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Preface

Smart environments, enabled by Wireless Sensor Networks (WSNs), 
have emerged as one of the most promising applications in the 
Internet of Things (IoT) era. These smart environments require that 
the underlying sensor network infrastructure be enriched with smart 
devices, so that the network can understand and respond to requests 
from multiple users with diverse information requirements. Now, 
the  use of artificial intelligence has enabled some amount of user-
requirement awareness in sensor networks. However, there is no 
architectural framework about how cognition is to be incorporated 
in the network, or where the smart decision making shall be imple-
mented. In addition, WSN implementations are mostly address-
centric, where users must specify the location from where data must 
be gathered. But this is counterintuitive to how users would like to 
access information in a smart environment. Moreover, managing 
the large IP address space becomes problematic as the network size 
expands to vast counts of sensor nodes. 

In this book, I propose a novel framework called cognitive information-
centric sensor network (ICSN) for the IoT. This framework is built on 
top of cognitive nodes, capable of knowledge representation, learning, 
and reasoning, along with an information-centric approach for data 
delivery, which are central to the idea of the ICSN. Moreover, we 
discuss the most appropriate deployment strategy for these cognitive 
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nodes under realistic assumptions that cares about the quality of 
information (QoI). In addition, a quality of information (QoI) aware 
data delivery strategy, with the analytic hierarchy process (AHP) as 
the reasoning technique, is used to identify data delivery paths that 
dynamically adapt to changing network conditions and user require-
ments. Latency, reliability, and throughput are the attributes used 
to identify the QoI along the delivery path. Furthermore, heuristic 
learning techniques are explored to improve the success rate of data 
delivery and hit ratio which applying in-network caching.

MATLAB® is a registered trademark of The MathWorks, Inc. For 
product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
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1

1
Introduction to 
Cognition in IoT

The Internet of things (IoT) has evolved from supporting application-
specific deployments, such as species-at-risk and health care monitor-
ing, to platforms that simultaneously support multiple applications 
operating in a large-scale fashion, such as the smart planet project 
launched by IBM. In the IoT paradigm, every object in the physi-
cal world is uniquely identifiable and traceable, and can communicate 
with other machines and objects over the Internet. The use of sensors 
and actuators embedded into these objects helps to capture signifi-
cant information from the physical environment and bring it into the 
digital realm over the Internet infrastructure. This interconnection 
between the physical and virtual realms paves the way for several 
information-centric applications and services that benefit from such 
interconnection. These applications are expected to support multiple-
users accessing information from a city- or a planet-wide deployment 
of sensors that capture data from multiple applications. Users in this 
paradigm may target information for their personal use, or to build 
and support a large-scale database, such as the cloud. 

Such a smart trend in communication that serves multiple users 
and multiple applications on the same platform necessitates a set of 
interconnected smart/cognitive nodes to carry on massive amounts 
of exchanged data over a resource-limited infrastructure. Cognitive 
nodes can communicate with the applications, the sensor network’s 
nodes, and with each other to gather requested information and 
transmit it to the central data sink with the minimum cost. 

Wireless sensor networks (WSNs) can be a strong candidate for 
employing cognitive nodes in smart environments because of their 
inherent ability to observe information from the environment and 
communicate it wirelessly to end users in a cost-effective manner. 
However, what is not well-defined yet is how these cognitive nodes 
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will be designed and integrated with the existing information-centric 
networks or infrastructures.

Accordingly, the objective of this book is to develop a comprehen-
sive framework spanning the network architecture design, deploy-
ments issues, and the data delivery aspects. It aims to introduce the 
cognition in a well-known information-centric network paradigm, 
namely the WSNs, to be applicable in smart environments in the 
IoT era. In this framework, the end user must be able to search/ask 
for information based on the information attributes, rather than the 
IP address of the hosting machine. The network itself must be able 
to dynamically adapt for the varying network conditions, and make 
intelligent decisions about the data delivery routes to be used.

1.1 � Contributions

In this book, we propose and implement the cognitive information-
centric sensor network (ICSN) architecture for data delivery in large 
scale IoT applications. We assume a typical wireless sensor network 
(WSN), within which cognitive nodes are introduced. These cogni-
tive nodes combine the use of cognition and an information-centric 
approach, to make data delivery decisions that dynamically adapt to 
user requirements. Towards this end, our main contributions in this 
book can be summarized as follows:

	 1.	We start by defining the cognitive ICSN paradigm and 
related works in the literature. We identify critical factors 
and explore various learning techniques that can be applied 
to sensor networks in IoT applications. We provide our 
recommendation on the learning strategy based on how 
well it complements the needs of an ICSN, while keeping 
in mind the cost, computation, and operational overhead 
limitations.

	 2.	We combine the use of cognition and information-centric 
networking to propose a novel cognitive ICSN architec-
ture which can potentially support multiple applications in 
the IoT era. This architecture supports and resolves key IoT 
design aspects related to mobility and numerous data-traffic 
types. 
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	 3.	According to the proposed ICSN architecture, we investigate 
the deployment planning problem while considering a new 
component in the network, called the cognitive node. We pro-
pose a virtual grid-based deployment planning strategy which 
guarantees the cognitive node connectivity with at least one 
sensor/relay node over the network lifetime span. Simply, 
the deployment plan is based on the probability of a success-
ful reception of the data packet at a given distance from the 
transmitter.

	 4.	We analyze and quantify the network connectivity of the 
aforementioned grid-based deployment planning under real-
istic operational conditions. Solid recommendations and 
endorsements based on analytical studies are discussed and 
debated. 

	 5.	We investigate the most appropriate data delivery techniques 
in the IoT era. We make use of the quality of information 
(QoI) metric to measure the level of satisfaction experienced 
by the end user. Attributes for the QoI, such as latency, reli-
ability, and throughput are employed to assess the delivered 
information by the aforementioned cognitive ICSN architec-
ture. Accordingly, delivery paths are cognitively identified 
using an analytic hierarchy process (AHP) based on the data-
traffic type. 

	 6.	We propose two heuristic data delivery approaches that can 
take benefit of the defined cognitive elements in this work to 
cope with the next generation IoT trends. The proposed data 
delivery approaches either help to choose paths that deliver 
data with good QoI to the sink, or identify data delivery paths 
that are more resource-aware toward more energy- and cost-
efficient solutions. The impacts of employing cognition on the 
success rate of the delivered data to the sink and the network 
lifetime are studied.

	 7.	Moreover, a novel in-network caching approach is proposed 
to improve the hit ratios in an IoT-based information-centric 
network, where requested data can be intelligently cached 
over the appropriate nodes in the network based on the infor-
mation value. This approach shows significant enhancements 
in terms of the network lifetime and data delivery latency.
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1.2 � Book Outline

The rest of this book is organized as follows. In Chapter 2, we delve 
into an overview for the field of cognition in ICSNs. In Chapter 3, 
we provide the details of our proposed ICSN architecture while dis-
cussing a novel grid-based deployment plan for the cognitive nodes. 
Chapter 4 provides the detailed analysis of the proposed grid-based 
deployment plan while considering practicality in surrounding envi-
ronments. Chapter 5 investigates the details of the cognitive ele-
ments while employed in a generic data delivery ICSN framework. 
In Chapter 6, we provide the details of a cognitive energy-aware 
data delivery approach in the IoT era, which work with the learning 
technique to improve the average data delivery rate. We also com-
pare the performance of the cognitive data delivery strategy against 
other commonly used techniques in the literature. In Chapter 7, we 
provide the details of another cognitive data delivery approach which 
focus on the cost in the IoT era. In this chapter we provide a pricing 
model for IoT-specific paradigms to improve the end user satisfaction. 
Chapter 8 debates the effects of caching in the aforementioned cogni-
tive ICSN architecture. Finally, we conclude this book in Chapter 9 
with potential perspectives on the proposed work and discuss the 
directions of the future work.
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2
Information-Centric 

Sensor Networks 
for Cognitive IoT

An Overview*

2.1 � Introduction

Wireless Sensor Networks (WSNs) have evolved from simple sensing 
and tracking applications to being an integral and essential part of the 
Internet of things paradigm. This means that sensor networks have to 
deal with large amounts of data, support requests from multiple users, 
and support information extraction from the network rather than 
serving as point-to-point communication networks that transmit data 
from a source to sink. To enable WSNs to easily integrate with and 
adapt to the IoT environment, we propose the use of learning as an 
element of cognition in the network. Cognition refers to the ability to 
be aware of the environment, be able to learn from the past actions and 
use it to make future decisions that benefit the network [1]. Learning 
is one of the elements of cognition that can achieve different goals in 
different systems. In robotic chess, learning can be used to plan moves 
based on opponents’ actions; in aircraft autopilot systems, learning 
can be used to control the plane’s navigation, and in cognitive net-
works, learning can be used to improve decision making that improves 
network management and its overall performance. Whatever be the 
system’s goal, the performance of the learning technique depends on 
three main tasks: (1) observations made from current activities in the 

*	 This article was originally published in Annals of Telecommunications. F. Al-Turjman, 
Information-centric sensor networks for cognitive IoT: An overview, vol. 72, no. 1, 
pp. 3–18, 2017. Reprinted with permission.
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environment, (2) feedback from past actions, and (3) how this infor-
mation is used to achieve the system’s goals. An information-centric 
sensor network (ICSN) has specialized nodes called cognitive nodes 
that are capable of performing all these tasks by implementing major 
cognition elements. These major elements are learning, reasoning, 
and knowledge-representation. Figure 2.1 represents these three major 
elements for cognitive nodes in ICSN, and associates them with their 
respective functions. These elements of cognition, when incorporated 
in the network nodes of a WSN, help in providing better understand-
ing and catering for the end user requirements.

Our expectation from the cognitive elements would be to cater to 
the following objectives. In the short-term, to observe current net-
work behavior and respond adaptively to changing network dynamics. 
And in the long term, to learn from the previous behavior and plan 
better for the future so as to make predictions and decisions that posi-
tively impact the network survivability and application QoI during its 
lifetime. Using these elements, a conceptual architecture of the cogni-
tive node can be illustrated as detailed in Figure 2.2.

This cognitive sensor network framework is mainly targeted toward 
applications, such as Smart Cities and Smart Outdoor Monitoring 
in the IoT era. In these applications, the goal for the learning algo-
rithm is to dynamically adapt routing decisions to improve the quality 

Cognitive node Reasoning

Knowledge
representation

Convert data to useful
information.
Represent information in
attribute–value pairs.

Short-term response.
Response  based on current
knowledge.

Learning
Long-term planning.

Feedback from past actions
and current observations.

Figure 2.1  Cognitive node and its elements.
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of information (QoI) delivered to the user [2], and improve the net-
work lifetime. This can be achieved by using a learning algorithm 
that can correlate the impact of past decisions on the current network 
behavior, based on end users’ requirements. But these are challenging 
applications for the learning algorithm due to the large scale of the 
network, changing network topology due to node deaths and vary-
ing channel conditions, and heterogeneous traffic flows generated as a 
result of changing user requests in the IoT application domain. For the 
learning algorithm to be successful in such a dynamic environment, 
it must occur incrementally and span over multiple episodes [3]. Only 
then will it be able to adapt to the irreversible changes in the environ-
ment and contribute toward delivering QoI-aware data to the end user 
over the network’s lifetime. In this chapter, we explore the different 
classes of learning techniques and identify what works best for large-
scale information-centric sensor networks in IoT applications.

The remainder of the paper has been organized as follows: In Section 
2.2 we look at some WSN design issues in IoT applications, and summa-
rize the design changes required for integration of WSNs with IoT. In 
Section 2.3 we explore artificial intelligence and learning used by WSNs 
to better analyze their suitability for ICSN applications. Subsequently, 
we delve into the details of ICSNs as a hybrid solution platform for inte-
gration of WSNs in IoT using a learning paradigm in Section 2.4. We 
also identify a suitable learning strategy in this section, before discussing 
some open issues and concluding the paper in Section 2.5.

 E
nd

 u
se

r
 E

nv
iro

nm
en

t

Observations Knowledge base

Learning
engine

Decisions

Reasoning

Actions

Feedback

Requirements

Figure 2.2  Cognitive node conceptual architecture.
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2.2 � WSN Design Issues in IoT Applications

In this section we take a brief look at the various design issues that need 
to be addressed to seamlessly integrate WSNs in IoT applications. We 
categorize the design issues into two parts: (1) Expectations of the users 
from the network, which includes feature requirements of the sensor net-
work’s interface with the access network (future Internet), and (2) adap-
tations and changes required within the sensor network to cater to user 
requests while managing network resources. Each of these design issues 
will be explored in the subsequent sections, and we will see why these 
issues need to be handled differently from existing WSN applications.

2.2.1 � User Expectations from the Network

Traditional WSNs were designed for specific applications such as tar-
get tracking, temperature monitoring in a building, and movement 
of goods in a supply chain, to name a few. Users accessed the net-
work only when they needed a particular type of sensed value, such 
as temperature, pressure, or humidity for instance. However, in the 
IoT era, sensor nodes have become heterogeneous and are capable of 
supporting multiple types of sensors. This way the sensor network 
can be expected to support multiple applications and provide users 
with a variety of data as supported by the type of sensor nodes used. 
Thus, WSN applications should evolve from supporting application-
specific deployments to providing an application platform that users 
can access to gather a variety of data [4].

2.2.1.1  Multi-User Application Platform Support  The basic idea behind 
developing an application-platform is to provide a flexible, generic 
infrastructure that can lead to easy adoption of WSNs into a variety 
of IoT applications. For example, a sensor network deployed in a city 
should be capable of providing data for the following applications: 
(1) air pollution monitoring, (2) daily weather monitoring (tempera-
ture, humidity, UV index), (3) park and garden irrigation manage-
ment. Such an application platform and its associated services would 
also support the conceptual ubiquitous sensor network (USN) used in 
large-scale sensor network deployments [5,6]. This would invite more 
numbers of users to simultaneously access the network, which makes 
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the WSN design even more complex. The underlying sensor network 
will have to support heterogeneous traffic flows generated as a result 
of simultaneous access from multiple users, which is a very challeng-
ing task for the resource constrained sensor network.

2.2.1.2  User Requirement—Aware Request Classification  In a large-scale 
deployment of sensor networks that allows multiple users to access it, 
different users may have different requirements on the desired quality 
of experience (QoE) [7], and the network may have its own limitations 
on the quality of service (QoS) it is able to support [8–10]. While the 
user requirements may evolve over time, the sensor network gradually 
decays in terms of its energy capacity, and it also involves dynamic 
changes in the link conditions and node availability. In addition, the 
user’s expectations from the attributes associated with delivered data 
also vary based on the application and type of request. Hence, there 
is a need to monitor data attributes from the user requirements per-
spective directly, a skip level from the application interface, as shown 
in Figure 2.3. Latency, reliability, accuracy, relevance, and robustness 
are some of the attributes that can collectively provide an estimate of 
the quality perceived by the user based on the information received 
at the user-end from the network. This is referred to as the quality of 
information (QoI) metric, and it may provide information about the 
success of the network in satisfying the evolving user requirements, 
while simultaneously saving valuable network resources such as band-
width and energy [11,12]. Thus, it becomes necessary for the underly-
ing sensor network to be aware of user requirements and be able to 
classify user requests to deliver data in compliance with the desired 
QoI. While there has been research in the area of quality of informa-
tion (QoI) assurance based on changes in the phenomena observed in 

User

QoE

QoS

Q
oIApplication

Network

Figure 2.3  Quality of information–aware data delivery in WSNs for IoT applications.
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the network [13], there has not been much work on the user-interface 
side for request classification based on changing user requirements.

2.2.1.3  Internet Access Interface between User and WSN  ZigBee-based 
address-centric sensor networks facilitate the integration of WSNs 
with the Internet, as both the networks are address-centric and point-
to-point. However, recent advances in the future Internet research sug-
gest that an information-centric approach to data delivery is favored 
over the address-centric approach. This is because researchers 
believe that it will become increasingly difficult to handle the grow-
ing IP address space that serves billions of users in the near future. 
Information-centric network (ICN) is one of the promising architec-
tures for the future Internet paradigm [14]. It proposes an information-
centric approach to data access where users look for named data objects 
instead of looking up IP addresses to find data they are interested in. 
The architecture is set up to support data storage at strategic locations 
in the network, typically the edge of the network, so that requests 
do not have to be propagated deep into the network to access the 
required information. If the user had to request for data through such 
an information-centric interface, then the network interface would 
also have to be modified to ease the flow of information. Hence, for 
IoT applications to be able to adapt to changes of the future Internet 
paradigm, changes would be required in the way requests are made 
at the user access interface and also at the sensor network interface.  

2.2.2 � Adaptations at the Network Level

In this section, we move from the issues at the user interface to the 
design issues at the network level to identify the adaptations required 
to enable WSNs for IoT applications.

We look at the adaptations required in WSN for IoT applications 
from the perspective of network resource conservation, and managing 
the query dissemination and data delivery from the network.

2.2.2.1  Energy Considerations and Resource Management  Large scale 
platform-based sensor network deployments that are accessed by mul-
tiple users tend to benefit more from a data-centric approach than 
an address-centric one. For instance, a user may request information 
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such as temperature readings from all regions in the network where 
value is greater than 25°C. In such a scenario, there is no specific 
address from which the user is requesting data. Instead, the query is 
information-centric, and requires information from the entire net-
work. This could be very energy-intensive if appropriate query dis-
semination and data delivery techniques are not identified. In their 
work on energy conservation schemes in WSNs, Anastasi et al. have 
extensively explored data-driven techniques, broadly classified into 
data reduction and energy-efficient data acquisition approaches [15]. 
Several researchers have also established the energy conserving nature 
of data-centric sensor networks [16–18]. However, previous research 
has only considered networks of a few hundreds of sensor nodes. In 
IoT based applications, there may be thousands of sensor nodes to 
gather information from, which adds to the complexity of the energy 
conservation problem. Although a data-centric approach can provide 
valuable energy savings in the network, further research is required to 
devise techniques to manage information flow in such a large scale, 
energy constrained network.

2.2.2.2  Query Dissemination and Data Delivery  WSNs can be broadly 
classified into address-centric and data-centric networks. This clas-
sification is based on how query dissemination, data gathering, and 
routing happen in the network. Address-centric sensor networks are 
built on top of the more recent ZigBee protocol [19] that provides 
a service-oriented framework for implementing WSN applications. 
Data is routed using the tree-based hierarchical topology consisting 
of router and coordinator nodes, while sensor nodes are the sources of 
information. Routers off-load the sensor nodes by carrying forward 
their data to the sink, thus bringing considerable energy savings to 
the battery-operated sensor nodes. However, WSNs are essentially 
information extraction networks. They were originally developed as 
data-centric sensor networks (DCSNs) that did not make use of node 
addresses. Instead, their focus was on the attributes of the requested 
information, which was gathered from wherever it was available in 
the network, and delivered to the sink. Handling query dissemina-
tion and delivering the gathered data is a very challenging task in 
large-scale sensor networks. This is due to (1) the ad hoc nature of the 
wireless channel, (2) dynamic topology changes in the network due 
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to node deaths and their changing associations, and (3) the nature of 
node distribution in the network. Hence, choosing the right approach 
for handling data flows in a very critical design decision; this must 
be made keeping in mind the interface access network (the future 
Internet paradigm).

In addition, IoT applications have multiple users requesting dif-
ferent types of data with different service requirements. For example, 
while requests for periodic data may relax the service requirements on 
latency, on-demand data needs to be provided quickly, and should be 
relevant. On the other hand, emergency reporting must be done accu-
rately, reliably, and quickly, with minimal delay. Thus, the way the 
network is set up itself will have to be modified to minimize energy 
consumption during each of the phases of query dissemination, data 
gathering, and data delivery. Sensor node scheduling also becomes an 
important issue to be addressed, so that data is available when the user 
requests it. Moreover, planned scheduling of sensor node wake-up 
and sleep cycles will add to the energy savings and prolong the net-
work lifetime. In addition, planning the deployment of router nodes 
to increase the multi-hop communication range is another aspect that 
needs to be considered during network design and deployment. Since 
the complexity of the tasks to be handled by WSNs in the IoT para-
digm is quite high and multidimensional, it seems appropriate that 
the design changes consider the addition of advanced nodes [20] that 
can maintain connectivity in the network and carry data over long 
distances in these applications.

2.2.3 � Summary of WSN Design Change Requirements

Thus far in this section, we have seen the various design change require-
ments in existing WSNs to make them adapt to IoT applications. We 
summarize these requirements as follows:

•	 Multi-user application platform support.
•	 Classification of user requests to deliver QoI aware data.
•	 Modification of the communication to make it compatible with 

the future Internet paradigm—ICN.
•	 Incorporation of specialized nodes that can observe and learn 

from the interactions and feedback in the network, and man-
age sensor node scheduling to prolong the network lifetime.
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•	 Plan the deployment of router and specialized nodes to main-
tain network connectivity and enable multi-hop data trans-
mission over the large-scale network.

•	 Consider data-centric query dissemination and data-delivery 
for energy savings, and dynamic traffic flow management due 
to changing network conditions and user requests.

Figure 2.4 summarizes all the design change requirements in the 
form of a conceptual design for the future IoT paradigm that supports 
multiple users, and integrates ICN based Internet access, and the large-
scale data-centric sensor network. We call this an information-centric 
sensor network (ICSN) [21–24]. Comparing DCSN protocols with the 
information-centric networking (ICN) approaches [25,26] for future 
Internet use, we can see that DCSNs already implement two major 
features of the ICNs. Firstly, the naming schemes, or named data 
objects for referencing requested data instead of using node addresses, 
and secondly, storage of collected data in nodes for ease of access. 
We take these two features as a strong indication of the need to shift 
to data-centric sensing schemes for WSNs, but with ZigBee and the 
information-centric approach to adapt to the advanced applications 
in the IoT era [27]. Although the data-centric approach will help to 

IoT user base Interface access network Gateway interface with the sensor network

Individual user

Multiple users
smart city

Data center

Government
Gateway

node
Access
points

Sink

Future internet
Information-centric network

(ICN)

Large-scale data-centric sensor network

Large-scale data-centric sensor network

Figure 2.4  Conceptual design of an information-centric sensor network for IoT applications.
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better manage the network at each of the interfaces: User, access net-
work, and sensor network, the author does not think that a simple 
integration of different technologies will be adequate to manage the 
complexity of the tasks at the sensor network level. To improve adap-
tations beyond the limitations of traditional cross layer design, we look 
to the tools of artificial intelligence to support the ICSN paradigm. 
In particular, we look at how ICSNs can benefit by incorporating the 
learning aspect of artificially intelligent systems in the next section.

2.3 � Artificial Intelligence and Learning in WSN

Various artificial intelligence (AI) techniques have been applied to 
WSNs to improve their performance and achieve specific goals. We 
look at AI techniques as a means of introducing learning in the WSN. 
Learning is an important element in the observe, analyze, decide, and 
act (OADA) cognition loop [28,29], used to implement the idea of 
cognitive wireless networks [30,31]. In this section, we broadly clas-
sify AI techniques as computational intelligence (CI) techniques, 
reinforcement learning (RL) techniques, cognitive sensor networks 
and multiagent systems (MAS), and context-aware computing, as 
shown in Figure 2.5. Although these techniques are closely related, 
we segregate them to show the different goals that learning can 
achieve for the network. At the end of this section, we look at how 
these techniques could be improved and leveraged to support learning 
in the ICSN platform.

2.3.1 � Computational Intelligence

CI techniques are a set of nature-inspired computation methodolo-
gies that help in solving complex problems that are usually difficult 
to fully formulate using simple mathematical models. Examples of CI 
techniques include genetic algorithms, neural networks, fuzzy logic, 
simulated annealing, artificial immune systems, swarm intelligence, 
and evolutionary computation. In a learning environment, CI tech-
niques are useful when the learning agent cannot accurately sense the 
state of its environment.

In WSNs, CI techniques have been applied to problems such 
as node deployment planning, task scheduling, data aggregation, 
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energy-aware routing, and QoS management. Kulkarni et al. have 
provided an extensive survey of CI techniques applied to WSNs [32]. 
They elaborate on various CI techniques, and associate each with 
typical problem domains they can solve in WSNs. From their obser-
vations, swarm intelligence applied to solving the routing and cluster-
ing problem has drawn the most research attention in recent times. 
However, a major drawback of this methodology is that it can be 
computationally intense and may require some form of model-based 
offline learning to deliver to the requirements of the application sce-
nario. Techniques such as ant colony optimization can cause an unde-
sirable increase in communication overhead in WSNs too [33]. Apart 
from these drawbacks, none of the CI algorithms have been applied 
to solving problems of data representation, aggregation, and delivery 
in a distributed, decentralized setup, under dynamic communication 
constraints, as is the case in IoT applications. Next, we evaluate rein-
forcement learning strategies used in WSNs. We separate them from 
other CI techniques, because they are the most widely applied learn-
ing techniques in WSNs and do not categorically fall under nature-
inspired learning.

2.3.2 � Machine Learning

Machine learning can be classified into supervised, unsupervised, 
and reinforcement learning. Supervised learning would be more 
computer-intensive and require a training sequence. Additionally, 
accuracy of the learning algorithm would then be defined by this 
training sequence. In the unsupervised learning approach, the learn-
ing is from the environment being observed and no training sequence 
is required. Reinforcement learning (RL) is a reward-based technique 
that emphasizes learning while interacting with the environment, 
without relying on explicit supervision or a complete model of the 
environment. It is a method of automating goal-directed learning and 
decision making. Since it is advantageous to be aware of, and learn the 
changes in the environment in WSN based applications, RL would be 
an appropriate choice as the learning strategy. In WSNs, RL has been 
successfully applied in networking tasks such as adaptive routing; 
identifying low cost and energy-balanced data delivery paths [34,35]; 
and in information processing tasks involving data aggregation and 
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inference [36]. In the subsequent sections we explore the different 
types of reinforcement learning (RL) methods as reward based strat-
egy [37]. We also briefly look at the use of support vector machine 
techniques as an RL strategy that the ICSN could benefit from.

2.3.2.1  Model-Based Reinforcement Learning  A learning agent (LA) in 
model-based RL collects experiences and builds a model from that. 
The actions can be chosen randomly or heuristically and observe the 
impact on a model T(s, a, s’) and the reward R(s, a, s’) (where s is the 
current state, a is the actions and s’ is the next state). This means, 
by taking action a, how often would the LA end up in the state s’ if 
it started from state s and estimating a probability by counting the 
number of times T(s, a, s’) triple occurs over the sample space. With 
this information, the LA builds an estimate of the model 



T (s, a, s’) 
and the reward 



R (s, a, s’) by estimating probabilities based on the 
number of trials (or episodes). Once an estimate of the model and 
rewards are ready, the LA can plan its actions. A good plan can be 
found from policy iterations or value iterations. But for model-based 
RL, the hardest part is knowing the right policy to start out with, so 
we can build a good model.

2.3.2.2  Model-Free Reinforcement Learning  In model-free reinforce-
ment learning, the agent is free to learn from the environment by 
exploring it completely on its own. The agent learns from the posi-
tive reinforcement it gets for moving toward a goal and negative 
reinforcement for moving away from the goal. Q-learning is a form 
of model-free RL in which the learning agent converges to an opti-
mal policy even if it were acting suboptimally. This is called off-
policy learning. This is the most extensively used form of RL, as it 
is easy to implement and a relatively low-cost solution. However, 
Q-learning has its limitations too. The agent has to explore enough 
and eventually make the learning rate small but not decrease it too 
quickly, so that it has a large enough state space that covers all pos-
sible actions and policies.

In the context of the ICSNs, we are not interested in finding the 
optimal policy. Rather, we are interested in any suboptimal solu-
tion that does not take much time to converge and can act faster. It 
doesn’t even matter how the action is selected, and a heuristic choice 
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could work well too. This way, an even more simplified version of 
RL can be applied to ICSNs. We will discuss this in more detail in 
Section 2.4.

2.3.2.3  Support Vector Machines  Support vector machines (SVMs) 
are a class of ML algorithms that were originally formulated for 
binary classification. They can be applied to complex, highly nonlin-
ear problems in a consistent and structured manner, and have been 
successfully applied to intrusion detection and security problems in 
WSNs [38]. This technqiue has not been applied to any other design 
problem in WSNs, but has proved very effective in small-scale sensor 
networks of about 50 sensor nodes randlomly deployed in a 100 m × 
100 m area. This class of ML algorithms has great potential to be 
applied to security in IoT based applications, especially if the inter-
face becomes information-centric, with gateway nodes lying within 
the sensor network itself, as shown in Figure 2.3. As the sensor net-
work becomes more vulnerable to attack in the ICSN setting, SVM 
techniques can be further explored to secure large-scale networks in 
IoT applications.

2.3.3 � Cognitive Framework and Multiagent Systems

Cognitive networks are built around the idea of having sensor net-
works evolve around user requirements. It is about taking a step 
toward developing intelligent networks that do not limit themselves 
to point-to-point communication within the network. Instead, they 
enable the network to perceive user requirements and deliver data 
using distributed intelligence in the network. To implement distrib-
uted intelligence, multiagent systems (MAS) are typically used. The 
agents in these MAS are called cognitive agents. They may interact 
to achieve information fusion and retrieval, and may also be able to 
predict data for future use. Typical applications include medical mon-
itoring, intelligent transport, and smart environment monitoring [39]. 
Such a distributed approach to introducing intelligent behavior in the 
network will be very beneficial in WSNs deployed for large-scale IoT 
applications. Some examples of successful software implementations 
of cognitive agents in sensor networks include AUTOMAN [40] and 
MONSOON [41].
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2.3.4 � Context Aware Computing

In large-scale sensor networks, a huge amount of data is generated. In 
order to derive useful information from raw data, context of the data 
plays an important part. Context awareness is even more important in 
the IoT era, as it enables the network to deliver relevant, user-requested 
data. While doing so, network resources are also conserved by extract-
ing only meaningful information that is relevant to the requests from 
the network. There are various aspects to context aware computing. 
They are acquiring the context, context modeling, context reason-
ing, and context distribution [42]. Since we are more interested in 
the learning aspect as applicable to sensor networks, we delve a little 
deeper into the context reasoning aspect. Both CI- and RL-based 
techniques can be used to implement context learning, in addition 
to ontology based and probabilistic logic models. The information 
obtained from these learning models can be exploited to infer infor-
mation from stored data. Context awareness is very important and 
valuable in IoT applications, as it can add value to the large amount of 
data available from their applications.

All the learning techniques discussed in this section have been 
summarized in Table 2.1. We identify the limitations of existing 
techniques and provide the details of the solution platform based on 
ICSNs for IoT applications in the next section.

2.4 � A Hybrid Solution Platform: Learning in ICSN

In this section, we will identify what the learning algorithm should 
actually learn in order to support the information-centric nature of 
ICSNs. Table 2.2 presents three broad classes of solutions to RL prob-
lems and classifies their features based on their relevance to learning 
in ICSNs.

2.4.1 � What Should the ICSN Learn?

To identify what the ICSN should learn, let us identify what infor-
mation is already known to the learning agent nodes. First, from our 
work in [22] and [43], we know that there is the upper bound on the 
maximum communication range for all the network nodes—sensor 
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nodes, relay nodes, and the nodes that implement learning as a part 
of cognition, the cognitive nodes. We will be referring to the learning 
agents as cognitive nodes (CN) from this point forward. So, the CNs 
need to be aware of the network topology changes only within their 
own communication range. The target area’s coverage is taken care of 
at the time of deployment of nodes in the network.

Thus, learning about the topology changes in its local neighborhood will 
help the CNs adapt their transmit power and choose a data delivery 
path that best manages the nodes energy consumption. Prolonging the 
CNs lifetime will in turn contribute toward increasing the network’s 
longevity.

Second, cognitive nodes store information in their knowledge 
base regarding the QoI performance of paths used in previous data-
delivery rounds. Routing tables are built and updated based on the 
information in the knowledge base. Unlike traditional routing tables 
that store static, end-to-end routing paths from source to destina-
tion nodes (usually the sink node), routing tables in ICSNs are not 
designed to be static. In fact, they are not even end-to-end paths, but 
are paths that show the network’s current adaptation to the changes 
in topology and user requests. They store information about the most 
recent path used to deliver data from the CNs to the sink or other 
CNs or relay nodes. This means that the contents of the Routing 
table at each cognitive node have to be updated on a regular basis to 
ensure they store the latest and best QoI paths. Thus the important 
learning goal for the cognitive node from an application QoI perspec-
tive is to learn the data-delivery paths toward the sink that provides the 
best QoI values for each of the different types of user-requests. There is no 
one best path that is always used to route data. Instead, the routing 
choice depends on the current network topology, nature of the user-
request (periodic, intermittent-user specific, or emergency data), and 
volume of traffic generated in response to the request. If the routing 
table is viewed as cache storage, then an effective cache replacement 
strategy is required to replace old and redundant routing information 
with more recent and relevant information.

These learning goals can be achieved in the following ways as rep-
resented in Figure 2.6: (1) learning from feedback on current actions, 
(2) learning by exploring the changes in the network topology, 
and (3) learning (drawing inference) from past actions by using the 
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information stored in a Knowledge Base. Once the learning converges 
and knowledge base updates are complete, the routing tables can be 
updated using information from the knowledge base. Thus we iden-
tify two main goals of learning: First, to improve network longevity 
and maximize the duration for which the ICSN is able to provide rel-
evant data to the end user; and second, to increase the network’s abil-
ity to provide QoI-aware data to the end user during its lifetime. For 
ICSNs, we define the network lifetime as the time tEoL after which 
none of the one-hop cognitive nodes to the sink are able to deliver the 
user’s requests for information to the network, nor are they able to 
deliver the gathered data from the network back to the user, is called 
end-of-life of the ICSN.

2.4.2 � Choosing the Learning Strategy

The goal of learning in ICSNs is to improve the QoI delivered to the 
end user and maximize the duration over which this can be main-
tained. In other words, learning should contribute toward maximizing 
the network lifetime while ensuring QoI-aware data delivery during 
this period. Based on these requirements, we identify the following 
factors that influence the choice of learning strategy in ICSNs:

•	 Learning should occur incrementally over time as network 
conditions change.

•	 It should support episodic learning [43] to acquire information 
from new events and update the knowledge base. This will let the 
system make decisions and act based on the observed changes.

Learning
in ICSNs

Monitoring feedback 
of current action from

the network     

Drawing inferences from
correlation of past actions

with observations  

Learning proactively by
interaction with network

environment  

Figure 2.6  Learning in sensor networks.



25ICSNs FOR COGNITIVE IoT

•	 Learning should be distributed and occur locally when imple-
mented in large-scale ICSNs. However, the goal of learn-
ing should be common across all the cognitive nodes in the 
deployment.

•	 The learning algorithm must be lightweight and of low-
complexity to support episodic learning. It addition, it must 
not cause too much data or control overhead in the network or 
negatively interfere with the function of the network nodes.

•	 The learning algorithm should preferably be reward-based, as 
supervised learning would become very compute-intensive for 
the ICSNs.

•	 Finally, the learning algorithm must be able to converge quickly 
enough to support the network’s learning goals in a timely 
manner. It should not cost the network too much in terms of 
its resources (energy and time) either.

Based on these recommendations, we explore heuristically accel-
erated reinforcement learning techniques for use with ICSNs in the 
next section.

2.4.3 � Heuristically Accelerated Reinforcement Learning

Since both model-based and model-free RL have their limitations, 
we will look toward modified forms of RL solutions. We look at the 
possibility of using heuristics (rules of thumb) to choose a suboptimal 
action instead of trying to converge at an optimal policy. This would 
help the RL algorithm to converge faster. The advantage of combin-
ing heuristics with RL is that RL is eventually going to converge to 
an optimal possible policy, but it takes time. Heuristic only attempts 
to make the decision choices quickly. Therefore, it will not deter the 
RL process, but will only enhance it to arrive at some sub-optimal 
solution faster, but it will not be incorrect as observed by Atkeson and 
Santamaria [44]. In this section, we look at the use of heuristic func-
tions to accelerate RL algorithms. These heuristic evaluation func-
tions, called valuation functions, are computed by stochastic sampling 
and dynamic programming updates [45]. The model-free method is 
suitable for problems that do not involve large state spaces. In con-
trast, the domain-independent, model-based heuristic methods can 
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be used for solving problems with a large state space and hundreds of 
actions. The fast and frugal heuristics proposed by Gigerenzer [46,47] 
are not only generic, but are also low-polynomial time and applicable 
to all problems that fit a given model. Another aspect to consider 
is that learning happens while the system is running. This makes it 
important to reduce the exploration space of the learning agent. In the 
CICSN framework, we can use the information stored in the knowl-
edge base as a case base to choose an action that provides a close solu-
tion to the RL agent’s problem.

But the choice of the case that matches the given decision prob-
lem must be chosen in a way that helps the RL algorithm to converge 
quickly. Thus we look at the possibility of making heuristic decisions 
to choose a case from the knowledge base that matches closest with a 
given decision problem and adopt the existing solution to find a new one 
that is relevant to the decision problem at hand [48]. This way we can 
limit the exploration space by making use of the knowledge base, and 
use heuristics to choose a suboptimal action that will help the algorithm 
converge faster. Heuristically Accelerated RL (HARL) and case-based 
HARL have been recently explored by Bianchi et al. in the context of 
robotic soccer [49,50]. We extend this idea of accelerating RL by using 
heuristics and an available case base to the ICSN framework. In our 
application, the case base is replaced by a Knowledge Base that built 
upon the foundation of representing knowledge in attribute–value pairs.

The Representativeness Heuristic: According to this heuristic, the 
more similar something is to a prototype, the more likely it is to 
belong to that prototype’s category [51]. This heuristic is based on the 
fact that we tend to judge how likely something is to be true based on 
how representative it is of a particular category.

Thus we conclude this section with the suggestion that heuristically 
accelerated RL techniques that make use of the information stored in 
the knowledge base of the cognitive nodes will potentially serve as a 
low complexity solution to the learning problem in ICSNs, and might 
be viable in terms of the computational overhead, too.

2.4.4 � Learning in the ICSN Framework

In the previous subsection, we identified a learning strategy for ICSNs 
based on the network requirements and from the analysis of different 
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learning strategies. Now we will identify how the ICSN must be set 
up so that the learning strategy can be implemented in this frame-
work. We assume a deterministic deployment of relay and cognitive 
nodes, and number them for ease of representation.

We start with a broad classification of the type of request that an 
ICSN should be able to serve. We divide the requests into one of three 
types: (1) Type I: Periodic, (2) Type II: On-Demand, and (3) Type III: 
Emergency request. Each of these requests will be associated with 
different QoI values on the delivered data, as desired by the user. We 
identify Latency (L), Reliability (R), and Throughput (T) as the three 
attributes, whose combined value will decide the QoI-associated with 
the delivered data. Energy efficiency is another important parameter 
that affects the network’s performance and impacts the network life-
time, and we will consider it while making decisions in the network, 
especially when related with choosing a data delivery path. We will 
not use absolute values of these attributes in deciding the QoI value. 
Instead, we will associate priorities with each of these attributes for 
every request type, and let these priorities decide the importance of 
the absolute value of the attributes. Thus, each request type is classi-
fied according to the priorities associated with QoI attributes of L, R, 
T, and the importance of considering energy efficiency in making a 
decision choice in the network, as shown in Table 2.3.

The QoI attributes are monitored from feedback in the net-
work. When a data packet is transmitted from a CN to its one-hop 
neighbors, the QoI attribute values are piggy-backed along with the 
acknowledgment it receives from these nodes. These values will be 
stored in a knowledge base (KB) and used in deciding the most appro-
priate next hop for subsequent requests arriving at that CN. This way, 
decisions about data delivery paths are dynamic and always based on 
both the user requirements and the network conditions at any point.

Table 2.3  Priority Associated with QoI Attributes for Different Request Types

REQUEST TYPE

QoI ATTRIBUTES

LATENCY RELIABILITY ENERGY THROUGHPUT

Type I: Periodic x 3 1 2
Type II: On-Demand 1 2 4 3
Type III: Emergency 1 1 x 2
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The advantage of making these decisions at CNs is that it helps in 
decentralized decision making. Moreover, only local, one-hop neigh-
borhood information needs to be monitored and stored. This means 
that the size of the KB to be maintained remains reasonable and can 
be easy to update and maintain. Table 2.3 shows the association of 
QoI attribute priorities with each request type. The numbers in the 
table indicate the priority associated with the attribute. Number 1 
indicates top priority and number 3 indicates least priority. The “x” in 
the table indicates a “don’t care” condition. This means that there are 
no strict requirements on the value of the QoI attribute marked with 
an “x,” and its value does not impact the decision making.  

Next, we look at the structure of the KB, where all the information 
gathered from observations in the network, and learned from feed-
back is stored. The KB thus stores all the relevant and useful informa-
tion that the learning and cognitive decision making algorithms can 
use. It also serves as a case base which the learning heuristic can use 
to map a given problem with, and decide on the best course of action 
for the future. Table 2.4 represents the KB at a cognitive node, and 
has a sample of the information stored in it as attribute–value pairs. 
Attribute–value pairs are one of the techniques used for knowledge 
representation. Information is represented in a way that the user can 
derive useful information from it, by drawing inferences about how 
the values are connected [52]. The inferences drawn could be based on 

Table 2.4  Sample of a Knowledge Base and Its Contents at the Cognitive Node

ATTRIBUTE VALUE

1-hop neighbors ATTRIBUTE’ VALUE’

Node type Sink RN CN
Distance 400 m 250 m 350 m

Remaining Battery ∞ 200 300
QoI Request Type I II III

Node RN3 RN6 SINK 
QoI attributes L = α1

R = β1

T = γ1

L = α2

R = β2

T = γ2

L = α3

R = β3

T = γ3

Sensor data Temperature 25
Humidity 20
UV Index 5

CarbonMonoxide 250
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rules, or heuristics based on learning from observations and feedback 
in the network. In Table 2.4, a recursive representation of attribute–
value pairs has been used. That is, each entry in the value field can be 
another attribute–value pair. What makes this representation effec-
tive beyond the attribute–value association is that information can 
be derived by reading the values along the column too, except for the 
field containing sensor data. For example, in the Attribute field, “Node 
type” is associated with three values: “Sink,” “RN,” or “CN.” RN rep-
resents relay nodes that the CN is connected with and CN represents 
other cognitive nodes that the given CN is connected with in the 
ICSN. The Distance field corresponds with the values in the “Node 
type,” and represents the separation between the CN housing the KB 
and the sink, RN, and CN, respectively. Tracking the remaining bat-
tery level at each of the one-hop nodes helps the CN take energy-aware 
decisions in choosing the data delivery path. The next major Attribute 
we have used is “QoI.” It has information about the “Request Type” 
(as described in Table 2.3) that the node has served, next hop “Node” 
that can best serve each request, and the values recorded for each of 
the “QoI attributes” of latency (L), reliability (R), and throughput (T) 
during the previous communication. These values could be different 
between any pairs of nodes and are thus represented by α*, β*, and γ*. 
It should be noted, however, that this table is only a representation of 
how information can be stored in the KB. In actual implementation, 
details of the semantics will have to be worked out to make the repre-
sentations shorter and effective.

