

BeagleBone Cookbook
Mark A. Yoder and Jason Kridner

BeagleBone Cookbook
by Mark A. Yoder and Jason Kridner
Copyright © 2015 Mark A. Yoder and Jason Kridner. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol,
CA 95472.
O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://safaribooksonline.com).
For more information, contact our corporate/institutional sales department: 800-998-
9938 or corporate@oreilly.com .

Editors: Brian Sawyer and Rachel Roumeliotis

Production Editor: Shiny Kalapurakkel

Copyeditor: Bob Russell, Octal Publishing, Inc.

Proofreader: Marta Justak

Indexer: Judy McConville

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Rebecca Demarest

April 2015: First Edition

http://safaribooksonline.com

Revision History for the First Edition
2015-03-30: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491905395 for release details.
The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. BeagleBone
Cookbook, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.
While the publisher and the author(s) have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and the
author(s) disclaim all responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is
subject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.
978-1-491-90539-5
[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781491905395

Preface

Welcome to BeagleBone Cookbook. You are about to cook up some treats with this
puppy. BeagleBone Black has put a full-featured web server, Linux desktop, and
electronics hub in hundreds of thousands of users’ hands, and this book will help you
get the most out of it.

Who This Book Is For
This book is intended for users who are either new to BeagleBone Black or are
looking to quickly discover some of the many capabilities it provides. Only minimal
familiarity with computer programming and electronics is required, because each
recipe includes clear and simple wiring diagrams and example code that you can use
as a starting point for building experience. Along the way, you’ll also find launching-
off points to join the large and growing BeagleBoard.org community, to further your
knowledge and give you a chance to show off what you’ve learned.
Knowledge of Linux (the operating system kernel upon which the recipes in this book
run) is not required. Only a small number of recipes depend on using Linux directly,
and we’ll try to provide enough background to make you ready to tackle those by the
time you get there.
If you don’t know what BeagleBone Black is, you might decide to go get one after
scanning a few of the recipes. BeagleBone Black is a computer the size of a credit
card, yet it is capable of running full desktop applications, such as word processors
and web browsers. Unlike other small single-board computers, BeagleBone Black
excels at connecting the world of electronics to the world of the Web. The board
comes preloaded with a Linux distribution that serves up a web-based integrated
development environment (IDE) and all the tools you need to begin creating your
own projects without downloading anything or working with tools in the “cloud.”
Your Bone serves you a programmable cloud all on its own, offering endless
possibilities in a variety of fields, including medical, automotive, gaming, software-
defined radio, robotics, drones, the Internet of Things (IoT), tools for citizen
scientists, and many more. Whatever you develop with the Bone, you have full
control of it and the data you choose to share.
This book is also for individuals who care about the future and understanding its
direction. With more and more connected technology entering our lives, it is
important for us all to have a basic level of understanding of what is possible. Unlike
some other small and affordable single-board computers, BeagleBone Black is open
hardware. Being a true open-hardware computer, all of the materials for building
your own version of the board are freely available on the Web. The design is built on
components just about anyone can buy anywhere in the world. Thanks to the open-
hardware nature of BeagleBone Black, you can go from the kindergarten of learning
about computers and electronics to kickstarting your own business.

http://beagleboard.org/

How to Use This Book
Although you can read this book cover to cover, each recipe stands alone (aside from
a few caveats mentioned in the chapter descriptions in this section), so feel free to
browse and jump to the different sections that interest you most. If there’s a
prerequisite you need to know about, a cross-reference will guide you to the right
recipe.
The recipes in the book are organized into the following chapters:

Chapter 1: Basics
This chapter covers the fundamentals you’ll want to know before diving into the
recipes in other chapters. We make sure you know how to update the software
on your board, create a backup of what you’ve done, run simple applications,
install new applications, and collect some debug information to share if you
begin to have some troubles. Looking through the section titles should be enough
to know which recipes you can skip.

Chapter 2: Sensors
This chapter provides recipes on wiring up and collecting data from sensors
such as microphones, cameras, buttons, range finders, motion detectors, rotary
knobs, and environmental sensors that provide information like humidity,
temperature, orientation, position, and much, much more.

Chapter 3: Displays and Other Outputs
This chapter shows ways to wire up and control displays and other output
devices, such as single LEDs, strings of LEDs, LED matrices, LCD displays and
external 120 V devices. Motors are saved for Chapter 4. We’ll also show you
how to make your Bone speak (speech sythesis)

Chapter 4: Motors
In this chapter, you’ll learn how to wire up and drive motors of various types,
including servo motors that drive to a fixed position, stepper motors that rotate
in precise angles, and DC motors that spin quickly. You’ll be building mobile
robots, 3D printers, CNC mills, and more before you know it. Chapter 8
provides additional coverage of motors, but you’ll want to use this chapter first
to build up your understanding of motors and how to drive them electrically.

Chapter 5: Beyond the Basics

This chapter offers some additional approaches to solving common challenges a
more advanced user might expect or need to know. You’ll find coverage of
alternative programming languages, environments, and interfaces that many
people have found helpful. Fine-tune your Bone and approach to programming it
with these tips and tricks.

Chapter 6: Internet of Things
After following the recipes in the first chapters, you have mastered connecting
“things” to your Bone. This chapter provides recipes for connecting those things
to the Internet for visualizing, controlling remotely, and sharing socially
whatever you might desire.

Chapter 7: The Kernel
By this chapter, you should be ready to tackle some more complex challenges,
such as updating to a kernel that has support for a bit of hardware not supported
in the version you are currently running. We’ll even show you how you might
add that support to the kernel yourself. Although this chapter isn’t for everyone,
you’ll probably be able to follow the recipes, which will give you a bit more
understanding for engaging the Linux experts within the BeagleBoard.org
community.

Chapter 8: Real-Time I/O
This chapter provides various solutions for faster input/output (I/O). The
solutions range in simplicity from switching to the C programming language, to
modifying the kernel to handle real-time requests, to using the programmable
real-time unit (PRU).

Chapter 9: Capes
This chapter introduces you to using add-on boards to extend the functionality of
BeagleBone Black. We begin by showing you how to use some of the most
popular capes and go on to show you how to create your own printed circuit
boards (PCBs). Doing so will make the prototypes you create more reliable and
easier to assemble, allowing for easier reproduction on a larger number of
systems. We’ll even show you how to sell hardware you’ve created over the
Internet.

Appendix A: Parts and Suppliers
Throughout the book, we mention various electronic components that you can
integrate with your Bone. This appendix summarizes the referenced components,
including where to buy them, so you can choose to buy them ahead of time or
when you are ready to tackle that given recipe.

http://beagleboard.org/

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values
determined by context.

TIP
This icon signifies a tip or suggestion.

NOTE
This icon signifies a general note.

WARNING
This icon indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
http://beagleboard.org/cookbook.
This book is here to help you get your job done. In general, the example code offered
with this book may be used in your programs and documentation. You do not need to
contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.
We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “BeagleBone Cookbook by Mark A.
Yoder (Rose-Hulman Institute of Technology) and Jason Kridner (Texas Instruments
and BeagleBoard.org Foundation). Copyright 2015 Mark A. Yoder and Jason
Kridner, 978-1491905395.”
If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

http://beagleboard.org/cookbook
mailto:permissions@oreilly.com

About the Diagrams
Many of the projects presented in this book include diagrams documenting the wiring
required to connect hardware to the BeagleBone. Our diagrams are created with
Fritzing. You can install Fritzing on your host computer by following the download
instructions. Adafruit has a nice library of parts, which includes the Bone. These
instructions tell you how to load it.
After you have everything installed, head to the Fritzing Tutorial page to learn how to
use it.
Fritzing is a useful open source program for creating hardware illustrations. With it,
you can create breadboard diagrams, schematic diagrams, and designs for PCBs.
Figure P-1 shows the basic setup used for all the diagrams in this book.

Figure P-1. Basic Fritzing setup

We’ve used a half-sized breadboard, because it’s about the same size as the Bone.

http://fritzing.org/home/
http://fritzing.org/download/
http://elinux.org/Beagleboard:Fritzing_on_the_BeagleBone_Black
http://fritzing.org/learning/tutorials

Safari® Books Online
NOTE

Safari Books Online is an on-demand digital library that delivers expert content in
both book and video form from the world’s leading authors in technology and
business.
Technology professionals, software developers, web designers, and business and
creative professionals use Safari Books Online as their primary resource for
research, problem solving, learning, and certification training.
Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.
Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams,
Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress,
Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning,
New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds
more. For more information about Safari Books Online, please visit us online.

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
http://www.oreilly.com/catalog/0636920033899.do.
To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.
For more information about our books, courses, conferences, and news, see our
website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

http://www.oreilly.com/catalog/0636920033899.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
We thank Fred Schroeder, Charles Steinkuhler, Christine Long, Martee Held, David
Scheltema, and Drew Fustini for their immensely helpful reviews on both content and
approach. We also thank our editor, Brian Sawyer, for his work in leading us through
this process and keeping us focused.

Chapter 1. Basics

1.0 Introduction
When you buy BeagleBone Black, pretty much everything you need to get going
comes with it. You can just plug it into the USB of a host computer, and it works. The
goal of this chapter is to show what you can do with your Bone, right out of the box.
It has enough information to carry through the next three chapters on sensors
(Chapter 2), displays (Chapter 3), and motors (Chapter 4).

1.1 Picking Your Beagle

Problem
There are five different BeagleBoards. How do you pick which one to use?

Solution
For someone new to the BeagleBoard.org boards, the BeagleBone Black is the
obvious choice. It’s the newest and cheapest (~$55 USD) of the inexpensive Bones,
and there are nearly a quarter-million units out there. Many of the recipes in this book
will work on the other Beagles, too, but the Black is where to begin. If you already
have BeagleBone Black, you can move on to the next recipe. If you have another
Beagle, your mileage may vary.

Discussion
If you already have a BeagleBoard and it isn’t a Black, read on to see what it can do.

NOTE
There is a high-end line and a low-end line for BeagleBoard.org boards. The BeagleBoards are the
higher-end boards, with strongest appeal to advanced Linux hackers looking for affordable solutions
with digital signal processors (DSPs) and features that can improve display performance. The
BeagleBones are the lower-end boards, with strongest appeal to everyday “makers” of things,
including lots of low-level I/O, but they still have reasonable display performance.

The Original BeagleBoard
The original BeagleBoard (Figure 1-1) came out in July 2008.

Figure 1-1. The original BeagleBoard

The original BeagleBoard used the very first ARM Cortex-A8 processor, starting at
600 MHz with 256 MB of RAM. The clock frequency was then increased to 720
MHz. Figure 1-2 shows more details of its original features.

Figure 1-2. Details of the original BeagleBoard

There are many in the field, and they are still being sold, but the newer Bones are a
better starting point.

BeagleBoard-xM
The BeagleBoard-xM (Figure 1-3) began shipping August 2010.

Figure 1-3. The BeagleBoard-xM

The xM brings with it a faster ARM processor running at 1 GHz, twice the RAM as
the original at 512 MB, and four USB ports. Figure 1-4 shows additional features.
The xM sells for $150 USD.

Figure 1-4. Details of the BeagleBoard-xM

The xM is a good choice if you want to use the BeagleBoard as a small workstation.
You can plug in a USB keyboard, mouse, and an HDMI display. Add a 5 V power
supply, and you are ready to run without the need of a host computer.

BeagleBone White
The original BeagleBone appeared in October 2011. Shown in Figure 1-5, it’s white
(thus the name BeagleBone White), and it sells for $90 USD. It dropped back to 256
MB RAM and 720 MHz clock, but it can fit in an Altoids tin.

Figure 1-5. The original BeagleBone, known as the White

The BeagleBone also adds two 46-pin expansion headers (shown in Figure 1-6) and
the ability to add capes (Chapter 9).

Figure 1-6. Details of the BeagleBone White

The White can run the same software images off the same SD cards as the Black
does, so everything presented in this book will also run on the White.

BeagleBone Black
April 2013 saw the introduction of BeagleBone Black (shown in Figure 1-7), which

is the real focus of the recipes in this book.

Figure 1-7. The BeagleBone Black

The Black initially reduced the price by half, to $45 USD, bumped the RAM back to
512 MB, and pushed the clock to 1 GHz. It also added 2 GB of onboard flash
memory. Rev C of the board increased the onboard flash to 4 GB and raised the price
to $55 USD. All this, and, again, it still fits in an Altoids tin.
Figure 1-8 provides more details on the BeagleBone Black.

Figure 1-8. Details of the BeagleBone Black

This book focuses on BeagleBone Black (simply called the Bone here), so more
details will follow.

BeagleBoard-X15
At the time of this writing (late 2014/early 2015), the newest addition to the orginal
BeagleBoard lineup has not yet had any official details announced. However, due to
the open development nature of BeagleBoard.org, many potential details of
BeagleBoard-X15 have been discussed in public mailing lists and blog posts, such as
the post on the cnx-software blog. The concept is to have support in the mainline u-
boot and Linux kernel projects ahead of public hardware availability. The
BeagleBoard wiki provides the current state of development. Figure 1-9 shows an
image of the current prerelease development board.

http://bit.ly/1xcS1y6
http://bit.ly/1B4pStp

Figure 1-9. The BeagleBoard-X15

The current prerelease board measures 4ʺ x 4.2ʺ, is based on a Texas Instruments
dual-core ARM Cortex-A15 processor running at 1.5 GHZ, and features 2 GB of
DDR3L memory. It includes an estimated 157 general-purpose input/output (GPIO)
pins and interfaces for audio I/O, simultaneous LCD and HDMI video output, PCIe,
eSATA, USB3, and dual-gigabit Ethernet. Additional processing elements include
dual TI C66x DSPs, dual ARM Cortex-M4s, dual PRU-ICSS subsystems, and
multiple image/graphics processing engines.
BeagleBoard-X15 is going to be an amazing machine, but it will be a fair bit more
expensive and complicated. Starting with BeagleBone Black and moving up to
BeagleBoard-X15 when you’ve identified a clear need for its power is a good
approach.

1.2 Getting Started, Out of the Box

Problem
You just got your Bone, and you want to know what to do with it.

Solution
Fortunately, you have all you need to get running: your Bone and a USB cable. Plug
the USB cable into your host computer (Mac, Windows, or Linux) and plug the mini-
USB connector side into the USB connector near the Ethernet connector on the Bone,
as shown in Figure 1-10.

Figure 1-10. Plugging BeagleBone Black into a USB port

The four blue USER LEDs will begin to blink, and in 10 or 15 seconds, you’ll see a
new USB drive appear on your host computer. Figure 1-11 shows how it will appear
on a Windows host, and Linux and Mac hosts will look similar. The Bone acting like
a USB drive and the files you see are located on the Bone.

Figure 1-11. The Bone appears as a USB drive

Open the drive and open START.htm using Google Chrome or Firefox (Figure 1-12).

TIP
Some users have reported problems when using Internet Explorer with the web pages served up by
the Bone, so make sure to use Chrome or Firefox.

http://www.google.com/chrome/
https://www.mozilla.org/en-US/firefox/new/

Figure 1-12. Open START.htm

Follow the instructions (Figure 1-13) for installing the USB drivers for your host
computer’s operating system (OS).

Figure 1-13. Install the USB drivers

On your host, browse to http://192.168.7.2 (Figure 1-14).

Figure 1-14. Open http://192.168.7.2 on your host computer

You are now ready to explore your Bone. Look around. There’s lots of information on
the page.

TIP
The green banner at the top of the page means the browser is talking to the Bone, and code on the
page can be edited and run on the Bone. Try scrolling down to the code in “BoneScript interactive
guide” and running it. Then try editing the code and running it again. Take five minutes and try it!
Watch out, though, because you can’t save your edits. You need Cloud9 for that, as discussed next.

Also be sure to browse to http://192.168.7.2:3000 from your host computer
(Figure 1-15).

http://192.168.7.2
http://192.168.7.2
http://192.168.7.2:3000

Figure 1-15. Cloud9

Here, you’ll find Cloud9, a web-based integrated development environment (IDE)
that lets you edit and run code on your Bone! See Recipe 1.6 for more details.

NOTE
Cloud9 can have different themes. If you see a white background, you can match the cookbook’s
figures by clicking on the Main Theme drop-down menu and selecting Cloud9 Classic Dark Theme.

WARNING
Make sure you turn off your Bone properly. It’s best to run the halt command:

bone# halt
The system is going down for system halt NOW! (pts/0)

This will ensure that the Bone shuts down correctly. If you just pull the power, it’s possible that open
files won’t close properly and might become corrupt.

Discussion
The rest of this book goes into the details behind this quick out-of-the-box demo.
Explore your Bone and then start exploring the book.

1.3 Verifying You Have the Latest Version of the OS on
Your Bone

Problem
You just got BeagleBone Black, and you want to know which version of the operating
system it’s running.

Solution
This book uses Debian, the Linux distribution that currently ships on the Bone.
However this book is based on a newer version (2014-11-11 image) than what is
shipping at the time of this writing. You can see which version your Bone is running
by following the instructions in Recipe 1.2 to open the USB drive that comes from the
Bone, as shown in Figure 1-12. But instead of opening START.html, open ID.txt
(shown with the dashed arrow in Figure 1-12). You’ll see something like Figure 1-
16, in which 2014-11-11 is the date of the image.

Figure 1-16. Contents of ID.txt

https://www.debian.org

Discussion
If you don’t find ID.txt on your drive, or if the date given isn’t 2014-11-11 or newer,
you may need to update your image, as described in Recipe 1.10.

NOTE
Many of the following examples in this chapter and Chapter 2, Chapter 3, and Chapter 4 may run fine
on an older image. Try it and see. If you run into problems, see Recipe 1.10 to update your Bone’s
OS version.

1.4 Running the BoneScript API Tutorials

Problem
You’d like to learn JavaScript and the BoneScript API to perform physical computing
tasks without first learning Linux.

Solution
Plug your board into the USB of your host computer and browse to
http://192.168.7.2/Support/bone101/ using Google Chrome or Firefox (as shown in
Recipe 1.2). In the left column, click the BoneScript title, which will take you to
http://192.168.7.2/Support/BoneScript/ (Figure 1-17).

Figure 1-17. The BoneScript API examples page

TIP
Explore the various demonstrations of the BoneScript API. The BoneScript examples page lists
several places to learn more about JavaScript and BoneScript (Figure 1-17).

If the banner is green, the examples are live. Clicking the “run” button will make
them run on your Bone.

http://192.168.7.2/Support/bone101/
http://192.168.7.2/Support/BoneScript/
http://192.168.7.2/Support/BoneScript

TIP
Here’s yet another place to explore. In the left column of Figure 1-17, click the function names. Take
five minutes and see what you can find.

WARNING
You can edit the JavaScript on the BoneScript API examples page, but you can’t save it for later. If
you want to edit and save it for later, fire up Cloud9 (Recipe 1.6) and look in the examples folder.

Discussion
The JavaScript BoneScript API tutorials use Socket.IO to create a connection
between your browser and your Bone. The editor running in these tutorials gives you
the ability to edit the examples quickly and try out new code snippets, but it doesn’t
provide the ability to save.
Visit the BONE101 GitHub page and select the “Fork me on GitHub” link (Figure 1-
18) to learn more about how these tutorials are implemented and how you can embed
similar functionality into your own web pages.

Figure 1-18. Bone101 GitHub page

http://socket.io
http://beagleboard.github.io/bone101

1.5 Wiring a Breadboard

Problem
You would like to use a breadboard to wire things to the Bone.

Solution
Many of the projects in this book involve interfacing things to the Bone. Some plug in
directly, like the USB port. Others need to be wired. If it’s simple, you might be able
to plug the wires directly into the P8 or P9 headers. Nevertheless, many require a
breadboard for the fastest and simplest wiring.
To make this recipe, you will need:

Breadboard and jumper wires (see “Prototyping Equipment”)

Figure 1-19 shows a breadboard wired to the Bone. All the diagrams in this book
assume that the ground pin (P9_1 on the Bone) is wired to the negative rail and 3.3 V
(P9_3) is wired to the positive rail.

Figure 1-19. Breadboard wired to BeagleBone Black

Discussion
There are many good tutorials online about wiring breadboards. (See How to Use a
Breadboard [http://bit.ly/1NJMFom] and Breadboard Basics for Absolute
Beginners [http://bit.ly/1FaPB9M/], for example). The key thing to know is which
holes are attached to which. Figure 1-20 gives a clear illustration of the connections.

Figure 1-20. Breadboard hole connections

http://bit.ly/1NJMFom
http://bit.ly/1FaPB9M/

The rails, or buses, are the pairs of columns of holes that run up and down on the left
and right side of the board. All the holes in one column are electrically wired
together. Therefore, attaching ground to the rightmost column makes ground available
everywhere on that column. Likewise with attaching 3.3 V to the next column over,
it’s easily wired from anywhere up and down that column.
In the middle, groups of five holes are wired from left to right, as shown in Figure 1-
20. For example, Figure 1-21 shows a pushbutton switch plugged into four holes.

Figure 1-21. Diagram for wiring a pushbutton

The lower-right pin of the pushbutton is connected to a hole of the breadboard that is
electrically connected to the four holes to the right of it. The rightmost hole of that
group is wired to the plus column; therefore, it attaches the pushbutton to the 3.3 V
on the Bone. The upper-right pin of the pushbutton is electrically connected to the
four holes to the right of it; the rightmost pin is wired to GPIO pin P9_42 on the
Bone.
If you’re careful when wiring to keep the wires flat on the board, it’s easy to
understand and debug a moderately complex circuit.

WARNING
By default, many of the Bone’s GPIO pins are configured as inputs, such as we would want in this
circuit. Later, we’ll show you that they can be configured as outputs, and thus you should take care to
avoid shorting an output pin. If the switches were connected as shown in Figure 1-21 and the GPIO
pins were configured as outputs, having the buttons active would cause the GPIO pin to be shorted to
3.3 V. If the pin were outputting a low or 0, it would try to sink all the current it could to make the pin
go low. The result is that the pin would burn out.

