chp06/P8P9headers) so that they can be displayed on your computer in color,
and printed as required.

Quite a large amount of information is presented in these two tables, and
subsequent chapters in the book will frequently refer back to them. For the
moment, note a few points that are particularly important:

■ Any pin that is highlighted in the $PINS column is already allocated and
should not be used unless you disable the functionality that it is allocated
to (e.g., the HDMI output or the eMMC). See the Notes column for further
details.

■ Mode7 is the GPIO mmode.

■ As discussed, the GPIO number is calculated by taking the GPIO chip
number, multiplying it by 32, and then adding the offset. For example,
GPIO1_12 = (1 × 32) + 12 = GPIO 44.

■ Very importantly, the $PINS number is not the GPIO number. This $PINS
number in the table is a BBB software reference for each of the pins and
these values are provided in the second column of the table.

■ Highlighted items in the Mode6 and Mode5 columns relate to PRU func-
tionality, discussed in Chapter 13.

The BBB P8 header pins P8_12 and P8_26 can be used as an illustration of
the information in these tables. These are the pins that were physically tested
as described earlier. If you examine Figure 6-6, you will see under P8_12 and
P8_26 the following values:

Head $PINS ADDR/OFFSET GPIO Name Mode7
P8_12 12 0x830/030 44 GPIO1_12 gpio1[12] ...
P8_26 31 0x87c/07c 61 GPIO1_29 gpio1[29] ...

The fact that the name of the pin is the same as its Mode7 value means that
Mode7 is most likely enabled by default. You can test this in Linux as follows:

molloyd@beaglebone:∼$ sudo su ‐s /bin/bash
root@beaglebone:/home/molloyd# cd /sys/kernel/debug/pinctrl/
root@beaglebone:/sys/kernel/debug/pinctrl# ls
44e10800.pinmux pinctrl-devices pinctrl-handles pinctrl-maps
root@beaglebone:/sys/kernel/debug/pinctrl# cd 44e10800.pinmux/
root@beaglebone:/sys/kernel/debug/pinctrl/44e10800.pinmux# ls
gpio-ranges pinconf-pins pinmux-functions pins
inconf-groups pingroups pinmux-pins
root@beaglebone:/sys/kernel/debug/pinctrl/44e10800.pinmux# more pins
registered pins: 142
...

214 Part II4 ■ Interfacing, Controlling, and Communicating

pin 12 (44e10830) 00000027 pinctrl-single
...
pin 31 (44e1087c) 00000037 pinctrl-single
...

The pin number is the $PINS value of the pin in question. Therefore, you can
see that P8_12 ($PINS value 12) is in mode 0x27, which is an input in Mode7
(gpio1[12]) with a pull‐down resistor enabled. Similarly, P8_26 is $PINS value
31, which is in mode 0x37. This is an input in Mode7 (gpio1[29]), with a pull‐up
resistor enabled. Viewing the pins fi le confi rms the test readings that were taken
earlier on the 100 kΩ resistor using the DMM.

There is more information available in this directory about which pins are
allocated. For example, use the following to check if the pins are allocated:

/sys/kernel/debug/pinctrl/44e10800.pinmux# cat pinmux‐pins
Pinmux settings per pin
Format: pin (name): mux_owner gpio_owner hog?
pin 0 (44e10800): mmc.11 (GPIO UNCLAIMED) function pinmux_emmc2_pins
group pinmux_emmc2_pins
...
pin 12 (44e10830): (MUX UNCLAIMED) (GPIO UNCLAIMED)
...
pin 31 (44e1087c): (MUX UNCLAIMED) (GPIO UNCLAIMED)

You can see that pin 0 is allocated to the eMMC, but the pins on the P8 header
that were tested using the DMM are not being claimed and are available for use.

You can actually query the value at the memory address itself using C code that
accesses /dev/mem directly. Because P8_12 ($PINS12) is mapped at the memory
address 44e10830 (see the ADDR column in Figure 6-6, or the preceding pinmux‐pins
fi le), you can use the following steps to install Jan‐Derk Bakker’s devmem2 program:

∼$ wget http://www.lartmaker.nl/lartware/port/devmem2.c
--2014-05-05 11:22:54-- http://www.lartmaker.nl/lartware/port/devmem2.c
...
2014-05-05 11:22:54 (14.7 MB/s) - 'devmem2.c' saved [3551/3551]
∼$ gcc devmem2.c ‐o devmem2
∼$ sudo ./devmem2 0x44e10830
/dev/mem opened.
Memory mapped at address 0xb6f5f000.
Value at address 0x44E10830 (0xb6f5f830): 0x27

The value 0x27 is expected for $PINS12. You can investigate the source code
of devmem2 to see how it can be integrated into your projects.

C++ Control of GPIOs

A C++ class has been written for this book that wraps the GPIO functional-
ity on the BBB in order to make it easier to use. Here is a segment of the class

 Chapter 6 ■ Interfacing to the BeagleBone Input/Outputs 215

description that lists its basic I/O functionality. The more advanced functionality
that has been removed from this code fragment is discussed at the end of this
chapter. The implementation of this functionality is similar to the code that
was written previously for the BBB LEDs. The full code listing is in /library/

gpio/GPIO.h and GPIO.cpp. Listing 6‐1 provides a partial listing of the GPIO
class source code.

The C++ code is separated into header (.h) and implementation (.cpp) fi les,
and the process of building applications in this form is called separate compila-
tion. Separate compilation makes building large projects more effi cient, but it
can be diffi cult to manage all the fi les. The next chapter introduces the Eclipse
integrated development environment (IDE) for cross‐compilation, in order to
make this process seamless.

LISTING 6‐1: /library/gpio/GPIO.h (partial listing)

// GPIO Class written by Derek Molloy (www.derekmolloy.ie)

#include<string>

#include<fstream>

using std::string;

using std::ofstream;

#define GPIO_PATH "/sys/class/gpio/"

namespace exploringBB { //All code is within a namespace

// Enumerations are used to restrict the options

enum GPIO_DIRECTION{ INPUT, OUTPUT };

enum GPIO_VALUE{ LOW=0, HIGH=1 };

enum GPIO_EDGE{ NONE, RISING, FALLING, BOTH };

class GPIO {

private:

 int number, debounceTime;

 string name, path;

public:

 GPIO(int number); //constructor will export the pin

 virtual int getNumber() { return number; }

 // General Input and Output Settings

 virtual int setDirection(GPIO_DIRECTION);

 virtual GPIO_DIRECTION getDirection();

 virtual int setValue(GPIO_VALUE);

 virtual int toggleOutput();

 virtual GPIO_VALUE getValue();

 virtual int setActiveLow(bool isLow=true); //low=1, high=0

 virtual int setActiveHigh(); //default

 //software debounce input (ms) - default 0

 virtual void setDebounceTime(int time){this->debounceTime = time;}

continues

216 Part II6 ■ Interfacing, Controlling, and Communicating

 // Advanced OUTPUT: Faster write using a stream (~20x)

 virtual int streamOpen();

 virtual int streamWrite(GPIO_VALUE);

 virtual int streamClose();

 ... // Advanced INPUT: presented at the end of this chapter

 virtual ~GPIO(); //destructor will unexport the pin

private: // Hidden functionality

 int write(string path, string filename, string value);

 int write(string path, string filename, int value);

 string read(string path, string filename);

 int exportGPIO();

 int unexportGPIO();

 ofstream stream;

 ...

};/* End of GPIO class */

} /* namespace exploringBB */

You can extend this class through inheritance in order to add the func-
tionality that you require, and you can integrate it into your projects without
restrictions on its use. Use of this class is demonstrated in the following short
code example that interacts with the LED and button circuits described earlier
in this chapter:

∼/exploringbb/chp06/GPIO$ more simple.cpp
#include<iostream>
#include<unistd.h> // required for usleep - microsecond sleep
#include"GPIO.h" // using user-include syntax
using namespace exploringBB; // bring in everything from this namespace
using namespace std; // bring in standard namespace

int main(){
 GPIO outGPIO(49), inGPIO(115); //P9_23 and P9_27 respectively

 // Basic Output - Flash the LED 10 times, once per second
 outGPIO.setDirection(OUTPUT);
 for (int i=0; i<10; i++){
 outGPIO.setValue(HIGH); // LED on
 usleep(500000); // sleep 0.5 seconds
 outGPIO.setValue(LOW); // LED off
 usleep(500000);
 }

 // Basic Input example
 inGPIO.setDirection(INPUT); // is the button pressed?
 cout << "The value of the input is: "<< inGPIO.getValue() << endl;

LISTING 6‐1: (continued)

 Chapter 6 ■ Interfacing to the BeagleBone Input/Outputs 217

 // Fast write to the GPIO 1 million times
 outGPIO.streamOpen();
 for (int i=0; i<1000000; i++){
 outGPIO.streamWrite(HIGH); // no sleep. As fast as possible.
 outGPIO.streamWrite(LOW);
 }
 outGPIO.streamClose(); // close the stream and exit
 return 0;
}
∼/exploringbb/chp06/GPIO$ g++ simple.cpp GPIO.cpp ‐o simple ‐pthread
∼/exploringbb/chp06/GPIO$ sudo ./simple
The value of the input is: 0

In the preceding build instruction, you need to pass both .cpp fi les to the
compiler, as due to separate compilation the source code is split over multiple
fi les. The ‐pthread fl ag is required for class functionality that is described later
in this chapter.

This code example fl ashes the LED 10 times, reads the state of the button, and
then fl ashes the LED one million times (in about eight seconds).

To test the performance of this structure, Figure 6-8 captures the signal output
of the LED fl ashing in (a) when the setValue() method is used with no sleep
call, and in (b) when the streamWrite() method is used. In (a) it is fl ashing at
about 5.5 kHz and in (b) it is fl ashing at about 125 kHz. Unfortunately, the C++
application had to run at 98% of CPU usage to generate these outputs, which
is not really practical on a multi‐user, multi‐process OS such as Linux, and it is
certainly not very effi cient.

PWM is discussed later in this chapter, illustrating how to switch a GPIO using
a regular periodic signal, at a fi xed frequency, with negligible CPU load. For
fast GPIO switching using a nonperiodic signal, the PRU-ICSS (see Chapter 13)
would likely be required. An unsafe technique that uses direct access to system
memory is also possible, and although it is defi nitely not recommended, it is
explained next because of its value in learning about what is going on “under
the hood.”

Figure 6-8: The BBB C++ class flashing the LED

218 Part II8 ■ Interfacing, Controlling, and Communicating

MEMORY‐BASED GPIO SWITCHING (ADVANCED)

If the preceding code is not switching fast enough for your applications, mechanisms

are available for making a GPIO circuit switch at much higher frequencies, using the

information from Chapter 25 in the AM335x TRM. However, by doing this you are

eff ectively bypassing the Linux OS, which means that if two processes try to access

the same GPIO registers at the same time, then a resource confl ict could occur. These
operations are unsafe and could lock up your Linux kernel. However, a reboot will put

everything back in order. Therefore, while it is not recommended for general pro-

gramming under Linux, an example provides useful insight into how the GPIOs func-

tion at the register level and how you can use some of the detail in the AM335x TRM.

At the beginning of this section, the devmem2 application is used to read the

pin mux settings. You can use the same program to also set values in the AM335x

registers. Section 25.4.1 in Chapter 25 of the AM335x TRM provides you with the

addresses for the bank of GPIOs (from its Table 25‐5):

13C GPIO_DATAOUT: Used to read the GPIO state

190 GPIO_CLEARDATAOUT: Used to set a GPIO low

194 GPIO_SETDATAOUT: Used to set a GPIO high

These values are off set from the base GPIO bank address. Because GPIO1_17 is on

the GPIO1 bank, you need the base address, which is available in the Memory Map

table (Table 2‐3) of the TRM and has the value 0x4804C000. For reference, GPIO0 is

0x44E07000, GPIO2 is 0x481AC000, and GPIO3 is 0x481AE000. Therefore, you can

turn off the LED on P9_23 (GPIO1_17) using the call

molloyd@beaglebone:∼$ sudo ./devmem2 0x4804c190 w 0x00020000
/dev/mem opened.
Memory mapped at address 0xb6f41000.
Value at address 0x4804C190 (0xb6f41190): 0x820000
Written 0x820000; readback 0x0

where the value you are writing to the GPIO_CLEARDATAOUT off set (190) from the

base of address of GPIO1 (0x4804C000) is the 17th bit—i.e., 1000000000000000002

converted to hexadecimal = 0x00020000. This will turn the LED off . To turn it on, use

the GPIO_SETDATAOUT (194) off set:

molloyd@beaglebone:∼$ sudo ./devmem2 0x4804c194 w 0x00020000
/dev/mem opened.
Memory mapped at address 0xb6f26000.
Value at address 0x4804C194 (0xb6f26194): 0x800000
Written 0x820000; readback 0x820000

To read the current state, you can use the GPIO_DATAOUT off set (13C):

molloyd@beaglebone:∼$ sudo ./devmem2 0x4804c13c
/dev/mem opened.

 Chapter 6 ■ Interfacing to the BeagleBone Input/Outputs 219

The Linux Device Tree

The fi rst introduction to the Linux boot process is in Chapter 3, where it is made
clear that Linux running on an embedded device, such as the BBB, does not have
a BIOS. Rather, in order to boot and confi gure the device, it uses fi les on the SD
card or eMMC that describe the machine’s hardware. Every type of embedded
Linux device has its own unique set of fi les to describe its platform hardware.

When the BeagleBone was running older Linux kernels, the specifi c modi-
fi cations required to those Linux kernels were applied to the Linux source
code directly by using a fi le called board‐am335xevm.c. Older Linux kernels
(before 3.7) also provided an easy-to-use OMAP MUX to handle confi guration
of the BeagleBone’s pins. The popularity of ARM‐based microprocessers led to
a proliferation of Linux kernel customizations. As a result, Linus Torvalds was
unhappy with the amount of code that was being added directly to mainline
Linux to describe each and every feature, for each and every ARM device being
manufactured (the board‐am335xevm.c has over 4,000 lines of code). Therefore,
new ARM boards using the latest Linux kernels use fl attened device tree (FDT)
models instead, a technology which has been used by PowerPC developers for
many years (Kridner, 2013).1

N O T E There is a video on this topic available at the chapter web page,

www.exploringbeaglebone.com/chapter6, and tiny.cc/ebb601, which

gives an overview of the Linux device tree on the BBB.

The Flattened Device Tree (FDT)

The FDT is simply a data structure that describes the hardware on the board. InT
the GitHub repository directory that follows, the device tree for the BBB Linux
3.8.13 kernel is made available so that you can review it:

∼/exploringbb/chp06/deviceTree/DTSource3.8.13$ ls
am335x-bone-common.dtsi am335x-boneblack.dts skeleton.dtsi
am335x-bone.dts am33xx.dtsi tps65217.dtsi

Memory mapped at address 0xb6fcd000.
Value at address 0x4804C13C (0xb6fcd13c): 0x820000

where 0x8200000 = 1000001000000000000000002. Therefore, the 17th bit from the

right (GPIO1_17) and the 23rd bit from the right (GPIO1_23, which is the USR2 LED) are

both on. Remember that you downloaded the source code for devmem2.c and it can

be modifi ed, should you wish to perform this type of high‐speed, but unsafe, GPIO

switching. This topic is examined again in Chapter 13, when the PRU‐ICSS is discussed.

220 Part II0 ■ Interfacing, Controlling, and Communicating

In particular, examine the beginning of the fi le, am335x‐bone‐common.dtsi,
as shown in Listing 6‐2.

LISTING 6‐2: chp06/deviceTree/DTSource3.8.13/am335x‐bone‐common.dtsi

/* Copyright (C) 2012 Texas Instruments Incorporated ... */

/include/ "am33xx.dtsi"

/ {

 model = "TI AM335x BeagleBone";

 compatible = "ti,am335x-bone", "ti,am33xx";

 cpus {

 cpu@0 {

 cpu0-supply = <&dcdc2_reg>;

 };

 };

 memory {

 device_type = "memory";

 reg = <0x80000000 0x10000000>; /* 256 MB */

 };

 am33xx_pinmux: pinmux@44e10800 {

 pinctrl-names = "default";

 pinctrl-0 = <&userled_pins>;

 userled_pins: pinmux_userled_pins {

 pinctrl-single,pins = <

 0x54 0x7 /* gpmc_a5.gpio1_21, OUTPUT | MODE7 */

 0x58 0x17 /* gpmc_a6.gpio1_22, OUTPUT_PULLUP | MODE7 */

 0x5c 0x7 /* gpmc_a7.gpio1_23, OUTPUT | MODE7 */

 0x60 0x17 /* gpmc_a8.gpio1_24, OUTPUT_PULLUP | MODE7 */

 >;

 };

 i2c0_pins: pinmux_i2c0_pins {

 pinctrl-single,pins = <

 0x188 0x70 /* i2c0_sda, SLEWCTRL_SLOW | INPUT_PULLUP | MODE0 */

 0x18c 0x70 /* i2c0_scl, SLEWCTRL_SLOW | INPUT_PULLUP | MODE0 */

 >;

 };

...

This fi le describes the CPU, memory, the USR LEDs, and the I2C0 bus. There
is a full description about what each fi eld in the FDT means at devicetree.org/
Device_Tree_Usage. Some of the values should look familiar; for example, the
pinmux offset is listed as 44e10800, just as in the tables in Figures 6-6 and 6-7.
You can see that the fi rst USR LED0 is attached to GPIO1_21 at the offset 0x54
from 44e10800, as described in the same tables. Also, the pin mode is 0x07 (Fast,
Output, Pull‐down, Enabled, Mode 7).

 Chapter 6 ■ Interfacing to the BeagleBone Input/Outputs 221

This fi le is compiled into a binary form using a device tree compiler (DTC)
and is placed on the Linux boot image at /boot/uboot/dtbs, as shown by the
following:

root@beaglebone:/boot/uboot/dtbs# ls am*
am335x-boneblack.dtb am335x-evm.dtb am335x-tester.dtb
am335x-bone.dtb am335x-evmsk.dtb

These fi les are used as part of the boot process. To modify the hardware that
is enabled on your BBB, you could modify these DTS fi les, compile them using
the compiler, deploy them to the boot directory, and then reboot your board.
However, that would be quite onerous.

Device Tree Overlays (DTOs)

Unfortunately, the FDT is not suitable for the runtime confi guration (i.e., after
Linux has booted) of inputs and outputs, which in the absence of an alternative
would make dynamically adding capes or adding virtual overlays to the BBB
extremely problematic. Fortunately, Pantelis Antoniou (Antoniou Consulting)
developed a solution for this problem using device tree overlays (DTOs) and a
cape manager (as described at www.elinux.org/Capemgr). The best way to explain
DTOs is to write one and deploy it to your BBB. For more information on the
Linux device tree, see the guide at www.elinux.org/Device_Tree and Jason
Kridner’s guide at tiny.cc/ebb605.

Writing an Overlay

If you examine Figure 6-7, which describes the P9 header, you will see that
P9_11 and P9_13 are allocated to the receiver and transmitter pins of UART4,
respectively. For this example, it is assumed that you have decided to reallocate
these pins to GPIO0_30 and GPIO0_31, which are Mode7 in both cases. A DTO
is written as shown in Listing 6‐3.

LISTING 6‐3: /chp06/overlay/EBB‐GPIO‐Example.dts

/* OUTPUT GPIO(mode7) 0x07 pulldown, 0x17 pullup, 0x?f no pullup/down */

/* INPUT GPIO(mode7) 0x27 pulldown, 0x37 pullup, 0x?f no pullup/down */

/dts-v1/;

/plugin/;

/{

 compatible = "ti,beaglebone", "ti,beaglebone-black";

 part-number = "EBB-GPIO-Example";

 version = "00A0";
continues

222 Part II ■ Interfacing, Controlling, and Communicating

 fragment@0 {

 target = <&am33xx_pinmux>;

 __overlay__ {

 ebb_example: EBB_GPIO_Example {

 pinctrl-single,pins = <

0x070 0x07 // P9_11 $28 GPIO0_30=30 Output Mode7 pulldown

0x074 0x37 // P9_13 $29 GPIO0_31=31 Input Mode7 pullup

 >;

 };

 };

 };

 fragment@1 {

 target = <&ocp>;

 __overlay__ {

 gpio_helper {

 compatible = "gpio-of-helper";

 status = "okay";

 pinctrl-names = "default";

 pinctrl-0 = <&ebb_example>;

 };

 };

 };

};

Compiling and Deploying an Overlay

On the BBB, compile the device tree source (.dts) fi le into a device tree blob
object (.dtbo) using the device tree compiler (dtc) with the following syntax
(use 00A0 as the revision number):

$ dtc ‐O dtb ‐o EBB‐GPIO‐Example‐00A0.dtbo ‐b 0 ‐@ EBB‐GPIO‐Example.dts

There is a build script (build) in the overlay directory that contains this com-
mand syntax. To deploy the overlay, copy the output binary (.dtbo) fi le to the
/lib/firmware directory on the BBB:

$ sudo cp EBB‐GPIO‐Example‐00A0.dtbo /lib/firmware

The BBB Cape Manager

As discussed in Chapter 1, capes are expansion boards that can be plugged into
the BBB. Each cape has an associated .dtbo fi le. Ideally, when you plug a cape
into the BBB, the appropriate .dtbo fi le should be loaded in order to confi gure
the P8/P9 header pins that interface to the cape. The cape manager is designed
to allow capes to be loaded dynamically at run time, without the requirement

LISTING 6‐3: (continued)

 Chapter 6 ■ Interfacing to the BeagleBone Input/Outputs 223

to recompile the Linux kernel. The cape manager is implemented entirely in
the Linux kernel, but it loads .dtbo fi les from the /lib/firmware directory at
run time.

Loading a Device Tree Overlay

The fi rst step that you should perform in order to use the cape manager is to
set up two environment variables (please check that the paths are valid on your
BBB, as they are subject to change):

∼$ export SLOTS=/sys/devices/bone_capemgr.9/slots
∼$ export PINS=/sys/kernel/debug/pinctrl/44e10800.pinmux/pins

Because you are likely to do this very often, you should add these two lines
to your .profile fi le, in the home directory on the BBB. Using the call nano
~/.profile, add the following lines at the end of the fi le:

export SLOTS=/sys/devices/bone_capemgr.9/slots
export PINS=/sys/kernel/debug/pinctrl/44e10800.pinmux/pins

Then use the source command to set these environment variables. They
will be automatically set when you boot. You can then check the cape man-
ager’s slots to see which capes are loaded and which pins are allocated, as
follows:

molloyd@beaglebone:∼$ source ~/.profile
molloyd@beaglebone:∼$ cat $SLOTS
 0: 54:PF---
 1: 55:PF---
 2: 56:PF---
 3: 57:PF---
 4: ff:P-O-L Bone-LT-eMMC-2G,00A0,Texas Instrument,BB-BONE-EMMC-2G
 5: ff:P-O-L Bone-Black-HDMI,00A0,Texas Instrument,BB-BONELT-HDMI
molloyd@beaglebone:∼$ sudo cat $PINS
registered pins: 142
pin 0 (44e10800) 00000031 pinctrl-single
...
pin 141 (44e10a34) 00000020 pinctrl-single

Slots 0–3 are reserved for physically attached capes, while device tree overlays
(virtual capes) will receive higher slot allocations. You can get further details
about the occupied slots using the fi les in the cape’s sysfs directory—for example:

molloyd@beaglebone:$ cd /sys/devices/bone_capemgr.9/
molloyd@beaglebone:/sys/devices/bone_capemgr.9$ ls
baseboard modalias slot-4 slot-7 slots uevent
driver power slot-5 slot-8 subsystem

224 Part II4 ■ Interfacing, Controlling, and Communicating

The slot numbers will differ depending on the real and virtual capes attached
to the BBB. Use the following to fi nd out further details about the overlay at slot 7:

molloyd@beaglebone:/sys/devices/bone_capemgr.9$ cd slot‐7/
molloyd@beaglebone:/sys/devices/bone_capemgr.9/slot‐7$ ls
board-name header part-number sys-5v version
dc-supplied manufacturer pin-usage vdd-3v3exp
eeprom-format-revision number-of-pins serial-number vdd-5v

As discussed in Chapter 3, environment variables do not transfer to the root
user session. To fi x this permanently for SLOTS and PINS, log in as root and type
visudo. Under the line containing env_reset, set sudo to retain the SLOTS and
PINS environment variables on a su call:

Defaults env_reset
Defaults env_keep += "SLOTS"
Defaults env_keep += "PINS"

Save the changes, and use the following (do not use sudo su ‐) and you will
see that the variables have been transferred to the root user session. Then, load
the new overlay, BBB‐GPIO‐Example, as follows:

molloyd@beaglebone:/lib/firmware$ sudo su
root@beaglebone:/lib/firmware# echo EBB‐GPIO‐Example > $SLOTS
root@beaglebone:/lib/firmware# cat $SLOTS
 0: 54:PF---
 1: 55:PF---
 2: 56:PF---
 3: 57:PF---
 4: ff:P-O-L Bone-LT-eMMC-2G,00A0,Texas Instrument,BB-BONE-EMMC-2G
 5: ff:P-O-L Bone-Black-HDMI,00A0,Texas Instrument,BB-BONELT-HDMI
 6: ff:P‐O‐L Override Board Name,00A0,Override Manuf,EBB‐GPIO‐Example

The overlay has been loaded in slot number 6. You can test that the overlay
has been loaded correctly by viewing the slots and/or by typing dmesg|more to
see the log as the virtual cape was being attached to the slot—for example, by
using dmesg|grep EBB in this case.

Finally, to test that the overlay is working correctly (remembering that P9_11
is $PINS 28 and P9_13 is $PINS29) you can perform the following:

root@beaglebone:/lib/firmware# cat $PINS |more
registered pins: 142
pin 0 (44e10800) 00000031 pinctrl-single
...
pin 28 (44e10870) 00000007 pinctrl-single
pin 29 (44e10874) 00000037 pinctrl-single

The pins are set up exactly as requested in the device tree overlay fi le in
Listing 6‐3, with P9_11 set to mode 0x07 and P9_13 set to mode 0x37.

 Chapter 6 ■ Interfacing to the BeagleBone Input/Outputs 225

Removing an Overlay

You can remove an overlay from a slot by passing the minus sign, followed by
the slot number, to the cape manager, as follows:

root@beaglebone:/lib/firmware# echo ‐6 > $SLOTS
root@beaglebone:/lib/firmware# cat $SLOTS
 0: 54:PF---
 1: 55:PF---
 2: 56:PF---
 3: 57:PF---
 4: ff:P-O-L Bone-LT-eMMC-2G,00A0,Texas Instrument,BB-BONE-EMMC-2G
 5: ff:P-O-L Bone-Black-HDMI,00A0,Texas Instrument,BB-BONELT-HDMI

This procedure works for most slots, but at the time of writing, this can lock
up the Linux terminal for certain capes, requiring a reboot of the BBB. The HDMI
and eMMC overlays occupy many of the P8/P9 header pins and the overlays
must be removed in order to access the alternative pins. Disabling the HDMI
cape or eMMC is not so straightforward, as you must modify the uEnv.txt fi le,
using Notepad++ (the ordinary Notepad will not work correctly) or a similar
application, or directly on the BBB as follows:

molloyd@beaglebone:/media$ sudo mkdir /mnt/vfat
molloyd@beaglebone:/media$ sudo mount /dev/mmcblk0p1 /mnt/vfat
molloyd@beaglebone:/media$ cd /mnt/vfat/
molloyd@beaglebone:/mnt/vfat$ sudo nano uEnv.txt

Uncomment the following line, but be careful not to uncomment the similar
HDMI/eMMC line, or your BBB will not boot from the eMMC:

##Disable HDMI
optargs=capemgr.disable_partno=BB-BONELT-HDMI,BB-BONELT-HDMIN

Unmount the fi le system and reboot:

molloyd@beaglebone:/mnt/vfat$ cd ..
molloyd@beaglebone:/mnt$ sudo umount /mnt/vfat
molloyd@beaglebone:/mnt$ sudo reboot
molloyd@beaglebone:∼$ cat $SLOTS
...
 4: ff:P-O-L Bone-LT-eMMC-2G,00A0,Texas Instrument,BB-BONE-EMMC-2G
 5: ff:P‐O--- Bone‐Black‐HDMI,00A0,Texas Instrument,BB‐BONELT‐HDMI
 6: ff:P‐O--- Bone‐Black‐HDMIN,00A0,Texas Instrument,BB‐BONELT‐HDMIN

The letter “L” means that the cape is enabled, so if it is absent then the cape
is disabled. If you need to disable the eMMC in order to use the header pins
that it occupies, be aware that the BBB must be booted from an SD card. If you
introduce an error into your uEnv.txt fi le, then the BBB may not boot. See the
note near the middle of Chapter 3 on how to fi x such a problem.

226 Part II6 ■ Interfacing, Controlling, and Communicating

There are many overlays on the BBB in the /lib/firmware directory. For
example, there are overlays to enable the I2C and SPI buses that are needed in
Chapter 8:

root@beaglebone:/lib/firmware# ls BB‐SPI*
BB-SPIDEV0-00A0.dtbo BB-SPIDEV1-00A0.dtbo BB-SPIDEV1A1-00A0.dtbo

Loading an Overlay on Boot

If you wish to load an overlay every time the board boots, modify the uEnv.txt
fi le as just discussed, and add a new optargs line:

##Disable HDMI
#optargs=capemgr.disable_partno=BB-BONELT-HDMI,BB-BONELT-HDMIN
optargs=capemgr.enable_partno=BB‐SPIDEV0

After reboot you will see that there is a new virtual cape in the next free slot:

molloyd@beaglebone:∼$ cat $SLOTS
..
 4: ff:P-O-L Bone-LT-eMMC-2G,00A0,Texas Instrument,BB-BONE-EMMC-2G
 5: ff:P-O-L Bone-Black-HDMI,00A0,Texas Instrument,BB-BONELT-HDMI
 7: ff:P‐O‐L Override Board Name,00A0,Override Manuf,BB‐SPIDEV0

You may have to disable the SPI overlay to follow the steps in the next sec-
tion; otherwise, the terminal may crash and the BBB may need to be rebooted.

N O T E The cape manager is currently work in progress and is subject to change. At

the time of writing, it is not possible to load your own custom overlay on boot with-

out rebuilding the Linux kernel. This problem and the issues with terminal lock‐up

on removal of capes should be corrected over time. In fact, it is likely that more user‐

friendly interfaces will be developed to confi gure pin settings.

Analog Inputs and Outputs

In Chapter 4, the concept of analog‐to‐digital conversion (ADC) is introduced
and an operational amplifi er voltage‐follower circuit is described that can be
used to safely read analog inputs. The next section describes how you can
interface such a circuit to the BBB and use Linux sysfs to read values into your
software applications.

Analog Inputs

The AM335x has a 12‐bit successive approximation register (SAR) ADC that is
capable of 200,000 samples per second. The input to the SAR is internally selected

 Chapter 6 ■ Interfacing to the BeagleBone Input/Outputs 227

using an 8:1 analog switch, and the BBB makes seven of these switched inputs
available on the P9 header as ADC inputs. Among other things, the analog inputs
can be confi gured to be used as a four‐wire, fi ve‐wire, or eight‐wire resistive
touch screen controller (TSC), and this application is used in Chapter 11. In
the present section, the ADC inputs are used as simple one‐wire ADC inputs.
By default, these inputs are not enabled on the BBB, so the fi rst step is to enable
them.

Enabling the Analog Inputs

The analog inputs can be enabled with the use of the cape manager to load a
DTO, as follows:

molloyd@beaglebone:∼$ cd /sys/bus/iio
/sys/bus/iio$ ls
devices drivers drivers_autoprobe drivers_probe uevent
/sys/bus/iio$ cd devices/
/sys/bus/iio/devices$ ls
iio_sysfs_trigger
/sys/bus/iio/devices$ sudo sh ‐c "echo BB‐ADC > $SLOTS"
/sys/bus/iio/devices$ cat $SLOTS
...
 4: ff:P-O-L Bone-LT-eMMC-2G,00A0,Texas Instrument,BB-BONE-EMMC-2G
 5: ff:P-O-L Bone-Black-HDMI,00A0,Texas Instrument,BB-BONELT-HDMI
 7: ff:P‐O‐L Override Board Name,00A0,Override Manuf,BB‐ADC

Once you attach the BB‐ADC overlay to the slot, you will see that there is now
a new entry in the devices directory, in which you will fi nd fi le entries that
allow you to read the raw ADC values directly:

/sys/bus/iio/devices$ ls
iio:device0 iio_sysfs_trigger
molloyd@beaglebone:/sys/bus/iio/devices$ cd iio:device0
molloyd@beaglebone:/sys/bus/iio/devices/iio:device0$ ls
buffer in_voltage2_raw in_voltage6_raw scan_elements
dev in_voltage3_raw in_voltage7_raw subsystem
in_voltage0_raw in_voltage4_raw name trigger
in_voltage1_raw in_voltage5_raw power uevent

If you read the analog input (AIN0), using cat in_voltage0_raw, when noth-
ing is connected, the result will be an integer value between 0 and 4,095. The
BBB has 12‐bit ADCs (212 = 4,096), meaning a value between 0 and 212 − 1 (0 to
4,095) will be returned. You can test this by using the following:

/sys/bus/iio/devices/iio:device0$ cat in_voltage0_raw
3831
/sys/bus/iio/devices/iio:device0$ cat in_voltage0_raw
3847

228 Part II8 ■ Interfacing, Controlling, and Communicating

Next, a simple light‐level meter application is built to demonstrate how you
can attach sensor circuits to the BBB that can be used for sampling and data‐
logging applications.

Input Application—A Simple Light Meter

To choose a suitable pairing resistor value R for a typical light‐dependent resis-
tor (LDR) voltage divider circuit, a good rule of thumb is to use the equation
R R RMIN MAX= × , where RMIN is the measured resistance of the LDR when itN

is covered (e.g., with your fi nger) and RMAX is the measured resistance of the X

LDR when a light source (e.g., phone torch app) is close to its surface. In this
example, the resistance of the LDR was 6 kΩ when covered and 100 Ω when the
light source was close. The preceding formula thus gives a value for R of 775Ω,
so the combination of a 470 Ω and a 330 Ω resistor in series provides a suitable
value for the potential divider. You could wire the circuit as shown in Figure 6-9,
but it is not a recommended confi guration.

Figure 6-9: ADC LDR circuit (not recommended)

N O T E If you are following this chapter by building the circuits, do not disassemble

the LED and button circuits, as they are required later in this chapter.

The problem with the circuit in Figure 6-9 is that it will draw a current from
the Vref/VADC(P9_32) pin and act as a variable load. The resistance between ff
Vref and AGND varies from 900 f Ω in the brightest case to 6.8 kΩ in the darkest
case. In the brightest case, because Vref = 1.8 V, this means that the current being f
sourced from Vref,ff I = 1.8 V/900I Ω = 2 mA. If you were to wire seven separate
circuits like this one, you could end up sourcing up to 14 mA from Vref, whichff
could damage the BBB. The AM335x analog front end (AFE) switches between
inputs, but the supply voltage will remain powered for all seven circuits. Even
if the current is not large enough to damage the BBB, drawing current from

 Chapter 6 ■ Interfacing to the BeagleBone Input/Outputs 229

Vref will affect the voltage level of the reference voltage itself, which defeats the f
purpose of having a reference voltage.

To avoid drawing any signifi cant current from the BBB 1.8 V Vref, an op‐ampff
voltage‐follower circuit can be used. This op‐amp confi guration is discussed in
Chapter 4. The implementation described in Figure 6-10 uses a LM358P (dual
op‐amp) IC, where VCCVV is connected to the SYS_5V rail (DC_3.3V could also
have been used) and the positive input (2IN+) to the second op‐amp is the BBB
1.8 V analog reference voltage Vref/VADC(P9_32).ff

Figure 6-10: ADC LDR circuit using a voltage‐follower circuit (recommended)

The raw voltage levels can be read from the ADC using sysfs. For the follow-
ing sample values, the fi rst reading was taken at regular room light levels, the
second reading was taken with the LDR surface covered, and the third reading
was taken with a light source very close to the sensor:

/sys/bus/iio/devices/iio:device0# cat in_voltage0_raw
959
/sys/bus/iio/devices/iio:device0# cat in_voltage0_raw
304
/sys/bus/iio/devices/iio:device0# cat in_voltage0_raw
3651

The circuit provides a good range of decimal input values, due to the resistor
calculation at the start of this section. The current required for input offset and
input biasing is typically 2 nA and 20 nA, respectively, for the LM358, meaning
that it will not draw any signifi cant current from the BBB Vref pin (P9_32). The f
actual measured voltage and current values for this circuit are displayed in
Figure 6-11, where the “light level” as read from in_voltage0_raw was the value

230 Part II0 ■ Interfacing, Controlling, and Communicating

3,466. It should be clear from this fi gure that there is almost no current being
sourced from or sinked to the analog Vref, AGND, or AIN0 pins, even though ff
the current fl owing through the LDR was about 2 mA (as the light level in the
room was bright and the LDR resistance was low).

Figure 6-11: Measured voltages and current values with the op‐amp in a voltage‐follower
configuration

Very importantly, this confi guration has no loading effect on the Vref output.f
This is in contrast to the confi guration in Figure 6-9, where the LDR and resis-
tors load the Vref output, skewing the reference voltage depending on the load,f
which varies according to the light level. Note that the 1.97 mA current on the
bottom GND rail was the current returning to the grounding point (it behaves
exactly like the return connection from the resistor in Figure 4‐2(a)).

Here is a simple C++ application that reads in the LDR value. It is structured
so that it reads a single value from any of the AIN pins, by passing the pin
number (0–6) to the readAnalog() function:

∼/exploringbb/chp06/ADC# more readLDR.cpp
#include<iostream>
#include<fstream>
#include<string>
#include<sstream>
using namespace std;

#define LDR_PATH "/sys/bus/iio/devices/iio:device0/in_voltage"

int readAnalog(int number){ // returns the input as an int
 stringstream ss;
 ss << LDR_PATH << number << "_raw";
 fstream fs;
 fs.open(ss.str().c_str(), fstream::in);
 fs >> number;
 fs.close();
 return number;
}

 Chapter 6 ■ Interfacing to the BeagleBone Input/Outputs 231

int main(int argc, char* argv[]){
 cout << "Starting the readLDR program" << endl;
 int value = readAnalog(0);
 cout << "The LDR value was " << value << " out of 4095." << endl;
 return 0;
}
∼/exploringbb/chp06/ADC# g++ readLDR.cpp ‐o readLDR
∼/exploringbb/chp06/ADC# ./readLDR
Starting the readLDR program
The LDR value was 463 out of 4095.

This code works perfectly for reading a sensor occasionally, but it is not very
good for reading a sensor many times per second.

Analog Outputs (PWM)

The next functionality to be examined is the use of the BBB’s pulse‐width modulation
(PWM) outputs to provide low‐frequency digital‐to‐analog conversion (DAC), or for
the generation of control signals for motors and certain types of servos. There are
eight PWM outputs, three eHRPWM modules (two outputs each), and two eCAP
modules. These outputs are described in Figures 6-6 and 6-7, where you can see
that the six eHRPWM outputs are each available on two separate pins (e.g., output
2B is available on P8_13 and P8_46). Like the ADC functionality, the PWM pins
are enabled using overlays, which are available in the /lib/firmware directory:

/lib/firmware$ ls bone_pwm*
bone_pwm_P8_13-00A0.dtbo bone_pwm_P8_46-00A0.dtbo
bone_pwm_P9_28-00A0.dtbo bone_pwm_P8_19-00A0.dtbo
bone_pwm_P9_14-00A0.dtbo bone_pwm_P9_29-00A0.dtbo
bone_pwm_P8_34-00A0.dtbo bone_pwm_P9_16-00A0.dtbo
bone_pwm_P9_31-00A0.dtbo bone_pwm_P8_36-00A0.dtbo
bone_pwm_P9_21-00A0.dtbo bone_pwm_P9_42-00A0.dtbo
bone_pwm_P8_45-00A0.dtbo bone_pwm_P9_22-00A0.dtbo

To enable P9_22 as a PWM output, you have to pass two separate overlays to
the cape manager (you may have to remove the BB‐ADC overlay):

/lib/firmware$ sudo sh ‐c "echo bone_pwm_P9_22 > $SLOTS"
/lib/firmware$ sudo sh ‐c "echo am33xx_pwm > $SLOTS"
/lib/firmware$ cat $SLOTS
...
 4: ff:P-O-L Bone-LT-eMMC-2G,00A0,Texas Instrument,BB-BONE-EMMC-2G
 5: ff:P-O-L Bone-Black-HDMI,00A0,Texas Instrument,BB-BONELT-HDMI
 7: ff:P‐O‐L Override Board Name,00A0,Override Manuf,bone_pwm_P9_22
 8: ff:P‐O‐L Override Board Name,00A0,Override Manuf,am33xx_pwm

The HDMI cape is blocking several of the PWM outputs. For example, if you
try to load the P8_34 overlay and HDMI is enabled you will see the following:

/lib/firmware$ sudo sh ‐c "echo bone_pwm_P8_34 > $SLOTS"
bash: echo: write error: File exists

232 Part II ■ Interfacing, Controlling, and Communicating

If you follow the steps for disabling HDMI provided earlier in the chapter,
you can then load the PWM overlay and it should function without error.

To access the properties of the PWM output, change to the following direc-
tory and you will see the available options:

molloyd@beaglebone:∼$ cd /sys/devices/ocp.3/pwm_test_P9_22.15/
molloyd@beaglebone:/sys/devices/ocp.3/pwm_test_P9_22.15$ ls ‐l
total 0
lrwxrwxrwx 1 root root 0 May 7 12:41 driver -> ...
-rw------- 1 root root 4096 May 7 12:41 duty
-r--r--r-- 1 root root 4096 May 7 12:41 modalias
-rw------- 1 root root 4096 May 7 12:41 period
-rw------- 1 root root 4096 May 7 12:41 polarity
drwxr-xr-x 2 root root 0 May 7 12:41 power
-rw------- 1 root root 4096 May 7 12:41 run
lrwxrwxrwx 1 root root 0 May 7 12:27 subsystem -> ...
-rw-r--r-- 1 root root 4096 May 7 12:27 uevent

To set up a PWM signal, the period is supplied in nanoseconds. Therefore,
to output a PWM signal that has a period of 10 μs and a 50% duty cycle, you set
the time period and not the duty cycle percentage:

/sys/devices/ocp.3/pwm_test_P9_22.15$ sudo su
/sys/devices/ocp.3/pwm_test_P9_22.15# echo 5000 > duty
/sys/devices/ocp.3/pwm_test_P9_22.15# echo 10000 > period
/sys/devices/ocp.3/pwm_test_P9_22.15# echo 1 > run

If you connect a DMM between the P9_22 pin and GND, the voltage mea-
sured with a 5,000 duty period should be 1.657 V when the duty period is set
as 5,000 and the period is set at 10,000 (that is, the output is 3.314 V for half of
each cycle and 0 V for the other half, and the DMM averages this to 1.657 V).
Changing the duty cycle period results in the following DMM measurements
by default: 0 → 3.314 V, 2500 → 2.485 V, 7500 → 0.828 V, and 10,000 → 0.6 mV.
This relationship can be inverted (i.e., 10,000 → 3.314 V) by changing the
polarity using echo 0 > polarity. Setting these values provides you with
DAC capability that can be combined with an optocoupler or transistor to
limit the current drawn from the GPIO pin.

The duty cycle has to be lower than the period, so set it fi rst if you are decreas-
ing the period; otherwise, you will get an error “Invalid argument.” Figures 6-12
and 6‐13 display the output of the BBB when PWM signals of 100 kHz and 1 MHz,
respectively, are specifi ed.

An unwanted oscillation of the voltage signal, known as ringing, is clearly
visible in Figure 6-12(b) in the step response at 1 MHz. However, many applica-
tions for which PWM is used require comparatively low frequencies, so this is
not a problem. For example, to control a typical servo motor, periods of tens of
milliseconds are required (i.e., less than 100 Hz).

 Chapter 6 ■ Interfacing to the BeagleBone Input/Outputs 233

A C++ class called PWM is provided in the GitHub repository for setting up a
PWM signal or outputting an analog voltage. The code requires that a suitable
DTO is applied, and the PWM pin name is passed to the constructor of the PWM
class. For example, use the following to perform the previous steps (see chp06/
API/gpio/PWM.h):

PWM pwm("pwm_test_P9_22.15"); //create the PWM object
pwm.setPeriod(10000); //set the period in ns
pwm.setDutyCycle(50.0f); //can use percentage or time in ns
pwm.setPolarity(PWM::ACTIVE_LOW); //ACTIVE_LOW or ACTIVE_HIGH
pwm.run(); //start the output

Or, to output an analog voltage on P9_22:

PWM pwm("pwm_test_P9_22.15"); //create the PWM object
pwm.calibrateAnalogMax(3.318); //defaults to 3.3V
pwm.analogWrite(1.25); //DMM will give ~1.25V on P9_22

Figure 6-12: PWM cycle with period 10,000 ns (100 kHz) and duty cycle of 50%

Figure 6-13: PWM cycle with period 1,000 ns (1 MHz) and duty cycle of 50%

Output Application—Controlling a Servo Motor

Servo motors consist of a DC motor that is attached to a potentiometer and a
control circuit. The position of the motor shaft can be controlled by sending a
PWM signal to the controller.

234 Part II4 ■ Interfacing, Controlling, and Communicating

Figure 6-14: Controlling a servo motor using PWM, positioning from –90° to +90° using different
pulse widths

The Hitec HS‐422 is a low‐cost (less than $10), good quality, and widely avail-
able servo motor that can be supplied using a 5 V supply. It is rated to rotate ±45°
from the center. It can rotate in the range ±90°, but the potentiometer does not
behave in a linear way outside the ±45° range. According to its datasheet, the
HS‐422 expects a pulse every 20 ms that has a duration from 1100 μs (to set the
position to –45° from the center position) to 1900 μs (to set the position to +45°
from the center position). The center position can be set by passing a pulse of
1500 μs in duration.

Figure 6-14 illustrates the connections and timings for the servo motor that
enables it to rotate from –90° using a pulse of 570 μs to +90° using a pulse of
2350 μs. These values and the center point of 1460 μs were manually calibrated,
and will vary for each individual servo motor.

The servo motor has three leads: black, red, and yellow. The black lead is
connected to the BBB GND (P9_01); the red lead is connected to the BBB SYS_5V
(P9_07); and the yellow lead is connected via a 1 kΩ resistor to the PWM output
(ehrpwm0A) on the BBB (P9_22). The 1 kΩ resistor limits the current sourced from
P9_22 to about 0.01 mA. To manually control a servo motor using sysfs, perform
the following steps (as the root user):

∼# echo bone_pwm_P9_22 > $SLOTS
∼# echo am33xx_pwm > $SLOTS
/lib/firmware# cd /sys/devices/ocp.3/pwm_test_P9_22.15/
/sys/devices/ocp.3/pwm_test_P9_22.15# ls
driver duty modalias period polarity power run subsystem uevent

The polarity value should be set to 0 for servo motors, so that the duty value
represents the duration of a high pulse. If the polarity value is 1, then the signal
is inverted and the duty value would effectively specify the duration of a low

 Chapter 6 ■ Interfacing to the BeagleBone Input/Outputs 235

pulse, with the signal being high for the remainder of the period. The period
is set to 20 ms and the output is enabled:

/sys/devices/ocp.3/pwm_test_P9_22.15# echo 0 > polarity
/sys/devices/ocp.3/pwm_test_P9_22.15# echo 20000000 > period
/sys/devices/ocp.3/pwm_test_P9_22.15# echo 1 > run

The arm can be rotated to –90°, followed by 0°, and then +90°, with the last
step turning off the output, removing the holding torque, and reducing the
power consumption of the motor:

/sys/devices/ocp.3/pwm_test_P9_22.15# echo 570000 > duty
/sys/devices/ocp.3/pwm_test_P9_22.15# echo 1460000 > duty
/sys/devices/ocp.3/pwm_test_P9_22.15# echo 2350000 > duty
/sys/devices/ocp.3/pwm_test_P9_22.15# echo 0 > run

Advanced GPIO Topics

One serious problem with the GPIO digital input application described earlier
is that it requires the sysfs fi le to be repeatedly polled in order to determine
whether a change in its state has occurred. This is processor intensive, or prone
to long latency if the frequency of the checks is reduced. This section examines
how this problem can be addressed using two different techniques. The fi rst
technique involves a signifi cant enhancement of the GPIO C++ class, and the
second uses the Linux GPIO‐KEYS driver.

More C++ Programming

To understand the fi rst technique, it is necessary to examine some additional
programming concepts in C/C++ that are to be used, and which can be applied
generally to enhance your BBB applications. Callback function, POSIX threads,
and use of Linux system polling can be used to create a highly effi cient GPIO poll
that has negligible CPU overhead and fast response times (i.e., less than 0.5 ms).
The GPIO class that is written for this chapter is enhanced to support this func-
tionality so an overview of these programming techniques is all that you require.

Callback Functions

Chapter 2 describes the use of callback functions as they are used in Node.js with
asynchronous function calls. Essentially, a callback function (or listener function)
is a function that is executed when some type of event occurs. This is vital for
asynchronous function calls like those in JavaScript, but it is also useful in C++
applications. For example, in the enhanced GPIO class, this structure is used so
that a function can be executed when a physical button is pressed.

236 Part II6 ■ Interfacing, Controlling, and Communicating

Callback functions are typically implemented in C++ using function pointers.
Function pointers are pointers that store the address of a function. It is possible
to pass these pointers to other functions, which can dereference the function
pointer and call the function that is passed. This is demonstrated with the code
example in Listing 6‐4.

LISTING 6‐4: /chp06/callback/callback.cpp

typedef int (*CallbackType)(int);

// some function that receives a callback function

int doSomething(CallbackType callback){

 return callback(10); //execute callback function, pass 10

}

// the callback function that receives an int value

int callbackFunction(int var){

 cout << "I am the Callback Function! var=" << var << endl;

 return 2*var;

}

int main() {

 cout << "Hello BeagleBone" << endl;

 // pass the address of the callbackFunction() to doSomething()

 int y = doSomething(&callbackFunction);

 cout << "Value of y is: " << y << endl;

}

Creating a type using typedef simply makes it easier to change the type
at a later stage and cleans up the syntax somewhat. The address of the call-

backFunction() is passed as a pointer to the doSomething() function. When
executed, the output of this code is as follows:

Hello BeagleBone
I am the Callback Function! var=10
Value of y is: 20

This programming structure is quite common in (and underneath) user‐
interface programming, where functions can be called when a user interacts
with display user‐interface components such as buttons and menus. It makes
sense to apply the same structure to physical push buttons and switches.

POSIX Threads

POSIX threads (Pthreads(() is a set of C functions, types, and constants that pro-
vides everything you need in order to implement threading within your C/C++
applications on the BBB. Adding threading to your code allows parts of your codeg

 Chapter 6 ■ Interfacing to the BeagleBone Input/Outputs 237

to execute apparently concurrently (the BBB has a single core processor), with
each thread receiving a “slice” of processing time.

To use Pthreads in your application you need to include the pthread.h header
fi le and use the ‐pthread fl ag when compiling and linking the code using gcc/
g++.1 All the Pthread functions are prefi xed with pthread_. Listing 6‐5 is an
example of using Pthreads on the BBB to create two parallel counters (the com-
ments describe the structure of the code):

LISTING 6‐5: /chp06/pthreads/pthreads.cpp

#include <iostream>

#include <pthread.h>

#include <unistd.h>

using namespace std;

// Thread function that will execute when the thread is created

// it passes and receives data by void pointers (See Chapter 5)

void *threadFunction(void *value){

 int *x = (int *)value; // cast the data passed to an int pointer

 while(*x<5){ // while the value of x is less than 5

 usleep(1000); // sleep for 1ms - encourage main thread

 (*x)++; // increment the value of x by 1

 }

 return x; // return the pointer x (as a void*)

}

int main() { // the main thread

 int x=0, y=0;

 pthread_t thread; // this is our handle to the pthread

 // create thread, pass reference, addr of the function and data

 if(pthread_create(&thread, NULL, &threadFunction, &x)){

 cout << "Failed to create the thread" << endl;

 return 1;

 }

 // at this point the thread was created successfully

 while(y<5){ // loop and increment y, displaying values

 cout << "The value of x=" << x << " and y=" << y++ << endl;

 usleep(1000); // encourage the pthread to run

 }

 void* result; // OPTIONAL: receive data back from pthread

1 The Eclipse IDE is used in the next chapter. To use Pthreads in Eclipse, select Project
Properties ➢ C/C++ Build Settings ➢ GCC C++ Linker ➢ Miscellaneous ➢ Linker
Flags, and add ‐pthread.

continues

238 Part II8 ■ Interfacing, Controlling, and Communicating

 pthread_join(thread, &result); // allow the pthread to complete

 int *z = (int *) result; // cast from void* to int* to get z

 cout << "Final: x=" << x << ", y=" << y << " and z=" << *z << endl;

 return 0;

}

Building and executing as follows will result in the following output:

∼/exploringbb/chp06/pthreads$ g++ ‐pthread pthreads.cpp ‐o pthreads
∼/exploringbb/chp06/pthreads$./pthreads
The value of x=0 and y=0
The value of x=0 and y=1
The value of x=1 and y=2
The value of x=2 and y=3
The value of x=3 and y=4
Final: x=5, y=5 and z=5

Run it again, and you may get a different output!

The value of x=0 and y=0
The value of x=1 and y=1
The value of x=1 and y=2
The value of x=2 and y=3
The value of x=3 and y=4
Final: x=5, y=5 and z=5

The code may result in a slightly different result each time. The usleep() calls
have been introduced to encourage the thread manager to switch to the main
thread at that point. While the order of the output may change, the fi nal results
will always be consistent due to the pthread_join() function call, which blocks
execution at this point until the thread has run to completion.

Linux poll (sys/poll.h)

At the beginning of this chapter, code is presented that can be used to detect the
state of a button by checking the state of the value fi le. This is a very processor‐
intensive operation and not really practical. If you listed the contents of the /

sys/class/gpio directory you may have also noticed a fi le entry called edge
that up to now has had no relevance:

molloyd@beaglebone:/sys/class/gpio$ sudo sh ‐c "echo 115 > export"
molloyd@beaglebone:/sys/class/gpio$ cd gpio115
molloyd@beaglebone:/sys/class/gpio/gpio115$ ls
active_low direction edge power subsystem uevent value

LISTING 6‐5: (continued)

 Chapter 6 ■ Interfacing to the BeagleBone Input/Outputs 239

You can use a system function called poll() from the sys/poll.h header
fi le, which has the syntax

int poll(struct pollfd *ufds, unsigned int nfds, int timeout);

where the fi rst argument specifi es a pointer to an array of pollfd structures,
each of which identifi es a fi le entry to be monitored and the type of event to be
monitored (e.g., EPOLLIN to read operations, N EPOLLET edge triggered, and EPOLLPRI

for urgent data). The next argument, nfds, identifi es how many elements are in
the fi rst argument array. The fi nal argument identifi es a timeout in milliseconds.
If this value is ‐1, then the kernel will wait forever for the activity identifi ed
in the array. This code has been added to the following enhanced GPIO class in
the waitForEdge() methods.

Enhanced GPIO Class

The programming concepts just discussed are complex and may be diffi cult to
understand if it is your fi rst time seeing them; however, these techniques have
been used to enhance the GPIO class so that it is faster and more effi cient than
before. The code in Listing 6‐6 integrates the earlier GPIO functionality and
the programming concepts that have been just introduced. The public interface
methods are also provided.

LISTING 6‐6: /chp06/GPIO/GPIO.h

#define GPIO_PATH "/sys/class/gpio/"

namespace exploringBB {

typedef int (*CallbackType)(int);

enum GPIO_DIRECTION{ INPUT, OUTPUT };

enum GPIO_VALUE{ LOW=0, HIGH=1 };

enum GPIO_EDGE{ NONE, RISING, FALLING, BOTH };

class GPIO {

private:

 int number, debounceTime;

 string name, path;

public:

 GPIO(int number); //constructor will export the pin

 virtual int getNumber() { return number; }

 // General Input and Output Settings

 virtual int setDirection(GPIO_DIRECTION);

continues

240 Part II0 ■ Interfacing, Controlling, and Communicating

 virtual GPIO_DIRECTION getDirection();

 virtual int setValue(GPIO_VALUE);

 virtual int toggleOutput();

 virtual GPIO_VALUE getValue();

 virtual int setActiveLow(bool isLow=true); //low=1, high=0

 virtual int setActiveHigh(); //default

 //software debounce input (ms) - default 0

 virtual void setDebounceTime(int time) { this->debounceTime = time; }

 // Advanced OUTPUT: Faster write by keeping the stream alive (~20X)

 virtual int streamOpen();

 virtual int streamWrite(GPIO_VALUE);

 virtual int streamClose();

 virtual int toggleOutput(int time); //threaded invert output every X ms.

 virtual int toggleOutput(int numberOfTimes, int time);

 virtual void changeToggleTime(int time) { this->togglePeriod = time; }

 virtual void toggleCancel() { this->threadRunning = false; }

 // Advanced INPUT: Detect input edges; threaded and non-threaded

 virtual int setEdgeType(GPIO_EDGE);

 virtual GPIO_EDGE getEdgeType();

 virtual int waitForEdge(); // waits until button is pressed

 virtual int waitForEdge(CallbackType callback); // threaded with callback

 virtual void waitForEdgeCancel() { this->threadRunning = false; }

 virtual ~GPIO(); //destructor will unexport the pin

...

} /* namespace exploringBB */

The tests to evaluate the performance of the class are provided as examples
of how to use this class. The test circuit is the combination of the button circuit
in Figure 6-4 and the LED circuit in Figure 6-2. Therefore, the button is attached
to P9_27 (GPIO 115) and the LED is attached to P9_23 (GPIO 49). In these tests,
the LED will light when the button is pressed.

Listing 6‐7 tests the performance of a synchronous poll that forces the program
to wait for the button to be pressed before proceeding.

LISTING 6‐7: /chp06/GPIO/tests/test_syspoll.cpp

#include<iostream>

#include"GPIO.h"

using namespace exploringBB;

using namespace std;

LISTING 6‐6: (continued)

 Chapter 6 ■ Interfacing to the BeagleBone Input/Outputs 241

int main(){

 if(getuid()!=0){

 cout << "You must run this program as root. Exiting." << endl;

 return -1;

 }

 GPIO outGPIO(49), inGPIO(115);

 inGPIO.setDirection(INPUT); // button is an input

 outGPIO.setDirection(OUTPUT); // LED is an output

 inGPIO.setEdgeType(RISING); // wait for rising edge

 outGPIO.streamOpen(); // fast write, ready file

 outGPIO.streamWrite(LOW); // turn the LED off

 cout << "Press the button:" << endl;

inGPIO.waitForEdge(); // will wait here forever

outGPIO.streamWrite(HIGH); // button pressed, light LED

 outGPIO.streamClose(); // close the output stream

 return 0;

}

The response time of this code is captured in Figure 6-15(a). This code runs
with a ∼0% CPU load, as the polling is handled effi ciently by the Linux kernel.
Using an oscilloscope, the electrical response time is measured between the fi rst
rising edge of the button press and the LED turning on. This program responds
in 0.327 ms, which is well within physical debounce fi lter times. Using the class’s
debounce fi lter will not affect this performance, only the delay between repeated
button presses. The downside of this code is that the program cannot perform
other operations while awaiting the button press.

Figure 6-15: Time delay in lighting an LED in response to a button press at ∼0% CPU usage
(a) using sys/poll.h (b) integrating callback functions and Pthreads

The second example, in Listing 6‐8, tests the performance of an asynchronous
call to the waitForEdge()method, which accepts a function pointer and uses
Pthreads to free up the program to perform other operations. In this example
the main thread sleeps, but it could be performing other tasks.

242 Part II ■ Interfacing, Controlling, and Communicating

LISTING 6‐8: /chp06/GPIO/tests/test_callback.cpp

#include<iostream>

#include<unistd.h> // for usleep

#include"GPIO.h"

using namespace exploringBB;

using namespace std;

GPIO *outGPIO, *inGPIO; // global pointers

int activateLED(int var){ // the callback function

 outGPIO->streamWrite(HIGH); // turn on the LED

 cout << "Button Pressed" << endl;

 return 0;

}

int main(){

 if(getuid()!=0){

 cout << "You must run this program as root. Exiting." << endl;

 return -1;

 }

 inGPIO = new GPIO(115); // button

 outGPIO = new GPIO(49); // LED

 inGPIO->setDirection(INPUT); // button is an input

 outGPIO->setDirection(OUTPUT); // LED is an output

 outGPIO->streamOpen(); // fast write to LED

 outGPIO->streamWrite(LOW); // turn the LED off

 inGPIO->setEdgeType(RISING); // wait for rising edge

 cout << "You have 10 seconds to press the button:" << endl;

inGPIO‐>waitForEdge(&activateLED); // pass the function

cout << "Listening, but also doing something else..." << endl;

usleep(10000000); // allow 10 seconds

 outGPIO->streamWrite(LOW); // then turn the LED off

 outGPIO->streamClose(); // shutdown

 return 0;

}

The signifi cant change in this code is that when the setEdgeType() method
is called, a new thread is created within the method and it immediately returns
control so that the main thread can continue to perform operations. The main
thread simply sleeps for 10 seconds in this case before turning off the LED. If
the button is pressed, the activateLED() function will be called. Whether the
button is pressed or not, the LED will be turned off and the program will exit
after the sleep has fi nished.

The response time of this code is captured in Figure 6-15(b) and it is only
marginally slower than the previous code (by 20 μs), which is the cost of the
callback function and the Pthreads code. Again, this code has no signifi cant load
on the CPU. The full implementation code is available in the GPIO.cpp fi le, and
it can be edited to suit your needs. A more advanced version would use functors

 Chapter 6 ■ Interfacing to the BeagleBone Input/Outputs 243

(function objects) and the C++ Standard Template Library (STL) to remove the
requirement for global variables for the callback code.

GPIO‐KEYS

An alternative to the enhanced GPIO code just presented is to use a GPIO‐
KEYS overlay, which results in a new Linux device that acts like a keyboard.
The device can be interrogated for key events, but it requires a custom over-
lay. The example in Listing 6‐9 builds a single button keyboard, using P9_15
(GPIO48), but it can be extended to have many keys. Please note that this
code has been written using the LCD7 Cape DTO as a reference. The over-
lays for the various capes provide excellent examples of the DTO syntax to
be used. Use the following command to download a comprehensive set of
cape sources:

$ git clone https://github.com/jadonk/cape‐firmware.git

LISTING 6‐9: /chp06/BONE‐KEYS/BB‐BONE‐KEYS‐00A0.dts

/dts-v1/;

/plugin/;

/{

 compatible = "ti,beaglebone", "ti,beaglebone-black";

 part-number = "BB-BONE-KEYS";

 version = "00A0";

 fragment@0 {

 target = <&am33xx_pinmux>;

 __overlay__ {

 pushbutton_pins: pinmux_pushbutton_pins{

 pinctrl-single,pins = <

 0x040 0x37 // P9_15 pull‐up mode 7 GPIO1_16

 >;

 };

 };

 };

 fragment@1 {

 target = <&ocp>;

 __overlay__ {

 /* avoid warnings */

 #address-cells = <1>;

 #size-cells = <1>;

 gpio_keys {

 compatible = "gpio-keys";

 pinctrl-names = "default";
continues

244 Part II4 ■ Interfacing, Controlling, and Communicating

 pinctrl-0 = <&pushbutton_pins>;

 #address-cells = <1>;

 #size-cells = <0>;

 button_P9_15 {

 debounce_interval = <50>;

 linux,code = <28>;

 label = "button9_15";

 gpios = <&gpio2 16 0x1>;

 gpio‐key,wakeup;

 autorepeat;

 };

 };

 };

 };

};

This overlay can be compiled and deployed using the same process as the
custom overlay presented earlier in the chapter:

$ dtc ‐O dtb ‐o BB‐BONE‐KEYS‐00A0.dtbo ‐b o ‐@ BB‐BONE‐KEYS‐00A0.dts
$ ls
BB-BONE-KEYS-00A0.dtbo BB-BONE-KEYS-00A0.dts build
$ sudo cp BB‐BONE‐KEYS‐00A0.dtbo /lib/firmware
$ sudo sh ‐c "echo BB‐BONE‐KEYS > $SLOTS"
$ cat $SLOTS
...
9: ff:P-O-L Override Board Name,00A0,Override Manuf,BB-BONE-KEYS

As before, dmesg can be used to check for any issues that might arise. A
new device added to the BBB, event1, can be catenated to display its output
when the button is pressed; however, the output will not be in a human‐
readable form:

$ cd /dev/input
/dev/input$ ls
by-path event0 event1 mice
molloyd@beaglebone:/dev/input$ sudo cat event1
3eS
 3eS
 3eSB

It is necessary to write code to correctly interrogate this device. Listing 6‐10
uses the linux/input.h header fi le and the input documentation at www.kernel
.org to build an example for the BBB that can parse the events that occur when
the virtual keyboard button is pressed.

LISTING 6‐9: (continued)

 Chapter 6 ■ Interfacing to the BeagleBone Input/Outputs 245

LISTING 6‐10: /chp06/BONE‐KEYS/bone_keys.cpp

/** BB-BONE-GPIO Test code to test the GPIO-KEYS interface.

* Written by Derek Molloy (www.derekmolloy.ie) for the book

* Exploring BeagleBone. This code is based on the work in:

* www.kernel.org/doc/Documentation/input/input.txt */

#include<iostream>

#include<fcntl.h>

#include<stdio.h>

#include<stdlib.h>

#include<linux/input.h>

using namespace std;

#define KEY_PRESS 1

#define KEY_RELEASE 0

int main(){

 int fd, count=0;

 struct input_event event[64];

 if(getuid()!=0){

 cout << "You must run this program as root. Exiting." << endl;

 return -1;

 }

 cout << "Starting BB-BONE-GPIO Test (press 10 times to end):" << endl;

 if ((fd = open("/dev/input/event1", O_RDONLY)) < 0){

 perror("Failed to open event1 input device. Exiting.");

 return -1;

 }

 while(count < 20){ // Press and Release are one loop each

 int numbytes = (int)read(fd, event, sizeof(event));

 if (numbytes < (int)sizeof(struct input_event)){

 perror("The input read was invalid. Exiting.");

 return -1;

 }

 for (int i=0; i < numbytes/sizeof(struct input_event); i++){

 int type = event[i].type;

 int val = event[i].value;

 int code = event[i].code;

 if (type == EV_KEY) {

 if (val == KEY_PRESS){

 cout << "Press : Code "<< code <<" Value "<< val<< endl;

 }

 if (val == KEY_RELEASE){

 cout << "Release: Code "<< code <<" Value "<< val<< endl;

 }

 }

 }

continues

246 Part II6 ■ Interfacing, Controlling, and Communicating

 count++;

 }

 close(fd);

 return 0;

}

As illustrated in Figure 6-16(a), a push button is connected to the P9_15 (GPIO 49),
and because the mode is set to be 0x37 in the overlay, the input on P9_15 is nor-
mally high when the button is not pressed, and low when the button is pressed.
The code in Listing 6‐10 can be tested as follows:

∼/exploringbb/chp06/BONE‐KEYS$ g++ bone_keys.cpp ‐o bone_keys
∼/exploringbb/chp06/BONE‐KEYS$./bone_keys
You must run this program as root. Exiting.
∼/exploringbb/chp06/BONE‐KEYS$ sudo ./bone_keys
Starting BB-BONE-GPIO Test (press 10 times to end):
Press : Code 28 Value 1
Release: Code 28 Value 0 ...

The value 28 is the Linux key code for the Enter key. A test version of this
code, available in /chp06/GPIO/tests/test_gpiokeys.cpp, triggers an LED to
light when an event is received.

LISTING 6‐10: (continued)

Figure 6-16: (a) Push button configured with an internal pull‐up resistor making it active low,
and (b) the time response of the Bone Keys C++ example

The performance of this approach is captured in Figure 6-16(b) and, while its
response is slower than the enhanced GPIO class, it is still well within debounce
tolerances. The main advantage of this approach is that you could direct the
Linux event1 device to third‐party applications without recoding them to use
the custom GPIO class.

 Chapter 6 ■ Interfacing to the BeagleBone Input/Outputs 247

Using GPIOs without Using sudo

Throughout this chapter, all programs that interface to the GPIOs are executed
using sudo. This can be frustrating, but the alternative of running applications
as the superuser is dangerous, in that a coding mistake could damage the fi le
system. It would be very useful to set up the GPIOs so that they are owned by
a particular user or group, while still protecting the fi le system.

To address this issue, you can use an advanced feature of Linux called udev
rules that enables you to customize the behavior of the udevd service, which
runs on the BBB Debian distribution. This service gives you some userspace
control over devices on the BBB, such as renaming devices, changing permis-
sions and executing a script when a device is attached. The fi rst step is to fi nd
out information about the /sys/class/gpio directory:

∼$ udevadm info ---path=/sys/class/gpio ---attribute‐walk
...
 looking at device '/class/gpio':
 KERNEL=="gpio"
 SUBSYSTEM=="subsystem"
 DRIVER==""

The rules are contained in the /etc/udev/rules.d directory. A new rule
can be added as a fi le using these values, where the fi le begins with a priority
number. The following creates a new rule with the lowest priority, so that it
does not interfere with other device rules:

molloyd@beaglebone:∼$ cd /etc/udev/rules.d
molloyd@beaglebone:/etc/udev/rules.d$ ls
50-spi.rules 70-persistent-net.rules
molloyd@beaglebone:/etc/udev/rules.d$ sudo nano 99‐gpio.rules
molloyd@beaglebone:/etc/udev/rules.d$ more 99‐gpio.rules
KERNEL=="gpio*", SUBSYSTEM=="gpio", ACTION=="add", PROGRAM="/bin/sh -c
'chown -R molloyd:users /sys/class/gpio'"
KERNEL=="gpio*", SUBSYSTEM=="gpio", ACTION=="add", PROGRAM="/bin/sh -c
'chown -R molloyd:users /sys/devices/virtual/gpio'"

Essentially, the rule executes a single line script to change the owner of a GPIO
device to be molloyd when it is added. This rules fi le is in the Git repository in
the /chp06/udev/ directory. Edit it to suit your user and group requirements,
and test that it works as follows:

/etc/udev/rules.d$ sudo udevadm test ---action=add /class/gpio
run_command: calling: test
adm_test: version 175
...
udev_device_new_from_syspath: device 0x371a8 has devpath '/class/gpio'
udev_device_new_from_syspath: device 0x38748 has devpath '/class/gpio'
...

248 Part II8 ■ Interfacing, Controlling, and Communicating

ACTION=add
DEVPATH=/class/gpio
SUBSYSTEM=subsystem
UDEV_LOG=6
USEC_INITIALIZED=14466366151

If you list the /sys/class/gpio directory, the owner will have changed and,
in this case, the user molloyd can export a GPIO pin:

molloyd@beaglebone:/etc/udev/rules.d$ cd /sys/class/gpio
molloyd@beaglebone:/sys/class/gpio$ ls
export gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport
molloyd@beaglebone:/sys/class/gpio$ echo 60 > export
molloyd@beaglebone:/sys/class/gpio$ ls ‐l
total 0
--w------- 1 molloyd users 4096 May 9 00:41 export
lrwxrwxrwx 1 molloyd users 0 May 9 00:41 gpio60 -> ...
lrwxrwxrwx 1 molloyd users 0 May 9 00:26 gpiochip0 -> ...
lrwxrwxrwx 1 molloyd users 0 May 9 00:26 gpiochip32 -> ...
lrwxrwxrwx 1 molloyd users 0 May 9 00:26 gpiochip64 -> ...
lrwxrwxrwx 1 molloyd users 0 May 9 00:26 gpiochip96 -> ...
--w------- 1 molloyd users 4096 May 9 00:40 unexport

For a comprehensive guide on writing udev rules, see tiny.cc/ebb604.

Summary

After completing this chapter, you should be able to do the following:

■ Use a BBB GPIO to output a binary signal to a digital circuit, or read in a
binary input from a digital circuit.

■ Write shell scripts and C++ code in order to control a BBB GPIO.

■ Describe the use of internal pull‐up and pull‐down resistors.

■ Write a Linux device tree overlay that can confi gure the BBB’s P8 and P9
header pins to suit your application needs.

■ Use a BBB PWM pin to output an analog voltage or as a control signal for
motors and certain types of servos.

■ Use a BBB analog input to read in a value from an analog circuit, using
an op‐amp to protect the BBB from damage and/or invalid measurement.

■ Write C++ code, which utilizes advanced functionality, to effi ciently read
in a digital input using a custom GPIO class.

■ Use a GPIO‐KEYS device tree overlay to create a Linux virtual keyboard
device using GPIO inputs.

■ Use an advanced Linux confi guration that allows for user‐level control
of the sysfs GPIO entries.

 Chapter 6 ■ Interfacing to the BeagleBone Input/Outputs 249

Further Reading

There are many links to websites and documents provided throughout this
chapter. The following additional links provide further information on the
topics covered:

■ www.exploringbeaglebone.com/chapter6/: All links and videos in the
chapter are provided at this site.

■ www.exploringbeaglebone.com/API/: Provides the documentation for
the GPIO, PWM, ServoMotor, and Analog classes described in this chapter.

Note

 1. Kridner, J. (June 2013). Validation-Scripts/Test-Capemgr. Retrieved May 5,
2014, from Jadonk GitHub Repository: https://github.com/jadonk/
validation-scripts/tree/master/test-capemgr.

251

 To this point in the book, all of the code is built and executed directly on the
BeagleBone. However, for larger projects this can be impractical, as you may
need to manage many source fi les within a single project. In addition, compila-
tion times can be slow on the BBB for building large projects. This chapter fi rst
describes how you can use your desktop computer to develop applications
that can be deployed directly to the BBB. The Eclipse integrated development
environment (IDE) is then introduced, which allows for advanced development
capabilities, such as remote debugging. The chapter fi nishes by outlining how
you can build a custom Linux kernel.

 Equipment Required for This Chapter:

■ A desktop computer running Linux (ideally Debian) or Debian running
in a virtual machine

■ BeagleBone Black for deployment and debugging

 Further details on this chapter are available at www.exploringbeaglebone.com/
chapter7/.

 Setting Up a Cross‐Compilation Toolchain

 This section describes how you can establish a fully featured cross‐compilation
environment for building code for the BBB using your desktop computer.

 C H A P T E R

 7

 Cross‐Commpilation

and the Eclipse IDE clipse IDE

252 Part II ■ Interfacing, Controlling, and Communicating

A typical C/C++ compiler that is executed on a desktop computer (e.g., Intel
x86) will build executable machine code for that platform only. Therefore, a
cross‐compiler is required, as it is capable of creating executable code for the
BBB ARM platform directly from your desktop computer, even though it has a
different hardware architecture.

 Linux is generally used on the desktop computer for this task, as cross‐
compiling code that is written on Windows/Mac devices to run on an ARM
device is an incredibly challenging process, particularly when integrating third‐
party libraries. Therefore, if you are using a Windows/Mac OS X environment,
you can use the VirtualBox confi guration that is described in Chapter 3 . In fact,
a VirtualBox Debian 64‐bit VM is used for all of the examples in this chapter.

 The environment and confi guration for cross‐platform development is an
ever‐evolving process. While all of the steps in this chapter work at the time of
publication, it is entirely possible that some steps in this chapter will change
as updates are performed on the Linux kernel, to the toolchain, and to the
Eclipse development environment. Please visit the web page associated with
this chapter to check for updates: www.exploringbeaglebone.com/chapter7 /.
The primary aim of this chapter is to ensure that you grasp the concepts behind
cross‐compilation and that you see practical examples of the various tools in use.

 If you wish to cross‐compile Linux applications, the fi rst step is to install a
Linux toolchain . A toolchain is suitably named, as it is a set of software develop-
ment tools and libraries (such as gcc , gdb , glibc) that are chained together to c

enable you to build executable code on one operating system on one type of
machine, such as a 64‐bit Linux OS on an Intel x86 machine, but execute them
on a different operating system and/or a different architecture, such as a 32‐bit
Linux OS on an ARM device.

 I have previously created a full video on integrating a soft fl oat cross‐compilation
toolchain with Ångström under Ubuntu; while there have been changes (includ-
ing problems with access to the Ångström distribution website), the instructions
in the video are largely valid (see tiny.cc/ebb701). It is not possible to cover
absolutely everything in just one book, so here I focus on a toolchain for hard
fl oats under Debian. Please use the following discussion, combined with the
YouTube video that is available on the chapter web page to complete the instal-
lation of either toolchain.

 A Toolchain for Debian

 To begin, you can discover detailed information about your Linux version by
typing the following commands individually or together using && :

 molloyd@beaglebone:~$ uname ‐a && cat /etc/os‐release && cat /proc/version
 Linux beaglebone 3.8.13-bone50 #1 SMP Tue May 13 2014 armv7l GNU/Linux
 PRETTY_NAME="Debian GNU/Linux 7 (wheezy)"
 NAME="Debian GNU/Linux" . . .

 Chapter 7 ■ Cross‐Compilation and the Eclipse IDE 253

 In this example, a Debian 7.x image is used on the desktop machine. The
steps in this description are based on the work at tiny.cc/ebb702 . A Debian
64‐bit “Wheezy” VirtualBox VM is used on the desktop machine, so required
tools need to be installed using the following steps (on the desktop machine):

 1. Change to a root shell:

 molloyd@debian:~$ sudo sh ‐

 2. Go to the /etc/apt directory and add any necessary repositories to your
sources.list fi le:

 root@debian:~# cd /etc/apt
 root@debian:/etc/apt# nano sources.list

 3. Check the repositories that are needed for your distribution. In this case,
the following entries need to be added to the bottom of the sources.list
fi le:

 #Emdebian entries
 deb http://www.emdebian.org/debian unstable main
 deb http://ftp.us.debian.org/debian unstable main contrib non-free

 4. Save the fi le and return to the shell and install emdebian‐archive‐keyring ,
which provides Debian key signatures for release fi les, in order to make
it easier to use the Debian installer:

 root@debian:~# apt‐get install emdebian‐archive‐keyring
 root@debian:~# apt‐get update

N O T E Using hard fl oats means that when you are working with fl oating‐point

numbers on the BBB you are using the on‐chip fl oating‐point unit (FPU). Using soft fl oats

means that the fl oating‐point arithmetic is performed in software. Therefore, hard fl oat

operations are much faster than soft fl oat operations. Because the AM335x implements

hard‐fl oat operations, you should always choose the hard fl oat option when available.

 Use apt‐get update to download the latest package lists from the reposito-
ries and update the local lists to contain information on the latest versions of
packages and their dependencies. Use apt‐cache to search for the latest ARM
compiler. The BBB with its Debian distribution supports hard fl oats (hf), so use
hard‐fl oat tools if they are available:

 root@debian:~# apt‐cache search gnueabihf
 binutils-arm-linux-gnueabihf - GNU binary utilities, arm-linux-gnueabihf . . .
 g++-4.7-arm-linux-gnueabihf - GNU C++ compiler
 gcc-4.7-arm-linux-gnueabihf - GNU C compiler
 gcc-4.7-arm-linux-gnueabihf-base - GCC, the GNU Compiler Collection . . .

254 Part II4 ■ Interfacing, Controlling, and Communicating

 You can see from this list that the latest g++ compiler number available that
supports hard fl oats, at the time of writing, is g++‐4.7‐arm‐linux‐gnueabihf .
Install the latest version available to you and any dependencies, which should be
automatically identifi ed. You may have already installed some of these depen-
dencies in earlier steps (e.g., adding Guest Additions to the Debian VM), but
here is the list that was required for this installation:

 ~# apt‐get install build‐essential libc6‐armhf‐cross libc6‐dev‐armhf‐cross
 ~# apt‐get install binutils‐arm‐linux‐gnueabihf linux‐libc‐dev‐armhf‐cross
 ~# apt‐get install libstdc++6‐armhf‐cross
 ~# apt‐get install gcc‐4.7‐arm‐linux‐gnueabihf g++‐4.7‐arm‐linux‐gnueabihf

 Please note that hard fl oats are being used here. If you wished to use soft
fl oats for a different platform, then you would replace armhf with f armel and
gnueabihf with f gnueabi in the preceding list. If you are having problems with
dependencies, type sudo apt‐get autoremove and try an older version of the
gcc and g++ compilers.

 If all goes well, you should be able to execute the cross‐compiler at this point;
however, you may have multiple versions installed, or you may wish to install
multiple versions in the future. If you change directory to /usr/bin and perform
ls arm* you might see something like the following:

 root@debian:/usr/bin# ls arm*
 arm-linux-gnueabihf-g++-4.7 arm-linux-gnueabi-readelf
 arm-linux-gnueabihf-gcc-4.6 arm-linux-gnueabi-strings
 arm-linux-gnueabihf-gcc-4.7 arm-linux-gnueabi-strip . . .

 For convenience, you can create generic symbolic links to the version of the
compilers that you wish to use. In this case symbolic links are created to the
gXX‐4.7 compilers. This generic symbolic link is used when the Eclipse build
settings are confi gured in the next section:

 . . ./usr/bin# ln ‐s arm‐linux‐gnueabihf‐gcc‐4.7 arm‐linux‐gnueabihf‐gcc
 . . ./usr/bin# ln ‐s arm‐linux‐gnueabihf‐g++‐4.7 arm‐linux‐gnueabihf‐g++

 You can test that these symbolic links work, from any location (as /usr/bin
is in the PATH by default), by using the following:

 molloyd@debian:~$ arm‐linux‐gnueabihf‐g++ ‐v
 gcc version 4.7.2 (Debian 4.7.2-5) . . .

 Testing the Toolchain

 At this point, you can build a test application to check that everything is working
before you begin confi guring Eclipse. You should write a small C++ program,

 Chapter 7 ■ Cross‐Compilation and the Eclipse IDE 255

build it on your desktop machine, and then deploy it to the BBB. For example,
enter the following on the desktop machine:

 molloyd@debian:~$ nano testARM.cpp
 molloyd@debian:~$ more testARM.cpp
 #include<iostream>
 int main(){
 std::cout << "Testing Toolchain" << std::endl;
 return 0;
 }
 molloyd@debian:~$ arm‐linux‐gnueabihf‐g++ testARM.cpp ‐o testARM
 molloyd@debian:~$./testARM
 bash: ./testARM: cannot execute binary file

 At this point, the binary executable will not execute on your desktop machine,
as it contains ARM hard fl oat instructions. However, please note that if you
install QEMU (in the Installing a Change Root section of this chapter), then the
program will execute. Next, transfer the binary executable to the BBB:

 molloyd@debian:~$ sftp molloyd@192.168.7.2
 BeagleBoard.org BeagleBone Debian Image 2014-05-14
 Connected to 192.168.7.2.
 sftp> put testARM
 Uploading testARM to /root/testARM . . .
 sftp> exit

 Finally, SSH to the BBB to confi rm that the new binary works correctly:

 molloyd@debian:~$ ssh root@192.168.7.2
 BeagleBoard.org BeagleBone Debian Image 2014-05-14 . . .
 molloyd@beaglebone:~$./testARM
 Testing Toolchain

 Success! If you see this output, then you are able to build a binary on the
desktop machine that can be executed directly on the BBB. The next section is
an advanced topic and is required if you wish to use third‐party libraries with
your cross‐compilation environment. If you wish, you can skip this section for
the moment and go directly to the Cross‐Compilation Using Eclipse section.

 Cross‐Compilation with Third‐Party

Libraries (Multiarch)

 This section is not necessary in order to cross‐compile C/C++ applications;
however, it is likely that you will need to add third‐party libraries in the future
for tasks such as image and numerical processing. Traditionally, this has been

256 Part II6 ■ Interfacing, Controlling, and Communicating

a very diffi cult topic, but thanks to very recent releases in Debian and Ubuntu,
this problem has become much more manageable.

 For the purpose of this discussion, you should have your cross‐compiler
in place and you should currently be able to cross‐compile applications that
use the standard C/C++ libraries. However, what if you wish to build a C/
C++ application that uses a third‐party library? If you install the library
on your x86 desktop machine, then that library code will contain native
x86 instructions. If you wish to use the third‐party library and deploy it to
your BBB, then you need to use a library that contains ARM machine code
instructions.

 Traditionally, we have used tools like xapt , which converts Debian packages
to a cross‐platform version on‐the‐fl y (e.g., xapt ‐a armhf ‐m libopencv‐dev).v

However, recent releases of Debian (Wheezy+) now support multiarch —multi‐
architecture package installs.

 Here is an example of how you can use a multiarch‐capable package installer
to install a BBB armhf library on a desktop machine. You can determine the
current architecture (on the x86 64‐bit desktop machine) using:

 molloyd@debian:~$ dpkg --print‐architecture
 amd64
 molloyd@debian:~$ dpkg --version
 Debian 'dpkg' package management program version 1.16.15 (amd64).

