30 BeagleBone

Black Projects

for the

EVIL GENILS

Christopher Rush

Evil Genius Series

15 Dangerously Mad Projects for the Evil Genius

22 Radio and Receiver Projects for the Evil Genius

25 Home Automation Projects for the Evil Genius

30 Arduino Projects for the Evil Genius, Second Edition
30 BeagleBone Black Projects for the Evil Genius

50 Awesome Auto Projects for the Evil Genius

50 Model Rocket Projects for the Evil Genius

51 High-Tech Practical Jokes for the Evil Genius

101 Spy Gadgets for the Evil Genius

101 Outer Space Projects for the Evil Genius

123 PIC® Microcontroller Experiments for the Evil Genius
123 Robotics Experiments for the Evil Genius

Arduino + Android Projects for the Evil Genius

Bionics for the Evil Genius: 25 Build-it-Yourself Projects

Electronic Circuits for the Evil Genius, Second Edition: 64 Lessons with
Projects

Electronic Gadgets for the Evil Genius: 28 Build-it-Yourself Projects
Electronic Games for the Evil Genius

Electronic Sensors for the Evil Genius: 54 Electrifying Projects

Fuel Cell Projects for the Evil Genius

Mechatronics for the Evil Genius: 25 Build-it-Yourself Projects

MORE Electronic Gadgets for the Evil Genius: 40 NEW Build-it-Yourself
Projects

PC Mods for the Evil Genius: 25 Custom Builds to Turbocharge Your
Computer

Programming Video Games for the Evil Genius

Raspberry Pi Projects for the Evil Genius
Solar Energy Projects for the Evil Genius

30 BeagleBone
Black Projects
for the Evil Genius™

Christopher Rush

Mc
Graw
Hill

Educitlen
Mew York Chicago San Francisco Athens London Madrid
Mexico City Milan New Delhi Singapore Sydney Toronto

Copyright © 2015 by McGraw-Hill Education. All rights reserved. Except as
permitted under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means, or
stored in a data base or retrieval system, without the prior written permission
of the publisher, with the exception that the program listings may be entered,
stored, and executed in a computer system, but they may not be reproduced
for publication.

ISBN: 978-0-07-183929-7
MHID: 0-07-183929-1

The material in this eBook also appears in the print version of this title:
ISBN: 978-0-07-183928-0, MHID: 0-07-183928-3.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a
trademark symbol after every occurrence of a trademarked name, we use
names in an editorial fashion only, and to the benefit of the trademark owner,
with no intention of infringement of the trademark. Where such designations
appear in this book, they have been printed with initial caps.

McGraw-Hill Education books are available at special quantity discounts to
use as premiums and sales promotions or for use in corporate training
programs. To contact a representative, please visit the Contact Us page at
www.mhprofessional.com.

McGraw-Hill Education, the McGraw-Hill Education Publishing logo, Evil
Genius® and TAB™, and related trade dress are trademarks or registered
trademarks of McGraw-Hill Education and/or its affiliates in the United
States and other countries and may not be used without written permission.
All other trademarks are the property of their respective owners. McGraw-

Hill Education is not associated with any product or vendor mentioned in this
book.

Information has been obtained by McGraw-Hill Education from sources
believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, McGraw-Hill Education, or others,
McGraw-Hill Education does not guarantee the accuracy, adequacy, or

http://www.mhprofessional.com

completeness of any information and is not responsible for any errors or
omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors
reserve all rights in and to the work. Use of this work is subject to these
terms. Except as permitted under the Copyright Act of 1976 and the right to
store and retrieve one copy of the work, you may not decompile, disassemble,
reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any
part of it without McGraw-Hill Education’s prior consent. You may use the
work for your own noncommercial and personal use; any other use of the
work is strictly prohibited. Your right to use the work may be terminated if
you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION
AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR
RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING
ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE
WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY
DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
McGraw-Hill Education and its licensors do not warrant or guarantee that the
functions contained in the work will meet your requirements or that its
operation will be uninterrupted or error free. Neither McGraw-Hill Education
nor its licensors shall be liable to you or anyone else for any inaccuracy, error
or omission, regardless of cause, in the work or for any damages resulting
therefrom. McGraw-Hill Education has no responsibility for the content of
any information accessed through the work. Under no circumstances shall
McGraw-Hill Education and/or its licensors be liable for any indirect,
incidental, special, punitive, consequential or similar damages that result
from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or cause arises in
contract, tort or otherwise.

I would like to dedicate this book to my father, Peter Rush,
from whom I inherited the love to make things.

About the Author

Christopher Rush (Preston, UK) has a degree in computer science and has
spent the last 10 years working for CPC, an electronics distribution company.
Christopher is a full-time product author and has an extensive knowledge of
the electronics hobbyist market. Christopher also runs a makerspace blog,
providing tutorials and user guides for popular development boards and
accessories, including Raspberry Pi, Arduino, BeagleBone, and others.

Contents

2

Acknowledgments
Introduction

Getting Started

Powering Up Your BeagleBone Black

Powering Up Your BeagleBone Black

Connecting to Your BeagleBone Black Through Ethernet
Connecting via SSH Through USB and Ethernet
Installing Software and Running Updates

BeagleBone Black Pinout

Project 1 Blinking an Internal LED

Summary

LED Projects

Project 2 Blink an External LED

Project 3 Adjustable LED Blinker

Project 4 High-Powered LED Morse Code Sender
Project 5 RGB LED Fader

Project 6 Traffic Lights

Project 7 Matrix Displays

Summary

Sensor Projects

Project 8 Scanning Sonar
Project 9 Vibration Detection
Project 10 GPS Tracker
Project 11 Temperature Sensor
Project 12 Moisture Sensor
Project 13 Light Level Indicator

Summary

Robotic Projects

Project 14 Controlling Servos and Motors
Project 15 Wireless Keyboard-Controlled Rover
Project 16 Web-Controlled Rover

Project 17 Plant Hydration System

Project 18 Sentinel Turret

Summary

Display Projects

Project 19 7-Segment Clock

Project 20 Displaying Sensor Information
Project 21 LCD Display

Project 22 LED Matrix Scrolling Text Display
Summary

Audio Projects

Project 23 Internet Radio

Project 24 “The Imperial March” Player
Project 25 Audio Level Indicator
Summary

Spy Projects

Project 26 Intruder Alert Using the Twitter API
Project 27 Lie Detector

Project 28 Keypad Door Latch

Project 29 Webcam Security Doorbell

Project 30 Automatic Dog Barker

Summary

Tools and Tips

Datasheets

Breadboards and Prototyping Boards
Multimeter

Soldering

Analog vs

Understanding I2C and SPI

Summary

Appendix A
Suppliers
Components

Appendix B

Index

Suppliers and Components

BeagleBone Black GPIO Pinout

Acknowledgments

I wouLD LIKE TO THANK my family for all their support, and my team at CPC
for all their encouragement. Also, I would like to say a special thanks to my
close friend Dr. Mark Lochrie, who is always very supportive and inspiring,
as well as to my partner Jennifer Wozniak for her patience and motivation
while writing this book.

I would like to thank Roger Stewart and the team at McGraw-Hill
Education, who have been very patient and supportive and an absolute
pleasure to work with. And, finally, thanks to Simon Monk—all this would
not have been possible without you.

Introduction

THE BEAGLEBONE BLACK PROVIDES the Evil Genius with a low-cost, easy-
to-use solution for creating some Evil projects. The board allows us to create
a wide range of projects that can be built and controlled by a single
embedded solution. Before too long, you will have captured your enemy and
used your sinister Evil techniques to interrogate them. They will be at your
mercy—mwahahahaha!

This book will show you how to connect your BeagleBone Black to your
computer and how to program it using the free software provided. It will also
teach you how to connect a wide range of common electronic components,
including LEDs, motors, a USB missile launcher, and much more.

This book includes full schematic and breadboard layout diagrams, where
appropriate, for most of the projects. Also, most of the projects can be
constructed without the need of any soldering equipment or tools. However,
the deeper you dive into the more Evil projects, the more complex the
creations become, and instructions are clearly provided for soldering
components to prototyping boards.

What Is BeagleBone Black All About?

The BeagleBone Black is a small microcontroller computer board specifically
designed for developers and hobbyists, supplied with a mini-USB port that
plugs directly into your computer. It also features a number of sockets and
connectors that can be hooked up to a number of electrical devices and
components such as LEDs, motors, sensors, speakers, and many more. The
BeagleBone Black can be powered either through the mini-USB port or
directly from a 5V power supply unit. When connected to a computer, it can
then be controlled and programmed through the computer, but also
disconnected for use as a true embedded system.

At this current time, Evil Geniuses can easily obtain a BeagleBone Black

from their favorite online electronic store for around $45; this includes a
BeagleBone Black board and a mini-USB cable for connectivity.

BeagleBone Black

The BeagleBone Black isn’t just an open source embedded platform; it is a
whole ecosystem of electronics and interface boards encompassing the
enthusiasm from the open source community. Never underestimate the power
of community—there is a large community of engineers, hobbyists, makers,
and Evil Geniuses out there, most of which can be found on Beagleboard.org.
These makers create and share their ideas and projects online with engaged
enthusiasts. The following table lists the key hardware features of the
BeagleBone Black.

http://www.beagleboard.org

Feature

Processor Sitara AM3358BZCZ100

1 GHz, 2,000 MIPS
Graphics SGX530 3D, 20M Polygons/S
SDRAM Memory 512MB DDR3L 800 MHz

Onboard Flash

2GB, 8-bit Embedded MMC

PMIC

TPS65217C PMIC regulator and
one additional LDO

Debug Support

Optional onboard 20-pin CTI
JTAG, serial header

Power Source

Mini USB or 5VDC jack

PCB 3.4" x 2.1, six layers
Indicators 1: Power
2: Ethernet
4: User-controllable LEDs
USB 2.0 Client Port | Via mini USB
USB 2.0 Host Port | Type A socket 500mA
Serial Port Six-pin 3.3V TTL header
Ethernet 10/100 RJ-45
SD/MMC Micro-SD
Connector
User Input Reset, Boot, Power button
Video Output HDMI 1280x1024
Audio Via HDMlI interface
Expansion Power 5V, 3.3V, VDD_ADC (1.8V)
Connectors 3.3VI/O on all signals
65 GPIO, 12C, SPI, 7 AIN (1.8V
max), four timers, four serial
ports
Weight 40g (approx.)
Power 210-460mA @ 5V

This book uses Revision A5C with the latest version of the Angstrom
operating system. Full instructions on obtaining the latest version can be
found in Chapter 1.

A full list of the BeagleBone Black’s GPIO pins can be found in Appendix

B. This is very useful when you are deciding which electronic devices to
attach to the BeagleBone.

Capes

Capes are expansion boards that connect directly on top of the BeagleBone
Black. They are designed by developers and advanced makers as an easy
solution for creating your projects. Currently, over 50 capes are available for
both the BeagleBone and BeagleBone Black, which can be found at
http://elinux.org/ Beagleboard:BeagleBone_Capes. Note that some capes are
not fully compatible with the BeagleBone Black. The majority of the capes
have been produced by the user community; you can submit your cape ideas
to the Beagleboard website. Some capes include the following types:

LCD screen
Battery cape
GPS/GPRS cape
Audio cape
Prototyping cape

HD camera cape

Revision C

As of the writing this book, and the first birthday of the BeagleBone Black, a
new revision of the BeagleBone Black is available. It ships standard with
Debian OS instead of Angstrom. It also comes supplied with 4GB of eMMC
flash memory, as requested by the BeagleBone community. This helps
prevent the wearing out of flash memory over time. All other features of the
board remain the same; however, there is a $10 price increase to cope with
the ever-fluctuating costs of materials to manufacture the boards. All the
projects in this book are compatible with all revisions of the BeagleBone

http://elinux.org/

Black, as well as both Debian and Angstrom. Note that both commands for
installing software are stated, where possible.

The Projects

The projects in this book offer a wide range of applications, beginning with
some basic examples, such as connecting an LED and getting it to flash on
and off. At the same time, you get experience using the software and the
BeagleBone Black’s GPIO pins. Most of the projects are programmed using
the JavaScript BoneScript library, but some projects later in the book use
Python and the Adafruit BBIO library. I have tried to accommodate for using
both programming languages on the BeagleBone Black.

The chapters move from using LEDs to connecting a range of sensors for
detecting temperature and measuring light levels, for example. Although
these are still basic projects, they are very useful in everyday applications.
We also use a number of already-made modules, such as an LED matrix
display and a GPS sensor for obtaining current location statistics.

Gradually building on the previous chapters, we move on to Chapter 4,
where you learn how to control the motors and servos used in robotics. You
can control them through the web interface or via a standard wireless
keyboard. We also create a watering system using a motor pump that detects
the moisture level in the soil and then turns on the motor when the plant
needs watering—simple, yet satisfyingly useful for those with a green thumb.

The final “projects” chapter, Chapter 7, contains a mixture of some really
Evil projects, including a lie detector test, a webcam doorbell security system,
a motion detection alert using the Twitter API Tweepy, and a dog-barking
deterrent for unwanted guests.

You can build most of the projects in the book without the need for
soldering any components. Instead, we use a breadboard, which is a plastic
block that contains lots of small holes, arranged in rows. These rows are
connected using metal springs behind them and are used to create our
circuits. More information about breadboards can be found in Chapter 8. If
you decide that you want to make your project a more permanent fixture,
then refer to Chapter 2, which shows you how to solder your project to a PCB
prototyping cape.

The components in this book are all sourced from a number of suppliers in
both the United States and the United Kingdom. Appendix A features a full
list of parts, part numbers, and suppliers from which you can purchase the
parts.

Software

All the software written for this book is freely available for download and is
all open source, which means you can reuse the code for your own projects
and distribute it as you like. Most of the projects written for this book use the
BoneScript programming language and use the .js file extension. Some
projects later in the book use the Python language and use the .py file
extension.

The software is available to download from
https://github.com/ChristopherRush/BB-Evil-Genius. To download the
software using github, open a Terminal window from within Cloud9 on
Debian and type the following command to download the github repository:

git clone git://github.com/
ChristopherRush/BB-Evil-Genius.git

If you are using an older version of the BeagleBone Black with Angstrom,
you can SSH into the BeagleBone Black and type in the same command to
begin the download.

The software code is well annotated, with useful hints and a breakdown of
what parts of the code do what.

And I Present to You...

Without further ado, I present to you 30 BeagleBone Black Projects for the
Evil Genius. I know some of you are impatient Evil Geniuses and want to get
straight to the good stuff. However, Chapter 1 gives you a step-by-step guide
on how to set up your BeagleBone Black with ease and start programming
your first project using the Cloud9 IDE program. I highly recommend you
read this chapter if you are new to the BeagleBone Black.

https://github.com/ChristopherRush/BB-Evil-Genius

Starting in Chapter 2, we begin to build on what you learn in the first
chapter, gradually increasing the complexity of the projects and hopefully
allowing you to go on and design your own Evil Genius projects. You may
want to skip certain chapters and instead select a particular project to get
started with—if so, just pick a project and get going. However, if you get
stuck, it may be worth starting from the beginning in Chapter 1 and slowly
working your way through each project.

Getting Started

LIKE MANY MAKERS, | had started out making electronics using the Arduino
and BASIC stamp microcontroller boards. Since then, I have transitioned
onto using many other boards such as Freescale 8/16bit, MSP430 chipset
boards, Digilent Chipkit, and Raspberry Pi. Although these boards are great, |
always found myself wanting more—there was always something lacking in
their features or they were not cost effective for my projects.

I heard about the Beagleboard and BeagleBone a while back, but it didn’t
grab my attention at the time, with no video output and a heavy price tag of
$100-$150. When I read a press release from CircuitCo about a new
BeagleBone Black, I thought it was too good to be true: the specification was
incredible, with an Arm Cortex A8 1GHz CPU with 65 possible GPIO pins,
HDMI video/audio output, and 512MB of DDR3 memory. Surely this would
come with higher price tag than that of a small mobile computer. Well, I was
wrong. CircuitCo announced that the price would be around $45— an
incredible value.

Since receiving my BeagleBone Black, I have been hooked. All my
projects use this microcontroller, and the more I learn about this board, the
more features I unravel and the more it shows its true full potential as the
ultimate microcontroller board. This chapter unravels the unknown mysteries
of the BeagleBone Black. It gets you familiar with using the hardware,
software, and setting up your first project using the BoneScript programming
language.

I know that having so much flexibility and versatility in a single device
can sometimes make things seem hard when you are just getting started. You
will soon realize that there isn’t a single right way of doing things: there can
be many different ways of achieving the same outcome. Hopefully, this

chapter will get you heading in the right direction.

Powering Up Your BeagleBone Black

You have many ways to connect to your BeagleBone Black development
board—more specifically, you have many ways to access it to start
programming using BoneScript. The preferred software tool for programming
the BeagleBone Black is the Cloud9 IDE, but we’ll cover every option for
programming in this chapter.

Connecting Using USB

The BeagleBone Black comes with software/drivers already embedded in its
operating system (OS) and includes documentation that will help you get
connected to your computer. A great new hardware feature for the
BeagleBone Black is that it comes with 2GB eMMC Flash memory with the
Angstrom OS preinstalled, so there is no need to download and flash a micro-
SD card.

Go ahead and plug the mini universal serial bus (USB) cable supplied with
your BeagleBone Black (BBB) board into your BeagleBone Black and the
other end into your computer, as shown in Figure 1-1.

13Ty MBIl Connecting a USB cable to BBB

This will power the BeagleBone Black board and also provide a
development interface in which you can program. The BeagleBone Black
will boot Angstrom OS from the onboard 2GB embedded multimedia
controller (eMMC), and the new revision C board will boot Debian OS. Once
the BeagleBone Black is plugged in, the power LED (light-emitting diode)
will be lit up and the adjacent bank of four LEDs will be flashing, as shown

in Figure 1-2. The board is now alive!

The four LEDs are configured as follows:

USRO is configured at bootup to blink in a heartbeat pattern.

USRI is configured at bootup to light during micro-SD card access.
USR?2 is configured at bootup to light during CPU activity.

USR3 is configured at bootup to light during eMMC access.

13T B BeagleBone Black’s bank of four LED indicators

NOTE Holding down the boot switch when powering your

BeagleBone Black will tell the hardware to boot from the micro-SD card
instead of the onboard eMMC.

Installing Drivers

Drivers need to be installed on your computer system before you can do
anything with the board, so the following instructions show you how to
install drivers on the Windows, Mac OS X, and Linux operating systems.
Once you have powered up your BeagleBone Black through USB, it will
operate as a flash drive, giving you all the necessary files you need to get
started, including drivers and documentation, as shown in Figure 1-3.

| BEAGLEBONE

4 b 2 ElniENER > | (2%~ Q
FAVORITES r
(] Dropbox ' :
51 All My Files e [— —
© Airdrop App autorun.inf Docs Drivers
| Desktop
ﬁj christopherrush N N
#\ Applications . .
™ Documents ™ ™
E Coug]e Drive 1ID.axt LICENSE.txt MLO README.md
DEVICES —
& sootcae 51]- -
H T
START.htm u-boot.img UEnV.IXt

13T B The file directory for BBB

Open the file directory on the flash drive and double-click start.html to
open this document in your default web browser. The web page you see
before you is a step-by-step quick start guide on installing all the relevant
software. It provides web links for all stages, making it easy to follow. Go to
step 2, shown in Figure 1-4, and select the operating system you are currently
using; if prompted, click Run and follow the instructions to install the drivers.

|} BeagleBoard.org - getting X
€ C' |1 file:/ flocalhost/Volumes/BEAGLEBONE/START.htm#step2 o %

+ USRO Is configured at boot lo blink In a heartbeat patiem
+ USR5 configured at boot io light during microS0 card accesses
+ USR2 s configured at boot to light during CPU activity

+ USR3 Is configured at boot to light during eMMC accesses

PWR USR3 USR2 USR! USRO

=)
(=1
=1
z
m
m
o
™
-
&
Sepl: G
Plug In BeagleBona via USB
Stap 2:
Ins::ﬂan?acs Step #2; Install drivers
Stop 3: Install the drivars for your operating system lo give you network-over-USB access to

Browsa lo web server on board e BpagleBone. Additional divers give you seral access to your board.

Troubleshoating Operating USEB Drivers
Updata io lates! software

Other software opSions Windows 64.bit nstaller
Hanhvars docmasialon (64-bit) ' Ifin doubt, try the 64-bit installer first.
+ Noto #1: Windows Driver Conification waming may pop up two of threa imes.
Click “gnore”, “Install* or Run®
« Noto #2: To check if you're running 32 or 64-bit Windows see this:
Windows hiipJisupportmicrosofeomkbB27218.
(32-bit) 32-bit Installer + Noto #3: On systems without th [aiast servica ralease, you may et an aror
i b). In that case, please install the following and retry:
{Oxc000007
htipiwww.microsof comien-uskiownload/confirmation aspx?id=13523,
« Noto #4; You may need to reboot Windows.
Network -
Mae 0S X Serial Install both sats of drivers.
Lk e e Emtr”mstalmtm isn't required, but you might find a few udev rules

Note: Additional FTDI USB to serallJTAG information and drivers are available from
hitp:/www fidichip.com/DriversVCP him,

Note: Additional USB to virtual Ethemel information and drivers are available from hitp:/fwww.linux-ush.org/gadget! and
hitp:/fjoshuawise.com/homdis.
Stap #3: Browse 1o your boand

Using either Chrome or Firefox (Intemet Explorer will NOT work), browse to the web server running on your board. It wil
load a presentation showing you the capabilities of tha board. Use the amow keys on your keyboard lo navigala the

Selecting operating system drivers

You must install the “FTDI USB to serial/JTAG” drivers

if you are connecting through USB.

Once this step is complete, open your web browser (either Firefox or
Chrome, not Internet Explorer) and type in the URL http://192.168.7.2/. This
will confirm the connection to your BeagleBone Black and load up the
Bonel01 web page on the device, as shown in Figure 1-5.

{2 BeagleBoard.org - bonel0 X

& - C [} 192.168.1.78/Support/bone101/ o '-fm =

board.org

BeagleBone 101

| , Your board Is connacted!
::;g:gm h v B;l;ilma Black rev 0ASA S/N 1813BBBK0159 at 192.168.1.78
o Updala Image
$ C E
c;';:g:fsm BeagleBone: open-hardware expandable computer

Hardware .)
o Headers Artist-tested, engineer approved

s Capes

The left-hand navigation bar will help you explore your board and leam how to program i,

Bone3cript
Functions
o geiPlatiorm()
& pinModa()
o getPinModa()
o digitalWrita()
o digitalRead()

|31 MBS The Bonel01 web page

Congratulations, you are now one step closer to becoming an Evil Genius.

Connecting to Your BeagleBone Black Through

http://192.168.7.2/

Ethernet

Connecting your BeagleBone Black to your Ethernet network is very
convenient when you are connecting using different computers in different
locations. This method does require a 5V PSU with a 2.1mm DC jack for
powering up the BeagleBone Black. So go ahead and plug in the Ethernet
cable connected to your router/modem and then plug in the DC power jack,
as shown in Figure 1-6.

|31 B Ethernet and DC jack connected to BBB

Next, you need to find out what the BeagleBone Black’s Internet Protocol
(IP) address is so you can access it in your web browser. This address is
automatically assigned to the BeagleBone Black using the Dynamic Host
Control Protocol (DHCP) on your router/modem. The easiest way to find this
is to open up your router/modem settings and locate the device under the
wired Ethernet settings, like in Figure 1-7.

@' BT Home Hub Manager - |

= C | [} 192.168.1.254/index.cgi?active_page=9132&active_page_sir=page_settings_a_devices&req_mode = 1&mimic_button... s .-E.IB

BT Home Hub Help | A-2Z

Home

Network Forwarding

Devices [P Addresses DHCP Tabie

Home Network - Devices

The diagram below shows all the dévices that are connected to your BT Home Hub. Click on the device name to view
and edit its settings or to remove it from the network.

BTHub3-GF33

Refresh

Physical Connections Wireless Connections
7c:03:d8:01:1b:88 00:03:d8:01:1b:8a

Unknown-c4:95:32:06:40:38 rushy-PC

Connected (1) 10:90:0d:01:79:57
Connected

beaglebone

c8:a0:30:ae:21 0/ android-b98aS4dfedici9chs

Connected () a0:06:ba:06:61:41
Connected
Xbox-System(S

() 50:1a:¢5:67:78:9¢

Connected

i

ISty MY BBB IP address

Once you have located the BeagleBone Black IP address, open your web
browser (either Firefox or Chrome, not Internet Explorer). In the URL bar,

type the address http://x.x.x.x/, where “x.x.x.x” is your IP address. Once you
have done this, press ENTER. You should now be connected to your
BeagleBone Black board and see the Bone101 web page, as shown in Figure
1-5.

Congratulations, you are now connected to your BeagleBone Black
through an Ethernet connection. The Bonel01 page provides a lot of
information about the board itself, including some great examples using the
BoneScript JavaScript library and some great add-on boards called “capes.”
Feel free to browse around.

Connecting via SSH Through USB and Ethernet

Secure Shell (SSH) is a cryptographic network protocol for secure data
communications between devices, and is more commonly known for remote
command execution using a client/server model. Accessing the BeagleBone
Black through SSH can be accomplished either by connecting the
BeagleBone Black to your computer using the USB cable provided or by
connecting the BeagleBone Black to your Ethernet network.

SSH clients come standard on most operating systems (except Microsoft
Windows). This is not a problem because a load of software is available that
can allow you to connect to your BeagleBone Black through SSH, and this
section shows you how to do that.

SSH Through GateOne SSH

Due to the fantastic features on the BeagleBone Black, GateOne SSH comes
preinstalled. GateOne SSH is a terminal emulator that you can use through
your web browser without installing any additional software on your
computer. This is by far the easiest method of connecting via SSH, and the
most convenient for connecting using different operating systems, even on
mobile devices.

The first step is to open your web browser and navigate to the Bone101
web page (http://192.168.1.78/Support/bone101/). In the navigation menu on
the left side, you’ll see GateOne SSH under the heading Software. Click the
link, which directs you to the GateOne SSH web page shown in Figure 1-8.

http://192.168.1.78/Support/bone101/

E-‘ BeagleBoard.org - bonell

= ¢ [192.168.1.78/Support /bone101 /#gateone

el
m

For more information about the Bonescript library, see www.beagleboard.org/bonescript.
GateOne SSH client

GateOne provides a method for logging into the shell of your board without installing an ssh client on your
computer. Click on the "GateOne SSH client" link above to login.

+ HostIP or S5H URL - localhost

« Port-22

+ User-rool
« Password - <empty>

Nota: f you get errars, you might need to sef the date on your BaagieBone. | Set Date

|/ fi Beagleboard.org - bone1l x |) Cate One - beaglebone x|
& = [k wips/ beaglebone.local

[Press Shift-Fi for help]

m

ost/IP or S5H URL [localhost):

port [22]:

Ser: root

Connecting to sshi//root@localhost:22

root@localhost's password:
root@beaglebone:~# ||

|3T411d B The GateOne SSH page

Once the web page has loaded, you should see a window that looks similar

to a terminal window on your BeagleBone Black. At first you will be
prompted to enter connection details such as IP address, port number,
username, and password. If you are connected to the BeagleBone Black
through either USB or the local Ethernet network, leave the first line blank
when asked for an host/IP address and also when you’re prompted to enter a
port number, because this instance will be using the default settings to
connect. Enter your username and password, and you will be connected to
your BeagleBone Black through SSH. You will see “root@ beaglebone:~#”
once connected.

NOTE The default username is root, and no password is set.

Connecting via SSH in Windows

To get SSH running in Windows, you need to download an SSH client
program. The most popular program to use is PuTTY, and it can be
downloaded from www.putty.org. Once it is downloaded and installed, you
can go ahead and run the putty.exe program file. You will enter the
configuration window upon starting PuTTY (see Figure 1-9). This is where
you add your BeagleBone Black settings, which will enable you to connect
over SSH.

http://www.putty.org

r Pr——
B3 PuTTY Configuration « Mg Ml & e o M
| Cateaory:
[=]- Session Basic options for your PuTTY session
| :
LT I‘_ug?'"g Specify the destination you want to connect to
5 &mi‘;::boa d Host Name (or IP address) Port
el 192.168.72 2
| .. Features Connection type:
| = Window ORaw (O Tehet O Rogn @ 3SH () Seq
: gﬂ:;?:rce Load, save or delete a stored session |
’ Translation 2aved Sessions
Selection
l BCuC;‘;um Default Settings Load
-Connection
| o |
g----Telnet Delete
" Rlogin ‘
(- SSH
. e Close window on ext;
()Aways) Never @ Onlyon clean ext
A

ISTANT B The PuTTY Configuration menu

Enter the IP address of your BeagleBone Black in the Host Name box; if
you are connected via USB, the IP address will be 192.168.7.2. Alternatively,
if you are connected through the local Ethernet network, your BeagleBone
Black will have a local IP address that you can obtain through your
router/modem. Next, click Open, and the client will try to establish a
connection. A security box will appear; you will be required to enter the
default username and password details of the BeagleBone Black. Log in with
“root” and no password, after which you can just press ENTER. You are now
connected to your BeagleBone Black, as shown in Figure 1-10, and can view
the root file system and issue commands.

A

IS YW The PuTTY window after you have logged in

Connecting via SSH in Mac OS/Linux

If you are a Mac or Linux user, you’re in luck: an SSH client comes with the
standard installation and can be accessed using the Terminal window (see
Figure 1-11). All you have to do is type the following command:

ssh 192.168.7.2 —1 root

(3 christopherrush — ssh — 80x24

Last login: S5at Jan 4 22:81:31 on console

You have mail.

rushy-pc:~ christopherrush$ ssh 192.168.7.2 -1 root

ssh: connect to host 192.168.7.2 port 22: Operation timed out

rushy-pc:~ christopherrush$ ssh 192.168.1.78 -1 root

The authenticity of host '192,168.1.78 (192.168.1.78)' can't be established.
RSA key fingerprint is @1:af:6e:ab:d6:cb:0e:52:19:a6:3b:6b:e2:97:3d: fa.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.1.78' (RSA) to the list of known hosts.
root@192.168.1.78's password:

root@beaglebone:~# U

|3T311s MWl The SSH login procedure for Mac OS X

The first time you log in, you will receive an authentication warning
message. Just type yes to continue with the SSH session and press RETURN (or
ENTER) when prompted for a password, given that no default password is set
on the BeagleBone Black device.

Installing Software and Running Updates

The BeagleBone Black comes preinstalled with the Angstrom operating
system, but sometimes you may want a clean install or you may want to run
an update of the current files. I always recommend that you have the latest

and most up-to-date operating system and software, so I’'ll show you how to
do both.

Installing the New OS Image

Before we get started installing a new image, a couple of items are required:

m 4GB micro-SD card
m Micro-SD card reader

The BeagleBone Black has 2GB of eMMC storage (4GB on RevC) that
can be initialized by a program booted off a micro-SD card.

Download the latest distribution from http://beagleboard.org/latest-images,
where you will find the most up-to-date image of the OS. Depending on your
Internet connection speed, the download may take up to 30 minutes.

Writing the Image in Windows

Once the distribution is downloaded, you will notice that the file has an
.img.xz extension, which is a compressed sector-by-sector image of the SD
card. To decompress this file, you need to download and install 7-Zip, which
is available for all operating systems from www.7-zip.org/download.html
(see Figure 1-12).

http://beagleboard.org/latest-images
http://www.7-zip.org/download.html

| Download %

¢ C [} www.7-zip.org/download.html w E._u] =
Download
ZI P Download 7-Zip for Windows:
7-Zip9.20
Home 201011515 | YPe. | Wincows Description
7z Format
Download .exe
LZMA SDK 32-bit x86 7-Zip for 32-bit Windows
Download Download .msi
:AQ # Download .msi 64-bit x64 7-Zip for 64-bit Windows x64 (Intel 64 or AMD64)
uppo

Links Download .msi IA-64 7-Zip for IA-64 Itanium CPU

Download .exe ARM 7-Zip for Windows Mobile / Windows CE (ARM)
mtbdballd pownoad zZp 32t 7-Zip Command Line Version

Download .tar.bz2 Any 7-Zip Source code

;:_?,:I;E Download 72 32-bit 7z Library, SFXs for installers, Plugin for FAR Manager
et Download tarbz2 Any LZMASDK (C, C++, C#, Java)

Chinese Trad.

Esperanto Download links redirect to a download page on SourceForge.net.

ggl;_n You can download any versions of 7-Zip (including latest beta versions) from SourceForge:
Hungarian 7-Zip files at Source Forge

T=smsnama

|BTAd MBIV, The 7-Zip download page

NOTE Make sure you download BeagleBone Black (eMMC

flasher) if you want to replace the current image on the eMMC.

Once 7-Zip is downloaded and installed, decompress the Angstrom image
file by right-clicking the image file and selecting 7-Zip | Decompress Image.
A decompression in progress is shown in Figure 1-13.

39% Extracting C:A\Users\crush\Dow .. -2013.0620imgacz e

Elapsed time: 00:00:07 Total size: 368 MB
Remaining time: 00:00:10 Speed: 20 MB/s
Files: 0 Processed: 485 MB
Compression ratio: 0% Compressed size: 145 MB
BBB-eMMC-iasher-2013.06.20.img

!)

ot] [][

ISt MBIR 7-Zip decompressing the image

Once the image file is decompressed, you can now download and install
an image writer program that will write the image file to the micro-SD card.
For Windows computers, you can download Win32 Disk Imager, which is
free from SourceForge (http://sourceforge.net/projects/win32diskimager).
Launch the Win32 Disk Imager software by double-clicking the
Win32DiskImager file in the folder to which you extracted it and then click
the file icon next to the Image File field (see Figure 1-14). Navigate to where
you decompressed the Angstrom image and select the image file (see Figure
1-15).

http://sourceforge.net/projects/win32diskimager

Image File

MDS5 Hash:

[Cancel H Read H Write ” Exit ‘

IS MBI Win32 Disk Imager

]
% Select a disk image

)

e,
@uv! L.+ Rush, Chris » Downloads » BBB-eMMC-flasher-2013.06.20.img

. | 44 | Search BEE-eMMC-floshe

Organize ¥ New folder

7 Faverites Name

) BBB-eMMC-lasher- 20130620
A Libraries
! Decuments
& Music
el Pictures

B Videos
& Computer

'?! Network

File pame: BEE-eMMC-flasher-2013.06.20

Date modified

03/11/2013 14:49

Type

Disc Image File

Sze

3311712 KB

2. P
Ex @

Save & bype: ["amg"IMG

& Hide Folders

[swe |[conca |

| %

IS MBIE Navigate to Angstrom image

Once this is done, click the Write button and wait for the image file to

complete writing to the microSD card.

abdblll Make sure you select the correct drive letter; otherwise,
you risk losing data on other devices!