NOTE
In addition to the GPIO pins being able to be either inputs or outputs, there are also internal pull-up
and pull-down resistors on the Bone’s GPIO pins. It is necessary to use the pull-down mode of the
GPIO pins for this circuit to work predictably. Otherwise, when the switches are open, the input pins
are not connected electrically and will be in an unknown state.

1.6 Editing Code Using the Cloud9 IDE

Problem
You want to edit and debug files on the Bone.

Solution
Plug your Bone into a host computer via the USB cable. Open a browser (either
Google Chrome or FireFox will work) on your host computer (as shown in Recipe
1.2). After the Bone has booted up, browse to http://192.168.7.2:3000 on your host.
You will see something like Figure 1-15.
Click the examples folder on the left and then double-click blinkled.js. You can now
edit the file. If you would like to edit files in your home directory, on the left of the
Cloud9 screen, go to the Preferences wheel in the Workspace browser and select
Add Home to Favorites (Figure 1-22). Now, your home directory will show up in the
Workspace file tree.

Figure 1-22. Making your home folder appear in Cloud9

NOTE
If you edit line 13 of the blinkled.js file (setInterval(toggle, 1000);), changing 1000 to 500, you
must save the file before running it for the change to take effect. The blue LED next to the Ethernet
port on your Bone will flash roughly twice as fast.

Figure 1-22 shows /root has been added under FAVORITES.

NOTE
The cloud9 folder that appears under FILE SYSTEM is located in /var/lib/cloud9 on your Bone.

http://192.168.7.2:3000

Discussion
The Bone comes with a nice web-based IDE called Cloud9. You can learn all about
it at the Cloud9 website, although it’s easy enough to use that you can just dive in and
begin using it.

WARNING
By default, the Bone’s operating system runs the Cloud9 IDE as the root user. In Linux, this is a
special account that has privileges to perform many operations often excluded to normal user
accounts. These operations include accessing various hardware features and contents of various files,
along with the ability to modify the on-board flash contents. This was done to make many tasks
simpler to complete, but caution should be used before editing system files you don’t understand. The
good news is that you can always read Recipe 1.13 to learn how to restore the onboard flash to the
factory contents.

You can find out more about the root account on the Linux Documentation Project System
Administrator’s guide’s entry on accounts and Debian’s wiki entry on the root user.

https://c9.io/
http://bit.ly/1C575DD
https://wiki.debian.org/Root

1.7 Running JavaScript Applications from the Cloud9
IDE

Problem
You have a file edited in Cloud9, and you want to run it.

Solution
Cloud9 has a bash command window built in at the bottom of the window. You can
run your code from this window. To do so, add #!/usr/bin/env node at the top of
the file that you want to run and save.

TIP
If you are running Python, replace the word node in the line with python.

At the bottom of the Cloud9 window are a series of tabs (Figure 1-23). Click the
bash tab (it should be the leftmost tab). Here, you have a command prompt. In my
case, it’s root@yoder-debian-bone:/var/lib/cloud9#. Yours will be slighly
different, but it should end with a #.

Figure 1-23. Cloud9 debugger

Change to the directory that contains your file, make it executable, and then run it:

root@bone:/var/lib/cloud9# cd examples
root@bone:/var/lib/cloud9/examples# chmod +x blinkled.js
root@bone:/var/lib/cloud9/examples# ./blinkled.js

The cd is the change directory command. After you cd, you are in a new directory,
and the prompt reflects that change. The chmod command changes the mode of the
file. The +x indicates that you want to add execute permission. You need to use the
chmod +x command only once. Finally, ./blinkled.js instructs the JavaScript to
run. You will need to press ^C (Ctrl-C) to stop your program.

Discussion
The Debian distribution we are using comes with two users: root and debian. The
bash command window for Cloud9 runs as root; you can tell this by looking at the
last character of the prompt. If it’s a #, as shown here, you are running as root. If it’s
a $, you are running as a normal user (debian).

NOTE
In this book, we assume that you are running as root.

WARNING
root is also known as the superuser. Running as root, you can access most everything on the Bone.
This is both good and bad. If you know what you are doing, you can easily interact with all of the
hardware. But, if you don’t know what you are doing, you can really mess things up. If you follow our
examples carefully, you shouldn’t have any problems.

WARNING
Initially, the root password isn’t set, so anyone can log in without a password. This may be OK if
your Bone is never connected to the network, but it’s better practice to set a password:

bone# passwd
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

For security, the password you type won’t be displayed.

1.8 Running Applications Automatically

Problem
You have a BoneScript application that you would like to run every time the Bone
starts.

Solution
This is an easy one. In Cloud9, notice the folder called autorun (Figure 1-24). Place
any BoneScript files you want to run at boot time in this folder. The script will begin
execution immediately and will stop execution when you remove the file from this
folder.

Figure 1-24. Making applications autorun at boot-up time

You can drag and drop the script into the autorun folder using the Cloud9 IDE
workspace view, or you can move it using the bash prompt:

bone# mv myApp.js autorun

Discussion
Your script will start running as soon as you copy it to the folder and will run every
time you boot up the Bone. In fact, it will run as soon as you put it in the folder, and if
you change the file, it will restart with the current contents.
This solution currently works with Node.js applications, Python scripts, and .ino
Arduino sketches (files ending in .js, .py, or .ino, respectively). You can check the
BoneScript GitHub repository to see if any other types have been added.

http://bit.ly/1EbB9fW

1.9 Finding the Latest Version of the OS for Your Bone

Problem
You want to find out the latest version of Debian that is available for your Bone.

Solution

NOTE
At the time they were written, these instructions were up-to-date. Go to
http://beagleboard.org/latest-images for the latest instructions.

On your host computer, open a browser and go to http://rcn-ee.net/deb/testing/. This
shows you a list of dates of the most recent Debian images (Figure 1-25).

Figure 1-25. Latest Debian images

Clicking a date will show you several variations for that particular date. Figure 1-26
shows the results of clicking 2014-11-11.

http://beagleboard.org/latest-images
http://rcn-ee.net/deb/testing/

Figure 1-26. Latest Debian images for a given date

Clicking lxde-4gb/ shows a list of 4 GB images (Figure 1-27).

Figure 1-27. Latest 4 GB Debian images for a given date

These are the images you want to use if you are flashing a Rev C BeagleBone Black
onboard flash, or flashing a 4 GB or bigger miscroSD card. The image beginning
with bone-debian-7.7-lxde is used for programming the microSD card. The one
beginning with BBB-eMMC-flasher-deb is for programming the onboard flash
memory.

NOTE
The onboard flash is often called the eMMC memory. We just call it onboard flash, but you’ll often
see eMMC appearing in filenames of images used to update the onboard flash.

Discussion
There are a number of images posted on this site. The subdirectory names, such as
lxde-4gb, might change with time and might take some investigating to learn what
they mean. In this case, a simple Google search reveals that lxde is the Lightweight
X11 Desktop Environment. The -4gb means it’s a 4 GB image. The other lxde has 2
GB images, which are needed for the pre-Rev C BeagleBone Blacks, because their
onboard flash is only 2 GB. The lxqt has images that use the next generation of the
Lightweight Desktop Environment. These images are for a newer release of Debian.

WARNING
You can try running a newer release, but things might not work exactly as described in this text. See
Recipe 5.15 for information about the Debian release system.

The images suggested here are big installations with many important applications
already included. If you want an image with almost nothing included, try console
(Figure 1-26). The images in this folder are very minimal, with very few programs
installed (for example, Cloud9 and BoneScript are missing), but they have enough to
boot up and run. Notice that they are about one-tenth the size of the complete installs.

http://lxde.org/
http://lxqt.org/

1.10 Running the Latest Version of the OS on Your Bone

Problem
You want to run the latest version of the operating system on your Bone without
changing the onboard flash.

Solution
This solution is to flash an external microSD card and run the Bone from it. If you
boot the Bone with a microSD card inserted with a valid boot image, it will boot
from the microSD card. If you boot without the microSD card installed, it will boot
from the onboard flash.

TIP
If you want to reflash the onboard flash memory, see Recipe 1.13.

NOTE
I instruct my students to use the microSD for booting. I suggest they keep an extra microSD flashed
with the current OS. If they mess up the one on the Bone, it takes only a moment to swap in the extra
microSD, boot up, and continue running. If they are running off the onboard flash, it will take much
longer to reflash and boot from it.

Windows
If you are using a host computer running Windows, go to http://rcn-
ee.net/deb/testing/2014-11-11/lxde-4gb/, and download bone-debian-7.7-lxde-4gb-
armhf-2014-11-11-4gb.img.xz. It’s more than 500 MB, so be sure to have a fast
Internet connection. Then go to http://beagleboard.org/getting-started#update and
follow the instructions there to install the image you downloaded.

Linux
If you are running a Linux host, plug a 4 GB byte or bigger microSD card into a
reader on your host and run Disks.

Select the microSD Drive and unmount (Figure 1-28) any partitions that have
mounted. Note the path to the device (shown with an arrow in Figure 1-28) at the top
of the Disks window. In my case, it’s /dev/sdb. We’ll use this path in a moment.

http://rcn-ee.net/deb/testing/2014-11-11/lxde-4gb/
http://beagleboard.org/getting-started#update

Figure 1-28. Unmounting the microSD card via the Disks application

Run the following command to download the 2014-11-11 image (be sure that you
have a fast Internet connection; it’s more than 500 MB in size):

host$ wget http://rcn-ee.net/deb/testing/2014-11-11/lxde-4gb/\
bone-debian-7.7-lxde-4gb-armhf-2014-11-11-4gb.img.xz

This will copy the disk image to the current directory the command was run from to
your host computer. This will take a couple minutes on a fast connection.
The downloaded file is compressed. Uncompress it by using the following command:

host$ unxz bone-debian-7.7-lxde-4gb-armhf-2014-11-11-4gb.img.xz

After a minute or so, the compressed .imgxz file will be replaced by the
uncompressed .img file. Then write it to the microSD card by using the following
command, substituting your device path noted earlier (/dev/sdb, in my case) for the
device path given in the dd command:

host$ sudo dd if=bone-debian-7.7-lxde-4gb-armhf-2014-11-11-4gb.img \
 of=/dev/sdb bs=8M

The dd command takes 5 to 10 minutes.

WARNING
This operation will wipe out everything on the microSD card. It might be worth plugging in your card,
noting the path, removing the card, noting it has disappeared, and then plugging it in again and
checking the path. You can really mess up your host if you have selected the wrong disk and used the
wrong path. Be careful.

NOTE
When formatting SD cards, you often need to be sure to have a bootable partition. Because you are
completly rewriting the card, it doesn’t matter how the card is configured before writing. The dd
command writes everything the way it needs to be.

When you have your microSD card flashed, put it in the Bone and power it up. The
USB drive and other devices should appear as before. Open Cloud9 (Recipe 1.6)
and, in the bash tab, enter:

root@beaglebone:/var/lib/cloud9# df -h
Filesystem Size Used Avail Use% Mounted on
rootfs 3.2G 2.0G 1.0G 29% /
udev 10M 0 10M 0% /dev
tmpfs 100M 676K 99M 1% /run
/dev/mmcblk0p2 7.2G 2.0G 5.0G 29% /
tmpfs 249M 0 249M 0% /dev/shm
tmpfs 249M 0 249M 0% /sys/fs/cgroup
tmpfs 5.0M 0 5.0M 0% /run/lock
tmpfs 100M 0 100M 0% /run/user
/dev/mmcblk0p1 96M 62M 35M 65% /media/BEAGLEBONE
/dev/mmcblk1p2 1.8G 290M 1.4G 18% /media/rootfs
/dev/mmcblk1p1 16M 520K 16M 4% /media/BEAGLEBONE_

This prints out how much of the disk is free. The first line is the one we’re interested
in. If the Size is much smaller than the size of your microSD card, you’ll need to
resize your partition. Just enter the following:

root@beaglebone:/var/lib/cloud9# cd /opt/scripts/tools/
root@beaglebone:/opt/scripts/tools# ./grow_partition.sh
root@beaglebone:/opt/scripts/tools# reboot
root@beaglebone:/var/lib/cloud9# df -h
Filesystem Size Used Avail Use% Mounted on
rootfs 7.2G 2.0G 5.0G 29% /
udev 10M 0 10M 0% /dev
tmpfs 100M 676K 99M 1% /run
/dev/mmcblk0p2 7.2G 2.0G 5.0G 29% /
tmpfs 249M 0 249M 0% /dev/shm
tmpfs 249M 0 249M 0% /sys/fs/cgroup
tmpfs 5.0M 0 5.0M 0% /run/lock
tmpfs 100M 0 100M 0% /run/user
/dev/mmcblk0p1 96M 62M 35M 65% /media/BEAGLEBONE
/dev/mmcblk1p2 1.8G 290M 1.4G 18% /media/rootfs
/dev/mmcblk1p1 16M 520K 16M 4% /media/BEAGLEBONE_

This clever script will figure out how big the partition can be and grow it to that size.
A reboot is necessary.
Here, I started by putting a 4 GB image on an 8 GB microSD card. Initially, only 3.2
GB were usable. After growing the partition, most of the card (7.2 GB) is available.

Mac
If you are running from a Mac host, the steps are fairly similar to running on a Linux
host, except that you won’t be able to view the Linux partition on the created
microSD card.
Begin by plugging a 4 GB or bigger microSD card into a reader on your host and then
run Disk Utility. Select the disk and click Info. In Figure 1-29, you can see the Disk
Identifier is disk1s1.

Figure 1-29. Examining the microSD card via the Disk Utility application

The important part of the Disk Identifier is the number immediately following disk
(a 1 in Figure 1-29). We’ll use this identifier to overwrite the microSD contents.

From your Mac’s Terminal, run the following command to download the 2014-11-11
image (again, be sure that you have a fast Internet connection, because it’s more than

500 MB):

mac$ curl -O http://rcn-ee.net/deb/testing/2014-11-11/lxde-4gb/\
bone-debian-7.7-lxde-4gb-armhf-2014-11-11-4gb.img.xz

You’ll need to have the xz utility installed (download from The Tukaani Project
[http://tukaani.org/xz/]). Uncompress the image by using the following command
(this will take a minute or so):

mac$ unxz bone-debian-7.7-lxde-4gb-armhf-2014-11-11-4gb.img.xz

Then write it to the microSD card, substituting your device path noted earlier
(/dev/rdisk1, in my case) for the device path given in the dd command:

mac$ sudo dd if=bone-debian-7.7-lxde-4gb-armhf-2014-11-11-4gb.img of=/dev/rdisk1

You’ll need to type in your password. The dd command takes 5 to 10 minutes.

WARNING
This operation will wipe out everything on the microSD card. It might be worth plugging in your card,
noting the path, removing the card, noting it has disappeared, and then plugging it in again and
checking the path. You can really mess up your host if you have selected the wrong disk and used the
wrong path. Be careful.

NOTE
Note that I used rdisk1 rather than disk1. According to the eLinux wiki, doing so will speed up
writing quite a bit.

http://tukaani.org/xz/
http://bit.ly/1BqOxwW

Discussion
BeagleBone Black can run its OS from the onboard flash memory (2 GB on older
Blacks and 4 GB on the new Rev Cs) or from a microSD card. The 2 GB is a bit
small, so I advise my students to use a 4 GB or bigger microSD card. If you want to
use the onboard flash, see Recipe 1.13.

1.11 Updating the OS on Your Bone

Problem
You’ve installed the latest version of Debian on your Bone (Recipe 1.10), and you
want to be sure it’s up-to-date.

Solution
Ensure that your Bone is on the network and then run the following command on the
Bone:

bone# apt-get update
bone# apt-get upgrade

If there are any new updates, they will be installed.

NOTE
If you get the error The following signatures were invalid: KEYEXPIRED 1418840246, see
eLinux support page for advice on how to fix it.

http://bit.ly/1EXocb6

Discussion
After you have a current image running on the Bone, it’s not at all difficult to keep it
upgraded.

1.12 Backing Up the Onboard Flash

Problem
You’ve modified the state of your Bone in a way that you’d like to preserve or share.

Solution
The eLinux page on BeagleBone Black Extracting eMMC contents provides some
simple steps for copying the contents of the onboard flash to a file on a microSD
card:

1. Get a 4 GB or larger microSD card that is FAT formatted.

2. If you create a FAT-formatted microSD card, you must edit the partition and
ensure that it is a bootable partition.

3. Download beagleboneblack-save-emmc.zip and uncompress and copy the
contents onto your microSD card.

4. Eject the microSD card from your computer, insert it into the powered-off
BeagleBone Black, and apply power to your board.

5. You’ll notice USER0 (the LED closest to the S1 button in the corner) will (after
about 20 seconds) begin to blink steadily, rather than the double-pulse
“heartbeat” pattern that is typical when your BeagleBone Black is running the
standard Linux kernel configuration.

6. It will run for a bit under 10 minutes and then USER0 will stay on steady. That’s
your cue to remove power, remove the microSD card, and put it back into your
computer.

7. You will see a file called BeagleBoneBlack-eMMC-image-XXXXX.img, where
XXXXX is a set of random numbers. Save this file to use for restoring your
image later.

NOTE
Because the date won’t be set on your board, you might want to adjust the date on the file to
remember when you made it. For storage on your computer, these images will typically compress
very well, so use your favorite compression tool.

TIP
The eLinux wiki is the definitive place for the BeagleBoard.org community to share information about
the Beagles. Spend some time looking around for other helpful information.

http://elinux.org/
http://bit.ly/1C57I0a
http://bit.ly/1wtXwNP
http://elinux.org/Beagleboard

Discussion
The beagleboneblack-save-emmc.zip file contains just enough of a Linux operating
system to know how to copy an image from the onboard flash to a file. The code that
does the work is in autorun.sh, which is shown in Example 1-1.

Example 1-1. Code for copying from onboard flash to microSD card
#!/bin/sh
echo timer > /sys/class/leds/beaglebone\:green\:usr0/trigger
dd if=/dev/mmcblk1 of=/mnt/BeagleBoneBlack-eMMC-image-$RANDOM.img bs=10M
sync
echo default-on > /sys/class/leds/beaglebone\:green\:usr0/trigger

The first echo changes the USER0 LED to flash a different pattern to show the copy is
being made. The dd command then copies the onboard flash image from input file
(if) /dev/mmcblk1 to an output file (of) on the microSD card called
/mnt/BeagleBoneBlack-eMMC-image-$RANDOM.img. /dev/mmcblk1 is where the
entire onboard flash appears as a raw image and dd just copies it.

The final echo turns the USER0 LED on to notify you that the copying is over.

You can use the same microSD card to copy an .img file back to the onboard flash.
Just edit the autorun.sh file to include Example 1-2. This code is largely the same as
Example 1-1, except it reverses the direction of the dd command.

Example 1-2. Restore .img file back to the onboard flash
#!/bin/sh
echo timer > /sys/class/leds/beaglebone\:green\:usr0/trigger
dd if=/mnt/BeagleBoneBlack-eMMC-image-XXXXX.img of=/dev/mmcblk1 bs=10M
sync
echo default-on > /sys/class/leds/beaglebone\:green\:usr0/trigger

To copy the saved image back, eject the microSD card from your computer, insert it
into the powered-off Bone, and apply power. Remember, because you are
programming the onboard flash, you will need to use an external 5 V power supply.
The Bone will boot up from the microSD card and write the backup files to the
onboard flash.

1.13 Updating the Onboard Flash

Problem
You want to update the onboard flash rather than boot from the microSD card.

Solution

NOTE
At the time of this writing, these instructions were up-to-date. Go to http://beagleboard.org/latest-
images for the latest instructions.

If you want to use the onboard flash, you need to repeat the steps in Recipe 1.10,
substituting BBB-eMMC-flasher-debian-7.7-lxde-4gb-armhf-2014-11-11-
4gb.img.xz for lxde-4gb/bone-debian-7.7-lxde-4gb-armhf-2014-11-11-
4gb.img.xz.

That is, download, uncompress, and copy to a microSD card by using the following
commands:

host$ wget http://rcn-ee.net/deb/testing/2014-11-11/\
BBB-eMMC-flasher-debian-7.7-lxde-4gb-armhf-2014-11-11-4gb.img.xz
host$ unxz BBB-eMMC-flasher-debian-7.7-lxde-4gb-armhf-2014-11-11-4gb.img.xz
host$ sudo dd if=BBB-eMMC-flasher-debian-7.7-lxde-4gb-armhf-2014-11-11-4gb.img \
 of=/dev/sdb bs=8M

Again, you’ll put the microSD card in the Bone and boot. However, there is one
important difference: you must be powered from an external 5 V source. The
flashing process requires more current than what typically can be pulled from USB.

WARNING
If you write the onboard flash, be sure to power the Bone from an external 5 V source. The USB
might not supply enough current.

When you boot from the microSD card, it will copy the image to the onboard flash.
When all four USER LEDs turn off (in some versions, they all turn on), you can power
down the Bone and remove the microSD card. The next time you power up, the Bone
will boot from the onboard flash.

http://beagleboard.org/latest-images

Chapter 2. Sensors

2.0 Introduction
In this chapter, you will learn how to sense the physical world with BeagleBone
Black. Various types of electronic sensors, such as cameras and microphones, can be
connected to the Bone using one or more interfaces provided by the standard USB 2.0
host port, as shown in Figure 2-1.

Figure 2-1. The USB 2.0 host port

The two 46-pin cape headers (called P8 and P9) along the long edges of the board
(Figure 2-2) provide connections for cape add-on boards, digital and analog sensors,
and more.

Figure 2-2. The P8 and P9 cape headers

The simplest kind of sensor provides a single digital status, such as off or on, and can
be handled by an input mode of one of the Bone’s 65 general-purpose input/output
(GPIO) pins. More complex sensors can be connected by using one of the Bone’s
seven analog-to-digital converter (ADC) inputs or several I2C buses.
Chapter 3 discusses some of the output mode usages of the GPIO pins.
All these examples assume that you know how to edit a file (Recipe 1.6) and run it,

either within the Cloud9 integrated development environment (IDE) or from the
command line (Recipe 5.3).