 The version of dpkg has to be greater than 1.16.2 for multiarch support. You
can add the armhf target architecture for the BBB Debian image using:

 molloyd@debian:~$ sudo dpkg --add‐architecture armhf
 molloyd@debian:~$ dpkg --print‐foreign‐architectures
 armhf

 Install a sample third‐party library package after performing an update (note
the armhf after the package name):

 molloyd@debian:~$ sudo apt‐get update
 molloyd@debian:~$ sudo apt‐get install libicu‐dev:armhf
 Reading package lists. . . Done
 Building dependency tree . . .
 Setting up libicu-dev:armhf (52.1-6) . . .

 These third‐party libraries for utilizing Unicode are installed in the /usr/
lib/arm‐linux‐gnueabihf directory. This keeps them separate from the x86
libraries that are stored in the /usr/lib directory, as otherwise you would likely
overwrite your current x86 libraries with the armhf libraries:

 molloyd@debian:/usr/lib/arm‐linux‐gnueabihf$ ls libicu*
 libicudata.a libicuio.so.52.1 libicutest.so.52 . . .

 Chapter 7 ■ Cross‐Compilation and the Eclipse IDE 257

 And you are done! You can now confi gure your C++ build environment to
use the libraries in the /usr/lib/arm‐linux‐gnueabihf directory. This procedure
works well and it is reasonably straightforward; however, it is new to Linux, and
interdependency problems currently arise. See wiki.debian.org/Multiarch/
HOWTO for more information on multiarch packages. An alternative to multiarch
package installations is to mirror the entire Linux root of your ARM target
platform, and to do this you can use a change root.

 Installing a Change Root

 A change root allows you to change the apparent Linux root directory to another
directory on your system. Why would you do this? The most common reason
is that you might like to try a new Linux kernel, use new tools, or install a
new library on your Linux installation; and you would like to test it fi rst in
case it brings down the entire system. A change root enables you to replicate
your Linux installation in a subdirectory (e.g., have a subdirectory of the root
directory called “newroot” that has /etc , /bin , /home , /usr , etc.) that has a fullr

Linux distribution. You can then install your new libraries and tools in this new
(possibly temporary) root directory.

 You can instruct your Linux system to change the root temporarily to this
new root directory. Once started, you enter chroot jail and do not have access to
any fi les outside the new root directory. You can test all of the new features of
your new Linux installation, and when you are fi nished you can type exit to
return to your “real” root, leaving the chroot jail.

 This structure is useful for the BBB because this new root directory does not
have to have the same fl avor of Linux or even the same architecture as your
main desktop Linux installation. You can install an armhf version of Linux in the
new change root directory and then use a tool called QEMU (U Q uick Emu lator) to
emulate that the Linux OS is running on an ARM platform. Working through
an example should help make this concept clear.

 Installing an armhf Change Root

 The debootstrap (Debian bootstrap) tool enables you to install a Debian base
system into a subdirectory of your current desktop Debian system. You can
do this using the following instructions, where you choose the architecture
as armhf , the initial package, the distribution name (wheezy((in this case), the
installation directory (/BBBchroot in this case), and the source for install fi les
(ftp.us.debian.org). Type the following (noting that the third command is allg

typed on one line and there are no spaces beside the commas):

 molloyd@debian:~$ sudo mkdir /BBBchroot
 molloyd@debian:~$ sudo apt‐get install debootstrap

258 Part II8 ■ Interfacing, Controlling, and Communicating

 molloyd@debian:~$ sudo debootstrap --foreign --verbose --arch=armhf
--include=aptitude,iputils‐ping,module‐init‐tools,ifupdown,iproute,
nano,wget,udev wheezy /BBBchroot http://ftp.us.debian.org/debian
 I: Retrieving Release . . .

 You now have a root fi le system for ARM hard fl oats just off the main root
directory of your desktop machine (/BBBchroot in this case). You can view
the fi les in this directory and even try to execute commands, but they will fail
because they contain ARM machine instructions:

 molloyd@debian:~$ cd /BBBchroot/
 molloyd@debian:/BBBchroot$ ls
 bin debootstrap etc lib proc run selinux tmp var
 boot dev home mnt root sbin sys usr
 molloyd@debian:/BBBchroot$ cd bin
 molloyd@debian:/BBBchroot/bin$ ls
 . . . findmnt mkdir rbash sync which . . .
 molloyd@debian:/BBBchroot/bin$./mkdir
 bash: ./mkdir: cannot execute binary file

 Emulating the armhf Architecture

 To emulate the armhf architecture, you can install a package called QEMU that
enables you to emulate the ARM microprocessor on your x86 machine. This is
called user‐mode emulation . QEMU can also perform full computer‐mode emulation ,
just like VirtualBox. You can install the QEMU user‐mode emulation package
by typing the following:

 molloyd@debian:~$ sudo apt‐get install qemu‐user‐static

 Next, place the statically compiled emulator within the change root directory.
Once you perform the chroot command, you do not have access to any of the
fi les outside the new root directory, including dynamic libraries (remember that
you will be in chroot jail). The steps are as follows:

 molloyd@debian:~$ cd /usr/bin
 molloyd@debian:/usr/bin$ sudo cp qemu‐arm‐static /BBBchroot/usr/bin

 Now you can change root to the /BBBchroot directory:

 molloyd@debian:~$ sudo chroot /BBBchroot/

 You should see the following shell prompt, which results from the fact that
there is no passwd fi le. You need to complete the installation of the packages
that are specifi ed in the earlier call to the debootstrap command and set a
password for the root account:

 I have no name!@debian:/# uname ‐a
 Linux debian 3.2.0-4 #1 SMP Debian 3.2.60-1+deb7u3 armv7l GNU/Linux

 Chapter 7 ■ Cross‐Compilation and the Eclipse IDE 259

 I have no name!@debian:/# cd /debootstrap
 I have no name!@debian:/debootstrap# ./debootstrap --second‐stage
 I have no name!@debian:/debootstrap# passwd
 I have no name!@debian:/debootstrap# exit

 When you call the chroot command again you should now have a “root”
prompt and the packages are now installed, for example:

 molloyd@debian:~$ sudo chroot /BBBchroot/
 root@debian:~# ping 8.8.8.8
 PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data. . . .

 You can now build code on the chroot and deploy it to the BBB, but to do this
you need to install the build‐essential package on your chroot, even though
you have already installed it on your main root. First you must identify the
package sources as follows:

 root@debian:~# nano /etc/apt/sources.list
 root@debian:~# more /etc/apt/sources.list
 deb http://ftp.us.debian.org/debian wheezy main
 deb-src http://ftp.us.debian.org/debian wheezy main
 root@debian:~# apt‐get update
 root@debian:~# apt‐get install build‐essential

 Then you can write a simple C++ example, which can be executed on the
chroot using QEMU and remotely deployed to the BBB:

 root@debian:~# more test.cpp
 #include<iostream>
 int main(){
 std::cout<<"Hello World running on armhf\n";
 }
 root@debian:~# g++ test.cpp ‐o testARM
 root@debian:~# ./testARM
 Hello World running on armhf

 Despite this message, it has not yet been sent to the BBB. It is being emulated
on the desktop machine using QEMU. Transfer this binary fi le to the BBB to test
that it works there too. To do this, you can install the openssh‐client package
on your change root. Of course, you could exit the change root and transfer it
directly, but this step provides you with the facility to transfer the fi le directly
from within the change root from now on:

 root@debian:~# apt‐get install openssh‐client
 root@debian:~# sftp molloyd@192.168.7.2
 molloyd@192.168.7.2's password: . . .
 sftp> put testARM
 Uploading testARM to /home/molloyd/testARM
 sftp> exit

260 Part II0 ■ Interfacing, Controlling, and Communicating

 Then connect to the BBB and test the code on the BBB:

 root@debian:~# ssh molloyd@192.168.7.2
 molloyd@beaglebone:~$./testARM
 Hello World running on armhf

 As you can see, the executable also worked on the BBB; therefore it is clear
that the change root compilation process is working correctly. Applications can
be built on the desktop machine with the ARM hard fl oat instruction set and
ARM‐specifi c libraries can be installed on the chroot by simply using the apt‐get
command. You are now emulating ARMv71 on your desktop Linux installation
(yes, in a VirtualBox instance under Windows!). You can use this environment
to cross‐build code for your BBB, using the power of your desktop machine.
Remember that you can type exit to return to your regular root at any stage.

 Cross‐Compilation Using Eclipse

 Eclipse is an integrated development environment (IDE) that enables you to
manage your code and integrate cross‐compilation tools, debuggers, and other
plug‐ins to create a sophisticated development platform. It can even be extended
to provide full remote debugging support for applications that are physically
running on your BBB. This is a powerful feature that enables you to debug soft-
ware applications that are interfacing with the real hardware in your projects,
but view the debug values within your desktop Eclipse environment.

 Eclipse is written in Java and was initially focused on Java software develop-
ment. However, Eclipse has excellent support for C/C++ development using the
C/C++ Development Tooling (CDT) extension.

 Installing Eclipse on Desktop Linux

 Using a web browser on your Linux desktop or Linux desktop VM running
under Windows (see Chapter 3), download Eclipse from www.eclipse.org .
There is a version that has CDT (C/C++ Development Tooling) integration (e.g.,
Eclipse IDE for C/C++ Developers), which you should install. The version of
Eclipse that is used in this guide is Luna.

 After you have downloaded Eclipse, decide if you wish to install it for all
users or just for the main user, by extracting the archive in a suitable location
(such as the user home directory in the following example). Chromium will
download the fi le to the user ~/Downloads directory by default. Therefore, use
the following steps to install eclipse in the user account, and execute it directly
(in the background using &):&

 ~/Downloads$ mv eclipse* ~/
 ~/Downloads$ cd ~/

 Chapter 7 ■ Cross‐Compilation and the Eclipse IDE 261

 ~$ tar ‐xvf eclipse‐cpp‐luna‐SR1‐linux‐gtk‐x86_64.tar.gz
 ~$ cd eclipse
 ~/eclipse$./eclipse &

 At this point you can create C++ applications on the desktop machine that are
deployed to the desktop machine using Eclipse. However, since the target plat-
form is the BBB, Eclipse must be confi gured for cross‐compilation.

N O T E You may need to install a new Java runtime environment (JRE) for Eclipse

to execute (depending on the specifi c release) on your desktop PC. If that is the case,

go to www.oracle.com and search for JRE. You will fi nd an installer (e.g., JRE 8u20),

which can be downloaded and installed using steps such as:

 molloyd@debian:~/Downloads$ tar zxvf jre‐8u20‐linux‐x64.tar.gz
 molloyd@debian:~/Downloads$ sudo mkdir /usr/java
 molloyd@debian:~/Downloads$ sudo mv jre1.8.0_20/ /usr/java
 molloyd@debian:~/Downloads$ sudo update‐alternatives --install "/usr/
bin/java" "java" "/usr/java/jre1.8.0_20/bin/java" 1
 molloyd@debian:~/Downloads$ sudo update‐alternatives --set java
/usr/java/jre1.8.0_20/bin/java

 molloyd@debian:~/Downloads$ java ‐version
 java version "1.8.0_20" . . .

 Confi guring Eclipse for Cross‐Compilation

 When Eclipse starts you should see a brief guide that describes C/C++ develop-
ment. Close it when you are ready and then test that the environment works
by creating a new project using File ➢ New ➢ C++ project. As illustrated in
Figure 7-1 (a), set the project name to “BBBTest,” pick the project type “Hello
World C++ Project,” and the Toolchain to be “Cross GCC.” Then click Finish.
Repeatedly click Next until you see the “Cross GCC Command,” as illustrated
in Figure 7-1 (b). Enter arm‐linux‐gnueabihf‐ for the cross-compiler prefi x and
set the path to /usr/bin . Finally, click Finish.

 The Eclipse IDE is now confi gured for cross‐compilation using the cross‐
compilation toolchain that was set up at the beginning of this chapter. You can
choose Project ➢ Build All and then run on the desktop machine by clicking the
green arrow or (Run ➢ Run). In Figure 7-2 this results in the message !!!Hello
World!!! appearing in the Console window. This only appears on the desktop
computer if you have installed QEMU, as the executable contains ARM machine
code, which is clear from the binary name “BBBTest ‐ [arm/le]” that is highlighted
on the top left of Figure 7-2 .

 The preceding steps provide a quick way of confi guring the cross‐compilation
settings within Luna. Older versions of Eclipse (e.g., Kepler) require you to
confi gure the cross‐compiler using the project settings. That option is still
available within Eclipse Luna—select the project that was just created, and

262 Part II ■ Interfacing, Controlling, and Communicating

then go to Project ➢ Properties (If the option is grayed out, it likely means
that the project is not selected). Go to C/C++ Build ➢ Settings and under the
Tool Settings tab you should see the Cross Settings as illustrated in Figure 7-3 .
Effectively, these settings mean that the arm‐linux‐gnueabihf‐g++ command
(a symbolic link that is described at the beginning of this chapter) is used to
compile the project code.

 Figure 7-2: The Eclipse IDE cross‐compiling a Hello World C++ example application

 Figure 7-1: Creating a new C++ project in Eclipse: (a) the project settings, and (b) the cross-
compiler prefix

 While it may not be necessary to set the C/C++ includes and library
settings explicitly, it may be necessary at a later stage, particularly when
using third‐party libraries. To do this, go to Project ➢ Properties ➢ C/C++

 Chapter 7 ■ Cross‐Compilation and the Eclipse IDE 263

General ➢ Paths and Symbols, and set the following (according to your ver-
sion of gcc and g++):

■ Includes (tab) ➢ GNU C (Include directories) ➢ Add ➢ File System ➢

File System ➢/usr/arm‐linux‐gnueabihf/include and click Add

■ Includes (tab) ➢ GNU C++ (Include directories) ➢ Add ➢ File System ➢

File System ➢/usr/arm‐linux‐gnueabihf/include/c++/4.7.2 or your
current version.

■ Library Paths (not Libraries) ➢ Add ➢ File System ➢ File System ➢/usr/

arm‐linux‐gnueabihf/lib

■ Click OK to apply the confi guration.

 Figure 7-3: Eclipse Luna settings for cross‐compilation

 Now you should be able to deploy the binary application directly to the BBB,
as it contains ARM machine code instructions. You can transfer the binary
application to the BBB using sftp, but it would be better in the longer term if
you had a direct link to the BBB from within Eclipse—for this you can use the
Remote System Explorer plug‐in.

 Remote System Explorer

 The Remote System Explorer (RSE) plug‐in enables you to establish a direct
connection between your Eclipse environment and the BBB, over a network
connection, by using the SSH server on your BBB. You can install the RSE within
Eclipse using Help ➢ Install New Software. Choose “Luna . . .” in the Work with:
section and then select General Purpose Tools ➢ Remote System Explorer User
Actions. Click Next, follow the steps, then restart Eclipse.

 You should now have RSE functionality within Eclipse. Go to Window ➢

Show View ➢ Other ➢ Remote Systems ➢ Remote Systems. In the Remote

264 Part II4 ■ Interfacing, Controlling, and Communicating

Systems frame that appears, click the icon for Defi ne a Connection to a Remote
System, and in the New Connection dialog, select the following:

■ Choose Linux Type ➢ Next.

■ Host Name: Enter your BBB IP address—e.g., 192.168.7.2

■ Connection Name: Change it to “BeagleBone Black” ➢ Next

■ [Files] Confi guration ➢ ssh.fi les ➢ Next

■ [Processes] Confi guration ➢ processes.shell.linux ➢ Next

■ [Shells] Confi guration ➢ ssh.shells ➢ Next

■ [Ssh Terminals] (no change) ➢ Finish

 You can then right‐click BeagleBone Black in the bottom frame and choose
Connect. Recent versions of Eclipse use a master password system to manage
passwords for all of your connections. You should see the dialog shown in
Figure 7-4 . In this example, the molloyd user account is used on the BBB as the
account into which the executable code is deployed.

 Figure 7-4: Connecting to the BBB for the first time

 Once you are connected to the BBB you can go to the Project Explorer window,
right‐click the executable that you just built (BBBTest [arm/le]) and choose Copy.
Then go to a directory on the Remote Explorer, such as tmp (see Figure 7-5).
Right‐click it and choose Paste. The fi le is now on the BBB and can be executed
from the built‐in Terminals window, as captured in Figure 7-5 , once you have
changed the permissions for the fi le to be executable.

 One way to automate the process of copying the fi les from the desktop
computer to the BBB is by using the secure copy command scp (described in
detail in Chapter 11). You can set up your desktop computer so that it does
not need to use a password to ssh to the BBB by using the following steps

 Chapter 7 ■ Cross‐Compilation and the Eclipse IDE 265

on the desktop computer (when prompted you should leave the passphrase
blank):

 molloyd@debian:~$ ssh‐keygen
 molloyd@debian:~$ ssh‐copy‐id molloyd@192.168.7.2
 molloyd@debian:~$ ssh‐add
 molloyd@debian:~$ ssh molloyd@192.168.7.2

 Figure 7-5: The built‐in Terminals window, connected to the BBB and executing the cross‐
compiled BBBTest C++ application

 You should now be able to ssh to the BBB without requiring a password.
You can then confi gure Eclipse to deploy the executable automatically by setting
the Command to be scp BBBTest molloyd@192.168.7.2:/home/molloyd/tmp/

under Project ➢ Properties ➢ C/C++ Build ➢ Settings ➢ Build Steps ➢

Post‐build steps.

 Integrating GitHub into Eclipse

 There is a very useful plug‐in that can be installed into Eclipse that allows for
full GitHub integration, enabling you to link to your own GitHub repositories
or to get easy access to the example code and resources for this book. To install
it, open Help ➢ Install New Software and choose “Luna . . .” in the Work with:
section. Then, under the tree item Collaboration, choose “Eclipse GitHub inte-
gration with task focused interface.”

 Once this plug‐in is installed, you can open Window ➢ Show View➢ Other ➢
Git, and there are several options, such as Git Interactive Rebase, Git Refl og, Git
Repositories, Git Staging, and Git Tree Compare. If you choose Git Repositories,
you then get a dialog with the option to “Clone a Git repository” ➢ GitHub, and
you can search for “exploringBB.” You should fi nd the repository “derekmolloy/
ExploringBB.” If not, you can add the repository directly using the full URL: https://
github.com/DerekMolloy/ExploringBB.git . You will then have full access to
the source code in this book directly from within the Eclipse IDE, as captured in
Figure 7-6 . Because there are so many projects in this repository, the easiest way
to use this code repository is to copy the fi les that you need into a new project.

266 Part II6 ■ Interfacing, Controlling, and Communicating

 Remote Debugging

 Remote debugging is the next step in developing a full‐featured, cross‐development
platform confi guration. As you are likely planning to interact with hardware
modules that are physically connected to the BBB, it would be ideal if you could
debug your code live on the BBB. Remote debugging with Eclipse enables you to
control the execution steps and even view debug messages and memory values
directly from within Eclipse on your desktop machine.

 For this example you can use the makeLED.cpp example that you cloned from
the Git repository. Select the makeLED.cpp fi le in the editor (refer to Figure 7-6), and
use File ➢ Save As to add this fi le to the current project (~/workspace/BBBTest
in this case). Comment out the main() function in the HelloWorld example, as
you cannot have two main() functions in a single C/C++ project.

 On the BBB you need the debug server gdbserver to run in order for the
Eclipse installation to connect to the debugger. This tool is installed by default
on the Debian BBB image, but you can install or update it using the following
command:

 molloyd@beaglebone:~$ sudo apt‐get install gdbserver

 The gdbserver executes on the BBB when it is called by the Eclipse IDE on
the desktop machine using RSE. On the Linux desktop machine you need to
install the GNU multi‐architecture debugger, as follows:

 molloyd@debian:~/$ sudo apt‐get install gdb‐multiarch

 Then on the desktop machine, create a fi le called .gdbinit in the project folder
using nano and add the line set architecture arm: m

 molloyd@debian:~/workspace/BBBTest$ more .gdbinit
 set architecture arm

 Figure 7-6: Eclipse GitHub integration, displaying the exploringBB repository

 Chapter 7 ■ Cross‐Compilation and the Eclipse IDE 267

 Eclipse needs to be confi gured to use the multiarch debugger. Go to Run ➢

Debug Confi gurations ➢ Debugger, and delete any current debug confi gura-
tions. Select C/C++ Remote Applications on the left‐hand side and right‐click
it to create a new confi guration. In this example it is called “BBBTest Debug”
as captured in Figure 7-7 .

 Figure 7-7: Setting the debug configuration

 Change the debugger command from gdb to gdb‐multiarch , as illustrated
in Figure 7-8 . You also need to attach the .gdbinit fi le that was just created.
Click the Browse button to the right of “GDB command File” and locate your
workspace directory. You may have to right‐click the File Explorer window and
choose Show hidden fi les to fi nd the fi le .gdbinit . That confi guration fi le can
be used to set many more confi guration options. For example, it can be used to
confi gure the remote server and choose different breakpoints.

 Figure 7-8: Setting up gdb‐multiarch

 Any program arguments can be added to the Arguments tab in Figure 7-8 .
In this example the string “fl ash” is used. The argument is passed to the appli-
cation that is executing on the BBB when the gdbserver command executes.

 Finally, under the Gdbserver Settings tab (see Figure 7-9), set the executable
path and an arbitrary port number for the gdbserver command. This allows

268 Part II8 ■ Interfacing, Controlling, and Communicating

the desktop computer to remotely invoke the gdbserver command on the BBB
and to connect to it over TCP using its port number.

 Figure 7-9: Setting the BBB gdbserver port

 Figure 7-10: The Debug Perspective view

 Start the debugger by using the down arrow to the right of the green “bug” on
the main window, which is circled in Figure 7-10 , and select the “DebugBBBTest
Debug” option.

 Figure 7-10 is a screen capture of the Debug Perspective view in action. You
can see that the program is currently halted at a breakpoint on line 36 of the
program code. The output at this point is visible in the Console window at the
bottom. This type of debug view can be invaluable when developing complex
applications, especially when the BBB is connected to electronic circuits and
modules. At this point you can use the Step Over button to step through each

 Chapter 7 ■ Cross‐Compilation and the Eclipse IDE 269

line of your code, watching the variable values, while seeing how the program
interacts with physically connected circuits.

 Automatic Documentation (Doxygen)

 As your BBB projects grow in capability and complexity, it will become especially
important that your code is self‐documenting. If you follow good programming
practice when naming variables and methods, as discussed in Chapter 5 , then
you will not have to document every single line of code. Rather, you should
write inline documentation comments, using automatic documentation tools
like Doxygen or Javadoc, for every class, method, and state. This will enable
other programmers to have an immediate understanding of what your code
does and how it is structured.

Javadoc is an automatic documentation generator that generates HTML code
directly from Java source code. Likewise, Doxygen is a tool that can be used for
generating documentation from annotated C++ source fi les in HTML, LaTeX,
and other formats. Doxygen can also generate documentation for the other
programming languages that were discussed in Chapter 5 , but the following
discussion focuses on how it can be used for C++ documentation and how it
can be integrated with the Eclipse IDE. An example output, which documents
the C++ GPIO class from Chapter 6 , is displayed in Figure 7-11 .

 Figure 7-11: Example Doxygen HTML output

 First, you need to install Doxygen on the Linux desktop machine using the
following command:

 molloyd@debian:~/eclipse$ sudo apt‐get install doxygen

 Depending on your desktop installation, it may download many additional
dependencies (as much as 1 GB of fi les). Once installed, you can immediately
begin generating documentation for your project. For example, copy the GPIO.h
and GPIO.cpp fi les from the Git repository in the chp06/GPIO/ directory into

270 Part II0 ■ Interfacing, Controlling, and Communicating

a temporary directory such as ~/Temp and then build the documentation as
follows:

 molloyd@debian:~/Temp$ ls
 GPIO.cpp GPIO.h
 molloyd@debian:~/Temp$ doxygen ‐g
 Configuration file 'Doxyfile' created . . .
 molloyd@debian:~/Temp$ ls
 Doxyfile GPIO.cpp GPIO.h
 molloyd@debian:~/Temp$ doxygen ‐w html header.html footer.html
stylesheet.css
 molloyd@debian:~/Temp$ ls
 Doxyfile footer.html GPIO.cpp GPIO.h header.html stylesheet.css

 This automatically generates HTML fi les that you can customize for your
project, adding headers, footers, and style sheets to suit your needs. Next, call
the doxygen command on the Doxyfile confi guration:

 molloyd@debian:~/Temp$ doxygen Doxyfile
 Searching for include files . . .
 Searching for example files. . . .
 molloyd@debian:~/Temp$ ls
 Doxyfile GPIO.cpp header.html latex
 footer.html GPIO.h html stylesheet.css

 You can see that there are html and latex folders containing the automati-
cally generated documentation. You can view the output by browsing (e.g., in
Chromium, type file:// and press Enter in the address bar) to the ~/Temp/html/
directory and opening the index.html fi le. There is a comprehensive manual
on the features of Doxygen at www.doxygen.org .

 Adding Doxygen Support in Eclipse

 The documentation that results from the previous steps is reasonably limited.
It is hyperlinked and captures the methods and states of the class, but there is
no deeper description. By integrating Doxygen into Eclipse, you can confi gure
and execute the Doxygen tools directly, and you can also provide inline com-
mentary that is integrated into your generated documentation output. The fi rst
step is to enable Doxygen in the editor.

 In Eclipse, go to Window ➢ Preferences ➢ C/C++ ➢ Editor. In the window
at the bottom, under “Workspace default” select Doxygen. Apply the settings,
and then in the editor type /** followed by the Return key above any method,
and the IDE will automatically generate a comment as follows:

 /**
 * @param number
 */
 GPIO::GPIO(int number) {

 Chapter 7 ■ Cross‐Compilation and the Eclipse IDE 271

 You can then add a description of what the method does, as shown in the
following example:

 /**
 * Constructor for the General Purpose Input/Output (GPIO) class. It
 * will export the GPIO automatically.
 * @param number The GPIO number for the BBB pin
 */
 GPIO::GPIO(int number) {

 To complete the installation, you can install the Eclox plug‐in for Eclipse by
going to Help ➢ Install New Software and, using the steps outlined earlier, add
a new site http://download.gna.org/eclox/update/ and then select and install
the Eclox plug‐in. After restarting Eclipse, select File ➢ New ➢ Other ➢ Other
➢ Doxyfi le to add a Doxygen confi guration fi le (Doxyfi le) to your ee src/ directory.

 There is now a new fi le in your project with a Doxyfi le .doxyfile extension
that you will be able to confi gure as shown in Figure 7-12 . You can also see a
blue @ sign in the top bar of Eclipse. Click this button to build the Doxyfile
in order to generate the documentation for your project. You can then browse
to the Documentation directory and open the html/index.html fi le directly
within Eclipse.

 Figure 7-12: Doxygen Eclox plug‐in running within Eclipse

 At this point you have everything you need to cross‐compile applications for
your BBB. The next part of this chapter outlines how you can cross‐compile the
Linux kernel itself and deploy a custom Linux distribution.

 Building Debian for the BBB

 The BBB contains a full Linux distribution when it is shipped; however, advanced
users may wish to replace this image with a lean image and/or they may wish
to install a Linux kernel that supports specifi c functionality (e.g., real‐time ker-
nel support). The tools that are described in this chapter can be used to build a
Linux kernel for your BBB using a desktop Linux installation. The steps involved

272 Part II ■ Interfacing, Controlling, and Communicating

in this process are constantly undergoing change, so they have been presented
on the chapter web page at www.exploringbeaglebone.com/chapter7 and a
summary of the steps is presented in this section.

 Robert C. Nelson is an applications engineer at Digi‐Key Corporation, a large
electronic component distributor in North America. He is a self‐professed kernel
hacker and he has been instrumental in developing the Debian Linux image for
the BBB and many other embedded Linux devices. He has provided a compre-
hensive set of scripts for building Linux for the BBB. Robert has developed a
script to enable you to build the Debian image directly on your desktop computer.
The scripts and a full guide to their usage are available at: tiny.cc/ebb703 .

 Here is a summary of the steps involved in building and writing a new Linux
image to the BBB:

 1. Build Das U‐Boot : Download the source code for the bootloader from
git.denx.de and apply the latest u‐boot patches for the AM335x proces-
sor. Build the bootloader using the cross‐compilation toolchain that is
described at the beginning of this chapter. After the build process you
will have an x‐loader MLO fi le and the u‐boot fi le that allow you to boot
your custom Linux kernel.

 2. Build the Linux kernel : Clone the source code for the Linux kernel using a
script from the “ RobertCNelson” GitHub account. Start the build process by
calling the ./build_kernel.sh script. This will prompt you to install any
missing dependencies. After the build process begins you will be invited to
customize the kernel settings using the Kernel Confi guration tool, which is
illustrated in Figure 7-13 . The build process will complete after several hours
and will result in a compressed kernel image (in the deploy directory).

 3. Download a root fi le system : At this point you only have a Linux kernel
and not a Linux distribution—there are no commands or utilities (e.g.,
those in the /bin directory). A minimal fi le system can be downloaded
from: tiny.cc/ebb704 .

 4. Prepare an SD card : An SD card must be formatted and a boot and root
partition added. The kernel image, MLO fi le, u‐boot fi le, and a uEnv.txt
fi le are placed on the boot partition. The minimal fi le system should be
extracted to the root partition.

 5. Confi gure the Linux image startup settings : You can edit the confi gura-
tion fi les on the Linux fi le system before you boot the BBB for the fi rst
time with the new Linux image. For example, you can confi gure the fi le
system (using /etc/fstab) and confi gure the network settings (using
/etc/network/interfaces).

 6. Boot the BBB : The BBB can then be booted using the new image on the
SD card. Remember to hold the BBB’s boot button. Finally, you can use
Robert’s eMMC fl asher script to write this new image to the BBB’s eMMC.

 Chapter 7 ■ Cross‐Compilation and the Eclipse IDE 273

 Figure 7-13: The Kernel Configuration tool

 Summary

 After completing this chapter, you should be able to:

■ Install a cross‐compilation toolchain on desktop Linux that can be used
to build applications for the BBB using your desktop PC.

■ Use a multiarch package manager to install multi‐architecture third party
libraries that may be required for cross‐compilation.

■ Set up a change root on a Linux desktop computer that can be used to
maintain an ARM Linux distribution.

■ Emulate the ARM architecture on the desktop PC using QEMU.

■ Install and confi gure the Eclipse integrated development environment
(IDE) for cross‐compilation to build BBB applications.

■ Confi gure Eclipse for remote deployment of applications, remote debug-
ging, GitHub integration, and automated documentation.

■ Describe the steps involved in building a custom Linux distribution
and use external resources on the chapter web page to build a custom
kernel.

274 Part II4 ■ Interfacing, Controlling, and Communicating

 Further Reading

 The steps in this chapter are prone to changes in terms of the Linux distribu-
tion, the Eclipse version, and the kernel confi guration. If you are experiencing
diffi culties with this confi guration or wish to contribute information that will
make it easier for others to do the same tasks that are presented in this chapter,
then please go to www.exploringbeaglebone/chapter7/ .

275

 This chapter describes bus communication in detail, explaining and comparing
the different bus types that are available on the BeagleBone. It describes how you
can confi gure them for use, and how you can communicate with and control I 2 C,
SPI, and UART devices, using both Linux tools and custom-developed C and
C++ code. Practical examples are provided that use a low‐cost accelerometer, a
serial shift register, and the Arduino microcontroller. After reading this chapter,
you should have the skills necessary to interface the BeagleBone to almost all
of its available bus types.

 Equipment Required for This Chapter:

■ BeagleBone Black (BBB)

■ ADXL345 accelerometer on a breakout board

■ 74HC595 shift register, LEDs, and resistors

■ 3.3 V Arduino microcontroller or 5 V Arduino microcontroller and logic‐
level translator

 Further details on this equipment and chapter are available at www
.exploringbeaglebone.com/chapter8/ .

 C H A P T E R

 8

 Interfacinng to the

BeagleBone Buses one Buses

276 Part II6 ■ Interfacing, Controlling, and Communicating

 Introduction to Bus Communication

 In Chapter 6 , the use of GPIOs and analog I/O is discussed in detail, which
makes it clear how you can connect the BBB to standalone components. This
chapter examines more complex communications that can be performed using
the bus interfaces that are available on the BBB. Bus communication is a mecha-
nism that enables data to be transferred between the high‐level components
of an embedded platform, using standardized communications protocols. The
two most commonly used embedded systems buses are available on the BBB,
and they are the subject of this chapter: Inter‐Integrated Circuit (I ((2II C) and Serial
Peripheral Interface (SPI). In addition, I Universal Asynchronous Receiver/Transmitter
(UART) devices are discussed. These are computer hardware devices that can T
be confi gured and used to send and receive serial data. When combined with
appropriate driver interfaces, UARTs can implement standard serial commu-
nications protocols, such as RS‐232, RS‐422, or RS‐485.

 Understanding the behavior and use of bus communications protocols and
devices enables the possibility of building advanced BBB electronics systems.
There are a huge number of complex sensors, actuators, input devices, I/O
expanders, and other microcontrollers that conform to these communications
protocols, and the BBB is capable of communicating with them all.

 The topics discussed in this chapter are all demonstrated using practical
examples of devices that were chosen based on their wide availability and low
cost. However, the focus of this chapter is imparting an understanding of the
techniques employed in using the BBB’s buses, rather than just describing the
specifi c bus devices used. To this end, the chapter provides generic communi-
cations code that you can use in order to apply the principles described to any
device of your choosing.

 I2 C

Inter‐Integrated Circuit (IIC((or I2C) is a straightforward two‐wire bus that was
designed by Philips in the 1980s to interface microprocessors or microcontrollers
to low‐speed peripheral devices. A master device, such as the BBB, controls the
bus, and many addressable slave devices can be attached to the same two wires.
It has remained popular over the years, mainly due to its relative simplicity and
breadth of adoption. It is currently used in smartphones, most microcontrollers,
and even environmental management applications in large‐scale server farms.
Here are some general features of the I2 C bus:

■ Only two signal lines are required for communication, the Serial Data
(SDA) line for the bidirectional transmission of data, and the Serial Clock
(SCL) line, which is used to synchronize the data transfer. Because the

 Chapter 8 ■ Interfacing to the BeagleBone Buses 277

bus uses this synchronizing clock signal, the data transfer is said to be
synchronous . The transmission is said to be bidirectional because the same
SDA wire can be used for sending and receiving data.

■ Each device on the bus can act as a master or a slave. The master device is
the one that initiates communication and the slave device is the one that
responds. Designated slave devices cannot initiate communication with
the master device.

■ Each slave device attached to the bus is pre‐assigned a unique address,
which is in either 7‐bit or 10‐bit form. In the following example, 7‐bit
addressing is used, i.e., 0x00 to 0x80 (27 = 128 10 = 0x80).

■ It has true multi‐master bus facilities , including collision detection and
arbitration if two or more master devices activate at once.

■ On‐chip noise fi ltering is built in as standard.

 I 2 C Hardware

 Figure 8-1 (a) illustrates the interconnection of multiple slave devices to the
I 2 C bus. All output connections to the SDA and SCL lines are in open‐drain
confi guration (discussed in Chapter 4), whereby all devices share a common
ground connection. This means that devices with different logic families can
be intermixed on the bus, and that a large number of devices can be added to
a single bus. In theory, up to 128 devices could be attached to a single bus, but
doing so would greatly increase the capacitance of the interconnecting lines.
The bus is designed to work over short distances, as long bus lines are prone
to electrical interference and capacitance effects (e.g., a pair of 22 AWG shielded
wire has a capacitance of about 15 pF/ft).

 Figure 8-1 : (a) The I 2 C bus configuration; (b) connecting the ADXL345 to the I2C2 bus on the
BBB

278 Part II8 ■ Interfacing, Controlling, and Communicating

Transmission line capacitance has a huge impact on data transmission rates. In
Chapter 4 (see Figure 4‐10), when a 10 μF capacitor is connected in parallel with
a resistive load and an AC voltage supply is applied, the capacitor had a very
clear smoothing effect on the voltage across the load. This smoothing effect
is unwelcome in the transmission of digital data—for example, if a random
binary signal (0 V–3.3 V) switches at a high frequency, then severe smoothing
could result in a constant 1.65 V signal, which carries no binary information
at all. Typically, the longer the bus length and the more I2 C devices that are
attached to it, then the slower the speed of data transmission. There are I 2 C
repeaters available that act as current amplifi ers to help solve the problems
associated with long lines.

 The BBB supports bus frequencies of up to 400 kHz. NXP (formerly a division
of Philips) has newer I 2 C Fast‐mode Plus (FM+) devices that can communicate
at up to 1 MHz,1 but this capability is not available on the BBB.

 The I 2 C bus requires pull‐up resistors (R((P) on both the SDA and SCL lines, asPP

illustrated in Figure 8-1 (a). These are called termination resistors and they usually
have a value of between 1 kΩ and 10 kΩ. Their role is to pull the SDA and SCL
lines up to VCCVV when no I 2 C device is pulling them down to GND. This pull‐up
confi guration enables multiple master devices to take control of the bus, and for
the slave device to “stretch” the clock signal (i.e., hold SCL low). Clock stretching
can be used by the slave device to slow down data transfer until it has fi nished
processing and is ready to transmit. These resistors are often already present
on the breakout board that is associated with an I2 C device. This can be a useful
feature, but it may cause diffi culty if you wish to use several breakout boards
on the same bus.

 The serial resistors (RS) shown in Figure 8-1 (a) usually have low values (e.g.,S

250 Ω), and can help protect against overcurrent conditions. The I 2 C devices are
attached to the SDA and SCL lines using Schmitt trigger inputs (see Chapter 4)
to reduce the impact of signal noise by building in a degree of switching
hysteresis.

N O T E There is a video on the use of I2 C with a BMA180 accelerometer at the chapter

web page: www.exploringbeaglebone.com/chapter8 .

 In the video, an application is built using the Qt development environment to capture

and graphically display the output of the accelerometer on a desktop computer. That type

of application is discussed in Chapter 11 .

 In the I 2 C demonstration application discussed in this chapter, the BBB is
the master device and the ADXL345 is the slave device. The ADXL345 is on a
breakout board that already has 4.7 kΩ termination resistors on the board. The
sensor is connected to the BBB as illustrated in Figure 8-1 (b).

 Chapter 8 ■ Interfacing to the BeagleBone Buses 279

 The I 2 C slave address is determined by the slave device itself. For example,
the ADXL345 breakout board has the address 0x53, which is determined at
manufacture. Many devices, including the ADXL345, have selection inputs that
allow you to alter this value within a defi ned range. However, the breakout
board to which the device is attached needs to support this change of address
facility. In the following example, you could not connect two ADXL345 breakout
board devices to the same bus, as their addresses would confl ict. However,
there are I 2 C multiplexers available that would enable you to overcome this
problem.

 Further documentation on the I2 C bus is available from NXP directly at tiny
.cc/ebb802 .

W A R N I N G The I2 C bus on the BBB is 3.3V tolerant; consequently, you will need

logic‐level translation circuitry if you wish to connect 5V powered I 2 C devices to it.

That topic is discussed at the end of this chapter.

 The ADXL345 Accelerometer

 The Analog Devices ADXL345 is a small, low‐cost accelerometer that can
measure angular position with respect to the direction of Earth’s gravita-
tional force. For example, a single‐axis accelerometer at rest on the surface
of Earth, with the sensitive axis parallel to Earth’s gravity, will measure an
acceleration of 1 g (9.81 m/s2) straight upward. While accelerometers provide
absolute orientation measurement, they suffer from high‐frequency noise, so
they are often paired with gyroscopes for accurate measurement of change in
orientation (e.g., in game controllers). However, accelerometers have excellent
characteristics for applications in which low‐frequency absolute rotation is
to be measured. For simplicity, an accelerometer is used on its own in the
following discussions, because the main aim is to impart an understanding
of the I2 C bus.

 The ADXL345 can be set to measure values with a fi xed 10‐bit resolution,
or using a 13‐bit resolution at up to ±16 g . It can be interfaced to the BBB using gg
the I2 C or SPI bus, which makes it an ideal sensor to use in this chapter as an
example device. Even if you do not have this particular sensor, the following
discussion is fully representative of the steps required to connect any type of
I 2 C sensor to the BBB. The chapter web page identifi es suppliers from whom
you can purchase this particular sensor.

 The data sheet for the ADXL345 is an important document that should be
read along with this chapter. It is linked from the chapter web page or at www
.analog.com/ADXL345 (or tiny.cc/ebb801).

280 Part II0 ■ Interfacing, Controlling, and Communicating

Table 8-1 : I 2 C Buses on the BBB Debian Image

H/W BUS S/W DEVICE SDA PIN SCL PIN DESCRIPTION

I2C0 /dev/i2c‐0 N/A N/A Internal bus for
HDMI control.

I2C1 /dev/i2c‐2 P9_18 P9_17 General I 2C bus.
Disabled by default.

I2C2 /dev/i2c‐1 P9_20 P9_19 General I 2C bus.
Enabled by default.

 The physical connection to the ADXL345 is illustrated in Figure 8-1 (b). When
the CS input is tied high, the ADXL345 is placed in I 2 C mode. The breakout
board contains the resistors that are required for the I2 C bus to work correctly.
The ADXL345’s ALT Address pin is fi xed to GND on the breakout board, plac-
ing the device at I2 C address 0x53.

 The I2C0 and I2C2 buses are present by default in the Debian BBB image and,
perhaps erroneously, they map to the Linux device names i2c‐0 and i2c‐1 ,
respectively. You can enable the second public I 2 C bus (see Table 8-1), i2c‐2
(I2C1) using the following command:

 molloyd@beaglebone:/dev$ sudo sh ‐c "echo BB‐I2C1 > $SLOTS"
 molloyd@beaglebone:/dev$ ls i2*
 i2c-0 i2c-1 i2c-2

 Using Linux I2C‐Tools

 Linux provides a set of tools, called i2c‐tools , for interfacing to I2 C bus devices;
it includes a bus probing tool, a chip dumper, and register‐level access helpers.
These tools are already installed on the BBB Debian image, but they can be
updated or installed on different images using the following:

 molloyd@beaglebone:∼$ sudo apt‐get install i2c‐tools
 i2c-tools is already the newest version.

 i2cdetect

 The fi rst step is to detect that the device is present on the bus. When the second
public I 2 C bus is enabled, and the clock line (SCL) or data line (SDA) are not
connected to any device, the i2cdetect command will display the following
output:

 molloyd@beaglebone:∼$ i2cdetect ‐l
 i2c-0 i2c OMAP I2C adapter I2C adapter
 i2c-1 i2c OMAP I2C adapter I2C adapter
 i2c-2 i2c OMAP I2C adapter I2C adapter

 Chapter 8 ■ Interfacing to the BeagleBone Buses 281

 The /dev/i2c‐1 bus can then be probed for connected devices:

 molloyd@beaglebone:∼$ i2cdetect ‐y ‐r 1
 0 1 2 3 4 5 6 7 8 9 a b c d e f
 00: -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 50: -- -- -- -- UU UU UU UU -- -- -- -- -- -- -- --
 60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
 70: -- -- -- -- -- -- -- --

 where the addresses 0x03 to 0x77 are displayed by default. Using ‐a will dis-
play the full range 0x00 to 0x7F. When -- is displayed, the address was probed
but no device responded. When UU is displayed, probing was skipped, as the
address is already in use by a driver. You can identify which driver by using
the following (0x54 in this example):

 molloyd@beaglebone:/sys/bus/i2c/devices/1‐0054$ cat modalias
 i2c:24c256

 When the ADXL sensor is physically connected to the I2 C bus (I2C2) as shown
in Figure 8-1 (b), the I2C2 bus can be probed again using the same command:

 molloyd@beaglebone:∼$ i2cdetect ‐y ‐r 1
 0 1 2 3 4 5 6 7 8 9 a b c d e f
 ...
 50: -- -- -- 53 UU UU UU UU -- -- -- -- -- -- -- --
 ...

 and if the device is functioning and correctly wired, it will appear at its pre‐
defi ned address, which is 0x53 for this breakout board implementation.

 Running i2cdetect on the internal I2C0 bus will highlight that there is
already a device at 0x34, which relates to the consumer electronics control (CEC)
interface on the HDMI framer for the BBB. Address 0x70 is also used by the
HDMI framer.

 molloyd@beaglebone:∼$ i2cdetect ‐y ‐r 0
 0 1 2 3 4 5 6 7 8 9 a b c d e f
 ...
 30: -- -- -- -- 34 -- -- -- -- -- -- -- -- -- -- --
 ...

 i2cdump

 The i2cdump command can be used to read in the values of the registers of
the device attached to an I 2 C bus and display them in a hexadecimal block
form. You should not use this command without consulting the datasheet

282 Part II ■ Interfacing, Controlling, and Communicating

for the slave device, as in certain modes the i2cdump command will write
to the device. The ADXL345 can be safely probed, and its output should be
given by

 molloyd@beaglebone:∼$ i2cdump ‐y 1 0x53
 No size specified (using byte-data access)
 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef
 00: e5 00 00 00 00 00 00 00 00 00 00 00 00 00 00 4a ?..............J
 10: 00 00 10 00 00 00 00 00 00 00 00 00 00 00 00 00 ..?.............
 20: 00 00 00 00 00 00 00 00 00 00 00 00 0a 00 00 00 ?...
 30: 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ?...............

 where many of the registers are empty because the device is in power‐saving
mode by default. However, you can see that the fi rst value at address 0x00 is
0xe5, and this value corresponds to the DEVID entry in Table 8-2 —successful
communication has been verifi ed!

 As previously stated, the datasheet for the ADXL345 from Analog Devices is
available at www.analog.com/ADXL345 . It is a comprehensive and well‐written
datasheet that details every feature of the device. In fact, the real challenge in
working with new bus devices is in decoding the datasheet and the intricacies
of the device’s behavior. The ADXL345 has 30 public registers and Table 8-2 lists
those that are accessed in this chapter. Other registers enable you to set power
save inactivity periods, orientation offsets, and interrupt settings for free‐fall,
tap, and double‐tap detection.

 The x , x y , and yy z ‐axis acceleration values are stored using a 10‐bit or 13‐bit reso-
lution; therefore, two bytes are required for each reading, as the data is in 16‐bit
two’s complement form (see Chapter 4). To sample at 13 bits, the ADXL345 must
be set to the ±16 g range. Figure 8-2 (from the ADXL345 datasheet) describes the
signal sequences required to read and write to the device.

 For example, to write a single byte to a device register, the master/slave access
pattern in the fi rst row is used as follows:

 1. The master sends a start bit (i.e. it pulls SDA low, while SCL is high).

 2. While the clock toggles, the seven‐bit slave address is transmitted one bit
at a time.

 3. A read bit (1) or write bit (0) is sent, depending on whether the master
wants to read or write to/from a slave register.

 4. The slave then responds with an acknowledge bit (ACK = 0).

 5. In write mode, the master sends a byte of data one bit at a time, after
which the slave sends back an ACK bit. To write to a register, the register
address is sent, followed by the data value to be written.

 6. Finally, to conclude communication, the master sends a stop bit (i.e., it
allows SDA to fl oat high, while SCL is high).

 Chapter 8 ■ Interfacing to the BeagleBone Buses 283

 These handshaking sequences will shortly be confi rmed by reading
and writing from/to the device and by physically analyzing the I 2 C bus
communication.

 i2cget

 The i2cget command can be used to read the value of a register in order to
test the device, or as an input for Linux shell scripts. For example, to read
the DEVID of the attached device, which should be 0xE5 in this case, use the
following:

 molloyd@beaglebone:∼$ i2cget ‐y 1 0x53 0x00
 0xe5

Table 8-2 : Subset of the Registers in the ADXL345 Register Map

ADDR NAME TYPE DESCRIPTION

0x00 DEVID R The device ID: This should be 111001012 ,
which is E516 . Most devices have a fi xed ID
at the address 0x00, which is a useful check
on a successful connection.

0x2D POWER_
CTL

R/W Power‐saving features control: Six bits that
specify the sleep mode, measurement
mode, etc. (see page 25 of the datasheet,
register 0x2D). For example, 000010002
places the device in measurement mode
with no sleep functionality enabled.

0x31 DATA_
FORMAT

R/W Data format control: Seven bits that set
the self‐test, SPI mode, interrupt inversion,
zero bit, resolution, justify bit, and g range
settings (two bits); e.g., 000001002 would
set the range to ±2 g in 10‐bit mode, with
left‐justifi ed (MSB) mode (see page 26 of
the datasheet, register 0x31).

0x32 DATAX0 R X‐Axis Data 0: One byte containing the least
signifi cant byte of the X‐axis acceleration
data.

0x33 DATAX1 R X‐Axis Data 1: Most signifi cant byte

0x34 DATAY0 R Y‐Axis Data 0: Least signifi cant byte

0x35 DATAY1 R Y‐Axis Data 1: Most signifi cant byte

0x36 DATAZ0 R Z‐Axis Data 0: Least signifi cant byte

0x37 DATAZ1 R Z‐Axis Data 1: Most signifi cant byte

 From Table 19 in the Analog Devices ADXL345 datasheet. There are 30 publicly accessible registers in total.

 F
ig

u
re

 8
-2

 :
 Ti

m
in

gs
 re

qu
ire

d
fo

r s
in

gl
e/

m
ul

tip
le

 re
ad

/w
rit

e
op

er
at

io
ns

 o
n

th
e

A
D

XL
34

5
de

vi
ce

 Im
ag

e
co

ur
te

sy
 o

f A
na

lo
g

D
ev

ic
es

, I
nc

.

284

 Chapter 8 ■ Interfacing to the BeagleBone Buses 285

 The Analog Discovery digital logic analyzer functionality can be used to
physically analyze the I2 C bus in order to view the interaction of SDA and SCL
signals as data is written to and read from the I 2 C bus. The logic analyzer func-
tionality has interpreters for I 2 C buses, SPI buses, and UART devices, which
can display the hexadecimal equivalents of the serial data carried on the bus.
Figure 8-3 captures the signal transitions of the i2cget command used in the
preceding example. Here, you can see that the clock is running at I 2II C standard
data transfer mode (100 kHz). This accelerometer also supports fast data transfer
mode (400 kHz). The timing signals displayed in Figure 8-3 confi rm those on the
third row of Figure 8-2 for a single byte read. The top row in Figure 8-3 (I2C2)
details the interpretation of the SDA and SCL signals that are displayed on the
second and third rows.

 Figure 8-3 : Using i2cget to read the DEVID register value

 i2cset

 The i2cset command can be used to set a register. This is required, for example,
to take the ADXL345 out of power‐saving mode, by writing 0x08 to the POWER_CTL
register, which is at 0x2D. The value is written and then confi rmed as follows:

 molloyd@beaglebone:∼$ i2cset ‐y 1 0x53 0x2D 0x08
 molloyd@beaglebone:∼$ i2cget ‐y 1 0x53 0x2D
 0x08

 If the i2cdump command is then used, the registers 0x32 through 0x37 (as
identified in Table 8-2) will display the acceleration values, which change
as the sensor is physically rotated and the i2cdump command is repeatedly
called:

 molloyd@beaglebone:∼$ i2cdump ‐y 1 0x53
 No size specified (using byte-data access)
 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef
 00: e5 00 00 00 00 00 00 00 00 00 00 00 00 00 00 4a ?..............J
 10: 82 00 30 00 00 01 fc 1d 00 00 00 22 00 00 00 00 ?.0..???..."....
 20: 00 00 00 00 00 00 00 00 00 00 00 00 0a 08 00 00 ??..
 30: 83 01 06 00 f1 ff 75 00 00 00 00 00 00 00 00 00 ???.?.u.........

286 Part II6 ■ Interfacing, Controlling, and Communicating

 The next step is to write program code that can interpret the values contained
in these registers. First, C code to do this is presented, and then a C++ class is
written that introduces a more structured programming approach.

 I 2 C Communication in C

 The ADXL345 digital accelerometer measures acceleration in three axes using
analog sensors, which are internally sampled and fi ltered according to the
settings that are placed in its registers. The acceleration values are then avail-
able for you to read from these registers. Therefore, the sensor performs tim-
ing‐critical signal processing that would otherwise have to be performed by
the BBB. However, further numerical processing is still required in convert-
ing the 16‐bit two’s complement values stored in its registers into values that
describe angular pitch and roll. As such, C/C++ is a good choice for this type
of numerical processing.

 The fi rst C programming example, in Listing 8‐1, simply reads in all of
the registers and displays the fi rst register (0x00). This can be used to dis-
play the device ID (DEVID), and thereby confi rm that the C program is work-
ing correctly. Many other I 2 C devices have device IDs at the address 0x00,
which do not change as the device is manipulated. Therefore, this is a useful
fi rst test.

 LISTING 8‐1: exploringbb/chp08/i2c/test/testADXL345.c

 #include<stdio.h>

 #include<fcntl.h>

 #include<sys/ioctl.h>

 #include<linux/i2c.h>

 #include<linux/i2c-dev.h>

 // Small macro to display value in hexadecimal with 2 places

 #define DEVID 0x00

 #define BUFFER_SIZE 40

 int main(){

 int file;

 printf("Starting the ADXL345 test application\n");

 if((file=open("/dev/i2c-1", O_RDWR)) < 0){

 perror("failed to open the bus\n");

 return 1;

 }

 if(ioctl(file, I2C_SLAVE, 0x53) < 0){

 perror("Failed to connect to the sensor\n");

 return 1;

 }

 char writeBuffer[1] = {0x00};

 if(write(file, writeBuffer, 1)!=1){

 perror("Failed to reset the read address\n");

 Chapter 8 ■ Interfacing to the BeagleBone Buses 287

 return 1;

 }

 char readBuffer[BUFFER_SIZE];

 if(read(file, readBuffer, BUFFER_SIZE)!=BUFFER_SIZE){

 perror("Failed to read in the buffer\n");

 return 1;

 }

 printf("The Device ID is: 0x%02x\n", readBuffer[DEVID]);

 close(file);

 return 0;

 }

 The code can then be executed as follows:

 molloyd@beaglebone:∼/exploringbb/chp08/test/i2c$./build
 Building the ADXL345 example applications
 molloyd@beaglebone:∼/exploringbb/chp08/test/i2c$./testADXL345
 Starting the ADXL345 test application
 The Device ID is: 0xe5

 This program outputs that the device ID value is 0xE5, which confi rms that
the ADXL345 is attached at the address 0x53 and therefore that the code is
working correctly.

 To display all the registers and to process the accelerometer values, a new
program (chp08/i2c/test/ADXL345.cpp) is written that breaks the calls into
functions, such as the readRegisters() function:

 // Read the entire 40 registers into the buffer (10 reserved)
 int readRegisters(int file){
 // Writing a 0x00 to the device sets the address back to
 // 0x00 for the coming block read
 writeRegister(file, 0x00, 0x00);
 if(read(file, dataBuffer, BUFFER_SIZE)!=BUFFER_SIZE){
 cout << "Failed to read in the full buffer." << endl;
 return 1;
 }
 if(dataBuffer[DEVID]!=0xE5){
 cout << "Problem detected! Device ID is wrong" << endl;
 return 1;
 }
 return 0;
 }

 This code writes the address 0x00 to the device, causing it to send back
the full 0x40 registers (BUFFER_SIZE). In order to process the two raw 8‐bit
acceleration registers, code to combine two bytes into a single 16‐bit value is
written as follows:

 // short is 16-bits on the BBB
 short combineValues(unsigned char upper, unsigned char lower){

288 Part II8 ■ Interfacing, Controlling, and Communicating

 //shift the most significant byte left by 8 bits and OR with the
 // least significant byte
 return ((short)upper<<8)|(short)lower;
 }

 The types of the data are vital in this function, as the register data is returned
in two’s complement form. If an int type (of size 32‐bits, int32_t) were used
instead of short 16‐bit integral data (int16_t), then the sign bit would be dislo-
cated. This function shifts the upper byte left (multiply) by eight places (equivalent
to a multiplication by 2 8 = 256) and ORs the result with the lower byte, which
replaces the lower byte with eight zeroes that are introduced by the shift). This
results in a 16‐bit signed value (int16_t) that has been created from two sepa-
rate 8‐bit values (uint8_t((). When executed, the ADXL345.cpp application will
give the following output, with the program updating the acceleration data on
the same console line:

 molloyd@beaglebone:∼/exploringbb/chp08/i2c/test$./ADXL345
 Starting the ADXL345 sensor application
 The Device ID is: e5
 The POWER_CTL mode is: 08
 The DATA_FORMAT is: 00
 X=13 Y=-35 Z=232 sample=17

 Additional code is required to convert these values into a pitch and roll form.
This is added to the C++ class in the next section. For your information, the
logic analyzer indicates that it takes 4.19 ms to read in the full set of 40 registers
at a bus speed of 100 kHz.

 Wrapping I 2 C Devices with C++ Classes

 Object‐oriented programming is described in Chapter 5 as a suitable frame-
work for developing code for embedded systems. As a programmer, one of
your key aims should be to avoid writing the same code twice. You could
repeatedly copy‐and‐paste code from project to project, but if you subse-
quently discover an error, it will have to be corrected in several locations.
A danger arises when you forget to change the copied code in one or more
locations.

 A specifi c C++ class can be written to wrap the functionality of the ADXL345
accelerometer; because it is likely that you will need to write code to control
several different types of I2 C device, it would be useful if the general I2 C code
could be extracted and placed in a parent class. To this end, a class has been
written for this chapter called I2CDevice that captures the general function-
ality you would associate with an I 2 C bus device. You can extend this code
to control any type of I2 C device. It can be found in the I2CDevice.cpp and
I2CDevice.h fi les in the chp08/i2c/cpp/ directory. Later in this chapter

 Chapter 8 ■ Interfacing to the BeagleBone Buses 289

the code is further restructured and placed in the /library/bus GitHub
directory. The class has the structure as described in Listing 8‐2.

 LISTING 8‐2: /exploringbb/chp08/i2c/cpp/I2CDevice.h

 class I2CDevice {

 private:

 unsigned int bus, device;

 int file;

 public:

 I2CDevice(unsigned int bus, unsigned int device);

 virtual int open();

 virtual int write(unsigned char value);

 virtual unsigned char readRegister(unsigned int registerAddress);

 virtual unsigned char* readRegisters(unsigned int number,

unsigned int fromAddress=0);

 virtual int writeRegister(unsigned int registerAddress, unsigned char value);

 virtual void debugDumpRegisters(unsigned int number);

 virtual void close();

 virtual ∼I2CDevice();
 };

 The implementation code is available in the chp08/i2c/cpp/ directory. This
class can be extended to control any type of I 2 C device, and in this case it is
used as the parent of a specifi c device implementation class called ADXL345 .
Therefore, you can say that ADXL345 IS‐A I2CDevice . This inheritance relation-
ship means that any methods available in the I2CDevice class are now available
in the ADXL345 class in Listing 8‐3 (e.g., readRegister()).

 LISTING 8‐3: /exploringbb/chp08/i2c/cpp/ADXL345.h

 class ADXL345:protected I2CDevice{

 // protected inheritance means that the public I2C methods are no

 // longer publicly accessible by an object of the ADXL345 class

 public:

 enum RANGE { // enumerations are used to limit the options

 PLUSMINUS_2_G = 0,

 PLUSMINUS_4_G = 1,

 PLUSMINUS_8_G = 2,

 PLUSMINUS_16_G = 3

 };

 enum RESOLUTION {

 NORMAL = 0,

 HIGH = 1

 };

 private:

 unsigned int I2CBus, I2CAddress;

 unsigned char *registers;
continues

290 Part II0 ■ Interfacing, Controlling, and Communicating

LISTING 8‐3: (continued)

 ADXL345::RANGE range;

 ADXL345::RESOLUTION resolution;

 // raw 2's complement values

 short accelerationX, accelerationY, accelerationZ;

 float pitch, roll; // in degrees

 short combineRegisters(unsigned char msb, unsigned char lsb);

 void calculatePitchAndRoll();

 virtual int updateRegisters();

 public:

 ADXL345(unsigned int I2CBus, unsigned int I2CAddress=0x53);

 virtual int readSensorState();

 virtual void setRange(ADXL345::RANGE range);

 virtual ADXL345::RANGE getRange() { return this->range; }

 virtual void setResolution(ADXL345::RESOLUTION resolution);

 virtual ADXL345::RESOLUTION getResolution() { return this->resolution; }

 virtual short getAccelerationX() { return accelerationX; }

 virtual short getAccelerationY() { return accelerationY; }

 virtual short getAccelerationZ() { return accelerationZ; }

 virtual float getPitch() { return pitch; }

 virtual float getRoll() { return roll; }

 // Debugging method to display and update the pitch/roll on the one line

 virtual void displayPitchAndRoll(int iterations = 600);

 virtual ∼ADXL345();
 };

 The enumeration structures are used to constrain the range and resolution
selections to contain only valid options. A short example (application.cpp)
can be used to test this structure, as follows:

 int main(){
 ADXL345 sensor(1,0x53); // sensor is on bus 1 at the address 0x53
 sensor.setResolution(ADXL345::NORMAL); // using 10-bit resolution
 sensor.setRange(ADXL345::PLUSMINUS_4_G); // range is +/-4g
 sensor.displayPitchAndRoll(); // put the sensor in display mode
 return 0;
 }

 This code can be built and executed as follows, where the pitch and roll are
angular values that each vary between ±90°:

 /chp08/i2c/cpp$ g++ application.cpp I2CDevice.cpp ADXL345.cpp ‐o ADXL345
 /chp08/i2c/cpp$./ADXL345
 Pitch:5.71592 Roll:-31.5256

 You can use this general structure to build wrapper classes for any type of
I2 C sensor, and it will work perfectly well. However, later in this chapter an
additional software design issue must be addressed, meaning that the structure
presented here for the ADXL345 class requires further modifi cation.

 Chapter 8 ■ Interfacing to the BeagleBone Buses 291

 SPI

 The Serial Peripheral Interface (SPI) bus is a fast, full‐duplex synchronous serial data
link that enables devices such as the BBB to communicate with other devices over
short distances. Therefore, like I2 C, the SPI bus is synchronous, but unlike the I2 C
bus the SPI bus is full‐duplex. This means that it can transmit and receive data atx
the same time, by using separate lines for both sending data and receiving data.

 In this section the SPI bus is introduced, and two separate applications are
developed. The fi rst uses the SPI bus to drive an LED bar graph display using
the ubiquitous 74HC595 eight‐bit shift register. The second application interfaces
to the ADXL345 accelerometer again, this time using its SPI bus instead of the
I 2 C bus used previously.

 SPI Hardware

 SPI communication takes place between a single master device and one or more
slave devices. Figure 8-4 (a) illustrates a single slave example, where four signal
lines are connected between the master and slave devices. To communicate with
the slave device, the following steps take place:

 1. The SPI master defi nes the clock frequency at which to synchronize the
data communication channels.

 2. The SPI master pulls the chip select (CS) line low, which activates the cli-
ent device—it is therefore said to be active low . This line is also known
as slave select (SS).

 3. After a short delay, the SPI master issues clock cycles, sending data out on
the master out-slave in (MOSI) line and receiving data on the I master in-slave
out (MISO) line. The SPI slave device reads data from the MOSI line and
transmits data on the MISO line. One bit is sent and one bit is received on
each clock cycle. The data is usually sent in one‐byte (eight‐bit) chunks.

 4. When complete, the SPI master stops sending a clock signal and then pulls
the CS line high, deactivating the SPI slave device.

 Figure 8-4 : (a) Using SPI to connect to one slave; (b) testing SPI using a Linux configuration

292 Part II ■ Interfacing, Controlling, and Communicating

 Unlike I2 C, the SPI bus does not require pull‐up resistors on the communica-
tion lines, so connections are very straightforward. A summary comparison of
I 2 C versus SPI is provided in Table 8-3 .

Table 8-3 : Comparison of I 2 C versus SPI on the BBB

I 2 C SPI

Connectivity Two wires, to which up to 128
addressable devices can be attached.

Typically four wires, and requires
additional logic for more than
one slave device.

Data rate I2 C fast mode is 400 kHz. Uses half‐
duplex communication.

Faster performance, typically
over 10 MHz. Full duplex (except
three‐wire variant).

Hardware Pull‐up resistors required. No pull‐up resistors required.

BBB support Fully supported with two external
buses (plus one internal).

Fully supported with two buses.
Only one slave selection pin on
each bus.

Features Can have multiple masters. Slaves
have addresses, acknowledge transfer,
and can control the fl ow of data.

Simple and fast, but only one
master device, no addressing,
and no slave control of data fl ow.

Application Intermittently accessed devices, e.g.,
real‐time clock, EEPROMs.

For devices that provide data
streams, e.g., ADCs.

 The SPI bus operates using one of four different modes, which is chosen
according to the specifi cation defi ned in the SPI slave device’s datasheet. Data
is synchronized using the clock signal, and one of the SPI communication modes
described in Table 8-4 is set to describe how the synchronization is performed.
The clock polarity defi nes whether the clock is low or high when it is idle (i.e.,
when CS is high). The clock phase defi nes whether the data on the MOSI and
MISO lines is captured on the rising edge or falling edge of the clock signal.
When a clock’s polarity is 1, the clock signal is equivalent to an inverted ver-
sion of the same signal with a polarity of 0. Therefore, a rising edge on one
form of clock signal polarity is the equivalent of a falling edge on the other.
You need to examine the datasheet for the slave device in order to determine
the SPI mode.

 The SPI protocol does not defi ne a maximum data rate, fl ow control, or
communication acknowledgment. Therefore, implementations vary from
device to device, so it is very important to study the datasheet of each type
of SPI slave device. There are some three‐wire SPI variants that use a single
bidirectional MISO/MOSI line instead of two individual lines. For example,
the ADXL345 sensor supports I 2 C, and both four‐wire and three‐wire SPI
communication.

 Chapter 8 ■ Interfacing to the BeagleBone Buses 293

W A R N I N G Do not connect a 5V‐powered SPI slave device to the MISO input on

the BBB. Logic‐level translation is discussed at the end of this chapter.

 SPI on the BBB

 The P9 header layout in Figure 6‐7 of Chapter 6 identifi es that the SPI0 and SPI1
buses are accessible from this header. SPI1 clashes with the mcasp0_pins, so to
use SPI1 you have to disable HDMI. As illustrated in Figure 8-4 (b), the pins for
SPI0 are as follows:

■ Chip Select: P9_17 spi0_cs0 (Mode 0) $PINS 87 Offset 0x15C.

■ MOSI: P9_18 spi0_d1 (Mode 0) $PINS 86 Offset 0x158.

■ MISO: P9_21 spi0_d0 (Mode 0) $PINS 85 Offset 0x154.

■ Clock: P9_22 spi0_sclk (Mode 0) $PINS 84 Offset 0x150.

 The SPI0 and SPI1 buses are disabled by default, so to enable them you use
device tree overlays, as described in Chapter 6 . The BB‐SPIDEV0‐00A0.dts fi le
defi nes how this overlay is confi gured, with internal pull‐up resistors enabled
and inputs/outputs defi ned as shown in the partial listing in Listing 8‐4. The
full listing is linked from the web page associated with this chapter.

 LISTING 8‐4: BB‐SPIDEV0‐OOAO.dts (partial)

 /* Copyright (C) 2013 CircuitCo */

 ...

 fragment@0 {

 target = <&am33xx_pinmux>;

 __overlay__ {

 /* default state has all gpios released and mode set to uart1 */

 bb_spi0_pins: pinmux_bb_spi0_pins {

 pinctrl-single,pins = <

Table 8-4 : SPI Communication Modes

MODE CLOCK POLARITY (CPOL) CLOCK PHASE (CPHA)

0 0 (low at idle) 0 (data captured on the rising edge of
the clock signal)

1 0 (low at idle) 1 (data captured on the falling edge of
the clock signal)

2 1 (high at idle) 0 (data captured on the falling edge of
the clock signal)

3 1 (high at idle) 1 (data captured on the rising edge of
the clock signal)

continues

294 Part II4 ■ Interfacing, Controlling, and Communicating

LISTING 8‐4: (continued)

 0x150 0x30 /* spi0_sclk.spi0_sclk, INPUT_PULLUP | MODE0 */

 0x154 0x30 /* spi0_d0.spi0_d0, INPUT_PULLUP | MODE0 */

 0x158 0x10 /* spi0_d1.spi0_d1, OUTPUT_PULLUP | MODE0 */

 0x15c 0x10 /* spi0_cs0.spi0_cs0, OUTPUT_PULLUP | MODE0 */

 >;

 };

 };

 };

 fragment@1 {

 target = <&spi0>; /* spi0 is numbered correctly */

 __overlay__ {

 #address-cells = <1>;

 #size-cells = <0>;

 status = "okay";

 pinctrl-names = "default";

 pinctrl-0 = <&bb_spi0_pins>;

 channel@0 {

 #address-cells = <1>;

 #size-cells = <0>;

 compatible = "spidev";

 reg = <0>;

 spi-max-frequency = <16000000>;

 spi-cpha;

 };

 channel@1 { ...

 };

 };

 };

 Enabling the First SPI Bus (SPI0)

 To enable the SPI buses, the requisite overlay must be loaded, using the same
syntax discussed in Chapter 6 :

 molloyd@beaglebone:/lib/firmware$ ls *SPI*
 ADAFRUIT‐SPI0‐00A0.dtbo BB‐SPIDEV0‐00A0.dtbo BB‐SPIDEV1A1‐00A0.dtbo
 ADAFRUIT-SPI1-00A0.dtbo BB-SPIDEV1-00A0.dtbo
 molloyd@beaglebone:/lib/firmware$ sudo sh ‐c "echo BB‐SPIDEV0 > $SLOTS"
 molloyd@beaglebone:/lib/firmware$ cat $SLOTS
 ...
 4: ff:P-O-L Bone-LT-eMMC-2G,00A0,Texas Instrument,BB-BONE-EMMC-2G
 5: ff:P-O-L Bone-Black-HDMI,00A0,Texas Instrument,BB-BONELT-HDMI
 7: ff:P‐O‐L Override Board Name,00A0,Override Manuf,BB‐SPIDEV0

 If the overlay is loaded correctly into a slot, then there will now be two new
devices in /dev as follows, where spidev1.0 means chip select 0 on bus 1:

 molloyd@beaglebone:/lib/firmware$ cd /dev

 Chapter 8 ■ Interfacing to the BeagleBone Buses 295

 molloyd@beaglebone:/dev$ ls sp*
 spidev1.0 spidev1.1

 Testing the SPI Bus

 To test the SPI bus you can use a program called spidev_test.c that is avail-
able from www.kernel.org . However, the latest version at the time of writing
has added support for dual and quad data‐wire SPI transfers, which are not
supported on the BBB. An older version of this code has been placed in /chp08/
spi/spidev_test/ and can be built using the following:

∼/exploringbb/chp08/spi/spidev_test$ gcc spidev_test.c ‐o spidev_test

 Because the pins have been enabled in pull‐up mode, the output displayed
by the spidev_test program should be 0xFF when nothing is connected to the
bus and the test program is executed:

∼/exploringbb/chp08/spi/spidev_test$./spidev_test
 spi mode: 0
 bits per word: 8
 max speed: 500000 Hz (500 KHz)
 FF FF FF FF FF FF
 FF FF FF FF FF FF
 FF FF FF FF FF FF
 FF FF FF FF FF FF
 FF FF FF FF FF FF
 FF FF FF FF FF FF
 FF FF

 Connect the spi0_d1 (P9_18) and spi0_d0 (P9_21) header input/outputs together
so that the BBB MOSI is connected to the BBB MISO, as in Figure 8-4 (b). When
the test program is executed again, the output should be as follows:

∼/exploringbb/chp08/spi/spidev_test$./spidev_test
 spi mode: 0
 bits per word: 8
 max speed: 500000 Hz (500 KHz)
 FF FF FF FF FF FF
 40 00 00 00 00 95
 FF FF FF FF FF FF
 FF FF FF FF FF FF
 FF FF FF FF FF FF
 DE AD BE EF BA AD
 F0 0D

 This is the exact block of data that is defi ned in the tx[] array inside the
spidev_test.c code. Therefore, in this case, the block of data has been successfully

296 Part II6 ■ Interfacing, Controlling, and Communicating

transmitted from P9_18 (MOSI) and received by P9_21 (MISO). This program
can be executed on the second SPI bus as follows:

∼/exploringbb/chp08/spi/spidev_test$./spidev_test ‐D /dev/spidev2.0

 A First SPI Application (74HC595)

 The fi rst application to test the SPI bus is illustrated in Figure 8-5 . It uses a
74HC595, which is an eight‐bit shift register with latched outputs that can be
supplied at 3.3 V logic levels. The 74HC595 can typically be used at frequen-
cies of 20 MHz or greater, depending on the supply voltage VCCVV . The circuit in
Figure 8-5 uses an LED bar graph and a resistor network in order to minimize
the number of connections, but an equivalent circuit with individual LEDs and
resistors is just as functionally valid.

 Figure 8-5 : The 74HC595 SPI example

N O T E For a video on serial‐to‐parallel conversion that explains the concept of

output latching by comparing the 74HC164 to the 74HC595, see the chapter web page:

www.exploringbeaglebone.com/chapter8 .

 Wiring the 74HC595 Circuit

 The 74HC595 is connected to the BBB using three of the four SPI lines, as a MISO
response from the 74HC595 is not required (you could connect the MISO line
to Q H’ as a further test). The connections are as follows:

■ P9_22 SPI0_SCLK is connected to the Serial Clock input (pin 11) of the
74HC595. This line is used to synchronize the transfer of SPI data on the
MOSI line.

 Chapter 8 ■ Interfacing to the BeagleBone Buses 297

■ P9_18 SPI0_D1 is the MOSI line and is used to transfer the data from the
BBB to the 74HC595 Serial Input (pin 14). This will send one byte (eight
bits) at a time, which is the full capacity of the 74HC595.

 P9_17 SPI0_CS0 is the slave select line. This line is important, as it is used
to latch the data to the output of the 74HC595 when its state transitions from
low to high. As such, it is connected to the Register Clock input (pin 12) of the
74HC595. The LEDs on the bar graph will light according to the bytes that are
transferred. For example, sending 0xAA should light every second LED on the
bar graph if the setup is working correctly, as 0xAA = 101010102 . This circuit is
useful for controlling eight outputs using a single serial data line and it can be
extended further by daisy chaining 74HC595 ICs together. This is particularly
useful for driving arrays of seven‐segment displays, and is discussed in the
next chapter.

 Once the overlay is loaded, you can write directly to the device as follows
to light most of the LEDs (‐n suppresses the newline character, ‐e enables
escape character interpretation, and \x escapes the subsequent value as
hexadecimal):

 molloyd@beaglebone:/dev$ echo ‐ne "\xFF" > /dev/spidev1.0

 The following will turn most of the LEDs off:

 molloyd@beaglebone:/dev$ echo ‐ne "\x00" > /dev/spidev1.0

 However, this may not work exactly as expected, as the current SPI com-
munication mode does not align by default with the operation of the 74HC595,
as wired in Figure 8-5 . As a test, it is useful to confi rm that there is some level
of response from the circuit. The transfer mode issue is corrected within the
following code example.

 SPI Communication Using C

 A C program can be written to control the LED bar graph. Basic open() and
close() operations on the /dev/spidevX.Y devices work, but if you need to
alter the low‐level SPI transfer parameters, then a more sophisticated interface
is required.

 The following program uses the Linux user space SPI API, which supports
reading and writing to SPI slave devices. It is accessed using Linux ioctl()
requests, which support SPI through the sys/ioctl.h and linux/spi/spidev.h
header fi les. A full guide on the use of this API is available at www.kernel.org/
doc/Documentation/spi/ .

 The program in Listing 8‐5 will cycle the LEDs in the bar graph from 00000000
to 11111111 and output the count to a Linux terminal. The transfer() function
is the most important part of the code example.

298 Part II8 ■ Interfacing, Controlling, and Communicating

 LISTING 8‐5: /exploringbb/chp08/spi/spi595Example/spi595.c

 /** SPI C Transfer Example, Written by Derek Molloy (www.derekmolloy.ie)

 * for the book Exploring BeagleBone. Based on the spidev_test.c code

 * example at www.kernel.org */

 #include<stdio.h>

 #include<fcntl.h>

 #include<unistd.h>

 #include<sys/ioctl.h>

 #include<stdint.h>

 #include<linux/spi/spidev.h>

 #define SPI_PATH "/dev/spidev1.0"

 int transfer(int fd, unsigned char send[], unsigned char receive[], int length){

 struct spi_ioc_transfer transfer; // the transfer structure

 transfer.tx_buf = (unsigned long) send; // the buffer for sending data

 transfer.rx_buf = (unsigned long) receive; // the buffer for receiving data

 transfer.len = length; // the length of buffer

 transfer.speed_hz = 1000000; // the speed in Hz

 transfer.bits_per_word = 8; // bits per word

 transfer.delay_usecs = 0; // delay in us

 // send the SPI message (all of the above fields, inc. buffers)

 int status = ioctl(fd, SPI_IOC_MESSAGE(1), &transfer);

 if (status < 0) {

 perror("SPI: SPI_IOC_MESSAGE Failed");

 return -1;

 }

 return status;

 }

 int main(){

 unsigned int fd, i=0; // file handle and loop counter

 unsigned char value, null=0x00; // sending only a single char

 uint8_t bits = 8, mode = 3; // 8-bits per word, SPI mode 3

 uint32_t speed = 1000000; // Speed is 1 MHz

 // The following calls set up the SPI bus properties

 if ((fd = open(SPI_PATH, O_RDWR))<0){

 perror("SPI Error: Can't open device.");

 return -1;

 }

 if (ioctl(fd, SPI_IOC_WR_MODE, &mode)==-1){

 perror("SPI: Can't set SPI mode.");

 return -1;

 }

 if (ioctl(fd, SPI_IOC_RD_MODE, &mode)==-1){

 perror("SPI: Can't get SPI mode.");

 return -1;

 }

 if (ioctl(fd, SPI_IOC_WR_BITS_PER_WORD, &bits)==-1){

 perror("SPI: Can't set bits per word.");

 return -1;

 Chapter 8 ■ Interfacing to the BeagleBone Buses 299

 }

 if (ioctl(fd, SPI_IOC_RD_BITS_PER_WORD, &bits)==-1){

 perror("SPI: Can't get bits per word.");

 return -1;

 }

 if (ioctl(fd, SPI_IOC_WR_MAX_SPEED_HZ, &speed)==-1){

 perror("SPI: Can't set max speed HZ");

 return -1;

 }

 if (ioctl(fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed)==-1){

 perror("SPI: Can't get max speed HZ.");

 return -1;

 }

 // Check that the properties have been set

 printf("SPI Mode is: %d\n", mode);

 printf("SPI Bits is: %d\n", bits);

 printf("SPI Speed is: %d\n", speed);

 printf("Counting through all of the LEDs:\n");

 // Loop from 0 to 255 and light the LED bar as a binary counter

 for (i=0; i<255; i++)

 {

 // This function can send and receive data, but just sending here

 if (transfer(fd, (unsigned char*) &i, &null, 1)==-1){

 perror("Failed to update the display");

 return -1;

 }

 printf("%4d\r", i); // print the number on the same line

 fflush(stdout); // need to flush the output, as no \n

 usleep(100000); // sleep for 100ms each loop

 }

 close(fd); // close the file

 return 0;

 }

 The main() function sets the SPI control parameters. These are ioctl()
requests that allow you to override the device’s current settings for parameters
such as the following, where xx is both RD (read) and RW (write):

■ SPI_IOC_xx_MODE : The SPI transfer mode (0–3)

■ SPI_IOC_xx_BITS_PER_WORD : Number of bits in each word

■ SPI_IOC_xx_LSB_FIRST : 0 is MSB fi rst, 1 is LSB fi rst

■ SPI_IOC_xx_MAX_SPEED_HZ : Maximum transfer rate in Hz

 The current Linux implementation provides for synchronous trans-
fers only. When executed, this code will result in the following output,
where the count value continually increases on the one line of the terminal window:

 molloyd@beaglebone:∼/exploringbb/chp08/spi/spi595Example$./spi595
 SPI Mode is: 3
 SPI Bits is: 8

300 Part II0 ■ Interfacing, Controlling, and Communicating

 SPI Speed is: 1000000
 Counting through all of the LEDs:
 163

 At the same time, this code is sending signals to the 74HC595 as captured
using the SPI interpreter of the Analog Discovery in Figure 8-6 , when the count
is at 163 10 = 0xA3. At this point in time, the CS line is pulled low, while a clock
(SCLK) that is “high at idle” is toggled by the SPI master after a short delay. The
data is then sent on the SDIO line, MSB fi rst, to the 74HC595, and it is transferred
on the rising edge of the clock signal. This confi rms that the SPI transfer is tak-
ing place in mode 3, as described in Table 8-4 .

 Figure 8-6 : The 74HC595 SPI signal and output

 The total transfer takes less than 18μs. If the channel were held open, it would
be capable of transferring a maximum of 91 kB/s (727 kb/s) at 1 MHz, if there
were no delay between each byte transfer.

 Bidirectional SPI Communication in C++

 The 74HC595 example sent data from the BBB to the 74HC595, and as such is
a unidirectional communication example. It is possible to use the Q H, serial
output (pin 9) of the 74HC595 as a test example of bidirectional data transfer,
because when eight bits of data are shifted into the 74HC595, the previous eight
bits are shifted out through this output pin. The pin could then be connected
to the MISO input on the BBB. However, a more generally applicable example
of bidirectional communication that involves register addressing can be dem-
onstrated with the ADXL345 sensor.

 As discussed previously, the AXL345 has both an I 2 C and an SPI com-
munications interface. This makes it a useful device with which to examine
bidirectional SPI communication here, as the register structure has already
been discussed in detail. In addition, its use brings up some interesting soft-
ware design challenges. The second SPI bus is used in the following example,
so that it can be tested and so that the previous circuit can be temporarily
preserved.

 Chapter 8 ■ Interfacing to the BeagleBone Buses 301

N O T E For reference, the main guide for writing user space code for bidirectional

SPI communication under Linux is available at www.kernel.org/doc/

Documentation/spi/spidev .

 The Second SPI Bus (SPI1)

 The second SPI Bus, SPI1, can be enabled, but not if the HDMI interface is in use.
The HDMI overlay can be disabled using the steps described in Chapter 6 (see
“Removing an Overlay”). When the second overlay is loaded, the slots should
be populated as follows:

 molloyd@beaglebone:∼$ sudo sh ‐c "echo BB‐SPIDEV1 > $SLOTS"
 molloyd@beaglebone:∼$ cat $SLOTS
 ...
 4: ff:P-O-L Bone-LT-eMMC-2G,00A0,Texas Instrument,BB-BONE-EMMC-2G
 5: ff:P-O-– Bone-Black-HDMI,00A0,Texas Instrument,BB-BONELT-HDMI
 6: ff:P-O-– Bone-Black-HDMIN,00A0,Texas Instrument,BB-BONELT-HDMIN
 7: ff:P-O-L Override Board Name,00A0,Override Manuf,BB-SPIDEV1

 Once loaded, the SPI bus has the following confi guration:

■ Chip Select: P9_28 spi1_cs0 (Mode 3) $PINS 103 Offset 0x19C

■ MOSI: P9_30 spi1_d1 (Mode 3) $PINS 102 Offset 0x198

■ MISO: P9_29 spi1_d0 (Mode 3) $PINS 101 Offset 0x194

■ Clock: P9_31 spi1_sclk (Mode 3) $PINS 100 Offset 0x190

 Depending on the number of SPI overlays that you have loaded, the SPI1 device
will appear as either spidev1.0 and spidev1.1 or spidev2.0 and spidev2.1 .
With both SPI buses enabled, you should see the following:

 molloyd@beaglebone:/dev$ ls spi*
 spidev1.0 spidev1.1 spidev2.0 spidev2.1

 The ADXL345 SPI Interface

 SPI is not a formal standard with a standards body controlling its implementa-
tion, and therefore it is vital that you study the datasheet for the device that you
wish to attach to the BBB. In particular, the SPI communication timing diagram
should be studied in detail. This is presented for the ADXL345 in Figure 8-7 .

 Note the following very important points, which can be observed directly
from the datasheet:

■ To write to an address, the fi rst bit on the SDI line must be low. To read
from an address the fi rst bit on the SDI line must be high.

■ The second bit is called MB. From further analysis of the datasheet, this bit
enables multiple byte reading/writing of the registers (i.e., send the fi rst

302 Part II ■ Interfacing, Controlling, and Communicating

address and data will be continuously read from that register forward).
This leaves six bits in the fi rst byte for the address (2 6 = 64 10 = 4016), which
is suffi cient to cover the available registers.

■ As shown in the fi gure, the SCLK line is high at rest and data is transferred
on the rising edge of the clock signal. Therefore, the ADXL345 device must
be used in communications mode 3 (refer to Table 8-4).

■ When writing (top fi gure), the address (with a leading 0) is written to SDI,
followed by the byte value to be written to the address.

■ When reading (bottom fi gure), the address (with a leading 1) is written to
SDI. A second byte is written to SDI and will be ignored. While the second
(ignored) byte is being written to SDI, the response will be returned on
SDO detailing the value stored at the register address.