Writing the Image in Mac OS X

To decompress the image file in Mac OS X, the best program you can use is
The Unarchiver, which you can find in the App Store or from
http://wakaba.c3.cx/s/apps/unarchiver.html. Once you have downloaded and
installed the application, navigate to where the Angstrom image file was
downloaded and double-click the image to begin decompressing. It will take
a few minutes to extract the file.

Now that you have the image file, you can write the image to the micro-
SD card. On the Mac OS X operating system, you have a couple of ways you
can do this. For safe measure, we will cover both ways.

Using a GUI The first thing you’ll want to do is download a program
called PiFiller, which you can find at http://ivanx.com/raspberrypi. Even
though this program was specifically designed for use with the Raspberry Pi,
you can apply the program concept to any SD card using any image.

adllll Remove your SD card before launching the PiFiller
program.

Once this program is downloaded, double-click the application and follow
the onscreen instructions for selecting the Angstrom image file and inserting
the micro-SD card. Click Continue once you have selected the correct SD
card in your computer, as shown in Figure 1-16, and the program will start to
write the Angstrom image to your SD card. This process may take between
15 and 20 minutes.

You appear to have inserted an 5D
card with the volume name “BEB".

Please make sure this is really your
5D card and that it can be ERASED,

By continuing, you agree that the
author of this pragram is not
responsible for any lost data on this
card or any other disk on this
compuber.

|3 MBI Selecting the correct SD card in Mac OS X

http://wakaba.c3.cx/s/apps/unarchiver.html
http://ivanx.com/raspberrypi

Using the Command Line A great alternative is to flash the micro-SD
card entirely using the command-line interface. You can achieve this simply
by opening up the Terminal window in Mac OS X and typing the following
command:

Df -h

Executing this command gives you a list of storage devices connected to
your Mac. Identify your micro-SD card from the list and take note of the file
system name.

The following command will unmount the micro-SD card (/dev/disk4s1)
from your Mac so you can then write the image file safely:

Sudo diskutil unmount /dev/diskdsl

Now you will want to input the following command, which will write the
image to the SD card. When typing this command, make sure you choose the
correct location for your image file (in this case,
it’s/Downloads/BBB/filename.img).

Sudo ddb s=1m if=~/Downloads/BBB/eMMC-
flasher-2013-05.08.img of=/dev/diskidsl

It should take between 15 and 30 minutes to write the image to the micro-
SD card, depending on the speed of your computer.

adlielll Make sure you input the correct disk name because you
risk losing data on your master hard drive!

Flashing the BeagleBone Black’s eMMC

Now you should have a fully flashed micro-SD card with the latest version of
Angstrom downloaded from the BeagleBone Black web page. Insert the
micro-SD card into the BeagleBone Black (powered down) and then power
on the board, either via the USB cable or a 5V DC adaptor, while holding
down the USER/BOQOT button at the same time. Holding down the
USER/BOQT button will force the hardware of the BeagleBone Black to
boot from the micro-SD card, and the process of flashing the onboard 2GB

eMMC will begin. You’ll need to wait for up to 45 minutes for this process to
complete. Once the flashing has completed, your BeagleBone Black board
will light up all four of the LEDs. Power down your board and remove the
micro-SD card to complete the process. Your BeagleBone Black is now up to
date with the latest Angstrom image and can be booted back up as normal
from the 2GB eMMC memory.

Running Updates on the BeagleBone Black

The easiest way to get the latest software updates (and by far the quickest) is
to connect your BeagleBone Black to the Internet and run the update
commands in the Terminal window. Software updates and upgrades come in
packages using a program called opkg, which is specifically designed for
embedded Linux devices to manage the process of installing or updating the
packages on your BeagleBone Black. The opkg package manager keeps a list
of current software versions locally on your BeagleBone Black, so before you
run an upgrade, you must update the list. Type the following command in the
Terminal:

opkg update

You will see the BeagleBone Black download the latest listings from the
Internet. Now that you have the most up-to-date list of software packages, as
shown in Figure 1-17, you can go ahead and upgrade them to the latest
version using the following command:

@ Dissbler & Cookiesr # C550 [Forms® & Images® A Information® [Miscelaneous: _K’ Outine & Resizer ,ﬂt Tools B View Sources ([Options™
[Press Shift-F1 for help]

in fvar/1ibfopkg/lists/base.

avatlable packages in /v ste/gstroaner.

of avatlable pa : fvar/Lib/ Usts/no-arch,
Jvar/1ib/opkg/L1sts/perl.

fvarf 1 J

from 4.1.4

sh on roo
oading http://fi gstron-distribu g/f
pgrading perl-module-cgl-pretty on root from 5.14.2-r13
8 on root from 3.8.13-12

pgrading ual:f-:aq&i]rl:l=.||:n-qncn=.' on root from 1.0-r15.1 to

I3ty WY W Upgrading packages

opkg upgrade

Depending on how many different software packages need upgrading, this
process may take a while.

BeagleBone Black Pinout

Most micro-development platforms provide a range of different inputs and
outputs using headers called GPIO (General Purpose Input/Output) pins.

These pins allow you to control things electronically using both hardware and
software, and each pin can serve a specific function—either analog or digital.
Most microcontrollers come with a pinout diagram with labeled pins stating
their function.

The BeagleBone Black comes with two 46-pin dual-row expansion
headers, labeled P9 and P8, also known as Expansion A and Expansion B,
respectively (see Figure 1-18). Each pin provides 3.3V, unless otherwise
stated.

P9 P8

DGND [1 |'2 DGND DGND -“ DGND
vDD_3v3 874" vDD_3V3 GPIO 38 3 GPIO_39
VDD 5V |5 | 6 | VDD SV GPIO 34 5 6 [GPIO_35
sys_sv SN svs_sv GPIO_66 7 8 GPIO_67
PWR_BUT -- SYS_RESETN GPIO_69 9 10 GPIO_68
GPIO_30 GPIO_60 GPIO_45 11 12 GPIO_44
GPIO_31 13 14 GPIO_40 GPIO_23 13 14 |GPIO_26
GPIO_48 15 16 GPIO_51 GPIO_47 15 16 GPIO_46
GPIO_4 17 18 GPIO_S GPIO_27 17 18 |GPIO_65
|2c2_SCL 19 20 12C2_SDA GPIO_22 19 20 GPIO_63
GPIO_3 21 22 GPIO_2 GPIO_62 21 22 |GPIO_37
GPIO_49 23 24 GPIO_15 GPIO_36 23 24 GPIO_33
GPIO_117 25 26 GPIO_14 GPIO_32 25 26 |GPIO_6f
GPIO_125 27 28 GPIO_123 GPIO_86 27 28 GPIO_88
GPIO_121 29 30 GPIO_122 GPIO_87 29 30 GPIO_89
GPIO_120 31 [82] VDD_ADC GPIO_10 31 32 GPIO_f
AIN4 [88]]I'347 GNDA _ADC GPIO_9 33 34 GPIO_8i
AIN6 851861 AINS GPIO_8 35 36 GPIO_80
AIN2 871381 AIN3 GPIO_78 37 38 GPIO_79
AINo [881140] AIN1 GPIO_76 39 40 GPIO_77
GPIO_20 41 42 [GPIO_7 GPIO_74 41 42 GPIO_75
DGND [43844| pGND GPIO_72 43 44 GPIO_73
DGND [45 46| DGND GPIO_70 45 46 [GPIO 71

|31 MBIk BeagleBone Black GPIO Pinout

Digital GPIO Pins

The BeagleBone Black comes with 65 GPIO pin headers, which is a huge
amount of control at your fingertips. These headers are labeled GPIO_xx, and
you can control these pins by switching an output to either “on” or “off” (1 or
0, respectively). You can also detect a digital input signal to sense when a
digital input device such as a switch has been activated (on, or 1) or
deactivated (off, or 0). These pins are perfect for controlling a vast array of
LEDs.

bl Unlike other microcontroller boards, the BeagleBone
Black’s pins operate using 3.3V. Using anything above this level can
permanently damage the board.

Analog Pins

Seven analog pins are available on the BeagleBone Black, labeled AINx.
These pins are designed to detect analog signals coming into the BeagleBone
Black from such devices as temperature sensors. The BeagleBone Black has
a built-in 12-bit ADC function that allows you to convert the in-coming
analog signal to a more readable digital value.

bl Make sure you don’t input more than 1.8V to the analog
input pins; otherwise, you risk damaging the board.

I12C Pins

The BeagleBone Black contains two I12C pins, labeled I2CX_SCL and
[2CX_SDA. The first I2C bus is used for reading EEPROMS on the
BeagleBone cape add-on boards and can’t be used for other digital I/0
operations. However, you can still use it to add other I2C devices. The
second 12C bus is available for you to use to configure your devices. The 12C
bus allows you to add multiple devices to the BeagleBone Black using the
[2C addressing system.

SPI Pins

Two SPI (serial peripheral interface bus) ports are available for use with SPI-
compatible devices. SPI is a synchronous data link between devices and
operates using a full duplex mode, which enables a faster data transfer.
Generally, one device operates as a master and the other a slave in order to
synchronize. This also allows you to add multiple slave devices, usually in a
daisy chain configuration.

UART Pins

The BeagleBone Black comes with a dedicated header for getting to the
UARTO pins and for connecting a debug cable. In addition to the debug
header, there are five serial ports in the headers, but only one of them has a
single direction.

Project 1
Blinking an Internal LED

Having successfully set up your BeagleBone Black, you are now eagerly
anticipating your first project. This project will get you familiar with using
the BeagleBone—nothing exciting is going to happen, nor any evildoing!
However, it’s a start—and we all have to start somewhere. This project
requires no additional electrical hardware, thus allowing us to primarily focus
on the programming side of things. This also ensures that you have
everything set up correctly on your BeagleBone Black board.

So, without further ado, we are going to write a program that will blink the
onboard LEDs on the BeagleBone Black. If you have had some previous
programming experience, this is going to be our “Hello World” program. We
will write this program from scratch so you can get a feel for the structure of
using BoneScript in Cloud9 IDE. We will go through the code line by line to
give you an explanation of what each function does.

The code for blinking the internal LED is as follows:

var b = require('bonescript');
var led = "USR3";

b.pinMode(led, b.OUTPUT);
var state = b.LOW;
b.digitalWrite(led, state);
setInterval (toggle, 1000);

function toggle() {
if(state == b.LOW) state = b.HIGH;
else state = b.LOW;
b.digitalWrite(led, state);

}

When writing a program using BoneScript, we need to point our program
to the BoneScript library so we can access the GPIO headers and other
functions on the BeagleBone Black. Therefore, the first line of our code
creates a variable (b) that we can reference in our code to access the
BoneScript listed in the parentheses:

var b = require('bonescript');

The next logical piece of code is to create a new variable so we can refer
to the onboard LED labeled USR3. For this instance, we call the variable led,
and the string to access the LED is “USR3” :

var led = "USR3";

The GPIO digital pins on the BeagleBone Black can be set as either an
input or an output pin, so in our code we need to tell the BeagleBone Black
that we want our onboard LED to be an output. To do this, we use a function
called pinMode and then select in parentheses the pin we wish to use; in this
case, we are using the variable led, and then we set the pin as an output using
variable b.ouTPUT:

b.pinMode(led, b.OUTPUT);

In this program, we create a loop that gathers the state of the LED (either
HIGH or LOW) and then alternates between these values to switch the LED
on and off. To do this, we need to set another variable, called state, and
assign a value to it; in this case, we initially set the LED to “off” (or b.LOw):

var state = b.LOW;

Now that we have set the variable for the LED, we need to send the
command to the digital pin on the BeagleBone Black to set the LED to low
(off). To do this, we use the function digitalwrite and select the GPIO pin
led and choose whether it is HIGH or Low (that is, we set its “state™):

b.digitalWrite(led, state);

After the state of the LED has been set, we need to toggle the LED to flash
on and off. To do this, we set a time interval of 1,000 milliseconds using the
function setInterval. After 1,000 milliseconds, we call the function toggle:

setInterval (toggle, 1000);

We now have created a function called toggle, and every 1,000
milliseconds, this function will be called. Now we need to alternate the state
of the LED between HIGH and Low. The easiest way to achieve this is to use
an if else statement to create a different action for different decisions. The
statement is either TRUE or FALSE, as shown here:

if (condition) TRUE

{

code to be executed if condition is
true

}
else FALSE

{

code to be executed if condition is
not true

}

In our function, we check to see if the state is equal to Low, and if it is
(TRUE) we then set the state to HIGH (that is, turn the LED on). If the state is

not equal to Low, we then trigger the else statement (FALSE) and we set the
state to LOw (that is, turn the LED off). Once we have set the state (or
alternated between ON and OFF, or HIGH and LOw), we then issue the
digitalwrite function to turn the LED on or off:
function toggle() {

if(state == b.LOW) state = b.HIGH;

else state = b.LOW;

b.digitalWrite(led, state);

}

Go ahead and run the program by clicking Run in the Cloud9 menu bar,
shown in Figure 1-19.

(4] cloud? = Cloudd X

G [1192.168.7.2:3000 % ;=

Ale Edit View Windows Hep | =3 siop O Proview

Projoct Fllos o biinkled js

var b = require('bonescript');

var ledPin = "P8_13";
var ledPinZ = "USR3";

b.pirMode(1edPin, b.OUTPUT);

1
2
3
4
5
(1
7 b.pinMode(ledking, b.OUTRUT);
8

9 var state = b.LOW;

10 b.digitalWrite(ledPin, state);

11 b.digitalWrite(ledPinZ, state);

12

13 setInterval(toggle, 1008);

14

15 function toggle() {

16 if(state == b.LOW) stote = b.HIGH;
17 #lse state = b, LOW:

18 b.digitalirite(ledPin, stote);

19 b.digitalWrite(ledPin2, stote);
2 }

21

ST NBIE The Cloud9 Run program

You should now see the USR3 LED flash on and off every 1,000

milliseconds. If you want to change the interval timing between flashes, you
can change the timing in the following line:

setInterval(toggle, 1000);

Summary

You now have your BeagleBone Black set up and have created your first
project. It’s not the most exciting Evil project we will conjure, but you now
know that everything works and you have learned the basics of how the
BeagleBone Black operates. You will move on to more advanced projects as
you progress through this book. Along the way, you will gain insight into
various ways you can create your own Evil projects.

LED Projects

IN THIS CHAPTER we are going to create some light-emitting diode (LED)
projects that will amaze and dazzle you—well, not really, but no doubt you
will be impressed. We will keep the hardware very simple so that you have
time to familiarize yourself with the BeagleBone Black. This will also give
you a better understanding of how the BoneScript works on the programming
side of things.

Using LEDs is a great way of interacting and communicating with end
users using light. Making your projects stand out can be important and a great
way of getting the message across using human-computer interaction (HCI).
LEDs are most certainly one of the most used parts in electronic projects.
LEDs are cheap and easy to use; they can be used for just about any
application and come in a variety of sizes and colors, which is great for
creating some very cool effects.

Project 2
Blink an External LED

In this project, we are going to build on the first LED project we created in
Chapter 1 by connecting an LED to our BeagleBone Black using the GPIO
pins to create a simple electrical circuit that will flash an LED on and off.
This will get you familiar with using the GPIO pins on the BeagleBone Black
and using the GPIO pin-naming convention. It will also give you an
understanding of how LEDs work.

Hardware

Table 2-1 lists the components and equipment required for Project 2. The
hardware is very simple; you can use any standard 5/10mm LED in any color
for this project. The breadboard is a half-size 2.54mm pitch between pins and
also has power rails down either side for ease of use. See Chapter 8 for more
detail about using breadboards.

TABLE 2-1 Components and Equipment for Project 2

Schematic

Reference Description Appendix A
BeagleBone Black M1

D1 5mm red LED S1

R1 22082, 0.125W resistor R1
Jumper wires H1
Solderless breadboard H2

LEDs are polarized, which means they will only work in the way you
hook them up. The positive lead is called anode, which is the longest leg on
an LED, and the negative lead is called cathode, which is recognized by a
shorter leg. Also, if you look at the casing of the LED there should be a flat
side on the lip, which also indicates the cathode side of the LED. LEDs are
also known as diodes or light-emitting diodes, and they only allow current to
flow in one direction—from positive to negative. See Figure 2-1 for a
schematic diagram of the LED circuit.

BeagleBone Black

P8 10

GND

WA 4

R1
220 Q

Vi

|3y W8 Schematic diagram for Project 2

The resistor value is given based on the technical characteristics of the
particular LED and using Ohm’s law, which is probably the most important
equation you will need to know. Ohm’s law is the relationship between
voltage (V), current (I), and resistance (R) in an electrical circuit. If we have
the value of two of these fields, we can easily identify the third value using
Ohm’s law. LEDs have a predetermined voltage drop across them and are
specifically designed to operate using a certain current value. The larger the
current value of the LED, the brighter the LED will be up to a certain limit.
You can find these values and technical information on the LED’s datasheet,
which can be supplied by the manufacturer or the store where you purchased
the LED. See Chapter 8 for more information about reading datasheets.

With this information we can now calculate the value of the resistor we
will need for this project. We know that the supply voltage from the
BeagleBone Black’s GPIO pins is 3.3V, the forward voltage of the LED is
2V, and the current rating is 6mA (this is the maximum current value the
BeagleBone Black’s GPIO pins can provide). So using Ohm’s law for
solving what the resistor value is, we use the equation

R = 3.3V - 2V/0.006A

which gives us a maximum resistance value of 216Q2.

CAUTION Using a lower-value resistor may cause damage to the
BeagleBone Black by drawing too much current.

As you increase the value of the resistor, less current flows through the
LED. Therefore, the LED is less bright but will nonetheless light up. For this
project we use a 220Q resistor, which is the closest fixed value of resistor that
can be purchased.

Another very useful electrical equation is to calculate the power rating of
the resistor that’s required. For this particular project the power rating will be
very low, so we can use a 0.125W- or 0.25W-rated resistor, but for larger
projects that require brighter, more powerful LEDs, you will need more
powerful resistors; otherwise, the resistors will generate too much heat and

burn out. The power rating calculation is P =1 x V, where P is equal to
power, I is the current rating, and V is voltage. Using the values we have for
our LED circuit, we get

IT=0.006A x 3.3V -2V

which is equal to 7.8mW. Therefore, we can safely say that these resistors
will be fine for our circuit.

Connect your LED using the diagram in Figure 2-2. You can see that the
anode leg of the LED is connected to the resistor and that the cathode is
connected to ground on the BeagleBone Black. Insert one of the jumper wires
into the P8 header of the BeagleBone Black using either pin 1 or 2, as this is
our ground connection. Connect the other end in the same rail as the cathode
of the LED. To avoid confusion, it is always best to use black wires for
ground connections and red wires for plus voltage. You can see the complete
project in Figure 2-3.

'l o o o o o o © o © o ® 0 ®

® © © » ¢ o o © ©® © o @0 © 0o o
® ® ¢ o ¢ o o o o © o 0o © 0o o
® © © ® ¢ o o o o o o @0 o 0o o

® ® @ o © © o o » 0 O o o
ﬂ..............

) o o o ® © o o © o © O ©° O

® © ® © @ o © © © o © © o o o B ® o o o ® o o o 0 © O O 0 O

® © 0 0 0 0 o o o ©o 0o ° o 0o o ® @

auoga|beag

[J Fritzing.org

-

Made with

|3ty W Breadboard layout for Project 2

]
.-.-__‘.n-—"_—-'--.
= & = 3 L ®
..... -
..... -
..... s
---------- = =
..... - w
..... . s = \ !
----- - = =
|
----- = = & = (
..... = & = s 1
& \

i
e ™y
-

L -
L
e AR Rl e -
R |~ s :
R hhﬁ‘f- i
LI = m L] L
B L R R W s w]
'R AR A B B “ it .'.
166 [legees o
s s 8 A RA BB i s '
L Y B R A EREB
LI =8 F B B ..
LI) E R R N s .
LI " & B B B L] |
e 8§ L (I]
Y o5 0 8B e

|BT311d WA Project 2 blinking external LED

Software

For this project we will be using the same code as in Project 1, but we will be

making some small changes so we can use the GPIO pins on the BeagleBone
Black board.

The JavaScript code for blinking an external LED follows next.

var b = require('bonescript’');
var led = "P8_10";

b.pinMode(led, b.OUTPUT);
var state = b.LOW:
b.digitalWrite(led, state);
setInterval (toggle, 1000);

function toggle() {
if (state == b.LOW) state = b.HIGH;
else state = b.LOW:
b.digitalWrite(led, state);

}

Change the variable led value to P8_10 (this is the GPIO pin that we will
be using to control the external LED). The rest of the code will remain the
same. Run the code in the Cloud9 IDE, and you will see the LED will blink
on and off every second.

Not amazing, I know, but nonetheless this is our “Hello World” project—
your introduction to the world of BeagleBone Black. We all have to start
somewhere.

Project 3
Adjustable LED Blinker

Project 3 uses the analog pins on the BeagleBone Black to control the
brightness of an LED using pulse width modulation (PWM). We will use
PWM more in the chapters on using motors and sensors. We add two
switches in this project, which are used to make the LED brighter or dimmer.

This project utilizes analog and digital pins together and also shows you how
to create functions and loops in JavaScript. Figure 2-4 shows a range of

different size tactile switch which all work in the same way using switch
gates.

Range of different tactile switches

You can see in Figure 2-5 that wiring a switch is very simple; this allows
you to interact with the project in real time.

3.3V

.23 |

|ST311d W Schematic diagram for Project 3

Pulse Width Modulation

Before we can start, you need to learn a little bit about PWM and how it
works. PWM stands for pulse width modulation, and it is used to replicate an
analog signal using a digital type of signal. The BeagleBone’s PWM pins are
controlled using an OMAP timing processor chip, which means that using the
PWM pins in the BeagleBone Black utilizes none of the main CPU. PWM
allows us to control electronics such as LEDs and motors by generating a
high or low signal. PWM works by modulating the duty cycle of a square
wave, which is a signal that switches on and off (see Figure 2-6).

50% duty cycle

75% duty cycle

25% duty cycle

|BTAd WY Square wave

The duty cycle is a percentage of time that a square wave is high or low.
The analogWrite() function sets the duty cycle of a square wave depending
on the value you set. Using a value of 0 will indicate a duty cycle of 0
percent, which is always low. In contrast, using a value of 1 will set the duty
cycle of 100 percent, which is always high. As you might have guessed, a
value of 0.5 will set the duty cycle to 50 percent. The best way to describe
using the LED in our project is to think of a flip book with 50 pages: the
pages in the book are either red (high) or white (low). If we set the duty cycle
to 50 percent, then every other page of the book will be red, and when we flip
through the book we see the red pages but the color looks dim when the
pages are flipped quickly. Now if we set the duty cycle to 75 percent, then
roughly three pages out of every four pages are red and one is white. When
we flip through the book, we see the color red more predominantly.
Therefore, as we increase or decrease the duty cycle, the LED gets brighter or
dimmer. The flipping of pages is the frequency, and the pages themselves
represent the duty cycle.

Hardware

Table 2-2 lists the components and equipment required for Project 3. The
hardware for this project is still very simple, but with the addition of a few
switches and some pull-down resistors.

TABLE 2-2 Components and Equipment for Project 3

Schematic

Reference Description Appendix A
BeagleBone Black M1

D1 High-powered LED S2

R1 110Q) resistor R2

R2, 3 Two 4.6K resistors R3

S22 Two tactile switches H3
Solderless breadboard H2
Jumper wires H1

The switches are easy to use and wire up to a circuit using any standard
tactile push switch with either two or four pins, which all serve the same
function: to make or break a circuit connection. Basically, we are making the
connection and then detecting whether a circuit has been made or a voltage is
flowing through the circuit and then returning a digital value of either a 1 or
0. See Figure 2-7 for the breadboard layout diagram, and you can see the
complete project in Figure 2-8.

* @ @ @0 @
. ® e w
* & & & & @
. F ¢ ¢ ¢ @
* " @
* & & & & @
" F & & * @
& @ - % & @
L " T W

A\

e ® @ ° @ B ° B S S " " S e °

8 8 8
* 8 8 ®
» L] ® 8 8 B
[] *® ® 8 @
"o [] L B B I 45
'y M o
il ° () LR i
A ° ° s o 8 .
rN o0 * 0 0 0 now
e e 8 0 * 0 0 »
T .
e 0 0 0 * 0o 8 »
BeagleBone 5 3
= " s 0 0 8 0 @
L I] L]
[N] *® & & @
-H ®
=80 8 & & & @
L I] L]
[] [N] & & & @
° o0 * s 8 ®
L] I:.q‘ .‘nocnﬂ'
*e liilof__.iotcti .o
e e o o o 0(® B s s 0w A
L e e 0 0 0 ® 8 0 0 0 .
"0 .
2 8 & & @ * & @ 8 B

|3ty Breadboard layout for Project 3

sevee Y :
i e 004} SO
i TEERe | deeEd

.

|BTa YW Project 3 adjustable LED fader

Software

The JavaScript code for Project 3 is as follows:
var b = require('bonescript’);
var awvValue = 0.01;
var awDirection = 1;
var awPin = "PB_13";

b.pinMode (awPin, b.OUTPUT);
b.pinMode('P8_19', b.INPUT);
b.pinMode('P9 14', b.INPUT);
setInterval (check,100);

function check(){
b.digitalRead('P8_19', checkButton);

b.digitalRead('P9 14', checkButton2);
}
function checkButton(x) {
console.log (x.value);
console.log (awValue);
if(x.value == 0){

b.analogWrite(awPin,
awValue):
awValue = awValue +
(awDirection*0.01);
if (awvValue > 1) {
awValue = 1 + (-1*0.01);

}

function checkButton2(x) {
console.log ('test' + x.value);
console.log (awValue);
if(x.value == 0){
awValue = awValue +
(-1*0.01);
b.analogWrite(awPin,
awValue) ;
if (awvValue <= 0.01) {
awvValue = 0 + (1*0.01);

[/ awValue = awValue +
(awDirection*0.01);

}

The first part of the code is used for setting up the variable values. The
awvalue variable indicates the value we will use to send to the LED to either
make it brighter or dimmer, which will always be the value we will send to
analogwWrite. The variable awDirection is used to calculate the direction of

awvalue (that is, whether we will be increasing or decreasing the brightness
of the LED).

var b = require('bonescript');
var awValue = 0.01;
var awDirection = 1;
var awPin = "P8 _13";

We need to make sure we define whether the pins on the BeagleBone
Black are inputs or outputs:

b.pinMode (awPin, b.OUTPUT);
b.pinMode('P8 19', b.INPUT);
b.pinMode('P9 14', b.INPUT);

If we think about the circuit we have and the components we are using, we
can determine that the high-powered LED is an output because it emits light
out and the two switches are inputs because we are detecting an input voltage
from these switches when a connection has been made once they are pressed.
You will notice the first line bpinMode (awPin, b.OUTPUT); does not refer to
a GPIO pin but to a variable. This is an alternative way to reference the GPIO
pin, and it allows us to name the pin anything we want so that it’s easier to
call back to it in our source code.

For our program to run, we first need to listen for the state of the switch,
which will either be pressed down (on) or in a normal state (off). If the state
of the switch is off, nothing is going to happen. However, we need to keep
checking the state of the switch for when we actually do press it (so that it’s
“on”) so that we can run a function. To do this, we can create a loop that will
keep running in intervals of the time we set:

setInterval (check,100)};

This code sets an interval of every 100 milliseconds and will run a
function called check. This allows us to check for a button press in the
function within an amount of time that’s likely to catch it. If the time interval
was set to 500 milliseconds, for example, there is a possibility we could miss
the button press.

NOTE It’s always good to play around with the timings to find a

suitable interval that works for your project.

Now that we have set the interval to call a function, we need to write the
function code that will check the status of our buttons:

function check(){
b.digitalRead('P8_19', checkButton);
b.digitalRead('P9 14', checkButton2); }

In this function we are reading the state of the buttons P8_19 and P9_14
and outputting the value to the functions checkButton and checkbutton2,
respectively. Now that we have the button state, we can check whether or not
the button pressed down by checking whether the value is equal to 1 or 0
using an if statement:

function checkButton(x) {

console.log (x.value);
console.log (awValue);
1f(x.value == 0){
b.analogWrite(awPin,
awValue);
awValue = awValue +
(awDirection*0.01);
if (awvValue > 1) {
awValue = 1 + (-1*0.01);

}

If the state of the button is high, we want to write a value to the LED to
light it up. We use analogwrite to light up the LED using the awvalue we set
at the beginning. After we send the value, we want to increase it
incrementally so that next time the button is pressed, we send a higher value,
thus gradually increasing the brightness of the LED. To do this, we add the
calculation

Awvalue = currentawValue +
(awDirection*0.01)

where awDirection determines whether we add or subtract the awvalue,
which will, in turn, make the LED brighter or dimmer, respectively.

In the function we also need to set a limit to the value that we write to the
LED; otherwise, we could see an infinite value that cannot be written, and we
will either damage the LED or see an error in our program. Our value limit is
equal to 1. Therefore, we write an if statement to say that if the awvalue is
greater than 1, we reset that value back to the previous value written so when
the push button is pressed, it will just send the same (highest) value to the
LED and thus not exceed that value. This uses an equation where awvalue is
equal to the following:

1+ (-1*0.01)
This equation subtracts 0.01 from the current awvalue and gives us a safe
value to write to the LED.

In the function checkButton2, we check the state of the second button and
write code that’s similar to checkButton to dim the LED:

function checkButton2(x) {
console.log ('test' + x.value);
console.log (awValue);

if(x.value == 0){
awValue = awValue +

b.analogWrite(awPin,
awValue) ;
if (awValue <= 0.01) {
awValue = 0 + (1*0.01);

}

The code is the same except that we change the direction of the value by
writing a negative value using awDirection. This will decrease the overall
value and dim the LED as we push the second button.

Project 4
High-Powered LED Morse code Sender

Morse code is a form of communication for sending messages using dots and
dashes. Morse code has been around since the nineteenth century and can be
used in a variety of ways, such as radio waves and light signals. Morse code
is commonly used as an SOS (save our souls) distress signal. This signal is
known all around the world as the sequence

and was introduced over 100 years ago.

In this project we will create a high-powered LED circuit that uses a
transistor to make our LED flash the sequence of SOS over and over again,
thus creating an Evil Genius distress beacon.

NOTE Do not look directly into the LED for long periods of time,

as this may cause damage to your eyes.

This chapter requires a bit of soldering. We’ll make a prototype shield for
the BeagleBone Black that we can plug in directly to the top of the board; this
is ideal for embedding into enclosures or cases and keeps our projects
discreet and compact if space is at a minimum.

Hardware

Table 2-3 lists the components and equipment required for Project 4. The
hardware for this project is similar to those components used in Project 2,
with the introduction of using an NPN transistor.

TABLE 2-3 Components and Equipment for Project 4

Schematic

Reference Description Appendix A
BeagleBone Black M1

D1 High-powered LED S2

R1 30R resistor R4

R2 4.7R resistor R5

T1 BD139 power transistor S3
Solderless breadboard H2
Jumper wires H1
Protoshield kit (optional) M4

We need to use this transistor because the BeagleBone Black can only
output a maximum of 6mAh of current; however, our high-powered LED
requires up to 70mAh, which is a lot of current. At the end of Chapter 1 we
talked about calculating the amount of power required using the following
formula:

P=1V

The power (P) is equal to the voltage (V) across something multiplied by
the current (I) flowing through it, and the unit of power output is equal to the
wattage. So with this in mind, we can work out that the maximum power
output from one of the BeagleBone Black GPIO pins is equal to
approximately 20mW; for Project 2 this was more than enough power to
drive our LED, but for this project we are driving a high-powered LED up to
70mAh, so our BeagleBone Black cannot directly drive this LED. We need to
somehow amplify the current.

This is a common formality within electronics, and you will encounter this
issue many times with different projects requiring high power to run them,
such as when you work with motors. The theory is simple in that we start off
with a small current from the BeagleBone Black GPIO pins and we need to
somehow amplify that current. A small component that is commonly used for

achieving this effect is the transistor. We will use a transistor in our circuit to
switch on and off our high-powered LED with the amplifying of the current.

A transistor is a simple device, and a very useful one at that. Currently,
there are many different types of transistors that come in all different shapes
and sizes, each one having a varying function. In Figure 2-9, you can see that
they come as small as the eye can see. This type is also known as a surface
mount device (SMD) transistor, and it requires special soldering using high-
tech professional equipment. There are also some larger transistors with
flanges and some that require a heat sink for heat dissipation.

N004 |
8 BD244B

IST B A range of different-size transistors

In this project we are going to use a transistor called an NPN bipolar
transistor; this is the most commonly used type in electronic circuits. This
transistor has three legs: the collector, the emitter, and the base (see Figure 2-
10). Basically, a small current flows through the base and is amplified to a

much larger current and will flow between the collector and the emitter. See
Figure 2-11 for a schematic diagram of Project 4.

ISty BD139 transistor

BeagleBone Black

5V

P8 13

GND

WA 4

R1
220 Q

T1

R2
220 (

KK

|3t Y WAl Schematic diagram for Project 4

The amplification of our circuit depends on a couple of factors, one being
the specification of the NPN transistor. After checking the technical datasheet
of the BD139 transistor, we can see that we can have a maximum input
current of 0.5A and we can amplify this current up to a maximum of 1.5A.
Therefore, if we use the 220R resistor that we used in Project 2 to drive the
LED up to 6mA, we could typically expect our NPN transistor to amplify this
up to 60mAh, working on an amplification factor of 100, which is typically
common in NPN transistors. This will be more than enough to switch more
power through our high-powered LED.

The datasheet for our NPN transistor says that we can have a maximum
forward current of 250mA and a forward voltage of 2.6V. So with this in
mind, we will aim to amplify the current up to 60mA, which will make the

LED nice and bright and won’t increase the risk of shortening its operational
life.

R2 limits the current flowing through the LED to around 60mA.
Therefore, using Ohm’s law, we can calculate the value of our resistor using
R = V/I. The voltage (V) will be 5 (supply voltage) — 2.6 (LED forward
voltage) — 0.6 (between the base and the emitter transistors a voltage drop of
0.6V normally occurs, so we must subtract this value from our equation). So
R =1.8/0.06 gives us a resistive value of 30R. We must also make sure we
select a resistor that can cope with the required power rating as power is
dissipated through the resistor as heat. Therefore, 60mA x 1.6V = 96mW
This means we can safely use a 0.125W resistor or higher. Figure 2-12 shows
the breadboard layout for Project 4. The completed Project 4 can be shown in
Figure 2-13.

. 8 8 & B
. 8 8 & &

® & & & & & & & & & 8 B
® & @ @ & S & & & & & B

- & & 8 8
- 8 & 8 8

.T........I'l.

@)

- & 2 S & © & & ° & & & 2 & S & S S5 * & & S 5 o & & & ° 8 B

BeagleBone

- & & & B
- 8 8 5 »
- 8 8 8 8
- . 8 . .