2.1 Choosing a Method to Connect Your Sensor

Problem
You want to acquire and attach a sensor and need to understand your basic options.

Solution
Figure 2-3 shows many of the possibilities for connecting a sensor.

Figure 2-3. Some of the many sensor connection options on the Bone

Choosing the simplest solution available enables you to move on quickly to
addressing other system aspects. By exploring each connection type, you can make
more informed decisions as you seek to optimize and troubleshoot your design.

Discussion
Trying to determine which connection option to use can sometimes be tricky and often
requires you to read the sensor datasheet. The names of the individual signals can
give you some clues, but you should take care to note the sensor’s voltage and current
requirements, as well as input or output mode, to avoid damaging either the Bone or
the sensor. An active sensor will require power and ground connections, whereas a
passive sensor will alter an electrical property of its own, such as resistance, based
on what it senses.
The digital I/O pins are very flexible. Each can be configured to have an internal
pull-up or pull-down resistor (I’ll explain what these are shortly) and support up to
eight different major modes of operation. Each supports a GPIO mode, in which they
can simply output a 0 or 3.3 V level or input a 0 or 3.3 V level as a 0 or 1. Any
digital I/O pin in GPIO mode can generate an interrupt upon transitioning from one
level to the other. Some of the other major modes, including eight of the digital I/O
pins, can be configured to generate a pulse width modulated (PWM) signal with a
frequency below once per second or above 25 MHz. There are UARTS for serial I/O
and a couple of I2C and SPI ports.
The seven analog input pins do not change modes and always read an analog voltage
between 0 and 1.8 V. They also include a reference ground and 1.8 V for use with
your circuits.

WARNING
Keep in mind that some off-the-shelf capes (Chapter 9) might use different pins, such as the BB
View LCD cape, which uses some of these analog inputs for the touch screen and many I/Os to
interface to the display.

For many sensors, the simplest solution might be to connect an off-the-shelf
commercial USB sensor, such as a USB microphone. The Bone supports many USB
devices, as long as a Linux driver is available. If you are cost sensitive and not into
writing Linux device drivers, it is best to search the Web to find out if your USB
device is supported before you buy it.
Recipes in this chapter not using a simple USB-connected peripheral are built around
a breadboard (Recipe 1.5). The sensor is plugged in to the breadboard or used with a
breakout board, some jumper wires, and possibly some resistors. The software for
the solution is written in JavaScript using the BoneScript library and real-time

http://bit.ly/1B4r7bY
http://bit.ly/1b21TGh

solutions discussed in Chapter 8. This approach enables you to become familiar with
how the sensor is wired and data is gathered quickly before moving on to a more
permanent solution, such as a printed circuit board (PCB) and Linux device driver, if
either of those is ever needed.

2.2 Input and Run a JavaScript Application for Talking
to Sensors

Problem
You have your sensors all wired up and your Bone booted up, and you need to know
how to enter and run your code.

Solution
You are just a few simple steps from running any of the recipes in this book.

1. Plug your Bone into a host computer via the USB cable (Recipe 1.2).

2. Start Cloud9 (Recipe 1.6).

3. In the bash tab (as shown in Figure 2-4), run the following commands:

root@beaglebone:/var/lib/cloud9# cd
root@beaglebone:~#

Figure 2-4. Entering commands in the Cloud9 bash tab

Here, we issued the change directory (cd) command without specifying a target
directory. By default, it takes you to your home directory. Notice that the prompt has
changed to reflect the change. The path changed from /var/lib/cloud9 to ~. The ~
is a shorthand for your home directory.

NOTE
If you log in as root, your home directory is /root. That is, anyone can cd /root to get into your
home directory (though directories are initially locked). If you log in as debian, your home is
/home/debian. If you were to create a new user called newuser, that user’s home would be
/home/newuser. By default, all non-root (non-superuser) users have their home directories in /home.

The following commands create a new directory for the sensor recipes, change to it,
and use touch to create an empty file called pushbutton.js:

root@beaglebone:/var/lib/cloud9# cd /root
root@beaglebone:~# mkdir boneSensors
root@beaglebone:~# cd boneSensors
root@beaglebone:~/boneSensors# touch pushbutton.js

Now, add recipe code to the newly created pushbutton.js file to enable it to run:
1. In Cloud9, in the Workspace browser on the left, go to the Preferences wheel

and select Add Home to Favorites (Figure 1-22). Now, your home directory
will show up in the Workspace file tree.

2. In the Workspace browser, expand root.

3. You will see your newly created boneSensors directory; expand it. You will see
your empty pushbutton.js

4. Double-click the pushbutton.js file to open it.

5. Paste the code for the recipe you want to run. This example uses Example 2-1.

6. Press ^S (Ctrl-S) to save the file. (You can also go to the File menu in Cloud9
and select Save to save the file, but Ctrl-S is easier.)

7. In the bash tab, enter the following commands:

root@beaglebone:~/boneSensors# chmod +x pushbutton.js
root@beaglebone:~/boneSensors# ./pushbutton.js
Interrupt handler attached
x.value = 1
x.err = undefined
x.value = 0
x.err = undefined
x.value = 1
x.err = undefined
^C

This process will work for any script in this book.

NOTE
In this example, I’ve called b.pinMode() asynchronously and performed the b.attachInterrupt()
call within the callback function. There are cases where BoneScript version 0.2.4 might not
completely finish setting up a pin’s mode when called synchronously. That might result in needing to
run a program twice to overcome the error. Using asynchronous calls is the preferred strategy to
avoid this issue.

Discussion
The chmod command changes the mode of the file pushbutton.js file to allow it to
execute. The second command runs it.
The file you created is stored on the Bone. It’s a good idea to back up your files. If
your host computer is running Linux, the following commands will copy the contents
of boneSensors to your host (be sure to subsitute your login name for yoder):

root@beaglebone:~/boneSensors# cd ..
root@beaglebone:~# scp -r boneSensors/ yoder@192.168.7.1:.
The authenticity of host '192.168.7.1 (192.168.7.1)' can't be established.
ECDSA key fingerprint is 54:ce:02:e5:83:3f:01:b3:bc:fd:43:09:08:d4:97:xx.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.7.1' (ECDSA) to the list of known hosts.
yoder@192.168.7.1's password:
pushbutton.js 100% 282 0.3KB/s 00:00

This uses the secure copy (scp) command to copy boneSensors to your home
directory on your host computer.

NOTE
If scp doesn’t work, you’ll have to install a Secure Shell (SSH) server on your host:

host$ sudo apt-get install openssh-server

Now you can run scp from your Bone.

Or, if you don’t want to install the SSH server on your host, you can back up the Bone’s files from
your host:

host$ scp -r root@192.168.7.2:boneSensors .
Warning: Permanently added '192.168.7.2' (ECDSA)
to the list of known hosts.
pushbutton.js 100% 282 0.3KB/s 00:00

2.3 Reading the Status of a Pushbutton or Magnetic
Switch (Passive On/Off Sensor)

Problem
You want to read a pushbutton, a magnetic switch, or other sensor that is electrically
open or closed.

Solution
Connect the switch to a GPIO pin and use BoneScript pinMode() and
attachInterrupt() functions.

To make this recipe, you will need:
Breadboard and jumper wires (see “Prototyping Equipment”)

Pushbutton switch (see “Miscellaneous”)

Magnetic reed switch (optional, see “Miscellaneous”)

You can wire up either a pushbutton, a magnetic reed switch, or both on the Bone, as
shown in Figure 2-5.

Figure 2-5. Diagram for wiring a pushbutton and magnetic reed switch input

The code in Example 2-1 reads GPIO port P9_42, which is attached to the
pushbutton.

Example 2-1. Monitoring a pushbutton using a callback function (pushbutton.js)

#!/usr/bin/env node
var b = require('bonescript');
var button = 'P9_42';

b.pinMode(button, b.INPUT, 7, 'pulldown', 'fast', doAttach);

function doAttach(x) {
 if(x.err) {
 console.log('x.err = ' + x.err);
 return;
 }
 b.attachInterrupt(button, true, b.CHANGE, printStatus);
}

function printStatus(x) {
 if(x.attached) {
 console.log("Interrupt handler attached");
 return;
 }
 console.log('x.value = ' + x.value);
 console.log('x.err = ' + x.err);
}

Put this code in a file called pushbutton.js following the steps in Recipe 2.2. In the
Cloud9 bash tab, run it by using the following commands:

bone# chmod +x ./pushbutton.js
bone# ./pushbutton.js
Interrupt handler attached
x.value = 1
x.err = undefined
x.value = 0
x.err = undefined

The chmod command makes it executable (you have to do this only once), and the
second command runs it. Try pushing the button. The code waits for the value of the
input to change; when it changes, the new value is printed out.
You will have to press ^C (Ctrl-C) to stop the code.
If you want to use the magnetic reed switch wired as shown in Figure 2-5, change
P9_42 to P9_26.

Discussion
In BoneScript, the attachInterrupt() command is used to trigger a function upon
status change of a GPIO port. The last argument (printStatus) is the name of the
function to call when the value changes. If you had other work for your Bone to do,
you could list those commands after the attachInterrupt() command, and they
would execute while BoneScript is waiting for activity on the GPIO port. In this
simple example, there is nothing else to do, but the program won’t exit, due to the
attached event handler. That’s why you have to press ^C (Ctrl-C).
Example 2-2 shows a more traditional way of reading a GPIO port. Here, the
digitalRead() command returns the value of the port synchronously. The code
reads the switch only once, so to see a difference in the output, run it once with the
button pushed and run it a second time without pressing the button.

Example 2-2. Reading a pushbutton by returning a value (pushbutton2.js)
#!/usr/bin/env node
var b = require('bonescript');
var button = 'P9_42';
var state; // State of pushbutton

b.pinMode(button, b.INPUT, 7, 'pulldown');

state = b.digitalRead(button);
console.log('button state = ' + state);

This traditional, synchronous style is useful for small programs, in which you don’t
need to be concerned about many different possible events. Asynchronous code helps
free up the processor and operating system to handle other events as they occur. It is
also possible to use digitalRead() asynchronously by providing a callback
function, such as in Example 2-3.

Example 2-3. Reading a pushbutton once using a callback function
(pushbutton_digitalRead.js)
#!/usr/bin/env node
var b = require('bonescript');
var button = 'P9_42';

b.pinMode(button, b.INPUT, 7, 'pulldown');
b.digitalRead(button, printStatus);

function printStatus(x) {
 console.log('x.value = ' + x.value);
 console.log('x.err = ' + x.err);
}

What do you get if you read a GPIO port that has nothing attached to it: 1 or 0? That
depends on many things. It’s best not to count on either 1 or 0. A standard approach is

to tie the port to either ground or 3.3 V through a 1 kΩ (or so) resistor. If nothing else
is attached, the resistor will pull the input to either 0 V (ground) or 3.3 V. This is
called a pull-up or pull-down resistor, depending on the power supply to which it’s
attached.
You can then use a switch to connect the port to the opposite value. In the previous
section, the Bone was configured to use an internal pull-down resistor. When the
button isn’t pushed, the GPIO read 0 because the pull-down resistor held it at 0 V.
When the switch is pushed, the GPIO port is attached to the 3.3 V source and a value
of 1 is read.

Note that our examples set the fourth argument of pinMode() to be pulldown, to use
a resistor internal to the Bone to pull the pin down to ground when the switch is open.
It is also possible to configure for a pullup resistor that will pull the pin up to 3.3 V
when the switch is open. Notice that the top pushbutton in Figure 2-6 is wired to
ground and the bottom is wired to 3.3 V.

Figure 2-6. Pushbutton with Bone configured for pull-up resistor

The code in Example 2-4 configures the P9_26 GPIO port to have a pull-up resistor.
Therefore, if the top button isn’t pushed, a value of 1 will be read. When the top

button is pushed, the GPIO port is attached to ground and a 0 is read. GPIO port
P9_42 works as in Example 2-3.

Example 2-4. Reading a pushbutton with a pull-up and pull-down resistor
(pushbuttonPullup.js)
#!/usr/bin/env node
var b = require('bonescript');
var buttonTop = 'P9_26';

b.pinMode(buttonTop, b.INPUT, 7, 'pullup', 'fast', doAttachTop);

function doAttachTop(x) {
 if(x.err) {
 console.log('x.err = ' + x.err);
 return;
 }
 b.attachInterrupt(buttonTop, true, b.CHANGE, printStatus);
}

var buttonBot = 'P9_42';
b.pinMode(buttonBot, b.INPUT, 7, 'pulldown', 'fast', doAttachBot);

function doAttachBot(x) {
 if(x.err) {
 console.log('x.err = ' + x.err);
 return;
 }
 b.attachInterrupt(buttonBot, true, b.CHANGE, printStatus);
}

function printStatus(x) {
 if(x.attached) {
 console.log("Interrupt handler attached");
 return;
 }

 console.log('x.value = ' + x.value);
 console.log('x.err = ' + x.err);
}

2.4 Reading a Position, Light, or Force Sensor (Variable
Resistance Sensor)

Problem
You have a variable resistor, force-sensitive resistor, flex sensor, or any of a number
of other sensors that output their value as a variable resistance, and you want to read
their value with the Bone.

Solution
Use the Bone’s analog-to-digital converters (ADCs) and a resistor divider circuit to
detect the resistance in the sensor.
The Bone has seven built-in analog inputs that can easily read a resistive value.
Figure 2-7 shows them on the lower part of the P9 header.

Figure 2-7. Seven analog inputs on the P9 header

To make this recipe, you will need:
Breadboard and jumper wires (see “Prototyping Equipment”)

10 kΩ trimpot (see “Resistors”) or

Flex resistor (optional, see “Resistors”)

22 kΩ resistor (see “Resistors”)

A variable resistor with three terminals
Figure 2-8 shows a simple variable resistor (trimpot) wired to the Bone. One end
terminal is wired to the ADC 1.8 V power supply on pin P9_32, and the other end
terminal is attached to the ADC ground (P9_34). The middle terminal is wired to one
of the seven analog-in ports (P9_36).

Figure 2-8. Wiring a 10kΩ variable resistor (trimpot) to an ADC port

Example 2-5 shows the BoneScript code used to read the variable resistor. Add the
code to a file called analogIn.js and run it; then change the resistor and run it again.
The voltage read will change.

Example 2-5. Reading an analog voltage (analogIn.js)
#!/usr/bin/env node
var b = require('bonescript');

b.analogRead('P9_36', printStatus);

function printStatus(x) {
 console.log('x.value = ' + x.value.toFixed(3));
 console.log('x.err = ' + x.err);
}

NOTE
This code in Example 2-5 uses .toFixed(3) to print only three digits past the decimal. Otherwise, the
output could have many extra digits. Try removing .toFixed(3) and see what happens.

A variable resistor with two terminals

Some resistive sensors have only two terminals, such as the flex sensor in Figure 2-9.
The resistance between its two terminals changes when it is flexed. In this case, we
need to add a fixed resistor in series with the flex sensor. Figure 2-9 shows how to
wire in a 22 kΩ resistor to give a voltage to measure across the flex sensor.

Figure 2-9. Reading a two-terminal flex resistor

The code in Example 2-5 also works for this setup.

Discussion
The analog-in pins on the Bone read a voltage between 0 and 1.8 V. (This is different
from the digital-in pins, which read either 0 or 3.3 V.) A variable resistor (as shown
in Figure 2-10) has a fixed resistor between two terminals and a wiper that can be
moved between them. As the wiper moves, the resistance between it and the ends
changes — that is, the resistance drops between the wiper and the end to which it is
getting closer.

Figure 2-10. Schematic for a variable resistor

This example puts the analog 1.8 V reference voltage (which appears on P9_32) and
the analog ground (which appears on P9_34) across the fixed resistor. As the resistor
is turned, the voltage read on the wiper varies from 0 to 1.8 V, which is read by the
analog-in pin on P9_36.

The flex sensor has no fixed resistor; rather, it has only two terminals whose
resistance across them will vary when it is flexed. In Figure 2-9, a 22 kΩ resistor is
used to form the circuit needed to get a variable voltage to read.

2.5 Reading a Distance Sensor (Analog or Variable
Voltage Sensor)

Problem
You want to measure distance with a LV-MaxSonar-EZ1 Sonar Range Finder, which
outputs a voltage in proportion to the distance.

http://bit.ly/1Mt5Elr

Solution
To make this recipe, you will need:

Breadboard and jumper wires (see “Prototyping Equipment”)

LV-MaxSonar-EZ1 Sonar Range Finder (see “Miscellaneous”)

All you have to do is wire the EZ1 to one of the Bone’s analog-in pins, as shown in
Figure 2-11. The device outputs ~6.4 mV/in when powered from 3.3 V.

WARNING
Make sure not to apply more than 1.8 V to the Bone’s analog-in pins, or you will likely damage
them. In practice, this circuit should follow that rule.

Figure 2-11. Wiring the LV-MaxSonar-EZ1 Sonar Range Finder to the P9_33 analog-in port

Example 2-6 shows the code that reads the sensor at a fixed interval.

Example 2-6. Reading an analog voltage (ultrasonicRange.js)
#!/usr/bin/env node
var b = require('bonescript');
var ms = 250; // Time in milliseconds

setInterval(readRange, ms);

function readRange() {
 b.analogRead('P9_33', printStatus);
}
function printStatus(x) {
 console.log('x.value = ' + x.value);
 console.log('Distance= ' + x.value * 1.8/0.0064);
}

Discussion
The LV-MaxSonar-EZ1 outputs distance measured in several ways: RS232 serial, a
PWM signal, and an analog voltage. The easiest one to use is the analog-in, because
the Bone has several analog-in ports.

TIP
If you take the analog voltage*1.8/0.0064, you’ll get the distance in inches.

The setInterval(readRange, ms); statement in Example 2-6 causes the
readRange() function to be called every 250 ms. The readRange() function reads
the analog port and calls printStatus() once the value is ready. printStatus()
then prints the value read.

NOTE
The built-in ADC on the Bone is a 12-bit, 200 k samples-per-second successive approximation
converter with eight channels. Seven of the channels are available on the Bone’s analog-in pins.

2.6 Reading a Distance Sensor (Variable Pulse Width
Sensor)

Problem
You want to use a HC-SR04 Ultrasonic Range Sensor with BeagleBone Black.

Solution
The HC-SR04 Ultrasonic Range Sensor (shown in Figure 2-12) works by sending a
trigger pulse to the Trigger input and then measuring the pulse width on the Echo
output. The width of the pulse tells you the distance.

Figure 2-12. HC-SR04 Ultrasonic range sensor

To make this recipe, you will need:
Breadboard and jumper wires (see “Prototyping Equipment”)

10 kΩ and 20 kΩ resistors (see “Resistors”)

HC-SR04 Ultrsonic Range Sensor (see “Miscellaneous”)

Wire the sensor as shown in Figure 2-13. Note that the HC-SR04 is a 5 V device, so
the banded wire (running from P9_7 on the Bone to VCC on the range finder)
attaches the HC-SR04 to the Bone’s 5 V power supply.

Figure 2-13. Wiring an HC-SR04 ultrasonic sensor

Example 2-7 shows BoneScript code used to drive the HC-SR04.

Example 2-7. Driving a HC-SR04 ultrasound sensor (hc-sr04-ultraSonic.js)
#!/usr/bin/env node

// This is an example of reading HC-SR04 Ultrasonic Range Finder
// This version measures from the fall of the Trigger pulse
// to the end of the Echo pulse

var b = require('bonescript');

var trigger = 'P9_16', // Pin to trigger the ultrasonic pulse
 echo = 'P9_41', // Pin to measure to pulse width related to the distance
 ms = 250; // Trigger period in ms

var startTime, pulseTime;

b.pinMode(echo, b.INPUT, 7, 'pulldown', 'fast', doAttach);
function doAttach(x) {
 if(x.err) {
 console.log('x.err = ' + x.err);
 return;
 }
 // Call pingEnd when the pulse ends
 b.attachInterrupt(echo, true, b.FALLING, pingEnd);
}

b.pinMode(trigger, b.OUTPUT);

b.digitalWrite(trigger, 1); // Unit triggers on a falling edge.
 // Set trigger to high so we call pull it low later

// Pull the trigger low at a regular interval.
setInterval(ping, ms);

// Pull trigger low and start timing.
function ping() {
 // console.log('ping');
 b.digitalWrite(trigger, 0);
 startTime = process.hrtime();
}

// Compute the total time and get ready to trigger again.
function pingEnd(x) {
 if(x.attached) {
 console.log("Interrupt handler attached");
 return;
 }
 if(startTime) {
 pulseTime = process.hrtime(startTime);
 b.digitalWrite(trigger, 1);
 console.log('pulseTime = ' + (pulseTime[1]/1000000-0.8).toFixed(3));
 }
}

This code is more complex than others in this chapter, because we have to tell the
device when to start measuring and time the return pulse.

Discussion
The HC-SR04 works by sending a 40 kHz ultrasonic pulse out when a 10 μs (or
longer) pulse appears on its Trigger input. The Echo output produces a pulse whose
length is in proportion to the distance that was measured.
The HC-SR04 is a 5 V device that outputs a 5 V pulse on its Echo port, which is too
much for the Bone’s GPIOs, which expect 0 and 3.3 V. A simple resistor divider
network is used to scale the 5 V down to 3.3 V. We use 20 kΩ and 10 kΩ resistors for
the divider, but other pairs will work as long as the ratio is 2 to 1. But be careful: if
you make them too big (say, 100 kΩ and 200 kΩ), the GPIO port will draw too much
current through it and make the output voltage sag too much. If you make the resistors
too small, you will pull a lot of current through them, wasting power.
The code in Example 2-7 works by setting trigger to 1 and then using
setInterval() and ping() to pull trigger low at a regular interval and start a
timer. attachInterrupt() and pingEnd() are used to wait for echo to fall to 0.
Once it does, pingEnd() is called, and it computes the time since ping() started and
sets trigger back to 1, so everything can start over again.