In the proposed ICSN framework, we even segregate the routing 
table from the KB to keep routing decisions simple. Routing tables at 
the CNs store information only about reaching the one-hop neigh-
bors, not the end-to-end paths, as shown in Table 2.5. These entries 
are derived from the KB of Table 2.4. In Table 2.5, the “Possible 
next hops” field suggests the best next hop node for CN2 (Cognitive 
Node 2) to transmit data, based on the “Request type.” It shows that 
CN2 is directly connected to the sink, connected to four RNs that 
are linked with the sink, and is also connected to two other CNs. 
CN–CN paths are not preferred and are represented by the hyphens 
in the “Request type” column. This is due to the high cost in terms of 
energy consumption, and the possibility of running into loops without 
reaching the sink. These tables can be updated every time the learning 
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algorithm identifies better paths for each request type, based on the 
changing network dynamics as reflected from the KB. In addition, a 
reasoning algorithm to help the learning agent in making cognitive 
decisions must be identified. These are still open research issues that 
need to be addressed in the future.

2.5 � Use-Case and Performance Evaluation

In this section, we provide some performance evaluation of the dif-
ferent learning techniques in improving large scale ICSNs for Cloud- 
or IoT-based applications. As described in the context of cognitive 
psychology [48], the learning heuristics will be used as strategies that 
ignore a part of the information to make decisions faster, and some-
times more accurately compared to more complex methods [25]. We 
utilize an online version of the A* heuristic search algorithm, which 
learns from the information available in the knowledge base of the 
cognitive nodes. We call this Learning Data Delivery A* (LDDA*) 
algorithm. The heuristics will be used to make approximate decision 
choices, as opposed to optimal decision choices. We compare this 
with a cumulative-Heuristic accelerated learning (CHAL) technique 
that accumulates the heuristic values at each state (relay and cogni-
tive nodes), and makes use of as much information as possible from 
observations made in the network before making the data delivery 
path choices. It also uses negative heuristic weights to punish poor 
next hop node choices, such as revisiting a node along a data deliv-
ery path. This way, LDDA* and CHAL will differ in the heuris-
tic weights accumulated by the learning process. Since learning is 

Table 2.5  Routing Table at the CN

ROUTING TABLE FOR CN2

POSSIBLE NEXT HOPS REQUEST TYPE 

Sink III
RN6-> Sink II
RN7-> Sink II
RN2-> CN1 I
RN3-> CN3 I
CN1 –
CN3 –
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typically used to improve the decisions made by the reasoning engine 
in cognitive networks, we implement LDDA* and CHAL in a net-
work that uses an analytic hierarchy process (AHP)–based reasoning 
technique at the cognitive nodes to make data delivery decisions. (The 
details of AHP-based data delivery [AHPDD] have been described 
in our previous work [21].) Performance of the heuristically acceler-
ated learning techniques LDDA* and CHAL are compared against 
the nonlearning AHPDD in terms of the QoI observed at the sink 
where data is delivered at the end of each transmission round. The 
algorithms will also be compared in terms of the rate of success-
ful data delivery and the energy consumed during the data delivery 
process at the end of the network’s lifetime. The knowledge of the 
deterministic deployment of the RNs and CNs, and the knowledge 
accumulated in the knowledge base (KB) of the cognitive nodes, 
will be used to update the weight of the heuristics during network 
operation.

We evaluate and compare the performance of the aforementioned 
algorithms using MATLAB® simulations. In the following, con-
sidered simulations’ setup and performance metrics are discussed. 
Simulation results and a detailed analysis of the results are also pre-
sented in this section.

2.5.1 � Simulation Setup

The network is set up as described in Figure 2.7, with randomly 
deployed sensor nodes, and fixed deployment of relay and cognitive 
nodes. Simulation parameters are as described in Table 2.6. Energy 
deductions at the local cognitive nodes (LCNs) and relay nodes 
(RNs) during data transmission are as represented in Table 2.7, 
based on the transmit powers. The transmit power at RNs is fixed at 
3 dBm, and it can be adapted at the LCNs to improve the probability 
of successful transmission as described in [21]. Data delivery paths 
from source LCNs in the network are initially established based on 
AHP analysis of paths along next hop neighboring RNs. Heuristic 
learning is introduced in this simulation to increase the average suc-
cess rate of data delivery to the sink, irrespective of the randomness 
with which the requests for different traffic types are generated in 
the network.
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Following are the three performance evaluation metrics that will 
be used to compare the performance of the aforementioned three 
algorithms:

	 1.	Network Lifetime: Number of transmission rounds till all 
one-hop nodes to GCN/Sink node are dead (including RNs 
and LCNs).

Table 2.6  Simulation Parameters

PARAMETER VALUE

Targeted area 1050 m × 1050 m
Number of nodes SNs: 1500

RNs: 16
LCNs: 8

Transmit power SN: <3dB
RN: 3dB

LCN: {3 dB, 5 dB, 7 dB}
Communication range SN: 175 m

RN: 250 m
LCN: 350 m
GCN: 500 m

Application payload size 121 Bytes
Per node offered load 0–1400 bits per second

84

73

62

5 91 13

10 14

11 15

12 16

CN3

CN2

CN1 CN4 CN6

Sink CN7

CN5 CN8

Relay
node

Cognitive
node

Sink

Figure 2.7  Use-case scenario setup for simulations.
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	 2.	Success Rate (ρ): It is defined as the ratio of the number of 
successful transmissions s to the sink over the total number of 
transmission rounds T during the network’s lifetime. This is 
represented by Equation 2.1 as follows:

	
ρ = s

T
*100 	 (2.1)

	 3.	Failure Rate (ϕ): It is the ratio of the number of failed trans-
missions f to the sink over the total number of transmission 
rounds T during the network’s lifetime. This is represented by 
Equation 2.2 as follows:

	
φ =

f
T

*100 	 (2.2)

	 4.	eQoI: Effective-QoI or eQoI is the heuristics estimate of the 
QoI associated with data delivered to the sink at the end of a 
successful transmission round. In other words, a heuristic 
estimate of the value of the QoI at the last hop that delivered 
the information to the sink.

2.5.2 � Simulation Results and Analysis

Simulation results for the aforementioned three techniques are sum-
marized in Table 2.8.

As shown in the table, results from the simulation using AHP 
analysis (AHPDD) suggests that during an average lifetime of 78 
transmission rounds, the average success rate is 63 percent, and the 
average failure rate is 37 percent. However, during the worst case, 

Table 2.7  Transmit Power Consumption

PTX (dBm) LIFECYCLE REDUCTION (UNITS)

3–5 2
5–7 3
7–9 4
≥10 5
3–5 2
5–7 3
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transmissions can fail for over 50 percent of the requests, as suggested 
by the worst-case failure rate.

With the cumulative-heuristic accelerated learning (CHAL), it was 
found that the average success rate increased to 84 percent, and the 
worst-case failure rate was as low as 19 percent. The best case success 
rate was 90 percent, which was only 6 percent off from the average 
success rate. This shows that the heuristics performed consistently well 
under various traffic loads and request arrival patterns. The perfor-
mance of CHAL was matched very closely by the LDDA* heuristic 
search algorithm, which provided an 88-percent data delivery success 
rate, but a slightly higher failure rate of 22 percent in the worst-case 
scenario when compared with CHAL. Since it is more desirable to 
have a higher success rate in smart IoT applications, we further com-
pare the performance of LDDA* and CHAL techniques in terms of 
their effective QoI (eQoI) as observed at the sink to identify the best 
heuristic of the two. Figure 2.8 shows the result of the comparison 
of the eQoI values for LDDA* and CHAL with AHPDD, which 
doesn’t use any form of learning at the LCNs. In general, we observe 
that using some form of learning at the LCNs improves the eQoI of 
the data delivered to the sink. Of the learning techniques, we observe 
that LDDA* performs the best in terms of consistently delivering data 
with higher eQoI at the sink, even towards the end of the network’s 
lifetime. Now, this eQoI is the hop-over-hop value of QoI associated 
with the data delivered to the sink with respect to latency, reliability 
and throughput. Apart from the hop-over-hop latency, the cumulative 
delay in receiving a response from the network for a request is reflected 
by the number of hops taken along the path from source to sink.

Thus, we can conclude that of the two proposed techniques, 
LDDA* is capable of delivering data to the sink with a higher average 
success rate, and better eQoI. Either of these techniques may be used 

Table 2.8  Summary of Simulation Results

METHOD
LIFETIME 
(ROUNDS)

AVERAGE 
SUCCESS 

RATE
AVERAGE 

FAILURE RATE

BEST-CASE 
SUCCESS 

RATE
WORST-CASE 
FAILURE RATE

AHPDD 78 63 37 79 52
RL 106 47 53 68 63
CHAL 59 84 16 90 19
LDDA* 56 88 12 92 22
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for data delivery in the Cognitive ICSN for IoT applications, based on 
the application and end user requirements (i.e., eQoI), rate of success-
ful data delivery, and cumulative delay from source to sink.

2.6 � Conclusion and Open Issues

In this chapter, we have approached WSNs as information-centric 
networks, which enable retrieving more information than just the 
data in attribute–value pairs from the network. We reviewed some 
routing protocols in DCSNs and presented our views on how learn-
ing could have been used to improve their performance. Then we went 
on to see the various learning techniques available in the AI domain, 
and found that RL methods are more suitable for use with sensor net-
works. This is because reinforcement learning involves learning while 
interacting with the environment which is important in WSN envi-
ronments where network dynamics change due to changing chan-
nel conditions, node deaths and changing traffic conditions, to name 
a few. We explored some more RL techniques, and analyzed what 
the ICSNs should learn, before arriving at a suitable technique for 
implementing learning in WSNs. Network Lifetime and Quality of 
Information are the primary features that must be improved by the 
use of learning algorithms. This work presents a preliminary assess-
ment of the potential advantages of introducing learning in WSNs. 
A detailed assessment of the best way to do so, and comparison with 
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other techniques with respect to their impact on ICSN lifetime and 
QoI awareness will provide a more accurate evaluation of the ben-
efits of introducing learning in sensor networks. Thus, we open up the 
ICSN paradigm as a research area with interesting possibilities.
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3
Cognitive-Node 

Architecture and a 
Deployment Strategy 

for the Future 
Sensor Networks*

3.1 � Introduction

Information-centric sensor networks (ICSNs) are a class of context-
aware communication networks that provide an infrastructure for 
knowledge-based intelligent information service to anyone, any-
where, and at any time [1]. IEEE 802.15.4/ZigBee-based wireless 
sensor networks (WSNs) provide the basic infrastructure to deliver 
sensed information to end users in diverse application environments 
such as agricultural monitoring in rural areas, structural health mon-
itoring of buildings and bridges in urban areas, tracking items in 
industrial supply chain management applications, detection of forest 
fires, and even landmines detection in former war zones [2]. These 
ICSN applications that require a large-scale deployment of the sen-
sor network in order to cover the large target areas and provide more 
sensing points in the region being monitored, the network topology 
changes dynamically due to node deaths, changing node associations 
and varying environment conditions, thus affecting the network con-
nectivity [3] and information gathering and delivery capabilities. In 
addition, the network may have to deal with service requests coming 
from a variety of end users, including individual consumers, pub-
lic enterprises, government organizations, and even machines that 

*	 This article was originally published in Mobile Networks and Applications. F. Al-Turjman, 
Cognitive node architecture and a deployment strategy for the future WSNs, pp. 1–19, 
2017. Reprinted with permission.
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are information-monitoring devices. It is very challenging for sensor 
networks in their current form to provide a common platform that 
can support such diverse ICSN applications, while providing context-
aware information to end users that differ in their requirements on 
the attributes associated with service-data such as reliability, latency, 
and throughput. As in the case with Internet of things (IoT) applica-
tions, WSNs are not equipped to handle the heterogeneous traffic, 
nor do they have adequate capacity to store the large volume of data 
generated as a result of the multiple requests being serviced by the 
network and need modifications in the infrastructure to support the 
functionality [4].

To improve the capabilities of the network that delivers data to IoT 
environment, we propose the use of cognitive nodes (CNs) based on 
the elements of learning, reasoning, and knowledge representation 
in the underlying network. CNs will provide enhanced capabilities to 
the WSN to deal with the network connectivity and node dynamics 
in large-scale deployments. They will also provide space for local stor-
age of data before data gets delivered to the end user. This will help to 
maintain their availability at intermediate locations, other than their 
points of publication (i.e., the sensor nodes) for ease of access. To this 
end, the main contributions of this chapter are as listed below:

•	 We provide a description of the conceptual architecture of the 
cognitive node and the components that constitute its cogni-
tive elements, that is, knowledge representation, learning, and 
reasoning; and describe their functions.

•	 We identify a grid-based deployment strategy for relay and 
cognitive nodes in the large-scale WSN such that the prob-
ability of successful data reception between the communicat-
ing nodes is greater than 0.8.

•	 We also calculate the number of relay and cognitive nodes 
required to cover the target area while ensuring a high prob-
ability of successful data reception.

The remaining sections have been organized as follows: In Section 
3.2 we present the related work, the conceptual architecture of the 
cognitive node, and a brief description of the utilized cognitive ele-
ments. Section 3.3 discusses our system models and targeted problem 
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statement. The cognitive deployment strategy and utilized cognitive 
elements is presented in detail in Section 3.4. Next, extensive simula-
tion results are presented in Section 3.5 before concluding the chapter 
in Section 3.6.

3.2 � Related Work

Sensor node deployment problem has been extensively studied in 
literature over the past decade. Researchers have considered various 
factors such as coverage, connectivity, energy-efficiency, and fault-
tolerance while proposing deployment strategies for sensor nodes 
(SNs) [5]. With the introduction of the ZigBee standard [6], the focus 
shifted from sensor node to relay node (RN) placement problem, as 
the RNs could serve to maintain connectivity of sensor nodes with 
their base station even when the network size scaled-up [7]. The RNs 
increased the communication range of SNs and also took over the 
energy demanding task of data communication within the network 
from the SNs. This in turn increased the lifetime of the SNs, thus 
improving the longevity of the network. However, as WSN applica-
tions evolved from simple event monitoring or tracking applications 
to complex applications such as ecological monitoring [8], network 
deployment and its operational complexity increased. The WSN 
had to not only provide periodically monitored data, but had to even 
respond to on-demand queries and emergency situations. The chang-
ing application requirements made the network traffic very heteroge-
neous, leading to load balancing issues among the nodes and traffic 
bottlenecks in the network. Recent research has even considered the 
use of mobile data collectors, traffic-aware relay node deployment and 
artificial intelligent (AI) techniques to manage the dynamic network 
[9]. But data latency and reliability become an issue when mobile data 
collectors are used, and AI techniques have targeted very specific 
applications [10]. They have not been architecturally developed and 
implemented in a way that can be extended to different WSN appli-
cation platforms. Thus we say that in their current state, WSNs with 
SNs, RNs and data collector nodes will not be able to understand 
and respond to changing application requirements. The network will 
not be able to cater to performance attributes of latency, reliability, 
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energy consumption, and fault-tolerance while delivering data to the 
sink. We collectively call these attributes the quality of information 
(QoI) attributes [11], as they represent the attributes that the appli-
cation layer would associate with the data delivered to the sink, to 
measure the application-awareness of the response generated by the 
network to the end user’s request. In order to make the network aware 
of the changing application requirements, and enable it to provide 
QoI aware data, we propose the use of special nodes called cognitive 
nodes (CNs) in the underlying WSN. These CNs when strategically 
deployed in the network will ensure data-delivery with user-desired 
QoI to the sink, in each round of data transmission throughout 
the lifetime of the network. We will refer to this network as an 
information-centric sensor network (ICSN) from this point forward, as 
it will draw on the features of information-centric networks (ICNs) in 
terms of named-data association, in-network caching and the use of 
CNs as intermediate nodes that will process and store the information 
within the network [12,13]. However, we must mention that the idea 
of named-data association in WSNs is not new. The idea has existed 
in data-centric sensor networks (DCSNs), which are a special class 
of WSNs that function as information-retrieval networks rather than 
serving as point-to-point communication networks [2,14]. Sensor 
attributes are used for data gathering and delivery, which makes the 
use of node addresses inessential. This can lead to huge energy savings 
for the sensor network, as a single query can be broadcast through-
out the network to gather all relevant data from different sources, as 
against multiple queries addressed to specific locations to gather the 
same data. This translates to energy savings for all the network nodes, 
leading to prolonged network lifetime.

Shifting our focus back to the cognitive nodes, the information-
centric approach to query dissemination used by these nodes helps 
in finding only relevant data and changes the way the network 
handles user requests. There is awareness in the network, about the 
specific information requested by the user; that is, temperature data 
or humidity information from a specific geographic area, at a spe-
cific time in the present, or from sometime in the past. In addition, 
the CNs enable the network to understand the QoI with which it is 
expected to return the requested data to the sink and the network is 
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able to adapt the use of its resources to find paths that are either reli-
able, have low latency or offer a high throughput. This way, the net-
work is not always exerting itself to find the best path that satisfies all 
the attributes, but prioritizes the QoI attributes for each transmission 
round based on the end user requirements, and finds a suitable path 
accordingly, thus prolonging the network lifetime. Now the chal-
lenge is in finding the best place to deploy these nodes in the ICSN. 
Optimal node placement is a very challenging problem and has been 
proven to be NP-hard [5]. With CNs, there are constraints on how 
many such nodes can be used in the network, and whether one can 
use only CNs or combine it with the use of RNs in the underlying 
network.

In this chapter, we identify the cognitive functions of the CN, 
address its deployment problem, and, through simulations, identify 
the best combination of RNs and CNs that the network can benefit 
from to minimize energy consumption and prolong network lifetime 
[15] while catering to the QoI attributes of reliability and instanta-
neous throughput. Thus contributing to not only good quality of user 
experience, but also improving the lifetime of the network during 
which data is delivered to the end user–based on user-desired QoI 
attributes.

Cognition is the process by which knowledge is acquired through 
intuition, perception, planning, and reasoning. If a communication 
network is capable of observing the impact of its own actions on the 
environment, and learns to use the knowledge acquired from accumu-
lating these observations to adapt the data delivery paths according to 
user requirements and changing network conditions, then it is said to 
be exhibiting cognitive behavior [16]. From this perspective, we iden-
tify knowledge representation, learning, and the ability to infer from 
the knowledge acquired, as elements of cognition sufficient to achieve 
our proposed goals. Figure 3.1 represents the three major compo-
nents that we define for our cognitive nodes: learning, reasoning, and 
knowledge representation; and associates them with their respective 
functions. These elements of cognition, when incorporated in the net-
work nodes of a WSN, help it in better understanding and catering 
to the end user requirements or what we call quality of information 
(QoI) requirements.
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Our expectation from the cognitive elements in Figure 3.1 would 
be mainly to cater for the following objectives:

•	 Reactive response: Observe current network behavior and 
respond adaptively to changing network dynamics

•	 Proactive planning: Learn from past behavior and plan for 
the future so as to make predictions and decisions that posi-
tively impact the network survivability and application QoI 
during its lifetime.

Using these elements, a conceptual architecture of the cognitive 
node is illustrated as depicted in Figure 3.2. The ultimate goal to be 
achieved by CNs is to reduce the periodic data transmission in favor 
of a planned data collection mechanism that is optimized to match 
the end user’s requirements while meeting the coverage, connectivity, 
and longevity requirements of the sensor network. In order to achieve 
that, the CNs will need to store information about the network status, 
as well as have a learning mechanism that enables decision making 
based on past experiences. End user requirements will be received via 
a CN’s transceiver, while environment observations are to be collected 
via the sensor units. The two sources of information are consolidated 
in a knowledge base, which will provide this information to a learning 

Cognitive node (CN)

Knowledge
representation

•  Convert data to 
    useful information.

•  Represent
    information in
    attribute–value
    pairs.

•  Reactive response.
•  Response based
    on current
    knowledge.

•  Proactive planning.
•  Feedback from
    past actions and
    current
    observations.

Reasoning Learning

Figure 3.1  The elements of a cognitive node.
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engine. The learning engine analyzes observations and requirements 
in order to form decisions as to how the requirements will be satisfied 
given the network’s current status and its past response to similar situ-
ations from the knowledge base. The outcome is a set of actions that 
comprise the final plan that will serve a specific request.

3.3 � System Models

In this section, we describe the assumed network, communication, 
cost, and energy models of the targeted cognitive ICSN and general-
ize a deployment problem statement in this domain.

3.3.1 � Network Model

Nodes in WSNs can be deployed in a flat, hierarchical, or geographic 
location based strategy. In terms of energy conservation, hierarchical 
deployment strategies provide better performance for WSNs [2]. We 
had proposed a hierarchical strategy for cognitive communication in 
WSNs in our earlier work [17,18]. We make use of this hierarchi-
cal approach here for a large-scale deployment in IoT applications. 
Cognitive nodes (CNs), relay nodes (RNs), sensor nodes (SNs), and 
a sink node are the node-level entities of the network. CNs act as 

End user

Environment

Learning and
reasoning

Knowledge
representation

Requirements

Observations

Feedback

Actions

Decisions

Figure 3.2  Cognitive node conceptual architecture.
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cluster heads for RNs and are the decision makers for the network. 
Using Radial graph [19], distributed RNs use the aforementioned QoI 
attributes to break local symmetries between the RNs and distinguish 
those who are more capable to be RNs cluster heads (i.e., CNs). In 
other words, each node is made a cluster head as long as it has locally 
the largest attribute values. Once a node is dominated by a cluster 
head, it abstains from local competition, giving other nodes the same 
chance in the future. We let this duty rotates among various members 
of the WSN via periodic reelection for CNs. This is very useful when 
energy reserves are used as discriminating attributes.

In the proposed network model, CNs process the requests received 
from the end user by making use of the cognitive elements of knowledge 
representation, learning, and reasoning to identify a data delivery path to 
the sink that meets the user’s quality of information (QoI) requirements. 
RNs act as cluster heads for SNs and also participate in relaying informa-
tion from CNs to the sink. Sensor nodes gather sensed data and forward 
it to both RNs and CNs lying within their communication range. The 
hierarchical deployment strategy helps to distribute the tasks between 
the relay and cognitive nodes and better manage the network connectiv-
ity. We assume that RNs and CNs have the same communication range 
for a given transmit power. However, the transmit power at RNs is fixed 
(0 dB) at the time of deployment and CNs are allowed to adapt their 
transmission power from a predetermined set of values (–3 dB to + 10 dB) 
to achieve the desired transmission range and QoI.

3.3.2 � Energy Consumption Model

The voltage discharge characteristics of most lithium AA batter-
ies (irrespective of their chemistry) suggests that once the terminal 
voltage drops to about 30 percent of its original value, almost all of 
the battery’s usable energy is depleted. Lithium batteries typically 
last 500–1000 cycles before the terminal voltage drops to this value, 
depending on the application and environment in which it is oper-
ated [20]. In our system, we assume that the batteries at RNs and 
CNs are capable of delivering consistent performance for about 500 
cycles, after which they are assumed to be drained out of energy. 
Rechargeable batteries, or batteries of higher energy ratings, may be 
considered for use at CNs when compared to RNs, as their processors 
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may consume additional energy during information processing, adap-
tive transmission, and information feedback for the cognitive decision 
process. So, the actual cost of RNs and CNs may not be very differ-
ent, but the energy consumption of CNs could be higher due to the 
following reasons: (1) CN’s ability to adapt transmit power to alter 
their communication range during the data transmission phase, and 
(2) CN’s processors operate for longer (when the nodes are active, but 
not transmitting data), to perform additional computing and infor-
mation processing required during the cognitive decision making 
process. If energy consumption at a RN is denoted by ERN, and that 
at CN is denoted by ECN, then following the energy consumption dis-
cussion above, we can say that energy consumption at cognitive node 
is greater than that at relay nodes, as depicted by Equation 3.1.

	 E ECN RN> 	 (3.1)

We set the initial battery cycle life to 500 units and every time 
a node is involved in a data or control message communication, we 
reduce the node’s battery cycle life as shown in Table 3.1, based on 
the transmit power used for communication. And thus, at the end of 
every round, the total energy consumed per node i can be written as

	
E

J J
cons
i

er round er round rec
= +∑ ∑p ptr –

, 	 (3.2)

where Jtr = L(ε1 + ε2dn) is the energy consumed for transmitting a data 
packet of length L to a receiver located d meters from the transmitter. 
Similarly, Jrc = Lβ is the energy consumed for receiving a packet of the 
same length [15,21]. In addition, ε1, ε1, and β are hardware specific 
parameters of the used transceivers. In addition, if the initial energy 
Einit of each node is known, the remaining energy per node i at the 
end of each round is

	 E E Erem
i

init
i

cons
i= − , 	 (3.3)

Table 3.1  Reduction in Cycle Life Based on Transmit Power

Pt CYCLE LIFE REDUCTION (UNITS)

<3 dBm 1
3 dBm–5 dBm 2
5 dBm– 7 dBm 3
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3.3.3 � Communication Model

In practice, the signal level at distance r from a transmitter varies 
depending on the surrounding environment. These variations are cap-
tured through the so-called log–normal shadowing model. According 
to this model, the signal level at distance r from a transmitter follows 
a log–normal distribution centered on the average power value at that 
point [22]. Mathematically, this can be written as

	
P d P P d P P r n r

rrecv t L t L( ) ( ) ( )= − = − −




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+0
0

10 log χ 	 (3.4)

where Precv(d) is the received signal power at distance d, Pt is the source 
node transmission power, PL (r0) is the path loss measured at reference 
distance r0 from the transmitter, n is an environment dependent path 
loss exponent, and χ is a normally distributed random variable with 
zero mean and variance σ2, i.e. χ σ  ( , ).0 2  With the aid of this 
model, the probability of successful communication between two nodes 
separated with a distance r can be calculated as follows. Assume Pmin 
is the minimum acceptable signal level for successful communication 
between a source S and a destination D separated by distance r. The 
probability of successful communication is ρ[S, D] = Pr[Precv(r) ≥ Pmin]. 
After some mathematical manipulations, ρ[S, D] can be written as
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where Q(·) is the Q-function defined as

	
Q x e dtt

x
( ) = −

∞

∫1
2

2
2

π
	 (3.6)

In this work, the probability of successful communication between 
nodes i and j should exceed a certain threshold, γth. Hence, the condi-
tion ρ[i, j] ≥ γth will be used. The value of Pr can be estimated using a 
cumulative density function as follows:

	
Pr P d Q P d

recv th
th recv[ ( ) ] ( )> = −





γ γ
σ

	 (3.7)
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3.3.4 � Operational Cost Model

In a WSN deployment consisting of sensor, relay, sink, and cogni-
tive nodes, the sensors used for application-relevant data gathering 
are typically the most expensive hardware component. Sensors are 
deployed on sensor nodes which are powered by single-use batteries 
which are typically not replaceable due to accessibility issues. They 
operate at low transmit powers (typically less than 3 dB) and have a 
relatively small communication range (a few hundred meters) when 
compared with RNs and CNs. To have the sensors remain opera-
tional for the longest duration possible, it is best to let them operate 
in sleep mode more often, and turn them on only when data needs to 
be gathered from their surroundings. Comparing relay and cognitive 
nodes, their hardware costs are very close in terms of the batteries and 
processors used. However, they differ in their energy consumption 
model, as mentioned above.

In addition, CNs may incur a slightly higher hardware cost in 
terms of having an additional flash memory storage, where it can store 
the data gathered from nearby sensors and relay nodes, and also the 
information observed from the network interactions. This way, CNs 
can better perform information caching functions in the information-
centric sensor network environment. If we represent the hardware 
cost of RNs as CRN−HW, and that of CNs as CCN−HW, then following the 
above discussion, we can arrive at Equation 3.8, which suggests that 
the cost of CN’s hardware is equal to or greater than the cost of the 
relay node hardware, based on the use of the additional flash storage.

	 C CCN HW RN HW− −≥ 	 (3.8)

Thus, comparing the energy consumption model and hardware costs 
of the RNs and CNs from Equation 3.1 and Equation 3.8, we can say 
that the cost of operating CNs, or its operational cost (OCCN) is more 
than the operational cost of RNs (OCRN), as shown in Equation 3.9.

	 OC OCCN RN> 	 (3.9)

Hence, it is important to consider reducing the number of cognitive 
nodes used in the deployment strategy in order to reduce the opera-
tional cost of network and its maintenance thereafter.
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3.3.5 � Problem Definition

For large-scale WSNs, we define the node deployment problem as 
follows: “Determine the number and location for the placement 
of relay and cognitive nodes in a given targeted area such  that 
(1) the probability that the received signal strength is above a spe-
cific threshold γth that guarantees the QoI, (2) the network is con-
nected in such a way that there is a path from each SN to the sink 
through the RNs or CNs, and (3) the deployed network satisfies 
the three main QoI attributes: High instantaneous throughput, 
low average delay per node, and reliable data delivery over the 
multi-hop communication.”

Per this definition, it’s worth pointing out that the probability of the 
received signal strength being above a threshold value is defined as the 
probability of successful data reception Pr as described in Equation 3.7. 
As identified in the cost model, we want to minimize the number of 
CNs and keep their number lower than the number of RNs to mini-
mize the total cost of the network. We also want to assure that there 
is at least one RN/CN for each sensor node to deliver its information 
so that SNs are only involved in short-range local communications that 
incur the minimum cost. In the following section we identify a strategy 
for the deployment of CNs and RNs for large-scale ICSN applications.

3.4 � A Cognitive Deployment Strategy for ICSN

In order to determine the deployment strategy for the relay and cogni-
tive nodes in the network, we make the following assumptions:

•	 Sensors nodes are deployed randomly but uniformly through-
out the target area. They have a fixed transmit power with a 
communication range of 175 m.

•	 SNs can communicate and bind with RNs and CNs in a single-
hop, but do not communicate with each other.

•	 RNs have a fixed transmit power and communication range, 
but the values are higher when compared with those of SNs.

•	 CNs can vary their transmit power to increase their trans-
mission range to values higher than those of RNs. However, 
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when their transmit power is the same value as that of RNs, 
they offer the same communication range.

•	 We approximate the target area to be a square region and 
divide the entire area into smaller squares of side L.

•	 The sink is deployed at approximately the center of the target 
area.

Given these assumptions, the goal of the deployment strategy is 
to identify the length L of the side of each square grid cell [23] and 
the position of the RNs and CNs on the grid such that the RNs can 
communicate with at least one CN, and Pr > 0.8 along each hop of the 
data delivery path from a source node to the sink. We device such a 
node deployment strategy by making use of the following basic prop-
erties of a square.

Property 1. Center of a square of side L is equidistant from each of 
its vertices, and has a length L/ 2.

For a square of side L, the diagonals intersect at the center of the 
square, and are perpendicular bisectors of each other. Using Pythagoras’s 
theorem [24], we know that the length of the diagonal which forms the 
hypotenuse of the isosceles triangle formed by the two sides of the square, 
can be found as ( ) .L L2 2 2+ = ∗ L  Thus the center of a square is 
equidistant from each of its vertices and has a length L/ 2,  as shown in 
Figure 3.3(a).

Property 2. The distance from the center of the square to any of 
its vertices is the maximum separation distance that can be achieved 
between the center and any other point on the square.

If we draw a circle with radius L/ 2,  whose center lies at the 
center of a square of side L, we would be circumscribing a circle that 
passes through each of the vertices of the square. This circle does not 
touch any other point of the square other than the vertices. Thus the 
distance between the center of the square and its vertices is the maxi-
mum separation distance that can be achieved between the vertex and 
any other point within the square.
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Now let us consider the path loss (PL) and received signal 
strength Precv. From the log–normal shadowing path loss com-
munication model and Equation 3.4, we know that the path loss 
increases as the separation distance between a transmitter and 
receiver node increases. Conversely, if the distance between two 
communicating nodes is reduced from 2 ∗ L  across the diagonals 
of a square of side L, to L/ 2  at half the distance, the increase in 
received signal strength Precv can be calculated from Equation 3.4 
as follows:
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Figure 3.3  (a) Square grid cell of side L having relay nodes (RN) at the corners, and (b) RNs, CNs, 
and inquired clusters of SNs on the grid.



55C-N ARCHITECTURE AND STRATEGY FOR FUTURE NETWORKS

Thus the received signal strength Precv at distance 
L
2

 is increased 

by an amount of 1.5*n, when compared with its value at double the 
distance 2 ∗ L.  Using the result from Equation 3.11, we can say that 
for a two-dimensional square grid cell with transmitter nodes placed 
at the vertices, an intermediate node placed at the center of the square 
can improve the probability of reliable reception by 1.5*n, using a two-
hop communication. Next, we describe the algorithm for deployment 
of RNs and CNs in the targeted area.

In Algorithm 3.1, lines 1 to 5 describe the inputs required to come 
up with the deployment plan. The size of the target area, number of 
SNs available and their communication range and the location of the 
sink are essential to decide on the outputs described in steps 7 and 
8. They are the number and position of RNs and CNs required for 
maintaining connectivity of the SNs with the sink. In Step 9, the 
receiver sensitivity of the RNs and CNs is set to –101 dBm, which is 
typically the value in commercially available SNs and RNs. In step 
10, a threshold value of signal strength γth is set such that it is 3 dBm 
above Rsense. This is to guarantee reception of signals that are stronger 
than the receiver’s sensitivity, which is the least value of the signal that 
it can detect. Once these values are set, we use Equation 3.7 to plot 
a graph of the variation of Pr as a function of d at transmit powers in 
the range (–5 dBm to 10 dBm). The transmitter and receiver represent 
the RNs and CNs. In line 13, the values obtained from the plot are 
tabulated to strategically identify a value of d in step 14 to ensure that 
there is at least one RN or CN lying between any two SNs to guar-
antee connectivity of SNs with the sink across the entire network. In 
line 15, we ensure that the transmit power for the chosen d is able to 
support Pr > 0.8 for every link, at least under near-ideal conditions. 
Once the side of each square grid is identified in step 16, steps 17–21 
describe the steps to identify the number of rows and columns in the 
square grid covering the target area and number and position of RNs 
and CNs in each grid cell. Thus, for SNs placed uniformly, randomly 
in a target region, Algorithm 3.1 gives the deployment plan for plac-
ing RNs and CNs in the area. From this plan, we arrive at L = 350m, 
Number of CNs = 9, Number of RNs = 16. Figure 3.3(b) illustrates 
the deployment of the relay and cognitive nodes in a square grid using 
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this strategy. Summarizing this deployment strategy, we conclude the 
following:

For a square target area of side A, and square grid of side L, we have G  
number of rows of square grids, G number of cognitive nodes and ( )G + 1 2  
number of relay nodes in the network, where G is A2/L2 rounded off to the 
nearest higher perfect square number. Table 3.2 shows the values of Pt and 
d for Pr > 0.9 and Pr > 0.8 are tabulated using values from the simulation 
results in Figure 3.4.
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Figure 3.4  Plot of probability of received signal strength versus the separation distance ‘d ’.

Table 3.2  Values of D for Different Transmit Powers 
for PR > 0.8 and PR > 0.9

PR > 0.9 PR > 0.8

PT (DBM) D (M) D (M)

–3 150 190
0 200 225
3 250 280
5 275 300
7 300 350

10 360 400
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Algorithm 3.1  Deployment Plan for RNs and CNs in Target Area

	 1.	Inputs:
	 2.	Target area A2: 1050 m × 1050 m
	 3.	Number of sensor nodes: 1500
	 4.	Sensor node communication range (rSN): 175 m
	 5.	Sink position: Center of target area
	 6.	Outputs:
	 7.	Number of RNs and CNs for the target area
	 8.	Position of RNs and CNs in the deployment region
	 9.	Begin:
	 10.	Initialize: Receiver sensitivity Rsense= –101 dBm
	 11.	Threshold signal strength γth = –98 dBm	
	 12.	Plot a graph of Pr against d, for different transmit powers
	 13.	Tabulate values from the plot in step 12
	 14.	Identify a value of d such that d ≤ 2*(rSN) and Pr > 0.8
	 15.	Choose Pt such that 0 ≤ Pt ≤ 10, for Pr > 0.8 at d
	 16.	Set d as the side L of each square grid in the target area A2

	 17.	Approximate number of square grids required to cover the 
target area x is A2/L2

	 18.	Round off x to the nearest higher whole number G, such that 
G is the perfect square of a whole number

	 19.	 G  is the number of rows and columns of square grids in the 
targeted area.

	 20.	G will be the total number of CNs in the network, each 
deployed at the center of a square grid at a distance L/ 2  
from the corners of the grid

	 21.	 ( )G + 1 2  will be the total number of RNs in the network, 
placed at the corners of each of the square grid

	 22.	End

Thus, to cover a square target area of side A, unit square grid cells 
of side L can be replicated over the entire area to ensure connectivity 
among all the nodes. Following the steps in Algorithm 3.1, we know 
that G is not the least number of such square grid cells required to 
cover the target area, but a value chosen to retain the approximation 
of the target area as a square one, while maintaining the size of unit 
grid cells constant. We know that the separation between nodes at 
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the corners and central node is maximized and the central nodes will 
be equidistant when juxtaposed with similar cells, due to the prop-
erties of the square. Thus, we can say that the number of RNs and 
CNs identified in Algorithm 3.1 provide a feasible deployment plan. 
Meanwhile, elements of cognition in the CNs form the two main 
constituents of our proposed deployment strategy. These elements are 
reasoning and learning.

3.4.1 � Learning

Learning is used in our deployment plan in order to determine the 
most appropriate paths towards the sink that satisfy the QoI require-
ments. This cognition element uses a direction-based heuristic to 
determine RNs’ locations that lie in the most appropriate direction 
of the sink. Hence, each time a CN has to choose the next hop, the 
direction-based heuristic eliminates RNs’ positions that increase 
the distance between the current RN and sink node. Knowledge of 
the positions of the CN and its one-hop RNs is used by the heuristic 
to determine the set of such RNs, which we call forward-hop-RNs. 
Thus the forward-hop-RNs of a CN identified by the direction-​
heuristic is constituted by those RNs that reduce the distance between 
the CN and the network sink. This information is stored in the CN 
for use in the next transmission round. Thus the direction-based heu-
ristic, along with feedback from the network about the chosen RNs’ 
positions helps the CNs to learn candidate positions for the forward-
hop-RNs to the sink, as the network topology changes.

Example 3.1: Assume S1 and S2 have data to be sent to destina-
tion nodes D1 and D2. Rn are all the available grid vertices towards 
the destination sink. Out of these positions, it is determined that R5 
as shown in Figure 3.5(a) has the lowest link outage probability to 
D1 and D2. Therefore, S1 initiates a path to R5. Meanwhile, S2 also 
forward a high traffic of data to R5. When multiple source nodes start 
exchanging their data with R5 as well, the route to R5 may get con-
gested. A cognitive network with learning capabilities will be able to 
identify the congestion at R5 (by observing the decrease in through-
put). Sharing this observation with neighboring nodes, the corre-
sponding CN would be able to respond to the congestion proactively, 
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by replacing the utilized RN at R5 with different set of candidate 
relays at R4 and R8 as shown in Figure 3.5(b).

3.4.2 � Knowledge-Representation and Reasoning

In our cognitive approach, we assume a modified version of the ana-
lytic hierarchy process (AHP) [25] for implementing the reasoning 
element of cognition in the IoT. AHP supports multiple-criteria deci-
sion making while choosing the next hop position. For example, if we 
have delay-sensitive data, the node which provides the lowest latency 
will be chosen even though it might degrade other metrics such as 
the network energy or throughput. If two next hops guarantee the 
same latency then the next attribute to compare will be energy, and 
then, throughput, assuming that energy is the next desired attribute in 
the IoT-network. AHP provides a method for pairwise comparison of 
each of the attributes and helps to choose the node that can provide the 
best network performance on the long run. The following subsequent 
example has more details on the utilized AHP. While AHP calcula-
tions help in deciding the next hop, it also help in planning for future 
actions. The CNs are able to store the calculated values of the QoI-
attributes, which can be used in future transmission rounds. Hence, 
these values are not necessarily calculated at every transmission round.
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Figure 3.5  (a) Typical positioning and (b) Cognitive positioning in IoT-networks.
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Example 3.2: Assume a three-level hierarchy in the AHP: Goal 
(determine the next RN), Criteria (Reliability, Energy, and Throughput) 
and Alternatives (RN1, RN2, and RN3). A fundamental scale for pair-
wise comparisons is then used to set priorities for the QoI attributes/
criteria at the CNs. Given the very limited energy constraint in WSNs, 
we would assign the highest priority to energy, followed by reliability 
and then throughput. We tabulate the relative priorities of these attri-
butes using pairwise comparison and generate Table 3.3. From Table 
3.4 we generate Table 3.5. Then, we apply the following steps:

	 1.	Represent the values of Table 3.4 in the matrix form 

A =
















1 4 6
1 4 1 3
1 6 1 3 1

/
/ /

.

	 2.	Compute the Eigen vector of the matrix A.
	 3.	Isolate the absolute, real values of the Eigen vector.
	 4.	Compute the relative priority values as shown in Table 3.5 in 

order to decide which RN position to choose.

Table 3.4  AHP for QoI Attributes vs. Goal

GOAL: BEST 
ATTRIBUTE ENERGY RELIABILITY THROUGHPUT

RELATIVE PRIORITIES 
OF THE ATTRIBUTES

Energy 1 4 6 0.691
Reliability 1/4 1 3 0.2176
Throughput 1/6 1/3 1 0.0914

Table 3.5  AHP Evaluating the Overall Priorities for all Possible RNs

BEST CANDIDATE FOR 
NEXT-HOP RNX

PRIORITY WITH RESPECT TO

ENERGY RELIABILITY THROUGHPUT GOAL

RN1 0.252 0.015 0.101 0.375
RN2 0.2 0.018 0.11 0.329
RN3 0.164 0.019 0.116 0.296

Table 3.3  Pairwise Comparison of the QoI-Attributes

Energy 4 Reliability 1
Energy 6 Throughput 1
Reliability 3 Throughput 1
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Due to large-scale applications targeted in this research, sensor 
nodes are assumed to be randomly distributed as we aforementioned. 
They form clusters based on their vicinity once the RNs are deployed. 
To do this, a hybrid energy efficient distributed (HEED) approach 
[26,27] for ad-hoc sensor networks is applied to assign a relay node as 
a Cluster Head (CH) for those clustered sensors (see Figure 3.3(b)). 
HEED is chosen since it provides a single-hop SN-to-CH commu-
nication, and multi-hop CH-to-CH using a directed diffusion (DD) 
routing protocol. Moreover, it assumes a nonuniform energy con-
sumption and SN-location knowledge is not necessary for clustering. 
It takes into consideration the residual energy per node while perform-
ing inter- and intracommunication, where nodes with higher residual 
energy have higher probability to be elected for a data query. And thus, 
it maintains balanced clusters of these randomly distributed SNs.

In order to record all clusters at the central sink node, we need a 
data structure associated with each relay’s cluster to store coordinates 
and total number of SNs connected to the RN. We represent this data 
structure by the set C(i), where i is the vertex index on which the RN is 
placed. By computing C(i), ∀ i ∈ V, we can test whether a RN at vertex 
i is optimal or not by searching for a set that has at least all elements 
of C(i). In the following, Algorithm 3.2 is running independently at 
the SNs/RNs by the end of each round to collect residual energy and 
neighboring SNs per RN. If any change occurs in the resultant gath-
ered information, it will be broadcasted to update the network sink.