* & & & @
s 8 & & &
s 5 &8 8 8
s & 8 8 8

- 8 & ® & 8 & & & & & 5 & & & 8 B "B
. 8 5 &5 5 2 & & 8 2 & 2 2 2 &8 8 &8 8 8

- & & & & & & & = &2 2 0 2 & &
& & & & & 5 & & & & & & & & &
& & B & & & & & & & & & & & @
& & @& & & & & & & & & & 8 & 9
&® B & & & & & & & & & 2 5 8 &
& & &8 & & & & 5 &5 & &5 &2 &5 8 &
® & & & & & & & * 5 &5 & & & &

|3T{ AW Breadboard layout for Project 4

ISR Project 4 high-powered Morse code sender

When creating projects, usually a breadboard and some jumper wires will
suffice, but when you have tested your circuit design, you may want to build
a more stable solution for embedding your project. Figure 2-14 shows Project
4 soldered onto a prototyping cape PCB, this allows the project to be more
permanent.

ISty PBIE! Morse code sender expansion cape

Software

The JavaScript code for Project 4 is as follows:

var b = require('bonescript');
var dot = 200;

var dash = dot * 3;

var pause = dot;

b.pinMode('P8_13', b.OUTPUT);

function ledsOn() {
b.digitalWrite('P8 13', 1);

function ledsOff() {
b.digitalwWrite('P8_13', 0);

function flash(period) ({
ledsOn();
setTimeout (ledsOff, period);

function sequence(durations) {
var timeline = 0;
for (var i = 0; i < durations.
length; i++) {
var d = durations[i];
setTimeout (function() { flash(d);
}, timeline);
timeline = timeline + d + pause;

sequence([dot, dot, dot, dash, dash,
dash, dot, dot, dot]);

This program uses a series of functions to write the state of the LED to 1
or 0. The functions are then used in the sequence to play a series of flashes.
The flashes of the LED are determined by the duration period set in the
variables at the beginning of the program.

Project 5
RGB LED Fader

Project 5 uses three analog 10K potentiometer sliders to control the color of
an RGB LED (see Figure 2-15). Each slider is used to control the brightness
of a color on the LED: either red, green or blue. When the colors are
combined in different variations, they can create other colors. This is a great
way of reducing the amount of LEDs required in a project and also gives
your project more visibility and flexibility.

IZTte ¥ Ak RGB LED (10mm)

A potentiometer (POT) is essentially a three-terminal resistor that acts as a
voltage divider. When you adjust the value of the resistor, the voltage is
increased or decreased in turn. Potentiometers are more commonly used in
electronics for volume control and come in either a linear taper or logarithmic
design. Our slider potentiometer is a logarithmic POT, and this means that
the resistance tapers from one end to the other, so the output voltage is
dependent on the slider position (see Figure 2-16).

ISTAN LY Slider potentiometer

Hardware

The hardware for this project is very simple: it consists of a 10mm standard
RGB LED and some 10K slider potentiometers. The RGB LED has four legs,
three of which are used to control the colors red, green, and blue. These are
connected to the BeagleBone Black just as you would connect a standard
LED (like in Project 2). The longest leg of the LED is the common cathode
pin, and this is connected to the ground pin on the BeagleBone Black. The
three 10K POT's are connected to the BeagleBone Black analog input pins
and can read the voltage value from 0 V to 1.8V (max); the value is
converted to 0 (OV) or 1 (1.8V). Table 2-4 lists the components and
equipment required for Project 5.

TABLE 2-4 Components and Equipment for Project 5

Schematic

Reference Description Appendix A
BeagleBone Black M1

D1 RGB LED S3

R1 220R resistors R1

R2, 3,4 10K potentiometer R4
Solderless breadboard H2
Jumper wires H1

The breadboard layout for Project 5 can be seen in Figure 2-17 and the
final completed project in Figure 2-18.

1
X
'

[e
uu-].lu-n-a-o-/'

LI L
LI LI
LB | L LI L
LI I L I
LI LS
LT LI

L]

LI L
LI L I LU
LRI N R
8000 L
LI LU
L LU
#8880 LU

LI B I) L I I
BEHQ|EBOHE LI L
LI I) LU A
LI I L I A

LB N

Made with [} Fritzing.org

13Ty WAV Breadboard layout for Project 5

IFTAC AL Project 5 RGB LED fader

Software

The sketch for this project uses the analog.Read function to read the current
value of the 10K POT sliders.

Here is the JavaScript code we will use for Project 5:

var b = require('bonescript’);

var RedPin = "P8_13";
var GreenPin = "P8_19";
var BluePin = "P9_14";

var Slvalue
var S2Value
var S3Value

L]
-

Il
o o O
"

[e IR e [|
-

]
-
-

b.pinMode (RedPin, b.OUTPUT);

b.pinMode (GreenPin, b.OUTPUT);
b.pinMode (BluePin, b.OUTPUT);

setInterval (fade, 100);
function fade() ({
b.analogRead('P9 40', Red);
function Red(x) {
Slvalue = x.value;
b.analogWrite(RedPin, SlValue);
console.log('Red value = ' +
X.value);
console.log('x.err = ' + x.err);
b.analogRead('P9 38', Green);
function Green(x) ({
S2Value = x.value;
b.analogWrite(GreenPin,
S2Value);
console.log('Green value

= + x.value);

b.analogRead('P9 36°,
Blue):
function Blue(x) {
S3Value =
X.value;

b.analogWrite(BluePin, S3Value);
console.log
('Blue value =
' + x.value);

}}1}

The first part of the code is where we set our variables. We give each pin

of the LED a variable so we can use analogWrite to write the value of the
LED color; we name these variables the color of the LEDs we are changing
to make things easier. We also set a variable for the value that is read from
the 10K POTs: slider 1 (S1), slider 2 (S2), and slider 3 (S3). We set these
values to zero to start off with so all the LEDs are in an off state.

var RedPin = "P8 13";
var GreenPin = "P8 19";
var BluePin = "P9_14";

Once the variables have been set, we need to state whether the pins are an
input or an output. The analog pins we are using for the slider are
automatically set for analog input, so we only need to set the LED pins to
OUTPUT:

b.pinMode (RedPin, b.OUTPUT);
b.pinMode (GreenPin, b.OUTPUT);
b.pinMode(BluePin, b.OUTPUT);

To make sure we are always reading the status of the 10K POTs, we need
to create a loop so that we can read the values for the amount of time for
which we set the loop. We use the setInterval function to create a loop that
will run every 100 milliseconds; this will make the LED change almost in
real time or as soon as we slide the potentiometer. For the purpose of running
the program for the first time, you may want to change the interval to 1,000
milliseconds just to slow things down a little bit. This way, you can see the
output values being written to the LED.

setInterval (fade, 100);

Once the loop function is called, we then read the status of the first slider,
which controls the red LED on our RGB LED. Therefore, we use the
analogRead function to read the status of the slider and output the value to
another function, which we will use to write the value to the LED.

b.analogRead('P9 40', Red);
function Red(x) {
SlvVvalue = x.value;
b.analogWrite(RedPin, SlvValue);
console.log(’'Red value = ' +
X.value);

You can see in this code that we read the value from analog pin P9_46 and
we output this to a function called Red. In the Red function, we set S1value to
the value of the slider. Because the PWM pin writes a value from O to 1,
which in turn makes the LED brighter or dimmer, we can set the value the
same way; therefore, we do not need to create an equation to convert the
value. Once we have our value, we write this to the red LED pin using
analogwWrite. You will also notice that we use the console log to output the
value in the console; it is always a best practice to use this for debugging
your project and making sure the correct values are being written to the LED.
Once we have written the value for the red LED, we then move on to the next
color LED, which is green. Therefore, all we do is repeat the process of the
function and change all the variables to the green LED:

b.analogRead('P9 38', Green);
function Green(x) {
S2Value = x.value;
b.analogWrite(GreenPin,
S2Value);
console.log('Green value

L]

= + x.value):

We repeat the process for the final (blue) pin on the LED, reading the
slider value and writing the value to the LED.

NOTE Make sure when you create a function that you close that

function using the right brace (}).

Project 6

Traffic Lights

In Project 6, we are going to build a model of a traffic light system using red,
amber, and green LEDs. Every time we press the button, the traffic light will

change to the next sequence. In the United Kingdom and many other

European countries, the traffic light signal goes from red to red/amber, green,

green/amber, and then back to red.

Hardware

The components for this project are listed in Table 2-5. If possible, it is
always a best practice to choose the same specification of LEDs (usually the
same manufacturer brand or series). This will give us the same brightness for
all the lights and also allow us to use the same value of resistors for the

LEDs.

TABLE 2-5 Components and Equipment for ts and Equipment for Project 6

Schematic
Reference

D1
D2
D3
R1,2.3
R4

Si

Description

BeagleBone Black

5mm red LED

5mm amber/yellow LED
5mm green LED

Three 220R resistors
10K pull-down resistor
Breadboard

Jumper wires M-to-F
Tactile switch

Appendix A
M1

S1

S4

55

R1

R5

H2

H1

H3

The circuit diagram is shown in Figure 2-19 for Project 6. The LEDs are
connected to the digital pins on the BeagleBone Black. As in Project 2, each
LED has a current-limited resistor based on Ohm’s law. Also, a tactile switch
is connected to a digital input pin. When the switch is connected or pushed
down, it makes a circuit and a voltage passes through that is detected by the
digital input. The completed project is shown in Figure 2-20.

-
-
- &
-

g

& 8 & & @
> 8 & & @
. & & @& @

[I

BeagleBone

- B B & B & & 5 & & @

ﬂ....-.....-....
L.

. B 8 8 8

- & 8 =& @

- !g_ _.__
i
B

..'ﬁ_.__.i..'.....-'.....-

> 8 8 5 &
- & B 8 8

" & & & & & & & & &5 & & - BSB89
* & & & & & & 8 B & & & & B B B BN
@ & & 6 & 6 B 4 & 6 6 6 B 8 8 8 6 0 0
. & & 85 & 5 B 8 & & & S5 5 B 8 8 S B O

. & & & & & & & 85 5 & & & 5 8 8 & 5 & B8
& & & & & & & & & & & & & B & & & & & B

'..Emm.-...'....-

-

Made with [Fritzing.org

|3t B Breadboard layout for Project 6

ISt (RPN Project 6 traffic light system

Software

Here is the JavaScript code for Project 6:

var b = require('bonescript');

varscec =R pHs 1 d.

var yellow = "PB 15";
var green = "P8 17";
var inputPin = "P8 10";

var switchstatus =0;

b.pinMode(red, b.OUTPUT);
b.pinMode(yellow, b.OUTPUT);
b.pinMode(green, b.OUTPUT);
b.pinMode(inputPin, b.INPUT);

var on b.HIGH;
var off = b.LOW;

setInterval (check,200);

function check(){
b.digitalRead(inputPin, checkButton);

}

function checkButton(x) ({
if (x.value == 1){
switchstatus++;
switch (switchstatus)/{
case 1l: setTimeout (function
(){b.digitalWrite(red,
on) ;
b.digitalWrite(yellow, off):;
b.digitalWrite(green,
off);}, 500);
break;

case 2: setTimeout (function
(){b.digitalWrite(yellow,
on);}, 500);
break;
case 3: setTimeout (function
(){b.digitalWrite(red,
off) ;
b.digitalWrite(yellow, off);
b.digitalWrite(green,
on);}, 500);
break;
case 4: setTimeout (function
(){b.digitalWrite(yellow,
on) ;
b.digitalWrite(green, on);},
500);
break;
default: switchstatus = 0;
break;

}

else i1if (switchstatus >=5){
switchstatus = 0:

}

The code for this project is very simple: we only check to see if the switch
is pressed and then we run the script in the traffic light sequence. You can see
that we created a loop so that we can always check to see if the switch has
been pressed. Each sequence runs for a delayed amount of time; otherwise,
the LEDs would blink so fast that we would never see them. This is why we
set a timeout. The first part of the code sets the variables for each LED. We
use a digital output pin for each LED and a digital input pin for the switch.

var red = "P8_13";

var yellow = "P8_15";
var green = "P8 _17";
var inputPin = "P8 10";

var switchstatus =0;

b.pinMode(red, b.OUTPUT);
b.pinMode(yellow, b.OUTPUT);

b.pinMode(green, b.OUTPUT):
b.pinMode(inputPin, b.INPUT);

We also set a variable to check which part of the LED traffic light
sequence comes next, and every time we change the sequence, the
switchstatus increases by 1. In order for us to check to see if the switch has
been pushed down, we need to read the status of the switch all the time.
Therefore, we set a loop to check every 200ms the status of the switch and
output the value to a function called checkButton:

setInterval (check,200):;

function check(){
b.digitalRead(inputPin, checkButton);

}

We now create the checkButton function. If the value of the button is
equal to 1, we know that the button has been pressed and we can initiate our
switch statement. Before we enter the switch statement, we increase the
switch status by 1 so that every time we run the program, it will increase by 1
—and more importantly, switch to the next statement in the sequence.

function checkButton(x) {
if (x.value == 1){
switchstatus++;

The switch statement is very simple: it reads the value after switch,
which in this case is called switchstatus, and whichever value it is, it

switches to that case and runs the code in that case. The switch cases are
numbered 1 to 4, and also feature a default value so that if the switchstatus
value does not equal any of the case numbers, the default case will be used.
Once we have switched to a case or sequence, we write our LED sequence;
we do this by setting a timeout function to add a short delay of 500ms, using
the digitalwrite function, and calling the color of the LED we want and
stating whether it should be on or off.
switch (switchstatus){
case 1: setTimeout (function ()
{b.digitalWrite(red, on);
b.digitalWrite(yellow, off);
b.digitalWrite(green, off);}, 500);
break;
case 2: setTimeout (function ()
{b.digitalWrite(yellow, on);},
500);
break;
case 3: setTimeout (function ()
{b.digitalWrite(red, off);
b.digitalWrite(yellow, off);
b.digitalWrite(green, on);},
500);
break;
case 4: setTimeout (function ()
{b.digitalWrite(yellow, on);
b.digitalWrite(green, on);}, 500);

The default value in the switch statement will always be used when the
switchstatus value is not equal to 1, 2, 3, or 4, in which case we reset the
value back to 0 so we can start the sequence again.

default: switchstatus = 0;
break;

NOTE Make sure you add break; at the end of each case;

otherwise, the code will run the next line.

Run the sketch program and push the button to start the first sequence of
lights. Continue to press the button until you get back to the first sequence of
lights again.

Project 7
Matrix Displays

LED arrays and dot matrix displays are great components for getting across
messages in either text or image format—they’re also great for creating some
Evil Genius eyes. LED matrix displays usually consist of an array of LEDs in
rows and columns. Typically, these come in 4x4, 8x8, and 16x16 for small
hobbyist projects, or you can even create your own matrix using LEDs. Most
matrix displays come in a single color of LED, but bicolor LEDs are also
available. These are great for creating a range of different colors to give a
great visual effect for some projects.

This project uses a matrix LED module that has a backpack on it that
includes a HOLTEC HT16K33 I2C IC. This reduces the amount of wires
needed to connect to the BeagleBone Black. A standard matrix display with
an 8x8 array has up to 24 pins, and if we connected all these pins to the
BeagleBone Black, this would take up almost half of the GPIO pins and
would not leave us many more pins for adding other devices.

Using 12C

[2C was designed by Philips in the early 1980s. It was designed to provide an
easy form of communication between electronic devices that are on the same
circuit. I2C has some great features; for example, only two wires or
connections are required, and it operates using a master/slave network. Each
[2C device that is connected has its very own unique address that is used to
identify the components on a circuit. In terms of our project, this protocol is
ideal for the matrix display; it means that we only need two single wires to

connect to our BeagleBone Black, and we can add as many as 127 different
devices.

Some devices have an address that is fixed by the manufacturer; others can
be configured to take an address from a range of addresses. When a device is
used as a slave, it is normally possible to configure its address via software.
The address may be followed by one or more bytes of data that go from
master to slave or from slave to master.

When data is being sent on the SDA line, clock pulses are sent on this line
to keep the master and slave synchronized. When the devices are
communicating, they only send one bit at a time, so this means the data
transfer rate is one-eighth of the clock rate. The BeagleBone Black has two
[2C busses and can be set at variable speeds.

Hardware

Table 2-6 lists the components and equipment required for Project 7.
TABLE 2-6 Components and Equipment for Project 7
Description Appendix A
BeagleBone Black M1
LED matrix display 54
Solderless breadboard H2
Jumper wires H1

The LED matrix in this project comes as a kit (see Figure 2-21). This will
require some beginner-level soldering because the matrix display needs to be
soldered onto the backpack (PCB) board, and a single row of four-way
headers also needs soldering to attach to our breadboard. When you solder
the LED display to the PCB board, it is very important that you make sure it
faces the right way; otherwise, the pinout will be incorrect and may damage
the board and the LED itself. If this is the case, you can easily desolder the
LED and reposition it— but it’s always best to do it right the first time.

0°llllll°l
U
ST
 RANEEERS

(YL Lx
,, TARNRERY
. KARREERA
P FERAREED

{ 8x8 Bi-Color LED Matrix @

ISV WAL The Adafruit LED matrix module kit

You can see in Figure 2-22 that we connect the power pins (+5V and
GND) to the matrix display. The other two pins are labeled “SDA” and
“SCL,” and these are connected to the BeagleBone’s 12C pins SDA and SCL.
The SDA pin is used to send and receive the data sent between devices, and
the SCL pin is used to synchronize the communications. The completed
project can be seen in Figure 2-23.

auogs|beag

b 0 e @ 0o 0o 0 ¢ 0 0 0 0 0 0 0 o o

e e o o @

e & & & & & & & & & & & »

e & & & @
o & o o o

e & & & » e & & & @ e & & o o
e o o o o e o o o o

[J) Fritzing.org

—=

Made with

|3t {WE¥¥) Breadboard layout for Project 7

L||||1| =y
!-;1 ?Fi

(LU

bitd
] n' \

|TAWEYR Project 7 matrix display

Software

Before we start, we need to make sure the [2C matrix display is connected
correctly to the BeagleBone Black and that communication between the
devices can be established. To do this, we can use the built-in I2C tools that
come with the BeagleBone Black board; these tools are used to provide
useful information such as a device’s I2C address. To issue the commands,
you need to open up a Terminal window either through GateOne SSH or a
program such as PuTTY or ZOC Terminal (see Chapter 1 for more
information on connecting to your BeagleBone Black through SSH). Once
you’re in the Terminal window, type the following command:

I2cdetect —y —r 1

This command is used to detect devices on the I2C bus and display their
device address. You can see in Figure 2-24 that we have detected an address
of 0x70, which is our LED matrix board. You may also see the value U,
which means the address is busy (usually on the BeagleBone Black such
addresses are taken up by the cape EEPROMSs).

81 2 3 45 6789 abecdef

0a: e N D S A SR G,
e e e I e e e
rd e

] i

B mwe s s mom e i o v o e e e o s

GOz —- - = == W U0 DU U == == == == == == == —-
6082 --
70: 70 -- -= = —= -= = --
root@beaglebone :™H#

ISt WYY BeagleBone Black 12C addresses

Here is the JavaScript code for Project 7:

var i2c = require('i2c');

var address = 0x70;

var wire = new i2c(address, {device:
'/dev/i2c-1'});

var brightnessArray = [0xXE0, O0xEl, 0xE2,
0xE3, OxE4, O0xE5, 0xE6, 0xE7];

var smiley = [0Oxle,0x21,0xd2,0xc0,0xd2,
Oxde,0x21,0xle];

var brightness = brightnessArray([l];

wire.writeBytes(0x21l, 0x00);
wire.writeBytes(0x81, 0x00);

wire.writeBytes(brightness, 0x00);

wire.writeBytes(0x00,

[smiley([1]); // Row 1
wire.writeBytes(0x02,
[smiley([2]); // Row 2

wire.writeBytes (0x04,
[smiley[3]); // Row 3
wire.writeBytes(0x06,

[smiley([4]); // Row 4
wire.writeBytes(0x08,
[smiley([5]); // Row 5
wire.writeBytes(0x0A,
[smiley[6]); // Row 6
wire.writeBytes(0x0C,
[smiley([71]); // Row 7

wire.writeBytes (0x0E,
[smiley[8]); // Row 8

The first line of our code is where we access all the I12C library functions,
just like in our other projects where we reference the BoneScript library:

var i2c = require('12c’);

In order for us to send commands to the matrix display, we need to first
point to the I2C address using a variable. The first line is the I2C address; this
is the address we found earlier by using the I2C tools command in the
Terminal window (0x70). The next command is the I2C address directory on
the BeagleBone Black:

var address = 0x70;
var wire = new i2c(address,
{device: '/dev/i2c-1'});

In order to set the brightness how we want it, we can create an array of
brightness values ranging from 0 to 7 (0 being the dimmest and 7 being the
brightest). An array is used to store data or objects in a variable and can
easily be indexed or identified when called upon.

var brightnessArray = [0xXE0, 0xEl, 0xE2,
0xE3, OxE4, 0OxXE5, OxE6, OxE7];

To light up our matrix display, we need to send eight bytes of data, for
each row of the matrix display. If we want to light up all the LEDs on the
first row, our byte of data would be the following binary value:

11111111

A value of 1 represents that the LED is on, and a value of 0 represents off.
Now that we have our first byte of data we need to convert this into
hexadecimal so we can write it to the matrix display. Converting a binary
value to hexadecimal is very simple. Our binary number 11111111 gets
divided up into four bits (that is, 1111 and 1111). Each decimal digit in the
binary number gets doubled as you move on to the next binary number,
starting with 1. Therefore, 81412111 would be equal to 15 (decimal value) or
F (hexadecimal value). Also, remember that we always read binary from right
to left. Table 2-7 shows the binary conversion.

TABLE 2-7 Binary Conversion

Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
i

Decimal

0 N O U A W N = O

— Sl s Bl i B O
b B W N = O

Hexadecimal

[o Il @ B o [< o v [w Bl — S

If we want to light up a smiley face on the matrix display, we would set
each LED to either a 1 or a 0 (see Figure 2-25). When we convert each row
into hexadecimal, we get the following values:

0JoX1 X1 1 1 0R0
000000600
0000000606
00000000,

00000006
0000000606
00000000
L0Jo 1 1111500,

|3 PEYE [ED matrix binary code diagram

var smiley = [0Oxle,0x21,0xd2,0xc0,0xd2,
Oxde,0x21,0xle];
As described previously, we created a variable to store the value of the

brightness of the matrix display, and now we can set our variable to call using
the following code:

var brightness = brightnessArray[l];

If we wish to change the brightness, we can change the value inside the
parentheses from 1 to 7. Before we can write the data to the matrix display,

we need to make sure it’s set up in order to receive the bytes of data. The first
command we send is to set up the matrix display by putting it in standby
mode, ready to receive the data. The second command sets the display on and
turns off any blinking so that the LEDs stay on all the time once we send the
data. We send the brightness value as set in our variable earlier (we can easily
play around with these values later on).

wire.writeBytes(0x21, 0x00);

//system setup
wire.writeBytes(0x81, 0x00);

//display on and no blinking
wire.writeBytes(brightness, 0x00);

//set LED brightness

Now that we have everything set up, we can send the bytes of data to the
LED matrix and create our smiley face. If we check the matrix display’s LED
chip driver datasheet, it tells us that the first byte to send is the row selection,
which is 0x00. The next row is 0x02, and so on up to 0xOE, which is row 8.
The next byte we send is the image value from our variable smiley, and
because we want the first value in the variable, we use smiley[1]. We then
cycle through the rest of the rows writing the next value in the variable.

wire.writeBytes(0x00,

[smiley[1l]); // Row 1
wire.writeBytes(0x02,
[smiley[2]); // Row 2

wire.writeBytes(0x04,
[smiley[3]); // Row 3

wire.writeBytes(0x06,

[smiley[4]); // Row 4
wire.writeBytes(0x08,

[smiley[5]); // Row 5
wire.writeBytes(0x0A,

[smiley[6]); // Row 6
wire.writeBytes(0x0C,

[smiley[71); // Row 7
wire.writeBytes(0x0E,

[smiley[8]); // Row 8

When you run the program, you should see a nice bright smiley face—not
so evil, I know, but maybe you can create an Evil Genius face by playing
around with some of the values.

Summary

This concludes our chapter on LEDs. Hopefully you have learned a lot about
how you can use them in your projects. We used both analog and digital pins
to show the varying effects they give us, and we also created different colors
using RGB LEDs and images using matrix displays. Next, we are going to
move on to create projects that sense input from the real-world environment
around us.

Sensor Projects

THIS CHAPTER IS ALL ABOUT sensing inputs from the real world around us.
We can use this information to control outputs such as motors and lights, or
we simply display the information. This chapter includes a variety of
different sensor projects that could be used to create robotics, weather
stations, flood warning systems, day/night switches, and location-based
projects.

Project 8
Scanning Sonar

Scanning sonar using ultrasonic sensors is the most convenient way of
sensing the distance of objects around us. An ultrasonic sensor generates
high-frequency sound waves and receives back an echo of those sound
waves. The sensor then calculates the time interval between sending the high-
frequency sound wave and receiving the echo back, which is used to
determine the object’s distance, as shown in Figure 3-1.

I
I
|
!

Sender/

_ | V[N Object
Receiver !

Original Wave
>

Distance r

|31y B | Ultrasonic sound waves

Hardware

Table 3-1 lists the components and equipment required for Project 8.

TABLE 3-1 Components and Equipment for Project 8

Schematic

Reference Description Appendix A
BeagleBone Black M1
Ultrasonic sensor M2

R1 330Q2 resistor R6

R2 220Q) resistor R1
Solderless breadboard H2
Jumper wires H1

The hardware for this project uses a MaxSonar EZ2 ultrasonic sensor,
which is commonly found in hobbyists shops and electronic stores. This
sensor has three pins: V+, GND, and AN. The AN pin outputs an analog
voltage with a scaling factor of Vcc/512 per inch. The sensor requires a 5V
input from the BeagleBone Black. Because we are connecting the AN wire to
the analog pins on the BeagleBone board to read the voltage input, we need

to create a voltage divider using two resistors so that we do not damage the
board.

A voltage divider can be very useful in circuits when the input voltage is
always higher than the output voltage required, such as using a 9V PP3
battery to power a 5V DC motor. A voltage divider usually consists of two
resistors that are set up in a series circuit, as shown in Figure 3-2.

Vin

. V{J ut

ISt B Voltage divider circuit

The voltage divider equation assumes that you know the three values of
the circuit: the input voltage (V;,) and both resistor values (R1+R2). With

these values, we can use the equation in Figure 3-3 to find the output voltage
(Vou)-

R-\

'I'!n'ut - Vin . R| e R:

ISTANY IR Voltage divider equation

The equation clearly states that the output voltage is directly proportional
to the input voltage and the addition of both resistors. Therefore, if our V,, is
5V and our R1 and R2 values are 330R and 220R, respectively, we can use
this equation to calculate that the output voltage is 1.8V, which is what we
want to read the voltage input from the analog pins.

The breadboard layout is shown in Figure 3-4. Make sure that both
resistors are wired up correctly in the order shown in the diagram.

g I LI
i R LI
P L I
A U T A 88 88 8
& U T LI
LI TR LI
e e 88 0 LI
&6 & & & 8 & & & & 8 8
& @ " 8 9 @ a & & @ @ .
@ ¢ 8 8 0 8 PR 3
s 8 CRC I 3
i & D
(0] @
ORR PP
O L a8 08 0 0 2 &
(6] s & a8 8 0 0 o
o o e (-
4 e s e s @
EEH Q-Et- %
s 88 088 s sin & a
:: LI L I#” Beag|._.BGnE
LI LI T
:: LI T LI T %2
a8 8 8 0 0 8 8 8
P .8 ¥ B @ e & & & @ i
U ¢85 s 8 CRCRC F
4 #8888 COr p
S RO D -2
i R LI a3
¢ 8 8 0 8 I

Made with [Fritzing.org

Breadboard layout for Project 8

Software

Here is the code we’ll use for Project 8:

var b = require('bonescript’);
var analogVoltage = 0;

/* Check the sensor values every 2
seconds*/
setInterval(read, 2000);

function read(){
b.analogRead('P9 40', printStatus);

function printStatus(x) {

var distancelInches;

analogVoltage = x.value*1.8; // ADC
Value converted to voltage

console.log('x.value = ' +
analogVoltage);

distanceInches = analogVoltage /
0.00699;

console.log("There is an object " +

parseFloat(distanceInches).
toFixed(3) + " inches away.");

}
We first set up a loop so that we can check the status of the sensor every

two seconds; we use the setInterval function to do this, and we run the
function read every two seconds:

setInterval(read, 2000):

Once we have initiated the function, we then use the analogRead function
to read the value of the sensor’s output voltage and then output the value to a
function called printStatus:

function read(){
b.analogRead('P9_40', printStatus);

}

Once we have our analog voltage value, we can use this to calculate the
distance using a simple mathematical equation in our code. The distance is
equal to the analog voltage divided by 0.00699, which according to the
datasheet, running at 5V input every inch is equal to 6.99mv of analog
voltage:

function printStatus(x) {

var distancelInches;

analogVoltage = x.value*1.8; // ADC
Value converted to voltage

console.log(x.value = ' +
analogVoltage);

distanceInches = analogVoltage /
0.00699;

console.log("There is an object " +

parseFloat (distancelnches).

toFixed(3) + " inches away.");
}

Once this code is run, it will output the distance of the object to the
console. Try moving the object closer or farther away; you will see that the
distance updates every two seconds. If you want a more real-time update,
simply decrease the time in the loop function; this will update the object’s
distance more frequently.

Project 9

Vibration Detection

This project utilizes the functionality of a piezoelectric transducer sensor,
more commonly known as a piezo buzzer. A piezoelectric sensor detects
pressure changes or acceleration by converting a force into an electrical
current. For this project, we are going to detect a vibration or a knock on a
door, and once we have detected this, we will light up an LED to indicate that
someone is knocking at the door. This project is great for people with hearing
disabilities because it alerts them when someone has knocked on their front
door. This can also be used to alert you when someone is trying to break into
a window.

Hardware
Table 3-2 lists the components and equipment required for Project 9.
TABLE 3-2 Components and Equipment for Project 9
Schematic
Reference Description Appendix A
BeagleBone Black M1
D1 5mm green LED S5
R1 220Q) resistor R1
Piezo transducer H5
Jumper wires H1
Solderless breadboard H2

The hardware used in this project consists of the component for a single
green LED, as in Chapter 2, and a piezoelectric transducer with two wires
connected to the solderless breadboard, as shown in Figure 3-5.

TR L]

WL L

ISV IE Project 9 vibration detector

Software

Here is the code we’ll use for Project 9:

var b = require(' 'bonescript’');
var led = "P8 10";

b.pinMode(led, b.OUTPUT);

setInterval (check,500);

function check(){
b.analogRead('P9_40', checkKnock);

function checkKnock(x) {
console.log (x.value);
if (x.value <0.50) {
b.digitalWrite(led, b.HIGH);

}

else
b.digitalWrite(led, b.LOW);
}

Initially, we set up the variables for the LED and define this as an output
pin because we want the LED to light up when a knock is detected:

var b = require('bonescript’);
var led = "P8_10";

b.pinMode(led, b.OUTPUT);

We now want to set a timing interval so we can check every so often for a
knock at the door. We don’t want this interval to be too high just in case
someone knocks when our program isn’t checking the analog input. Around

250ms should be enough (you can always play around with the timing). Once
the function check has run, we simply use analogRead to read the status of
the analog pin and then output the value to a function:

function check(){
b.analogRead('P9_40', checkKnock);

}

In this instance, the piezo transducer is connected to the analog pin of the
BeagleBone Black, so we have a maximum voltage output of 1.8V and a
minimum of OV. This, in turn, gets converted to a digital value from 0 to 1.
When the piezo transducer is in a standard operation state, the value is very
low because there is no pressure on the sensor; therefore, it does not generate
as much voltage (only about 1V). When we push the sensor down, this
generates a higher voltage. We can see this in our console output screen when
it peaks at 0.99 just as the sensor is touched.

NOTE Piezo sensors can be very sensitive to vibration, so do not

press down too firmly.

To turn the LED on and off, we just create a simple if statement. This
way, if the output value of the piezo sensor is greater than 0.8, we know there
has been a knock at the door:

function checkKnock(x) {

console.log (x.value);
if (x.value >0.80) {
b.digitalWrite(led, b.HIGH);
}
else
b.digitalWrite(led, b.LOW);

This will turn on the LED (otherwise, the LED will be in an off state).

Project 10

GPS Tracker

This project will enable you to create your very own global positioning
system using the BeagleBone Black’s serial interface. This serial interface
differs from the I12C bus in that it only allows for two-way communication
between devices. The BeagleBone Black comes with up to five serial
interface pins, and each serial port has a Tx (Transmit) and Rx (Receive) pin.
These pins operate using the standard 3.3V, so before connecting your device
to the BeagleBone Black, make sure it operates using this voltage as well.

Hardware

For this project we are going to keep the hardware very simple so that we can
focus more on the software side of things. The components and equipment
for Project 10 are listed in Table 3-3.

TABLE 3-3 Components and Equipment for Project 10

Description Appendix A
BeagleBone Black M1
Solderless breadboard H2
Jumper wires H1
Adafruit GPS module M3

We will use a GPS breakout board based on the popular MTK3339
module—it has everything we need to start tracking our location (see Figure
3-6).

ISTANTIRE Adafruit ultimate GPS breakout board

The breakout board is built around the MTK3339 chipset. It is a high-
quality GPS module that can track up to 22 satellites on 66 channels and has
an excellent high-sensitivity receiver (-165 dB tracking) and a built-in
antenna. It can perform up to 10 location updates a second for high-speed
sensitivity logging or tracking. Power usage is incredibly low (only 20 mA
during navigation), and an ultra-low dropout 3.3V regulator enables you to
power it with 3.3—-5VDC in. The LED blinks at about 1 Hz while it’s
searching for satellites and blinks once every 15 seconds when a fix is found
to conserve power. If you want to have an LED on all the time, you can use a
FIX signal out on a pin to place an external LED.