Example 2-7 uses a high-resolution timer (hrtime()), which returns the time in
nanoseconds. (JavaScript’s built-in timer gives only ms results.) The code converts
the nanoseconds to milliseconds and then subtracts 0.8 ms. The 0.8 ms is the
approximate time from when the trigger falls to when the pulse is sent out. (This is a
measured result, not from the datasheet.)
But how accurate is it? I attached an oscilloscope to the Echo pin and measured
pulses with widths from 0.5 to 5 ms. The oscilloscope measured a 25 μs standard
deviation, which represents the device’s repeatability and the stability of the person
holding the target. With the 0.8 ms correction, the Bone appeared to measure the
pulse width to within 0.2 ms or so, which is around 4 cm. Not bad for using
JavaScript and probably close enough for most robotics applications.

2.7 Accurately Reading the Position of a Motor or Dial

Problem
You have a motor or dial and want to detect rotation using a rotary encoder.

Solution
Use a rotary encoder (also called a quadrature encoder) connected to one of the
Bone’s eQEP ports, as shown in Figure 2-14.

Figure 2-14. Wiring a rotary encoder using eQEP2

To make this recipe, you will need:
Breadboard and jumper wires (see “Prototyping Equipment”)

Rotary encoder (see “Miscellaneous”)

We are using a quadrature rotary encoder, which has two switches inside that open
and close in such a manner that you can tell which way the shaft is turning. In this
particular encoder, the two switches have a common lead, which is wired to ground.
It also has a pushbutton switch wired to the other side of the device, which we aren’t
using.
Wire the encoder to P8_11 and P8_12, as shown in Figure 2-14.

BeagleBone Black has built-in hardware for reading up to three encoders. Here,
we’ll use the eQEP2 encoder. To enable it, put the code from Example 2-8 in a file

called bone_eqep2b.dts. You can do this using Cloud9 to edit files (as shown in
Recipe 1.6) or use a more traditional editor (as shown in Recipe 5.9).

Example 2-8. Configuring a rotary encoder (bone_eqep2b.dts) 1
/*
 * Copyright (C) 2013 Nathaniel R. Lewis - http://nathanielrlewis.com/
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * Enable eQEP2 on the Beaglebone White and Black
 * These pins don't conflict with the HDMI
 */
/dts-v1/;
/plugin/;

/ {
 compatible = "ti,beaglebone", "ti,beaglebone-black";

 /* identification */
 part-number = "bone_eqep2";
 version = "00A0";

 fragment@0 {
 target = <&am33xx_pinmux>;
 __overlay__ {
 pinctrl_eqep2: pinctrl_eqep2_pins {
 pinctrl-single,pins = <
 0x038 0x24 /* P8_16 = GPIO2_12 = EQEP2_index, MODE4 */
 0x03C 0x24 /* P8_15 = GPIO2_13 = EQEP2_strobe, MODE4 */
 0x030 0x34 /* P8_12 = GPIO2_10 = EQEP2A_in, MODE4 */
 0x034 0x34 /* P8_11 = GPIO2_11 = EQEP2B_in, MODE4 */
 >;
 };
 };
 };

 fragment@1 {
 target = <&epwmss2>;
 __overlay__ {
 status = "okay";
 };
 };

 fragment@2 {
 target = <&eqep2>;
 __overlay__ {
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_eqep2>;
 count_mode = < 0 >;
 /* 0 - Quadrature mode, normal 90 phase offset cha & chb.
 1 - Direction mode. cha input = clock, chb input = direction */
 swap_inputs = < 0 >; /* Are chan A & chan B swapped? (0-no,1-yes) */
 invert_qa = < 1 >; /* Should we invert the channel A input? */
 invert_qb = < 1 >; /* Should we invert the channel B input?
 These are inverted because my encoder outputs drive transistors
 that pull down the pins */
 invert_qi = < 0 >; /* Should we invert the index input? */
 invert_qs = < 0 >; /* Should we invert the strobe input? */

 status = "okay";

 };
 };
};

Then run the following commands:

bone# dtc -O dtb -o bone_eqep2b-00A0.dtbo -b 0 -@ bone_eqep2b.dts
bone# cp bone_eqep2b-00A0.dtbo /lib/firmware
bone# echo bone_eqep2b > /sys/devices/bone_capemgr.*/slots

This will enable eQEP2 on pins P8_11 and P8_12.

Finally, add the code in Example 2-9 to a file named rotaryEncoder.js and run it.

Example 2-9. Reading a rotary encoder (rotaryEncoder.js)
#!/usr/bin/env node
// This uses the eQEP hardware to read a rotary encoder
// echo bone_eqep2b > $SLOTS

var b = require('bonescript'),
 fs = require('fs');

var eQEP0 = "/sys/devices/ocp.3/48300000.epwmss/48300180.eqep/",
 eQEP1 = "/sys/devices/ocp.3/48302000.epwmss/48302180.eqep/",
 eQEP2 = "/sys/devices/ocp.3/48304000.epwmss/48304180.eqep/",
 eQEP = eQEP2;

var oldData, // pervious data read
 period = 100; // in ms

// Set the eEQP period, convert to ns.
fs.writeFile(eQEP+'period', period*1000000, function(err) {
 if (err) throw err;
 console.log('Period updated to ' + period*1000000);
})

// Enable
fs.writeFile(eQEP+'enabled', 1, function(err) {
 if (err) throw err;
 console.log('Enabled');
})

setInterval(readEncoder, period); // Check state every 250 ms

function readEncoder(x) {
 fs.readFile(eQEP + 'position', {encoding: 'utf8'}, printValue);
}

function printValue(err, data) {
 if (err) throw err;
 if (oldData !== data) {
 console.log('position: '+data+' speed: '+(oldData-data));
 oldData = data;
 }
}

Try rotating the encoder clockwise and counter-clockwise. You’ll see an output like
this:

Period updated to 100000000
Enabled
position: 0
 speed: NaN
position: 4
 speed: -4
position: 6
 speed: -2
position: 8
 speed: -2
position: 12
 speed: -4
position: 16
 speed: -4
position: 19
 speed: -3
position: 20
 speed: -1

The values you get for speed and position will depend on which way you are
turning the device and how quickly. You will need to press ^C (Ctrl-C) to end the
program.

Discussion
Figure 2-15 shows the sequence of pulses that occur when the encoder is turned in
one direction (either clockwise or counter-clockwise, depending on the encoder).

Figure 2-15. Pulses from a quadrature encoder

When rotating clockwise, the outputs are as follows:

Phase A B

1 0 0

2 0 1

3 1 1

4 1 0

When rotating counter-clockwise, the outputs are as follows:

Phase A B

4 1 0

3 1 1

2 0 1

1 0 0

The eQEP hardware watches the A and B inputs and determines which way the

encoder is turning. Because this is implemented in the hardware, it will work with
encoders driven by motors revolving at thousands of RPMs.

See Also
You can also measure rotation by using a variable resistor (see Figure 2-8).

2.8 Acquiring Data by Using a Smart Sensor over a
Serial Connection

Problem
You want to connect a smart sensor that uses a built-in microcontroller to stream
data, such as a global positioning system (GPS), to the Bone and read the data from
it.

Solution
The Bone has several serial ports (UARTs) that you can use to read data from an
external microcontroller included in smart sensors, such as a GPS. Just wire one up,
and you’ll soon be gathering useful data, such as your own location.
Here’s what you’ll need:

Breadboard and jumper wires (see “Prototyping Equipment”)

GPS receiver (see “Miscellaneous”)

Wire your GPS, as shown in Figure 2-16.

Figure 2-16. Wiring a GPS to UART 4

The GPS will produce raw National Marine Electronics Association (NMEA) data
that’s easy for a computer to read, but not for a human. There are many utilities to
help convert such sensor data into a human-readable form. For this GPS, run the
following command to load a NMEA parser:

bone# npm install -g nmea

Running the code in Example 2-10 will print the current location every time the GPS
outputs it.

Example 2-10. Talking to a GPS with UART 4 (GPS.js)
#!/usr/bin/env node
// Install with: npm install nmea

// Need to add exports.serialParsers = m.module.parsers;
// to the end of /usr/local/lib/node_modules/bonescript/serial.js

var b = require('bonescript');
var nmea = require('nmea');

var port = '/dev/ttyO4';
var options = {
 baudrate: 9600,
 parser: b.serialParsers.readline("\n")
};

b.serialOpen(port, options, onSerial);

function onSerial(x) {
 if (x.err) {
 console.log('***ERROR*** ' + JSON.stringify(x));
 }
 if (x.event == 'open') {
 console.log('***OPENED***');
 }
 if (x.event == 'data') {
 console.log(String(x.data));
 console.log(nmea.parse(x.data));
 }
}

If you don’t need the NMEA formatting, you can skip the npm part and remove the
lines in the code that refer to it.

NOTE
If you get an error like this

TypeError: Cannot call method readline of undefined

add this line to the end of file /usr/local/lib/node_modules/bonescript/serial.js:

exports.serialParsers = m.module.parsers;

Discussion
The GPS outputs text every second or so. The Bone’s serial port is set up to call the
onSerial function whenever text is ready. When onSerial sees a data event, it
converts the data to a string and prints it. The second console.log() takes the raw
data and passes it through the nmea parser, which converts it to a more readable form
and then prints it.

NOTE
You cannot use every pin as a UART. Point your browser to the Headers page served by your Bone
(or Online headers-serial page) and scroll down to the UART page to see which pins work. The table
is reproduced in Figure 2-17.

Figure 2-17. Table of UART outputs

http://192.168.7.2/Support/bone101/#headers
http://bit.ly/1B4rvqS

2.9 Measuring a Temperature

Problem
You want to measure a temperature using a digital temperature sensor.

Solution
The TMP102 sensor is a common digital temperature sensor that uses a standard I2C-
based serial protocol.
To make this recipe, you will need:

Breadboard and jumper wires (see “Prototyping Equipment”)

Two 4.7 kΩ resistors (see “Resistors”)

TMP102 temperature sensor (see “Integrated Circuits”)

Wire the TMP102, as shown in Figure 2-18.

Figure 2-18. Wiring an I2C TMP102 temperature sensor

There are two I2C buses brought out to the headers. Figure 2-19 shows that you have
wired your device to I2C bus 2, but watch out: the buses aren’t always numbered the
same. When you work with BoneScript, they are numbered 1 and 2, but if you work
from the Linux command line, they are numbered 0 and 1. Confusing, huh?

Figure 2-19. Table of I2C outputs

Once the I2C device is wired up, you can use a couple handy I2C tools to test the
device. Because these are Linux command-line tools, you have to use 1 as the bus
number. i2cdetect, shown in Example 2-11, shows which I2C devices are on the
bus. The -r flag indicates which bus to use. Our TMP102 is appearing at address
0x49. You can use the i2cget command to read the value. It returns the temperature
in hexidecimal and degrees C. In this example, 0x18 = 24°C, which is 75.2°F.
(Hmmm, the office is a bit warm today.) Try warming up the TMP102 with your
finger and running i2cget again.

Example 2-11. I2C tools
bone# i2cdetect -y -r 1
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- 49 -- -- -- -- -- --
50: -- -- -- -- UU UU UU UU -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

bone# i2cget -y 1 0x49
0x18

Example 2-12 shows how to read the TMP102 from BoneScript.

Example 2-12. Reading an I2C device (i2cTemp.js)
#!/usr/bin/env node

var b = require('bonescript');
var bus = '/dev/i2c-2'
var TMP102 = 0x49;

b.i2cOpen(bus, TMP102);
b.i2cReadByte(bus, onReadByte);

function onReadByte(x) {
 if (x.event == 'callback') {
 console.log('onReadByte: ' + JSON.stringify(x));
 console.log(x.res*9/5+32 + 'F');
 }
}

This line states which bus to use. The last digit gives the BoneScript bus
number.

This gives the address of the device on the bus.

This line opens the device. All I2C commands that follow will apply to this bus
and device.

This line reads a byte from the device. The default is to read from address 0 of
the selected device. Address 0 for the TMP102 is the current temperature. As
soon as the register is read, the onReadByte() function is called.

The value, x, passed to onReadByte() is an object. The .event field of the
object informs us if we have a callback.

If this is a callback, use console.log to display the contents of object x.

Finally, print the result field, x.res, after converting it to degrees F.
Run the code by using the following command:

bone# ./i2cTemp.js
onReadByte: {"err":null,"res":24,"event":"callback"}
75.2F

Discussion
You can easily modify this recipe to call b.i2cReadByte(bus, onReadByte)
everytime you want to read a new temperature. You can also adapt it to read other
I2C devices just by changing the bus and address (0x49 in this example) to another
I2C device. In fact, multiple I2C devices can be on the same bus at that same time and
will respond only to their addresses.

2.10 Reading Temperature via a Dallas 1-Wire Device

Problem
You want to measure a temperature using a Dallas Semiconductor DS18B20
temperature sensor.

Solution
The DS18B20 is an interesting temperature sensor that uses Dallas Semiconductor’s
1-wire interface. The data communication requires only one wire! (However, you
still need wires from ground and 3.3 V.) You can wire it to any GPIO port.
To make this recipe, you will need:

Breadboard and jumper wires (see “Prototyping Equipment”)

4.7 kΩ resistor (see “Resistors”)

DS18B20 1-wire temperature sensor (see “Integrated Circuits”)

Wire up as shown in Figure 2-20.

Figure 2-20. Wiring a Dallas 1-Wire temperature sensor 2

Add the code in Example 2-13 to a file called BB-W1-00A0.dts.

Example 2-13. Reading a temperature with a DS18B20 (BB-W1-00A0.dts)
/dts-v1/;
/plugin/;

/ {
 compatible = "ti,beaglebone", "ti,beaglebone-black";

 part-number = "BB-W1";
 version = "00A0";

 /* state the resources this cape uses */
 exclusive-use =
 /* the pin header uses */
 "P9.20",
 /* the hardware IP uses */
 "gpio0_12";

 fragment@0 {
 target = <&am33xx_pinmux>;
 __overlay__ {
 dallas_w1_pins: pinmux_dallas_w1_pins {
 pinctrl-single,pins = < 0x150 0x37 >;
 };
 };
 };

 fragment@1 {
 target = <&ocp>;
 __overlay__ {
 onewire@0 {
 compatible = "w1-gpio";
 pinctrl-names = "default";
 pinctrl-0 = <&dallas_w1_pins>;
 status = "okay";

 gpios = <&gpio1 2 0>;
 };
 };
 };
};

Then run the following commands:

bone# dtc -O dtb -o BB-W1-00A0.dtbo -b 0 -@ BB-W1-00A0.dts
bone# cp BB-W1-00A0.dtbo /lib/firmware/
bone# echo BB-W1 > /sys/devices/bone_capemgr.*/slots

Now run the following command to discover the serial number on your device:

bone# ls /sys/bus/w1/devices/
28-00000114ef1b 28-00000128197d w1_bus_master1

This shows the serial numbers for all the devices.
Finally, add the code in Example 2-14 in to a file named onewire.js, edit the path
assigned to w1 so that the path points to your device, and then run it.

Example 2-14. Reading a temperature with a DS18B20 (onewire.js)
#!/usr/bin/env node
var b = require('bonescript');

var w1="/sys/bus/w1/devices/28-00000114ef1b/w1_slave"

setInterval(getTemp, 1000); // read temperatue every 1000ms

function getTemp() {
 b.readTextFile(w1, printStatus);
}

function printStatus(x) {
 console.log('x.data = ' + x.data);
 console.log('x.err = ' + x.err);
}

Discussion
Each temperature sensor has a unique serial number, so you can have several all
sharing the same data line.

2.11 Sensing All Sorts of Things with SensorTag via
Bluetooth v4.0

Problem
You have a TI SensorTag, and you want to interface it to BeagleBone Black via
Bluetooth Low Energy (BLE).

Solution
TI’s SensorTag (shown in Figure 2-21) combines six sensors (temperature, humidity,
accelerometer, pressure, magnetometer, and gyroscope) in one package that interfaces
via Bluetooth Low Energy.

Figure 2-21. SensorTag

To make this recipe, you will need:
BLE USB dongle (see “Miscellaneous”)

SensorTag (see “Miscellaneous”)

5 V adapter for the Bone

Power up your Bone using the 5 V adapter. You need the adapter because the BLE
dongle needs extra power for the radios it contains. After it is booted up, log in
(Recipe 5.3) and run the following commands:

bone# apt-get install libbluetooth-dev
bone# npm install -g sensortag

This installs the Bluetooth tools and the JavaScript library to talk to it.

http://bit.ly/1C58WIN
http://bit.ly/1EzMo4x

Add the code in Example 2-15 to a file called sensorTag.js and run it.

Example 2-15. Code for reading the temperature from a SensorTag (sensorTag.js)
#!/usr/bin/env node
// From: https://github.com/sandeepmistry/node-sensortag

// Reads temperature

var util = require('util');
var async = require('async');
var SensorTag = require('sensortag');
var fs = require('fs');

console.log("Be sure sensorTag is on");

SensorTag.discover(function(sensorTag) {
 console.log('sensorTag = ' + sensorTag);
 sensorTag.on('disconnect', function() {
 console.log('disconnected!');
 process.exit(0);
 });

 async.series([
 function(callback) {
 console.log('connect');
 sensorTag.connect(callback);
 },
 function(callback) {
 console.log('discoverServicesAndCharacteristics');
 sensorTag.discoverServicesAndCharacteristics(callback);
 },
 function(callback) {
 console.log('enableIrTemperature');
 sensorTag.enableIrTemperature(callback);
 },
 function(callback) {
 setTimeout(callback, 100);
 },
 function(callback) {
 console.log('readIrTemperature');
 sensorTag.readIrTemperature(
 function(objectTemperature, ambientTemperature) {
 console.log('\tobject temperature = %d °C',
 objectTemperature.toFixed(1));
 console.log('\tambient temperature = %d °C',
 ambientTemperature.toFixed(1));
 callback();
 });

 sensorTag.on('irTemperatureChange',
 function(objectTemperature, ambientTemperature) {
 console.log('\tobject temperature = %d °C',
 objectTemperature.toFixed(1));
 console.log('\tambient temperature = %d °C\n',
 ambientTemperature.toFixed(1));
 });

 sensorTag.notifyIrTemperature(function() {
 console.log('notifyIrTemperature');
 });
 },
 // function(callback) {
 // console.log('disableIrTemperature');

 // sensorTag.disableIrTemperature(callback);
 // },

 function(callback) {
 console.log('readSimpleRead');
 sensorTag.on('simpleKeyChange', function(left, right) {
 console.log('left: ' + left + ' right: ' + right);
 if (left && right) {
 sensorTag.notifySimpleKey(callback);
 }
 });

 sensorTag.notifySimpleKey(function() {
 });
 },
 function(callback) {
 console.log('disconnect');
 sensorTag.disconnect(callback);
 }
]
);
});

// The MIT License (MIT)

// Copyright (c) 2013 Sandeep Mistry

// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Read in the various packages that are needed.

SensorTag.discover checks what SensorTags are out there. When found, it
calls the inline function that follows.

This function is called when the SensorTag is disconnected.

Normally JavaScript does everything synchronously. Here, we want to do the
following asynchronously — that is, step-by-step, one after the other. We are
passing an array to async.series(), which contains the functions to run in the
order in which they appear in the array.

Connect to the SensorTag.

Discover what the SensorTag can do. This is necessary before we can give it
any commands.

Enable temperatures. We don’t get a temperature reading yet. Rather, we’re
instructing it to begin reading and report back when they are ready.

Wait a bit for the first temperatures to be read.

This specifies the function to call every time a temperature is ready. The
callback is passed objectTemperature (what’s read by the touchless IR
sensors) and ambientTemperature (the temperature inside the SensorTag). Try
putting your hand in front of the device; the objectTemperature should go up.

Define the callback for when the temperature changes.

This commented-out code is used when you want to turn off the temperature
readings.

Assign a callback to respond to the left and right button pushes.

If both buttons are pushed, pass the callback function to
sensorTag.notifySimpleKey().

sensorTag.notifySimpleKey() doesn’t do anything in this case, but it does
evaluate callback, allowing it to progress to the next and final state.

When we get to here, we disconnect from the SensorTag, which causes the code
to exit (see).

Here’s some output from the code:

Be sure sensorTag is on
sensorTag = {"uuid":"9059af0b8457"}
connect
discoverServicesAndCharacteristics
enableIrTemperature
readIrTemperature
 object temperature = 2.8 °C
 ambient temperature = 0 °C
readSimpleRead
notifyIrTemperature
 object temperature = 31.8 °C
 ambient temperature = 24.8 °C

 object temperature = 25.9 °C
 ambient temperature = 24.8 °C

 object temperature = 27.4 °C
 ambient temperature = 24.8 °C

 object temperature = 32.2 °C
 ambient temperature = 24.8 °C

left: false right: true
left: true right: true
left: false right: false
disconnect
disconnected!

Discussion
The SensorTag can do much more than read temperatures, but we’ve left out many of
those details to make the code more understandable. npm’s sensortag page documents
how to access the other sensors. The SensorTag node module has a nice example
(test.js) that shows how to read all the sensors; in fact, the example in Example 2-15
is based on it. Here’s where to find test.js:

bone# cd /usr/local/lib/node_modules/sensortag
bone# less test.js

Here, you see examples of how to read all the sensors. Look in index.js (in the same
directory) to see all the methods that are defined.

http://bit.ly/1MrADwk

2.12 Playing and Recording Audio

Problem
BeagleBone doesn’t have audio built in, but you want to play and record files.

Solution
One approach is to buy an audio cape (“Capes”), but another, possibly cheaper
approach is to buy a USB audio adapter, such as the one shown in Figure 2-22. Some
adapters that I’ve tested are provided in “Miscellaneous”.

Figure 2-22. A USB audio dongle

Drivers for the Advanced Linux Sound Architecture (ALSA) are already installed on
the Bone. You can list the recording and playing devices on your Bone by using
aplay and arecord, as shown in Example 2-16. BeagleBone Black has audio-out on
the HDMI interface. It’s listed as card 0 in Example 2-16. card 1 is my USB audio
adapter’s audio out.