 Figure 8-7 : The ADXL345 SPI communication timing chart (from the ADXL345 datasheet)

 Underlying image is courtesy of Analog Devices, Inc.

 Connecting the ADXL345 to the BBB

 The ADXL345 breakout board can be connected to the SPI1 bus as illus-
trated in Figure 8-8 , where MOSI on the BBB is connected to SDI and MISO
is connected to SDO. The clock lines and the slave select lines are also
interconnected.

 Chapter 8 ■ Interfacing to the BeagleBone Buses 303

 Wrapping SPI Devices with C++ Classes

 A C++ class has also been written in order to wrap the software interface to the
SPI bus, using the OOP techniques that are described in Chapter 5 . Before dis-
cussing it, there is an interesting OOP design problem that needs to be solved. In
theory, if your OOP structure is designed properly then you should never need
to write the same code twice. This is desirable because copying and pasting code
will result in twice the amount of code, which will need to be debugged and
maintained. Earlier in this chapter a structure is presented whereby the class
ADXL345 is a child of the I2CDevice class. That is a reasonable design given the
information available at that point. However, because the ADXL345 also has an
SPI interface, it is necessary now to update the software structure. One possible
solution is illustrated in Figure 8-9 (a), which is presented in a pseudo‐UML form.

 Figure 8-8 : SPI1 Connection to the ADXL345

 Figure 8-9 : (a) Simple OOP structure (not recommended); (b) more appropriate OOP design

 Unfortunately, this structure involves copying and pasting code, as the same
code will have to be written in both the I2C_ADXL345 and the SPI_ADXL345
classes. As this code is implemented in C++, you could use some form of mul-
tiple inheritance, but you would have to build in function pointer switches,

304 Part II4 ■ Interfacing, Controlling, and Communicating

or explicitly indicate whether you are using the I2CDevice::readRegister()
method or the SPIDevice::readRegister() method.

 A different structure is presented in Figure 8-9 (b). In this design, a new abstract
class called BusDevice is created that describes, but does not implement, the
methods that are common to both I2 C and SPI devices (e.g., readRegister() or
writeRegister()). The actual implementation of these methods is provided
in the I2CDevice and SPIDevice child classes, respectively. The constructor
of the ADXL345 class now expects an object of BusDevice . However, because it
is an abstract class, you actually pass a pointer to an object of one of its child
classes (I2CDevice or SPIDevice). The ADXL345 class code now only needs to
be written in one location.

 One additional advantage of this structure is that if you were writing code
for different accelerometer types (e.g., the Bosch BMA180), then you could cre-
ate a new general class (e.g., Accelerometer) that would contain functionality
that is common to all accelerometer types, such as the numerical calculation of
pitch and roll values.

 This approach may seem overly complex, but the actual usage is very straight-
forward. For example, if you assume that two ADXL345 sensors are attached to
the BBB, one to the SPI bus and the second to the I2C bus, you can use the exact
same ADXL345 class to create two objects in the following way:

 int main() {
 SPIDevice spi(1,0);
 ADXL345 acc1(&spi);
 acc1.displayPitchAndRoll(100);

 I2CDevice i2c(1,0x53);
 ADXL345 acc2(&i2c);
 acc2.displayPitchAndRoll(100);
 }

 The classes for controlling I2 C and SPI devices have been added to the library
directory of the GitHub repository in the /library/bus/ directory, and partial
listings are provided in Listings 8‐6, 8‐7, and 8‐8.

 LISTING 8‐6: /library/bus/BusDevice.h (partial)

 class BusDevice {

 protected:

 unsigned int bus;

 unsigned int device;

 int file;

 public:

 BusDevice(unsigned int bus, unsigned int device);

 virtual int open()=0;

 virtual unsigned char readRegister(unsigned int registerAddress)=0;

 Chapter 8 ■ Interfacing to the BeagleBone Buses 305

 virtual unsigned char* readRegisters(unsigned int number,

unsigned int fromAddress=0)=0;

 virtual int write(unsigned char value)=0;

 virtual int writeRegister(unsigned int registerAddress,

unsigned char value)=0;

 virtual void debugDumpRegisters(unsigned int number = 0xff)=0;

 virtual void close()=0;

 virtual ∼BusDevice();
 };

 LISTING 8‐7: /library/bus/SPIDevice.h (partial)

 class SPIDevice:public BusDevice {

 public:

 /// The SPI Mode

 enum SPIMODE{

 MODE0 = 0, //!< Low at idle, capture on rising clock edge

 MODE1 = 1, //!< Low at idle, capture on falling clock edge

 MODE2 = 2, //!< High at idle, capture on falling clock edge

 MODE3 = 3 //!< High at idle, capture on rising clock edge

 };

 private:

 std::string filename;

 public:

 SPIDevice(unsigned int bus, unsigned int device);

 virtual int open();

 virtual unsigned char readRegister(unsigned int registerAddress);

 virtual unsigned char* readRegisters(unsigned int number,

unsigned int fromAddress=0);

 virtual int writeRegister(unsigned int registerAddress, unsigned char value);

 virtual void debugDumpRegisters(unsigned int number = 0xff);

 virtual int write(unsigned char value);

 virtual int setSpeed(uint32_t speed);

 virtual int setMode(SPIDevice::SPIMODE mode);

 virtual int setBitsPerWord(uint8_t bits);

 virtual void close();

 virtual ∼SPIDevice();
 private:

 virtual int transfer(unsigned char read[], unsigned char write[], int length);

 SPIMODE mode;

 uint8_t bits;

 uint32_t speed;

 uint16_t delay;

 };

 LISTING 8‐8: /library/sensor/ADXL345.h (partial)

 class ADXL345{

 public:

 /// An enumeration to define the gravity range of the sensor
continues

306 Part II6 ■ Interfacing, Controlling, and Communicating

LISTING 8‐8: (continued)

 enum RANGE {

 PLUSMINUS_2_G = 0,//!< plus/minus 2g

 PLUSMINUS_4_G = 1,//!< plus/minus 4g

 PLUSMINUS_8_G = 2,//!< plus/minus 8g

 PLUSMINUS_16_G = 3 //!< plus/minus 16g

 };

 /// The resolution of the sensor. High is only available in +/- 16g range.

 enum RESOLUTION {

 NORMAL = 0,//!< NORMAL 10-bit resolution

 HIGH = 1 //!< HIGH 13-bit resolution

 };

 private:

 BusDevice *device;

 unsigned char *registers;

 ADXL345::RANGE range;

 ADXL345::RESOLUTION resolution;

 short accelerationX, accelerationY, accelerationZ;

 float pitch, roll; // in degrees

 short combineRegisters(unsigned char msb, unsigned char lsb);

 void calculatePitchAndRoll();

 virtual int updateRegisters();

 public:

 ADXL345(BusDevice *busDevice);

 virtual int readSensorState();

 virtual void setRange(ADXL345::RANGE range);

 virtual ADXL345::RANGE getRange() { return this->range; }

 virtual void setResolution(ADXL345::RESOLUTION resolution);

 virtual ADXL345::RESOLUTION getResolution() { return this->resolution; }

 virtual short getAccelerationX() { return accelerationX; }

 virtual short getAccelerationY() { return accelerationY; }

 virtual short getAccelerationZ() { return accelerationZ; }

 virtual float getPitch() { return pitch; }

 virtual float getRoll() { return roll; }

 virtual void displayPitchAndRoll(int iterations = 600);

 virtual ∼ADXL345();
 };

 The SPI class in Listing 8‐7 can also be used in a standalone form. For example,
to read and write from the ADXL345 device without using a specifi c accelerom-
eter child class, the following code structure can be used:

 int main() {
 SPIDevice spi(1,0); // chip select 0 on bus 1
 spi.setSpeed(1000000); // set the speed to 1 MHz
 cout << "The device ID is: " << (int) spi.readRegister(0x00) << endl;
 spi.setMode(SPIDevice::MODE3); // set the mode to Mode3
 spi.writeRegister(0x2D, 0x08); // POWER_CTL for the ADXL345
 spi.debugDumpRegisters(0x40); // Dump the 64 registers from 0x00
 }

 Chapter 8 ■ Interfacing to the BeagleBone Buses 307

 This will give the following output when built and executed (0xE5 =
22910):

 molloyd@beaglebone:∼$./SPITest
 The device ID is: 229
 SPI Mode: 3
 Bits per word: 8
 Max speed: 1000000
 Dumping Registers for Debug Purposes:
 e5 00 00 00 00 00 00 00 00 00 00 00 00 00 00 4a
 82 00 30 00 00 01 ff 3a 00 00 00 6c 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 0a 08 00 00
 02 00 05 00 fd ff e9 00 00 00 00 00 00 00 00 00

 Once again, a logic analyzer is very useful for debugging problems that
can occur with SPI bus communication. For example, Figure 8-10 captures
a read operation at address 0x00. You may notice that the value that was
sent was 0x80 and not 0x00. This is because (as detailed in Figure 8-7), the
leading bit must be a 1 to read and a 0 to write from/to an address. Sending
0x00 is a write request to address 0x00 (which is not possible), and sending
0x80 (i.e., 1 0000000 + 00 000000) is a request to read the value at address0
0x00. The second bit is 0 in both cases, thus disabling multiple‐byte read
functionality.

 Figure 8-10 : Reading the 0x00 register on the ADXL345 using SPI

 Three‐Wire SPI Communication

 The ADXL345 supports three‐wire SPI (I half duplex). In this mode the data is readxx
and transmitted on the same SDIO line. To enable this mode on the ADXL345,
the value 0x40 must be written to the 0x31 (DATA_FORMAT) register and a 10 kΩ
resistor should be placed between SD0 and VCCVV on the ADXL345. Figure 8-11
illustrates the communication that should take place.

308 Part II8 ■ Interfacing, Controlling, and Communicating

 Figure 8-11 : ADXL345 three‐wire SPI communication

 Image courtesy of Analog Devices, Inc.

 There is a draft project in place in the chp08/spi/spiADXL345/3‐wire direc-
tory that contains a device tree overlay, which sets the spi‐3wire property on
the SPI bus fragment. Unfortunately, at the time of writing, there is no support
for this mode in the current BBB Linux distribution.

 Multiple SPI Slave Devices on the BBB

 One of the advantages of the SPI bus is that it can be shared with multiple slave
devices, provided that only one slave device is active when communication takes s
place. On most microcontrollers, GPIO pins can be used as slave selection pins,
and a similar structure can be developed for the BBB. If you wish to allow the
Linux SPI interface library code to retain control of the slave selection function-
ality, then a wiring confi guration like that in Figure 8-12 could be used. This
confi guration uses OR gates and an inverter to ensure that only one CS input
is pulled low at a single time. In Figure 8-12 (a), the ADXL345 slave device is
active when CS = 0 and GPIO = 0, and in Figure 8-12 (b), the second slave device
is active when CS = 0 and GPIO = 1.

 Figure 8-12 : BBB control of more than one slave device using GPIO pins and additional logic

 Depending on the particular slave devices being used, the GPIO output
combined with a single inverter may be suffi cient, as you could “permanently”
pull the CS— line low on the slave device, ignoring the CS output of the master.

 Chapter 8 ■ Interfacing to the BeagleBone Buses 309

However, this would not work for the 74HC595 example, as the BBB’s CS line is
used to latch the data to the output LEDs.

 For more than two slave devices, a 3‐to‐8 line decoder, such as the 74HC138,
would be a good solution. It has inverted outputs, which means that only one of its
eight outputs is low at a single point in time. This device could be controlled using
three of the BBB’s GPIOs and it could enable one of eight slave devices (2 3 = 8). There
are also 4‐to‐16 line decoders with inverting outputs, such as the 74HC4515, which
would enable you to control 16 slave devices with only four GPIOs (2 422 = 16). For both
of these devices, the BBB CS output could be connected to their E– enable input(s).

 UART

 A universal asynchronous receiver/transmitter (UART) is a microprocessor periph-
eral device used for the serial transfer of data, one bit at a time, between two
electronic devices. UARTs were originally standalone ICs, but now are often
integrated with the host microprocessor/microcontroller. A UART is not, strictly
speaking, a bus, but its capacity to implement serial data communications over-
laps with similar capacities of the I2C and SPI buses described earlier. A UART
is described as asynchronous because the sender does not have to send a clock
signal to the recipient in order to synchronize the transmission, rather a com-
munication structure is agreed upon that uses start and stop bits to synchronize
the transmission of data. Because no clock is required, the data is typically sent
using only two signal lines. Just like a regular telephone line, the transmit data
connection (TXD) from one end is connected to the D receive data connection (RXD(()D
on the other end of the connection, and vice versa.

 Traditionally, UARTs have been used with level converters/line drivers to
implement interfaces such as RS‐232 or RS‐485, but for short‐distance commu-
nications, it is possible to use the original logic level for the UART outputs and
inputs to enable two UARTs to communicate with each other. Note that this is
a perfectly possible but nonstandardized use of UARTS.

 The number of symbols per second is known as the baud rate or modulation
rate. With certain encoding schemes a symbol could be used to represent two bits
(i.e., four states, for example, by using quadrature phase‐shift keying (QPSK)).
Then the bit rate would be twice the baud rate. However, for a simple bi‐level
UART connection, the baud rate is the same as the bit rate.

 The transmitter and receiver agree upon a bit rate before communication
begins. The byte rate is somewhat lower than 1/8 of the bit rate, as there are over-
head bits associated with the serial transmission of data. Transmission begins
when the transmitter sends a start bit (logic low), as shown in Figure 8-13 . On
the receiver’s end, the falling edge of the start bit is detected and then after 1.5
bit periods, the fi rst bit value is sampled. Every subsequent bit is sampled after
1.0 bit periods, until the agreed upon number of bits is transferred (typically

310 Part II0 ■ Interfacing, Controlling, and Communicating

seven or eight). The parity bit is optional (though both devices must be confi gured
to either use it or not); if used, it can identify whether a transmission error has
occurred. It would be high or low, depending on whether odd or even parity
checking is employed. Finally, one stop bit is sent (or optionally two stop bits),
which is always a logic high value. The examples that follow in this section all
use a standard 8N1 form, which means that eight bits are sent in each frame,
with no parity bits and one stop bit.

 Figure 8-13 : UART transmission format for a one‐byte transfer

W A R N I N G Again, it is important that you do not connect a 5V UART device to

the UART RXD input of the BBB or you will damage the BBB. A solution to this problem

is provided at the end of the chapter.

 UARTs on the BBB

 The BBB has four UARTs that are accessible via its P8 and P9 headers at the pin
locations listed in Table 8-5 .

Table 8-5 : BBB UART Header Pins (mux mode in brackets)

UART1 UART2 UART3 UART4 UART5

TXD P9_24 (0) P9_21 (1) Not exposed P9_13 (6) P8_37 (4)

RXD P9_26 (0) P9_22 (1) Not exposed P9_11 (6) P8_38 (4)

 For the following example, the BBB’s UART4 is used. As detailed in Table 8-5 ,
the pins for UART4 are as follows:

■ P9_13 UART4_TXD: Output that transmits data to a receiver

■ P9_11 UART4_RXD: Input that receives data from a transmitter

 The fi rst test is to connect these two pins together as in Figure 8-14 (a), so that
the BBB UART4 is literally “talking to itself.” Once the wiring is complete, the
UART4 overlay is loaded in order to enable the UART, as otherwise there will
be no accessible terminal device present:

 molloyd@beaglebone:/lib/firmware$ ls *UART*
 ADAFRUIT-UART1-00A0.dtbo BB-UART1-00A0.dtbo BB-UART4-RTSCTS-00A0.dtbo

 Chapter 8 ■ Interfacing to the BeagleBone Buses 311

 ADAFRUIT-UART2-00A0.dtbo BB-UART2-00A0.dtbo BB-UART5-00A0.dtbo
 ADAFRUIT-UART4-00A0.dtbo BB-UART2-RTSCTS-00A0.dtbo
 ADAFRUIT-UART5-00A0.dtbo BB-UART4-00A0.dtbo
 molloyd@beaglebone:/lib/firmware$ sudo su ‐c "echo BB‐UART4 > $SLOTS"
 molloyd@beaglebone:/lib/firmware$ cat $SLOTS
 ...
 8: ff:P-O-L Override Board Name,00A0,Override Manuf,BB-UART4

 Figure 8-14 : (a) Loopback testing the UART; (b) configuring the minicom program settings

 When the overlay is loaded, the contents of the /dev directory now includes a
new entry for ttyO4 (letter O, not zero). This is the “teletype” (terminal) device,
which is a software interface that enables you to send and receive data on the
UART. First, check the available terminal devices:

 molloyd@beaglebone:/lib/firmware$ cd /dev
 molloyd@beaglebone:/dev$ ls ttyO*
 ttyO0 ttyO4

N O T E The fi rst human‐computer interface was the teletypewriter, also known as

the teletype or TTY, an electromechanical typewriter that can be used to send and

receive messages. This terminology is still in use today!

 To test the device, you can use the agetty (a((lternative getty) command or theyy
minicom terminal emulator, both of which enable you to send and receive data
on the ttyO4 device. The minicom program enables you to dynamically change
the serial settings while it is executing (e.g., number of bits in a frame, number
of stop bits, parity settings) by typing Ctrl+A followed by Z. Install and execute
minicom using the following commands:

 molloyd@beaglebone:∼$ sudo apt‐get install minicom
 ...
 molloyd@beaglebone:∼$ minicom ‐b 9200 ‐o ‐D /dev/ttyO4

 Welcome to minicom 2.6.1
 OPTIONS: I18n

312 Part II ■ Interfacing, Controlling, and Communicating

 Compiled on Feb 11 2012, 18:45:56.
 Port /dev/ttyO4
 Press CTRL-A Z for help on special keys

 At this point you should type Ctrl+A followed by Z and then E to turn on
local Echo. Now when you press a key, you should see the following impact
when you type:

tteessttiinngg 112233

 Whichever key you press is transmitted from the TXD output, and is also
echoed on the console. When the character is received on the RXD input,
it is then displayed on the console. Therefore, if you can see the characters
appearing twice for the keys that you are pressing, then the simple UART
test is working correctly. You can verify this by briefl y disconnecting one
end of the TXD‐RXD loopback wire, whereupon the key presses will only
appear once.

 The Arduino UART Example

 The Arduino (www.arduino.cc(() is a popular, low‐cost, and powerful microcon-
troller that can be a very useful companion controller for the BBB. The Arduino
platform was designed as an introductory platform for embedded systems. It
is programmed using the Arduino programming language, in the Arduino
development environment, which are both designed to be as user‐friendly as
possible. An in‐depth study of the Arduino is beyond the scope of this book,
but it is a very suitable platform with which to test the UART functionality of
the BBB. It can also be used to develop a fi rst framework for BBB applications
that distribute workload to other embedded systems while still maintaining
high‐level control.

N O T E There are some videos on getting started with the Arduino on the web page

associated with this chapter: www.exploringbeaglebone.com/chapter8 .

 In addition, there is a comprehensive book on the Arduino available in this Wiley mini‐

series, called Exploring Arduino , by Jeremy Blum. Please see www.exploringarduino

.com for more details.

 The Arduino is available in many different forms. However, an open‐hardware
3.3 V Arduino Pro Mini is chosen for this task for three reasons:

■ The voltage levels are consistent with the BBB, which simplifi es commu-
nication, as no logic‐level translation circuitry is required.

■ It is a low‐cost, open‐hardware device (less than $10) that is only 1.3"×
0.7" (33 mm × 18 mm) in size.

 Chapter 8 ■ Interfacing to the BeagleBone Buses 313

■ There is no USB input on the board (reducing size and cost), but it can
be programmed using the same USB‐to‐Serial UART TTL 3.3 V cable
discussed in Chapter 1 .

 Figure 8-15 illustrates the programming environment for the Arduino, and
the program that is displayed can be used to test that the UART connection to
the Arduino is working correctly. The code is available in the GitHub repository
in /chp08/uart/arduino/BBBSerialEcho.ino . The Arduino platform uses the
Arduino’s RXD and TXD pins to program the Arduino microcontroller, so a lot
of spurious data is transmitted on these lines while it is being programmed.

 The setup() function is called once when the program is started. It confi gures
the serial port to use 9,600 baud with the 8N1 format. It also sets up an on‐board
LED to be an output, in order to visually indicate interaction.

N O T E It is very important that you choose the correct Arduino board in the Tools

menu, especially when using the Pro Mini board. If the incorrect board is chosen, the

code may compile and upload correctly to the board, but the serial communication

channel may appear corrupt.

 The loop() function will repeat as fast as it possibly can. In this case, it waits
until serial data is available on the RXD pin. When it is, the LED is turned on,

 Figure 8-15 : The Arduino platform

314 Part II4 ■ Interfacing, Controlling, and Communicating

and a character is read in from the RXD pin. The character is then written to the
TXD pin. The program sleeps for 100 ms to ensure that the LED fl ash is visible,
before it is turned off again. The program then loops in preparation for the next
character to be received on the RXD pin.

 The Serial Monitor window can be opened in the Arduino development envi-
ronment by pressing the button in the top right‐hand corner. Choose the baud
rate that corresponds to that in the program code. When a string is entered in
the text fi eld and the Send button is pressed, the string is sent to the Arduino
and the response should display in the text area.

 Once you are certain that the Arduino program is working correctly, it is an
ideal platform with which to test the BBB UART functionality.

 BeagleBone to Arduino Serial Communication

 The Arduino Pro Mini 3.3 V is used to test the UART communication capa-
bility of the BBB, fi rst by using the minicom program and then by writing
a C program to echo information to/from the Arduino. In the next section
this is further developed to create a serial client/server command control
framework.

W A R N I N G The Arduino Pro is used because it is a 3.3V version of the Arduino

and can be connected directly to the BBB. Do not connect a 5t V Arduino to the BBB

using the UART connection or you will damage your BBB. If you have to connect a 5V

device, a solution is presented at the end of this chapter.

 Echoing the Minicom Program

 The Arduino code from the last section has been modified slightly to
increase the baud rate and remove the LED flash function, as shown in
Listing 8‐9.

 LISTING 8‐9: /exploringbb/chp08/uart/uartEchoC/BBBSerialEcho.ino

 // This function is called once when the program starts.

 void setup() {

 // Choose a baud rate and configuration. 115200

 // Default is 8-bit with No parity and 1 stop bit

 Serial.begin(115200, SERIAL_8N1);

 }

 // This function will loop as quickly as possible, forever.

 void loop() {

 byte charIn;

 if(Serial.available()){ // A byte has been received

 charIn = Serial.read(); // Read the character in from the BBB

 Chapter 8 ■ Interfacing to the BeagleBone Buses 315

 Serial.write(charIn); // Send the character back to the BBB

 }

 }

 This program should be uploaded to the Arduino, where it will then execute,
awaiting communication on its RXD pin. The next step is to connect the Arduino
as illustrated in Figure 8-16 , ensuring that the TXD pin on the BBB is connected
to the RXD pin on the Arduino and that the RXD pin on the BBB is connected
to the TXD pin on the Arduino.

 When you are modifying the Arduino source code and uploading it to the
Arduino, you should disconnect the UART connection to the BBB each time,
before connecting the USB‐to‐Serial UART TTL 3.3 V cable. Otherwise, the pro-
cess of programming the Arduino will likely fail.

 Once the Arduino is attached to the BBB, the next step is to open the minicom
program and test the connection. The baud rate is set at 115,200 in the Arduino
code, so the same setting must be passed to the minicom command. If the con-
nection is displaying incorrect data, then reduce the baud rate to a lower rate,
such as 57,600, 38,400, 19,200, or 9,600:

 molloyd@beaglebone:∼$ minicom ‐b 115200 ‐o ‐D /dev/ttyO4
 Welcome to minicom 2.6.1
 OPTIONS: I18n
 Compiled on Feb 11 2012, 18:45:56.
 Port /dev/ttyO4
 Press CTRL-A Z for help on special keys

This string is being sent character by character to the Arduino

 The Analog Discovery has an interpreter that can be used for analyzing
serial data communication. The logic analyzer can be connected in parallel to

 Figure 8-16 : UART communication between the BBB and the Arduino Pro Mini 3.3V

316 Part II6 ■ Interfacing, Controlling, and Communicating

the TXD and RXD lines in order to analyze the transfer of data from the BBB
to the Arduino. An example of the resulting signals is displayed in Figure 8-17
when only the letter “A” is being transmitted. The start and stop bits can be
observed, along with the eight‐bit data as it is sent, LSB fi rst, from the BBB to
the Arduino, at a sample bit‐period of 8.7μs.

 Figure 8-17 : Analysis of the UART communication between the BBB and the Arduino Pro Mini 3.3 V

 At a baud rate of 115,200, the effective byte rate will be somewhat lower, due to
the overhead of transmitting start, stop, and parity bits. The Arduino response
delay is the time it takes for the Arduino to read the character from its RXD
input and transmit it back to its TXD output.

 UART Echo Example in C

 The next step is to write C code on the BBB that can communicate with the
Arduino program. The Arduino code has been adapted slightly to reduce the
baud rate to 9,600 in order ensure that signaling noise does not affect the data
transfer, effectively isolating problems to the program code. All code is available
in the /chp08/uart/uartEchoC GitHub repository directory.

 The C program available in Listing 8‐10 sends a string to the Arduino and
reads the responding echo. It uses the Linux termios library, which provides
a general terminal interface that can control asynchronous communication
ports.

 LISTING 8‐10: exploringbb/chp08/uart/uartEchoC/BBBEcho.c

 #include<stdio.h>

 #include<fcntl.h>

 #include<unistd.h>

 #include<termios.h> // using the termios.h library

 int main(){

 int file, count;

 Chapter 8 ■ Interfacing to the BeagleBone Buses 317

 if ((file = open("/dev/ttyO4", O_RDWR | O_NOCTTY | O_NDELAY))<0){

 perror("UART: Failed to open the file.\n");

 return -1;

 }

 struct termios options; // the termios structure is vital

 tcgetattr(file, &options); // sets the parameters associated with file

 // Set up the communications options:

 // 9600 baud, 8-bit, enable receiver, no modem control lines

 options.c_cflag = B9600 | CS8 | CREAD | CLOCAL;

 options.c_iflag = IGNPAR | ICRNL; // ignore partity errors, CR -> newline

 tcflush(file, TCIFLUSH); // discard file information not transmitted

 tcsetattr(file, TCSANOW, &options); // changes occur immmediately

 unsigned char transmit[18] = "Hello BeagleBone!"; // the string to send

 if ((count = write(file, &transmit,18))<0){ // send the string

 perror("Failed to write to the output\n");

 return -1;

 }

 usleep(100000); // give the Arduino a chance to respond

 unsigned char receive[100]; // declare a buffer for receiving data

 if ((count = read(file, (void*)receive, 100))<0){ // receive the data

 perror("Failed to read from the input\n");

 return -1;

 }

 if (count==0) printf("There was no data available to read!\n");

 else {

 printf("The following was read in [%d]: %s\n",count,receive);

 }

 close(file);

 return 0;

 }

 This code uses the termios structure, setting fl ags to defi ne the type of com-
munication that should take place. The termios structure has the following
members:

■ tcflag_t c_iflag : Sets the input modes

■ tcflag_t c_oflag : Sets the output modes

■ cflag_t c_cflag : Sets the control modes

■ tcflag_t c_lflag : Sets the local modes

■ cc_t c_cc[NCCS] : For special characters

 A full description of the termios functionality and fl ag settings is available
by typing man termios at the BBB console. The code in this section can be
modifi ed to create the following very useful BBB application.

318 Part II8 ■ Interfacing, Controlling, and Communicating

 UART Command Control of an Arduino

 One method of overcoming the real‐time limitations of the BBB discussed in
Chapter 1 is to outsource some of its workload to other embedded controllers,
such as those provided by the Arduino, PIC, and Stellaris platforms. These
embedded microcontrollers share common communication interfaces with
the BBB that could be used for this task, including SPI, I2 C, and the use of
GPIO bit‐banging (manual serial communication using a GPIO by toggling its
state in a user‐defi ned way). However, using a UART connection is probably
the most straightforward, and it has the additional advantage that there can
be some degree of physical distance between the two controllers. Table 8-6
lists some advantages and disadvantages of using a UART in comparison to
using I 2C or SPI.

Table 8-6 : Advantages and Disadvantages of UART Communication

ADVANTAGES DISADVANTAGES

Simple, single‐wire transmission and
single‐wire reception of data with error
checking.

The typical maximum data rate is low
compared to SPI (typically 460.8 kb/sec).

Easy interface for interconnecting
embedded devices and desktop computers,
etc., especially when that communication
is external to the device and/or over a
signifi cant distance—some tens of feet. I2 C
and SPI are not suited for external/distance
communication.

Because it is asynchronous, the clock on
both devices must be accurate, particularly
at higher baud rates. You should investigate
CAN bus for high‐speed external
asynchronous data transfer.

Can be directly interfaced to popular
RS‐232 physical interfaces, enabling long‐
distance communication (15 meters or
greater). The longer the cable, the lower
the speed. RS‐422/485 allows for 100‐meter
runs at greater than 1 Mb/s.

UART settings need to be known in
advance of the transfer, such as the baud
rate, data size and parity checking type.

 The Arduino code in Listing 8‐9 has been adapted as shown in Listing 8‐11.
The code is designed to expect two string commands, either “on” or “off.”
If the program receives the “on” command on its RXD input, it will light
the on‐board LED and respond on its TXD output with the response “LED
On.” Similarly for the “off” command, it will turn the LED off and send the
response “LED off.” If the command string is not recognized, it will simply
echo the command string back to the sender. This program will continue to
run on the Arduino forever.

 Chapter 8 ■ Interfacing to the BeagleBone Buses 319

 LISTING 8‐11: /exploringbb/chp08/uart/uartC/ BBBSerialCommand.ino

 /* Arduino Serial Command Program - Derek Molloy (www.derekmolloy.ie)

 * for the book Exploring BeagleBone */

 // There is an on-board LED attached to Pin 13

 int ledPin=13;

 void setup() {

 // Baud of 57600 works fine over short distances (twist cables)

 Serial.begin(57600, SERIAL_8N1);

 // The ledPin is and output pin

 pinMode(ledPin, OUTPUT);

 }

 // This function will loop forever.

 void loop() {

 String command, inChar;

 if (Serial.available()>0){ // A byte has been received

 command = Serial.readStringUntil('\0'); // String terminated by /0

 if(command=="on"){ // Turn on the on-board LED

 digitalWrite(ledPin, HIGH);

 Serial.print("LED On");

 }

 else if (command=="off") { // Turn off the on-board LED

 digitalWrite(ledPin, LOW);

 Serial.print("LED Off");

 }

 else { // Otherwise return string passed

 Serial.print(command);

 }

 }

 }

 The C program that is presented in Listing 8‐12 sends the command‐line
argument, which is passed to the executable program over the UART connection
to the Arduino at run time. It follows the same syntax as the echo example in
the previous section, with the exception that the baud rate has been increased
to 57,600 in both the C and Arduino program code.

 LISTING 8‐12: /exploringbb/chp08/uart/uartC/ uart.c

 /* Simple send and receive C example for communicating with the

 * Arduino echo program using UART4. Written by Derek Molloy

 * (www.derekmolloy.ie) for the book Exploring BeagleBone. */

 #include<stdio.h>

 #include<fcntl.h>

continues

320 Part II0 ■ Interfacing, Controlling, and Communicating

LISTING 8‐12: (continued)

 #include<unistd.h>

 #include<termios.h>

 #include<string.h>

 int main(int argc, char *argv[]){

 int file, count;

 if(argc!=2){

 printf("Invalid number of arguments, exiting!\n");

 return -2;

 }

 if ((file = open("/dev/ttyO4", O_RDWR | O_NOCTTY | O_NDELAY))<0){

 perror("UART: Failed to open the file.\n");

 return -1;

 }

 struct termios options;

 tcgetattr(file, &options);

 options.c_cflag = B57600 | CS8 | CREAD | CLOCAL;

 options.c_iflag = IGNPAR | ICRNL;

 tcflush(file, TCIFLUSH);

 tcsetattr(file, TCSANOW, &options);

 // send the string plus the null character

 if ((count = write(file, argv[1], strlen(argv[1])+1))<0){

 perror("Failed to write to the output\n");

 return -1;

 }

 usleep(100000);

 unsigned char receive[100];

 if ((count = read(file, (void*)receive, 100))<0){

 perror("Failed to read from the input\n");

 return -1;

 }

 if (count==0) printf("There was no data available to read!\n");

 else {

 receive[count]=0; //There is no null character sent by the Arduino

 printf("The following was read in [%d]: %s\n",count,receive);

 }

 close(file);

 return 0;

 }

 When the code is executed, it will give the following output, with the LED
on the Arduino turning on and off as expected:

 molloyd@beaglebone:∼/exploringbb/chp08/uart/uartC$./uart on
 The following was read in [6]: LED On
 molloyd@beaglebone:∼/exploringbb/chp08/uart/uartC$./uart off
 The following was read in [7]: LED Off
 molloyd@beaglebone:∼/exploringbb/chp08/uart/uartC$./uart HelloArduino
 The following was read in [12]: HelloArduino

 Chapter 8 ■ Interfacing to the BeagleBone Buses 321

 The transfer of data can be observed in Figure 8-18 . The response time of the
Arduino is less than the time taken to transfer the command and respond at
57,600 baud.

 Figure 8-18 : Sending the command “On\0” to the Arduino and receiving the response string
“LED On”

 The performance of the code could be improved by defi ning a list of single‐
byte commands and responses, in order to minimize data transfer time. In
addition, it is worth mentioning that the multi‐call binary example discussed
in Chapter 5 could be adapted to create single‐word Linux commands on the
BBB that would execute directly on the Arduino.

 This framework could be used to create a simple distributed embedded con-
troller platform. An alternative would be to use the CAN bus controllers that
are available on‐board the BBB and through third‐party capes. In Chapter 10 ,
a network‐socket based framework is also introduced. It is a very powerful
framework for interconnecting high‐level embedded computing platforms
through the use of their networking interfaces.

 Logic‐Level Translation

 As noted throughout this chapter, it is important that you are cognizant of the
voltage levels used in communicating with the BBB. If you connect a device that
uses 5 V logic levels, then when the device is sending a high state to the BBB, it
will apply a voltage of 5 V to the BBB’s input pins. This would likely permanently
damage the BBB. Many embedded systems have overvoltage‐tolerant inputs,
but the BBB does not. Therefore, logic‐level translation circuitry is required if you
wish to connect the buses to 5 V or 1.8 V logic‐level circuits.

 For unidirectional data buses , like four‐wire SPI, logic‐level translation can be
achieved using a combination of diodes (using their ∼0.6 V forward‐voltage drop
characteristic) combined with resistors, or transistors. However, bidirectional data
buses like the I2 C bus are more complex because the level must be translated in
both directions on a single line. This requires circuits that use devices such as

322 Part II ■ Interfacing, Controlling, and Communicating

N‐channel MOSFETs (e.g., the BSS138). They are available in surface‐mounted
packages and, unfortunately, there are very few through‐hole alternatives.
Fortunately, this is a common problem and there are straightforward unidi-
rectional and bidirectional breakout board solutions available from several
suppliers, including the following:

■ Sparkfun Logic Level Converter Bi‐directional (BOB‐12009), which uses
the BSS138 MOSFET (∼$3)

■ Adafruit Four‐channel Bi‐directional Level Shifter (ID:757), which uses
the BSS138 MOSFET (1.8 V to 10 V shifting)(∼$4)

■ Adafruit Eight‐channel Bi‐directional Logic‐level Converter (ID:395), which
uses the TI TXB0108 voltage‐level translator that auto senses direction
(1.2 to 3.6 V or 1.65 to 5.5 V translation), but it does not work well with
I2 C due to the pull‐up resistors required (∼$8). However, it can switch at
frequencies greater than 10 MHz.

■ Watterott Four‐channel Level Shifter (20110451), which uses the BSS138
MOSFET (∼(($3)

 Some of these products are displayed in Figure 8-19 . With the exception of
the Adafruit eight‐channel converter, they all use BSS138 MOSFETs. A small
test was performed to check the switching frequency of these devices, as dis-
played in Figure 8-20 , and it is clear from the oscilloscope traces that there are
data‐switching performance limitations when using these devices.

 Figure 8-19 : Adafruit four‐channel, Adafruit eight‐channel, and Watterott four‐channel logic‐
level translators

 The logic‐level translation boards solve the problem that is mentioned several
times during this chapter, as a traditional 5 V Arduino can now be connected

 Chapter 8 ■ Interfacing to the BeagleBone Buses 323

to the BBB for UART communication using the circuit that is illustrated in
Figure 8-21 . The BBB 3.3 V supply, TXD, and RXD pins are connected to the Lv , v
1 , and 2 connections, respectively, on the logic‐level translator board. On the
other side of the logic‐level translator, the Arduino 5 V supply, RXD, and TXD
pins are connected to the Hv , v 1, and 2 connection pins, respectively. The grounds
of the BBB and Arduino are also tied together.

 Figure 8-20 : Switching BSS138‐based translators from 3.3 V to 5 V logic levels at 50 kHz, 200 kHz,
and 1 MHz

 Figure 8-21 : Connecting a 5 V Arduino UART to the BBB UART using a logic‐level converter

 The application that is used to provide UART command control of the
Arduino now works with this 5 V Arduino. For further information on logic‐
level shifting techniques in I 2 C‐bus design, see the application notes from
NXP (AN97055), which is linked on the chapter web page and also available
at tiny.cc/ebb806 .

324 Part II4 ■ Interfacing, Controlling, and Communicating

 Summary

 After completing this chapter, you should be able to do the following:

■ Describe the most commonly used buses or interfaces that are available
on the BBB, and choose the correct bus to use for your application.

■ Confi gure the BBB to enable I 2 C, SPI, and UART capabilities.

■ Attach circuits to the BBB that interface to its I 2 C bus, and use the Linux
I2C‐Tools to communicate with those circuits.

■ Build circuits that interface to the SPI bus using shift registers, and write
C code that controls low‐level SPI communication.

■ Write C code that interfaces to, and C++ code that “wraps” the functional-
ity of devices attached to the I2 C and SPI buses.

■ Communicate between UART devices using both Linux tools and custom
C code.

■ Build a basic distributed system that uses UART connections to the Arduino
microcontroller to “outsource” workload.

■ Add logic‐level translation circuitry to your circuits in order to commu-
nicate between devices with different logic‐level voltages.

 Further Reading

 Documents and links for further reading have been listed throughout this
chapter, but here are some further reference documents:

■ The I 2II C Manual , Jean‐Marc Irazabal and Steve Blozis, Philips Semiconductors,
TecForum at DesignCon 2003 in San Jose, CA, on January 27, 2003, at
tiny.cc/ebb805 .

■ The Linux I 2II C Subsystem , at i2c.wiki.kernel.org .

■ Serial Programming Guide for POSIX Operating Systems , 5th ed., Michael R.
Sweet, 1994‐99, at tiny.cc/ebb803 .

■ Serial Programming HOWTO , Gary Frerking, Revision 1.01, at O tiny.cc/

ebb804 .

Note

 1. In 2012 NXP released Ultra Fast‐Mode (UfM) I2C, which offers a 5 MHz mode.
However, it is quite different from other I2C modes as it is unidirectional and
there is only a single master. It is currently not widely adopted.

325

 In this chapter you can learn how to build on your knowledge of GPIO and bus
interfacing. In particular, you can combine hardware and software in order to
provide the BBB with the ability to interact with its physical environment in the
following three ways: First, by controlling actuators such as motors, the BBB can
affect its environment, which is very important for applications such as robotics
and home automation. Second, the BBB can gather information about its physical
environment by communicating with sensors. Third, by interfacing to display
modules, the BBB can present information. This chapter explains how each of
these interactions can be performed. Physical interaction hardware and software
provides you with the capability to build advanced projects; for example, to
build a robotic platform that can sense and interact with its environment. The
chapter ends by presenting a framework that enables you to remotely control
the BBB using a wired serial connection or a wireless Bluetooth connection to
a desktop computer or mobile device.

 Equipment Required for This Chapter:

■ BeagleBone Black, DMM, and oscilloscope

■ DC motor and H‐bridge interface board

■ Stepper motor and EasyDriver interface board

■ Op‐amps (LM358, MCP6002/4), Diodes, Resistors, 5 V Relay

■ Sharp infrared distance sensor

 C H A P T E R

 9

 Interactingg with the

Physical Environment ironment

326 Part II6 ■ Interfacing, Controlling, and Communicating

■ 74HC595 serial shift registers

■ Seven‐segment display modules

■ LCD character display module

■ ADXL335 analog three‐axis accelerometer

■ Bluetooth adapter (e.g., Kinivo BTD‐400 Bluetooth 4.0 USB)

Further details on this chapter are available at www.exploringbeaglebone.com/
chapter9/.

 Interfacing to Actuators

 Electric motors can be controlled by the BBB in order to make physical devices
move or operate. They convert electrical energy into mechanical energy
that can be used by devices to act upon their surroundings. A device that
converts energy into motion is generally referred to as an actuator . Interfacingrr
the BBB to actuators provides a myriad of application possibilities, includ-
ing robotic control, home automation (watering plants, controlling blinds),
camera control, unmanned aerial vehicles (UAVs), 3D printer control, and
many more.

 Electric motors typically provide rotary motion around a fi xed axis, which
can be used to drive wheels, pumps, belts, electric valves, tracks, turrets, robotic
arms, and so on. In contrast to this, linear actuators create movement in a straight
line, which can be very useful for position control in computer numerical control
(CNC) machines and 3D printers. In some cases they convert rotary motion
into linear motion using a screw shaft that translates a threaded nut along its
length as it rotates. In other cases, a solenoid moves a shaft linearly through the
magnetic effects of an electric current.

 Three main types of motors are commonly used with the BBB: servo
motors, DC motors, and stepper motors. A summary comparison of these
motor types is provided in Table 9-1 . Interfacing to servo motors (also
known as precision actuators) through the use of PWM outputs is discussed
in Chapter 6 , so this section focuses on interfacing to DC motors and
stepper motors.

 High‐current inductive loads are challenging to interface with the
BBB—they invariably require more current than the BBB can supply, and they
generate voltage spikes that can be extremely harmful to the interfacing circuitry.
The applications discussed in this section often require a secondary power sup-
ply, which could be an external battery pack in the case of a mobile platform or
a high‐current supply for powerful motors. The BBB needs to be isolated from
these supplies; as a result, generic motor controller boards are described here

 Chapter 9 ■ Interacting with the Physical Environment 327

Table 9-1: Summary Comparison of Common Motor Types

SERVO MOTOR DC MOTOR STEPPER MOTOR

Typical
application

When high torque,
accurate rotation is
required

When fast,
continuous rotation
is required

When slow and
accurate rotation is
required

Control
hardware

Position is controlled
through PWM. No
controller required.
May require PWM
tuning.

Speed is controlled
through PWM.
Additional circuitry
required to manage
power requirements.

Typically requires a
controller to energize
stepper coils. The
BBB can perform this
role, but an external
controller is preferable
and safer.

Control type Closed‐loop, using a
built‐in controller

Typically closed‐
loop using feedback
from optical
encoders

Typically open‐loop,
as movement is
precise and steps can
be counted

Features Known absolute
position. Typically,
limited angle of
rotation.

Can drive very large
loads. Often geared
to provide very high
torque.

Full torque at
standstill. Can rotate a
large load at very low
speeds. Tendency to
vibrate.

Example
applications

Steering controllers,
camera control, and
small robotic arms

Mobile robot
movement, fans,
water pumps, and
electric cars

CNC machines,
3D printers,
scanners, linear
actuators, and camera
lenses

 DC Motors

 DC motors are used in many applications, from toys to advanced robotics. They
are ideal motors to use when continuous rotation is required, such as in the
wheels of an electric vehicle. Typically, they have only two electrical terminals
to which a voltage is applied. The speed of rotation and the direction of rota-
tion can be controlled by varying this voltage. The tendency of a force to rotate
an object about its axis is called torque , and for a DC motor, torque is generally e
proportional to the current applied.

 DC motors, such as the one in Figure 9-1 (a), often require more current than
the BBB can supply; therefore, you might be tempted to drive them from the

for interfacing to DC motors and stepper motors. Circuitry is also carefully
designed for interfacing to relay devices.

328 Part II8 ■ Interfacing, Controlling, and Communicating

BBB by simply using a transistor or FET. Unfortunately, this will not work
well, due to a phenomenon known as inductive kickback , which results in a k
large voltage spike that is caused by the inertia of current fl owing through
an inductor (i.e. the motor’s coil windings) being suddenly switched off. Even
for modest motor power supplies, this large voltage could exceed 1 kV for
a very short period of time. The FETs discussed in Chapter 4 cannot have
a drain‐source voltage of greater than 60 V and will therefore be damaged
by such large voltages. Figure 9-1 (b) illustrates a simple solution to this
problem: placing a kickback diode (aka fl yback diode) across the terminals of e
the DC motor.

 Figure 9-1: (a) A small DC motor with an integrated gearbox; (b) unidirectional control of a
DC motor

 The kickback diode is reverse‐biased during regular operation of the motor
and will therefore have no impact. However, the diode is forward-biased by a
kickback voltage spike. Therefore, the voltage spike is limited to the motor power
supply voltage (plus the forward voltage drop of the diode, ~0.7 V). A resistor or
Zener diode can be placed in series with the kickback diode to further improve
the level of protection.

 An alternative to this confi guration is to place a Zener diode across the
drain‐source terminals of the FET (or collector‐emitter of a transistor). The
Zener diode limits the voltage across the drain‐source terminals to that of its
reverse breakdown voltage. The downside of this alternative confi guration is
that the ground supply has to sink a large current spike, which could lead to
the type of noise in the circuit that is discussed in Chapter 4 . With either of
these types of protection in place, it is possible to use a BBB PWM output to
control the speed of the DC motor. With a PWM duty cycle of 50%, the motor
will rotate at half the speed that it would if directly connected to the motor
supply voltage.

 Chapter 9 ■ Interacting with the Physical Environment 329

 The previous approach provides for the unidirectional control of a DC
motor. For bidirectional control , a circuit configuration called an H‐bridge
can be used, which has a circuit layout in the shape of the letter H, as illus-
trated in Figure 9-2 . Notice that it has Zener diodes to protect the four FETs.
To drive the motor in a forward (assumed to be clockwise) direction, the
top‐left and bottom‐right FETs can be switched on. This causes a current
to flow from the positive to the negative terminal of the DC motor. When
the opposing pair of FETs is switched on, current flows from the negative
terminal to the positive terminal of the motor and the motor reverses (turns
counterclockwise). The motor does not rotate if two opposing FETs are
switched off (open circuit).

 Figure 9-2: Simplified H‐bridge description

 Four of the BBB PWM header pins could be connected to the H‐bridge
circuit, but particular care would have to be taken to ensure that the two
FETs on the left‐hand side or the right‐hand side of the circuit are not turned
on at the same time, as this would result in a large current (shoot‐through
current)—the motor supply would effectively be shorted (t VMVV to GND). As
high‐current capable power supplies are often used for the motor power
supply, this is very dangerous, as it could even cause a power supply or a
battery to explode! An easier and safer approach is to use an H‐bridge driver
that has already been packaged in an IC, such as the SN754410, a quadruple
high‐current half‐H driver, which can drive 1 A at 4.5 V to 36 V per driver
(see tiny.cc/ebb901).

 A BBB DC Motor Driver Circuit

 There are many more recently introduced drivers that can drive even larger
currents using smaller package sizes than the SN754410. In this example, a
DRV8835 dual low‐voltage motor driver carrier on a breakout board from
www.pololu.com is used, as illustrated in Figure 9-3 . The DRV8835 itself is only
2 mm × 3 mm in dimension and can drive 1.5 A (max) per H‐bridge at a motor

330 Part II0 ■ Interfacing, Controlling, and Communicating

 Figure 9-3: Driving a DC motor using an example H‐Bridge driver breakout board

 The DRV8835 breakout board can be connected to the BBB as illustrated in
Figure 9-3 . This circuit uses four pins from the BBB:

■ P9_3 provides a 3.3 V supply for the control logic circuitry.

■ P9_45 provides a GND for the logic supply circuitry.

■ P9_42 provides a PWM output from the BBB that can be used to control
the rotation speed of the motor, as it is connected to the AENABLE input on
the DRV8835.

■ P9_41 provides a GPIO output that can be used to set whether the motor
is rotating clockwise or counterclockwise, as it is connected to the APHASE

input.

 The motor power supply voltage is set according to the specifi cation of the
DC motor that is chosen. By tying the Mode pin high, the DRV8835 is placed in
PHASE/ENABLE mode, which means that one input is used for direction and
the other is used for determining the rotation speed.

W A R N I N G The DRV8835 IC can get hot enough to burn, even while operating

within its normal operating parameters. This is a common characteristic of motor

driver ICs—so be careful! Heat sinks can be added to dissipate heat, and they have the

added advantage of extending the constant run time, as thermal protection circuitry

will shut motor driver ICs down to prevent them from overheating when driving large

loads.

 Controlling a DC Motor Using sysfs

 With a circuit wired as shown in Figure 9-3 , the DC motor can be controlled
using sysfs . In this example, P9_41 (GPIO3_20 = 116) is connected to the

supply voltage up to 11 V. It can be driven with logic levels of 2 V to 7 V, which
enables it to be used with the BBB.

 Chapter 9 ■ Interacting with the Physical Environment 331

APHASE input. Therefore, this pin can be enabled, and the motor’s direction
of rotation can be controlled using the following (with the HDMI overlay
disabled):

 molloyd@beaglebone:/sys/class/gpio/$ echo 116 > export
 molloyd@beaglebone:/sys/class/gpio/$ cd gpio116
 molloyd@beaglebone:/sys/class/gpio/gpio116$ ls
 active_low direction edge power subsystem uevent value
 molloyd@beaglebone:/sys/class/gpio/gpio116$ echo out > direction
 molloyd@beaglebone:/sys/class/gpio/gpio116$ echo 1 > value
 molloyd@beaglebone:/sys/class/gpio/gpio116$ echo 0 > value

 The speed of the motor can be controlled using a BBB PWM output. The
overlays can be loaded, and the motor can be controlled using the PWM overlay
that is associated with P9_42, as follows:

 molloyd@beaglebone:~$ sudo sh ‐c "echo am33xx_pwm > $SLOTS"
 molloyd@beaglebone:~$ sudo sh ‐c "echo bone_pwm_P9_42 > $SLOTS"
 molloyd@beaglebone:~$ cat $SLOTS
 7: ff:P-O-L Override Board Name,00A0,Override Manuf,bone_pwm_P9_42
 10: ff:P-O-L Override Board Name,00A0,Override Manuf,am33xx_pwm
 molloyd@beaglebone:~$ sudo su ‐
 root@beaglebone:~# cd /sys/devices/ocp.3/pwm_test_P9_42.12/
 root@beaglebone:/sys/devices/ocp.3/pwm_test_P9_42.12# ls
 driver duty modalias period polarity power run subsystem uevent
 root@beaglebone:/sys/devices/ocp.3/pwm_test_P9_42.12# echo 0 > run
 root@beaglebone:/sys/devices/ocp.3/pwm_test_P9_42.12# echo 0 > polarity
 root@beaglebone:/sys/devices/ocp.3/pwm_test_P9_42.12# echo 4000 > period
 root@beaglebone:/sys/devices/ocp.3/pwm_test_P9_42.12# echo 1000 > duty
 root@beaglebone:/sys/devices/ocp.3/pwm_test_P9_42.12# echo 2000 > duty
 root@beaglebone:/sys/devices/ocp.3/pwm_test_P9_42.12# echo 4000 > duty
 root@beaglebone:/sys/devices/ocp.3/pwm_test_P9_42.12# echo 0 > run

 Here, the PWM frequency is set to 250 kHz and the duty cycle is adjusted
from 25% to 50%, and then to 100%, changing the rotation speed of the motor
accordingly. As with servo motors, DC motors should be controlled with the
PWM polarity set to 0 , so that the duty period represents the time when the
pulse is high, rather than low. The direction of rotation can be adjusted at any
stage using the gpio116 sysfs directory.

 Controlling a DC Motor Using C++

 A C++ class that you can use to control a DC motor is available in the GitHub
repository. The constructor expects a PWM input, for which the overlay has
already been loaded, and a GPIO object or GPIO number. If a GPIO number
is passed, then the pin is automatically exported and un‐exported. Listing 9‐1
displays the C++ header fi le for the DCMotor class.

332 Part II ■ Interfacing, Controlling, and Communicating

 LISTING 9‐1: library/motor/DCMotor.h

 class DCMotor {

 public:

 enum DIRECTION{ CLOCKWISE, ANTICLOCKWISE };

 private:

 ...

 public:

 DCMotor(PWM *pwm, GPIO *gpio);

 DCMotor(PWM *pwm, int gpioNumber);

 DCMotor(PWM *pwm, GPIO *gpio, DCMotor::DIRECTION direction);

 DCMotor(PWM *pwm, int gpioNumber, DCMotor::DIRECTION direction);

 DCMotor(PWM *pwm, GPIO *gpio, DCMotor::DIRECTION direction,

float speedPercent);

 DCMotor(PWM *pwm, int gpioNumber, DCMotor::DIRECTION direction,

float speedPercent);

 virtual void go();

 virtual void setSpeedPercent(float speedPercent);

 virtual float getSpeedPercent() { return this->speedPercent; }

 virtual void setDirection(DIRECTION direction);

 virtual DIRECTION getDirection() { return this->direction; }

 virtual void reverseDirection();

 virtual void stop();

 virtual void setDutyCyclePeriod(unsigned int period_ns);

 virtual ~DCMotor();

 };

 An example application that uses the DCMotor class is provided in Listing 9‐2.
Notice that the header fi le is in the motor subdirectory.

 LISTING 9‐2: /chp09/dcmotor/DCMotorApp.cpp

 #include <iostream>

 #include "motor/DCMotor.h"

 using namespace std;

 using namespace exploringBB;

 int main(){

 cout << "Starting EBB DC Motor Example" << endl;

 DCMotor dcm(new PWM("pwm_test_P9_42.12"), 116); // exports GPIO116

 dcm.setDirection(DCMotor::ANTICLOCKWISE);

 dcm.setSpeedPercent(50.0f); //make it clear that a float is passed

 dcm.go();

 cout << "Rotating Anti-clockwise at 50% speed" << endl;

 usleep(5000000); //sleep for 5 seconds

 dcm.reverseDirection();

 cout << "Rotating clockwise at 50% speed" << endl;

 usleep(5000000);

 dcm.setSpeedPercent(100.0f);

 cout << "Rotating clockwise at 100% speed" << endl;

 Chapter 9 ■ Interacting with the Physical Environment 333

 usleep(5000000);

 dcm.stop();

 cout << "End of EBB DC Motor Example" << endl;

 }

 The build script assumes that the example application source is in /exporingbb/
chp09/dcmotor/ and that the shared library and header fi les are in the directory
/exploringbb/library . This conforms to the directory structure of the GitHub yy

repository. The code can be built using the build script that is in the dcmotor
directory and executed using the following:

 molloyd@beaglebone:~/exploringbb/chp09/dcmotor$ more build
 #!/bin/bash
 g++ DCMotorApp.cpp ../../library/libEBBLibrary.so -o DCApp -I "../../
library"
 molloyd@beaglebone:~/exploringbb/chp09/dcmotor$./build
 molloyd@beaglebone:~/exploringbb/chp09/dcmotor$ ls
 DCApp DCMotorApp.cpp build
 molloyd@beaglebone:~/exploringbb/chp09/dcmotor$ sudo ./DCApp
 Starting EBB DC Motor Example
 Rotating Anti-clockwise at 50% speed
 Rotating clockwise at 50% speed
 Rotating clockwise at 100% speed
 End of EBB DC Motor Example

 At the end of this chapter a description is provided that shows how to build
code into dynamic libraries, such as libEBBLibrary.so , using the Eclipse IDE.
This enables you to alter the library to suit your requirements.

 Stepper Motors

 Unlike DC motors, which rotate continuously when a DC voltage is applied,
stepper motors normally rotate in discrete fi xed‐angle steps. For example, the
stepper motor that is used in this chapter rotates with 200 steps per revolution ,
and therefore has a step angle of 1.8°. The motor steps each time a pulse is applied
to its input, so the speed of rotation is proportional to the rate at which pulses
are applied.

 Stepper motors can be positioned very accurately, as they typically have
a positioning error of less than 5% of a step (i.e. typically ±0.1°). The error
does not accumulate over multiple steps, so stepper motors can be con-
trolled in an open‐loop form, without the need for feedback. Unlike servo
motors, but like DC motors, the absolute position of the shaft is not known
without the addition of devices like rotary encoders, which often include
an absolute position reference that can be located by performing a single
shaft rotation.

334 Part II4 ■ Interfacing, Controlling, and Communicating

N O T E You can fi nd a comprehensive video on interfacing to stepper motors using

the BBW, describing the operation of stepper motors in detail, at the web page for this

chapter, www.exploringbeaglebone.com/chapter9/ , and directly at the link

tiny.cc/ebb902 . The code described in the video has been updated for this book

and is available in the GitHub repository.

 Stepper motors, as illustrated in Figure 9-4 (a), have toothed permanent
magnets that are fi xed to a rotating shaft, called the rotor . The rotor is sur-rr
rounded by coils (grouped into phases) that are fi xed to the stationary body of s
the motor (the stator). The coils are electromagnets that, when energized, attractr
the toothed shaft teeth in a clockwise or counterclockwise direction, depend-
ing on the order in which the coils are activated, as illustrated in Figure 9-4 (b)
for full‐step drive:

■ Full step: Two phases always on (max torque).

■ Half step: Double the step resolution. Alternates between two phases on
and a single phase on (torque at about 3/4 max).

■ Microstep: Uses sine and cosine waveforms for the phase currents to step
the motor rather than the on/off currents illustrated in Figure 9-4 (b) and
thus allows for higher step resolutions (though the torque is signifi cantly
reduced).

 Figure 9-4: (a) Stepper motor external and internal structure; (b) full-step drive signals

 The EasyDriver Stepper Motor Driver

 An easy way to generate the stepper motor pulse signals is to use a stepper‐motor
driver board. The EasyDriver board (illustrated in Figure 9-5) is a low‐cost (~$15)
open‐hardware stepper motor driver board that is widely available. It can be used
to drive four‐, six‐ and eight‐wire stepper motors, as illustrated in Figure 9-6 .
The board has an output drive capability of between 7 V and 30 V at ±750 mA per
phase. The board uses the Allegro A3967 Microstepping Driver with Translator,
which allows for full, half, quarter, and one‐eighth step microstepping modes.

 Chapter 9 ■ Interacting with the Physical Environment 335

In addition, the board can be driven with 5 V or 3.3 V logic levels, which makes
it an ideal board for the BBB. For 3.3 V logic control levels, there is a jumper (SJ2)
that has to be solder bridged.

 Figure 9-5: Driving a stepper motor using the open‐hardware EasyDriver board

 Figure 9-6: Wiring configuration for different stepper motor types

W A R N I N G Do not disconnect a motor from the EasyDriver board while it is

powered, as it may destroy the board.

 The merit in examining this board is that many boards can be used for higher‐
powered stepper motors that have a very similar design.

N O T E If you don’t have access to a datasheet for a stepper motor (e.g., you rescued

it from an old printer), you can determine the connections to the coils by shorting pairs

of wires and rotating the motor. If there is noticeable resistance to rotation for a par-

ticular shorted pairing, then you have identifi ed the connections to a coil. You cannot

determine the coils using the colors of the wires alone, as there is no standard format.

 A BBB Stepper Motor Driver Circuit

 The EasyDriver board can be connected to the BBB as illustrated in Figure 9-7 ,
using GPIOs for each of the control signals. The pins are described in Figure 9-5 ,

336 Part II6 ■ Interfacing, Controlling, and Communicating

and a table is provided in the fi gure for the MS1/MS2 inputs. A C++ class called
StepperMotor is available that accepts alternative GPIO numbers.

 Figure 9-7: Driving a stepper motor using the BBB and the EasyDriver interface board

 Controlling a Stepper Motor Using C++

 Listing 9‐3 presents the description of a class that can be used to control the
EasyDriver driver board using fi ve BBB GPIO pins. This code can be adapted
to drive most types of stepper driver boards.

 LISTING 9‐3: /library/motor/StepperMotor.cpp (Segment)

 class StepperMotor {

 public:

 enum STEP_MODE { STEP_FULL, STEP_HALF, STEP_QUARTER, STEP_EIGHT };

 enum DIRECTION { CLOCKWISE, ANTICLOCKWISE };

 private:

 // The GPIO pins MS1, MS2 (Microstepping options), STEP (The low->high step)

 // SLP (Sleep - active low) and DIR (Direction)

 GPIO *gpio_MS1, *gpio_MS2, *gpio_STEP, *gpio_SLP, *gpio_DIR;

 ...

 public:

 StepperMotor(GPIO *gpio_MS1, GPIO *gpio_MS2, GPIO *gpio_STEP, GPIO *gpio_SLP,

 GPIO *gpio_DIR, int speedRPM = 60, int stepsPerRevolution = 200);

 StepperMotor(int gpio_MS1, int gpio_MS2, int gpio_STEP, int gpio_SLP,

 int gpio_DIR, int speedRPM = 60, int stepsPerRevolution = 200);

 virtual void step();

 virtual void step(int numberOfSteps);

 virtual int threadedStepForDuration(int numberOfSteps, int duration_ms);

 virtual void threadedStepCancel() { this->threadRunning = false; }

 virtual void rotate(float degrees);

 Chapter 9 ■ Interacting with the Physical Environment 337

 virtual void setDirection(DIRECTION direction);

 virtual DIRECTION getDirection() { return this->direction; }

 virtual void reverseDirection();

 virtual void setStepMode(STEP_MODE mode);

 virtual STEP_MODE getStepMode() { return stepMode; }

 virtual void setSpeed(float rpm);

 virtual float getSpeed() { return speed; }

 virtual void setStepsPerRevolution(int steps) { stepsPerRevolution = steps; }

 virtual int getStepsPerRevolution() { return stepsPerRevolution; }

 virtual void sleep();

 virtual void wake();

 virtual bool isAsleep() { return asleep; }

 virtual ~StepperMotor();

 ... //Full code available in /library/motor/StepperMotor.h

 };

 The library code is used in Listing 9‐4 to create a StepperMotor object, and
rotate the motor counterclockwise 10 times at full‐step resolution. It then uses
a threaded step function to microstep the stepper motor clockwise for one full
revolution over fi ve seconds at one‐eighth step resolution.

 LISTING 9‐4: /chp09/stepper/StepperMotorApp.cpp

 #include <iostream>

 #include "motor/StepperMotor.h"

 using namespace std;

 using namespace exploringBB;

 int main(){

 cout << "Starting EBB Stepper Motor Example:" << endl;

 //Using 5 GPIOs, RPM=60 and 200 steps per revolution

 StepperMotor m(44,65,26,45,46,60,200);

 m.setDirection(StepperMotor::ANTICLOCKWISE);

 m.setStepMode(StepperMotor::STEP_FULL);

 m.setSpeed(100); //rpm

 cout << "Rotating 10 times at 100 rpm anti-clockwise, full step..." << endl;

 m.rotate(3600.0f); //in degrees

 cout << "Finished regular (non-threaded) rotation)" << endl;

 m.setDirection(StepperMotor::CLOCKWISE);

 cout << "Performing 1 threaded revolution in 5 seconds using micro-stepping:"

<< endl;

 m.setStepMode(StepperMotor::STEP_EIGHT);

 if(m.threadedStepForDuration(1600, 5000)<0){

 cout << "Failed to start the Stepper Thread" << endl;

 }

 cout << "Thread should now be running..." << endl;

 for(int i=0; i<10; i++){ // sleep for 10 seconds.

 usleep(1000000);

 cout << i+1 << " seconds has passed..." << endl;

continues

338 Part II8 ■ Interfacing, Controlling, and Communicating

 }

 m.sleep(); // cut power to the stepper motor

 cout << "End of Stepper Motor Example" << endl;

 }

 After calling the associated build script, the program can be executed and
should result in the following output:

 molloyd@beaglebone:~/exploringbb/chp09/stepper$./StepperApp
 Starting EBB Stepper Motor Example:
 Rotating 10 times at 100 rpm anti-clockwise, full step...
 Finished regular (non-threaded) rotation)
 Performing 1 threaded revolution in 5 seconds using micro-stepping:
 Thread should now be running...
 1 seconds has passed...
 2 seconds has passed...
 ...
 10 seconds has passed...
 End of Stepper Motor Example

 It is important to note that the threaded revolution completes the revolution
after fi ve seconds. The counter continues for a further fi ve seconds, during which
time a holding torque is applied. The fi nal call to m.sleep() removes power from
the stepper motor coils, thus removing holding torque.

 It is possible to further reduce the number of pins that are used in this
motor controller example by using 74HC595 ICs and the SPI bus. That topic
is discussed in the section “Interfacing to Display Modules,” later in this
chapter.

 Relays

 Traditional relays are electromechanical switches that are typically used to control
a high‐voltage/high‐current signal using a low‐voltage/low‐current signal. They
are constructed to enable a low‐powered circuit to apply a magnetic force to an
internal movable switch. The internal switch can turn on or turn off a second
circuit that often contains a high‐powered DC or AC load. The relay itself is
chosen according to the power requirements; whether the circuit is designed so
that the high‐powered circuit is normally powered or normally disabled; and
the number of circuits being switched in parallel.

 Electromechanical relays (EMRs) are prone to switch bounce and mechani-
cal fatigue, so they have a limited life span, particularly if they are switched
constantly at frequencies of more than a few times per minute. Rapid switching
of EMRs can also cause them to overheat. More recent, solid‐state relays (SSRs)

LISTING 9‐4: (continued)

 Chapter 9 ■ Interacting with the Physical Environment 339

are electronic switches that consist of FETs, thyristors, and opto‐couplers. They
have no moving parts and therefore have longer life spans and higher maxi-
mum switching frequencies (about 1 kHz). The downside is that SSRs are more
expensive, and they are prone to failure (often in the switched “on” state) due
to overloading or improper wiring. They are typically installed with heat sinks
and fast‐blow fuses on the load circuit.

 EMRs and SSRs are available that can switch very high currents and volt-
ages. That makes them particularly useful for applications like smart home
installations, the control of mains‐powered devices, motor vehicle applications
for switching high‐current DC loads, and powering high‐current inductive
loads in robotic applications. Importantly, wiring mains applications are
for expert users only, as even low currents coupled with high voltages
can be fatal . Please seek local professional advice if dealing in any way
with high currents or high voltages, including, but not limited to, AC
mains voltages.

W A R N I N G The circuit in Figure 9-8 is intended for connection to low‐voltage

supplies only (e.g., 12 V supplies). High voltages can be extremely dangerous

to human health, and only suitably trained individuals with appropriate safety

equipment and taking professional precautions should wire mains‐powered devices.

Suitable insulation, protective enclosures, or additional protective devices such as

fuses or circuit breakers (possibly including both current‐limiting circuit breakers and

earth‐leakage circuit breakers) may be required to prevent creating either a shock or

a fi re hazard. Seek advice from a qualifi ed electrician before installing mains‐powered

home automation circuitry.

 Figure 9-8 (a) illustrates the type of circuit that can be used to interface
the BBB to a relay. It is important that the relay chosen is capable of being
switched at 5 V and that, like the motor circuit in Figure 9-2 , a fl yback diode
is placed in parallel to the relay’s inductive load in order to protect the FET
from damage. Pololu (www.pololu.com) sells a small SPDT relay kit (~$4),
as illustrated in Figure 9-8 (b), that can be used to switch 8A currents at
30 V DC using an Omron G5LE power relay. The breakout board contains
a BSS138 FET, the fl yback diode, and LEDs that indicate when the relay is
switched to enable—that is, close the circuit connected to the normally open
(NO) output.

 The relay can be connected to a regular GPIO for control. For example, if the
relay were connected as shown in Figure 9-8 (a), to P8_17 (GPIO0_27), then it
can be switched using the following:

 molloyd@beaglebone:/sys/class/gpio$ echo 27 > export
 molloyd@beaglebone:/sys/class/gpio$ cd gpio27

340 Part II0 ■ Interfacing, Controlling, and Communicating

 molloyd@beaglebone:/sys/class/gpio/gpio27$ echo out > direction
 molloyd@beaglebone:/sys/class/gpio/gpio27$ echo 1 > value
 molloyd@beaglebone:/sys/class/gpio/gpio27$ echo 0 > value

 Figure 9-8: (a) Controlling a relay using the BBB; (b) an example breakout board

 Interfacing to Analog Sensors

 A transducer is a device that converts variations in one form of energy into pro-
portional variations in another form of energy. For example, a microphone is an
acoustic transducer that converts variations in sound waves into proportional
variations in an electrical signal. In fact, actuators are also transducers, as they
convert electrical energy into mechanical energy.

 Transducers, the main role of which is to convert information about the
physical environment into electrical signals (voltages or currents) are called
sensors . Sensors may contain additional circuitry to further condition the elec-
trical signal (e.g., by fi ltering out noise or averaging values over time), and this
combination is often referred to as an instrument . The termst sensor, transducer,
and instrument are in fact often used interchangeably, so too much should not
be read into the distinctions between them. Interfacing to sensors enables you
to build an incredibly versatile range of project types using the BBB, some of
which are described in Table 9-2 .

 The ADXL345 I2 C/SPI digital accelerometer is discussed in Chapter 8 , and
Table 9-2 identifi es another accelerometer, the ADXL335, which is an analog
accelerometer. Essentially, the ADXL345 digital accelerometer is an analog sen-
sor that also contains fi ltering circuitry, analog‐to‐digital conversion, and input/
output circuitry. It is quite often the case that both analog and digital sensors
are available that can perform similar tasks. Table 9-3 provides a summary
comparison of digital versus analog sensors.

 Chapter 9 ■ Interacting with the Physical Environment 341

Table 9-3: Comparison of Typical Digital and Analog Sensor Devices

DIGITAL SENSORS ANALOG SENSORS

ADC is handled by the sensor, freeing up
limited microcontroller ADC inputs.

Provide continuous voltage output and
capability for very fast sampling rates.

The real‐time issues surrounding
embedded Linux, such as variable sampling
periods, are not as signifi cant.

Typically less expensive, but may require
external components to confi gure the
sensor parameters.

Often contain advanced fi lters that can be
confi gured and controlled via registers.

Output is generally easy to understand
without the need for complex datasheets.

Bus interfaces allow for the connection of
many sensor devices.

Relatively easy to interface.

Less susceptible to noise.

Table 9-2: Example Analog Sensor Types and Applications

MEASURE APPLICATIONS EXAMPLE SENSORS

Temperature Smart home, weather
monitoring

TMP36 temperature sensor.
MAX6605 low‐power
temperature sensor

Light Level Home automation, display
contrast adjustment

Mini photocell/photodetector
(PDV‐P8001)

Distance Robotic navigation, reversing
sensing

Sharp infrared proximity
sensors (e.g., GP2D12)

Touch User interfaces, proximity
detection

Capacitive touch. The BBB’s
ADC has touch screen
functionality

Acceleration Determine orientation, impact
detection

Accelerometer (ADXL335).
Gyroscope (LPR530) detects
change in orientation.

Sound Speech recording and
recognition, UV meters

Electret microphone
(MAX9814), MEMS microphone
(ADMP401)

Magnetic Fields Noncontact current
measurement, home security,
noncontact switches

100 A non‐invasive current
sensor (SCT‐013‐000). Hall
eff ect and reed switches.
Linear magnetic fi eld sensor
(AD22151)

Motion Detection Home security, wildlife
photography

PIR Motion Sensor (SE‐10)

342 Part II ■ Interfacing, Controlling, and Communicating

 Digital sensors typically have more advanced features (e.g., the ADXL345 has
double‐tap and free‐fall detection), but at a greater cost and level of complexity.
Many sensors are not available in a digital package, so it is very important to
understand how to connect analog sensors to the BBB. Ideally, the analog sensor
that you connect should not have to be sampled at a rate of thousands of times
per second, or it will add signifi cant CPU overhead.

W A R N I N G You have to be particularly careful when connecting powered sensors

to the BBB ADC inputs, as the ADC contains very sensitive circuitry that can be easily

damaged by going outside its 0 V to 1.8 V limits. You should not sink current to or

source current from the ADC inputs or voltage reference pins.

 Protecting the BBB ADC Inputs

 The BBB’s ADC is easily damaged. In addition, many of the analog sensors
that are described in Table 9-2 require 3.3 V or 5 V supplies. This is a particular
concern when prototyping a new sensor interface circuit, as one connection
mistake could physically damage the BBB. The BBB’s ADC inputs do have some
internal circuitry to protect the inputs, but it is not designed to carry even a
modest current for more than very short periods of time. The internal circuitry
is mainly present for electrostatic discharge (ESD) protection, rather than to be
relied on for clamping input signals. Therefore, external circuit protection is
very useful in preventing damage.

 Diode Clamping

 Figure 9-9 (a) illustrates a simple diode clamping circuit that is typically used to
limit voltage levels applied to ADCs. The circuit consists of two diodes and a
current-limiting resistor. The diodes are reverse-biased when the voltage level
is within the range 0 V to VrefVV . Current fl ows to the notional AIN0 input, andff

the circuit behaves correctly as illustrated in Figure 9-9 (b) when a sine wave is
applied (VINVV) that oscillates within the 0 V toNN VrefVV range. However, if f VINVV exceeds N

the VrefVV level (plus the forward voltage drop of the diode), then the upper diodef

is forward-biased and current would fl ow to the VrefVV rail. If f VrefVV is 1.8 V and sili-f

con diodes are used (~0.7 V forward voltage), then this signal will be clamped
at 2.5 V. For the lower diode, if VINVV falls below 0V to 0.7 V then the diode will beN

forward-biased and AGND will source current. The resistor R can be used to
limit the upper current level. The resulting clamped output is illustrated in Figure
 9-9 (c) when a sine wave is applied to the input that exceeds the permitted range.

 The clamping circuit in Figure 9-9 (a) is not recommended for use with the
BBB for two reasons. First, the forward voltage drop of a typical silicon diode
extends the nonclamped range to approximately −0.7 V to 2.5 V, which is well
outside acceptable levels. More expensive Schottky diodes can be used that have

 Chapter 9 ■ Interacting with the Physical Environment 343

a forward voltage drop of about 0.25 V at 2 mA and 25°C (e.g., the 1N5817G). These
would bring the effective output range to about −0.25 V to 2.05 V, which is better
but still not ideal. The second reason is that when clamping occurs, the current
would have to be sourced from or sinked to the BBB’s AGND or VrefVV rails. Sinking f

current to the VrefVV rail could damage the f VrefVV input and/or affect the reference f

voltage level. However, diode clamping is preferable to no protection whatsoever.

 Figure 9-9 : (a) A typical diode clamping circuit (not recommended); (b) the signal response of
the circuit to an input signal that is in range; (c) the clipped signal response of the circuit to an
input signal that is out of range

 Op‐Amp Clamping

 A recommended circuit to protect the BBB ADC circuitry is presented in
Figure 9-10 (a). While it appears complex, it is reasonably easy to connect, as
it requires only three ICs and seven resistors to protect all seven AINs. This
voltage follower circuit uses a 5 V powered single op‐amp package to provide a
1.8 V voltage reference source to an array of low‐voltage op‐amps. The Microchip
MCP6001/2 or LM358 can be used for this voltage supply task.

 An array of modern op‐amps, supplied at 1.8 V (i.e., VCC+VV = 1.8 V), are confi gured
in voltage follower confi guration and placed in front of each of the BBB ADC
inputs (AIN0 to AIN6). These op‐amps are supplied with VDDVV = VCC+VV = 1.8 V and
VSSVV = VCC−VV = GND, so it is not possible for their output voltage level to exceed
the range 0 V to 1.8 V. The MCP600x is a low‐cost DIP packaged op‐amp that is
suitable for this role. In particular, the MCP6004 has four op‐amps within the
one package, so only two MCP6004s (plus the 1.8 V supply circuit op‐amp) are
required to protect all seven ADC inputs.

 Figure 9-10 (b) illustrates the behavior of this circuit when a 0.9V amplitude sine
wave (biased at +0.9 V) is applied to the Analog0 circuit input. The output signal
overlays precisely on the input signal. Older op‐amps (including the LM358)
would have diffi culty with this type of rail‐to‐rail operation (i.e., 0 V to 1.8 V) and
would behave in a nonlinear way near the rail voltages. As shown in the plot
of the Analog0 input versus the AIN0 output in Figure 9-10 (b), there is a very
strong linear relationship, even at the supply rail voltage levels. Figure 9-10 (c)

344 Part II4 ■ Interfacing, Controlling, and Communicating

and (d) illustrate the consequence of the input signal (accidentally) exceeding
the allowable range. In both cases the output is clamped to the 0 V to 1.8 V range
and the BBB ADC is protected, though of course the signal input to the ADC
is distorted.

 Figure 9-10: Protecting the ADC inputs using 1.8 V powered op-amps (recommended); (a) the
circuit to protect all BBB analog inputs; (b) linear response characteristic; (c) clipped response to
an out-of-range input; (d) clipped response to a significantly out-of-range input

 The circuit can be connected to the BBB as illustrated in Figure 9-10 , and its
impact can be evaluated in a terminal using the following steps:

 molloyd@beaglebone:~$ sudo sh ‐c "echo BB‐ADC > $SLOTS"
 molloyd@beaglebone:~$ cat $SLOTS|grep ADC
 7: ff:P-O-L Override Board Name,00A0,Override Manuf,BB-ADC
 molloyd@beaglebone:~$ cd /sys/bus/iio/devices/iio:device0

 Setting the DC voltage levels at Analog0 to be 0 V, 0.9 V, 1.8 V, and 2.1 V
results in the respective raw input values from the 12‐bit ADC (0‐4095) as
follows:

 molloyd@beaglebone:/sys/bus/iio/devices/iio:device0$ cat in_voltage0_raw
 94
 molloyd@beaglebone:/sys/bus/iio/devices/iio:device0$ cat in_voltage0_raw
 2140

 Chapter 9 ■ Interacting with the Physical Environment 345

 molloyd@beaglebone:/sys/bus/iio/devices/iio:device0$ cat in_voltage0_raw
 4092
 molloyd@beaglebone:/sys/bus/iio/devices/iio:device0$ cat in_voltage0_raw
 4093

 The 100 kΩ resistor ensures that current fl ows to GND through the resistor
rather than through the AINx input. (For your reference, the ADC functional block
diagram is shown in Figure 12‐2 of the AM335x TRM .) The AM335x datasheet at M
tiny.cc/ebb903 provides further details about the limitations of the BBB ADC.

 Analog Sensor Signal Conditioning

 One of the problems with analog sensors is that they may have output signal
voltage levels quite different from those required by the BBB. For example, the
Sharp GP2D12 distance sensor that is used as an example in this section outputs
a DC voltage of ~2.6 V when it detects an object at a distance of 10 cm, and ~0.4 V
when the object is detected at a distance of 80 cm. If this sensor is connected to
the clamping circuit in Figure 9-10 , the BBB’s ADC would not be damaged, but
the sensing range would be reduced by clamping.

Signal conditioning is the term used to describe the manipulation of an analog
signal so that it is suitable for the next stage of processing. In order to condi-
tion a sensor output as an input to the BBB, this often means ensuring that the
signal’s range is less than 1.8 V, with a DC bias of +0.9 V.

 Scaling Using Voltage Division

 The voltage divider circuit described at the beginning of Chapter 4 can be used
to condition a sensor output. If the output voltage from the sensor is greater than
1.8 V but not less than 0 V, then a voltage divider circuit can be used to linearly
reduce the voltage to remain within a 0 V to 1.8 V range.

 Figure 9-11 illustrates a voltage division circuit and its integration with the 1.8 V
op‐amp protection circuitry discussed in the last section. Voltage follower circuits
also act as buffer circuits. The maximum input impedance of the AM335x ADC
inputs ranges from about 76 kΩ at the highest frequencies to many megaohms at
low frequencies. 1 The voltage divider circuit will further load the sensor output
impedance (perhaps requiring further unity‐gain buffers before the voltage
divider). However, the MCP6002 will act as a buffer that prevents the sensor
circuit from exceeding the maximum input impedance of the ADC (remember
that ideal voltage follower circuits have infi nite input impedance and zero output
impedance). There are some important points to note about this circuit:

■ Resistors have a manufacturing tolerance (often 5%–10% of the resistance
value), which will affect the scaling accuracy of the voltage division circuit.
You may need to experiment with combinations or use a potentiometer
to adjust the resistance ratio.

346 Part II6 ■ Interfacing, Controlling, and Communicating

■ A capacitor C1 can be added across VOUT to reduce noise if required. The T

value of C1 can be chosen according to the value of R1 and the desired
cutoff frequency f Cff , according to the equation: R C f1/(2)c1 1 π= × . There
is an example in the next section.

■ With multi‐op‐amp packages, unused inputs should be connected as shown
in Figure 9-11 (in light gray) to avoid random switching noise.

 Figure 9-11: Scaling an input signal using voltage division with op‐amp ADC protection in place

 This circuit works well for linearly scaling down an input signal, but it would
not work for a zero‐centered or negatively biased input signal. For that, a more
general and slightly more complex op‐amp circuit is required.

 Signal Off setting and Scaling

 Figure 9-12 (a) provides a general op‐amp circuit that can be used to set the gain
and offset of an input signal. Do not connect this circuit directly to the BBB—it
is designed as an adjustable prototyping circuit to use in conjunction with an
oscilloscope to design a fi xed‐signal conditioning circuit for your particular
application. Some notes on this circuit:

■ The VccVV − input of the op‐amp is tied to GND, which is representative of
the type of circuit that is built using the BBB, as a −5 V rail is not readily
available.

■ If an LM358 is used, then a load resistor is required to prevent the output
from being clamped below 0.7 V. According to the National Semiconductor
Corporation (1994), “the LM358 output voltage needs to raise approxi-
mately one diode drop above ground to bias the on‐chip vertical PNP
transistor for output current sinking applications.”2

■ The 1.8 V level can be provided by the analog voltage reference on the BBB,
but do not connect it without the use of a voltage follower circuit as shown
earlier. Alternatively, a voltage divider could be used with the 5 V rail.

 Chapter 9 ■ Interacting with the Physical Environment 347

■ A 100 nF decoupling capacitor can be used on the VINVV input to remove the N

DC component of the incoming sensor signal. However, for many sensor
circuits the DC component of the sensor signal is important and should
not be removed.

 Figure 9-12: (a) A general op‐amp signal conditioning circuit that inverts the input;
(b) conditioned output when VinVV is 0 V to 5 V; (c) output when VinVV is −5 V to +5 V; (d) conditioned
and amplified output when the input signal is 1.9 V to 2.1 V

 The circuit in Figure 9-12 (a) amplifi es (or attenuates), offsets, and inverts the
input signal according to the settings of the potentiometers:

■ The gain is set using the adjustable gain potentiometer, where V G VIN= ×− .

■ The offset is set using the adjustable offset potentiometer. This can be
used to center the output signal at 0.9 V.

■ The output voltage is approximately V V V offset G V()OUT IN= − = − ×+ − . As
such, the output is an inverted and scaled version of the input signal.

■ The inversion of the signal (you can see that the output is at a maximum
when the input is at a minimum) is a consequence of the circuit used.
Noninverting circuits are possible, but they are more diffi cult to confi g-
ure. The inversion can easily be corrected in software by subtracting the
received ADC input value from 4,095.

 In Figure 9-12 (b), (c), and (d) the offset voltage is set to 0.9 V and the gain is
adjusted to maximize the output signal (between 0 V and 1.8 V) without clipping

348 Part II8 ■ Interfacing, Controlling, and Communicating

the signal. In Figure 9-12 (b) the gain and offset are adjusted to map a 0 V to +5 V
signal to a 1.8 V to 0 V inverted output signal. In Figure 9-12 (c) a −5 V to +5 V
signal is mapped to a 1.8 V to 0 V signal. Finally, in Figure 9-12 (d) a 1.9 V to 2.1 V
input signal is mapped to a 1.3 V to 0 V output (this is the limit for the LM358 in
this case). The last case is applied to an example application in the next section.

 Figure 9-13 illustrates a full implementation of the op‐amp signal conditioning
circuit as it is attached to the BBB. In this example only two op‐amps are required
in total. This is because the MCP6002 on the left is used to both condition the
signal and protect the ADC input. This is possible because it is powered using
a VCCVV = 1.8 V supply, which is provided by the 1.8 V voltage follower circuit on
the right‐hand side. The MCP6002 is a dual op‐amp package, and it is used
because the MCP6001 is not readily available in a DIP package. You could use
the MCP6002 to condition two separate sensor signals.

 Figure 9-13: Signal conditioning circuit connected to the BBB with gain set using R1 and R2 and
offset set using R3 and R4

 The potentiometers in Figure 9-12 are replaced by fi xed‐value resistors in
Figure 9-13 in order to demonstrate how a fi xed offset and gain can be confi g-
ured. In addition, the MCP6002 does not require a load resistor on the output,
but a 100 kΩ resistor is used to protect the ADC input.