This GPS breakout board only requires three jumper wires to the
BeagleBone Black. See Figure 3-7 for the breadboard layout. You can see
that we only require a 3.3V input to the breakout board and GND, but we
only require one wire from the GPS module because we only need to receive
the GPS coordinates. Therefore, we use the Tx pin on the GPS module and
wire this straight into the Rx pin on the BeagleBone Black (see Figure 3-8).
Make sure the voltage in the GPS sensor is connected to the 3.3V pin on the
BeagleBone Black.

e = & & 5 & § o s °
s B

- & B & 5 5 5 5 8 8
& & & & & & & & & &
- & 8 & & 8 2 S & &
® & & & & B & & & @9
- 8 & & & & 5 & & 0
® & & & & & & & & @

N N A

EA anoxeaJg

BeagleBone

S5d2 23EWIIIN

-]
&
&
-
-
=
e
o

s & 8 8 & 5 & 8 8 5 B B B
5 8 5 8 &

s & 8 8 5 8 5 8 8 5 B
s & 8 8 & & 5 8 5 5 B 8

- & & & & & & & &
& & & & B & & & B
. ® 8 & & & & & 8
- B B & B & & 8 @
- & B &5 & 5 & 8 @
- e B 8 & & 8 @ @
- & & & & & & & @

Made with [} Fritzing.org

ISt BY] Project 10 breadboard layout

%

ISty B Project 10 GPS sensor

Software

Before we start writing our program, we need to install the serial
communications manager on the BeagleBone Black because we are going to

be using the serial pins for communication. Make sure you connect your
BeagleBone Black to your Internet-enabled router/modem using an Ethernet
cable and then open a Terminal window by navigating to the Bone101 web
page and clicking GateOneSSH (this will open up a Terminal screen in your
web browser). Next, type the following on the command line:

npm install -g serialport

This installs the serial library, where we can call the functions in our code
and access all the serial pins on the BeagleBone Black. Here is the sketch
code for Project 10:

var sp = require("serialport");

var port = '/dev/ttyO4';
var options = { baudrate: 9600, parser:
sp.parsers.readline("\n") };

var gpsPort = new sp.SerialPort(port,
options);

gpsPort.on('data’', function(data) {
//console.log('data received: ' +
data);
var parts = data.split(",");
if (parts[0] == "SGPRMC") {
var lat = parseFloat(parts[3])
/ 100;
var ns = parts[4];

var lon = parseFloat(parts[5])
/ 100;

var ew = parts([6];

console.log("Lat=" + lat + ns +
" long=" + lon + ew);

})i

When you run the program, you will get latitude and longitude GPS
coordinates on the console screen in the Cloud9 IDE, thus providing you
have a fixed GPS signal. If you are unable to get a signal (which will be
indicated on the GPS module’s LED), you will receive the following
message:

Lat=NaN long=NaN

In this case, you may want to move to an outdoor location, or by a window
if you are inside. If you successfully get a signal, you should receive a
message similar to the following (showing your GPS coordinates, of course):

Lat=53.463056N long=2.291389W

The first thing you may notice that is different in our code is that we are
not referencing the “require bonescript” but instead are using serial port.
This is because we do not need to use the BoneScript library to communicate
with the GPIO pins; instead, we need the serial port library so we can

communicate with the GPS module using the BeagleBone Black’s serial pins:
var sp = require('"serialport");
var port = '/dev/ttyO4';

The options variable is used to set up the serial communication options,
such as the baud rate, which is the speed of communication between the GPS
module and the BeagleBone Black. This value must match exactly the speed
of the GPS module for communication. The parser option is used to specify
how the data is read through the serial port. For our GPS module, we want to
read the data one line at a time, which allows us to manage the incoming data
better.

var options = { baudrate: 9600, parser:

sp.parsers.readline("\n") };

We have now set up all our variables for serial communication, so the only
thing left is to create the link between the two devices. To do this, we use the
following code:

var gpsPort = new sp.SerialPort(port,

options);

The code shown next defines how to handle the serial data coming in and
how we can extract the GPS coordinates. The GPS module updates its
position every second, and it sends data on a number of lines in different
formats, such as the following:

$GPRMC,092610.000,A,5342.6381,N,00240.01

34,W,8.44,277.28,161213,, ,A*7A

$GPVTG,277.28,T, ,M,8.44,N,15.64 ,K,A*0B

SGPGGA,092611.000,5342.6380,N,00240.0155

N, 1,5,4.62,-38.2,M,49.0,M, ,*55

SGPGSA,A,3,06,22,18,27,03,,,,1,,,4.72,

4.62,0.97*04

You can see that each line of data starts with $ and is followed by an
identifier. These are known as NMEA sentence codes. The line we are most
interested in is $GPRMC, which stands for global positioning recommended
minimum specific transit data. If you take a look at Table 3-4, you can see the

exact breakdown of the following line:
SGPRMC, 092610.000,A,5342.6381,N,00240
.0134,w,8.44,277.28,161213,, ,A*7A

TABLE 3-4 GPRMC Breakdown

Description GPS Data
Time of fix 09:26:10 UTC
Receiver warning: A=0k, A
V=warning

Latitude 5342.6381N
Longitude 0240.0134W
Speed over ground (knots) 8.44

Course made good 277.28

Date of fix 16/12/13
Magnetic variation -

Checksum *7A

For this example, the data we need to extract is the latitude and the
longitude values, and these are separated by commas and put into an array of
strings. The handler function splits the data up into parts. Each part of the
data we need we add to a variable so that we can organize the data how we
wish.

gpsPort.on('data’', function(data) {
//console.log('data received: ' +
data);

var parts = data.split(",");

if (parts[0] == "$GPRMC") {
var lat = parseFloat(parts[3])
/ 100;

var ns = parts[4];

var lon = parseFloat(parts[5])
f 100;

var ew = parts[6];

We divide both the latitude and longitude values by 100 because they are
1/100ths of a degree. Once we have our variables for the GPS data, we can
output the coordinates to the console:

console.log("Lat=" + lat + ns + long="

+ lon + ew):
We should then see the following:
Lat=53.463056N long=2.,291389W

To confirm that these coordinates are correct, we can directly input them
to a mapping application such as Google Maps to pinpoint the exact GPS
coordinates. See Figure 3-9 for the position of our current coordinates.

I L p— - p——— Y A wTmEE rre = il e P & @ Ov &

T T Ly T LWy Y [P S P L Ty ; O

; B ST 5

EPIr4ns Fire e b S T - -

|BTAFREL Google Maps GPS coordinates

To take this project a step further, you can output the coordinates to a text
file, which can keep a log of where your GPS receiver has been. This is great
for tracking weather balloons or rover buggies.

Project 11
Temperature Sensor

Probably one of the most popular sensors you will want to learn about is the
temperature sensor, which enables you to read temperatures. There are many
different ways in which this can be achieved, including using a thermistor
across a voltage divider and measuring the output voltage across the resistors.
We will create something similar to this in Project 13 using a light-dependent
resistor. For this project, however, we will use a TMP36 sensor, shown in
Figure 3-10. This is a simple device to use, and it cuts out the need for a
resistive voltage divider because the output pin on the sensor outputs a
voltage.

BT RBI TMP36 temperature sensor

Hardware

Table 3-5 lists the components and equipment required for Project 11.

TABLE 3-5 Components and Equipment for Project 11

Description Appendix A
BeagleBone Black M1
Solderless breadboard H2
Jumper wires H1

TMP36 temperature sensor S6

NOTE Take extra caution when wiring the temperature sensor,

as incorrect wiring may cause overheating and may burn the skin.

The TMP36 sensor has three pins, and it is very important that you get
these pins oriented correctly when connecting the sensor to the breadboard. If
in doubt, you can refer to the TMP36 technical datasheet, which is clearly
illustrated. Pin 1 of the sensor is the voltage in from the BeagleBone Black,
and this can be in the range of 2.7-5.5V, so we can connect our 3.3V from
the BeagleBone. Pin 3 of the sensor is the GND, so we can connect this to
any GND pin on the BeagleBone Black. Pin 2 is the important part of the
sensor; this is the voltage out based on the temperature range of —40°C to
+150°C. We can connect this pin directly to our analog input pin, which can
read analog voltages up to 1.8V. In theory, we could possibly exceed 1.8V
from the sensor, but if we calculate this correctly, we would have to exceed a
temperature of 130°C.

Figure 3-11 shows the breadboard layout diagram for Project 11, and you
can see the final project in Figure 3-12. Make note of the orientation of the
temperature sensor in Figure 3-11.

g

B & & & & & & & & & & & A & & & & & 2 B B & & A B 8 A B 88
- 8 8 8 B
. 8 8 8 B

8 8 & & & & & & B 8 & & & & & & B B 4 B & B B B B B B B B8 @
" & & 2 B
- & & 8 B

@ & & & & & & & & & & & & & & & B B & & & & & & & B B & B 9
@ &8 B & & & B 8 A

8 & 8 B 4 8 & A

& B & &
B B & & & & & & & 8 & & &2 & & & & 8 8 B & B &8
5 8 8 & 5 8 8 5 5 8 8 5 8 8 8 8 B B 8 B 8 8 88
58 & & & & 8 8 5 8 5 & & 8 8 & B B 8 5 8 8 & &
& & & & % & & & & & & & & & & & & & 4 & & B & B

Made with D Fritzing.org

|STAIgRBIN] Project 11 breadboard layout

ISt RBIW Project 11 temperature sensor

Software

Here is the code we’ll use for Project 11:

var b = require('bonescript');
var inputPin = "P9 40";
getBeagleTemp() ;

function getBeagleTemp() {
var value = b.analogRead(inputPin);

var millivolts = value * 1800;
var temp ¢ = (millivolts - 500)
i

setTimeout (getBeagleTemp, 1000);

console.log(temp c);
}
The code for this project is really simple: all we are doing here is
calculating the voltage coming in to the analog pin on the BeagleBone Black

and converting this to degrees Celsius. The voltage in is converted into
millivolts by multiplying the value by 1,800:

var millivolts = value * 1800;

We then convert the value into Celsius by subtracting 500 and then
dividing the result by 10:

var temp ¢ = (millivolts - 500) / 10;

We could then use the following equation to convert from Celsius to
Fahrenheit, if desired:

var temp f = (temp ¢ * 9/5) + 32;

Another way to loop the function instead of setting an interval is to set a
timeout in the function and just call the function again. We can set this code
to update the temperature every second, like so:

setTimeout (getBeagleTemp, 1000);

Project 12
Moisture Sensor

Project 12 is for all you makers with a green thumb out there. This project is
a fantastic DI'Y moisture level sensor that can detect when your vegetation
needs watering. It uses a very simple circuit setup that measures the
resistance between two probes. This allows you to sense whether the soil
needs watering so you can keep your plants healthy.

Hardware
Table 3-6 lists the components and equipment required for Project 12.
TABLE 3-6 Components and Equipment for Project 12
Schematic
Reference Description Appendix A
BeagleBone Black M1
Solderless breadboard H2
Jumper wires H1
R1 10k resistor R5
D1 Red LED S1
D2 Green LED 55
R2 220R resistor R1

The hardware for this project is very simple: it uses a voltage divider to
create a circuit where we can measure the resistance between two points. The
two probes used for this project are two bare wires, but for convenience, you

can solder them onto a pair of nails and stick them in the soil. This circuit
diagram for Project 12 as shown in Figure 3-13 allows us to read the value of
the sensor. When we need to water the vegetation or when the resistance of
the soil increases, the green LED will light up indicating the vegetation needs
watering. The final project can been seen in Figure 3-14.

LI]
q..
:: & & & @
P [I B O)
[I N N)
_..
LN] ..|
:. - &
d . .
¢ [.

. Vbt . AN = BeagleBone
i '

Made with [Fritzing.org

ISTANTIRBIK Breadboard layout for Project 12

ISty Project 12 moisture sensor

Software

Here is the code we’ll use for Project 12:

var b = require('bonescript’);

var inputPin = "P9 40";
var ledPin = "P9 28";
var ledPin2 = "P9 30";

b.pinMode(ledPin, b.OUTPUT);
b.pinMode(ledPin2, b.OUTPUT);
loop();

function loop() {

var value = b.analogRead(inputPin);

console.log(value*1l.8);

if (value>0.5){
b.digitalWrite(ledPin, b.HIGH);
b.digitalWrite(ledPin2, b.LOW);

}

else b.digitalWrite(ledPin, b.LOW);
b.digitalWrite(ledPin, b.HIGH);

setTimeout (loop, 1000);
}

The code is very simple: we read the value between the two probes using
the analogRead function and then determine whether this value is greater
than 0.5 using an if statement. If it is, we know that the plant does not need
watering; however, if the value is less than 0.5, we know there is greater
resistance between the probes because of the moisture level. Therefore, it’s
time to water the plant. We also use two LEDs as a simple indicator: green
for healthy moisture levels and red for poor moisture levels.

function loop() {

var value = b.analogRead(inputPin);

console.log(value*1.8);

if (value>0.5){
b.digitalWrite(ledPin, b.HIGH);
b.digitalWrite(ledPin2, b.LOW);

}
else b.digitalWrite(ledPin, b.LOW);

b.digitalWrite(ledPin, b.HIGH);

Project 13
light level Indicator

This project uses a light-dependent resistor (LDR) or photocell to detect
levels of light (see Figure 3-15). The value changes depending on the amount
of light received by the sensor: the resistance decreases as the light increases.
This is a convenient and low-cost way of measuring basic light levels. This
project cannot, however, be used for accurate measurement of lux levels, but
it can tell us whether it is day or night. In the real world, this project provides
a great way of turning on lights when its dark out (known as dusk-till-dawn
lighting). Generally speaking, LDRs have a value of around 10k when it is
dark; you may have to refer to the technical datasheet for specific information
about your LDR.

|STATRBIE Photocell

Hardware
Table 3-7 lists the components and equipment required for Project 13.
TABLE 3-7 Components and Equipment for Project 13
Schematic
Reference Description Appendix A
BeagleBone Black M1
Solderless breadboard H2
Jumper Wires H1
R1 Tk resistor R8
R2 10k photocell R7

As you know from our previous projects, the ADC on the BeagleBone
Black can only read the voltage difference up to 1.8V. So, with this in mind,
we need to create a divider circuit between the photocell and a pull-down
resistor (see Figure 3-16). This allows us to measure the voltage drop across
both the photocell and the resistor as the light levels change. For this project,
we use a typical value of 1k for the pull-down resistor. Because we have
connected our photocell to 1.8V ADC output on pin 32, we do not have to
worry about the risk of damaging the board on pin 40 from a voltage higher

than 1.8V or when the light resistance on the sensor has decreased.

P9 40

wora (]
N

R1
1kQ

N

ISTANTIRBNLY Project 13 schematic diagram

You can see in Figure 3-16 that when there is no light, the circuit will be
pulled to ground because the resistor’s value of 1k would be less than the
assumed photocell value of 10k. When light starts to appear, the resistance of
the photocell will drop and the voltage should be detected in pin P9_40.

Figure 3-17 shows the breadboard layout diagram for Project 13, and the
final project can be seen in Figure 3-18.

P s 8 & & @ " & 8 8 @ & @
i 8 & 8 @ - & 8 8 & s 8
o e 8 & 8 B . & 8 8 @ .8
& a8 8 8 B & & 8 & 8 s 4
& & . B 8 B B & 8 8 8 8 s 4
s 8 8 8 B8 *® 8 & 8 @
& é "8 8 8 @ ® 8 & 8 @ W
FE 8 8 8 @ " 8 & 8 8 a
4 o . 8 8 8 8 ® 8 8 & @ a3
[} -
2 .. " & . 8 8 8 aa
-
Fp @ 8 & & @ & & & @ For
& 8 8 B B & & 8 & &
[]
£ " BB BB a8 8 [] 2 4
2 d a8 8 B8 B ® & & & @ aa
ad "8 8 8 B a8 & 8 @ a4
a @
2 d L] L L] L 2 4
[] [] a @
¥ e LI O -
@ & & & @& a @8
@ & & & @ - "-_
L B
a & & 8 [I [] .)
. ¢ E BeagleBone
a8 & & B & @ a
L I &
& 8 & & @ [I | N |
L B 0
" @ 8 8 [I -
e &
® @ & & @ a @& & 8
& @ & @& @ a® & & @
" §
& & & & @ a & & @
L B
& & & & @ & & @& @
L I |
" & & & @ & & & @
L |
@ & & & @ & & & @8
L I
@ & & & @ & & & @

Made with D Fritzing.org

|S3TAIg KBV Project 13 breadboard layout

|STT KBk Project 13 light level indicator

Software

Here is the code we’ll use for Project 13:

var b = require('bonescript’);

var inputPin = "P9 40";

getlightlevel();

function getlightlevel() {

var value = b.analogRead(inputPin);
setTimeout(getlightlevel, 1000);

console.log(value);

}

The code for this project is very simple: we create a function that updates
every so often and reads the value from the analog pin. If we want to create a
simple day/night indicator, we can hook up two LEDs so that when it is dark,
the red LED will light up and when it is light, the green LED will light up.
Refer back to Chapter 2 for setting up an LED.

Summary

Following the LED projects in the previous chapter, in this chapter, you
learned how to use a variety of analog sensors. When using analog sensors
with the BeagleBone Black, remember that it is just a matter of calculating
the voltage conversion you read from your analog pins. Hopefully, you can
integrate these sensor projects with the LED projects in Chapter 2 to create
some really great tools for sensing the real world around us. In the next
chapter, we look at some robotics for controlling motors using a wireless
keyboard and the Web.

Robotic Projects

THIS CHAPTER LOOKS AT controlling servos and motors using the BeagleBone
Black. These power devices can be used in applications such as robotics,
CNC machinery, and automated systems. You have already read a bit about
using pulse width modulation (PWM) in Chapter 2, and in this chapter, we
will use the full functionality of PWM to control servos and motors as well as
their speed. We will also be looking at controlling items through a web
interface, which will enable our projects to be controlled remotely from
anywhere in the world.

Project 14
Controlling Servos and Motors

Project 14 will give you a basic understanding of both servos and motors and
how they are operated. By using the analogwrite function, the BeagleBone
Black will send a PWM signal to the motor to control its operation.

Servo Motor Control

Although DC motors serve as excellent drive motors, they are not always best
suited for precision because there is no way to tell the exact position of a DC
motor. Servo motors are quite unique in the fact that you can control them to
rotate to a particular position and they will stay in that position unless told
otherwise (see Figure 4-1).

I3l R 8] Standard servo motor

Servo motors usually come in one of two types: full continuous rotation or
standard rotation, which is usually 0 to 180 degrees because there is a
potentiometer in line with the shaft for calculating the exact position. For this
project, we will be using the standard (0 to 180 degrees) servo motor so that
we can calculate its exact position.

Hardware

Table 4-1 shows the components and equipment required for Project 14a.

TABLE 4-1 Components and Equipment for Project 14a

Schematic

Reference | Description Appendix A
BeagleBone Black M1

M1 5V servo motor H6
Breadboard H2
Jumper wires H1

R1 1K resistor R8

Unlike DC motors, servos have three pins: power (red), ground (black),
and signal (white/orange). These wires are typically color coded so that it’s
easy to wire up devices. It’s always best to double-check the datasheet of the
manufacturer if you are unsure.

Most motors, when powered, can at times draw too much current from the
power source (the BeagleBone in this case), but for this project, we are only
going to drive one 5V servo motor. If you are driving more than one servo
motor, an external power source will be required, such as batteries or a DC
power adaptor.

Servos have a dedicated control pin that instructs them which position to
turn the motor to based on the adjustable PWM signals coming in. As shown
in Figure 4-2, if we send a 1ms 5V pulse to the servo, it would turn the motor
to 0 degrees (min), and if we send a 2ms 5V signal, it would turn the motor to
180 degrees (max). Using these calculations, we can quite easily work out
that every 0.0111ms will turn the servo by 1 degree.

— —

1.0mS 1.25 mS 1.5mS 1.5mS 1.75 mS 2.0mS

ISR B Servo motor timing diagram

With all this in mind, we can now go ahead and wire up our servo motor
to the BeagleBone Black, as shown in Figure 4-3. The completed project is
shown in Figure 4-4.

=
L] [I N I N
L " 8 8 8 8
- " 8 8 8 8
L] a8 & 8 8
" "8 88 8
L] i & & & &
L] [IO I U N
& @ & & & @
& R :
"« 0 [
. TP
® 8 @ " 8 & 8 @
L I |
& & 8 @ " & & & 8
L
i & & & & @& .--.;{/
1
pr > e=Jllj= ¢ ¢ & &
& & & & @ @ & & @
L I |
" & & & @ [I I N N)
TR 'R " . P
LI BeagleBone
& 4 " 8 8 8 8 @ 8 8 & 8 -
P L N B BN B " " 8 8 8
. 8 8 8 @ a8 & 8 8
L N |
" & 8 8 B "8 & & 8
L I]
TR "8 aw s
& & & & @ @ & & & @
LN |
P " & & & @ [BN I N
" & & 8 @& a8 8 4 @
L I |
a8 8 8 @ [IR U I
L I |
i L N N B [N N U
. " 8 8 @ a 8 8 8 9

Made with [Fritzing.org

I3R! Servo motor breadboard layout

Controlling a servo motor

Software

The software for controlling a servo motor could not be any simpler. All we
need to do is set

analogWrite(pin, value, freq, callback)

where pin is the PWM pin number we have our servo motor connected to (in
this case, it is connected to P9_14), value is the position we want our servo
to move to (this value would be our duty cycle), and frequency is the rate at
which the PWM signal is sent to the servo motor (in Hz).

var b = require('bonescript’');
var SERVO = 'P9_14"';

var duty min = 0.03;

var position = 0;

var increment = 0.1;

b.pinMode (SERVO, b.OUTPUT);
updateDuty () ;

function updateDuty() {
// compute and adjust duty cycle
// based on desired position in
// range 0..1
var duty cycle = (position*0.115)
+ duty min;

b.analogWrite(SERVO, duty cycle,

60, scheduleNextUpdate) ;
console.log("Duty Cycle: " +
parseFloat (duty cycle*100).
toFixed(1l) + " %");

function scheduleNextUpdate() {

}

// adjust position by increment and
// reverse if it exceeds range of
g
position = position + 1ncrement;
if(position < 0) {

position = 0;

increment = -increment;

} else if(position > 1) {

position = 1;
increment = -increment;

// call updateDuty after 200ms
setTimeout (updateDuty, 200);

Before we do anything, we need to set the variables for the duty, the

position of the servo, and how we want to increment the value (or rotation) of
the motor:

var b = require('bonescript’');
var SERVO = 'P9 14';

var duty min = 0.03;

var position = 0;

var increment = 0.1;

The first function we call calculates the duty cycle; then we write the
value to the servo motor using the analogwrite function:

function updateDuty() {
// compute and adjust duty cycle
// based on desired position in
// range 0..1
var duty cycle = (position*0.115)
+ duty _min;
b.analogWrite(SERVO, duty cycle, 60,
scheduleNextUpdate) ;
console.log("Duty Cycle: " +
parseFloat (duty cycle*100).
toFixed(l) + " %");
}

After the value has been sent, we can then issue a callback
(scheduleNextUpdate) to increment the duty cycle if it has not exceeded the
maximum rotation value. We use an if statement to determine whether the
value has reached a minimum or maximum position, and then we set the
increment to a positive or negative value so that when we next run the update,
the motor will turn in the correct rotation direction.

function scheduleNextUpdate() {
position = position + increment;
if (position < 0) {
position = 0;
increment = -increment;
} else if(position > 1) {
position = 1;
increment = -increment:

}

This function is run every 200ms to update to the next position:

setTimeout (updateDuty, 200);

Now, when the program is run, the servo should rotate clockwise from 0
to 180 degrees and then back again.

DC Motor Control

DC motors differ from servo motors in that when a voltage is applied across
one, the motor is driven continuously in one direction. DC motors only have
two contact pins: plus voltage and ground. So how do we control the speed
and direction? In order to control the speed of the motor, we adjust the
voltage supplied to it. Therefore, we know how to control the speed of a
motor—but what about the direction? If we connect a voltage to a motor, it
rotates in one direction, and if we swap the pin over, the motor rotates in the
other direction. Therefore, all we have to do is reverse the voltage, and the
motor simply goes in the other direction. This is generally done using an H-
bridge IC, such as an L.293. DC motors generally require a higher current
than the BeagleBone Black can handle, so for this setup we require an
external power source for our motors, such as batteries or a DC adaptor. This
way, we can still control the speed using our H-bridge.

Hardware

Table 4-2 shows the components and equipment required for Project 14b.

TABLE 4-2 Components and Equipment for Project 14b

Schematic

Reference | Description Appendix A
BeagleBone Black M1
Solderless breadboard H2
Jumper wires H1

M1 DC motor H7

S1 L293d H-bridge S7
Four AA batteries

For this part of the project, we are going to use a geared 6V motor to drive

a small robotic chassis. To drive the motor, we use a Half-H driver such as
the L.293 IC. Technically, the 1.293d can drive up to four motors in one
direction, but, of course, we want our motor to be controlled in both

directions, so we will use one set of pins for clockwise and another set for

counterclockwise. Looking at the technical datasheet of the 1.293, we can see
that there are 16 pins on the IC (refer to Figure 4-5). A half circle at one end

of the chip always indicates the top, and usually you can find a small circle

next to pin 1.

d

1,2EN] 1 16|] Vce1
1A [] 2 15[] 4A
1Y []3 14]] 4Y

HEAT SINKAND J~ [J4 13[] 1_HEAT SINK AND
GROUND_[|5 12[] S 'GROUND

2Y |16 11 3Y
2A []7 10]] 3A

Veeo [18 9[] 3,4EN

|BT31 R 8 [.293d H-bridge pinout

Let’s go through the pins just to get a better understanding of how they
will be used:

m GND (pins 4, 5, 12, and 13) The four pins in the middle are connected to
a shared ground.

m Vcc2 (pin 8) This pin supplies the motor current, so you connect this to
your external power supply.

m Vccl (pin 16) This pin provides power for the chip, so we can connect
this to the BeagleBone’s 5V.

m 1Y and 2Y (pins 3 and 6) These are the outputs from the left-side driver
of motor 1. Our motor wires will connect directly to these pins.

m 1A and 2A (pins 2 and 7) These pins control the state of the switches for
motor 1. These are connected to the BeagleBone Black GPIO pins.

m 1, 2EN (pin 1) This pin is used to enable or disable motor 1 driver. This
pin will be connected to the BeagleBone Black’s PWM pin to control the
motor speed.

The rest of the pins are used to control motor 2, on the right side of the
driver. The breadboard layout for Project 14b can seen in Figure 4-6, and the
completed project is shown in Figure 4-7. You can see in Figure 4-7 that I
have used a sliding potentiometer, but any standard potentiometer will do.

| l} Fritzing.org

klade wit

|3T411d R =S DC motor control breadboard layout

|3T311s ¥ 8y DC motor control using 1.293d

Software

Using a bit of logic, we can quite easily write our program to control the
motor, both forward and backward:

var b = require('bonescript');

var pwmPin = "P9 14";

var ainlPin = "P9 15";

var ain2Pin = "P9 17";

var potPin = "P9_33";

b.pinMode (pwmPin, b.OUTPUT);
b.pinMode(ainlPin, b.OUTPUT);
b.pinMode(ain2Pin, b.OUTPUT);

function loop() {

b.analogRead(potPin, adjustMotor);

function adjustMotor(reading) {
if (reading.value > 0.5) {

forwards((reading.value - 0.5)
* 2);
}
else {
backwards((0.5 - reading.value)
* 2);
}

function forwards(duty) {
b.analogWrite(pwmPin, duty);
b.digitalWrite(ainlPin, 1);
b.digitalWwrite(ain2Pin, 0);

function backwards(duty) {
b.analogWrite(pwmPin, duty);
b.digitalwrite{ainlPin, 0);
b.digitalWwrite{ainZ2Pin, 1};

setInterval (loop, 50);

The first part of the code sets up the variables and the pin state. We are
using both analog and digital pins to control the motor using a POT.

var b = require('bonescript’);

var pwmPin = "P9 14";
var ainlPin = "P9 15";
var ain2Pin = "P9 17";
var potPin = "P9 33";

b.pinMode (pwmPin, b.OUTPUT);
b.pinMode(ainlPin, b.OUTPUT);
b.pinMode(ainZ2Pin, b.OUTPUT);

After we set the variable, the next logical step is to get the value of the
POT so we can then decide whether to turn the motor on forward or
backward and at what speed. We read the value in a function so we can loop
it to get a steady update of the status of the POT:

function loop() {
b.analogRead(potPin, adjustMotor);

}

We can now calculate the direction using an if statement. If the trim pot
value is greater than 0.5, we want to go forward, so we call the forwards
function. If the value is less than 0.5, we want to go backward, so we call the
backwards function.

function adjustMotor(reading) {
if (reading.value > 0.5) {
forwards((reading.value - 0.5)

* 2);
}
else {
backwards((0.5 - reading.value)
*2);
}

}

Table 4-3 shows the logic in turning the pins high and low and how this
drives the motor forward and backward.

TABLE 4-3 Motor Logic

Status Ain1 Ain2
Open Low Low
Forward High Low
Backwards Low High
Braking High High

When all the switches are in the open state, the motor will not spin. In the
forward state, the first Ain pin is set to high and the other low, thus creating a
circuit for the motor to spin forward. In the backward state, this is reversed so
that the second Ain pin is set high and the first low, thus creating a reversing
circuit and resulting in backward motor spin. When both Ain pins are high,
this creates a braking state, causing the motor to stop its spin.

If we want the motor to run forward, we first set the PWM pin with the
speed and then we set the Ain pins according to Table 4-3:

function forwards(duty) {
b.analogWrite(pwmPin, duty);
b.digitalWrite(ainlPin, 1);
b.digitalWrite(ain2Pin, 0);

}

To run the motor backward, we simply change the values of the pins to the
opposite:

function backwards (duty) {
b.analogWrite(pwmPin, duty);
b.digitalWrite(ainlPin, 0);
b.digitalWrite(ain2Pin, 1);
t

We set the program to run every 50ms by using an interval timing, as
shown next. This way, we can get a more accurate update of the trim pot
position, which allows us to get better and faster control of the motor.

setInterval (loop, 50);

Project 15
Wireless Keyboard-Controlled Rover

Now that we have established how to turn on the motors, it’s a good time to
discuss how to control these motors to drive the direction for a small rover
bot. For this project we are going to use a wireless keyboard and mouse
controller to capture keypresses and control our rover. The rover we’ll use is
very simple: it has two motors on either side of the chassis driving the rubber
tracks. Included is a battery compartment for four AA batteries to power the
motors.

JavaScript isn’t the only programming language we can use on the
BeagleBone Black; another popular language among hobbyists is Python. In
some ways, the programming concepts remain the same, regardless of which
language is being used: we still need to call our library to access the GPIO
pins and we set the pins to inputs or outputs.

Before we get started, we need to install a few items. First, we need to

make sure the BeagleBone Black is up to date with the latest kernel (version
3.8). If you have followed along in this book since Chapter 1, yours should be
fairly up to date. If not, refer back to Chapter 1 and update to the latest
software. Connect your BeagleBone Black through SSH, either using
GateOne SSH or using an SSH program such as PuTTY or ZOC Terminal.
At this stage, make sure you are connected to an Internet-enabled
cable/modem because you will need to download and install some software.
Once you are connected, make sure the time and date are set; otherwise, you
will have issues grabbing the software from the repository. Now type in the
following line:

/usr/bin/ntpdate —b —s —u pool.ntp.org

Next, type in these commands to install some Python tools and the
Adafruit GPIO library:

Opkg update && opkg install python-pip
python-setuptools python smbus
Pip install Adafruit BBIO

As a quick test to make sure everything has installed correctly, you can
just type the following:

python —c "import Adafruit BBIO.GPIO as
GPIO; print GPIO"

Hardware

Table 4-4 shows the components and equipment required for Project 15.

TABLE 4-4 Components and Equipment for Project 15

Schematic

Reference | Description Appendix A
BeagleBone Black M1
Jumper wires H1
Solderless breadboard H2

S1 L293DNE motor driver S7
Pololu robot chassis H8

M1/2 Two 6V geared motors H7
Wireless compact keyboard | H9
Four AA batteries

The hardware for this project is very easy to set up. The key components
are the motors and the 1.293d motor driver chip. We use the second part of
the H-bridge to drive the second motor, and we control this through a PWM
pin on the BeagleBone Black.

The breadboard layout diagram can be seen in Figure 4-8, and the
completed project can be seen in Figure 4-9.

BeagleBone

Made with [J Fritzing.org

13Tl & Breadboard layout for Project 15

ISy RE Project 15 wireless keyboard control rover

Software

Here is the Python code for driving the robot using a wireless keyboard in
Project 15. The code allows us to drive the robot forwards and backwards and
also turn it left and right.

import os

import sys

import termios

import tty

import Adafruit BBIO.GPIO as GPIO
import time

import Adafruit BBIO.PWM as PWM

GPIO.setup("P9 14", GPIO.OUT)
GPIO.setup("P8 19", GPIO.OUT)

GPIO.setup("P9 13", GPIO.OUT) #motorl
GPIO.setup("P9 15", GPIO.OUT)

GPIO.setup("P8_10", GPIO.OUT) #motor2
GPIO.setup("P8 12", GPIO.OUT)

def getKey():
fd = sys.stdin.fileno()
old = termios.tcgetattr(£fd)
new = termios.tcgetattr(£fd)
new[3] = new[3] & ~termios.ICANON &
~termios.ECHO
new[6][termios.VMIN] = 1

new[6][termios.VTIME] = 0
termios.tcsetattr(£fd,
termios.TCSANOW, new)

key = None
try:

key = os.read(fd, 3)
finally:

termios.tcsetattr(fd,
termios.TCSAFLUSH, old)
return key

while 1:
X = str(getKey())

if x == "w":

PWM.start("P9 14", 10, 2000, 1)
PWM.start("P8 19", 10, 2000, 1)
GPIO.output("P9 13", GPIO.HIGH)
GPIO.output("P9 15", GPIO.LOW)
GPIO.output("P8 10", GPIO.HIGH)
GPIO.output("P8 12", GPIO.LOW)

mw

elif x == "g":
PWM.start("P9 14", 10, 2000, 1)
PWM.start("P8 19", 10, 2000, 1)
GPIO.output("P9 13", GPIO.LOW)
GPIO.output("P9 15", GPIO.HIGH)
GPIO.output("P8 10", GPIO.LOW)
GPIO.output("P8 12", GPIO.HIGH)

elif x == "a":

PWM.start("P9 14", 10, 2000, 0)

PWM.start("P8 19", 10, 2000, 1)

GPIO.output("P8 10", GPIO.HIGH)
GPIO.output("P8 12", GPIO.LOW)
elif x == "d":

PWM.start("P9_14", 10, 2000, 1)
PWM.start("P8 19", 10, 2000, 0)
GPIO.output("P9 13", GPIO.HIGH)
GPIO.output("P9 15", GPIO.LOW)
else:

PWM.stop("P9 _14")
PWM.stop("P8 19")

PWM.cleanup()

Project 16
Web-Controlled Rover

In this project, we use a simple web interface to control a small rover using
the BeagleBone Black. To achieve this, we use “web sockets” for the
communication between the web interface and our node.js program. This
project adopts a client/server model in which our BeagleBone JavaScript
application creates a server that listens on a particular port number (in this
case, 8080) and waits to receive the communication from the client. It then
interfaces with the BeagleBone Black GPIO pins. The client side employs a
simple HTML web page that has a slider as an input. This will be used to
control the power and direction of the motors.