Example 2-16. Listing the ALSA audio output and input devices on the Bone
bone# aplay -l
**** List of PLAYBACK Hardware Devices ****
card 0: Black [TI BeagleBone Black], device 0: HDMI nxp-hdmi-hifi-0 []
 Subdevices: 1/1
 Subdevice #0: subdevice #0
card 1: Device [C-Media USB Audio Device], device 0: USB Audio [USB Audio]
 Subdevices: 1/1
 Subdevice #0: subdevice #0

bone# arecord -l
**** List of CAPTURE Hardware Devices ****
card 1: Device [C-Media USB Audio Device], device 0: USB Audio [USB Audio]
 Subdevices: 1/1
 Subdevice #0: subdevice #0

In the aplay output shown in Example 2-16, you can see the USB adapter’s audio

http://bit.ly/1MrAJUR

out. By default, the Bone will send audio to the HDMI. You can change that default by
creating a file in your home directory called ~/.asoundrc and adding the code in
Example 2-17 to it.

Example 2-17. Change the default audio out by putting this in ~/.asoundrc
(audio.asoundrc)
pcm.!default {
 type plug
 slave {
 pcm "hw:1,0"
 }
}
ctl.!default {
 type hw
 card 1
}

You can easily play .wav files with aplay:

bone# aplay test.wav

You can play other files in other formats by installing mplayer:

bone# apt-get update
bone# apt-get install mplayer
bone# mplayer test.mp3

Discussion
Adding the simple USB audio adapter opens up a world of audio I/O on the Bone.
1 This solution first appeared on the Beagle Google Group.
2 This solution, written by Elias Bakken (@AgentBrum), originally appeared on
Hipstercircuits.

https://groups.google.com/forum/#!searchin/beagleboard/eQep/beagleboard/Orp3tFcNgCc/mYacP_GkCQQJ
http://bit.ly/1FaRbbK

Chapter 3. Displays and Other Outputs

3.0 Introduction
In this chapter, you will learn how to control physical hardware via BeagleBone
Black’s general-purpose input/output (GPIO) pins. The Bone has 65 GPIO pins that
are brought out on two 46-pin headers, called P8 and P9, as shown in Figure 3-1.

Figure 3-1. The P8 and P9 GPIO headers

The purpose of this chapter is to give simple examples that show how to use various
methods of output. Most solutions require a breadboard and some jumper wires.
All these examples assume that you know how to edit a file (Recipe 1.6) and run it,
either within Cloud9 integrated development environment (IDE) or from the
command line (Recipe 5.3).

3.1 Toggling an Onboard LED

Problem
You want to know how to flash the four LEDs that are next to the Ethernet port on the
Bone.

Solution
Locate the four onboard LEDs shown in Figure 3-2. They are labeled USR0 through
USR3, but we’ll refer to them as the USER LEDs.

Figure 3-2. The four USER LEDs

Place the code shown in Example 3-1 in a file called internLED.js. You can do this
using Cloud9 to edit files (as shown in Recipe 1.6) or with a more traditional editor
(as shown in Recipe 5.9).

Example 3-1. Using an internal LED (internLED.js)
#!/usr/bin/env node
var b = require('bonescript');
var LED = 'USR0';
var state = b.HIGH; // Initial state
b.pinMode(LED, b.OUTPUT);

setInterval(flash, 250); // Change state every 250 ms

function flash() {
 b.digitalWrite(LED, state);
 if(state === b.HIGH) {
 state = b.LOW;
 } else {
 state = b.HIGH;
 }
}

In the bash command window, enter the following commands:

bone# chmod +x internLED.js
bone# ./internLED.js

The USER0 LED should now be flashing.

Discussion
The four onboard USER LEDs have a default behavior, as shown in Table 3-1.

Table 3-1. Default LED behavior

LED Pattern

USER0 Heartbeat pattern

USER1 Flashes when the microSD is being accessed

USER2 Flashes when the CPU is busy

USER3 Flashes when the onboard flash is being accessed

When you run your code, it turns off the default action and gives you full control.

3.2 Toggling an External LED

Problem
You want to connect your own external LED to the Bone.

Solution
Connect an LED to one of the GPIO pins using a series resistor to limit the current.
To make this recipe, you will need:

Breadboard and jumper wires (see “Prototyping Equipment”)

220 Ω to 470 Ω resistor (see “Resistors”)

LED (see “Opto-Electronics”)

WARNING
The value of the current limiting resistor depends on the LED you are using. The Bone can drive only
4 to 6 mA, so you might need a larger resistor to keep from pulling too much current. A 330 Ω or 470
Ω resistor might be better.

Figure 3-3 shows how you can wire the LED to pin 14 of the P9 header (P9_14).
Every circuit in this book (Recipe 1.5) assumes you have already wired the rightmost
bus to ground (P9_1) and the next bus to the left to the 3.3 V (P9_3) pins on the
header. Be sure to get the polarity right on the LED. The short lead always goes to
ground.

Figure 3-3. Diagram for using an external LED

After you’ve wired it, start Cloud9 (see Recipe 1.6) and enter the code shown in
Example 3-2 in a file called externLED.js.

Example 3-2. Code for using an external LED (externLED.js)
#!/usr/bin/env node
var b = require('bonescript');
var LED = 'P9_14';
var state = b.HIGH; // Initial state
b.pinMode(LED, b.OUTPUT);

setInterval(flash, 250); // Change state every 250 ms

function flash() {
 b.digitalWrite(LED, state);
 if(state === b.HIGH) {
 state = b.LOW;
 } else {
 state = b.HIGH;
 }
}

Save your file and run the code as before (Recipe 3.1).

Discussion
LEDs are a useful and easy way for your Bone to communicate with the outside
world. But be careful: LEDs operate on 1.2 to 1.4 V (depending on the color), and
the Bone supplies 3.3 V. If you attach an LED directly to the Bone, the LED will pull
too much current and might damage the LED, or worse, the Bone. We put a resistor in
series to limit the current. 220 Ω works well, but you can use a larger value to make
the LED less bright. We wouldn’t recommend using a much smaller value.

3.3 Toggling a High-Voltage External Device

Problem
You want to control a device that runs at 120 V.

Solution
Working with 120 V can be tricky — even dangerous — if you aren’t careful. Here’s
a safe way to do it.
To make this recipe, you will need:

PowerSwitch Tail II (see “Miscellaneous”)

Figure 3-4 shows how you can wire the PowerSwitch Tail II to pin P9_14.

Figure 3-4. Diagram for wiring PowerSwitch Tail II

After you’ve wired it, because this uses the same output pin as Recipe 3.2, you can
run the same code (Example 3-2).

Discussion
This wiring causes the PowerSwitch to operate in the opposite way you would likely
think. When you output a HIGH to P9_14, the PowerSwitch will turn off. When you
output a LOW, it turns on. Read on to see why.

The GPIO pins on the Bone can source 4 or 6 mA at 3.3 V, depending on the pin. This
means it can supply a positive current of 4 or 6 mA. All GPIO pins can sink 8 mA —
that is, they can absorb up to 8 mA. The PowerSwitch Tail II requires 3 to 30 mA and
3 to 12 V to turn on. P9_14 cannot source enough current to cleanly turn on the
PowerSwitch, but it can sink enough; therefore, we’ve wired the +in input to the 3.3
V power supply on the Bone (P9_3) and the -in input to P9_14.

When P9_14 is at 3.3 V, the PowerSwitch doesn’t see a voltage drop (both inputs are
at 3.3 V), so it doesn’t turn on.
When P9_14 drops to 0 V, there is a 3.3 V drop across the PowerSwitch, and the
internal relay clicks on. Therefore, a HIGH output makes it turn off, and a LOW makes
it turn on.

3.4 Fading an External LED

Problem
You want to change the brightness of an LED from the Bone.

Solution
BoneScript has an analogWrite() function that uses the Bone’s pulse width
modulation (PWM) hardware to produce an analog out signal. We’ll use the same
circuit as before (Figure 3-3) and declare the pin mode to be ANALOG_OUTPUT. Add
the code in Example 3-3 to a file called fadeLED.js and then run it as before.

Example 3-3. Code for using an external LED (fadeLED.js)
#!/usr/bin/env node
var b = require('bonescript');
var LED = 'P9_14'; // Pin to use
var step = 0.02, // Step size
 min = 0.02, // dimmest value
 max = 1, // brightest value
 brightness = min; // Current brightness;

b.pinMode(LED, b.ANALOG_OUTPUT, 6, 0, 0, doInterval);

function doInterval(x) {
 if(x.err) {
 console.log('x.err = ' + x.err);
 return;
 }
 setInterval(fade, 20); // Step every 20 ms
}

function fade() {
 b.analogWrite(LED, brightness);
 brightness += step;
 if(brightness >= max || brightness <= min) {
 step = -1 * step;
 }
}

Discussion
The code uses setInterval() to call fade() regularly. When called, fade() will
increase the brightness by step. Note that, if step is negative, the LED will actually
become dimmer. If brightness is outside the min-max bounds, the step direction is
changed.
You will need to press ^C (Ctrl-C) to quit the script.

NOTE
You cannot use every pin for analog writes; only those that support PWM will work. Point your
browser to the Headers page served by your Bone and scroll down to the PWM page to see which
pins work. The table is reproduced in Figure 3-5.

Figure 3-5. Table of PWM outputs

http://192.168.7.2/Support/bone101/#headers

3.5 Writing to an LED Matrix

Problem
You have an I2C-based LED matrix to interface.

Solution
There are a number of nice LED matrices that allow you to control several LEDs via
one interface. This solution uses an Adafruit Bicolor 8x8 LED Square Pixel Matrix
w/I2C Backpack.
To make this recipe, you will need:

Breadboard and jumper wires (see “Prototyping Equipment”)

Two 4.7 kΩ resistors (see “Resistors”)

I2C LED matrix (see “Opto-Electronics”)

The LED matrix is a 5 V device, but you can drive it from 3.3 V. Wire, as shown in
Figure 3-6.

Figure 3-6. Wiring an i2c LED matrix

Recipe 2.9 shows how to use i2cdetect to discover the address of an I2C device. It
also describes the difference between how Linux numbers the I2C buses (0 and 1)

http://www.adafruit.com/products/902

versus how BoneScript numbers them (1 and 2). Let’s see how your display shows
up.

NOTE
The BoneScript library convention is to use the index numbers provided in the hardware
documentation. The version of the Linux kernel we use, however, begins index numbers at 0 for the
first one registered and increases by 1, so these numbers might not always match. The BoneScript
library attempts to hide this complication from you.

Run the i2cdetect -y -r 1 command to discover the address of the display, as
shown in Example 3-4.

Example 3-4. Using I2C command-line tools to discover the address of the display
bone# i2cdetect -y -r 1
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- 49 -- -- -- -- -- --
50: -- -- -- -- UU UU UU UU -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: 70 -- -- -- -- -- -- --

Here, you can see a device at 0x49 and 0x70. I know I have a temperature sensor at
0x49, so the LED matrix must be at 0.70.

Add the code in Example 3-5 to a file called matrixLEDi2c.js and run it by using the
following command:

bone# npm install -g sleep
bone# ./matrixLEDi2c.js

Example 3-5. LED matrix display (matrixLEDi2c.js)
#!/usr/bin/env node
// npm install -g sleep

var b = require('bonescript');
var sleep = require('sleep');
var port = '/dev/i2c-2'
var matrix = 0x70;
var time = 1000000; // Delay between images in us

// The first btye is GREEN, the second is RED.
var smile =
 [0x00, 0x3c, 0x00, 0x42, 0x28, 0x89, 0x04, 0x85,
 0x04, 0x85, 0x28, 0x89, 0x00, 0x42, 0x00, 0x3c];
var frown =
 [0x3c, 0x00, 0x42, 0x00, 0x85, 0x20, 0x89, 0x00,
 0x89, 0x00, 0x85, 0x20, 0x42, 0x00, 0x3c, 0x00];
var neutral =

 [0x3c, 0x3c, 0x42, 0x42, 0xa9, 0xa9, 0x89, 0x89,
 0x89, 0x89, 0xa9, 0xa9, 0x42, 0x42, 0x3c, 0x3c];
var blank = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

b.i2cOpen(port, matrix);

b.i2cWriteByte(port, 0x21); // Start oscillator (p10)
b.i2cWriteByte(port, 0x81); // Disp on, blink off (p11)
b.i2cWriteByte(port, 0xe7); // Full brightness (page 15)

b.i2cWriteBytes(port, 0x00, frown);
sleep.usleep(time);

b.i2cWriteBytes(port, 0x00, neutral);
sleep.usleep(time);

b.i2cWriteBytes(port, 0x00, smile);
// Fade the display
var fade;
for(fade = 0xef; fade >= 0xe0; fade--) {
 b.i2cWriteByte(port, fade);
 sleep.usleep(time/10);
}
for(fade = 0xe1; fade <= 0xef; fade++) {
 b.i2cWriteByte(port, fade);
 sleep.usleep(time/10);
}
b.i2cWriteBytes(port, 0x04, [0xff]);

This line states which bus to use. The last digit gives the BoneScript bus
number.

This specifies the address of the LED matrix, 0x70 in our case.

This indicates which LEDs to turn on. The first byte is for the first column of
green LEDs. In this case, all are turned off. The next byte is for the first column
of red LEDs. The hex 0x3c number is 0b00111100 in binary. This means the
first two red LEDs are off, the next four are on, and the last two are off. The next
byte (0x00) says the second column of green LEDs are all off, the fourth byte
(0x42 = 0b01000010) says just two red LEDs are on, and so on. Declarations
define four different patterns to display on the LED matrix, the last being all
turned off.

Open the I2C port.

Send three commands to the matrix to get it ready to display.

Now, we are ready to display the various patterns. After each pattern is
displayed, we sleep a certain amount of time so that the pattern can be seen.

Finally, send commands to the LED matrix to set the brightness. This makes the
disply fade out and back in again.

Discussion
This setup assumes that the LED matrix can be driven from 3.3 V. See Recipe 3.6 to
drive a 5 V display.
You don’t need to write the entire LED matrix with each write. For example,
b.i2cWriteBytes(port, 0x04, [0xff]); would turn on the third columns of
green LEDs, without writing the other columns.

3.6 Driving a 5 V Device

Problem
You have a 5 V device to drive, and the Bone has 3.3 V outputs.

Solution
If you are lucky, you might be able to drive a 5 V device from the Bone’s 3.3 V
output. Try it and see if it works. If not, you need a level translator.
What you will need for this recipe:

A PCA9306 level translator (see “Integrated Circuits”)

A 5 V power supply (if the Bone’s 5 V power supply isn’t enough)

The PCA9306 translates signals at 3.3 V to 5 V in both directions. It’s meant to work
with I2C devices that have a pull-up resistor, but it can work with anything needing
translation.
Figure 3-7 shows how to wire a PCA9306 to an LED matrix. The left is the 3.3 V
side and the right is the 5 V side. Notice that we are using the Bone’s built-in 5 V
power supply.

Figure 3-7. Wiring a PCA9306 level translator to an LED matrix

NOTE
If your device needs more current than the Bone’s 5 V power supply provides, you can wire in an
external power supply.

Discussion
The 3.3 V clock and data signals from the Bone enter the PCA9306 on pins 3 and 4
(the bottom two on the left) and are translated to 5 V. Then they leave via pins 5 and 6
(lower right). These then drive the 5 V device.

3.7 Writing to a NeoPixel LED String

Problem
You have an Adafruit NeoPixel LED string or Adafruit NeoPixel LED matrix and
want to light it up.

http://www.adafruit.com/products/1138
http://www.adafruit.com/products/1487

Solution
Wire up an Adafruit NeoPixel LED 8-by-8 matrix as shown in Figure 3-8.

Figure 3-8. Wiring an Adafruit NeoPixel LED matrix to P8_30

Example 3-6 shows how to install LEDscape and run the LEDs.

Example 3-6. Installing and running LEDscape and OpenPixelControl
(neoPixel.sh)
#!/bin/sh
Here's what you do to install the neoPixel driver
Disable the HDMI to gain access to the PRU pins
sed -i '/cape_disable=capemgr.disable_partno=BB-BONELT-HDMI,BB-BONELT-HDMIN$/ \
 s/^#//' /boot/uEnv.txt
reboot
Clone and build the code
cd
git clone -b opc-server https://github.com/jadonk/LEDscape.git
cd LEDscape
make
cd
git clone https://github.com/jadonk/openpixelcontrol.git
Load and configure the kernel module, pins and LEDscape daemon
config-pin overlay BB-OPC-EX
modprobe uio_pruss
./LEDscape/run-ledscape &
Run an example Python script
./openpixelcontrol/python_clients/example.py

Discussion
This code utilizes the LEDscape library on the Bone’s programmable real-time unit
(PRU) microcontrollers. We haven’t spoken much about those yet, but I will give you
more ideas regarding working with them in Recipe 8.6. Using the PRUs, you can
implement many different interface protocols with precise timing control, and you
can continue your development on the Bone in high-level languages utilizing Linux.

3.8 Using a Nokia 5510 LCD Display

Problem
You want to display some text and graphics on a Nokia 5510 black-and-white LCD
display.

Solution
What you will need for this recipe:

Breadboard and jumper wires (see “Prototyping Equipment”)

Nokia 5110 LCD (see “Miscellaneous”)

220 Ω resistor (see “Resistors”)

The Nokia 5110 LCD runs off of 3.3 V, so you can wire it directly to the Bone
(Figure 3-9).

Figure 3-9. Wiring a Nokia 5110 LCD display

The drivers for the 5110 are in the Node Packaged Modules repository. Get and
install them by running the following commands:

bone# npm install -g nokia5110
bone# cd /usr/local/lib/node_modules/nokia5110
bone# ln -s LCD_5110.js nokia5110.js
bone# cp lcdTest.js /tmp
bone# cd -

bone# mv /tmp/lcdTest.js nokia5110Test.js

Edit nokia5110Test.js so that the first few lines specify how it’s wired (as shown in
Example 3-7) and then run the code.

Example 3-7. Defining the Nokia 5110 pins (nokia5110.js)
#!/usr/bin/env node
//
// Copyright (C) 2012 - Cabin Programs, Ken Keller
//

var lcd = require('nokia5110');
var b = require('bonescript');
var timeout = 0;
var inverseIndex;

//
// Must define the following outputs
//
lcd.PIN_SDIN = "P9_17";
lcd.PIN_SCLK = "P9_21";
lcd.PIN_SCE = "P9_11";
lcd.PIN_DC = "P9_15";
lcd.PIN_RESET= "P9_13";

Discussion
Now that you have the display working, look in nokia5110Test.js to see examples
of how to display text and bitmaps, scroll text, and invert the display.

3.9 Making Your Bone Speak

Problem
Your Bone wants to talk.

Solution
Just install the flite text-to-speech program:

bone# apt-get install flite

Then add the code from Example 3-8 in a file called speak.js and run.

Example 3-8. A program that talks (speak.js)
#!/usr/bin/env node

var exec = require('child_process').exec;

function speakForSelf(phrase) {
{
 exec('flite -t "' + phrase + '"', function (error, stdout, stderr) {
 console.log(stdout);
 if(error) {
 console.log('error: ' + error);
 }
 if(stderr) {
 console.log('stderr: ' + stderr);
 }
 });
}

speakForSelf("Hello, My name is Borris. " +
 "I am a BeagleBone Black, " +
 "a true open hardware, " +
 "community-supported embedded computer for developers and hobbyists. " +
 "I am powered by a 1 Giga Hertz Sitara™ ARM® Cortex-A8 processor. " +
 "I boot Linux in under 10 seconds. " +
 "You can get started on development in " +
 "less than 5 minutes with just a single USB cable." +
 "Bark, bark!"
);

See Recipe 2.12 to see how to use a USB audio dongle and set your default audio
out.

Discussion
Here, speakForSelf() uses the exec() function to call the external program flite.
We pass the string to speak to speakForSelf(), and it passes the string on to flite
as a parameter to synthesize.

Chapter 4. Motors

4.0 Introduction
One of the many fun things about embedded computers is that you can move physical
things with motors. But there are so many different kinds of motors (servo, stepper,
DC), so how do you select the right one?
The type of motor you use depends on the type of motion you want:

R/C or hobby servo motor
Can be quickly positioned at various absolute angles, but some don’t spin. In
fact, many can turn only about 180°.

Stepper motor
Spins and can also rotate in precise relative angles, such as turning 45°. Stepper
motors come in two types: bipolar (which has four wires) and unipolar (which
has five or six wires).

DC motor
Spins either clockwise or counter-clockwise and can have the greatest speed of
the three. But a DC motor can’t easily be made to turn to a given angle.

When you know which type of motor to use, interfacing is easy. This chapter shows
how to interface with each of these motors.

NOTE
Motors come in many sizes and types. This chapter presents some of the more popular types and
shows how they can interface easily to the Bone. If you need to turn on and off a 120 V motor,
consider using something like the PowerSwitch presented in Recipe 3.3.

NOTE
The Bone has built-in 3.3 V and 5 V supplies, which can supply enough current to drive some small
motors. Many motors, however, draw enough current that an external power supply is needed.
Therefore, an external 5 V power supply is listed as optional in many of the recipes.

4.1 Controlling a Servo Motor

Problem
You want to use BeagleBone to control the absolute position of a servo motor.

Solution
We’ll use the pulse width modulation (PWM) hardware of the Bone and control a
servo motor with the analogWrite() function.

To make the recipe, you will need:
Servo motor (see “Miscellaneous”)

Breadboard and jumper wires (see “Prototyping Equipment”)

1 kΩ resistor (optional, see “Resistors”)

5 V power supply (optional, see “Miscellaneous”)

The 1 kΩ resistor isn’t required, but it provides some protection to the general-
purpose input/output (GPIO) pin in case the servo fails and draws a large current.
Wire up your servo, as shown in Figure 4-1.