 If the input voltage is −5 V to +5 V, then this circuit will give an output of 0.048 V
to 1.626 V with the resistor values R1 = 9.1 kΩ, R2 = 1.5 kΩ, R3 = 4.7 kΩ, and R4R =
6.5 kΩ. A general equation to describe the relationship between the input and
output can be determined as follows:

V
R

R R
R R
R

V
R
R

1.8OUT IN
3

3 4

1 2

1

2

1

= ×
+

⎛

⎝
⎜

⎞

⎠
⎟

+⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟

 At V INV = 5 V, N V OUTVV = −0.05 V, and at T V INV = −5 V, N V OUTVV = 1.71 V.T

 Listing 9‐5 displays a test program that can be used to read in 1,000 values
from AIN0 at about 20 Hz, with the output presented on a single line.

 Chapter 9 ■ Interacting with the Physical Environment 349

 LISTING 9‐5: /exploringbb/chp09/testADC/testADC.cpp (segment)

 #define LDR_PATH "/sys/bus/iio/devices/iio:device0/in_voltage"

 int readAnalog(int number){

 stringstream ss;

 ss << LDR_PATH << number << "_raw";

 fstream fs;

 fs.open(ss.str().c_str(), fstream::in);

 fs >> number;

 fs.close();

 return number;

 }

 int main(int argc, char* argv[]){

 cout << "The value on the ADC is:" << endl;

 for(int i=0; i<1000; i++){

 int value = readAnalog(0);

 cout << " = " << readAnalog(0) << "/4095 " << '\r' << flush;

 usleep(50000);

 }

 return 0;

 }

 When built and executed, this code gives the following output:

 molloyd@beaglebone:~/exploringbb/chp09/testADC$./build
 molloyd@beaglebone:~/exploringbb/chp09/testADC$./testADC
 The value on the ADC is: = 1940/4095

 If a sine wave is inputted at a frequency of 0.1 Hz, then the output of the
program will slowly increase and decrease between a value close to 0 and a
value close to 4,095.

 Analog Interfacing Examples

 Now that the BBB’s ADC inputs can be protected from damage using op‐amp
clamping, two analog interfacing examples are discussed in this section. The
fi rst example demonstrates how you can model the response of a sensor, and
the second example employs signal offsetting and scaling.

 Infrared Distance Sensing

 Sharp infrared distance measurement sensors are very useful for robotic
navigation applications (e.g., object detection and line following) and prox-
imity switches (e.g., automatic faucets and energy‐saving switches). These
sensors can also be attached to servo motors and used to calculate range
maps (e.g., on the front of a mobile platform). They work well in indoor

350 Part II0 ■ Interfacing, Controlling, and Communicating

environments but have limited use in direct sunlight. They have a response
time of ~39 ms, so at 25–26 readings per second they will not provide dense
range images. Figure 9-14 (a) shows two aspect views of a low‐cost sensor,
the Sharp GP2D12.

 Figure 9-14: (a) Sharp infrared distance measurement sensor; (b) its analog output response

(a) (b)

 This is a good analog sensor integration example because four problems need
to be resolved, which occur generally with other sensors:

 1. The sensor response in Figure 9-14 (b) is highly nonlinear, so that two dif-
ferent distances can give the same sensor output. Thus you need to fi nd a
way to disambiguate the sensor output. For example, if the sensor output
is 1.5 V, it could mean that the detected object is either 5 cm or 17 cm from
the sensor. A common solution to this problem is to mount the sensor
so that it is physically impossible for an object to be closer than 10 cm
from the sensor. This problem is not examined in further detail, and it is
assumed here that the detected object cannot be closer than 10 cm from
the sensor.

 2. The voltage value (0 V to 2.6 V) exceeds the ADC range. As shown, a signal
conditioning circuit can be designed to solve this problem.

 3. The output signal is prone to high‐frequency noise. A low‐pass RC fi lter
can be designed to solve this problem.

 4. Even for the assumed distances of 10 cm or greater, the relationship between
distance and voltage output is still nonlinear. A curve‐fi tting process can
be employed to solve this problem if a linear relationship is required
(e.g., threshold applications do not require a linear relationship—just a
set value).

 Chapter 9 ■ Interacting with the Physical Environment 351

 To solve the second problem, a voltage divider confi guration can be employed
to map the output voltage range from 0 V–2.6 V to 0 V–1.8 V. A 10 kΩ potentiometer
can be used for this task as shown in Figure 9-15 (a), where 69.2% (100 × 1.8 V/2.6 V)
of the voltage needs to be dropped across the lower resistor. Therefore, if the
total resistance is 10 kΩ, then the lower resistor would be 6.92 kΩ. If fi xed‐value
resistors are to permanently replace the adjustable potentiometer, then 6.8 kΩ
and 3.3 kΩ could be used. Accuracy is not vital, as the op‐amp circuit protects
the ADC input and the sensor is itself separately calibrated based on the actual
resistor values used.

 Figure 9-15: (a) A voltage divider circuit configured for the GP2D12 sensor; (b) the plot of the
exponentially fitted data

 To solve the third problem, the circuit in Figure 9-15 (a) includes a low‐pass
RC fi lter to remove high‐frequency signal noise. The last step determined the
series resistor to be approximately 3.3 kΩ; therefore, a capacitor value must be
chosen to suit the cutoff sampling frequency, which is about 52 Hz (i.e., 2 × 26 Hz)
in this case (taking account of the Nyquist criterion). A capacitor value of 1 μF
provides an appropriate value, given the equation RC f1/(2)cπ= × .

 To solve the fi nal problem, a small test rig can be set up to calibrate the distance
sensor. A measuring tape can be placed at the front of the sensor and a large
object can be positioned at varying distances from the sensor, between 10 cm
and 80 cm. In my case this provided the raw data for the table in Figure 9-15 (b),
which is plotted on the graph with the square markers.

 This raw data is not suffi ciently fi ne to determine the distance value repre-
sented by an ADC measurement intermediate between the values corresponding
to the squares. Therefore, curve fi tting can be employed to provide an expres-
sion that can be implemented in program code. The data can be supplied to
the curve fi tting tools that are freely available on the Wolfram Alpha website
at www.wolframalpha.com . Using the command string

 exponential fit {3925,10}, {2790,15}, {2200,20}, {1755,25}, {1528,30},
 {1273,40}, {851,50}, {726,60}, {620,70}, {528,80}

352 Part II ■ Interfacing, Controlling, and Communicating

 results in the expression distance e115.804 v0.000843107= − (see tiny.cc/ebb904). This
curve is plotted in Figure 9-15 (b) with the triangular markers. It could also be
modeled with a quadratic using the following command string:

 quadratic fit {3925,10}, {2790,15}, {2200,20}, {1755,25}, {1528,30},
 {1273,40}, {851,50}, {726,60}, {620,70}, {528,80}

 which results in the expression distance x x8.93664 10 0.0572854 99.73216 2= × − +−

(see tiny.cc/ebb905).
 Note that this process can be used for many analog sensor types to

provide an expression that can be used to interpolate between the mea-
sured sensor values. What type of fi tting curve best fi ts the data will vary
according to the underlying physical process of the sensor. For example,
you could use the linear fit command on the Wolfram Alpha website to
derive an expression for the LDR described in Chapter 6 . A C++ code example
can be written to read in the ADC value and convert it into a distance as
shown in Listing 9‐6, where the exponential fi x expression is coded on a
single line.

 LISTING 9‐6: /exploringbb/chp09/IRdistance/IRdistance.cpp (Segment)

 ...

 int main(int argc, char* argv[]){

 cout << "Starting the IR distance sensor program:" << endl;

 for(int i=0; i<1000; i++){

 int value = readAnalog(0);

 float distance = 115.804f * exp(‐0.000843107f * (float)value);

cout << "The distance is: " << distance << " cm" << '\r' << flush;

 usleep(100000);

 }

 return 0;

 }

 When the code example is executed, it continues to output the distance of a
detected object in centimeters, for about 100 seconds:

 molloyd@beaglebone:~/exploringbb/chp09/IRdistance$./build
 molloyd@beaglebone:~/exploringbb/chp09/IRdistance$./IRdistance
 Starting the IR distance sensor program:
 The distance is: 17.7579 cm

 If the speed of execution of such code is vital in the application then, it is
preferable to populate a lookup table (LUT) with the converted values. This
means that each value is calculated once, either at the initialization stage of
the program, or perhaps during code development, rather than every time
a reading is made and has to be converted. When the program is in use, the

 Chapter 9 ■ Interacting with the Physical Environment 353

subsequent memory accesses (for reading the LUT) are much more effi cient
than the corresponding fl oating‐point calculations. This is possible because a
12‐bit ADC can only output 4,096 unique values, and it is not unreasonable to
store an array of the 4,096 possible outcomes in the memory associated with
the program.

 ADXL335 Conditioning Example

 The ADXL335 is a small three‐axis accelerometer that outputs an analog signal
that has undergone conditioning. It behaves just like the ADXL345 except that
the output is from three analog pins, one for each axis.

 When measuring in a range of ±1 g , the x‐axis outputs ~1.30 V at 0°, ~1.64 V at gg
90°, and ~1.98 V at 180°. This means that the output signal of the breakout board
is centered on 1.64 V and has a variation of ±0.34 V. A circuit can be designed as
shown in Figure 9-16 to map the center point to 0.9 V and to extend the variation
over the full 1.8 V range.

 Figure 9-16: The ADXL335 analog accelerometer and its connection to the BBB with further
signal conditioning

 Unfortunately, there are output impedance problems with this particular
ADXL335 breakout board, and the voltage divider circuit in the conditioning
circuit will not function correctly. A buffer circuit is therefore required, and an
op‐amp in voltage follower confi guration can be used. The 1.8 V powered op‐amp
could not be used for this task, as the upper sensor output (at 1.98 V) exceeds
the 1.8 V output limit of that op‐amp and would thus have been clamped. The
1.8 V supply op‐amp IC on the right‐hand side has a limit of 5 V, so it is used
for this task.

354 Part II4 ■ Interfacing, Controlling, and Communicating

 This circuit is a little complex and it may be overkill, as the amplifi cation of
a signal does not necessarily improve the information content of that signal—
noise is amplifi ed along with the signal. It is quite possible that the 12‐bit ADC
performs just as well over a linearly scaled 1.3 V to 1.98 V range as it does over
the full 0 V to 1.8 V range for this particular sensor. However, it is important that
you are exposed to the process of offsetting and scaling a signal using op‐amps,
as it is required for many sensor types, particularly those that are centered on
0 V, such as microphone audio signals.

 The testADC program that was used previously can be used to print out
the digitized AIN value from the accelerometer. In this case, the program
prints out

 molloyd@beaglebone:~/exploringbb/chp09/testADC$./testADC
 The value on the ADC is: = 2174/4095

 at rest (90°), 250 at 0°, and 4,083 at +180°. A simple linear interpolation can be
used to approximate the intermediate values.

 Interfacing to Display Modules

 The BBB can be attached to computer monitors and digital televisions using the
HDMI output connector. In addition, LCD touch screen capes can be attached
to the P8 and P9 headers as discussed in Chapter 11 . The downsides of such
displays are that they may not be practical or they may be overly expensive for
certain applications. When a small amount of information needs to be relayed
to a user, a simple LED can be used—for example, the BBB on‐board heartbeat
LED is a very useful indicator that the board continues to function. For more
complex information, two possibilities are to interface to low‐cost seven‐segment
displays and low‐cost character LCD modules.

 Seven‐Segment Displays

 Seven‐segment displays typically consist of eight LEDs that can be used to display
decimal or hexadecimal numerals with a “decimal” point. They are available in
a range of sizes and colors, with a typical example displayed in Figure 9-17 (a).
The segments are typically labeled as in Figure 9-17 (b).

 Seven‐segment displays are described as being either common cathode or com-
mon anode displays. This means that the cathodes or anodes of the array of LEDs
that make up the display are connected together as in Figure 9-17 (c). You should
not limit the current passing through the display by placing a single resistor on
the common anode or the common cathode connection, as the limited current
will be shared among the segments that are lighting. This results in an uneven

 Chapter 9 ■ Interacting with the Physical Environment 355

light level, the intensity of which depends on the number of segments that are lit.
Therefore, eight current‐limiting resistors are required for each seven‐segment
display. Resistor networks are available that can be used to simplify such wiring
confi gurations (see Figure 8‐5).

 Figure 9-17: (a) Seven‐segment display; (b) typical pin ordering; (c) typical common anode and
cathode display configurations

(a) (b) (c)

 It is possible to drive these displays using eight GPIO pins per seven‐segment
module, but it is also possible to use serial shift registers and the SPI interface,
which provides the following advantages:

■ Only three SPI pins are required, no matter how many seven‐segment
display modules are used. Using GPIOs would require a further eight
outputs for each additional seven‐segment display module.

■ Seven‐segment displays are available in a vast range of sizes and colors.
For example, there are even large 6.5” seven‐segment displays available
from SparkFun.

■ There is no requirement to add FETs or BJTs to switch the individual seg-
ments, as most 74HC595s can deliver 70 mA per pin.

 Figure 9-18 illustrates a wiring confi guration that can be used to connect
an array of common cathode seven‐segment displays to the BBB using its SPI
interface. This is similar to the circuit in Figure 8‐5, with the exception that the
74HC595 ICs are daisy‐chained (i.e., the serial output of one stage is applied as
the serial input to the next stage) by connecting the serial output QH' from one
stage to the SER input of the next stage. If there are three seven‐segment displays
in this confi guration, then it is necessary to shift 24 bits (3 × 8 bits) to the BBB
SPI0_D1 output before latching the 74HC595s using the BBB’s SPI0_CS0 line.

356 Part II6 ■ Interfacing, Controlling, and Communicating

 Figure 9-18: SPI interfacing to arrays of common cathode seven‐segment displays using
daisy‐chained 74HC595 8‐bit serial shift registers

 A C++ class called SevenSegmentDisplay is available that uses the SPIDevice
class from Chapter 8 to send data to the segments. The class defi nition is pre-
sented in Listing 9‐7 and the implementation fi le is in /library/display/
SevenSegmentDisplay.cpp .

 LISTING 9‐7: library/display/SevenSegmentDisplay.h

 class SevenSegmentDisplay {

 private:

 SPIDevice *spidevice; // The SPI bus device

 int numberSegments; // The number of segments connected

 int numberBase; // between 2 (binary) and 16 (hex) - default 10 (dec)

 bool isCommonAnode; // false by default

 public:

 SevenSegmentDisplay(SPIDevice *device, int numberSegments);

 virtual int write(int number); // writes an integer

 virtual int write(float number, int places); // uses the "decimal" point

 virtual int setNumberBase(int base);

 virtual int getNumberBase() { return this->numberBase; }

 virtual int getNumberSegments() { return this->numberSegments; }

 virtual void setCommonAnode(bool isCommonAnode) {

 this->isCommonAnode = isCommonAnode; }

 Chapter 9 ■ Interacting with the Physical Environment 357

 virtual ~SevenSegmentDisplay(); // closes the SPI device

 private:

 const static unsigned char symbols[];

 };

 This class can display the ciphers/symbols 0 to 9, and A to F using a static
constant character array, called symbols . The symbols are defi ned in the
SevenSegmentDisplay.cpp fi le as follows:

 // The binary data that describes the LED state for each symbol
 // A(top) B(top right) C(bottom right) D(bottom)
 // E(bottom left) F(top left) G(middle) H(dot) (msb) HGFEDCBA (lsb)
 const unsigned char SevenSegmentDisplay::symbols[16] = {
 0b00111111, 0b00000110, 0b01011011, 0b01001111, //0123
 0b01100110, 0b01101101, 0b01111101, 0b00000111, //4567
 0b01111111, 0b01100111, 0b01110111, 0b01111100, //89Ab
 0b00111001, 0b01011110, 0b01111001, 0b01110001 //CdEF
 };

 For example, 0b00111111 displays the zero symbol, as all segments are on,
except for the “decimal” point (DP) and the center segment (G)—see Figure 9-17 (b).
The code in Listing 9‐8 provides an example of how to use an array of common
cathode seven‐segment displays, as shown in Figure 9-18 . The constructor of
the SevenSegmentDisplay class requires an SPIDevice object and the number
of segments that are present in the display circuit.

 LISTING 9‐8: chp09/sevensegment/SevenSegmentApp.cpp

 #include <iostream>

 #include "display/SevenSegmentDisplay.h"

 using namespace std;

 using namespace exploringBB;

 int main(){

 cout << "Starting EBB Seven Segment Display Example" << endl;

 SevenSegmentDisplay display(new SPIDevice(1,0), 2);

 //counting in hexadecimal

 //display.setCommonAnode(true); //For a common anode display setup

 cout << "Counting in hexadecimal 0x00 to 0xFF" << endl;

 display.setNumberBase(16); //count in hexadecimal

 for(int i=0; i<=0xFF; i++){

 display.write(i);

 usleep(50000);

 }

 cout << "Counting 0.0 to 9.9 decimal in steps of 0.1..." << endl;

 display.setNumberBase(10); //count in decimal

continues

358 Part II8 ■ Interfacing, Controlling, and Communicating

 for(float f=0.0f; f<10; f+=0.1f){

 display.write(f,1);

 usleep(100000);

 }

 cout << "End of EBB Seven Segment Display Example" << endl;

 }

 If the circuit is built as in Figure 9-18 (but with two segments) and attached
to the SPI0 bus, then the code in Listing 9‐8 counts in hexadecimal in steps of
1 until it reaches 0xFF, whereupon it counts in decimal from 0.0 to 9.9 in steps
of 0.1. This demonstrates the range of functionality that is available in the class.
The DP segment lights as required—it can act as a “decimal point” for any base
used. To build and execute this code, you must fi rst ensure that the SPIDEV0
virtual cape is loaded:

 ~/exploringbb/chp09/sevensegment$ sudo sh ‐c "echo BB‐SPIDEV0 > $SLOTS"
 ~/exploringbb/chp09/sevensegment$ cat $SLOTS|grep SPI
 13: ff:P-O-L Override Board Name,00A0,Override Manuf,BB-SPIDEV0
 molloyd@beaglebone:~/exploringbb/chp09/sevensegment$./build
 molloyd@beaglebone:~/exploringbb/chp09/sevensegment$./SevenSegmentApp
 Starting EBB Seven Segment Display Example
 Counting in hexadecimal 0x00 to 0xFF
 Counting 0.0 to 9.9 decimal in steps of 0.1 ...
 End of EBB Seven Segment Display Example

 The class can also be used with common anode display modules. The mod-
ules would be wired exactly as in Figure 9-18 ; however, pin 3 or 8 would be
connected to the +5 V line—see Figure 9-17 (c). The role of the 74HC595 would
then be to sink current in order to light one of the LED segments. For example,
if the output of QH on the 74HC595 is logic high, then the DP will not be lit,H

as both the cathode and anode of the LED will be at a 5 V level and the LED
will not be forward-biased. However, if QH is logic low, then the anode of theH

DP will be at +5 V and the cathode will be at 0 V. The DP segment will then be
forward-biased and will light. Therefore, the code to drive a common anode
seven‐segment display simply inverts the bits in the number that is sent to the
74HC595. For example, the number 0 is 0b00111111 for a common cathode display
and 0b11000000 for a common anode display.

N O T E In C/C++ the bit inversion operator is ~ and the logical inversion operator

is ! . Be careful not to confuse these operators, as inverting the unsigned char value

x=0b01010101 using x=~x; results in x=0b10101010 , but using x=!x; results in

x=0b00000000 . The logical inversion of any nonzero value is zero and the logical

inversion of zero is one (i.e., 0b00000001). Using ! instead of ~ for bit operations does

LISTING 9‐8: (continued)

 Chapter 9 ■ Interacting with the Physical Environment 359

not result in a compiler error, but the clue to fi nding your mistake is that your bit data

is often unexpectedly zero.

 An alternative to individual seven‐segment displays is to use a low‐cost
character LCD display module (typically priced around $10).

 Character LCD Modules

Character LCD modules are LCD dot matrix displays that feature pre‐programmed
font tables so that they can be used to display simple text messages without the
need for complex display software. They are available in a range of character
rows and columns (commonly 2×8, 2×16, 2×20, and 4×20) and usually contain an
LED backlight, which is available in a range of colors. Recently, OLED (organic
LED) versions and E‐paper (e‐ink) versions have been released that provide for
greater levels of display contrast.

 To understand the use of a character LCD module, you should study its
datasheet. While most character LCD modules have common interfaces (often
using a Hitachi HD44780 controller—see Further Reading), the display modules
from Newhaven have some of the best datasheets. The datasheet for a typical
Newhaven display module is available at tiny.cc/ebb906 . It is recommended
that the datasheet be read in conjunction with this discussion.

 There are character LCD modules available with integrated I2C and SPI inter-
faces, but the majority of modules are available with an eight‐bit and four‐bit
parallel interface. By adding a 74HC595 to the circuit it is possible to develop a
custom SPI interface, which provides greater fl exibility in the choice of modules.
A generic character LCD module can be attached to the BBB using the wiring
confi guration illustrated in Figure 9-19 .

 You can interface to character LCD modules using either an eight‐bit or a
four‐bit mode, but there is no difference in the functionality available with
either mode. The four‐bit interface requires fewer interface connections, but
each eight‐bit value has to be written in two steps—the lower four bits (nibble(()e
followed by the higher four bits (nibble).

 To write to the character LCD module two lines are required, the RS line
(register select signal) and the E line (operational enable signal). The circuit in
Figure 9-19 is designed to use a four‐bit interface, as it requires only six lines,
rather than the 10 lines that would be required with the eight‐bit interface. This
means that a single eight‐bit 74HC595 can be used to interface to the module when
it is in four‐bit mode. The downside is that the software is slightly more complex
to write, as each byte must be written in two nibbles. The four‐bit interface uses
the inputs DB4–DB7, whereas the eight‐bit interface requires the use of DB0–DB7.

 It is possible to read data values from the display, but it is not required in this
application; therefore, the R/W (read/write select signal) is tied to GND in order
to place the display in write mode. The power is supplied using VCC (5 V) and

360 Part II0 ■ Interfacing, Controlling, and Communicating

VSS (GND). VEE sets the display contrast level and must be at a level between
VSS and VCC. A 10 kΩ multi‐turn potentiometer can be used to provide pre-
cise control over the display contrast. Finally, the LED+ and LED− connections
supply the LED backlight power.

 Figure 9-19: SPI interfacing to character LCD modules using a 74HC595 8‐bit serial shift register

 The display character address codes are illustrated on the module in
Figure 9-19 . Using commands (on pg. 6 of the datasheet), data values can be sent
to these addresses. For example, to display the letter A in the top left corner, the
following procedure can be used with the four‐bit interface:

■ Clear the display by sending the value 00000001 to D4–D7. This value
should be sent in two parts: the lower nibble (0001), followed by the
higher nibble (0000). The E line is set high then low after each nibble is
sent. A delay of 1.52 ms (datasheet pg. 6) is required. The module expects a
command to be sent when the RS line is low. After sending this command,
the cursor is placed in the top left corner.

■ Write data 01000001 = 65 10 = “A” (datasheet pg. 9) with the lower nibble
sent fi rst, followed by the upper nibble. The E line is set high followed
by low after each nibble is sent. The module expects data to be sent when
the RS line is set high.

 A C++ class is available for you to use in interfacing the BBB to display modules
using SPI. The class assumes that the 74HC595 lines are connected as shown

 Chapter 9 ■ Interacting with the Physical Environment 361

in Figure 9-19 and the data is represented as in Table 9-4 . The code does not
use bits 2 (QD) and 3 (D QC) on the 74HC595, so it is possible for you to repurposeCC

these for your own application. For example, one pin could be connected to
the gate of a FET and used to switch the backlight on and off. The class defi -
nition is provided in Listing 9‐9 and the implementation is in the associated
LCDCharacterDisplay.cpp fi le.

Table 9-4: Mapping of the 74HC595 Data Bits to the Character LCD Module Inputs, as Required
for the C++ LCDCharacterDisplay Class

BIT 7

MSB

BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0

LSB

Character
LCD
module

D7 D6 D5 D4 Not used Not used E RS

74HC595
pins

QH QG QF QE Q D QC Q B QA

 LISTING 9‐9: library/display/LCDCharacterDisplay.h

 class LCDCharacterDisplay {

 private:

 SPIDevice *device;

 int width, height;

 ...

 public:

 LCDCharacterDisplay(SPIDevice *device, int width, int height);

 virtual void write(char c);

 virtual void print(std::string message);

 virtual void clear();

 virtual void home();

 virtual int setCursorPosition(int row, int column);

 virtual void setDisplayOff(bool displayOff);

 virtual void setCursorOff(bool cursorOff);

 virtual void setCursorBlink(bool isBlink);

 virtual void setCursorMoveOff(bool cursorMoveOff);

 virtual void setCursorMoveLeft(bool cursorMoveLeft);

 virtual void setAutoscroll(bool isAutoscroll);

 virtual void setScrollDisplayLeft(bool scrollLeft);

 virtual ~LCDCharacterDisplay();

 };

 The constructor requires an SPIDevice object and details about the width and
height of the character display module (in characters). The constructor provides
functionality to position the cursor on the display and to describe how the cur-
sor should behave (e.g., blinking or moving to the left/right). This class can be

362 Part II ■ Interfacing, Controlling, and Communicating

used as shown in Listing 9‐10 to create an LCDCharacterDisplay object, display
a string, and display a count from 0 to 10,000 on the module.

 LISTING 9‐10: chp09/LCDcharacter/LCDApp.cpp

 #include <iostream>

 #include <sstream>

 #include "display/LCDCharacterDisplay.h"

 using namespace std;

 using namespace exploringBB;

 int main(){

 cout << "Starting EBB LCD Character Display Example" << endl;

 SPIDevice *busDevice = new SPIDevice(2,0); //Using second SPI bus

 busDevice->setSpeed(1000000); // Have access to SPI Device object

 ostringstream s; // Using this to combine text and int data

 LCDCharacterDisplay display(busDevice, 16, 2); // Construct 16x2 LCD Display

 display.clear(); // Clear the character LCD module

 display.home(); // Move the cursor to the (0,0) position

 display.print("EBB by D. Molloy"); // String to display on the first row

 for(int x=0; x<=10000; x++){ // Do this 10,000 times

 s.str(""); // clear the ostringstream object s

 display.setCursorPosition(1,3); // move the cursor to second row

 s << "X=" << x; // construct a string that has an int value

 display.print(s.str()); // print the string X=*** on the module

 }

 cout << "End of EBB LCD Character Display Example" << endl;

 }

 The code example in Listing 9‐10 can be built and executed using the follow-
ing steps:

 ~/exploringbb/chp09/LCDcharacter$ sudo sh ‐c "echo BB‐SPIDEV1 > $SLOTS"
 ~/exploringbb/chp09/LCDcharacter$ cat $SLOTS|grep SPI
 14: ff:P-O-L Override Board Name,00A0,Override Manuf,BB-SPIDEV1
 ~/exploringbb/chp09/LCDcharacter$./build
 ~/exploringbb/chp09/LCDcharacter$./LCDApp

 The count incrementally updates on the display and fi nishes with the output
illustrated in Figure 9-20 .

 It takes 26 seconds to display a count that runs from 0 to 10,000, which is
approximately 385 localized screen updates per second. This means that you
could potentially connect many display modules to a single SPI bus and still
achieve reasonable screen refresh rates. You would require the type of multiple
SPI slave circuitry that is discussed in Chapter 8 , which would require xlog2⎡⎢ ⎤⎥

 Chapter 9 ■ Interacting with the Physical Environment 363

GPIOs for x modules. At its maximum refresh rate, the top command gives the
following output:

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 18227 root 20 0 0 0 0 S 34.6 0.0 25:02.50 spi2
 20967 molloyd 20 0 2708 988 856 S 33.9 0.2 0:04.15 LCDApp

 Figure 9-20: Output from Listing 9‐10 on a Newhaven display module.

 This indicates that the LCDApp program and its associated spi2 platform device
are utilizing 68.5% of the available CPU time at this extreme module display
refresh rate of 385 updates per second. To be clear, the display maintains its
current display state without any BBB overhead, and refresh is only required
to change the display contents.

 Remote Control BeagleBone

 The fi nal section in Chapter 8 describes a framework that can be used to
enable the BBB to take control of a microcontroller (like the Arduino) and
issue commands to it using a serial data connection. As described in this
chapter, the BBB itself is very useful for actuation, sensing, and information
display applications. Just like the Arduino, the BBB itself can be confi gured to
be a serial server device, enabling it to execute commands that are sent from
another “master” device, such as a desktop computer, a server machine, or
another BBB. For example, the BBB could be used as the central processor for
a remote‐controlled robot that receives commands over a wired serial link or
a wireless Bluetooth connection.

364 Part II4 ■ Interfacing, Controlling, and Communicating

 The next chapter describes how a similar framework can be developed using
Internet sockets, with either fi xed‐line or wireless Ethernet. However, depending
on the application, Ethernet or Wi‐Fi may not be viable options due to infrastruc-
ture requirements and/or power limitations. Therefore, remote control using
wired and wireless serial connections is discussed in this section.

 Before a serial server is established on the BBB, it is necessary to discuss the
system management daemon, systemd , which is used to start and stop services d
under Linux. Daemons are background processes (usually ending in the letter
d), and understanding systemd is particularly important if you are going to
reconfi gure the current serial interfaces or design an application that you wish
to have start automatically when the BBB boots.

 Managing Services with Systemd

 Systemd was developed to replace the init system discussed in Chapter 3 . It
is a controversial Linux development, but it is likely that over time, init will
be fully replaced by systemd on the BBB. Systemd is the fi rst daemon process
to execute on the BBB, and it is the last process to terminate when the BBB is
shutting down. Its primary role is to manage many of the services that are avail-
able on the BBB. It provides for faster boot times, as it is designed to execute
fewer scripts and to execute them in parallel. However, it does not present the
same type of support for scripts that is available with init . Typing systemctl
provides a full list of the services that are running on the BBB (use the spacebar
to page, and q to quit):

 molloyd@beaglebone:~$ systemctl list‐units ‐t service
 UNIT LOAD ACTIVE SUB JOB DESCRIPTION
 acpid.service loaded active running ACPI event daemon ...

 For example, use the following to fi nd the terminal services that are running
on the BBB:

 molloyd@beaglebone:~$ systemctl list‐units ‐t service |grep tty
 getty@tty1.service loaded active running Getty on tty1
 serial-getty@ttyGS0.service loaded active running Serial Getty on ttyGS0
 serial-getty@ttyO0.service loaded active running Serial Getty on ttyO0

 The second service in the list is called gadget serial . It is the BBB end of the
Serial‐over‐USB connection, which is discussed in Chapter 2 (see Figure 2‐4).
The Windows end of the connection appears in Device Manager as a port—
“Gadget Serial (COM20)” in my case. You can get the status of this service as
follows:

 molloyd@beaglebone:~$ systemctl status serial‐getty@ttyGS0.service
 serial-getty@ttyGS0.service - Serial Getty on ttyGS0

 Chapter 9 ■ Interacting with the Physical Environment 365

 Loaded:loaded(/etc/systemd/system/serial-getty@ttyGS0.service;enabled)
 Active:active(running) since Sun, 01 Jun 2014 20:45:42 +0000; 8m ago
 Main PID: 21142 (agetty)
 CGroup: name=systemd:/system/serial-getty@.service/ttyGS0
 └ 21142 /sbin/agetty -s ttyGS0 115200 38400 9600

 The gadget serial agetty , often just called yy getty (“get teletype”—hence the name
PuTTY!), is a Linux program that manages terminal connections. The systemd
service runs as a process, visible using the following:

 molloyd@beaglebone:~$ ps ‐ef|grep GS0
 root 918 1 0 13:46 ttyGS0 00:00:00 /sbin/agetty -s ttyGS0 115200 38400

 Using either method you can see that the service is running. Several com-
mands can be executed on such services, for example:

■ systemctl start [name] : Start a service.

■ systemctl stop [name] : Stop a service that is running.

■ systemctl restart [name] : Restart a running service.

■ systemctl enable [name] : Enable a service to start on boot.

■ systemctl disable [name] : Disable a service from starting on boot.

 One method of providing for remote control of the BBB is to replace a serial
service with a custom application service. To replace the gadget serial service
with a custom control service, it must be fi rst shut down and disabled from
starting on boot, using the following steps:

 molloyd@beaglebone:~$ sudo systemctl stop serial‐getty@ttyGS0.service
 molloyd@beaglebone:~$ ps ‐ef|grep ttyGS
 molloyd@beaglebone:~$ ls /dev/ttyGS*
 /dev/ttyGS0

 After this step, there should not be a ttyGS0 process running, but the device
is still present. Systemctl should also indicate that it is inactive:

 molloyd@beaglebone:~$ systemctl status serial‐getty@ttyGS0.service
 serial-getty@ttyGS0.service - Serial Getty on ttyGS0
 Loaded: loaded(/etc/systemd/system/serial-getty@ttyGS0.service;enabled)
 Active: inactive (dead) since Sun, 29 Jun 2014 ...

 It can then be disabled from starting on boot as follows:

 molloyd@beaglebone:~$ sudo systemctl disable serial‐getty@ttyGS0.service
 rm '/etc/systemd/system/getty.target.wants/serial-getty@ttyGS0.service'

 A service of your own design can now be deployed that binds to /dev/
ttyGS0 .

366 Part II6 ■ Interfacing, Controlling, and Communicating

 BBB Serial Connection to Desktop

 A bespoke serial server is presented in Listing 9‐11 that can be used to
remotely control the BBB. For this example there are several self‐explanatory
commands: “LED on,” “LED off,” and “quit.” These commands could be
linked to the actuator and sensor examples in this chapter. Essentially, this
enables you to create a custom serial terminal connection to the BBB, where
such commands are the only permitted interaction with the BBB. The same
code example can be modifi ed slightly and used on a desktop machine to
form the client end of the connection (communicating with COM20 on my
desktop machine).

 LISTING 9‐11: exploringbb/chp09/serialserver/BBBSerialServer.c

 #include<stdio.h>

 #include<fcntl.h>

 #include<unistd.h>

 #include<termios.h>

 #include<string.h>

 #include<stdlib.h>

 // Sends a message to the client and displays the message on the console

 int message(int client, char *message){

 int size = strlen(message);

 printf(message);

 if (write(client, message, size)<0){

 perror("Failed to write to the client\n");

 return -1;

 }

 return 0;

 }

 // Checks to see if the command is one that is understood by the server

 int processBBBCommand(int client, char *command){

 int return_val = -1;

 if (strcmp(command, "LED on")==0){

 return_val = message(client, "*** Turning the LED on ***\n");

 //Add code to light the LED

 }

 else if(strcmp(command, "LED off")==0){

 return_val = message(client, "*** Turning the LED off ***\n");

 //Add code to turn off the LED

 }

 else if(strcmp(command, "quit")==0){

 return_val = message(client, "*** Killing the BBB Serial Server

***\n");

 }

 else {

 Chapter 9 ■ Interacting with the Physical Environment 367

 return_val = message(client, "*** Unknown command! ***\n");

 }

 return return_val;

 }

 // The main application. Must be run as root and must pass the terminal name.

 int main(int argc, char *argv[]){

 int client, count=0;

 unsigned char c;

 char *command = malloc(255);

 if(getuid()!=0){ // Is the user root?

 perror("You must run this program as root on the BBB. Exiting!\n");

 return -1;

 }

 if(argc!=2){ // Was the device passed?

 perror(" You must provide the device name: e.g., /dev/ttyO0.

Exiting!\n");

 return -1;

 }

 // Set up the connection

 if ((client = open(argv[1], O_RDWR | O_NOCTTY | O_NDELAY))<0){

 perror("UART: Failed to open the file.\n");

 return -1;

 }

 struct termios options;

 tcgetattr(client, &options);

 options.c_cflag = B115200 | CS8 | CREAD | CLOCAL;

 options.c_iflag = IGNPAR | ICRNL;

 tcflush(client, TCIFLUSH);

 fcntl(STDIN_FILENO, F_SETFL, O_NONBLOCK); // make the reads non-blocking

 tcsetattr(client, TCSANOW, &options);

 if (message(client, "BBB Serial Server has started running.\n")<0){

 return -1;

 }

 do { // Loop forever until the quit command is sent or Ctrl-C is typed

 if(read(client,&c,1)>0){

 write(STDOUT_FILENO,&c,1);

 command[count++]=c;

 if(c=='\n'){

 command[count-1]='\0'; //replace /n with /0

 processBBBCommand(client, command);

 count=0; //reset the command string for the next command

 }

 }

 if(read(STDIN_FILENO,&c,1)>0){ //can send text from stdin to client

 write(client,&c,1);

 }

 }

 while(strcmp(command,"quit")!=0);

continues

368 Part II8 ■ Interfacing, Controlling, and Communicating

LISTING 9‐11 (continued)

 close(client);

 return 0;

 }

 Start the COM20 serial terminal session in PuTTY before you execute this
program (in a regular SSH session) in order to see the full output. The out-
put appears simultaneously in the desktop PuTTY terminal (115,200 baud),
as captured in Figure 9-21 and the Linux SSH session that follows. Enable
“Implicit LF in every CR” in the PuTTY settings to get the same output. This
code can be built and executed as shown here, where it is attached to the
gadget serial device:

 ~/.../chp09/serialserver$ gcc BBBSerialServer.c ‐o BBBSerialServer
 ~/.../chp09/serialserver$ sudo ./BBBSerialServer /dev/ttyGS0
 BBB Serial Server has started running.
 Test command from the PC
 *** Unknown command! ***
 LED on
 *** Turning the LED on ***
 LED off
 *** Turning the LED off ***
 Typing a message on the PC
 *** Unknown command! ***
Typing a message on the BBB
 quit
 *** Killing the BBB Serial Server ***
 ~/exploringbb/chp09/serialserver$

 Figure 9-21: The COM20 serial console on the desktop machine as connected to the custom service

 Starting a Custom Service on Boot

 The service in the last section will halt when the BBB is restarted (or the
quit command is sent). To set up a service to start automatically on boot,

 Chapter 9 ■ Interacting with the Physical Environment 369

you should fi rst place the executable service in a general directory. This will
help prevent it from being accidentally deleted from a user account home
directory:

 /exploringbb/chp09/serialserver$ sudo cp BBBSerialServer /usr/bin

 The BBB services confi guration fi les (.service fi les) are stored in the /lib/
systemd/system directory. For example:

 /exploringbb/chp09/serialserver$ sudo su ‐
 root@beaglebone:~# cd /lib/systemd/system
 root@beaglebone:/lib/systemd/system# ls |less
 bluetooth.service
 bonescript-autorun.service
 bonescript.service ...

 The .service fi les themselves describe the order in which each service should be
started. For example, a new service can be created that starts the BBBSerialServer
when the BBB boots, as follows:

 root@beaglebone:/lib/systemd/system# nano bbb‐serial‐server.service
 root@beaglebone:/lib/systemd/system# more bbb‐serial‐server.service
 [Unit]
 Description=BBB Serial Server (from EBB)
 Before=getty.target

 [Service]
 ExecStart=/usr/bin/BBBSerialServer /dev/ttyGS0
 SyslogIdentifier=BBBSerialServer
 Restart=on-failure
 RestartSec=10

 [Install]
 WantedBy=multi-user.target

 The setting Multi‐user.target relates to the init “run‐level 3” that is
discussed in Chapter 3 . The service can be enabled by using a systemctl
call, as follows:

 /lib/systemd/system# systemctl enable bbb‐serial‐server.service
 ln -s '/lib/systemd/system/bbb-serial-server.service' ...
 /lib/systemd/system# systemctl start bbb‐serial‐server.service
 /lib/systemd/system# systemctl status bbb‐serial‐server.service
 bbb-serial-server.service - BBB Serial Server (from EBB)
 Loaded: loaded(/lib/systemd/system/bbb-serial-server.service;enabled)
 Active: active(running) since Sun, 29 Jun 2014 19:40:43 +0000;6s ago
 Main PID: 3268 (BBBSerialServer)
 CGroup: name=systemd:/system/bbb-serial-server.service ...

370 Part II0 ■ Interfacing, Controlling, and Communicating

 The serial server is now running on the BBB, which can be accessed as before
using a connection to COM20 on the desktop machine. The quit command is
poorly designed, as it terminates the service—it should probably be removed
if you use this code as a template. If the commands are entered as shown in
Figure 9-22 , then the service responds with the following status after a call to quit:

 /lib/systemd/system# systemctl status bbb‐serial‐server.service
 bbb-serial-server.service - BBB Serial Server (from EBB)
 Loaded: loaded(/lib/systemd/system/bbb-serial-server.service;enabled)
 Active: inactive(dead) since ...
 Jun 29 19:42:45 beaglebone BBBSerialServer[3268]: Led on
 Jun 29 19:42:47 beaglebone BBBSerialServer[3268]: LED on
 Jun 29 19:43:37 beaglebone BBBSerialServer[3268]: quit

 Figure 9-22: The COM20 serial console on the desktop machine as connected to the custom
service

 Bluetooth

 Bluetooth is a popular wireless communication system that was created by
Ericsson and is now managed by the Bluetooth Special Interest Group (SIG).
Bluetooth was designed as an open standard to enable very different device
types to communicate wirelessly over short distances. It is often used for
the digital transfer of data for audio headsets, keyboards, computer mice,
medical devices, and many more applications. The BBB does not have on‐
board support for Bluetooth, but support can be added using a low‐cost USB
Bluetooth adapter.

 Installing an Adapter

 The choice of Bluetooth adapter is very important—not every adapter has Linux
driver support. Ideally, you should determine in advance of purchase if there is
Linux support and it works with the BBB. Unfortunately, that is not always pos-
sible; furthermore, as Linux device driver support is usually chipset‐dependent,
it may even be the case that two devices with the same model number and
ostensibly the same functionality have different chipsets, leaving one supported

 Chapter 9 ■ Interacting with the Physical Environment 371

by Linux and the other not. The Bluetooth adapter used in this section is the
Kinivo BTD‐400 Bluetooth 4.0 USB adapter (~$15), shown in Figure 9-23 . It is
commonly available, and the current version uses a Broadcom chipset that has
good Linux support.

 The fi rst step is to install the packages that are required for Bluetooth con-
nectivity on the BBB. Check that you have suffi cient free space on the BBB, as
the installation requires about 200 MB of storage:

 molloyd@beaglebone:~$ sudo apt‐get update
 molloyd@beaglebone:~$ sudo apt‐get install bluetooth bluez‐utils

 After installation, the BBB should be shut down and the adapter plugged into
the BBB USB socket. Once the board is booted, you can list the USB modules that
are currently connected to the BBB using the following, where the Broadcom
Corp. listing indicates that the device has been detected:

 root@beaglebone:~# lsusb
 Bus 001 Device 002: ID 0a5c:21e8 Broadcom Corp. ...

 Figure 9-23: Bluetooth‐connected BeagleBone

 Loadable Kernel Modules

 A Linux loadable kernel module (LKM) is a mechanism for adding code to the
Linux kernel at run time. They are ideal for device drivers, enabling the kernel
to communicate with the hardware without it having to know how the hardware
works. The alternative to LKMs would be to build the code for each and every
driver into the Linux kernel, which would lead to an impractical kernel size and
constant kernel recompilations. LKMs are loaded at run time, but they do not
exist in user space—they are essentially part of the kernel. When the Bluetooth
adapter is plugged into the BBB, you can use the lsmod command to fi nd out
which modules are currently loaded. For example

 molloyd@beaglebone:~$ lsmod
 Module Size Used by

372 Part II ■ Interfacing, Controlling, and Communicating

 btusb 9835 0
 bluetooth 150504 24 bnep,btusb,rfcomm
 rfkill 16656 2 bluetooth

 The modprobe command enables you to add or remove an LKM to or from
the Linux kernel at run time. However, if everything has worked correctly,
the module should have loaded automatically. You can check dmesg for errors
that may have arisen when the BBB was booting. Using cat /proc/modules
provides similar information about the modules that are loaded, but it is in a
less readable form.

 Confi guring a Bluetooth Adapter

 The hcitool command is used to confi gure Bluetooth connections, and if the dev
argument is passed it provides information about the local Bluetooth device:

 molloyd@beaglebone:~$ hcitool dev
 Devices: hci0 00:02:72:C8:2F:FF

 This is the hardware device address of the adapter that was connected to
my board. Using this command you can scan for devices, display connections,
display power levels, and perform many more functions—check man hcitool
for more details. At this point, you should be able to scan for Bluetooth devices
in the vicinity. Ensure that the devices are discoverable —that they can be found
when a scan takes place. For example, under Windows you have to explicitly
make an adapter discoverable, by using Window ➢ taskbar ➢ (Bluetooth logo)
➢ right‐click ➢ Open Settings, and enable “Allow Bluetooth devices to fi nd this
computer.” To scan for Bluetooth devices in the vicinity, use:

 molloyd@beaglebone:$ hcitool scan
 Scanning 00:26:83:32:CF:0D DEREKMOLLOY-PC

 This means that the adapter on the BBB has discovered my desktop computer,
DEREKMOLLOY‐PC (the hcitool scan command may activate Bluetooth devices in
the nearby rooms that use Bluetooth remote controls—e.g., smart televisions!).
The BBB can interrogate the available services using:

 root@beaglebone:$ sdptool browse 00:26:83:32:CF:0D
 Browsing 00:26:83:32:CF:0D ...
 Service Name: Service Discovery
 Service Provider: Microsoft...

 This output is followed by a long list of available services, such as an audio
source, audio sink, ftp server, printing service, and so on, each having its own
unique channel number. Chapter 11 examines how you can pair an interface
device to the BBB. However, the current chapter describes how you can send
commands to the BBB from a desktop machine, tablet computer, or mobile phone.

 Chapter 9 ■ Interacting with the Physical Environment 373

 Making the BBB Discoverable

 If the BBB is to act as a wireless server, it is vital that the BBB is discoverable
by the client machines. The hciconfig command can confi gure the Bluetooth
device (hci0) to enable page and inquiry scans, as follows:

 molloyd@beaglebone:$ sudo hciconfig hci0 piscan

 A Serial Port Profi le (SPP) is required on the BBB to defi ne how virtual serial
ports are connected via Bluetooth connections. The sdptool can be used to
confi gure a profi le for a serial port (SP) on channel 22 and fi nd details about
available services using:

 molloyd@beaglebone:$ sudo sdptool add --channel=22 SP
 molloyd@beaglebone:$ sdptool browse local

 At this point, the desktop computer can be used to scan for devices. The
BBB should be detected as beaglebone‐0 . The Windows OS installs several
device drivers, as illustrated in Figure 9-24 . These Bluetooth services are
advertised by default on the BBB, but they are not necessarily available.
However, in order to allow for communication between the BBB and the
desktop PC, a serial connection needs to be established to channel 22. When
sdptool is used to add channel 22, a “Serial port (SPP)” option should
appear in the list of available services on the desktop computer—in my
case it is COM22.

 Figure 9-24: Windows connecting to the BeagleBone using an on‐board Bluetooth interface

 The BBB needs to run a service that can listen for incoming connections on
channel 22. The rfcomm confi guration utility can be used to listen for connec-
tions on a specifi c Bluetooth channel, as follows in the SSH session:

 molloyd@beaglebone:$ sudo rfcomm listen /dev/rfcomm0 22
 Waiting for connection on channel 22

 A serial terminal can then be opened from the desktop machine to the BBB
using PuTTY, by opening a connection to the associated COM port. In my case it

374 Part II4 ■ Interfacing, Controlling, and Communicating

is COM22 and the baud rate is 115,200 by default. When a connection is formed
to the BBB, the SSH window displays:

 molloyd@beaglebone:$ sudo rfcomm listen /dev/rfcomm0 22
 Waiting for connection on channel 22
 Connection from 00:26:83:32:CF:0D to /dev/rfcomm0
 Press CTRL-C for hangup

 Do not stop this service. While the service is listening, open a second SSH
terminal to the BBB. In the second SSH terminal you can cat and echo to the
device associated with the Bluetooth serial connection rfcomm0 :

 molloyd@beaglebone:/dev$ cat rfcomm0
 Hello BeagleBone Black! from the desktop computer
^C
 molloyd@beaglebone:/dev$ echo "Hello Desktop PC! from the BBB">>rfcomm0

 Figure 9-25 captures the RealTerm application (realterm.sourceforge.net/)
when it is connected to the BBB via Bluetooth.

 Figure 9-25: RealTerm connected to the BBB using the Bluetooth Port 22

 At this point it is clear that the device is working, and you can connect a
minicom terminal to the RealTerm application as follows:

 molloyd@beaglebone:/dev$ minicom ‐b 115200 ‐o ‐D /dev/rfcomm0

 You can also use a tablet or phone device that has Bluetooth capability to com-
municate with the BBB directly. The “Bluetooth Module CI” Android application
works perfectly for direct connection to the BBB, and so should many others.

 Android Application Development with Bluetooth

 There are substantial resources available for Bluetooth mobile application devel-
opment with both Android and iOS. A great place to start is with the MIT App
Inventor (appinventor.mit.edu). It consists of a very innovative web‐based
graphical programming language (like MIT Scratch) for mobile application
development. You can pair an Android tablet or phone with the App Inventor
environment and view your code developments live on your mobile device.
The App Inventor API has Bluetooth client and server libraries that can be
integrated with your program code. Figure 9-26 illustrates a full Bluetooth

 Chapter 9 ■ Interacting with the Physical Environment 375

application running on my mobile phone that was built with App Inventor 2.
It is communicating to a minicom session that is executing on the BBB, while
the rfcomm service is started in a second terminal window. The (real) phone canm

communicate directly with the BBB via Bluetooth using the custom‐developed
mobile application. This could be altered to form any type of mobile GUI dis-
play that sends commands to the BBB or displays data in a rich user interface.

 Figure 9-26: An example App Inventor Android application that uses the Bluetooth code library

 This application was based on the Pura Vida Apps code example, which is
available at: tiny.cc/ebb907 . The code for the example in Figure 9-26 has not
been made available in the GitHub repository, as it is strongly based on the
linked code. Such a code example can be useful as the basis of an Android
application that is capable of sending commands and receiving data from
the BBB using Bluetooth communication. Notice that the receive function is
on a 2.5‐second timer, so if the timer triggers halfway through a string being
entered, then the string is received in two parts. Applications that are developed
with App Inventor 2 can be distributed like regular applications (e.g., using
.apk fi les) to be side‐loaded on Android devices. The EBB _ Bluetooth _ Chat
.apk example application is available in the /exploringbb/chp09/Android/
directory.

376 Part II6 ■ Interfacing, Controlling, and Communicating

 Building Dynamic Linked Libraries

 The examples in this chapter are all linked to a dynamic library fi le in the direc-
tory /library with the name libEBBLibrary.so . This is very useful because it
means that you do not have to compile the entire library of code each time you
build an example. If you wish to modify the source code of this library, here
are the steps to build a dynamically linked library in Eclipse:

 1. Select File ➢ New Project ➢ C++ Project. Choose Shared Library ➢ Empty
Project. Give it a suitable name, for example, “EBBLibrary.”

 2. Place all your library project fi les in the project directory. In this example
case you would place all the .cpp and .h fi les for the project in the direc-
tories bus , display , gpio , and so on.

 3. In Project ➢ Properties go to C/C++ Build ➢ Settings and set the follow-
ing properties:

■ The GCC C++ Compiler command should be arm‐linux‐gnueabihf‐g++;+
under Miscellaneous, enable Position Independent Code (‐fPIC).C

■ The GCC C++ Linker command should be arm‐linux‐gnueabihf‐g++; +
under Miscellaneous, add −pthread .

■ The GCC Assembler command should be arm‐linux‐gnueabihf‐as .

 When you build the project, a new fi le should appear in the Binaries direc-
tory with the name libEBBLibrary.so−[arm/le] . This can simply be copied to
the BBB and used within a project. See the build scripts in the various examples
of this chapter.

 Summary

 After completing this chapter, you should be able to do the following:

■ Interface to actuators, such as DC motors, stepper motors, and relays.

■ Protect the BBB ADC from damage using op‐amp clamping.

■ Condition a sensor signal so that it can be interfaced to the BBB ADCs,
regardless of the output voltage levels.

■ Interface analog sensors such as distance sensors and accelerometers to
the BBB.

■ Interface to low‐cost display modules such as seven‐segment displays
and character LCD displays.

■ Use systemd to control services and create custom services that start
when the BBB boots.

 Chapter 9 ■ Interacting with the Physical Environment 377

■ Use the BBB as a serial server, so that it can be remotely controlled.

■ Use Bluetooth to communicate with the BBB and have exposure to the
steps involved in desktop application or mobile application control.

■ Build C/C++ code as a dynamic library to be used on the BBB.

 Further Reading

 The following additional links provide further information on the topics in
this chapter:

■ The Hitachi HD44780 datasheet: tiny.cc/ebb908

■ There is an excellent guide on using Bluetooth with Linux at tiny.cc/
ebb909

Notes

 1. The input impedance varies according to the function: Impedance (ω) = 1⁄(65.97 × ω
10−12 × f). Texas Instruments. (March 26, 2013). AM335x Data Sheet. Dallas: Texas
Instruments Incorporated. http://www.ti.com/lit/ds/symlink/am3358.pdf.

 2. National Semiconductor Corporation. (1994). LM158/LM258/LM358/LM2904 Low
Power Dual Operational Amplifiers. USA.: National Semiconductor Corporation.

 Par t

 III
 Advanced BeagleBonee Systems Advanced BeagleBonee Systems

 In This Part

 Chapter 10: The Internet of Things
 Chapter 11: BeagleBone with a Rich User Interface
 Chapter 12: Images, Video, and Audio
 Chapter 13: Real-Time BeagleBone Interfacing

381

 C H A P T E R

 10

 The Internet of Things of Things

 In this chapter you are introduced to the concept of the Internet of Things (IoT).
Two new sensors are discussed—a simple temperature sensor and a more com-
plex Bluetooth low‐energy sensor. Using the BBB, these sensors are the example
things that are connected to the Internet. Several different IoT communications
architectures are described: The fi rst architecture confi gures the BBB to be a
web server that uses server‐side scripting to display sensor data. Next, custom
C/C++ code is described that can push sensor data to the Internet and to plat-
form as a service (PaaS) offerings, such as ThingSpeak and Xively. Finally, a
client/server pair for high‐speed Transmission Control Protocol (TCP) socket
communication is described. The latter part of the chapter introduces some
techniques for managing distributed BBB sensors, and physical networking
topics, including connecting the BBB to the Internet using Wi‐Fi; setting the
BBB to have a static IP address; and using Power over Ethernet (PoE) with the
BBB. By the end of this chapter you should appreciate the power of the BBB to
leverage Linux software in order to build complex network‐attached devices,
and you should be able to build your own IoT devices.

 Equipment Required for This Chapter:

■ BeagleBone Black

■ Analog Devices TMP36 temperature sensor

382 Part III ■ Advanced BeagleBone Systems

■ Texas Instruments SensorTag with Bluetooth adapter (optional)

■ Linux‐compatible USB Wi‐Fi adapter

 Further details on this chapter are available at www.exploringbeaglebone
.com/chapter10/ .

 The Internet of Things (IoT)

 The terms Internet of Things (IoT) and cyber‐physical systems (CPS) are broadly used
to describe the extension of the web and the Internet into the physical realm, by
the connection of distributed embedded devices. Presently, the Internet is largely
an internet of people—the IoT concept envisions that if physical sensors and
actuators can be linked to the Internet, then a whole new range of applications
and services are possible. For example, if sensors in a home environment could
communicate with each other and the Internet, then they could be “smart” about
how they function—a home heating system that could retrieve the weather fore-
cast may be more effi cient and could provide a more comfortable environment.
Within smart homes, IoT devices should be able to automate laborious tasks;
manage security; and improve energy effi ciency, accessibility, and convenience.
However, the IoT also has broad application to many large‐scale industries, such
as energy management, healthcare, transport, and logistics.

 In Chapter 9 , interaction with the physical environment is discussed in
detail. When the physical world can be acted upon by devices that are attached
to the Internet, such as actuators, then the devices are often called CPS. The
terms IoT and CPS are often used interchangeably, with certain industries
such as smart manufacturing favoring the term CPS. However, it is not
unreasonable to consider a CPS to be a constituent building block that when
combined with web sensors and large‐scale communications frameworks
forms the IoT.

 In this chapter the implementation of several software communication archi-
tectures that can be used to realize IoT or CPS is described. Figure 10-1 illustrates
a summary of the different communication architectures that are implemented
in this chapter.

 Each of the architectures in Figure 10-1 has a different structure, and each
can be applied to different communications applications:

 1. The BBB Web Server : A BBB that is connected to a sensor and running
a web server can be used to present information to the web when it is
requested to do so by a web browser. Communications take place using
the Hypertext Transfer Protocol (HTTP).

 2. The BBB Web Client : A BBB can initiate contact with a web server using
HTTP requests to send and receive data. A C/C++ program is written

 Chapter 10 ■ The Internet of Things 383

that uses the TCP and TCP sockets to build a basic web browser, which
can communicate over HTTP, or if necessary, securely over HTTPS.

 3. The BBB TCP Client/Server : A custom C++ client and server are presentedr
that can intercommunicate at high speeds with a user‐defi ned communi-
cations protocol.

 4. The BBB Web Sensor using a PaaS : Code is written to enable the BBB to
use HTTP and custom APIs to send data to, and receive data from, web
services such as ThingSpeak and Xively. This code enables you to build
large arrays of sensors that can intercommunicate and store data on remote
servers. In addition, these web services can be used to visualize the data
that is stored.

 Figure 10-1: Different software communication architectures implemented in this chapter

 Before examining these communication architectures, you need a thing to
connect to the Internet, for which two new sensors are discussed.

384 Part III4 ■ Advanced BeagleBone Systems

 More Sensors (Things!)

 Two new sensors are illustrated in Figure 10-2 , the Analog Devices TMP36 tempera-
ture sensor and the Texas Instruments SensorTag . The TMP36 is used throughout this gg
chapter, as it has a low cost ($1–$2) and is widely available. The SensorTag (~$25)
is also introduced because it demonstrates the capability of Bluetooth 4.0/LE—a
low‐energy Bluetooth protocol that is ideal for connecting things to your BBB.

 Figure 10-2: (a) The Analog Device TMP36 Temperature Sensor; (b) the Texas Instruments
SensorTag

 A Room Temperature Sensor

 The Analog Devices TMP36 is a three‐pin (TO‐92 packaged) analog sensor
that measures temperature over the range of –40°C to +125°C and is accurate
to ±1°C at 25°C. It can be supplied with an input voltage using the BBB’s 3.3 V or
5 V pins, and it provides an output of 750 mV at 25°C. Unlike the distance sen-
sor in the last chapter, it has a linear output, whereby the output scale factor is
10 mV/°C. This means that the minimum output voltage is 0.75 V – (65 × 0.01 V) =
0.1 V and the maximum output voltage is 0.75 V + (100 × 0.01 V) = 1.75 V. These
voltage output levels are within the safe levels for the BBB ADC—the room
temperature range is not! The sensor output current will be between 0 μA and
50 μA, depending on the input impedance of the device to which it is attached.
The high input impedance of the BBB ADC means that current supplied to the
BBB is only a few nano amps, and therefore the sensor can be safely connected
directly to the BBB AIN pins.

 A wiring confi guration for the sensor to the BBB is identifi ed in Figure 10-2 (a).
To set up and build the example code, follow these steps:

 ~/exploringBB/chp10/tmp36$ sudo sh ‐c "echo BB‐ADC > $SLOTS"
 ~/exploringBB/chp10/tmp36$ cat $SLOTS|grep ADC

 Chapter 10 ■ The Internet of Things 385

 7: ff:P-O-L Override Board Name,00A0,Override Manuf,BB-ADC
 ~/exploringBB/chp10/tmp36$ g++ tmp36.cpp ‐o tmp36

 The temperature can be calculated using AIN0 by passing 0 to the program:

 ~/exploringBB/chp10/tmp36$./tmp36 0
 Starting the TMP36 temperature sensor program
 The ADC value is: 1775
 The temperature is: 28.0029 degrees Celsius.

 The C/C++ code required to convert the ADC value (e.g., 1775 in this case) to
a temperature in degrees Celsius is expressed in C code as follows:

 float getTemperature(int adc_value){
 float cur_voltage = adc_value * (1.80f/4096.0f);
 float diff_degreesC = (cur_voltage-0.75f)/0.01f;
 return (25.0f + diff_degreesC);
 }

 The TMP36 datasheet provides details on how the sensor can be wired using
twisted pair cables to be physically distant from the BBB itself. Such a confi gura-
tion would enable the sensor to be used for external temperature‐monitoring
applications. The datasheet for the TMP35/36/37 is available at tiny.cc/ebb1001 .

 Texas Instruments SensorTag

Bluetooth Low Energy (LE) (aka Bluetooth Smart) is a technology for wirelesst
personal area network applications, such as home automation, healthcare, and
home entertainment. Bluetooth Smart is focused on low‐energy applications,
while still maintaining the same communications range as regular Bluetooth.
The SensorTag, which is illustrated in Figure 10-2 (b), has a quiescent current
consumption of 8 μA, potentially enabling it to operate on a small CR2032 bat-
tery for many months. The SensorTag is a Bluetooth Smart development kit that is
targeted in particular at smartphone application developers. However, it can also
be used by the BBB as a sensor node that can collect data from its environment.

 Connecting to Bluetooth Smart Devices

 To use the SensorTag, fi rst install the Bluetooth package:

 molloyd@beaglebone:~$ sudo apt‐get install bluetooth

 This package contains the tools that are discussed in Chapter 9 , such as the
host controller interface tool (hcitool) that is used to confi gure Bluetooth con-
nections. The hcitool executable also has low‐energy device commands, such
as scan (lescan), whitelist add (n lewladd), create connection (d lecc), disconnect c

(ledc), and connection update (c lecup).p

386 Part III6 ■ Advanced BeagleBone Systems

 To connect to the SensorTag, press the button on the side of the SensorTag,
scan for its Bluetooth ID, and connect to it as follows:

 molloyd@beaglebone:~$ sudo hcitool lescan
 LE Scan ... BC:6A:29:AE:D1:27 SensorTag
 molloyd@beaglebone:~$ sudo hcitool lewladd BC:6A:29:AE:D1:27
 molloyd@beaglebone:~$ sudo hcitool lewlsz
 White list size: 32
 molloyd@beaglebone:~$ sudo /etc/init.d/bluetooth restart
 [ok] Restarting bluetooth (via systemctl): bluetooth.service.
 molloyd@beaglebone:~$ sudo hcitool lecc BC:6A:29:AE:D1:27
 Connection handle 64

 Before you start to control the SensorTag, it needs the latest version of the
Bluez Bluetooth stack for Linux, which you may need to build yourself.

 Building a Linux Package

 It is often the case in Linux that the latest versions of software packages are not
part of the current distribution—they may require further rigorous testing. One
great thing about open‐source software is that you yourself can build and add
such packages to your Linux installation. Unfortunately, this task is not always
straightforward—there may be interdependency requirements that need to be
met, or the software may simply not yet be ready for rollout.

 The version of the Bluez Bluetooth stack that is distributed with Debian (v5.18
at the time of writing) needs to be updated in order to communicate success-
fully with the SensorTag. You can use a web browser to fi nd the latest version of
Bluez at www.kernel.org/pub/linux/bluetooth/ . Download it and install any
dependencies (which will otherwise be identifi ed when you attempt to build
the code) as follows on the BBB : 1

 ~$ wget http://www.kernel.org/pub/linux/bluetooth/bluez‐5.18.tar.xz
 ~$ tar xvf bluez‐5.18.tar.xz
 ~$ sudo apt‐get install libusb‐dev libudev‐dev libdbus‐1‐dev
 ~$ sudo apt‐get install libical‐dev libreadline‐dev
 ~$ cd bluez‐5.18

 Then build the package using the following steps. The enable‐library fl ag
for this build allows C/C++ code to be written that interfaces directly to the
Bluez library:

 molloyd@beaglebone:~/bluez‐5.18$./configure --enable‐library
 molloyd@beaglebone:~/bluez‐5.18$ make
 molloyd@beaglebone:~/bluez‐5.18$ sudo make install

1 For your convenience the built executable is available in the GitHub repository (chp10/
gatttool/).

 Chapter 10 ■ The Internet of Things 387

 The gatttool is used to access the services on a Bluetooth device and the make
install script does not install it by default. Therefore, you need to fi nd and
replace the current version of the tool:

 molloyd@beaglebone:~/bluez‐5.18$ whereis gatttool
 gatttool: /usr/bin/gatttool /usr/bin/X11/gatttool
 molloyd@beaglebone:~/bluez‐5.18$ sudo cp attrib/gatttool /usr/bin

 Controlling a Bluetooth Smart Device

 The latest version of gatttool is now installed and can be used to access the
SensorTag services, which may require pressing the button on the side of the
SensorTag. You can then connect to the sensor and read from, and write to,
handles (such as registers), where the full set of attributes are described at
tiny.cc/ebb1002 . For example, the following connects and reads the manufac-
turer name string from the SensorTag at the handle 0x1D:

 molloyd@beaglebone:~$ gatttool ‐b BC:6A:29:AE:D1:27 --interactive
 [BC:6A:29:AE:D1:27][LE]> connect
 Attempting to connect to BC:6A:29:AE:D1:27 ... Connection successful
 [BC:6A:29:AE:D1:27][LE]> char‐read‐hnd 0x1D
 Characteristic value/descriptor: 02 1e 00 29 2a

 Or, to read the infrared (IR) temperature sensor at 0x25, which is inactive
until it is turned on by writing 01 to handle 0x29:

 [BC:6A:29:AE:D1:27][LE]> char‐read‐hnd 0x25
 Characteristic value/descriptor: 00 00 00 00
 [BC:6A:29:AE:D1:27][LE]> char‐write‐cmd 0x29 01
 [BC:6A:29:AE:D1:27][LE]> char‐read‐hnd 0x25
 Characteristic value/descriptor: e8 fe 24 0d

 It is also possible to use the gatttool command to read a value on a
single line. For example, the following reads the manufacturer string on a
single line:

 ~$ gatttool ‐b BC:6A:29:AE:D1:27 --char‐read --handle=0x1D
 Characteristic value/descriptor: 02 1e 00 29 2a

 The next example reads the temperature sensor (it has to be performed in
quick succession, e.g., within a script):

 ~$ gatttool ‐b BC:6A:29:AE:D1:27 --char‐write --handle=0x29 --value=01
 ~$ gatttool ‐b BC:6A:29:AE:D1:27 --char‐read --handle=0x25
 Characteristic value/descriptor: ce fe c4 0c

388 Part III8 ■ Advanced BeagleBone Systems

 The IR sensor returns two 16‐bit values—the object temperature (die tem-
perature) and the ambient temperature (target temperature). The formulae for
converting these values into °C are at tiny.cc/ebb1003 .

 An excellent Python code example by Mike Saunby (mike.saunby.net(() can t

be used to parse the data from the SensorTag:

 ~$ git clone git://github.com/msaunby/ble‐sensor‐pi.git
 ~$ cd ble‐sensor‐pi/sensortag/
 ~/ble‐sensor‐pi/sensortag$ python sensortag.py BC:6A:29:AE:D1:27
 ACCL [-0.03125, -0.96875, 0.0625]
 T006 23.1
 MAGN [-10.894775390625, 25.32958984375, -55.419921875]
 GYRO [31L, 253L, 240L, 255L, 92L, 0L]
 HUMD 37.8
 BARO 26.19 995.21

 Given the low‐energy nature of the SensorTag, it is unlikely that any application
developed using it would focus on high‐frequency data capture, so interfacing to
a Python script is acceptable. Because of the TMP36 temperature sensor's wide
availability and low cost, it is chosen over the SensorTag as a proof‐of‐concept
example for the remainder of this chapter. However, any developed code could
be easily adapted to also interface to the SensorTag.

 The BeagleBone as a Web Server

 One signifi cant advantage of an embedded Linux device over more tradi-
tional embedded systems is the vast amount of open‐source software that is
available. In this section, a web server is installed and confi gured on the BBB.
It is a straightforward process compared to the steps involved for a typical
non‐Linux embedded platform. In fact, one of the more diffi cult challenges
is choosing which Linux web server to use! There are low‐overhead servers
available such as lighttpd, Boa, Monkey and Nginx, but Apache is a good
web server to use for getting started—in fact, it is currently installed in
the BBB Debian image. Once you are familiar with Apache, you could then
investigate web server solutions that are designed specifi cally for embedded
Linux devices.

 Running a web server on the BBB provides you with a number of application
possibilities, including the following:

■ Present general web content to the world.

■ Integrate sensors and display their values to the world.

■ Integrate sensors and use it to intercommunicate between devices.

■ Provide web‐based interfaces to tools that are running on the BBB.

 Chapter 10 ■ The Internet of Things 389

 Installing a Web Server

 The Apache server is currently present in the BBB Debian distribution. You can
use the following commands to install or upgrade it:

 molloyd@beaglebone:~$ dpkg --get‐selections|grep apache
 apache2 install
 molloyd@beaglebone:~$ sudo apt‐get update
 molloyd@beaglebone:~$ sudo apt‐get install apache2

 On the BBB Debian image the Apache web server is running on port number
8080 by default. A port number is an identifi er that can be combined with an IP
address to provide an endpoint for a communications session. It is effectively
used to identify the software service that is required by a client. For example,
you can fi nd out the list of services that are listening to ports on the BBB by
using the network statistics (netstat) command: t

 molloyd@beaglebone:~$ sudo netstat ‐tlpn
 Active Internet connections (only servers)
 Proto Local Address Foreign Address State PID/Program name
 tcp6 :::22 :::* LISTEN 936/sshd
 tcp6 :::8080 :::* LISTEN 1055/apache2
 tcp6 :::80 :::* LISTEN 1/systemd ...

 Therefore, when a network request is received for port 8080 it is directed to
the Apache2 web server application. The usual port number for unsecured web
traffi c is 80—this is assumed when you enter an URL in your web browser. You
can see in the preceding list that port 80 is currently directed to systemd , whichd

in turn uses bonescript.service to provide the Bone101 web pages.

 Confi guring an Apache Web Server

 Apache can be confi gured using the fi les in /etc/apache2/

 molloyd@beaglebone:/etc/apache2$ ls
 apache2.conf envvars mods-available ports.conf sites-enabled
 conf.d magic mods-enabled sites-available

 where the core confi guration fi les are as follows:

■ apache2.conf is the main confi guration fi le for the server.

■ ports.conf is for confi guring virtual server port numbers (set to port 8080
by default on the BBB Debian image).

■ The sites‐available directory contains the confi guration fi les for any
virtual sites, and the sites‐enabled directory should contain a symbolic
link to a confi guration fi le in the sites‐available directory, in order to

390 Part III0 ■ Advanced BeagleBone Systems

activate a site. The a2ensite and a2dissite commands should be used to
enable and disable sites. There is an example confi guration fi le present, in
which you should set the ServerAdmin e‐mail address and the document
root (the default is /var/www).w

 In addition to the confi guration fi les, the functionality of Apache can be
further extended (e.g., to provide Python support) with the use of modules (see
tiny.cc/ebb1004 for a full list). You can identify the current modules that have
been compiled into Apache using the following:

 molloyd@beaglebone:/etc/apache2$ apache2 ‐l
 Compiled in modules: core.c mod_log_config.c mod_logio.c
 mod_version.c worker.c http_core.c mod_so.c

 Creating Web Pages and Web Scripts

 To create a simple web page for the BBB web server you can use the nano editor
and some basic HTML syntax as follows:

 molloyd@beaglebone:/var/www$ nano index.html
 molloyd@beaglebone:/var/www$ more index.html
 <HTML><TITLE>BBB First Web Page</TITLE>
 <BODY><H1>BBB First Page</H1>
 The BeagleBoneBlack test web page.
 </BODY></HTML>

 Now when you connect to the web server on the BBB using a web browser,
you will see the output displayed in Figure 10-3 .

 Figure 10-3: A first web page on the BBB

 Web pages are ideal for the presentation of static web content , and by using an t
editor like KompoZer, CoffeeCup, or Notepad++ you can quickly build HTML
content for a personal web server. You could then use the port forwarding
functionality of your home router, and a dynamic DNS service, to share your
static web content with the world.

 More advanced dynamic web content can also be developed for the BBB that
interfaces to the physical environment for such tasks as reading sensor data or
actuating motors. One relatively straightforward method of doing this is to use

 Chapter 10 ■ The Internet of Things 391

Common Gateway Interface (CGI) scripts. The confi guration fi le in (or linked to in)I
the sites‐enabled directory specifi es a directory location in which scripts can
be placed, so that they can be executed via a web browser request. The default
location is the /usr/lib/cgi‐bin/ directory, where a simple script can be created
as follows (see /chp10/cgi‐bin/test.cgi in the GitHub repository):

 molloyd@beaglebone:~$ cd /usr/lib/cgi‐bin/
 molloyd@beaglebone:/usr/lib/cgi‐bin$ sudo nano test.cgi
 molloyd@beaglebone:/usr/lib/cgi‐bin$ more test.cgi
 #!/bin/bash
 echo "Content-type: text/html"
 echo '<html><head>'
 echo '<meta charset="UTF-8">'
 echo '<title>Hello BeagleBone</title></head>'
 echo '<body><h1>Hello BeagleBone</h1><para>'
 hostname
 echo ' has been up '
 uptime
 echo '</para></html>'

 The script must then be made executable, and it can be tested as follows:

 molloyd@beaglebone:/usr/lib/cgi‐bin$ sudo chmod a+x test.cgi
 molloyd@beaglebone:/usr/lib/cgi‐bin$./test.cgi
 Content-type: text/html
 <html><head>
 <meta http-equiv="Content-Type" content="text/html"; charset=UTF-8">
 <title>Hello BeagleBone</title></head>
 <body><h1>Hello BeagleBone</h1><para>
 beaglebone
 has been up
 23:24:44 up 4:28, 2 users, load average: 0.00, 0.01, 0.05
 </para></html>

 The script is quite verbose, but you can see that it is very easy to call system
commands (e.g., hostname and uptime) directly from within it. When the script is e

tested in the terminal window, its output displays HTML source code. However,
when this output is viewed using a web browser, as in Figure 10-4 , the HTML
is rendered correctly.

 Figure 10-4: A simple CGI script example

392 Part III ■ Advanced BeagleBone Systems

 As well as calling Linux system commands, you can also execute programs
that have been written in C/C++. To demonstrate this capability, the tmp36.cpp
program used earlier in this chapter can be modifi ed so that it only outputs
the raw temperature in degrees Celsius when it is executed. This new binary
executable, called tmp36raw , can then be copied to the / w usr/local/bin directory
so that it is “permanently” installed on the BBB:

 ~/exploringBB/chp10/tmp36$./tmp36raw
 28.8818
 ~/exploringBB/chp10/tmp36$ sudo cp tmp36raw /usr/local/bin

 The CGI script can then be modifi ed to output the temperature value directly
from the TMP36 sensor as follows:

 molloyd@beaglebone:~/exploringBB/chp10/cgi‐bin$ more temperature.cgi
 ...
 echo '<body><h1>Hello BeagleBone</h1><para>'
 echo 'The temperature in the room is '
 /usr/local/bin/tmp36raw
 echo ' degress Celsius </para></html>'

 This results in the output displayed in Figure 10-5 . This code could easily be
adapted to display the sensor data from the TI SensorTag. If you are experienc-
ing diffi culties with your scripts, the Apache log fi les are stored in /var/log/
apache2/ , which can be viewed with superuser access.//

 Figure 10-5: Temperature sensor web page

W A R N I N G CGI scripts can be structured to accept data from the web by using

form fi elds. To do so, you must fi lter the input to avoid potentially damaging cross-site

scripting. In particular, you should fi lter out the characters <>&*?./ from form fi eld

entry.

 PHP on the BeagleBone

 CGI scripts work very well for the short scripts used in the last section—they
are lightweight and easy to edit. However, as well as security concerns (e.g.,
attacks via URL manipulations), they do not scale very well (e.g., for interfacing

 Chapter 10 ■ The Internet of Things 393

with databases). An alternative is to use the PHP server‐side scripting language.
PHP is a reasonably lightweight open‐source scripting language with a C‐like
syntax that can be written directly within HTML pages. It can be installed
within Apache as follows:

 ~$ sudo apt‐get install apache2 apache2‐utils
 ~$ sudo apt‐get install php5 curl php5‐curl php5‐json
 ~$ sudo service apache2 restart

 A PHP program can then be written as shown in Listing 10‐1 and placed
in the /var/www directory. Like the CGI script, it interfaces to the TMP36 by
executing the tmp36raw program, resulting in the output shown in Figure 10-6 .

 LISTING 10-1: var/www/hello.php

 <?php $temperature = shell_exec('/usr/local/bin/tmp36raw'); ?>
 <html><head><title>BBB PHP Test</title></head>
 <body>
 Hello from the BeagleBone!
 <p>Your IP address is: <?php echo $_SERVER['REMOTE_ADDR']; ?></p>
 <p>The temperature at the BBB is: <?php echo $temperature ?> ºC</p>
 </body>
 </html>

 Figure 10-6: A PHP temperature sensor

N O T E In addition, it is possible to install a database such as MySQL onto the

BBB, forming a LAMP (Linux, Apache, MySQL, PHP) server. This allows you to fur-

ther install content management systems (CMSs) such as WordPress or Drupal,

allowing you to create advanced web content that can even include hardware

interaction.

 Replacing Bone101 with the Custom Web Server

 The Bone101 web server provides very valuable information about getting
started with the BBB; however, it occupies the default web port (port 80). If
you wish to replace Bone101 with your custom web server, you can shut down

394 Part III4 ■ Advanced BeagleBone Systems

the bonescript service and confi gure the custom server to use port 80. To
shut down the bonescript service you can use the following steps. First call

 ~$ systemctl list‐units ‐t service |grep bonescript

 to confi rm that bonescript.service is running. To stop the service you need to
stop bonescript.socket fi rst and then the service, as follows:

 ~$ sudo systemctl stop bonescript.socket
 ~$ sudo systemctl stop bonescript.service
 ~$ sudo systemctl disable bonescript.socket
 ~$ sudo systemctl disable bonescript.service

 You can then confi gure the Apache2 server to use port 80 by modifying the
ports.conf fi le to listen to port 80 as follows:

 /etc/apache2$ sudo nano ports.conf
 /etc/apache2$ more ports.conf|grep 80
 NameVirtualHost *:80
 Listen 80

 Then modify the fi le in (or fi le linked to in) the /sites‐enabled directory
so that the VirtualHost port is set to be 80, and restart the Apache2 server as
follows:

 /etc/apache2/sites‐enabled$ more 000‐default |grep 80
 <VirtualHost *:80>
 /etc/apache2$ sudo systemctl restart apache2.service

N O T E Google Dart is a very interesting platform for building web applications. The

Dart platform can be installed on the BBB to create advanced interactive web appli-

cations. See www.dartlang.org and a guide at tiny.cc/ebb1015 for further

details.

 A C/C++ Web Client

 Installing a web server on a BBB provides it with a simple, intuitive way to pres-
ent information to a client web browser application. It is important to under-
stand that the distinction between a client and a server is nothing to do with the
hardware capability of the interconnected devices; rather, it relates to the role
of each device at that particular point in time. For example, when retrieving a
web page from the BBB using its Apache web server, a desktop computer's web
browser is a client of the BBB's web server. Table 10-1 provides a summary of
the characteristics of the two types of application, which when used together
is termed the client‐server model .

 Chapter 10 ■ The Internet of Things 395

 When the BBB acts as a server, it waits passively for a connection from a cli-
ent machine, but there are many cases when the BBB might need to actively
contact a server on another machine. In such cases, the BBB must act as a client
of that server. At this point in the book you have already used many such client
network applications on the BBB, such as ping, g wget , ssh , h sftp , and so on, and
these applications can be used within shell scripts. However, it would also be
useful if you could generate client requests from within C/C++ code, and for
this you can use network sockets.

 Network Communications Primer

 A socket is a network endpoint that is defi ned using an IP address and a port
number. An IP address (version 4) is simply a 32‐bit number, which is represented
as four eight‐bit values (e.g., 192.168.7.2), and a port number is a 16‐bit unsigned
integer (0‐65,535) that can be used to enable multiple simultaneous communi-
cations to a single IP address. Ports under 1,024 are generally restricted to root
access in order to prevent users from hijacking core services (e.g., 80 for HTTP,
20/21 for FTP, 22 for SSH, 443 for HTTPS).

 The description of a socket must also defi ne the socket type , indicating whethere
it is a stream socket or a datagram socket. Stream sockets use the t transmission con-
trol protocol (TCP), which provides for reliable transfer of data where the timeP
of transmission is not a critical factor. Its reliability means that it is used for
services such as HTTP, e‐mail (SMTP), and FTP, where data must be reliably
and correctly transferred. The second type of socket is a datagram socket that
uses the user datagram protocol (UDP), which is less reliable but much faster P
than TCP, as there is no error‐checking for packets. Time‐critical applications
such as voice over IP (VoIP) use UDP, as errors in the data will be presented
in the output as noise, but the conversation will not be paused awaiting lost
data to be resent.

Table 10-1: Characteristics of Server versus Client Applications

SERVER APPLICATIONS CLIENT APPLICATIONS

Special-purpose applications that are
typically dedicated to one service

Typically become a client temporarily, but
perform other computation locally

Typically invoked on system startup and
they attempt to run forever

Typically invoked by a user for a single
session

Wait passively, and potentially forever, for
contact from client applications

Actively initiate contact with the server. The
client must know the address of the server.

Accept contact from client applications Can access several servers simultaneously

Typically run on a shared machine Typically run on a local machine

396 Part III6 ■ Advanced BeagleBone Systems

 When communication is established between two network sockets it is called
a connection . Data can then be sent and received on this connection using write
and read functions. It is important to note that a connection could also be cre-
ated between two processes (programs) that are running on a single machine
and thus used for inter‐process communication .

 A C/C++ Web Client

 Full C/C++ support for socket communication can be added to your program by
including the sys/socket.h header fi le. In addition, the sys/types.h header fi le
contains the data types that are used in system calls, and the netint/in.h header
fi le contains the structures needed for working with Internet domain addresses.

 Listing 10‐2 is the C source code for a basic web browser application that can
be used to connect to a HTTP web server, retrieve a web page, and display it in
raw HTML form—like a regular web browser, but without the pretty rendering.
The code performs the following steps:

 1. The server name is passed to the program as a string argument. The
program converts this string into an IP address (stored in the hostent
structure) using the gethostbyname() function.

 2. The client creates a TCP socket using the socket() system call.

 3. The hostent structure and a port number (80) are used to create a
sockaddr_in structure that specifi es the endpoint address to which
to connect the socket. This structure also sets the address family to be
IP‐based (AF_INET) and the network byte order.

 4. The TCP socket is connected to the server using the connect() system
call—the communications channel is now open.

 5. An HTTP request is sent to the server using the write() system call and
a fi xed‐length response is read from the server using the read() system
call. The HTML response is displayed.