Hardware

Table 4-5 shows the components and equipment required for Project 16;
many of these components were also used in Project 15.

TABLE 4-5 Components and Equipment for Project 16

Schematic

Reference Description Appendix A
BeagleBone Black M1
Solderless breadboard H2
Jumper wires H1

5] L293d motor driver S7
Robot chassis H8

M1/2 Two 6V DC motors H7
Four AA batteries

For this project, we use a small robot chassis and two 6V geared motors.

These items are relatively inexpensive and can be found in most hobbyist
stores. Figure 4-10 shows the Pololu robot Kkit.

I3ty RB) Pololu robot kit

As in Project 14, we will be using the 1.293d to drive two motors. This
allows us to control the direction and speed of the rover. You can see the
schematic diagram in Figure 4-11 and the completed project in Figure 4-12.

[TR LJ‘"‘\—}— GHND PR 17—
AT Mz
lf"l,‘.lr - P . e L AL
— J sing L S8I0NE sing
PS5 P b= g

BeagleBone Black

PE P i
e P
—_—EY
+ ™ P fr—]
PA HE } P
o

|3T411d R W Project 16 web-controlled rover

Software

The software for this project is split into two files: the application file (server)
and the web HTML file (client). Before we can do anything, you must make
sure you have the socket.io JavaScript program. To do this, type the
following in the command line of the BeagleBone Black, but first make sure
you are connected to the Internet using an Ethernet cable:

npm install socket.io

Once this has finished installing, we can create our server-side application:
var app = require(http').
createServer(handler);
var io = require('socket.io").
listen(app):;
var fs = require('fs');
var b = require('bonescript’);

app.listen(8080);

// socket.io options go here
i0.set('log level', 2);

// reduce logging - set 1 for warn,
// 2 for info, 3 for debug

io.set('browser client minification',
true);

// send minified client

io.set('browser client etag', true);

// apply etag caching logic based on

// version number

console.log('Server running on:
http://' + getIPAddress() + ':8080');

//pwm pin

var pwmPinl = "P9 14";
var pwmPin2 = "P8 19";
//motor 1

var ainlPin = "P9 13";
var ain2Pin = "P9 15%;
//motor 2

var ainlPin2 = "P8_10";

var ain2Pin2 RS2 s

// configure pins
b.pinMode (pwmPinl, b.OUTPUT);
b.pinMode (pwmPin2, b.OUTPUT);
b.pinMode(ainlPin, b.OUTPUT);
b.pinMode(ain2Pin, b.OUTPUT);
b.pinMode(ainlPin2, b.OUTPUT);
b.pinMode(ain2Pin2, b.OUTPUT);
function handler (req, res) {
fs.readFile(‘index.html’,
// load html file
function (err, data) {
if (err) {
res.writeHead(500);
return res.end('Error loading
index.html');
}
res.writeHead (200);
res.end(data);

})i

io.sockets.on('connection', function
(socket) {
// listen to sockets and write analog
// wvalues to PWM pins
socket.on('pwmPin', function (data) {
console.log(data);
if (data.value >50){

forwards((data/100 - 0.5)
* 2);
console.log("forwards");

}
else {
backwards ((0.5 - data/100)
* 2);
console. log("backwards");
}
})i

})i

function forwards(duty) {
var value = duty;
//Arm motors
b.analogWrite(pwmPinl, wvalue);

b.analogWrite(pwmPin2, wvalue);
//Write walues

b.digitalWrite(ainlPin, 1);
b.digitalWrite(ain2Pin, 0);
b.digitalWrite(ainlPin2, 1);
b.digitalWrite(ain2Pin2, 0);

function backwards (duty) {
var value = duty;
J/Arm motors
b.analogWrite(pwmPinl, wvalue);
b.analogWrite (pwmPin2, value);
fiWrite values
b.digitalWrite(ainlPin, 0):
b.digitalWrite(ainZPin, 1);
b.digitalWrite(ainlPin2, 0);
b.digitalWrite{ain2Pin2, 1);
t
!/ Get server IP address on LAN
function getIPAddress() {
var interfaces = reguire('os').
networkInterfaces();
for (var deviame in interfaces) {
var iface = interfaces([devName];
for (var 1 = 0: i < iface.length:

j.++] {
var alias = iface[i];
if (aliag.family === 'IPvd' K&

alias.address |== "127.0.0.1" &&
lalias.internal)
return alias.address;

return '0.0.0.0"';
}

In order to set up our server, we have to import the functions and
JavaScript modules. First, we require http so we can create an HTTP server
on the BeagleBone Black. Next, we require the socket .io client so we can
communicate with the server using web sockets. Because we are parsing data,
we need to be able to read the index.html file; therefore, we require file
system (fs) features to do this.

var app = require('http').

createServer (handler);

var io = require('socket.io').

listen(app);

var fs = require('fs');

var b = require('bonescript');

In order to view the web page on the server, we set up a port number on

which to listen for web client connections. Port 8080 is the standard web port
number.

app.listen(8080);

Now that we have our variables set, we need to configure the socket.io
settings using io.set. We set the log level to 2, which displays information
about the socket connection and allows us to identify any errors easily.
Because we are sending data over the Web, it’s important to reduce the
amount of traffic flowing through; therefore, we set the client minification to
true, which eliminates all the noncode elements such as whitespace, thus
reducing the size of the data being sent across. Another way to reduce the
load on the web server is to create a caching option so that when the URL is
requested again on the client side, the page is simply reloaded using an entity
tag (etag) header.

io.set('log level', 2);
// reduce logging - set 1 for warn,
// 2 for info, 3 for debug
io.set('browser client minification', true);
// send minified client
ip.set('browser client etag', true);

// apply etag caching logic based
// on version number

console.log('Server running on:
http://' + getIPAddress() + ':8080"');

Now that we have everything set up, the next logical step is to load
index.html into a function handler:

function handler (req, res) {
fs.readFile('index.html',
// load html file
function (err, data) {
if (err) {
res.writeHead(500);
return res.end('Error loading
index.html"');
}
res.writeHead(200);
res.end(data);

})i
}

Now that we have loaded our HTML file, we can listen to the sockets and
perform our calculations with the values received to write the PWM analog
value. We receive the data from the slider in the index.html web page, and we
calculate whether we want the rover to go forward or backward by using an
if statement. If the value is greater than 50, we want the rover to go forward,
and we calculate the PWM value to write to determine the speed of the
motors.

io.sockets.on('connection', function
(socket) {
// listen to sockets and write analog
// values to PWM pins
socket.on('pwmPin', function (data) {
console.log(data);
if (data.value >50){
forwards((data/100 - 0.5)
S
console.log("forwards");
}
else {
backwards ((0.5 - data/100)
* 2);

console.log("backwards");
}
i i
})i
In Project 14, we created an H-bridge circuit to control whether the motor
goes forward or backward. In this project, we set the GPIO pins on both
motors to either HIGH or Low to control the flow through the circuit. Our slider

position determines which function to call, and then we write both the analog
and digital values to drive the motor.

function forwards(duty) {
var value = duty;
//Arm motors
b.analogWrite(pwmPinl, wvalue);
b.analogWrite(pwmPin2, wvalue);
//Write values
b.digitalWrite(ainlPin, 1);
b.digitalWrite(ain2Pin, 0);
b.digitalWrite(ainlPin2, 1);
b.digitalWrite(ain2Pin2, 0);

function backwards(duty) {
var value = duty;
//Arm motors
b.analogWrite(pwmPinl, value);
b.analogWrite(pwmPin2, value);
//Write values
b.digitalWrite(ainlPin, 0);
b.digitalWrite(ain2Pin, 1);
b.digitalWrite(ainlPin2, 0);
b.digitalWrite(ain2Pin2, 1);

Now that we have our server script, we need to create an index.html file
for our web interface:

<!DOCTYPE html>

<html>

<head>
<meta charset="utf-8">
<title>BeagleBone Black Demo</title>
<script src="/socket.io/socket.

io.js"></script>

<script>
var socket = io.connect();
// Send data through socket

function pwmPin(value){
socket.emit('pwmPin', wvalue);
}
</script>
</head>
<body>
<div data-role="page" id="pagel">
<div data-theme="a" data-role=
"header">
<h3>
BeagleBone Black
</h3>
</div>
<div data-role="content">
<div data-role="fieldcontain">
<label for="sliderl">
Motor Speed
</label>
<input id="sliderl”
type="range" name="slider"
value="50"
min="0" max="100"
data-highlight="false"
data-theme="b"
onChange="pwmPin(value); ">
</div>
</div>
</div>
</body>
</html>

The HTML here isn’t very detailed because all we want is a simple web
page with a slider. If you want to go into more detail using CSS styling and
such, you can visit www.w3cschools.com for further information on using
HTML and CSS. All we do here is connect to the server by creating a simple
script that pushes the value of the slider to the server function:

http://www.w3cschools.com

<script src="/socket.io/socket.io.js">
</script>
<script=>
var socket = io.connect();
// Send data through socket
function pwmPin(value) {
socket.emit('pwmPin', wvalue);

}

</script>

To run the program, first run the server script in the Cloud9 IDE. You will
then see the IP address in the console. You can put the IP address in your
browser to load the web page. Therefore, open up your browser and insert the
IP address, followed by the port number we set up earlier (8080). Figure 4-13
shows this project’s web page.

M| [P —]4.- 1 = . . -

= - b e
o s g | Ll

& f O # -
b asere K Casiase & Cwe [feese @ e D reses [Msatewsa o Culas 5 lae b Lt B Waw e L, Dytian O &

Beagle Bone Black

Motor Speed

|3T4Id R IR Project 16’s web page

Project 17
Plant Hydration System

In Project 17, we will use a combination of Project 12 and Project 14 to

detect the moisture levels in a plant pot and then switch on a water pump if
the plant needs watering. This project is an example of how you can utilize
what you have learned so far to create your own projects.

Hardware
Table 4-6 shows the components and equipment required for Project 17.
TABLE 4-6 Components and Equipment for Project 17
Schematic
Reference | Description Appendix A
BeagleBone Black M1
Solderless breadboard H2
Jumper wires H1
R1 10K resistor R5
M1 12V peristaltic motor pump | H10
9V battery PP3
Battery clip
S1 L293d motor driver H7

For this project, we are going to be using a 12V peristaltic pump to send
water into the plant pot through a small PVC tube. Peristaltic pumps are more
commonly used in medical professions for transporting clean sterile liquids.
This pump works by rotating small ball bearings to squeeze the liquid
through the PVC tube. Although this does not provide a lot of pumping
pressure, it is ideal for watering a plant pot. To detect the moisture levels in
the plant pot, we will be using the same hardware as in Project 12. Figure 4-
14 shows the breadboard layout diagram for Project 17, and the completed
project can be seen in Figure 4-15.

Paristaltic pump

3 Fritzing.org

Wil

|BTA11d X W Project 17 breadboard layout diagram

I3 RBIR Project 17 automatic watering system

Software

Here is the program code for Project 17. This program is very simple because
it utilizes the code from Project 12 and Project 14.

var b = require('bonescript');

var inputPin = "P9 40";
var pwmPin = "P9 14";
var ainlPin = "P8 10";
var ain2Pin = "P8 12";

b.pinMode (pwmPin, b.OUTPUT);
b.pinMode(ainlPin, b.OUTPUT):;
b.pinMode(ainZ2Pin, b.OUTPUT):;
loop():

function loop() {

var value = b.analogRead(inputPin);

console.log(value);

if (value<0.5){
b.analogWrite(pwmPin, b.HIGH);
b.digitalWrite(ainlPin, 1):;
b.digitalWrite(ain2Pin, 0):;

}

else if (value>0.5){
b.analogWrite(pwmPin, 0);
b.digitalWrite(ainlPin, 0);
b.digitalWrite(ain2Pin, 0);

setTimeout(loop, 1000);

The first thing we need to know is the value of the moisture sensor so we
can determine whether or not to turn on the motor pump:

function loop() {
var value = b.analogRead(inputPin);

Once we have gathered the value of the moisture sensor, we can then
determine the output (TRUE or FALSE). If the value is less than 0.5, there is
greater resistance between the two probes, which means the moisture levels
are low and we need to water the plant pot. We then set the motor variable to
turn on and water the plant. However, if the value is greater than 0.5, there is
less resistance between the probes and the moisture levels are good.
Therefore, we turn off the motor because the plant does not need watering.

if (value<0.5)({
b.analogWrite(pwmPin, b.HIGH);
b.digitalWrite(ainlPin, 1):;
b.digitalWrite(ainZ2Pin, 0);
}
else 1f (value>0.5){
b.analogWrite(pwmPin, 0):
b.digitalWrite(ainlPin, 0);
b.digitalWrite(ain2Pin, 0);
}
It can take some time to fill up the plant pot with enough water to get the

correct moisture level, so it might be wise to set the program to loop every
two to three minutes and check the levels again.

Project 18
Sentinel Turret

Project 18 is great for the office or workplace because you can acquire a
target (such as a colleague) with your sentinel turret and then fire at will. This
project is a great example of how you can use everyday USB devices and
control them using the BeagleBone Black through the USB modules.

Hardware

Table 4-7 shows the components and equipment required for Project 18.

TABLE 4-7 Components and Equipment for Project 18

Description Appendix A
BeagleBone Black M1

Dream Cheeky USB Thunder H11
Missile Launcher

This project uses the Dream Cheeky USB Thunder Missile Launcher,
shown in Figure 4-16. It can rotate sideways, up, and down and fire up to
four missiles at a target. Best of all, it can be programmed through USB, so
no soldering or external circuits are needed to control it.

ISty RBY Project 18 USB sentinel turret

Software

In order to control the missile launcher through USB, we need to download a
few prerequisites. The first piece of software required is PyUSB, which is a
library that allows us to access the USB port using the Python language. Run
the following command in the Terminal window:

git clone git://github.com/walac/
pyusb.git
python setup.py install

This will set up and install the PyUSB module. The second piece of
software is a C library that gives applications such as PyUSB access to USB
devices. To install Libusb, run the following command in the Terminal
window.

Angstrom Opkg install libusb-1.0-dev

Debian sudo apt-get install
libusb-1.0.0-dev

import
import
import
import
import
import

COMMAND_SETS
"attack"

) s

DOWN

LEFT
RIGHT
FIRE
STOP

SYyS
platform
time
urllib2
usb.core
usb.util

{

(
("zexro", 0),
("led”, 1),
(“right®, 3250},
("up", 540),
("fire", 4),
("led", 0),
({"zexrc", 0},

Ox01
= 0x02
Ox04
0x08
0x10
0x20

DEVICE = None
DEVICE_TYPE = None
def usage():
print "Usage: missile.py [command]
[value]"
def setup usb():
global DEVICE
global DEVICE TYPE

DEVICE = usb.core.
find (idVendor=0x2123,
idProduct=0x1010)

if DEVICE is None:
DEVICE = usb.core.
find (idVendor=0x0a81,
idProduct=0x0701)
if DEVICE is None:
raise ValueError('Missile
device not found')
else:
DEVICE TYPE = "Original”
else:
DEVICE TYPE = "Thunder"

def

def

if "Linux" == platform.system():
try:
DEVICE.detach kernel
driver(0)
except Exception, e:
pass

DEVICE.set_ configuration()

send cmd(cmd) :
if "Thunder" == DEVICE TYPE:
DEVICE.ctrl transfer(0x21, 0x09,
0, 0, [0x02, cmd,
0x00,0x00,0x00,0x00,0x00,0x00])
elif "Original" == DEVICE TYPE:
DEVICE.ctrl transfer(0x21, 0x09,
0x0200, 0, [cmd])

led(cmd) :
if "Thunder" == DEVICE TYPE:
DEVICE.ctrl transfer(0x21, 0x09,
0, 0, [0x03, cmd,
0x00,0x00,0x00,0x00,0x00,0x00])
elif "Original" == DEVICE_TYPE:
print("There is no LED on this
device")

def send move(cmd, duration ms):
send_cmd(cmd)
time.sleep(duration ms / 1000.0)
send_cmd (STOP)

def run command(command, value):
command = command.lower()
if command == "right":
send move (RIGHT, value)
elif command == "left":
send move(LEFT, value)
elif command == "up":
send move(UP, value)
elif command == "down":
send move (DOWN, wvalue)
elif command == "zero" or command
== "park" or command == "reset":
Move to bottom-left
send move (DOWN, 2000)
send move(LEFT, 8000)
elif command == "pause" or command
== "gleep":
time.sleep(value / 1000.0)
send_cmd (STOP)

def run command(command, value):
command = command.lower()
if command == "right":
send move (RIGHT, value)
elif command == "left":
send move (LEFT, value)
elif command == "up":
send_move (UP, value)
elif command == "down":
send move (DOWN, value)
elif command == "zero" or command
== "park" or command == "reset":
Move to bottom-left
send move (DOWN, 2000)
send move(LEFT, 8000)

elif command == "pause" or command
== "gleep":
time.sleep(value / 1000.0)
elif command == "led":
if value == 0:
led(0x00)

else:

led(0x01)
elif command == "fire" or command
== "shoot":
if value < 1 or value > 4:
value = 1
time.sleep(0.5)
for i in range(value):
send cmd(FIRE)
time.sleep(4.5)
else:
print "Error: Unknown command:
'¥s'" ¥ command
def run command set(commands):
for cmd, value in commands:
run_command(cmd, value)

def main({args):

if len(args) < 2:
usage()
sys.exit(l)
setup usb()
command = args[1l]
value = 0
if len(args) > 2:
value = int(args[2])
if command in COMMAND SETS:

run_command_ set (COMMAND
SETS[command])
else:
run_command(command, value)
def main(args):
if len(args) < 2:
usage()
sys.exit(1l)
setup usb()
command = args[1l]
value = 0
if len(args) > 2:
value = int(args[2])
if command in COMMAND SETS:
run_command_set (COMMAND _
SETS[command])

else:
run_command(command, value)
if name == "' main ':
main(sys.argv)

To run the program and control the missile launcher, type the following
command followed by two arguments—the command and value—as detailed

in Table 4-8.

Sudo ./missile.py [command]

[value]

TABLE 4-8 Missile Commands

Command Value Description

Up Milliseconds Maves up for the duration set

Down Milliseconds Moves down for the duration set

Left Milliseconds Maoves left for the duration set

Right Milliseconds Maoves right for the duration set

Fire 1=4 Fires the number of missiles indicated

Zero Mull Sets the position to the bottom left

Pause MNull Pauses between commands

Led 0-1 Turns the LED on or off

Command_set MNull Programs the command set in the code and runs the command to
perform a sequence

Summary

By using what you have learned in this chapter, you can create some robotics
projects and control them through the Web or a wireless keyboard. You can
also implement what you learned in Chapter 3 to sense the environment to
create a truly autonomous robot using basic artificial intelligence. The next
chapter looks at displaying information using a variety of LED and LCD
display devices.

Display Projects

THIS CHAPTER IS ALL ABOUT displaying data using a variety of devices, such
as a four-digit LED display and a 16x2 character LCD display. If your
project involves a lot of statistical information from sensors or other devices,
it is always a good idea to display the information on a small display instead
of outputting the information to the console or over SSH.

Project 19
7-Segment Clock

This project uses a four-digit 7-segment LED display to show the current
system time. A 7-segment display is great for displaying decimal digits and is
generally inexpensive. It’s called a 7-segment display because—well, you
guessed it—it has seven segmented LEDs on the interface. Figure 5-1 details
how the display is labeled, from A to G.

7
L

7\
Q
KD

A/

|STATIRI A 7-segment display

Hardware

Table 5-1 lists the components and equipment required for Project 19. For
this project we will use the Adafruit 7-segment display with an 12C backpack
(see Figure 5-2). We could directly connect all 12 pins of the 7-segment
display to the BeagleBone Black and control it that way, but this is not
practical in the real world. Using an I2C chip reduces the number of jumper
wires needed and simplifies our project somewhat.

TABLE 5-1 Components and Equipment for Project 19

Description Appendix A
BeagleBone Black M1
Solderless breadboard H2
Jumper wires H1
Adafruit 7-segment display M5

ISt YR Adafruit four-digit 7-segment display

The 7-segment display kit does require some basic-level soldering to
attach the display to the 12C backpack. You must also solder four pin headers
so that you can insert the display into your breadboard. Figure 5-3 shows the
breadboard layout for this project.

@
c
=
m
L
)
0
<,
(wa

s & & 8 @

* & & & @
e & & & W
e & & & @
* @ @ @ @

* @ " @
* @ & @ @

® ® 8 8 8 @ @
« 8 8 8 @ s o o 0 0 o o . ® * " 8 0 0 @
© (Y X 1) 0 RRER
e o 8 @

T " e 0w

— -
T B

J

@ 0.5." 7-segment LED HT1kK33 Backpack @

Made with [Fritzing.org

|BT411d IR Breadboard layout for Project 1

Software

If you have not done so already, you need to install the Adafruit BeagleBone
Black Python library, which allows you to control the BeagleBone Black’s
GPIO pins using Python. The first step is to log into the BeagleBone Black
through SSH and set the current date and time by typing the following
command:

ntpupdate —b —s —u pool.ntp.org

Next, install the Python packages and modules required:
opkg update && opkg install python-pip
python-setuptools python-smbus

pip install Adafruit BBIO

You then need to download and install the Adafruit Python Raspberry Pi
library using github. This library includes the Python modules that allow you
to use the 7-segment display backpack.

git clone git://github.com/adafruit/
Adafruit-Raspberry-Pi-Python-Code.git

Before you run the clock demo, it is best to check first whether you have
the LED display connected properly, and that you can see it in the I2C table,
by typing the following on the command line:

i2cdetect —y —r 1

You should see an I2C table, and the LED display should have an address
of 0x70 so that you know it is connected to the BeagleBone and that you can
communicate with the device. To run the program, “change directory” to the
Adafruit LED backpack by typing the following command on the command
line:

cd /Adafruit-Raspberry-Pi-Python-Code/
Adafruit LEDBackpack

Type 1s, and you should see a list of all the files and folders in that current
directory. In this directory you should see all the programs that run the LED

backpack, such as our 7-segment display or an LED matrix board. To run the
clock program that displays the current system time, type the following
command:

python ex Adafruit Raspberrypi clock
Figure 5-4 shows the Adafruit LED backpack clock in action.

Project 19 Adafruit LED backpack clock

Project 20

Displaying Sensor Information

LED displays are also great for showing values from sensors, such as a
temperature sensor. The circuitry is very simple and consumes only minimal
power, yet it provides a bright display for key information.

Hardware

Table 5-2 lists the components and equipment required for Project 20, and

Figure 5-5 is the breadboard layout diagram for the circuitry. Figure 5-6
shows the completed project.

uvasbag-; _aC-

-
()
=
-a
[
o
"
(=]

. W N

Made with [} Fritzing.org

|3Tl YL Breadboard layout for Project 20

L

“emen weEaae -itl-i LR R RN I] -s
@@ a@ ®=EaEEE ®aw8s -tlll,__

|S3TAd IS Project 20 displaying temperature

| TABLE 4-2 Components and Equipment for Project 20

Description Appendix A
BeagleBone Black M1
Solderless breadboard H2
Jumper wires H1
TMP36 temperature sensor S6
7-segment LED backpack M5

For this project we are going to use the TMP36 temperature sensor we
used in Chapter 3. This sensor is ideal for this project because it gives us a
direct voltage output from the middle pin—essentially, it creates a voltage
divider circuit for us.

Software

Here is the Python code we’ll use for Project 20:

import Adafruit BBIO.ADC as ADC
import time

import datetime

from Adafruit 7Segment import
SevenSegment

segment = SevenSegment (address=0x70)
sensor pin = 'P9 40'

ADC.setup()

while(True):
reading = ADC.read(sensor_pin)
millivolts = reading * 1800
temp ¢ = (millivolts - 500) / 10

segment.writeDigit(0, int(temp c / 10))
segment.writeDigit(l, int(temp c % 10))
segment.writeDigit(3, 12)

segment.setColon(1l)
time.sleep(1l)

The code is very simple: we are using the I2C Adafruit library, and we just
need to read the value from the sensor, which will be in millivolts, and then
convert that into a readable value such as degrees Celsius, as shown here:

reading = ADC.read(sensor pin)
millivolts = reading * 1800
temp ¢ = (millivolts - 500) / 10

Once we have the temperature value, we write each digit on the 7-segment
display using segment .writeDigit(digit, value), where digit is the digit
we want to write to in the four-digit display, from 0 to 3. Because we can
only display one number per digit, we need to do some simple mathematic
calculations so that we return the first digit of the temperature. To get the first
digit, we simply divide the temperature value by 10, and this will be our first

number to write to the four-digit display. Getting the second digit is little bit
trickier: we can use the % symbol to divide the temperature value by 10. This
will return the remainder value (that is, the second digit).

segment.writeDigit(0, int(temp c / 10))
segment.writeDigit(1l, int(temp c % 10))

Now that we have our digits to display, we can write to the third digit on
the display the letter C, for Celsius. The Adafruit library has these characters
labeled from 0 to 15, which represent 0-9 and A—F. Therefore, the letter C
would be the number 12.

segment.writeDigit(3, 12)

Project 21
1CD Display

One of the great things about designing and developing embedded systems is
that they can be operated on their own. Up until this chapter, we have been
plugging our BeagleBone Black into a computer and using the console or
terminal to display the information we require. Now, by adding an LCD
display to our projects, we can easily display more complex information such
as sensor values, settings, progress information, and much more. In this
project you will learn how to connect your LCD display to the BeagleBone
Black and display some text on the screen using the BoneScript library.

Hardware

Table 5-3 lists the components and equipment required for Project 21. This
project uses a parallel LCD screen, which is a common device that can be
quite inexpensive. These devices come in an array of different shapes and
sizes.

TABLE 5-3 Components and Equipment for Project 21

Description Appendix A
BeagleBone Black M1
Solderless breadboard H2
Jumper wires H1
16x2 LCD screen M6
10k potentiometer R4

The most common size—and the one we will be using for this project—is
a 16x2 character display with a single row of 16 pins, including a backlight
LED for brightness. Most LCD displays do not come with a soldered 16-pin
header on the printed circuit board (PCB), so you may want to solder one on
so you can attach the display to your breadboard (see Figure 5-7).

|BTA1d I8y [.CD display with headers soldered on

Now you need to wire up the LCD display to the BeagleBone Black using
Table 5-4 as a guide. All the parallel LCD displays have the same pinout, and
they can be wired in one of two different modes: either four-pin mode or
eight-pin mode. For this project, we will be using a four-pin wire
configuration.

TABLE 5-4 Parallel LCD Pins
Pin Number | Pin Name Description
1 VSS Ground
2 VDD +5V
3 VO Contrast (POT)
4 RS Register
5 RW Read/Write
6 EN Enable
7 DO Data 0
8 D1 Data 1
9 D2 Data 2
10 D3 Data 3
11 D4 Data 4
12 D5 Data 5
13 D6 Data 6
14 D7 Data 7
15 A Backlight anode
16 K Backlight cathode

The contrast pin changes the brightness of the LCD display using the
value from an external potentiometer (usually a 10k potentiometer). The
register pin uses the LCD to determine the next set of data to be written:
either a command is sent to move the cursor or a character is written to the
screen. The RW pin is always set to 0 for this project, which means we

always want to write data to the LCD display and never read the data on the
screen. We use the EN pin to tell the LCD display when we are ready to send
the data. Pins 4-7 on the LCD display are used to transmit the data to the
screen. Because we are using four-pin mode, pins 0—3 are not connected.

The breadboard layout for Project 21 is shown in Figure 5-8. This can be
quite a tricky process, so take care and make sure each wire is connected
correctly.

|3T3i1d e Breadboard layout for Project 21

Software

Here is the JavaScript code we’ll use for Project 21:

var b = require('bonescript');

var my string = "BeagleBone Black Evil Genius";

var lcd pin D4 = "P8 117;
var lcd pin D5 = "P8 12";
var lcd pin D6 = "P8 13";
var lcd pin D7 = "P8 14";

var lcd rs = "P8 15";
var lcd e = "P8 16";

b.pinMode(lecd pin D4, b.OUTPUT);
b.pinMode(led pin D5, b.OUTPUT);
b.pinMode(led pin D6, b.OUTPUT);
b.pinMode(led pin D7, b.OUTPUT);
b.pinMode(led rs, b.OUTPUT);
b.pinMode(led e, b.OUTPUT);

b.digitalWrite(led pin D4, b.LOW);
b.digitalWrite(led pin D5, b.LOW);
b.digitalWrite(led pin D6, b.LOW);
b.digitalWrite(led pin D7, b.LOW);
b.digitalWrite(led rs, b.LOW);
b.digitalWrite(led e, b.LOW);

LCD init(function () { write string to lcd(my string, function() {})i });

function LCD init(callback) {
b.digitalWrite(lcd e, b.LOW);
var 1 = 0;
var steps = |
function(){ setTimeout(next, 50); },
function(){ writedbits(0x03, next); },

function(){ setTimeout(next, 5); },

function(){ writedbits(0x03, next); },

function(){ setTimeout(next, 5); },

function(){ writedbits(0x03, next); },
function(){ setTimeout(next, 2); },
function(){ writedbits(0x02, next); },
function(){ write bits to lecd(0x28, true, next

(

(

(

—

function(){ write bits to led(0x0C, true, next

—

function(){ write bits to lecd(0x06, true, next

—

-

T e et e
[e e e

function(){ write bits to led(0x01, true, next

function write string to lecd(s, callback) {
var s length = s.length;
if (s _length > 32) {
write string to lcd two lines('ERROR:', 'String too leng', callback);

return;
!
if (s length < 17) {
write bits to lcd(0x80, true, function () {

helper lcd display string(s, callback); });
} else {
write string to led two lines(s.slice(0,16),
s.slice(16, s length), callback);
}
}

function write string to lcd two lines(linel, line2, callback) {
write bits to lecd(0x80, true, function () {
helper lcd display string(linel, function() {second line();}); });
function second line() {
write bits to lcd(0xC0, true, function () {
helper lcd display string(line2, callback); });

}

function helper led display string(s, callback) {
if (s.length === 0) {
callback();
} else {
write bits to lcd(s.charCodeAt(0), false, function()
{helper lcd display string(s.slice(l), callback);});

}
}
function(){ write string to lcd('\x7escreen init', next); },
function(){ setTimeout(next, 800); },
function(){ write bits to led(0x01, true, callback); }
1i
next();

function next() {
1ty
steps[1-1]();

function write bits to lcd(value, command or character, callback) {
var value left = (value >> 4);
if (command or character === true) b.digitalWrite(lcd rs, b.LOW);
else b.digitalWrite(lcd rs, b.HIGH);
writedbits(value left, function() { writedbits(value, callback); });
}
function writedbits(value, callback) {
if((value >> 3) & 0x01) b.digitalWrite(lcd pin D7, b.HIGH);
else b.digitalWrite(lcd pin D7, b.LOW);
if((value >> 2) & 0x01) b.digitalWrite(lcd pin D6, b.HIGH);
else b.digitalWrite(lcd pin D6, b.LOW);
if((value >> 1) & 0x01) b.digitalWrite(lcd pin D5, b.HIGH);
else b.digitalWrite(lcd pin D5, b.LOW);
if (value & 0x01) b.digitalWrite(lcd pin D4, b.HIGH);
else b.digitalWrite(lcd pin D4, b.LOW);
b.digitalWrite(lcd e, b.HIGH);
b.digitalWrite(led e, b.LOW);
callback();

Project 22
leD Matrix Scrolling Text Display

This project uses the LED matrix display backpack; however, we are going to
combine two of them to create a scrolling text display. Scrolling displays and
message boards are used in a variety of embedded applications, such as to
display travel information or stock/share values. These message displays are
great for showing a lot of information in such a short amount of time but still
getting the information across clearly. This project is based on LED Stock
Ticker by Matt Hassel, which was written to display a variety of information
across multiple matrix displays for the Raspberry Pi. I have adapted the code
for use with the BeagleBone Black.

Hardware

Table 5-5 lists the components and equipment required for Project 22.

TABLE 5-5 Components and Equipment for Project 22
Description Appendix A
BeagleBone Black M1
Solderless breadboard H2
Jumper wires H1
Adafruit 8x8 matrix display M7

The first thing you need to do is assemble the LED matrix displays, if you
haven’t done so already, paying particular attention to the solder tabs on the
back of the I2C backpack. By default, the matrix display comes with the I2C
address of 0x70, and because you are adding two of these backpacks, you
need to change the address on one of them so they both have a unique 12C
address. This will also help you avoid any collisions that may occur. This can
be done in two ways: either by soldering the pins together on the back of the
I2C backpack or by using the software on the BeagleBone Black. For this
project we are going to change the I2C address using the solder pins on the
back of the LCD matrix. Figure 5-9 shows labels A0, A1, and A2; each one
represents a value that gets added to the default address. Thus, A0 is equal to
+1, Al is equal to +2, and A2 is equal to +4. If you shorten the solder pin AO,
your address would become 0x70 + 1 = 0x71.

P e

..H Menechrome—8x8—Fatrix _,l

-
oo
P e i
of
QO r
ok

1N PY-w0 S

|t [LED matrix [2C address solder pins

Fortunately, both matrix displays use the same pins on the BeagleBone
Black, so you only need to use four wires to connect (see Figure 5-10). You
can see in Figure 5-11 that the second matrix display is connected to the
adjacent pins on the first matrix display. This is due to the way the I2C bus
works.

o)
=
o

o

Q
on
©
o,

(wa]

LR B O L
L I L O O AR

L B O

Made with [J Fritzing.org

ISTANTIRIN Breadboard layout for Project 22

ISt IEN B Project 22 scrolling message board

Software

Here is the Python code we’ll use for Project 22:

#!/usr/bin/python
import time
import string2text as str2mat

app_text = strZmat.TextZ2LED()
app ticker = str2mat.LED TICKER()

message = time.strftime('%c’)

while True:
app ticker.ticker =
app text.add to ticker(message
+ " II}

app_ticker.main()

This program is very simple. We first import the string2text library,
which gets our message characters and converts them into a string format that
can be written to the matrix displays:

import string2text as str2mat

app text = strZ2mat.Text2LED{()
app_ticker = str2mat.LED TICKER()

We then create a variable called message that we can set as the time and
date using the system time we imported:

message = time.strftime('%c')

We can display the time and date in a variety of formats using the values
in Table 5-6.

TABLE 5-6 Date Formats

Date Formats Date Formats

%a Weekday name

%A Full weekday name

%b Abbreviated month name
%B Full month name

%cC Appropriate date and time
%d Day of month as a decimal
%H 24-hour clock

%I 12-hour clock

%j Day of the year as a decimal
%m Month as a decimal

%M Minute as decimal

%p AM or PM

%S Seconds as a decimal

%U Weeks

%W Weekday as a decimal

%W Week number

%X Appropriate date

%X Appropriate time

%y Year as a decimal

%Y Year with century as a decimal
%z Time zone

%% % character

Just remember that you can only display the characters in the alphabet
string library; some characters, such as the colon and backslash, may not be

able to be displayed unless you add them to the list of characters.