Algorithm 3.2:  SNs Communication Assignment

	 1.	Inputs:
	 2.	A set N of the RNs/SNs’ coordinates.
	 3.	Outputs:
	 4.	C(i): Set of covered SNs per RN at i.
	 5.	E: remaining energy at SN/RN in cluster i.
	 6.	Begin:
	 7.	If SN
	 8.	E = Erem with reference to Equation 3.3
	 9.	Endif
	 10.	If RN
	 11.	E = Erem RN with reference to Equation 3.3
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	 12.	Endif
	 13.	C(i):= φ; //list of covered SNs by relay node i
	 14.	foreach RN at vertex i do
	 15.	Compute Pr[i, j] with reference to Equation 3.7
	 16.	If Pr ≥ γth

	 17.	C(i):= j ∪ C(i);
	 18.	endif
	 19.	endfor
	 20.	End

3.5 � Simulation Results and Discussions

Simulation results in this section have been derived from Omnet++ 
and MATLAB® simulations. Our initial setup in Omnet++ consid-
ered the use of a planned 2D-grid deployment of CNs in a randomly 
deployed sensor network. The assumed virtual grids are squares of side 
length equal to 200 m. Initially, we considered three techniques for 
data routing. The first technique, Tech. A, is based on the directed 
diffusion (DD) routing approach [28], where the data was returned 
along the same path on which it was arrived. In this technique we 
assume only sensor nodes constructing the overall network. The sec-
ond technique, Tech. B, allowed the usage of RNs in order to support 
the distributed sensor nodes while performing sort of aggregation in 
order to avoid as much as possible redundancy in transmissions. In the 
third technique, Tech. C, we use CNs to choose a different data deliv-
ery path, compared to the request arrival path. We also let the CNs 
communicate across the diagonals of the square grid while adapting 
their transmission power. To increase the probability of reliable data 
reception at nodes located at different separation distances from the 
source node, the CNs were allowed to vary their transmit power between 
0 dBm to 10 dBm, with specific increment values of {0, 3, 5, 7, 10} dBm 
as described in Table 3.2. This can show how cognition can improve 
existing WSNs in terms of the network lifetime. We ran our simula-
tions until first node death for all techniques and found that Tech. B 
is experiencing almost the same performance as in Tech. A. However, 
Tech. C is significantly outperforming the other two techniques in 
terms of network lifetime due to the added CNs in the network, as 
shown in Figure 3.6. This can be returned to the utilized cognition in 
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adapting network resources according to users’ requests, where trans-
mission powers are changed according the data-request’s source and 
the current communication link conditions. In fact, the proposed CNs 
make use of the received feedback about the utilized channel condi-
tion and modulation rate to determine the sleep time of each node. 
This concept has been emphasized more in the following simulation 
study while assuming realistic parameters’ values based on [29] and 
summarized in Table 3.6 for energy consumption of each node in four 
modes: Sleep mode, receive mode, active mode (ready to transmit but 
not transmitting), and transmission mode, as shown in Figure 3.7.

Figure 3.7 displays the mean node lifetime in a WSN using adap-
tive modulation and adaptive sleep (AMS) versus adaptive modula-
tion (AM) only. In case of AM, the modulation level (parameter M in 
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Figure 3.6  Comparison of the three simulated techniques based on total number of transmis-
sions rounds (lifetime).

Table 3.6  Node Parameters Used in Simulation

PARAMETER VALUE

Current consumption in Sleep mode: Isleep 1 μA
Current consumption in Receive mode: Irx 20 mA
Current consumption in active mode: Iac 100 mA
Current consumption while transmitting 120 mA
Traffic intensity 90 percent
Log–Normal Shadowing variance (σ) 0, 2 dB, 4 dB, or 6 dB
BER required (QoS) 10−4

RF Bandwidth used 200 kHz
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M-QAM modulation) is chosen for each packet according to channel 
condition (i.e., SNR). This case assumes no cognition and the sleep 
time is predetermined independently from the user requests or any 
changes to application requirements. Meanwhile, the same figure 
shows the average node life time using an adaptive modulation scheme 
combined with a scheduled sleep (AMS) mechanism that adapt based 
on the CNs feedback. In other words, cognition here is employed at 
the MAC and PHY layers and sleep times are scheduled according 
to channel conditions and bit rates. In both cases high traffic pat-
terns (mean packet arrival rate 90 percent) are assumed and simu-
lated using Poisson distributions and log–normal shadowing where 
shadowing variance takes values from 0 (no shadowing) to 6 dB. The 
figure shows that the cognitive approach significantly outperforms 
the noncognitive one in terms of the average node lifetime. This is 
because M-QAM modulation, when carefully chosen, will require 
less transmission time, and thus, the cognitive system exploits this 
information to modify the sleep time accordingly. The improvement 
made by the cognitive approach is higher for both high traffic inten-
sity and severe channel conditions (i.e., low SNR and high shadowing 
variance). To mitigate the need for the increment in power transmis-
sion in typical WSN deployment strategies in order to maintain a reli-
able communication channel over prolonged distances, we considered 
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the use of relay nodes (RNs) between the diagonally communicating 
CNs, which serves as multi-hop communication paths. But adding 
RNs in the current setup means increasing the total number of nodes 
deployed in the network, thus increasing the overall hardware cost of 
the network. So, neither only increasing the transmit power at CNs, 
nor simply adding extra RNs in the deployment plan, provide elegant 
solutions (i.e., cognitive deployments) to improving the connectivity, 
or reducing the energy consumption of the network. From Equation 
3.9, we know that the operational cost of CN is higher than that of 
RNs. This indicates that it is feasible to have more number of RNs 
than CNs in the network. Hence, we adopt the deployment strategy 
proposed in Algorithm 3.1 to maintain a lower ratio of CNs to RNs 
used in the network.

The transmit power of RNs and CNs, and their respective com-
munication ranges are planned based on Table 3.2 and Figure 3.4, 
and the resulting node deployment plan is as shown in Figure 3.8. 
This deployment plan was implemented in MATLAB® as described 
in the following subsections to allow more flexibility with the param-
eter setting and control over the CN’s behavior during the network 
operation. The simulations were used to study the impact of the node 
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deployment and internode interactions on the quality of information 
(QoI) attributes of latency, reliability, and throughput. Details of the 
definitions of the QoI attributes and the simulation setup are pro-
vided in the following sections.

3.5.1 � The Quality of Information (QoI) Attributes

We use latency, reliability, and instantaneous throughput as QoI eval-
uation metrics for the IEEE 802.15.4 MAC-PHY layer in typical 
WSNs.

3.5.1.1  Node Reliability (NR) at the Transmitting Node  Node reliability 
is defined as the probability that a transmitting node is able to suc-
cessfully deliver a data packet to its next hop neighbor. It is a function 
of the node’s buffer capacity (blocking probability), and the channel 
conditions (based on the number of nodes trying to simultaneously 
transmit data) at the time of channel access/data transmission. Thus 
it inherently reflects upon the link reliability as well. This definition 
of reliability is based on the work in [30] for low-power nodes in the 
802.15.4 PHY-MAC model. We apply the same definition to the 
cognitive nodes as well, as they will be interacting with sensor and 
relay nodes in the same setting.

	 NR P P Pblocking c fail p discard= − ∗ − ∗ −− −(( ) ( ) ( ))1 1 1 	 (3.12)

Where Pblocking represents the blocking probability due to a buffer-full 
condition; Pc–fail is the channel access failure probability and Pp–discard is 
the probability that a packet is discarded on reaching the maximum 
number of retries limit.

3.5.1.2  Instantaneous Throughput (IT) at the Receiving Node  The defini-
tion for instantaneous throughput (IT) at a receiving node is based on 
the work in [29,31] and is applied to both relay and cognitive nodes. 
It is defined as a ratio of the size of the frame payload at the physical 
layer (Overhead + application payload) L in bits, over the mean service 
time M in seconds.

	 IT L M= / bits/s( ) 	 (3.13)
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3.5.1.3  Observed Latency (OL) at the Receiving Node  The observed 
latency at a receiving node accounts for delays due to the mean service 
time at the transmitting node, which is a function of the frame arrival 
rate. In the following section, we evaluate the node reliability (NR), 
observed latency (OL), and instantaneous throughput (IT) for the 
proposed deployment strategy and communication range after initiat-
ing our simulation setups in MATLAB®.

3.5.2 � Simulation Setup

Using MATLAB® (R2013a), we simulated the deployment plan for a 
large-scale ICSN with 1500 SNs, 16 RNs, 9 CNs, and a sink over a 
square target area of side A = 1050 m. The SNs were distributed randomly 
and uniformly over the target area. CNs and RNs are deployed at fixed, 
equidistant locations on a two-dimensional square grid as described in 
the deployment plan, and shown in Figure 3.3(b). The RNs are deployed 
at the corners of each square grid and the CNs at the center. The sink 
is deployed at the center of the deployment region. Node connections 
and  interactions are based on a hierarchical ZigBee topology model 
[32]. The network is built over an IEEE 802.15.4 MAC-PHY simulator 
based on the work in [30]. Simulation parameters are set based on prac
tical experimental results in [29] as depicted in Table 3.7. The parameters 
that are varied in our simulation model are listed as follows:

	 (a)	 Nsimultaneous: the number of nodes attempting to simultaneously 
transmit data

	 (b)	 Load: Application payload in terms of the size of the MAC 
frame payload in bytes, and

Table 3.7  Simulation Parameters and Values [29,30]

PARAMETER NAME VALUE

Operational frequency 916 MHz (ISM band)
Data rate 250 kbps
Transmit power 0 dBm for RN; and any value from the set {0, 3, 5, 7, 10} dBm 

for the CN
Modulation Phase shift keying (PSK)
Encoding Non-return to zero
Path loss model Log–normal shadowing n = 4, σ = 4
SN transmission range 175 m
Application payload size 0–127 bytes



68 COGNITIVE SENSORS AND IoT

	 (c)	 Offered load: per node frame arrival rate expressed as a frac-
tion of the application payload, in bits/second.

Impact of varying of these parameters on the QoI attributes of 
latency (OL), reliability (NR), and instantaneous throughput (IT), and 
average throughput are studied. The maximum and minimum possible 
values for Nsimultaneous were identified from the node binding informa-
tion available at the time of network deployment.

From 10 sets of random deployment of sensor nodes, we found a 
lower bound of about 10 sensor nodes per CN, and an upper bound of 
close to 60 sensor nodes per CN, which we used in the simulations. 
The range of values chosen for the application payload size was 51 
to 121 bytes. This range for the MAC frame payload size was cho-
sen based on the size of the data field supported by IEEE 802.15.4 
Physical layer packets: 0 to 127 bytes [30]. The range of values for per 
node offered load was 0 to 1400 bits/second, such that the load could 
be expressed as a fraction of the application payload, ranging from 0.1 
to 1.4 times the size of the application payload.

3.5.3 � Simulation Results

From the simulation results shown in Figures 3.9 through 3.12, we 
analyze the impact of varying Nsimultaneous on the QoI attributes for dif-
ferent application payload sizes. From Figure 3.9, we see an overall 
trend of increase in latency as the number Nsimultaneous increases. Latency 
increases with increase in application payload size, for any value of 
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Nsimultaneous. For instance, we see that the latency for Nsimultaneous = 10, 
for a 51 B payload, is less than 0.04 s. Figure 3.10 indicates an overall 
trend of decrease in reliability with increase in the Nsimultaneous nodes for 
any payload size. For a given value of Nsimultaneous, lower reliability val-
ues were observed for higher payloads. For instance, when Nsimultaneous = 
20, reliability improves from a value of about 0.4 at a payload of 121 B 
to about 0.8 at 51 B, which is almost a 50 percent improvement in reli-
ability. At higher values of Nsimultaneous, although the absolute value of 
reliability is small, the percentage difference between reliability values 
for different payload sizes remains almost same, especially when com-
pared at 51 B and 121 B payloads.

Figure 3.11 and Figure 3.12 indicate an overall trend of decrease in 
throughput as the Nsimultaneous nodes increase. However, both average 
and instantaneous throughput values are higher for higher application 
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payload sizes especially for values of Nsimultaneous less than 20 nodes. 
Thus, controlling the number of nodes that are scheduled for simul-
taneous transmission to keep it between 10 and 20 nodes helps to 
improve the network performance in terms of the QoI attributes, even 
at high application payloads.

Next, we analyze the interdependence of the QoI attributes, and the 
variation of average wait time at a node as the frame arrival rates increase 
as shown in Figure 3.13 and Figure 3.14. From Figure 3.13 we can see 
that IT drops to almost half its value of about 5 × 104 bps for a frame 
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arrival rate of 6 fps, from an original value of 9.8 × 104 bps for a frame 
arrival rate of less than 1 fps. The average wait time also sees a steeper 
increase beyond a 5 fps frame arrival rate. So, when increased traffic vol-
umes in the network causes an increase in the frame arrival rate at the 
network nodes, the performance in terms of the per-node OL and IT 
degrades. NR follows a similar trend as observed from Figure 3.9. As the 
frame arrival rate increases beyond 6 fps, NR drops below 0.9 and the 
average delay for successfully received packets is about 75 percent more; 
from about 0.01 s at 1 fps arrival rate to 0.018 s at 6 fps. In summary, we 
observe that the performance of each of the QoI attributes deteriorates 
with increased frame arrival rates at the nodes. But the link quality also 
affects the network’s performance, apart from the per-node performance. 
From the observed performance of the QoI attributes in large-scale 
ICSN applications, we see that there is scope for improving the network 
performance in terms of the network traffic and resource management. 
In addition, we were also able to identify how the nodes can be sched-
uled to achieve better performance in terms of the QoI attributes. Thus, 
we suggest that cognitive nodes can be introduced to better manage the 
traffic flows and network resources, in a way that is cognizant of the end 
user’s service requirements. If an application requires high throughput 
guarantees, then cognitive nodes can exercise their learning mechanism 
to understand the user requirements and the reasoning mechanism can 
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exercise its control to limit the number of nodes scheduled for simulta
neous transmission and to provide the user-desired reliability for the 
application being serviced. These control instructions from cognitive 
nodes are passed on to RNs as well and the performance of the entire 
network can be tuned to meet the application’s service requirements.

3.6 � Conclusions

WSNs require additional capabilities in terms of being able to under-
stand the network and users’ dynamic behavior and store the large vol-
ume of generate data in the cognitive ICSN infrastructure. The network 
is dynamic due to changing application requirements, end user behav-
ior, and network topology. To address these challenges, we proposed 
the introduction of cognitive nodes which implement learning, reason-
ing and knowledge representation as elements of cognition, in large-
scale ICSN applications. We proposed the cognitive node architecture, 
and described the interactions among the cognitive elements and how 
they would impact the network performance. The reasoning mecha-
nism responds to current network conditions that require immediate 
attention; while the learning mechanism uses the knowledge acquired 
during the network operation over a period of time, for planning and 
controlling the response to predicted network conditions. Next, based 
on the energy consumption and hardware cost of the relay and cogni-
tive nodes, the number and position of RNs and CNs to be used in 
the network was determined by the deployment plan. The proposed 
deployment plan was evaluated in terms of its performance of the QoI 
attributes of latency, reliability and throughput. We found that if the 
CNs could exercise control over the number of nodes that are scheduled 
for simultaneous transmission, and keep the number below 20 nodes, 
the QoI attributes’ performance could be maintained at reasonable val-
ues for the proposed deployment plan and transmit power capabilities.
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4
Quantifying Connectivity 

in Wireless Sensor 
Networks with Grid-
Based Deployments*

FA D I  A L -T U R J M A N , 
H O S S A M  S .  H A S S A N E I N , 

A N D   M O H A M A D  I B N K A H L A

4.1 � Introduction

Grid-based deployments [1] have been widely used in Wireless Sensor 
Networks (WSNs) to achieve significant improvements in terms of the 
network coverage and connectivity [1,2]. Such deployments can effec-
tively limit the 3D search space of the sensor candidate positions by 
placing the sensor nodes on well-organized vertices, in regular lattice 
structures. These vertices can be organized in different structures (e.g., 
cubes, octahedrons, pyramids) in the 3D space to provide more accurate 
estimates in terms of the spatial properties of the measured data [3]. In 
addition, the grid deployment becomes necessary when sensor nodes are 
expensive and their operation is significantly affected by their positions. 
Such deployments can have a wide range of applications, such as air-
craft health monitoring, pollution and CO2 flux monitoring, forest fire 
detection, and gigantic redwood tree monitoring [3,4]. However, these 
applications may have several deployment challenges in practice such as 
placement uncertainty and communication irregularity, and may be very 
critical and require real-time interaction as in the ability to immediately 

*	 This article was originally published in Journal of Network and Computer Applications. 
F. Al-Turjman, H.S. Hassanein, M. Ibnkahla, Quantifying connectivity in wireless 
sensor networks with grid-based deployments, vol. 36, no. 1, pp. 368–377, 2013. 
Reprinted with permission.
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respond to natural disasters [5,6]. Therefore, connectivity between the 
deployed sensor nodes on the grid and the system sink is of utmost impor-
tance to ensure the timeliness delivery of the measured data, and thus, 
numerous research papers have focused on how to maximize the network 
connectivity and/or to maintain it as a functional constraint during the 
network deployment planning [7]. In this research, we quantify the grid-
based deployment connectivity and show how resilient it is while assum-
ing practical deployment challenges in the aforementioned applications.

Connectivity in the context of wireless sensor networks (WSNs) 
is measured by the minimum number of independent paths between 
every pair of nodes in the deployed network, and this metric is called 
k-connectivity [8]. With k-connectivity, where k ≥ 2, sensor nodes have 
a better chance to stay connected with the base station (system sink). 
Nevertheless, this metric may not be accurate in practice where deployed 
nodes are subject to positioning errors and other practical challenges.

Practical deployment planning in WSN applications is a challeng
ing problem for three main reasons: (1) Placement uncertainty, 
(2) communication range irregularity, and (3) 3D setups [9]. Placement 
uncertainty could occur because of timing errors in the placement, 
inaccurate distance estimation, unexpected changes in location due 
to weather conditions such as rain and wind, or wildlife disturbing 
the deployed nodes. Errors due to human mistakes and low-accuracy 
deployment strategies, which are used for cost effectiveness, would 
also amplify the physical placement uncertainty.

Communication irregularity in WSN applications stems from natural 
or man-made obstacles in the terrain, such as trees, walls, mountains, 
cliffs, and so on, in addition to extreme weather conditions in outdoor 
applications, which may affect the propagated signals [10]. Different 
power levels of the received signal may be observed at different positions, 
even when these positions are equally distanced from the transmitter [11]. 
Assuming a regular shape for the communication range is hence not plau-
sible in practice. Flat and obstacle-free terrains are also highly unlikely in 
outdoor applications. Consequently, significant efforts have focused on 
modeling irregular radio propagation and noisy communication channels 
in the past few years [10]. However, only a few of these efforts have been 
applied in the presence of placement uncertainty.

Moreover, in certain applications, the vertical position of the sensor 
node is as important as the longitude and the latitude of its placement. 
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In these applications, a 3D network deployment is required. For instance, 
in monitoring the gigantic redwood trees in California, some experiments 
required sensor placements at different heights on these trees spanning a 
range of several tens of meters [12]. There is also increased interest in 3D 
environmental applications such as CO2 flux monitoring and imagery, 
where sensors are placed at different vertical levels to fulfill the monitor-
ing coverage and accuracy requirements. It is worth mentioning that there 
are some attempts towards the 3D deployment. As an example, authors 
in reference [13] studied the effects of sensing and communication range 
on connectivity in 3D space. While grid-based deployment in 3D space 
has been used in various applications and several attempts targeted the 
3D connectivity, the average connectivity of the grid when probabilis-
tic communication models and placement uncertainties are assumed has 
not been investigated yet. Considering properties of the grid connectivity 
during the deployment planning will result in more efficient design deci-
sions in terms of the required grid-edge length and the maximum range 
of errors the grid can tolerate to satisfy specific connectivity requirements. 
Consequently, unnecessary cost (extra useless nodes) and traffic overhead 
(unnecessary retransmissions) can also be reduced in the designed sensor 
network which is assumed to be cost and energy constrained.

To this end, in this chapter, we examine connectivity properties of 
the 3D grid-based deployment under communication irregularity and 
placement uncertainty in accordance with reference [9]. We assume 
deployed nodes are subject to random errors in physical positioning. 
In addition, we assume a probabilistic communication range, which 
has an arbitrary irregular shape in 3D space (due to the presence of 
obstacles, and signal attenuation and reflection).

The major contributions of this chapter are as follows: (1) We provide 
a solid analytical derivation for the node positioning errors and the com-
munication range irregularity on the grid; (2) we explore a more practical 
connectivity setting for the deployed sensor nodes by considering their 
placement in the 3D space; (3) assuming such practical aspects of the 
deployment, we propose a generic approach to evaluate the average con-
nectivity in 3D grid-based deployments and this approach is applicable 
to various grid shapes and different kinds of random error distributions; 
and (4) based on the proposed approach, other design problems, such as 
the maximum allowed placement error and maximum grid-edge length 
to satisfy a connectivity requirement, are also addressed.
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The remainder of this chapter is organized as follows. Section 4.2 
outlines the related work. Section 4.3 describes the practical commu-
nication and error models assumed in this chapter. A generic approach 
to measure node connectivity in grid-based deployments is proposed 
in Section 4.4. In Section 4.5, we verify the correctness of the pro-
posed approach through simulation results, in addition to analyzing 
practical design issues of the grid-based deployment through numeri-
cal results. Finally, we conclude this chapter in Section 4.6.

4.2 � Related Work

In grid-based WSN deployments, practical errors can affect the cov-
erage or connectivity of the grid. The coverage of the grid has been 
extensively studied in the literature and several approaches have been 
explored to overcome its experienced problems. In addition, structural 
properties of the grid have been investigated in order to solve coverage 
problems before their occurrence. In reference [1], triangular grid-
based deployment for coverage, when sensor placements are perturbed 
by bounded random errors around their corresponding grid vertices, 
is studied. The random errors are modeled by uniform displacements 
inside error disks of a given finite radius on a 2D plane. The average 
coverage of the sensing field is derived as a function of the length of 
the grid edges and the radius of the random error disks. It was shown 
how resilient the grid coverage is to different random error distribu-
tions in the sensor displacement.

Extensive work has also been applied to overcome connectivity prob-
lems and failures in grid-based deployments. Nonetheless, the major-
ity of this work is proposed to repair connectivity problems after their 
occurrence either by using node redundancy [8,14] or node mobility 
[15–17]. Node redundancy [8] is used to overcome disconnected net-
works. Redundant nodes, which are not being used for communication 
or sensing, are turned off. When the network becomes disconnected, 
one or more of the redundant nodes is turned on to resume the net-
work connectivity. In reference [18], a distributed recovery algorithm 
was developed to address k-connectivity requirements, where k is equal 
to 1 and 2. The idea was to identify the least set of nodes that should 
be repositioned in order to reestablish a particular level of connectivity. 
One shortcoming of this technique is the requirement for extra nodes, 



81QUANTIFYING CONNECTIVITY IN WSNs

which may not be cost effective in certain applications. Also, when some 
redundant nodes fail, it may no longer be possible to repair the network 
connectivity. Meanwhile, node mobility can also be used to main-
tain the network connectivity [15]. Typically, mobile nodes are relo-
cated after deployment to carry data between disconnected partitions 
of the network. Providing mobility-aware connectivity management 
decisions with limited overhead, has also been considered recently in 
[19]. However, relocating nodes without considering grid-connectivity 
properties and characteristics can have severe effects on the direction of 
movement and the choice of the most appropriate node to be moved.

Although the above techniques aid in repairing connectivity prob-
lems, they do not address the sources of these problems. Our work 
presents a different approach toward addressing connectivity problems, 
which also complements the work of the aforementioned techniques. 
This approach aims at addressing key sources behind connectivity prob-
lems and predicts a better deployment planning in grid-based WSNs. 
Unlike the aforementioned techniques, we propose a measuring metric 
for connectivity properties in practice and under realistic scenarios such 
as inaccurate node positioning and communication irregularity. Thus, 
more efficient connectivity planning and maintenance can be achieved 
without the use of redundant nodes or expensive mobility-dependent 
techniques. Consequently, a careful consideration of the proposed met-
ric would eliminate the majority of undesired connectivity problems 
and costly repairs while the wireless sensor network is in process.

4.3 � System Models

In this section, specific models for the assumed communication irreg-
ularity and placement errors along with the utilized network model 
are detailed.

4.3.1 � Network Model

In this chapter, a flat network architecture in which all of the 
deployed (sensor) nodes are of the same type and have the same 
communication range is assumed. The sensor nodes have a fixed and 
limited transmission range, and communicate periodically with the 
base station in a multi-hop fashion. Topology of these sensor nodes 
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is modeled as a graph G = (V, E), where V is the set of nc candidate 
grid vertices, and E is the set of edges in the graph G. We remark 
that the deployment of sensor nodes in this research is indepen-
dent of the underlying medium access control (MAC) protocol. We 
assume a transmission rate limit Tr for each node during a single 
time unit (measured in hours). This limit can be adjusted to com-
ply with any MAC protocol. Figure 4.1 depicts the 3D grid model 
assumed in this chapter, where the grid edge length is supposed to 
be proportional to the theoretical sensor nodes transmission range r. 
We remark that our deployment planning is applicable for other 
types of grid models, not only the cubical one. On the cubic grid 
model, each sensor node (SN) is placed on the closest vertex to the 
phenomenon of interest for more accurate estimates in terms of the 
spatial properties of the collected data. The base station placement is 
based on the application requirements in a fixed position and it is the 
data sink for the system. Next we seek a mathematical formula that 
quantifies the connectivity level between the deployed sensor nodes 
and the system sink (base station [BS]). However, this work is not 
limited to single base-station networks as we will see in Section 4.4.

4.3.2 � Communication Model

In practice, the signal level at distance r from a transmitter varies 
depending on the surrounding environment. These variations cause 
an irregular communication range (Figure 4.1), and are captured 
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Figure 4.1  An arbitrary shape of the communication range in 3D space. 
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through the so called log–normal shadowing model. According to 
this model, the signal level at distance r from a transmitter follows a 
log–normal distribution centered on the average power value at that 
point [20]. Mathematically, this can be written as
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where Ps is the transmission power, P loss (r0) is the path loss mea-
sured at reference distance r0 from the transmitter, n is an environ-
ment dependent path loss exponent, and χ is a normally distributed 
random variable with zero mean and variance σ2, i.e., χ ~ N (0, σ2). 
With the aid of this model, the probability of successful communi-
cation between two nodes separated with a distance r can be calcu-
lated as follows. Assume Pmin is the minimum acceptable signal level 
for successful communication between a source S and a destination 
D separated by distance r. The probability of successful communica-
tion is ρ[S, D] = Prob [Pd(r) ≥ Pmin]. After some mathematical manip-
ulations, ρ[S, D] can be written as

	
ρ

σ
[ , ]

( ) logmin

S D Q
P P P r n r

rs

=
− − −















loss 0

0
10




 , 	 (4.2)

where Q(·) is the Q-function defined as
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Thus, the probabilistic connectivity ρ is not only a function of the 
distance separating the sensor nodes but also a function of the sur-
rounding obstacles and terrain, which can cause shadowing and multi
path effects (χ). The ability to communicate between two wireless 
devices is defined as follows:

Definition 4.1 (Probabilistic Connectivity): Two nodes (devices) sepa-
rated by a distance d are probabilistically connected with a threshold 
parameter τ (0 ≤ τ ≤ 1), if ρ ≥ τ.
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4.3.3 � Placement Uncertainty Models

Based on the utilized deployment technique, device placement uncer-
tainty can be either bounded or unbounded. In bounded uncertainty, 
positioning errors are expected to be within a predetermined range. In 
contrast, the range is unpredictable in unbounded placement errors. 
Bounded errors may have various random distributions including 
bounded Normal, bounded uniform, and so on. Similarly, unbounded 
errors may have various distributions such as the uniform and Normal 
distribution. For simplicity, and without loss of generality, bounded 
uniform and unbounded Normal errors are assumed in this chapter.

4.3.3.1  Bounded Uniform Errors  Assume the deployed device is placed 
incorrectly at any point inside a bounded error sphere Eg of radius R 
surrounding the targeted grid vertex. Since the communication range 
in reality has the arbitrary shape depicted in Figure 4.1, the following 
lemma holds.

Lemma 4.1: Every surface in a 3D space is a set of infinite spherical 
subsurfaces.

Proof. With reference to [21], assume S is any surface in the 3D 
space. M is a point that belongs to S. Since all points which belong to 
a spherical surface have an equal distance (radius) r to a single point 
called the sphere center, the spherical surface becomes a point when r 
goes to zero. Hence, every point in the 3D space represents a sphere 
of radius r (= 0). Consequently, every point M belongs to the surface S 
is a sphere of radius r (= 0). The total number of spheres constructing 
the surface S decreases as more sets of adjacent (nonseparated) points, 
which belong to a single sphere surface, are found.

Now, using Lemma 4.1, we can assume that the arbitrary shape in 
Figure 4.1 is constructed by a set of spheres as depicted in Figure 4.2. 
These spheres vary in number and size from one arbitrary shape to 
another. To calculate the probability of communication between the 
deployed device and its neighbors, assume e denotes the event that a 
device at vertex u of the grid is connected to the device placed in the 
error sphere Eg. Assume the completed sphere surface of the intersect-
ing subsurface with sphere Eg is Ou in Figure 4.3, where Ou is the largest 
sphere surrounding the node placed at vertex 12 in Figures 4.1 and 4.2.
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We point out that the adopted log–normal shadowing model, in 
Section 4.3.2, gives the irregular communication range shape experi-
enced in practice. However, just up to a relatively close distance from 
the transmitter (≤r) we can assume that connectivity is guaranteed 
[22]. This guaranteed communication range is indicated by the sphere 
centered at vertex 12 in Figure 4.2 and called Ou in Figure 4.3.

Then, the probability of e is equal to probability of vertex u being 
separated from the deployed device in Eg by a distance less than or 
equal to r. This is satisfied if the deployed device is placed within the 

Intersection
volume

r

Rg

Eg

Ou

u

Wireless device

Figure 4.3  Deployed devices are placed within an error sphere Eg which intersects the commu-
nication sphere of the device placed at u.
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Figure 4.2  Spheres constructing the curved surface of the arbitrary shape in 3D space.
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intersection of the sphere Ou centered at u, and the error sphere Eg 
centered at the grid vertex g. As a result,
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Assuming that x axis is passing through the centers of Ou and Eg, 
and y axis is passing through the center of Ou, we introduce the fol-
lowing lemma.

Lemma 4.2: Intersection volume between the error sphere and the 
sphere of the intersecting arbitrary subsurface is given by
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Proof: Assume a schematic drawing of Ou and Eg in a 2D plane as 
depicted in Figure 4.4. The intersection volume in Figure 4.3 is then 
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Figure 4.4  Cross-sectional circles of the spheres Ou and Ex in a 2D plane.
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generated by rotating the two shaded areas A and B, in Figure 4.4, 
180° around the x axis. Hence,

	 volume E O volume volumex u A B( )∩ = + 	 (4.6)

In order to calculate the volumes generated by A and B, we inte-
grate the corresponding equations of circles ′Ou  and ′Eg  from a to b 
and from b to c, respectively. Since the equation of a circle of radius i 
centered at point (h, k) is

	 i x h y k2 2 2= − + −( ) ( ) 	 (4.7)

Assuming ′Ou  is centered at the point of origin and ′Eg is centered 
at (x, 0), we get
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where a = r − R, b = r cos θ, and c = r. Therefore, the intersection vol-
ume in Figure 4.3 is equivalent to the volume in Equation 4.5.

As the volume of the intersecting spheres has a closed form pro-
posed in Lemma 4.2, we can efficiently compute P(e) for any grid ver-
tex g and its neighboring vertices in the presence of bounded errors. 
The following theorem is a direct result from Lemma 4.2.

Theorem 4.1: If device placement is subject to uniform bounded ran-
dom errors, then*
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4.3.3.2  Unbounded Normal Errors  In this section, we assume inde-
pendent trivariate Normal errors in a 3D space around the targeted 
grid vertex (as the error is unbounded, there is no specific radius for 
the error sphere). We assume that the error distribution has a mean of 
zero and is spherically symmetric in three-axis Cartesian coordinates, 
centered at the grid vertex. Hence the probability density function 
(PDF) is
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where σ2 is the variance. In order to calculate the probability of con-
nectivity between a sensor node placed at the point (u,v,q) and another 
sensor node placed inaccurately at (x,y,z)* and separated by a distance 
di, assume e denotes the event that these two sensors are connected. 
Then, the probability of connectivity between these two sensors, when 
they are subject to random Normal errors, is given by
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By plugging Equation 4.2 and 4.10 into Equation 4.11, we obtain 
the following form of the probability of event e:

	

P e K e x x y y z zi i i( )
( )

( ) ( ) ( )= − − + − + −( )∫ 2 2 3 2
22 2 2 2

πσ
σ

/
/∫∫∫∫

−e d dxdydzdiχ γ
χ

/ 2
	 (4.12)
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*	 The point (x,y,z) is located anywhere beside the targeted grid vertex (xi,yi,zi).
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The form in Equation 4.12 can be further simplified by completing 
the square and solving the integrand for a specific value of the path 
loss γ (= 2), obtaining
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Based on Equation 4.14, P(e) decreases dramatically as the distance 
between the grid vertices increases and the surrounding environment 
becomes more crowded by obstacles. Accordingly, we achieve the fol-
lowing theorem.

Theorem 4.2: If the device placement is subject to unbounded random 
Normal errors, then the probability of two sensor nodes, deployed on 
adjacent vertices on the grid, being connected to each other is calcu-
lated by Equation 4.14.

4.4 � Quantifying the Grid Connectivity

Grid-based deployment in 3D space has been used in various WSN 
applications. Nevertheless, more efficiency in quantifying the grid 
connectivity is required, especially when communication irregularity 
and placement uncertainty are assumed.

4.4.1 � Generic Approach

In this section, we propose a generic approach to derive the average 
connectivity percentage of the deployed sensor nodes on the 3D grid 
with various types of placement errors including random bounded 
and unbounded errors. We first state two definitions that we use in 
the derivation.

Definition 4.2 (Neighboring Set): The set of sensor nodes placed on grid 
vertices and connected to a common vertex at the center via a single 
grid edge. Each node of this set is not included in any other neighbor-
ing set.
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Note that the number of vertices (sensor nodes) in a neighboring 
set depends on the grid shape. For example, in a cubic grid a single 
neighboring set will have six vertices as shown in Figure 4.5.

Definition 4.3 (Neighboring Set Connectivity): The percentage of sensor 
nodes in a single neighboring set, which can communicate with the 
sink node via single or multiple hops.

In the following, we derive the connectivity of a single neighboring 
set (V) mathematically. Suppose we have N sensor nodes distributed 
on the 3D grid vertices and each sensor node has a probabilistic com-
munication range as shown in Figure 4.1. Let Cj denote the percent-
age of V, centered at vertex j, being connected to at least one node xi. 
Assume xi is a sink node, or a sensor node connected to the sink node 
via single or multiple hops. Then, the neighboring set connectivity is the 
expectation of Cj and is calculated by
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where p(u) is the probability that the node at vertex u ∈ V is at least 
connected to xi and v is the number of neighboring grid vertices in 
the set V (e.g., v = 6 in cubic grid). Let ei (where i is the vertex index 
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Figure 4.5  An example of a single neighboring set in cubic grid. The neighboring set of the cen-
tered node at vertex 14 consists of 6 sensor nodes distributed at vertices 5, 11, 13, 15, 17, and 23.
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on the 3D grid and may have a value from 1 to N, inclusive) denotes 
the event that the node at vertex u is connected to xi under random 
possible errors (bounded/unbounded) in placement. Then we have, 
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and using the multiplication rule [20], we get
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where P(ei) is calculated from Equations 4.9 and 4.14 in Theorems 4.1 
and 4.2 for random bounded and unbounded errors, respectively. And 
P(ei|ej), which is the probability of the node placed at vertex u being 
connected to xi given that it is connected to xj under random possible 
errors, is determined based on the utilized deployment technology. 
For example, if we are using an airplane to drop the sensor nodes on 
their specified locations, then based on the speed and wind directions 
we can estimate the value P(ei|ej). However, this is not the usual case 
in deterministic grid-based deployment, where ei is often independent 
of ej (i.e., P(ei|ej) = P(ei)), as will be presented subsequently. We remark 
that in typical grid deployments, even with random errors, a given 
sensor node at vertex u will be connected with a non-negligible prob-
ability only by those sensors that are the closest to u (i.e., neighboring 
set of u). Conversely, the probability of being connected to sensors not 
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in the neighboring set of u may be taken to be negligible. Therefore, 
many terms in Equation 4.17 can be safely set to zero. By comput-
ing the summation of Equation 4.17, for all u ∈ V over v as noted by 
Equation 4.15, we achieve the single neighboring set connectivity. To 
evaluate the grid connectivity, we compute the average connectivity 
percentage (ACP) of the deployed network.

Definition 4.4 (Average Connectivity Percentage [ACP]): The arithmetic 
average of all neighboring sets on the grid is the average connectivity 
percentage of the deployed WSN.

Assuming N s is the total number of neighboring sets of the deployed 
grid, the arithmetic average is
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We remark that this ACP definition is applicable even in the pres-
ence of multiple sink nodes, where the ACP is computed by averaging 
the individual sink’s ACPs.

Theorem 4.3: All of the deployed sensor nodes are connected to the 
sink node if and only if the ACP is equal to one.

Proof. To prove by contradiction, assume that the ACP is equal to 
one and not all sensors are connected to the sink node. Then, there 
is at least one sensor which is not connected to the sink. Based on 
Definition 4.3, there will be at least one neighboring set with average 
connectivity less than one. Hence, using Definition 4.4, the ACP of 
the grid is not equal to one which contradicts the assumption.

In order to illustrate the proposed generic approach further, con-
sider the following example.

Example 4.1: Assume a single system sink and 34 sensor nodes (i.e., 
N = 34) placed on grid vertices as shown in Figure 4.6. Let all sen-
sor nodes be placed exactly on the grid vertices and, for simplicity, 
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apply the fixed binary communication disk used in reference [7] such 
that the grid edge length is less than or equal to rd. In this case, we 
have five neighboring sets (i.e., Ns = 5) centered at vertices 32, 44, 63, 
92, and 84. In each neighboring set, v is equal to 6. In order to calcu-
late the ACP of the deployed nodes in Figure 4.6, the expected con-
nectivity percentage of each neighboring set is examined. Starting by 
the sink neighboring set centered at vertex 63, we can see how all of 
the neighboring nodes of the sink (positioned at vertices 58, 64, 68, 
62, 38, and 88) are connected to the sink directly because they are 
within its range. Hence, p(u) of the sink neighboring nodes is equal 
to 1 and the expected connectivity percentage E[C63] of the neigh-
boring set centered at the sink is equal to 100 percent. Similarly, 
by examining the connectivity of the neighboring sets centered at 
vertices 32, 44, 92, and 84, we find that all of their nodes are con-
nected via single or multiple hops to the sink node. As a result, their 
expected connectivity percentages will always be equal to 100 per-
cent and thus, the ACP calculated in Equation 4.18 will be equal to 
1, as stated in Theorem 4.3.
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Figure 4.6  Schematic drawing for the grid-based deployment in Example 4.1.
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Based on Example 4.1, we can see how resilient the grid-based 
deployment is to connectivity failures. For instance, the percentage 
E[C63] will stay 100 percent even if the communication channels 
between the sink node and its neighbors placed at vertices 38, 58, 
68, and 88 in Figure 4.6 are not available. This is due to the abil-
ity of the nodes placed at these vertices to reach the sink node via 
the sensor nodes placed at vertices 62 and 64. In addition, assum-
ing all possible paths between one of the sensor nodes placed on the 
grid and the sink node are disconnected, the overall ACP connectiv-
ity of the deployed grid-based network will stay very high based on 
Equation 4.18. It is worth noting that the connectivity degree of the 
cubic grid deployment proposed in Example 4.1 is equal to six for all 
sensor nodes except those at the grid boundary where the connectivity 
degree becomes equal to one. Therefore, dense deployment is required 
at the grid boundary for a better connectivity degree. Although this 
example considers ideal grid deployment, it describes the core idea 
of our generic approach and provides an upper bound on the grid 
connectivity.

4.4.2 � Theoretical Analysis

In Section 4.4.1, we proposed the generic formula that evaluates the 
ACP of the grid. This formula is applicable to several deployment 
scenarios, in which the deployment errors occur simultaneously and 
they may be dependent or independent based on the accuracy of the 
utilized instruments and technologies in the deployment process. 
Accordingly, in this section, we examine the ACP of the grid when 
the events ei (i = 1,.., N) are mutually exclusive and the deployment 
errors are assumed independent. Assuming that the events are mutu-
ally exclusive can further simplify Equation 4.16 as follows

	
p u P ei

i

N

( ) ( )=
=

∑
1

	 (4.19)

Nevertheless, this assumption is not accurate in practice as the 
deployed sensor node is most often connected to several other nodes at 
the same time. Hence, the events ei are not mutually exclusive except 
for a very specific case where every deployed sensor node is connected 
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to only one node. On the other hand, deployment errors occur, usu-
ally, independently in grid-based deployments due to the placement of 
each sensor node on the associated grid vertex in an individual man-
ner. Assuming that the deployment errors (bounded/unbounded) are 
independent means that the e events are mutually independent. And 
thus Equation 4.17 is reformulated as follows
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For the following discussion, we will assume that the deployment 
errors are independent, and will therefore use Equation 4.20 to be 
plugged in Equation 4.15, and thereafter in Equation 4.18.

4.5 � Discussion and Numerical Results

In this section, we assess the performance of grid-based deployments 
in terms of average connectivity (ACP) in the presence of bounded 
uniform and unbounded placement errors. In both cases we validate 
our approach using MATLAB® simulation results. Then we discuss 
properties of the grid connectivity based on some numerical results 
which have been validated through extensive simulations as well.

We simulate 1000 deployment instances which are randomly gen-
erated on the vertices of a cubic grid, and hence, v = 6. The grid ver-
tices are distributed in a 900*900*200 (m3) space. As the distance 
separating the adjacent vertices is equal to the theoretical transmit-
ting range r (= 100 (m)), each simulated deployment can have up to 
109 sensor nodes (i.e., N = 109) with only one base station (i.e., flat 
topologies are assumed). Random bounded and unbounded errors are 
applied on these sensor nodes while they are placed on grid vertices. 
A linear congruential random number generator is used to distribute 
up to 109 sensor nodes in the 1000 deployment instances, in addition 
to generating random errors in the placement coordinates. Based on 
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experimental measurements [23], we set the communication model 
variables and simulator parameters to be as follows: γ = 2, Pmin = –104 (dB), 
τ = 60%, Tr = 64 (byte/hr), and nc = 110 (vertex). And the χ random 
variable in Equation 4.2 is assumed to be a mean of 0 and variance of 
10. Each simulated experiment is repeated 1000 times and the average 
results hold a confidence interval no more than 2 percent of the aver-
age at 95 percent confidence level. Three main parameters are used 
in this simulation: (1) The error sphere radius R, (2) the variance of 
the Normal errors σ2, and (3) the grid edge length L. We chose these 
parameters as they are key factors in reflecting the range of bounded 
and unbounded placement errors, and have the major effect on the 
required average connectivity (ACP) of the grid-based deployment.