 6. The client disconnects and the socket is closed using close() .

 LISTING 10-2: /exploringBB/chp10/WebClient/WebClient.c

 #include <stdio.h>

 #include <sys/socket.h>

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <netdb.h> //for the hostent stucture

 #include <strings.h>

 int main(int argc, char *argv[]){

 int socketfd, portNumber, length;

 Chapter 10 ■ The Internet of Things 397

 char readBuffer[2000], message[255];

 struct sockaddr_in serverAddress; //describes endpoint to connect a socket

 struct hostent *server; //stores information about a host name

 // The command string for a HTTP request to get / (often index.html)

 sprintf(message, "GET / HTTP/1.1\r\nHost: %s\r\n\r\n", argv[1]);

 printf("Starting EBB Web Browser C Example\n");

 printf("Sending the message: %s", message);

 if (argc<=1){ // must pass the hostname

 printf("Incorrect usage, use: ./webBrowser hostname\n");

 return 2;

 }

 // gethostbyname accepts a string name and returns a host name structure

 server = gethostbyname(argv[1]);

 if (server == NULL) {

 perror("Socket Client: error - unable to resolve host name.\n");

 return 1;

 }

 // Create socket of IP address type, SOCK_STREAM is for TCP connections

 socketfd = socket(AF_INET, SOCK_STREAM, 0);

 if (socketfd < 0){

 perror("Socket Client: error opening TCP IP-based socket.\n");

 return 1;

 }

 // clear the data in the serverAddress sockaddr_in struct

 bzero((char *) &serverAddress, sizeof(serverAddress));

 portNumber = 80;

 serverAddress.sin_family = AF_INET; //set the address family to be IP

 serverAddress.sin_port = htons(portNumber); //set port number to 80

 bcopy((char *)server->h_addr,(char *)&serverAddress.sin_addr.s_addr,

 server->h_length); //set address to resolved hostname address

 // try to connect to the server

 if (connect(socketfd, (struct sockaddr *) &serverAddress,

 sizeof(serverAddress)) < 0){

 perror("Socket Client: error connecting to the server.\n");

 return 1;

 }

 // send the HTTP request string

 if (write(socketfd, message, sizeof(message)) < 0){

 perror("Socket Client: error writing to socket");

 return 1;

 }

 // read the HTTP response to a maximum of 2000 characters

 if (read(socketfd, readBuffer, sizeof(readBuffer)) < 0){

 perror("Socket Client: error reading from socket");

 return 1;

 }

 printf("**START**\n%s\n**END**\n", readBuffer); //display the response

 close(socketfd); //close the socket

 printf("End of EBB Socket Example\n");

 return 0;

 }

398 Part III8 ■ Advanced BeagleBone Systems

 This code can be built and executed as follows. In this example, the simple
web page from the local BBB Apache web server is requested, by using localhost , t
which essentially means “this device,” and it uses the Linux loopback virtual
network interface (lo), which has the IP address 127.0.0.1:o

 ~/exploringBB/chp10/webBrowser$ gcc webBrowser.c ‐o webBrowser
 ~/exploringBB/chp10/webBrowser$./webBrowser localhost
 Starting EBB Web Browser C Example
 Sending the message: GET / HTTP/1.1
 Host: localhost
 START
 HTTP/1.1 200 OK
 Date: Fri, 11 Jul 2014 00:13:02 GMT
 Server: Apache/2.2.22 (Debian) ...
 Content-Type: text/html
 <HTML><TITLE>BBB First Web Page</TITLE>
 <BODY><H1>BBB First Page</H1>
 The BeagleBoneBlack test web page.
 </BODY></HTML>
 END
 End of EBB Socket Example

 The example works correctly, returning the index.html fi le from /var/www . It canw

also connect to other web servers (e.g., type ./webBrowser www.google.com).mm

 Secure Communication Using OpenSSL

 One of the limitations of the TCP socket application in the previous section is that
all communications are sent “in the clear” across IP networks. This may not be of
concern for home networks, but if your client and server are on different physical
networks, then the data that is transferred can be easily viewed on intermediary
networks. Sometimes it is necessary to communicate securely between a client and
a server—for example, if you are sending a username and password to an online
service. In addition, particular care should be taken in applications where the BBB
can actuate motors or relays—a malicious attack could cause physical destruction.
One way to implement secure communications is to use the OpenSSL toolkit.

OpenSSL (www.openssl.org(() is a toolkit that implements the Secure Sockets
Layer (SSL) and L Transport Layer Security (TLS) protocols and a cryptography
library. This library can be installed using the following:

 molloyd@beaglebone:~/$ sudo apt‐get install openssl

 OpenSSL is a complex and comprehensive toolkit that can be used to encrypt
all types of communications. This section presents one example application to
illustrate its use. For this example, the C/C++ web client code is modifi ed to
support SSL communications as shown in Listing 10‐3. The code involved in
this example is the same as in Listing 10‐2, except for the following:

 Chapter 10 ■ The Internet of Things 399

 1. The TCP socket connection is formed to the HTTP secure (i.e., HTTPS)
port, which is port 443 by default.

 2. The SSL library is initialized using the SSL_Library_init() function.

 3. A SSL context object is used to establish the TLS/SSL connection. The
security and certifi cate options can be set in this object.

 4. The network connection is assigned to an SSL object and a handshake is
performed using the SSL_connect() function.

 5. The SSL_read() and SSL_write() functions are used.

 6. The SSL_free() function is used to shut down the TLS/SSL connection,
freeing the socket and SSL context objects.

 LISTING 10-3: /chp10/webBrowserSSL/webBrowserSSL.c (segment)

 /*** After the connection to the server is formed: ***/

 // Register the SSL/TLS ciphers and digests

 SSL_library_init();

 // Create an SSL context object to establish TLS/SSL enabled connections

 SSL_CTX *ssl_ctx = SSL_CTX_new(SSLv23_client_method());

 // Attach an SSL connection to the socket

 SSL *conn = SSL_new(ssl_ctx); // create an SSL structure for an SSL session

 SSL_set_fd(conn, socketfd); // Assign a socket to an SSL structure

 SSL_connect(conn); // Start an SSL session with a remote server

 // send data across an SSL session

 if (SSL_write(conn, message, sizeof(message)) < 0){ ... }

 // read data scross an SSL session

 if (SSL_read(conn, readBuffer, sizeof(readBuffer)) < 0){ ... }

 printf("**START**\n%s\n**END**\n", readBuffer); //display response

 SSL_free(conn); //free the connection

 close(socketfd); //close the socket

 SSL_CTX_free(ssl_ctx); //free the SSL context

 The full source code is in the /chp10/webClientSSL/ directory. It can be com-
piled and tested using the following commands:

 .../chp10/webBrowserSSL$ gcc webBrowserSSL.c ‐o browserSSL ‐lcrypto ‐lssl
 .../chp10/webBrowserSSL$./browserSSL www.google.com

 The application can successfully communicate with the SSL port (443) on
secured web servers (e.g., www.google.com). The current code does not verify
the authenticity of the server owner, but it does encrypt communications.

 The BeagleBone as a Web Sensor

 Earlier in this chapter a web server is confi gured on the BBB so that it can present
temperature sensing information to the Internet. This mechanism is very useful,
as it provides a snapshot in time of sensor outputs. In order to provide trend

400 Part III0 ■ Advanced BeagleBone Systems

data, it would be possible to store the data in fl at fi les or to install a lightweight
database on the BBB. PHP charting tools such as phpChart and pChart could be
used to visually represent the data.

 An alternative way of performing the collection and visualization of web
sensor information is to connect the BBB to online data aggregation services,
which enable you to push sensor data to the cloud, directly from the BBB. In
this section, two such online services are utilized directly from within C/C++
programs that are executing on the BBB. This enables you to develop very
lightweight operations that can leverage Internet services in order to intercom-
municate between BBBs on different networks. It also enables the collection
of sensor data from many BBB “web sensors” at the same time on different
physical networks.

 ThingSpeak

 ThingSpeak is an open‐source IoT application and API that can be used to store
data from web sensors (things). Using HTTP, the sensors can push numeric ors
alphanumeric data to the server, where it can be processed and visualized. The
ThingSpeak application can be installed on a server that is running the Ruby
on Rails web application framework and an SQL database.

 In this example, the BBB pushes temperature sensor data to a hosted free
service at www.thingspeak.com , where data can also be visualized as shown
in Figure 10-7 . Once you set up an account, you can then create a new channel , l
which provides you with read and write API keys for the channel. These are
used in the C++ code example in Listing 10‐5.

 Figure 10-7: A ThingSpeak web sensor example

 Chapter 10 ■ The Internet of Things 401

 A C++ SocketClient is available for this example. This class simply wraps
the C code that is used for the C/C++ web client application in Listing 10‐2. The
class interface defi nition is provided in Listing 10‐4.

 LISTING 10-4: /exploringBB/chp10/thingSpeak/network/SocketClient.h

 class SocketClient {

 private:

 int socketfd;

 struct sockaddr_in serverAddress;

 struct hostent *server;

 std::string serverName;

 int portNumber;

 bool isConnected;

 public:

 SocketClient(std::string serverName, int portNumber);

 virtual int connectToServer();

 virtual int disconnectFromServer();

 virtual int send(std::string message);

 virtual std::string receive(int size);

 bool isClientConnected() { return this->isConnected; }

 virtual ~SocketClient();

 };

 The code example in Listing 10‐5 uses this SocketClient class. The example
reads the temperature sensor and pushes it to the hosted ThingSpeak server
using an HTTP POST request.

 LISTING 10-5: /exploringBB/chp10/thingSpeak/thingSpeak.cpp

 #include <iostream>

 #include <sstream>

 #include <fstream>

 #include <stdlib.h>

 #include "network/SocketClient.h"

 using namespace std;

 using namespace exploringBB;

 #define LDR_PATH "/sys/bus/iio/devices/iio:device0/in_voltage"

 int readAnalog(int number){ // returns the input as an int

 stringstream ss;

 ss << LDR_PATH << number << "_raw";

 fstream fs;

 fs.open(ss.str().c_str(), fstream::in);

 fs >> number;

 fs.close();

 return number;

 }

402 Part III ■ Advanced BeagleBone Systems

 float getTemperature(int adc_value){

 float cur_voltage = adc_value * (1.80f/4096.0f);

 float diff_degreesC = (cur_voltage-0.75f)/0.01f;

 return (25.0f + diff_degreesC);

 }

 int main(){

 ostringstream head, data;

 cout << "Starting EBB Thing Speak Example" << endl;

 SocketClient sc("thingspeak.com",80);

 data << "field1=" << getTemperature(readAnalog(0)) << endl;

 sc.connectToServer();

 head << "POST /update HTTP/1.1\n"

 << "Host: api.thingspeak.com\n"

 << "Connection: close\n"

 // This key is available from the API keys tab in Figure 10-7

 << "X‐THINGSPEAKAPIKEY: G7MTQ21IVBFGYJG7 \n" // channel API key

 << "Content-Type: application/x-www-form-urlencoded\n"

 << "Content-Length:" << string(data.str()).length() << "\n\n";

 sc.send(string(head.str()));

 sc.send(string(data.str()));

 string rec = sc.receive(1024);

 cout << "[" << rec << "]" << endl;

 cout << "End of EBB Thing Speak Example" << endl;

 }

 To send data to the server at regular time intervals, POSIX threads and sleep()
calls can be added to the code in Listing 10‐5. However, an easier alternative is
to use the Linux cron time‐based job scheduler.

 The Linux Cron Scheduler

 The Linux cron daemon (named after Chronos, the Greek god of time) is a highly
confi gurable utility for scheduling tasks to be performed at specifi c times and
dates. It is typically used for system administration tasks, such as backing up
data, clearing temporary fi les, rotating log fi les, updating package repositories,
or building software packages during off‐peak times.

 When sensors or actuators are interfaced to the BBB, cron can also be very
useful for applications such as logging data from these sensors at fi xed intervals
over long periods of time. On the BBB, you could use the scheduler for tasks
such as collecting sensor data, building a stepper‐motor clock, time‐lapse pho-
tography, setting security alarms, and so on.

 System crontab

 Cron wakes once every minute and checks its confi guration fi les, called crontabs , s
to see if any commands are scheduled to be executed. It can be used to schedule

LISTING 10-5: (continued)

 Chapter 10 ■ The Internet of Things 403

tasks to run with a maximum frequency of once per minute down to a mini-
mum frequency of once per year. Confi guration fi les for cron can be found in
the /etc directory:

 molloyd@beaglebone:~$ cd /etc/cron<Tab><Tab>
 cron.d/ cron.daily/ cron.hourly/ cron.monthly/ cron.weekly/ crontab

 The crontab fi le contains scheduling instructions for the cron daemon, accord-
ing to the crontab fi elds that are listed in Table 10-2 . Each line of the crontab fi le
specifi es the time at which the command fi eld should execute. A wildcard value
(*) is available—for example, if it is placed in the hour fi eld, then the command*

should execute at each and every hour of the day.
 Ranges are permitted (e.g., 1‐5 for Monday to Friday) and so are lists of times

(e.g., 1, 3, 5). In addition, strings can be used in place of the fi rst fi ve fi elds: @reboot ,
@yearly, yy @annually, yy @monthly, yy @weekly, yy @daily, yy @midnight , and @hourly . The yy

following custom crontab fi le in Listing 10‐6 provides some examples. There
are comments in the fi le to explain the functionality of the entries.

Table 10-2: Crontab Fields

FIELD RANGE DESCRIPTION

m 0–59 The minute fi eld

h 0–23 The hour fi eld

dom 1–31 Day of the month fi eld

mon 1–12 (or name) Month of the year (fi rst three letters can be used)

dow 0–7 (or name) 0 or 7 is Sunday (fi rst three letters can be used)

user Can specify the user that executes the command

command The command to be executed at this point in time

 LISTING 10-6: /etc/crontab

 # /etc/crontab: system-wide crontab

 SHELL=/bin/sh

 PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

 # m h dom mon dow user command

 # Go to bed message, every night at 1am, sent to all users using wall

0 1 * * * root echo Go to bed! | wall

 # Extra reminder, every work day night (i.e. 1:05am Monday-Friday)

5 1 * * 1‐5 root echo You have work in the morning! | wall

 # Perform a task each day (same as 0 0 * * *). Clear /tmp directory

 @daily root rm ‐r /tmp/*

 # The following are present in the default Debian crontab file:

 17 * * * * root cd / && run-parts --report /etc/cron.hourly

 25 6 * * * root test -x /usr/sbin/anacron || (cd / && run-parts

 --report /etc/cron.daily) ...

404 Part III4 ■ Advanced BeagleBone Systems

 Examples are added to the crontab fi le to send messages and to clear the
/tmp directory (see the comments). You can also specify that a command should
be executed every 10 minutes by using */10 in the minutes fi eld.

 You may have also noticed other entries in the crontab fi le that refer to an
anacron command. Anacron (anachronistic cron) is a specialized cron utility
for devices, such as laptop computers, that are not expected to be running
24/7. If regular cron were confi gured to back up fi les every week but the BBB
happened to be powered off at that exact moment, then the backup would
never be performed. However, with anacron the backup will be performed
when the BBB next boots (i.e., jobs are queued). You can install anacron using
the following:

 molloyd@beaglebone:~$ sudo apt‐get install anacron

 Now there will be a new /etc/anacrontab fi le that performs the same role
as crontab does for cron. The confi guration fi le for anacron can be found in /
etc/init/anacron.conf .

 One problem with having both cron and anacron installed on one system is
that it is possible for cron to run a job that anacron has already run, or vice versa.
That is the reason for the crontab entries at the end of Listing 10‐6. These entries
ensure that run‐parts is executed only if anacron is not installed on the BBB. This
is tested by the call to test ‐x /usr/sbin/anacron , which returns n 0 if the anacron
command is present, and 1 if it is not. Calling echo $? displays the output value.

 An alternative to adding an entry directly to the crontab fi le is to add a script
to one of the directories: cron.daily, yy cron.hourly, yy cron.monthly, or yy cron.weekly

in the /etc directory. Any scripts in these directories are executed by cron. For
example, you could create a script in the cron.hourly directory to update the
temperature on ThingSpeak as follows:

 ~/exploringBB/chp10/thingSpeak$ sudo cp thingSpeak /usr/local/bin
 /etc/cron.hourly$ sudo nano thingSpeakUpdate
 /etc/cron.hourly$ more thingSpeakUpdate
 #!/bin/bash
 /usr/local/bin/thingSpeak
 /etc/cron.hourly$ sudo chmod a+x thingSpeakUpdate

 An alternative to this is to execute the binary directly within the user account
using user crontab , which is described in the next section.b

 User crontab

 Each user account can have its own crontab . These fi les are placed in the /var/
spool/cron/crontabs directory, but they should not be edited in this location.
The following creates a crontab for the user molloyd :

 Chapter 10 ■ The Internet of Things 405

 molloyd@beaglebone:~$ crontab ‐e
 no crontab for molloyd - using an empty one
 crontab: installing new crontab

 You can edit your user crontab fi le to upload the room temperature to
ThingSpeak every 30 minutes by adding the following line:

 # m h dom mon dow command
 */30 * * * * ~/exploringBB/chp10/thingSpeak/thingSpeak > /dev/null 2>&1

 The end of this command redirects the standard output to /dev/null . The call
2>&1 redirects the standard error to the standard output, and therefore also to
/dev/null . If this were not present, then by default the output of the thingSpeak
command would be e‐mailed to the system administrator (if mail is confi gured
on the BBB). You can back up your crontab fi le as follows:

 molloyd@beaglebone:~$ crontab ‐l > crontab‐backup

 To reinstate this backup fi le with crontab use the following:

 molloyd@beaglebone:~$ crontab crontab‐backup

 The administrator account can control which users have access to cron by
placing either a cron.allow or a cron.deny fi le in the /etc directory. Under
Debian all users can have their own crontab by default. Use the following to
remove this capability:

 molloyd@beaglebone:/etc$ more cron.deny
 molloyd
 molloyd@beaglebone:/etc$ crontab ‐e
 You (molloyd) are not allowed to use this program (crontab)

 To use this cron confi guration with the thingSpeak program, you must ensure
that the ADC cape (described in Chapter 6) is set to load on a system reboot (i.e.,
by modifying the uEnv.txt fi le); otherwise, the program will fail after reboot.

 Xively

Xively (by LogMeIn) provides a very powerful IoT PaaS that enables the intercon-
nection of IoT devices. Xively's PaaS can be used to build applications similar
to the ThingSpeak temperature sensor application. However, Xively's PaaS also
provides advanced functionality that can be used to build enterprise‐level solu-
tions, such as the following:

■ Directory services: Enables applications to search a directory of objects
and permissions associated with devices

406 Part III6 ■ Advanced BeagleBone Systems

■ Data services: For time‐series data archival and retrieval

■ Business services: For the provisioning, activation, and management of
devices

N O T E Xively's PaaS is a full cloud computing service, in that it provides the

software libraries, data storage, and hardware that is necessary for its customers to

build commercial-scale off erings. ThingSpeak also off ers a hosted service through

www.thingspeak.com , and it is also an open-source application that you can install

on your own server machine.

 Devices such as the BBB, backend data services, and applications can inter-
face to these services using the Xively API, which supports real‐time message
management and routing. Such a PaaS is very useful if you have many BBB
sensor nodes that must intercommunicate. You can also store vast quantities
of time‐series data. While the architecture is more complex than ThingSpeak,
Xively's PaaS provides scalability and a C library for interfacing to its services.

 Getting Started with Xively's PaaS

 You can create an account on www.xively.com by signing up for a free developerm

account. Then under the Develop tab, you can select +Add a Device. After provid-
ing a brief description, you will see a page that you can use to create a channel
with the +Add Channel option. In the following example, which is illustrated
in Figure 10-8 , the device is called BeagleBone Temperature and the channel
is called tempSensor . The auto‐generated r device key and feed ID values are very
important for the following examples, which utilize the Xively C library.

 Figure 10-8: Xively channel with API keys

 Chapter 10 ■ The Internet of Things 407

 The Xively C Library

 Xively has developed a low‐overhead C library, called libxively , which provides yy
an interface for Xively applications so that they can execute on an embedded
platform like the BBB. The library is structured with three layers:

 1. A communications layer to open socket connections and send data

 2. A transport layer that encodes/decodes HTTP/WebSocket requests

 3. A data layer that encodes/decodes Xively data formats

 The library can be downloaded and built on the BBB using the following
steps (use a temporary directory), where the --recursive fl ag instructs git to
fetch any required sub modules:

 ~/temp$ git clone --recursive https://github.com/xively/libxively.git
 Cloning into 'libxively'...
 ~/temp$ cd libxively/
 ~/temp/libxively$ make all

 When the library is built, the following binary examples appear:

 molloyd@beaglebone:~/temp/libxively/bin$ ls
 asynch_feed_get datastream_delete feed_update asynch_feed_update
 datastream_get looped_asynch_feed_get datapoint_delete
 datastream_update looped_feed_update datapoint_delete_range
 feed_get datastream_create feed_get_all

 These applications can be used on the BBB as the basis of scripts that interact
with the Xively device. For example, the following pushes a fi xed data value:

 molloyd@beaglebone:~/temp/libxively/bin$./feed_update
rzNQLU5KOS50UZjnUXsWsLH4jHozyhwKHH8UwAxeaXdy1EBB 57555452 tempSensor 26
 [io/posix/posix_io_layer.c:182 (posix_io_layer_init)]...

 The preceding pushes the fi xed value 26 to the tempSensor channel. To retrieve
a value from the same channel, the following application can be used:

 molloyd@beaglebone:~/temp/libxively/bin$./feed_get_all
rzNQLU5KOS50UZjnUXsWsLH4jHozyhwKHH8UwAxeaXdy1EBB 57555452
 ... datasream_id: tempSensor value: 26@1404848579

 Writing scripts is useful, but for more dynamic applications the Xively C
library can be used directly within C/C++ programs. The current version of
libxively (at the time of writing) along with its associated header fi les are pres-
ent in the libxively/ subdirectory of the / chp10/xively/ directory. The fi rst
example, in Listing 10‐7, reads the TMP36 sensor value and sends its data to the
Xively “tempSensor” channel.

408 Part III8 ■ Advanced BeagleBone Systems

 LISTING 10-7: /chp10/xively/xivelySensor.c

 #include <xively.h>

 #include <xi_helpers.h>

 #include <stdio.h>

 #include <stdlib.h>

 #define ADC_PATH "/sys/bus/iio/devices/iio:device0/in_voltage"

 #define DEVICE_KEY "rzNQLU5KOS50UZjnUXsWsLH4jHozyhwKHH8UwAxeaXdy1EBB"

 #define FEED_ID 57555452

 int readAnalog(int number){ // C version of the code in Listing 10-5

 int value;

 FILE* fp;

 char fullFileName[100];

 sprintf(fullFileName, ADC_PATH "%d_raw", number);

 fp = fopen(fullFileName, "r");

 fscanf(fp, "%d", &value);

 fclose(fp);

 return value;

 }

 float getTemperature(int adc_value){ ... } // Same as Listing 10-5

 int main()

 {

 // Create the Xively context

 xi_context_t* xi_context = xi_create_context(XI_HTTP, DEVICE_KEY, FEED_ID);

 if(xi_context==NULL){

 perror("XIVELY: Problem in creating the context");

 return 1;

 }

 // Create the feed and clear its contents

 xi_feed_t feed;

 memset(&feed, 0, sizeof(xi_feed_t));

 // Set the properties of the feed (id, number of streams and datstream)

 feed.feed_id = FEED_ID;

 feed.datastream_count = 1; //sending a single stream, datastream 0

 // Get a reference to the datastream

 xi_datastream_t* data = &feed.datastreams[0];

 // Only going to send a single data point in the stream

 data->datapoint_count = 1;

 // Set up the data stream identifier "tempSensor"

 int size = sizeof(data->datastream_id);

 xi_str_copy_untiln(data->datastream_id, size, "tempSensor", '\0');

 // Set up the data point and set a floating-point value

 xi_datapoint_t* point = &data->datapoints[0];

 xi_set_value_f32(point, getTemperature(readAnalog(0)));

 // Update the feed

 xi_feed_update(xi_context, &feed);

 xi_delete_context(xi_context);

 return 0;

 }

 This code can be built and executed using the following call:

 ~/exploringBB/chp10/xively$ gcc ‐Wall ‐std=c99 xivelySensor.c libxively/
libxively.a ‐o xivelySensor ‐Ilibxively/include/

 Chapter 10 ■ The Internet of Things 409

 ~/exploringBB/chp10/xively$./xivelySensor
 ... tempSensor,26.552731 ...

 This program sends the value 26.552731 to the tempSensor channel. A cron
job can be used to repeatedly call this program, which results in a visual display
similar to that in Figure 10-8 .

 A second program is also available in this directory, called readXively (see
Listing 10‐8 for a segment of this code) that retrieves the current tempSensor
channel value directly from the Xively PaaS. Such read and write functionality
can be used to enable many BBBs to intercommunicate.

 LISTING 10-8: /chp10/xively/readXively.c (segment)

 int main()
 { ... // Get the feed and then the datapoint
 xi_feed_get(xi_context, &feed);
 xi_datapoint_t* point = &data->datapoints[0];
 printf("The current data point is: %f\n", point->value.f32_value);
 xi_delete_context(xi_context);
 return 0;
 }

 This code can be built in the same way and when executed gives the follow-
ing output:

 molloyd@beaglebone:~/exploringBB/chp10/xively$./readXively
 The current data point is: 26.552731

 This code example sends and receives floating‐point data. By changing the
code in Listing 10‐7 to send data using the functions xi_set_value_ i32() and xi_
set_value_str() , integer and string data, respectively, can be written to the ser-
vice. Also, Listing 10‐8 can be modified to receive data using i32_value or
str_value , for integer and string data, respectively.

 Sending E-mail from the BBB

 It can be very useful to send e‐mail directly from the BBB so that detected sys-
tem problems are relayed to a potentially remote administrator. In addition,
it is useful for an e‐mail to be sent when a sensor event occurs—for example,
an e‐mail could be sent if the room temperature exceeds 30°C. There are many
mail client applications, but if you are using a secure simple mail transfer protocol
 (SMTP) server, like Gmail, then the ssmtp program works well. Install ssmtp
using the following command:

 molloyd@beaglebone:~$ sudo apt‐get install ssmtp mailutils

410 Part III0 ■ Advanced BeagleBone Systems

 Confi gure the e‐mail settings in the fi le /etc/ssmtp/ssmtp.conf . For example,
to confi gure your BBB to send e‐mail through a Gmail account, replace the
account name and password fi elds in the following:

 molloyd@beaglebone:/etc/ssmtp$ more ssmtp.conf
 # Config file for sSMTP sendmail
 root=myaccountname @gmail.com
 mailhub=smtp.gmail.com:587
 AuthUser=myaccountname @gmail.com
 AuthPass=mysecretpassword
 UseTLS=YES
 UseSTARTTLS=YES
 rewriteDomain=gmail.com
 hostname= myaccountname @gmail.com

 The settings can be tested by sending an e‐mail from the terminal:

 molloyd@beaglebone:~$ ssmtp toname@destination.com
To: toname@destination.com
From: myaccountname@gmail.com
Subject: Testing 123
Hello World!^d

 Typing Ctrl+D at the end of the message sends the e‐mail. An alternative to
this is to place the message text, which is the same as that just shown (includ-
ing the To/From/Subject lines), in a fi le (e.g., ~/.message) and then send it using e

the following call:

 ~$ ssmtp toname@destination.com < ~/.message

 Or, you can use the mail tool directly (from the mailutils package):

 ~$ echo "Test Body" | mail ‐s "Test Subject" toname@destination.com

 All messages are sent using the user Gmail account. This command can be
added to scripts or encapsulated within a C++ program that uses a system()
call, as in Listing 10‐9. C or C++ could be used for this example, but C++ strings
make this task more straightforward.

 LISTING 10-9: /chp10/cppMail/cppMail.cpp

 #include <iostream>

 #include <sstream>

 #include <stdlib.h>

 using namespace std;

 int main(){

 string to("toname@destination.com");

 string subject("Hello Derek");

 Chapter 10 ■ The Internet of Things 411

 string body("Test Message body...");

 stringstream command;

 command << "echo \""<< body <<"\" | mail -s \""<< subject <<"\" "<< to;

 int result = system(command.str().c_str());

 cout << "Command: " << command.str() << endl;

 cout << "The return value was " << result << endl;

 return result;

 }

 When executed, the program in Listing 10‐9 outputs the following:

 molloyd@beaglebone:~/exploringBB/chp10/cppMail$./cppMail
 Command: echo "Test Message body..." | mail -s "Hello Derek" toname@dest
 ination.com
 The return value was 0

 Here the value 0 indicates success. As well as sending notifi cation messages,
e‐mail can be used to trigger other types of events using web services such as
www.ifttt.com , which is discussed in the next section.

 If This Then That (IFTTT)

If This Then That (IFTTT) is a web service that enables you to create
connections between online channels, such as Twitter, LinkedIn, Google
Calendar, iPhone/Android Integration, YouTube, and many more. It works
by connecting triggers and actions using the simple statement: “If this then
that ,” where the trigger is the t this , and the action is the that . For example, “If
it is night time then mute my phone ringer,” or “If rr the weather forecast is for rain
tomorrow then send me an Android or iOS notifi cation .” These statements are
called recipes and they can be activated in an IFTTT account and even shared
with other users.

 IFTTT has many triggers, but it does not have web triggers; however, it can
be triggered using an e‐mail message that is sent to trigger@recipe.ifttt.com
from a linked Gmail account. Hashtags (e.g., #EBB) can be used to differentiateB

events, and the subject and body of the e‐mail message can be used as ingredients
for the recipe. For example, the recipe in Figure 10-9 states that: “If a message is
sent to trigger@recipe.ifttt.com from XXXX@gmail.com with #EBB in the subject then
send me an SMS message .” The body of the e‐mail can be passed as an ingredient e
to the SMS message, which enables personalized messages to be sent from the
BBB via SMS messaging (in many cases at no cost).

 IFTTT enables you to construct quite sophisticated interactions by simply
sending e‐mails from the BBB when certain events occur. For example, if a
motion sensor is triggered, then you can message someone. Certain physical
devices can also be triggered using IFTTT, such as Nest devices, WeMo switches,
SmartThings devices, and the Aros smart air conditioner.

412 Part III ■ Advanced BeagleBone Systems

 The C++ Client/Server

 The C/C++ client application described earlier in this chapter uses HTTP and
HTTPS to connect to a web server and retrieve a web page. In this section a
TCP server is described, to which a TCP client can connect in order to exchange
information, which does not have to be in HTTP form. The same SocketClient
class that is used earlier in the chapter is reused in this section, and a new class
called SocketServer is described. Figure 10-10 illustrates the steps that take
place during communication in this client/server example:

 1. In Step 1, a TCP server that is running on the BBB at IP address 192.168.7.2
begins listening to a user‐defi ned TCP port (54321). It will listen to this
port forever, awaiting contact from a client.

 2. In Step 2, a TCP client application is executed. The client application must
know the IP address and port number of the server to which it is to con-
nect. The client application opens a client socket, using the next available
Linux port allocation. The server, which can be running on a different BBB,
accepts a connection request from the client. It then retrieves a reference
to the client IP address and port number. A connection is formed, and
the client writes a message to this connection, which is “Hello from the
client.”

 3. In Step 3, the server reads the message from the connection and sends
back a new message to the client, which is “The Server says thanks!” The
client reads the response message and displays it to the terminal. Then
the client and server both close the network sockets. The programs run
asynchronously—in this case running to completion.

 Figure 10-9: Example IFTTT recipe

 Chapter 10 ■ The Internet of Things 413

 The full example is provided in the /chp10/clientserver/ directory. The
client.cpp program in Listing 10‐10 uses the SocketClient class from the net-
work subdirectory (see Listing 10‐4).

 LISTING 10-10: /chp10/clientserver/client.cpp

 #include <iostream>

 #include "network/SocketClient.h"

 using namespace std;

 using namespace exploringBB;

 int main(int argc, char *argv[]){

 if(argc!=2){

 cout << "Incorrect usage: " << endl;

 cout << " client server_name" << endl;

 return 2;

 }

 cout << "Starting EBB Client Example" << endl;

 SocketClient sc(argv[1], 54321);

 sc.connectToServer();

 string message("Hello from the Client");

 cout << "Sending [" << message << "]" << endl;

 sc.send(message);

 string rec = sc.receive(1024);

 cout << "Received [" << rec << "]" << endl;

 cout << "End of EBB Client Example" << endl;

 }

 Figure 10-10: Client/server example

414 Part III4 ■ Advanced BeagleBone Systems

 The SocketServer class in Listing 10‐11 is new, and it behaves in a quite dif-
ferent manner than the SocketClient class. An object of the class is created by
passing the port number to the constructor. When the listen() method is called,
the program counter will not return from this method call until a connection
has been accepted by the server.

 LISTING 10-11: /chp10/clientserver/network/SocketServer.h

 class SocketServer {

 private:

 int portNumber;

 int socketfd, clientSocketfd;

 struct sockaddr_in serverAddress;

 struct sockaddr_in clientAddress;

 bool clientConnected;

 public:

 SocketServer(int portNumber);

 virtual int listen();

 virtual int send(std::string message);

 virtual std::string receive(int size);

 virtual ~SocketServer();

 };

 The server.cpp code example in Listing 10‐12 creates an object of the
ServerSocket class and awaits a client connection.

 LISTING 10-12: /chp10/clientserver/server.cpp

 #include <iostream>

 #include "network/SocketServer.h"

 using namespace std;

 using namespace exploringBB;

 int main(int argc, char *argv[]){

 cout << "Starting EBB Server Example" << endl;

 SocketServer server(54321);

 cout << "Listening for a connection..." << endl;

 server.listen();

 string rec = server.receive(1024);

 cout << "Received from the client [" << rec << "]" << endl;

 string message("The Server says thanks!");

 cout << "Sending back [" << message << "]" << endl;

 server.send(message);

 cout << "End of EBB Server Example" << endl;

 }

 The code for this example can be built using the build script in the chp10/
clientserver directory. The server can then be executed:

 Chapter 10 ■ The Internet of Things 415

 ~/exploringBB/chp10/clientserver$./server
 Starting EBB Server Example
 Listening for a connection...

 The server will wait at this point until a client request has been received. In
order to execute the client application, a separate terminal session on the same
BBB, another BBB, or a Linux desktop machine can be used. The client applica-
tion can be executed by passing the IP address of the server. The port number
(54321) is defi ned within the client program code:

 ~/exploringBB/chp10/clientserver$./client 192.168.7.2
 Starting EBB Client Example
 Sending [Hello from the Client]
 Received [The Server says thanks!]
 End of EBB Client Example

 When the client connects to the server, both the client and server execute
simultaneously, resulting in the preceding and following output:

 ~/exploringBB/chp10/clientserver$./server
 Starting EBB Server Example
 Listening for a connection...
 Received from the client [Hello from the Client]
 Sending back [The Server says thanks!]
 End of EBB Server Example

 This code is further improved in the next chapter to add threading support, and
to enable it to communicate with a better structure than simple strings. However,
it should be clear that this code enables you to intercommunicate between Linux
client/servers that are located anywhere in the world. The client/server pair
communicates by sending and receiving bytes; therefore, communication can
take place at very high data rates and is only limited by the physical network
infrastructure.

 Managing Remote IoT Devices

 One of the diffi culties with remote web sensors is that they may be in physically
inaccessible and/or distant locations. In addition, a period of system downtime
may lead to a considerable loss of sensing data. If the problem becomes apparent
you can SSH into the BBB and restart the application or perform a system reboot.
In this section two quite different management approaches are described—the
fi rst is manual web‐based monitoring and the second is automatic, through the
use of Linux watchdog timers.

416 Part III6 ■ Advanced BeagleBone Systems

 BeagleBone Remote Monitoring

 One of the advantages of choosing the Apache web server in this chapter is that
it supports a number of additional open‐source services. One such example is a
remote monitoring service called Linux‐dash . The Apache server is likely already
installed from earlier steps in this chapter, but for completeness, the installation
steps are summarized here:

 ~$ sudo apt‐get install apache2 apache2‐utils
 ~$ sudo apt‐get install php5 curl php5‐curl php5‐json
 ~$ sudo service apache2 restart
 ~$ cd /var/www
 /var/www$ sudo git clone https://github.com/afaqurk/linux‐dash.git

 These steps result in a service running on the BBB's Apache web server that
can be accessed using the URL: /linux‐dash/ at the BBB's IP address. You can
then remotely connect to the BBB in order to view system information, as shown
in Figure 10-11 . This approach can help you quickly identify system problems,
such as unusual loads, network traffi c, and so on, but it still requires that you
manually check the web page.

 Figure 10-11: BBB remote monitoring

 Linux Watchdog Timer

 One solution to automatically determine if there has been a signifi cant problem
with your application is to use a watchdog timer. The Debian distribution has
watchdog driver support enabled, and therefore there is a watchdog entry in
/dev (/dev/watchdog). You can examine its functionality using the following:g

 root@beaglebone:/dev# ls ‐l watchdog
 crw------- 1 root root 10, 130 Apr 25 00:07 watchdog

 Chapter 10 ■ The Internet of Things 417

 root@beaglebone:/dev# cat > watchdog
Testing but quitting now ^C

 The preceding steps will not cause the BBB to reboot. However, if you write
anything to watchdog , do not close the fi le, and wait for 50 seconds after the last g

Return key is pressed; then the BBB will reboot!

 root@beaglebone:/dev# cat > watchdog
This will reboot the BBB 50 seconds after I hit Return. Now!
Even if I type really slowly on this line but don't hit Return

 This is because the watchdog has been activated, held open, and not “kicked”
for 50 seconds, which is the default watchdog time on the BBB Debian distribution.

 Watchdog timers can be integrated directly into program code. For example,
Listing 10‐13 is a watchdog timer example that opens the watchdog device and
writes to it every time you “kick the dog” (or “feed the dog”) by pressing “k.”
If you do not write to the device for more than 30 seconds (the user‐defi ned
interval), then the BBB will reboot.

 LISTING 10-13: /chp10/watchdog/testWatchdog.c

 #include<stdio.h>
 #include<fcntl.h>
 #include<linux/watchdog.h>
 #define WATCHDOG "/dev/watchdog"

 int main(){
 int fd, interval=30, state;
 if ((fd = open(WATCHDOG, O_RDWR))<0){
 perror("Watchdog: Failed to open watchdog device\n");
 return 1;
 } // set the timing interval to 30 seconds
 if (ioctl(fd, WDIOC_SETTIMEOUT, &interval)!=0){
 perror("Watchdog: Failed to set the watchdog interval\n");
 return 1;
 }
 printf("Press k to kick the dog, h to say hello and q to quit:\n");
 do{
 state = getchar();
 switch(state){
 case 'k':
 printf("[kick!]"); // feeding the dog may be more PC
 ioctl(fd, WDIOC_KEEPALIVE, NULL);
 break;
 case 'h':
 printf("[hello]");
 break;
 }

418 Part III8 ■ Advanced BeagleBone Systems

 } while (state!='q');
 printf("Closing down the application\n");
 close(fd);
 return 0;
 }

 If you build the principles of this code into an application, then you should
“kick the dog” each time an important block of code executes. For example,
if a sensor value were read every 15 seconds in your code example, then you
would also “kick the dog” each time you read the sensor value. That way, if
the application locks up, then the BBB would reboot automatically. Having a
watchdog timer can be very important in IoT applications if the BBB is inac-
cessible or performing an important role that should not be halted (e.g., a BBB
intruder alarm).

 IoT Physical Networking

 It may be necessary in certain IoT applications for the BBB to be wirelessly con-
nected to the Internet. Alternatively, a mains power supply may not be available
in the desired sensor location. This section describes how you can use USB
Wi‐Fi adapters with the BBB and how you can use power over Ethernet (PoE)
to deliver power to the BBB.

 The BeagleBone and Wi-Fi

 The BBB can communicate wirelessly with other devices using various different
standards, each of which has its own advantages and disadvantages, as sum-
marized in Table 10-3 .

Table 10-3: Summary Comparison of Diff erent Wireless Standards

BLUETOOTH ZIGBEE WI-FI CUSTOM

Standard IEEE 802.15.1 IEEE 802.15.4 IEEE 802.11 2.4 GHz Custom

Range 10 m to 100 m ~100 m 10 m to 100 m 10 to 100 m

Power Low Very Low High Very Low

Data Rate <2.1 Mb/s <250 kb/s 10 to 300 Mb/s 250 kb/s

Topology Star Mesh/Star Star Star

Organization Bluetooth SIG ZigBee Alliance Wi-Fi Alliance None

 Chapter 10 ■ The Internet of Things 419

 Bluetooth communication is discussed in Chapter 9 and Wi‐Fi is discussed in
this section. ZigBee communication can also be implemented by the BBB, usu-
ally through the use of XBee modules. The XBee modules can be controlled and
can communicate via a UART device on the BBB. Low‐cost, low‐power custom
2.4GHz transceiver modules are also available, but they require a time invest-
ment in order to develop appropriate software interfaces.

 Wireless Network Adapters

 Various popular low‐profi le USB Wi‐Fi adapters are tested in this section, with
the adapters and summary results illustrated in Figure 10-12 . These results
are only indicative and may not be repeatable, as product revisions and Linux
updates may affect the outcomes.

 Figure 10-12: A selection of Wi-Fi adapters and test results when they are connected to the BBB

 After a USB adapter is inserted and the BBB booted, you can confi rm that
the network adapter is being detected using the lsusb command, which should
result in an output of the following form:

 root@beaglebone:~# lsusb
 Bus 001 Device 002: ID 0bda:8178 Realtek Semiconductor Corp.
 RTL8192CU 802.11n WLAN Adapter ...

 The adapter should be detected by the BBB and its chipset identifi ed (RTL8192CU
in this case). You can search for the latest fi rmware that is available for your
adapter:

420 Part III0 ■ Advanced BeagleBone Systems

 root@beaglebone:~# sudo apt‐get update
 root@beaglebone:~# apt‐cache search RTL8192
 firmware-realtek - Binary firmware for Realtek network adapters
 root@beaglebone:~# sudo apt‐get install firmware‐realtek

N O T E Many Wi-Fi adapter problems (including “wpasupplicant daemon failed to

start” errors) are related to an insuffi cient power supply. You should use a 2 A PSU that

is connected to the 5 V DC jack (before the USB client is connected).

 If all goes well, the adapter should appear as wlanX in a call to ifconfig :

 root@beaglebone:~# ifconfig ‐a
 wlan0 Link encap:Ethernet HWaddr 80:1f:02:4b:6d:7a
 BROADCAST MULTICAST MTU:1500 Metric:1 ...
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

 The adapter can then be confi gured in the /etc/network/interfaces con-
fi guration fi le, as follows:

 iface wlan0 inet dhcp

 If the network connection is encrypted, then these settings are not suffi cient,
but they will allow you to determine your network settings:

 root@beaglebone:/etc/network# ifup wlan0
 Internet Systems Consortium DHCP Client 4.2.2 ... ^C

 Typing Ctrl+C halts the attempt to connect to the network. Then you can scan
for wireless network access points, which will provide you with the settings
that are required for the next step:

 root@beaglebone:~# iwlist wlan0 scan
 wlan0 Scan completed :
 Cell 01 - Address: 20:4E:7F:66:AD:0A
 Channel:1 Frequency:2.412 GHz (Channel 1)
 Quality=70/70 Signal level=-35 dBm
 Encryption key:on ESSID:"dereksSSID"
 Bit Rates:24 Mb/s; 36 Mb/s; 48 Mb/s; 54 Mb/s
 IE: IEEE 802.11i/WPA2 Version 1
 Group Cipher : TKIP
 Pairwise Ciphers (2) : CCMP TKIP
 Authentication Suites (1) : PSK

 You can then generate a WPA passphrase using your wireless access point
name (SSID) and network password, as follows:D

 ~# sudo wpa_passphrase dereksSSID myPassword > /etc/wpa.conf
 network={

 Chapter 10 ■ The Internet of Things 421

 ssid="dereksSSID"
 #psk="myPassword"
 psk=db23f50e71b7de4fc1234acef72f9e04a4a8c060131cdf2234ceef427f355805
 }

 You can then add other settings to the generated text. For example:

 root@beaglebone:~# more /etc/wpa.conf
 network = {
 ssid="dereksSSID"
 key_mgmt=WPA-PSK
 pairwise=CCMP TKIP
 group=CCMP TKIP
 psk=db23f50e71b7de4fc1234acef72f9e04a4a8c060131cdf2234ceef427f355805
 }

 This confi guration fi le can then be linked to from the confi guration fi le in
/etc/network/interfaces to include the following entry:

 root@beaglebone:~# more /etc/network/interfaces
 # WiFi Example
 iface wlan0 inet dhcp
 wpa-conf /etc/wpa.conf

 If you are testing multiple Wi‐Fi adapters (e.g., wlan0, wlan1), then they can
all be directed at the same wpa.conf fi le. The network adapter interface can be
restarted, the confi guration checked, and then you can activate the wireless
network adapter (wlan0(() using the ifup (interface up) command, as follows:

 root@beaglebone:~# sudo /etc/init.d/networking restart
 root@beaglebone:~# ifconfig ‐a
 root@beaglebone:~# ifup wlan0
 ... DHCPREQUEST on wlan1 to 255.255.255.255 port 67
 DHCPOFFER from 192.168.1.1 DHCPACK from 192.168.1.1
 bound to 192.168.1.24 -- renewal in 42771 seconds.

 The wireless adapter should now have been allocated an IP address via the
wireless access point:

 root@beaglebone:/etc/network# ifconfig ‐a
 wlan0 Link encap:Ethernet HWaddr c0:4a:00:10:ca:92
 inet addr:192.168.1.24 Bcast:192.168.1.255 Mask:255.255.255.0
 inet6 addr: fe80::c24a:ff:fe10:ca92/64 Scope:Link ...
 RX bytes:3645 (3.5 KiB) TX bytes:8516 (8.3 KiB)

 If you uncomment the auto wlan0 line in the /etc/network/interfaces fi le,
then the wireless interface will start on boot. You should not make this change
until the adapter is fully working.

422 Part III ■ Advanced BeagleBone Systems

 If these commands fail then you should use dmesg to check for messages (e.g.,
sudo dmesg|grep wlan0|more). If you receive the message “wpasupplicant dae-e

mon failed to start,” then check the fi le /etc/wpa.conf for any errors and check
the power supply. If the adapter still fails to function correctly, then you may
need to build drivers for the board. For example, for Realtek adapters you can
download custom driver source code from www.realtek.com.tw/downloads/
and build them on the BBB.

N O T E A video at tiny.cc/ebb1005 provides an example of the steps required to

build custom network drivers.

 You can bring the adapter down using ifdown wlan0 and get more informa-
tion about your adapter confi guration using iwconfig :

 root@beaglebone:/etc/network# iwconfig wlan0
 wlan0 IEEE 802.11bgn ESSID:"dereksSSID"
 Mode:Managed Frequency:2.437 GHz Access Point: 20:4E:7F:66:AD:0A
 Bit Rate=72.2 Mb/s Tx-Power=20 dBm ...

 You use the following command to present a display of the signal strength
properties, which updates the display every second:

 root@beaglebone:/etc/network# watch ‐n 1 cat /proc/net/wireless
 Inter-| sta-| Quality |Discarded packets |Missed| WE
 face | tus |link level noise |nwid crypt frag retry misc|beacon| 22
 wlan0: 0000 53. -57. -256 0 0 0 0 330 0

 Alternatively, you can use the wavemon application (sudo apt‐get install
wavemon) to format that data appropriately for a Linux terminal.n

 Static IP Addresses

 The BBB is confi gured by default to use the dynamic host confi guration protocol
(DHCP) for the allocation of its wired and wireless IP address. Network rout-P
ers typically run a DHCP server that allocates a pool of addresses to devices
attached to the network. While DHCP works well for most devices on a local
network, it can cause diffi culties if you wish to make the BBB visible outside
a home fi rewall via port forwarding. This is because DHCP devices may
receive a different IP address each time they boot (depending on the router's
lease time). Port forwarding (aka port mapping) means that a particular port gg
on the BBB (e.g., port 80) can be mapped to a port that is visible outside your
fi rewall, thus making a service on the BBB visible to the world. Many router/
fi rewalls require the BBB to have a static IP address in order to set up a port
forward to it.

 Chapter 10 ■ The Internet of Things 423

 To allocate a static IP address to the wireless adapter, you can alter the /etc/
network/interfaces confi guration fi le to manually specify the address (e.g.,
192.168.1.80), the network mask, and the network gateway, with the following
format:

 molloyd@beaglebone:/etc/network$ more interfaces
 # The primary network interface
auto eth0
iface eth0 inet static

address 192.168.1.80
netmask 255.255.255.0
gateway 192.168.1.1

 The BBB then has a static IP address after reboot. The same procedure applies
to other adapter entries, such as the wlan0 wireless Ethernet adapter. Do not
pick an address that is within the DHCP pool or assigned to another device, or
it will result in IP confl icts on the network.

 Power over Ethernet (PoE)

 One common diffi culty in using the BBB as a web sensor is related to the provi-
sion of power. It is possible to power the BBB using batteries, and there are many
USB battery pack solutions available that can perform this role. For example, the k
IntoCircuit Power Castle 11.2Ah (~$40) is a popular choice that could in theory
power the BBB for ~50hrs at an average load (this duration will fall dramatically
if Wi‐Fi is used). For example, such a battery confi guration could be used for a
BBB mobile robot platform.

 When a fi xed installation is required in a remote location (e.g., in a garden, gate/
entrance) where power sockets are not readily available, then power over Ethernet
(PoE(() is a good option. Regular Ethernet cables (Cat 5e or Cat 6) contain four pairs
of wires that are twisted together in order to cancel out electromagnetic interfer-
ence from external power sources. Low‐cost unshielded twisted pair (r UTP) cables P
can therefore transmit data (and power) over long distances of up to 100m/328ft.

 For standard Ethernet (100Base‐T), only two of the twisted pair wires are
actually used for data transfer; therefore, the other two pairs are available to
carry power. However, it is also possible to inject a common‐mode voltage onto the
pair of wires that carry the data signals. This is possible because Ethernet over
twisted pair (similar to CAN bus, USB, and HDMI) uses differential signaling,gg
which means that the receiver reads the difference between the two signals,
rather than their voltage level with respect to ground. External interference
affects both of the paired wires in the same way, so its impact is effectively
canceled out by the differential signaling. PoE can therefore use the network
cable to deliver power to attached devices. This structure is commonly used by
VoIP phones and IP cameras.

424 Part III4 ■ Advanced BeagleBone Systems

 The BBB does not support PoE internally, so two main external options are
available:

■ Use a pseudo -PoE cabling structure: Adafruit sell a Passive PoE Injector
Cable Set (~$6), illustrated in Figure 10-13 , for which you can use a regular
5 V mains supply to inject power into the unused twisted pair wires, and
then draw that power at the other end of the cable. Under no circumstance
should such cables be connected to a true-PoE switch!

■ Use a true PoE (IEEE 802.3af) switch: In order to send power over long
distances, PoE switches provide a 48 V DC supply. Therefore, a PoE power
extraction module is required to step down this voltage to a level that is
acceptable by the BBB.

 Figure 10-13: AdaFruit pseudo -PoE cable

 PoE Power Extraction Modules (PEMs) (Advanced Topic)

 Recently, low‐cost network switches have become available that offer PoE func-
tionality. Power extraction modules (PEMs) can be purchased to step down the
48 V DC voltage that is supplied by these switches to lower, fi xed DC levels (e.g.,
3.3 V, 5 V, 12 V). The low‐cost ($10–$15) PEM that is used in this section is the
PEM1305 (tiny.cc/ebb1006), which can be used to supply 5 V to the BBB. PoE
(802.3af) switches can provide up to 15.4 W of power per attached device. The
IEEE 802.3af standard (IEEE Standards Association, 2012) requires that true-PoE
devices support two types of PoE:1

■ Type‐B PoE: Uses the spare pair of wires to carry power. The data pairs
are untouched.

■ Type‐A PoE: Uses a 48 V common‐mode DC voltage on the data wires to
carry power. The spare pairs are unused.

 Gigabit Ethernet uses all four pairs of wires to transmit data, so it is likely
that Type‐A PoE will be dominant in future PoE network switches.

 Figure 10-14 illustrates a circuit that can be used to power the BBB using a
PoE (IEEE 802.3af) supply. The PEM1305 can extract power from type‐A and

 Chapter 10 ■ The Internet of Things 425

type‐B PoE confi gurations. However, you must connect the module to DC
isolation transformers in order to extract the power from the data wires. To
do this you can use a MagJack (a jack with integrated magnetics) with center‐
tapped outputs (e.g., the Belfuse 0826‐1X1T‐GJ‐F). The MagJack contains the
isolation transformers that are required to provide the 48 V supply to the PoE
PEM, and to deliver the data pair safely to the BBB Ethernet jack at Ethernet
signal voltage levels.

 The resistor that is placed on the input side of the PEM1305 is used to select
the power output level of the PoE switch—accurately selecting the power out-
put level results in a more power-effi cient implementation. The output voltage
adjustment resistor can further refi ne the PEM output voltage level. The PEM
pin outputs can be connected directly to 5 V DC jack or to the P9_01 (GND) and
the P9_05 (VDD_5V) pins on the BBB P9 header.

 Figure 10-14: True PoE connection for the T-568B wiring scheme

N O T E Be careful in your choice of PoE power extraction module and MagJack. For

example, the PEM1205 module appears to be very similar to the PEM1305, but it does

not have rectifi er bridges on the input, so you would need to add them yourself (oth-

erwise, the circuit could not handle Ethernet cross-over cables). Also, many Ethernet

MagJacks do not have center-tap outputs from the isolation transformers and so are

unsuitable for use with PoE PEMs.

 Summary

 After completing this chapter, you should be able to do the following:

■ Interface to the Analog Devices TMP36 temperature sensor and to the
Texas Instruments SensorTag using Bluetooth Smart.

426 Part III6 ■ Advanced BeagleBone Systems

■ Install and confi gure a web server on the BBB and use it to display static
HTML content.

■ Enhance the web server to send dynamic web content that uses CGI scripts
and PHP scripts to interface to BBB sensors.

■ Write the code for a C/C++ client application that can communicate using
either HTTP or HTTPS.

■ Interface to platform as a service (PaaS) offerings, such as ThingSpeak
and Xively, using HTTP and custom APIs.

■ Use the Linux cron scheduler to structure workfl ow on the BBB.

■ Send e‐mail messages directly from the BBB and utilize them as a trigger
for web services such as IFTTT.

■ Build a C++ client/server application that can communicate at a high
speed and a low overhead between any two TCP devices.

■ Manage remote BBB devices, using monitoring software and watchdog
code, to ensure that deployed services are robust.

■ Confi gure the BBB to use Wi‐Fi adapters and static IP addresses, and wire
the BBB to utilize Power over Ethernet (PoE).

 Further Reading

 The following additional links provide further information on the topics in
this chapter:

■ TI SensorTag User Guide: tiny.cc/ebb1003

■ Linux socket programming: tiny.cc/ebb1007

■ Apache for Debian: tiny.cc/ebb1008

■ Debian network confi guration: tiny.cc/ebb109

■ Xively REST API: tiny.cc/ebb1010

■ The ABCs of PoE: tiny.cc/ebb1011

■ TI SensorTag YouTube Video: tiny.cc/ebb1012

 Note

 1. IEEE Standards Association. (2012). IEEE 802.3-2012 Standard for Ethernet.
IEEE Standards Association.

427

 In this chapter you are introduced to rich user interface (UI) architectures and
application development on the BeagleBone. Rich UIs allow for a depth of inter-
action with an application that is not possible with command‐line interfaces
(CLIs)—in particular, the addition of graphical display elements can result
in easier‐to‐use applications. Also introduced are different BBB architectures
that can support rich UIs, such as general‐purpose computing, touch screen
display modules, and virtual network computing (VNC). Different software
application frameworks are examined for rich UI development, such as GTK+
and Qt. The Qt framework is the focus of the discussion, largely due to its com-
prehensive libraries of code. An example rich UI application is developed for
the BBB that uses the TMP36 temperature sensor. Finally, a feature‐rich remote
fat‐client application framework is developed, and two example applications
are described—one that uses the TMP36 sensor and a second that uses the
ADXL345 accelerometer.

Equipment Required for This Chapter:

■ BeagleBone Black

■ Analog Devices TMP36 temperature sensor

■ USB/HDMI accessories from Chapter 1 (optional)

■ ADXL345 accelerometer (optional)

 C H A P T E R

 11

 BeagleBone wiith a Rich

User Interface Interface

428 Part III8 ■ Advanced BeagleBone Systems

 Further resources for this chapter are available at www.exploringbeaglebone
.com/chapter11/ .

 Rich UI BBB Architectures

 In Chapter 9 , low‐cost LED displays and character LCD displays are introduced.
They can be coupled with sensors, switches, or keyboard modules to form simple
low‐cost UI architectures that are suffi cient for many applications, such as for
confi guration or interaction with hardware devices (e.g., vending machines,
printer control interfaces, etc.). However, the BBB has a powerful processor,
which when coupled with the Linux OS is capable of providing very sophisti-
cated user interfaces—similar to those to which you are accustomed on your
desktop machine and/or mobile devices.

 The BBB’s LCD controller and HDMI framer enable it to be connected directly
to a physical display (e.g., monitor, television, or LCD touch screen) to create a
sophisticated self‐contained physical UI device. This is one application of the
BBB that demonstrates the strength of embedded Linux in particular, as it sup-
ports open‐source UI development frameworks such as GTK+ and Qt. These
frameworks provide libraries of visual components (aka widgets) that you cans
combine to create applications with considerable depth of interaction.

 Before examining software development frameworks, this section fi rst intro-
duces four different BBB UI hardware architectures:

■ General‐purpose computing : By connecting the BBB to a monitor/
television by HDMI, and a keyboard and mouse by USB, it can be used
as a general‐purpose computer.

■ LCD touch screen display : By attaching an LCD touch screen cape to the
BBB P8/P9 headers, it can be used as a stand-alone UI device.

■ Virtual network computing (VNC) : By using remote access and control
software on a network‐attached BBB, it can control UIs on a virtual display.

■ Remote fat‐client applications : By using custom client/server program-
ming with a network‐attached BBB, it can interact with remote UIs by
sending and receiving messages.

 These architectures are described in detail in this section, but to give the dis-
cussion some context, Table 11-1 summarizes the strengths and weaknesses of
each approach when used with the BBB.

 The BBB as a General‐Purpose Computer

 The BBB is a very capable embedded device, largely due to its 1 GHz ARM‐A8
processor and 512 MB of DDR3 RAM. The HDMI video output capability on the
BBB means that it can be directly connected to a monitor/television, enabling it to

 Chapter 11 ■ BeagleBone with a Rich User Interface 429

 Table 11-1 : Strengths and Weaknesses of Diff erent BBB UI Architectures

APPROACH STRENGTHS WEAKNESSES

BBB as a general‐
purpose computer

Low‐cost computing platform
with low power consumption.
Ideal for a network‐attached
information display point
application, by connecting it to
a TV/monitor. Can interact with
it using a USB keyboard and
mouse.

Requires a dedicated monitor/
TV. BBB lacks the processing
power to replace a modern
desktop computer. BBB HDMI
has a limited resolution and
uses a large number of the P8/
P9 header pins.

BBB with an LCD
touch screen

Very portable interactive
display that can be battery
powered. Ideal for custom UI
process controls. A range of
display sizes are available.

Expensive. Occupies many of
the header pins (remainder
not carried forward). Typically
resistive touch, rather than
capacitive touch.

VNC No display required on the
BBB (frees header pins). BBB
could be battery powered and
wireless.

Requires a desktop computer/
tablet device and network
connection. Display update
over the network connection
can be sluggish.

Fat‐client
applications

No display is required on the
BBB. BBB could be battery pow-
ered and wireless. Very low BBB
processor overhead, as the dis-
play is updated by the desktop
computer. Many simultaneous
displays possible.

Requires custom application
development (e.g., using TCP
socket programming). Requires
network connection and a
device on which to run the
fat‐client applications.

 Figure 11-1 : (a) Connection to an HDMI and a Bluetooth adapter (b) a Bluetooth keyboard/
touchpad

be confi gured as a general‐purpose desktop computer. For example, Figure 11-1 (a)
illustrates the use of a micro‐HDMI adapter (described in Chapter 1) alongside
the Kinivo Bluetooth adapter, together providing support for video output and
keyboard/mouse input. Figure 11-1 (b) displays a low‐cost Bluetooth keyboard/
touchpad that is used for this example—it is a compact device that is displayed
to scale with the BBB.

430 Part III0 ■ Advanced BeagleBone Systems

 The Ethernet connector can be used to provide network support, and a pow-
ered USB hub can be connected to the BBB in order to provide support for more
devices, such as Wi‐Fi adapters or separate keyboard and mouse peripherals.
Figure 11-2 displays a screen capture of the BBB display output when connected
directly to a computer monitor using the HDMI interface.

 Figure 11-2 : Screen capture of the BBB monitor display

 To be clear, this display is running on a stand-alone monitor at a screen resolution
of 1680 × 1050 pixels and the screen was captured on the BBB using a Linux tool
called scrot that can be installed and executed from the CLI using the following:

 molloyd@beaglebone:~$ sudo apt‐get install scrot
 molloyd@beaglebone:~$ scrot screenshot.png

 Connecting a Bluetooth Input Peripheral

 A regular USB keyboard and mouse can be directly connected to the BBB for
this architecture. Bluetooth keyboard/touchpads are also useful, as they can be
reused in other applications, such as wireless robotic control and home auto-
mation. The Kinivo Bluetooth adapter (see Chapter 9) can directly interface to
devices such as the handheld iPazzPort Bluetooth keyboard and touchpad (~$20).
Devices can be confi gured using the following steps:

 molloyd@beaglebone:~$ sudo apt‐get install bluez
 molloyd@beaglebone:~$ hcitool scan

 Chapter 11 ■ BeagleBone with a Rich User Interface 431

 Scanning . . .
 00:26:83:32:CF:0D DEREKMOLLOY-PC
 54:46:6B:01:E2:13 bluetooth iPazzport
 molloyd@beaglebone:~$ sudo bluez‐simple‐agent hci0 54:46:6B:01:E2:13
 RequestPinCode (/org/bluez/2130/hci0/dev_54_46_6B_01_E2_13)
 Enter PIN Code: 0000

 In order to pair the device, a pin code of 0000 is entered in the preceding
instructions, so 0000 must also be keyed on the Bluetooth device (followed by
Enter), which results in the following:

 Release
 New device (/org/bluez/2130/hci0/dev_54_46_6B_01_E2_13)

 The device is now available to the BBB, but it is not trusted or confi gured as
an input device. The fi nal steps are as follows:

 ~$ sudo bluez‐test‐device trusted 54:46:6B:01:E2:13 yes
 ~$ sudo bluez‐test‐input connect 54:46:6B:01:E2:13 yes

 The Bluetooth keyboard/touchpad is now attached to the BBB and it will auto-
matically connect from then on. It can control the general‐purpose computing
environment that is displayed in Figure 11-2 .

N O T E Linux allows virtual consoles (aka virtual terminals) to be opened while an X

Window System (windowing display) is executing. Use Ctrl+Alt+F1 to open a virtual

console—there are six virtual text‐based consoles (F1 to F6). Use Ctrl+Alt+F7 to return

to the X Window System. Using Alt+Left arrow and Alt+Right arrow switches in order

between the consoles.

 Also, you can kill a frozen SSH session by typing Enter ~ . in sequence (i.e., the

Return key followed by the tilde followed by a period). Use Enter ~ ? to display a list of

the escape sequences that are available within an SSH session.

 BBB with a LCD Touch Screen Cape

 The BBB’s AM335x system on a chip (SoC) includes an LCD controller (r LCDC) that
is capable of driving LCD modules (up to 2,048 × 2,048 with a 24‐bits-per‐pixel
active TFT confi guration) using TI Linux LCDC and backlight drivers. An LCD
touch screen display, such as the LCD4 cape discussed in Chapter 1 (Figure 1‐9),
can be attached to the BBB as illustrated in Figure 11-3 . The LCD4’s 4.3” TFT
display has a resolution of 480 × 272 pixels, which limits the desktop space for
general‐purpose computing applications. The cape also occupies many of the
P8/P9 header pins, including the ADC inputs, which are used for the touch
interface and the control buttons. Despite these limitations, it can be used to
build sophisticated UI applications.

432 Part III ■ Advanced BeagleBone Systems

N O T E A full video example of the type of rich UI applications that are possible when

using this cape is available at the chapter web page: www.exploringbeaglebone

.com/chapter11/ .

 The LCD capes from CircuitCo are fully compatible with the BBB, and the
BBB Debian image does not require specifi c software confi guration in order
to use them. The touch screen interface must be calibrated on its fi rst use—for
this task, and for general usage, a nylon‐tipped stylus is a useful accessory, as
pressure must be applied to resistive touch screens that can result in scratches.
The Bluetooth keyboard/touchpad from the last section can also be used to
control the BBB when it is attached to an LCD display, which is useful because
entering text using onscreen touch keyboards can be frustrating.

 Virtual Network Computing (VNC)

Virtual network computing (g VNC) enables desktop applications on one computer (theC
server) to be shared and remotely controlled from another computer (the client).
Keystrokes and mouse interactions on the VNC client are transmitted to the VNC
server over the network. The VNC server determines the impact of these interac-
tions and then updates the remote frame buffer (RAM containing bitmap image r
data) on the VNC client machine. VNC uses the remote frame buffer protocol, whichl
is similar to the remote desktop protocol (RDP(() that is tightly coupled to the Windows P
OS, but because VNC works at the frame buffer level, it is available for many OSs.

 Figure 11-3 : The CircuitCo LCD4 cape

 Chapter 11 ■ BeagleBone with a Rich User Interface 433

 The BBB does not require a physical display in order to act as a VNC server,
which means that the P8/P9 header pins that are allocated to HDMI output
can be retasked. Importantly, with VNC the Linux applications are executing
on the BBB using its processor, but the frame buffer display is being updated
on the remote machine.

 VNC Using VNC Viewer

 Many VNC client applications are available, but VNC Viewer is described here
because it is available for Windows, Mac OS X, and Linux platforms. It can be
downloaded and installed free from www.realvnc.com . Once it is executed, a
login screen appears that requests the VNC server address. However, for this
confi guration you must ensure that your BBB is running a VNC server before
you can log in. The BBB Debian distribution has the tightvncserver installed by
default. The fi rst time you execute the server you will be prompted to defi ne a
password for remote access, as follows:

 molloyd@beaglebone:~$ tightvncserver
 You will require a password to access your desktops.
 Password:
 New 'X' desktop is beaglebone:1 ...

 Once the server is running, you can check the process description to deter-
mine the port number—here it is running on port 5901:

 molloyd@beaglebone:~$ ps aux|grep vnc
 molloyd 24463 1.0 1.7 11364 8916 pts/2 S 16:15 0:00 Xtightvnc :1
 -desktop X -auth /home/molloyd/.Xauthority -geometry 1024x768 -depth
 24 ‐rfbwait 120000 ‐rfbauth /home/molloyd/.vnc/passwd ‐rfbport 5901 ...

 The VNC Viewer session can then be started on your desktop machine using
the server address and its port number (e.g., 192.168.7.2:5901). The BBB desktop
is contained within a window frame, as displayed in Figure 11-4 .

 VNC with Xming and PuTTY

 The Xming X Server (tiny.cc/ebb1101) for Windows, in combination with
PuTTY, is a different approach to the same task; however, it does not require that
a VNC server is running on the BBB. Once Xming is installed and executed, it
appears only in the Windows taskbar with an “X” icon. The PuTTY BBB session
can be confi gured using Connection ➢ SSH ➢ X11 to “Enable SSH X11 forward-
ing” to the local X display location and to set the X display location to be :0.0 .

 When an SSH session is opened to the BBB you can simply perform the fol-
lowing instructions, which result in the display of an xterm and xeyes display.
The xterm window is the standard terminal emulator for the X Window System

434 Part III4 ■ Advanced BeagleBone Systems

and the “magical” xeyes follow your mouse cursor around the desktop com-
puter. Remember that the xeyes display is being updated by the BBB, not the
desktop computer:

 molloyd@beaglebone:~$ sudo apt‐get install x11‐apps
 molloyd@beaglebone:~$ xterm &
 molloyd@beaglebone:~$ xeyes &

 Figure 11-4 : VNC Viewer on Windows

 One advantage of this approach is that you can seamlessly integrate BBB
applications and Windows applications on the display. You can also start the
BBB’s LXDE (Lightweight X11 Desktop Environment) t standard panel by calling
lxpanel or lxsession , which results in the bottom‐bar menu display (refer to
Figure 11-4).

 VNC with a Linux Desktop Computer

 If you are running Linux as your desktop OS (e.g., Debian x64 on a VM), then
you can usually start a VNC session using the following steps, where ‐X enables
X11 forwarding and ‐C requests that compression is used in the transmission
of frame buffer data:

 molloyd@debian:~$ ssh ‐XC molloyd@192.168.7.2
 BeagleBoard.org BeagleBone Debian Image 2014-05-14
 molloyd@192.168.7.2's password:
 molloyd@beaglebone:~$ xeyes &
 molloyd@beaglebone:~$ xterm &

 Chapter 11 ■ BeagleBone with a Rich User Interface 435

 Fat‐Client Applications

 At the beginning of the previous chapter, the BBB is confi gured as a web server—
essentially, the BBB is serving data to a thin‐client web browser that is executing
on a client machine. The temperature sensor application executes on the BBB
and the data is served to the client’s web browser using the Apache web server
and CGI/PHP scripts. With thin‐client applications, most of the processing takes
place on the server machine (server‐side((). In contrast, e fat‐client (aka thick‐client) t
applications execute on the client machine (client‐side), and send and receive e
data messages to and from the server.

 Recent computing architecture design trends have moved away from fat‐client
architectures and toward thin‐client (and cloud) browser‐based frameworks.
However, the latter frameworks are usually implemented on a powerful cluster
of server machines and are unsuitable for deployment on embedded devices.
When working with the BBB, it is likely that the client desktop machine is the
more computationally powerful device.

 A fat‐client application is typically more complex to develop and deploy
than a thin‐client application, but it reduces the demands on the server while
allowing for advanced functionality and user interaction on the client machine.
Later in this chapter, fat‐client UI applications are developed that execute on a
desktop computer and communicate to the BBB via TCP sockets. In turn, the
BBB interfaces to the TMP36 temperature sensor and the ADXL345 accelerom-
eter and serves their sensor data to the remote UI applications. Importantly, the
fat‐client applications use the resources of the desktop computer for graphical
display, and therefore there is a minimal computational cost on the BBB. As such,
it is possible for many fat‐client applications on different desktop computers to
simultaneously communicate with a single BBB.

 Rich UI Application Development

 Once a display framework is available to the BBB, a likely next step is to write
rich UI applications that can utilize its benefi ts. Such applications are termed
graphical user interface (GUI) applications; if you have used desktop computers,I
tablet computers, or smartphones, then you are familiar with their use. There are
many different ways to implement GUI applications on the BBB—for example,
Java has comprehensive built‐in support for GUI development with its abstract
windowing toolkit (AWT(() libraries, and Python has libraries such as pyGTK,
wxPython, and Tkinter.

 To develop GUI applications under C/C++ for the BBB there are two clear
options: the GIMP Toolkit (GTK+) and the + Qt cross‐platform development frame-
work. This section describes how you can get started with both of these options.
It is important to note that the applications in this section will function regardless

436 Part III6 ■ Advanced BeagleBone Systems

of whether they are used directly on the BBB (i.e., general‐purpose computer
or touch screen form) or through VNC. GTK+ and Qt can also be used as the
basis for building fat‐client applications, which is covered later in this chapter.

 Introduction to GTK+ on the BBB

 GTK+ (www.gtk.org(() is a cross‐platform toolkit for creating GUI applications. It
is most well known for its use in the Linux GNOME desktop and the GNU Image
Manipulation Program (GIMP). Figure 11-5 illustrates a sample GTK+ application P
running on the BBB using VNC. The same application also works perfectly if
the application is running on the BBB directly (e.g., refer to Figure 11-3).

 Figure 11.5 : The GTKsimple application

 The “Hello World” GTK+ Application

 The code for the application shown in Figure 11-5 is provided in Listing 11‐1. The
application consists of a single label, which contains the text “Hello BeagleBone”
that has been added to a GTK+ window. Each line of the code has been com-
mented in the listing in order to explain the important steps.

 LISTING 11‐1: /exploringBB/chp11/gtk/GTKsimple.cpp

 #include<gtk/gtk.h> // the GTK+ library header file

 int main(int argc, char *argv[]){

 // This application will have a window and a single label

 GtkWidget *window, *label;

 // Initialize the GTK+ toolkit, pass command-line arguments

 gtk_init(&argc, &argv);

 // Create the top-level window (not yet visible)

 window = gtk_window_new(GTK_WINDOW_TOPLEVEL);

 // Set the title of the window to "Exploring BB"

 gtk_window_set_title (GTK_WINDOW (window), "Exploring BB");

 // Create a label

 label = gtk_label_new ("Hello BeagleBone");

 // Add the label to the window

 gtk_container_add(GTK_CONTAINER (window), label);

 // Make the label visible (must be performed for every widget)

 Chapter 11 ■ BeagleBone with a Rich User Interface 437

 gtk_widget_show(label);

 // Make the window visible on the display

 gtk_widget_show(window);

 // Runs the main loop until gtk_main_quit() is called

 gtk_main(); // for example, if Ctrl C is typed

 return 0;

 }

 The application can be compiled using the following call, which is also cap-
tured in the Git repository build script (use the grave accent ,̀ not the single
opening quotation mark character ‘):

 molloyd@beaglebone:~/exploringBB/chp11/gtk$ g++ `pkg‐config --libs
--cflags glib‐2.0 gtk+‐2.0` GTKsimple.cpp ‐o gtksimple

 This call uses pkg‐confi g , a tool that is useful when building applications and gg
libraries under Linux, as it inserts the correct system‐dependent options. It does
this by collecting metadata about the libraries that are installed on the Linux
system. For example, to get information about the current GTK+ library, you
can use the following:

 molloyd@beaglebone:~$ pkg‐config --modversion gtk+‐2.0
 2.24.10

 The application in Figure 11-5 does not quit when the X button (top right‐hand
corner) is clicked—the window itself disappears but the program continues to
execute. This is because the preceding code has not defi ned that something
should happen when the X button is clicked—you need to associate a “close”
function with the signal that is generated when the button is clicked.

 The Event‐Driven Programming Model

 GUI applications typically use an event‐driven programming model . Under this
model, the application waits in its main loop until an event (e.g., the user
action of clicking a button) is detected, which triggers a callback function to
be performed. In GTK+, a user action causes the main loop to deliver an event
to GTK+, which is initialized by the call to gtk_init() . GTK+ then delivers this
event to the graphical widgets, which in turn emit signals. These signals can be
attached to callback functions of your own design or to windowing functions.
For example, the following GTK+ code quits the application if the window X
button is clicked:

 g_signal_connect(window, "destroy", G_CALLBACK (gtk_main_quit), NULL);

 The signal is attached to the window handle, so that when a signal named w destroy

is received, the gtk_main_quit() function is called, which causes the application

438 Part III8 ■ Advanced BeagleBone Systems

to exit. The last argument is NULL because no data is required to be passed to
the gtk_main_quit() function.

 The GTK+ Temperature Application

 Listing 11‐2 provides the full source code for a more complete GTK+ application,
which executes on the BBB as shown in Figure 11-6 . It uses the same TMP36 tem-
perature sensor and ADC confi guration used in Chapter 10 (e.g., in Listing 10‐5).
This example is a GUI application that reads the BBB ADC when a button is
clicked, and then displays the temperature in a label. In this example, a signal
is connected to the button object, so when it is clicked the callback function
getTemperature() is called.

 Figure 11-6: The GTKtemperature application

 LISTING 11‐2: /exploringBB/chp11/gtk/GTKtemperature.cpp (segment)

 #include<gtk/gtk.h>

 ...

 #define LDR_PATH "/sys/bus/iio/devices/iio:device0/in_voltage"

 // Same function as in Chp. 10 to read the ADC value (Listing 10-5)

 int readAnalog(int number){ ... }

 // The callback function associated with the button. A pointer to the

 // label is passed, so that the label can display the temperature

 static void getTemperature(GtkWidget *widget, gpointer temp_label){

 // cast the generic gpointer into a GtkWidget label

 GtkWidget *temperature_label = (GtkWidget *) temp_label;

 int adc_value = readAnalog(0);

 float cur_voltage = adc_value * (1.80f/4096.0f);

 float diff_degreesC = (cur_voltage-0.75f)/0.01f;

 float temperature = 25.0f + diff_degreesC;

 stringstream ss;

 ss << "Temperature: " << temperature << " degrees C";

 // set the text in the label

 gtk_label_set_text(GTK_LABEL(temp_label), ss.str().c_str());

 ss << endl; // add a \n to the string for the standard output

 g_print(ss.str().c_str()); // output to the terminal (std out)

 }

 Chapter 11 ■ BeagleBone with a Rich User Interface 439

 int main(int argc, char *argv[]){

 GtkWidget *window, *temp_label, *button, *button_label;

 gtk_init(&argc, &argv);

 window = gtk_window_new(GTK_WINDOW_TOPLEVEL);

 gtk_window_set_title(GTK_WINDOW (window), "Exploring BB");

 // Fix the size of the window so that it cannot be resized

 gtk_widget_set_size_request(window, 220, 50);

 gtk_window_set_resizable(GTK_WINDOW(window), FALSE);

 // Place a border of 5 pixels around the inner window edge

 gtk_container_set_border_width (GTK_CONTAINER (window), 5);

 // Quit application if X button is pressed

 g_signal_connect(window, "destroy", G_CALLBACK (gtk_main_quit), NULL);

 // Set window to contain two stacked widgets using a vbox

 GtkWidget *vbox = gtk_vbox_new(FALSE, 5); // spacing of 5

 gtk_container_add (GTK_CONTAINER (window), vbox); // add vbox

 gtk_widget_show (vbox); // set the vbox visible

 // This is the label in which to display the temperature

 temp_label = gtk_label_new ("Temperature is Undefined");

 gtk_widget_show(temp_label); // make it visible

 gtk_label_set_justify(GTK_LABEL(temp_label), GTK_JUSTIFY_LEFT);

 // Add the label to the vbox

 gtk_box_pack_start (GTK_BOX (vbox), temp_label, FALSE, FALSE, 0);

 // Create a button and connect it to the getTemperature() callback

 button = gtk_button_new();

 button_label = gtk_label_new("Get Temperature"); // button text label

 gtk_widget_show(button_label); // show label

 gtk_widget_show(button); // show button

 gtk_container_add(GTK_CONTAINER (button), button_label);

 // Connect the callback function getTemperature() to the button

 g_signal_connect(button, "clicked",

 G_CALLBACK (getTemperature), (gpointer) temp_label);

 // Add the button to the vbox

 gtk_box_pack_start (GTK_BOX (vbox), button, FALSE, FALSE, 0);

 gtk_widget_show(window);

 gtk_main();

 return 0;

 }

 MAKEFILES

 As the complexity of your C/C++ projects grows, an IDE such as Eclipse can be used

to manage compiler options and program code interdependencies. However, there

are occasions when command‐line compilation is required, and when projects are

440 Part III0 ■ Advanced BeagleBone Systems

complex, a structured approach to managing the build process is necessary. A good

solution is to use the make program and makefi les . To compile the GTKsimple.cpp
program in this project the build script is as follows:

 #!/bin/bash
 g++ 'pkg-config ––libs ––cflags glib-2.0 gtk+-2.0' GTKsimple.cpp -o
gtksimple
 g++ 'pkg-config ––libs ––cflags glib-2.0 gtk+-2.0' GTKtemperature.cpp -o
gtktemp erature

 The script works perfectly fi ne in this case; however, if the project’s complexity

necessitated separate compilation, then this approach lacks structure. Following is a

simple Makefile that could be used instead (it is very important to use the Tab key to

indent the lines with the <Tab> marker below):

 molloyd@beaglebone:~/exploringBB/chp11/gtk$ more Makefile
 all: GTKsimple GTKtemperature

 GTKsimple:
<Tab> g++ 'pkg‐config ––libs ––cflags glib‐2.0 gtk+‐2.0' GTKsimple.cpp
 -o GTKsimple

 GTKtemperature:
<Tab> g++ 'pkg‐config ––libs ––cflags glib‐2.0 gtk+‐2.0' GTKtemperature.
cpp -o GTKtemperature

 If the make command is issued in this directory, then the Makefile fi le is detected

and a call to “make all” will automatically be invoked. That will execute the commands

under the GTKsimple: and GTKtemperature: labels, which builds the two pro-

grams. However, this makefi le does not add much in the way of structure, so a more

complete version is required, such as this:

 molloyd@beaglebone:~/exploringBB/chp11/gtk$ more Makefile
 CC = g++
 CFLAGS = -c -Wall $(shell pkg-config ––cflags glib-2.0 gtk+-2.0)
 LDFLAGS = $(shell pkg-config ––libs glib-2.0 gtk+-2.0)

 all: GTKsimple GTKtemperature

 GTKsimple: GTKsimple.o
<Tab> $(CC) $(LDFLAGS) $< -o $@

 GTKsimple.o: GTKsimple.cpp
<Tab> $(CC) $(CFLAGS) $< -o $@

 GTKtemperature: GTKtemperature.o

 Chapter 11 ■ BeagleBone with a Rich User Interface 441

 Introduction to Qt on the BBB

 Qt (pronounced “cute”) is a powerful cross‐platform development framework
that uses standard C++. It provides libraries of C++ code for GUI application
development and for database access, thread management, networking, and
more. Importantly, code developed under this framework can be executed under
Windows, Linux, Mac OS X, Android, iOS, and on embedded platforms, such
as the BBB. Qt can be used under open‐source or commercial terms and it is
supported by freely available development tools, such as qmake and Qt Creator.
The capability and fl exibility of this framework make it an ideal candidate for
GUI applications that are to run directly on the BBB, or on devices that control
the BBB.

<Tab> $(CC) $(LDFLAGS) $< -o $@

 GTKtemperature.o: GTKtemperature.cpp
<Tab> $(CC) $(CFLAGS) $< -o $@

 clean:
<Tab> rm ‐rf *.o GTKsimple GTKtemperature

 In this version the compiler choice, compiler options, and linker options are

defi ned at the top of the makefi le. This enables the options to be easily altered for all

fi les in the project. In addition, the objective fi les (.o fi les) are retained, which dra-

matically reduces repeated compilation times when there are many source fi les in the

project. There is some shortcut syntax in this makefi le—for example, $< is the name

of the fi rst prerequisite (GTKsimple.o in its fi rst use) and $@ is the name of the

target (GTKsimple in its fi rst use). The project can now be built using the following

steps:

 molloyd@beaglebone:~/exploringBB/chp11/gtk$ ls
 GTKsimple.cpp GTKtemperature.cpp Makefile
 molloyd@beaglebone:~/exploringBB/chp11/gtk$ make
 g++ -c -Wall -pthread ... GTKsimple.cpp -o GTKsimple.o ...
 molloyd@beaglebone:~/exploringBB/chp11/gtk$ ls
GTKsimple GTKsimple.cpp GTKsimple.o GTKtemperature.cpp Makefile
 molloyd@beaglebone:~/exploringBB/chp11/gtk$ make clean
 molloyd@beaglebone:~/exploringBB/chp11/gtk$ ls
 GTKsimple.cpp GTKtemperature.cpp Makefile

 This description only scratches the surface of the capability of make and makefi les—

a full GNU guide is available at tiny.cc/ebb1102 .

442 Part III ■ Advanced BeagleBone Systems

 Qt is described in greater detail
in the next section, but it is useful
to get started using a simple “hello
world” example, as illustrated in
Figure 11-7 , which can be compiled
and executed on the BBB either
directly or using VNC.

 Installing Qt Development Tools on the BBB

 The fi rst step is to install the Qt development tools on the BBB. The last com-
mand in the following code snippet installs a full suite of tools (~200 MB of
storage required). The middle command identifi es the constituent components
of the suite:

 molloyd@beaglebone:~$ sudo apt‐get update
 molloyd@beaglebone:~$ apt‐cache search qt4
 molloyd@beaglebone:~$ sudo apt‐get install qt4‐dev‐tools

 You can then test the version of the installation using the following:

 molloyd@beaglebone:~$ qmake ‐version
 QMake version 2.01a
 Using Qt version 4.8.2 in /usr/lib/arm-linux-gnueabihf

 The “Hello World” Qt Application

 Listing 11‐3 is a very concise Qt application that can be used as a test—it does not
represent good Qt programming practice! It uses an object of the QLabel class,
which is a subclass of the QWidget class, to display a message in the application.
A widget is the primary UI element that is used for creating GUIs with Qt. The
parent QWidget class provides the code required to render (draw) the subclass
object on the screen display.

 LISTING 11‐3: /exploringBB/chp11/simpleQt/simpleQt.cpp

 #include <QApplication>
 #include <QLabel>
 int main(int argc, char *argv[]){
 QApplication app(argc, argv);
 QLabel label("Hello BeagleBone!");
 label.resize(200, 100);
 label.show();
 return app.exec();
 }

 Figure 11-7 : Qt “hello world” BBB example
executing using VNC

 Chapter 11 ■ BeagleBone with a Rich User Interface 443

 The simpleQt.cpp fi le in Listing 11‐3 is the only fi le required in a directory
before the following steps take place. The qmake cross‐platform makefi le genera-
tor can then be used to create a default project:

 molloyd@beaglebone:~/exploringBB/chp11/simpleQt$ ls
 simpleQt.cpp
 molloyd@beaglebone:~/exploringBB/chp11/simpleQt$ qmake ‐project
 molloyd@beaglebone:~/exploringBB/chp11/simpleQt$ ls
 simpleQt.cpp simpleQt.pro
 molloyd@beaglebone:~/exploringBB/chp11/simpleQt$ more simpleQt.pro
 ##
 # Automatically generated by qmake (2.01a) Thu May 15 03:07:20 2014
 ##
 TEMPLATE = app
 TARGET =
 DEPENDPATH += .
 INCLUDEPATH += .
 SOURCES += simpleQt.cpp

 This project .pro fi le describes the project settings and, if required, it can be
edited manually to add additional dependencies. The qmake makefi le generator
can then be executed again, this time with no ‐project argument:

 molloyd@beaglebone:~/exploringBB/chp11/simpleQt$ qmake
 molloyd@beaglebone:~/exploringBB/chp11/simpleQt$ ls
 Makefile simpleQt.cpp simpleQt.pro

 This step results in a Makefile fi le being created in the current directory that
allows the executable to be built using a call to make , which in turn uses g++ to
build the fi nal application:

 molloyd@beaglebone:~/exploringBB/chp11/simpleQt$ make
 g++ -c -pipe -O2 -Wall -W ... -o simpleQt.o simpleQt.cpp ...