To display a letter of the alphabet, you must first get the string array for
the matrix display. To do this, simply write a value of 1 or 0, where 1 is the
LED in an “on” state and 0 is the LED in an “off” state:

myalphabet = { "aA": [[0,1,1,0,0],
[1,0,0,1,0],
(1,0,0,1,0],
(1,1,1,1,0],
(1,0,0,1,0],
[1,0,0,1,0],

[1;0,0,1,0],
[(0,0,0,0,011,
“Bor [[11,1,0,0];
[1,0,0,1,0],
(1,0,0,1,0],
(1,1,1,0,0],
[1,0,0,1,07,
(1,90,0,1,0],
(1,1,1,0,0],
(0,0,0,0,0]1,
*c": 110,1,1,1,0],
[1,0,0,0,0];
[1,0,0,0,0];
[1,0,0,0,0],
[1,0,0,0,0],
[1,0,0,0,0],
(¢,1,1,1,0],
(0,0,0,0,011,

Summary

In this chapter you learned how to use different display devices to show
important information used in embedded design projects. In Chapter 6, we
will look at audio projects using audio playback and monitoring.

Audio Projects

THIS CHAPTER IS ALL ABOUT AUDIO—both input and output. Unlike other
embedded devices, the BeagleBone does not have any built-in analog audio
output; however, there is digital audio out through HDMI and USB for a
sound card. The BeagleBone Black drives the audio output from an I12S
interface on the AM3359, which sends data to an NXP TDA1998 for
conversion to HDMI. Luckily for us, the I2S interface is featured in the pin
headers, as detailed in Table 6-1.

TABLE 6-1 12S Interface Pins

Label Header Pin Description

SPI1_CS0 P9 28 Bitstream

SPIT DO PS 29 Left/right clock

SPIT_SCLK P9 31 Bit clock
Project 23

Internet Radio

Project 23 uses the Python language to stream Internet radio channels using
the BeagleBone Black. This project does not require any additional hardware;
for this example, we will output the audio through the default audio output
device (HDMLI, in this case).

Hardware

For this project, we not going to use any additional hardware and instead will
concentrate more on the software side of things. The BeagleBone Black has
default audio output on HDMI, which in theory is not very practical because
this requires an HDMI device for the audio. Also, we cannot easily embedded
this device into the project. Alternatively, we can use a simple USB sound
card in the USB port on the BeagleBone Black.

Software

Before we get started, you need to install a media player to play streamed
music on the BeagleBone Black. We are going to use mplayer, which is a
movie player program that runs on a variety of formats, including Angstrom
and Debian. To install mplayer, type the following in the Terminal window:

m Angstrom opkg install mplayer
m Debian apt-get install mplayer

If you want to run the program from the command line, you can do so
using the following command:

mplayer —playlist http://www.bbc.co.uk/
radio/listen/live/rl aaclca.pls

There are lots of free streaming radio stations on the Internet in the United
States, such as www.usliveradio.com, and in the United Kingdom there is
www.listenlive.eu/uk.html. Both offer a large selection of radio stations. The
best way to get the URL for the streaming radio station is to right-click the
link and select Copy Link Address.

The stream plays well in mplayer, but doing so is not practical in real
terms because you have to stop and start the process again if you want to
change the radio station to another stream. We can create a simple script
using Python allows us to list the radio stations and prompt the user to select
which station to listen to. Then, when the user wants to change the station,
they simply select a different option in the menu. Here is the Python sketch
for Project 23:

http://www.usliveradio.com
http://www.listenlive.eu/uk.html

#!/usr/bin/python

import subprocess
import time
import sys

import os

radiol = 'http://www.bbc.co.uk/radio/
listen/live/rl aaclca.pls'

radio2 = 'http://www.bbc.co.uk/radio/
listen/live/r2 aaclca.pls’

radio4 = 'http://www.bbc.co.uk/radio/
listen/live/r4 aaclca.pls'

cap = 'http://media-ice.musicradio.com/
CapitalMP3.m3u'

null = 'Nothing'

stations
[null,radiol,radio2,radiod,cap]

def example 1(n):
for i in range(n):
time.sleep(0.3)
print '\b.°',
sys.stdout.flush()
print ' Playing!'
time.sleep(2)

while True:
os.system('clear’')
print 'Please choose Radio station:
print 'l. Radio 1'
print '2. Radio 2°'
print '3. Radio 4'
print '4. Capitol FM'

option = input('Select your radio
station: ')

option = int(option)
if option > 0:

print 'This is the number you
selected: + str(option)

print stations[(option)]

station = stations[(option)]
subprocess.call("mplayer
+ station + " &",

-playlist

shell=True,
stdout=subprocess.PIPE,

stderr=subprocess.PIPE)
print 'Initializing ',

example 1(10)
time.sleep (3)

In order to run the mplayer program in Python, we use a module called
“subprocess.” This module allows us to run the mplayer program with the
given arguments as a secondary process.

The first step of the program is to list each radio station’s URL in a
variable so we can prompt the user to input a number. Here’s an example:

radiol = 'http://www.bbc.co.uk/radio/

listen/live/rl aaclca.pls'

The variables then get put into a string, so when the user selects the
number of the radio station, they are actually calling the URL from the string.
You will notice that the first variable in the string is null; this is because the
string starts with 0. Note that when the user selects an option from the menu,
they select 1-4, but in fact, the options are 0—3. Therefore, by adding a
dummy value, we can skip the first variable in the string. So, now when we

select the option, we select strings 1-4:

stations =

[null,radiol,radioc2,radiod4,cap]

We now display the radio station options by using print. But before we
do, we clear the display so that when we loop the options, the previous screen
is removed from the CLI:

while True:
os.system('clear’)
print 'Please choose Radio station:'
print 'l. Radio 1°
print '2. Radio 2°'
print '3. Radio 4°'
print '4. Capitol FM'

option = input('Select your radio
station: ')

When the user inputs their selection, it gets stored in the variable option.
We then get the URL from the string and store this in station:
station = stations|[(option)]

We now have the selection and the URL, so we can run the mplayer
program with the arguments using subprocess:

subprocess.call("mplayer -playlist " +
station + " &", shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)

Project 24
“The Imperial March” Player

Project 24 plays a series of musical notes through a miniature speaker using
the PWM pins on the BeagleBone Black. You can generate sounds from the

BeagleBone Black simply by turning one of the GPIO pins on and off at the
right frequency. Doing this will create a square wave, which can sound very
rough. To produce a clearer sound, you need a signal that is more like a sine
wave (see Figure 6-1).

10

Zx’/ \“\ / N\ /N \\\ ,
5 \/ \ /’/ \\ / LW
10

Time

ISty AN] Sine wave

To create a sine wave, we can use the analog out pins on the BeagleBone
Black to output a waveform. The analog outputs from the BeagleBone Black
are technically not true analog signals but PWM outputs that turn on and off
at a high frequency rate. This frequency rate is also our audio frequency. If
we left the circuit untouched, the sound would be unclear and would sound
just as bad as the square wave.

Hardware

Table 6-2 lists the components and equipment required for Project 24.

TABLE 6-2 Components and Equipment for Project 24

Schematic
Reference | Description Appendix A
BeagleBone Black M1
Solderless breadboard H2
Jumper wires H1
H1 8 ohm speaker H12
R2 10K POT R4
C1 100uF capacitor 2
&2 100nF capacitor C1
R1 470 ohm resistor R1
TWIC AMP S8

For this project we will keep the hardware to a minimum. To do this, we
will use an integrated circuit 1W amplifier to amplify the signal and drive the
speaker. The TDA2822M provides up to 1W of power output to the speaker
in the form of an eight-pin DIP. You can see a detailed circuit diagram in
Figure 6-2 and the breadboard layout in Figure 6-3. The completed Project 24
is shown in Figure 6-4.

BeagleBane Black

L1

R1
470 0

—L_ g2

+1_ o4

[100 pF

i
R3 . TOAZHZIM
[100 nF 10 k0
i

H1
a0

|BTAd HE¥] Project 24 schematic

fritzing

..._. ..-_.-..-_.-_.-_.-_n-!-_’IIFtl-_.-_.-_.-_.-_.-._-_.-_

._"““““““””””

llllll " e oW L T

il

ar
=
o
m
ar
—
o
m
u
m

|BT311d AR Breadboard layout for Project 24

Project 24 “Imperial March” player

Both R1 and C1 make a low-pass filter that will filter out the high-
frequency PWM noise before it gets passed to the amplifier chip. The C2
capacitor is used as a decoupling capacitor that gets rid of any unwanted
noise on the power rails to ground. Finally, the variable resistor R2 is a
potential divider to reduce the signal from the resistor ladder; essentially, this
will act as a volume control dial.

Software

To play a note using the PWM, we first must know the frequency of that note
so we can set it using the PwM command. We can see on the following website
that each note has a frequency in hertz:

www.phy.mtu.edu/~suits/notefregs.html

We can set each note as variable and then call the note we want to play in
the PwM command. Being that we’re Evil Geniuses, the following code will
play part of “The Imperial March” from Star Wars:

#! /usr/bin/python

import Adafruit BBIO.PWM as PWM

from time import sleep

Middle C
C = 261.63
D = 293.66
Db = 277.18
E = 329.63
Eb = 311.13
Eoo= 3890243
o= a0

Gb = 369.99
A = 440

Ab = 415.30
B = 493.88

Bb = 466.16

#High C
HD = 587.33
HEb = 622.25

HG = 783.99

#LOW C
LG = 196.00

while True:

PWM.start("P9_14", 50, G, 1)
sleep(0.3)

PWM.stop("P9_14")
PWM.start("P9_14", 50, G, 1)
sleep(0.3)

PWM.stop("P9_14")
PWM.start("P9 14", 50, G, 1)
sleep(0.3)

PWM.stop("P9 _14")
PWM.start("P9 14", 50, Eb, 1)
sleep(0.3)

PWM.stop("P9_14")
PWM.start("P9 14", 50, Bb, 1)
sleep(0.2)

PWM.stop("P9_14")
PWM.start("P9 14", 50, G, 1)
sleep(0.3)

PWM.stop("P9_14")
PWM.start("P9 14", 50, Eb, 1)
sleep(0.3)

PWM.stop("P9_14")
PWM.start("P9_14", 50, Bb, 1)
sleep(0.2)

PWM.stop("P9 _14")
PWM.start("P9 14", 50, G, 1)
sleep(0.3)

PWM.stop("P9_14")
PWM.start("P9 14", 50, HD, 1)
sleep(0.3)

PWM.stop("P9 _14")
PWM.start("P9 14", 50, HD, 1)
sleep(0.3)

PWM.stop("P9_14")
PWM.start("P9 14", 50, HD, 1)
sleep(0.3)

PWM.stop("P9_14")
PWM.start("P9 14", 50, HEb, 1)
sSleep(0.3)

PWM.stop("P9_14")

PWM.start("P9 14", 50, Bb, 1)
sleep(0.3)
PWM.stop("P9_14")

PWM.start("P9_14", 50, G, 1)
Sleep(0.3)

PWM.stop("P9_14")
PWM.start("P9_14", 50, Eb, 1)
sleep(0.3)

PWM.stop("P9_14")
PWM.start("P9_14", 50, Bb, 1)
sleep(0.3)

PWM.stop("P9_14")
PWM.start("P9 14", 50, LG, 1)
sleep(0.3)

PWM.stop("P9 _14")
PWM.start("P9_14", 50, LG, 1)
Sleep(0.3)

PWM.stop("P9_14")
PWM.start("P9_14", 50, HG, 1)
sleep(0.3)

PWM.stop("P9 _14")
PWM.start("P9_14", 50,
sleep(0.3)
PWM.stop("P9 14")
PWM.start("P9_14", 50,
sleep(0.3)
PWM.stop("P9_14")
PWM.start("P9 14", 50,
sleep(0.3)
PWM.stop("P9_14")
PWM.start("P9_14", 50,
sleep(0.3)
PWM.stop("P9 14")
PWM.start("P9_14", 50,
sleep(0.3)
PWM.stop("P9_14")
PWM.start("P9 14", 50,
sleep(0.3)
PWM.stop("P9_14")
PWM.start("P9 14", 50, Ab, 1)
sleep(0.3)
PWM.stop("P9_14")
PWM.start("P9 14", 50, Db, 1)
sleep(0.3)
PWM.stop("P9_14")
PWM.start("P9 14", 50, C, 1)
sleep(0.3)
PWM.stop("P9_14")
PWM.start("P9 14", 50, B, 1)
sleep(0.3)

PWM.stop("P9 14")
PWM.start("P9_14", 50, Bb, 1)

Gb,

Eb,

E,

1)

1)

1)

1)

1)

1)

sleep(0.3)

PWM.stop("P9_14")
PWM.start("P9_14", 50, A, 1)
sleep(0.3)

PWM.stop("P9_14")
PWM.start("P9 14", 50, Bb, 1)
sleep(0.3)

PWM.stop("P9 14")
PWM.start("P9 14", 50, Eb, 1)
sleep(0.3)

PWM.stop("P9 14")
PWM.start("P9 14", 50, Gb, 1)
sleep(0.3)

PWM.stop("P9_14")
PWM.start("P9 14", 50, Bb, 1)
sleep(0.3)

PWM.stop("P9 14")
PWM.start("P9_14", 50, G, 1)
sleep(0.3)

PWM.stop("P9 14")

PWM.cleanup()
sleep(10)

Project 25
audio level Indicator

Project 25 is used to analyze the sound levels in an environment and output
the reading to a multicolored LED bar. When the noise levels are low, the
green LEDs on the progress bar will light up, and as the noise levels increase,
the LEDs will light up one by one to the top, where a red LED will be lit to

indicate the noise levels are too high.

Hardware
Table 6-3 lists the components and equipment required for Project 25.
TABLE 6-3 Components and Equipment for Project 25
Schematic
Reference Description Appendix A
BeagleBone Black M1
Jumper wires H1
Solderless breadboard | H2
M1 Electret mic M8
R1 10K resistor R5
R2 3.3K resistor R9
C1 100nF C1
D1 LED bar array

This project uses the Adafruit electret microphone amplifier breakout
board based on the MAX9814 IC. The breakout board comes fully assembled
with a 20Hz—20KHz electret microphone soldered on. Basically, an electret
microphone uses a stable dielectric material that does not decay and uses
electrostatic and magnets to draw an analog signal (see Figure 6-5). Because
the electret module uses a 3.3V circuit, we create a simple voltage divider
because we are going to read the voltage values using the BeagleBone
Black’s analog input, which is 1.8V maximum. Looking at the breadboard
layout diagram (Figure 6-6), you can see that both the 10K and 3.3K resistors
will form a voltage divider, with the center voltage around 0.8V, which is
toward the middle of the BeagleBone Black’s ADC range. The 100nF
capacitor from the output of the electret microphone module will cause the
voltage to increase and decrease with the output from the microphone
amplifier.

|BTA T I Adafruit electret microphone

H & & & 4 ¢ ¢ OEEa
BN ¢ ¢ * CEEmEmm,
D i & & * ¢+ Commmppan,
BN ¢ o,
- LI —
. n 8w
L 111\
L '!'\
8w !iq\
. w i‘i\
. & & & 'I'.\
® & & & @ T % & B &
- a8 & & - ® & 8 % & &
I N s
8 8 8w RN T
& 8 8 & 8 8 88 8 e
& & & & @& & B @ P
iiiii o -
a & & & @ .-+.'-II" &
.... L3
-
.

r .

| o—

= =

. - &

- & & & & @&

- = & ® & &8 &

*
I

fritzing

|3t d A Breadboard layout diagram for Project 25

To display our output audio level, we are going to use an LED array bar,
which has 10 LEDs arranged in a progress bar (see Figure 6-7). This LED bar
also uses green, yellow, and red LEDs to indicate which end of the spectrum
our audio levels are at. Table 6-4 shows how the LED bar array’s colors are
segmented.

ISt YA [ED bar array

Segment Segment Color
Red

Red

Red

Yellow

Yellow

Yellow

Yellow

IO M MIOoOIN|P|>

Green

Green

—_

Green

Back in Project 2 we discussed the anode and cathode pins in the LED.
This is the same with the LED bar array, where one side of the bar is anode
(+V) and the other side of the LED bar array is cathode (GND). Table 6-5
details the LED bar array’s pinout.

TABLE 6-5 HDSP-4832 LED Bar Array Pinout

Pin Function Pin Function

1 Anode a 11 Cathode a
2 Anode b 12 Cathode b
3 Anode c 13 Cathode c
4 Anode d 14 Cathode d
5 Anode e 15 Cathode e
6 Anode f 16 Cathode f
7 Anode g 17 Cathode g
8 Anode h 18 Cathode h
9 Anode i 19 Cathode i

10 Anode j 20 Cathode |

Pin 1 is always indicated by a small dot on the LeD bar.

Software

Here is the JavaScript code for Project 25:

var b = require('bonescript');

var
var
var
var
var
var
var
var
var

ledPin0
ledPinl
ledPin?2
ledPin3
ledPind
ledPin5
ledPiné
ledPin7
ledPin8

"P9_11";
"P9_13";
"P9 15";
"P9 17";
"P9 21";
"p9 22";
"p9 12";
"P9 14";
"P9_16";

var ledPin9 = "P9 18";

b.pinMode (ledPin0, b.OUTPUT);
b.pinMode(ledPinl, b.OUTPUT);
b.pinMode(ledPin2, b.OUTPUT);
b.pinMode(ledPin3, b.OUTPUT);
b.pinMode(ledPin4, b.OUTPUT);
b.pinMode(ledPin5, b.OUTPUT);
b.pinMode(ledPiné, b.OUTPUT);
b.pinMode(ledPin7, b.OUTPUT);
b.pinMode(ledPing, b.OUTPUT);

b.pinMode (ledPin9, b.OUTPUT);

var inputPin = "P9_40";
loop()

function loop() {
var value = b.analogRead(inputPin);

console.log(value*l.8);
setTimeout (loop, 250);
voltage = value*l.8;

if (voltage > 0.4)({
b.digitalWrite(ledPin9, b.HIGH);
}
else {
b.digitalWrite(ledPin9, b.LOW);
}
if (voltage > 0.5){
b.digitalWrite(ledPin8, b.HIGH);
}
else {
b.digitalWrite(ledPin8, b.LOW);
}
if (voltage > 0.6){
b.digitalWrite(ledPin7, b.HIGH);

}

e

}

}

LEelsf
b.digitalWrite(ledPin7,

if (voltage > 0.7){
b.digitalWrite(ledPiné,

else {

}

}

b.digitalWrite(ledPiné,

if (voltage > 0.8){
b.digitalWrite(ledPin5,

else {

}

}

b.digitalWrite(ledPin5,

if (voltage > 0.9){
b.digitalWrite(ledPin4,

else {

}

b.digitalWrite(ledPin4,

if (voltage > 1){
b.digitalWrite(ledPin3,

b.LOW) ;

b.HIGH) ;

b.LOW) ;

b.HIGH);

b.LOW) ;

b.HIGH) ;

b.LOW) ;

b.HIGH) ;

else {
b.digitalWrite(ledPin3, b.LOW);
}
if (voltage > 1.1)({
b.digitalWrite(ledPin2, b.HIGH);
}
else {
b.digitalWrite(ledPin2, b.LOW);
}
if (voltage > 1.2){
b.digitalWrite(ledPinl, b.HIGH);

}
else {

b.digitalWrite(ledPinl, b.LOW);
}

if (voltage > 1.3){
b.digitalWrite(ledPin0, b.HIGH);
}
else {
b.digitalWrite(ledPin0, b.LOW);

D1

«
W

+
W

m

o4 40 M\ ¥¥
5 “
W
pg.13 f—1) «
W
> ¢
W
> «
W
BeagleBone Black) I{_‘
W
> «
W
| r‘ <+

n" ¥

P3_16

P 18

33ka 10kQ 1 100nfF
M
3 . g IN - out
GND
GND |

ISy AERY Project 25 schematic

ISTANYAE Project 25 audio level indicator

The code is divided up into three main sections. The first part of the code
lists all the variables for the pins, which are connected to the anode of the
LED bar array. Then the pin mode is set to output so we can switch the LEDs
on and off.

var ledPin0 = "P9_11";

var ledPinl = "P9_13";
var ledPin2 = "P9 15";
var ledPin3 = "P9 _17";
var ledPind = "P9 21";
var ledPin5 = "P9 22";
var ledPin6é = "P9 12";
var ledPin7 = "P9 14";
var ledPin8 = "P9 16";
var ledPin9 = "P9 18";

b.pinMode(ledPin0, b.OUTPUT);
b.pinMode(ledPinl, b.OUTPUT);
b.pinMode(ledPin2, b.OUTPUT);
.pinMode(ledPin3, b.OUTPUT);
.pinMode(ledPin4, b.OUTPUT);
.pinMode(ledPin5, b.OUTPUT);
.pinMode (ledPin6, b.OUTPUT);
.pinMode(ledPin7, b.OUTPUT);
b.pinMode(ledPin8, b.OUTPUT):;
b.pinMode(ledPin9, b.OUTPUT):;

et bepi e pilepm oy

The second part of the code is the function, which we loop every 250 ms
to get a more accurate update on the current audio levels. We read the value
from the microphone and convert this into a voltage so that we know where
the audio level sits with the range of 0 to 1.8V.

function loop() {
var value = b.analogRead(inputPin);
console.log(value*l.8);
setTimeout(loop, 250);
voltage = value*l.8;

For every LED in the bar array, we need to determine whether it should be
on or off. The LED array has 10 LEDs, so we can set up to 10 values in the
voltage range 0—1.8V. It is very unlikely that the audio levels will be 0 (low)
and also unlikely that they will be 1.8V (high). If we work on the basis of a

value every 100mV, then we can select a range from 0.4—1.3V, which gives
us 10 values to work with. To work out whether the LED is on or off, we
create an if statement. If the value from the microphone is greater than 0.4
(first value), we want the first LED to switch on. Otherwise, the LED will be
off (if the value is less than 0.3). We can copy this calculation for all 10
LEDs.

if (voltage > 0.4){
b.digitalWrite(ledPin9, b.HIGH);
t
else {
b.digitalWrite(ledPin9, b.LOW);

Summary

In this chapter we have learned about creating hardware and software audio
projects using various types of hardware methods to create and monitor
sound. In the next chapter, we will create some spy projects enabling us to do
some evildoing and sneakiness while also protecting our evil underground
lair.

Spy Projects

THIS CHAPTER ISN’T FOR THE FAINTHEARTED; the more Evil Genius, the
better. In the following projects, we aim to monitor and capture our target and
then use interrogation techniques to determine whether the culprit is telling
the truth. This chapter uses a wide range of hardware and software to create
projects such as a webcam CCTV monitor, a motion detector, an automatic
dog barker, and a lie detector.

Project 26
Intruder Alert Using the Twitter API

Project 26 enables you to detect whether someone is in the room using a
basic motion detector sensor. You’ll use the Python Twitter API to display a
tweet once you have detected an intruder.

A motion detection sensor uses a passive infrared (PIR) filter, which is an
electronic sensor that measures infrared from an object or person. Because
humans radiate heat, this sensor will be perfect for detecting the presence of
someone in a room. The sensor detects a change in radiation given off by
other objects, so the motion is triggered only when the change is higher than
the normal average value.

Hardware

Table 7-1 lists the components and equipment required for Project 26.

TABLE 7-1 Components and Equipment for Project 26

Description Appendix A
BeagleBone Black M1
Solderless breadboard H2
Jumper wires H1
PIR sensor 59

This project uses a simple PIR sensor that detects motion at a wide angle
of 102 degrees. This gives us a better chance of detecting our target, up to a
range of 12m. The sensor has three pins: +V (which ranges from 3—6VDC),
the Ground pin, and an output pin (which outputs a voltage when the sensor
has detected motion). The output pin is connected to one of the GPIO pins on
the BeagleBone Black, so we can use this pin as an input and detect when the
value is high or a voltage is present. The breadboard layout diagram for
Project 26 is shown in Figure 7-1 and the completed Project 26 in Figure 7-2.

.
I

-, & & & &5 &
- & &5 & &5 &
. & & & & &
- & & 5 & &
- o s E e 8
- & & = = =

- = 2 = =
- = 2 = 8
- 8 & &5 & 5 5 5 &8 & 8 8 8 82 8 B2 8 B 8 8 8 F B = e 82 2 8 8 =

- 8 2 5 & 5 5 5 & 5 828 8 8 858 58 58 5 52 2 8 8 8B &8 8 8 82 82 8 8"

.".....Illll..—....."’?

- & & & & &5 & &5 & &5 &5 &5 & &= &5 &5 5 & 52 =& &
. & & &5 &5 &= &5 & & & & &5 &5 5 &5 5 & 5 &5 & =
- & &5 &5 &5 &5 &5 &5 &5 5 &5 &5 &5 &5 5 &5 5 &2 2 & &
- & & & & 5 &5 &5 & & & &5 &5 &= 5 & & & 2 & »
- &5 5 &5 & &5 &5 & &5 &5 & » &5 5 &5 & &5 8 8 s
- B & B 85 & 5 2 2 & 5 &5 5 &8 & 8 85 8 8 8 8
- &5 » &5 5 5 &5 &5 5 & 5 5 &5 == &5 5 » &5 & = &

fritzing

|3T311d B Breadboard layout for Project 26

| BT dWEY) Project 26 intruder alert using the Twitter API

Software

Before we get started, you need to make sure you have the Twitter API
program installed on your BeagleBone Black.

Debian:
B sudo apt-get install python-setuptools
B sudo easy_install pip

B sudo pip install tweepy

Angstrom:
B opkg install python-setuptools
B easy_install tweepy
Now that you have the Twitter API installed, you need to create a Twitter

account so you can post a tweet when you detect motion. To do this, follow
these steps:

1. Go to https://twitter.com/ and sign up with a new account.

. Go to https://dev.twitter.com/ and sign in with the account you have just
created.

. In the top-right corner of the screen, click your account and go to My
Applications.

4. On the next screen, click the Create New App button.

. Fill out all the details on the screen (see Figure 7-3), including a unique
name of your application, a short description of what the application is for
and what it does, and the website URL where the application information
can be found (if the app is being used in a web page, enter this web page’s
URL). We are not going to use a callback function, so you can leave the
Callback URL field blank.

https://twitter.com/
http://https://dev.twitter.com/

W Application Management on”

To tring you Twitter, we and our pariners usa cookies on our and othar wabsites. Cookles halp parsonalize Twitter contant, tallor Twitter
Ads, measure thelr performance, and provide you with a better, faster, safar Twitter experience. By using our services, you agrea to our
Cookie Use.

Create an application

Application details

Name *

Your appiication name. This Is used to aitribute the source of a tweet and In user-facing authorization screens, J2 characlers max.

Description *

Your appiication description, which will be shown in user-facing authorization screans. Between 10 and 200 characters max,

Website *

Your appiication’s publicly accessible home page, where users can go fo download, meke use of, or find out more information about your appiication. This fully-
quaiifed URL Is Lised in the source attribution for tweets created by your application and will be shown in usar-facing authorization Soreans,

{if you don't have a LIAL yef, just put a placaholoer hars but remambar fo changa it latar,)

Callback URL

Where should we retum after successfully authenticating? QAuth 1.0a applications should axpiicitly spacify thair oauth_caliback URL on the request foken stap,

regardiess of the value given here. To restrict your application from using callbacks, leave this figfid biank.

|3TIYWER' Creating an application

6. Accept the terms and conditions and then click the Create Your Twitter
Application button.

7. Once the app has been created, it gives you an API key, which you can use
to access your Twitter account (it’s almost a unique ID for your account).
If you click the API Keys tab, all your API information, such as consumer
key and consumer secret, is displayed as shown in Figure 7-4.

BeagleBone Evil Genius

Detalls | Seftings APIKeys Permissions

Test OAuth

Evil genius beaglebone black apl

u‘ ".'\':|Z.‘Z fwww.makerspaceuk.com

Organization
QOrganization None
Organization websfte Nong

Application settings

application's AP/ keys are used to authenticate requests (o the Twitter Platfarm
Access leval Read, write, and direct massages (madify app parmissions)
AP| key 2xFBWWTW IwpalvW (manage API keys)
Callback URL None
Sign in with Twitter No
App-only authentication hitps://apl.twitter.com/aauth2/token
Request token URL hitps://apl.twitter.com/oauth/requast_token
Authorize URL hitps://apl.twitter.com/oauth/authorize

Access token URL https://api.twitter.com/oauth/access. token

Application details

8. In order to make authorized calls to Twitter’s API, the application must
obtain an OAuth access token. To do this, in the API Keys section, look for
the option at the bottom of the screen to create an access token as shown in
Figure 7-5.

Your access token

Token actions

Cresty My Booahs e

|BTAd WS Requesting an access token

9. Once this token is created, you should see on the API Keys page all the
token information (Figure 7-6). Make sure you keep a note of all these API
keys because you’ll need this information in the program.

Your access token

ALCA%S Woksn 127220842 5-8UE DL AmdAr DU R B HEL OECQHEMH E CAURKIND
At ads SN BBorit SR ROV O FL PGSR T s Dy SpoaF DLW OBHLO TG

ALERLS bl Rans-only

Crairiee ke Spae UK

Craiin 1D 12T IS

ISTANYWEE Access token keys

The code for this project uses a number of libraries such as Adafruit GPIO
library for referencing the BeagleBone Black’s pins using Python and also
Tweepy, which is a Twitter Python library for sending receiving tweets. In
order for use to use the Twitter API, we must insert the API keys into the
variables. In the following Python code, we use “GPIO.wait_for_edge”

function, which allows us to detect a signal from the PIR sensor. This method
is preferred over using a simple loop function. Here is the Python code for
Project 26:

import Adafruit BBIO.GPIO as GPIO
from time import sleep

import os

import sys

import tweepy

CONSUMER KEY = 'XXXXXXXXXXXXXXXXXX'
CONSUMER SECRET = 'XXXXXXXXXXXXXXXXXXXXXXXXXX'
ACCESS KEY = 'XXXXXXXXXXXXXXXXKXXXXXKXXKXXXXXXXX'

ACCESS_SECRET ERD $:0:9:0:0.0:00:0.0:600000000000000000¢
GPIO.setup("P8 19", GPIO.IN)

while True:
GPIO.wait for edge("P8 19", GPIO.RISING)

print ("Motion detected")

auth = tweepy.OAuthHandler (CONSUMER KEY, CONSUMER SECRET)
auth,set access token(ACCESS KEY, ACCESS SECRET)

apl = tweepy.API(auth)

api.update status('ALERT!! Motion detected in Zone 1 -
Message sent from #BeagleBoneBlack')
sleep(60)

Project 27
lie Detector

So you have detected and captured your intruder—they were unable to evade
the Evil Genius! Now you need to interrogate your suspect. Are they telling
the truth? Well, for Project 27, we will create a simple lie detector using some
simple circuitry and mathematics.

We use the intruder’s hand to tell whether or not they are telling a lie.
When someone gets nervous, they usually have sweaty hands and their skin’s
resistance begins to decrease. We can create a circuit to measure this
resistance using the BeagleBone Black’s analog input. We will also use a
simple RGB LED and a buzzer to indicate when the intruder is telling the
truth.

Hardware
Table 7-2 lists the components and equipment required for Project 27.
TABLE 7-2 Components and Equipment for Project 27
Schematic
Reference | Description Appendix A
BeagleBone Black M1
Solderless breadboard H2
Jumper wires H1
R1,:2,3 220R resistors R1
R5 10K resistor R5
R4 10K POT R4
D1 RGB LED S3
H1 Piezoelectric buzzer H13
Paper clips/thumbtacks

We use an RGB LED in this project to display whether the subject is
telling a lie. When the LED turns red, this indicates a lie. Green is used to
indicate the truth, and blue indicates that the detector needs slight adjusting
using the variable resistor.

The circuit works by using the subject as a resistor, measuring their skin
resistance and creating a voltage divider with a fixed resistor on one end. The
lower the intruder’s resistance, the more the analog input will be pulled to
1.8V; the higher the resistance, the further toward ground it will be pulled.

The variable resistor is used to compare and adjust the point of resistance
to £10 percent of the two contact points. Therefore, when the resistance of
the contact point falls below the variable resistor value, the detector needs
adjusting to within £10 percent of the value. For a more detailed explanation,
see Figure 7-7; the breadboard layout can be seen in Figure 7-8. The
completed Project 27 is shown in Figure 7-9.

GND

D1

o — I |
R1
Po_16 2200)éﬁr

R2
2200){/
PO_13 I
R3
2200 "G"
BeagleBone Black
P_40
1.8y —I
R4
10 kid
GhD —I
T

RS
10 k02

H1
BO

|STA s WEY] Project 27 schematic diagram

auogatbeag

fritzing

|3T3i1d e Breadboard layout for Project 27

IS B Project 27 lie detector

Software

The script for Project 27 compares the voltage for both A1 and AO. If they
are about the same, the RGB LED will be green. If the voltage from AO is 10
percent higher than A1, the RGB LED will change to red and the buzzer will
sound to indicate the suspect is telling a lie. If A1 is less than A0, the RGB
LED will turn blue, indicating that the variable adjuster needs changing until
the LED turns green.

impc:rt ﬁdafruit_BBID.GPIO as GPIO
import Adafruit_ BBIO.ADC as ADC
from time import sleep

GPIO.setup("P9 12", GPIO.OUT) #buzzer

GPIO.setup("P9 14", GPIO.OUT)
GPIO.setup("P9 16", GPIO.OUT)
GPIO.setup("P9 18", GPIO.OUT)

while True:
def beep():

GPIO.output("P9 12", GPIO.HIGH)

sleep(l)

GPIO.output("P9 12", GPIO.LOW)

sleep(l)

ADC.setup/()

value = ADC.read("P9 40")
valuel = ADC.read("P9 38")
voltagePOT = walue * 1.8 #1.8V
voltagePIN = value2 * 1.8
print (voltagePOT)

print (voltagePIN)

sleep(1l)

if (voltagePIN > woltagePOT * 1.1):
GPIO.output("P9 14", GPIO.HIGH)
GPIO.output("P9 16", GPIO.LOW)
GPIO.output("P9 18", GPIO.LOW)

beep()

elif (voltagePIN < voltagePOT *
1.1):

GPIO.output("P9 14", GPIO.LOW)
GPIO.output("P9 16", GPIO.HIGH)
GPIO.output("P9 18", GPIO.LOW)

else:
GPIO.output("P9 14", GPIO.LOW)
GPIO.output("P9 16", GPIO.LOW)
GPIO.output("P9 18", GPIO.HIGH)

sleep(5)

Project 28
Keypad Door latch

Project 28 is designed to keep your doors locked by using a standard 3x4
matrix keypad as a passcode system and a solenoid to act as a door latch for
your door. When the correct code has been entered into the keypad, the door
will either lock or unlock.