NOTE
There is no standard for how servo motor wires are colored. One of my servos is wired like Figure 4-
1: red is 3.3 V, black is ground, and yellow is the control line. I have another servo that has red as 3.3
V and ground is brown, with the control line being orange. Generally, though, the 3.3 V is in the
middle. Check the datasheet for your servo before wiring.

Figure 4-1. Driving a servo motor with the 3.3 V power supply

The code for controlling the servo motor is in servoMotor.js, shown in Example 4-1.

Example 4-1. Code for driving a servo motor (servoMotor.js)
#!/usr/bin/env node

// Drive a simple servo motor back and forth

var b = require('bonescript');

var motor = 'P9_21', // Pin to control servo
 freq = 50, // Servo frequency (20 ms)
 min = 0.8, // Smallest angle (in ms)
 max = 2.5, // Largest angle (in ms)
 ms = 250, // How often to change position, in ms
 pos = 1.5, // Current position, about middle
 step = 0.1; // Step size to next position

console.log('Hit ^C to stop');
b.pinMode(motor, b.ANALOG_OUTPUT, 6, 0, 0, doInterval);

function doInterval(x) {
 if(x.err) {
 console.log('x.err = ' + x.err);
 return;
 }
 timer = setInterval(sweep, ms);
}

move(pos); // Start in the middle

// Sweep from min to max position and back again
function sweep() {
 pos += step; // Take a step
 if(pos > max || pos < min) {
 step *= -1;
 }
 move(pos);
}

function move(pos) {
 var dutyCycle = pos/1000*freq;
 b.analogWrite(motor, dutyCycle, freq);
 console.log('pos = ' + pos + ' duty cycle = ' + dutyCycle);
}

process.on('SIGINT', function() {
 console.log('Got SIGINT, turning motor off');
 clearInterval(timer); // Stop the timer
 b.analogWrite(motor, 0, freq); // Turn motor off
});

Running the code causes the motor to move back and forth, progressing to successive
positions between the two extremes. You will need to press ^C (Ctrl-C) to stop the
script.

Discussion
Servo motors are often used in radio-controlled airplanes or cars. They generally
don’t spin, but rather turn only 180°, just enough to control an elevator on a wing or
steer wheels on a car.
The servo is controlled by a PWM signal, which is controlled by the
analogWrite() function, which sends a pulse 50 times each second (50 Hz or every
20 ms). The width of the pulse determines the position of the motor. A short pulse (1
ms, for example) sends the motor angle to zero degrees. A long pulse (2 ms, for
example) sets the angle to 180 degrees.
The code in Example 4-1 defines a move() function, which moves the motor to a
different angle every time it is called. The setInterval() function schedules
sweep() to be called every quarter second (250 ms) to step the servo to a new
position.
At the end of the code, the process.on() function detects when the user has pressed
^C (Ctrl-C), stops the timer, and turns off the motor. If you don’t turn off the motor, it
will keep buzzing, even if it isn’t moving.
Not all GPIO pins support the PWM hardware; Recipe 3.4 discusses which pins you
can use.

NOTE
If your servo motor needs to run off 5 V, wire it as shown in Figure 4-2. The banded wire attaches
the Bone’s 5 V power supply (P9_7) to the power supply on the servo. We are still controlling it with
a 3.3 V signal.

Here, we move the banded power wire from the 3.3 V power supply to the Bone’s 5 V power
supply on pin P9_7. If the Bone’s built-in 5 V doesn’t supply enough current, or if you need a higher
voltage, connect your servo’s power supply wire to an external power supply.

Figure 4-2. Driving a servo motor with the 5 V power supply

Of the motors presented in this chapter, the servo motor is the easiest to drive,
because the control line on the servo doesn’t require much current and therefore
doesn’t require additional components.

4.2 Controlling the Speed of a DC Motor

Problem
You have a DC motor (or a solenoid) and want a simple way to control its speed, but
not the direction.

Solution
It would be nice if you could just wire the DC motor to BeagleBone Black and have
it work, but it won’t. Most motors require more current than the GPIO ports on the
Bone can supply. Our solution is to use a transistor to control the current to the bone.
Here’s what you will need:

3 V to 5 V DC motor

Breadboard and jumper wires (see “Prototyping Equipment”)

1 kΩ resistor (see “Resistors”)

Transistor 2N3904 (see “Transistors and Diodes”)

Diode 1N4001 (see “Transistors and Diodes”)

Power supply for the motor (optional)

If you are using a larger motor (more current), you will need to use a larger
transistor.
Wire your breadboard as shown in Figure 4-3.

Figure 4-3. Wiring a DC motor to spin one direction

Use the code in Example 4-2 (dcMotor.js) to run the motor.

Example 4-2. Driving a DC motor in one direction (dcMotor.js)
#!/usr/bin/env node

// This is an example of driving a DC motor

var b = require('bonescript');

var motor = 'P9_16',// Pin to drive transistor
 min = 0.05, // Slowest speed (duty cycle)
 max = 1, // Fastest (always on)
 ms = 100, // How often to change speed, in ms
 speed = 0.5, // Current speed;
 step = 0.05; // Change in speed

b.pinMode(motor, b.ANALOG_OUTPUT, 6, 0, 0, doInterval);

function doInterval(x) {
 if(x.err) {
 console.log('x.err = ' + x.err);
 return;
 }
 var timer = setInterval(sweep, ms);
}

function sweep() {
 speed += step;
 if(speed > max || speed < min) {
 step *= -1;
 }

 b.analogWrite(motor, speed);
 console.log('speed = ' + speed);
}

process.on('SIGINT', function() {
 console.log('Got SIGINT, turning motor off');
 clearInterval(timer); // Stop the timer
 b.analogWrite(motor, 0); // Turn motor off
});

Discussion
This is actually the same code that you used to drive the servo motor (Recipe 4.1).
The only difference is how the parameters are set. We are now using the PWM
hardware to control the speed of the motor rather than the position. If the duty cycle is
1, the voltage to the motor is on all the time, and it runs at its fastest. If the duty cycle
is 0.5, the voltage is on half the time, so the motor runs slower. A duty cycle of 0
stops the motor.
You can use this same setup to drive a solenoid. After all, a solenoid is a DC motor
that goes back and forth rather than spinning. Generally, you would drive a solenoid
with an on or off signal, as opposed to using a PWM signal.
At the end of the code, the process.on() function detects when the user has pressed
^C (Ctrl-C), stops the timer, and turns off the motor. If you don’t turn off the motor, it
will continue to spin.

See Also
How do you change the direction of the motor? See Recipe 4.3.

4.3 Controlling the Speed and Direction of a DC Motor

Problem
You would like your DC motor to go forward and backward.

Solution
Use an H-bridge to switch the terminals on the motor so that it will run both
backward and forward. We’ll use the L293D: a common, single-chip H-bridge.
Here’s what you will need:

3 V to 5 V motor (see “Miscellaneous”)

Breadboard and jumper wires (see “Prototyping Equipment”)

L293D H-Bridge IC (see “Integrated Circuits”)

Power supply for the motor (optional)

Lay out your breadboard as shown in Figure 4-4. Ensure that the L293D is positioned
correctly. There is a notch on one end that should be pointed up.

Figure 4-4. Driving a DC motor with an H-bridge

The code in Example 4-3 (h-bridgeMotor.js) looks much like the code for driving the
DC motor with a transistor (Example 4-2). The additional code specifies which
direction to spin the motor.

Example 4-3. Code for driving a DC motor with an H-bridge (h-bridgeMotor.js)
#!/usr/bin/env node

// This example uses an H-bridge to drive a DC motor in two directions

var b = require('bonescript');

var enable = 'P9_21'; // Pin to use for PWM speed control
 in1 = 'P9_15',
 in2 = 'P9_16',
 step = 0.05, // Change in speed
 min = 0.05, // Min duty cycle
 max = 1.0, // Max duty cycle
 ms = 100, // Update time, in ms
 speed = min; // Current speed;

b.pinMode(enable, b.ANALOG_OUTPUT, 6, 0, 0, doInterval);
b.pinMode(in1, b.OUTPUT);
b.pinMode(in2, b.OUTPUT);

function doInterval(x) {
 if(x.err) {
 console.log('x.err = ' + x.err);
 return;
 }
 timer = setInterval(sweep, ms);
}

clockwise(); // Start by going clockwise

function sweep() {
 speed += step;
 if(speed > max || speed < min) {
 step *= -1;
 step>0 ? clockwise() : counterClockwise();
 }
 b.analogWrite(enable, speed);
 console.log('speed = ' + speed);
}

function clockwise() {
 b.digitalWrite(in1, b.HIGH);
 b.digitalWrite(in2, b.LOW);
}

function counterClockwise() {
 b.digitalWrite(in1, b.LOW);
 b.digitalWrite(in2, b.HIGH);
}

process.on('SIGINT', function() {
 console.log('Got SIGINT, turning motor off');
 clearInterval(timer); // Stop the timer
 b.analogWrite(enable, 0); // Turn motor off
});

Discussion
The H-bridge provides a simple way to switch the leads on a motor so that it will
reverse directions. Figure 4-5 shows how an H-bridge works.

Figure 4-5. H-bridge schematic

The four switches connected to the motor (the big M in the center of Figure 4-5) are
the H-bridge. In the left diagram, two switches are closed, connecting the left
terminal of the motor to the plus voltage and the right terminal to the ground. This
makes the motor rotate in one direction. The diagram on the right shows the other two
switches closed, and the plus and grounds are connected to the opposite terminals,
making the motor spin the other way.
In the code, in1 and in2 are used to control each pair of switches. (The L293D has
four sets of these switches, but we are using only two pairs.) So, to turn clockwise,
set in1 HIGH and in2 LOW. To go counter-clockwise, set them the opposite way:

function clockwise() {
 b.digitalWrite(in1, b.HIGH);
 b.digitalWrite(in2, b.LOW);
}

function counterClockwise() {
 b.digitalWrite(in1, b.LOW);
 b.digitalWrite(in2, b.HIGH);
}

The L293D also has an enable pin (pin 9, on the lower right), which is used to
control the speed of the motor by using a PWM signal. (See Recipe 4.2 for details on
how this works.)
At the end of the code, the process.on() function at the end of the code detects
when the user has pressed ^C (Ctrl-C), stops the timer, and turns off the motor. If you
don’t turn off the motor, it will continue to spin.

NOTE
The previous example uses a motor that works with 3.3 V. What if you have a 5 V motor? The
banded wire (running from P9_7 to pin 8 of the L293D) in Figure 4-6 attaches the L293D to the
Bone’s 5 V power supply. This will work if your motor doesn’t draw too much current.

If 5 V isn’t enough voltage, or if the Bone can’t supply the current needed, Figure 4-7 shows how to
use an external power supply.

Figure 4-6. Driving a 5 V DC motor with an H-bridge

Figure 4-7. Driving a DC motor with an H-bridge and external power supply

The H-bridge provides an easy way to reverse the direction of a DC motor, and
attaching the enable to a PWM signal allows you to control the speed.

4.4 Driving a Bipolar Stepper Motor

Problem
You want to drive a stepper motor that has four wires.

Solution
Use an L293D H-bridge. The bipolar stepper motor requires us to reverse the coils,
so we need to use an H-bridge.
Here’s what you will need:

Breadboard and jumper wires (see “Prototyping Equipment”)

3 V to 5 V bipolar stepper motor (see “Miscellaneous”)

L293D H-Bridge IC (see “Integrated Circuits”)

Wire as shown in Figure 4-8.

Figure 4-8. Bipolar stepper motor wiring

Use the code in Example 4-4 (bipolarStepperMotor.js) to drive the motor.

Example 4-4. Driving a bipolar stepper motor (bipolarStepperMotor.js)
#!/usr/bin/env node
var b = require('bonescript');

// Motor is attached here
var controller = ["P9_11", "P9_13", "P9_15", "P9_17"];
var states = [[1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]];
var statesHiTorque = [[1,1,0,0], [0,1,1,0], [0,0,1,1], [1,0,0,1]];
var statesHalfStep = [[1,0,0,0], [1,1,0,0], [0,1,0,0], [0,1,1,0],
 [0,0,1,0], [0,0,1,1], [0,0,0,1], [1,0,0,1]];

var curState = 0; // Current state
var ms = 100, // Time between steps, in ms
 max = 22, // Number of steps to turn before turning around
 min = 0; // Minimum step to turn back around on

var CW = 1, // Clockwise
 CCW = -1,
 pos = 0, // current position and direction
 direction = CW;

// Initialize motor control pins to be OUTPUTs
var i;
for(i=0; i<controller.length; i++) {
 b.pinMode(controller[i], b.OUTPUT);
}

// Put the motor into a known state
updateState(states[0]);
rotate(direction);

var timer = setInterval(move, ms);

// Rotate back and forth once
function move() {
 pos += direction;
 console.log("pos: " + pos);
 // Switch directions if at end.
 if (pos >= max || pos <= min) {
 direction *= -1;
 }
 rotate(direction);
}

// This is the general rotate
function rotate(direction) {
 // console.log("rotate(%d)", direction);
 // Rotate the state acording to the direction of rotation
 curState += direction;
 if(curState >= states.length) {
 curState = 0;
 } else if(curState<0) {
 curState = states.length-1;
 }
 updateState(states[curState]);
}

// Write the current input state to the controller
function updateState(state) {
 console.log("state: " + state);
 for (i=0; i<controller.length; i++) {
 b.digitalWrite(controller[i], state[i]);
 }
}

process.on('exit', function() {
 updateState([0,0,0,0]); // Turn motor off
});

When you run the code, the stepper motor will rotate back and forth.

Discussion
Stepper motors are designed to rotate in discrete steps. They operate by turning on
one coil (coil 1, for example) in one direction, then turning off coil 1 and turning on
coil 2, then turning on 1 in the reverse direction, then 2 in reverse, and then back to 1
forward, as shown in Figure 4-9.

Figure 4-9. Model of a bipolar stepper motor

In Example 4-4 (bipolarStepperMotor.js), the states variable is an array of the four
different states listed in the previous paragraph. That is, [1,0,0,0] instructs to turn
on coil 1 in the forward direction. After it’s been on for a while, you move to the next
state, [0,1,0,0]. This turns off coil 1 and turns on coil 2. Then you go to
[0,0,1,0], which turns on coil 1 in reverse, and so on. The H-bridge (see Recipe
4.3) takes care of reversing the coil:

var states = [[1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]];

Whenever you step, you just index the next element in the array. If you want to go
backward, index the previous element.
There are two other state sequences given in the code, but they aren’t ever used.
statesHiTorque is like the original states, except that it has both magnets on at the
same time, giving a stronger pull on the motor. The statesHalfStep alternates
between having one and two coils on simultaneously to give finer control in the step
size:

var statesHiTorque = [[1,1,0,0], [0,1,1,0], [0,0,1,1], [1,0,0,1]];
var statesHalfStep = [[1,0,0,0], [1,1,0,0], [0,1,0,0], [0,1,1,0],
 [0,0,1,0], [0,0,1,1], [0,0,0,1], [1,0,0,1]];

You can easily try either of these by assigning them to the states variable.

Notice the banded wire running from pin 8 (lower left) of the L293D to P9_7 in
Figure 4-8. This is connecting the 5 V power supply on the Bone to the L293D. The
Bone outputs 3.3 V on its GPIO pins, but the stepper motor I am using really needs 5
V. Connecting the 5 V in this way provides 5 V out of the L293D to the stepper
motor.

NOTE
If your stepper motor requires a higher voltage (up to 12 V), you can wire an external power supply,
as shown in Figure 4-10.

Figure 4-10. Model of a bipolar stepper motor

The stepper motor requires a more complex setup than the servo motor, but it has the

advantage of being able to spin, which the servo can’t do.

4.5 Driving a Unipolar Stepper Motor

Problem
You want to drive a stepper motor that has five or six wires.

Solution
If your stepper motor has five or six wires, it’s a unipolar stepper and is wired
differently than the bipolar. Here, we’ll use a ULN2003 Darlington Transistor Array
IC to drive the motor.
Here’s what you will need:

Breadboard and jumper wires (see “Prototyping Equipment”)

3 V to 5 V unipolar stepper motor (see “Miscellaneous”)

ULN2003 Darlington Transistor Array IC (see “Integrated Circuits”)

Wire, as shown in Figure 4-11.

NOTE
The IC in Figure 4-11 is illustrated upside down from the way it is usually displayed. That is, the notch
for pin 1 is on the bottom. This made drawing the diagram much cleaner.

Also, notice the banded wire running the P9_7 (5 V) to the UL2003A. The stepper motor I’m using
runs better at 5 V, so I’m using the Bone’s 5 V power supply. The signal coming from the GPIO pins
is 3.3 V, but the U2003A will step them up to 5 V to drive the motor.

Figure 4-11. Unipolar stepper motor wiring

The code for driving the motor is in unipolarStepperMotor.js; however, it is almost
identical to the bipolar stepper code (Example 4-4), so Example 4-5 shows only the

lines that you need to change.

Example 4-5. Changes to bipolar code to drive a unipolar stepper motor
(unipolarStepperMotor.diff)
var controller = ["P9_11", "P9_13", "P9_15", "P9_17"];
var states = [[1,1,0,0], [0,1,1,0], [0,0,1,1], [1,0,0,1]];
var curState = 0; // Current state
var ms = 100, // Time between steps, in ms
 max = 22, // Number of steps to turn before turning around

The code in this example makes the following changes:
controller is attached to the even-numbered pins on the P9 header rather than
the odd that the bipolar stepper used. (Doing this allows you to run both types of
stepper motors at the same time!)

The states are different. Here, we have two pins high at a time.

The time between steps (ms) is shorter, and the number of steps per direction
(max) is bigger. The unipolar stepper I’m using has many more steps per
rotation, so I need more steps to make it go around.

Discussion
Figure 4-12 shows how the unipolar stepper motor is wired a bit differently than the
bipolar.

Figure 4-12. Model of a unipolar stepper motor

Each coil is split, so you can access the two sides separately. The difference between
the five- and six-wire steppers is that the five-wire steppers have the two power
lines connected to each other. The different wiring means a different energizing
sequence, as seen in the different states array.

NOTE
If your stepper requires more voltage, or more current than what the Bone can supply, you can
replace the banded wire with an external power supply, similar to the bipolar stepper example
(Figure 4-10).

Chapter 5. Beyond the Basics

5.0 Introduction
In Chapter 1, you learned how to set up BeagleBone Black, and Chapter 2, Chapter 3,
and Chapter 4 showed how to interface to the physical world. Chapter 6 through the
remainder of the book moves into some more exciting advanced topics, and this
chapter gets you ready for them.
The recipes in this chapter assume that you are running Linux on your host computer
(Recipe 5.2) and are comfortable with using Linux. We continue to assume that you
are logged in as root on your Bone.

5.1 Running Your Bone Standalone

Problem
You want to use BeagleBone Black as a desktop computer with keyboard, mouse, and
an HDMI display.

Solution
The Bone comes with USB and a microHDMI output. All you need to do is connect
your keyboard, mouse, and HDMI display to it.
To make this recipe, you will need:

Standard HDMI cable and female HDMI-to-male microHDMI adapter (see
“Miscellaneous”), or

MicroHDMI-to-HDMI adapter cable (see “Miscellaneous”)

HDMI monitor (see “Miscellaneous”)

USB keyboard and mouse

Powered USB hub (see “Miscellaneous”)

NOTE
The microHDMI adapter is nice because it allows you to use a regular HDMI cable with the Bone.
However, it will block other ports and can damage the Bone if you aren’t careful. The microHDMI-
to-HDMI cable won’t have these problems.

TIP
You can also use an HDMI-to-DVI cable (“Miscellaneous”) and use your Bone with a DVI-D
display.

The adapter looks something like Figure 5-1.

Figure 5-1. Female HDMI-to-male microHDMI adapter

Plug the small end into the microHDMI input on the Bone and plug your HDMI cable
into the other end of the adapter and your monitor. If nothing displays on your Bone,
reboot.
If nothing appears after the reboot, edit the /boot/uEnv.txt file. Search for the line
containing ##Disable HDMI and add the following lines after it:

##Disable HDMI
#cape_disable=capemgr.disable_partno=BB-BONELT-HDMI,BB-BONELT-HDMIN
cape_disable=capemgr.disable_partno=BB-BONELT-HDMI

Then reboot.

TIP
The /boot/uEnv.txt file contains a number of configuration commands that are executed at boot time.
The # character is used to add comments; that is, everything to the right of a # is ignored by the Bone
and is assumed to be for humans to read. In the previous example, ##Disable HDMI is a comment
that informs us the next line(s) are for disabling the HDMI. Two cape.disable commands follow.
The first one is commented-out and won’t be executed by the Bone.

Why not just remove the first cape.disable? Later, you might decide you need more general-purpose
input/output (GPIO) pins and don’t need the HDMI display. If so, just remove the # from for first
cape.disble. If you had completely removed the line earlier, you would have to look up the details
somewhere to re-create it.

When in doubt, comment-out; don’t delete.

NOTE
If you want to re-enable the HDMI audio, just comment-out the line you added.

The Bone has only one USB port, so you will need to get either a keyboard with a
USB hub (see “Miscellaneous”) or a powered USB hub. Plug the USB hub into the
Bone and then plug your keyboard and mouse in to the hub. You now have a Beagle
workstation; no host computer is needed.

TIP
The powered hub is recommended because USB can supply only 500 mA, and you’ll want to plug
many things into the Bone.

Discussion
This recipe disables the HDMI audio, which allows the Bone to try other resolutions.
If this fails, see BeagleBoneBlack HDMI for how to force the Bone’s resolution to
match your monitor.

http://bit.ly/1GEPcOH

5.2 Selecting an OS for Your Development Host
Computer

Problem
Your project needs a host computer, and you need to select an operating system (OS)
for it.