 The executable is now present in the directory and can be executed as follows,
which results in the visual display shown earlier in Figure 11-7 :

 molloyd@beaglebone:~/exploringBB/chp11/simpleQt$ ls
 Makefile simpleQt simpleQt.cpp simpleQt.o simpleQt.pro
 molloyd@beaglebone:~/exploringBB/chp11/simpleQt$./simpleQt

 Clearly, there are additional steps involved in using qmake to build a Qt appli-
cation, but these are necessary to take advantage of the cross‐platform nature
of Qt. For example, you can perform similar steps on your desktop machine to
build the same application, regardless of its OS.

444 Part III4 ■ Advanced BeagleBone Systems

 Qt Primer

 Qt is a full cross‐platform development framework that is written in C/C++. It is
used in the preceding section for UI programming, but it also provides support
for databases, threads, timers, networking, multimedia, XML processing, and
more. Qt extends C++ by adding macros and introspection, code that examines
the type and properties of an object at run time, which is not natively available
in C++. It is important to note that all the code is still just plain C++ !

 Qt Concepts

 Qt is built in modules, each of which can be added to your project by includ-
ing the requisite header fi les in your C++ program and by identifying that the
module is used in the project .pro fi le. For example, to include the classes in
the QtNetwork module, you add #include<QtNetwork> to your program code
and link against the module by adding QT += network to the qmake .pro fi le.
A list of important Qt modules is provided in Table 11-2 .

Table 11-2 : Summary of the Important Qt Modules

NAME DESCRIPTION

QtCore Contains the core non‐GUI classes, such as QString , QChar, r QDate ,
QTimer , and r QVector . It is included by default in Qt projects, as all other r
Qt modules rely on this module.

QtGui Core module that adds GUI support to the QtCore module, with classes
such as QDialog , QWidget , QToolbar, r QLabel , QTextEdit , and
QFont . This module is included by default—if your application has no
GUI, then you can add Qt ‐= gui to your .pro fi le.

QtMultimedia Contains classes for low‐level multimedia functionality, such as
QVideoFrame , QAudioInput , and QAudioOutput . To use this
module, add #include <QtMultimedia> to your source fi le and QT
+= multimedia to your .pro fi le.

QtNetwork Contains classes for network communication over TCP and UDP,
including SSL communications, with classes such as QTcpSocket ,
QFtp , QLocalServer, r QSslSocket , and QUdpSocket . As above, use
#include <QtNetwork> and QT += network .

QtOpenGL The Open Graphics Library (y OpenGL) is a cross‐platform application
programming interface (API) for 3‐D computer graphics, which is widely
used in industrial visualization and computer gaming applications. This
module makes it straightforward to contain OpenGL in your application
with classes such as QGLBuffer, r QGLWidget , QGLContext , and
QGLShader . As above, use r #include <QtOpenGL> and QT +=
opengl . The AM335x has OpenGL hardware acceleration capability, but it
is currently diffi cult to utilize.

 Chapter 11 ■ BeagleBone with a Rich User Interface 445

NAME DESCRIPTION

QtScript Enables you to make your Qt application scriptable. e Scripts are used in
applications such as Microsoft Excel and Adobe Photoshop to enable users
to automate repetitive tasks. QtScript includes a JavaScript engine, which
you can use within the core application to interlink functionality in scripts.
It can also be used to expose the internal functionality of your application
to users, enabling them to add new functionality without the need for C++
compilation. As above, use #include <QtScript> and QT += script .

QtSql Contains classes for interfacing to databases using the SQL programming
language, such as QSqlDriver, r QSqlQuery , and yy QSqlResult . As
above, use #include <QtSql> and QT += sql .

QtSvg Contains classes for creating and displaying scalar vector graphics (SVG)
fi les, such as QSvgWidget , QSvgGenerator , and r QSvgRenderer . Asr
above, use #include <QtSvg> and QT += svg .

QtTest Contains classes for unit testing Qt applications using the QTestLib tool,
such as QSignalSpy and QTestEventList . As above, use #include
<QtTest> and QT += testlib .

QtWebKit Provides a web browser engine and classes for rendering and interacting
with web content, such as QWebView, w QWebPage , and QWebHistory . Asyy
above, use #include <QtWebKit> and QT += webkit .

QtXml Extensible markup language (XML) is a human‐readable document
format that can be used to transport and store data. The QtXml module
provides a stream reader and writer for XML data, with classes such as
QXmlReader, r QDomDocument , and QXmlAttributes . As above, use
#include <QtXml> and QT += xml .

 The QObject Class

 The QObject class is the base class of almost all the Qt classes and all the widgets. 1
This means that most Qt classes share common functionality for handling memory
management, properties, and event‐driven programming.

 Qt implements introspection by storing information about every class that is
derived from QObject using a QMetaObject object within its Meta‐Object System .
When you build projects using Qt you will see that new .cpp fi les appear in the
build directory—these are created by the Meta‐Object Compiler (moc(). c 2 The C++

1 Java programmers will notice that this is similar to the Object class in Java; however, in
Qt, classes requiring object instances that can be copied do not subclass QObject (e.g.,
QString, g QChar).r

2 At compile time, the moc uses information from the class header files (e.g., if the class
is a descendent of QObject) to generate a “marked‐up” version of the .cpp file. For
example, if you have a class X that is defined in the files X.h and X.cpp , the moc will
generate a new file called moc‐X.cpp , which contains the meta‐object code for the class p X .

446 Part III6 ■ Advanced BeagleBone Systems

compiler will then compile these fi les into a regular C/C++ objective fi le (.o),o

which is ultimately linked to create an executable application.

 Signals and Slots

 Similar to GTK+, Qt has an event‐driven programming model that enables events
and state changes to be interconnected with reactions using a mechanism termed
signals and slots . For example, a Qt button widget can be confi gured so that when it s
is clicked, it generates a signal, which has been connected to a l slot . The slot, which t
is somewhat like a callback function, performs a user‐defi ned function when it
receives a signal. Importantly, the signals and slots mechanism can be applied to
non‐GUI objects—it can be used for intercommunication between any object that
is in any way derived from the QObject class. Signals and slots provide a powerful
mechanism that is possibly the most unique feature of the Qt framework.

 A full‐featured Qt temperature sensor application is developed shortly that
makes extensive use of signals and slots. For example, the application updates
the temperature display every fi ve seconds by reading the ADC value; Figure 11-8
illustrates how this takes place. In this example, the QTimer class has a signal called
timeout() that is emitted whenever an object called timer “times out” (which it
does after fi ve seconds). This signal is connected to the on_updateTemperature()
slot on an object of the QMainWindow class called mainWindow . The connection is
made by a call of the form

 QObject::connect(source,SIGNAL(signature),destination,SLOT(signature));

 where source and destination are objects of classes that are derived from the
QObject class. The signature is the function name and argument types (without
the variable names).

 Figure 11-8 : QTimer signals and slots example

 The website qt‐project.org provides an excellent detailed description of
the behavior of signals and slots, but here are some further summary points
on signals, slots, and connections that will get you started:

■ Signals can be connected to any number of slots.

■ Signals are defi ned in the signals section of the code (under a signals:
label, which is usually in the class header fi le).

 Chapter 11 ■ BeagleBone with a Rich User Interface 447

■ Signal “methods” must return void and may not have any implementation.d

■ A signal can be explicitly emitted using the emit keyword.

■ Slots can be connected to any number of signals.

■ Slots are defi ned in the slots section of the code (under a slots: label that
can be public, private, or protected).

■ Slots are regular methods with a full implementation.

■ Connections can be explicitly formed (as in the timer example shown
earlier) or automatically created when using the Qt graphical design tools
in the next section.

 Qt Development Tools

 The Qt framework also has associated development tools. As well as the qmake
tool, there is a full‐featured IDE called Qt Creator , which is similar in nature to rr
Eclipse, except that it is specifi cally tailored for Qt development. The IDE, which
is illustrated in Figure 11-9 , is available for Linux, Windows, and Mac OS X, and
its Qt Designer tool can even execute on the BBB directly. Qt Creator can be used
to build native applications, or it can be used to cross‐compile applications for
the BBB, by installing a cross‐platform toolchain (similar to Eclipse).

 Figure 11-9 : Qt Creator IDE visual design editor

 One of the key features that Qt Creator provides is its visual design editor, which rr
enables you to interactively drag‐and‐drop widgets onto window designs, called
forms . The interface enables the properties of the widgets to be confi gured easily,

448 Part III8 ■ Advanced BeagleBone Systems

and it provides a straightforward way of enabling signals and associating slots
against the UI components. For example, to write code that executes when the
“Set Alert” button is clicked (refer to Figure 11-9), you can simply right‐click the
button and choose “Go to slot,” which provides a dialog with a list of available
signals (such as clicked() , pressed() , and released()). 3 Once a signal is chosen,
the IDE will automatically enable the signal, provide a slot code template, and
associate the signal with the slot. The form UI’s properties are stored in an XML
fi le and associated with the project (e.g., mainwindow.ui).

N O T E When using Qt Creator, unusual problems can arise (e.g., changes to the code

not appearing in the application build), particularly when switching projects—in such

cases, go to the Build menu and choose Clean All.

 In addition, “unresolved external” link errors (e.g., when adding new classes) can

often be resolved by selecting “Run qmake” from the Build menu.

 A Qt Temperature Sensor GUI Application

 In this section, the Qt Creator IDE is used to build a full‐featured GUI tempera-
ture sensor application, as illustrated in Figure 11-10 . This application executes
directly on the BBB, regardless of the UI architecture used—in fact, if you look
back at Figure 11-2 and Figure 11-4 , you will see that it makes guest appear-
ances in two of the different frameworks illustrated there. This application
demonstrates some of the capabilities of Qt on the BBB, while being cognizant
of the volume of code to be studied. It could be greatly extended—for example,
it could also provide historical charting or fancy display dials. This example
application supports the following features:

■ A timer thread takes a reading every fi ve seconds from the BBB ADC
input using the TMP36 temperature sensor.

■ An LCD‐style fl oating‐point temperature display is used.

■ A display of the minimum and maximum temperature is provided.

■ A slider is used that enables you to choose a temperature at which to
activate an alert. An alert triggers the display of a dialog box.

■ A mechanism is provided to convert the main display from a Celsius scale
to a Fahrenheit scale by clicking the Fahrenheit radio widget.

■ A status display is used at the very bottom of the window.

 The full source code and executable for this application are available in the
Git repository /exploringBB/chp11/QtTemperature directory.

3 A click is a press and a release—code can be associated with the complete click action
and/or the constituent actions.

 Chapter 11 ■ BeagleBone with a Rich User Interface 449

 There are three important source files to describe for this application,
the first of which is in Listing 11‐4. It provides the main() starting point for
the application in which an instance of the QApplication and MainWindow
classes are created. The QApplication class manages the GUI application
control flow (the main loop). The MainWindow class is defined in Listings 11‐5
and 11‐6.

 LISTING 11‐4: /exploringBB/chp11/QtTemperature/main.cpp

 #include "mainwindow.h"

 #include <QApplication>

 int main(int argc, char *argv[]){

 QApplication a(argc, argv); // manages GUI application control flow

 MainWindow w; // the user-defined class

 w.show(); // shows the user-defined class UI

 return a.exec(); // without a.exec() the program would end here

 } // it is the main loop that processes events

 The MainWindow class is a child of the QMainWindow class (which is a child
of QWidget and ultimately QObject). That means that any methods that
are available in the parent classes are also available in the MainWindow class
itself.

 Figure 11-11 illustrates the relationship between the UI components and the
slots that are declared in Listing 11‐5 and defi ned in Listing 11‐6. The timer
code is also summarized—it is not a GUI component but it does generate a
timeout() signal, which is connected to the on_updateTemperature() slot.
The exact nature of the code in Listings 11‐5 and 11‐6 is described by the
comments. However, the clearest way to fully understand the code is to edit
it and see what impact your edits have. You do not require the temperature
sensor to execute the code, but the temperature display will remain fi xed at
25°C in its absence.

 Figure 11-10 : The Qt EBB Temperature Sensor GUI application

450 Part III0 ■ Advanced BeagleBone Systems

 LISTING 11‐5: /exploringBB/chp11/QtTemperature/mainwindow.h

 #include <QMainWindow> // for the main GUI interface

 #include <QTimer> // for a timer that periodically reads temperature

 #include <QDateTime> // to find out the date/time of the sample

 #include <QMessageBox> // for pop‐up message boxes ‐ e.g., alert!

 namespace Ui {

 class MainWindow; // Places class MainWindow in UI namespace

 }

 class MainWindow : public QMainWindow // a child of the QMainWindow class

 {

 // This macro must appear in the private section of a class that

 // declares its own signals and slots

 Q_OBJECT

 public:

 explicit MainWindow(QWidget *parent = 0); // constructor

 ~MainWindow(); // destructor

 private slots:

 void on_setAlertButton_clicked();

 void on_isFahrenheitRadio_toggled(bool checked);

 void on_clearAlertButton_clicked();

 void on_alertTempSlider_valueChanged(int value); // if alert slider moved

 void on_updateTemperature(); // this slot is triggered by the timer

 private:

 Ui::MainWindow *ui; // the main user interface

 QTimer *timer; // timer thread that triggers after a delay

 bool isFahrenheit; // is the main display deg C or deg F

 int alertTemperature; // the alert temperature value

 bool isAlertSet; // is the alert set?

 float minTemperature, maxTemperature; // min and max temp values

 float celsiusToFahrenheit(float valueCelsius); // function for conversion

 float getTemperature(); // get the temperature from the sensor

 int readAnalog(int number); // used by getTemperature to read the ADC

 };

 Figure 11-11 : The UI components and associated slots

 Chapter 11 ■ BeagleBone with a Rich User Interface 451

 LISTING 11‐6: /exploringBB/chp11/QtTemperature/mainwindow.cpp

 #include "mainwindow.h"

 #include "ui_mainwindow.h"

 #include <fstream>

 #include <sstream>

 using namespace std;

 #define LDR_PATH "/sys/bus/iio/devices/iio:device0/in_voltage"

 // Constructor used to set up the default values for the created object

 MainWindow::MainWindow(QWidget *parent) :

 QMainWindow(parent), ui(new Ui::MainWindow) {

 ui->setupUi(this);

 this->isFahrenheit = false; // default to Celsius

 this->isAlertSet = false; // no alert set

 statusBar()->showMessage("No alert set"); // status at bottom of window

 this->timer = new QTimer(this); // create a new timer

 // when the timer times out, call the slot on_updateTemperature()

 connect(timer, SIGNAL(timeout()), this, SLOT(on_updateTemperature ()));

 this->maxTemperature = ‐100.0f; // pick an impossible min

 this->minTemperature = 200.0f; // pick an impossible max

 this->on_updateTemperature(); // explicitly update the display

 timer->start(5000); // set the time out to be 5 sec

 }

 MainWindow::~MainWindow() { delete ui; } // destructor, destroys UI

 void MainWindow::on_setAlertButton_clicked() { // set the alert temperature

 int sliderValue = ui->alertTempSlider‐>value(); // get the slider value

 if(sliderValue < getTemperature()){ // lower than current temp?

 QMessageBox::warning(this, "EBB Temperature",

 "Alert setting too low!", QMessageBox::Discard);

 }

 else{ // alert value fine

 QString tempStr("Alert is set for: "); // form a message

 tempStr.append(QString::number(sliderValue)); // with the alert temp

 statusBar()->showMessage(tempStr); // display the message

 this->isAlertSet = true; // alert is set

 this->alertTemperature = sliderValue; // alert temp set

 }

 }

 void MainWindow::on_isFahrenheitRadio_toggled(bool checked){

 this->isFahrenheit = checked; // pressed the toggle button

 if(checked){

 ui->isCelsiusLabel‐>setText("Fahrenheit"); // display F on top‐right

 }

 if(!checked){

 ui->isCelsiusLabel‐>setText("Celsius"); // display C on top‐right

 }

continues

452 Part III ■ Advanced BeagleBone Systems

 this->on_updateTemperature(); // update the temperature value

 }

 void MainWindow::on_clearAlertButton_clicked(){// remove the alert

 this->isAlertSet = false;

 statusBar()->showMessage("No alert set");

 }

 void MainWindow::on_alertTempSlider_valueChanged(int value) {

 ui->alertEdit‐>setText(QString::number(value)); // update alert text field

 }

 float MainWindow::getTemperature(){ ... } // same as Chp.10 code (10-5)

 int MainWindow::readAnalog(int number){ ... } // same as Chp.10 code (10-5)

 float MainWindow::celsiusToFahrenheit(float valueCelsius){

 return ((valueCelsius * (9.0f/5.0f)) + 32.0f);

 }

 // slot for the timer, called every 5 sec, and also explicitly in the code.

 void MainWindow::on_updateTemperature() { // called whenever temp updated

 float temperature = this->getTemperature();

 QDateTime local(QDateTime::currentDateTime()); // display sample time

 statusBar()->showMessage(QString("Last update: ").append(local.toString()));

 if(temperature >= this‐>maxTemperature){ // is this the max temperature?

 this->maxTemperature = temperature;

 ui->maxEdit‐>setText(QString::number(temperature));

 }

 if(temperature <= this->minTemperature){ // is this the min temperature?

 this->minTemperature = temperature;

 ui->minEdit‐>setText(QString::number(temperature));

 }

 if(this->isFahrenheit){ // is the display in Fahrenheit?

 ui->temperatureLCD‐>display((double)this‐>celsiusToFahrenheit(temperature));

 }

 else{ // must be Celsius

 ui->temperatureLCD‐>display((double)temperature);

 }

 if(this->isAlertSet){ // is the alert enabled?

 if(temperature>=this‐>alertTemperature){ // does it exceed alert temp?

 QString message("Alert! It is ");

 message.append(QString::number(temperature)).append(" degrees C!");

 QMessageBox::information(this, "EBB Temp", message,

QMessageBox::Ok);

 }

 }

 }

LISTING 11‐6: (continued)

 Chapter 11 ■ BeagleBone with a Rich User Interface 453

 Simple Qt Cross‐Platform Development

 The Qt temperature sensor application GUI can be edited using Qt Designer
directly on the BBB (in general‐purpose computer form, or by using VNC). Qt
Designer is available directly from the BBB Launch Bar (under Programming ➢

Qt 4 Designer) or by typing designer at the shell prompt. Qt Designer is installed
due to the following earlier call:

 molloyd@beaglebone:~$ sudo apt‐get install qt4‐dev‐tools

 If you fi nd that using Qt Designer and qmake on the BBB is too sluggish or
onerous, you can develop and debug your application on your desktop computer
and then transfer it to the BBB. For example, in this project you should copy
the following fi les to the BBB from your desktop machine by using sftp, scp, or
rsync (see the following feature on scp and rsync):

 molloyd@beaglebone:~/tmp$ ls
 Temperature.pro main.cpp mainwindow.cpp mainwindow.h mainwindow.ui
 molloyd@beaglebone:~/tmp$ qmake
 molloyd@beaglebone:~/tmp$ ls
 Makefile main.cpp mainwindow.h
 Temperature.pro mainwindow.cpp mainwindow.ui
 molloyd@beaglebone:~/tmp$ make
 /usr/bin/uic-qt4 mainwindow.ui -o ui_mainwindow.h ...
 molloyd@beaglebone:~/tmp$ ls
 Makefile main.cpp mainwindow.h moc_mainwindow.cpp
 Temperature main.o mainwindow.o moc_mainwindow.o
 Temperature.pro mainwindow.cpp mainwindow.ui ui_mainwindow.h
 molloyd@beaglebone:~/tmp$./Temperature &

 The output will appear as shown in Figure 11-10 (when VNC is used).
 Unfortunately, this approach does not allow you to test the software with BBB

connected hardware until it has been built using the preceding steps. A more
comprehensive approach, described at the end of this chapter, is required for
full cross‐platform Qt development.

 SECURE COPY (SCP) AND RSYNC

 The secure copy program, y scp , provides a mechanism for transferring fi les between

two hosts using the secure shell (SSH) protocol. For example, to transfer a fi le

test.txt from a Linux desktop machine to the BBB you can use the following (all

commands are executed on the desktop machine):

 molloyd@debian:~/Temp$ echo "Testing SCP" >> test1.txt
 molloyd@debian:~/Temp$ scp test1.txt molloyd@192.168.7.2:tmp/

454 Part III4 ■ Advanced BeagleBone Systems

 molloyd@192.168.7.2's password:
 test1.txt 100% 12 0.0KB/s 00:00

 To copy a fi le from the BBB back to the Linux desktop machine you can use the

following:

 molloyd@debian:~/Temp$ scp molloyd@192.168.7.2:tmp/test1.txt test2.txt
 molloyd@192.168.7.2's password:
 test1.txt 100% 12 0.0KB/s 00:00
 molloyd@debian:~/Temp$ more test2.txt
 Testing SCP

 Use ‐v to see full, v erbose output of the transfer. Using v ‐C will automatically

c ompress and decompress the fi les to speed up the data transfer. Using c ‐r allows for

the r ecursive copy of a directory, including all of its fi les and subdirectories. Usingr
‐p will p reserve the modifi cation times, access times, and modes of the original fi les.

Therefore, to copy the entire desktop Temp directory to the BBB tmp directory, you

could use the following:

 molloyd@debian:~$ scp ‐Cvrp Temp molloyd@192.168.7.2:tmp/

 . . . Transferred: sent 8828328, received 74112 bytes, in 16.1 seconds . . .

 Just like scp, the rsync utility can copy fi les; however, it can also be used to syn-c
chronize fi les and directories across multiple locations, where only the diff erences are

transferred (delta encoding). For example, to perform the same operation using rsync,

you can use the following:

 molloyd@debian:~$ rsync ‐avze ssh Temp molloyd@192.168.7.2:tmp/Temp

 molloyd@192.168.7.2's password:

 sent 8941887 bytes received 9719 bytes 577522.97 bytes/sec . . .

 Using ‐a requests a rchive mode (like ‐p for scp), ‐v requests v erbose output, v ‐z
requests the compression of data (like ‐C for scp), and ‐e ssh requests rsync to use

the SSH protocol. To test rsync, create an additional fi le in the Temp directory and per-

form the same command again using:

 molloyd@debian:~$ touch Temp/test3.txt

 molloyd@debian:~$ rsync ‐avze ssh Temp molloyd@192.168.7.2:tmp/Temp

 molloyd@192.168.7.2's password:

 sending incremental file list

 Temp/ Temp/test3.txt

 sent 16186 bytes received 211 bytes 1561.62 bytes/sec . . .

 Importantly, you can see that only one fi le has been transferred in this case. The

rsync utility can delete fi les after transfer (using ‐‐delete), which you should only

use after performing a dry run (using ‐‐dry‐run).

 Chapter 11 ■ BeagleBone with a Rich User Interface 455

 Remote UI Application Development

 In Chapter 10 , a C++ Client/Server application is introduced that can be used
for direct intercommunication between two processes that are running on two
different machines (or the same machine) using TCP sockets. The machines
could be situated on the same physical/wireless network, or could even be on
different continents. Direct socket communication requires programmers to
frame their own intercommunication protocol—that results in programming
overhead, but it also leads to very effi cient communication, which is only really
limited by the speed of the network.

 As a fi rst application, the functionality of the Qt Temperature Sensor GUI
application and the C++ Client/Server application (from Chapter 10) are com-
bined. This enables the creation of a fat‐client GUI Temperature application
that can intercommunicate with a Temperature Service, which is running on
the BBB. The Temperature Service server code is enhanced from that presented
in Chapter 10 , by making it multi‐threaded. This change enables many client
applications to attach to the server at the same time. The architecture is illustrated
in Figure 11-12 .

 Figure 11-12 : The Qt fat‐client GUI application client/server architecture

 The full source code for the Qt GUI application is available in the chp11/
QtSocketsTemperature directory, and the server source code is available in the
chp11/threadedTemperatureServer directory.

 Fat‐Client Qt GUI Application

 In this section, the Qt Temperature Sensor GUI application from earlier in this
chapter is modifi ed so that it becomes “Internet enabled.” This change means
that the application does not have to execute on the BBB; rather, the GUI applica-
tion can run on a desktop machine and communicate to the BBB sensor using

456 Part III6 ■ Advanced BeagleBone Systems

TCP sockets. To achieve this outcome, the following changes are made to the
GUI application code:

 1. A new dialog window is added to the application that can be used to enter
the server IP address, the service port number, and the reading refresh
frequency. This dialog is illustrated in Figure 11-13 .

 2. Rather than read from the BBB ADC, the GUI application must open a
TCP socket and communicate to the BBB server application. The client
application sends the string “getTemperature” to the server. The server
is programmed to respond with the temperature, which it reads from the
TMP36 sensor that is attached to an ADC input.

 3. A menu is enabled on the application UI that can be used to open the Server
Settings dialog or to quit the application. The respective key sequences
Ctrl+S or Ctrl+X can also be used.

 Figure 11-13 : The Menu and the Server Settings dialog

 The fi rst change involves the addition of a new class to the project called
ServerSettingsDialog , as described in Listing 11‐7, which is associated with
the dialog (and its serversettingsdialog.ui XML fi le). The role of this class is
to act as a wrapper for the values that are entered in the dialog—for example,
it will return the IPv4 address that a user entered in the QSpinBox widgets,
by returning a single 32‐bit unsigned int (quint32) when its getIPAddress()
method is called.

 LISTING 11‐7: /chp11/QtSocketsTemperature/serversettingsdialog.h

 class ServerSettingsDialog : public QDialog

 {

 Q_OBJECT // the Qt macro required

 public:

 explicit ServerSettingsDialog(QWidget *parent = 0); // ref to main window

 ~ServerSettingsDialog();

 quint32 virtual getIPAddress(); // return IP address as 32-bit int

 int virtual getTimeDelay() { return timeDelay; } // the sample time

 int virtual getServerPort() { return serverPortNumber; } // the port number

 Chapter 11 ■ BeagleBone with a Rich User Interface 457

 private slots:

 void on_buttonBox_accepted(); // OK button is pressed

 void on_buttonBox_rejected(); // Cancel button is pressed

 private:

 Ui::ServerSettingsDialog *ui; // pointer to the UI components

 int serverPortNumber; // port number (default 5555)

 int timeDelay; // time delay sec (default 30)

 int address[4]; // IP address (default 192.168.7.2)

 };

 The second change involves the addition of socket code to the getSensorTem-
perature() method, as provided in Listing 11‐8. This code uses the QtNetwork
module, which requires that you add

 QT += core gui network

 to the SocketsTemperature.pro project fi le so that the project links to that mod-
ule. The QTcpSocket class is used to create a client connection to the BBB TCP
Temperature server. Regular TCP sockets are used on the BBB, which does not
cause any diffi culty in the transaction of string data. Interestingly, you could
equivalently use Java socket code on either end of a connection—just be careful
to ensure that the byte order is preserved.

 LISTING 11‐8: /chp11/QtSocketsTemperature/serversettingsdialog.cpp

(segment)

 int MainWindow::getSensorTemperature(){

 // Get the server address and port number from the settings dialog box

 int serverPort = this->dialog‐>getServerPort(); // get from dialog box

 quint32 serverAddr = this->dialog‐>getIPAddress(); // from dialog box

 QTcpSocket *tcpSocket = new QTcpSocket(this); // create socket

 tcpSocket->connectToHost(QHostAddress(serverAddr), serverPort); // connect

 if(!tcpSocket->waitForConnected(1000)){ // wait up to 1s for connection

 statusBar()->showMessage("Failed to connect to server...");

 return 1;

 }

 // Send the message "getTemperature" to the server

 tcpSocket->write("getTemperature");

 if(!tcpSocket->waitForReadyRead(1000)){ // wait up to 1s for server

 statusBar()->showMessage("Server did not respond...");

 return 1;

 }

 // If the server has sent bytes back to the client

 if(tcpSocket->bytesAvailable()>0){

 int size = tcpSocket->bytesAvailable(); // how many bytes are ready?

 char data[20]; // upper limit of 20 chars

 tcpSocket->read(&data[0],(qint64)size); // read the number of bytes rec.

 data[size]='\0'; // terminate the string

 this->curTemperature = atof(data); // string ‐> float conversion

continues

458 Part III8 ■ Advanced BeagleBone Systems

 cout << "Received the data [" << this->curTemperature << "]" << endl;

 }

 else{ statusBar()->showMessage("No data available..."); }

 return 0; // the on_updateTemperature() slot will update the display

 }

 void MainWindow::createActions(){

 QAction *exit = new QAction("&Exit", this);

 exit->setShortcut(QKeySequence(tr("Ctrl+X")));

 QAction *settings = new QAction("&Settings", this);

 settings->setShortcut(QKeySequence(tr("Ctrl+S")));

 QMenu *menu = menuBar()->addMenu("&Menu");

 menu->addAction(settings);

 menu->addAction(exit);

 connect(exit, SIGNAL(triggered()), qApp, SLOT(quit())); // quit application

 connect(settings, SIGNAL(triggered()), this, SLOT(on_openSettings()));

 }

 void MainWindow::on_openSettings(){ // the slot for the menu signal above

 this->dialog‐>exec(); // display the Server Settings dialog

 this->timer‐>start(1000*this‐>dialog‐>getTimeDelay()); // update delay

 }

 The third change is implemented by the createActions() method in
Listing 11‐8, which creates the GUI menu when it is called by the class con-
structor. It adds two actions to the menu: the Exit item quits the application, and
the Settings item triggers the execution of the on_openSettings() slot, which
opens the Server Settings dialog.

 The BBB does not have to update the client‐side GUI of the application in this
architecture—rather, it manages TCP socket connections, processes strings,
and reads values from an ADC input. Such operations have a very low over-
head on the BBB, and therefore it is capable of simultaneously handling many
client requests. Unfortunately, the server code that is presented in Chapter 10
is not capable of handling multiple simultaneous requests; rather, it processes
requests in sequence, and would reject a connection if it is presently occupied.

 Multi‐Threaded Server Applications

 For many server applications it is important that the server can handle multiple
simultaneous requests—for example, if the Google search engine web page
could only handle requests sequentially, then there might be a long queue and/
or many rejected connections! Figure 11-14 illustrates the steps that must take
place for a multi‐threaded server application to communicate simultaneously
with two individual client applications. The steps are as follows:

 1. TCP Client 1 requests a connection to the BBB TCP Server. It must know
the server’s IP address (or name) and the port number.

LISTING 11‐8: (continued)

 Chapter 11 ■ BeagleBone with a Rich User Interface 459

 2. The BBB TCP Server creates a new thread (Connection Handler 1) and
passes the TCP Client’s IP address and port number to it. The BBB TCP
Server immediately begins listening for new connections (on port 5555).
The Connection Handler 1 thread then forms a connection to the TCP
Client 1 and begins communicating.

 3. TCP Client 2 requests a connection to the BBB TCP Server. The Connection
Handler 1 thread is currently communicating to TCP Client 1, but the BBB
TCP Server is also listening for connections.

 4. The BBB TCP Server creates a new thread (Connection Handler 2) and
passes the second TCP Client’s IP address and port number to it. The
BBB TCP Server immediately begins listening for new connections. The
Connection Handler 2 thread then forms a connection to the TCP Client
2 and begins communication.

 Figure 11-14 : A multi‐threaded server

 At this point, communication is simultaneously taking place between both client/
connection handler pairs, and the server main thread is listening for new connec-
tions. The client/connection handler communication session could persist for a long
time—for example, for video streaming Internet services such as YouTube or Netfl ix.

460 Part III0 ■ Advanced BeagleBone Systems

 If the connection handler objects were not implemented as threads, then the
server would have to wait until the client/connection handler communication
is complete before it could listen again for new connections. With the structure
described, the server is only unavailable while it is constructing a new connec-
tion handler threaded object. Once the object is created, the server returns to
a listening state. Client socket connections have a confi gurable time-out limit
(typically of the order of seconds), so a short processing delay by the server
should not result in rejected connections.

 A C++ multi‐threaded client/server example is available in the chp11/
threadedclientserver directory. An artifi cial fi ve‐second delay is present in
the ConnectionHandler class to prove conclusively that simultaneous commu-
nication is taking place. For example, you can open three terminal sessions on
the BBB and start the server:

 ~/exploringBB/chp11/threadedclientserver$ ls
 build client client.cpp network server server.cpp
 ~/exploringBB/chp11/threadedclientserver$./server
 Starting EBB Server Example
 Listening for a connection...

 Then start TCP Client 1 in the next terminal:

 ~/exploringBB/chp11/threadedclientserver$./client localhost
 Starting EBB Client Example
 Sending [Hello from the Client]

 Then start TCP Client 2 in the last terminal (quickly—the delay is fi ve seconds!):

 ~/exploringBB/chp11/threadedclientserver$./client localhost
 Starting EBB Client Example
 Sending [Hello from the Client]

 The fact that the second client is able to connect while the fi rst client is awaiting
a (artifi cially delayed) response means that the server must be multi‐threaded.
The fi nal output of the server is as follows:

 ~/exploringBB/chp11/threadedclientserver$./server
 Starting EBB Server Example
 Listening for a connection...
 Received from the client [Hello from the Client]
 Sending back [The Server says thanks!]
 but going asleep for 5 seconds first....
 Received from the client [Hello from the Client]
 Sending back [The Server says thanks!]
 but going asleep for 5 seconds first....

 Both clients will display the same fi nal output:

 ~/exploringBB/chp11/threadedclientserver$./client localhost

 Chapter 11 ■ BeagleBone with a Rich User Interface 461

 Starting EBB Client Example
 Sending [Hello from the Client]
 Received [The Server says thanks!]
 End of EBB Client Example

 The class defi nition for the ConnectionHandler class is provided in Listing 11‐9.
This class has a slightly complex structure so that a thread is created and started
when an object of the class is created. This code can be used as a template—just
rewrite the threadLoop() implementation.

 LISTING 11‐9: chp11/threadedclientserver/network/ConnectionHandler.h

 class SocketServer; // class declaration, due to circular reference problem

 // and C/C++ single definition rule.

 class ConnectionHandler {

 public:

 // Constructor expects a reference to the server that called it and

 // the incoming socket and file descriptor

 ConnectionHandler(SocketServer *server, sockaddr_in *in, int fd);

 virtual ~ConnectionHandler();

 int start();

 void wait();

 void stop() { this->running = false; } // stop the thread loop

 virtual int send(std::string message); // send a message to the client

 virtual std::string receive(int size); // receive a message

 protected:

 virtual void threadLoop(); // the user-defined thread loop

 private:

 sockaddr_in *client; // a handle to the client socket

 int clientSocketfd; // the client socket file desc.

 pthread_t thread; // the thread

 SocketServer *parent; // a handle to the server object

 bool running; // is the thread running (default true)

 // static method to set the thread running when an object is created

 static void * threadHelper(void * handler){

 ((ConnectionHandler *)handler)->threadLoop();

 return NULL;

 }

 };

 A Multi‐Threaded Temperature Service

 The code in the previous section is modifi ed in this section to create the Multi‐
threaded Temperature Service in Listing 11‐10, which is available in the chp11/
threadedTemperatureServer directory. In this example, the network request and
response string lengths are short (e.g., “getTemperature” and “25.5555”). Also,
it is unlikely that you will need to check the room temperature every fraction

462 Part III ■ Advanced BeagleBone Systems

of a second. Therefore, a multi‐threaded approach is overkill in this example.
However, this structure is very important for applications that stream data, so
it is useful to be exposed to it.

 LISTING 11‐10: chp11/threadedTemperatureServer/network/

ConnectionHandler.cpp

 int ConnectionHandler::readAnalog(int number){ ... // same as before }

 float ConnectionHandler::getTemperature(int adc_value){ ... // same as before }

 void ConnectionHandler::threadLoop(){

 cout << "*** Created a Handler threaded Function" << endl;

 string rec = this->receive(1024);

 if (rec == "getTemperature"){

 cout << "Received from the client [" << rec << "]" << endl;

 stringstream ss;

 ss << this->getTemperature(this‐>readAnalog(0));

 this->send(ss.str());

 cout << "Sent [" << ss.str() << "]" << endl;

 }

 else {

 cout << "Received from the client [" << rec << "]" << endl;

 this->send(string("Unknown Command"));

 }

 cout << "*** End of the Connection Handler Function" << endl;

 this->parent‐>notifyHandlerDeath(this);

 }

 The Temperature Server code can be tested by using the temperatureCli-
entTest CLI test application, which is in the same directory as the server, by
using the following:

 ~/exploringBB/chp11/threadedTemperatureServer$./temperatureServer
 Starting EBB Server Example
 Listening for a connection...

 Then execute the test client in a different terminal:

 ~/.../threadedTemperatureServer$./temperatureClientTest localhost
 Starting EBB Temperature Client Test
 Sending [getTemperature]
 Received [25.498]
 End of EBB Temperature Client Test

 The localhost host name is resolved to the loopback address 127.0.0.1, which
enables the BBB to communicate with itself. If the client application outputs
a temperature (e.g., 25.498°C), then this test is successful and the Qt fat‐client
GUI application should also connect to the server, as illustrated in Figure 11-14 .

 Chapter 11 ■ BeagleBone with a Rich User Interface 463

 The Fat‐Client as a Server

 In the last example, the Qt fat‐client GUI application initiates contact with the
BBB Temperature Service using the IP address (or host name) of the server
and the port number of the service. It is possible to reverse this relationship by
programming the GUI application to be the server and the BBB to be a client.
Clearly, such a change would mean that the BBB is responsible for establishing
communication with the GUI application, so it would therefore need to know
the desktop computer’s IP address and service port number.

 For a single-client to single-server arrangement, the choice of which device is
to be the server is not that important. The choice is likely resolved by deciding
which party is most likely to initiate contact and then choosing it as the client. In
fact, it would be possible to build client and server functionality into both parties,
but that would add signifi cant complexity to the program design. However, for
single‐party to multiple‐party relationships, the decision is clearer. For example,
the Temperature Service application is designed so that many client applications
can make contact with a single server. It would be extremely diffi cult to reverse
the client/server relationship in that case, as the BBB temperature sensor would
have to somehow identify and push the temperature reading to each and every
GUI application.

 There are applications for which it is appropriate for the GUI application to
be the server and for the BBB to act as the client. This is especially the case if
one GUI application is responsible for aggregating sensor readings from many
services and/or BBB devices. Figure 11-15 illustrates one such example. In this
example the BBB is attached to the ADXL345 accelerometer using the I 2 C bus.
The BBB streams accelerometer data to the GUI application, which provides
a “live” graphical display of the ADXL345’s pitch and roll values. For brevity,
this example uses one BBB client, but it could easily be adapted to use multiple
clients and either display multiple GUI interfaces or average the sample data.

 In this example, the controls on the Qt GUI Server application are not used for
input ; rather, they dynamically change according to the ADXL345’s pitch andt
roll values—the only input controls on the GUI application are the Exit button
and the menu. The current pitch and roll values are each described by three Qt
widgets: a QDoubleSpinBox at the top, which displays the value as a double ; a
QDial , which rotates as the value changes from −90° to +90° (0° is when the dial
indicator is at the very top); and a graduated QSlider which slides from −90° to
+90° (0° is the center value). This application differs from the previous Qt GUI
application in a number of ways:

■ The BBB is the client and the GUI application is the server.

■ The BBB sends a continuous stream of one thousand readings, each sent
every 50 ms. The GUI display is updated instantly without latency prob-
lems (geographical distance would have an impact).

464 Part III4 ■ Advanced BeagleBone Systems

■ The GUI application is threaded so that it can be “lively.” A thread object
is created to handle communication with the client so that the main loop
can continue its role. If a thread were not used, then you would not be
able to exit by clicking the Exit button.

■ The messaging protocol is much more sophisticated, as it uses XML data
to communicate. This issue is discussed shortly.

 The Qt GUI Server application is available in the Git repository directory /chp11/
QtSocketsAccelerometer and the BBB client application is available in the direc-
tory /chp11/ADXL345Client . Listing 11‐11 provides the core thread loop that is
used to communicate with the ADXL345 sensor client. Using threads in this
way means that the code structure could be easily adapted for simultaneous
communication with many client devices.

 Figure 11-15 : The Qt Accelerometer Client/Server application

 LISTING 11‐11: /chp11/QtSocketsAccelerometer/serverthread.cpp (segment)

 void ServerThread::run(){ // the main thread loop

 QTcpSocket clientSocket; // the clientSocket object

 this->running = true; // the main thread loop bool flag

 if (!clientSocket.setSocketDescriptor(socketDescriptor)){ //set up socket

 qDebug() << "Failed to setup the Socket"; // debug output

 }

 while(running){ // loop forever until flag changes

 if(!clientSocket.waitForReadyRead(1000)){ // wait for up to 1 sec.

 this->running = false; // failed ‐ exit the loop

 }

 while(clientSocket.bytesAvailable()>0) // are bytes available?

 {

 int x = clientSocket.bytesAvailable(); // how many?

 qDebug() << "There are " << x << " bytes available"; // debug

 char data[2000]; // capacity for up to 2000 bytes

 x = (qint64) clientSocket.read(&data[0], (qint64) x);

 Chapter 11 ■ BeagleBone with a Rich User Interface 465

 data[x] = '\0'; // add null in case of print output

 this->parse(&data[0]); // parse the XML string

 }

 }

 clientSocket.close(); // if loop finished, close socket

 qDebug() << "The client just disconnected"; // debug output

 }

 The Qt GUI Server application has a number of classes, as illustrated in
Figure 11-16 . The QMainWindow object is created when the application is executed.
Its primary role is to update the UI, which it performs using a slot called sample-
Consume() that receives an object of the SensorSample class when data is sent
to the server. The SensorSample object contains a pitch value and a roll value,
which are used to update the UI components.

 Figure 11-16 : The Qt Accelerometer Client/Server application program structure

 When the QMainWindow object is created, it instantiates an object of the
AccelerometerServer class (child of QTcpServer). This server object awaits anr

incoming connection; when it receives one, it creates an object of the ServerThread
class (child of QThread). The d ServerThread object then forms a read/write con-
nection with the BBB ADXL345 Client application. The client application sends
the accelerometer data in XML form, which the ServerThread object parses
to create a SensorSample object. If the data is parsed successfully, a signal is
triggered that passes the SensorSample object to the sampleConsume() slot.

N O T E Both GUI client/server applications could be executed on a single BBB by

using the loopback address (127.0.0.1) as the server IP address.

 Parsing Stream Data

 One criticism of the earlier approach of sending string data back and forth
between the client and the server is that it is prone to parsing errors, particularly
as the complexity of communication increases. One solution to this problem is

466 Part III6 ■ Advanced BeagleBone Systems

to use an XML format to communicate between the client and the server. This
example uses a simple XML format to pass the messages:

 <sample><acc><pitch>4.4666</pitch><roll>‐85.447</roll></acc></sample>

 The Qt framework has full support for XML parsing in the QtXml module by
using the QXmlStreamReader class. It can be used to effi ciently convert such an
XML string into a data structure, which offers the following advantages:

■ It is possible to recover from communication errors should the data
stream be corrupted—for example, by searching for the next valid tag
in the stream.

■ Having a human‐readable format can greatly help in debugging code.

■ Additional tags can be added to the stream and it will not affect legacy
applications that are reading the stream—for example, a new <gyro> ...
</gyro> tag could be introduced to the <sample> tag and it would not
prevent this application from running.

■ A DTD (document type defi nition) or XML Schema can be written to
describe the rules (e.g., nesting and occurrence of elements) for the XML,
to formally support third‐party communication.

 The downside is that the additional tag information increases the amount of
data to be transmitted and there is an overhead in processing XML. Listing 11‐12
provides the source code that is used in this application to parse the XML data
that is sent from the BBB ADXL345 Client application.

 LISTING 11‐12: /chp11/QtSocketsAccelerometer/serverthread.cpp (segment)

 int ServerThread::parse(char *data){

 QXmlStreamReader xml(data);

 while(!xml.atEnd() && !xml.hasError()){

 if((xml.tokenType()==QXmlStreamReader::StartElement) && // found <sample>

 (xml.name()=="sample")){

 // this is a data sample <sample> ‐ need to loop until </sample>

 float pitch = 0.0f, roll = 0.0f;

 xml.readNext(); // read next token

 while(!((xml.tokenType()==QXmlStreamReader::EndElement)&& // </sample>

 (xml.name()=="sample"))){

 qDebug() << "Found a sample";

 if((xml.tokenType()==QXmlStreamReader::StartElement) // <acc>

 &&(xml.name()=="acc")){

 xml.readNext();

 qDebug() << "–– it has an acceleration element";

 while(!((xml.tokenType()==QXmlStreamReader::EndElement) // </acc>

 &&(xml.name()=="acc"))){

 if(xml.tokenType() == QXmlStreamReader::StartElement){ // <pitch>

 if(xml.name() == "pitch") {

 QString temp = xml.readElementText(); // read the value

 Chapter 11 ■ BeagleBone with a Rich User Interface 467

 pitch = (temp).toFloat(); // convert to float

 }

 if(xml.name() == "roll") { // <roll>

 QString temp = xml.readElementText();

 roll = (temp).toFloat();

 }

 }

 xml.readNext();

 }

 }

 xml.readNext();

 }

 SensorSample sample(pitch, roll); // create a sample object and

 emit sampleReceived(sample); // emit it as a signal – caught

 } // by a slot in mainWindow, which

 xml.readNext(); // updates the display widgets

 }

 return 0;

 }

 An alternative solution is to use JavaScript object notation (JSON), which is also N
human‐readable and is commonly used to transmit data between server and
web applications. The C++ Boost library, which is discussed in the next chapter,
has full support for parsing JSON code. The same accelerometer data could be
transmitted in the JSON format as follows:

 {
 "acc": {
 "pitch": 32.55,
 "roll": 65.55
 }
 }

 The BBB Client Application

 In this application example, the more complex programming is in the Qt GUI
server application and not in the BBB client. In fact, the code for the BBB client
application (provided in Listing 11‐13) is quite straightforward. It uses the library
of code that is developed throughout this book, and simple string processing
to structure the XML messages that are transmitted.

 LISTING 11‐13: /exploringBB/chp11/ADXL345Client/accClient.cpp

 #include <iostream>

 #include "network/SocketClient.h" // using the EBB library

 #include "bus/I2CDevice.h" // I2CDevice class see CHP8

 #include "sensor/ADXL345.h" // ADXL345 see CHP8

 #include "sstream" // to format the string

continues

468 Part III8 ■ Advanced BeagleBone Systems

 #include <unistd.h> // for the usleep()

 using namespace std;

 using namespace exploringBB;

 int main(int argc, char *argv[]){

 if(argc!=2){

 cout << "Usage: accClient server_name" << endl;

 return 2;

 }

 cout << "Starting EBB ADXL345 Client Example" << endl;

 I2CDevice i2c(1,0x53); // the I2C device P9_19 P9_20

 ADXL345 sensor(&i2c); // pass device to ADXL const.

 sensor.setResolution(ADXL345::NORMAL); // regular resolution

 sensor.setRange(ADXL345::PLUSMINUS_4_G); // regular +/- 2G

 SocketClient sc(argv[1], 4444); // server addr and port number

 sc.connectToServer(); // connect to the server

 for(int i=0; i<1000; i++){ // going to send 1000 samples

 stringstream ss; // use a stringstream for msg.

 sensor.readSensorState(); // update the sensor state

 float pitch = sensor.getPitch(); // get pitch and roll

 float roll = sensor.getRoll(); // structure as XML string

 ss << "<sample><acc><pitch>" << pitch << "</pitch>";

 ss << "<roll>" << roll << "</roll></acc></sample>";

 cout << ss.str() << '\xd'; // print to output on one line

 cout.flush(); // flush to update the display

 sc.send(ss.str()); // send the same str to server

 usleep(50000); // 50ms between samples

 }

 cout << "End of EBB Client Example" << endl;

 }

 The code can be built using the build script and can be executed by providing
the address of the server machine, which is 192.168.7.1 in this case:

 molloyd@beaglebone:~/.../ADXL345Client$./accClient 192.168.7.1
 Starting EBB ADXL345 Client Example
 <sample><acc><pitch>0.493899</pitch><roll>0.493899</roll></acc></sample>

 The display continually updates on the same line while sending data to the
server application. The use of XML messages and server threads means that
the client application can be stopped and restarted without requiring the server
application to be restarted.

 Cross‐Compiling Qt Applications

 In Chapter 7 , the Eclipse IDE is confi gured to cross‐compile C/C++ applications
for the BBB using desktop Linux. The Qt Creator IDE can also be confi gured

LISTING 11‐13: (continued)

 Chapter 11 ■ BeagleBone with a Rich User Interface 469

on a desktop machine to cross‐compile, remotely deploy, and remotely debug
applications for the BBB. As with Eclipse, cross‐development when using Qt
Creator is best performed on a Linux desktop machine.

 The fi rst step is to confi gure a “BeagleBone Kit” in the IDE options. This
step requires that you have installed a cross‐development toolchain (see the
fi rst section in Chapter 7). Figure 11-17 displays the settings required for the
“BeagleBone Kit.”

 Figure 11-17 : Qt Creator “BeagleBone Kit” configuration

 To the right of each key setting is a Manage button. The settings required for
each of these confi guration options are as follows:

■ The Device setting should be a “Generic Linux” device that is authenti-
cated by password. Enter your username and password, and the BBB IP
address. The connection should use SSH (port 22).

■ The Compiler setting can be added manually by providing the compiler
path (e.g., /usr/bin/arm‐linux‐gnueabihf‐g++). Qt Creator will auto-
matically detect the ABI.

■ The Debugger setting can be added manually by providing the compiler
path (e.g., /usr/bin/gdb‐multiarch).

■ The Qt version setting can be added manually by browsing and locat-
ing an appropriate qmake version. In this kit the path is /usr/local/

470 Part III0 ■ Advanced BeagleBone Systems

qt4.8.6‐armhf/bin/qmake , which is consistent with the version of Qt that
is installed on the BBB. Unfortunately, this version of the Qt libraries had
to be built manually from source.

 Building the Qt Libraries from Source

 The exact steps for building the Qt libraries from source are available on the
chapter web page, but here is a summary of the steps involved:

 1. The Qt libraries can be downloaded from the www.qt‐project.org/
downloads web page.

 2. Once extracted, the build needs to be confi gured. This can be performed by
creating a new makespecs fi le (qws/linux‐arm‐gnueabi‐g++) that identi-
fi es the arm‐linux‐gnueabihf toolchain. The ./configure script can then
be called in the following form:

 molloyd@debian:~/qt‐everywhere‐opensource‐src‐4.8.6$./configure ‐v ‐ope
nsource ‐confirm‐license ‐xplatform qws/linux‐arm‐gnueabi‐g++ ‐embedded
arm ‐little‐endian ‐host‐little‐endian ‐prefix /usr/local/qt4.8.6‐armhf

 3. Then build the Qt library using the following:

 molloyd@debian:~/qt‐everywhere‐opensource‐src‐4.8.6$ make
 molloyd@debian:~/qt‐everywhere‐opensource‐src‐4.8.6$ make install

 The last step installs the Qt library in the /usr/local/qt4.8.6‐armhf direc-
tory on the desktop machine (as specifi ed by the configure ‐prefix option).
This is important, as otherwise the install step may overwrite your desktop Qt
libraries with libraries that contain ARM machine instructions.

 It is possible that this library is not compatible with the Qt library that is
installed on the BBB itself. If that is the case, the library fi les in the /usr/local/
qt4.8.6‐armhf directory can be copied (using scp) to the BBB, replacing the
existing library fi les. The instructions for this step and how to enable the touch
screen interface are available on the chapter web page.

 Remote Deploying a Test Application

 To test the fi nal installation you can remotely deploy a simple console applica-
tion to the BBB, such as the following:

 #include <QCoreApplication>
 #include <iostream>

 Chapter 11 ■ BeagleBone with a Rich User Interface 471

 using namespace std;
 int main(int argc, char *argv[]){
 QCoreApplication a(argc, argv);
 cout << "Hello BeagleBone from a console application" << endl;
 return a.exec();
 }

 Choose BeagleBone Kit and then modify the project .pro fi le so that the target
destination on the BBB is defi ned. Here is an example:

 TARGET = BBBConsoleApp
 target.files = BBBConsoleApp
 target.path = /home/molloyd/temp
 INSTALLS +=target

Choosing the menu options Project ➢ Build and Project ➢ Run should result
in the application executing directly on the BBB.

 Summary

 After completing this chapter, you should be able to do the following:

■ Confi gure the BBB as a general‐purpose computing device and use Bluetooth
peripherals to control it.

■ Acquire hardware for LCD touch screen display applications.

■ Use virtual network computing (VNC) to remotely execute graphical user
interface (GUI) applications on the BBB.

■ Build rich user interface (UI) applications that execute directly on the BBB
using the GTK+ and Qt frameworks.

■ Build Qt applications with advanced interfaces that interface to hardware
sensors on the BBB.

■ Build fat‐client remote Qt applications that communicate using TCP sockets
to a server that is executing on the BBB.

■ Enhance TCP server code to be multi‐threaded, in order to allow multiple
simultaneous connections from TCP client applications.

■ Build remote Qt GUI server applications that communicate, using TCP
sockets and XML, to a client application on the BBB.

■ Install a Qt Creator cross‐development platform under desktop Linux
for cross‐building Qt applications and remotely deploying them to
the BBB.

472 Part III ■ Advanced BeagleBone Systems

 Further Reading

 The following additional links provide further information on the topics in
this chapter:

■ Chapter web page: www.exploringbeaglebone.com/chapter11

■ Core documentation on GTK+2.0: tiny.cc/ebb1103

■ Qt Signals and Slots: tiny.cc/ebb1104

473

 In this chapter, USB peripherals are attached to the BBB so that it can be used for
capturing image, video, and audio data using low‐level Linux drivers and APIs.
It describes Linux applications and tools that can be used to stream captured
video and audio data to the Internet. Open Source Computer Vision (OpenCV)
image processing and computer vision approaches are investigated that enable
the BBB to draw inferences from the information content of the captured image
data. Capture and playback of audio streams is described, along with the use
of Bluetooth audio. The chapter also covers some applications of audio on the
BBB, including streaming audio, Internet radio, and text‐to‐speech. The chapter
fi nishes by describing how you can build a simple Bluetooth talking clock and
thermometer.

 Equipment Required for This Chapter:

■ BeagleBone Black

■ Linux USB webcam (ideally the Logitech HD Pro C920)

■ USB audio and/or Bluetooth adapter

 Further resources for this chapter are available at www.exploringbeaglebone
.com/chapter12/ .

 C H A P T E R

 12

 Images, Video, and Audio nd Audio

474 Part II4 ■ Interfacing, Controlling, and Communicating

 Capturing Images and Video

 In this section, the BBB is used as a platform for capturing image and video data
from USB webcams and saving the data on the BBB fi le system. This is useful
for BBB applications such as robotics, home security, home automation, and
aeronautics, when networked image streaming is not an available option—for
example, if the application is untethered and distant from a wireless network.
With suitable peripherals, the BBB can be used to capture very high‐quality
video streams, which can be viewed asynchronously. The durations of the video
streams are limited only by the available storage on the BBB—remember that
Chapter 3 describes an approach for mounting a high‐capacity micro-SD card
on the BBB fi le system. Alternatively, the video can be streamed to the network,
which is discussed in the next section of this chapter.

N O T E A full video on video capture and image processing on the BBB is available at

tiny.cc/ebb1201 . This video enables you to personally evaluate the quality of the

video data described in this chapter.

 USB Webcams

 There are camera capes available for the BBB, such as the QuickLogic CAM I/F
CSSP that is illustrated in Chapter 1 , Figure 1‐10(c). It uses the BBB’s general‐pur-
pose memory interface (GPMC), which confl icts with the eMMC and therefore
requires system boot from the SD card. It supports a fi ve‐megapixel camera at
10 frames per second, and it consumes less power than a USB webcam. More
information is available at tiny.cc/ebb1202 .

 The main focus in this section is USB webcams, as they are widely available
and can be reused as a general‐purpose desktop peripheral. The Logitech HD
C270 ($26), HD C310 ($30), and HD Pro C920 ($70), shown in Figure 12-1 , are
chosen, as they are commonly available HD cameras that are known to function
under Linux. In fact, for the following tests the three cameras are connected
simultaneously to the BBB using the USB hub displayed in Figure 1‐8(c). It is not
a powered USB hub, but the BBB is connected to a 5 V, 2 A supply in this case.

 Figure 12-1: Logitech USB HD webcams (a) C270, (b) C310, and (c) C920

 Chapter 12 ■ Images, Video, and Audio 475

W A R N I N G Similarly to Wi‐Fi adapters, many problems with USB webcams are

caused by low power. The camera LED may indicate that the camera is working, but

the lack of power may result in data transmission problems. You should use a powered

USB hub or power the BBB using an external 5 V power supply.

 When the three USB cameras are connected to the BBB at the same time using
a USB hub, the “list USB devices” utility provides the following output:

 molloyd@beaglebone:∼$ lsusb
 Bus 001 Device 002: ID 1a40:0201 Terminus Technology Inc. FE 2.1 7-port Hub
 Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
 Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
 Bus 001 Device 003: ID 046d:082d Logitech, Inc.
 Bus 001 Device 004: ID 041e:30d3 Creative Technology, Sound Blaster Play!
 Bus 001 Device 005: ID 0a5c:21e8 Broadcom Corp.
 Bus 001 Device 006: ID 0d8c:013c C-Media Electronics,Inc.CM108 Audio
 Bus 001 Device 007: ID 046d:0825 Logitech, Inc. Webcam C270
 Bus 001 Device 009: ID 046d:081b Logitech, Inc. Webcam C310

 The output lists the device IDs for the cameras, two USB sound adapt-
ers, and a Bluetooth adapter. The fact that “Logitech” is listed against the
device IDs indicates that some level of Linux support is already present on
the BBB for these devices. If this is not the case, then you will have to source
proprietary Linux drivers from the webcam manufacturer. Typically, such
drivers would have to be built and deployed on the BBB before the webcam
could be used.

 Full information about the modes that are available on the USB cameras can
be displayed using the following:

 molloyd@beaglebone:∼$ lsusb ‐v|less

 This command results in detailed and verbose output. In addition, the load-
able kernel modules (LKMs) that are currently loaded can be listed using the
following command:

 molloyd@beaglebone:∼$ lsmod
 Module Size Used by
 libcomposite 15028 1 g_multi
 bluetooth 159258 24 bnep,btusb,rfcomm
 uvcvideo 57013 0
 snd_hwdep 4885 1 snd_usb_audio
 videobuf2_vmalloc 2490 1 uvcvideo . . .

 The uvcvideo LKM supports UVC (USB video class) compliant devices, such
as the three webcams that are attached. The videobuf2_vmalloc LKM is the

476 Part II6 ■ Interfacing, Controlling, and Communicating

memory allocator for the Video4Linux video buffer. If everything is working
as expected, there should be new video and audio devices available, which can
be listed using the following:

 molloyd@beaglebone:∼$ ls /dev/{vid,aud}*
 /dev/audio /dev/audio2 /dev/audio4 /dev/video0 /dev/video2
 /dev/audio1 /dev/audio3 /dev/audio5 /dev/video1

 The device /dev/audio is mapped to the HDMI audio device, which will only
appear if the HDMI cape is enabled. The other audio devices are mapped to the
two USB audio adapters and the three USB webcams.

 Video4Linux2 (V4L2)

 Video4Linux2 (V4L2) is a video capture driver framework that is tightly inte-
grated with the Linux kernel and is supported by the uvcvideo LKM. It provides
drivers for video devices, such as webcams, PCI video capture cards, and TV
(DVB‐T/S) tuner cards/peripherals. V4L2 primarily supports video (and audio)
devices through the following types of interfaces:

■ Video capture interface: Used to capture video from capture devices,
such as webcams, TV tuners, or video capture devices

■ Video output interface: For video output devices, e.g., video transmission
devices or video streaming devices

■ Video overlay interface: Enables the direct display of the video data
without requiring the data to be processed by the CPU

■ Video blanking interval (VBI) interface: Provides access to legacy
data that is transmitted during the VBI of an analog video signal (e.g.,
teletext)

■ Radio interface: Provides access to AM/FM tuner audio streams

 V4L2 provides support for many types of devices, and simply put: it is complex!
In addition to supporting video input/output, the V4L2 API also has stubs for
codec and video effect devices, which enable manipulation of the video stream
data. The focus in this section is on the capture of video data from webcam devices
using V4L2 by performing the following steps (not necessarily in this order):

■ Opening the V4L2 device
■ Changing the device properties (e.g., camera brightness)
■ Agreeing on a data format and input/output method
■ Performing the transfer of data

■ Closing the V4L2 device

 Chapter 12 ■ Images, Video, and Audio 477

 The main source of documentation on V4L2 is available from www.kernel.org at
tiny.cc/ebb1203 , and the V4L2 API specifi cation is available at tiny.cc/ebb1204 .

N O T E The examples that follow in this chapter are written with the assumption that

you have confi gured a display for your BBB, as described in Chapter 11 . For example,

a VNC client/server (e.g., Xming or VNC Viewer) allows the output images to be dis-

played on your desktop machine. An alternative approach is to sftp image fi les back

and forth between the desktop machine and the BBB.

 Image Capture Utility

 The fi rst step is to install the V4L2 development libraries, abstraction layer,
utilities, and a simple webcam application for V4L2‐compatible devices. Always
update the package lists, to get information about the newest packages and their
dependencies, before installing a system library:

 molloyd@beaglebone:∼$ sudo apt‐get update
 molloyd@beaglebone:∼$ apt‐cache search v4l2
 fswebcam - Tiny and flexible webcam program
 libv4l-dev - Collection of video4linux support libraries . . .

 Then, install the packages that are required for this section:

 molloyd@beaglebone:∼$ sudo apt‐get install libv4l‐dev v4l‐utils fswebcam
gpicview libav‐tools

 The fswebcam application can then be used to test that the attached web camera
is working correctly. It is a surprisingly powerful and easy-to-use application
that is best used by writing a confi guration fi le, as shown in Listing 12‐1, which
contains settings for choosing the device, capture resolution, output fi le type,
and the addition of a title banner. It can even be used on a continuous loop by
adding a loop entry that specifi es the time in seconds between frame captures.

 LISTING 12‐1: /exploringBB/chp12/fswebcam/fswebcam.conf

 device /dev/video0
 input 0
 resolution 1280x720
 bottom-banner
 font /usr/share/fonts/truetype/ttf-dejavu/DejaVuSans.ttf
 title "Exploring BeagleBone"
 timestamp "%H:%M:%S %d/%m/%Y (%Z)"
 png 0
 save exploringBB.png

478 Part II8 ■ Interfacing, Controlling, and Communicating

 The fswebcam application can be confi gured with these settings by passing
it the confi guration fi lename on execution:

 . . ./chp12/fswebcam$ ls
 fswebcam.conf
 . . ./chp12/fswebcam$ fswebcam ‐c fswebcam.conf
 --- Opening /dev/video0. . . Trying source module v4l2. . .
 /dev/video0 opened. --- Capturing frame.

 The image can then be viewed using gpicview , which requires that you have w

attached a display to the BBB, such as a VNC connection:

 . . ./chp12/fswebcam$ gpicview exploringBB.png

 This will result in output like that in Figure 12-2 . The image data has been
modifi ed to include a formatted bottom text banner, which contains a title, and
the date and time of image capture. Sample full‐resolution capture images are
available on the chapter web page.

 Figure 12-2: The fswebcam webcam capture (640x360) displayed using gpicview via Xming

 Interestingly, the fswebcam application could be executed on a loop and
combined with the Apache web server (as described in Chapter 10) to create a
simple web camera, which uses a web page that links to the captured image
fi le present on the BBB fi le system.

 Chapter 12 ■ Images, Video, and Audio 479

 Video4Linux2 Utilities

 V4L2 provides a set of user‐space utilities that can be used for obtaining infor-
mation about connected V4L2‐compatible devices. It is also possible to use the
user‐space utilities to change camera settings; however, it is possible that executed
applications will be programmed to override such changes. The most important
role of these tools is to verify that connected V4L2 devices are functioning cor-
rectly. You can list the available V4L2 devices using the following:

 molloyd@beaglebone:∼$ v4l2‐ctl --list‐devices
 HD Pro Webcam C920 (usb-musb-hdrc.1.auto-1.1): /dev/video0
 UVC Camera (046d:081b) (usb-musb-hdrc.1.auto-1.6): /dev/video1
 UVC Camera (046d:0825) (usb-musb-hdrc.1.auto-1.7): /dev/video2

 The devices appear in the order in which they are attached to the USB hub.
You can get information about a particular device by listing its modes (where
‐d 0 refers to the HD Pro C920 in this instance):

 molloyd@beaglebone:∼$ v4l2‐ctl --all ‐d 0
 Driver Info (not using libv4l2):
 Driver name : uvcvideo
 Card type : HD Pro Webcam C920
 Bus info : usb-musb-hdrc.1.auto-1.1
 Driver version: 3.8.13
 Capabilities : 0x84000001 Video Capture Streaming

 Certain controls can be used to confi gure a camera, which can be accessed
using the –list‐ctrls option, as follows:

 molloyd@beaglebone:∼$ v4l2‐ctl --list‐ctrls ‐d 0
 brightness (int) : min=0 max=255 step=1 default=128 value=128
 contrast (int) : min=0 max=255 step=1 default=128 value=128
 saturation (int) : min=0 max=255 step=1 default=128 value=128
 gain (int) : min=0 max=255 step=1 default=0 value=0 . . .

 For the C920, other controls include white balance, color temperature, sharp-
ness, backlight compensation, exposure (auto or absolute), focus, zoom, and
support for pan/tilt. For example, to change the brightness on device 0 to 100
(currently 128 as shown in the preceding snippet), you can use the following:

 molloyd@beaglebone:∼$ v4l2‐ctl --set‐ctrl=brightness=100 ‐d 0
 molloyd@beaglebone:∼$ v4l2‐ctl --list‐ctrls ‐d 0 |grep brightness
 brightness (int) : min=0 max=255 step=1 default=128 value=100

 You can also list the modes of the cameras. In this case there are three dif-
ferent video capture pixel formats, with fourcc color space video codes: ‘YUYV’ (a
common broadcast format with one luminance and two chrominance channels),
‘H264’ (a common modern interframe video compression format), and ‘MJPG’ (a

480 Part II0 ■ Interfacing, Controlling, and Communicating

common, but older, intraframe‐only motion JPEG video compression format).
The listing is obtained using the following:

 molloyd@beaglebone:∼$ v4l2‐ctl --list‐formats ‐d 0
 ioctl: VIDIOC_ENUM_FMT
 Index : 0 Type : Video Capture
 Pixel Format: 'YUYV' Name : YUV 4:2:2 (YUYV)
 Index : 1 Type : Video Capture
 Pixel Format: 'H264' (compressed) Name : H.264
 Index : 2 Type : Video Capture
 Pixel Format: 'MJPG' (compressed) Name : MJPEG

 The C270 and C310 cameras do not have a H.264 mode, but they both have
‘YUYV’ and ‘MJPG’ compressed pixel formats at indices 0 and 1 respectively. It is
possible to explicitly set the resolution and pixel format of a camera as follows:

∼$ v4l2‐ctl --set‐fmt‐video=width=1920,height=1080,pixelformat=1 ‐d 0
∼$ v4l2‐ctl --all ‐d 0
 Driver Info (not using libv4l2):
 Driver name : uvcvideo
 Card type : HD Pro Webcam C920 . . .
 Capabilities : 0x84000001 Video Capture Streaming
 Format Video Capture:
 Width/Height : 1920/1080 Pixel Format : 'H264'
 Field : None Bytes per Line : 3840
 Size Image : 4147200 Colorspace : SRGB
 Crop Capability Video Capture:
 Bounds : Left 0, Top 0, Width 1920, Height 1080
 Default : Left 0, Top 0, Width 1920, Height 1080
 Pixel Aspect : 1/1
 Video input : 0 (Camera 1: ok)
 Streaming Parameters Video Capture:
 Capabilities : timeperframe Frames per second: 30.000 (30/1)
 Read buffers : 0 Priority: 2

 This output provides very useful state information, such as the resolution,
video frame image size, frame rate, and so on.

 Writing Video4Linux2 Programs

 As with other devices in Linux (e.g., SPI in Chapter 8), it is possible to send data
to and receive data from a video device by opening its /dev/videoX fi le system
entry by using a call to open() . Unfortunately, such an approach would not provide
the level of control or the performance level that is required for video devices.
Instead, low‐level input/output control (ioctl()) calls are required to confi gure
the settings of the device, and memory map (mmap()(() calls are used to perform
image frame memory copy, rather than using a byte‐by‐byte serial transfer.

 The Git repository contains programs in the /chp12/v4l2/ directory that use
V4L2 and its low‐level ioctl() calls to perform video frame capture and video
capture tasks:

 Chapter 12 ■ Images, Video, and Audio 481

■ grabber.c : Grabs raw image frame data from a webcam into memory
using libv4l2. The images can be written to the fi le system.

■ capture.c : Grabs raw video data to a stream or fi le. It does this quickly
enough to be used for real‐time video capture.

 These code examples are almost entirely based on the examples that are
provided by the V4L2 project team. The code is too long to display here, but
you can view it in the Git repository. To build and execute the code examples,
use the following steps:

 . . ./chp12/v4l2$ ls *.c
 capture.c grabber.c
 . . ./chp12/v4l2$ gcc ‐O2 ‐Wall `pkg‐config --cflags --libs libv4l2`
grabber.c ‐o grabber

 . . ./chp12/v4l2$ gcc ‐O2 ‐Wall `pkg‐config --cflags --libs libv4l2`
capture.c ‐o capture

 . . ./chp12/v4l2$./grabber
 . . ./chp12/v4l2$ ls *.ppm
 grabber000.ppm grabber005.ppm grabber010.ppm grabber015.ppm . . .
 . . ./chp12/v4l2$ gpicview grabber000.ppm

 The .ppm fi le format describes an uncompressed color image format, which
gpicview will display. You can use the “forward” button on gpicview to step
through the 20 image frames. To capture data using the capture.c program,
use a selection of the following options:

 molloyd@beaglebone:∼/exploringBB/chp12/v4l2$./capture ‐h
 Usage: ./capture [options]
 Version 1.3 Options:
 -d | --device name Video device name [/dev/video0] . . .
 -f | --format Force format to 640x480 YUYV
 -F | --formatH264 Force format to 1920x1080 H264
 -c | --count Number of frames to grab [100] - use 0 for infinite
 Example usage: capture -F -o -c 300 > output.raw
 Captures 300 frames of H264 at 1920x1080. Use raw2mpg4 script to convert
to mpg4

 If you have the C920 camera, you can capture 100 frames of H.264 data using
the fi rst of the following commands. A second command then converts the .raw
fi le to a .mp4 fi le format, which can be played on a desktop machine:

 . . ./chp12/v4l2$./capture ‐d /dev/video0 ‐F ‐o ‐c 100 > output.raw
 Force Format 2
 ..
 . . ./chp12/v4l2$ avconv ‐f h264 ‐i output.raw ‐vcodec copy output.mp4
 . . ./chp12/v4l2$ ls ‐l output*
 -rw-r--r-- 1 molloyd molloyd 2065429 Sep 8 01:23 output.mp4
 -rw-r--r-- 1 molloyd molloyd 2063177 Sep 8 01:22 output.raw

482 Part II ■ Interfacing, Controlling, and Communicating

 The fi le sizes are almost identical because the video data is actually captured
in a raw H.264 format. The conversion is performed using the avconv (Libav)
utility, which is a fork of the FFmpeg project that is better supported by the
Debian Linux distribution. The ‐vcodec copy option enables the video to be
copied without transcoding the video data format.

 The capture.c program can also be used with cameras such as the C270 and
C310, which do not have hardware H.264 functionality; however, the capabili-
ties are more limited:

 . . .$ v4l2‐ctl --set‐fmt‐video=width=1280,height=720,pixelformat=1 ‐d 1
 . . .$ v4l2‐ctl --all ‐d 1
 Format Video Capture: Width/Height:1280/720 Pixel Format:'MJPG'
 . . ./chp12/v4l2$./capture ‐d /dev/video1 ‐o ‐c 100 > output.raw
 Force Format 0 ..
 . . ./chp12/v4l2$ ls ‐l output.raw
 -rw-r--r-- 1 molloyd molloyd 4476448 Sep 8 01:58 output.raw
 . . ./chp12/v4l2$ avconv ‐f mjpeg ‐i output.raw output.mp4
 . . ./chp12/v4l2$ ls ‐l output.mp4
 -rw-r--r-- 1 molloyd molloyd 1456040 Sep 8 02:06 output.mp4

 The video conversion using avconv can take quite some time on the BBB!
In this example you can see that the H.264 video fi le requires signifi cantly less
space than the MJPEG fi le, as it is a more effi cient interframe video encoding
format.

N O T E A common problem arises when using the capture.c program: The camera

returns a “select timeout” error. If this arises, then you need to change the time-out

properties of the uvcvideo LKM as follows:

 molloyd@beaglebone:∼$ sudo rmmod uvcvideo
 molloyd@beaglebone:∼$ sudo modprobe uvcvideo nodrop=1 timeout=5000
 molloyd@beaglebone:∼$ lsmod |grep uvcvideo
 uvcvideo 57013 0
 videobuf2_vmalloc 2490 1 uvcvideo

 Streaming Video

 It is possible to use the BBB to capture and stream live video. The Logitech C920
is particularly useful for this purpose, as it has a built‐in H.264 hardware encoder.
The raw 1080p H.264 data can be passed directly from the camera stream to the
network stream without transcoding, which means that the computational load
on the BBB is low. Streaming scripts are available in the /chp12/v4l2/ repository
directory. For example, Listing 12‐2 provides a script for sending H.264 video
data over UDP to a desktop PC at 192.168.7.1.

 Chapter 12 ■ Images, Video, and Audio 483

 LISTING 12‐2: /exploringBB/chp12/v4l2/streamVideoUDP

 #!/bin/bash

 echo "Video Streaming for the Beaglebone - Exploring BeagleBone"

 v4l2-ctl --set-fmt-video=width=1920,height=1080,pixelformat=1

 ./capture -F -o -c0|avconv -re -i - -vcodec copy -f mpegts udp://192.168.7.1:123

 This script pipes the raw video output from the capture program to the avconv
application, which “copies” the raw data to the network stream using UDP.
There is an additional script to multicast the video stream to multiple network
points (streamVideoMulti) using the broadcast network address 226.0.0.1 and
to stream the video using the Real‐Time Transport Protocol (RTP) (streamVid-
eoRTP). A full video on my YouTube channel describes the steps involved in P

detail: tiny.cc/ebb1205 .
 It is possible to build a custom Qt application that can receive the video

stream on a desktop computer. This can be combined with the Qt client/server
applications in Chapter 11 to provide network control and support for video
streaming. Further details are available at tiny.cc/ebb1206 .

 A second BBB can be used to receive the network video stream; however,
it does not have suffi cient capability to render the HD video stream to a dis-
play. Interestingly, it is possible to use a Raspberry Pi B/B+ to capture the
UDP stream and display it using a video player that takes advantage of the
Raspberry Pi’s H.264 hardware decoder. For example, the OMXplayer sup-
ports hardware decoding, and it can be used to open the network broadcast
stream using the following:

 molloyd@raspberryPI$ omxplayer ‐o hdmi udp://226.0.0.1:123

 The Raspberry PI can decode the C920 video stream and display it live on a
monitor, albeit with a varying degree of latency.

 Image Processing and Computer Vision

 Once a USB camera or camera cape is attached to the BBB, it is possible to cap-
ture images and process them using a comprehensive high‐level library called
Open Source Computer Vision (OpenCV). OpenCV (www.opencv.org(() pro-
vides a cross‐platform library of functions for computer vision, such as gesture
recognition, motion understanding, motion tracking, augmented reality, and
structure‐from‐motion. It also provides supporting libraries for applications
such as artifi cial neural networks, support vector machines, classifi cation, and
decision tree learning. OpenCV is written in C/C++ and is optimized for real‐
time applications, including support for multi‐core programming. The OpenCV
libraries are installed by default on the BBB Debian image.

484 Part II4 ■ Interfacing, Controlling, and Communicating

 Image Processing with OpenCV

 OpenCV supports V4L2 and provides a high‐level interface for capturing image
data, which can be used instead of the grabber.c program. Listing 12‐3 is an
OpenCV application that captures data from a webcam and fi lters it using some
simple image processing techniques. The steps that it performs are as follows:

 1. Capture of the image from the webcam

 2. Conversion of the image into grayscale form

 3. Blurring of the image to remove high‐frequency noise

 4. Detecting regions in the image where the image brightness changes sharply.
This is achieved using an image processing operator known as an edge
detector—the Canny edge detector in this example

 5. Storage of the image fi les to the BBB fi le system

 OpenCV uses a fi le‐naming convention whereby an .hpp fi le extension is used
for header fi les that contain C++ code. This convention enables a C version of
a header fi le (e.g., opencv.h) to coexist alongside a C++ header fi le (e.g., h opencv

.hpp). Because OpenCV mixes both C and C++ code, this is an appropriate way p

to distinguish one form from the other.

 LISTING 12‐3: /exploringBB/chp12/openCV/boneCV.cpp

 #include<iostream>

 #include<opencv2/opencv.hpp> // C++ OpenCV include file

 using namespace std;

 using namespace cv; // using the cv namespace too

 int main()

 {

 VideoCapture capture(0); // capturing from /dev/video0

 cout << "Started Processing - Capturing Image" << endl;

 // set any properties in the VideoCapture object

 capture.set(CV_CAP_PROP_FRAME_WIDTH,1280); // width in pixels

 capture.set(CV_CAP_PROP_FRAME_HEIGHT,720); // height in pixels

 capture.set(CV_CAP_PROP_GAIN, 0); // enable auto gain

 if(!capture.isOpened()){ // connect to the camera

 cout << "Failed to connect to the camera." << endl;

 }

 Mat frame, gray, edges; // original, grayscale, and edge images

 capture >> frame; // capture the image to the frame

 if(frame.empty()){ // did the capture succeed?

 cout << "Failed to capture an image" << endl;

 return -1;

 }

 cout << "Processing - Performing Image Processing" << endl;

 cvtColor(frame, gray, CV_BGR2GRAY); // convert to grayscale

 Chapter 12 ■ Images, Video, and Audio 485

 blur(gray, edges, Size(3,3)); // blur image using a 3x3 kernel

 // use Canny edge detector that outputs to the same image

 // low threshold = 10, high threshold = 30, kernel size = 3

 Canny(edges, edges, 10, 30, 3); // run Canny edge detector

 cout << "Finished Processing - Saving images" << endl;

 imwrite("capture.png", frame); // store the original image

 imwrite("grayscale.png", gray); // store the grayscale image

 imwrite("edges.png", edges); // store the processed edge image

 return 0;

 }

 This example can be built and executed as follows, which results in the output
displayed in Figure 12-3 :

 . . ./chp12/openCV$ g++ ‐O2 `pkg‐config --cflags --libs opencv` boneCV.cpp
‐o boneCV

 . . ./chp12/openCV$./boneCV
 Started Processing - Capturing Image
 Processing - Performing Image Processing
 Finished Processing - Saving images
 . . ./chp12/openCV$ ls *.png
 capture.png edges.png grayscale.png
 . . ./chp12/openCV$ gpicview capture.png

 Figure 12-3: The OpenCV image processing example: (a) the webcam image; (b) the edge-
processed image

 A second example application in the same directory can be used to test the
performance of using OpenCV for image processing. In each iteration, it per-
forms an image capture at a 640×480 resolution, converts the image to grayscale
form, and performs an edge detection operation. The program performs 100
iterations, after which the execution time is measured:

 . . ./chp12/openCV$./boneCVtiming
 It took 21.2737 seconds to process 100 frames
 Capturing and processing 4.70065 frames per second

486 Part II6 ■ Interfacing, Controlling, and Communicating

 During this test the application uses 95% of CPU and 6% of memory
capacity.

N O T E The BBB’s AM335x has a NEON SIMD (single instruction multiple data) engine

that allows you to perform certain instructions in parallel on multiple data values. The

engine is capable of greatly accelerating image processing operations; however, utiliz-

ing the engine may require that inline assembly language code is written in your C/

C++ programs. Details of the NEON SIMD engine are available at tiny.cc/ebb1212

and tiny.cc/ebb1213 .

 Computer Vision with OpenCV

 Image processing involves manipulating images by fi lters (e.g., smoothing,
contrast enhancement) or transformations (e.g., scaling, rotation, stretching)
for purposes such as enhancing or even reducing the information content of
digital images. Image processing is one tool that is used in computer vision ,
which often has the goal of “understanding” the information content within
digital images.

 Computer vision applications often try to replicate the capabilities of
human vision by drawing inferences, making decisions, and taking actions
based on visual data. For example, the OpenCV application described in
this section uses the BeagleBone to process image data and apply computer
vision techniques to determine whether a human face is present in a webcam
image frame or an image fi le. Importantly, the approach is designed for face
detection, not face recognition. Face detection can be used for applications
such as security and photography; however, the processing required has a
signifi cant computational overhead and is not suitable for high frame rates
on the BBB.

 Listing 12‐4 provides an example computer vision application that uses
OpenCV for face detection. It uses a Harr feature‐based cascade classifi er,
which uses a characterization of adjacent rectangular image regions to
identify regions of interest—for example, in human faces the region near the
eyes has a darker intensity than the region containing the cheeks. Human
faces can be detected using such observations. Usefully, OpenCV provides
some codifi ed rules for detecting human faces, which have been used in
this example.

 Computer vision is an entire research domain, and it requires a signifi cant
time investment before you will be able to perform some of its more complex
operations. The “Further Reading” section provides links to resources to get
you started.

 Chapter 12 ■ Images, Video, and Audio 487

 LISTING 12‐4: /exploringBB/chp12/openCV/face.cpp

 #include <iostream>

 #include <opencv2/highgui/highgui.hpp>

 #include <opencv2/objdetect/objdetect.hpp>

 #include <opencv2/imgproc/imgproc.hpp>

 using namespace std;

 using namespace cv;

 int main(int argc, char *args[])

 {

 Mat frame;

 VideoCapture *capture; // capture needs full scope of main(), using ptr

 cout << "Starting face detection application" << endl;

 if(argc==2){ // loading image from a file

 cout << "Loading the image " << args[1] << endl;

 frame = imread(args[1], CV_LOAD_IMAGE_COLOR);

 }

 else {

 cout << "Capturing from the webcam" << endl;

 capture = new VideoCapture(0);

 // set any properties in the VideoCapture object

 capture->set(CV_CAP_PROP_FRAME_WIDTH,1280); // width pixels

 capture->set(CV_CAP_PROP_FRAME_HEIGHT,720); // height pixels

 if(!capture->isOpened()){ // connect to the camera

 cout << "Failed to connect to the camera." << endl;

 return 1;

 }

 *capture >> frame; // populate the frame with captured image

 cout << "Successfully captured a frame." << endl;

 }

 if (!frame.data){

 cout << "Invalid image data. . . exiting!" << endl;

 return 1;

 }

 // loading the face classifier from a file (standard OpenCV example)

 CascadeClassifier faceCascade;

 faceCascade.load("haarcascade_frontalface.xml");

 // faces is a STL vector of faces - will store the detected faces

 std::vector<Rect> faces;

 // detect objects in the scene using the classifier above

 // (frame, faces, scale factor, min neighbors, flags, min size, max size)

 faceCascade.detectMultiScale(frame, faces, 1.1, 3,

 0 | CV_HAAR_SCALE_IMAGE, Size(50,50));

 if(faces.size()==0){

 cout << "No faces detected!" << endl; // display the image anyway

 }

 // draw oval around the detected faces in the faces vector

 for(int i=0; i<faces.size(); i++)

 {

 // Using the center point and a rectangle to create an ellipse

continues

488 Part II8 ■ Interfacing, Controlling, and Communicating

 Point cent(faces[i].x+faces[i].width*0.5, faces[i].y+faces[i].height*0.5);

 RotatedRect rect(cent, Size(faces[i].width,faces[i].width),0);

 // image, rectangle, color=green, thickness=3, linetype=8

 ellipse(frame, rect, Scalar(0,255,0), 3, 8);

 cout << "Face at: (" << faces[i].x << "," <<faces[i].y << ")" << endl;

 }

 imshow("EBB OpenCV face detection", frame); // display image results

 imwrite("faceOutput.png", frame); // save image too

 waitKey(0); // display until key press

 return 0;

 }

 The face detection example can be built and executed using the following
commands:

 . . ./chp12/openCV$ g++ ‐O2 `pkg‐config --cflags --libs opencv` face.cpp
‐o face
 . . ./chp12/openCV$./face
 Starting face detection application
 Capturing from the webcam
 Successfully captured a frame.
 Face at: (697,470) Face at: (470,152) Face at: (82,192) Face at:
(966,296)
 . . ./chp12/openCV$./face Lena.png
 Starting face detection application
 Loading the image Lena.png
 Face at: (217,201)

 When executed it results in displaying the images in Figure 12-4 (if an X Window
session is confi gured), with ellipses identifying any faces that are detected in
the image.