A DC power supply is required to be able to supply the solenoid with
enough current to activate the latch. Be sure to check the datasheet for the
specification of your power device because some devices vary. Normally, a
1A power supply unit (PSU) will be fine.

Hardware

Table 7-3 lists the components and equipment required for Project 28.

TABLE 7-3 Components and Equipment for Project 28

Description Appendix A
BeagleBone Black M1
Solderless breadboard H2
Jumper wires H1

4x3 matrix keypad H14
Solenoid H15
TIP120 transistor S10
1N4004 diode S11
DCPSU 12V 2A H16

The solenoid in this circuit has an inductive load, so it is liable to generate
backward electromotive force (EMF). This is why we include a diode in the
circuit because this protects the circuit against such an effect and prevents
damage to the board and other components.

The solenoid is controlled using the TIP120 transistor. The transistor acts
as a switch using three pins: the base, collector, and emitter. The base pin is
connected to the BeagleBone Black, and when this pin is high, it switches the
current from the collector to the emitter, thus creating the circuit.

The keypad is a standard 3%x4 keypad with seven output pins that represent
either a column or a row. Every keypad may have a slightly different pinout,
so always refer to the datasheet for exactly how to wire it up. We use the
keypad by scanning each column and then each row until we detect a value;
then we know exactly which number has been pressed. The breadboard
layout diagram can be seen in Figure 7-10, and the completed project is
shown in Figure 7-11.

|31 BN Project 28 keypad door latch

Software

The code for this project scans each row and column and detects whether any
of the pins is high. To do this, we alternate between scanning the rows and
columns, setting each to HIGH or LOW.

We ask the user to enter four digits on the keypad and then we check
whether these digits match our passcode, which is stored as a variable. If the
passcode is correct, we grant access and turn the latch either on or off,
depending on its current state. If the passcode is incorrect, we prompt the user
to enter the correct passcode again.

import Adafruit BBIO.GPIO as GPIO
from time import sleep

class keypad():
def init (self, columnCount = 3):

pinl = "P8 14"
pin2 = "P8 16"
pin3 = "P8 11"
pin4 = "P9 13"
pin5 = "P9_12"
piné = "P9 26"
pin7 = "P9_11"
pin8 = "P9 24"

if columnCount is 3:
self.KEYPAD = [
[l 1
[4,5,6];
[7.8,91;
["*",0,"#")
]
self.ROW
self.COLUMN
elif columnCount is 4:

[pin7, piné, pin5, pin4]
[pin3, pin2, pinl]

self .KEYPAD = [
[1:2,3,"A"],
[4,5,6,"B"],
[7,8,9,"C"],
["*",0,"#","D"]
1

self.ROW = [pin8, pin7, pin6, pin5]

self.COLUMN = [pind4, pin3, pin2, pinl)
else:

return

def getKey(self):
for j in range(len(self.COLUMN)):
GPIO,.setup(self.COLUMN[j], GPIO.OUT)
GPIO.output(self.COLUMN[j], GPIO.LOW)
for i in range(len(self.ROW)):
GPIO.setup(self.ROW[i], GPIO.IN, GPIO.PUD DOWN)

rowval = -1
for i in range(len{self.ROW)):
tmpRead = GPIO.input(self.ROW[i])
if tmpRead == 0:
rowval = i
if rowVal <0 or rowVal >3:
self.exit()
return
for j in range(len(self.COLUMN)):
GPIO.setup(self.COLUMN[j], GPIO.IN, GPIO.PUD DOWN)
GPIO,setup(self.ROW[rowVal], GPIO.OUT)
GPIO.output(self.ROW[rowVal], GPIO.HIGH)

colvVal = -1
for j in range(len(self.COLUMN)):
tmpRead = GPIO.input(self.COLUMN[j])
if tmpRead == 1:
colval=j

if colval <0 or colVal >2:
self.exit()
return

self.exit()
return self.KEYPAD[rowVal][colVal]

def exit(self):
for i in range(len(self.ROW)):
GPIO.setup(self.ROW[i], GPIO.IN, pull up down=GPIO.PUD UP)

for j in range(len(self.COLUMN)):
GPIO.setup(self.COLUMN[]j], GPIO.IN, pull up down=GFIO.FUD UF)

while True:
kp = keypad{cclumnCount = 3)

def digit():
r = Hone
while r == Hone:
r = kp.getKey()
return r
print "Please enter a 4 digit code: "

dl = digit()
print dl
sleap(l)

d2 = digit(})
print d2
sleap(l)

d3 = digit()
print d3
sleep(l)

dd = digit()
print d4
sleep(l)

if ("%sts%s5%s5"%(dl,d2,d3,dd) == "1234"):
print "You Entered %s%s%s%s "%(dl,d2,d3,d4)
print "Access granted unlocking......"
GPIO.output("P8 32", GPIO.HIGH)
sleep(5s)
GPIO.output("FB_32", GPIO.LOW)
sleep(l)
GPIO.cleanup()

elsa:

print "Access denied"
print "You Entered %s%s%s%s "%(dl,d2,d3,d4)

Project 29
Webcam Security Doorbell

Project 29 uses a standard Logitech webcam to take pictures when someone
is at your front door. This is a great project for when you are not home and
are wondering who stopped by. We use a simple switch to act as the doorbell
(alternatively, you could use a vibration detector to detect when someone
knocks at the door). Once the switch has been pushed, the webcam will start
a stream and take a picture; we will then push this to Twitter as a post using
the Tweepy Twitter API.

Hardware
Table 7-4 lists the components and equipment required for Project 29.
TABLE 7-4 Components and Hardware for Project 29
Description Appendix A
BeagleBone Black M1
Solderless breadboard H2
Jumper wires H1
10K resistor R5
Tactile switch H3
C270 Logitech webcam H16

This project uses a C270 Logitech webcam as the security cam feed so we
can capture an image. This webcam can be powered directly from the
BeagleBone Black, but just to make sure, always power the BeagleBone
through a PSU. Alternatively, you can power the webcam from a powered
USB hub.

NOTE Always connect USB devices before booting the

BeagleBone Black.

The breadboard layout diagram is shown in Figure 7-12. The resistor in
the circuit is used as a pull-down resistor to prevent a de-bouncing effect. The
completed project can be seen in Figure 7-13.

P LI I

3 3 e s

i dé « " 00

2 d LN NN
'

LA]
LA NN 7
a8 8 8 8 [

I]]

s . L I B B '“"

i d @ 8 8 0 9 .|'.,.
TN [N]

"

A EEEE + SEsmT——nTT
a8 8 88 NN

$ @ 3 & 4 B @ 8 8 & B P

d a8 8 8 N d é

- & & & 8 B " & 8 & 0 ‘e

i é ¥ & & 8% & ® 8 & & 0 & d
a8 8 8 8 a0 8 8 @

a @ L2
& 8 & & & o & 8 & @

e 8 8 88 [& & BeagleBGnE
s 8 8 8 8 T EN

a8 4 8

i & LI N I N ® 8 0 00 P

3 3 O e e 0 0 0 % &

P * 8 8 8 B . 8 8 % B 48
[N O I B 8 8 0 0

@ a8 8 88 TR RN 2a

i § LI O B N L I B N B P
a0 8 00 e 8w 00

e e e

PR a8 8 88 a8 8 80 ‘s

i d @ 8 0 0 9 [I I N NN i d
a8 a8 8 TR RN

fritzing

I3t WV Breadboard layout for Project 29

ISTANYIWEIR Project 29 doorbell security

Software

Before getting started, you must ensure that Tweepy is installed. Refer to
Project 26 to see detailed instructions on how to install this API. Make sure
you put all your Twitter API details for your account where all the x
characters are.

In order to use the webcam, we need a streaming program that handles the
video output for us. For this project, we are going to use mjpg-streamer,
which takes JPG images from Linux UVC-compatible webcams and then
streams them as an M-JPEG through an HTTP web browser. This allows us
to view the stream over the Internet or local network. To install mjpg-
streamer, type the following into the command line:

Git clone git://github.com/makerspaceuk/
mjpg-streamer.git

cd mjpg-streamer
make

sudo make install

Now that you have installed the mjpg-streamer, let’s run a quick test just
to make sure everything is working as it should be. In the same directory as
/mjpg-streamer, type the following:

sudo ./mjpg streamer —I "./input uvc.so"
—o "./output http.so —p 8090 —w ./www"

Depending on the webcam, the program will output the messages in the
Terminal window for configuration. Next, go to your browser and in the URL
bar type http://192.168.7.2:8090. You should see the mjpg-streamer web
page with a view from your webcam. This web page also shows you some
other features of embedding the stream into your website (see Figure 7-14).

http://192.168.7.2:8090

4 9 C |3 192.168.7.2:8000/ index, himl =

" Semopages About

i Details about the M-JPEG streamer

Congratulations

You sucessfully managed to install this streamding webserver, If you can see this page,
Sheam ¥0U Can als0 access the stream of JPGs, which can originate from your webcam for
exampe, This instalation consists of these example pages and you may QJstomae the
h.la ook and content.
Varsion info;

wil 1 [ObkT 22, 2007}

The reason for developing this software was the need of a Smiple and ressosnoe
friendly streaming application for Linux-UVC comipatible webcams. The predecessor
uvr-streamer is working well, but | wanted to implement a few more ideas. For
instance, plugins can be used to prooess the images. One input plugin copies images to
a globad varable, multipe cutput plugins can acoess those images. For examiple this
wabpage I5 served by the owfput_RItRso phigin,

| The image displayed here was grabbed by the input
plugin. The WTTP request contasing the GET parameters
action=snapshot. This requests one singie picture from
the image-imput. To display another example, just dick
on the picture.

About the examples

To view the stream with any browser you may try the javiascript or java subpages.
Firefox is able to display the M-JPEG-stream directly,

About this server

This sérver 8 running a software written for the MIPG-streamer project. The MIPG-
streamer developers can not be made responsible for installations of this software,

£ The MIPG-streamer team | Desgn by Andreas Vikiund

ISy WEIE The mjpg-streamer web page

The code for Project 29 is similar to that of Project 25, with the exception
of using a USB webcam to embed an image into the tweet. Our program
downloads the image from the mjpg streamer program using the USB
webcam and places it in a temporary folder where our Twitter API can access
it. Here is the Python code for Project 29:

import tweepy

from subprocess import call

from datetime import datetime
from time import sleep

import subprocess

import Adafruit BBIO.GPIO as GPIO

GPIO0.setup("P9 14", GPIO,IN)

while True:
i = datetime.now()
now = i.strftime('%Y¥méd-%HIMRS')
GPIO.wait_for edge("P9_14", GPIO.RISING)
kill = 'killall mjpg_streamer’
cmd = 'wget -0 /root/frontdoor.jpg http://192.168.7.2:8090/%?action=snapshot’
webcam = '/root/mjpg-streamer/mjpg_streamer -i "/root/mjpg-
streamer/input uve.so" -o "/root/mjpg-streamer/output http.so -p 8090
=W oSt &

call([webcam], shell=True)
sleep(5)
call ([cmd], shell=True)

consumer_key = 'XXXXXXXXXXXXX'

consumer secret = 'XXXXXXXXXXXXXXX'
access_token = XXXXXXXXXXXXXXXXX'
access_token secret = 'XXXXXXXXXXXXXXXXXX'

auth = tweepy.OAuthHandler (consumer_key, consumer secret)
auth.set access token(access token, access token secret)

authentication
api = tweepy.API(auth)

photo path = '/root/123.jpg'

status = 'BeagleBone Black door bell: ' + i.strftime('$Y/%m/%d %H:%M:3%5
#beaglebone')

api.update with media(photo path, status=status)

call ([kill], shell=True)

Project 30
Automatic Dog barker

Our final project, Project 30, is designed to keep those unwanted guests away
from your property by using the HC-SR04 ultrasonic sensor and the USB
audio card. The sensor detects when someone is walking up to your property
and initializes an audio file of some aggressive dogs barking. This will be
enough for anyone to think twice before approaching your property.

Hardware

Table 7-5 lists the components and equipment required for Project 30.

TABLE 7-5 Components and Equipment for Project 30

Description Appendix A
BeagleBone Black M1
Solderless breadboard H2
Jumper wires H1
HC-SR04 sensor M9

USB audio card H17

This project uses a standard HC-SR04 ultrasonic sensor to detect the
distance of objects. The sensor can detect objects between 2cm and 400cm
away and can measure with an accuracy of 3mm. The sensor has four pins to
connect to the BeagleBone Black: 5V supply, 0V ground, trigger pulse input,
and echo pulse output. The echo pulse is used to send out a signal, and the
trigger is used to detect the signal coming back so that we can then work out
the timing between pulses. This will give us the distance of the object.

For the audio output, we are going to use a USB audio card, which we can
plug directly into the BeagleBone Black. When you first power up your
BeagleBone Black, make sure the USB audio card is plugged in; otherwise,
the operating system will not detect it. The breadboard layout diagram is
shown in Figure 7-15, and the completed project can be seen in Figure 7-16.

BeagleBone

fritzing

|31 WBIE Breadboard layout for Project 30

ISTANYWEIIY Project 30 automatic dog barker

Software

This program uses mplayer to play back the audio MP3 file of a dog barking.
To install mplayer on the BeagleBone Black, type the following command:

m Angstrom opkg install mplayer

m Debian apt-get install mplayer

To play an MP3 file using mplayer, simply type mplayer
[filename].mp3, where [filename] is the name of your audio file. Mplayer
will start to play the audio through the default audio device, which in this
case automatically comes through the HDMI. To change the audio card, you
use certain parameters with mplayer. On the command line, type alsa -L,
which gives you a list of possible audio devices to use:

default:CARD=Black

TI BeagleBone Black,

Default Audio Device
sysdefault:CARD=Black

TI BeagleBone Black,

Default Audio Device
default:CARD=Device

USB PnP Sound Device, USB Audio

Default Audio Device
sysdefault:CARD=Device

USB PnP Sound Device, USB Audio

Default Audio Device

To test the audio card, type the following:

speaker-test —D default:Device

If you hear some white noise, then great! You know it works. Now let’s
play an MP3 audio file using mplayer with the given parameters for the audio
card. Type the following to play the file:

mplayer —ao alsa:device=default=Device
test.mp3

The audio file should now be playing. You may notice that the sound
volume is very low, because this is the default setting. Change the volume
type to alsamixer and then press Fé to select the USB audio card.

import Adafruit BBIO.GPIO as GPIO
import time
from subprocess import call

trigger pin = 'P9 12"
echo pin = 'P9 14°

GPIO.setup("P9 12", GPIO.OUT)
GPIO.setup("P9 14", GPIO.IN)

def send trigger pulse():
GPIO.cutput("P9_ 12", True)
time.sleep(0.0001)
GPIO.output("P9 12", False)

def wait for echo(wvalue, timeocut):
count = timeout
while GPIO.input("P9 14") != walue
and count > 0:
count = count - 1

def get distance():
send trigger pulse()
wait_ for echo(True, 10000)

start = time.time()
wait_for_echo(False, 10000)
finish = time.time ()

pulse len = finish - start

distance cm = pulse len / 0.000058
#distance in = distance cm / 2.5
#return (distance cm, distance in)
return (distance cm)

while True:
if (get distance() < 10):

bark = "'mplayer -—-ao
alsa:device=default=Device
/root/dog.mp3"’

call([bark], shell=True)
time.sleep(5)

Summary

This was the final chapter of Evil Genius projects. I hope you have fully
enjoyed creating them and have learned a lot about the great features of the
BeagleBone Black. Hopefully you can take what you have learned and start
creating some of your own Evil Genius projects using your appetite for
experimentation and design. The next chapter gives a brief overview on how
to use some basic electronic equipment and how to read datasheets, which are
vital ingredients for an Evil Genius.

Tools and Tips

THIS CHAPTER PROVIDES SOME USEFUL TIPS for creating your own projects
and how to best utilize your resources. Starting your own project can be a bit
daunting at first, and sometimes can seem frustrating and complicated. These
tools and tips should help you on your way—and in no time, you will become
an efficient Evil Genius.

Datasheets

Datasheets are manuals from the manufacturer for its electronics components.
They explain exactly how a particular component should work and how it
should be used. Usually, these documents are written by electrical engineers
and scientists. This is why they can sometimes cause confusion among
average users, especially newcomers. However difficult they may be to read,
they are also the bread and butter of manuals, and sometimes they can be a
key resource of information that provides all the details for a design circuit.

The actual manuscript of a datasheet will vary depending on what type of
electronic part it is and who manufactured it. The first page of a typical
datasheet for an integrated circuit usually provides a brief description of
exactly what the product is and what its features are (see Figure 8-1).
Usually, you can tell within the first few pages whether this is the right part
for you. A datasheet should give you a good indication whether or not a part
will work in your project.

1293, L293D
QUADRUPLE HALF-H DRIVERS

SLHASO0BC ~- SEPTEMBER 1586 - REVISED NOVEMBER 2004

® Featuring Unitrode L293 and L293D L293... N OR NE PACKAGE
Products Now From Texas Instruments '-293'366:52;‘;“55
® Wide Supply-Voltage Range: 45 Vto 36V
® Separate Input-Logic Supply 1.2EN 14 Voe
® Internal ESD Protection m E : :$
® T " HEAT SINK AND S []4 } HEAT SINK AND
® High-Noise-Immunity Inputs GROUND Y [I5 GROUND
® Functionally Similar to SGS L293 and 2Y [l ay
SGS L293D 2A[]7 3A
® Output Current 1 A Per Channel Vo (I8 34EN

(600 mA for L293D)

® Peak Output Current 2 A Per Channel
(1.2 A for L293D)

1293 . .. DWP PACKAGE
(TOP VIEW)

® Output Clamp Diodes for Inductive 1,2EN[]1 Vo
Transient Suppression (L293D) 1a[]2 4A
1y (|3 4y
description/ordering information Ne [l4 NG
The 1293 and L293D are quadruple high-current Eg E i :g
half-H drivers. The L293 is designed to provide 2
8

bidirectional dnive currents of up to 1 A at voltages HEAT SINK AND E
from 4.5 V to 36 V. The L293D is designed to GROUND i

HEAT SINK AND
GROUND
provide bidirectional drive currents of up lo

w

B600-mA at voltages from 4.5 V to 36 V. Both Ne (j1o NC
devices are designed to drive inductive loads such NC [} NC
as relays, solenoids, dc and bipolar stepping 2v[jr2 3y
motors, as well as other high-current/high-voltage 2a[]13 3A
loads in positive-supply applications. Veea [] 14 34EN

All inputs are TTL compatible. Each output is a

complete totem-pole drive circuit, with a

Darlington transistor sink and a pseudo-

Darlington source. Drivers are enabled in pairs, with drivers 1 and 2 enabled by 1,2EN and drivers 3 and 4
enabled by 3 4EN. When an enable input is high, the associated drivers are enabled, and their outputs are active
and in phase with their inputs. When the enable input is low, those drivers are disabled, and their outputs are
off and in the high-impedance state. With the proper data inputs, each pair of drivers forms a full-H (or bridge)
reversible drive suitable for solenoid or motor applications,

ORDERING INFORMATION

ORDERABLE TOP-SIDE
t
Ta PACKAGE PART NUMBER MARKING
HSOP (DWF) Teof20 | L203DWP L2030WP
PDIP (N) Tube of25 | L203N 293N
0°C 16 70°C =
Tube 0f25 | L293NE L203NE
PDIP (NE) -
Tue of25 | L293DNE L293DNE

I Package drawings, standard packing quantities, themnal data, symbolization, and FCB design guidelines are available at
www.ili.com/sc/package

|31 KB First page summary of L293DNE datasheet

A datasheet for an integrated circuit (IC) usually contains a pinout of the
part’s pins that displays their functions and where they are physically located
on the chip (see Figure 8-2). There is always a indicator on the diagram as to
where the first pin is on the circuit; this is very important because wiring the
circuit the wrong way can cause damage to both the chip and the circuitry.
The pins are all labeled using short acronyms, which are explained later in the
datasheet. For example, Vcc is the supply voltage (usually a 5V or 3.3V),
GND is ground, and EN is the pin that enables a certain function of the IC
(usually, it prepares the circuit to receive data). If you are connecting an 12C
device, you will see SCL and SDA, which indicate the clock and the data
pins, respectively.

L293 ... N OR NE PACKAGE
L293D ... NE PACKAGE

(TOP VIEW)
1,2EN [| J 16]ch
1A]2 15[] 4A
1Y I3 14[] 4Y
HEAT SINK AND { +« 13]} HEAT SINK AND
GROUND 1[5 12]] | GROUND
2Y [l 1] 3y
2A 17 10] 3A
Veeo [18 o] 3.4EN

I3taniyE¥ [293DNE pinout

Looking further into the datasheet, you will come across detailed
information of the specification, represented in tables (see Figure 8-3). These
values determine the minimum and maximum ratings the component can
withstand before being damaged. It is usually advisable that you keep within
these restrictions; otherwise, you risk shortening the life span of the

component or even damaging it and the circuit it is in.

electrical characteristics, Vep1=5V, Veea =24 V, Ty = 25°C

PARAMETER TEST CONDITIONS MIN TYP MAX|[UNIT
Vou Highdevel output voltage 'égg‘n: '.‘2;'.,:101 x Vio-18 Vea-14 v
Vo Low-evel output voltage ::gggb: l;:;lL B 10’1.. " 12 18| v
Voky High-evel output clamp voltage 1293D: gk =-06 A Veca+13 Y
Vo Low-levsl output clamp voltage L2930: lgk= 0.6 A 13 v
A 02 100
Iy High-level input current ~ V=7V 02 0 uA
A -3 -10
I Low-lavel input currant V=0 HA
EN =2 =100
All outputs at high level 13 22
lee Logic supply current lg=0 All outputs at low level 35 80| mA
All outputs at high impedance 8 24
All outputs at high level 14 24
lcco Output supply current lg=0 Al outputs at low level 2 6 mA
All outputs at high impsdance 2 4

|BTAd KR! Specification table

You will also see sections with the recommended operating conditions
(see Figure 8-4). These may include voltage and current ranges for timings,
temperature, and other useful information. These conditions are always good
for setting your specification to achieve optimal performance and precision.

1293, L293D
QUADRUPLE HALF-H DRIVERS

SLRS008C - SEPTEMBER 1986 - REVISED NOVEMBER 2004

recommended operating conditions

MIN MAX | UNIT
Ve 45 7
Supply voltage Vo Voo m v
Vo1 7V 23 Veey| V
Viy High-level input voitage Voor 27V 23 T v
Vi Low-level output voltage -03 15| Vv
Ta Operating fres-air temperature 0 0] *C

 The algebraic convention, in which the least positive (most negative) designated minimu, is used in this data sheet for logic voltage levels.

Recommended operating conditions

Some datasheets will have one or more graphs showing the component’s
performance versus the criteria (see Figure 8-5). The graphs displayed for the
L.293DNE circuit show the power/heat dissipation to give us an idea of how
hot the chip can get when it uses a certain amount of power.

MAXIMUM POWER AND JUNCTION

Vs
THERMAL RESISTANCE
4 80
;' 3 s 60
§ N
- \\
a
1]
g 2 [0
e Prot (Ta=70°C)] ——
0 J"‘
2 >
0 v
R 2
0
=
o
0 0

0 10 20 30 40 50

Side] = mm

o4a — Thermal Resistance — “C/'W

PTOT — Power Dissipation — W

MAXIMUM POWER DISSIPATION
Vs
AMBIENT TEMPERATURE
™N \
\
\\ With Infinite Heat Sink
4 \ \
\\
3 Heat Sink With 0,4 = 25"’CJW \
: \
Free Air \
N N
1 J\\Q\
b
\&
0

-50 0 50 100

Ta - Ambient Temperature - °C

150

|3ty E Application information

Truth tables show how changing the inputs to a part will affect the output
(see Figure 8-6). Each row has all the components’ inputs set to a specific
state and then the resulting effect. H means the input logic is “high,” and L
means the logic is low or GND. If there is an X in the logic state, it doesn’t
matter whether the state is high or low; the output will be the same either

way.

EN 1A 2A FUNCTION
H E H Tum right

H H L Tum left

H L L Fast motor stop

H H H Fast motor stop

I X X Fast motor stop

L = low, H = high, X = don't care

ISty EE Function table

Timing diagrams show clearly how data should be transmitted and
received from the component as well as at which speed this should be done
(see Figure 8-7). These are typically represented as horizontal lines with
various inputs and outputs; the horizontal line shows the logic over a period
of time. If the line rises higher, this represents H for either the input or

output. If the line drops lower, this represents L.

- 1 -1,
90% I I 90%
Input 50% Y% | | A 50%
| X103 10%-£ |

I
Quiput I

VOLTAGE WAVEFORMS

ISty XiEY Timing bar

Some datasheets include schematics for various circuits that can be built
around the particular component (see Figure 8-8). These diagrams are very

useful in designing your circuitry and can be used as examples for building
projects.

APPLICATION INFORMATION

IL1/IL2 = 300 mA

¢ L 1293 16 60y
022uF T 1 -
\
2
o—H—o—KT 0 LBy —H—o—ﬁ
D5 D = D8 D4 =
L 3 14 o
4 13
Voeo 09 L1§MIL1 i 3 L Lzéuu
. b i "
7 10
‘—K—o—ﬁ 0 A 1
8 S .
D6 D2

D1-D8 = SES5001

ISty XiBY Schematic diagrams

Some parts can be static and sensitive to the way they are integrated into a
circuit, in which case the datasheet will always provide layout considerations
(see Figure 8-9). These features can range from noise-reduction techniques to
dealing with thermal issues. For prototyping circuits, these considerations are
generally not used. However, if you are creating a product design life cycle
and implementing components into the real world or finished products, then
taking the advice from this information will make for a trouble-free circuit. If
guidelines are not followed, it becomes more difficult to diagnose problems
and harder to fix them.

0.010 (0,25} NOM

T
l Gage Plane *
[0.010 (0,25)

U. 8- ""'ln.._,___‘_._._,_.-l-""'
0,050 (1,27)
5016 (0,40)

ISt Mounting information

It is worth noting that some datasheets come with errors, just like any
other technical document. Therefore, it’s always best to make sure you have
the very latest technical datasheet. Make sure you read the datasheet from
beginning to end to get a good understanding of all the features and
characteristics; you must be absolutely certain that this is the part for your
project. If in doubt, you must consult someone or contact the manufacturer.

Breadboards and Prototyping Boards

A breadboard is usually a rectangular plastic box with lots of little holes in it
(see Figure 8-10). The holes are contacts into which you can insert electrical
components or wires with ease. Breadboards are often used to put together a
concept design of a circuit without having to solder any components; instead,
you just poke the wires or the legs of the component into the holes, thus
creating the contacts. The contacts are usually arranged in rows by
connecting the metal contacts underneath the breadboard. The best thing
about using a breadboard is that you can change the circuit design at any
given point, so you can replace or rearrange components with ease without
having to solder/unsolder any joints.

I3ty Bl Breadboard

When you place components in a breadboard, not much happens unless
you connect jumper wires up to create an electrical circuit. The wire used in

electronics is made of copper surrounded by an outer plastic insulation,
usually called hookup wire. Wire comes in all sorts of sizes (diameter), often
referred to as the gauge. The standard measurement in the United States is
AWG. It is always advisable to used solid wire rather than stranded wire
because solid wire inserts into the breadboard much easier than does stranded
wire. If you are lucky, your electronics shop will sell jumper wires, which are
short lengths of wire with a single pin on each end (see Figure 8-11).

ISty BNl Jumper wires

If you create your circuit design on a breadboard, you may decide that you
want to make it permanent by soldering the components in place on a printed
circuit board. To do this, you may have to get a universal printed circuit
board, which in some ways is similar to a breadboard layout. A prototyping
printed circuit board has rows of individual holes across it, much like all the
pins on a breadboard (see Figure 8-12). Generally, all the components will go
on the top of the board, and you solder underneath. When you solder all the
wires, they usually go underneath as well. This makes for a much neater and
cleaner board to work with and helps you avoid a lot of congestion if you are
soldering a lot of components.

(AR RN RN NN

- @B B B B & B 8 F & § & & 8 & &

[AR R R RN RN NN ..

R

@ @ % @ @ & & & & & 5 4 BB B @ A8 8

(NN N NN

B B @ ® & & 8 & & & &8 @

-

@ & @ & & & 8 B 8 8 8 & 888w

& % % & % 8§ 5 8 & & 8 8 @ & &8
@ @ @ @B B B & & 8 8 8 & 8 85 & 8@

[E N EE A EEEEEEEE RS NN

X

RN N

]
¢ ® 8 & 2 & &8 B

O

e
L

b

.

-
-

- " .

=

-
-F'l -
.

-
—

.

i % w & & & B & 8 & & & & B 8 @

M E A T N .
[T T R T S e,

-

BN

"l“#mlhl...."..".'-"'-

N E N EE]

'alr " & % & & 8 8w

=

R T N N T R NI NN RN LN SN e .

]
.

® 8 B BB B B B S R WS A S E s
RN

-
-

O NN

L)

e Es e

b

§ @ @ B B _ @@ B ®F B B B B & & 5 8 & 5 & B 5 8 & B8 F S8

- w ®

N
OO
e omow w8
O
(OO

0100 B R &
wlefjeje]s
00
alufuln]e
101 BB
wlafuin]e
wlefun]s
afnluinin
sfln]ujnis
C7 03 B £ &
wlflelelels
Ll L B B
Ll L} L] L]
elele]e]e
Ll L A Bl L)
Ll O B B L
afeflelele
Ll L] B B L)
afajejale
CICIEd L L]
O L8 B L
Ll L O B L
L) el & B L
i L LA R L

L
L

NN N

O

L]
L II_&&I'..

- e

-

.

-
& - W

- .

CRCC L]

5 B8 B B BB F R B W SRR

R

TELE W&

& 5 B &8

g8 8 8 88 88

@ & 8'8. 8 BB

[N]

@ 85 8 &8 Fw AN

& & & & & & & 8 B 5 0N

- 8@ B 8 B & B §F B B B 8 8 ® B 8 B B & B @ B 8§ F 6 8 F S 5 B S 8RS 8@

slajafein
e fle e
sfelefafn
Efafalefe
e leleie
sfajafeln
slejnieln
LY L3 L B L
dflafminle

|3tV Prototyping board

Multimeter

A multimeter is a very useful device used to measure electricity, just like you
would use a ruler to measure distance or a stopwatch to measure time. The
best thing about a multimeter is that it also measures a lot of other things,

such as voltage, current, resistance, and much more. A standard multimeter

will have a large dial in the middle that lets you select what you want to

measure (see Figure 8-13).

TR0 UMY P -
s sral 4 Pemanid B

AANE STORE HOLD

(1] D s
ExIT

IS ENR A typical multimeter

Most multimeters can measure voltage, current, and resistance; some
multimeters also have a continuity check that tests to see whether an
electrical circuit is complete by creating a loud beeping sound when two
items are electrically connected. This is very helpful in diagnosing problems
with a circuit: you can trace the voltage around the circuit and find which part
is incomplete or not functioning the way it should. Alternatively, you can use
a multimeter to make sure that two items are not connected, just in case you
don’t want a certain part of your circuit to short—or you may want to test
how good your soldering skills are by not accidentally soldering joints
together.

There are some advanced multimeters, as well as expensive ones that have
certain additional functions, such as the ability to measure transistors or
capacitors. These functions are more suited for professional engineers who
design and manufacture high-end products.

In order to understand how a multimeter works, it is important that you
know what you are measuring, such as voltage, current, or resistance:

m Voltage is how hard the electricity is being pushed through a circuit; a
higher voltage indicates that electricity is being pushed through the circuit
really hard. Voltage uses the symbol V.

m Current is how much electricity is flowing through a circuit; a high current
indicates that more electricity is flowing through the circuit. The symbol
for current is A.

m Resistance is how difficult it is for electricity to flow through a circuit; a
higher resistance indicates that it is more difficult for electricity to flow
through the circuit. Resistance is measured in ohms, and the symbol for
resistance is

It is also worth noting that the symbol being used for a unit of
measurement may differ from the symbol for a variable equation. This is
shown in Table 8-1.

TABLE 8-1 Electrical Symbols

Variable Symbol Unit Symbol
Voltage v Volts V
Current I Ampere A
Resistance | R Ohm Q

A multimeter can be quite confusing to look at, with all the symbols—
especially when you don’t see words such as “voltage” and “current.” To
identify some of the features on a multimeter, Table 8-1 shows some of the
commonly found symbols, which we can use to identify the unit of
measurement. Most multimeters use the metric system:

1 (micro) equals one millionth.
m (milli) equals one thousandth.
k (kilo) equals one thousand.

M (mega) equals one million.

For example, when you see a 200k resistor, you know that the value is

200,000 ohms.

Some multimeters have an auto-ranging feature, and others require you to
manually select the unit of measurement. If you need to manually select the
range, it is usually best practice to elect a higher value than the one you are
expecting to measure. For example, if you are going to measure a AA battery,
you know that the voltage is roughly going to be 1.5V, which is standard for
AA batteries. Therefore, you wouldn’t select 200mV because the value
would be too small. Instead, you would pick the next higher value, which is
2V. All the other range values would be too high and would be deemed
unnecessary and result in a loss of accurate data.

When you purchase a new multimeter, you will notice that it comes with
black and red wire probes (see Figure 8-14). One end of the wire comes with
a banana jack, which plugs directly into your multimeter, and the other end is
a probe tip used to measure the voltage point on a circuit. Using a bit of
common sense, you know that red always represents positive and black
negative. Although you only get two probes, there can be up to four or five
places on the multimeter to plug the banana plugs into, depending on what
you want to measure.

T2-7T725
3

—_—

puto Display .Backnght, .
- S

. 20 MAX
MAK 108
© | EACH 15min
WWFLISED -
A00mA BAK
Nesy FUBEQ- ==

|BTKBIW! Test probes

Most multimeters will also have a fuse to protect them from too much
current. When too much current is encountered, the fuse simply burns out and
stops the circuit to avoid damage to the multimeter.

Measuring Voltage

Follow these steps to measure the voltage in a circuit:

1. Plug the black and red probes into the colored sockets on the multimeter.
For most multimeters, the black probe plugs into the COM socket and the
red probe plugs into the socket labeled V.

2. Choose the voltage range you are going to measure using the dial in the
middle of the multimeter. If you know roughly what the voltage is from the
source, such as battery or a microcontroller, you can easily determine the
range.

3. When touching the probe tips to your circuit, you must do this in parallel.
If you want to measure the voltage across an LED, you would touch the
black probe where the negative power source is and the red probe would be
the positive source (in other words, you measure the points on either side
of the LED).