We use three main performance metrics: (1) The average con-
nectivity percentage (ACP), (2) the maximum grid edge length, and 
(3) the maximum displacement error. The ACP reflects the grid-
connectivity property under varying placement errors and indicates 
the efficiency of the deployment plan, as well. The maximum grid 
edge length is a measurement of the farthest distance separating 
sensor nodes placed on two adjacent vertices. It is the most influ-
ential factor in the design of the grid shape and dimensions. The 
maximum displacement error is used to reflect the reliability of the 
deployed grid-based network under practical placement uncertainty. 
It indicates the maximum allowable error in the placement to satisfy 
specific connectivity requirements.

4.5.1 � Grid Connectivity with Bounded Uniform Errors

In this scenario, the ACP of the deployed sensor nodes is evaluated 
as a function of the error sphere radius R and the length of the grid 
edge L. We first study how the radius of the error sphere impacts the 
average connectivity. Figure 4.7 depicts the impact of R on the ACP 
with L values varying from 80 to 100 (m) and R values varying from 
10 to 40 (m). The results from the theoretical derivations in Section 
4.4 and from the simulations match very well, and hence the cor-
rectness of our general approach is validated. In addition, we observe 
how the increase in the radius of the error sphere degrades the grid’s 
ACP. As the grid edge length increases, the grid ACP decreases as 
well. This is because of the distance consideration in the probabilistic 
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connectivity model considered in this article. Furthermore, we have 
observed that having a non-zero error sphere radius may not signifi-
cantly affect the ACP as long as the grid edge length is short enough. 
This is because the highest ACP values are achieved with the shortest 
tested edge length (L = 80). Figure 4.7 shows a very appealing fea-
ture of the grid-deployment: The network ACP is rather resilient to 
random bounded errors. As an example, when L = 80 and R ≤ 40 (m), 
the ACP is no less than 80 percent of the ideal connectivity generated 
with R = 0. In addition, the ACP at different L values monotonically 
decreases with R for the considered probabilistic communication ρ. 
This is a useful characteristic to solve for the maximum R allowed for 
a given L and a given connectivity requirement. For example, if the 
required ACP is 80 percent of the ideal connectivity calculated by the 
error-free grid deployment, and L is 90 (m), the maximum R should 
not be greater than 30 (m). Note that when L = 100 (m), the ACP 
cannot reach 95 percent no matter how small R is.

We next investigate how the grid edge length L impacts the ACP in 
cases where R is set to 10, 20, and 30 (m). We vary the value of L from 
75 to 100 (m) in each experiment. The ACP of the deployed nodes as a 
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Figure 4.7  Connectivity percentage vs. radius of the error sphere for varying grid-edge lengths.
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function of L is then depicted in Figure 4.8. From that figure, we can 
conclude that as the placement uncertainty is increasing (from 10 m to 
30 m) the average connectivity is decreasing. This assures the undesir-
able effects of placement errors on connectivity as we claimed earlier in 
this research. Moreover, and as shown in Figure 4.8, the average con-
nectivity is a monotonically decreasing function of L. This assures the 
effects of the communication irregularity on the average connectivity. 
That is because as the distance between the transmitter and the receiver 
(L) is increasing the connectivity is degraded, although this distance 
(L) is still within the theoretical communication range r (= 100 m) of 
the communicating devices. Also, this characteristic can be used to 
solve another practical problem concerning finding the maximum L 
for a given R, in order to satisfy a specific ACP requirement.

In reference to Figure 4.8, we solve this problem when the required 
ACP is 85 percent, 80 percent, and 75 percent, and the results are 
plotted in Figure 4.9. Note that while R increases, the maximum L for 
the multiple ACP levels decreases. This decrease is expected in order 
to maintain the required ACP level while the error sphere radius R is 
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increasing. Again, results from theoretical derivations in Section 4.4 
and from simulations match very well in Figure 4.8 and Figure 4.9, 
and hence the correctness of the proposed approach is validated.

4.5.2 � Grid Connectivity with Unbounded Normal Errors

In this scenario, the ACP of the grid is determined by the variance σ2 
of the Normal distribution and the length of the grid edge L. Figure 
4.10 depicts the impact of σ2 on the ACP with L values varying from 
80 to 100 (m) and σ2 values varying from 0 to 6. Again, numeri-
cal results obtained from the generic approach in Section 4.4 match 
very well with the simulation results, and hence the correctness of our 
approach is again validated in case of unbounded placement errors.

In accordance with Figure 4.7, Figure 4.10 shows a positive feature 
of the grid-deployment that the network ACP is also rather resil-
ient to random Normal errors. For example, when L = 80 (m), the 
ACP only drops from 96 percent to 94 percent when σ2 increases from 
0 to 2. The ACP of the grid-based deployment is also a monotonically 
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decreasing function of σ2, and this is a useful characteristic to find the 
maximum σ2 allowable for a given L and a given connectivity require-
ment. In reference to Figure 4.10, Figure 4.11 plots the maximum σ2 
as a function of L. We observe that for ACP to equal 90 percent the 
maximum variance should not be more than 3.5 and the grid edge 
length should not exceed 80 (m). In case of ACP to equal 80 percent, 
the maximum variance can reach 4.7 and 2 for L = 80 and L = 90 (m), 
respectively. Hence, the highest error variance is a decreasing func-
tion of L. This is expected in order to maintain the required ACP level 
while the grid-edge length L is increasing.

We also study how the distance L impacts the ACP in cases where 
σ2 is set to 0, 2, 4, and 6, by varying the value of L from 80 to 100 (m). 
The ACP of the grid as a function of L is presented in Figure 4.12. 
Unsurprisingly, the ACP of the grid decreases when the grid edge 
length increases although this distance (L) is still within the theoreti-
cal communication range r (= 100 m) of the communicating devices. 
This assures the effects of the communication irregularity on the 
average connectivity even with a nonuniform placement error. As the 
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variance σ2 increases, the grid ACP decreases, which supports our 
observation in Figure 4.11. Also, it assures the undesirable effects of 
placement errors on connectivity as we claimed earlier in this research. 
The ACP of the sensing field is a monotonically decreasing function 
of L and this characteristic can be also used to describe the maximum 
L for a given σ2 and a given ACP requirement.

4.6 � Conclusion

In this chapter, we characterize properties of the grid connectivity and 
analyze its behavior in real life scenarios, where the node placement is 
subject to human/machinery mistakes and the communication range 
is subject to unexpected circumstances that may affect its shape in the 
3D space. Thus, the key sources of connectivity failures and problems 
are addressed. To this end, we propose a generic approach to quantify 
the average connectivity of the 3D grid under practical random errors 
in placement and communication.

This approach is applicable to a multiplicity of random error dis-
tributions and different grid shapes. We applied the generic approach 
to normal and uniform distributions of errors in placement with the 
assumption of an arbitrary 3D shape for the communication range. 
Numerical results obtained from the proposed approach demonstrate 
how resilient grid-deployment is to random placement errors and unpre-
dictable (probabilistic) communication ranges. We also demonstrate 
how to use this research in order to analyze and describe some practical 
planning issues, and therefore provide a solid guideline for practical 
grid-based deployment efforts. We can find the maximum allowable 
placement uncertainty for a given grid-edge length and a given con-
nectivity requirement. Conversely, we can address another practical 
problem concerning finding the maximum grid-edge length for a given 
placement uncertainty in order to satisfy a connectivity requirement.

This research can efficiently facilitate the deployment design for 
realistic connectivity-oriented wireless sensor networks as well as 
complementing other research efforts made to overcome connectiv-
ity problems after their occurrence. We characterize the properties 
of connectivity and analyze its behavior in real-life scenarios, where 
the node placement is subject to human/machinery mistakes and the 
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communication range is subject to unexpected circumstances that 
may affect its shape in the 3D space. Thus, the key sources of con-
nectivity failures and problems are addressed. It has been shown that 
the grid-based deployment is resilient against the key sources of con-
nectivity problems. We therefore advocate adopting this deployment 
method whenever possible in practice.

Future work could investigate the resilience of the grid connectiv-
ity under other hindering conditions, such as node failures that could 
occur due to physical damage or limited energy. Another promising 
direction is studying the effects of temporary hindering conditions, 
such as mobile obstacles, on the grid connectivity. Also of practical 
interest is investigating the properties of grid deployment under vary-
ing node transmission ranges and/or energy levels.
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5
A Data Delivery 

Framework for 
Cognitive Information-

Centric Sensor 
Networks in Smart 

Outdoor Monitoring*

G AYAT H R I  S I N G H  A N D 
FA D I  A L -T U R J M A N

5.1 � Introduction

Wireless sensor network (WSN) applications have evolved from 
catering to application-specific requirements to supporting large-
scale application platforms such as Smart Cities and Smart Outdoor 
Monitoring (SOM) in public sensing [1]. These applications typi-
cally require a large scale, dense deployment of the sensor network, 
which generates a large amount of data. However, end users may be 
interested in accessing specific information from the network (such as 
temperature in the northeast region of deployment, or pollen alerts 
for people with allergies). These “smart” application platforms require 
the underlying WSN to not only gather information from the rele-
vant information sources, but also to prioritize and efficiently manage 
the heterogeneous traffic flows generated by the requests and deliver 
information with quality that satisfies the end user’s requirements in 

*	 This article was originally published in Computer Communications. G.T. Singh, 
F. Al-Turjman, A data delivery framework for cognitive information-centric sensor 
networks in smart outdoor monitoring, vol. 74, pp. 38–51, 2016. Reprinted with 
permission; and also in IEEE Internet of Things Journal. G.T. Singh, F. Al-Turjman, 
Learning data delivery paths in QoI-aware information-centric sensor networks, 
vol. 3, no. 4, pp. 572–580, 2016. Reprinted with permission.
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terms of attributes such as reliability and latency. Providing a good 
quality of experience to end users in such large-scale deployments 
requires a shift in focus from traditional address-centric communi-
cation abstractions to data-centric routing and storage, where infor-
mation from multiple, concurrent information sources produced 
anywhere in the network can be coherently delivered to the end user.

Information-centric network (ICN) is one such paradigm that 
focuses on content delivery, rather than the point-to-point informa-
tion flow in the network [2,3]. It makes use of “named data objects” 
instead of IP addresses to gather data, thus decoupling information 
source from its location or node identification. ICN is touted as the 
future technology for content delivery over the Internet because of its 
ability to bring information to the network layer to improve commu-
nication efficiency. Moreover, using the information-centric approach 
in such resource-rich, static environments, positively impacts data 
delivery to the end user. Data-centric sensor networks (DCSNs) 
[4–8] are a parallel paradigm in WSNs where attribute–value pairs 
are used for named identification of sensed data. Although DCSNs 
existed much before ICNs, the limited resources and energy capa-
bilities of sensor nodes, and their inability to adapt data delivery 
decisions to the dynamic network conditions decreased the popular-
ity of this approach in WSNs. Later, with the introduction of the 
ZigBee standard [9], most of the data processing and communica-
tion tasks were off-loaded to relay nodes. However, this also led to a 
shift to a more address-centric approach for WSNs. Then, with the 
need to enhance the multiobjective optimization and dynamic deci-
sion making capabilities of the network, there was increased research 
activity in the field of applying cognition to sensor networks. These 
cognitive sensor networks were able to achieve various goals, such 
as making the sensor network aware of user requirements; reducing 
network resource consumption; and making the network exhibit self-
configuration, self-healing, and self-optimization properties [10–12]. 
Despite these advances, it still remains a challenge for sensor net-
works to differentiate traffic flows in smart environments where the 
user requirements change over time. Sensor networks still lack the 
ability to adapt data delivery techniques to different traffic flows gen-
erated by the network. In addition, it is desirable to have the sensor 
network functioning as an information gathering network, to make 
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it easier for users to make name-based requests, and for ease of adapt-
ability to the future ICN.

To cater to all these requirements, we put together the idea of an 
information-centric approach from ICNs/DCSNs, along with the con-
cept of cognition in this chapter, and propose a cognitive information-
centric sensor network (ICSN) framework—COGNICENSE. The 
information-​centric strategy is used to identify relevant sensed infor-
mation from the network, and the elements of cognition (i.e., knowl-
edge representation, reasoning, and learning) are implemented at 
special nodes called local cognitive nodes (LCNs) and global cognitive 
nodes (GCNs), to enhance their information processing and intuitive 
decision making capabilities. GCNs interpret the user request for the 
network, and the LCNs help to identify appropriate return paths for 
data delivery. Relay nodes participate in information transmission over 
multiple hops, thus maintaining the network’s scalability. End user sat-
isfaction is based on the quality of information (QoI) delivered to the 
sink [13,14], characterized by the attributes of latency, reliability, and 
throughput associated with the application specific traffic. Accordingly, 
we summarize our contributions in this chapter as follows:

	 1.	We propose a framework called COGNICENSE that makes 
use of elements of cognition and an information-centric 
approach for data delivery in WSN applications for smart 
outdoor monitoring (SOM).

	 2.	We investigate three QoI attributes: Latency, reliability, 
and throughput. Based on simulations considering an IEEE 
802.15.4 PHY-MAC model, we identify the parameters that 
affect these QoI attributes.

	 3.	Using a multicriteria decision-making (reasoning) technique 
called analytic hierarchy process (AHP), we show how the 
values of the QoI attributes obtained from the simulations can 
be used to make decisions about the data delivery path that 
provides the best value of information at the sink (end user).

The rest of the chapter has been organized as follows: Section 5.2 
reviews related work in literature. Section 5.3 provides the system 
models and problem description. Section 5.4 provides details about 
the proposed data delivery framework using elements of cognition, 
that is, knowledge representation and inference. Section 5.5 provides 
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simulation results and discussions, and we conclude the chapter in 
Section 5.6.

5.2 � Related Work

The idea of focusing on information objects rather than the host of the 
information in communication networks is hardly new. Data-centric 
sensor networks in the wireless world and the TRIAD project [15] for 
the Internet, described early forms of information-centric networks 
that aim to move away from the end-to-end communication paradigm 
and focus on the content being delivered to the end user. In this sec-
tion, we review DCSNs, and ICNs with respect to their network and 
design components, and implementation challenges. We also explore 
the use of cognition in wireless networks with respect to their ability 
to enable networks to adapt to changing environment conditions, and 
cater to end user requirements as they evolve with the applications.

5.2.1 � Information-Centric Networks

The information-centric network is an information-oriented commu-
nication model proposed for the future Internet, to help with manag-
ing the huge amount of IP traffic being exchanged globally. Unlike 
traditional host-centric networks where data routing requires the 
establishment of single end-to-end path to the host, ICNs decouple 
senders and receivers by leveraging in-network caching [16,17] and 
replication of data. User requests for named data objects are addressed 
irrespective of the source of the publisher or the content’s location. 
This is facilitated by the use of intermediate nodes, which are in-network 
devices that process and cache named data objects. Thus named data 
access, routing of requests and data, and information caching com-
prise the important features of ICNs, and the intermediate nodes play 
a very important role in implementing these features. These nodes will 
need to make smart decisions to coordinate their actions and decisions 
across the network, and also adapt to services and applications as they 
evolve. Despite the various ongoing research activities in ICNs, not 
much work is being done with regards to empowering the interme-
diate nodes to adapt dynamically to changes in the network and end 
user behavior, to help them learn and evolve on their own.
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5.2.2 � Data-Centric Sensor Networks

The DCSN approach is very similar to ICN, in naming the sensed 
objects and in caching data as it is forwarded to the sink. One of 
the striking differences between DCSNs and ICNs in terms of the 
network components is that the DCSN approach considers only two 
types of devices in the network—sensor nodes and sink—whereas 
ICNs typically use three types of devices—publishers, subscribers, 
and intermediate nodes. Some DCSNs do propose choosing sensor 
nodes as cluster heads and involving them in routing data to the sink 
[18], but this approach burdens the sensor node in terms of energy, 
data processing, and memory capacities; and it affects the network 
lifetime and performance on the whole. What has not been explored 
much in DCSN is applying the ZigBee network model for DCSNs. 
ZigBee routers are a better choice in terms of conserving sensor’s 
energy and making routers available for more functions, such as infor-
mation processing, routing, and data caching. ZigBee topology is a 
big energy saver in terms of off-loading the burden from sensor nodes. 
Another aspect that has not been explored much in DCSNs is the 
ability to deal with heterogeneous traffic flows generated in the net-
work as a result of the different request that the network receives. The 
request could be event-driven, time-driven, query-driven, or a mix of 
any of these types [19]. Most DCSNs deal with one type of traffic, 
typically query-driven traffic. However, the challenge is in enabling 
the network to deal with all types of requests and provide satisfactory 
service to the end user while adapting to changing network conditions 
and application requests at the same time [20]. But just as the case 
with intermediate nodes in ICNs, routers in DCSNs would be bur-
dened with too many responsibilities if they had to carry out all these 
functions and are not empowered with techniques to deal with them 
effectively. Hence we look at the possibility of introducing cognition 
in the routers of the DCSNs.

5.2.3 � Cognition in Communication Networks and Cognitive Sensor Networks

To understand the correlation between cognition and communication 
networks, we’ll start with the way wired and wireless communication 
network architectures have been standardized: The layered protocol 
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stacks of the OSI and TCP-IP models, and the 802 series specifica-
tions. As network sizes grew, it became challenging to correlate infor-
mation from different parts of the network, and to make decisions 
with incomplete or inconsistent information from different layers of 
the protocol stack. So the concept of a knowledge plane was proposed 
by Clark et al. [21] for the wired world, to break the barriers of the 
layered architecture and enable seamless communication across the lay-
ers of the protocol stack and across the network. This idea from the 
wired world was adopted into wireless networks by Thomas et al. [22], 
who proposed the idea of a cognitive network. This network would be 
aware of the application requirements as well as the network dynam-
ics, and make use of learning, reasoning, and feedback from past inter-
actions to make decisions that improve both network performance 
and end user satisfaction. The feedback in the network is based on an 
observe–analyze–decide–act loop [23], which, when combined with 
learning and reasoning, constituted the idea of cognition in the cogni-
tive network. This concept of cognition has been extended to WSNs 
as well [24], which we will collectively refer to as cognitive sensor net-
works (CSNs) in this work. But these architectures and applications 
are address-centric, which cater to the end-to-end communication 
paradigm. To the authors’ best knowledge, information-centric archi-
tectures (ICNs and DCSNs) have not leveraged the idea of cogni-
tion in the way we have described previously to handle diverse traffic 
flows and satisfy end user requirements simultaneously. Specifically, 
cognition in data-centric sensor networks can provide the following 
benefits: (1) In-network information processing (aggregation) can save 
the energy expended on the huge amount of data exchanged within 
the network before being delivered to the sink, and (2) using inter-
mediate nodes that incorporate cognition can reduce the burden on 
sensor nodes and make smart data delivery decisions based on evolv-
ing application requirements, and changing environment conditions. 
Table 5.1 shows a comparison of the infrastructure and data-delivery 
techniques used in DCSNs, ICNs, and CSNs.

To this end, the COGNICENSE framework we propose will be 
able to deal with changing application requirements and make smart 
decisions to provide the requested information to end users with qual-
ity that satisfies the SOM application requirements. SOM applica-
tions are challenging to handle in terms of the large amount of data 
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that needs to be handled in-network, and the network nodes are prone 
to disruptions caused by loss of nodes or poor link quality among 
communicating nodes [25–27]. Hence, the ability to provide infor-
mation with QoI attributes of high reliability, low latency, and good 
hop-to-hop throughput are essential for improving the experience of 
an end user receiving such data. We make use of an information-
centric approach to deal the large amount of information available in 
the network. Sensed data is identified using attribute tags at sensor 
nodes. Request for sensory information issued at the sink is routed 
towards the location(s) in the network where the information has been 
published. As the request traverses through the network, intermedi-
ate nodes are checked for cached copies. As soon as an instance of the 
desired sensory information is found, it is returned to the sink using 
cognitive data delivery techniques based on the relative priorities of 
the QoI attributes that satisfy end user requirements for a given traffic 
flow.

5.3 � System Models

In this section, we explain the COGNICENSE system models 
and its core components in details, in addition to listing our main 
assumptions.

5.3.1 � Quality of Information (QoI)

QoI is defined as the level of satisfaction experienced/perceived by the 
end user on the information received from the network [13]. Attributes 
such as reliability, latency, and throughput are used to evaluate the 
QoI of data delivered to the sink. To differentiate QoI from quality 
of service (QoS) of WSNs [28], QoS takes care of the operational 
aspects of the network, while QoI is associated with the characteris-
tics of the sensory information made available to the end user. In our 
proposed approach, priorities are evaluated for these QoI attributes 
for each application traffic type at the sink, and the network tries to 
deliver the information with the desired QoI to the sink/end user. For 
SOM applications in WSNs, QoI attributes that help us assess how 
well the network is able to gather and provide relevant sensory infor-
mation is based on the following QoI attributes: Reliability, latency, 
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and throughput. Their definitions are based on the work in [29], and 
are presented here briefly:

Latency (L): Defined in terms of the mean frame service time at 
the MAC layer and is estimated as the time interval from the 
instant a packet is at the head of its MAC queue and ready to 
transmit, until an ACK for such a packet is received. In other 
words, it is the average delay for a successfully received packet.

Reliability (R): Defined as the probability that a frame is not 
blocked, lost due to channel access failure, or discarded as a 
result of reaching the maximum number of retries limit.

Average throughput (AT): Is a function of reliability and is defined 
as λ * Reliability * Application load (bits), where λ is the aver-
age frame arrival rate at a node in bits/second.

Instantaneous throughput (IT): Is a function of latency and is 
defined as application payload (bits)/Latency(s). We use the 
instantaneous throughput value for computations in our work, 
and refer to it simply as “T.”

5.3.2 � Network Lifetime

In this work, we propose a novel definition for network lifetime 
based on the quality of information (QoI) perceived by the end user. 
Network lifetime is defined as “The time or number of transmission 
rounds beyond which the network can no longer deliver useful infor-
mation to the end user. This is reflected by the network’s inability to 
find a data delivery path with satisfactory values for QoI attributes 
(latency, reliability, and throughput), as determined by the end user, 
or when there is insufficient energy in the network nodes to deliver 
such data to the sink for any of the application generated requests.”

This definition not only caters to satisfying the application require-
ments, but also considers the status of the network and node resources 
(especially in terms of remaining energy at the nodes) in defining the 
network lifetime. If sensor nodes or LCNs were drained of energy, 
then at each hop, the QoI attribute values would be affected, and 
thus reflected in the overall value of information delivered at the sink. 
Thus it also justifies the fact that if the network doesn’t have sufficient 
resources to deliver data, it cannot satisfy the end user, and hence it 
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should be considered as the end-of-life of the network, as no useful 
information can be derived from it.

5.3.2.1  Application Traffic Profiles for Smart Outdoor Monitoring 
Applications  Application traffic is profiled into three categories [30] 
based on how often sensed information from the network needs to be 
delivered to the end user, and the priorities associated with the QoI 
attributes for each traffic type. They traffic profiles are as follows:

Type I: Periodic (application defined rate).
Type II: Intermittent (application/external stimulus defined rate) 

or event driven/query driven traffic.
Type III: Low-latency data (emergency/alerting information).

We illustrate this traffic classification by making use of a sensor 
network deployed in the following SOM applications. The first one 
is a sensor network deployed for urban environment monitoring. In 
this application, traffic flow for an air-quality monitoring station is 
classified as Type I. Information flow generated in response to que-
ries from an operator or end user, requesting for specific information 
such as temperature or humidity at a specific time of the day is clas-
sified as Type II traffic. Finally, a service that issues alerts, such as 
high ultraviolet radiation warning, heat wave warning during extreme 
temperatures, reduced visibility warning, and pollen alerts, has traffic 
flow corresponding to Type III.

Another example of a SOM is a sensor network deployed for 
monitoring a forest environment [31]. When the network transmits 
information corresponding to periodically sensed data from the for-
est region, the flow corresponds to Type I traffic. Information flow 
corresponding to the assessment of factors that influence the type of 
flora and fauna found in the monitored region is classified as Type II 
traffic, and traffic flow associated with alerts issued in emergency situ-
ations such as forest fires is classified as Type III traffic.

5.3.2.2  Network Architecture and Components  Figure 5.1 represents the 
components of the COGNICENSE framework and their interac-
tions. Sensor nodes (SNs), relay nodes (RNs), local cognitive nodes 
(LCNs), and global cognitive nodes (GCNs) constitute the nodes 
of the cognitive information–centric sensor network (CICSN). SNs 
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constitute the leaf nodes that are deployed uniformly and randomly 
in the network. They communicate with LCNs and RNs lying within 
their communication range. Typically, SNs communicate with only 
one parent LCN or RN at a time. LCNs communicate with each 
other, with RNs, and a cognitive sink node called the GCN, which 
is located at the center of the deployment region. The GCN carries 
information to and from the sensor network to the end user through 
a gateway and access-point. When hierarchically represented, the 
CICSN node interactions are as depicted in Figure 5.2(a). LCNs and 
RNs are deployed at predetermined locations on a grid as shown in 
Figure 5.2(b), so as to ensure complete coverage of the target area and 
connectivity of SNs with the GCN.

5.3.2.2.1  Cognition in ICSNs  Haykin [32] and Mitola [33] have 
perhaps defined cognition in its most extensive form in the context of 
wireless communication systems. Going beyond simple adaptations, 
they make use of a feedback loop: The observe–analyze–decide–act 
(OADA) loop [20], to model cognition in a way that doesn’t deal 
with imitating human-like behavior, but in making intuitive decisions 

Wireless sensor network
End user(s)

Access
point

Gateway

Local cognitive node
Sensor node

Global cognitive node

Figure 5.1  The cognitive information-centric sensor network architecture.
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based on learning from the environment to adapt to current network 
conditions while inferring from past behavior and knowledge to pre-
dict a course of action for the future that the network can benefit 
from.

Based on this idea, and drawing from the work on cognitive net-
works [34] and extending our work on cognitive information-centric 
sensor networks [35,36], we define elements of cognition to implement 
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Figure 5.2  (a) Hierarchical organization of network nodes in the CICSN. (b) Representation of 
LCNs and RNs in a two-dimensional grid structure.
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the functionality of the OADA loop. Knowledge representation, 
reasoning, and learning constitute the elements of cognition, which 
when implemented in specialized nodes of the network, will help 
them make cognitive decisions, and make the sensor network a cogni-
tive one. In the CICSN, LCNs and GCNs are the specialized nodes 
that implement the elements of cognition.

5.3.2.3  Node Functions  In this section we describe the functions of 
the sensor, relay, and cognitive nodes of the ICSN. We start with the 
sensor nodes. Sensor nodes host a multitude of sensors as required 
by the application platform. Raw sensed–data is stored in attribute–
value pairs. This representation facilitates named-data identification 
to locate the user-requested information. Thus, the two main func-
tions of the sensor nodes are (1) sensing raw-data and (2) storing 
sensed information in attribute–value pairs. Details of the attribute–
value pair representation follow in Section 5.4.1, where we deal with 
Knowledge Representation. They communicate with relay and local 
cognitive nodes. Relay nodes communicate with SNs and LCNs to 
act as intermediate nodes that gather information from SNs, and for-
ward them to their LCN neighbors. They deliver data over multi-hop 
paths to the GCN.

LCNs perform two main functions: (1) Gathering sensory data 
from sensor nodes and forwarding information from relay nodes, and 
(2) data delivery based on QoI requirements of the traffic type. LCNs 
also function as caches to store the data as it travels through the net-
work. LCNs make use of the sensor attributes to identify the relevant 
data, similar to the named data–object search in ICNs and DCSNs. 
The requirements on the QoI attributes are based on the type of traffic 
flow generated as a result of the end user’s request. As for dealing with 
the QoI attribute requirements, an analytic hierarchy process (AHP) 
[14,37] is implemented as the reasoning element of cognition to make 
the decision in the LCNs.

GCNs have the following main functions. They receive user 
requests and synthesize them to identify the following information: 
Application traffic type, requested sensor attributes, and QoI attribute 
priorities. They broadcast the synthesized information to the LCNs, 
so that they may process it further to gather the requested infor-
mation from the network. Once the network returns the requested 
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information, GCNs process it to determine if the QoI provided by the 
network meets with the user requirements, and deliver information 
with acceptable QoI to end user. They also determine when the net-
work is no longer able to deliver useful information from the network, 
thus flagging the end-of-life of the network.

5.4 � The COGNICENSE Framework

Elements of cognition in the network nodes and an information-
centric data delivery approach are the two main constituents of the 
COGNICENSE framework. The elements that help in implementing 
cognition in the cognitive nodes are knowledge representation, rea-
soning, and learning. Knowledge representation helps in identifying 
data using attribute–value pairs and contributing towards identifying 
named-data objects for the information-centric approach. Reasoning 
helps in multicriteria decision making to prioritize the QoI attributes 
for a given traffic flow, and decide on the number of sensor nodes cho-
sen for data transmission to the LCN, or the next hop node chosen 
along the data delivery path to the GCN. While reasoning helps in 
achieving short-term objectives and making decisions that help the 
current situation, learning helps in achieving long-term goals of the 
network, such as improving its lifetime. Feedback obtained from 
the network’s past behavior aids the learning process, and helps in 
planning proactive responses to changes in network behavior and 
user requests.

5.4.1 � Knowledge Representation

A frame structure based on attribute–value pairs is used in sensor nodes 
and the cognitive nodes for knowledge representation. In frame-based 
knowledge representation [38], the frame is defined as a hierarchical 
data-structure with inheritance [39]. It has slots which are function-
specific cells for data. In sensor nodes, these function-specific cells 
store sensor attribute–value pairs. In LCNs, they store more informa-
tion, such as the one-hop neighbor LCNs and the associated values 
of QoI attributes in the last communication round. Information accu-
mulated over several rounds of information transmission leads to the 
formation of a knowledge base (KB), which can be looked up by the 
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reasoning mechanism to make quick decisions on choosing the data 
delivery path which satisfies the QoI delivered to the end user.

We make use of a semantic naming scheme using strings (sequence 
of characters) that provide information about the originator of the 
request, traffic type expected to be generated in response to the 
request, direction from which the data is requested, and the sensor 
data attribute(s) corresponding to which the data is to be gathered. 
The naming scheme has two main components: (1) Request classi-
fier and (2) information attributes. The request classifier (RC) field 
has two subfields: The originator of the request and the type of traf-
fic expected. The information attribute (IA) component also has two 
subfields: Direction attribute and sensory data attribute. The two 
fields are separated by a colon “:” and the subfields within a field are 
separated by an underscore “_”. Here is the format of a request string: 
<Request_classifier>: <Information_Attribute>. Let us consider an 
example request string. Sink_type1:N_temp. Here, “sink” indicates 
that the request has been originated by the sink. “Type1” indicates 
that the expected response from the network is a periodic traffic flow. 
“N” indicates that the direction from which the data is expected to 
be gathered is north. “Temp” indicates that temperature data is being 
requested.

Thus, the request string means: Sink initiated a request to collect 
periodic data from the Northern region of the deployment for the 
temperature attribute. Further, a combination of logical and rela-
tional operators can be used to add more details in the request. For 
example, the request string Sink_type1-60:N_temp&&humd speci-
fies that temperature and humidity values are to be returned peri-
odically, every 60 minutes. Once a complete match is found for the 
request string, the data is returned in attribute–value pairs to the sink 
by concatenating it to the original request string using a “:” opera-
tor and changing “Sink” to “Source.” For example, the response 
string Source_type1:N_temp:temp-25_temp-26_temp-24 indicates 
the temperature–value pairs recorded were 24°C, 25°C, and 26°C.

The alphabet required for a complete representation of this lan-
guage are represented in Table 5.2.

For further digitizing the representation, each of the alphabet’s val-
ues can be uniquely binary encoded. The cognitive nodes (GCN and 
LCN) will be able to generate and parse these strings and arrange the 
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information gathered from SNs/RNs in the desired format. The infor-
mation attribute (IA) component also has two subfields: Direction 
attribute and sensory data attribute. The two fields are separated by a 
colon ‘:’ and the subfields within a field are separated by an underscore 
‘_’. Here is the format of a request string:

<Request_classifier>: <Information_Attribute>.

Let us consider an example request string. Sink_type1:N_temp. 
Here, “sink” indicates that the request has been originated by the sink. 
“Type1” indicates that the expected response from the network is a 
periodic traffic flow. “N” indicates that the direction from which the 
data is expected to be gathered is north. “Temp” indicates that tem-
perature data is being requested. Thus the request string means: Sink 
initiated a request to collect periodic data from the Northern region 
of the deployment for the temperature attribute. Further, a combina-
tion of logical and relational operators can be used to add more details 
in the request. For example, the request string Sink_type1-60:N_
temp&&humd specifies that temperature and humidity values are to 
be returned periodically, every 60 minutes. Once a complete match 
is found for the request string, the data is returned in attribute–value 
pairs to the sink by concatenating it to the original request string 
using a “:” operator, and changing “sink” to “source.” For example, 
the response string: Source_type1:N_temp:temp-25_temp-26_temp-24 

Table 5.2  Alphabet Used for Representation of Attributes as Semantic Information

ALPHABET VALUES REMARK

α (Information 
Source)

{Sink, Source} Indicates if this is a request or response.

β (Traffic Type) {type1, type2, type3} Traffic flow type expected in the network 
in response to request.

γ (Direction attribute) {N,E,W,S,NE,NW,SE,SW,ALL} Direction(s) from which data may be 
requested. “All” indicates broadcast 
throughout the network.

δ (Attributes of 
Sensed data)

{temp, humd, uvi, co2,time} Sensory attributes for which data can be 
provided by sensor nodes.

“Time” indicates the time stamp at 
which data was registered at the 
sensor node.

Logical and relational 
operators

&&, >, <. >=. <=
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indicates the temperature–value pairs recorded were 24°C, 25°C, 
and 26°C.

The alphabet required for a complete representation of this language 
are represented in Table 5.2. For further digitizing the representation, 
each of the alphabet’s values can be uniquely binary encoded. The 
cognitive nodes (GCN and LCN) will be able to generate and parse 
these strings and arrange the information gathered from SNs/RNs in 
the desired format.

5.4.2 � Learning

Learning is used in the COGNICENSE framework for identifying 
data delivery paths towards the GCN that satisfy the user’s require-
ments in terms of QoI attributes. In this work, we make use of a 
direction-based heuristic to determine the data delivery path through 
RNs that lie in the direction of the GCN. This means that each time 
an LCN has to choose from among multiple RNs to decide the next 
hop, the direction-based heuristic eliminates RNs that increase the 
distance between the current LCN and GCN. Knowledge of the 
positions of the LCN and its one-hop RNs is used by the heuristic 
to determine the set of such RNs, which we call forward-hop-RNs. 
Thus the forward-hop-RNs of an LCN identified by the direction-
heuristic is constituted by those RNs that reduce the distance between 
the LCN and the GCN. This information is stored in the LCN’s 
knowledge base for use in the next transmission rounds. Feedback 
about QoI delivered along the forward-hop RNs is used to identify 
the best forward-hop RN for each traffic type. Thus the direction-
based heuristic, along with feedback from the network about the QoI 
delivered along the chosen paths helps the LCNs to learn data deliv-
ery paths to the sink, as the network topology changes due to link 
variations and node deaths.

5.4.3 � Reasoning

An analytic hierarchy process (AHP) is used for implementing the 
reasoning element of cognition. AHP aids with multiple-criteria 
decision making while deciding on the data delivery path based on 
the quality of information requirements of the requested application. 
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For example, for Type III traffic, requesting for low latency data, the 
QoI requirements are as follows: Highest priority is latency, followed 
by reliability, and finally throughput. This means that while choosing 
the next hop node for data delivery, the node that provides the lowest 
latency will be chosen. Reliability is more important than throughput. 
Hence, if two next hops guarantee the same latency then the next 
attribute to compare will be reliability, and lastly, throughput. AHP 
provides a method for pairwise comparison of each of the QoI attri-
butes and helps to choose the node that can provide the best value of 
information with respect to all three QoI attributes. Subsequent sec-
tions have more details with a running example on AHP. While these 
calculations help in deciding the next hop, they also help in planning 
for future actions. The cognitive nodes are able to store the calculated 
priorities of the QoI attributes, which they can use to decide which 
type of traffic the LCNs can best provide for. Hence, these calcula-
tions need not be necessarily calculated for every transmission round.

5.4.3.1  The AHP Framework for Data Delivery Based on QoI Attributes  There 
are three levels in the AHP hierarchy: Goal, criteria, and alternatives, 
as shown in Figure 5.3.

•	 Goal: Deliver application-requested sensory information to 
the GCN from LCN by identifying the next hop node.

•	 Criteria: Data must be delivered with the appropriate pri-
orities of QoI Attributes for each application type. The QoI 
attributes that are considered are latency, reliability, and 
throughput.

•	 Alternatives: The RNs in the network available to forward the 
data over multiple-hops in the network.

Goal

Criteria

Alternatives

Determine the next hop node from LCN to GCN

Reliability Latency �roughput

RNi RNj RNk

Figure 5.3  The AHP hierarchy.
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A fundamental scale for pairwise comparisons is then used to set 
application-defined priorities for the QoI attributes [37]. Then the 
priorities of QoI attributes are established using pairwise compari-
son. Let us consider an example where a SOM application wishes to 
transmit low-latency alerting information to its users. From the three 
QoI attributes of latency, reliability, and throughput, we would assign 
the highest priority to latency, to ensure timely delivery of the alert, 
followed by reliability, and then throughput. We tabulate the relative 
priorities of each the QoI attributes using pairwise comparison and 
generate Table 5.3. Then, the AHP computation involves generating 
the Eigen vector for the values in Table 5.4, using the following steps:

	 1.	iRepresent the values of Table 5.4 in matrix form {A = 
[1,4,6;1/4,1,3;1/6,1/3,1]}

	 2.	iCompute the Eigen vector of the matrix A {[v,d] = eig(A)}
	 3.	iIsolate the absolute, real values of the Eigen vector 

{q=abs(real(v(:,1)))}
	 4.	iCompute the normalized, relative priority values as 

{Relative_Priorities=q/norm(q,1)}

This way, the AHP algorithm is implemented at LCNs to estab-
lish the relative priorities of QoI attributes and helps in multicriteria 
decision making. The QoI attributes are the criteria and the goal is 
to find the next hop RN during data delivery from LCN towards 
GCN, which provides the highest value for a specific QoI attribute, 
or provides the overall best value of information (VoI) as illustrated in 
Table 5.5. VoI is based on the combined value of QoI attributes and 

Table 5.3  Pairwise Comparison of QoI Attributes

Latency 4 Reliability 1
Latency 6 Throughput 1
Reliability 3 Throughput 1

Table 5.4  AHP for QoI Attributes v/s Goal

GOAL: BEST QoI LATENCY RELIABILITY THROUGHPUT
RELATIVE PRIORITIES OF THE QoI 

ATTRIBUTES

Latency 1 4 6 0.691
Reliability 1/4 1 3 0.2176
Throughput 1/6 1/3 1 0.0914
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energy consumed during the process of delivering information to the 
GCN.

VoI delivered to the end user is said to be maximized when data is 
delivered over links that provide the best effective QoI for each traffic 
type, while minimizing the energy consumed in the network while 
doing so.

	
Value of Information VoI Effective QoI

n hops
( ) ( ) (= −

−∑ EEnergy Cost
n hops

)
−∑

	
	

� (5.1)

Equation 5.1 highlights that lower the energy cost of delivering data 
to the sink, higher is the VoI associated with that data/information 
object. The QoI must be maximized and energy cost minimized to 
achieve the best VoI. If energy consumption is measured as a function 
of the number of transactions taking place before data is delivered to 
the GCN, a simple metric—the hop count—can be used to approxi-
mate the energy cost. If the information is transmitted from source to 
GCN over minimum number of hops, each link providing the best 
combined QoI for that traffic type, we can say that the information 
was delivered to the GCN with good VoI. The steps used in the AHP 
to establish priorities for the QoI attributes and identify the best next 
hop path in delivering the application data to the GCN are illustrated 
in Algorithm 5.1.

Information about the relative priorities of the QoI attributes as 
desired by the user are received as input from GCN in steps 1–3. 
The output is a next hop RN that provides the best QoI as shown by 
steps 4–5. The simulations are set to run till no path can be found to 
GCN or till 50 percent of RNs and LCNs die. In steps 9–11, AHP 
analysis identifies the best next hop RN that satisfies these require-
ments, and identifies the next hop path for data transmission. Steps 
12–17 define actions to be taken when data reaches the GCN and 

Table 5.5  AHP to Evaluate the Overall Priorities for All Possible Next-Hop RNs

BEST CANDIDATE 
FOR NEXT HOP RNX

PRIORITY WITH RESPECT TO

LATENCY RELIABILITY THROUGHPUT GOAL

RNi 0.252 0.015 0.101 0.375
RNj 0.2 0.018 0.11 0.329
RNk 0.164 0.019 0.116 0.296
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leads to a successful transmission, or reaches another LCN from 
where next hop has to be identified. Steps 18–21 indicate that if a 
path to GCN was not found along the chosen path, GCN issues a 
retransmit request. These computations can be initially carried out for 
each next hop node decision in the data delivery path. This technique 
helps to build the learning database at each LCN about its next hop 
neighbor, and the priorities each of them offers with respect to the 
QoI attributes. This information can be stored and used for planning 
future rounds of data delivery for application traffic that may need to 
choose a different next hop for the same source LCN, based on the 
expected values of attribute priorities at the GCN. Thus we can see 
that this AHP process helps in adaptive multicriteria decision making 
during data delivery, in considering the desired attribute priorities for 
each application-traffic type.

Algorithm 5.1  AHP Analysis to Determine 
the Data Delivery Path

	 1.	Function AHP (QoI.priorities)
	 2.	Input
	 3.	QoI.priorities: End user defined priorities on QoI attributes 

for requested data
	 4.	Output
	 5.	RNx: Forward-hop RNx∈{RN1 ….. RNn} with best QoI
	 6.	Begin
	 7.	Initialize: QoI priority matrix for traffic type; Success=0;
	 8.	While (number of dead nodes<50 percent or network not 

disconnected)
	9.	 AHP_analysis(Next hop RNs v/s QoI attributes)//
	10.	 Next hop RN = RNx//This is the RN with best QoI for 

chosen traffic type
	11.	 Transmit data to next hop RN
	12.	 If (next hop = GCN)
	13.	 Success=1;
	14.	 Else
	15.	 Choose next hop LCN
	16.	 goto step 8
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	17.	 End
	18.	 If (Success==0)
	19.	 GCN Retransmits request
	20.	 End

	 21.	End

5.4.3.2  Node Mobility Support in the COGNICENSE Framework  The 
COGNICENSE framework allows for caching data at LCNs that 
act as intermediate nodes. This makes data readily available for users 
at nodes other than sensor nodes, thus offering two main advantages: 
(1) It prevents requests being sent out to sensor nodes, which may be 
in a sleep cycle, leading to a lost request and (2) it helps to conserve 
valuable energy resources by reducing the number of transmissions 
occurring in the network; both from sensor nodes towards the sink, 
and over multiple relay nodes that transmit the sensory information 
from the sensor nodes to the sink. Furthermore, the named-data 
identification enhances the advantages offered by the data caching 
feature at the LCNs in terms of supporting node mobility. We dis-
cuss the issue of node mobility under two categories: (1) Sensor node 
mobility, and (2) LCN mobility.