 Figure 12-4: OpenCV face detection on the BBB: (a) grabbed live using the C270 webcam; (b)
loaded from the Lena image file

LISTING 12‐4: (continued)

 Chapter 12 ■ Images, Video, and Audio 489

 Boost

 Similar to OpenCV, Boost (www.boost.org) provides a comprehensive free
library of C++ source code that can be used for many applications on the BBB.
There are libraries for multithreading, data structures, algorithms, regular
expressions, memory management, mathematics, and more. The range of
libraries available is too exhaustive to detail here, but a full listing is avail-
able at www.boost.org/doc/libs/ . Boost can be installed on the BBB using
the following:

 molloyd@beaglebone:∼$ sudo apt‐get install libboost‐dev
 Setting up libboost-dev (1.49.0.1) . . .

 Listing 12‐5 provides an example of usage of the Boost library for calculating
the geometric distance between two 2‐D points.

 LISTING 12‐5: /exploringBB/chp12/boost/testBoost.cpp

 #include <boost/geometry.hpp>

 #include <boost/geometry/geometries/point_xy.hpp>

 using namespace boost::geometry::model::d2;

 #include <iostream>

 int main(){

 point_xy<float> p1(1.0,2.0), p2(3.0,4.0);

 float distance = boost::geometry::distance(p1,p2);

 std::cout << "The distance between points is: " << distance << std::endl;

 return 0;

 }

 Similarly to OpenCV, it utilizes an .hpp extension form. It also makes extensive
use of C++ namespaces. The preceding code can be built and executed using
the following:

∼/exploringBB/chp12/boost$ g++ testBoost.cpp ‐o testBoost
∼/exploringBB/chp12/boost$./testBoost
 The distance between points is: 2.82843

 BeagleBone Audio

 There are several approaches to utilizing audio inputs and outputs with the
BBB, including the following:

■ HDMI audio: This output is enabled by default on the BBB and allows
audio signals to be sent to a television via HDMI (not DVI).

490 Part II0 ■ Interfacing, Controlling, and Communicating

■ USB audio: Low‐cost USB adapters can be attached to the BBB that have
Linux driver support for the input/output of audio. In addition, USB
webcams can be used as audio input devices.

■ Bluetooth audio: A Linux‐compatible Bluetooth adapter can be used to
input from, or output to, external Bluetooth recorder/speaker devices.

■ Multichannel audio serial port (McASP): The BBB has header pins for
McASP that can be used to interface to McASP‐capable audio codecs (e.g.,
the TI TLV320AIC series). This is a complex task that requires proprietary
(typically SMT) components.

 It is also possible to use the built‐in ADC inputs to capture audio events at
low sample rates. For example, the SparkFun electret microphone breakout
board (BOB‐09964) can be connected via an op‐amp circuit to the BBB ADC
(with a 10 kΩ potentiometer on the GND line) and used for tasks such as impact
detection (e.g., a door knock). The sample rate of such a microphone circuit
could be improved by using an external ADC that has an SPI interface, such
as the low‐cost ($3) MCP3008, which has eight 10‐bit ADCs. In addition, the TI
ADS8326 16‐bit 250 kS/s SPI out could be interfaced to the PRU‐ICSS, which is
described in Chapter 13 .

 In this section, the most common approaches are examined, as is software
that enables you to perform basic audio input/output tasks.

 Core Audio Software Tools

 The following tools are used in this section of the book:

■ MPlayer: A movie player for Linux that has optimized built‐in support
for audio devices. It works very well as an MP3 audio stream player on
the BBB.

■ ALSA utilities: Contains tools for confi guring and using ALSA (advanced
Linux sound architecture) devices. It includes the aplay /arecord utili-
ties for the playback and recording of audio streams; the amixer tool for
controlling volume levels; and the speaker‐test utility.

■ Libav: Contains libraries and programs for handling multimedia data.
In particular, avconv is a fast video and audio conversion tool that can
also be used to capture audio data from devices or to stream data to the
network (see libav.org/avconv.html).

 To install these tools, ensure that your packages lists are up‐to‐date and
install the tools as follows:

∼$ sudo apt‐get update
∼$ sudo apt‐get install mplayer alsa‐utils libav‐tools

 Chapter 12 ■ Images, Video, and Audio 491

 Audio Devices for the BBB

 After you have the core software installed, the next step is to utilize an audio
device that is connected to the BBB. In this section, an example is used in which
six audio devices are attached simultaneously to the BBB—the HDMI audio
interface, three webcams, and two USB audio adapters. Remember that the
HDMI cape must be enabled in order to utilize the HDMI audio output.

 HDMI and USB Audio Playback Devices

 Figure 12-5 (a) illustrates the USB hub with three USB devices attached—the two
USB audio adapters and the Bluetooth adapter. When the three webcams are also
attached to the Velleman USB hub, then a call to lsusb results in the following:

 molloyd@beaglebone:∼$ lsusb
 . . .
 Bus 001 Device 003: ID 046d:082d Logitech, Inc.
 Bus 001 Device 004: ID 041e:30d3 Creative Technology, Sound Blaster Play!
 Bus 001 Device 006: ID 0d8c:013c C-Media Electronics,Inc.CM108 Audio
 Bus 001 Device 007: ID 046d:0825 Logitech, Inc. Webcam C270
 Bus 001 Device 009: ID 046d:081b Logitech, Inc. Webcam C310

 Figure 12-5: (a) Seven‐port USB hub with multiple adapters; (b) the Sound Blaster audio
adapter; (c) the Dynamode USB audio adapter

 The USB hub in Figure 12-5 (a) is not a powered hub; however, the BBB is
powered via the BBB 5 V connector using a 2 A power supply, which provides
suffi cient power to use all of these devices simultaneously. The Sound Blaster
($20) and Dynamode ($5) USB adapters are illustrated in Figure 12-5 (b) and (c),
respectively. These adapters can be hot‐plugged into the BBB, where their LKMs
can be dynamically loaded and unloaded during Linux execution.

492 Part II ■ Interfacing, Controlling, and Communicating

 When the various adapters are connected to the BBB, you can obtain informa-
tion about them as follows:

 molloyd@beaglebone:∼/exploringBB/chp12/audio$ cat /proc/asound/pcm
 00-00: HDMI nxp-hdmi-hifi-0 : : playback 1
 01-00: USB Audio : USB Audio : capture 1
 02-00: USB Audio : USB Audio : playback 1 : capture 1
 03-00: USB Audio : USB Audio : capture 1
 04-00: USB Audio : USB Audio : capture 1
 05-00: USB Audio : USB Audio : playback 1 : capture 1

 In this case, the HDMI adapter is capable of playback only, the two USB
adapters are capable of playback and capture, and the USB webcams are only
capable of capture. An alternative approach is to use the aplay utility to list the
available playback devices:

 molloyd@beaglebone:∼/exploringBB/chp12/audio$ aplay ‐l
 **** List of PLAYBACK Hardware Devices ****
 card 0: Black [TI BeagleBone Black], device 0: HDMI nxp-hdmi-hifi-0 []
 Subdevices: 1/1 Subdevice #0: subdevice #0
 card 2: Device [USB PnP Sound Device], device 0: USB Audio [USB Audio]
 Subdevices: 1/1 Subdevice #0: subdevice #0
 card 5: U0x41e0x30d3 [USB Device 0x41e:0x30d3], device 0: [USB Audio]
 Subdevices: 1/1 Subdevice #0: subdevice #0

 Once you have identifi ed the devices, you can play back an audio fi le on the
Dynamode and Creative Sound Blaster USB adapters, respectively, using the
mplayer and aplay utilities, as follows:

 . . ./chp12/audio$ mplayer ‐ao alsa:device=hw=2 320sample.mp3
 . . ./chp12/audio$ mplayer ‐ao alsa:device=hw=5 320sample.mp3
 . . ./chp12/audio$ aplay ‐D plughw:2,0 cheering.wav
 . . ./chp12/audio$ aplay ‐D plughw:5,0 cheering.wav

 The sound quality is audibly richer on the Sound Blaster adapter (card 5) than
the Dynamode adapter (card 2). However, the quality of the Dynamode adapter
is good for its price and its manual volume control feature is useful.

 The HDMI device adapter can also be used, either by connecting the BBB
directly to an HDMI receiver or HDMI television (or a monitor with built‐in
speakers), or by using the VGA adapter shown in Figure 1‐6(b) to extract the
HDMI audio channel to a 3.5 mm stereo audio jack. The quality of the audio that
is extracted from the latter devices can be quite variable and can suffer from
auto‐gain line noise when no audio stream is being played back.

 To test an output device, you can use the speaker‐test utility (where ‐c2
indicates two channels are to be tested):

 ../chp12/audio$ speaker‐test ‐D plughw:2,0 ‐c2

 Chapter 12 ■ Images, Video, and Audio 493

 The ALSA utilities also provide you with detailed information about the
capabilities of a USB device. For example, amixer can be used to get and set
an adapter’s available properties. Using amixer on the Sound Blaster device
provides its current state information:

 . . ./chp12/audio$ amixer ‐c 5
 Simple mixer control 'Speaker',0
 Capabilities: pvolume pswitch pswitch-joined penum
 Playback channels: Front Left - Front Right
 Limits: Playback 0 - 151
 Mono: Front Left: Playback 44 [29%] [-20.13dB] [on]
 Front Right: Playback 44 [29%] [-20.13dB] [on]
 Simple mixer control 'Mic',0
 Capabilities: pvolume pvolume-joined cvolume cvolume-joined pswitch
 pswitch-joined cswitch cswitch-joined penum
 Playback channels: Mono Capture channels: Mono
 Limits: Playback 0 - 32 Capture 0 - 16
 Mono: Playback 23 [72%] [34.36dB] [off] Capture 0 [0%] [0.00dB] [on]
 Simple mixer control 'Auto Gain Control',0
 Capabilities: pswitch pswitch-joined penum
 Playback channels: Mono Mono: Playback [on]

 To get its available control settings, use the following:

 . . ./chp12/audio$ amixer ‐c 5 controls
 numid=2,iface=MIXER,name='Mic Playback Switch'
 numid=3,iface=MIXER,name='Mic Playback Volume'
 numid=6,iface=MIXER,name='Mic Capture Switch'
 numid=7,iface=MIXER,name='Mic Capture Volume'
 numid=8,iface=MIXER,name='Auto Gain Control'
 numid=4,iface=MIXER,name='Speaker Playback Switch'
 numid=5,iface=MIXER,name='Speaker Playback Volume'
 numid=1,iface=PCM,name='Playback Channel Map'

 Therefore, to control the Speaker Playback Volume setting you can use this:

∼$ amixer ‐c 5 cset iface=MIXER,name='Speaker Playback Volume' 10,10
 numid=5,iface=MIXER,name='Speaker Playback Volume'
 ; type=INTEGER,access=rw---R--,values=2,min=0,max=151,step=0
 : values=10,10 | dBminmax-min=-28.37dB,max=0.06dB

 This adjusts the volume on the speaker output of the Sound Blaster USB card—
the 10,10 values are the left and right volume percentage settings, so 0,30 would
turn off the left channel and set the volume level at 30% for the right channel.

 Internet Radio Playback

 You can play Internet radio channels using the same mplayer application. For
example, by using www.xatworld.com/radio‐search/ you can search for a radio

494 Part II4 ■ Interfacing, Controlling, and Communicating

station of your preference to determine its IP address. You can then stream the
audio to your USB adapter using the following:

 . . ./chp12/audio$ mplayer ‐ao alsa:device=hw=5 http://178.18.137.246:80
 MPlayer svn r34540 (Debian), built with gcc-4.6 (C)
 Connecting to server 178.18.137.246[178.18.137.246]: 80. . .
 Name : Pinguin Radio
 Genre : Alternative
 Website: http://www.pinguinradio.nl
 Public : yes
 Bitrate: 320kbit/s . . .
 AO: [alsa] 44100Hz 2ch s16le (2 bytes per sample)
 Video: no video Starting playback. . .
 A: 533.8 (08:53.7) of -0.0 (unknown) 35.0% 45%
 ICY Info: StreamTitle='Sun Kil Moon - Ben's My Friend ';
 A: 842.9 (14:02.8) of -0.0 (unknown) 35.4% 45%
 ICY Info: StreamTitle='Cage the Elephant - Shake Me Down ';

 This stream runs at 34% CPU and 1.7% memory usage on the BBB with good
sound quality (regardless of what you might think of the music itself!). In fact,
with multiple sound output devices, there is no diffi culty in confi guring the
BBB to connect to multiple Internet radio streams simultaneously and streaming
audio to separate audio adapters.

 Recording Audio

 The USB adapters and the USB webcams can be used to capture audio directly
to the BBB fi le system. You can use the arecord utility to provide a list of the
available devices—for example, with one webcam and the two USB audio adapt-
ers connected:

 molloyd@beaglebone:∼$ arecord ‐l
 **** List of CAPTURE Hardware Devices ****
 card 1: Device [USB PnP Sound Device], device 0: USB Audio [USB Audio]
 Subdevices: 1/1 Subdevice #0: subdevice #0
 card 2: U0x46d0x825 [USB Device 0x46d:0x825], device 0: . . . [USB Audio]
 Subdevices: 1/1 Subdevice #0: subdevice #0
 card 3: U0x41e0x30d3 [USB Device 0x41e:0x30d3], device 0:. . . [USB Audio]
 Subdevices: 1/1 Subdevice #0: subdevice #0

 These devices are also indexed at the following /proc location:

 molloyd@beaglebone:∼/tmp$ cat /proc/asound/cards
 0 [Black]: TI_BeagleBone_B - TI BeagleBone Black
 TI BeagleBone Black
 1 [Device]: USB-Audio - USB PnP Sound Device
 USB PnP Sound Device at usb-musb-hdrc.1.auto-1.2, full speed . . .

 Chapter 12 ■ Images, Video, and Audio 495

 You can record audio from each of the audio capture devices using the arecord
utility and the device’s address. Interestingly, the LED does not light on the
webcams described when they are recording only audio!

 molloyd@beaglebone:∼/tmp$ arecord ‐f cd ‐D plughw:3,0 ‐d 20 test3.wav
 Recording WAVE 'test3.wav' : Signed 16 bit Little Endian, Rate 44100 Hz
 molloyd@beaglebone:∼/tmp$ arecord ‐f cd ‐D plughw:2,0 ‐d 20 test2.wav
 Recording WAVE 'test2.wav' : Signed 16 bit Little Endian, Rate 44100 Hz

 The waveform audio fi le format (WAV) stores uncompressed audio data,
which will quickly consume your BBB fi le storage free space. In order to avoid
this you can compress WAV fi les into the popular MP3 compressed format using
the LAME MP3 encoder, as follows:

 molloyd@beaglebone:∼/tmp$ sudo apt‐get install lame
 molloyd@beaglebone:∼/tmp$ lame test2.wav output.mp3
 LAME 3.99.5 32bits (http://lame.sf.net)
 Using polyphase lowpass filter, transition band: 16538 Hz - 17071 Hz
 Encoding test2.wav to output.mp3
 Encoding as 44.1 kHz j-stereo MPEG-1 Layer III (11x) 128 kbps qval=3
 Frame | CPU time/estim | REAL time/estim | play/CPU | ETA
 767/767 (100%)| 0:09/ 0:09| 0:09/ 0:09| 2.0980x|0:00 . . .

 A recording test was performed on the BBB that uses each of the two USB
adapters. A Zoom H1 Handy Recorder (www.zoom.co.jp/products/h1(() was
used to capture my voice (and an action that was often necessary to get this
book written!). The analog stereo line output of the Zoom H1 was connected to
the analog stereo line in of each adapter and the following steps were used to
record the audio for each adapter:

 . . ./audio/testMicrophone$ arecord ‐f cd ‐D plughw:2,0 ‐d 45 testX.wav
 . . ./chp12/audio/testMicrophone$ lame ‐b 128 testX.wav testX.mp3

 A digital copy of the audio (i.e., digitally copied off the Zoom H1) is also
provided in the Git repository for comparison. All three files are encoded
at a sampling rate of 44.1 kS/sec with a bit rate of 128 Kb/sec. You can play
these files directly on your desktop computer using the address tiny.cc/
ebb1208 :

 . . ./chp12/audio/testMicrophone$ ls
 ZoomH1DigitalSource.mp3 testCreative.mp3 testDynamode.mp3

 Line noise is audible in both versions when compared to the original digital
audio data, but there is not a very signifi cant difference in the quality of the
audio recording from each USB audio adapter.

496 Part II6 ■ Interfacing, Controlling, and Communicating

 Audio Network Streaming

 Earlier in this chapter, a description is provided of video streaming to the network
using avconv . It is also possible to use the same application to stream audio asvv

it is captured by an audio device, live to the network. For example, here is the
command required to stream audio from a device attached to the address 2,0
using UDP to a desktop computer (at 192.168.7.1):

 molloyd@beaglebone:∼/tmp$ avconv ‐ac 1 ‐f alsa ‐i hw:2,0 ‐acodec
libmp3lame ‐ab 32k ‐ac 1 ‐re ‐f mp3 udp://192.168.7.1:1234

 avconv version 0.8.15-6:0.8.15-1, (c) 2000-2014 Libav developers
 built on Aug 9 2014 23:45:32 with gcc 4.6.3
 [alsa @ 0x40b60] Estimating duration from bitrate, may be inaccurate
 Input #0, alsa, from 'hw:2,0': . . .
 Output #0, mp3, to 'udp://192.168.7.1:1234': . . .
 size= 547kB time=139.99 bitrate= 32.0kbits/s

 A desktop player such as VLC can be used to open the network UDP stream.
For example, in VLC use Media ➢ Open Network Stream . . . and set the network
URL to be: “ udp://@:1234“ ”. Streaming audio from the BBB in this form has a 52%
CPU load in this instance.

N O T E Wireshark (www.wireshark.org) is a great tool for debugging network

connection and communications problems that might occur in audio/video streaming

and network socket programming (as in Chapters 10 and 11).

 Bluetooth A2DP Audio

 The use of a Bluetooth adapter is fi rst introduced in Chapter 9 for general‐
purpose serial communication. It is used again in Chapter 10 to connect to
the TI SensorTag, and in Chapter 11 to attach peripherals to the BBB. Here
again, Bluetooth can be used with the BBB—this time to communicate with
audio devices.

 One of the most common uses of the Bluetooth wireless communication
system is for the connection of smartphones to in‐car audio systems, or to
home entertainment centers. For this purpose, the Bluetooth Advanced Audio
Distribution Profi le (A2DP(() can be used to stream high‐quality stereo audio from P
a media source to a media sink. The source device (SRC) acts as the source of a
digital audio stream (e.g., Bluetooth headset, smartphone media player), which
is sent in a compressed format to a sink device (SNK) (e.g., Bluetooth headphones,K
stereo receiver, in‐car receiver).

 When connected to a USB Bluetooth adapter, the BBB can be confi gured to
act as an A2DP SRC or SNK. In this example, the BBB is confi gured as a SRC
that is connected to a Hi‐Fi system and Windows PC SNK. There are many
low‐cost A2DP audio receivers available that provide audio output on a 3.5 mm

 Chapter 12 ■ Images, Video, and Audio 497

stereo jack, which can be used to retrospectively add A2DP capability to Hi‐Fi
systems. However, the Sony Hi‐Fi system that is used as the test platform has
built‐in A2DP support.

N O T E It is recommended that you go through the process of connecting a smart-

phone to a Bluetooth A2DP SNK before attempting to connect the BBB. This will help

you to verify that a connection is possible and help you to become familiar with the

steps that are required to pair A2DP devices.

 After a Bluetooth adapter is attached to the BBB, the fi rst step is to install
the necessary packages, confi gure the BBB to support A2DP, and test that the
Bluetooth audio SNKs are visible:

 molloyd@beaglebone:∼$ sudo apt‐get update
 molloyd@beaglebone:∼$ sudo apt‐get install bluez‐utils bluez‐alsa
 molloyd@beaglebone:∼$ hcitool scan
 Scanning . . . 00:26:83:32:CF:0D DEREKMOLLOY-PC
 00:1D:BA:2E:BC:36 CMT-HX90BTR

 The BBB has detected the desktop PC and the Sony Hi‐Fi system. The BBB
must then be confi gured to have the following Bluetooth profi les enabled:

 molloyd@beaglebone:∼$ cd /etc/bluetooth/
 molloyd@beaglebone:/etc/bluetooth$ sudo nano audio.conf
 molloyd@beaglebone:/etc/bluetooth$ more audio.conf
 # Configuration file for the audio service
 [General]
 Enable=Source,Sink,Media,Socket . . .

 You can then connect to the SNKs using the following commands (you will
likely have to enter a code (e.g., 0000) on both devices in order to pair the devices
in the fi rst step):

 molloyd@beaglebone:∼$ sudo bluez‐simple‐agent hci0 00:1D:BA:2E:BC:36
 molloyd@beaglebone:∼$ sudo bluez‐test‐device trusted 00:1D:BA:2E:BC:36 yes

 Finally, a new fi le /etc/asound.conf must be created in order for ALSA to
work correctly (for the Hi‐Fi system in this example):

 molloyd@beaglebone:/etc$ sudo nano asound.conf
 molloyd@beaglebone:/etc$ more asound.conf
 pcm.bluetooth {
 type bluetooth
 device "00:1D:BA:2E:BC:36"
 profile "auto"
 }

498 Part II8 ■ Interfacing, Controlling, and Communicating

 Restart the Bluetooth service using systemctl :

 molloyd@beaglebone:/etc$ systemctl list‐units|grep bluetooth
 bluetooth.service loaded active running Bluetooth service
 bluetooth.target loaded active active Bluetooth
 molloyd@beaglebone:/etc$ sudo systemctl restart bluetooth.service

 You can then play a MP3 fi le to the Bluetooth SNK using the MPlayer utility
and the ALSA device that is confi gured in /etc/asound.conf . There are some
creative‐commons MP3 fi les in the Git repository that you can use:

∼/chp12/audio$ mplayer ‐ao alsa:device=bluetooth 320sample.mp3
 MPlayer svn r34540 (Debian)(C) 2000-2012 MPlayer Team . . .
 Playing 320sample.mp3. libavformat version 53.21.1 (external)
 Audio only file format detected . . .
 AUDIO: 44100 Hz, 2 ch, floatle, 320.1 kbit/11.34% . . .
 Starting playback. . . A: 103.0 (01:43.0) of 103.0 (01:43.0) 33.4%

 The audio plays correctly on the Sony Hi‐Fi, displaying the message shown
in Figure 12-6 (a). Playing audio in this way has a manageable load on the BBB
of 41% CPU and 1.7% of memory for the 44.1 kS/sec, 320 Kb/sec MP3 audio fi le.

 Figure 12-6: Bluetooth A2DP connections: (a) Sony Hi‐Fi; (b) Windows machine via
motherboard Bluetooth

 The same steps can be used to connect the BBB to a Windows computer
Bluetooth audio SNK. Be sure to enable the Audio Sink option on the Bluetooth
device by right‐clicking on the “beaglebone‐0” device and choosing Advanced
Operation ➢ Connect to stereo audio source device, which results in the dialog
settings shown in Figure 12-6 (b).

 You can play Internet radio stations using the same MPlayer tools described
earlier. For example, to stream the same Internet radio station to your Bluetooth
Hi‐Fi system, use the following:

∼$ mplayer ‐ao alsa:device=bluetooth http://178.18.137.246:80
 MPlayer svn r34540 (Debian), 2000-2012 MPlayer Team
 Playing http://178.18.137.246:80. . . . Bitrate: 320kbit/s
 ICY Info: StreamTitle='Radiohead - Weird Fishes';
 A: 654.2 (10:54.2) of -0.0 (unknown) 32.8% 46%

 Chapter 12 ■ Images, Video, and Audio 499

 This stream runs at 34% CPU and 1.7% memory usage on the BBB with excel-
lent sound quality.

N O T E Deserving mention is an additional Linux service called PulseAudio, a back-

ground process that reroutes all audio streams. It aims to support legacy devices, as

well as to provide support for network audio (e.g., for VNC). PulseAudio is complex and

should be avoided unless you have a specifi c need to use it on the BBB. It does provide

useful user‐interface tools, such as pavucontrol, and can be installed using the following:

 . . ./chp12/audio$ sudo apt‐get install pavucontrol

 PulseAudio can be confi gured as follows:

 molloyd@beaglebone:/etc/pulse$ sudo nano default.pa

 The service can be started and stopped using the following (note: no sudo):

 . . ./chp12/audio$ pulseaudio –kill
 . . ./chp12/audio$ pulseaudio –start

 PulseAudio provides support for Bluetooth devices, but the connections can intermit-

tently fail, requiring the Bluetooth service to be restarted:

 . . ./chp12/audio$ hcitool con
Connections:< ACL 00:1D:BA:2E:BC:36 handle 12 state 1 lm . . .
 . . ./chp12/audio$ sudo apt‐get install pulseaudio‐module‐bluetooth
 . . ./chp12/audio$ sudo pactl load‐module module‐bluetooth‐discover
 . . ./chp12/audio$ pactl load‐module module‐alsa‐sink device=bluetooth

 Text‐to‐Speech

 Once you have a working playback adapter connected to the BBB, you can
then utilize Linux tools and online services to perform some interesting audio
applications. One such application is text‐to‐speech—it is possible to generate
very high-quality speech output on the BBB using online and offl ine tools. Two
examples are described in this section: The fi rst “takes advantage” of the features
of Google’s online translator, and the second uses the Android text‐to‐speech
(TTS) engine.

 Online Text-to-Speech

 Google’s translation service provides very good quality text‐to‐speech output.
It can be called directly from a browser—for example, to generate an MP3
audio sample for the string “Hello from the BeagleBone Black,” you can con-
struct an URL of the following form (the space character is encoded as %20):

500 Part II0 ■ Interfacing, Controlling, and Communicating

http://translate.google.com/translate _ tts?tl=en&q=Hello%20from%20the%20

BeagleBone%20Black

 You can listen to the output at tiny.cc/ebb1209 . The audio can be adapted
to have a strong French accent (not translation) by changing the tl value—to
fr , for example (listen at r tiny.cc/ebb1210): https://translate.google.com/
translate _ tts?tl=fr&q=Hello%20from%20the%20BeagleBone%20Black

 It is possible to pass the output audio fi le to the MPlayer application using the
following command (which is present in chp12/speech/onlineSpeechTest.sh):

 . . ./chp12/speech$ mplayer ‐ao alsa:device=hw=5 "https://translate.google
.com/translate_tts?tl=en&q=Hello%20from%20the%20BeagleBone%20Black"

 The script can be adapted to accept command‐line arguments, as follows:

 . . ./chp12/speech$./speech.sh testing 1 2 3
 . . ./chp12/speech$ more speech.sh
 #!/bin/bash
 mplayer -ao alsa:device=hw=5
 "https://translate.google.com/translate_tts?tl=en&q=$*"

 Unfortunately, your BBB has to be continuously online for this script to work
correctly—it is also possible that Google could alter the online service interface
or its availability in the future.

 Offl ine Text-to-Speech

 You can use the Pico Android TTS engine for offl ine applications. The engine
can be installed and used offl ine as follows:

∼/$ sudo apt‐get install libttspico‐utils
 . . ./chp12/speech$ pico2wave ‐w picoTest.wav "Test of using the text to
speech Android engine on the BeagleBone Black"

 . . ./chp12/speech$ ls
 picoTest.wav
 . . ./chp12/speech$ mplayer ‐ao alsa:device=hw=5 picoTest.wav

 Or, on a single line:

 $ pico2wave ‐w test.wav "test" | mplayer ‐ao alsa:device=hw=5 test.wav

 The quality of the output is not as good as the online service, but it is still
quite impressive.

 A Bluetooth Speaking Clock and Temperature Sensor

 You can integrate the TTS engines into your own applications. For example,
Listings 12‐6 and 12‐7 demonstrate how it is possible to develop a speaking clock

 Chapter 12 ■ Images, Video, and Audio 501

that uses the online and offl ine TTS engines, respectively. In this example, the
scripts use the Bluetooth adapter to stream the output to the Bluetooth Hi‐Fi
system, but you can alter them to suit your specifi c confi guration.

 LISTING 12‐6: /exploringBB/chp12/speech/clock.sh

 #!/bin/bash
 NOW=$(date +"It is %M minutes past %l %p")
 echo $NOW
 mplayer -ao alsa:device=bluetooth "http://translate.google.com/
translate_tts?tl=en&q=$NOW"

 LISTING 12‐7: /exploringBB/chp12/speech/offl ineClock.sh

 #!/bin/bash
 NOW=$(date +"It is %M minutes past %l %p")
 echo $NOW
 pico2wave -w temporaryTime.wav "$NOW"
 lame temporaryTime.wav temporaryTime.mp3
 mplayer -ao alsa:device=bluetooth temporaryTime.mp3
 rm temporaryTime.*

 This code can be adapted to use the TMP36 temperature sensor that is described
at the beginning of Chapter 10 . The tmp36raw binary executable in the /chp10/
tmp36/ directory can be called from the scripts in Listing 12‐6 and 12‐7 to create
a speaking clock temperature service, as shown in Listing 12‐8 (remember to
load the BBB‐ADC cape!).

 LISTING 12‐8: /EXPLORINGBB/CHP12/SPEECH/CLOCKANDTEMP.SH

 #!/bin/bash
 TEMP=$(./tmp36raw)
 NOW=$(date +" It is %M minutes past %l %p and it is $TEMP degrees
Celsius")
 echo $NOW
 mplayer -ao alsa:device=bluetooth "http://translate.google.com/
translate_tts?tl =en&q=$NOW"

 Finally, it is also possible to install the CMU Sphinx Speech Recognition
Toolkit on the BBB. Open‐source speech recognition tools are notoriously dif-
fi cult to train when compared to commercial offerings such as Nuance’s Dragon
NaturallySpeaking. However, with some time investment, PocketSphinx can
be trained to provide good results. To install it on the BBB, you must manually
download and build two repositories: sphinxbase and pocketsphinx . You can

502 Part II ■ Interfacing, Controlling, and Communicating

use SourceForge (sourceforge.net) to fi nd the latest versions of both repositories.
Build them directly on the BBB using steps such as ./configure –enable‐fixed ,
followed by make , and sudo make install.

 Summary

 After completing this chapter, you should be able to do the following:

■ Capture image and video data on the BBB using USB webcams combined
with Linux Video4Linux2 drivers and APIs.

■ Use Video4Linux2 utilities to get information from and adjust the proper-
ties of video capture devices.

■ Stream video data to the Internet using Linux applications and UDP,
multicast, and RTP streams.

■ Use OpenCV to perform basic image processing on the BBB.

■ Use OpenCV to perform a computer vision face‐detection task.

■ Utilize the Boost C++ libraries on the BBB.

■ Play audio data on the BBB using HDMI audio and USB audio adapters.
The audio data can be raw waveform data or compressed MP3 data from
the BBB fi le system or from Internet radio streams.

■ Record audio data using USB audio adapters or webcams.

■ Stream audio data to the Internet using UDP.

■ Play audio to Bluetooth A2DP audio devices, such as Hi‐Fi systems.

■ Use text‐to‐speech (TTS) approaches to verbalize the text output of com-
mands that are executed on the BBB.

 Further Reading

 There are many links to websites and documents provided throughout this
chapter. Additional links and further information on the topics are provided
at www.exploringbeaglebone.com/chapter12/ and the following:

■ Video4Linux2 core documentation: tiny.cc/ebb1203

■ V4L2 API Specifi cation: tiny.cc/ebb1204

■ Computer Vision Cascaded Classifi cation: tiny.cc/ebb1207

■ CVonline: The Evolving, Distributed, Non‐Proprietary, On‐Line
Compendium of Computer Vision, at tiny.cc/ebb1211

■ The Boost C++ Libraries, Boris Schäling: tiny.cc/ebb1214

503

 In this chapter you are introduced to real‐time interfacing with the BeagleBone.
Linux is by default a nonpreemptive OS, which means that it has diffi culty
performing certain real‐time interfacing tasks, such as generating or sam-
pling bit patterns on GPIOs at high speeds. The BBB has two programmable
real‐time units (PRUs) that can be used for certain real‐time operations, and
these are the focus of this chapter, which describes input and output examples
that help explain the operation of the PRUs and their encompassing industrial
communication subsystem (PRU‐ICSS). Finally, the real‐time capabilities of
the BBB are demonstrated using two applications—the fi rst generates a cus-
tom waveform on a GPIO, and the second uses a low‐cost ultrasonic distance
sensor that requires precise timing in order to communicate the distance to
an obstacle.

 Equipment Required for This Chapter:

■ BeagleBone Black

■ LED, FET (e.g., BS270), push button, capacitors, and resistors

■ Oscilloscope (optional, but useful)

■ HC‐SR04 ultrasonic sensor and logic‐level translator board

 Further resources for this chapter are available at www.exploringbeaglebone
.com/chapter13/ .

 C H A P T E R

 13

 Real‐Time BeaagleBone

Interfacing terfacing

504 Part III4 ■ Advanced BeagleBone Systems

 Real‐Time BeagleBone

 The advantages of integrating the Linux OS with an embedded system are
described throughout this book. The quantity and quality of device drivers,
software packages, programming languages, and software APIs available for
the Linux platform is immense. However, certain features that you may take for
granted, on even low‐cost microcontrollers, may be absent—the most notable
of which is the capability to perform input/output operations in a time‐critical
manner. Systems are described as being real‐time if they can guarantee a valid
response within a specifi ed time frame (often of the order of ms/μs), regardless
of their system load.

 Real‐time systems are often used for mission‐critical applications. Hard real‐
time systems are used in applications for which a total systems failure could
result from missing a deadline (e.g., power steering, self‐balancing robots). Soft
real‐time systems are used in applications that require meeting deadlines. In such
applications, missing a deadline might result in a reduced quality of service,
but certainly not systems failure (e.g., live video transmission, mobile phone
communication). The mainline Linux kernel can typically meet soft real‐time
requirements (e.g., playing desktop audio), but it is not designed to meet hard
real‐time requirements.

 Real‐Time Kernels

 The use of the BBB GPIOs is described in detail in Chapter 6 , as are the switching
frequency limitations that are present when using sysfs. In particular, Figure 6‐3
illustrates the result of a shell script that is switching a GPIO output at approxi-
mately 2.2 kHz, in which it is clear that the output signal suffers from jitter (i.e., a
deviation from true periodicity of a periodic signal). When a more sophisticated
C/C++ program is used in Chapter 6 to increase the switching frequency, the
same jitter issue arises. This is largely because mainline Linux is a nonpreemp-
tive OS. For example, it could be time for a GPIO to be toggled in a time‐critical
manner, but the Linux process scheduler may already have determined that
the Apache web server should execute. Because Linux is a nonpreemptive OS,
Apache cannot be interrupted until it fi nishes its kernel service time. Therefore,
the toggling of the GPIO will be delayed and signal jitter arises.

Preemptive scheduling means that kernel scheduling is based on the priority
of the tasks to be executed. Therefore, if the GPIO toggle task is designated to
be of a higher priority than the Apache web server, then the Apache task will
be interrupted, even though its kernel service time has not expired. For hard
real‐time systems, the preemption period is typically on the order of microseconds
or lower. The latency of a task is the key measurement of the real‐time perfor-
mance of the system, and it is largely dependent on the tasks that are running
at equal or higher priorities on the same machine.

 Chapter 13 ■ Real‐Time BeagleBone Interfacing 505

 One way to implement preemptive scheduling on the BBB is to apply the
RT‐Preempt patch (aka PREEMPT_RT) to a Linux kernel build. This patch con-T

verts the mainline Linux kernel into a preemptive system (with the exception
of interrupt handling and certain regions that are guarded by spinlocks). To
apply the patch, you must rebuild the Linux kernel (see Chapter 7) and add
CONFIG_PREEMPT_RT_FULL=y to the build confi guration (see tiny.cc/ebb1301
for further details). When applied to the BBB, the RT‐Preempt patch typically
results in worst‐case latency times of single‐digit milliseconds when executing
C/C++ real‐time applications.

 Xenomai (www.xenomai.org(() provides a different type of solution. It supplements
mainline Linux with a real‐time co‐kernel, called Cobalt, which is responsible
for performing all time‐critical activities. The co‐kernel has higher priority than
Linux—it processes hardware interrupts and passes virtual interrupts to the
underlying Linux kernel. The Machinekit (tiny.cc/ebb1302) distribution is a
good way to get started with Xenomai on the BBB, as it is based on the offi cial
Debian release for the BBB. The distribution is targeted specifi cally at computer
numerical control (CNC) and 3D printing applications.

 Note also that the BBB can be used without mainline Linux. For example, the
following platforms can be downloaded without cost:

■ StarterWare for ARM‐based TI Sitara processors: This is a no‐OS plat-
form for devices such as the BBB. It provides a device abstraction layer
(e.g., for UART, SPI, I2 C, LCD, Ethernet) that can be programmed using
open‐source tools and C‐based library APIs to build applications that
can perform peripheral confi guration and I/O. See tiny.cc/ebb1303 for
further details.

■ QNX Neutrino RTOS on OMAP and Sitara: This is a full‐featured real‐
time OS (RTOS) that is available with BBB reference designs for in‐car,
digital instrument, and smart home displays. See tiny.cc/ebb1304 and
tiny.cc/ebb1305 .

 While suitable for hard real‐time applications, both of these commercial offer-
ings are not general‐purpose OSs and require signifi cant expertise.

 Real‐Time Hardware Solutions

 In Chapter 8 , a communications framework is described that can be used to
offl oad real‐time processing to low‐cost microcontrollers, such as the Arduino,
Atmel AVR, and TI Stellaris platforms. The framework uses a UART device for
communication, but the SPI or I2 C buses could also be used. Using this frame-
work, a set of microcontrollers could be connected to the BBB and used to take
responsibility for hard real‐time processing and interfacing. The BBB could
then be used for centralized high‐level tasks, such as GUI display, network
communication, data aggregation/storage, and algorithmic tuning.

506 Part III6 ■ Advanced BeagleBone Systems

 Sophisticated capes are available for the BBB that can be used for real‐time
processing, the most notable being the Valent F(x) LOGi‐Bone FPGA development
board,1 which is illustrated in Chapter 1 (see Figure 1‐10). Hardware description
languages (HDLs), such as Verilog or VHDL, can be used in programming fi eld‐
programmable gate arrays (FPGAs(() to create high‐speed logic circuits. FPGAs are s
particularly useful for parallel processing, as they can perform many thousands
of operations in a single clock cycle. Unfortunately, not all tasks are suitable for a
parallel implementation and there is a steep learning curve in developing FPGA
software. The LOGi‐Bone cape provides a good introduction to FPGA develop-
ment, as the associated applications are open source and a growing community
of users is working on this platform. The guide at tiny.cc/ebb1306 provides a
detailed overview of the steps required to interface the cape to the BBB.

 The BBB’s AM335x processor has two programmable real‐time units (PRUs)
that can be used for certain real‐time interfacing operations, and these are the
focus of this chapter. This is an advanced topic, and it is not possible to cover
all the functionality available on the PRUs within a single chapter. Therefore,
the aim of this chapter is to impart an understanding of the core principles,
enabling you to get started by presenting some practical examples that you
can use as the basis of your own implementations. In addition, the underlying
technology and software is undergoing constant development, so please check
the chapter web page for updates.

N O T E The PRU‐ICSS is not currently supported by Texas Instruments; rather, it is a

“community supported” initiative.

 The PRU‐ICSS Architecture

 The Programmable Real‐Time Unit and Industrial Communication Subsystem
(PRU‐ICSS) on the BBB’s AM335x processor contains two 32‐bit 200 MHz RISC
cores, called PRUs. These PRUs have their own local memory allocation, but
they can also use the BBB P8/P9 header pins and trigger interrupts and share
memory with the Linux host device.

 The PRU‐ICSS is a valuable addition to a general embedded Linux platform,
as it can provide support for interfacing applications that have hard real‐time
constraints. It is important to note that the PRU‐ICSS is not a hardware accel-
erator—it cannot be used to improve the general performance of code that is
executing on the Linux host device. Rather, it can be used to manipulate inputs,
outputs, and memory‐mapped data structures to implement custom commu-
nication interfaces (e.g., simple I/O manipulation, bit‐banging, SPI, UARTs).

1 Uses a Xilinx Spartan 6 LX9 TQFP‐144 FPGA with 9,152 logic cells, 11,440 CLB flip‐flops,
16 DSP48A1 slices, and 576Kb RAM. The board also contains a 256Mb SDRAM and
Arduino compatible headers, and is accessed using GPMC, SPI, or I2 C from the BBB.

 Chapter 13 ■ Real‐Time BeagleBone Interfacing 507

For example, in this chapter the PRU‐ICSS is used to interface to an ultrasonic
distance sensor, by measuring PWM signal properties.

 The PRU‐ICSS architecture is outlined in Figure 13-1 . There are two indepen-
dent 32‐bit RISC PRU cores (PRU0 and PRU1), each with 8 KB of program memory
and 8 KB of data memory. The program memory stores the instructions to be
executed by each PRU, and the data memory is typically used to store individual
data values or data arrays that are manipulated by the program instructions.
The PRU0 uses Data RAM0 and the PRU1 uses Data RAM1; however, each PRU
can access the data memory of the other PRU, along with a separate 12 KB of
general‐purpose shared memory.

 Figure 13-1: The PRU‐ICSS architecture

 Customized for the BBB from an image that is courtesy of Texas Instruments

 The PRU‐ICSS subsystem that is available on the BBB is the second-generation
PRUSSv2, but not all of its features are available on the BBB platform. In addition
to the PRU cores and memory blocks, the most important blocks are illustrated
in Figure 13-1 , including the following:

■ Enhanced GPIO (EGP): The PRU subsystem has a specifi c set of fast
GPIOs, many of which are accessible via the P8/P9 headers.

■ OCP master port: Facilitates access to external Linux host memory. For
example, this block also allows the PRUs to manipulate the state of GPIOs
that are used in Chapter 6 .

■ Multiplier with optional accumulation (MAC): This block can be used
to multiply two 32‐bit operands and provide a 64‐bit result.

■ Interrupt controller (INTC): An interrupt controller can be used to notify
each PRU that an event has occurred or to notify the host device of events
(e.g., that the PRU program has run to completion).

■ Scratch pad (SPAD): This provides three banks of 30 × 32‐bit registers
that are shared between the two PRU cores.

508 Part III8 ■ Advanced BeagleBone Systems

■ UART0: A UART device with a dedicated 192 MHz clock is available on
the P8/P9 headers.

 The Switched Central Resource (SCR) connects the PRUs to the other resources
inside the PRU‐ICSS. PRUs have access to all the resources on the AM335x (e.g.,
regular GPIOs) using the Interface/OCP master port. Linux host memory can
also be used by the PRUs; however, its use is several times slower than using
PRU memory, as memory access needs to be routed external to the PRU‐ICSS,
and back in via the PRU‐ICSS Interface/OCP slave port.

 Important Documents

 The most important documents that are available to describe the PRU‐ICSS are
linked here and at the chapter web page:

■ The AM335x PRU‐ICSS Reference Guide: This document is the main
reference for the PRU‐ICSS hardware (289 pages): tiny.cc/ebb1307 .

■ The Texas Instruments PRU Wiki: tiny.cc/ebb1308

■ The PRU Linux Application Loader API Guide: tiny.cc/ebb1309

■ The PRU Debugger User Guide: tiny.cc/ebb1310

 The descriptions in this chapter refer to the preceding documents repeatedly,
so it is useful to have them to hand.

 Getting Started with the PRU‐ICSS

 A “hello world” LED fl ashing application is developed in this section, so that
you can quickly get started with the PRU‐ICSS. The subsequent sections pro-
vide more detailed instruction. Several steps are required, so it is useful to map
them as shown in Figure 13-2 . As illustrated, once a custom device tree overlay
is created, a Linux host program (.c) and a PRU program (. c p) must be written.p

The role of the Linux host program is to transfer the PRU program binary (.bin)n
to the PRU‐ICSS and then to act as the communications bridge between the PRU
and the Linux host machine. These steps are employed in this section to deploy
the “hello world” example.

 Figure 13-2: Summary of the steps involved in deploying a PRU‐ICSS program

 Chapter 13 ■ Real‐Time BeagleBone Interfacing 509

 PRU‐ICSS Enhanced GPIOs

 Each PRU has a set of GPIOs that have enhanced functionality, such as parallel‐to‐
serial conversion. Their internal signal names have the following naming conven-
tion: pr1_pruX _pru_r3Y _ Z , where X is the PRU number (0 or 1), Y defi nes whether Y

the pin is an input (1) or an output (0), and Z is the pin number (0–16). For example,
pr1_pru0_pru_r30_5 is output 5 for PRU0, and pr1_pru0_pru_r31_3 is input 3 for PRU0.

 In Chapter 6 , Figures 6‐6 and 6‐7 list the enhanced GPIO pins that are avail-
able on the P8 and P9 headers. It is clear from these fi gures that the pin mux
must be confi gured in Mode5 or Mode6 using device tree overlays in order to
utilize these inputs/outputs. Not all of the pins are exported to the P8/P9 head-
ers—for example, no PRU0 8–13 or PRU1 14–15 (inclusive) pins are available,
and PRU0/1 16 is only an input.

 A circuit is illustrated in Figure 13-3 that uses two enhanced PRU pins. This
circuit is used for many of the examples in this chapter. To use the enhanced
GPIOs, a device tree overlay must be created and loaded.

 Figure 13-3: An example BBB PRU circuit

 PRU‐ICSS Device Tree Overlay

 A device tree overlay is provided in Listing 13‐1 that can be used for all of the
examples in this chapter. It enables two regular GPIOs and two enhanced PRU
GPIOs, as follows:

■ P9_11: gpio0[30] output ($PINS 28, mode 7, pull‐down) 0x07

■ P9_13: gpio0[31] input ($PINS 29, mode 7, pull‐down) 0x27

■ P9_27: pr1_pru0_pru_r30_5 output ($PINS 105, mode 5, pull‐down) 0x05

■ P9_28: pr1_pru0_pru_r31_3 input ($PINS 103, mode 6, pull‐down) 0x26

510 Part III0 ■ Advanced BeagleBone Systems

 HDMI must be disabled for this overlay to load correctly, as it confl icts with
the enhanced GPIO pins above (see Chapter 6). You can verify the address set-
tings and pin mux settings in this overlay using Figure 6‐7.

 LISTING 13‐1: /exploringBB/chp13/overlay/EBB‐PRU‐Example.dts

 /dts-v1/;

 /plugin/;

 / {

 compatible = "ti,beaglebone", "ti,beaglebone-black";

 part-number = "EBB-PRU-Example";

 version = "00A0";

 /* This overlay uses the following resources */

 exclusive-use = "P9.11", "P9.13", "P9.27", "P9.28", "pru0";

 gpio_pins: pinmux_gpio_pins { // The GPIO pins

 pinctrl-single,pins = <

 0x070 0x07 // P9_11 MODE7 GPIO output pull‐down

 0x074 0x27 // P9_13 MODE7 GPIO input pull‐down

 >;

 };

 pru_pru_pins: pinmux_pru_pru_pins { // The PRU pin modes

 pinctrl-single,pins = <

 0x1a4 0x05 // P9_27 pr1_pru0_pru_r30_5, Mode5 output pull‐down

 0x19c 0x26 // P9_28 pr1_pru0_pru_r31_3, Mode6 input pull‐down

 >;

 };

 };

 };

 fragment@1 { // Enable the PRUSS

 target = <&pruss>;

 __overlay__ {

 status = "okay";

 pinctrl-names = "default";

 pinctrl-0 = <&pru_pru_pins>;

 };

 };

 fragment@2 { // Enable the GPIOs

 target = <&ocp>;

 __overlay__ {

 gpio_helper {

 compatible = "gpio-of-helper";

 status = "okay";

 pinctrl-names = "default";

 pinctrl-0 = <&gpio_pins>;

 };

 };

 };

 };

 Chapter 13 ■ Real‐Time BeagleBone Interfacing 511

 This overlay can then be built and deployed using the following steps:

 molloyd@beaglebone:~/exploringBB/chp13/overlay$ ls
 EBB-PRU-Example.dts build
 . . ./chp13/overlay$./build
 Compiling the overlay from .dts to .dtbo
 . . ./chp13/overlay$ ls
 EBB-PRU-Example-00A0.dtbo EBB-PRU-Example.dts build
 . . ./chp13/overlay$ sudo cp EBB‐PRU‐Example‐00A0.dtbo /lib/firmware
 . . ./chp13/overlay$ sudo sh ‐c "echo EBB‐PRU‐Example > $SLOTS"
 . . ./chp13/overlay$ cat $SLOTS
 8: ff:P-O-L Override Board Name,00A0,Override Manuf,EBB-PRU-Example

 The overlay must be loaded before any of the following examples can be
executed. You can use dmesg to check for load issues, and you can catenate
$PINS to verify the PRU GPIO pin settings—for example:

 molloyd@beaglebone:/$ sudo cat $PINS|grep '103\|105'
 pin 103 (44e1099c) 00000026 pinctrl-single
 pin 105 (44e109a4) 00000005 pinctrl-single

 Importantly, if you type lsmod you should now see that the d uio_pruss module
has loaded (if not, use modprobe uio_pruss):s

 ~/exploringBB/chp13/overlay$ lsmod
 Module Size Used by
 uio_pruss 4066 0

 The PRU‐ICSS Package

 The BBB Debian image has pre‐installed support for using the PRU‐ICSS. If
you are using a different distribution or need to upgrade the installation, then
please see the note on manually building the PRU Package.

 The PRU‐ICSS Package includes the PRU Linux Application Loader API, whichI
is used in this example to load a PRU program into the PRU‐ICSS. It can also
be used to communicate between the PRUs and the Linux user space. You can
check whether the PRU Linux Application Loader API is installed using the
following:

 molloyd@beaglebone:/usr/include$ ls pru*
 pruss_intc_mapping.h prussdrv.h
 molloyd@beaglebone:/usr/lib$ ls libpru*
 libprussdrv.a libprussdrv.so libprussdrvd.a libprussdrvd.so

 The PRU‐ICSS Package includes the CLI PRU Assembler , which is used to build rr
binary images that can be executed by the PRUs. The source fi le programs (. p)p
are written in assembly language and must be compiled to little‐endian binary

512 Part III ■ Advanced BeagleBone Systems

fi les to be executed on the PRUs. The PRU Assembler is also installed by default
on the BBB Debian distribution:

 molloyd@beaglebone:~$ pasm
 PRU Assembler Version 0.84
 Copyright (C) 2005-2013 by Texas Instruments Inc.
 Usage:pasm[-V#EBbcmLldz][-Idir][-Dname=value][-Cname]InFile[OutFile] . . .

 MANUAL AM335X PRU‐ICSS PACK AGE BUILD INSTRUCTIONS

 To install or upgrade the AM335x PRU‐ICSS Package on your BBB you can use the fol-

lowing steps:

 ~$ git clone https://github.com/beagleboard/am335x_pru_package
 Cloning into 'am335x_pru_package'
 molloyd@beaglebone:~$ cd am335x_pru_package/
 ~/am335x_pru_package$ ls
 Documentation README.txt am335xPruReferenceGuide.pdf
 Makefile am335xPruPackage_1_2_Manifest.pdf pru_sw
 ~/am335x_pru_package$ cd pru_sw/app_loader/interface/
 ~/am335x_pru_package/pru_sw/app_loader/interface$ make CROSS_COMPILE=""

 This will create the PRU libraries. The header fi les are already present in the include

directory:

 molloyd@beaglebone:~/am335x_pru_package/pru_sw/app_loader/lib$ ls
 libprussdrv.a libprussdrv.so libprussdrvd.a libprussdrvd.so
 molloyd@beaglebone:~/am335x_pru_package/pru_sw/app_loader/include$ ls
 pruss_intc_mapping.h prussdrv.h

 Finally, the PRU Assembler must be built using the following steps:

 ~/am335x_pru_package/pru_sw/utils/pasm_source$./linuxbuild
 ~/am335x_pru_package/pru_sw/utils/pasm_source$ cd ..
 ~/am335x_pru_package/pru_sw/utils$ ls
 LICENCE.txt pasm pasm_source
 ~/am335x_pru_package/pru_sw/utils$./pasm
 PRU Assembler Version 0.86
 Copyright (C) 2005-2013 by Texas Instruments Inc.

 The libraries, include fi les, and assembler can be copied to their respective BBB

directories: /usr/lib , /usr/include , and /usr/bin .

 A First PRU Program

 The fi rst PRU program is designed to fl ash the LED that is connected to pr1_
pru0_pru_r30_5 until a button that is connected to pr1_ pru0_pru_r31_3 is

 Chapter 13 ■ Real‐Time BeagleBone Interfacing 513

pressed (refer to Figure 13-3). The code for the PRU program is provided in
Listing 13‐2.

 LISTING 13‐2: /exploringBB/chp13/ledButton/ledButton.p

 // PRU-ICSS program to flash a LED on P9_27 (pru0_pru_r30_5) until a button

 // that is connected to P9_28 (pru0_pru_r31_3 is pressed.

 .origin 0 // start of program in PRU memory

 .entrypoint START // program entry point (for a debugger)

 #define INS_PER_US 200 // 5ns per instruction

 #define INS_PER_DELAY_LOOP 2 // two instructions per delay loop

 // set up a 50ms delay

 #define DELAY 50 * 1000 * (INS_PER_US / INS_PER_DELAY_LOOP)

 #define PRU0_R31_VEC_VALID 32 // allows notification of program completion

 #define PRU_EVTOUT_0 3 // the event number that is sent back

 START:

 SET r30.t5 // turn on the output pin (LED on)

 MOV r0, DELAY // store the length of the delay in REG0

 DELAYON:

 SUB r0, r0, 1 // Decrement REG0 by 1

 QBNE DELAYON, r0, 0 // Loop to DELAYON, unless REG0=0

 LEDOFF:

 CLR r30.t5 // clear the output bin (LED off)

 MOV r0, DELAY // Reset REG0 to the length of the delay

 DELAYOFF:

 SUB r0, r0, 1 // decrement REG0 by 1

 QBNE DELAYOFF, r0, 0 // Loop to DELAYOFF, unless REG0=0

 QBBC START, r31.t3 // is the button pressed? If not, loop

 END: // notify the calling app that finished

 MOV r31.b0, PRU0_R31_VEC_VALID | PRU_EVTOUT_0

 HALT // halt the pru program

 Details about the available assembly language instructions are provided later
in this chapter, but the important instructions that are used in Listing 13‐2 are
as follows:

■ SET r30.t5 : Sets bit 5 on register 30 to be high. REG30 is used to set the
PRU0 GPIO pins high. Bit 5 specifi cally controls the pr1_pru0_pru_r30_5
pin output.

■ MOV r0, DELAY : Stores the delay value (i.e., 5,000,000) in the register REG0.
Registers are used here, just as variables are used in C. Assembly opera-
tions are performed on registers.

■ DELAYON : A user‐defi ned label to which the code can branch

■ SUB r0, r0, 1 : Subtracts 1 from REG0 and stores the result in REG0. It
is essentially the same as the code REG0 = REG0 ‐ 1 .

514 Part III4 ■ Advanced BeagleBone Systems

■ QBNE DELAYON, r0, 0 : Performs a quick branch if REG0 is not equal to
0. This creates a loop that loops these two instructions 5,000,000 times
(taking exactly 50 ms!).

■ CLR r30.t5 : Clears bit 5 on register 30, setting the output low and turn-
ing the LED off

■ QBBC START, r31.t3 : Does a quick branch to START if the r31.t3 bit is
clear (i.e., 0). REG31 is the input register that is used to read the state of
the input— t3 is bit 3, which is connected to the pr1_pru0_pru_r31_3 pin.
As the button input pin is confi gured in the overlay to have a pull‐down
resistor enabled, it will return 0 when it is not pressed and 1 when it is
pressed. If the button is not pressed, then the program loops forever,
continually fl ashing the LED. When the button is fi rst found to be in the
pressed state at this point during program execution, then the program
continues to the next line.

■ The next instruction is discussed shortly. The instruction generates an inter-
rupt that is sent to the host program, notifying it that the PRU program
is ending. The program then ends with the call to HALT . T

 This program can then be assembled using a call to the pasm assembler,
which will identify syntactical errors. It should be called with the ‐b option,
which results in the generation of a little‐endian binary fi le:

 molloyd@beaglebone:~/exploringBB/chp13/ledButton$ pasm ‐b ledButton.p
 PRU Assembler Version 0.84
 Copyright (C) 2005-2013 by Texas Instruments Inc.
 Pass 2 : 0 Error(s), 0 Warning(s)
 Writing Code Image of 13 word(s)

 This results in a fi le ledButton.bin in the same directory. The fi le is 52 bytes
in size (13 words), which will easily fi t within the 8 KB PRU program memory.
The next step is to write a Linux host program that is used to place the little‐
endian binary program into PRU instruction memory.

N O T E Remember that using nano ‐c ledButton.p displays line numbers,

which is helpful in locating errors, as pasm identifi es errors by line number.

 Listing 13‐3 provides the source code for a C host program that executes in
Linux user space and uses the PRU Linux Application Loader API. It transfers
the PRU program binary (ledButton.bin) to the PRU, executes it, and awaits a n

response (i.e., when the button is pressed). The code is described in the comments,

 Chapter 13 ■ Real‐Time BeagleBone Interfacing 515

and further details about the functions used are provided in the PRU Linux
Application Loader API Guide. e

 LISTING 13‐3: /exploringBB/chp13/ledButton/ledButton.c

 #include <stdio.h>

 #include <prussdrv.h>

 #include <pruss_intc_mapping.h>

 #define PRU_NUM 0 // using PRU0 for these examples

 void main (void){

 // Initialize structure used by prussdrv_pruintc_intc

 // PRUSS_INTC_INITDATA is found in pruss_intc_mapping.h

 tpruss_intc_initdata pruss_intc_initdata = PRUSS_INTC_INITDATA;

 // Allocate and initialize memory

 prussdrv_init ();

 prussdrv_open (PRU_EVTOUT_0);

 // Map PRU's interrupts

 prussdrv_pruintc_init(&pruss_intc_initdata);

 // Load and execute the PRU program on the PRU

 prussdrv_exec_program (PRU_NUM, "./ledButton.bin ");

 // Wait for event completion from PRU, returns PRU_EVTOUT_0 number

 int n = prussdrv_pru_wait_event (PRU_EVTOUT_0);

 printf("EBB PRU program completed, event number %d.\n", n);

 // Disable PRU and close memory mappings

 prussdrv_pru_disable(PRU_NUM);

 prussdrv_exit ();

 }

 This program can be built and executed using the following commands:

 . . ./chp13/ledButton$ gcc ledButton.c ‐o ledButton ‐lpthread ‐lprussdrv
 . . ./chp13/ledButton$ sudo ./ledButton
 EBB PRU program completed, event number 1.
 . . ./chp13/ledButton$ sudo ./ledButton
 EBB PRU program completed, event number 2.

 Each time that the program is executed, the LED will fl ash at 10 Hz until
the button is pressed. When the button is pressed, the event number will
be displayed—then the event number will increment by one each time the
program is run, until power is cycled, whereupon it will reset to 0. This
program must be executed with superuser permissions, or it will cause a
segmentation fault.

 One very impressive feature of this application is the regularity of the output
signal, which can be observed when the circuit is connected to an oscilloscope.
Figure 13-4 illustrates the output and the frequency measurements, and it is
clear from the measurements that the signal does not suffer from the jitter

516 Part III6 ■ Advanced BeagleBone Systems

issues that affect a similar circuit in Chapter 6 . Also, the program is running
with negligible overhead (0.2% CPU, 0.3% MEM):

 ~/exploringBB/chp13/ledButton$ ps aux|grep ledButton
 root 9966 0.2 0.3 3512 1548 pts/1 S+ 14:30 0:00 sudo ./ledButton

 Figure 13-4: The PRU example output

 The PRU‐ICSS in Detail

 It is useful to have a working example in place, but some features of the PRU‐
ICSS must be covered in more detail, to ensure that you can write your own
applications that build on the preceding example.

 Registers

 In the last example, one register (REG0) is used as the memory location in which
to store and decrement the time delay. Registers provide the fastest way to access
data—assembly instructions are applied to registers and they complete in a
single clock cycle. However, each PRU core has 32 registers (0–31). Registers
REG1 to REG29 are general‐purpose registers, whereas REG30 and REG31
are special‐purpose registers, and REG0 is used for indexing (or as a general‐
purpose register). It should be noted that 30 general‐purpose registers is a gener-
ous number for a microcontroller, as they can be reused repeatedly. For example,
in the previous PRU program, both delays are performed using a single register.

 Register values are 32‐bit values that can be accessed using a suffi x notation,
which is illustrated in Figure 13-5 . In Listing 13‐2, shown earlier, bit 5 of REG30
is accessed using r30.t5 . There are three suffi xes:

■ word .wn (where n is 0 . . . 2)

■ byte .bn (where n is 0 . . . 3)

■ bit .tn (where n is 0 . . . 31)

 It is important to note that there are three word indices—w1 is offset by
eight bits and therefore overlaps half the contents of w0 and w2 . Figure 13-5 also

 Chapter 13 ■ Real‐Time BeagleBone Interfacing 517

provides some usages—for example, r2.w1.b1 requests byte 1 of word 1 , which
is eight bits in length (i.e., bits 16 to 23 of r2). This is equivalent to a request for
r2.b2 (eight bits), but it is not equivalent to r2.w2 , which has the same starting
address but is 16 bits in length. Examples of illegal register calls include r2.w2.b2 ,
r2.t4.b1, r2.w1.t16 , and r2.b0.b0 .

 Figure 13-5: PRU register bit field notation

 REG31 is called the PRU Event/Status Register (r31). It is a particularly complex
register, which behaves differently depending on whether you are writing to it
or reading from it. When writing to REG31, it provides a mechanism for sending
output events to the Interrupt Controller (INTC). By writing an event number
(0 to 31) to the fi ve LSBs (PRU_VEC[4:0]) and setting bit 5 (PRU_VEC_VALID) high, anD

output event can be sent to the Linux host. The second‐last line of Listing 13‐2
does exactly that. The line is written as follows:

 MOV R31.b0, PRU0_R31_VEC_VALID | PRU_EVTOUT_0

 It can be rewritten as MOV R31.b0, 32|3 , or MOV b31.b0, 35 . Essentially, it means
“store the number 35 10 in the least‐signifi cant byte of REG31.” This sets bit 5 high
(i.e., 32 10) and passes the value of 3 10 , which is used to identify PRU_EVTOUT_0 to
the Linux host C program. This notifi es the Linux host program that the PRU
program has almost run to completion.

 When reading from REG31, it provides the state of the enhanced GPIO inputs.
For example, in Listing 13‐2, the line QBBC START, r31.t3 reads bit 3 from REG31
to determine whether the button is in a pressed state. Essentially, it reads the
state of the GPIO that is connected to bit 3.

 REG30 is used by the PRU to set enhanced GPIO outputs. For example, in
Listing 13‐2, the line SET r30.t5 is used to set bit 5 of REG30 high. In turn, this
results in the associated GPIO output switching the LED on.

 Local and Global Memory

 The PRUs have general‐purpose local memory that can be used by PRU pro-
grams to store and retrieve data. Because this local PRU memory is mapped
to a global address space on the Linux host, it can also be used to share data

518 Part III8 ■ Advanced BeagleBone Systems

between PRU programs and programs running on the Linux host. Figure 13-6
illustrates the memory mappings.

 Figure 13-6: The PRU‐ICSS memory address maps

 Image created from data that is courtesy of Texas Instruments

 It is important to note that there is a slight difference between the PRU memory
spaces. PRU0 accesses its primary memory (Data RAM0) at address 0x00000000,
and PRU1 also accesses its primary memory (Data RAM1) at address 0x00000000.
However, each PRU can also access the data RAM of the other PRU at address
0x00002000. In addition, 12 KB of shared memory can be used by both PRUs at
the local address 0x00010000. The PRU cores can also use the global memory
map, but there is latency as access is routed through the OCP slave port (refer
to Figure 13-1).

 You can fi nd the actual address to which the offset applies using sysfs. For
example, the PRU memory is mapped to the following locations on the current
BBB Debian image:

 molloyd@beaglebone:~$ cd /sys/class/uio/uio0/maps/map0/
 molloyd@beaglebone:/sys/class/uio/uio0/maps/map0$ cat addr
0x4a300000

 Here is a segment of code that sends values to different PRU memory spaces
from Linux user space using the PRU Application Loader API (the full example
is in chp13/memExample/memExample.c):c

 // Write a single word into PRU0 Data RAM0 (i.e., 4 bytes, offset 0)
 unsigned int pru0 = 0xFEEDBBB0 ;
 prussdrv_pru_write_memory(PRUSS0_PRU0_DATARAM , 0, &pru0, 4); M
 unsigned int pru1 = 0xFEEDBBB1 ;
 prussdrv_pru_write_memory(PRUSS0_PRU1_DATARAM , 0, &pru1, 4); M
 unsigned int pruins0 = 0xFEEDBBB2 ;
 prussdrv_pru_write_memory(PRUSS0_PRU0_IRAM , 0, &pruins0, 4); M
 unsigned int pruins1 = 0xFEEDBBB3 ;

 Chapter 13 ■ Real‐Time BeagleBone Interfacing 519

 prussdrv_pru_write_memory(PRUSS0_PRU1_IRAM , 0, &pruins1, 4); M
 // Load and execute the PRU program on the PRU
 prussdrv_exec_program (PRU_NUM, "./memExample.bin");

 Once this code is executed, you can access the memory addresses from Linux
user space using the devmem2 tool and the address map in Figure 13-6 , which
results in the following:

 ~/exploringBB/chp13/devmem2$ sudo ./devmem2 0x4a300000
 Memory mapped at address 0xb6ff7000.
 Value at address 0x4A300000 (0xb6ff7000): 0xFEEDBBB0
 ~/exploringBB/chp13/devmem2$ sudo ./devmem2 0x4a302000
 Value at address 0x4A302000 (0xb6f15000): 0xFEEDBBB1
 ~/exploringBB/chp13/devmem2$ sudo ./devmem2 0x4a334000
 Value at address 0x4A334000 (0xb6fad000): 0x0
 ~/exploringBB/chp13/devmem2$ sudo ./devmem2 0x4a338000
 Value at address 0x4A338000 (0xb6fc1000): 0xFEEDBBB3

 The preceding values confi rm that the mappings are correct and that devmem2
is very useful for verifying that the values in memory are as expected (remember
that it can also write to memory). The value at the third address (PRU0 instruc-
tion RAM) is 0x0, rather than 0xFEEDBBB2. This is because the last line of the
preceding segment of C code writes the PRU program (memExample.bin(() to the n

PRU0 Instruction RAM. As expected, this overwrites the 0xFEEDBBB2 value
that was previously set.

 The PRUs also have a constants table , which contains a list of commonly usede
addresses that are often used in memory load and store operations. This reduces
the time required to load memory pointers into registers. Most of the constants
are fi xed, but some are programmable by using PRU control registers. The
constants table is utilized later, so that the PRU can access regular GPIOs that
are outside the PRU‐ICSS.

 PRU Assembly Instruction Set

 The PRU‐ICSS has a relatively small RISC instruction set architecture (ISA), withA
approximately 45 instructions that can be categorized as arithmetic opera-
tions, logical operations, register load and store, and program fl ow control.
A summary description of each of the instructions is provided in Figure 13-7 .
The full description of each instruction is available in the AM335x PRU‐ICSS
Reference Guide. e

 Instructions consist of an operation code (opcode) and a variable number of ee
operands, where the third operand can often be a register or an immediate value (a
simple number or an expression that evaluates to a constant value). For example:

 ADD REG1, REG2, OP(255)

 Figure 13-7: Summary of the PRU instruction set

 Image created from information that is courtesy of Texas Instruments

520

 Chapter 13 ■ Real‐Time BeagleBone Interfacing 521

 where ADD is a mnemonic that evaluates to an opcode (e.g., 0x01 for ADD),2

REG1 is the target register, REG2 is a source register, and OP(255) can be another
register fi eld or an immediate value—it must be, or evaluate to, the range of 010
to 25510 for the ADD operation. Here are some example usages:

 MOV r1, 0x25 // set r1 = 0x25 = 37 (dec)
 MOV r2, 0b100 // set r2 = 100 (binary) = 4 (dec)
 ADD r1, r1, 5 // set r1 = r1 + 5 = 42 (dec)
 ADD r2, r2, 1<<4 // set r2 = r2 + 10000 (bin) = 20 (dec)
 ADD r1, r2, r1.w0 // set r1 = r2 + r1.w0 = 20 + 42 = 62 (dec)
 MOV r0, 0x00002000 // place PRU1 data RAM1 base address in r0
 SBBO r1, r0, 4, 4 // write r1 to the address that is stored in r0
 // offset = 4 bytes, size of data = 4 bytes

 If this example is run on PRU0, the value of r1 (62 10 = 0x3e) is written to the PRU1
Data RAM1, which is at address 0x0000 2000 in the PRU1 memory space, and is
at 0x4A30 2000 in Linux host memory space. The value is written at an offset of
four bytes, so it appears at the address 0x4A30 2004 in the Linux host memory
space. This code segment is at the end of the memExample.p code example, so it
does not overwrite the 0xFEEDBBB1 value when this offset of four bytes is used:

 . . ./chp13/memExample$ sudo ../devmem2/devmem2 0x4a302000
 Value at address 0x4A302000 (0xb6f15000): 0xFEEDBBB1
 . . ./chp13/memExample$ sudo ../devmem2/devmem2 0x4A302004
 Value at address 0x4A302004 (0xb6f46004): 0x3E

 It is useful to note that instructions can be grouped together using macros.
For example, a macro is of the following form:

 .macro LED_ON
 . . . // place instructions here
 .endm

 The macro can then be called using LED_ON in place of a mnemonic.

 Applications of the PRU‐ICSS

 In this section, several example applications are developed to test the perfor-
mance of the PRU‐ICSS and to illustrate how you can build Linux host applica-
tions that interact with it. Each application introduces additional features of the
PRU‐ICSS, so it is important that you read each one, even if you do not intend
to build a particular type of application.

2 You can use pasm ‐l ‐b memExample.p to see the listing file for the source code,
which contains the generated opcodes (see /chp13/memExample/memExample.lst).

522 Part III ■ Advanced BeagleBone Systems

 PRU‐ICSS Performance Tests

 In Chapter 6 , a test is described that evaluates the performance of a Linux user
space C/C++ application that lights an LED when a button is pressed. A similar
test is presented here that uses the PRU‐ICSS. The project is available in the
/chp13/buttonTest directory, and the PRU code is provided in Listing 13‐4. A
second test is also presented here that fl ashes the LED at an approximate fre-
quency of 10 MHz (see /chp13/signalTest), which is based on the code shown t

earlier in Listing 13‐2.
 Both of the tests stretch the capabilities of the Analog Discovery (5 MHz,

50 MSPS). The sample values are represented by “x” markers in Figure 13-8 ,
which are spaced at 10 ns intervals (curve fi tting is used to display the outputs).
Despite the shortcomings of the Analog Discovery, the graphs are indicative of
the capability of the PRU‐ICSS. In the fi rst test, the LED lights approximately
30 ns after the button is pressed—see Figure 13-8 (a). To put this number in
context, in this time a light pulse would have traveled nine meters through
free space (at 3×108 m/s) and sound would have traveled one‐hundredth of
a millimeter in air (340 m/s at sea level). The latter means that this time reso-
lution, coupled with suitable acoustic sensor(s), makes accurate distance mea-
surements very feasible.

 Figure 13-8 (b) illustrates the outcome of the second test, which indicates that
each PRU can be used to output user‐confi gurable signals at very high frequen-
cies (note that the PRU‐ICSS also has dedicated clock outputs—e.g., a 192 MHz
UART clock). Importantly, neither of these tests have signifi cant CPU or memory
load on the Linux host.

 LISTING 13‐4: /exploringBB/chp13/buttonTest/buttonTest.p

 .origin 0

 .entrypoint START

 START:

 CLR r30.t5 // turn off the LED

 WBS r31.t3 // wait bit set - i.e., button press

 SET r30.t5 // set the output bit - turn on the LED

 MOV r31.b0, 35

 HALT

 Utilizing Regular Linux GPIOs

 Each PRU is attached to an OCP master port, as illustrated in Figure 13-1 , which
permits access to memory addresses on the Linux host device. This functionality
allows the PRUs to manipulate the state of the regular GPIOs that are used in
Chapter 6 . The fi rst step is to enable the OCP master port using the following

 Chapter 13 ■ Real‐Time BeagleBone Interfacing 523

 Here, c4 refers to entry 4 in the constants table, which is the PRU_ICSS CFG
(local) address. Therefore, offset 4 refers to the SYSCFG register. The CLR instruc-
tion sets bit 4 (STANDBY_INIT) to be T 0 , thus enabling the OCP master ports when
r0 is written back to the SYSCFG register using the SBCO (store byte burst with
constant table offset) instruction.

 The next step is to determine the explicit Linux host memory addresses for
the GPIOs—this is described in the section “Memory‐Based GPIO Switching”
in Chapter 6 . The GPIO bank addresses and states can be defi ned using the
following addresses and offsets:

 #define GPIO0 0x44e07000 // GPIO Bank 0, See the AM335x TRM
 #define GPIO1 0x4804c000 // GPIO Bank 1, Tab.2.2 Peripheral Map
 #define GPIO2 0x481ac000 // GPIO Bank 2,
 #define GPIO3 0x481ae000 // GPIO Bank 3,
 #define GPIO_CLEARDATAOUT 0x190 // for clearing the GPIO registers
 #define GPIO_SETDATAOUT 0x194 // for setting the GPIO registers
 #define GPIO_DATAOUT 0x138 // for reading the GPIO registers
 #define GPIO0_30 1<<30 // P9_11 gpio0[30] Output - bit 30
 #define GPIO0_31 1<<31 // P9_13 gpio0[31] Input - bit 31

 The PRU code is provided in Listing 13‐5. It is similar to Listing 13‐2, with the
exception that the GPIO addresses must be loaded into registers and manipulated
at the bit level. The C code is not listed here, as it is very similar to Listing 13‐3.
However, the full project is available in the /chp13/gpioLEDButton/ repository
directory.

 Figure 13-8: (a) Button press test; (b) high‐frequency switching test output

instructions (with reference to Table 205 and Table 207 in the AM335x PRU
Reference Guide):ee

 LBCO r0, c4, 4, 4 // load SYSCFG register to r0(use c4 const addr)
 CLR r0, r0, 4 // clear bit 4 (STANDBY_INIT)
 SBCO r0, c4, 4, 4 // store the modified r0 back at the load addr

524 Part III4 ■ Advanced BeagleBone Systems

 LISTING 13‐5: /exploringBB/chp13/gpioLEDButton/ledButton.p

 .origin 0 // start of program in PRU memory

 .entrypoint START // program entry point (for a debugger)

 #define GPIO0 0x44e07000 // GPIO Bank 0, See the AM335x TRM

 #define GPIO1 0x4804c000 // GPIO Bank 1, Table 2-2 Peripheral Map

 #define GPIO2 0x481ac000 // GPIO Bank 2,

 #define GPIO3 0x481ae000 // GPIO Bank 3,

 #define GPIO_CLEARDATAOUT 0x190 // for clearing the GPIO registers

 #define GPIO_SETDATAOUT 0x194 // for setting the GPIO registers

 #define GPIO_DATAOUT 0x138 // for reading the GPIO registers

 #define GPIO0_30 1<<30 // P9_11 gpio0[30] Output - bit 30

 #define GPIO0_31 1<<31 // P9_13 gpio0[31] Input - bit 31

 #define INS_PER_US 200 // 5ns per instruction

 #define INS_PER_DELAY_LOOP 2 // two instructions per delay loop

 // set up a 50ms delay

 #define DELAY 50 * 1000 * (INS_PER_US / INS_PER_DELAY_LOOP)

 #define PRU0_R31_VEC_VALID 32 // allows notification of program completion

 #define PRU_EVTOUT_0 3 // the event number that is sent back

 START:

 // Enable the OCP master port

 LBCO r0, C4, 4, 4 // load SYSCFG reg into r0 (use c4 const addr)

 CLR r0, r0, 4 // clear bit 4 (STANDBY_INIT)

 SBCO r0, C4, 4, 4 // store the modified r0 back at the load addr

 MAINLOOP:

 MOV r1, GPIO0 | GPIO_SETDATAOUT // load addr for GPIO Set data r1

 MOV r2, GPIO0_30 // write GPIO0_30 to r2

 SBBO r2, r1, 0, 4 // write r2 to the r1 address value - LED ON

 MOV r0, DELAY // store the length of the delay in REG0

 DELAYON:

 SUB r0, r0, 1 // Decrement REG0 by 1

 QBNE DELAYON, r0, 0 // Loop to DELAYON, unless REG0=0

 LEDOFF:

 MOV r1, GPIO0 | GPIO_CLEARDATAOUT // load addr for GPIO Clear data

 MOV r2, GPIO0_30 // write GPIO_30 to r2

 SBBO r2, r1, 0, 4 // write r2 to the r1 address - LED OFF

 MOV r0, DELAY // Reset REG0 to the length of the delay

 DELAYOFF:

 SUB r0, r0, 1 // decrement REG0 by 1

 QBNE DELAYOFF, r0, 0 // Loop to DELAYOFF, unless REG0=0

 MOV r5, GPIO0 | GPIO_DATAOUT // load read addr for DATAOUT

 LBBO r6, r5, 0, 4 // Load the value at r5 into r6

 QBBC MAINLOOP, r6.t31 // is the button pressed? If not, loop

 END: // notify the calling app that finished

 MOV R31.b0, PRU0_R31_VEC_VALID | PRU_EVTOUT_0

 HALT // halt the pru program

 Chapter 13 ■ Real‐Time BeagleBone Interfacing 525

 The device tree overlay in Listing 13‐1 confi gures two regular GPIO pins,
P9_11 (output) and P9_13 (input). P9_11 should be connected to the FET gate
input and P9_13 should be connected to the button, as described in Figure 13-3 .
Ensure that the overlay is loaded and that the GPIOs are exported, as follows,
before the application is executed:

 /lib/firmware$ sudo sh ‐c "echo EBB‐PRU‐Example > $SLOTS"
 /lib/firmware$ cat $SLOTS
 8: ff:P-O-L Override Board Name,00A0,Override Manuf,EBB-PRU-Example
 /sys/class/gpio$ sudo sh ‐c "echo 30 > export"
 /sys/class/gpio$ sudo sh ‐c "echo 31 > export"

 When executed, the code will provide output similar to that shown in
Figure 13-4 :

 ~/exploringBB/chp13/gpioLEDButton$ sudo ./ledButton
 EBB PRU program completed, event number 1.

 A PRU PWM Generator

 As described in Chapter 6 , PWM has many applications, such as motor and
lighting control, and there is hardware PWM support available on the BBB
that can be accessed directly from Linux user space. However, sysfs is slow
at adjusting the duty cycle, and it is prone to the same type of nonpreemp-
tive latency issues as regular GPIOs. In the next section, PWM is used to
output a sine wave signal, by rapidly changing the duty cycle of a high‐fre-
quency switched digital output cyclically as a function of time. In this sec-
tion, we prepare for this by setting up a square waveform with a constant
duty cycle.

 Listing 13‐6 is the Linux host code that loads the PRU program. It also uses
the prussdev_pru_write_memory() function to transfer the PWM duty cycle
percentage and the delay factor (i.e., how many instructions × 5 ns there should
be for each of the 100 samples per period). The values passed by the code in
Listing 13‐6 result in a PWM signal with a duty cycle of 75% and a period of
approximately 11 μs (i.e., 100 samples per period × 10 delay steps per sample × 2
instructions per delay × 5 ns per instruction + looping overhead).

 LISTING 13‐6: /exploringBB/chp13/pwm/pwm.c

 #include <stdio.h>

 #include <prussdrv.h>

 #include <pruss_intc_mapping.h>

continues

526 Part III6 ■ Advanced BeagleBone Systems

 #define PRU_NUM 0

 void main (void){

 // Initialize structure used by prussdrv_pruintc_intc

 tpruss_intc_initdata pruss_intc_initdata = PRUSS_INTC_INITDATA;

 // Allocate and initialize memory

 prussdrv_init ();

 prussdrv_open (PRU_EVTOUT_0);

 // Map PRU interrupts

 prussdrv_pruintc_init(&pruss_intc_initdata);

 // Copy the PWM percentage and delay factor into PRU memory

unsigned int percent = 75; // (0‐100)

prussdrv_pru_write_memory(PRUSS0_PRU0_DATARAM, 0, &percent, 4);

unsigned int sampletimestep = 10; // delay factor

 // write it into the next word location in memory (i.e.,4-bytes later)

prussdrv_pru_write_memory(PRUSS0_PRU0_DATARAM, 1, &sampletimestep, 4);

 // Load and execute binary on PRU

 prussdrv_exec_program (PRU_NUM, "./pwm.bin");

 // Wait for event completion from PRU

 int n = prussdrv_pru_wait_event (PRU_EVTOUT_0);

 printf("PRU program completed, event number %d.\n", n);

 // Disable PRU and close memory mappings

 prussdrv_pru_disable(PRU_NUM);

 prussdrv_exit ();

 }

 The PRU code is provided in Listing 13‐7. It consists of a main loop that loops
once for each signal period, until a button that is attached to r31.t3 is pressed.
Within the main loop are two nested loops. One iterates for the number of
samples that the signal is high and the second iterates for the number of samples
that the signal is low. The total number of nested iterations is 100, where each
iteration has a user‐confi gurable delay.

 LISTING 13‐7: /exploringBB/chp13/pwm/pwm.p

 .origin 0 // offset of start of program in PRU memory

 .entrypoint START // program entry point used by the debugger

 #define PRU0_R31_VEC_VALID 32

 #define EVENTOUT0 3

 START:

 // Reading the memory that was set by the C program into registers

 // r1 - Read the PWM percent high (0-100)

 MOV r0, 0x00000000 // load the memory location

 LBBO r1, r0, 0, 4 // load the percent value into r1

 // r2 - Load the sample time delay

LISTING 13‐6: (continued)

 Chapter 13 ■ Real‐Time BeagleBone Interfacing 527

 MOV r0, 0x00000004 // load the memory location

 LBBO r2, r0, 0, 4 // load the step delay value into r2

 // r3 - The PWM percentage that the signal is low (100-r1)

 MOV r3, 100 // load 100 into r3

 SUB r3, r3, r1 // subtract r1 (high) away from 100

 MAINLOOP:

 MOV r4, r1 // start counter at number of steps high

 SET r30.t5 // set the output P9_27 high

 SIGNAL_HIGH:

 MOV r0, r2 // the delay step length - load r2 above

 DELAY_HIGH:

 SUB r0, r0, 1 // decrement delay loop counter

 QBNE DELAY_HIGH, r0, 0 // repeat until step delay is done

 SUB r4, r4, 1 // the signal was high for a step

 QBNE SIGNAL_HIGH, r4, 0 // repeat until signal high steps are done

 // Now the signal is going to go low for 100%-r1% - i.e., r3

 MOV r4, r3 // number of steps low loaded

 CLR r30.t5 // set the output P9_27 low

 SIGNAL_LOW:

 MOV r0, r2 // the delay step lenght - load r2 above

 DELAY_LOW:

 SUB r0, r0, 1 // decrement loop counter

 QBNE DELAY_LOW, r0, 0 // repeat until step delay is done

 SUB r4, r4, 1 // the signal was low for a step

 QBNE SIGNAL_LOW, r4, 0 // repeat until signal low % is done

 QBBS END, r31.t3 // quit if button on P9_28 is pressed

 QBA MAINLOOP // otherwise loop forever

 END: // end of program, send back interrupt

 MOV r31.b0, PRU0_R31_VEC_VALID | EVENTOUT0

 HALT

 The circuit is wired as shown in Figure 13-3 , and the same device tree overlay
is used for this example. The output of the circuit is displayed in Figure 13-9 .
A simple low‐pass fi lter is added to the P9_27 output pins and results in the
“Low‐pass fi ltered output” signal in Figure 13-3 . In this example, the RC fi lter
consists of a 4.7 kΩ resistor that is connected to P9_27 and a 0.1 μF capacitor
connected from the output side of the resistor to GND (i.e., not between P9_27
directly and GND). The RC fi lter results in a time‐averaged output, which is
representative of the duty cycle. For example, if the PWM duty cycle is 75%,
then the output voltage of the RC fi lter is approximately 0.75 × 3.3V = 2.625V,
as illustrated in Figure 13-9 .

 A PRU Sine Wave Generator

 The PRU PWM generator code can be adapted to generate user‐defi ned waveforms
on a GPIO pin. This is achieved by altering the PWM signal duty cycle rapidly over
time, and passing the output through a low‐pass fi lter. Figure 13-10 (b) illustrates

528 Part III8 ■ Advanced BeagleBone Systems

the output of such as circuit, where a 4.7 kΩ resistor and a 4.7 nF capacitor are used
to form the requisite low‐pass fi lter. The smoothing is effectively of shorter dura-
tion than the previous RC component values. Figure 13-10 (a) displays the PWM
signal with a duty cycle that changes over time. The low‐pass fi ltered output is
displayed in Figure 13-10 (b), where it is clearly a good approximation to a sine
waveform signal. The full project is available in the chp13/sineWave directory.