Solution
For projects that require a host computer, we assume that you are running Linux
Ubuntu 14.04 LTS. You can be running either a native installation, via a virtual
machine such as VirtualBox, or in the cloud (Microsoft Azure or Amazon Elastic
Compute Cloud [EC2], for example).

http://bit.ly/1wXOwkw
https://www.virtualbox.org/
http://bit.ly/1wu04LI
http://aws.amazon.com/ec2/

Discussion
Most of the projects in this book run on the Bone using JavaScript and the BoneScript
API, and which OS is running on the host doesn’t matter, as long as it has a browser
(either Google Chrome or Firefox work). In fact, if you attach an HDMI monitor,
keyboard, and mouse (Recipe 5.1), you don’t need a host computer at all.

NOTE
Other versions of Ubuntu should work. Even other Linux distributions should work; this book has
been tested only on Ubuntu 14.04. Because OS X is built on Unix, the projects should also work on
a Mac.

If you are running Microsoft Windows, many recipes will work via the browser (but
maybe not Internet Explorer). But if you are doing development work, you will need
to run Linux. One option is to set up your Windows-based computer to dual boot.
When you power up, you’ll need to choose either Ubuntu or Windows to boot up.
Another option is to run Ubuntu in a virtual machine (such as VirtualBox
[https://www.virtualbox.org/]) on your Windows computer. In this configuration, you
are running Windows, but Ubuntu runs in an application within Windows. You have
access to Windows even while running Ubuntu.
Yet another option is to use one of the many free cloud services, such as Azure or
EC2. These are both quick and easy ways to get access to Ubuntu 14.04 without
installing it on a local computer.
I’ve provided tutorials online that show how to set up Azure and EC2.

http://bit.ly/1DAx5Zp
http://mzl.la/1BwDS2K
http://www.microsoft.com/
http://bit.ly/1MrBxJj
http://bit.ly/1GrF34e
https://www.virtualbox.org/
http://azure.microsoft.com/en-us/
http://aws.amazon.com/ec2/
http://bit.ly/1E5wkm0
http://bit.ly/1NJSuSL

5.3 Getting to the Command Shell via SSH

Problem
You want to connect to the command shell of a remote Bone from your host computer.

Solution
Recipe 1.7 shows how to run shell commands in the Cloud9 bash tab. However, the
Bone has Secure Shell (SSH) enabled right out of the box, so you can easily connect
by using the following command to log in as superuser root, (note the # at the end of
the prompt):

host$ ssh root@192.168.7.2
Warning: Permanently added 'bone,192.168.7.2' (ECDSA) to the list of known hosts.
Last login: Mon Dec 22 07:53:06 2014 from yoder-linux.local
bone#

Or you could log in as a normal user, debian (note the $ at the end of the prompt):

host$ ssh debian@192.168.7.2
Warning: Permanently added 'bone,192.168.7.2' (ECDSA) to the list of known hosts.
debian@bone's password:
Last login: Fri Dec 5 07:57:06 2014 from 192.168.7.1
bone$

root has no password. It’s best to change both passwords:

bone$ passwd
Changing password for debian.
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

Discussion
Sometimes, when connecting via SSH, you will get an error like this:

host$ ssh root@192.168.7.2
@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that a host key has just been changed.
The fingerprint for the ECDSA key sent by the remote host is
1b:dc:bc:c6:8f:87:f7:de:30:97:a4:7b:84:9d:84:ad.
Please contact your system administrator.
Add correct host key in /home/yoder/.ssh/known_hosts to get rid of this message.
Offending ECDSA key in /home/yoder/.ssh/known_hosts:3
 remove with: ssh-keygen -f "/home/yoder/.ssh/known_hosts" -R 192.168.7.2
ECDSA host key for 192.168.7.2 has changed, you have requested strict checking.
Host key verification failed.

A quick fix is to follow the directions in the error:

host$ ssh-keygen -f "/home/yoder/.ssh/known_hosts" -R 192.168.7.2

A longer-term solution is to create an SSH configuration file. Add the following code
to a file called ~/.ssh/config:

Host 192.168.7.2
 User root
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no

The UserKnownHostsFile parameter says to check /dev/null for a list of hosts it
knows, but /dev/null is a file that is always empty, so SSH will assume it doesn’t
know any hosts from before. The StrictHostKeyChecking no setting tells SSH to
automatically add new hosts without asking.
The User root line solves a different problem. I generally log in to my Bone as
root; this line makes SSH default to root, so I can enter the SSH without the root@,
and it will log me in as root:

host$ ssh 192.168.7.2
root@192.168.7.2's password:
bone#

TIP
You can have a password on your Bone, but not have to type it in everytime you SSH to the Bone.
From your host, do this:

host$ ssh-copy-id root@192.168.7.2
The authenticity of host '192.168.7.2 (192.168.7.2)'
 can't be established.
ECDSA key fingerprint is
 54:ce:02:e5:83:3f:01:b3:bc:fd:43:fe:08:d4:97:ff.
Are you sure you want to continue connecting
 (yes/no)? yes
Warning: Permanently added '192.168.7.2' (ECDSA)
 to the list of known hosts.
Now try logging into the machine, with
 "ssh 'root@192.168.7.2'", and check in:

 ~/.ssh/authorized_keys

to make sure we haven't added extra keys that you weren't
expecting.

This copies some keys to the Bone that tell it to allow you to log in from your host without using a
password.

SSH is a very common way to connect between computers. After it’s working, it
opens up many other useful commands that are based on it. For example, you can
copy files from one computer to another by using the scp command:

host$ scp fileOnHost root@192.168.7.2:fileOnBone

This copies the fileOnHost file to the Bone and puts it in the /root/fileOnBone file.

NOTE
If your host computer supports X-Windows (Linux and the Mac’s OS X do), you can run your
graphical program directly from the command line. When connecting to your Bone via SSH, use the -
X flag. This instructs SSH to forward the graphical commands back to your host.

host$ ssh -X debian@192.168.7.2
bone# lxterminal

An lxterminal window will show up on your host.

5.4 Getting to the Command Shell via the Virtual Serial
Port

Problem
You want to connect to the command shell of a remote Bone from your host computer
without using SSH.

Solution
Sometimes, you can’t connect to the Bone via SSH, but you have a network working
over USB to the Bone. There is a way to access the command line to fix things
without requiring extra hardware. (Recipe 5.5 shows a way that works even if you
don’t have a network working over USB, but it requires a special serial-to-USB
cable.)
First, check to ensure that the serial port is there. On the host computer, run the
following command:

host$ ls -ls /dev/ttyACM0
0 crw-rw---- 1 root dialout 166, 0 Jun 19 11:47 /dev/ttyACM0

/dev/ttyACM0 is a serial port on your host computer that the Bone creates when it
boots up. The letters crw-rw---- show that you can’t access it as a normal user.
However, you can access it if you are part of dialout group. Just add yourself to the
group:

host$ sudo adduser $USER dialout

You have to run adduser only once. Your host computer will remember the next time
you boot up. Now, install and run the screen command:

host$ sudo apt-get install screen
host$ screen /dev/ttyACM0 115200
Debian GNU/Linux 7 beaglebone ttyGS0

default username:password is [debian:temppwd]

Support/FAQ: http://elinux.org/Beagleboard:BeagleBoneBlack_Debian

The IP Address for usb0 is: 192.168.7.2
beaglebone login:

The /dev/ttyACM0 parameter specifies which serial port to connect to, and 115200
tells the speed of the connection. In this case, it’s 115,200 bits per second.

Discussion
You can now run your favorite commands. For help, press ^A? (that is, Ctrl-A, and
then ?):

 Screen key bindings, page 1 of 2.

 Command key: ^A Literal ^A: a

break ^B b license , removebuf =
clear C lockscreen ^X x reset Z
colon : log H screen ^C c
copy ^[[login L select '
detach ^D d meta a silence _
digraph ^V monitor M split S
displays * next ^@ ^N sp n suspend ^Z z
dumptermcap . number N time ^T t
fit F only Q title A
flow ^F f other ^A vbell ^G
focus ^I pow_break B version v
hardcopy h pow_detach D width W
help ? prev ^H ^P p ^? windows ^W w
history { } quit \ wrap ^R r
kill K k redisplay ^L l xoff ^S s
lastmsg ^M m remove X xon ^Q q

 [Press Space for next page; Return to end.]

Pressing ^A\ (Ctrl-A and then \) quits screen.

This is a handy way to get access to your Bone when the normal way (SSH) doesn’t
work. However, you can’t pass graphics or use commands such as scp.

5.5 Viewing and Debugging the Kernel and u-boot
Messages at Boot Time

Problem
You want to see the messages that are logged by BeagleBone Black come to life.

Solution
There is no network in place when the Bone first boots up, so Recipe 5.3 and Recipe
5.4 won’t work. This recipe uses some extra hardware (FTDI cable) to attach to the
Bone’s console serial port.
To make this recipe, you will need:

3.3 V FTDI cable (see “Miscellaneous”)

WARNING
Be sure to get a 3.3 V FTDI cable (shown in Figure 5-2), because the 5 V cables won’t work.

TIP
The Bone’s Serial Debug J1 connector has Pin 1 connected to ground, Pin 4 to receive, and Pin 5 to
transmit. The other pins are not attached.

Figure 5-2. FTDI cable

Look for a small triangle at the end of the FTDI cable (Figure 5-3). It’s often
connected to the black wire.

Figure 5-3. FTDI connector

Next, look for the FTDI pins of the Bone (labeled J1 on the Bone), shown in
Figure 5-4. They are next to the P9 header and begin near pin 20. There is a white dot
near P9_20.

Figure 5-4. FTDI pins for the FTDI connector 1

Plug the FTDI connector into the FTDI pins, being sure to connect the triangle pin on
the connector to the white dot pin of the FTDI connector.

Now, run the following commands on your host computer:

host$ ls -ls /dev/ttyUSB0
0 crw-rw---- 1 root dialout 188, 0 Jun 19 12:43 /dev/ttyUSB0
host$ sudo adduser $USER dialout
host$ screen /dev/ttyUSB0 115200
Debian GNU/Linux 7 beaglebone ttyO0

default username:password is [debian:temppwd]

Support/FAQ: http://elinux.org/Beagleboard:BeagleBoneBlack_Debian

The IP Address for usb0 is: 192.168.7.2
beaglebone login:

NOTE
Your screen might initially be black. Press Enter a couple times to see the login prompt.

Discussion
This is the same screen command as in Recipe 5.4, just using a different port.

TIP
To see and save the boot loader and Linux boot-up messages, press ^AH (Ctrl-A and then H) to start
logging to a file on your host computer and then reboot your Bone.

Now you see what goes on before the kernel starts:

bone# reboot
Broadcast message from root@beaglebone (ttyO0) (Thu Jun 19 15:04:40 20
The system is going down for reboot NOW!
...
[368.405404] Restarting system.

U-Boot SPL 2013.04-dirty (Jul 10 2013 - 14:02:53)
...
reading u-boot.img

U-Boot 2013.04-dirty (Jul 10 2013 - 14:02:53)

I2C: ready
DRAM: 512 MiB
WARNING: Caches not enabled
NAND: No NAND device found!!!
0 MiB
MMC: OMAP SD/MMC: 0, OMAP SD/MMC: 1
*** Warning - readenv() failed, using default environment
...
Hit any key to stop autoboot: 1 ... 0
gpio: pin 53 (gpio 53) value is 1
mmc0 is current device
micro SD card found
mmc0 is current device
gpio: pin 54 (gpio 54) value is 1
SD/MMC found on device 0
reading uEnv.txt
1672 bytes read in 7 ms (232.4 KiB/s)
Loaded environment from uEnv.txt
Importing environment from mmc ...
Running uenvcmd ...
reading zImage
4103240 bytes read in 470 ms (8.3 MiB/s)
reading initrd.img
2957458 bytes read in 341 ms (8.3 MiB/s)
reading /dtbs/am335x-boneblack.dtb
25926 bytes read in 10 ms (2.5 MiB/s)
Flattened Device Tree blob at 88000000
 Booting using the fdt blob at 0x88000000
 Using Device Tree in place at 88000000, end 88009545
Starting kernel ...
Uncompressing Linux... done, booting the kernel.
...
Loading, please wait...

Scanning for Btrfs filesystems
systemd-fsck[216]: rootfs: clean, 87588/229216 files, 470285/928512 blocks

Debian GNU/Linux 7 beaglebone ttyO0

default username:password is [debian:temppwd]

Support/FAQ: http://elinux.org/Beagleboard:BeagleBoneBlack_Debian

The IP Address for usb0 is: 192.168.7.2
beaglebone login:

NOTE
You are now attached to the console serial port on the Bone, where system messages are logged.
This is handy to have while doing low-level debugging. Watch out, though: those message could pop
up any time and hide your login prompt.

5.6 Verifying You Have the Latest Version of the OS on
Your Bone from the Shell

Problem
You are logged in to your Bone with a command prompt and want to know what
version of the OS you are running.

Solution
Log in to your Bone and enter the following command:

bone# cat /etc/dogtag
BeagleBoard.org BeagleBone Debian Image 2014-11-11

Discussion
Recipe 1.3 shows how to open the ID.txt file to see the OS version. The /etc/dogtag
file has the same contents and is easier to find if you already have a command
prompt. See Recipe 1.10 if you need to update your OS.

5.7 Controlling the Bone Remotely with VNC

Problem
You want to access the BeagleBone’s graphical desktop from your host computer.

Solution
Run the installed Virtual Network Computing (VNC) server:

bone# sudo -u debian tightvncserver

You will require a password to access your desktops.

Password:
Verify:
Would you like to enter a view-only password (y/n)? n
xauth: (argv):1: bad display name "beaglebone:1" in "add" command

New 'X' desktop is beaglebone:1

Creating default startup script /root/.vnc/xstartup
Starting applications specified in /root/.vnc/xstartup
Log file is /root/.vnc/beaglebone:1.log

NOTE
This solution assumes that you are logged in to the Bone as root. If you just started tightvncserver
without sudo, the VNC would be running as root, which could cause some problems, because some
programs (such as the Chrome web browser) won’t run as root. This example uses sudo to run
tightvncserver as debian.

To connect to the Bone, you will need to run a VNC client. There are many to choose
from. Remmina Remote Desktop Client is already installed on Ubuntu. Start and
select the new remote desktop file button (Figure 5-5).

Figure 5-5. Creating a new remote desktop file in Remmina Remote Desktop Client

Give your connection a name, being sure to select “VNC - Virtual Network
Computing.” Also, be sure to add :1 after the server address, as shown in Figure 5-6.
This should match the :1 that was displayed when you started vncserver.

Figure 5-6. Configuring the Remmina Remote Desktop Client

Click Connect to start graphical access to your Bone, as shown in Figure 5-7.

Figure 5-7. The Remmina Remote Desktop Client showing the BeagleBone desktop

TIP
You might need to resize the VNC screen on your host to see the bottom menu bar on your Bone.

Discussion
Often, you’ll want to have vncserver running automatically on reboot and run as the
debian user. In that case, you’ll want to create a vncserver.desktop file as the
debian user and put it in the autostart folder for the window manager:

root@beaglebone:~# su - debian
debian@beaglebone:~$ mkdir -p .config/autostart
debian@beaglebone:~$ cat > .config/autostart/vncserver.desktop
[Desktop Entry]
Type=Application
Name=vncserver
Exec=vncserver :1
StartupNotify=false
^D
debian@beaglebone:~$ vncpasswd
Using password file /home/debian/.vnc/passwd
Password: password
Verify: password
Would you like to enter a view-only password (y/n)? n
debian@beaglebone:~$ logout
root@beaglebone:~# /etc/init.d/lightdm restart
Stopping Light Display Manager: lightdm.
Starting Light Display Manager: lightdm.
root@beaglebone:~#

5.8 Learning Typical GNU/Linux Commands

Problem
There are many powerful commands to use in Linux. How do you learn about them?

Solution
Table 5-1 lists many common Linux commands.

Table 5-1. Common Linux
commands

Command Action

pwd show current directory

cd change current directory

ls list directory contents

chmod change file permissions

chown change file ownership

cp copy files

mv move files

rm remove files

mkdir make directory

rmdir remove directory

cat dump file contents

less progressively dump file

vi edit file (complex)

nano edit file (simple)

head trim dump to top

tail trim dump to bottom

echo print/dump value

env dump environment variables

export set environment variable

history dump command history

grep search dump for strings

man get help on command

apropos show list of man pages

find search for files

tar create/extract file archives

gzip compress a file

gunzip decompress a file

du show disk usage

df show disk free space

mount mount disks

tee write dump to file in parallel

hexdump readable binary dumps

whereis locates binary and source files

Discussion
You’ll find many good resources online to learn Linux commands. A good place to
begin is Free Electrons, which has a nice one-page summary of many useful
commands. It also has a nice set of slides that provide details of the commands.

http://bit.ly/1GEQglM
http://bit.ly/1E5wAkT

5.9 Editing a Text File from the GNU/Linux Command
Shell

Problem
You want to run an editor to change a file.

Solution
The Bone comes with a number of editors. The simplest to learn is nano. Just enter
the following command:

bone# nano file

You are now in nano (Figure 5-8). You can’t move around the screen using the mouse,
so use the arrow keys. The bottom two lines of the screen list some useful commands.
Pressing ˄G (Ctrl-G) will display more useful commands. ˄X (Ctrl-X) exits nano
and gives you the option of saving the file.

Figure 5-8. Editing a file with nano

TIP
By default, the file you create will be saved in the directory from which you opened nano.

Discussion
Many other text editors will run on the Bone. vi, vim, emacs, and even eclipse are
all supported. See Recipe 5.15 to learn if your favorite is one of them.

5.10 Using a Graphical Editor

Problem
You want to use a graphical (rather than text-based) editor to edit a text file.

Solution
leafpad is a simple graphics-based editor that’s already installed on your Bone. You
can use it if your host computer supports X-Windows (Mac and Linux). Just run the
following commands to open a new file to begin editing in leafpad (Figure 5-9):

host$ ssh -X root@192.168.7.2
bone# leafpad file.txt

Notice the -X on the ssh command. This instructs SSH to pass the graphics from the
Bone to the host computer.

Figure 5-9. Editing a file with leafpad

Now, you can use your mouse to move around and copy and paste as usual.

5.11 Establishing an Ethernet-Based Internet
Connection

Problem
You want to connect your Bone to the Internet using the wired network connection.

Solution
Plug one end of an Ethernet patch cable into the RJ45 connector on the Bone (see
Figure 5-10) and the other end into your home hub/router. The yellow and green link
lights on both ends should begin to flash.

Figure 5-10. The RJ45 port on the Bone

If your router is already configured to run DHCP (Dynamical Host Configuration
Protocol), it will automatically assign an IP address to the Bone.

WARNING
It might take a minute or two for your router to detect the Bone and assign the IP address.

To find the IP address, open a terminal window and run the ifconfig command:

bone# ifconfig
eth0 Link encap:Ethernet HWaddr c8:a0:30:b7:f9:6f
 inet addr:137.112.41.36 Bcast:137.112.41.255 Mask:255.255.255.0
 inet6 addr: fe80::caa0:30ff:feb7:f96f/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:238 errors:0 dropped:53 overruns:0 frame:0
 TX packets:20 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:25341 (24.7 KiB) TX bytes:4339 (4.2 KiB)
 Interrupt:40

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:65536 Metric:1
 RX packets:1517 errors:0 dropped:0 overruns:0 frame:0

 TX packets:1517 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:2542320 (2.4 MiB) TX bytes:2542320 (2.4 MiB)

usb0 Link encap:Ethernet HWaddr aa:26:91:0e:a6:17
 inet addr:192.168.7.2 Bcast:192.168.7.3 Mask:255.255.255.252
 inet6 addr: fe80::a826:91ff:fe0e:a617/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:8672 errors:0 dropped:0 overruns:0 frame:0
 TX packets:5069 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:7474185 (7.1 MiB) TX bytes:3262782 (3.1 MiB)

My Bone is connected to the Internet in two ways: via the RJ45 connection (eth0)
and via the USB cable (usb0). The inet addr field shows that my Internet address
is 137.112.41.36 for the RJ45 connector.

On my university campus, you must register your MAC address before any device
will work on the network. The HWaddr field gives the MAC address. For eth0, it’s
c8:a0:30:b7:f9:6f.

The IP address of your Bone can change. If it’s been assigned by DHCP, it can change
at any time. The MAC address, however, never changes; it is assigned to your
ethernet device when it’s manufactured.

WARNING
When a Bone is connected to some networks (in my case, the campus network), it becomes visible to
the world. If you don’t secure your Bone, the world will soon find it. See “Changing passwords” and
Recipe 5.14.

On many home networks, you will be behind a firewall and won’t be as visible.

Discussion
At this point, it’s a good idea to change your passwords and your Bone’s hostname.

Changing passwords
Be sure to change both of your Bone’s passwords (root and debian). Log in as
root and run passwd:

bone# passwd
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

Then log in at debian and run passwd again.

Setting your Bone’s hostname
If you are on a network with other BeagleBones, it’s a good idea to give your Bone a
unique name. The default name is beaglebone. Assigning a new name is as easy as
running the following command:

bone# echo "newname" > /etc/hostname

Also, edit /etc/hosts and change all occurrences of beaglebone to the new
network name. This changes the network name to newname. When picking a name,
don’t use punctuation or other special characters. Even _ isn’t allowed. The new
name will appear after you reboot.

5.12 Establishing a WiFi-Based Internet Connection

Problem
You want BeagleBone Black to talk to the Internet using a USB wireless adapter.

Solution
Several WiFi adapters work with the Bone. Check WiFi Adapters for the latest list.
To make this recipe, you will need:

USB Wifi adapter (see “Miscellaneous”)

5 V external power supply (see “Miscellaneous”)

WARNING
Most adapters need at least 1 A of current to run, and USB supplies only 0.5 A, so be sure to use an
external power supply. Otherwise, you will experience erratic behavior and random crashes.