5.4.3.2.1  Sensor Node Mobility Support  In the COGNICENSE 
framework, search for data is name-based, which means that the 
request is not associated with any specific address, location or an 
end point. This is in contrast with the IP based approach, where an 
address is associated with each sensor node, and the request–response 
cycle involves the establishment and maintenance of an end-to-end 
connection between the sensor node and the sink. This restricts the 
ability of the network to support node mobility, as the loss of connec-
tivity with the source–sensor node or any intermediate node involved 
in the end-to-end connection, due to node death or lossy links, affects 
the data gathering and routing capability of the network.

However, in a cognitive ICSN, the requested information could be 
located anywhere in the network, and the user will be able to access it, 
since the request is not tied with any specific node address. Any node 
that can provide a match to the requested information can provide the 
data. Moreover, the routing path is not fixed, and can adapt to the 
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changing network topology. This is made possible by the LCNs that 
make use of cognitive reasoning to dynamically identify data delivery 
paths based on the type of request, and how well a link had performed 
in a previous round. The data delivery paths are chosen based on the 
QoI attributes of latency, reliability and throughput. The LCNs offer 
another advantage of acting as a data cache. Information gathered 
from sensor nodes can be stored in these LCNs to make them avail-
able on-demand, without having to access the source sensor nodes. 
We assume that cooperative caching techniques designed for wireless 
sensor networks [40] that deal with large amounts of sensed data, can 
be applied at the LCNs to enable them to manage information stor-
age. In addition, we assume that cache replacement algorithms such 
as least value first (LVF) replacement [16] can be used to maintain 
availability of relevant data while evicting stale and unused data from 
the cache, to make space for fresh data. Thus, even if a source sensor 
node was mobile, the sensed information is stored in LCNs whenever 
the node lies in close proximity with the LCN, and is made avail-
able to the user, irrespective of the mobility condition and/or pattern 
of the sensor node. Thus the COGNICENSE framework is capable 
of supporting sensor node mobility, without negatively affecting the 
network performance.

5.4.3.2.2  Local Cognitive Node mobility support  A further advance-
ment that can be made to the COGNICENSE framework, is the 
ability to support LCN mobility. A combination of static and mobile 
data collector LCNs could be used in the information-centric sensor 
network to improve the data gathering capability of the network. The 
advantage offered by having mobile LCNs is that, when a part of the 
network starts to deteriorate in its energy capacity and link conditions, 
the mobile LCNs will still be able to gather information from that 
part of the network, and store it in their cache. Thus preventing a part 
of the network from getting completely disconnected from the rest 
of the network, as long as the sensor nodes remain functional. These 
mobile LCNs could then communicate amongst themselves and with 
the static LCNs, to decide on the best way to deliver the collected data 
to the sink, and also to maintain information about the entire network 
to make informed decisions while responding to user requests.
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5.4.3.3  Energy Considerations in the COGNICENSE Framework  Energy 
conservation is one of the most important aspects of WSN design. 
In ZigBee based address-centric WSNs, sensor nodes off-load the 
energy-draining communication tasks to relay nodes. SNs being leaf 
nodes do not have the network layer to forward data beyond their 
one-hop relay nodes, and they do not even communicate amongst 
each other. The multi-hop relaying between source and sink is done 
by RNs, which have higher battery and processing capacity. Let us 
denote the energy cost of the relay node using Equation 5.2:

	 C C TE RERN E Tx Rx− = +( ) 	 (5.2)

Most of the energy consumption at the RN is due to data commu-
nication, represented by ETx for energy consumed during transmission 
and ERx for energy consumed during data reception. T and R rep-
resent the number of transmitted and received packets respectively. 
Let us compare this energy with that at the cognitive node (CCN–E). 
Typical functions of CNs that consume additional energy compared 
to regular RNs are data aggregation and the cognitive decision pro-
cess. Additional energy consumption is accounted for by two factors: 
(1) Protocol overhead incurred during cognitive data delivery due 
to feedback from the network during the learning process and the 
exchange of values of QoI attributes such as latency, reliability, and 
throughput while making routing decisions and (2) increased trans-
mit power for increasing the communication range of CNs.

	 C C TE RE C AE C PECN E Tx Rx ag cog process− −= + + +( ) ( ) ( ) 	 (5.3)

In Equation 5.3, T, R, A, and P are the total number of packets that 
are transmitted, received, aggregated, and processed by the cognitive 
elements respectively in each transmission round. C(TETx + RERx) 
is the energy cost incurred during data transmission and reception, 
C(AEag) represents the energy cost incurred during data aggregation 
and C(PEcog-process) represents the energy cost due to protocol and pro-
cessing overhead during the cognitive processes. Expressing Equation 
5.3 in terms of the energy cost of RNs we get:

	 C C AE CECN E RN E ag cog process− − −≥ + + 	 (5.4)
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If the relay and cognitive nodes use the same transmit power, then 
the equality sign holds true in Equation 5.4. In any case, the energy 
cost of the cognitive node is higher than that of the relay node. In 
order to ensure that the energy cost of CNs does not offset the advan-
tages offered by it in terms of adapting to the dynamic traffic flows and 
network topology changes, the cost can be optimized by maximizing 
the number of RNs and minimizing the LCNs in the deployment.

5.5 � Simulations and Results

A CICSN for a SOM application was implemented on top of an 
IEEE 802.15.4 MAC-PHY simulator [41,42] in MATLAB®. The 
deployment and interconnection among the network nodes (SNs, 
RNs, LCNs, and the GCN) is as shown in Figure 5.4. The cyan and 
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Figure 5.4  Interconnection among SNs, LCNs, and RNs.
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magenta lines indicate links between SNs and LCNs and SNs and 
RNs, respectively. GCN in red is located at the center of the target 
area. Blue lines show inter-LCN communication links and the black 
lines indicate interactions between LCNs and RNs. Green lines indi-
cate the links between the GCN and its one-hop RNs, and the red 
lines are the links between the GCN and nearest LCNs. The simula-
tions were used to evaluate the impact of network and node param-
eters on QoI attributes.

Using parameters identified from this simulation, the AHP based 
data delivery technique (AHPDD) was implemented, and its per-
formance was compared with two other techniques—a multipath 
data delivery technique (MDD), and a higher remaining battery-
based data delivery technique (HRBDD), in terms of the number of 
data transmissions to the GCN, and the QoI along the data delivery 
path.

5.5.1 � Simulation Setup and Parameters

The first set of simulations was used to identify parameters that affect 
the QoI attributes of latency, reliability, and throughput, for the 
application. Parameters chosen for observation were (1) N_active: 
the number of nodes attempting to simultaneously transmit data, 
and (2) the offered load: the per-node frame arrival rate expressed as 
a fraction of the application payload in bits per second. The simula-
tion was setup to identify the impact of varying the offered load on 
the QoI attributes for different values of N_active. The maximum 
and minimum possible values for N_active were chosen based on 
the node binding information obtained from the deployed CICSN. 
From 10 sets of random deployment of sensor nodes, we found a 
lower bound of about 10 sensor nodes per LCN and an upper bound 
of close to 60 sensor nodes per LCN. The range of values for per 
node offered load was 0 to 1400 bits per second, such that the load 
could be expressed as a fraction of the application payload, ranging 
from 0.1 to 1.4 times the size of the maximum application pay-
load of 121 bytes. The remaining simulation parameters were set as 
shown in Table 5.6.
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5.5.2 � Simulations Showing the Impact of Network and Node 
Parameter Variations on the QoI Attributes

The impact of varying the offered load and N_active on the QoI 
attributes of latency, reliability, and throughput for the SOM 
application is analyzed using the simulation results in Figure 5.5. 
Figure 5.5(a) indicates that latency increases almost linearly with 
increase in offered load for small values of N_active, up to 10 nodes. 
However, for higher values of N_active, latency saturated around 
0.1 seconds for loads greater than 1000 bps. Figure 5.5(b) shows an 
overall trend of decrease in reliability as the offered load increases. 
However, there is a marked difference in the variation of reliability 
with increase in N_active. Reliability drops exponentially for val-
ues of N_active greater than 30, as offered load increases. For values 
of N_active around 20, reliability remains around 1 for loads up 
to 500 bps per node, after which it drops linearly with increase in 
offered load. Figure 5.5(c) indicates an overall decrease in through-
put as offered load increases. For N_active = 10, the decrease is 
linear, but for higher values of N_active, (20 nodes and above), the 
decrease in throughput with increase in offered load is exponen-
tial. Figure 5.5(d) indicates a very different trend compared with 
instantaneous throughput at N_active = 10. There is an increase in 
throughput with increase in offered load, and stabilizes at around 
700 bps for offered load over 1250 bps. However, as the value of 

Table 5.6  Parameters of the Simulated CICSN

PARAMETER VALUE

Target area 1050 m × 1050 m
Number of nodes SNs: 1500

RNs: 16
LCNs: 8

Transmit power SN: <3 dB
RN: 3 dB

LCN: {3 dB, 5 dB, 7 dB}
Communication range SN: 175 m

RN: 250 m
LCN: 350 m
GCN: 500 m

Application payload size 121 Bytes
Per node offered load 0–1400 bits/s
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N_active is increased, the absolute value of throughput decreases, 
and the increasing trend in throughput that was seen for N_active = 
10, starts reversing for loads greater than 500 bps for N_active 
over 30. We made the following observations from analyzing the 
impact of varying the per-node offered load and N_active on the 
QoI attributes: (1) Values of each of the QoI attributes deterio-
rates as the offered load increases, and (2) restricting the number 
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of nodes attempting to simultaneously transmit data (N_active) to 
around 10 nodes helps to achieve good values for all the QoI attri-
butes. We use these observations to setup the simulation param-
eters for our next set of simulations.
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5.5.3 � Comparative Evaluation of Data Delivery Protocols: 
AHPDD, HRBDD, and MDD

Using the aforementioned observations, a network environment in 
which less than 10 nodes are scheduled at a time for simultaneous trans-
mission, and the maximum transmission load is limited to five frames 
per second (fps) is set up. Channel conditions were varied by varying 
the application payload and N_active values. We assume that LCNs 
and RNs start with an initial energy of 25 units, and SNs have an initial 
energy of 15 units. Each transmission from a SN consumes one unit 
of its energy; and transmissions from RN to LCN and vice-versa con-
sumes two units of energy at the transmitting node. Direct communi-
cation among LCNs or LCN to GCN consumes three units of power. 
These values are based on the transmit power and communication range 
capabilities of the nodes. At the start of the simulation, we identify a 
source LCN at which required data is available. Delivery of data from 
the identified source LCN to the GCN is considered as one successful 
transmission round. Using this setup, we analyze the performance of 
the AHP-based data delivery protocol (AHPDD) based on the number 
of transmission rounds of delivering data from a source LCN to GCN, 
until one or both of the following simulation termination conditions are 
satisfied: (1) 50 percent of the total number of LCNs and RNs die out, 
or (2) the network is no longer able to deliver information to the GCN 
as all the one-hop neighbor RNs and LCNs to the GCN are dead. 
At this point, the simulations are terminated. AHP analysis is imple-
mented at LCNs to identify the best next hop RN. The priority matrix 
for AHP analysis is set to identify data delivery path for each of the 
three traffic types. The AHP-based decision protocol is then compared 
with two other decision criteria in the same network setup, but without 
considering the cognitive reasoning capabilities at the LCN or GCN. 
These routing strategies are based on the ones described by Stojmenovic 
[7] for reporting via alternate paths in a broadcast tree in DCSNs.

The first one is based on choosing an RN with the highest remain-
ing energy from among the one-hop neighbor nodes, and is called 
highest remaining battery based data delivery technique (HBRDD). 
The second one is called multipath data delivery (MDD), where each 
node transmits through all its one-hop neighboring nodes with equal 
probability to improve the chances of successful data delivery to the 
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sink. Data is delivered via multiple paths at each hop, until at least one 
of the paths leads to the sink, which is the noncognitive version of the 
GCN. The simulations were allowed to run till one or both the simu-
lation termination conditions were met, and the average value of 25 
such simulations was taken. The number of transmission rounds dur-
ing which data was not delivered to the GCN was also recorded. The 
following criteria were used to determine unsuccessful transmissions 
to the GCN: (1) Inability of the routing protocol to forward data to 
the GCN due to node deaths along the path chosen for data transmis-
sion, and (2) transmission failure due to insufficient remaining energy 
at the forwarding nodes. The difference between the total number of 
transmission rounds, and the number of failed transmissions gives a 
measure of the number of transmission rounds in which data was suc-
cessfully transmitted to the GCN. Thus we define the failure rate of 
the routing protocols in Equation 5.5 as follows:

Failure Rate Number of failed transmissions Total n= ( / uumber of transmission rounds) ∗100

�
(5.5)

From the simulation results in Figure 5.6, we can see that AHPDD 
and HRBDD perform equally well, and better than MDD, in terms 
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of the number of transmission rounds. However, from Figure 5.7, 
we see that the number of failed transmissions is very high for 
HRBDD (57 out of 76). On comparing the failure rates, we find that 
MDD in fact performs better than HRBDD by 12 percent. While 
only 31 percent of the transmissions using AHPDD fail to reach 
the GCN, the failure rate is as high as 75 percent with HRBDD, 
which is almost twice as worse when compared with the 42 percent 
failure rate of MDD. Figure 5.8 shows the number of successful 
transmission rounds for each of the data delivery techniques. We 
see that although MDD doesn’t keep the network running for more 
number of transmission rounds compared to HRBDD, it is able to 
deliver data to the sink successfully for an average of 42 percent of 
the total transmission rounds, which is 17 percent higher than what 
is achieved by the HRBDD. However, AHPDD out performs both 
these protocols by adapting the data delivery decisions to user priori-
ties, and successfully delivering data to the GCN for 70 percent of 
the total transmission rounds. From these simulations, we can say 
that AHPDD is better able to adapt to the changing network topol-
ogy and deliver data to the GCN with a lower failure rate compared 
to the other two techniques.
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5.5.4 � Use-Case Analysis of the Data Delivery Protocols 
Based on QoI Attribute Performance

To analyze the performance of the three data delivery techniques in 
terms of the QoI attributes, we hereby adopt a use case based on the 
simulations in Section 5.5.3. The remainder of this use case will refer 
to Figure 5.9 and Table 5.7.
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Figure 5.8  Comparison of the number of successful transmission rounds.
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LCN2 is identified as the source node that has data to be delivered 
to the GCN, in response to periodic requests (Traffic Type 1) during 
each transmission round. The one-hop neighbor RNs of LCN2 are 
RN2, RN3, RN6, and RN7, and have battery levels of 11, 9, 7, and 
5 units, respectively, at the start of the simulation instant. Values of the 
QoI attributes are recorded for each of the one-hop RNs. AHP analy-
sis is performed to identify the best forward hop RN for AHPDD as 
indicated in bold under the column titled “Effective QoI.” The theo-
retical best next hop RN for the other two protocols is found using 
AHP analysis (highlighted in green), to compare the QoI perfor-
mance of the actual next hop node chosen by the other two protocols. 
Comparing the QoI performance of the chosen next hop node, we 
make the following observations: AHPDD always chooses the best 
QoI providing node between RN6 and RN7, as long as they are avail-
able. Although RN2 or RN3 might provide better QoI values for the 
next hop in some cases, choosing the forward hop RNs reduces the 
number of hops to reach the GCN. This leads to lesser energy con-
sumption in the network on the whole, and also reduces the cumula-
tive latency along the data delivery path to the GCN. However, this 
also means that once the forward hop RNs die out, AHPDD has to 
make use of longer data delivery paths to the GCN. But again, the 
QoI attributes are still considered in choosing the best among the 
available next hop nodes. MDD on the other hand, is always able 
to deliver data through at least one next hop node that provides the 
best effective QoI for each traffic type, even though it doesn’t have a 
mechanism to identify the best next hop node.

It is also able to find the shortest route to the sink because of the 
multipath approach at each next hop node. However, this perfor-
mance comes at the cost of a higher overall energy consumption in 
the network. This can be seen from Table 5.7, where all the one-hop 
nodes run out of energy before the other two techniques. Comparing 
with the observations made from Figures 5.6 through 5.8, we see 
that although MDD lasts for lesser number of transmission rounds, 
not only does it provides a lower failure rate, it also performs well 
in terms of identifying at least one next hop node that provides the 
best QoI performance. As for HRBDD, what stands out from Table 
5.7 is the increased number of hops in delivering data to the sink, 
causing an overall increase in energy consumption in the network. 
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This is because HRBDD is always trying to find a node with higher 
remaining energy at each next hop, irrespective of its QoI perfor-
mance. Although the chosen next hop node sometimes provides the 
best QoI, HRBDD’s performance with respect to QoI attributes is 
not consistently good. Over a period of time, this leads to death of 
more intermediate nodes, causing a higher failure rate as indicated by 
Figure 5.7, as the sink cannot be reached along a chosen path. This 
leads to lesser number of successful transmissions to the sink, even 
though the network might be able to run for a little longer than the 
multipath routing technique, as shown by Figure 5.8 and Figure 5.6, 
respectively. Thus, HRBDD performs relatively poorly among the 
three data delivery strategies, both in terms of delivering data with 
user-desired QoI attributes, and in terms of the number of successful 
transmission rounds.

5.6 � Conclusions

In this chapter, we proposed a framework for cognitive information-​
centric sensor networks (ICSN) that can be used to implement 
information-centric data delivery using elements of cognition, that is, 
knowledge representation and inference to advance data-centric sen-
sor networks to cognitive information-centric sensor networks. These 
ICSNs are able to handle heterogeneous traffic flows in the network 
generated as a result of requests coming from multiple clients in SOM 
applications while considering the QoI attribute priorities for each 
traffic flow. From the simulations we were able to identify the number 
of sensor nodes that should be simultaneously scheduled while gather-
ing data to ensure good quality data from the sensor nodes. Optimally 
choosing the number of simultaneously transmitting sensor nodes 
improves the average throughput by about 85 percent, reliability by 
about 90 percent, and reduces the latency by about 18 percent for a 
given value of offered load (1000 bits). The simulation-generated val-
ues were used in the next set of simulations that implemented AHP 
analysis to decide the best next hop node that should be used for data 
delivery to the GCN. It was found that the network lasted for sig-
nificantly more number of transmission rounds, and performed well 
in responding to varying traffic types and changing network topol-
ogy when it implemented cognitive routing decisions, when compared 
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with traditional decision techniques. In our future work, we will 
enhance the learning strategy, and implement cache replacement at 
LCNs to further exploit the cognitive node’s capabilities to improve 
network performance and prolong the network lifetime, while meet-
ing the end user’s requirements.
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6
Cognitive Routing 

Protocol for Disaster-
Inspired WSNs in the 

Internet of Things*

6.1 � Introduction

Sensing technology has played a significant role in detection and 
containment of disasters in numerous disciplines. The most notable 
among these applications are those functioning in harsh environ-
ments, such as pollution and flood detection, forestry fire prevention 
and earthquake monitoring applications [1,2]. For instance, a net-
work of sensors can be used to monitor the motion of toxic gasses over 
vast areas [3]. In [4], redwood trees at risk have been monitored via a 
wireless sensor network. Furthermore, the existence of a disinfectant 
that works better and more efficiently than conventional traditional 
ones by providing long lasting antiviral effect against major viruses 
has proved the importance of sensing technology in disaster man-
agement [5]. The aforementioned examples are just few of the many 
areas where sensing technology has made massive improvements. 
However, this technology is still suffering extreme limitations in 
terms of energy and connectivity while collaborating in wireless 
network–based systems.

Connectivity and links between sensing-devices (nodes) distrib-
uted to monitor a specific phenomenon have led to the idea of WSNs 
followed by the Internet of things (IoT) proposal. Integrating sensing-
devices with other heterogeneous network systems such as WiFi, 

*	 This article was originally published in Future Generation Computer Systems. 
F.  Al-Turjman, Cognitive routing protocol for disaster-inspired WSNs in the 
Internet of Things, vol. 1, no. 1, 2017. Reprinted with permission.
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LiFi, LTE, and so on can significantly expand the array of services 
that can be provided to public users as well as decision makers in 
critical safety applications. However, several design aspects, such as 
the limited energy constraints, short communication range between 
geolocated objects, and low processing power, need to be incorpo-
rated into the routing protocol in order to realize the IoT paradigm. 
There have been several attempts in the literature to propose light-
weight solutions for the IoT paradigm in order to save energy [6–8]. 
However, these solutions are still under investigation. WSNs in IoT 
consume energy in almost all processes [9]. They consume energy 
while making data transmission, data sensing, and data processing. 
A few attempts toward achieving energy efficiency in such networks via 
wireless multi-hop networking have been proposed, for example, [10–12]. 
However, such schemes either assume static network topology, which 
render these schemes impractical for real-life network implementa-
tions, given that IoT-based networks exhibit random topology due to 
the mobility of nodes, or are restricted to two-hop from source to the 
sink. Due to the fact that IoT-networks’ sensors are usually limited in 
their processing power, communication range and energy capabili-
ties, design and implementation of routing algorithms are considered 
a nontrivial task.

Moreover, accommodating various levels of harshness in surround-
ings in terms of temperature, dust, humidity, and so on dictates a 
resilience requirement to an expanded set of failure possibilities that 
includes partial or complete failure of the IoT sensor nodes, and 
reduced levels of activity or accuracy undergone as batteries deplete, 
which forms serious threats for losing critical in-network data before 
being utilized. This requirement stresses the integrity of cognition 
elements in IoT routing protocols. Moreover, an IoT sensor network 
needs to sustain different levels of mobility on disaster situations [13]. 
Since the IoT connected things rely on each other to gather and pro-
cess data, mobility may be temporarily or permanently detrimental 
to the network operation by breaking some functional communica-
tion links that affects the in-network data retrieval. Hence, nodes and 
links are prone to several risks, leading to high probabilities of failures 
and several nodes in the network may become disconnected/failed. 
As a reason of that, we are characterizing such circumstances by the 
probability of node failure (PNF). Consequently, for a successful and 
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reliable operation of the IoT paradigm in disaster-inspired scenarios, 
a cognitive energy-efficient routing approach shall be applied.

Recently, there have been significant attempts in the direction of 
building a cognitive sensor network, where researchers have made use 
of artificial neural networks, genetic algorithms, game theory and 
even software agents to implement distributed and intelligent deci-
sion making in sensor networks [2,14,15]. However, there is no single 
framework that can be used to implement cognition in sensor net-
works supporting the IoT paradigm in a way that is domain- and 
application-independent.

In this chapter, we propose a cognitive data delivery approach that 
addresses the challenges of data delivery in IoT networks comprised 
of energy-constrained IoT sensors. Two key elements in cognition are 
utilized in our approach in order to implement cognition, reasoning 
and learning elements. Reasoning is used to differentiate between the 
attributes of a given traffic flow, and choosing the next hop along the 
data delivery path to the destination. While reasoning realizes short-
term objectives and makes decisions based on the current network 
status, learning assists in achieving long-term goals of the network, 
such as improving its lifetime. The feedback received from the previ-
ous history of the exchanged messages aids the learning process, and 
leads to proactive actions. This model will help us to specify which 
path to follow in order to determine the optimal usage of the avail-
able resources for a wide range of IoT applications in safety and secu-
rity scenarios. Where the proposed approach is energy-efficient and 
designed to optimize the current network status for guaranteed qual-
ity of service (QoS) via machine learning [14]. It provides efficient and 
self-healing data delivery while choosing and selecting reliable com-
munication links [15]. Moreover, the proposed approach caters for the 
grid-based distribution of the employed IoT sensors on the monitored 
object to efficiently and effectively cope with the dynamicity of IoT-
network topology [16].

The reset of the paper is organized as follows. Section 6.2 reviews 
previous related work in the literature. Section 6.3 clarifies our system 
models. Section 6.4 describes our proposed routing approach for disaster-
inspired IoT paradigms. In Section 6.5, performance evaluation results 
for the proposed approach in comparison to other related approaches are 
detailed. Finally, Section 6.6 provides concluding remarks.
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6.2 � Related Work

Connectivity in IoT relies on finding reliable routes from IoT “things” 
to the Internet gateway. Utilizing duty-cycling, a routing algorithm 
can be designed to significantly balance the network load and opti-
mize the energy consumption, especially in energy-constrained IoT 
networks. In mission-critical IoT networks, it is also important when 
designing the routing algorithms to facilitate prioritization between 
the different traffic types. Another critical problem to overcome is the 
uneven energy consumption across the network where elements near 
the gateway would deplete their energy faster than those that are far 
away. And hence, feedback from the MAC and physical layers, in 
addition to information about the residual energy and the current load 
of the distributed nodes, can be utilized to identify and avoid unre-
liable links in order to effectively prolong the network lifetime and 
increase the network throughput. There are considerable advantages 
in coupling an IoT routing protocol with the underlying MAC layer 
protocol through a cross-layer design. Reducing the ratio of lost pack-
ets during channel impairments is an important reliability objective, 
as well [17]. Where energy saving via cognitive radio can be applied at 
the MAC layer of the network stack to achieve this target [18,19]. The 
MAC layer is usually expected to adapt the number of retransmis-
sions depending on channel quality. Current MAC protocols typi-
cally limit the number of back-offs and retransmissions. However, 
the unique characteristics of the short-range communications and the 
specific challenges of IoT mainly energy and processing constraints in 
addition to the random network topology, prevent the direct imple-
mentation of traditional WSNs’ routing schemes without modifica-
tion. In the following, we discuss traditional WSNs’ protocols with 
preferable features to be considered in an IoT routing protocol.

Multipath versus single-path routing: Recent studies show that mul-
tipath routing protocols for sensor networks are better than single-path 
routing protocols in terms of QoS. In fact, multipath routing protocols 
provide lower probability of packet loss while utilizing redundant paths 
towards the sink [20]. The Reliable Information Forwarding using mul-
tiple paths (ReInForM) protocol as described in [21] employs a proba-
bilistic flooding to deliver information awareness packets with desired 
priority levels of reliability at proportional costs for sensor networks. 
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This routing mechanism is based on local knowledge of network con-
ditions, such as channel error, hops-to-sink counting, and connectivity 
degree. Unfortunately, this protocol is not designed specifically for real-
time traffic; therefore, it does not consider delay deadlines of packets 
when selecting the multiple paths. A chosen path might not be able to 
meet the delay requirements, yet it will be used to propagate duplicates 
potentially consuming valuable energy and unduly occupying useful 
channel bandwidth without improving the system performance. The 
work in [22] presents a data flooding dissemination scheme. It assumes 
a virtual-grid network architecture where sensor nodes are distributed 
densely at the vertices of the grid. Utilizing the uniform nodes’ patterns 
and lattice algebra, the scheme dismisses node-addressing require-
ments and employs a simple flooding scheme for data dissemination. 
While the proposed scheme simplifies the communication model, 
it overlooks the cost of real-time signal processing. Additionally, it 
assumes a fixed structure and a static node deployment. Nevertheless, 
IoT-nodes can move around us for certain health or traffic applications 
[23], and therefore, may need to be associated with different neighbors 
and may not always follow a fixed structure. Authors of [24] propose a 
sound routing scheme for energy harvesting in IoT-networks. The rout-
ing scheme assumes a hierarchical cluster-based architecture. Packet 
transmission from the source to the cluster head via single or multi-hop 
fashion. Still, however, the challenge of limited energy budget at the 
sensing-node is not considered effectively.

Geo-based routing protocols: These protocols utilize the node position 
information in order to achieve more efficient routing techniques. For 
example, the geographic adaptive fidelity (GAF) protocol optimizes 
the performance of the sensor network by determining the redundant 
nodes via precisely identify their geographical positions [25]. Where 
these redundant nodes are considered equivalent and useful in terms of 
relaying/forwarding packets in the network. Another routing protocol, 
namely the GEAR (Geographic and Energy-Aware Routing), aims 
at improving the energy efficiency by forwarding queries to specifi-
cally determined regions [26]. In this routing protocol, sensors need 
to have localization hardware such as a GPS unit or a localization sys-
tem which can dramatically increase the network cost. Meanwhile, the 
work presented in [27] proposes a geographic routing protocol where 
the IoT-nodes are assumed to include two types of anchor nodes, which 
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have higher communication and processing capabilities than user 
nodes. User nodes are required to localize their position with reference 
to these anchor nodes. However, the proposed scheme is topology-
dependent and assumes a fixed topology, which may not be applicable 
for IoT networks. Additionally, the scheme requires addressing for all 
nodes, which forms a significant challenge in IoT networks with large-
scale applications. Moreover, the localization techniques used can be 
inaccurate and lead to dramatic degradation in energy consumption.

Shortest Path Routing: In the nearest neighbor algorithm (NNA), 
when a packet is transmitted from a node to another, it follows the 
shortest path based on the available common control channels. NNA 
assumes that if a packet always follows the shortest path, it will use it 
until it reaches destination node. In short, this algorithm uses a four-
direction transmission (left, right, up, and down) only so it actually 
does not consider the shortest path, it considers the shortest neighbor 
relay node in order to send data. As a result of this, hop count unnec-
essarily increases and therefore energy consumption is negatively 
affected. Meanwhile, in the shortest path algorithm (SPA), when a 
packet is transmitted from a node, the algorithm calculates the short-
est path from recent node to destination instead of node-to-node, and 
the packet follows this path until it reaches to destination. SPA, uses 
eight directions (up, upper-left, upper-right, down, down-left, down-
right, right, and left) and considers the shortest path to the destina-
tion rather than the shortest neighbor of the relay node. Thus, in SPA 
hop count decreases and energy consumption of the nodes decreases 
in comparison with NNA. Nevertheless, SPA is the simplest rout-
ing protocol that takes into consideration the path length as a unique 
design factor affecting the network energy. In practice, this assump-
tion is not accurate due to several other design factors, such as the 
communication link condition and reliability.

In this research, we propose a cognitive energy-efficient algorithm 
(CEEA) as a routing protocol. CEEA assumes a multitier IoT-network, 
and cluster/tier-wide synchronization. It is a topology-independent 
protocol which copes with the randomness nature in IoT-networks. 
CEEA determines the path from the routing node (RN) to the des-
tination node in view of each node’s remaining energy. The remain-
ing energy of neighbors of recent RNs is controlled each time before 
a packet is sent from the RN. If one of the neighbor RN’s energy is 
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below half of its initial value, a new path will be determined for the 
packet to follow. In addition, when all neighbors’ remaining energy is 
below half of the initial energy, the system uses the same strategy. As 
a result of that, even if hop count increases in comparison with SPA, 
energy efficiency is improved for RNs and so is the network lifetime.

6.3 � System Model

The main objective of IoT in smart environments is to monitor physi-
cal or chemical changes and pass the information to a data center for 
processing [28]. IoT nodes may have varying sensing capabilities. Due 
to energy constraints, nodes do not communicate with each other but 
rather pass the sensed data to routing nodes (RN). RNs take collected 
data to a gateway (GCN) that is usually connected to the Internet for 
remote collection/processing. This communication type continues till 
the IoT network death. IoT networks have to overcome several chal-
lenges. Energy consumption for communication is the most signifi-
cant one. Energy-efficient routing protocols can significantly prolong 
the IoT-network lifetime. In this section we list the assumed system 
model for the proposed CEEA routing protocol.

6.3.1 � Network Architecture

The typical communication range in IoT is expected to be between 1 
centimeter and 150 meters [9]. This means that the transmission range 
is still limited, making multi-hop routing particularly important for 
IoT networks. Furthermore, when IoT nodes are mobile, the direction 
of a communication route is not deterministic and is dependent on the 
drift velocity of sensory machines, which may lead to communication 
delay. This necessitates efficient schemes for multi-hop path creation 
and management. IoT networks can be divided into three categories: 
in-object, on-object, and off-objects IoT. An overview of the structure 
of IoT network under such circumstances can be summarized as

•	 IoT Sensor Nodes (SNs): These are assumed to be small and 
simple IoT sensor devices. Due to their limited energy, lim-
ited memory, and reduced communication capabilities, they 
can only perform simple computation task and can transmit 
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over very short distances. The nodes could be composed of 
sensor and communication units.

•	 Relay Nodes (RNs): These are the relay (routing) devices with 
slightly larger computational resources than SNs and can 
aggregate information from a limited number of SNs and also 
can control the behavior of SNs by sending simple instruc-
tions (such as on/off, sleep, read value, etc.). These added 
capabilities would increase their size; thus, their deployment 
would be more invasive.

•	 Cognitive Relay Nodes (CRNs): They are used to aggregate 
the information forwarded by RNs and send the information 
to other CRN devices. At the same time, they can send the 
information from short-range–scale to large-scale. In this 
chapter we identify these nodes as cognitive nodes (CRNs).

•	 Gateway (GCN): It enables to control or monitor the entire 
IoT system remotely over the Internet.

It’s worth pointing out here that IEEE 802.15.4 protocol is con-
sidered at the CRN to specify a sublayer for medium access control 
(MAC) and a physical layer (PHY) for low-rate wireless private 
area networks (LR-WPAN) because of some desired features, such 
as low power consumption, low data rate, low cost, and high mes-
sage throughput [9]. Thus, the IEEE 802.15.4–based CSMA access 
method can be considered at the MAC layer. This inherently reflects 
the communication channel reliability. Based on [29], this channel 
reliability can be characterized by a reliability design factor as follows:

	 C P P PR blocking c fail p discard= − ∗ − ∗ −− −(( ) ( ) ( ))1 1 1 	 (6.1)

Where Pblocking represents the blocking probability due to a buffer-
full condition; Pc−fail is the common channel access failure probability 
due to channel condition (i.e., SNR) and Pp−discard is the probability 
that a packet is discarded on reaching the maximum number of retries 
limit. This reliability factor is responsible to make a decision when 
equivalent energy levels at RNs are faced. And it reflects the prob-
ability that a frame is not blocked, lost due to common channel access 
failure, or discarded as a result of reaching the maximum number of 
retries limit.
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6.3.2 � Lifetime of IoT Network

IoT Network Lifetime is defined as the time or number of transmis-
sion rounds beyond which the network can no longer deliver useful 
information to the outside end user. This is reflected by the network’s 
inability to find a data delivery path with satisfactory values for qual-
ity of information (QoI) attributes such as delay, reliability, and 
throughput, as determined by the end user [24]. This definition not 
only provides information to satisfying the application requirements, 
but also considers the status of the network and sensing resources 
in defining the network lifetime. It also justifies the fact that if the 
network does not have the necessary resources to send packets, it 
cannot satisfy the end user, and so it should be considered as a dead 
IoT network. The IoT network lifetime can therefore be evaluated in 
three ways:

	 1.	Lifetime Based on Number of Alive SNs.
		  Several variants do exist with this model. The simple model 

identifies the time until the death of the first SN in the net-
work as the lifetime of the network. Another variant evalu-
ates lifetime until the death of k out of n SNs in the network, 
where k < n. The lifetime is the range between the death of k 
nodes from n nodes in noncritical ones [30].

	 2.	Lifetime Based on SN Coverage.
		  This model defines the lifetime of the network in terms of 

the coverage of region of interest. If it is used to ensure that all 
points inside a region of interest are covered, it is denoted by 
volume coverage. When an identified number of target points 
are to be covered, it is denoted as target coverage.

	 3.	Lifetime Based on Coverage and Alive SNs.
		  This type of metrics is mostly found in ad-hoc IoT networks. 

In this option, lifetime is defined as the period during which 
most of the nodes are connected with each other. Because 
in IoT each node has to communicate with a gateway node, 
this metric cannot be used as-is. Another issue with this met-
ric is that the lifetime is based on the total number of pack-
ets transmitted to the gateway. Nevertheless, in most of the 
related works this metric become useless [31].
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6.3.3 � Energy Conservation and Dead Node Issue

Energy conservation is one of the most important issues in IoT design. 
SNs are restricted in carrying out the network layer functions, their 
main task is to flood the data to their one hop routers. Hence, the 
multi-hop forwarding between source and gateway is normally per-
formed by RNs which have relatively higher capabilities than SNs. 
Thus, we define the energy consumed at a RN by ERN = C (T ∗ (ETX) + 
R ∗ (ER X)). Most of the energy consumption at the RN is due to 
data communication, indicated by ETX for energy consumed during 
transmission and ERX for energy consumed during data reception. 
C represents the cost function of the energy consumed T represents the 
number of transmitted packets and R represents number of received 
packets. As discussed above, CRN main function is data aggregation 
and routing of traffic received from the RNs via cognition elements. 
The capabilities of the CRN are higher than those of RN, hence our 
assumption of the cognitive decision process to be performed by the 
CRNs, which is expected to consume additional energy compared to 
regular RNs [32]. Additional energy consumption is divided into two 
parts: One is protocol overhead incurring during cognitive data deliv-
ery due to feedback from the IoT network during the learning process 
and the exchange of values of QoI attributes such as delay, reliability, 
and throughput while making routing decisions; the other one is the 
increased transmit power for increasing the communication range of 
CRNs. Accordingly, ECRN = C (T ∗ (ETX) + R ∗ (ER X)) + C(Ag ∗ 
(Eag)) + C (P∗ (Ecog − Epro)), where T, R, Ag, and P represents the total 
number of packets that are transmitted, received, aggregated, and 
processed by the cognitive elements, respectively, in each transmis-
sion round. (T ∗ (ETX) + R ∗ (ERX)) is the energy cost incurred during 
data transmission and reception, C(Ag ∗ (Eag)) represents the energy 
cost incurred during data aggregation and C(P ∗ (Ecog − Epro)) indicates 
the energy cost due to protocol and processing overhead during the 
cognitive processes. Consequently, we can assume

	 E E Ag E C E ECRN RN ag cog pro≥ + ∗ + −( ( ) ( )) 	 (6.2)

If the RN and CRNs use the same transmit power, the equality 
sign becomes positive in Equation 6.2. In order to ensure that the 
energy cost of CRNs does not offset the advantages it offers in terms 
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of adapting to traffic flow dynamics and network topology alterations, 
the cost can be optimized by maximizing the number of RNs and 
minimizing the number of CRNs in the deployment [24].

In this work, we refer to one-hop neighbors’ communication as the 
first tier of nodes. Since no other node can reach the monitoring sta-
tion directly, traffic from every other node will have to be forwarded, 
in the last hop, by one of these first tier nodes. Similarly, the two-hop 
neighbors of the monitoring station will forward data for all nodes 
except the one-hop neighbors and themselves, and so on. If the spatial 
distribution of nodes is assumed to be uniform, then the traffic load is 
equally distributed. Each first tier node will forward hardly the same 
amount of traffic, and all first tier nodes will die at times very close to 
each other after the network is first put into operation. Once all of the 
first tier nodes are dead, no other node will be able to send data to the 
gateway node, and the lifetime of the network will be over. Increasing 
the number of nodes in the network accentuates this effect, since there 
is more traffic to forward and the first tier of nodes has a smaller share 
of the total energy budget. In general, the network death in IoT can 
be associated with several cutoff criteria such as the first node death, 
the percentage of dead nodes, or the number of dead nodes rising 
above a level where the routing to the sink node is no longer pos-
sible [33]. Nevertheless, as we are experimenting with the clustering 
based protocols, in which the energy is evenly distributed throughout 
the mobile IoT network, we consider the first scenario for the defini-
tion of the network lifetime. Because, when the first node dies, the 
number of dead nodes increases in the later rounds, and within 5–10 
rounds the whole network becomes nonoperational. According to 
preliminary results, non-position–based routing protocols outperform 
geo-based protocols in terms of network lifetime. The primary reason 
for this behavior is that location-based protocols consume energy in 
terms of localization services. Moreover, the number of control mes-
sages plays a vital role in the network lifetime.

6.3.4 � Communication Model

Radio interference, antenna shape and orientation, distance and envi-
ronmental factors may vary during the network lifetime and affect 
link quality between the sensor nodes [16]. Despite the fact that the 
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locations of sensor nodes are fixed as well as every node is config-
ured with the same transmission range, environmental variations 
result in asymmetric links between nodes [34]. Therefore, these rout-
ing approaches shall estimate link quality to find the optimal path. 
Considering that the communication is at varying-range scale, study 
of the communication in a very short range is essential. And hence, 
we consider the proposed path loss formula in [33] at short-range 
communication, which has two parts: The absorption path loss and 
the spread path loss. Meanwhile, energy-aware frameworks depend 
heavily on two main principles in their communication design. First 
principle is the number of hops without delay constraint. Second, is 
the number of hops with the delay constraints.

6.3.4.1  Number of Hops without Delay Constraints  If there is no delay 
constraint on the system, the highest achievable transmission rate is given 
by equation 18 in 0. The bandwidth is divided into i sub-bands the i-th 
sub-band is centered around frequency fi,i = 1, 2,… and it has width Δf. 
If the sub-band width is small enough, the channel appears as frequency-
nonselective and the noise p.s.d. can be considered locally flat. The result-
ing capacity in bits/s is then given by where d is the total path length, S 
is the transmitted signal p.s.d., A is the channel path loss, and N0 is the 
noise p.s.d. The end-to-end capacity of N hops path is given by [35]:

	 C C Fe e I AVG
N

2 1= −( ) 	 (6.3)

where CI is the channel capacity contributed by the first hop, N is the 
hop count determined by the forwarding scheme and FAVG is the average 
capacity loss factor per hop. The value of FAVG is calculated as follows:

	
F F d d
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0

0
	 (6.4)

where F is the capacity loss factor and d0 is a constant that denotes the 
reference distance from source-to-sink 0.

6.3.4.2  Number of Hops with Delay Constraints  The predictions about 
the preferred number of hops made in the previous section were based 
on the assumption that the block lengths used by channel codes can 
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be randomly large. In many applications there is a strict limit on the 
tolerable end-to-end delay. There are several factors of delay in short-
range communication systems. In the following we list these factors:

•	 Waiting for the data source to emit enough bits to form a block 
of a desired length (for channel coding).

•	 Processing delay caused by encoding/decoding the information 
bits for transmission.

•	 Transmission and reception of the whole encoded message.

If the communication system involves multiple hops, the latter 
three elements are repeated several times, increasing overall delay. To 
compensate for this, shorter block lengths must be used at a cost of 
reduced error-correcting capabilities at each link [24].