 Figure 13-9: The PWM generator output

 Figure 13-10: User‐defined waveform output

 A segment of the Linux host C code is provided in Listing 13‐8. The main
novelty in this code is the generation of a set of 100 values representing a single
cycle of a sine waveform. The values of the sine wave cycle are designed to have
an amplitude of 50 and an offset of +50, so that the output can be directly used
as the duty cycle percentage values for the PWM generator code described in
the previous section.

 In this example, the memory is mapped to the PRU in a slightly different way.
The prussdrv_map_prumem() function is used, which identifi es the address of
the PRU memory map using a pointer. Pointer operations can then be (carefully)
used to read from or write to PRU memory directly.

 Chapter 13 ■ Real‐Time BeagleBone Interfacing 529

 LISTING 13‐8: /exploringBB/chp13/sineWave/pwm.c (segment)

 static void *pru0DataMemory; // need a void pointer memory map

 static unsigned int *pru0DataMemory_int; // will cast void pointer to this

 void main (void){ . . .

 // Generate a periodic sine wave in an int array of 100 values

 unsigned int waveform[100];

 float gain = 50.0f; // want the full range 0-99

 float phase = 0.0f; // phase can be changed

 float bias = 50.0f; // center on 1.65V, for full range

 float freq = 2.0f * 3.14159f / 100.0f;

 for (i=0; i<100; i++){ // general sine wave equation

 waveform[i] = (unsigned int)(bias + (gain * sin((i * freq) + phase)));

 }

 // set up the pointer to PRU memory

 prussdrv_map_prumem(PRUSS0_PRU0_DATARAM, &pru0DataMemory);

 pru0DataMemory_int = (unsigned int *) pru0DataMemory;

 unsigned int sampletimestep = 1; //delay factor

 *(pru0DataMemory_int) = sampletimestep;

 unsigned int numbersamples = 100; //number of samples

 *(pru0DataMemory_int+1) = numbersamples;

 // copy the waveform data into PRU memory - could be any waveform

 for (i=0; i<numbersamples; i++){

 *(pru0DataMemory_int+2+i) = waveform[i];

 }

 prussdrv_exec_program (PRU_NUM, "./pwm.bin");

. . .
}

 The PRU code in Listing 13‐9 builds on the PWM code in Listing 13‐7.
The main difference is an additional loop that loads a PWM duty cycle for
each data array value that is passed to PRU memory by the Linux host C
program. The code will output any periodic waveform that is passed to it,
with a maximum periodic sample length of just under 8 KB (PRU0 RAM0) in
this example. The code could be improved to extend this limit, or to iterate
with fewer instructions. However, the code demonstrates the principle that
a PRU can be used to generate custom analog waveforms using its digital
GPIO outputs.

 LISTING 13‐9: /exploringBB/chp13/sineWave/pwm.p (segment)

 . . .

 START:

 MOV r0, 0x00000000 // load the time delay

 LBBO r2, r0, 0, 4 // load the step delay value into r2

 MOV r0, 0x00000004 // load the number of samples

 LBBO r5, r0, 0, 4 // load the number of samples into r5

continues

530 Part III0 ■ Advanced BeagleBone Systems

 MOV r6, 0 // r6 is the counter 0 to r5

 MOV r7, 0x00000008 // base memory location for the array

 SAMPLELOOP:

 // is the counter r6 >= the number of samples r5, if so go back to 0

 QBLT CONTINUE, r5, r6 // otherwise continue to next line

 MOV r7, 0x00000008 // reset the base memory location again

 MOV r6, 0 // and loop all over again

 CONTINUE:

 ADD r7, r7, 4 // r1 - Read the PWM percent high (1-99)

 LBBO r1, r7, 0, 4 // load the percent value into r1

 QBLT GREATERTHANZERO, r1, 0 // test that the value is >0

 MOV r1, 1 // if less than 1 set the value to 1

 GREATERTHANZERO:

 QBGT LESSTHAN100, r1, 100 // test value is <100

 MOV r1, 99 // if greater, then set value to 99

 LESSTHAN100:

 . . . // At this point generate a single PWM period output (Listing 13‐7)

 QBBS END, r31.t3 // quit if button on P9_28 is pressed

 ADD r6, r6, 1 // increment the counter by 1

 QBA SAMPLELOOP // otherwise loop forever

 END: // end of program, send back interrupt

 MOV R31.b0, PRU0_R31_VEC_VALID | EVENTOUT0

 HALT

 An Ultrasonic Sensor Application

 The HC‐SR04 is a low‐cost (~$5) ultrasonic sensor that can be used to deter-
mine the distance to an obstacle using the speed of sound. The sensor has
a range of approximately 1″ (2.5 cm) to 13′ (4 m). Unlike the IR distance sen-
sor that is used in Chapter 9 , it is not affected by sunlight, but it does not
perform well with soft materials that do not refl ect sound well (e.g., clothing
and soft furnishings). It is a 5 V sensor, so logic‐level translation circuitry is
required (as described at the end of Chapter 8). The fi nal circuit is illustrated
in Figure 13-11 . It uses the same device tree overlay that is described earlier
in this chapter.

 Figure 13-12 illustrates how interaction takes place with this sensor. A
10 μs trigger pulse is sent to the “Trig” input of the sensor; the sensor then
responds on its “Echo” output with a pulse that has a width that corresponds
to the distance of an obstacle (approximately 150 μs to 25 ms, or 38 ms if no
obstacle is in range).

 The nonpreemptive nature of Linux means that it would be diffi cult to use
this sensor directly from Linux user space using regular GPIOs. There are UART
versions of this sensor that contain a microcontroller, but they are much more
expensive. In fact, the solution that is presented here is fast enough to enable
you to connect ten or more such sensors to a single PRU—a single trigger signal

LISTING 13‐9: (continued)

 Chapter 13 ■ Real‐Time BeagleBone Interfacing 531

could be sent to many sensors simultaneously, and different enhanced GPIOs
could be used to measure the response signals from each sensor. Assembly
language code is developed with the following structure:

 1. Initialization takes place to set up shared memory.

 2. The main loop begins.

 3. A pulse is sent to the output pin. The output pin (P9_27) is set high and
the code delays for exactly 10 μs before switching low.

 4. The input pin (P9_28) is then polled until it goes high. At that point a
“width” timer counts until the input pin goes low.

 5. The width timer value is written into shared memory. The code generates
an interrupt, and the main loop begins again.

 Figure 13-11: The HC‐SR04 ultrasonic distance sensor circuit

 Figure 13-12: Signal response of the HC‐SR04

532 Part III ■ Advanced BeagleBone Systems

 The project code is available in the directory /chp13/ultrasonic/ . Listing 13‐10 //

contains a threaded function that is designed to wait for an interrupt to be sent.
It waits for a different interrupt (PRU_EVTOUT_1) than the one that is used to
notify the application of imminent termination (PRU_EVTOUT_0). This interrupt
notifi es the Linux host application that a new measurement has been placed in
memory by the PRU program.

 LISTING 13‐10: /exploringBB/chp13/ultrasonic/ultrasonic.c

 #include <stdio.h>

 #include <prussdrv.h>

 #include <pruss_intc_mapping.h>

 #include <pthread.h>

 #include <unistd.h>

 #define PRU_NUM 0

 static void *pru0DataMemory;

 static unsigned int *pru0DataMemory_int;

 void *threadFunction(void *value){

 do {

 int notimes = prussdrv_pru_wait_event (PRU_EVTOUT_1);

 unsigned int raw_distance = *(pru0DataMemory_int+2);

 float distin = ((float)raw_distance / (100 * 148));

 float distcm = ((float)raw_distance / (100 * 58));

 printf("Distance is %f inches (%f cm) \r", distin, distcm);

 prussdrv_pru_clear_event (PRU_EVTOUT_1, PRU0_ARM_INTERRUPT);

 } while (1);

 }

 void main (void){

 pthread_t thread;

 tpruss_intc_initdata pruss_intc_initdata = PRUSS_INTC_INITDATA;

 // Allocate and initialize memory

 prussdrv_init ();

 prussdrv_open (PRU_EVTOUT_0);

 prussdrv_open (PRU_EVTOUT_1);

 // Map PRU's INTC

 prussdrv_pruintc_init(&pruss_intc_initdata);

 // Copy data to PRU memory - different way

 prussdrv_map_prumem(PRUSS0_PRU0_DATARAM, &pru0DataMemory);

 pru0DataMemory_int = (unsigned int *) pru0DataMemory;

 // Use the first 4 bytes for the number of samples

 *pru0DataMemory_int = 500;

 // Use the second 4 bytes for the sample delay in ms

 *(pru0DataMemory_int+1) = 100; // 2 milli seconds between samples

 // Load and execute binary on PRU

 Chapter 13 ■ Real‐Time BeagleBone Interfacing 533

 prussdrv_exec_program (PRU_NUM, "./ultrasonic.bin");

 if(pthread_create(&thread, NULL, &threadFunction, NULL)){

 printf("Failed to create thread!");

 }

 int n = prussdrv_pru_wait_event (PRU_EVTOUT_0);

 printf("PRU program completed, event number %d.\n", n);

 printf("The data that is in memory is:\n");

 printf("- the number of samples used is %d.\n", *pru0DataMemory_int);

 printf("- the time delay used is %d.\n", *(pru0DataMemory_int+1));

 unsigned int raw_distance = *(pru0DataMemory_int+2);

 printf("- the last distance sample is %d.\n", raw_distance);

 // raw_distance is in 10ns samples

 // distance in inches = time (ms) / 148 according to datasheet

 float distin = ((float)raw_distance / (100 * 148));

 float distcm = ((float)raw_distance / (100 * 58));

 printf("-- A distance of %f inches (%f cm).\n", distin, distcm);

 /* Disable PRU and close memory mappings */

 prussdrv_pru_disable(PRU_NUM);

 prussdrv_exit ();

 }

 The PRU code is provided in Listing 13‐11. The program loops as described
and generates an interrupt using the line of code MOV R31.b0, PRU0_R31_VEC_
VALID | PRU_EVTOUT_1 whenever a new sample is ready. This is the interrupt
for which the threaded function in Listing 13‐10 is waiting.

 LISTING 13‐11: /exploringBB/chp13/ultrasonic/ultrasonic.p

 .origin 0 // offset of start of program in PRU memory

 .entrypoint START // program entry point used by the debugger

 #define TRIGGER_PULSE_US 10

 #define INS_PER_US 200

 #define INS_PER_LOOP 2

 #define TRIGGER_COUNT (TRIGGER_PULSE_US * INS_PER_US) / INS_PER_LOOP

 #define SAMPLE_DELAY_1MS (1000 * INS_PER_US) / INS_PER_LOOP

 #define PRU0_R31_VEC_VALID 32;

 #define PRU_EVTOUT_0 3

 #define PRU_EVTOUT_1 4

 // Using register 0 for all temporary storage (reused multiple times)

 START:

 // Read number of samples to read and inter-sample delay

 MOV r0, 0x00000000 // load the memory location, number of samples

 LBBO r1, r0, 0, 4 // load the value into memory - keep r1

 // Read the sample delay

 MOV r0, 0x00000004 // the sample delay is in the second 32-bits

continues

534 Part III4 ■ Advanced BeagleBone Systems

 LBBO r2, r0, 0, 4 //the sample delay is stored in r2

 MAINLOOP:

 MOV r0, TRIGGER_COUNT // store length of the trigger pulse delay

 SET r30.t5 // set the trigger high

 TRIGGERING: // delay for 10us

 SUB r0, r0, 1 // decrement loop counter

 QBNE TRIGGERING, r0, 0 // repeat loop unless zero

 CLR r30.t5 // 10us over, set the trigger low - pulse sent

 // clear the counter and wait until the echo goes high

 MOV r3, 0 // r3 will store the echo pulse width

 WBS r31.t3 // wait until the echo goes high

 // start counting (measuring echo pulse width) until the echo goes low

 COUNTING:

 ADD r3, r3, 1 // increment the counter by 1

 QBBS COUNTING, r31.t3 // loop if the echo is still high

 // at this point the echo is now low - write the value to shared memory

 MOV r0, 0x00000008 // going to write the result to this address

 SBBO r3, r0, 0, 4 // store the count at this address

 // one more sample iteration has taken place

 SUB r1, r1, 1 // take 1 away from the number of iterations

 MOV r0, r2 // need a delay between samples

 SAMPLEDELAY: // do this loop r2 times (1ms delay each time)

 SUB r0, r0, 1 // decrement counter by 1

 MOV r4, SAMPLE_DELAY_1MS // load 1ms delay into r4

 DELAY1MS:

 SUB r4, r4, 1

 QBNE DELAY1MS, r4, 0 // keep going until 1ms has elapsed

 QBNE SAMPLEDELAY, r0, 0 // repeat loop unless zero

 // generate an interrupt to update the display on the host computer

 MOV R31.b0, PRU0_R31_VEC_VALID | PRU_EVTOUT_1

 QBNE MAINLOOP, r1, 0 // loop if the no of iterations has not passed

 END:

 MOV R31.b0, PRU0_R31_VEC_VALID | PRU_EVTOUT_0

 HALT

 The code example can be built using the build script, and results in the fol-
lowing output when executed:

 ~/exploringBB/chp13/ultrasonic$ sudo ./ultrasonic
 Distance is 6.965540 inches (17.774137 cm)
 PRU program completed, event number 169.
 The data that is in memory is:
 - the number of samples used is 5.
 - the time delay used is 2.

LISTING 13‐11: (continued)

 Chapter 13 ■ Real‐Time BeagleBone Interfacing 535

 - the last distance sample is 103090.
 -- A distance of 6.965540 inches (17.774137 cm).

 The program output updates on a single shell console line whenever an inter-
rupt is received by the Linux host code. This continues until the user‐defi ned
maximum number of samples is reached. The signal output is displayed in
Figure 13-13 . The sampling rate is variable in this example, partly to demonstrate
the use of interrupts. It could be altered to a fi xed sample period if required;
however, a fi xed sampling rate would have to account for the 38 ms pulse that
the sensor returns when no obstacle is detected.

 Figure 13-13: Signal response of the HC‐SR04

 Additional PRU‐ICSS Tools

 Two additional tools can aid with development for the PRU‐ICSS. The fi rst is a
PRU debugger and the second is a TI C compiler that can be used to write PRU
programs, in place of writing assembly code.

 The PRU Debugger

 The PRU Debugger, prudebug (tiny.cc/ebb1310), is a useful tool for identify-
ing problems with your PRU program code. It can be executed in a separate
terminal and used to view the registers when the PRU program is halted. For
example, it can display the registers as shown here:

 PRU0> R
 Register info for PRU0
 Control register: 0x00000001
 Reset PC:0x0000 STOPPED, FREE_RUN, COUNTER_DISABLED, NOT_SLEEPING

536 Part III6 ■ Advanced BeagleBone Systems

 Program counter: 0x0012
 Current instruction: HALT
 R00: 0x0000000a R08: 0xd626828a R16: 0xced9df71 R24: 0x0e492713
 R01: 0x00000000 R09: 0xf4847bf7 R17: 0xdc1d5f3e R25: 0x73ac4b40
 R02: 0x4804c194 R10: 0xbb7ff666 R18: 0xe44e9ecd R26: 0x3a00158f
 R03: 0x00020000 R11: 0x531ad382 R19: 0xc9087283 R27: 0xaa7a1ae9
 R04: 0x00000005 R12: 0x4011dcbf R20: 0xfdf1003c R28: 0x0f5fe4dd
 R05: 0x00000000 R13: 0xe2259f2e R21: 0xc763fc2c R29: 0xe6b71da6
 R06: 0x00000000 R14: 0x92f9ba70 R22: 0xe6516729 R30: 0x3024130e
 R07: 0xabcd1234 R15: 0xe6c171fc R23: 0xf0990d24 R31: 0x00000000
 PRU0>

 It can also be used to load binaries into the PRUs, display instruction/data
memory spaces, disassemble instruction memory space, and start/halt or single‐
step a PRU. This is very useful, as it is diffi cult to debug programs that are
running on the PRU, due to the absence of a standard output.

 The TI PRU C Compiler

 TI has released the PRU Code Generation Tools (CGT) as part of Code Composer
Studio v6 (CCSv6). The PRU CGT have also been released in CLI form. The fol-)
lowing example uses the ARM A8 version (~40MB), which can be downloaded,
free of charge, from the address tiny.cc/ebb1311 and installed on the BBB. You
will have to register to download the installer, which should then be transferred
to the BBB. The following steps install the CGT on the BBB:

 molloyd@beaglebone:~/ $ ls
 ti_cgt_pru_2.0.0B2_armlinuxa8hf_installer.sh
 ~/$ chmod ugo+x ti_cgt_pru_2.0.0B2_armlinuxa8hf_installer.sh
 ~/$./ti_cgt_pru_2.0.0B2_armlinuxa8hf_installer.sh
 ~/$ cd pru_2.0.0B2/
 ~/pru_2.0.0B2$ ls
 LICENSE.txt PRU_Compiler_2_0_manifest.html bin example lib
 License.txt README.txt bin.cmd include
 molloyd@beaglebone:~/pru_2.0.0B2/bin$ ls
 abspru asmpru clpru embedpru libinfopru ofdpru xrefpru
 acpiapru cgpru dempru hexpru lnkpru optpru
 arpru clistpru dispru ilkpru nmpru strippru

 The binary directory includes the C compiler (clpru), the assembler (asmpru),
the linker (lnkpru), and the output fi le generation tool (hexpru). For example,
the compiler can be used as follows:

 . . ./prussC$ ~ /pru_2.0.0B2/bin/clpru ‐i~/pru_2.0.0B2/include testPRU.c

 Chapter 13 ■ Real‐Time BeagleBone Interfacing 537

 A PRU C program is provided in Listing 13‐12. The code example performs a
similar function to the code in Listing 13‐2, which is wired as shown in Figure 13-3 .
The code segment in Listing 13‐13 loads the binary into the PRU that results
from the build script in Listing 13‐14.

 The process is slightly more complex than using the pasm assembler, as you
have to provide linker command fi les (AM3359_PRU.cmd((), and the binary outputd

has to be converted into a hexadecimal fi le that can be loaded onto the PRU. A
full project example with a build script is provided in the /chp13/prussC/ direc-
tory—it can be used as a template for your own applications.

 LISTING 13‐12: /exploringBB/chp13/prussC/testPRU.c

 /** Basic PRU C program to flash an LED that is attached to P9_27 at a

 * frequency of 10 Hz, until a button that is attached to P9_28 is pressed */

 // the registers for I/O and interrupts

 volatile register unsigned int __R31, __R30;

 int main(){

 unsigned int i; // the counter in the time delay

 unsigned int delay = 588260; // the delay (manually determined)

 // Just a test to show how you can use assembly instructions directly

 // subtract 1 from REG1

 __asm__ __volatile__

 (

 " SUB r1, r1, 1 \n"

);

 // while the button r31.3 has not been pressed, keep looping

 while(!(__R31 & 1<<3)){

 __R30 = __R30 | 1<<5; // turn on the LED r30.5

 for(i=0; i<delay; i++) {} // loop delay - don't optimize!

 __R30 = __R30 & 0<<5; // turn off the LED r30.5

 for(i=0; i<delay; i++) {} // loop delay - don't optimize!

 }

 // Exiting the application - send the interrupt

 __R31 = 35; // PRUEVENT_0 on PRU0_R31_VEC_VALID

 __halt(); // halt the PRU

 }

 LISTING 13‐13: /exploringBB/chp13/prussC/testBBB.c (segment)

 . . .

 /* Load and execute binary on PRU */

 prussdrv_exec_program (PRU_NUM, "./text.bin");

 /* Wait for event completion from PRU */

 n = prussdrv_pru_wait_event (PRU_EVTOUT_0); . . .

538 Part III8 ■ Advanced BeagleBone Systems

 LISTING 13‐14: /exploringBB/chp13/prussC/build

 #!/bin/sh
export PRU_SDK=/home/molloyd/pru_2.0.0B2/
 echo "Compiling the testPRU.c application"
$PRU_SDK/bin/clpru --silicon_version=3 testPRU.c ‐i$PRU_SDK/include \
 ‐i$PRU_SDK/lib ‐z AM3359_PRU.cmd ‐o testPRU.out ‐m testPRU.map
 echo "Converting the executable to a ARM object file"
$PRU_SDK/bin/hexpru $PRU_SDK/bin.cmd testPRU.out
 echo "Compiling the testBBB.c application"
gcc testBBB.c ‐o test ‐lpthread ‐lprussdrv

 Make sure that you change the PRU_SDK path to the location of the PRU com-K

piler binary that you installed on your BBB. Do not add optimization to the
clpru compilation call (e.g., the command‐line parameter ‐o3); otherwise, the
time delay, which is a loop that seems to do nothing, will be “optimized out”
and the LED will not fl ash in this case!

 Summary

 After completing this chapter, you should be able to do the following:

■ Describe real‐time kernel and hardware solutions that can be used on
the BBB.

■ Write a PRU program that can fl ash an LED and transfer it to the PRU‐ICSS
using a Linux host application.

■ Describe the important features of the PRU‐ICSS, such as its structure,
registers, memory addressing, and assembly language instructions.

■ Write a PRU program that shares memory with a Linux host application.

■ Write a PRU program that interfaces to regular GPIOs that are in Linux
host space.

■ Write a PRU program that generates PWM signals and adapt it to output
user‐defi ned analog waveforms on BBB GPIO pins.

■ Apply the PRU to sensor interfacing applications for which time mea-
surement is important, such as interfacing to ultrasonic distance sensors.

■ Use interrupts to notify a Linux host when key events have occurred, such
as the availability of new sensor data.

■ Use tools such as the PRU Debugger and Texas Instruments’ PRU Code
Generation Tools to aid with PRU‐ICSS application development, includ-
ing compiling and loading C programs to run on the PRUs.

 Chapter 13 ■ Real‐Time BeagleBone Interfacing 539

 Further Reading

 There are many links to websites and documents provided throughout this
chapter. Additional links and further information on the topics in this chapter
are provided at www.exploringbeaglebone.com/chapter13/ .

541

Index

543

SYMBOLS AND NUMBERS

+ (anode), 119
+ (non-inverting input), 143
– (cathode), 119
– (inverting input), 143
- (regular) fi le type, 69
| (pipe), 83–84
prompt, 37
#! (sha-bang), 156
>> (output stream) symbol, 83, 170
< (standard input) symbol, 82–83
> (standard output) symbol, 82–83
2’s complement form, 134
3.1MP Camera camera cape, 20
5V power supply, 15
8N1 format, 310
74HC595 shift register, SPI example,

296–300

A

A2DP (Advanced Audio Distribution
Profi le), 496–499

abstract windowing toolkit (AWT)
libraries, 435

accClient.cpp fi le, 467–468
accelerometers

ADXL335, 353–354
ADXL345, 279–280

access specifi ers, 189, 191
accessories, 14–18
actuators, 326–340

DC motors, 327–333
linear, 326
overview, 326–327
servo motors, 233–235, 326, 327
stepper motors, 333–338

Adafruit
Eight-channel Bi-directional

Logic-Level Converter, 322
Four-channel Bi-directional Level

Shifter, 322
Passive PoE Injector Cable Set, 424
Proto cape, 19

ADC. See analog-to-digital conversion
Advanced Audio Distribution Profi le

(A2DP), 496–499
advanced Linux sound architecture

(ALSA), 490, 493
Advanced Packaging Tool (APT),

44
ADXL335 accelerometer, 340,

353–354
ADXL345 accelerometer, 277, 278,

279–280, 300–308
ADXL345 class, 289–290
ADXL345.h fi le, 289–290, 305–307

544 Index ■ A–A

agetty command, 311, 365
ALSA (advanced Linux sound

architecture), 490, 493
AM335x microprocessor, 11–14

ball grid array, 10, 123
GPIO pin confi guration settings,

209–214
hard-fl oat operations, 253
internal pull-up/pull-down resistors,

208–209
LCD controller, 431
maximum input impedance, 345
memory-based GPIO switching,

218–219
NEON SIMD engine, 486
PRU-ICSS Package, installing/

upgrading, 512
reading memory values directly, 61
Technical Reference Manual, 8

AM335x PRU-ICSS Reference Guide,
508

am335x-bone-common.dtsi fi le,
220–221

amixer utility, 493
anacron command, 404
Analog Devices

ADXL335 accelerometer, 340,
353–354

ADXL345 accelerometer, 277, 278,
279–280, 300–308

TMP36 analog sensor, 384–385
analog sensors, 340–354

ADXL335 conditioning, 353–354
vs. digital sensors, 341–342
example types/applications, 341
infrared distance sensing, 349–353
protecting ADC inputs, 342–345
signal conditioning, 345–349

analog-to-digital conversion, 141–146
analog inputs, 226–231
analog outputs, 231–235
operational amplifi ers, 143–146
protecting inputs, 342–345
quantization, 142

sampling rate, 141, 142
sampling resolution, 142

Android
application development with

Bluetooth, 374–375
IFTTT (If This Then That), 412–413
TTS (text-to-speech), 499–502

Ångström, 24–25
busybox utility, 92
cross-compilation toolchain, 252
Dropbear, 33
JS add accents
package management, 44–45
root logins, 31, 67

anode (+), 119
Antoniou, Pantelis, 221
Apache web server

confi guring, 389–390
creating web pages, 390–392
installing, 389
PHP example, 392–393
replacing Bone101 server, 393–394

aplay utility, 492
App Inventor, 374–375
APT (Advanced Packaging Tool), 44
Arch Linux, 25
archiving, 88
Arduino, UART example, 312–321
arecord utility, 494–495
armhf

architecture, emulating, 258–260
BBB armhf library, installing, 256
change root, installing, 257–258

asmpru, 536
atomic operations, 195
audio

Bluetooth A2DP, 496–499
core software tools, 490
HDMI playback devices, 491–493
recording, 494–495
streaming

Bluetooth A2DP, 496–499
Internet radio, 493–494
network streaming, 496

 Index ■ B–B 545

text-to-speech, 499–502
USB playback devices, 491–493

avconv utility, 482, 483, 490, 496
AWT (abstract windowing toolkit)

libraries, 435

B

background processes, 90–92
badblocks command, 79
Bakker, Jan-Derk, 214
Bash, 155–157
bashLED, 155–157
Basic Input/Output System (BIOS), 42,

58
baud rate, 309
BB-BONE-KEYS-00A0.dts fi le,

243–244
BB-SPIDEV0-OOAO.dts fi le, 293–294
BBB (BeagleBone Black)

accessories, 14–18
architectures

general-purpose computing,
428–430

LCD touch screen display, 428,
431–432

remote fat-client applications, 428,
435

TCP client/server, 383, 412–415
virtual network computing, 428,

432–435
web client, 382, 383, 394–399
web sensor, 399–411
web server, 382, 383, 388–394

booting, 58–66
communicating with, 25–36

installing drivers, 26
network connections, 26–31
serial connections over USB, 31–33
serial connections with

USB-to-TTL, 33
SSH (Secure Shell), 33–37

CPU frequency setup, 153
hardware, 11–14
on-board LEDs, 45–47

remote monitoring, 416
shutting down, 21, 47–48
SPI on, 293–296, 308–309
System Reference Manual, 7
top/bottom views, 12
UARTs, 310–312
wireless standards, 418–419

BBBSerialCommand.ino fi le, 319
BBBSerialEcho.ino fi le, 314–315
BBBSerialServer.c fi le, 366–368
BBW (BeagleBone White), 9, 10
BeagleBoard Google Group, 22
BeagleBoard.org website, 7
BeagleBone

damaging, 20–22
documentation, 7–8
support, 22
versions, 8–10
when not to use, 6–7
who should use, 5

BeagleBone Black. See BBB
BeagleBone Black System Reference

Manual, 7
BeagleBone White (BBW), 9, 10
bg command, 91
bidirectional communication

I2C. See I2C buses
SPI. See SPI buses

bin directory, 76
binary numbers, 133–134
BIOS (Basic Input/Output System), 42,

58
bipolar junction transistors. See BJTs
bit rate, 309
bit-banging, 318
BJTs (bipolar junction transistors),

123–124
vs. fi eld effect transistors, 127–128
frequency response, 127
ground supply voltage, 136
operational amplifi ers, 143–146
as switches, 124–125

BlinkLED3.js fi le, 52
Blockly, 5

546 Index ■ C–C

Bluetooth, 370–375
A2DP audio, 496–499
Android application development,

374–375
BBB discoverability, 373–374
confi guring adapters, 372
input peripheral connections,

430–431
installing adapters, 370–371
loadable kernel modules, 371–372
low-energy sensor, 385–388

Bluetooth Low Energy (LE),
385–388

Bluetooth Smart, 385–388
Bluez Bluetooth stack, 386–387
Bone Cape Manager, 61
bone_keys.cpp fi le, 245–246
Bone101 server, replacing, 393–394
boneCV.cpp fi le, 484–485
BoneScript, 5, 48, 51–52
Boolean algebra functions, 133
Boost, 489
boot directory, 76
booting BBB, 58–66

bootloaders, 58–62
kernel space, 62–63
rebooting, 48
System V init, 63–66
user space, 62–63

bootloaders, 58–62
bounce (switches), 130–133
branches, Git, 98

creating, 98–100
deleting, 100
merging, 100

BS270 N-Channel Enhancement Mode
FET, 128, 204

buffer circuits, 345, 353
bus communication. See also specifi c

devices
I2C devices, 276–290
logic-level translation, 321–323
overview, 276
SPI devices, 291–309
UART devices, 309–321

BusDevice class, 304
BusDevice.h fi le, 304–305
busybox command, 92–93
buttonTest.p fi le, 522
byte rate, 309
bytecodes, 164–167

C

C/C++, 167–198
advantages/disadvantages, 168
build process, 170–172
callback functions, 163–164,

235–236
classes, 187–197

encapsulation, 189–190
inheritance, 190–191
wrapping I2C devices, 288–290

GPIO example, 214–217, 235–243
Hello World example, 169–170
I2C example, 286–288
LED fl ashing application, 181–183,

186, 191–195
Linux poll, 238–239
namespaces, 184
operators, 174–177, 176–177, 179–180
pointers, 177–180
POSIX threads, 236–238
Qt. See Qt
SPI communication (in C), 297–300
SPI communication (in C++),

300–308
strings, 180–181, 183–185
threading, 236–238
UART echo example, 316–317
variables, 174–177
wrapping I2C devices, 288–290

cables
Ethernet, 15, 26, 30–31
HDMI, 15–16
USB-to-serial UART TTL, 16–17

call command, 39
callback functions, 163–164, 235–236
callback.cpp fi le, 236
callchmod.cpp fi le, 197
camera capes, 20

 Index ■ C–C 547

capacitance/capacitors, 121–123
CMOS gate inputs, 140–141
I2C bus, 277–278
transmission line capitance, 278

capes, 4–5, 19–20
Bone Cape Manager, 61
cape manager, 177, 221, 222–226

cat command, 78, 86, 87, 155
cathode (–), 119
CCSv6 (Code Composer Studio v6),

536
cd command, 38, 68
ceramic capacitors, 122
CGI (Common Gateway Interface)

scripts, 391–392
change root, installing, 257–260
character LCD modules, 359–363
chgrp command, 72, 74
chgrp command, 72–74
chip select (CS) line, SPI, 291
chmod command, 73, 74
chown command, 72, 74
Chrome Apps, 34–35
chroot jail, 257
CircuitCo, 5, 432
circuits, 108–117

buffer circuits, 345, 353
coupling, 123
current division, 112
digital multimeters, 106
diode clamping, 342–343
diodes, 117–118
hysteresis, 132–133
implementing, 113–114
LEDs, 118–121
measurements, 114–115
Ohm’s Law, 109–110
short circuits, 110
voltage division, 110–112
voltage regulation example, 115–117

classes, 187–197. See also specifi c classes
encapsulation, 189–190
I2C devices, wrapping, 288–290
inheritance, 190–191

client.cpp fi le, 413

clock phase, SPI, 292, 293
clock plolarity, SPI, 292, 293
clock stretching, 278
clock.sh fi le, 501
clockAndTemp.sh fi le, 501
cloning Git repositories, 93, 95–96
Cloud9 IDE, 5, 48, 50–51
clpru, 536–538
CMU Sphinx Speech Recognition

Toolkit, 501–502
Code Composer Studio v6, 536
Coley, Gerald, 5, 7
combinational logic, 133, 134
common anode displays, 354
common cathode displays, 354
Common Gateway Interface (CGI)

scripts, 391–392
common-mode voltage, 423
comparator circuit, 144
compiled languages, 160–161, 164
computer vision, 483, 486–488
computer-mode emulation, 258
ConnectionHandler.cpp fi le, 462
ConnectionHandler.h fi le, 461
const keyword, 177
constants tables, 519
constructors, 194
continuity test, 114
conventional fl ow notation, 117
coupling, 123
cp command, 39
cppMail.cpp fi le, 410–411
cppstrings.cpp fi le, 183–185
CPS (cyber-physical systems), 382.

See also Internet of Things
CPU frequency setup, 153
cron scheduler, 402–405
crontabs, 402–405
cross-compilation environments

building custom Linux distribution,
271–273

installing change root, 257–260
setting up toolchain, 251–255
third-party libraries, 255–257
using Eclipse, 260–271

548 Index ■ D–D

cross-compiling Qt applications,
468–471

CS (chip select) line, SPI, 291
cstrings.c fi le, 180–181
current, 109

current sink, 140
current source, 140
division, 112
forward current, 119
shoot-through, 329

current divider circuit, 112
current divider rule, 112
current-limiting resistors, 119–120
cyber-physical systems (CPS), 382
Cython, 152

D

d (directory) fi le type, 69
D (drain), 127
daemons, 364
Das U-Boot, 59, 61
datagram sockets, 395
date command, 42–44
DC motors, 327–333

controlling using C++, 331–333
controlling using sysfs, 330–331
driver circuit, 329–330

DCA (DC current), 114
DCMotor class, 331–333
DCMotor.h fi le, 332
DCMotorApp.cpp fi le, 332–333
DCV (DC voltage), 114
dd command, 78
Debian, 24–25

Apache web server, 389
Bluez Bluetooth stack, 386–387
building custom Linux distribution,

271–273
busybox utility, 92
cross-compilation toolchain, 252–255
debootstrap, 257–258
debums utility, 89
I2C buses, 280
i2c-tools, 280–286

Java application execution, 166–167
multiarch installations, 256–257
package management, 44–45
PRU-ICSS support, 511
root logins, 31, 67
runlevels, 64
sudo requirement, 38
tightvncserver, 433
VirtualBox, 102–103
watchdog timers, 416–418

Debian Package Management System
(DPKG), 44–45

debootstrap, 257–258, 257–259
debsums, 89
debugging

PRU Debugger, 535–536
remote debugging with Eclipse,

266–269
decoupling capacitors, 123
depletion layer, 117
dereference points, 178–180
desktop virtualization, 102–103
destructors, 194
dev directory, 76
device tree, 61, 219–226

DTOs (device tree overlays), 221–226
FDT (fl attened device tree), 219–221

device tree binary, 61
device tree compiler (dtc), 61, 221, 222
device tree overlays (DTOs), 221–222

compiling/deploying, 222
loading, 223–224, 226
PRU-ICSS, 509–511
removing, 225–226
writing, 221–222

devman2, 61, 214, 218–219, 523
df command, 75, 77, 78
DHCP (Dynamic Host Confi guration

Protocol), 29–30, 422–423
dielectric material, 122
diff command, 87–88
differential signaling, 423
Digilent Analog Discovery, 107, 125,

126, 131–132, 285, 300, 315–326, 526

 Index ■ E–E 549

digital multimeters (DMMs), 106,
114–115

diodes, 117–118. See also LEDs
diode clamping, 342–343
diode clamping circuits, 342–343
kickback diodes, 328
Zener, 117, 328, 329

directories. See also specifi c directories
archiving, 88
basic Linux commands, 38–39, 75–82
change root, installing, 257–259
fi le system permissions, 74–75
linking to, 69–70

display modules, 354–363
character LCD modules, 359–363
seven-segment displays, 354–359

distributed version control system
(DVCS), 93–94

dmesg command, 82, 85, 244
DMMs (digital multimeters), 106,

114–115
DNS, dynamic, 33–34
doping, 117
Doxyfi le, 270, 271
Doxygen, 269–271
DPKG (Debian Package Management

System), 44–45
drain (D), 127
drivers

BBB DC motor driver circuit,
329–330, 335–336

Debian’s watchdog driver support,
416–418

EasyDriver stepper motor, 334–336
Dropbear, 33
dtc (device tree compiler), 61, 221, 222
DTOs. See device tree overlays
du command, 78, 84, 86
duty cycle, 120, 232–233, 529–530
DVCS (distributed version control

system), 93–94
dynamic DNS, 33–34
dynamic IP addresses, 30
dynamic link libraries, 376

dynamic translation, 161
dynamic typing, 158–159
dynamic web content, 390–392
Dynamic Host Confi guration Protocol

(DHCP), 29–30, 422–423

E

e-mail, sending from BBB, 409–411
E-paper, 359
EasyDriver board, 334–338
EBB-GPIO-Example.dts fi le, 221–222
EBB-PRU-Example.dts fi le, 510
echo command, 86–87, 155
Eclipse, cross-compilation, 260–271

automatic documentation, 269–271
confi guring Eclipse, 261–263
installing Eclipse, 260–261
integrating GitHup, 265–266
remote debugging, 266–269
Remote System Explorer, 263–265

Eclox plug-in, 271
EGP (enhanced GPIO) block, PRU-

ICSS, 507
electrolytic capacitors, 122
electromechanical relays (EMRs),

338–340
electron current fl ow, 117
electronics

analog-to-digital conversion, 141–146
circuit principles, 108–117
discrete components, 117–133
logic gates, 133–141
recommended equipment, 105–108

elif keyword, 156
embedded Linux, 55–58
Emdebian (Embedded Debian), 24
emit keyword, 447
EMRs (electromechanical relays),

338–340
encapsulation, 189–190
enhanced GPIO (EGP) block, PRU-

ICSS, 507
env command, 40–41
environment variables, 40–41

550 Index ■ F–G

etc directory, 76
Ethernet cables, 15, 26, 30–31
event loop, Node.js, 163–164
event-driven programming model,

437–438
extundelete command, 40

F

face detection, 486–488
face.cpp fi le, 487–488
Fairchild Semiconductor BS270

N-Channel Enhancement Mode
FET, 128, 204

fan-out, 140–141
fat-client applications, 435, 455–458,

463–468
fdisk command, 79
FDT (fl attened device tree), 219–221
feedback, 146
fg command, 91
fi eld effect transistors (FETs), 127–128
fi eld-programmable gate arrays

(FPGAs), 506
fi les

archiving, 88
differences between, checking, 87–88
editing, 41–42
fi le system commands, 38–40
fi nding, 81
hash code, checking, 88–89
linking to, 69–70
ownership, 72–74
permissions, 74–75
transferring using PuTTY, 35–36

fi ltering commands, 84–86
find command, 81
fl attened device tree (FDT), 219–221
fl oating inputs, 137–138
fl yback diode, 328
foreground processes, 90–92
forward current, 119
forward voltage, 119–120, 342–343
forward-biased diodes, 117
four-wire SPI, 292

FPGAs (fi eld-programmable gate
arrays), 506

fswebcam.conf fi le, 477
ftp (fi le transfer protocol), 35

psftp (PuTTY secure fi le transfer
protocol), 35

sftp (SSH fi le transfer protocol), 33,
36

full-duplex SPI, 291
function pointers, 236
functions

callback functions, 163, 235–236
function pointers, 236
GNU C Library, 195–197
namespaces and, 184
parameters, 170
passing values to, 185–186
POSIX threads, 236–238
program counter, 163

G

G (gate), 127
gadget serial devices, 26, 364–365
gate (G), 127
gattool, 387
gdbserver, 266
general-purpose computing, 428–431
general-purpose input/outputs. See

GPIOs
getty command, 311, 365
GIMP Toolkit (GTK+), 435–441
Git, 93–101

cloning repository, 93, 95–96
committing to local repository, 97
creating branches, 98–100
deleting branches, 100
merging branches, 100
pushing to remote repository, 97–98
staging area, 96–97
working directory, 96

git add command, 96–97, 99, 101
git branch command, 98–100, 101
git checkout command, 101
git clone command, 95–96, 101

 Index ■ H–H 551

git commit command, 97, 99, 101
git diff command, 101
git fetch command, 101
git init command, 101
git log command, 101
git merge command, 100, 101
git mv command, 101
git pull command, 101
git push command, 97–98, 101
git rm command, 101
git show command, 101
git status command, 96, 101
git tag command, 101
GitHub, 94, 95, 104

Eclipse integration, 265–266
GNU C Library (glibc), 62–63,

195–197
GNU GPL (General Public License),

57–58
GNU nano editor, 41–42
Google

Dart, 394
IFTTT (If This Then That) web

service, 411–412
Native Client, 35
translation service, 499–500
V8 engine, 161

governors, 153
GPIO-KEYS overlay, 243–246
GPIO.cpp fi le, 215, 242
GPIO.h fi le, 215–216, 239–240
GPIOs

bit-banging, 318
C++ class example, 214–217, 235–243
callback functions, 235–236
confi guration, 208–214
digital input, 207–208
digital output, 204–207
GPIO-KEYS overlay, 243–246
interfacing methods, 202
Linux device tree, 219–226
Linux poll, 238–239
memory-based switching, 218–219
POSIX threads, 236–238

sysfs fi le, polling, 235–248
without using sudo, 247–248

grep command, 85
groups, 71–74
GTK+, 435–441
GTKsimple.cpp fi le, 436–437
GTKtemperature.cpp fi le, 438–439

H

H-bridge, 329–330
half duplex SPI, 307
half-wave rectifi er circuits, 118
hard fl oats, 253–254
hard links, 69–70
hard real-time systems, 504
hardware, 8–14. See also physical

environment interaction
accessories, 14–18
architectures

general-purpose computing, 428–430
LCD touch screen display, 428,

431–432
remote fat-clients, 428, 435
virtual network computing, 428,

432–435
capes, 19–20
destroying, 20–22
I2C hardware, 277–279
SPI hardware, 291–293

hash code, checking, 88–89
hcitool command, 372
HDMI

audio playback devices, 491–493
cables, 15–16
micro-HDMI-to-VGA adapters, 17–18

head command, 85
Hello World

C/C++ example, 169–170
GTK+ example, 436–437
PRU-ICSS example, 508, 512–516
Qt example, 442–443

hello.php fi le, 393
helloworld.c fi le, 169
helloworld.cpp fi le, 169–170, 171–172

552 Index ■ I–I

HelloWorld.js fi le, 48–49
hexpru, 536–538
holding current, 116
home directory, 76
hosted hypervisors, 102–103
hybrid languages, 164
hypervisors, 102–103
hysteresis, 132–133

I

I2C buses, 276–290
ADXL345 accelerometer, 279–280,

300–308
C programming example, 286–288
capacitance effects, 277–278
detecting devices, 280–281
hardware, 277–279
JOHN superscript 2
Linux i2c-tools, 280–286
reading register values, 281–285
setting registers, 285
vs. SPI, 292
wrapping with C++ classes, 288–290

i2c-tools, 280–286
i2cdetect command, 280–281
I2CDevice class, 288–290
I2CDevice.h fi le, 289
i2cdump command, 281–283
i2cget command, 283–285
i2cset command, 285–286
If This Then That (IFTTT), 411–412
ifconfig command, 29, 30, 420
IFTTT (If This Then That), 411–412
IIC (Inter-Integrated Circuit). See I2C
images

capturing, 474–482
processing, 483–486

impedance, 144
#include directive, 169
inductive kickback, 328
infrared distance sensing, 349–354
inheritance, 190–191
inode index, 68
inode table, 68

inodes, 68
inputs. See also GPIOs

analog inputs, 226–231
digital inputs, 207–208
fl oating, 137–138

instruction pointer, 119, 163
INTC (interrupt controller) block,

PRU-ICSS, 507
Inter-Integrated Circuit. See I2C
inter-process communication, 396
interconnecting logic gates, 140–141
internal pull-up/pull-down resistors,

138–139, 208–209
Internet of Things, 381–426

communications architectures
TCP/IP client/server, 383, 412–415
web client, 382, 383, 394–399
web sensors, 399–411
web server, 382, 383, 388–394

overview, 381–383
physical networking, 418–425
remote device management,

415–418
sensors, 384–388

Internet radio playback, 493–494
Internet-over-USB, 15, 26–28, 43–44
interpreted languages, 153–161

advantages/disadvantages, 160–161
Bash, 155–157
Perl, 157–158
Python, 158–160

interrupt controller (INTC) block,
PRU-ICSS, 507

IntoCircuit Power Castle, 423
inverters, 125–126
inverting input (–), 143
IoT. See Internet of Things
IP addresses, 395

dynamic, 30
static, 422–423

iPazzPort Bluetooth keyboard and
touchpad, 430–431

IRdistance.cpp fi le, 352
IS-A test, 191

 Index ■ J–L 553

J

Java, 164–167
Java Runtime Environment (JRE), 164,

261
Javadoc, 269
JavaScript, 161–164
JIT (just-in-time) compilation, 161,

165
jitter, 504
JK fl ip-fl ops, 135, 136–137
JRE (Java Runtime Environment),

164
just-in-time (JIT) compilation, 161,

165

K

Kernel Confi guration Tool, 272–273
kernels

atomic operations, 195
custom kernels, 271–273
for embedded systems, 55–56
kernel modules, 62–63
kernel space, 62–63
loadable kernel modules (LKMs), 63,

371–372
message logs, 92
real-time, 504–505
run-time state, 195
sysfs. See sysfs
version numbers, 37

keyboard shortcuts
GNU nano editor, 42
Linux shells, 39

keyboards
Bluetooth. See Bluetooth
Linux virtual keyboard devices,

243–246
USB, 18, 430

kickback diode, 328
kill command, 91–92
Kirchoff’s current law, 112
Kirchoff’s voltage law, 111
knee voltage, 117
Kridner, Jason, 5, 51, 219, 221

L

l (link) fi le type, 69
LAME MP3 encoder, 495
LAMP servers, 393
LCD capes, 19
LCD controller (LCDC), 431
LCDApp.cpp fi le, 362–363
LCDCharacterDisplay.h fi le, 361
LDR (light-dependent resistor),

228–231
lease time, DHCP, 30
ledButton.c fi le, 515
ledButton.p fi le, 524
LEDExample.java fi le, 165
LEDs (light-emitting diodes), 118–121

BBB on-oboard LEDs, 45–47
GPIO digital output example,

204–207
PRU example, 512–516

less command, 82
level shifting, 139, 323
lib directory, 76
Libav, 482, 483, 490, 496
libxively, 407–409
light-dependent resistor (LDR),

228–231
light-emitting diodes. See LEDs
Lightweight X11 Desktop

Environment (LXDE), 434
linear actuators, 326
Linux

Bluez Bluetooth stack, 386–387
commands, 37. See also specifi c

commands
date/time, 42–44
environment variables, 40–41
fi le-system, 38–40
fi rst-step, 37–38
package-management, 44–45

cron daemon, 402–405
cross-compilation toolchain, 251–255
device tree. See device tree
distributions, 24–25
Git. See Git

554 Index ■ M–M

Linux (continued)
i2c-tools, 280–286
keyboard shortcuts, 39
loopback virtual network interface,

398
network sharing, 29
processes, 89–93
termios library, 316–317
version, determining, 37
virtual consoles, 431
virtual keyboard devices, 243–246
watchdog timers, 416–418, 417–419

Linux fi le system
administration, 68–75
commands, 38–40
permissions, 74–75
root account, 67–68

Linux-dash, 416
listener functions. See callback

functions
listing processes, 89–90
little-endian binary fi les, 511–512, 514
LM358 Dual Operational Amplifi er,

144
loadable kernel modules (LKMs), 63,

371–372
local variables, 175
logic gates, 133–141

fan-out, 140–141
fl oating inputs, 137–138
interconnecting, 140–141
open-collector outputs, 139–140
open-drain outputs, 139
pull-up, pull-down resistors, 138–139

logic-level translation, 321–323
logins, 37

root, 37, 67–68
SSH. See SSH
Ubuntu, 31

Logitech webcams, 18, 474
LogMeIn Xively, 405–409
loopback virtual network interface,

398
lost+found directory, 76

ls command, 38, 40, 65, 68, 75, 86
lsblk command, 77–78
lsmod command, 475
lsusb command, 419, 475, 491
LXDE (Lightweight X11 Desktop

Environment), 434

M

MAC (multiplier with optional
accumulation) block, PRU-ICSS, 507

Machinekit, 505
magic-number code, 156
MagJack, 425
main() function, 169–170
main.cpp fi le, 449
mainwindow.cpp fi le, 451–452
mainwindow.h fi le, 450
makefi les, 439–441
makeLED.c fi le, 181–183
makeLED.cpp fi le, 186
makeLEDmulti.cpp fi le, 186–187
makeLEDs.cpp fi le, 192–194
master in-slave out (MISO) line, SPI,

291
master out-slave in (MOSI) line, SPI,

291
McASP (multichannel audio serial

port), 490
md5sum command, 88–89
media directory, 76
merging Git branches, 100
methods

overloading, 191
overriding, 190–191

micro-HDMI-to-VGA adapters, 17–18
micro-SD cards, 14
minicom, 311–312, 314–316, 375
MISO (master in-slave out) line, SPI,

291
MIT App Inventor, 374–375
mkdir command, 38
mkfs command, 79
mmode (multiplexer mode), 210–214
mnt directory, 76

 Index ■ N–O 555

momentary push button switches,
130–131

more command, 38, 39, 82
MOSI (master out-slave in) line, SPI,

291
motors

DC motors, 327–333
servo motors, 233–235, 326, 327
stepper motors, 333–338

mount command, 78, 79, 80–81
MPlayer, 490

audio playback, 492, 498
installing, 490
Internet radio playback, 493–494,

498–499
online text-to-speech, 500

multi-call binaries, 92–93, 186–187
multi-threaded server applications,

458–462
multi-user modes, 64, 65
multiarch packages, 255–257
multichannel audio serial port

(McASP), 490
multiplexed pins, 202
multiplexer mode (mmode), 210–214
multiplier with optional accumulation

(MAC) block, PRU-ICSS, 507
Multithreaded Temperature Service,

461–462
mv command, 36, 39

N

n-body benchmark code, 151
namespaces, 184
nano editor, 41–42
negative feedback, 146
Nelson, Robert C., 272
networking

audio streaming, 496–499
communications overview, 395–396
connections, 26–31
Internet of Things, 418–425
Linux desktop network sharing, 29
Node.js, 48–50, 161–164

OpenSSL, 398–399
Remote System Explorer, 263–265
Secure Shell (SSH), 33–37, 49–51,

453–454
SensorTag, 385–388
video streaming, 482–483
virtual network computing, 432–434
Wi-Fi adapters, 18

nibbles, 359
nmap command, 30
Node.js, 48–50, 161–164. See also

BoneScript
nodejsLED.js fi le, 161–162
noise margin, 135–136
non-inverting (+) input, 143
Notepad, 112
Notepad++, 59, 156
NTP (Network Time Protocol), 42–44
ntpdate, 43–44
Nyquist’s sampling theorem, 142

O

object-oriented programming, 187–194
classes, 188–189
encapsulation, 189–190
inheritance, 190–191
LED fl ashing code, 191–194
objects, 188–189

OCP master port block, PRU-ICSS
offl ine text-to-speech, 500
offlineClock.sh fi le, 501
Ohm’s Law, 109–110, 111
OLED (organic LED), 359
on-board LEDs, 45–47
online text-to-speech, 499–500
OOP. See object-oriented

programming
op-amp clamping, 343–345
open-collector outputs, 139–140
open-drain outputs, 139
OpenCV (Open Source Computer

Vision), 483–488
OpenSSL, 398–399
operational amplifi ers, 142, 143–146

556 Index ■ P–P

operators, C/C++, 174–177
opkg command, 45
opt directory, 76, 84
opto-isolators, 128–130
optocouplers, 128–130
organic LED (OLED), 359
oscilloscopes, 106–108
output stream (>>) symbol, 83, 170
outputs. See also GPIOs

analog, 231–235
digital, 204–207

overlays. See device tree overlays
overloading methods, 191
overriding methods, 190–191

P

P8/P9 headers, 13–14, 203
GPIO confi guration, 208–214
interfacing with

analog inputs, 226–231
analog outputs, 231–235
digital input, 207–208
digital output, 204–207

warnings for use, 21, 203–204
PaaS (platform as a service), 383,

405–409
package managers, 44–45
Pacman, 44
parity bit, UART, 310
pasm assembler, 512, 514
passing.cpp fi le, 185–186
passive components, 108
Passive PoE Injector Cable Set

(Adafruit), 424
passwords
passwd command, 37, 67, 68, 72
superuser, 31, 37

pChart, 400
PEMs (power extraction modules),

424–425
periodic signals, 121
Perl, 157–158
perlLED.pl fi le, 158
permissions, fi le system, 74–75

PHP scripts, 392–393
phpChart, 400
physical environment interaction

actuators, 326–340
analog sensors, 340–354
display modules, 354–363
remote control BeagleBone, 363–375

Pico Android TTS engine, 500
PicoScopes, 107
pipe (|), 83–84
pkg-config, 437
pkill command, 92
platform as a service (PaaS), 383,

405–409
PMIC (Power Management IC), 115
pn-junction, 117
PocketSphinx, 501–502
PoE (power over Ethernet), 423–425
pointerarray.c fi le, 179–180
pointers, 177–180

function pointers, 236
passing by, 185
with objects of a class, 191

pointers.c fi le, 177–178
poll.h fi le, 238–239
polymorphism, 191
port forwarding, 422
port mapping, 422
port numbers, 389, 395
positive feedback, 146
Positive Temperature Coeffi cient

(PTC), 116
POSIX threads, 236–238
potentiometer (pot), 111–112
power extraction modules (PEMs),

424–425
Power Management IC (PMIC), 115
power over Ethernet (PoE), 423–425
precision actuators. See servo motors
preemptive scheduling, 504–505
private access specifi er, 189–190
proc directory, 76, 195
process information virtual fi le

system, 195

 Index ■ Q–Q 557

processed.cpp fi le, 171
processes, Linux

BusyBox multi-call binary, 92–93
foreground/background, 90–92
listing, 89–90

program counter, 163
propagation delay, 135, 140–141
protected access specifi er, 191
PRU Assembler, 511–512
PRU Code Generation Tools, 536
PRU Debugger (prudebug), 508,

535–536
PRU Debugger User Guide, 508
PRU Event/Status Register (r31), 517
PRU Linux Application Loader API,

508, 511
PRU Linux Application Loader API

Guide, 508
PRU-ICSS

applications of, 521–535
PWM generator, 525–527
regular GPIOs, 522–525
sine wave generator, 527–530
ultrasonic sensor, 530–535

architecture, 506–508
C compiler, 536–538
device tree overlay, 509–511
documentation, 508
enhanced GPIOs, 509
Hello World example, 508–, 512–516
instruction set, 519–521
memory mappings, 517–519
performance tests, 522
PRU-ICSS Package, 511–512
registers, 516–517

prudebug (PRU Debugger), 535–536
ps command, 38, 89–90, 92
psftp (PuTTY secure fi le transfer

protocol), 35
PTC (Positive Temperature

Coeffi cient), 116
Pthreads, 236–238
pthreads.cpp fi le, 237–238
public access specifi er, 189–190

pull-up/pull-down resistors, 138–139,
208–209

pulse width modulated signals. See
PWM signals

PulseAudio, 499
Pura Vida Apps, 375
push buttons, 130–133

GPIO digital input example,
207–208

PuTTY, 32, 34, 35–36
pwd command, 38
PWM signals, 120–121, 231–235

duty cycles, 120–121, 232–233,
529–530

PRU PWM generator, 525–527
servo motor example, 233–235

pwm.c fi le, 525–526, 529
pwm.p fi le, 526–527, 529–530
Python, 158–160
pythonLED.py fi le, 159–160

Q

QEMU, emulating armhf architecture,
258–260

QLabel class, 442
QNX Neutrino RTOS, 505
QObject class, 445–446
Qt, 435–436, 441–442

cross-compiling Qt applications,
468–471

cross-platform development, 453
development tools, 442, 447–448
Hello World example, 442–443
modules, 444–445
QObject base class, 445–446
remote UI application development,

455–468
signals and slots, 446–447
temperature sensor GUI application,

448–452
Qt Creator, 447–452
Qt Designer, 447, 453
quantization, 142
QWidget class, 442

558 Index ■ R–R

R

rail-to-rail operations, 343
rapid switching, 132–133
RC time constant, 131
readLDR.cpp fi le, 230–231
readUptime.cpp fi le, 195
readXively.c fi le, 409
real-time interfacing, 503–539

hard real-time systems, 504
hardware solutions, 505–506
kernels, 504–505
PRU-ICSS

applications, 521–535
architecture, 506–508
C compiler, 536–538
device tree overlays, 509–511
enchanced GPIOs, 509
example program, 512–516
instruction set, 519–521
memory mappings, 517–519
PRU Debugger, 535–536
PRU-ICSS Package, 511–512
registers, 516–517

soft real-time systems, 504
Real-Time Transport Protocol (RTP),

483
RealTerm, 32
reboot command, 48
receive data connection (RXD), 309
recovering fi les, 40
redirection symbols, 82–83
registers

ADXL345 register map, 283
I2C, 281–286
PRU-ICSS registers, 516–517

regular Ethernet, 29–40
relays, 338–340
remote control BeagleBone, 363–375

Bluetooth, 370–375
custom service on boot, 368–370
managing services with systemd,

364–365
serial connection to desktop, 366–368

remote debugging, 266–269

remote desktop protocol (RDP), 432
remote IoT devices, managing,

415–418
Remote System Explorer (RSE),

263–265
remote UI application development,

455–468
fat-client as server, 463–468
fat-client Qt GUI application,

455–458
multi-threaded server applications,

458–462
removeTrigger function, 156–157
Replicape, 19
repositories, Git, 94

cloning, 93, 95–96
committing to local, 97
pushing to remote, 97–98

rescue mode, 65
resistance, 109
resistors

current-limiting, 119–120
pull-up, pull-down, 138–139, 208–209
serial resistors, 278
termination resistors, 278–279

reverse-biased diodes, 117
rfcomm utility, 373–374
rich UIs

application development
GIMP Toolkit (GTK+), 435–441
Qt, 441–454
remote UI application development,

455–468
BBB hardware architectures, 428–435

fat-client applications, 428, 429, 435
general-purpose computing,

428–431
LCD touch screen display, 428, 429,

431–432
virtual network computing, 428,

429, 432–434
ripple injection, 116
RISC instruction set architecture, 519
rm command, 38, 70

 Index ■ S–S 559

RMS (root mean square) calculation,
106

root account, 67–68
setting password, 37

root directory, 76
root mean square (RMS) calculation,

106
RSE (Remote System Explorer),

263–265
rsync, 453–454
RTP (Real-Time Transport Protocol),

483
run directory, 76
runlevels, 63–65
RXD (receive data connection), 309

S

S (source), 127
sampling rate, 141, 142
sampling resolution, 142
saturated transistors, 125
Saunby, Mike, 388
sbin directory, 76
Schmitt trigger, 132–133
SCL (Serial Clock) line, 276–279
scp (secure copy), 453–454
scratchpad (SPAD) block, PRU-ICSS,

507
scripting languages, 153–161

advantages/disadvantages, 160–161
Bash, 154, 155–157
Perl, 154, 157–158
Python, 154, 158–160

SDA (Serial Data) line, 276–279
secure copy (scp), 453–454
Secure Shell (SSH), 33–37, 49–51,

453–454
Secure Sockets Layer (SSL), 398–399
selinux directory, 76
sensors, 384–388

analog sensors, 340–354
ADXL335 conditioning, 353–354
vs. digital sensors, 341–342
example types/applications, 341

infrared distance sensing, 349–353
protecting ADC inputs, 342–345
signal conditioning, 345–349

SensorTag, 384, 385–388
temperature sensors

Analog Devices TMP36, 384–385
Bluetooth, 500–502
GTK+ application, 438–441
Multithreaded Temperature

Service, 461–462
Qt GUI application example,

448–452, 455–458
ThingSpeak example, 400–402

ultrasonic distance sensor, PRU,
530–535

separate compilation, 215–217
sequential logic, 133, 136–137
Serial Clock (SCL) line, 276–279
serial connections, 31–33

BeageBone to Arduino, 314–321
remote control BeagleBone, 363–375
Serial Peripheral Interface. See SPI

buses
UART. See UART buses
over USB, 31–33
USB-to-serial UART TTL, 16–17, 33,

59
Serial Data (SDA) line, 276–279
Serial Peripheral Interface. See SPI

buses
serial resistors, 278
server.cpp fi le, 414
serversettingsdialog.cpp fi le,

457–458
serversettingsdialog.h fi le,

456–457
serverthread.cpp fi le, 464–465,

466–467
servo motors, 233–235, 326, 327
seven-segment displays, 354–359
SevenSegmentApp.cpp fi le, 357–358
SevenSegmentDisplay class,

356–359
SevenSegmentDisplay.h fi le, 356–357

560 Index ■ S–S

SFTP (SSH File Transfer Protocol), 33,
36

sha-bang (#!), 156
shoot-through current, 329
short circuits, 110
short.c fi le, 172–174
short.cpp fi le, 173–174
short2.cpp fi le, 173
shutdown command, 47–48
shutting down BBB, 21, 47–48
signal conditioning, 345–349
signals and slots, 446–447
simple mail transfer protocol (SMTP)

409-411
simpleQT.cpp fi le, 442–443
SimpleWebServer.js fi le, 49–50
sine wave generator, PRU, 527–530
single pole, double throw (SPDT)

switches, 130, 132
single pole, single throw (SPST)

switches, 130, 132, 207
single-user mode, 64–65
Sitara AM335x microprocessor, 11–14

ball grid array, 10, 123
GPIO pin confi guration settings,

209–214
hard-fl oat operations, 253
internal pull-up/pull-down resistors,

208–209
LCD controller, 431
maximum input impedance, 345
memory-based GPIO switching,

218–219
NEON SIMD engine, 486
PRU-ICSS Package, installing/

upgrading, 512
reading memory values directly, 61
Technical Reference Manual, 8

sizeofvariables.c fi le, 175
slave select (SS) line, SPI, 291
smoothing capacitors, 121–123
SMTP (simple mail transfer protocol),

409-411
Snap, 5

snapshots, Git, 94
SocketClient class, 401–402, 412–413
SocketClient.h fi le, 401
sockets, 395
SocketServer class, 414–415
SocketServer.h fi le, 414
soft fl oats, 253–254
soft links, 69–70
soft real-time systems, 504
solid-state relays (SSRs), 338–340
sort command, 83, 84
source (S), 127
SPAD (scratchpad) block, PRU-ICSS, 507
SPDT (single pole, double throw)

switches, 130, 132
speaker-test utility, 492
SPI buses, 291–309

74HC595 example, 296–300
bidirectional communication in C++,

300–308
communication modes, 292–293
enabling, 294–295, 301
hardware, 291–293
vs. I2C, 292
on the BBB, 293–296
sharing with multiple slave devices,

308–309
testing, 295–296
wrapping with C++ classes, 303–307

spi595.c fi le, 298–300
SPIDevice.h fi le, 305
spiv_test.c fi le, 295–296
SPST (single pole, single throw)

switches, 130, 132, 207
SRM (System Reference Manual), 7
srv directory, 76
SS (slave select) line, SPI, 291
SSH (Secure Shell), 33–37, 49–51,

453–454
SSH File Transfer Protocol (SFTP), 33,

36
SSL (Secure Sockets Layer), 398–399
SSRs (solid-state relays), 338–340
staging area, Git, 96–97

 Index ■ T–T 561

standard input (<) symbol, 82–83
standard namespace, 184
standard output (>) symbol, 82–83
start bit

I2C, 282
UART, 309–310

START.htm fi le, 25
StarterWare, 505
stat command, 73, 75
static IP addresses, 422–423
static web content, 390
statically typed languages, 159
stdio.h fi le, 169, 183
stepper motors, 333–338
StepperMotor class, 336–338
StepperMotor.cpp fi le, 336–337
StepperMotorApp.cpp fi le, 337–338
sticky bit, 75
stop bit

I2C, 282
UART, 310

stream sockets, 395
streaming

audio
Bluetooth A2DP, 496–499
Internet radio, 493–494
network streaming, 496

video, 482–483
streamVideoUDP script, 487
strings

C/C++, 180–181, 183–185
echoing, 86–87

strongly typed languages, 159
Stroustrup, Bjarne, 167
su command, 67–68
sudo command, 38, 67–68

using GPIOs without, 247–248
superuser. See root account
support resources, 22
switches, 130–133

FETs as, 127–128
optocouplers, 128–130
SPDT (single pole, double throw),

130, 132

SPST (single pole, single throw), 130,
132, 207

switch bounce, 130–133
transistors as, 124–127

symbolic links, 69–70
synchronizing code blocks, 163
sys directory, 76
syscall function, 195–197
syscall.cpp fi le, 196–197
sysfs

ADC voltage levels, reading, 229–230
DC motors, controlling, 330–331
LED mappings, 46–47
polling problems, 235–248
servo motors, controlling, 234–235

system administration, 68–75
fi le ownership, 71–74
fi le system permissions, 74–75
sudo command, 38, 67–68
symbolic links, 69–70

system call interface, 62
system crontab, 402–403
System Reference Manual (SRM), 7
System V init (SysVinit), 63–66
systemd, 63, 66, 364–365

T

tail command, 85
tar command, 88
TcL (Tool Command Language), 166
TCP server, 412–414
TCP sockets, 455–458
tee command, 84
teletype, 311
temperature sensors

Analog Devices TMP36, 384–385
Bluetooth, 500–502
GTK+ application, 438–441
Multithreaded Temperature Service,

461–462
Qt GUI application example,

448–452, 455–458
ThingSpeak example, 400–402

termination resistors, 278–279

562 Index ■ U–U

termios library, 316–317
test_gpiokeys.cpp fi le, 246
test_syspoll.cpp fi le, 240–241
testADC.cpp fi le, 349
testADXL345.c fi le, 286–288
testBBB.c fi le, 537
testBoost.cpp fi le, 489
testPRU.c fi le, 537
testWatchdog.c fi le, 417–418
Texas Instruments

PRU Code Generation Tools, 536
SensorTag, 384, 385–388
Sitara AM335x microprocessor. See

Sitara AM335x microprocessor
text-to-speech, 499–502
thick-client applications, 435
thin-client applications, 435
ThingSpeak, 400–402
thingSpeak.cpp fi le, 401–402
three-wire SPI, 307–308
tightvncserver, 433
TLS (Transport Layer Security), 398
tmp directory, 68, 74–75, 76
TMP36 analog sensor (Analog

Devices), 384–385
Tool Command Language (TcL), 166
toolchain, cross-compilation,

251–255
top command, 38, 206
torque, 327
Torvalds, Linus, 24, 93, 219
touch command, 39
transducers. See sensors
transistors, 123–128

fi eld effect transistors, 127–128
saturated, 125
as switches, 124–127

translation service (Google), 499–500
transmission line capitance, 278
transmit data connection (TXD), 309
Transport Layer Security (TLS), 398
tripping current, 116
TTS (text-to-speech), 499–502
TTY (teletype), 311

TXD (transmit data connection), 309
typedef keyword, 177

U

u-boot.img fi le, 59
UART buses, 309–321

advantages/disadvantages, 318
Arduino example, 312–321
on the BBB, 310–312

uart.c fi le, 319–320
Ubuntu, 25

Java application execution, 166–167
package management, 44–45
root logins, 31, 67
sudo requirement, 38

udev rules, 247–248
udevd, 247
UDP (user datagram protocol), 395

audio streaming over, 496
video streaming over, 482–483

UEFI (Unifi ed Extensible Firmware
Interface), 58

uEnv.txt fi le, 59
ultrasonic distance sensor, PRU, 530–535
ultrasonic.c fi le, 532–533
ultrasonic.p fi le, 533–535
umask command, 73
umount command, 79
uname command, 37
Unifi ed Extensible Firmware Interface

(UEFI), 58
unity-gain buffer, 146
universal asynchronous receiver/

transmitter. See UART buses
universal gates, 139
uptime command, 38
USB

audio playback devices, 491–493
battery pack solutions, 423
hubs, 17
Internet-over-USB, 15, 26–28, 43–44
serial connections over, 31–33
webcams, 18, 474–476
Wi-Fi adapters, 419–422

 Index ■ V–X 563

USB-to-serial UART TTL serial cables,
16–17

user accounts, 71–74
creating, 71–72
crontab fi les, 404–405
fi le ownership, changing, 72–74

user datagram protocol. See UDP
user space, 62–63
user-mode emulation, 258
usr directory, 76

V

V4L2 (Video4Linux2), 476–483
Valent F(x) LOGi-Bone FPGA cape,

19–20
Valent F(x) LOGi-Bone FPGA

development board, 506
var directory, 76
variable resistors, 111–112
variables, 174–177

C/C++, 174–177
local variables, 175
pointers, 177–180, 185

video
capturing, 474–482
streaming, 482–483

Video4Linux2 (V4L2), 476–483
virtual consoles, 431
virtual keyword, 194
virtual machines (VMs), 102–103
virtual network computing (VNC),

432–434
VirtualBox, 102–103
virtualization, 102–103
visual design editor, Qt Creator, 447–448
visudo command, 67
VMs (virtual machines), 102–103
VMware Player, 102–103
VNC (virtual network computing),

432–434
void* pointer, 180
volatile keyword, 177
voltage, 109

common-mode voltage, 423

digital multimeters, 106, 114–115
division, 110–112, 345–346
forward voltage, 119–120, 342–343
knee voltage, 117
noise margin, 135–136
Ohm’s Law, 109–110
oscilloscopes, 106–108
regulation, 115–117
short circuits, 110

voltage follower, 146

W

watch command, 92
watchdog timers, 416–418
wavemon, 44, 45, 89
wc command, 84–85
web client architecture, 382, 383,

388–394
web sensor architecture, 399–411
web servers

Apache. See Apache web server
BBB web server architecture, 382,

383, 388–394
connecting to, 27–28
Node.js example, 49–50

webBrowserSSL.c fi le, 399
webcams, 18, 474–476
WebClient.c fi le, 396–398
whereis command, 81–82
whoami command, 38
Wi-Fi

adapters, 18, 419–422
standards, 418–419

wireless network adapters, 419–422
Wireshark, 496
WordPad, 59, 112
working directory, Git, 96
WPA passphrases, 420–421

X

X Window System, virtual consoles
and, 431

xapt command, 256
xargs command, 86

564 Index ■ Z–Z

Xenomai, 505
xeyes display, 433–434
Xively, 405–409
xivelySensor.c fi le, 408
xterm window, 433–434

Z

Zener diode, 117, 328, 329
Zennmap, 30
Zoom H1 Handy Recorder, 495

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

	Exploring BeagleBone
	About the Author
	About the Technical Editors
	Credits
	Acknowledgments
	Contents
	Introduction
	Part I BeagleBone Basics
	Chapter 1 The BeagleBone Hardware
	Introduction to the Platform
	Who Should Use the BeagleBone
	When to Use the BeagleBone
	When You Should Not Use the BeagleBone

	BeagleBone Documentation
	The BeagleBone Hardware
	BeagleBone Versions
	The BeagleBone Black Hardware

	BeagleBone Accessories
	Highly Recommended Accessories
	Micro-SD Card (for Flashing the BBB)
	External 5V Power Supply (for Flashing and Peripherals)
	Ethernet Cable (for Network Connection)
	HDMI Cable (for Connection to Monitors/Televisions)
	USB to Serial UART TTL 3.3 V (for Finding Problems)

	Optional Accessories
	USB Hub (to Connect Several USB Devices to a USB Host)
	Micro-HDMI to VGA adapters (for VGA Video and Sound)
	Wi-Fi Adapters (for Wireless Networking)
	USB Webcam (for Capturing Images and Streaming Video)
	USB Keyboard and Mouse (for General-Purpose Computing)

	Capes
	How to Destroy Your BeagleBone!
	Summary
	Support

	Chapter 2 The BeagleBone Black Software
	Linux on the BeagleBone
	Linux Distributions

	Communicating with the BBB
	Installing Drivers
	Network Connections
	Internet-over-USB
	Regular Ethernet
	Ethernet Crossover Cable

	Communicating with the BBB
	Serial Connection over USB
	Serial Connection with the USB-to-TTL 3.3 V Cable
	Connecting through Secure Shell (SSH)
	Secure Shell Connections using PuTTY
	Chrome Apps: Secure Shell Client
	Transferring Files Using PuTTY/psftp over SSH

	Controlling the BeagleBone
	Basic Linux Commands
	First Steps
	Basic File System Commands
	Environment Variables

	Basic File Editing
	What Time Is It?
	Package Management
	Interacting with the BBB On-board LEDs
	Shutdown

	Node.js, Cloud9, and BoneScript
	Introduction to Node.js
	Introduction to the Cloud9 IDE
	Introduction to BoneScript

	Summary
	Further Reading

	Chapter 3 Exploring Embedded Linux Systems
	Embedded Linux Basics
	What Embedded Linux Offers
	Is Linux Open Source and Free?

	Booting the BeagleBone
	The BeagleBone Bootloaders
	Kernel Space and User Space
	System V init (SysVinit)

	Managing Linux Systems
	The Super User
	System Administration
	The Linux File System
	Linking to Files and Directories
	Users and Groups
	File System Permissions

	Exploring the File System
	Commands for File Systems
	find and whereis
	more or less

	Linux Commands
	Standard Input and Output Redirection (>, >>, and <)
	Pipes (| and tee)
	Pipes (| and tee)
	Filter Commands (from sort to xargs)
	echo and cat
	diff
	tar
	md5sum

	Linux Processes
	Controlling Linux Processes
	Foreground and Background Processes
	The BusyBox Multi-call Binary

	Other Linux Topics

	Git
	Getting Started with Git
	Cloning a Repository (git clone)
	Getting the Status (git status)
	Adding to the Staging Area (git add)
	Committing to the Local Repository (git commit)
	Pushing to the Remote Repository (git push)

	Advanced Git
	Creating a Branch (git branch)
	Merging the Branch (git merge)
	Deleting a Branch (git branch -d)

	Conclusions on Git

	Desktop Virtualization
	Code for This Book
	Summary
	Further Reading

	Chapter 4 Interfacing Electronics
	Recommended Equipment
	Digital Multimeter
	Oscilloscopes

	Basic Circuit Principles
	Voltage, Current, Resistance, and Ohm’s Law
	Voltage Division
	Current Division
	Implementing Circuits on a Breadboard
	Digital Multimeters (DMMs) and Breadboards
	Example Circuit: Voltage Regulation

	Discrete Components
	Diodes
	Light-Emitting Diodes (LEDs)
	Smoothing and Decoupling Capacitors
	Transistors
	Transistors as Switches
	Field Effect Transistors (FETs) as Switches

	Optocouplers/Opto-isolators
	Switches and Buttons
	Hysteresis

	Logic Gates
	Floating Inputs
	Pull-Up and Pull-Down Resistors
	Open-Collector and Open-Drain Outputs
	Interconnecting Gates

	Analog-to-Digital Conversion
	Sampling Rate
	Quantization
	Operational Amplifiers
	Ideal Operational Amplifiers
	Negative Feedback and Voltage Follower
	Positive Feedback

	Concluding Advice
	Summary
	Further Reading

	Chapter 5 Practical BeagleBone Programming
	Introduction
	Performance of Different Languages
	Setting the BBB CPU Frequency

	Scripting Languages
	Scripting Language Options
	Bash
	Perl
	Python

	JavaScript and Java
	JavaScript and Node.js on the BBB 1
	Java on the BBB

	C and C++ on the BeagleBone
	C and C++ Language Overview
	Compiling and Linking
	Writing the Shortest C/C++ Program
	Variables and Operators in C/C++
	Pointers in C/C++
	C-Style Strings

	LED Flashing Application in C
	The C of C++
	First Example and Strings in C++
	Passing by Value, Pointer, and Reference
	Flashing the LEDs Using C++ (non-OO)

	Writing Your Own Multi-Call Binary

	C++ with Classes
	Overview of Object-Oriented Programming
	Classes and Objects
	Encapsulation
	Inheritance

	Object-Oriented LED Flashing Code
	/Proc—Process Information File System
	GLIBC and Syscall

	Summary
	Further Reading

	Part II Interfacing, Controlling, and Communicating
	Chapter 6 Interfacing to the BeagleBone Input/Outputs
	General-Purpose Input/Outputs
	Introduction to GPIO Interfacing
	GPIO Digital Output
	GPIO Digital Input
	GPIO Confi guration
	Internal Pull-up and Pull-down Resistors
	GPIO Pin Configuration Settings

	C++ Control of GPIOs

	The Linux Device Tree
	The Flattened Device Tree (FDT)
	Device Tree Overlays (DTOs)
	Writing an Overlay
	Compiling and Deploying an Overlay

	The BBB Cape Manager
	Loading a Device Tree Overlay
	Removing an Overlay
	Loading an Overlay on Boot

	Analog Inputs and Outputs
	Analog Inputs
	Enabling the Analog Inputs
	Input Application—A Simple Light Meter

	Analog Outputs (PWM)
	Output Application—Controlling a Servo Motor

	Advanced GPIO Topics
	More C++ Programming
	Callback Functions
	POSIX Threads
	Linux poll (sys/poll.h)

	Enhanced GPIO Class
	GPIO-KEYS
	Using GPIOs without Using sudo

	Summary
	Further Reading

	Chapter 7 Cross-Compilation and the Eclipse IDE
	Setting Up a Cross-Compilation Toolchain
	A Toolchain for Debian
	Testing the Toolchain

	Cross-Compilation with Third-Party Libraries (Multiarch)
	Installing a Change Root
	Installing an armhf Change Root
	Emulating the armhf Architecture

	Cross-Compilation Using Eclipse
	Installing Eclipse on Desktop Linux
	Confi guring Eclipse for Cross-Compilation
	Remote System Explorer
	Integrating GitHub into Eclipse
	Remote Debugging
	Automatic Documentation (Doxygen)
	Adding Doxygen Support in Eclipse

	Building Debian for the BBB
	Summary
	Further Reading

	Chapter 8 Interfacing to the BeagleBone Buses
	Introduction to Bus Communication
	I2C
	I2C Hardware
	The ADXL345 Accelerometer
	Using Linux I2C-Tools
	i2cdetect
	i2cdump
	i2cget
	i2cset

	I2C Communication in C
	Wrapping I2C Devices with C++ Classes

	SPI
	SPI Hardware
	SPI on the BBB
	Enabling the First SPI Bus (SPI0)
	Testing the SPI Bus

	A First SPI Application (74HC595)
	Wiring the 74HC595 Circuit
	SPI Communication Using C

	Bidirectional SPI Communication in C++
	The Second SPI Bus (SPI1)
	The ADXL345 SPI Interface
	Connecting the ADXL345 to the BBB
	Wrapping SPI Devices with C++ Classes
	Three-Wire SPI Communication

	Multiple SPI Slave Devices on the BBB

	UART
	UARTs on the BBB
	The Arduino UART Example
	BeagleBone to Arduino Serial Communication
	Echoing the Minicom Program
	UART Echo Example in C

	UART Command Control of an Arduino

	Logic-Level Translation
	Summary
	Further Reading

	Chapter 9 Interacting with the Physical Environment
	Interfacing to Actuators
	DC Motors
	A BBB DC Motor Driver Circuit
	Controlling a DC Motor Using sysfs
	Controlling a DC Motor Using C++

	Stepper Motors
	The EasyDriver Stepper Motor Driver
	A BBB Stepper Motor Driver Circuit
	Controlling a Stepper Motor Using C++

	Relays

	Interfacing to Analog Sensors
	Protecting the BBB ADC Inputs
	Diode Clamping
	Op-Amp Clamping

	Analog Sensor Signal Conditioning
	Scaling Using Voltage Division
	Signal Offsetting and Scaling

	Analog Interfacing Examples
	Infrared Distance Sensing
	ADXL335 Conditioning Example

	Interfacing to Display Modules
	Seven-Segment Displays
	Character LCD Modules

	Remote Control BeagleBone
	Managing Services with Systemd
	BBB Serial Connection to Desktop
	Starting a Custom Service on Boot
	Bluetooth
	Installing an Adapter
	Loadable Kernel Modules
	Configuring a Bluetooth Adapter
	Making the BBB Discoverable
	Android Application Development with Bluetooth

	Building Dynamic Linked Libraries
	Summary
	Further Reading

	Part III Advanced BeagleBone Systems
	Chapter 10 The Internet of Things
	The Internet of Things (IoT)
	More Sensors (Things!)
	A Room Temperature Sensor
	Texas Instruments SensorTag
	Connecting to Bluetooth Smart Devices
	Building a Linux Package
	Controlling a Bluetooth Smart Device

	The BeagleBone as a Web Server
	Installing a Web Server
	Configuring an Apache Web Server
	Creating Web Pages and Web Scripts
	PHP on the BeagleBone
	Replacing Bone101 with the Custom Web Server

	A C/C++ Web Client
	Network Communications Primer
	A C/C++ Web Client
	Secure Communication Using OpenSSL

	The BeagleBone as a Web Sensor
	ThingSpeak
	The Linux Cron Scheduler
	System crontab
	User crontab

	Xively
	Getting Started with Xively's PaaS
	The Xively C Library

	Sending E-mail from the BBB
	If This Then That (IFTTT)

	The C++ Client/Server
	Managing Remote IoT Devices
	BeagleBone Remote Monitoring
	Linux Watchdog Timer

	IoT Physical Networking
	The BeagleBone and Wi-Fi
	Wireless Network Adapters

	Static IP Addresses
	Power over Ethernet (PoE)
	PoE Power Extraction Modules (PEMs) (Advanced Topic)

	Summary
	Further Reading
	Note

	Chapter 11 BeagleBone with a Rich User Interface
	Rich UI BBB Architectures
	The BBB as a General-Purpose Computer
	Connecting a Bluetooth Input Peripheral

	BBB with a LCD Touch Screen Cape
	Virtual Network Computing (VNC)
	VNC Using VNC Viewer
	VNC with Xming and PuTTY
	VNC with a Linux Desktop Computer

	Fat-Client Applications

	Rich UI Application Development
	Introduction to GTK+ on the BBB
	The “Hello World” GTK+ Application
	The Event-Driven Programming Model
	The GTK+ Temperature Application

	Introduction to Qt on the BBB
	Installing Qt Development Tools on the BBB
	The “Hello World” Qt Application

	Qt Primer
	Qt Concepts
	The QObject Class
	Signals and Slots

	Qt Development Tools
	A Qt Temperature Sensor GUI Application
	Simple Qt Cross-Platform Development

	Remote UI Application Development
	Fat-Client Qt GUI Application
	Multi-Threaded Server Applications
	A Multi-Threaded Temperature Service
	The Fat-Client as a Server
	Parsing Stream Data
	The BBB Client Application

	Cross-Compiling Qt Applications
	Building the Qt Libraries from Source
	Remote Deploying a Test Application

	Summary
	Further Reading

	Chapter 12 Images, Video, and Audio
	Capturing Images and Video
	USB Webcams
	Video4Linux2 (V4L2)
	Image Capture Utility
	Video4Linux2 Utilities
	Writing Video4Linux2 Programs

	Streaming Video
	Image Processing and Computer Vision
	Image Processing with OpenCV
	Computer Vision with OpenCV
	Boost

	BeagleBone Audio
	Core Audio Software Tools
	Audio Devices for the BBB
	HDMI and USB Audio Playback Devices
	Internet Radio Playback
	Recording Audio
	Audio Network Streaming
	Bluetooth A2DP Audio

	Text-to-Speech
	Online Text-to-Speech
	Offline Text-to-Speech
	A Bluetooth Speaking Clock and Temperature Sensor

	Summary
	Further Reading

	Chapter 13 Real-Time BeagleBone Interfacing
	Real-Time BeagleBone
	Real-Time Kernels
	Real-Time Hardware Solutions

	The PRU-ICSS Architecture
	Important Documents

	Getting Started with the PRU-ICSS
	PRU-ICSS Enhanced GPIOs
	PRU-ICSS Device Tree Overlay
	The PRU-ICSS Package
	A First PRU Program

	The PRU-ICSS in Detail
	Registers
	Local and Global Memory
	PRU Assembly Instruction Set

	Applications of the PRU-ICSS
	PRU-ICSS Performance Tests
	Utilizing Regular Linux GPIOs
	A PRU PWM Generator
	A PRU Sine Wave Generator
	An Ultrasonic Sensor Application

	Additional PRU-ICSS Tools
	The PRU Debugger
	The TI PRU C Compiler

	Summary
	Further Reading

	Index
	EULA