4. If your voltage reading is not showing up or is displaying an error message
on the screen, you may want to adjust the settings to a higher voltage
reading and then try to read the voltage again.

Measuring Current

Follow these steps to measure the current in a circuit:

1. Plug the black and red probes into the colored sockets on the multimeter.
For most multimeters, the black probe plugs into the COM socket and the
red probe plugs into the socket labeled V.

2. Choose the appropriate current settings on the multimeter using the dial in
the middle. Remember to check whether you are using alternating current
or direct current. If you are using a battery, this will be direct current. If
your multimeter is not auto-ranging, you will need to guess the current
range (you can always change it afterward).

3. When measuring current, you should connect the probes in a series circuit.
The best way to think of this is to pretend the multimeter is a part of your
circuit, and just like any other component, you connect it up with the
positive and negative points.

Measuring resistance

Follow these steps to measure the resistance of a component in a circuit:

1. Plug the black and red probes into the colored sockets on the multimeter.

For most multimeters, the black probe plugs into the COM socket and the
red probe plugs into the socket labeled V.

2. Choose the value of the measurement using the dial. If you know the value
of the component you are measuring, this can be used as an indicator to
select the measurement on the multimeter to the nearest decimal point.

3. When measuring voltage, first turn off the power from the power source;
otherwise, you may get an incorrect reading when measuring across two
points. When measuring the resistance, always pick two points. Remember
that the resistance is the same in both directions, so it does not make any
difference which way you connect the black and red probes in the circuit.

Soldering

Soldering is an essential skill to learn in the world of electronics. Although
you can get by just using a prototyping board, you may still need to solder
headers onto the board or make some small modifications to a component.

Solder refers to the alloy that typically comes on a wire spool or tube, as
shown in Figure 8-15, and it’s this solder that we use to fuse components
together on a printed circuit board. Solder usually comes in two types: leaded
and lead-free solder. When solder was first used, it was generally made of an
alloy of both lead and tin. Since then, it has become known that lead can be
quite harmful to humans when exposed to it in large amounts. Lead was used
in solder because it has a great low melting point, and it created really good
solder joints for very reliable circuit boards. Unfortunately, in the EU, leaded
solder is not RoHS (Restriction of Hazardous Substances) compliant, and this
restricts the use of leaded solder in electrical equipment. This is why lead-
free solder is commonly used. Lead-free solder is usually made using other
metals such as silver and copper. Lead-free solder does come with its own
downfalls; it has a much higher melting point because of the increased tin
content. As such, it requires a high-powered soldering iron.

STARMMOLT
Wuppurtnl

—-E"UWII'U
e e Lt st
uriba ﬂ:ll! . o 5 v

uu---l’

soog
STANMNOLY “EE!." "51' “EL‘HH

Wit el

IS Solder spool

Many types of lead-free solder contain a flux core that helps give it the
same quality as leaded solder. Flux is a chemical agent that aids in the
flowing of solder and creates a much better contact when finished.

Many tools aid in soldering, but none is more important than the soldering
iron. Soldering irons can come in a variety of factors, ranging from the basic
soldering iron to complex soldering stations, but at the end of the day, they
all serve the same function and purpose. Usually, a good place to start is to
buy a station composed of a soldering iron with a digital or analog controller
and a stand. These stations are becoming more common now and can be very
inexpensive to purchase at your local store.

Over time, your soldering tip can start to oxidize and will turn black. This
is bad because the soldering iron will not cling to the solder; therefore, you
cannot solder your component. This is more common with lead-free solder.
This is where a simple sponge comes to the rescue. Every so often, you
should try to clean the tip by wiping all the excess off with a soft sponge. For
even better results, you can use a brass wire sponge (see Figure 8-16).

ISty BIY Brass sponge

Apart from a soldering iron and solder, many great accessories can aid in
the process of soldering. Solder wick is a vital tool for mopping up if you
have made a bit of mess, or it can be used in desoldering. Solder wick is
made up of thin copper braiding, and just like any PCB, it will soak up the
solder, erasing any excess drops.

Using tip tinner is another method of cleaning your tip (see Figure 8-17).
It is composed of a mild acid that helps remove any unwanted residue left on
your soldering tip. This helps prevent oxidization when the tip is not in use.

ISty XV Tip tinner

As previously mentioned, some lead-free solder comes with a core flux;
however, sometimes it is not enough, and extra flux may be required. Flux
pens are used to create a better bond between difficult components and the
PCB.

Analog vs. Digital

Analog and digital signals are used to transmit an array of information,
usually conveyed through electrical signals. The main difference between the
two signal types is that analog signals are transmitted in pulses of varying
amplitude whereas digital signals are transmitted in a binary format (ones and
zeros), where each bit represents a distinct amplitude.

Analog refers to circuits where voltage or current varies at a continuous
rate over a period of time. Electronic signals represent information by
changing their voltage or current over time. The signal takes any value in a
given range, and each signal value can represent different kinds of
information. Any change that takes place in the signal has a significant
impact on the overall result of information.

Something important to take into account is that analog signals can create
noise, which is classified as a disturbance or variation. This can be caused by

thermal vibrations. Because any slight variation in the signal can affect the
outcome, this noise can have a greater effect, especially over long distances,
because the signal degrades over distance.

When you are designing a system, analog circuits are much harder and
complex to use, and require more skill compared to digital systems. This is
primarily why digital systems have become more common, not to mention
the fact that they are much cheaper to manufacture.

Digital systems are much easier to understand because they do not use a
continuous range like analog. Therefore, any noise or slight variation in the
signal does not impact the result of a digital signal. Digital systems generally
have only two states, represented by two different voltages: usually 0 would
be equal to ground and +V would be equal to 1 (see Figure 8-18).

On

o B

ISty BN kY Digital signal

The main advantage of using a digital system is that, compared to analog,
the signal does not degrade over time, and it can be quite easily replicated
without any loss. The main disadvantage compared to analog systems is that
digital circuits consume much more power, and when circuits consume more
power, that generally means more heat, which in turn increases the
complexity of designing a circuit.

Understanding 12C and SPI

This chapter explains the differences between using I2C and SPI devices.
When creating projects, it can be an important factor when selecting the
hardware, as both protocols come with advantages and disadvantages.

I12C

Inter-integrated circuit (or I2C as everybody knows it) is a computer bus
originally invented by Philips. It is used to attach low-speed peripherals to an
embedded system or digital electronic circuit. This means that we can have
multiple peripherals connected to one single device using only the unique I12C
addressing system and four wires. [12C use a two-wire bidirectional line, serial
data (SDA) and serial clock (SCL), with pull-up resistors. The I2C bus has a
seven-bit address system to identify each device (0x00) and usually operates
in two modes: master and slave. Each transmission between two devices
always starts with a START command and ends with STOP. In between, both
devices will send an ACK, stating they are ready to receive.

As previously mentioned, there is a serial clock line that holds the line
after receiving or sending a byte, indicating that it is not yet ready to process
more data. The master communicating with the slave device may not finish
the transmission of the current bit until the clock line goes high.

Whenever communicating with a slave device, the master always checks
the bus for a STOP or START message and does not start transmitting until it
has received one of those two messages on the bus.

To display I12C devices on the BeagleBone Black, you can use the
i2cdetect utility already installed:

iZ2cdetect -y -r 1

00z —_— m= m= = == m= = == m— m= —— == ==
10 == == == == == == == == == == == == == == == ==
20 == == == == == —= —= m= —= m= —= == —= == == ==
30: == == == m= m= = mm mm = mm = mm mm == == =
A == == mm e e e e mm mm mE o = - —— -

Xy S L SE s & D 34 S0 1 N) e S e TR T

e e

) T e e

You can connect up to 127 different I2C devices on the I2C bus, as long as
each device has its own address.

SPI

The serial peripheral interface (SPI) is for synchronous serial data
communication between devices operating in full duplex mode. SPI was
designed by Motorola specifically for short-distance communication in
embedded systems. Similar to the I2C bus, the SPI uses a master/slave setup,
where the master initiates the data. SPI uses a four-wire bus containing three-,
two-, and one-wire serial busses.

The SPI bus specifies four logic signals:

SCLK Serial clock

MOSI Master output, slave input
MISO Master input, slave output
SS Slave select

Some peripherals with the SPI bus have been designed to be connected in
a daisy-chain configuration, thus allowing multiple slaves to be connected to
a single master. This daisy-chain communication is accomplished using shift
registering by clock pulses; this is considered an advanced feature of SPI and
is not available on some devices.

The BeagleBone Black has up to five serial ports available for use. Each
serial port contains RX (receive) and TX (transmit) pins for two-way
communication.

NOTE Serial pins operate using 3.3V, so be careful that the

device connected is not 5V.

Summary

This chapter has been through some of the important and essential tips that
you will need to create your own Evil Genius projects. Some of the tools you
will use can be a little tricky at first, but with some practice, you will soon be
a pro, and these tools will soon be an everyday item for your projects.

Suppliers and Components

ALL THE PARTS USED IN THIS BOOK are easily available for purchase from a
number of stores through the Internet. However, sometimes it can become

quite difficult to find exactly what you are looking for—especially in your

own country. Finding suppliers in your own country will reduce the cost of
large shipments, thus offering you a more affordable solution.

Suppliers

When searching for your components on the Internet, you will probably come
across many suppliers all offering something different in terms of product
selection. While writing this book, I came to use four main suppliers for all
my components. These suppliers offer fantastic service as well as excellent
pricing and product choice. When I’m looking for components and don’t
have to worry about the high minimum-order quantity, I use CPC in the
United Kingdom or MCM in the United States.

CPC in the United Kingdom is a leading electrical distributer, offering
over 100,000 different products from over 1,200 of the leading
manufacturers. The vast array of components offers customers a one-stop
shop for all their prototyping needs while providing free delivery in the
United Kingdom for online orders (see www.cpc.co.uk).

MCM in the United States is a broadline distributor of electronic
components and equipment for the consumer market. MCM is committed to
providing all its customers top-quality service by providing over 40,000
products from over 600 vendors (see www.mcmelectronics.com).

Although both CPC and MCM source some great low-cost components,

http://www.cpc.co.uk
http://www.mcmelectronics.com

there are also some smaller companies offering niche products, such as
Adafruit Industries and SparkFun. These companies often specialize in the
maker market and also manufacture their own products.

SparkFun, based in the United States, is an online retail store that sells bits
and pieces to make your electronic projects. In addition to its products,
SparkFun offers classes and online tutorials designed to help educate
individuals in embedded electronics (see www.sparkfun.com).

Adafruit Industries was founded in 2005 by MIT engineer Limor Fried.
Adafruit was designed to create the best place online for learning about
electronics and making the best designed products in the market. Adafruit
designs and develops its own products in house and sells these products on its
website, with lots of tutorials to get you started (see www.adafruit.com).

The sections that follow list components by type, along with some sources
and order codes to make it easier for you to purchase your components.

Components

The component tables list appendix codes for each component that is used in
that particular project. Table A-1 lists all the parts and offers some sources as
to where they can be purchased.

TABLE A-1 BeagleBone Black and Modules

http://www.sparkfun.com
http://www.adafruit.com

Code

Description

Source

M1 BeagleBone Black | CPC: SC13491
MCM: 83-16241
Adafruit: 1876
SparkFun: DEV-12857
M2 Ultrasonic sensor Adafruit: 980
SparkFun: SEN-08503
M3 Adafruit GPS Adafruit: 746
module Pimoroni
M4 Prototyping shield | CPC:SC12957
MCM: 83-14776
Adafruit: 572
M5 12C four-digit Adafruit: 878
7-segment display | Pimoroni
M6 16x2 LCD screen CPC: SC12098
MCM: 28-17797
Adafruit: 823
SparkFun: LCD-10862
M7 8x8 LED matrix CPC: 5C12981
backpack MCM: 25-6050
Adafruit: 959
M8 Electret Adafruit: 1713
microphone Pimoroni
M9 Ultrasonic module | CPC: SN36696

MCM: 28-17967

Resistors

Resistors are low-cost components—almost less than one cent each. Often,
suppliers will sell them in packs of 50 or 100. There are common resistors
that get used a lot, such as 220R, 270R, 1K, and 10K values, so it can be very
useful to keep a stock of these values.

After a while, you might find yourself buying a lot of resistors, and in
some cases, it is better to buy them in kits, which stock the most popular
values used in everyday electronics.

Here are some companies that sell resistor Kkits:
m MCM: 80-6665

CPC: SC13464
m SparkFun: COM-10969

Table A-2 lists resistors, and Table A-3 lists capacitors.

TABLE A-2 Resistors

Code | Description Source
R1 220() 1/4W resistor CPC: RE03795
MCM: 66-220
R2 110() 1/4W resistor CPC: RE03728
MCM: 970-100
R3 4.6K() 1/4W resistor | CPC: RE03811
MCM: 34-4.7k
R4 10K(} potentiometer | CPC: RE06540
R5 10KC(2 1/4W resistor CPC: RE03815
MCM: 34-10k
R6 330() 1/4W resistor CPC: RE03797
MCM: 34-330
R7 Photocell CPC: RE04698
MCM: MC12-0100
R8 1K) 1/4W resistor CPC: REO3803
MCM: 34-1k
R9 3.3K() 1/4W resistor | CPC: RE03809
MCM: 66-3.3k
R10 | 4700} 1/4W resistor CPC: RE03799

MCM: 34-470

TABLE A-3 Capacitors

Code | Description Source

C1 100nF CPC: CA05514
Adafruit: 753
SparkFun:
COM-08375

C2 100uF CPC: CAO7510
MCM: 31-5275

Semiconductors

The projects in this book use a lot of LEDs, so sometimes it is worth looking
around for a variety pack of 5mm or 10mm LEDs rather than buying all the
size and color combinations separately. Table A-4 lists semiconductors.

TABLE A-4 Semiconductors

Code

Description

Sources

S1

5mm red LED

CPC:5C11574

MCM: 25-5666
Adafruit: 297
SparkFun: COM-09590

52

High power LED 1W

CPC:5C11783

MCM: 25-4770
Adafruit: 518
SparkFun: BOB-09656

53

8mm RGB LED

SparkFun: COM-09264
Adafruit: 159

S4

5mm yellow LED

CRE:SCE11577F
SparkFun: COM-09594
MCM: NTE3146

23

5mm green LED

CPC:SC11573
Adafruit: 298
SparkFun: COM-09650

S6

Hardware and Misce

TMP36 temperature
sensor

CPC; SC10437
Adafruit: 165

Eeadhyis SEN-10988

S7 L293DNE motor CPC: 5C10241
Most of|theipeeducts in this sectipmiareuradidy available in the majority of
maker/hobbyist stores and are ussgliyRraiy iTexpensive s
%BLE &-%‘gr'dxgzlf% HIWiscellane ugPC: SCTDA2822M
NEWARK: 89K1049
S9 Motion PIR sensor CPC: SN36764
MCM: 28-17976
Adafruit: 189
SparkFun: SEN-08630
S10 TIP120 transistor CPC: SC11000
MCM: 115-TIP120
Adafruit: 976
i TN4004 diode CPC: SCOF335
MCM: 107-1N4004
S12 | LED array bar CPC:5C12043

Code

Description

Description

H1

Jumper wires

CPC: PCO1769

MCM: 21-12365
Adafruit: 758
SparkFun: PRT-08431

H2

Solderless
breadboard

CPC: PCO1770

MCM: 28-17932
Adafruit: 64
SparkFun: PRT-09567

H3

Miniature push to
make switch

CPC: SW04107
MCM: 26-2555
Adafruit: 1119
SparkFun: COM-00097

H5

Piezo transducer

CPC: LS02988
MCM: 28-11800
SparkFun: SEN-10293

H6

5V servo motor

CPC: MC02062

MCM: 28-17452
Adafruit: 169
SparkFun: ROB-09065

H7

6V DC motor

CPC: MC02075
MCM: 28-17657

H8

Robotic chassis

MCM: 28-17654
SparkFun: ROB-10825

H9

Wireless keyboard

CPC: C523874
MCM: 83-14947
Adafruit: 922

H10

12V water pump

CPC: MC02068

MCM: 28-17461
Adafruit: 1150
SparkFun: ROB-10455

H11

USB Thunder
Missile Launcher

Dream Cheeky
Amazon
eBay

H12

8W miniature
speaker

CPC: LS00533
MCM: 55-4532
SparkFun: COM-09151

H13 | 5V buzzer CPC: LS03781
MCM: 287-1354
Adafruit: 160
SparkFun: COM-07950

H14 | 4x3 matrix keypad | CPC: SW04507
Adafruit: 419
SparkFun: COM-08653

H15 | Solenoid/mag lock | CPC: SW04774, SR04745
MCM: 28-17455

H16 | Logitech C270 CPC: CS20156

webcam MCM: 83-12543
H17 | USB audio card CPC: (521652

MCM: 83-15107

BeagleBone Black GPIO Pinout

TABLES B-1 AND B-2 sHow the GPIO pinouts for the BeagleBone Black.
This is a very useful guide when working with the BeagleBone Black and
helps to determine the logistics of cable routing when prototyping.

TABLE B-1 GPIO Pinout for Pin Header P9

GND 1 4 GND
3.3V 3 4 3.3V
5V RAW 5 6 5V RAW
5V 7 8 5V

9 10
Serial4 RX 11 12 GPIOP9_12
Serial4 TX 13 14 PWM1A
GPIOP9_15 15 16 PWM1B
GPIOP9_17 17 18 GPIOP9_18
12C2_SCL 19 |20 12C2_SDA
Serial2 TX 21 22 Serial2 RX
GPIO P9_23 23 24 Serial1 TX
GPIO P9_25 25 26 Serial1 RX
GPIO P9_27 27 |28 GPIO P9_28
GPIO P9_29 29 |30 GPIO P9_30
GPIO P9_31 31 32 VDD_ADC
AIN4 33 34 GND_ADC
AIN6 35 36 AINS
AIN2 37 |38 AIN3
AINO 39 |40 AIN1
GPIO P9_41 41 42 GPIO P9_42
GND 43 44 GND
GND 45 46 GND
GND 47 |48 GND

TABLE B-2 GPIO Pinout for Pin Header P8

GND T 2 GND
GPIOP8_3 3 4 GPIOP8_4
GPIOP8_5 5 6 GPIO P8_6
GPIO P8_7 7 8 GPIO P8_8
GPIOP8_9 9 10 GPIOP8_10
GPIOP8_11 11 12 GPIOP8_12
PWM2B 13 14 | GPIOP8_14
GPIOP8_15 15 16 GPIOP8_16
GPIOP8_17 17 18 GPIOP8_18
GPIOP8_19 19 |20 GPIO P8_20
GPIO P8_21 2] 22 GPIO P8_22
GPIO P8_23 23 24 | GPIOP8_24
GPIO P8_25 25 26 GPIO P8_26
GPIO P8_27 27 |28 GPIO P8_28
GPIO P8_29 29 |30 GPIO P8_30
GPIO P8_31 31 32 GPIO P8_32
GPIO P8_33 33 34 GPIO P8_34
GPIO P8_35 35 |36 GPIO P8_36
Serial5 TX 37 38 Serial5 RX
GPIO P8_39 39 |40 GPIO P8_40
GPIO P8_41 41 42 GPIO P8_42
GPIO P8_43 43 |44 | GPIOP8_44

Index

Please note that index links point to page beginnings from the print edition.
Locations are approximate in e-readers, and you may need to page down one
or more times dfter clicking a link to get to the indexed material.

1W amplifier, 93

3 % 4 matrix keypad, 112

3.3V pin operation, 12, 134

7-segment clock, 79-81
breadboard layout, 80
hardware for, 79-80
photo of working, 81
software for, 80-81

7-Zip program, 8, 9

A

Adafruit Industries, 135
7-segment display, 79, 80
BBIO library, xiii
component listings, 136-138
electret microphone, 97
GPS breakout board, 46
I2C library, 83
LED backpack clock, 81
LED matrix module kit, 36
Python library, 80

adjustable LED blinker, 20-24

breadboard layout, 22
hardware for, 21
photo of completed, 22
pulse width modulation and, 20-21
schematic diagram, 20
software for, 21-24

amperes, 130

amplifier, 93

analog pins, 12

analog sensors, 56

analog signals, 133

analogRead function, 31, 43, 45, 54

analogWrite function, 21, 23, 31, 57, 60

Angstrom OS, xii, 2, 8

anode pins, 17, 98

audio card, 91, 119, 121

audio level indicator, 97-102
breadboard layout, 98
hardware for, 97-99
LED bar array, 98-99
photo of completed, 100
schematic diagram, 99
software for, 99-102

audio projects, 91-102
audio level indicator, 97-102
Imperial March player, 93-97
Internet radio, 91-93

automatic dog barker, 119-121
breadboard layout, 120
hardware for, 119-120
photo of completed, 120
software for, 121-122

awValue setting, 23-24

B
baud rate, 48
Beagleboard.org website, xi
BeagleBone Black
about, xi—xii
driver installation, 2—4
Ethernet connection, 4-5
file directory, 3
hardware features, xii
IP address, 4-5
LED indicators, 2
OS image installation, 8—11
pinout, 12-13
SSH access, 5-8
supplier codes, 136
updating, 11, 64
USB connection, 1-2
binary conversion, 38
blinking an external LED, 17-20
breadboard layout for, 19
hardware for, 17-19
schematic diagram for, 18
software for, 19-20
blinking an internal LED, 13-16
Bonel01
web page, 4, 5
BoneScript library, xiii, 14
BoneScript programming language, xiii
brass wire sponge, 132
breadboards, xiii, 128

http://www.beagleboard.org

break statement, 35

C

capacitors, 95, 136

capes, xii

cathode pins, 17, 98

check function, 23, 45

checkButton function, 34

Cloud9 Run program, 15

command-line interface, 11

components, 136—138
capacitors, 136
miscellaneous, 137-138
resistors, 136
semiconductors, 137
suppliers of, 135

CPC supplies, 135, 136-138

CSS styling, 71

current
definition of, 129
measuring with multimeter, 131
symbol used for, 129, 130

D

daisy-chain configuration, 134

datasheets, 123127

date/time formats, 89

DC motor control, 60—64
breadboard layout, 62
hardware for, 61
L.293d H-bridge pinout, 61
motor logic table, 63

software for, 61, 63—64
See also servo motor control
DC power jack, 4
DC power supply, 111
Debian OS, xii, 2, 105
decoupling capacitor, 95
digital GPIO pins, 12
digital signals, 133
digitalWrite function, 14, 15
display projects, 79-90
7-segment clock, 79-81
LCD display, 83-87
LED matrix scrolling text display, 87-90
sensor information display, 81-83
dog barker project. See automatic dog barker
Dream Cheeky Thunder Missile Launcher, 74—75
driver installation, 2—4
duty cycle, 21

E

echo pulse output, 119

electret microphone, 97

electrical symbols, 130

electromotive force (EMF), 111
electronic components. See components
eMMC flash memory, xii

entity tag (etag) header, 70

Ethernet connection, 4-5

external LED blinking project, 17-20

F
flash memory, xii

flashing the eMMC, 11
Fried, Limor, 135
function table, 126

G

GateOne SSH, 6-7

github repository, xiii

Google Maps, 49

GPIO pinout, 12-13

GPRMC data, 48-49

GPS breakout board, 46

GPS tracker, 45-50
breadboard layout, 47
GPMRC breakdown, 49
hardware for, 45-46
photo of completed, 47
software for, 46, 48-50

H

Hassel, Matt, 87

H-bridge pinout, 61

HC-SRO04 ultrasonic sensor, 119
HDMI audio output, 91
hexadecimal values, 38

HTML file, 67, 70

I

I2C bus, 35-36, 133-134
i2c detect utility, 81, 134
I2C pins, 13

I12S interface pins, 91

if else statement, 15

if statement, 45, 70, 102

image file, 8-11
Imperial March player, 93-97
breadboard layout, 94
hardware for, 93-95
photo of completed, 95
schematic diagram, 94
software for, 95-97
index.html file, 70, 71
installation
driver, 2—4
media player, 91
new OS image, 8-11
integrated circuit datasheet, 123-127
internal LED blinking project, 13-16
Internet radio project, 91-93
hardware for, 91
software for, 91-93
intruder alert project, 103—-108
breadboard layout, 104
hardware for, 103
photo of completed, 104
software for, 103, 105-108
io.set settings, 70
IP address, 4-5

J
JavaScript
bonescript library, xiii
socket.io program, 67, 70
.js file extension, xiii
jumper wires, 128

K

keypad door latch, 111-115
breadboard layout, 112
hardware for, 111-112
photo of completed, 113
software for, 112-115

L

L.293d H-bridge, 61, 67

L293DNE motor driver, 64

L.CD display, 83-87
breadboard layout, 84
hardware for, 83-84
header soldered on, 83, 84
pinout configuration, 83—84
software for, 85-87

leaded/lead-free solder, 131-132

LED bar array, 98-99

LED components, 137

LED indicators, 2

LED projects, 17-39
7-segment clock, 79-81
adjustable LED blinker, 20-24
blinking an external LED, 17-20
blinking an internal LED, 13—-16
LCD display, 83-87
lie detector, 108-111
matrix displays, 35-39, 87-90
morse code sender, 24-28
RGB LED fader, 28-32
scrolling text display, 87-90
sensor information display, 81-83

traffic light system, 32—35
LED Stock Ticker, 87
Libusb C library, 75
lie detector, 108-111

breadboard layout, 110

hardware for, 108-110

photo of completed, 110

schematic diagram, 109

software for, 110
light level indicator, 54-56

breadboard layout, 55

hardware for, 54-55

photo of completed, 56

schematic diagram, 55

software for, 55-56
light-dependent resistor (LDR), 54
Linux SSH connection, 7—8
Logitech webcam, 116
Is command, 81

M

Mac OS
decompression program, 9-10
OS image writing, 10-11
SSH connection, 7-8

matrix displays, 35-39
breadboard layout, 36
hardware for, 36
12C used for, 35-36, 37
photo of completed, 37
scrolling text display, 87-90
software for, 36-39

MaxSonar EZ2 ultrasonic sensor, 41
MCM supplies, 135, 136-138
media player program, 91
message display. See scrolling text display microphone, 97
micro-SD card, 8-11
mini USB cable, 2
mjpg-streamer, 117-118
moisture sensor, 52—54
breadboard layout, 53
hardware for, 52-53
photo of completed, 53
plant hydration system and, 72, 74
software for, 53-54
morse code sender, 24—-28
breadboard layout, 27
hardware for, 24-26
photo of completed, 27
schematic diagram, 26
software for, 26, 28
motion detection sensor, 103
motor control projects, 57-64
DC motor control, 60—64
servo motor control, 57-60
mounting information, 127
MP3 audio files, 121
mplayer program, 91, 92, 121
MTK3339 chipset, 46
multimeters, 129-131
current measured with, 131
resistance measured with, 131
voltage measured with, 130-131
musical note player, 93-97

breadboard layout, 94
hardware for, 93-95
photo of completed, 95
schematic diagram, 94
software for, 95-97

N
NMEA sentence codes, 48
NPN transistor, 25-26

(0]

OAuth access token, 106
ohms, 129, 130

Ohm’s law, 18

open source software, xiii
operating conditions, 125
opkg program, 11

OS image installation, 8—11

P

parallel LCD screen, 83

parts suppliers, 135

passive infrared (PIR) sensor, 103

performance information, 125-126

peristaltic pumps, 72

photocells, 54

piezoelectric sensor, 43

PiFiller program, 10

pinMode function, 14

pinout, 12—-13

plant hydration system, 72—-74
breadboard layout, 73
hardware for, 72-73

photo of completed, 73
software for, 74
polarized LEDs, 17
Pololu robot kit, 67
potentiometers, 28—29
power rating, 18
power supply units (PSUs), 111
powering up, 1-2
print function, 93
printStatus function, 43
projects, xiii
audio, 91-102
display, 79-90
LED, 13-16, 17-39
robotic, 57-77
sensor, 41-56
spy, 103-122
prototyping boards, 128-129
pulse width modulation (PWM), 20-21
PuTTY, 7
PWM value, 70, 95
.py file extension, xiii
Python programming language, xiii
Python Raspberry Pi library, 80
PyUSB software, 75

R
radio, streaming. See Internet radio project
recommended operating conditions, 125
resistance

definition of, 129

measuring with multimeter, 131

symbol used for, 129, 130
resistor value, 18
resistors
light-dependent, 54
summary list of, 136
variable, 95, 108
Revision A5C, xii
RGB LED fader, 28-32
breadboard layout, 29
hardware for, 29-30
photo of completed, 30
software for, 30-32
RGB LEDs
fader project, 28-32
lie detector project, 108-111
robotic projects, 57-77
DC motor control, 60—-64
plant hydration system, 72—74
sentinel turret, 74-77
servo motor control, 57-60
web-controlled rover, 67-72
wireless keyboard-controlled rover, 64—66
rover bots, 64—72
web-controlled, 67-72
wireless keyboard-controlled, 64—66

S

scanning sonar project, 41-43
breadboard layout, 42
hardware for, 41-42
software for, 42—43

schematic diagrams, 126—127

scrolling text display, 87-90
breadboard layout, 88
hardware for, 87-88
[2C address solder pins, 87, 88
software for, 88-90
time/date formats, 89
Secure Shell. See SSH connections
security doorbell. See webcam security doorbell
semiconductors, 137
sensor information display, 81-83
breadboard layout, 82
hardware for, 81-82
photo of completed, 82
software for, 82—83
sensor projects, 41-56
GPS tracker, 45-50
light level indicator, 54-56
moisture sensor, 52—54
scanning sonar, 41-43
sensor information display, 81-83
temperature sensor, 50—52
vibration detection, 4345
sentinel turret, 74-77
hardware for, 74-75
missile commands, 77
software for, 75-77
serial clock (SCL) line, 134
serial data (SDA) line, 134
serial interface, 45, 46, 48
serial peripheral interface (SPI), 134
servo motor control, 57-60
breadboard layout, 58

hardware for, 57-59
software for, 59—-60
timing diagram, 58
See also DC motor control
setInterval function, 14, 31, 43
sine waves, 93
slider potentiometers, 28—29
SMD transistors, 25
socket.io program, 67, 70
software, xiii, 8—-11
soldering, 131-133
solenoid, 111, 112
sonar project. See scanning sonar project
SOS distress signal, 25
sound card, 91, 119, 121
sound generation, 93
sound level indicator. See audio level indicator
SourceForge Win32 Disk Imager, 8-9
SparkFun supplies, 135, 136, 137-138
specification table, 123, 125
SPI bus, 134
SPI pins, 13
spy projects, 103-122
automatic dog barker, 119-121
intruder alert, 103—-108
keypad door latch, 111-115
lie detector, 108-111
webcam security doorbell, 116-119
square waves, 21, 93
SSH connections, 5-8
GateOne SSH, 6-7
Mac OS or Linux, 7-8

Windows, 7
state variable, 14
streaming radio. See Internet radio project
string2text library, 88
subprocess module, 92, 93
suppliers, 135
switch statement, 34—35
symbols, electrical, 130

T

tactile switches, 20

temperature sensor, 50—52
breadboard layout, 51
hardware for, 50-51
information display, 81-83
photo of completed, 51
software for, 52

test probes, 130

text display project. See scrolling text display

time/date formats, 89

timing diagrams, 126

TIP120 transistor, 112

tip tinner, 132, 133

TMP36 sensor, 50, 81

toggle function, 14

traffic light system, 32—35
breadboard layout, 33
hardware for, 32
photo of completed, 33
software for, 32, 34-35

transistors, 25-26, 112

trigger pulse input, 119

truth tables, 126
Tweepy library, 106
Twitter API
intruder alert using, 103—-108
webcam security doorbell using, 116-119

U
UART pins, 13
ultrasonic sensors, 41, 119
ultrasonic sound waves, 41
Unarchiver program, 9-10
updating BeagleBone Black, 11, 64
URLs
Bonel01 web page, 4, 5
streaming radio station, 91-92
USB connection, 1-2
USB sound card, 91, 119, 121
USER/BOOT button, 11

\"
variable resistors, 95, 108
vibration detection, 43—45
hardware for, 44
software for, 44-45
voltage
definition of, 129
measuring with multimeter, 130-131
symbol used for, 129, 130
voltage divider circuit, 42
voltage divider equation, 42
volume control dial, 95

W

web port number, 70

web sockets, 67

webcam security doorbell, 116-119
breadboard layout, 116
hardware for, 116-117
photo of completed, 117
software for, 117-119

web-controlled rover, 67-72
breadboard layout, 68
hardware for, 67
photo of completed, 68
software for, 67, 69-72
web page for, 72

Win32 Disk Imager, 8-9

Windows
OS image writing, 8-9
SSH connection, 7

wire considerations, 128

wireless keyboard-controlled rover, 64—66
breadboard layout, 65
hardware for, 64-65, 66
photo of completed, 66
software for, 65—-66

	Title Page
	Copyright Page
	Dedication
	About the Author
	Contents
	Acknowledgments
	Introduction
	1 Getting Started
	Powering Up Your BeagleBone Black
	Powering Up Your BeagleBone Black
	Connecting to Your BeagleBone Black Through Ethernet
	Connecting via SSH Through USB and Ethernet
	Installing Software and Running Updates
	BeagleBone Black Pinout
	Project 1 Blinking an Internal LED
	Summary

	2 LED Projects
	Project 2 Blink an External LED
	Project 3 Adjustable LED Blinker
	Project 4 High-Powered LED Morse Code Sender
	Project 5 RGB LED Fader
	Project 6 Traffic Lights
	Project 7 Matrix Displays
	Summary

	3 Sensor Projects
	Project 8 Scanning Sonar
	Project 9 Vibration Detection
	Project 10 GPS Tracker
	Project 11 Temperature Sensor
	Project 12 Moisture Sensor
	Project 13 Light Level Indicator
	Summary

	4 Robotic Projects
	Project 14 Controlling Servos and Motors
	Project 15 Wireless Keyboard-Controlled Rover
	Project 16 Web-Controlled Rover
	Project 17 Plant Hydration System
	Project 18 Sentinel Turret
	Summary

	5 Display Projects
	Project 19 7-Segment Clock
	Project 20 Displaying Sensor Information
	Project 21 LCD Display
	Project 22 LED Matrix Scrolling Text Display
	Summary

	6 Audio Projects
	Project 23 Internet Radio
	Project 24 “The Imperial March” Player
	Project 25 Audio Level Indicator
	Summary

	7 Spy Projects
	Project 26 Intruder Alert Using the Twitter API
	Project 27 Lie Detector
	Project 28 Keypad Door Latch
	Project 29 Webcam Security Doorbell
	Project 30 Automatic Dog Barker
	Summary

	8 Tools and Tips
	Datasheets
	Breadboards and Prototyping Boards
	Multimeter
	Soldering
	Analog vs
	Understanding I2C and SPI
	Summary

	Appendix A Suppliers and Components
	Suppliers
	Components

	Appendix B BeagleBone Black GPIO Pinout
	Index