6.4 � Cognitive Energy-Efficient Approach (CEEA)

In this section we propose a novel energy aware data delivery approach 
for the energy-constrained IoT. Let’s assume that a randomly selected 
sensor n by GCN, depending on the harvested energy, is to be used 
for data retrieval. The random number of relay nodes within the com-
munication range of the sensor n can be characterized by a spatial 
Poisson process X. Let the sensor n be at point z ∈2  and define l (z, 
X) as the shortest distance from the sensor location z to the nearest 
point of X such that l (z, X) ≤ r, and only common control channels 
are considered. Since X is a spatial Poisson process, then l (z, X) ≤ r, if 
and only if RN (d (z, r)) > 0, where d (z, r) is a disc of radius r centered 
at z. Conclusively, the probability of having at least one relay neighbor 
within the transmission range of the sensor n is given as follows.

	 P l z X r exp A d z rharv d( ( , ) ) ( ( ( , )))≤ = −1 β 	 (6.5)

where Ad is the area of the disk d (z, r), and where βharv denotes the rate 
of harvested energy of a senor. Note that exp (βharv Ad (d(z, r))) denote 
the probability that no relay node is within the transmission range 
of the sensor n; that is, the network lifetime of the neighborhood of 
sensor n is expired. When the lifetime of the neighborhood nodes is 
expired, the IoT-network is assumed dead. Thus, assuming f (nj) is the 
cost function of transmitting from RNj to GCN, g(n) is the energy of 
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neighboring RNs, h(n) is the minimum distance from a neighbor RNj 
to GCN, i(n) initial energy of the neighboring RN. Our approach 
relies on a cognition process that has three main criteria in data routing: 
(1) Evaluation criteria, f(nj) = Cost(Neighbor RN to GCN) and h(nj) = 
min(f(nj)), this is guaranteed by lines 11 to 18 in Algorithm 6.1a; 
(2) selection criteria, g (h(nj)) > i (h(nj)) ∗ 50%, this section is found 
between lines 19 and 21; and (3) termination Criteria; all one-hop 
RNs are dead or P(l(z, X) ≤ r) = 0.

Algorithm 6.1a  Pseudo-Code of the CEEA Algorithm

	 1.	Function: Cognition process in CEEA
	 2.	Input
	 3.	 Source RN
	 4.	Output
	 5.	 RN index chosen by CEEA to deliver data towards GCN.
	 6.	Begin
	 7.	Initialize
	 8.	 Hop Count = 0; //for RNs beginning of round.
	 9.	 Identify source RN as a start node for current round.
	 10.	 List all neighbor RN indices from source RN
	 11.	 If source RN has one-hop, send directly to GCN.
	 12.	 Else If there is least one RN connected with this RN

	13.	 For each source RN index ‘ j’ do
	14.	 f (nj) = Distance (Neighbor RN to GCN)
	15.	 g (nj) = Energy (Neighbor RN’s energy)
	16.	 h (nj) = min (f(nj))
	17.	 i(nj) = InitialEnergy (RN’s initial Energy)

	 18.	 End
	 19.	 If g(h(nj)) > i (h(nj)) ∗ 50%
	 20.	 Chosen RN Index = g (h(nj))
	 21.	 End
	 22.	 End
	 23.	 End
	 24.	 Else
	 25.	 There is no source RN
	 26.	 End
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	 27.	 If RN’s energy when connected with GCN < 0,
	 28.	 Then disconnect from path
	 28.	 End
	 29.	 Update neighbor energy information of source RN
	 30.	 Termination Criteria

	31.	 P (l (z, X) ≤ r) = 0 in Equation 6.5 is equal to 0.
	 32.	End
	 33.	Return g (h (nj))

In the above algorithm, elements of cognition in the utilized cogni-
tion process form the two main constituents of our proposed approach. 
The elements that help in implementing cognition in the cognitive 
nodes are: reasoning and learning elements.

6.4.1 � Learning

Learning is used in our CEEA approach in order to determine the 
most appropriate paths toward the GCN that satisfy the IoT net-
work requirements. This cognition element uses a direction-based 
heuristic to determine the data delivery path through RNs that lie 
in the direction of the GCN. Hence, each time the cognition pro-
cess has to choose the next hop, the direction-based heuristic elimi-
nates RNs that increase the distance between the current RN and 
GCN. Knowledge of the positions of the CRN and its one-hop RNs 
is used by the heuristic to determine the set of such RNs, which we 
call forward-hop-RNs. Thus the forward-hop-RNs of a CRN identi-
fied by the direction-heuristic is constituted by those RNs that reduce 
the distance between the CRN and the GCN. This information 
is stored in the CRN for use in the next transmission rounds. Thus 
the direction-based heuristic, along with feedback from the network 
about the chosen paths helps the cognition process to learn data delivery 
paths to the sink, as the network topology changes.

Example 6.1: Assume S1 and S2 have data to be sent to destination 
nodes D1 and D2. Rn are all the available relays toward the destination. 
Out of these relays, it is determined that R5 as shown in Figure 6.1 
has the lowest link outage probability to D1 and D2. Therefore, S1 
initiates routing data to R5. Meanwhile, S2 also forward a high traffic 
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of data to R5 (depicted by solid paths in Figure 6.1). When multiple 
source nodes start routing their data to R5 as well, the route to R5 may 
get congested. A cognitive network with learning capabilities will be 
able to identify the congestion at R5 (by observing the decrease in 
throughput). Sharing this observation with neighboring nodes, the 
cognitive IoT network would be able to respond to the congestion 
proactively, by routing the data through a different path involving 
nodes R4, R8, and R9, as shown in Figure 6.2.

6.4.2 � Reasoning

In the CEEA approach, we assume a modified version of the analytic 
hierarchy process (AHP) [18] for implementing the reasoning ele-
ment of cognition in the IoT. AHP supports multiple-criteria deci-
sion making while choosing the data path. For example, if we have 
a delay-sensitive data, the node which provides the lowest delay will 
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S1 S2
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R5

R

R R R R

R

Figure 6.1  Classical routing in a sensor network.
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Figure 6.2  Cognitive routing in IoT-networks.
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be chosen even though it might degrade other metrics such as the 
network energy or throughput. If two next hops guarantee the same 
delay then the next attribute to compare will be energy, and then, 
throughput, assuming that energy is the next desired attribute in the 
IoT-network. AHP provides a method for pairwise comparison of 
each of the attributes and helps to choose the node that can provide 
the best network performance on the long run. The following subse-
quent example has more details on the utilized AHP. While AHP 
calculations help in deciding the next hop, it also helps in planning 
for future actions. The cognition process enables the CEEA approach to 
maintain the calculated values of the IoT-network attributes, which 
can be used in future transmission rounds. Hence, these values are not 
necessarily calculated at every transmission round.

Example 6.2: Assume a three-level hierarchy in the AHP: Goal, 
Criteria, and Alternatives as shown in Figure 6.3. A fundamental scale 
for pairwise comparisons is then used to set priorities for the IoT-
network attributes/criteria at the CNs. Given the very limited energy 
constraint in IoT, we would assign the highest priority to energy, 
followed by reliability and then throughput. We tabulate the relative 
priorities of these attributes using pairwise comparison in [36] and 
generate Table 6.1. From Table 6.1 we generate Table 6.2. Then, we 
apply the following steps:

	 1.	Represent the values of Table 6.2 in the matrix form
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Figure 6.3  The AHP hierarchy.
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	 2.	Compute the Eigen vector of the matrix A.
	 3.	Isolate the absolute, real values of the Eigen vector.
	 4.	Compute the relative priority values.

Note that our goal is to find the best next hop, which provides the 
highest value for a specific attribute, as shown in Table 6.3.

Algorithm 6.1b  AHP Analysis for Path 
Selection in Cognition Process

	 1.	Function AHP (priorities of the attributes P)
	 2.	Input
	 3.	P: End user defined priorities on the attributes for requested 

data
	 4.	Output
	 5.	RNx: Forward-hop RNx∈{RN1 ….. RNn } with best P
	 6.	Begin
	 7.	Initialize: priority matrix for traffic type; Success=0;

Table 6.1  Pairwise Comparison of the IoT-Network Attributes

Energy (Kj) 4 Reliability 1
Energy (Kj) 6 Throughput (Mbps) 1
Reliability 3 Throughput (Mbps) 1

Table 6.2  AHP for QoI Attributes v/s Goal

GOAL – BEST 
ATTRIBUTE

ENERGY 
(Kj) RELIABILITY

THROUGHPUT 
(Mbps)

RELATIVE PRIORITIES 
OF THE ATTRIBUTES

Energy (Kj) 1 4 6 0.691
Reliability 1/4 1 3 0.2176
Throughput (Mbps) 1/6 1/3 1 0.0914

Table 6.3  AHP Evaluating the Overall Priorities for All Possible RNs

BEST CANDIDATE 
FOR NEXT HOP RNX

PRIORITY WITH RESPECT TO

ENERGY (Kj) RELIABILITY
THROUGHPUT 

(Mbps) GOAL

RN1 0.252 0.015 0.101 0.375
RN2 0.2 0.018 0.11 0.329
RN3 0.164 0.019 0.116 0.296
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	 8.	While P (l (z, X) ≤ r) > 0 in Equation 6.5
	 9.	 AHP_analysis(Next hop RNs v/s attributes)
	 10.	 Next hop RN = RNx

	 11.	 Transmit data to next hop RN
	 12.	 If (next hop = GCN)
	 13.	 Success=1;
	 14.	 Else
	15.	 Choose next hop RN
	16.	 goto step 8

	 17.	 End
	 18.	 If (Success==0)

	19.	 GCN Retransmits request
	 20.	 End
	 21.	End

If energy consumption is measured as a function of the num-
ber of events taking place before the data packet arrives to the 
sink, the hop count can be used to approximate the energy cost. 
Accordingly, the modified AHP steps in prioritizing the IoT net-
work attributes and identifying the best next hop are described in 
Algorithm 6.1b.

6.5 � Performance Evaluation

In this section, we evaluate the performance of the proposed CEEA. 
We use MAEB, GEAR, ReInForM, and LinGo algorithms as base-
line evaluation algorithms. Based on the aforementioned system 
models, we summarize these four baselines’ categories as follows.

Geographic and Energy-Aware Routing (GEAR)
		  In this approach, sensor nodes must have a hardware com-

ponent for positioning such as a GPS unit or a localization 
system. GEAR routing protocol is used to improve the effi-
ciency in terms of energy consumption via forwarding que-
ries to targeted regions. The forwarding scheme operates at 
two phases: Setup phase and operation phase. Setup phase is 
designed to assist sensor nodes in measuring their distances 
from the anchors. In the operation phase, a source sensor 
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node incorporates its location information in a packet header. 
A receiving node checks its location, the destination location 
and source location for either forwarding or dropping the 
received packet.

Reliable Information Forwarding Using Multiple Paths 
(ReInForM)

		  ReInForM employs a probabilistic flooding procedure to 
deliver information-aware packets at a predetermined priority 
level. This leads to more reliable routing protocol at a propor-
tional data delivery cost. The routing mechanism is based on 
local knowledge of network conditions, such as channel error, 
and hop-count to sink.

Movement-Aided Energy-Balance (MAEB)
		  MEAB has been chosen as a baseline due to movement 

and energy consideration. It has a neighbor discovery proce-
dure which is conducted by the network cluster heads. They 
send their data packet to the Gateway following a forwarding 
rule, in which the distance and velocity to the Gateway and 
the remaining energy is recorded to select the neighbor cluster 
heads on the route towards the Gateway.

Link Quality and Geographical Beaconless OR Protocol 
(LinGo)

		  LinGo introduces a different progress calculation approach 
compared to the aforementioned ones [37]. It takes into account 
both the progress of a given forwarding node towards the 
destination with respect to the last-hop, as well as the radio 
range. In this way, LinGO reduces the number of required 
hops on a data towards the destination node.

Cognitive Networking with Opportunistic Routing (CNOR)
		  CNOR protocol [38] is designed mainly for scalable 

WSNs, and tries to combine the advantages of opportunis-
tic routing and opportunistic spectrum access. It is a reactive 
routing protocol since it discovers routes only when desired. 
An explicit route discovery process takes place only when it 
is needed. The destination node of the network begins the 
route discovery process and this process ends when a rout-
ing path has been established while a maintenance procedure 
preserves it until the path is no longer available or desired. 
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As the network scalability is increased, CNOR tends to 
discover more paths leading to the increase of the network 
performance.

Energy-Aware Routing for Cognitive Networks (EARCN)
		  EARCN scheme [39] associates the backward difference 

traffic moments with the sleep-time duration to tune the 
activity durations of a node for achieving optimal energy 
conservation and alleviating the uncontrolled energy con-
sumption in wireless devices. It provides efficient cognitive 
routing protocol in terms of maximum energy conservation, 
maximum-possible routing paths establishments, and mini-
mum delays, while utilizing secondary communication nodes 
(e.g., CRNs).

Resilient IoT for Dynamic Sensor Networks (RIDSN)
		  RIDSN extends AODV protocol to match needs of cogni-

tive ad hoc networks in the IoT paradigm. It dissects the study 
of any IoT nodal capacity to its “connected” components, and 
empowers dynamic associativity between things to serve vary-
ing functional requirements and levels [40]. More importantly, 
critical resources in the network will be shared within their 
neighborhoods. Thus network lifetime will relate to functional 
cliques of dynamic IoT nodes, rather than individual networks.

6.5.1 � Performance Metrics and Parameters

To compare the performance of these five schemes, the following four 
performance metrics are used.

•	 Average Delay: Is measured in msec and is defined as the 
average amount of time required to deliver a data unit to the 
destination.

•	 Idle time: This metric reflects the ratio of idle time every node 
spends while just waiting to forward a message. It is measured 
in μsec.

•	 Throughput: Is set here as a quality measure. It is the average 
percentage of transmitted data packets that succeed in reaching 
the destination reflecting the effect of node heterogeneity and 
delay in IoT setups over the utilized data delivery approach.
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•	 Average Price: This metric is used to observe the influence 
of the utilized data delivery approach on the overall price to 
deliver a data unit from source to destination on average. The 
price charged by each node ni as pi.
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where úιι  is the available buffer space at node i, and π ι´  is the 
power amount to be consumed per packet processing at node i. 
ETx (Dk, nj) and ERx (Dk) are the mounts of energy used to transmit 
a data packet Dk from node i to j and receive a data packet Dk at 
node i, respectively. And ei is the instantaneous available energy 
per node i.

Meanwhile, the three data delivery performance is assessed using 
the following three parameters:

•	 The size of the network in terms of total node count. This 
reflects the application’s complexity and the scalability of the 
exploited routing scheme. Knowing that larger node count in 
a data path raises the risk of node failure and, hence, dropped 
packets.

•	 Energy: Average energy consumption rate per data unit 
( )π ι´  as an indicator of the network power saving. This met-
ric is measured in kilojoule. This parameter is thus assumed 
to be always greater than zero in the following simulation 
results.

•	 PNF (%): It is the probability of a physical damage or a bat-
tery depletion for the deployed sensor node due to a disas-
ter harsh-operational conditions. This parameter is chosen to 
reflect the impact in case of disaster scenarios or fragmented 
networks in IoT.

•	 Cost (γi) to observe the influence of the charged price rate 
over the utilized data delivery approach. It is a pricing fac-
tor for each node in the IoT measured in dollar/byte. This 
is can be set as a flat rate per number of bytes transmitted, 
where setting it to a relatively high value would diminish the 
chances of ni to be selected for relaying the data packet Dk.
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6.5.2 � Experimental Setup

In order to limit our search space, we assume a virtual grid, where 
SNs are placed on the grid vertices. We assume up to 1500 total SNs 
communicate with one GCN via 36 RNs. We used NS3 as simulation 
tool for this purpose. The simulation is processed in three platforms, 
which are Windows, Linux, and OSX, for validation purposes. We 
executed our simulation 100 times for each experiment and plotted 
the average results. More details about our simulation are summa-
rized in Table 6.4.

6.5.3 � Simulation Results

In Figure 6.4, the experienced delay in delivering data packet is plotted 
against the size of the network for the different simulated algorithms. 

Table 6.4  Simulation Parameters and Values

PARAMETER VALUE

Targeted area 1000 m × 1000 m
Number of nodes SNs: 350, RNs: 36, GCN: 1
Communication Range SN: 142 m, RN: 300 m, GCN: 500 m
Initial Energy SN: 31104J, RN: 110160J, GCN: Unlimited
Energy Consumption SN and RN (Receiving): 31.2 uJ/bit

SN and RN (Transmitting): 53.8 uJ/bit
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Figure 6.4  Delay vs. the number of nodes in an IoT network.
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We observe that ReInForM has the highest delay, while CEEA has 
the lowest delay as the number of nodes increases. Therefore, we can 
say that CEEA is more delay-tolerant in comparison to all of the sam-
pled algorithms. We also observe that there is a monotonic increase 
in delay for ReInForM algorithm, while MAEB has a slightly higher 
delay than CEEA with a constant difference at every node. For 
CEEA and MAEB, we observe a steep increase between 100 and 200 
nodes while RelnForM has its steepest slop between 150 and 200. For 
LinGo and GEAR we observe a fairly continues increase in delay as 
the number of nodes increase since they are more dependent on the 
network nodes’ geolocations.

Figure 6.5 shows the experienced network throughput versus the 
number of nodes for the sampled algorithms. We can observe that 
there is a general increase in throughput of the sampled algorithms 
as the size of the network increases. MAEB, LinGo, and GEAR 
have the same throughput until the size of the network is about 150 
nodes, after which MAEB gives a higher throughput. Also, it’s worth 
remarking here that LinGO adds redundant packets in order to 
increase the packet delivery probability while experiencing link error 
periods. This leads to significant increment in the overall throughput 
in comparison to GEAR and ReInForM methods. From the graph, 
we can also observe that in all instances, CEEA has a higher through-
put than the others do, and ReInForM has the lowest throughput. 
And hence, we can conclude that CEEA has a better throughput as 
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the network size increases compared to the sampled algorithms. This 
can be returned to the efficient retransmission approach in CEEA 
algorithm in comparison to other approaches in the literature. This 
makes it also the most scalable approach for the next generation 
IoT networks where the connected network nodes are dramatically 
increasing a day after a day.

Plotted curves in Figure 6.6 show the average consumed energy 
against throughput for the different examined algorithms. We 
notice that there is almost a liner increase in energy consumption 
while applying the RelnForM approach as the network throughput 
increases, while CEEA, GEAR, LinGo, and MAEB forms a concave-
like curves. We also observe that for every amount of energy con-
sumed, RelnForM has the lowest throughput. On the other hand, 
CEEA has the highest throughput for the same amount of energy. 
For this reason, we can conclude that CEEA is the most efficient 
algorithm in terms of energy consumption compared to the sampled 
ones. Moreover, we notice that when the energy budget is greater than 
or equal to 60 kilojoules, the network throughput is saturated due to 
other design factors such as the network size and cost factor (γi).

Figure 6.7 shows the average charged cost (γi) per network node 
i against the experienced data delivery delay for all the simulated 
approaches. From this figure we can observe that with the increase 
in gamma, there is a general decrease in delay time for all the sam-
pled schemes. Which is an expected network behavior as the flat rate 
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charge increases per node. We also notice that all the schemes reach a 
certain threshold where the delay becomes constant at 2000 millisec-
onds. CEEA is the first to get to the threshold when γi equals to 40, 
while ReInForM is the last when γi equals to 60. GEAR and MAEB 
reaches the threshold at γi equals to 50. Consequently, we can say that 
CEEA is the most cost-effective scheme since it has the lowest delay 
time with the lowest γi.

In Figure 6.8, average idle time is compared under varying total 
count of network nodes. As the network size, or the number of 
SNs increases, there is a general increase in the average idle time. 
However, we observe that CEEA has the lowest idle time compared 
to other baselines. From Figure 6.8 we can also deduce that after a 
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network size of 150 nodes, the average idle time of CEEA remains 
constant, which means it is not affected by the number of nodes. 
MAEB has a slightly higher idle time than CEEA, whose difference 
to CEEA remains constant as the network increases in size. GEAR 
and ReInForM have an increasing idle time until 200 nodes, and then 
stay in a steady state. Therefore, we can conclude that CEEA is most 
efficient compared to the sampled baseline algorithms.

Figure 6.9 depicts the network size against the average price of all 
the schemes. From the figure, we can observe that ReInForM has the 
highest average price. On the other hand, the CEEA approach has 
the lowest average price under all varying node counts. When the 
number of nodes reaches 250, the ReInForM approach has a constant 
and fixed average price. On the contrary, after a network size of 250 
nodes, we observe a sharp and linear increase on GEAR and LinGo. 
Meanwhile, MAEB is the second-most scheme that has the lowest 
average price after the CEEA approach. The achieved price curve of 
MAEB closely follows that of the CEEA. However, it is still worse 
than the CEEA. Therefore, CEEA has the best performance in terms 
of average price as well under all experimented network sizes. The 
reason is that GEAR, LinGO, and MAEB approaches add redun-
dant packets in order to increase the packet delivery probability while 
experiencing link error periods. This leads to significant increment in 
the overall price.

In Figure 6.10, the y-axis represents energy levels of specified RNs 
and the x-axis represents the specified RNs and the algorithm types. 
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The reason why RN14, RN15, RN20, and RN21 are selected is because 
these RNs have bidirectional connections with the GCN. To transmit 
a packet to the GCN, one of these RNs must be used. We compare 
these RNs energy levels against the ReInForM, GEAR, LinGo, and 
MAEB algorithms, since they are the most energy-efficient ones. 
Obviously, GEAR has the worst performance in this figure due to 
a fairness problem in this algorithm while relaying towards the sink 
node. Although the energy level of RN14, RN15, RN20, and RN21 are 
better for LinGo and MAEB, these RNs’ energy levels are signifi-
cantly outperformed by the CEEA approach. Thus, CEEA increases 
the network lifetime and it is better for energy-saving. Furthermore, 
when we compare these algorithms in terms of the number of trans-
mission rounds, it can be clearly observed from the simulation results 
in Figure 6.11 that CEEA outperforms GEAR, LinGo, and MAEB. 
Notably, the more savings in terms of remaining energy shown in 
Figure 6.10 by applying the CEEA approach have led to prolonged 
network lifetime in Figure 6.11.

Moreover, we examined the four routing approaches; CEEA, 
LinGo, GEAR, and MAEB in terms of the average delay impacts 
(Figure 6.12) while considering disaster scenarios or fragmented net-
work, where failure of a critical node partitions the network into dis-
joint segments. Based on Figure 6.12, we notice a severe effect on the 
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average delay while the probability of node failure (PNF) is increasing. 
We notice that all approaches are experiencing an exponential 
increase in the experienced delay as the network becomes disconnected. 
However, using the proposed CEEA approach, the increment is going 
linear, which can be a very desirable feature in IoT while experiencing 
harsh operational conditions and severe mobility effects.

The good performance achieved by the CEEA approach in this 
chapter can be returned mainly to the utilized cognitive elements that 
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help a lot in disaster scenarios. In fact, the proposed CRNs make 
use of the received feedback about the utilized channel condition and 
modulation rate to determine the sleep time of each node. This con-
cept has been emphasized more in Figure 6.7 while assuming realistic 
channel conditions as summarized in Table 6.5 for energy consump-
tion of the relay node in four modes: Sleep mode, receive mode, active 
mode (ready to transmit but not transmitting), and transmission 
mode. Figure 6.13 displays the mean node lifetime in the network 
using adaptive modulation and adaptive sleep (AMS) versus adaptive 
modulation (AM) only. In case of AM, the modulation level (param-
eter M in M-QAM modulation) is chosen for each packet according 
to channel condition (i.e., SNR). This case assumes no cognition and 

Table 6.5  Node Parameters Used in Simulation Based on [29]

PARAMETER VALUE

Current consumption in sleep mode: Isleep 1 μA
Current consumption in receive mode: Irx 20 mA
Current consumption in active mode: Iac 100 mA
Current consumption while transmitting 120 mA
Traffic intensity 90 percent
Log–Normal Shadowing variance (σ) 0, 2 dB, 4 dB, or 6 dB
BER required (QoS) 10−4

RF Bandwidth used 200 kHz
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the sleep time is predetermined independently from the user requests 
or any changes to application requirements. Meanwhile, the same fig-
ure shows the average node life time using an adaptive modulation 
scheme combined with a scheduled sleep via the AMS mechanism 
that adapt based on the CRNs feedback. In other words, cognition 
here is employed at the MAC and PHY layers and sleep times are 
scheduled according to channel conditions and bit rates. In both cases 
high traffic patterns (mean packet arrival rate 90 percent) are assumed 
and simulated using Poisson distributions and log–normal shadow-
ing where shadowing variance takes values from 0 (no shadowing) to 
6 dB. The figure shows that the cognitive approach significantly out-
performs the noncognitive one in terms of the average node lifetime. 
This is because M-QAM modulation, when carefully chosen, will 
require less transmission time, and thus the cognitive system exploits 
this information to modify the sleep time accordingly. The improve-
ment made by the cognitive approach is higher for both high traffic 
intensity and severe channel conditions (i.e., low SNR and high shad-
owing variance).

Considering the fact that the proposed CEEA technique is being 
developed for the use in a dynamic IoT environment, it is desirable 
to continuously improve the success rate of the data delivery in order 
to improve the in-network user experience. Being surer of getting 
a response back from the network for each of the queries sent out 
can significantly improve the levels of the user’s satisfaction with the 
network. However, the aforementioned benchmarks were not able 
to efficiently learn and adapt to dynamic network changes such as 
node failures and remaining energy in the IoT paradigm when we 
compared to the proposed CEEA data delivery approach. Thus, more 
cognitive benchmarks, such as CNOR, RIDSN, and EARCN, have 
been further investigated in this study against the proposed CEEA 
approach.

Figures 6.14 and 6.15 compare the average, minimum, and maxi-
mum values of success rates and failure rates, respectively, for all of 
the four approaches. We can see that the CEEA approach has the 
highest average success rate of 88 percent, and its worst-case failure 
rate is only 3 percent more than CNOR. Since it is more desirable to 
have a higher success rate in smart IoT applications, we further com-
pare the performance of CEEA and CNOR techniques in terms of 



180 COGNITIVE SENSORS AND IoT

their effective-QoI (eQoI) as observed at the sink to identify the best 
approach of the two, where the eQoI is the heuristics estimate of the 
QoI associated with data delivered to the sink at the end of a success-
ful transmission round. In other words, it is an estimate for the value 
of QoI at the last hop that delivers directly to the sink.
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Figure 6.16 shows the result of the comparison of the eQoI values 
for CEEA and CNOR, with RIDSN, which doesn’t use any kind of 
learning at the CRNs. In general, we observe that using some form 
of learning at the CRNs improves the eQoI of the data delivered to 
the sink. Among the learning techniques, we observe that CEEA 
performs the best in terms of consistently delivering data with higher 
eQoI at the sink, even toward the end of the network’s lifetime. Now, 
this eQoI is the hop-by-hop value of QoI associated with the data 
delivered to the sink with respect to energy, reliability, and throughput. 
In addition, the cumulative delay in receiving a response from the 
network for an initiated request by the sink node is reflected by the 
number of hops taken along the path from the source to sink.

Consequently, we compare the hop count against the network life-
time for CEEA, CNOR, and RIDSN, and the results are as shown 
in Figure 6.17. The observation made from the compared techniques 
is the spike in hop count seen towards the end of the network’s lifetime. 
This is because more number of nodes are lost due to node deaths 
as the simulations progress, making it increasingly difficult for the 
remaining alive nodes to find paths to deliver data to the sink. This 
search for alternate paths leads to an increase in the hop count. 
However, one of the marked differences between CEEA and CNOR 
is that CNOR has a constant hop-count of two till about 300 trans-
mission rounds. This is because it starts out with exploiting its knowl-
edge of paths through RNs that are one-hop away from the sink. 
But CEEA starts with exploring paths and eventually learns the 
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network connections that helps to reduce the worst case hop-count 
towards the end of the network’s lifetime. This difference in strate-
gies accounts for the slightly lower network lifetime of CEEA when 
compared with CNOR, due to higher energy consumed in exploring 
the paths. However, when averaged over the entire network lifetime, 
CEEA is on average, two hops more expensive than CNOR, which 
rewards its higher average rate of successful data delivery and eQoI 
at the sink.

6.6 � Conclusion

In this chapter, we investigated routing techniques for the IoT paradigm 
in terms of energy consumption, cost, and delay, while experiencing 
harsh operational conditions and sever energy limitations. We proposed 
a novel approach for sensor networks in IoT, called CEEA. We found 
that CEEA can save a considerable amount of energy. Moreover, we 
showed how the data delivery price can be affected by the network size 
for varying energy-based routing approaches. Furthermore, the CEEA 
approach was compared to other cognitive routing approaches in ad hoc 
networks. It was able to provide a 40-percent improvement in average 
data delivery success rate when compared with the RIDSN. CNOR 
approach performed equally well in terms of the data delivery success 
rate, but performed slightly better than CEEA in terms of the energy 
consumed. On the other hand, the CEEA approach is a better choice 
when the application requires a higher eQoI at the sink, and higher 
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best-case success rate. Consequently, CEEA approach is recommended 
for disaster-inspired applications which could provide data for other 
approaches to identify disasters in real-time [41–44] and it outperforms 
key other baseline approaches in terms of transmission and energy 
consumption.
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7
Price-Based 

Data Delivery Framework 
for Dynamic 

and Pervasive IoT*

FA D I  A L -T U R J M A N

7.1 � Introduction

Internet of things (IoT) is a pervasive technology for applications 
ranging from smart grid to vehicular networking and smart homes 
to smart workplaces. IoT is growing as a framework to encompass all 
identifiable things in a dynamic and interacting network. The promise 
of clever approaches and dynamic systems that could benefit from the 
aggregation and analysis of information over the IoT infrastructure is 
quite pervasive. Scientists in networking, R&D divisions, and many 
businesses are in the race to develop an achievable and robust archi-
tecture to realize the IoT paradigm [1,2].

Yet, many hindrances render the IoT framework mostly a chal-
lenge. To date, much has been proposed on the promise and benefits 
of IoT, yet far less has covered the routing protocols to actually operate 
such a dynamic and large-scale paradigm [3,4]. The vision, however 
sparse, promises a robust and dynamic framework to integrate many 
enablers that are already outshined in research and development.

Obviously, wireless sensor networks (WSNs) are envisioned to 
play a dominant role in IoT frameworks. The resilience, autonomy, 
and energy-efficient traits of WSNs render them a vital candidate for 
dominating the information collection task of an IoT framework [5,6]. 

*	 This article was originally published in Pervasive and Mobile Computing. F. Al-Turjman, 
Price-based data delivery framework for dynamic and pervasive IoT, 2017. Reprinted 
with permission.
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Equally vital, the use of RFID technologies for non-LOS and seamless 
identification of objects is gaining much prominence as a key player in 
IoT frameworks [7]. The low cost associated with deploying RFID tags 
(passive or active) is an important motivation. In fact, some argue that 
RFIDs have been a main motivator for the IoT framework [7,8].

The integration of these enablers, along with Internet-based and 
context-aware services, facilitate a dynamic platform for the IoT. 
Nevertheless, much of current research has focused on developing 
these enablers in segregation and optimizing their performance under 
local constraints and objectives. One of the most important tasks to be 
carried out, in such a large scale and dynamic environment, is relay-
ing information from a source to a destination, given the new emerg-
ing characteristics in IoT. Typical routing approaches consider that all 
components belong to the same owner/provider, hence routing costs 
and link weights are directly proportional to their local provider char-
acteristics. Though, IoT routing becomes inherently complex by mul-
tiple factors. An intrinsic design factor in IoT is delay-tolerance [9].

In reality, an IoT node has only partial knowledge regarding the 
full path to the destinations assigned to the packets it delivers. Due 
to splitting, which is mainly caused by nodal mobility, connectivity 
may occur on an irregular basis. In such circumstances, nodes are 
required to store and carry data packets until an appropriate forward-
ing chance ascends in a store–carry–forward fashion [10]. Typical sen-
sor networks’ routing approaches are unfortunately mobility-intolerant 
since most of the WSN network architectures assume stationary sen-
sor nodes [11,12]. As stated earlier, we adopt an expanded notion of 
sensor networks that incorporates MANET nodes. An abundance 
of routing-layer protocols have been proposed to accommodate the 
dynamic topology in MANETs and WSNs [11,12].

Yet for all these protocols, it is implicitly assumed that the net-
work is connected and there is a contemporaneous end-to-end path 
between any source/destination pair. In other words, the topology 
in the standard dynamic routing problem is assumed to be always 
connected and the objective of the routing algorithm, hence, is con-
fined to finding the best currently available full path to move traffic 
from one end to the other. Unfortunately, none of these assumptions 
stand in a delay-tolerant setup. An IoT data delivery scheme must be 
delay-tolerant to cope with intermittent connectivity, in addition to 
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providing faster delivery alternatives for other delay-sensitive types of 
data that demand minimal delays.

Furthermore, most entities participating in sensing, identifying, 
and relaying in IoT belong to different networks with multiple own-
ers. It is not in the best interest of such networks to allow its resources 
to be utilized for relaying data across the network without compensa-
tion. For example, an intermediate relay node, belonging to a WSN 
for surveillance, would not freely take part in relaying information 
of nearby RFID readers or other WSNs. Thus, price and trading, in 
addition to all of the routing metrics that govern a mesh ad-hoc net-
work, need to be considered before a suitable routing protocols is pre-
sented to relay packets across an inherently diverse IoT.

To this end, we define an IoT setting by the following four main char-
acteristics: (1) Cost-effectiveness, (2) seamless integration, (3) reliabil-
ity and trust, and (4) delay-tolerance. Hence, we provide a framework, 
encompassing a cost-efficient IoT architecture, to address data delivery 
objectives according to the aforementioned characteristics of the IoT set-
ting. The design objectives are to be met with respect to metrics such as 
delay-tolerance, cost, and power-saving. Our proposed framework makes 
use of ubiquitous relays available in today’s topologies to enhance connec-
tivity and delivery rates between the components of the integrated topol-
ogy. Our framework will as well provide delivery guarantees with respect 
to delay and connectivity over end-to-end links. Such guarantees will be 
carried out by dedicated components of our integrated architecture, in 
addition to other components incorporated within the wider IoT vision.

Our impact in this work comes in twofold. First, presenting a rout-
ing approach customized for the heterogeneous IoT components. This is 
only possible with our second contribution, a pricing model which caters 
for the diverse requirements and conditions of nodes which are willing to 
relay IoT data packets without using the Internet backbone. The pricing 
model presented here joins measures of load balancing, delay, buffer space, 
and link maintenance. An outline of the targeted routing problem and the 
dynamic constituents of the envisioned IoT is depicted in Figure 7.1.

The rest of this chapter is organized as follows. Section 7.2 covers the 
background on IoT routing and its enabling technologies. Then a rigorous 
definition of our proposed network model, manifesting the interactions 
of components in the IoT, and their governing constraints is proposed in 
Section 7.3. Next, we formally present our adaptive routing protocol in 
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Section 7.4. Our proposed model is verified in Section 7.5 via use-cases 
and Markov-chain in Q-theory. Extensive results are performed and 
described in Section 7.6. Finally, our work is concluded in Section 7.7.

7.2 � Background

Nowadays, everywhere around us is surrounded with different types of 
networks. WiFi, LTE wireless communications, broadcasting, streaming, 
and so on are quite common widely spread technologies. However, they 
bring their own limitations. These limitations can be in the form of cost 
or technology. Most often, it is about the cost of maintaining and placing 
an efficient network that can integrate all for what we call the IoT. Several 
attempts have been made for improvements and performance gains in the 
enablers of the IoT (especially WSNs and RFIDs). To present a perspective 

Backhaul link Price Sufficient energy

�e cloud

Cellular net.

WSN

Figure 7.1  An outline of cross-network routing in the IoT and the pricing forced by the network 
heterogeneity.
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on these enablers, and the major domains of properties, Table 7.1 sum
marizes three main paradigms to the IoT. Accordingly, we  emphasize 
two major driving forces. First, the lack of a distinctive routing approach 
that caters for dynamic IoT. The second drive lies in the tradeoff costs of 
routing over multiple entities, belonging to different service providers.

A major misconception was imposed by an inherent property of the IoT; 
namely, being a descendent of the Internet. That is, as research on the IoT 
developed, it was expected that a significant pool of protocols previously 
developed for Internet services would migrate into the IoT. Nonetheless, 
as the IoT is set to encompass many stationary (static WSNs, RFID read-
ers, etc.) and dynamic (laptops, PDAs, cell phones, etc.) components, we 
are challenged with multiple issues [2,13]. Most importantly, assuming 
that all components will intercommunicate via the Internet is insufficient 
and often degrades the intended dynamic paradigm performance.

A major obstacle would stem from the mounting number of mes-
sages that overload a network already handling millions of hosts. This 
is a noteworthy problem as recent endeavors are targeting higher levels 
of dynamic interaction between the IoT and its users, as in the human–
computer interaction work presented by Kranz et al. in [14]. As such, if a 
WSN needs to identify an object, with the aid of an RFID reader, direct 
communication between a sensing node (SN) and the reader would influ-
ence bottlenecks of communication and swarming the backhaul over the 

Table 7.1  IoT Enablers and Their Properties

PROPERTY

WIRELESS NETWORKS

IoT MANETS WSNS RFIDS

Topology Dynamic Dynamicb Mostly static Application dependent
Buffer size Varies High Low None
Medium contention High High Medium Low with singulation
Mobility Frequent Variesb Limited Frequent
Communication range Varies High Medium 

(varies)
Reader dependent

Typical density Very high Small to 
medium

Medium to 
high

Medium to high

Computational power 
per node

Varies High Low Low to nonea

Internode 
communication

Heterogeneous Homogeneous

a	 Disregarding active-tags, as they equate many features of sensing nodes.
b	 Since Manets encompass VANets as well.
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Internet with numerous packets. This is a prominent architecture, one 
that is strongly pushed for as a truly integrating IoT [15]. There is a need 
for establishing a cooperative scheme for routing in the IoT; one which 
includes all nodes with capabilities of relaying data. This includes those 
with only one access medium (e.g., WiFi routers) and others with mul-
tiple mediums (e.g., cell phones). Yet, due to obvious reasons of resource 
conservation, such entities would not participate in relaying data packets 
unless there is an incentive [16]. It is vital to note that some components 
only generate data (e.g., IDs), such as RFID tags.

Different incentives take part in the pricing model that dictates the 
choice of a group of candidates for relaying. Recent results in incentive 
based routing have been well studied. Zhong et al. present an elaborate 
study on routing and forwarding in MANets by emphasizing a scheme 
that ensures optimal gain for the individual nodes [17]. Auction pricing 
patterns [18] allocate resources to users through a bidding process con-
ducted by the users. Auction pricing can accomplish equally resource 
allocation and service attributes. The scheme is based on profile bids 
where the seller computes an allocation to be given to the buyer. This 
sequence is repeated until all parts agree. We note that the lengthy 
negotiation process is ineffective particularly for mobile users while in 
high speed transit.

Dynamic priority pricing schemes [19], on the other hand, are applied 
on a wireless link shared by the subscribers, divided into different priority 
classes by the service provider. The mobile subscriber is allowed to select 
the preferable transmission rate, and its traffic allocation. In addition, 
the subscribers can split their traffic among several priority classes, and 
be charged accordingly. The efficiency of this scheme is in its simplicity 
and its scalability. The provider’s profit increases according to the user’s 
satisfaction by the service. Priority schemes assume, however, that the 
network’s capacity buffer is not exceeded and priority thresholds are kept 
under a maximum level. Other schemes have been presented to incor-
porate dynamic game theory models, for noncooperative scenarios where 
local utility functions dictate the participation of nodes in relaying [20,21]. 
It is important to note as well that many of such factors are nontrivial to 
compute, and many nodes in the IoT would not possess the computational 
capacity to compute and execute local utility functions. Thus, it is intuitive 
to pursue a game theoretic approach for the IoT only if it caters for offload-
ing the task of computing local utility functions to nearby high-end nodes. 
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Other problems stem from scalability issues in IoT, being an architecture 
that is envisioned to span continents and the globe [22]. The major issue 
is being able to maintain end-to-end links, and keeping track of nodes 
that are dynamically entering and exiting from the network. Remedies 
have been proposed by increasing the density of backhaul connections 
and multiple readers to enhance connectivity and capacity, respectively. 
However, recent studies highlighted the degrading effect of interreader 
and relay collisions. Ali et al. introduced a redundant reader elimination 
scheme to optimize tag coverage yet limit reader-to-reader contention; in 
addition to reducing the costs of deployment [23].

7.3 � IoT System Model

Many factors are intrinsically dominant in the operation of a routing pro-
tocol. More factors are further augmented as we devise a routing protocol 
for the IoT paradigm with dynamic topologies and heterogeneous data 
generating/sharing systems in place. In such a comprehensive paradigm, 
an incentive data-sharing policy is required to motivate sensor owners to 
participate in the sensing process and to ensure that the provided data is 
fairly priced. And this in turn necessitates addressing IoT-specific chal-
lenges, such as system’s limitations in terms of lifetime, available capacity, 
reachability, and delay. In addition, a careful focus on quality manage-
ment and assurance constraints is to be considered, as well.

Thus, it is the scope of this section to detail and elaborate upon the 
factors that are considered in IoT-specific routing protocols that tackles 
all the above mentioned concerns. No single protocol would achieve all 
objectives, as many objectives are inherently contradictory, thus rout-
ing belongs to the notorious NFL (no free lunch) class of algorithms.

Our system is presented in the remainder of this section and elabo-
rated upon in four components. First we present the IoT network as a 
whole, elaborating on the description of heterogeneous nodes in this 
model. Each of the resources pertaining to these nodes, and affecting 
the relaying scheme, are discussed in the following subsection. The 
discussion is completed with a derivation for the utility functions that 
would govern the choice of nodes, and finally the types of messages 
exchanged in the routing scheme to optimize upon the resources and 
residual energy in these nodes. In Table 7.2, a summary of the used 
notations is presented.
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Table 7.2  Summary of Notations

NOTATION DESCRIPTION

N Number of in-network devices.

ni A node/device i ∈ N.

δ A threshold on number of hops per routed packet.

Ψi
A quintuple computed for each ni ∈ N based on residual energy, delay, trust, and 

capacity per buffer.

ui Available storage capacity to compute and relay a message at ni.

′ui Normalized buffer capacity per ni.

𝛑i Power consumption per ni.

πi
′ Normalized power consumption per ni.

Ei
The maximum energy budget per node ni. It varies from one node to another in 

heterogeneous IoT network.

Dk Kth data packet size in the queue.

Eij Euclidian distance between a source node i and a destination j.

ω A delay step; which is the distance a wireless signal would travel in one-time unit.

Dsingle A single hop delay a packet will experience.

Dtotal The total end-to-end delay a packet will experience.

TDj
A normalized value representing trust level of the exchanged packets between a 

node j and the destination D.

Pr The probability to be connected within r communication range.

γ Path loss exponent in a specific environment.

µ A normally distributed random variable with zero mean and variance σ2.

K0
A constant value calculated based on the mean heights of the transmitter and 

receiver.

λd, λt The arrival rates for data and trusted packets, respectively. 

µd, µt The departure rates for data and trusted packets, respectively.

µcd The rate of departures caused by finding better price in the system.

MQL Mean queue length in the system.

RT Response time in of the system.

Pij The probability of being in an ij state shown in Figure 7.3b.

γ The average percentage of transmitted packets that succeed in reaching the 
destination.

β The inflection point of the randomly generated packets sequences.


Represents the tolerance to variation in data quality expressed in a Sigmoid 

function according to Equation 7.5.

α A constant that determines the rate of decrease of the utility function in 
Equation 7.5.
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7.3.1 � IoT Model

We assume a network of heterogeneous devices, those belonging 
to WSNs, MANets, RFIDs, and stationary/mobile devices. Each 
communicating entity of these devices (i.e., wired/wirelessly enabled 
device) is considered as an active node in this design; hereon referred 
to as a node. Thus, given a set N covering all these devices, we rep-
resent each node as ni ∈ N where i = {1, 2, ⋯,|N|}. Thus the set N 
includes both nodes that are sole relays (access points, routers, WSN 
sinks, etc.) and other devices with relaying capabilities (communica-
tion and processing). We assume each ni is connected to the network, 
as disconnected nodes would not take part in this scheme. That is, 
if there’s no link from a node nj to some other node ni ∈ N then 
nj ∉ N. It is important to note that the size of N varies over time as 
nodes enter, leave, and run out of energy.

Connectivity between nodes is assumed to take one of two 
modes. If nodes are in close proximity, then we advocate for direct 
communication between the nodes without rerouting through the 
Internet (via a backhaul). However, to sustain the important large 
scale aspect of the envisioned IoT, we dictate that packets traveling 
over a threshold of hops δ would be routed through a backhaul as 
an intermediate stage, and then rerouted to the final destination 
from the closest backhaul to that destination. It is thus an impor-
tant factor to cater for both short and long range communication 
between nodes, both directly or via the Internet backbone. We 
remark again the importance of obeying to approaches that utilize 
the Internet backbone only when necessary, and reroute spatially 
correlated data packets between neighboring nodes without load-
ing the backbone.

7.3.2 � IoT Node

Each node ni ∈ N takes part in relaying, as well as other tasks. 
Accordingly, each ni encompasses a group of resources, with a mini-
mum of communication and processing units. Moreover, in the case 
of cell phones, PDAs, WSN sinks, and RFID readers, they would 
all  encompass a larger pool of resources, not necessarily geared 
toward the routing task. Thus it is important to consider how the 
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load of performing these tasks could affect/hinder the relaying capa-
bilities of such nodes. We note their existence but in this scope we 
account for their effect on residual energy and buffer capacity. And 
thus, main design aspects considered in the utility function of an 
IoT-specific node is depicted in Figure 7.2(a). A quintuple Ψi is com-
puted for each ni ∈ N aggregating the following parameters, for both 
their direct and implied effect on the routing scheme:

7.3.2.1  Residual Energy and Power Model  Each node operating on 
battery power would possess an energy reservoir, denoted by ei where 
0 ≤ ei ≤ Ei. Here we denote Ei as the maximum charge for ni, since this 
varies across the different types of nodes.

To normalize this representation across the heterogeneous nodes in 
this protocol, we define

	
é e

Ei
i

i
= 	 (7.1)

Knowing the size of data packet Dk to be forwarded, its distance 
to its next hop and the current load (ui), each node would compute a 
value for the power consumption to be incurred by processing a given 
packet. The power consumption would be represented as πi. However, 
since this is a crude number dependent on the available resources at 
node ni and their strength (of transceiver), this value is normalized 
by dividing by its maximal attainable load and transmission distance. 
This would favor high end nodes with longer transmission capabilities 
and more buffers. The normalized value is represented as π́i.

7.3.2.2  Load and Buffer Space  Since an intermediate node might be 
taking part in multiple tasks, each node will represent its available 
capacity to compute and relay a message as a utilization factor ui, 
which will be normalized by opposing it to its maximal capacity, thus 
yielding a normalized úi. This is directly derived from memory and 
processing operations, and the yield of the node’s MCU in handling 
different paths. Our delivery approach adopts a data delivery approach 
where a network intermediate node i has a limited capacity for the 
maximum amount of data that can be relayed over a specific time 
period. We define a normalized relaying capacity for the set of i ’s as
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Figure 7.2  (a) The IoT-specific aspects incorporated in the pricing model for computing a 
utility function. (b) Use case demonstrating the routs taken by INs from the source to a destina-
tion (e.g., remote laptop).
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where max_ui is the maximum expected capacity.

7.3.2.3  Delay  We define a delay step ω which is the distance a wire-
less signal would travel in one-time unit. Let Eij be the Euclidian 
distance between a source node i and a destination node j, then the 
discrete propagation delay over a single-hop link (i, j) would be Eij

ω
. 

Hence, the discrete delay over a multi-hop path is the sum of the dis-
crete delays of single-hop links that constitute that path. For the sake 
of generality, single-hop-delay (Dsingle) and total-delay (Dtotal), can be 
defined in Equation 7.3 and Equation 7.4, as follows:

	
D

E
single

ij= +
ω

ψ 	 (7.3)

and

	
D Dtotal single

total hops

= ∑ 	 (7.4)

7.3.2.4  Trust  Trust parameter is a history-based function that is cal-
culated at the network intermediate node per destination to represent 
a Dj fulfillment measure. A higher TD j

 indicates that previous data 
exchanges between nodei and Dj have been fulfilled according to the 
predefined IoT characteristics (e.g., capacity, delay, trust) promised by 
Dj. We remark also that this delay parameter can be defined alterna-
tively according to the applied IoT application with varying weighting 
factors. For example, delay is a key parameter in risk management IoT 
applications. However, it can be more relaxed in other kind of enter-
tainment applications.

7.3.3 � Pricing Model

All the previous factors are pertaining to nodal resources and their 
operation levels, in contrast to the remaining energy each node could 
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support. However, an important aspect to cater for, and possibly arbi-
trate upon, is the price the nodes are going to charge for relaying a 
given data packet. That is, since the heterogeneous nodes in the IoT 
system do not belong to the same network nor the same owner, it is 
imperative that a monetary cost would be associated with the for-
warding action [24,25].

This is an important aspect for integrating multiple heterogeneous 
nodes in the architecture and enhancing global scalability. The argu-
ment for utilizing current resources with a given cost/price is more 
dominant than claims of deploying enough resources to cater for all 
connectivity and coverage tasks of the envisioned IoT. We hereby 
adopt and build upon the former argument an IoT-specific pricing 
model.

Pricing schemes in heterogeneous networks such as the ones in IoT 
paradigm usually cover a wide range of factors to determine the value 
of a resource in usage. However, the most efficient schemes capitalize 
on the differential values of each of the heterogeneous components. 
We built our pricing strategy based on the original laws of supply and 
demand, the abundance of resources and their homogeneity decrease 
their value. And higher prices are usually assigned to nodes with 
rare services [26,27]. Moreover, an IoT-driven pricing model has to 
realize a level of service that aggregates data from several sources, 
including the network-context (e.g., 4G, WiFi, WiMax), the mobile 
apps’ pool, and other sources, to produce better reliable readings. 
We remark also that an IoT-specific pricing model shall not assume 
a direct provider–client relation in determining their price mecha-
nisms. In contrast, in large economic systems such as the one we are 
targeting in this research, entities known as intermediate nodes (INs) 
are required for coordinating network management tasks. These INs 
take care of the necessary authentication, billing, and interfacing 
tasks to find the appropriate service provider within the heteroge-
neous crowd of resources in the IoT market. To this end, we define 
an IoT-specific setting by the following four main characteristics: 
(1) Node residual energy, (2) load and buffer space, (3) trust-level, 
and (4) delay-tolerance. Those characteristics have been adopted into 
two different simulation environments; MATLAB® and Simulink® 
in order to validate our price-based results. Simulink®, a framework 
built on MATLAB®, is used for validation purposes in order to 
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obtain more realistic results by imitating the real multilayered net-
working process.

Hence, we provide a pricing framework for each node, encompass-
ing a cost-efficient IoT architecture, to address data delivery and rout-
ing objectives according to the aforementioned characteristics of the 
IoT setting. We introduce γi, which is a pricing factor for each node 
in the IoT. This is a factor that could be set as a flat rate per number 
of bytes transmitted or computed based on the state of the current 
resources at node ni represented by Ψi. In this work we adopt the lat-
ter, as a proof of concept to the monetary exchange for forwarding in 
the IoT under varying conditions. Thus, we denote the price charged 
by each node ni as pi:
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It is intuitive to note that owners of nodes in the vicinity of such a 
network, may choose to adaptively contribute or withdraw from the 
topology by varying the value assigned to γi. That is, setting it to a 
relatively high value would diminish the chances of it being selected 
for relaying.

7.3.4 � Communication Model

In practice, the signal level at distance d from a transmitter varies 
depending on the surrounding environment. These variations are cap-
tured through the so called log–normal shadowing model. According 
to this model, the signal level at distance d from a transmitter follows 
a log–normal distribution centered on the average power value at that 
point [28]. Mathematically, this can be written as

	 P K d dr = − −0 10γ µlog( ) 	 (7.6)

where d is the Euclidian distance between the transmitter and receiver, 
γ is the path loss exponent calculated based on experimental data, μ is 
a normally distributed random variable with zero mean and variance 
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σ2, that is, µ σ∼  ( , ),0 2  and K0 is a constant calculated based on the 
mean heights of the transmitter and receiver.

7.4 � ARA Routing Approach

The integrated architecture imposed by the heterogeneity of the IoT 
demands a scalable and inclusive routing protocol. The latter property 
refers to the exploitation of different relaying resources that are able 
to carry forward a data packet towards the destination. This section 
presents ARA protocol.

ARA is divided into two stages: Forward and backward. The for-
ward stage starts at the source node by broadcasting setup messages 
to its neighbors. A setup message includes the cost seen from the 
source to the current (intermediate/destination) node. A node that 
receives a setup message will forward it in the same manner to its 
neighbors after updating the cost based on the values computed in 
Ψi. All setup messages are assumed to contain a route record that 
includes all nodes’ IDs used in establishing the path fragment from 
the source node to the current intermediate node. The destination 
collects arriving setup messages within a route-select (RS) period, 
which is a predefined user parameter.

The backward stage starts when an acknowledgment (Ack) mes-
sage is sent backward to the source along the best selected path (called 
active path) in terms of the parameters passed in Ψi. If a link on the 
selected path breaks (due to node movement or bad channel qual-
ity), the Ack at an intermediate node i is changed to setup message 
(called i_setup) and forwarded to neighbors of i which has discovered 
the error.

Once the source receives the i_setup, the active path between S 
and D is   established. When no breaks are discovered, the source 
receives an Ack and knows that the path has been established, and it 
starts transmission. If during the communication session (i.e., after 
selecting the active path) a break is detected, the intermediate node 
detecting the break will send data on an alternative route (if any) or it 
will buffer data and send an i_setup message to the destination to look 
for an alternative path.
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In general, nodes can learn about their neighbors and update the 
routing table (RT) either by receiving a broadcasted setup message 
and accordingly updating its neighborhood table, or by broadcasting a 
“hello” message periodically, if no messages have been exchanged. This 
“hello” message is sent only to the neighborhood of the node. A new 
neighbor, or failing to receive from a node for two consecutive “hello” 
periods, is an indication that the local connectivity has changed.

A pseudocode description of the source node algorithm is shown 
below. Lines 1–2 represent the beginning of the forward stage, 
where a request to establish an active path is initiated. Such that, if S 
has new packets to send and no route is known to targeted destina-
tion D, then a setup message is forwarded to all available neighbors 
of S. To do so, all INs node broadcast their identity at the deploy-
ment stage and each S node keeps a record of the next hop towards 
some IN. Each source node ni has a next node record that has the 
following: ID field to recognize the next relaying intermediate node 
ID; Geo_Loc field to determine node geographical coordinates; and 
Number_of_hops field, which has the number of hops towards the 
destination D. Note that this process will construct a price-based 
tree for each S node, such that the tree of INs that is rooted at S 
and involves all price-efficient INs toward the destination D will 
be identified at the initialization of the network. Lines 3–4 indicate 
that the path has been found.

Algorithm 7.1  for Source Node S

	 1.	If S has a new data msg & no route to D
	 2.	Then forward a setup msg.
	 3.	If S receives D_Ack or i_setup msg,
	 4.	Then check local pi and send the new data msg’s if satisfied.
	 5.	If S doesn’t receive a response for a RD period,
	 6.	Then go to line 2.
	 7.	If no pkts are exchanged for hello_interval time units,
	 8.	Then send a hello msg and update RT and pi.

Hence, active path between S and D is updated and source begins 
transmitting the new data packets. Lines 5–6 describe the case where 
a route discovery (RD) period has expired. Therefore, the source 



203Price-Based Data Delivery Framework

restarts the route discovery process by sending a new setup message. 
Finally, lines 7–8 indicate that S has not exchanged messages with 
neighbors for more than hello_interval time units. Thus a “hello” mes-
sage is sent and RT is updated accordingly.

A pseudocode description of the intermediate node algorithm is 
shown below. Lines 1–2 handle the forward stage, such that if an 
intermediate node i receives a setup message, it forwards this mes-
sage to all its unvisited neighbors and records every visited node to 
establish a backward path. Contrarily, lines 3–7 handle the back-
ward stage of the algorithm. If node i receives Ack from destination 
(called D_Ack), then it checks whether the neighbor toward S on the 
backward path is reachable or not (i.e., has a broken link). If reach-
able, it passes the D_Ack to this neighbor and records the necessary 
information to establish the active path. Otherwise, it initiates a new 
setup process between i and S, by sending i_setup message to i ’s 
neighbors. Lines 8–9 keep forwarding this i_setup message until it 
reaches S to establish an active path between i and S instead of the 
broken one.

Similarly, lines 10–12 check for the availability of the next hop on 
the active path while data packets are transmitted through i toward 
the destination D. If next hop is not available, the intermediate node i 
checks for an alternative path. If a new path has been established, lines 
13–14 detour the data packets between S and D along this new par-
tial route and update the active path. If no alternative path is found, 
line 15 buffers the data packets and initiate a new setup process. We 
remark that lines 2 and 9 will kill any setup message, if i is not willing 
to participate in routing.

Algorithm 7.2  for Intermediate Node i

	 1.	If i receives setup msg,
	 2.	Then check thresholds and update/forward setup msg if sat-

isfied. Also, the forwarded setup msg records visited nodes 
while traveling to D.

	 3.	If i receives D_ Ack
	 4.	Then, If a backward_neighbor is reachable,
	 5.	Then forward the D_Ack
	 6.	If backward_neighbor is not reachable,
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	 7.	Then send an i_setup msg and update RT and local pi.
	 8.	If i receives i_setup msg
	 9.	Then check thresholds and forward i_setup msg if satisfied. 

Also, the forwarded i_setup msg records visited nodes while 
traveling to destination.

	 10.	If i receives data msg
	 11.	If next hop is still reachable
	 12.	Then send data
	 13.	If a new active path was established
	 14.	Then check the price, update RT and send data if satisfied.
	 15.	Else buffer data and send i_setup

Finally, a pseudocode describing the algorithm at the destination 
node D is shown below. Lines 1–10 handle the case when a setup pro-
cess has been initiated by an intermediate node i. This also indicates link 
breakage at node i in active path between S and D. If there exists alter-
native path(s) passing through the node detecting link breakage (i.e., 
node i) or passing through the source S, lines 3–4 select the best-cost 
path and notify i. Otherwise, lines 5–10 initiate a new setup process and 
act as a source node in looking for a new path to S. Therefore, it sends to 
all D’s neighbors and waits for an Ack from the source S (called S_Ack). 
Meanwhile, lines 11–14 represent the backward stage in response to 
the forward stage that has been initiated at S. The destination D keeps 
receiving setup messages with the corresponding found paths between S 
and D for a route select (RS) interval. After RS time units, D acknowl-
edges the source S that the active path has been established by sending 
a D_Ack message to it through the best-cost selected path.

Algorithm 7.3  for Destination Node D

	 1.	If D receives i_setup
	 2.	Then remove paths containing broken links.
	 3.	If there exist path(s) passing through i or S
	 4.	Then select best-cost path and notify i.
	 5.	If no paths found
	 6.	Then send a setup msg
	 7.	If D receives S_Ack or i_setup
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	 8.	Then select path indicated by received msg.
	 9.	If D doesn’t receive a response for a RD period,
	 10.	Then go to line 5.
	 11.	If D receives setup msg RS not expired
	 12.	Then store the candidate path and cost.
	 13.	If RS expired
	 14.	Then select best-cost path and send D_Ack on it.

7.5 � Use Case and Theoretical Analysis

To demonstrate the utility of the ARA protocol, we hereby adopt 
a use case that utilizes heterogeneous nodes in a sample IoT envi-
ronment. The remainder of this use case will refer to Figure 7.2. A 
sensing node (the source) has obtained information to be sent to a 
destination computer. However, no direct link connects both devices, 
and intermediate devices belong to different networks.

We assume that nodes a, b, c, d, e, and f are all willing to relay, yet 
a and c are already depleted in energy. The sink, node d, is powered by 
electricity and acts as an intermediate node between the resourceful 
cell phone b and the router e.

ARA will initiate a setup message sent to a, b, c, and its current 
neighbors. Since a and c have depleted batteries, they will terminate 
the flow of the setup request toward the destination. Since the cell 
phone b is in range of communication to the source, it will forward the 
message to its neighbors (not highlighted here as the pattern is clear).

Eventually the shortest path to the destination is established. The 
destination will receive two streams {S → b → d → e → D} and {S → 
b → d → f → e → D}. Since both f and e are resourceful entities, the 
arbitration of number of hops would manifest a preference for the for-
mer route, which will carry an Ack message back to the source node.

It is important to note that an Internet link (both forward and back-
ward), which would also incur a cost, takes part in the route options, 
as the setup message would also parse through it when it is beyond 
the preset threshold of hops dictated by the application and source 
request. Furthermore, the IoT network under study can be modeled 
using queueing theory for steady state evaluation with an abstraction 
as illustrated in Figure 7.3(a).
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The resulting continuous time Markov chain would be a multi-
dimensional one for multiple types of traffic similar to the one pre-
sented in Figure 7.3(b). Where λd, λt are the arrival rates and μd, 
μt are departure rates due to service completion for data and traffic 
packets, respectively. μcd is the rate for departures caused by finding 
better price instead of service completion in the system. Various solu-
tion methods can be employed to solve such a system for steady state 
probabilities. Once the steady state probabilities are obtained, they 
can be employed for computation of QoS measures such as, mean 
queue length (MQL), throughput (ɣ), and response time (RT) as 
follows:
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Please note that it is also possible to employ similarly the steady 
state probabilities for computation of expected value for energy con-
sumption of the system considered.

7.6 � Performance Evaluation

In this section, the effectiveness of ARA is validated while assum-
ing a set of in-network heterogeneous nodes. Simulation results 
show the performance efficiency in terms of average delay, price, 
idle time, and throughput in comparison to key approaches in the 
literature. In addition, the quality of the data delivery approach 
is assessed under varying rates per number of bytes transmitted, 
average energy consumption, and several counts of the network 
nodes.

7.6.1 � Simulation Setup and Baseline Approaches

Using MATLAB® R2016a and Simulink® 8.7, we simulate ran-
domly generated heterogeneous networks. The generated net-
works are random in terms of their nodes’ positions and densities. 
In order to route data in these randomly generated networks, we 
apply our ARA scheme. The output of the ARA scheme is com-
pared to output of another four baseline approaches in the litera-
ture. These baseline approaches address the same problem tackled 
in this research; however, they use different routing strategies. 
The first approach forms a minimum spanning tree (MST) to 
find the most reliable route in a heterogeneous sensor network 
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[29], and we call it the MST approach; the second is for solving 
a Steiner tree problem with minimum number of Steiner points 
[30], and we call it Steiner tree (ST); the third is for adaptive data 
delivery, which we call the dynamic routing approach (DRA) [31], 
and fourth one is called LinGO [28]. In all these baselines we 
assume a packet size is equal to 512 bits, which is a typical size 
for the IoT communication protocols. Every S node has an initial 
energy of 50 joules and generates 150 packets/round. A round is 
defined as the time span per which all S nodes have reported/
requested a piece of data.

The MST opts to establish an MST through selected multi-hop 
paths. It first computes an MST for the given source and destina-
tion nodes and then forwards messages over the minimum tree 
model in which it finds the least count of hops to maintain the 
best path cost. ST first combines nodes that can directly reach 
each other into one connected graph. The algorithm then iden-
tifies for every three connected graphs a node x that is at most 
r (m) away. Then these three connected graphs are merged into 
one. These steps are repeated until no such x could be identi-
fied (i.e., no isolated nodes). DRA takes into consideration the 
nodes’ coordinates in order to limit the updates sent out by the 
any moving node to a local area. LinGO, which is a Link quality 
and Geographical beaconless OR protocol, introduces a different 
progress calculation approach compared to the aforementioned 
ones. It takes into account both the progress of a given forward-
ing node towards the destination with respect to the last-hop, as 
well as the radio range. In this way, LinGO reduces the number 
of required hops. Both MST and ST routing strategies are used 
as a benchmark in this research due to their efficiency in finding 
the nearest next hop towards the destination while maintaining 
the minimum number of required nodes in the source–destination 
path. On the other hand, DRA is chosen due to its efficiency in 
adapting to any newly generated topology due to node mobility/
heterogeneity. We remark that the original MST, ST, and DRA 
approaches are not hierarchical. Thus, we employed the modified 
versions of them to make them suitable for our proposed hierar-
chical framework, where the modified versions take into consid-
eration the in-network nodes’ heterogeneity and choose the next 
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hop based on types of the surrounding node types. For example, 
a Zigbee-based IoT node will scan for another Zigbee-based 
node to be considered a candidate neighboring node for packet 
relaying/​forwarding,  since a larger network size implies longer 
paths, and thus, higher probabilities for heterogeneity. We exam-
ined the four data delivery schemes while the size of the network 
increases in terms of the IoT-nodes’ count. Knowing that larger 
node count in a data path raises the risk of node failure and hence, 
dropped packets. Thus, choosing shorter peripheral paths is better 
for the overall quality/price gain.

The routing schemes DRA, MST, ST, and ARA are executed on 
600 randomly generated wireless heterogeneous network topologies 
in order to get statistically stable results. The average results hold 
confidence intervals of no more than 2 percent of the average values 
at a 95-percent confidence level. We assume a predefined fixed time 
schedule for traffic generation at these networks. Data packets are 
delivered by applying these three approaches.

Based on experimental measurements taken in a site of dense het-
erogeneous nodes [18], we set the communication model variables 
and other simulation parameters as shown in Table 7.3. We adopt the 
described signal propagation model in Section 7.3 where the utilized 
variables/parameters values, shown in Table 7.3, are set to be as fol-
lows: γ = 4.8, δ = 10, Pr = –104 (dB), and μ to be a random variable 
that follows a log–normal distribution function with mean 0 and vari-
ance of δ2.

Table 7.3  Parameters of the Simulated Networks

PARAMETER VALUE

τ 70 percent
nc 110
ψ 0.001 (msec)
Dmax 500 (msec)
ω 200,000 (km/s)
γ 4.8
δ2 10
Pr –104(dB)
K0 42.152
r 100 (m)
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Moreover, we assume heterogeneous transceivers communication 
ranges to validate our results in a typical IoT setups. For validation 
and verification purposes, we also used MATLAB® with Simulink® 
Framework [32]. Simulink can support wireless channel temporal 
variations, node mobility, and node failures. The simulations last for 
two hours and run with the log–normal shadowing path loss model. 
In Simulink, we adopted also the same path loss and physical layer 
parameters shown in Table 7.3.

7.6.2 � Performance Parameters and Metrics

To compare the performance of these three schemes, the following 
four performance metrics are used.

•	 Average delay: Is measured in milliseconds and is defined as 
the average amount of time required to deliver a data unit to 
the destination.

•	 Idle time: This metric reflects the ratio of idle time every node 
spend while just waiting to forward a message. It is measured 
in μsec.

•	 Throughput: Is set here as a quality measure. It is the aver-
age percentage of transmitted data packets that succeed in 
reaching the destination reflecting the effect of node hetero-
geneity and delay in IoT setups over the utilized data delivery 
approach.

•	 Average price: This metric is used to observe the influence 
of the utilized data delivery approach on the overall price to 
deliver a data unit from source to destination on average.

Meanwhile, the three data delivery performance is assessed using 
the following three parameters:

•	 The size of the network in terms of total node count. This 
reflects the application’s complexity and the scalability of the 
exploited routing scheme.

•	 Average energy consumption rate per data unit ( )π́i  as an 
indicator of the network power saving.

•	 Cost (γi) to observe the influence of the charged price rate 
over the utilized data delivery approach.
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7.6.3 � Simulation Results

For a varying number of heterogeneous nodes (between 50 and 350) 
and deployment space (= 1200 Km2), Figure 7.4 compares ARA 
approach with DRA, MST, and ST in terms of data delivery latency. 
It shows how ARA outperforms the other approaches under vary-
ing network size. Unlike the other approaches, exchanged messages 
using the ARA do not show a rapid increment in the end-to-end 
delay while the network size is growing. This is because of the utilized 
utility function in Equation 7.5 that has been considered by ARA 
approach. Although DRA is the most adaptive approach, its delay 
is increasing rapidly while the network size is increasing. However, 
delay is slower in the monotonically increase while applying MST and 
ST approaches. It’s worth mentioning also that when the network size 
is greater than or equal to 300, the ARA cannot improve any more 
in terms of delay. However, it’s obvious that the ARA approach is 
achieving the lowest delay with respect to the varying network size.

Meanwhile, the overall network throughput levels achieved by the 
ARA outperform the levels achieved by other approaches due to con-
sidering the next hop status before forwarding the message to it, as 
depicted in Figure 7.5. In general, network throughput is increasing 
monotonically for all approaches while the network size is increasing. 
However, ST is the worst due to ignoring the current status of the 
node before message forwarding.
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Furthermore, Figure 7.6 depicts the effects of the allowed aver-
age energy consumption level per node on the network throughput. It 
shows a monotonically increase in throughput for all approaches while 
varying the available energy budget. This comparison is performed 
while considering a fixed network size equal to 150 nodes, and aver-
age γi rate equal to 0.002 dollar/byte. Notably, more saving in terms 
of energy is achieved by applying the ARA and LinGO approaches. 
However, the ARA approach achieves the highest throughput with 
respect to energy. When the energy budget is greater than or equal 
to 60 (kilojoule), the network throughput is saturated due to other 
design factors such as γi and network size and capacity. Also, it worth 
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remarking here that LinGO adds redundant packets in order to 
increase the packet delivery probability while experiencing link error 
periods. This leads to significant increments in the overall throughput.

In Figure 7.7, the network end-to-end delay is decreasing linearly 
for all methods while γi is less than or equal to 50 percent of the 
initial rate. This can be returned to the main objective of all these 
methods in providing the best QoS while considering the cost factor. 
However, ARA again has the best delay performance with respect to 
all other approaches due to direct influence of the utility function in 
Equation 7.5 in choosing the next hop toward destination. Also, it is 
worth noting that when the γi is greater than or equal to 50 percent, 
all approaches cannot improve any more in terms of the end-to-end 
delay. This has a great impact on the network QoS.

In Figure 7.8, average idle time is compared under varying total 
count of network nodes. All approaches are experiencing a monotoni-
cally increase in the average idle time while increasing the network 
size. This is expected due to the availability of several routing options/
resources. In addition, we return the increase of idle time when net-
work size is increased, to the dense distribution of network nodes 
within a fixed deployment space (= 1200 km2). Such a dense distri-
bution provides idle resources as well. Nevertheless, ARA has the 
lowest average idle time in this comparison again due to the ability of 
the proposed utility function in Equation 7.5, where better resource 
management and utilization is guaranteed.
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In Figure 7.9, ARA consistently outperforms the MST, ST, LinGO, 
and DRA while increasing the nodes’ counts. ST and DRA are the 
worst in terms of average price and that can be returned to their com-
plexity in locating the next hop. Unlike ST and DRA, MST and LinGO 
approaches are very close to ARA. However, ARA still outperforms 
them. The reason is that LinGO and MST add redundant packets in 
order to increase the packet delivery probability while experiencing link 
error periods. This leads to significant increment in the overall price. In 
general, ARA is better because of the computed price factor based on the 
state of the current resources at every node ni represented by Ψi.
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Figure 7.8  Average idle time vs. the network size.

Av
er

ag
e 

pr
ic

e 
(p

c)

0
50

00
10

,0
00

20
,0

00
30

,0
00

15
,0

00
25

,0
00

0 50 100 150 200 250 350300
Network size (no. of nodes)

ARA
LinGO
ST

MST
DRA

Figure 7.9  Average price vs. the network size.



216 COGNITIVE SENSORS AND IoT

It is noted also that the average price is increasing while the net-
work size is increasing. Again, this has been accomplished due to 
considering longer routes while expanding the network size. We 
remark that as the nodes count increases, the total price achieved 
by ARA becomes more identical and minimal with respect to other 
approaches. This can be returned to the excess in the available nodes, 
and thus, the effect of better choices becomes observable and prevents 
any increment in the price. In general, the function in Equation 7.5 
utilizes the aforementioned parameters after normalization, in a man-
ner that maps the expected user experience to changes in individual 
utility parameters.

To show the impact of the aforementioned parameters on our util-
ity function in Equation 7.5, we present the plots in Figures 7.10 
through 7.12 for each of the utility parameters Delay, Network Quality 
(i.e., throughput), and Trust T, respectively. In Figure 7.10, Delay is 
plotted with a constant α that determines the rate of decrease of the 
exponential utility in Equation 7.5. This particular function was cho-
sen for Delay to reflect the rate of loss in the quality of experience 
(QoE) [1] as delay increases. By varying the value of α, it is possible 
to achieve different levels of delay-tolerance as shown in Figure 7.10, 
where we chose α = 0.5 for delay-tolerant data and α = 0.1 for more 
delay-sensitive data. We note that, for a delay-sensitive data request, 
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a very low delay has to be achieved in order to provide a high delay 
utility component.

The Quality parameter is plotted in Figure 7.11. We note that we 
adopt a Sigmoid function according to Equation 7.5 where the tol-
erance to variation in data quality is expressed by fixing the value 
of   (set here to 10) and varying the inflection point denoted by 
the value of β. Thus, if the requested data is quality-sensitive (e.g., 
VoIP is sensitive to low transmission rate) the function will require 
a higher value before the utility increases (as depicted in the lower 
plot with β = 0.8 in Figure 7.11). In contrast, lower constraints on 
quality require a utility that increases rapidly at a lower value of 
Quality, which can be achieved with an early inflection point (β = 0.5 
in Figure 7.11). The value of Quality in Figure 7.11 ranges from 0 to 
1, where 1 indicates the best level of quality attainable depending on 
the quality metric.

Lastly, Figure 7.12 shows the plot of the Trust function where T ∈ 
[0, 1]. Note that an intermediate node can give more emphasis to this 
parameter through the factor σ to particularly penalize sinks with bad 
service accounts. This is shown in the lower plot of Figure 7.12 where 
σ = 2, whereas the upper (better T) plot is a result of σ = 1.

We note here that we multiply the Trust component by the rest of 
the utility function in Equation 7.5 in order to balance the effect of 
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“deceiving” intermediate nodes that may offer attractively low Pi in 
order to pass false quality promises. Moreover, we divide the util-
ity function by Pintermediate in order to protect the client from situa-
tions where two or more intermediate nodes happen to achieve almost 
equal utility scores while charging prices that, although less than Pi, 
largely vary.

Evaluation results revealed that price-based routing scheme is 
better in most cases. Price-based routing schemes have longer path 
lengths when contrasted to shortest routing schemes, as expected. But 
they have had better results in terms of cost, latency, idle time, and 
scalability. ARA avoids using busy, centric nodes, thus data in ARA 
deliver over more nodes. Data reach destinations over available nodes 
instead of waiting for queue in busy nodes.

7.7 � Conclusion

This chapter proposed a price-based routing scheme for heterogeneous 
IoT networks called the ARA. ARA aims at establishing a cap on the 
internodal routing price to dynamically utilize the Internet backbone 
if the source to destination distance surpasses a preset (case optimized) 
threshold. Promising simulation results are achieved by altering sig-
nificant parameters, including network size and the available energy 
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budgets, and seeing how it affects certain metrics in the IoT paradigm 
such as latency, cost, and resource utilization.

These results show the efficiency of our framework when compared 
to three prominent ad hoc data delivery protocols. Our simulation 
results show that the ARA exhibits superior performance for differ-
ent network sizes, lifetime, end-to-end delays, quality, and prices. It 
is strongly recommended with huge size networks, as it is the most 
cost-effective one in the long run.

Future work would investigate utilizing IoT nodes in Smart City 
settings as mobile data collectors with semideterministic mobility 
trajectories. Also, of practical interest is the application of localiza-
tion methods among sensors operating on different technologies and 
studying the effect of such methods on the system’s performance and 
the delivery rate of the corresponding ARA scheme.
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8
Fog-Based Caching and 

Learning for Information-
Centric Networks

FA D I  A L -T U R J M A N

8.1 � Introduction

The increasing demand for highly scalable and efficient distribution of 
content has motivated the development of future Internet architectures 
based on named data objects (NDOs), for example, webpages, videos, 
documents, and other pieces of information. The approach of these archi-
tectures is commonly called information-centric networking (ICN). In con-
trast, current networks are host-centric where communication is based 
on named hosts, for example, web servers, PCs, laptops, mobile hand-
sets, and other devices. Information-centric networks serve as a content-
based model that focuses on clients’ demands disregarding of the data’s 
address or the origin of distribution. ICN is the next generation model 
for the Internet that can cope with the user’s requests/inquiries regard-
less of their data-hosts’ locations or nature. The current Internet model is 
suffering from the exchange of huge amounts of data while still relying 
on the very basic network resources and IP-based protocols. Meanwhile, 
ICNs promise to overcome major communication issues related to the 
massive amounts of distributed data in the Internet. ICNs adopt a 
content-centric architecture which focuses more on the networked data 
itself rather than the metadata. This kind of network architectures are 
known usually by the term content-oriented networks (CONs) [1]. Luckily, 
these CON architectures match with the emerging communication 
trend that aims at exchanging big data over tiny and energy-limited 
wireless sensor networks (WSNs) in order to realize numerous attractive 
projects such as the smart-planet and the Internet of things [2–4]. Thus, 
a new platform is needed to meet these requirements. A new platform, 
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called fog computing [5], or simply fog because “fog” is a cloud close to the 
ground, is proposed to address the aforementioned requirements. Fog is 
a mobile edge computing (MEC) that puts services and resources of the 
cloud closer to users to be facilitated in the edge networks.

Unlike cloud computing, fog computing enables a new breed of light 
applications and services that can run at particular edge networks, such 
as WSNs. In order to enable WSNs to support this trend in commu-
nication and function in a large-scale application platform, such as the 
fog computing, we proposed the cognitive framework in our previous 
work [6]. In [6], an information-centric scheme is proposed for WSNs 
using cognitive (intelligent) in-network devices that makes dynamic 
routing decisions based on specific knowledge and reasoning observa-
tions in WSNs. Knowledge representation using the <attribute, value> 
pair and Reasoning using analytic hierarchy process (AHP) techniques 
are employed at the cognitive device in order to decide on the best data 
route. AHP is applied on quality of information (QoI) attributes in 
next-generation WSNs such as reliability, delay, and network through-
put observed over the communication links/paths [7,8]. This cognitive 
information-centric sensor network (ICSN) framework is able to sig-
nificantly outperform the noncognitive ICSN paradigms. However, this 
cognitive ICSN framework did not consider yet the in-network caching 
feature. Caching in multitudes of nodes in ICNs has a pivotal role in 
enhancing the network performance in terms of reliability and response 
time. In this chapter, we propose the use of value of sensed information 
(VoI) cache replacement strategy. It identifies the most suitable data 
to be replaced in order to maintain prolonged data availability periods 
while enhancing the network performance.

Unluckily, traditional cache replacement strategies in the literature 
[9,10] has been designed mainly for IP-based computer networks and 
data centers, which have distinct characteristics in locating data from 
the envisioned next generation networks such as the light-weight 
ICSNs. In fact, choosing the most appropriate caching strategy can 
have significant implications on the overall network performance in 
terms of the data publishers’ load, hit-ratio, and time-to-hit metrics. 
Several works in the literature have addressed each of these metrics 
separately. However, since a single ICSN network can serve numer-
ous kinds of applications/users with varying design requirements, 
we believe in the necessity of a generic dynamic utility function that 
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can consider all the aforementioned metrics while setting different 
weights for each depending on the ICSN application.

To this end, we provide a novel utility function that sets a value to 
each cached data item in an ICSN framework. This utility function 
can determine which data item to drop from the cache while experi-
encing limited hardware resources for caching. Furthermore, we pro-
vide a cache replacement strategy that depends on the VoI in choosing 
the most appropriate data to be replaced in the cache. We compare our 
VoI approach against three dominant cache replacement approaches: 
Node functionality-based caching (FC), content-based caching (CC), 
and location-based caching (LC) with regard to various performance 
metrics under a variety of parameters including cache size, data popu-
larity, in-network cache ratio, and network connectivity degree.

The rest of the sections in this chapter are organized as follows. 
A literature review on caching approaches in ICSNs is provided in 
Section 8.2. In Section 8.3, we introduce our ICSN-specific sys-
tem model based on which we build our proposed caching strategy. 
Section 8.4 explains the proposed VoI approach and utility function. 
Section 8.5 presents extensive simulation results of the VoI in com-
parison to other caching strategies. And finally, we conclude our work 
in Section 8.6.

8.2 � Related Work

At the core of the fog paradigm, data has to “live” near its requesters. 
This is the task of caching schemes. Thus, efficient caching mandates 
two properties: (1) Ensuring an updated copy of the requested data 
resides at entities close to the region of interest (in terms of reachabil-
ity latency) and (2) that copy remains “live” for as long as interest in it 
exists. Caching is coupled with routing and naming architectures. For 
example, in DONA, the coupling of naming tuples—Owner pub-
lic key with data Label—enables in-network caching for any entity 
in the network that could hold a valid copy. Architectures differ in 
deciding which entity allows a copy of the data and the basis upon 
which it would retain it. A recent effort in age-based caching argues 
for a twofold metric for caching a NDO replica. If it resides at a net-
work edge, or has higher popularity, it will remain cached for a longer 
duration. Entities which hold replicas will collaborate in “tuning” the 
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age counter to manifest such factors. A core disadvantage at many 
caching protocols is the inherent need for book-keeping. The result-
ing message exchange overhead cannot scale to the Internet and yet 
claim efficiency. We are bound to analyze caching schemes under 
the following conditions: (1) Communication overhead per NDO; 
(2) storage requirements; (3) NDOs with different priorities; and 
(4) granularity in assessing request frequency, types, locations, and so 
on. We review the different caching techniques in ICSNs and iden-
tify the techniques that are best suited for the caching decisions. 
Accordingly, we categorize the in-network caching in ICSNs into the 
following categories: (1) Location-based caching, (2) content-based 
caching, and (3) functionality-based caching.

8.2.1 � Location-Based Caching (LC)

Chai et al. in [11] have argued against caching the data everywhere in 
ICSNs and recommended caching less in order to achieve better net-
work performance. Their caching policy claims that data shall be only 
cached at the nodes having the highest probability of getting a cache-
hit on the data delivery path. Eum et al. [12] have proposed an ICSN 
architecture, called Cache Aware Target idenTification (CATT). 
This architecture assumes a topology-aware caching policy, where a 
node on a downloading path is selected for caching as long as it has 
the highest connectivity-degree based on the geographical location of 
this node. However, this can make this kind of nodes sort of a geo-
graphical bottleneck in the network. Meanwhile, authors in [13] have 
investigated the performance of topology-based replica placement on 
Internet router-level topology and found out that the router-level fan-
out placement is almost as good as the greedy placement of replica. 
Moreover, they found that a fan-out based replica placement method 
needs to be carefully designed to be efficient in content oriented archi-
tectures. Works in [11–13] base on the node degree or node fan-out 
for replica placement, but these methods cannot be universal because 
node degree–based solutions cannot be good solutions if most of the 
nodes have similar, relatively low degree, or fan-out.

Bhattacharjee et al. [14] have considered the use of various self-
organizing or active cache management strategies in which nodes 
make globally consistent decisions about caching and revealed that in 



227FOG-BASED CACHING AND LEARNING FOR ICNs

many cases, these self-organizing caching schemes yield better aver-
age delays than traditional approaches (cache at transit nodes), using 
much smaller per-node caches. A selective neighbor caching approach 
that selects an appropriate subset of neighboring proxies that mini-
mizes the mobility costs in terms of expected average delay and cach-
ing costs has been proposed by Li et al [15]. This approach is based 
on proactively caching data requests and the corresponding metadata 
to a subset of proxies that are one hop away from the proxy. Authors 
in [16] suggest a probabilistic approach for ICNs. They claim that the 
probability of a file being cached should be increased as it travels from 
source to destination by considering the following parameters: (1) The 
distance between source and current node, (2) distance between des-
tination and current node, (3) time-to-live for the routed data content, 
and (4) the time-since-birth. The authors also suggest redundancy in 
caching on a single path between source and distention. However, 
this degrades the ICN performance dramatically while experiencing 
limited caching spaces. Moreover, in [16], authors assume that all the 
network nodes have the capability of caching, which is not the case in 
practice with fog systems. The proposed approach is weak as well due 
to considering static data requests’ frequency from a subnet where that 
data can exist. Nevertheless, we believe caching should be based on 
dynamic frequencies and location-independent.

8.2.2 � Content-Based Caching (CC)

Content-based caching is another candidate category for caching 
ICNs, in which the data replacement decision is taken based on the 
content of the exchanged data. For example, authors in [17] pro-
pose an autonomic cache management architecture that dynamically 
(re)assigns data items to in-network caches. Distributed managers 
make (re)placement decisions, based on the observed data request pat-
terns such as their popularity, in order to minimize the overall network 
traffic. Also in [17], the authors suggest that every cache manager should 
decide in a coordinated manner with other cache managers whether 
or not to cache an item. This approach assumes that every cache man-
ager has a holistic network wide view of all the cache configurations 
and relevant request patterns. And thus, it adapts depending on the 
volatility of the user requests. It is evident that the network-wide 
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knowledge and cooperation give significant performance benefits and 
reduce significantly the time to convergence, but at the cost of addi-
tional message exchanges and computational overhead.

Meanwhile, the main objective of the work in [18] is to minimize 
the Internet service provider (ISP) traffic and accessed in-network 
hops/devices by caching frequently requested data at ISP-specific 
routers. The main problem addressed here is to provide effective 
caching strategies for these routers to coordinate their data replace-
ment based on their content. Guided by optimal replica placement, 
the authors have presented two popularity-based caching algorithms. 
However, this work may not be practical as the authors have assumed 
only one gateway in an ISP network. Cho et al. [19] have proposed 
a content caching approach, called WAVE, in which the cache size 
is adjusted based on data popularity. In WAVE, an upstream node 
recommends the number of chunks to be cached at its downstream 
node, which increases exponentially as the data requests increase in 
order to reduce communication and cache management overhead. 
WAVE distributes content chunks toward the network edge (from 
where the data requests come) considering the content popularity and 
distance relation. However, the different sizes of data chunks have 
not been considered in this reference. An age-based distributed cache 
approach aiming at reducing the data publisher load and in-network 
delay for ICSNs has been proposed in [20]. This approach provides a 
lightweight cooperative mechanism to control where data contents’ 
ages are dynamically updated implicitly. It spreads popular contents 
towards the edge of ICSN and meanwhile eliminates the unnecessary 
replicas at the intermediate ICSN nodes. Yet this approach suffers 
from maintaining highly dynamic contents, and thus, nodes which 
are far away from the server may experience long time periods to 
refresh their contents.

8.2.3 � Node Functionality-Based Caching (FC)

To unleash the full potential of ICSNs, the role (function) of the 
in-network caching node shall be taken into consideration; consider-
ing which content to cache at the management/control level rather 
than guessing it at the data level. Authors in [21] remarked the side-
effects of delegating the caching decision to the data level and propose 
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a specific approach to handle data caching at the control level. The 
proposed approach can be tuned to make sort of a balance between 
the benefits and cost overhead. However, it is only applicable at a 
small scale and it may not accommodate the massive amounts of data 
contents in the Internet. The authors in [22] proposed LocalGreedy 
algorithm for caching in ICNs. They consider a cache cluster consist-
ing of number of leaf nodes which are either directly connected or 
indirectly via first node as a common parent somewhere along the 
path to the root node. Furthermore, they assume interlevel cache 
cooperation, which is basically a special case where content can only 
be fetched from a specific node, called the parent node, and not from 
any peer node in the network. Authors claim that a strong conceptual 
similarity emerges when the notion of “access cost” is adopted. The 
access cost is represented either by the incurred latency while fetching 
content from remote caches, or by the bandwidth consumed when 
retrieving content from a peer node or video head end, depending on 
the scenario of interest. However, this approach necessitates a global 
knowledge of the in-network nodes’ capability and this contradict 
with the fog vision. In [23], the authors investigated the trade-off 
between caching data contents in a distributed IP-based networks 
and the new emerging ICSN architectures in fog systems such as 
the content-centric network (CCN). They applied their study on the 
real traffic mix resulting from several functional resources nowadays 
such as the web, file sharing, and multimedia streaming. It has been 
demonstrated that caching videos in routers offers more cache hits. 
Nevertheless, the other types of content would likely be more effi-
ciently handled in very large capacity storage devices in the core of 
the network. And thus, this kind of caching is not efficient in ICSNs.

In recent times however, the Internet has progressed towards an 
information-centric sensor networking paradigm, where the focus is 
on delivering named blocks of data to users at the network edge rather 
than establishing end-to-end connections to the web server. So the 
design of the cache replacement policy in ICSNs must be a dynamic 
one, based on the user’s request trends and the application on hand. In 
this chapter, although we need to use a content-centric approach, the 
same cache replacement approaches cannot be applied to an ICSN. 
This is because of the unique resource constraints of the sensor net-
work, the uncertainty of the wireless medium, and the need to be 
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aware of user requirements in the ICSN architecture. The resource 
limitations of the sensor network nodes include limited power sup-
ply, storage space, and heterogeneity in terms of the sensors used and 
the node functions. In addition, the same content (sensed data) can-
not be replicated into multiple caches without associating them with 
location, because the sensed information may be different in differ-
ent parts of the network, and it may change over time too, which 
is unlike the case of ICSNs. This makes cache replacement trickier 
in information-centric sensor networks. In addition, the replacement 
policy should take into account the type of user requests coming to 
the network, the sensor node availability at different locations (as 
nodes eventually die out), and also the sensing duration for different 
sensors on board the sensor nodes. In this chapter and unlike other 
related work, dynamic caching decisions is made based on specific 
knowledge and reasoning observations in the network. Based on these 
cognitive elements/observations, we prioritize between the cached 
contents in a hierarchical storage system (i.e., in a multilevel caching). 
Accordingly, we provide a novel utility function that sets a value to 
each data item based on application-specific metrics, such as required 
quality of communication channel, delay, and data age. This makes 
our proposed VoI approach able to cope with fog networks as a new 
trend in communication.

8.3 � System Models

In this part of our work, we elaborate on our ICSN network model in 
addition to its corresponding data popularity, age, and delay models.

8.3.1 � ICSN Network Model

The main components in our ICSN network model are listed as 
follows. Sensor nodes (SNs) to sense the environment and capture 
physical changes in the surrounding environment, and report these 
changes via relay nodes (RNs) or local cognitive nodes (LCNs). They 
interact with the RNs and LCNs as shown in Figure 8.1. LCNs have 
elements of cognition, that is, knowledge, reasoning, and learning, 
which help in interpreting common requests and queries’ responses. 
They interact with SNs, RNs, and the sink. RNs forward the data 
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received from SNs to the sink or any neighboring local cognitive 
nodes in response to received requests from the user. The sink is where 
all the collected data is delivered. The sink node is also enhanced with 
cognitive elements to be more intelligent in managing the network 
performance based on data traffic type and it is called a global cogni-
tive node (GCN).

The type of data traffic that an ICSN paradigm can handle is cat-
egorized into one of following: (1) Type I: On-Demand, (2) Type II: 
Periodic, and (3) Type III: Emergency. Each of these types is associated 
with a different quality of information (QoI) value on the cached data, 
based on the ICSN application. We select the network Reliability (R), 
Latency (L), Energy (E), and Throughput (T) as the four main attri-
butes, whose combined value decides the QoI of the cached data. We 
are not using the absolute values for these attributes. Instead, we asso-
ciate priorities with each of these attributes for every request type, and 
make these priorities decide the importance of the absolute value of 
the attributes, as shown in Table 8.1. The values in Table 8.1 indicate 
the associated priority with each attribute. Number 1 indicates the 
highest priority and number 3 indicates the lowest. The “x” in Table 
8.1 indicates a “don’t care” condition. This means that there are no 
strict requirements on the value of the QoI marked with an “x,” and 
its value does not affect the caching decision.

End user

Gateway
node

REQ to sink

Relay node Sensor node Sink

Response
from sink

Data over access
network

Figure 8.1  Network model with sensor nodes and cognitive nodes.
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8.3.2 � Delay Model

Different sensors have different durations for which they need to be 
exposed to the environment, so that they can capture the sensed read-
ings accurately. This affects the duration of the on-time of the sensor 
node, which in turn affects the lifetime of the sensor node [24]. In 
order to prolong the lifetime of the sensor node, it is useful to store 
the sensed data for longer when the delay involved in acquiring the 
reading is more. This is called the sensing delay. In addition, if data 
has to be propagated from sensor nodes to LCNs every time data is 
requested, it would add to the propagation delay of the data, especially 
if the sensor nodes are located far away from the sink. Thus the delay 
components we consider are the sensing delay δ and the propagation 
delay τ. We also limit the number of hops (n) within which the data 
has to be delivered to the sink to 6, so as to avoid unnecessary wast-
age of energy by involving multiple nodes in the data transmission. 
Accordingly,

	 τ ∝ <n, where n 6 	 (8.1)

	 δ ∝ max( , , , )d d d dk1 2 3  	 (8.2)

where k is the total number of sensors available on board the sensor 
node, and di represents the fixed sensing delay value of the sensor type 
i (see Table 8.1). Thus, the sensing delay is a function of the maximum 
delay from among the sensor types that have been activated to pro-
vide fresh data. Putting these two delays together, the total delay (Δ) 
involved in delivering freshly sensed data to the sink is a combination 
of the sensing and propagation delay, given by Equation 8.3:

	 ∆ = +τ δ 	 (8.3)

Table 8.1  QoI Attribute Priority for Different Data Traffic Types

QUALITY OF INFORMATION (QoI)—ATTRIBUTES

REQUEST TYPE LATENCY (L) ENERGY (E) RELIABILITY (R) THROUGHPUT (T)

Type I: On-Demand x 3 1 2
Type II: Periodic 1 2 4 3
Type III: Emergency 1 1 x 2
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8.3.3 � Age Model

Our age model makes use of the following two conditions to decide 
what content should be dropped from the cache.

The first is the based on the periodicity of the periodic request 
(Type I traffic), and the second, when the node’s cache is full. We make 
use of the periodicity of the periodic request, because freshly sensed 
data has to be provided at the start of each periodic request cycle. Thus, 
when the cache is full at the end of one periodic request cycle, old data 
can be discarded from the cache. Thus, the age of a sensed attribute–
value pair is represented by its time-to-live (TTL) which is based on 
the periodicity of the request of each application type. This value is 
provided to the LCN by the GCN/sink. Since we are not considering 
the use of historic data, our model implies that cached contents may be 
refreshed after every periodic time interval, as long as the data is being 
transmitted to the sink at the end of each cycle [25,26].

	 TTL TSi periodic∝ 	 (8.4)

Equation 8.4 represents that the TTL of the sensed information 
(Si) represented as attribute–value pair, is directly dependent on the 
periodicity of a request in Type I traffic flow. In case the application 
requires that the periodic data is stored for a prolonged duration of 
time, for example, 24 hours, before making a single transmission to 
the sink, then the cache retention period becomes a function of the 
transmission cycle’s periodicity.

8.3.4 � Popularity of On-Demand Requests

Traffic flow generated in response to on-demand requests have been 
classified as Type II traffic. More numbers of users may be interested 
in a particular type of sensed data, or a specific sensed data may be 
requested more numbers of times by one or more users. Such sensor 
data is said to be popular, and can be retained for longer in the LCN’s 
cache. Thus the popularity of the sensed attribute–value pair is given 
by Equation 8.5.

	 Popularity q qSi total∝ Re eSi /R 	 (8.5)
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where ReqSi is the total number of requests for an attribute–value 
pair received at an LCN, and Reqtotal is the total number of requests 
received by that LCN within a particular operational cycle. In addi-
tion, when sensor nodes start to die out in the network, LCNs should 
store the data for longer to maintain their availability. When the pri-
mary LCN storing such data itself starts to die out, storing the data 
in neighboring LCNs provides extra storage guarantees and ensure 
availability of data in the network for longer. This storage require-
ment based on non-availability of alive sensor nodes is managed by 
the planning algorithm for data delivery based on the traffic flow in 
the network and remaining energy at LCNs.

8.3.5 � Channel Communication Model

Here we elaborate on the assumed channel model in our wireless 
communications [27]. The transmission power utilized by the ICSN 
nodes is represented as TP0 and the transmission range between BS 
and an SN is represented as Tr.  The expression of channel model can 
be provided as

	 C A T TM P r= −ρ α
0

	 (8.6)

Where CM is the transmission power of the BS, A is the constant 
gain factor for power provided by antenna and amplifier gain, ρ is the 
small scale constant for fading factor, and α is the path loss exponent. 
The transmission range between the ICSN nodes of i and j is denoted 
as Rij (i, j = 1, 2, 3,……, N). The range for ICSN nodes (i and j) 
and the BS is denoted as ri, and the power transmission for node i is 
defined as pi. The link interference is expressed as

	
I

A T T
A T rBS

P r

P ii

=
−

−

ρ
ρ

α

α
0 	 (8.7)

8.4 � VoI Cache Replacement

For cache replacement in ICSNs, we need to ensure that we choose 
data appropriately for storage based on the following criteria: First, 
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data that takes longer to sense should be stored for longer to conserve 
the sensor node’s energy. Second, data storage must be a function of 
the periodicity of the requests based on the traffic type. This will help 
to store data till fresher data is available, and in servicing requests for 
different traffic types in a timely manner. Last, value of the data based 
on its age, that is, if temperature in a region has changed consider-
ably from the last time it was sensed, then the cached information is 
stale and does not provide correct information. Hence the freshness of 
data is also an important criterion when servicing requests for data on 
demand. Since these criteria are known and fixed, the cache replace-
ment plan can be programmed into the LCN.

We propose a VoI based cache replacement strategy for the LCNs 
in an ICSN. Our cache replacement approach adopts the aforemen-
tioned system models to achieve an efficient cache management strat-
egy that can handle the following three types of content:

	 1.	Delay-based content: The delay sensitivity of the cached data 
content is a measure specified by the requesting user to indi-
cate how long the consumer is willing to wait for it. Examples 
of delay-sensitive data can be found in applications serving 
areas of emergencies (e.g., disaster or health emergency).

	 2.	Demand-based content: This is a measure of the data popularity 
which is specified by the frequency of requesting a specific data.

	 3.	Age-based content: Some contents are more sensitive to aging. 
For instance, if a user requests information about the traffic 
updates for the coming 30 minutes, then any related content 
that does not cover this time interval is useless.

Accordingly, the VoI cache management approach employs three 
parameters to set a value VoISi per sensor node Si reading. This value is 
dependent on the history of the data content within each operational 
round. At the beginning of each round and based on the aforemen-
tioned models, all content resets its VoISi value according to the fol-
lowing function:

	 VoI TTL Popularity ISi Si Si BS= + + +α β γ λ* * * *∆ 1/ 	 (8.8)

where α, β, γ, and λ are the tuning parameters that are specified 
based on the traffic type and the user requests. The strength of VoI is 
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mainly in its ability to prioritize based on the targeted ICSN appli-
cation. Therefore, to improve the basic priority caching method, the 
weights of each of the parameters can be adjusted to find the most 
efficient approach. The delay sensitivity parameter serves in assuring 
the least delay. The popularity parameter is important, as it takes 
into consideration the most frequently demanded data packets. The 
packet age value is also vital since it considers packets in the cache 
that have not been used for long time and replaces them with more 
relevant data. In the following, Algorithm 8.1 provides the steps to 
be executed by each node if its cache is full to drop data with the 
least VoISi.

Algorithm 8.1  Drop Least VoISi

	 1.	Function VoI (content)
	 2.	Input
	 3.	content: A content item within the ICSN
	 4.	Begin
	 5.	for each LCN node, do
	 6.		 for each duty cycle, do
	 7.			  Set value of each VoISi in the cache based on Equation (8.8)
	 8.			  if cache_full
	 9.				   Check history of user requests 
	 10.				   Drop the data content of the least VoISi

	 11.			  End if
	 12.		 End for
	 13.	End for
	 14.	End

In the above algorithm, elements of cognition are implemented at 
the LCNs. These elements are reasoning and learning elements.

8.4.1 � Learning

Learning is used in our VoI approach in order to determine the 
most appropriate paths towards the GCN that satisfy the fog net-
work requirements. This cognition element uses a direction-based 
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heuristics to determine the data delivery path through RNs that lie in 
the direction of the GCN. Hence, each time a LCN has to choose the 
next hop, the direction-based heuristic eliminates RNs that increase 
the distance between the current RN and GCN. This information 
is stored in the LCN for use in the next transmission rounds. Thus 
the direction-based heuristic, along with feedback from the network 
about the chosen paths helps the LCNs to learn data delivery paths to 
the sink, as the network topology changes.

Example 8.1: Assume S1 and S2 have data to be sent to destination 
nodes D1 and D2. Rn are all the available relays toward the destina-
tion. Out of these relays, it is determined that R5 as shown in Figure 
8.2 has the lowest link outage probability to D1 and D2. Therefore, S1 
initiates routing data to R5. Meanwhile, S2 also forward a high traffic 
of data to R5 (depicted by solid paths in Figure 8.2). When multiple 
source nodes start routing their data to R5 as well, the route to R5 may 
get congested. A cognitive network with learning capabilities will be 
able to identify the congestion at R5 (by observing the decrease in 
throughput). Sharing this observation with neighboring nodes, the 
cognitive fog network (or ICSN) would be able to respond to the 
congestion proactively, by routing the data through a different path 
involving nodes R4, R8, and R9 as shown in Figure 8.2(b).

8.4.2 � Reasoning

In the VoI approach, we assume a modified version of the analytic hier-
archy process (AHP) [22] for implementing the reasoning element of 
cognition in the fog network. AHP supports multiple-criteria decision 
making while choosing the data path. For example, if we have a delay-
sensitive data, the node which provides the lowest latency will be chosen 
even though it might degrade other metrics, such as the network energy 
or throughput. If two next hops guarantee the same latency then the next 
attribute to compare will be energy, and then throughput, assuming that 
energy is the next desired attribute in the fog network. AHP provides a 
method for pairwise comparison of each of the attributes and helps to 
choose the node that can provide the best network performance on the 
long run. The following example has more details on the utilized AHP.
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8.5 � Performance Evaluation

In this section, we provide initial performance evaluation results for the 
VoI-based cache replacement technique, which we have compared with 
node functionality-based caching (FC), content-based caching (CC), 
and location-based caching (LC) techniques using NS3, a discrete event 
simulator. The caching schemes: FC, CC, LC, and VoI, are executed 
on 600 randomly generated wireless heterogeneous network topologies 
in order to get statistically stable results. The average results hold con-
fidence intervals of no more than 5 percent of the average values at 
a 95-percent confidence level. We make use of the cache hit ratio to 
compare the performance of the different cache replacement strategies. 
Cache hit ratio is defined as the ratio of the number of times requested 
data was found in the cache divided by the total number of times data 
was requested from the cache. The storage cache is implemented as a 
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Figure 8.2  (a) Classical routing in a sensor network. (b) Cognitive routing in Fog.
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single storage level in one case (L1 cache) and as a hierarchy of two 
storage levels in another case (L1 and L2 cache). Simulation results are 
compared for VoI, LC, CC, and FC replacement techniques. These 
simulations were run at cache sizes ranging from 10 to 100, and the 
simulations end after serving 1000 packet requests. There are 100 dif-
ferent requests from which the packet requests are randomly generated.

8.5.1 � Performance Metrics

To compare the performance of the proposed VoI approach, we track 
ICSN-specific metrics to achieve qualitative conclusions for the tar-
geted in-network caching problem. We simulate the performance 
of an ICSN network with the detailed physical layer NS3 built-in 
parameters so that we achieve realistic simulation instances. The four 
considered performance metrics are as follows:

•	 Cache-hit ratio: Is simply the fraction of time a request arrives 
at a node to which that cache is attached but does not contain 
the requested data item. It is the average hitting ratio over all 
the in-network caches. We preferred to look at average time 
to hit data and hitting ratio more than publisher load, but we 
generally expect publisher load to improve as the other met-
rics improve as well.

•	 Time-to-hit data (TTH): Is found by simply logging all the 
total costs of the request and response paths incurred by every 
sensor node. Ideally, ICSN is supposed to minimize the total 
average time to hit data per request.

•	 In-network latency (delay): This metric represents the end-
to-end delay as described above. Note that we differentiate 
between latency to hit data and in-network latency since the 
two metrics may differ because of mobility or disruption 
conditions.

•	 Average request per publisher (ARP): This metric is mea-
sured in number of data request per hour (requests/hour) 
and it represents the average load per publisher in an ICSN 
paradigm. We track publisher load by monitoring the total 
fraction of data requests that had to be satisfied by a data 
publisher.
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8.5.2 � Simulation Parameters

Many of the ICSN paradigm parameters have to remain fixed while 
our simulation instances are generated. In particular, the parameters 
of our simulation are as follows:

•	 Percentage of nodes with caches (PoC): This parameter is our 
primary method for controlling the extent of caching in our 
ICSN. By varying this parameter, we can study the sensitivity 
of metrics like time-to-hit data to the caching extent.

•	 Connectivity level (degree): It represents how tightly con-
nected the ICSN network is. We use the connectivity matrix, 
based on our described communication model in Section 8.3.

•	 Data Popularity: It indicates how frequent a specific data con-
tent is requested. This metric is measured in percentage with 
respect to other requested data contents. This parameter is 
represented by a single Poisson process parameter in order to 
give the content replacements per time unit.

8.5.3 � Simulation and Results

The following figures depict the achieved results. Our first objective 
is to confirm that increasing the extent of caching in ICSNs, in terms 
of both size and number of levels, will reduce time to meet data for 
all cache policies.

According to Figure 8.3, we can deduce that the VoI is not efficient 
in level one cache, however, FC and LC cache replacement techniques 
perform equally well in this scenario. In Figure 8.4, where we have 
two levels of caching (one on LCN and the other on RN) we find out 
that VoI surpasses the other two replacement techniques. Since we 
have only one type of the considered requests, there is minimum per-
formance gain when the cache size is increased beyond 30 megabytes.

The next set of simulations’ figures (Figures 8.5 and 8.6) are set to 
analyze the performance of the cache replacement strategies as the 
number of requests that a given network needs to serve increases from 
500 to 5000 requests/hour. The cache size is set to be 100 megabytes 
and the number of request types is fixed at four.

From the figures we can deduce that the advantage held by the VoI 
replacement technique is that it replaces data based on user requirement 
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and VoI of the data. Other replacement techniques are only concerned 
with the match of the data requested packet number, without considering 
the age of the data, its popularity, or the delay associated with sensing 
and transmitting it to the sink. Nevertheless, the use of VoI replacement 
technique puts into consideration the age of data, VoI, and the popular-
ity of the information. New information replaces old ones, unlike other 
technique that only find a number match irrespective of their age. Based 
on this we proposed the use of a two-level cache, one on LCN and the 
other on RN, in order to reduce the complexity of computation. We can 
employ the use of the VoI base replacement technique on LCN and FC 
or LC on RN. We can set the size of level 1 and 2 to 100 and the packet 
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Figure 8.4  Cache size vs. the hit ratio with two-level caching.
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request can be 10000. We can set the size of level 1 and 2 to 100 mega-
bytes and the number of packet requests to 10000.

From Table 8.2, we can see that for the two levels of cache, the best 
possible combinations are VoI-based replacement strategy at L1 cache 
and VoI or LC based replacement strategy at L2 cache. Despite having a 
good hit ratio sometimes, FC is not reliable to serve the user needs con-
sidering the age of data and the delay required to retrieve the required 
data because the decision making is only at LCNs. Implementing the 
VoI replacement technique at LCNs can greatly help save resources, 
especially when a cache hit is found on the first level of the cache.
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Figures 8.7 and 8.8 below represents the findings from the simula-
tion experiment of the two-level cache. From both figures, the extend 
of cache availability increases proportionally. According to Figure 8.7, 
we observe that the overall time to meet data, which is our main per-
formance metric, is reduced in all performance policies. However, the 
VoI policy performs best at higher proportions of nodes attached to 
caches. On the contrary, Figure 8.8 shows that there is an increase in 
the data hit for all the approaches, and hence, we conclude that the 
VoI is better due to its ability to replace the most relevant data accord-
ing to an ICSN-specific set of attributes.

In Figures 8.9 through 8.11, connectivity level (degree) is the 
examined parameter. From Figure 8.9, we deduce that there is an 

Table 8.2  Two-Level Caching Comparison

L1 CACHING 
POLICY L1 HIT RATIO 

L2 CACHING 
POLICY L2 HIT RATIO TOTAL HIT RATIO

VoI 0.811542 LC 0.81743 0.81542
VoI 0.547 FC 0.7792 0.6194
VoI 0.899 VoI 0.0099 0.81743
LC 0.754 VoI 0.398 0.6837
LC 0.9 FC 0 0.71818
LC 0.802 LC 0.49 0.75125
FC 0.9 LC 0 0.71818
FC 0.9 VoI 0 0.61818
FC 0.9 FC 0 0.65125
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Figure 8.7  Time to hit ratio vs. percentage of nodes with caches (with connectivity degree = 30).
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increase in time to hit data as the ICSN connectivity increases in all 
the approaches. However, we notice that VoI is less dependent on the 
network and hence better than the other two approaches. VoI is rather 
more dependent on the data type, which is a highly desired prop-
erty in ICSN network. Figure 8.10 shows the data hit performance 
against a varying network connectivity degree, and while applying the 
VoI scheme, we notice that the data hit increases exponentially while 
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the network connectivity increases. Nevertheless, the data hit of the 
other two approaches increases linearly. Moreover, Figure 8.11 shows 
that VoI is the best in terms of delay. This can be attributed to the 
application of the delay factor while deciding which data to replace. 
Figure 8.12 shows the effect of data popularity in terms of publisher 
load. The VoI tops LC and FC as the popularity metric increases. This 
is a very desirable property in the ICSNs.

The VoI-based technique would be suitable for the ICSN approach, 
as we propose to use a named data association for the sensed data, 
such as attribute–value pairs, and the cache size can be decided based 
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Figure 8.10  Hit ratio vs. the connectivity degree percentage.
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on the different types of user requests that the network is expecting 
to serve. We can expect that the users are more satisfied with the 
response received from the LCN, as it retains information in its cache 
based on both data popularity and various parameters that affect 
gathering sensed information and the energy involved in doing so, as 
the network scales up to larger sizes.

8.6 � Conclusions

The VoI-based technique is suitable for use in ICSNs that use named 
data association for the sensed data, and support node mobility. We 
can expect that the users are more satisfied with the response received 
from the local cognitive nodes (LCNs), as they retain information in 
their cache based on both data popularity and various parameters that 
affect gathering sensed information and the energy involved in doing 
so, as the network scales up to larger sizes. Further, the VoI cache 
replacement strategy helps in graceful degradation of the network, as 
cached data can be provided from LCNs even after the sensor node 
death. Moreover, this work further investigates and evaluates the 
impact of varying network loads and inter-LCN communication on 
the effectiveness of the cache replacement strategy.

Consequently, VoI realizes the delay-tolerant data requirements 
in edge networks. It provides a dynamic data replacement policy 
that is based on the consumers’ requesting trends. It maximizes 

A
RP

 (r
eq

/h
r)

Popularity (%)

20
0

30
0

40
0

50
0

10 20 30 40 50 60

VoI
FC
CC
LC

Figure 8.12  Publisher load vs. the data popularity.



247FOG-BASED CACHING AND LEARNING FOR ICNs

the consumer’s gain according to delay limit, data popularity, and 
time-to-live metrics. Moreover, it maximizes the gain of the data 
publishers by reducing their load. Our presented simulation results 
in this work show the efficiency of VoI when compared to other 
approaches such as FC and LC. It exhibits superior performance 
in terms of publisher load, end-to-end delays, time-to-hit data, 
and hit ratio.

References
	 1.	 B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, 

“A Survey of Information-Centric Networking,” IEEE Communications 
Magazine, vol. 50, no. 7, pp. 26–36, 2012.

	 2.	 SmartSantander, Future Internet Research and Experimentation. 
[Online.] Available at http://www.smartsantander.eu.

	 3.	 IBM | A Smarter Planet | Smarter Cities. [Online]. Available at http://
www.ibm.com/smarterplanet/us/en/smarter_cities.

	 4.	 F. Al-Turjman, “Cognition in Information-Centric Sensor Networks 
for IoT Applications: An Overview,” Ann. Telecommun., pp. 1–16, 2016. 
DOI: 10.1007/s12243-016-0533-8.

	 5.	 F. Bonomi, “Connected Vehicles, the Internet of Things, and Fog 
Computing,” VANET 2011, 2011.

	 6.	 G. T. Singh and F. M. Al-Turjman, “A Data Delivery Framework for 
Cognitive Information-Centric Sensor Networks in Smart Outdoor 
Monitoring,” Elsevier Computer Communications, vol. 74, no. 1, 
pp. 38–51, 2016.

	 7.	 F. Al-Turjman, A. Alfagih, W. Alsalih, and H. Hassanein, “A Delay-
Tolerant Framework for Integrated RSNs in IoT,” Elsevier Computer 
Communications Journal, vol. 36, no. 9, pp. 998–1010, May, 2013.

	 8.	 F. Al-Turjman, H. Hassanein, and M. Ibnkahla, “Efficient Deployment 
of Wireless Sensor Networks Targeting Environment Monitoring 
Applications,” Elsevier Computer Communications Journal, vol. 36, no. 2, 
pp. 135–148, Jan. 2013.

	 9.	 A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, and K. 
Worrell, “A Hierarchical Internet Object Cache,” in Proc. of USENIX, 
1996.

	 10.	 M. Gritter and D. R. Cheriton, “TRIAD: A New Next-Generation 
Internet Architecture,” Stanford University, Stanford, CT, July 2000.

	 11.	 W. K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache ‘Less for More’ in 
Information-Centric Networks (Extended Version),” Elsevier Computer 
Communications, vol. 36, no. 7, pp. 758–770, 2013.

	 12.	 S. Eum, K. Nakauchi, Y. Shoji, N. Nishinaga, and M. Murata, “CATT: 
Cache Aware Target Identification for ICN,” IEEE Communications 
Magazine, vol. 50, no. 12, 2012.

http://www.smartsantander.eu
http://www.ibm.com
http://www.ibm.com


248 COGNITIVE SENSORS AND IoT

	 13.	 P. Radoslavov, R. Govindan, and D. Estrin, “Topology-Informed 
Internet Replica Placement,” Proceedings of WCW’01: Web Caching and 
Content Distribution Workshop, 2001.

	 14.	 S. Bhattacharjee, K. L. Calvert, and E. W. Zegura, “Self-Organizing 
Wide-Area Network Caches,” in IEEE Infocom, pp. 752–757, 1998.

	 15.	 X. Vasilakos, V. Siris, G. Polyzos, and M. Pomonis, “Proactive Selective 
Neighbor Caching for Enhancing Mobility Support in Information-
Centric Networks,” in Proc. of the ICN Workshop on Information-Centric 
Networking, New York, pp. 61–66, 2012.

	 16.	 I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic In Network Caching 
for Information-Centric Networks” in Proc. of the 2nd Edition of the ICN 
Workshop on Information-Centric Networking, pp. 55–60, 2012.

	 17.	 V. Sourlas, P. Flegkas, L. Gkatzikis, and L. Tassiulas, “Autonomic 
Cache Management in Information Centric Networks,” in Proc. of the 
IEEE Network Operations and Management Symposium (NOMS), 2012.

	 18.	 J. Li, H. Wu, B. Liu, X. Wang, Y. Zhang, and L. Dong, “Popularity Driven 
Coordinated Caching in Named Data Networking,” pp. 200–211, 2012.

	 19.	 K. Cho, M. Lee, K. Park et al., “WAVE: Popularity-Based and 
Collaborative In-Network Caching for Content-Oriented Networks,” 
in Proceedings of INFOCOM WKSHPS, pp. 316–321, 2012.

	 20.	 Z. Ming, M. Xu, and D. Wang, “Age-Based Cooperative Caching in 
Information-Centric Networks,” Int. Conf. on Computer Communication 
and Networks (ICCCN), 2014.

	 21.	 W. Yaogong, K. Lee, B. Venkataraman et al., “Advertising Cached 
Contents in the Control Plane: Necessity and Feasibility,” in Proc. 
INFOCOM Workshop on Computer Communications, 2014.

	 22.	 S. Borst, V. Gupta, and A. Walid, “Distributed Caching Algorithms 
for Content Distribution Networks,” in Proc. of the IEEE INFOCOM, 
2010.

	 23.	 C. Fricker, P. Robert, J. Roberts, and N. Sbihi, “Impact of Traffic 
Mix on Caching Performance in a Content-Centric Network,” in 
INFOCOM Workshops, pp. 310–315, 2012.

	 24.	 F. Al-Turjman, H. Hassanein, and M. Ibnkahla, “Towards Prolonged 
Lifetime for Deployed WSNs in Outdoor Environment Monitoring,” 
Elsevier Ad Hoc Networks Journal, vol. 24, no. A, pp. 172–185, Jan. 2015.

	 25.	 A. Al-Fagih, F. Al-Turjman, W. Alsalih, and H. Hassanein, “A Priced 
Public Sensing Framework for Heterogeneous IoT Architectures,” IEEE 
Transactions on Emerging Topics in Computing, vol. 1, no. 1, pp. 135–147, 
Oct. 2013.

	 26.	 F. Al-Turjman, H. Hassanein, S. Oteafy, and W. Alsalih, “Towards Aug
menting Federated Wireless Sensor Networks in Forestry Applications,” 
Springer: Personal and Ubiquitous Computing Journal, vol. 17, no. 5, pp. 1025–
1034, June 2013.

	 27.	 F. Al-Turjman, H. Hassanein, and M. Ibnkahla, “Quantifying Connectivity 
in Wireless Sensor Networks with Grid-Based Deployments,” Elsevier: 
Journal of Network & Computer Applications, vol. 36, no. 1, pp. 368–377, Jan. 
2013.



249

9
Conclusions and 

Future Directions

Smart and cognitive environments have emerged as one of the most 
promising applications of WSNs in the Internet of things (IoT) era 
because of their information-centric nature and significant impact 
in everyday activity. The IoT domain has been spread across vari-
ety of areas including the future Internet, object identification using 
RFIDs, and various intelligent techniques to improve the network 
performance and quality of experience. Toward more efficient IoT 
implementations, in this work, we proposed and evaluated the use of 
cognitive sensor networks in large-scale IoT applications. We focused 
on key design aspects in the cognitive node and network architecture, 
deployment, and data delivery trends.

9.1 � Summary of the Book

We started the work in this book with a comprehensive overview 
about the use of intelligent decisions in sensor networks, while dis-
cussing a brief use case as a proof of concept in Chapter 1. From the 
results of the case study, we concluded the intelligence capability in 
IoT. We also suggested that it would be useful to develop a generic 
knowledge-based cognitive framework that can be applied to sensory 
applications, wherein the network decisions are based on learning and 
reasoning. From there on, we focused on investigating the cognitive 
node architecture, deployment, and delivery techniques in low-cost 
sensor networks; while considering modern applications in smart 
environments, such as the Smart Cities project.

In Chapter 2, we proposed a cognitive information-centric sen-
sor network (ICSN) architecture toward introducing the cognition 
concept in IoT using cognitive nodes deployed at specific locations in 
the network. These cognitive nodes implemented the features of the 
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network status feedback loop via knowledge representation, reason-
ing, and learning. A cost-comparison discussion between a typical 
relay node and the proposed cognitive nodes (CNs) concept showed 
that the latter were more expensive. And hence, a grid-based deploy-
ment plan was proposed for the ICSN in order to maintain the least 
number of CNs in comparison to the number of relays in the network. 
Distances between the relays and the CNs were planned based on 
the probability of a successful data reception at the network nodes. 
A MATLAB® simulation model based on the IEEE 802.15.4 PHY 
and MAC layer protocols was also used to verify the impact of vary-
ing load and number of the active CNs on the network’s performance 
in terms of latency, reliability, and the instantaneous throughput.

In Chapter 3, we detailed a possible cognitive data delivery frame-
work, and elaborated on the reasoning and knowledge representation 
techniques utilized at the cognitive nodes. Knowledge was represented 
using attribute–value pairs, and the analytic hierarchy process (AHP) 
was used as the reasoning element of the cognition in the ICSN for 
more quality of information (QoI)–aware decisions. We showed how 
the CNs put these elements of cognition in use by identifying data 
delivery paths to the sink from any source in the network. Latency, 
reliability, and throughput were the attributes used to identify the 
QoI-associated with data that was delivered to the end user. Based 
on extensive simulation results, we concluded that by restricting the 
number of nodes scheduled for simultaneous transmission, and the 
per-node offered load, the targeted QoI attributes can be maintained 
at acceptable levels along the data delivery paths. In addition, the net-
work performed very well while responding to varying traffic types 
and network topologies, thus establishing the suitability of the cogni-
tive ICSN for smart environments in IoT.

In Chapter 4, we presented an Enhanced 2-Phase Data Delivery 
(E2-PDD) framework for ICSNs, focusing on efficient content access 
and distribution as opposed to mere communication between data 
consumers and publishers. We employed an approach of growing 
eminence, where requests are initiated by consumers seeking partic-
ular services that are data-dependent. High-level controllers (HCs) 
receive the consumers’ requests and issue queries to a multitude of data 
publishers. The publishers in the examined topology included a wide 
variety of ubiquitous nodes that could be either stationary or mobile, 
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operating under different protocols. In order to consider fundamental 
challenges in ICSNs designed for dynamic IoT applications such as 
the mobility and data disruptions, our E2-PDD framework employs 
low-level controllers (LCs) that act as moderators between the HCs 
and the data publishers, executing data queries for the top tier and 
replying back with a set of candidate rendezvous points obtained from 
a bottom tier. Extensive simulation results had been used to evaluate 
the proposed E2-PDD framework in terms of key performance met-
rics in ICSNs viz., average in-network delay, and publisher load, given 
different mobility pause time durations and data consumers’ densities.

In Chapter 5, we elaborated more on the learning techniques that 
could be used with AHP-based reasoning to improve the cognitive 
decision making capabilities at the local cognitive nodes of the ICSN, 
operating in an IoT application environment. The challenge was to 
adapt the learning to respond to varying user requirements/requests, 
to consider the energy consumption in the network while catering to 
the QoI requirements, and to maintain a high average rate of a suc-
cessful data delivery to the sink while doing so. To address these chal-
lenges, we proposed two learning techniques, namely, learning data 
delivery A* (LDDA*) and cumulative-heuristic accelerated learning 
(CHAL) which employ heuristics towards improving the data deliv-
ery rate. LDDA* was able to deliver data with good QoI at the sink, 
while CHAL was the more energy-considerate technique, and both 
of these learning strategies had comparable performance with respect 
to the success rate of data delivered to the sink. Toward the end of 
this chapter, extensive simulations had shown improvement of about 
40 percent in the average rate of successful data delivery to the sink 
with the use of heuristic learning, when compared with a network 
that didn’t implement any learning.

In Chapter 6, we proposed a framework for data delivery in 
large-scale networks for disaster management, where numerous 
wireless sensors are distributed over the city traffic infrastructures, 
shopping mall parking areas, airport facilities, and so on. In gen-
eral, our framework catered for energy-efficient applications in the 
IoT where data is propagated via relays from diverse sensor-nodes 
toward a gateway connected to a large-scale network such as the 
Internet. We considered the entire network energy while choosing 
the next hop for the routed packets in the targeted wireless sensor 
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network. Our delivery approach considers resource limitations in 
terms of the hop count, and remaining energy levels. Moreover, 
the achieved results confirmed the effectiveness of the proposed 
approach in comparison to other baseline energy-aware routing 
protocols in the literature.

In Chapter 7, we proposed an adaptive routing approach (ARA) 
that selectively launches routes of communication between the 
heterogeneous IoT nodes. Since nodes in the IoT belong to differ-
ent owners, we also introduced a pricing mechanism to cater to the 
exchange of monetary costs by intermediate nodes to utilize their 
relaying resources. In this chapter, the ARA routing approach was 
verified via a case study, in addition to theoretical analysis while dem-
onstrating the utility and practicality of ARA in the heterogeneous 
IoT as it scales.

In Chapter 8, we proposed a cache replacement approach based 
on the value of sensed information (VoI) in one of the future IoT 
trends, namely the fog applications. Our approach depended on 
three functional parameters in information-centric sensor networks 
(ICSNs). These three parameters were the age of data based on a 
periodical request, the popularity of the on-demand requests, and 
the duration for which the sensor node is required to operate in 
active mode to capture sensed readings. These parameters are con-
sidered together to assign a value to cached data in fog to retain the 
most valuable information in the cache closer to the end user for 
prolonged time periods. This strategy provided significant avail-
ability for most valuable and difficult to sense data in the ICSNs. In 
addition, simulation results were performed to compare it against 
other dominant cache replacement policies under varying circum-
stances such as data popularity, cache size, network load, and con-
nectivity degree. Potential and promising results were achieved 
accordingly.

9.2 � Future Directions

With the research done in this book, ICSNs will be able to provide 
better infrastructure support for the Smarter Planet initiatives across 
the globe. Not only this, several future research directions and open 
issues can also be derived from the work done in this book so far. 
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In the following, we outline some of these future directions and open 
research issues.

	 1.	Exploiting the caching capabilities more and more.
		  One of the aspects of the information-centric capabilities 

in the ICSN framework, is its ability to cache information 
in cognitive nodes and use it collaboratively for informa
tion sharing across the network. While we acknowledged this 
advantage, such caching would rise an issue with the mobility-
enabled node presence, which we did not delve deeply into yet. 
Thus, exploring the role of caching in information access and 
data delivery, and the study of cache replacement techniques 
that suit the cognitive nodes in mobile ICSNs is still a direc-
tion to explore out of this work.

	 2.	Mobility-enabled cognitive nodes.
		  In general, the effect of node mobility on the QoI, and its 

impact on the ICSN adaptability and longevity shall be inves-
tigated more for safer ITS systems in the near future. While 
the discussed cognitive ICSN architecture proposed here can 
help in overcoming the limitations of the cross-layer design, 
we strongly recommend further investigations in the physical 
layer components and configurations.

	 3.	More developed and commercialized cognitive gateways.
		  In terms of enhancing the cognitive gateway while sup-

porting diverse application platforms, this work can be 
reconsidered for further enhancement in domain-specific 
ontologies for better knowledge representation. The creation 
of such ontologies can contribute toward the development 
of an enterprise architecture that can be applied to different 
application domains using the same underlying cognitive sen-
sor network.

	 4.	ICSNs integration with the next generation wired/wireless 
networks.

		  More functions could be incorporated at the cognitive 
gateway to integrate it with the next generation networks 
(NGNs) toward more cognitive radio enable nodes, working 
in cognitive network setups. The expansion of the gateway 
functions would then be able to take requests directly from 
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different network users such as cell phones, access points, and 
base stations, thus making the ICSN platform more acces-
sible to end users in an IoT paradigm.

	 5.	Cognition in the future Internet.
		  The idea of cognition can be investigated more while 

being applied to intermediate routers/switches of the cur-
rent Internet infrastructure to realize the cognitive network 
concept in general. Data need not be requested from specific 
hosts, nor has to travel end-to-end in the network. Instead, 
it can be cached at the network’s edge (fog). Cognitive rout-
ers could be used to understand the user request patterns and 
manage the cache content intelligently.

	 6.	Energy optimization.
		  Researchers shall investigate and look for an optimal learn-

ing policy that will identify the minimum CNs required while 
minimizing the number of connected sensors to it. The mini-
mum cover set approach with optimal learning can be used 
to find the minimum number of sensor nodes, to minimize 
energy consumptions without violating the networked infor-
mation quality/accuracy. CNs can communicate with each 
other and share their knowledge toward a common network 
goal. This information sharing can speed up the network 
learning, and thus can make better decisions about the ICSN 
resource management much earlier. This can lead to dramatic 
improvements in energy savings.

	 7.	Flexibility of the cognitive network framework.
		  The advantage of using a learning mechanism such as the 

AHP-based one stems mainly from applying the machine 
learning theory to measurable QoI attribute(s) in the wireless/
wired IoT network, and thus making the cognitive ICSN 
framework adaptable to numerous IoT applications. The pri-
orities assigned to the QoI attributes could also be varied to 
influence the classification of traffic flows, and the choice of 
the data delivery paths. This shall be more emphasized in the 
future work of this book.

	 8.	Security and privacy open issues.
		  Security and privacy are key issues to be addressed 

while spreading the adoption of cognitive networks in IoT 
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applications. Unluckily, security solutions have not been 
incorporated in a planned way in the early IoT version. The 
enabling technologies of RFID and sensor networks were 
simply integrated across with the existing Internet infrastruc-
ture, without considering key design factors such as the trust 
and privacy issues while gathering and delivering data. These 
security considerations span not only along the data manage-
ment, application, and service levels, but also the communica-
tion and networking levels, and are significant aspects to be 
investigated in any future work.
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