First, plug in the WiFi adapter and the 5 V external power supply and reboot.
Then run lsusb to ensure that your Bone found the adapter:

bone# lsusb
Bus 001 Device 002: ID 0bda:8176 Realtek Semiconductor Corp. RTL8188CUS 802.11n
WLAN Adapter
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

NOTE
There is a well-known bug in the Bone’s 3.8 kernel series that prevents USB devices from being
discovered when hot-plugged, which is why you should reboot. Newer kernels should address this
issue.

Next, run iwconfig to find your adapter’s name. Mine is called wlan0, but you might
see other other names, such as ra0.

bone# iwconfig
wlan0 unassociated Nickname:"WIFI@REALTEK"
 Mode:Auto Frequency=2.412 GHz Access Point: Not-Associated
 Sensitivity:0/0
 Retry:off RTS thr:off Fragment thr:off
 Encryption key:off
 Power Management:off
 Link Quality=0/100 Signal level=0 dBm Noise level=0 dBm
 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
 Tx excessive retries:0 Invalid misc:0 Missed beacon:0

lo no wireless extensions.

eth0 no wireless extensions.

http://bit.ly/1EbEwUo

usb0 no wireless extensions.

If no name appears, try ifconfig -a:

bone# ifconfig -a
...
usb0 Link encap:Ethernet HWaddr 92:84:3f:a2:12:0f
 inet addr:192.168.7.2 Bcast:192.168.7.3 Mask:255.255.255.252
 inet6 addr: fe80::9084:3fff:fea2:120f/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:5789 errors:0 dropped:0 overruns:0 frame:0
 TX packets:5158 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:6401357 (6.1 MiB) TX bytes:842982 (823.2 KiB)

wlan0 Link encap:Ethernet HWaddr 00:13:ef:d0:27:04
 UP BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

When you find the WiFi device name (mine is wlan0), remember it for later.

Run wicd-curses to display the wireless networks your WiFi device is seeing:

bone# wicd-curses

In Figure 5-11, you see one wireless network, my home wireless.

Figure 5-11. Using wicd to display available wireless networks

If nothing appears, press P and make sure the Wireless Interface matches the device
name you noted from ifconfig. If it doesn’t match, press the down arrow and enter
the device name, as shown in Figure 5-12.

Figure 5-12. Setting preferences in wicd

After you enter a name, press F10 to save and then press R to refresh the list. You’ll

now see the available access points.
Use the down arrow to select which network to use and then press the right arrow to
configure it, as shown in Figure 5-13.

Figure 5-13. Configuring a network in wicd

Press the down arrow until you are near the bottom of the screen and then press
Enter. Use the up/down arrows to select the type of authentication (as shown in
Figure 5-14) and then press Enter. My home system uses WPA 1/2 (Passphrase)
(Figure 5-15).

Figure 5-14. Configuring authentication in wicd

Figure 5-15. Entering password in wicd

Press F10 and select the network again; then press C to connect. You’ll be connected
in a moment, as shown in Figure 5-16.

Figure 5-16. Connected to a network via wicd

Discussion
Congratulations, you are running wirelessly. Your Bone’s IP address is shown in the
bottom of the window (mine is 10.0.4.138). You can press Q to quit, and your
connection will continue.
Now that you are connected wirelessly, you can use the Bone to gather remote data.
Just wire your sensors to the Bone, and it can send the sensor data to anywhere on the
Internet via the wireless connection.

5.13 Sharing the Host’s Internet Connection over USB

Problem
Your host computer is connected to the Bone via the USB cable, and you want to run
the network between the two.

Solution
Recipe 5.11 shows how to connect BeagleBone Black to the Internet via the RJ45
Ethernet connector. This recipe shows a way to connect without using the RJ45
connector.
A network is automatically running between the Bone and the host computer at boot
time using the USB. The host’s IP address is 192.168.7.1 and the Bone’s is
192.168.7.2. Although your Bone is talking to your host, it can’t reach the Internet
in general, nor can the Internet reach it. On one hand, this is good, because those who
are up to no good can’t access your Bone. On the other hand, your Bone can’t reach
the rest of the world.

Letting your bone see the world: setting up IP masquerading
You need to set up IP masquerading on your host and configure your Bone to use it.
Here is a solution that works with a host computer running Linux. Add the code in
Example 5-1 to a file called ipMasquerade.sh on your host computer.

Example 5-1. Code for IP Masquerading (ipMasquerade.sh)
#!/bin/bash
These are the commands to run on the host to set up IP
masquerading so the Bone can access the Internet through
the USB connection.
This configures the host, run ./setDNS.sh to configure the Bone.
Inspired by http://thoughtshubham.blogspot.com/2010/03/
internet-over-usb-otg-on-beagleboard.html

if [$# -eq 0] ; then
echo "Usage: $0 interface (such as eth0 or wlan0)"
exit 1
fi

interface=$1
hostAddr=192.168.7.1
beagleAddr=192.168.7.2
ip_forward=/proc/sys/net/ipv4/ip_forward

if [`cat $ip_forward` == 0]
 then
 echo "You need to set IP forwarding. Edit /etc/sysctl.conf using:"
 echo "$ sudo nano /etc/sysctl.conf"
 echo "and uncomment the line \"net.ipv4.ip_forward=1\""
 echo "to enable forwarding of packets. Then run the following:"
 echo "$ sudo sysctl -p"
 exit 1
 else
 echo "IP forwarding is set on host."
fi
Set up IP masquerading on the host so the bone can reach the outside world
sudo iptables -t nat -A POSTROUTING -s $beagleAddr -o $interface -j MASQUERADE

Then, on your host, run the following commands:

host$ chmod +x ipMasquerade.sh
host$./ipMasquerade.sh eth0

This will direct your host to take requests from the Bone and send them to eth0. If
your host is using a wireless connection, change eth0 to wlan0.

Now let’s set up your host to instruct the Bone what to do. Add the code in
Example 5-2 to setDNS.sh on your host computer.

Example 5-2. Code for setting the DNS on the Bone (setDNS.sh)
#!/bin/bash
These are the commands to run on the host so the Bone
can access the Internet through the USB connection.
Run ./ipMasquerade.sh the first time. It will set up the host.
Run this script if the host is already set up.

hostAddr=192.168.7.1
beagleAddr=192.168.7.2

Save the /etc/resolv.conf on the Bone in case we mess things up.
ssh root@$beagleAddr "mv -n /etc/resolv.conf /etc/resolv.conf.orig"
Create our own resolv.conf
cat - << EOF > /tmp/resolv.conf
This is installed by host.setDNS.sh on the host

EOF

Look up the nameserver of the host and add it to our resolv.conf
nmcli dev list | grep IP4.DNS | sed 's/IP4.DNS\[.\]:/nameserver/' >> /tmp/resolv.conf
scp /tmp/resolv.conf root@$beagleAddr:/etc

Tell the beagle to use the host as the gateway.
ssh root@$beagleAddr "/sbin/route add default gw $hostAddr" || true

Then, on your host, run the following commands:

host$ chmod +x setDNS.sh
host$./setDNS.sh
host$ ssh -X root@192.168.7.2
bone# ping -c2 google.com
PING google.com (216.58.216.96) 56(84) bytes of data.
64 bytes from ord30s22....net (216.58.216.96): icmp_req=1 ttl=55 time=7.49 ms
64 bytes from ord30s22....net (216.58.216.96): icmp_req=2 ttl=55 time=7.62 ms

--- google.com ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1002ms
rtt min/avg/max/mdev = 7.496/7.559/7.623/0.107 ms

This will look up what Domain Name System (DNS) servers your host is using and
copy them to the right place on the Bone. The ping command is a quick way to verify
your connection.

Letting the world see your bone: setting up port forwarding
Now your Bone can access the world via the USB port and your host computer, but
what if you have a web server on your Bone that you want to access from the world?

The solution is to use port forwarding from your host. Web servers typically listen to
port 80. First, look up the IP address of your host:

host$ ifconfig
eth0 Link encap:Ethernet HWaddr 00:e0:4e:00:22:51
 inet addr:137.112.41.35 Bcast:137.112.41.255 Mask:255.255.255.0
 inet6 addr: fe80::2e0:4eff:fe00:2251/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:5371019 errors:0 dropped:0 overruns:0 frame:0
 TX packets:4720856 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:1667916614 (1.6 GB) TX bytes:597909671 (597.9 MB)

eth1 Link encap:Ethernet HWaddr 00:1d:60:40:58:e6
...

It’s the number following inet addr:, which in my case is 137.112.41.35.

TIP
If you are on a wireless network, find the IP address associated with wlan0.

Then run the following, using your host’s IP address:

host$ sudo iptables -t nat -A PREROUTING -p tcp -s 0/0 \
 -d 137.112.41.35 --dport 1080 -j DNAT --to 192.168.7.2:80

Now browse to your host computer at port 1080. That is, if your host’s IP address is
123.456.789.0, enter 123.456.789.0:1080. The :1080 specifies what port
number to use. The request will be forwarded to the server on your Bone listening to
port 80. (I used 1080 here, in case your host is running a web server of its own on
port 80.)

Discussion
Whenever a device connects to another device on the Internet, two numbers are
needed: the IP address (192.168.7.2 for example) and the port number. If you are
using SSH to connect, it defaults to port 22; if it’s a web browser, it uses port 80 (or
443 if it’s encrypted); and so on. You can even write your own program to listen on a
given port. The iptables command given here says to take any requests to connect
to port 1080 (--dport 1080) on 137.112.41.35 and forward them to
192.168.7.2, port 80. It’s now as if the request were made to connect to
192.168.7.2 instead.

WARNING
Be careful, you’ve now exposed your Bone to the world. Anyone from the outside can access your
Bone. See Recipe 5.14 for setting up a firewall to limit which IP addresses can access your Bone.

If you change your mind about the port forwarding, switching the -A to -D will delete the entry and
stop the forwarding. Rebooting will also stop the forwarding.

host$ sudo iptables -t nat -D PREROUTING -p tcp -s 0/0 \
-d 137.112.41.35 --dport 1080 -j DNAT --to 192.168.7.2:80

5.14 Setting Up a Firewall

Problem
You have put your Bone on the network and want to limit which IP addresses can
access it.

Solution
The Bone already has a firewall installed. Just run the following command:

bone# iptables --policy INPUT DROP
bone# iptables -A INPUT -s 137.112.0.0/16 -j ACCEPT

In this case, only users from my campus (IP addresses beginning with 137.112) will
be able to access (or even see) your Bone.

Discussion
The first iptables command says to drop all access from the outside world. The
second line then lists an exception, allowing any IP address beginning with 137.112
to have access. The /16 says to let the last 16 bits of the IP have any value. If I
wanted to limit access to only those on my subnet, I could use 137.112.41.0/8.
Now, only the last 8 bits can be anything.
You can remove an exception by using the following command:

bone# iptables -D INPUT -s 137.112.0.0/16 -j ACCEPT

Or just reboot. You have to rerun iptables every time you boot your Bone.

5.15 Installing Additional Packages from the Debian
Package Feed

Problem
You want to do more cool things with your BeagleBone by installing more programs.

Solution

WARNING
Your Bone needs to be on the network for this to work. See Recipe 5.11, Recipe 5.12, or Recipe
5.13.

The easiest way to install more software is to use apt-get:

bone# apt-get update
bone# apt-get install "name of software"

A sudo is necessary if you aren’t running as root. The first command downloads
package lists from various repositories and updates them to get information on the
newest versions of packages and their dependencies. (You need to run it only once a
week or so.) The second command fetches the software and installs it and all
packages it depends on.
How do you find out what software you can install? Try running this:

bone# apt-cache pkgnames | sort > /tmp/list
bone# wc /tmp/list
 32121 32121 502707 /tmp/list
bone# less /tmp/list

The first command lists all the packages that apt-get knows about and sorts them
and stores them in /tmp/list. The second command shows why you want to put the list
in a file. The wc command counts the number of lines, words, and characters in a file.
In our case, there are over 32,000 packages from which we can choose! The less
command displays the sorted list, one page at a time. Press the space bar to go to the
next page. Press Q to quit.
Suppose that you would like to install an online dictionary (dict). Just run the
following command:

bone# apt-get install dict

Now you can run dict.

Discussion
The Debian package manager has a large number of pretested packages that you can
load and run on the Bone. The Debian packages page provides details about the
packages in the current release of Debian. For example, the package page for git
describes git and identifies the version that will be loaded by running apt-get
install git. The version that apt-get installs might not be the most current
version, but it is well tested.
What if you would like to run a newer version of a package? Debian has different
releases of packages that reflect different levels of testing. When a package is first
entered into Debian, it is put in the Unstable release category. It lives here for a few
days until it is tested on the currently supported architectures and appears not to have
any obvious bugs. It is then moved to a Testing release, where further testing is done
and bugs can be found. Finally, a new package can move to the Stable release if it is
a significant enough upgrade.
At the time of this writing, Wheezy (version 7) is the current stable release, and
Jessie (version 8) is the Testing release. You can install packages from Jessie, but
watch out: there is a reason why it’s called Testing.
For example, Wheezy uses version 1.7 of git, but version 1.8 of git introduced
some features that you want to use. Jessie uses version 2.0 of git, so you could
upgrade to it (details in a moment).
What if you don’t want to risk upgrading a Testing release? You could use Wheezy-
backports. Backports are packages taken from the next Debian release, adjusted and
recompiled for use on the current release. For this example, version 1.9 of git is
used in Wheezy-backports.
To load either the Wheezy-backports or the Jessie packages, first run the following
command to direct apt-get where to get the new packages:

bone# cd /etc/apt/sources.list.d
bone# echo "deb ftp://ftp.debian.org/debian/ wheezy-backports main
deb-src ftp://ftp.debian.org/debian/ wheezy-backports main" > \
wheezy-backports.list
bone# echo "deb ftp://ftp.debian.org/debian/ jessie main
deb-src ftp://ftp.debian.org/debian/ jessie main" > jessie.list
bone# echo 'APT::Default-Release "stable";' > /etc/apt/apt.conf.d/local

bone# apt-get update

The second-to-last command makes Wheezy the default release to use. The last
command will go out to the repositories and load information on all the new

http://bit.ly/1KWoR1A
http://bit.ly/1HC85zm
http://bit.ly/1HC85zm
http://bit.ly/1KWprfS
http://backports.debian.org/
http://bit.ly/1B4uGyW

packages. It might take awhile.

WARNING
Be sure to run the apt-get update; otherwise, newly added repositories won’t be seen.

Then, to install the Wheezy-backports version, run the following command:

bone# apt-get install git/wheezy-backports
bone# git --version
git version 1.9.1

Or, to install the Jessie version, run the following command:

bone# apt-get install git/jessie
git version 2.1.1

Note that you might need to install other packages first. If you get an error, see what
is missing and try installing it before trying again.

NOTE
Adding all the other releases will make apt-get run slower. Here is how I like to disable them:

bone# cd /etc/apt/sources.list.d
bone# ls
jessie.list sid.list wheezy-backports.list
bone# mkdir hide
bone# mv *.list hide

This moves the files you created earlier into a directory called hide, where apt-get won’t see them.
apt-get will now run as before. Later, if needed, you can move them out of the hide directory.

bone# cd /etc/apt/sources.list.d
bone# mv hide/jessie.list .

5.16 Removing Packages Installed with apt-get

Problem
You’ve been playing around and installing all sorts of things with apt-get and now
you want to clean things up a bit.

Solution
apt-get has a remove option, so you can run the following command:

bone# apt-get remove dict
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages were automatically installed and are no longer required:
 libmaa3 librecode0 recode
Use 'apt-get autoremove' to remove them.
The following packages will be REMOVED:
 dict
0 upgraded, 0 newly installed, 1 to remove and 27 not upgraded.
After this operation, 164 kB disk space will be freed.
Do you want to continue [Y/n]? y

Discussion
Removing packages with remove doesn’t remove everything, because prerequisite
packages might have also been installed. You can remove everything with
autoremove:

bone# apt-get autoremove dict
Reading package lists... Done
Building dependency tree
Reading state information... Done
Package 'dict' is not installed, so not removed
The following packages will be REMOVED:
 libmaa3 librecode0 recode
0 upgraded, 0 newly installed, 3 to remove and 27 not upgraded.
After this operation, 2,201 kB disk space will be freed.
Do you want to continue [Y/n]? y

Notice an additional 2,201 kB (more than dict itself) was removed.

5.17 Copying Files Between the Onboard Flash and the
MicroSD Card

Problem
You want to move files between the onboard flash and the microSD card.

Solution
If you booted from the microSD card, run the following command:

bone# df -h
Filesystem Size Used Avail Use% Mounted on
rootfs 7.2G 2.0G 4.9G 29% /
udev 10M 0 10M 0% /dev
tmpfs 100M 1.9M 98M 2% /run
/dev/mmcblk0p2 7.2G 2.0G 4.9G 29% /
tmpfs 249M 0 249M 0% /dev/shm
tmpfs 249M 0 249M 0% /sys/fs/cgroup
tmpfs 5.0M 0 5.0M 0% /run/lock
tmpfs 100M 0 100M 0% /run/user
bone# ls /dev/mmcblk*
/dev/mmcblk0 /dev/mmcblk0p2 /dev/mmcblk1boot0 /dev/mmcblk1p1
/dev/mmcblk0p1 /dev/mmcblk1 /dev/mmcblk1boot1

The df command shows what partitions are already mounted. The line
/dev/mmcblk0p2 7.2G 2.0G 4.9G 29% / shows that mmcblk0 partition p2 is
mounted as /, the root file system. The general rule is that the media you’re booted
from (either the onboard flash or the microSD card) will appear as mmcblk0. The
second partition (p2) is the root of the file system.

The ls command shows what devices are available to mount. Because mmcblk0 is
already mounted, /dev/mmcblk1p1 must be the other media that we need to mount.
Run the following commands to mount it:

bone# cd /mnt
bone# mkdir onboard
bone# ls onboard
bone# mount /dev/mmcblk1p1 onboard/
bone# ls onboard
bin etc lib mnt proc sbin sys var
boot home lost+found nfs-uEnv.txt root selinux tmp
dev ID.txt media opt run srv usr

The cd command takes us to a place in the file system where files are commonly
mounted. The mkdir command creates a new directory (onboard) to be a mount
point. The ls command shows there is nothing in onboard. The mount command
makes the contents of the onboard flash accessible. The next ls shows there now are
files in onboard. These are the contents of the onboard flash, which can be copied to
and from like any other file.

Discussion
This same process should also work if you have booted from the onboard flash.
When you are done with the onboard flash, you can unmount it by using this
command:

bone# umount /mnt/onboard

5.18 Freeing Space on the Onboard Flash or MicroSD
Card

Problem
You are starting to run out of room on your microSD card (or onboard flash) and have
removed several packages you had previously installed (Recipe 5.16), but you still
need to free up more space.

Solution
To free up space, you can remove preinstalled packages or discover big files to
remove.

Removing preinstalled packages
You might not need a few things that come preinstalled in the Debian image, including
such things as OpenCV, the Chromium web browser, and some documentation.

NOTE
The Chromium web browser is the open source version of Google’s Chrome web browser. Unless
you are using the Bone as a desktop computer, you can probably remove it.

OpencCV is an open source computer vision package. If you aren’t doing computer vision, you can
remove it.

Here’s how you can remove these:

bone# apt-get autoremove opencv* (83M)
bone# apt-get remove libopencv-* --purge (41M)
bone# apt-get autoremove (42M)
bone# rm -rf /usr/lib/chromium (95M)
bone# rm -f /usr/bin/chromium
bone# rm -rf /usr/share/doc (101M)
bone# rm -rf /usr/share/man (27M)

NOTE
These packages and sizes to remove were found in a BeagleBoard Google Groups thread.

Discovering big files
The du (disk usage) command offers a quick way to discover big files:

bone# du -shx /*
5.6M /bin
11M /boot
0 /dev
5.4M /etc
232K /home
66M /lib
16K /lost+found
388M /media
4.0K /mnt
63M /opt

http://opencv.org/
http://bit.ly/1HC96aI

du: cannot access `/proc/20551/task/20551/fd/3': No such file or directory
du: cannot access `/proc/20551/task/20551/fdinfo/3': No such file or directory
du: cannot access `/proc/20551/fd/3': No such file or directory
du: cannot access `/proc/20551/fdinfo/3': No such file or directory
0 /proc
227M /root
1.1M /run
5.0M /sbin
4.0K /selinux
4.0K /srv
0 /sys
36K /tmp
1.2G /usr
143M /var

If you booted from the microSD card, du lists the usage of the microSD. If you booted
from the onboard flash, it lists the onboard flash usage.
The -s option summarizes the results rather than displaying every file. -h prints it in
human form — that is, using M and K postfixes rather than showing lots of digits. The
/* specifies to run it on everything in the top-level directory. It looks like a couple of
things disappeared while the command was running and thus produced some error
messages.

TIP
For more help, try du --help.

The /usr directory appears to be the biggest user of space at 1.2 GB. You can then run
the following command to see what’s taking up the space in /usr:

bone# du -sh /usr/*
46M /usr/bin
4.0K /usr/games
36M /usr/include
424M /usr/lib
16M /usr/local
4.0M /usr/sbin
694M /usr/share
4.0K /usr/src

A more interactive way to explore your disk usage is by installing ncdu (ncurses disk
usage):

bone# apt-get install ncdu
bone# ncdu /

After a moment, you’ll see the following:

ncdu 1.8 ~ Use the arrow keys to navigate, press ? for help
--- / --
 1.2GiB [##########] /usr
 387.6MiB [###] /media
 226.0MiB [#] /root
 142.9MiB [#] /var
 65.9MiB [] /lib
 62.4MiB [] /opt
 10.8MiB [] /boot
 5.6MiB [] /bin
 5.4MiB [] /etc
 5.0MiB [] /sbin
 1.0MiB [] /run
 232.0KiB [] /home
 36.0KiB [] /tmp
e 16.0KiB [] /lost+found
e 4.0KiB [] /srv
e 4.0KiB [] /selinux
e 4.0KiB [] /mnt
 0.0 B [] /sys
 0.0 B [] /proc
 0.0 B [] /dev

 Total disk usage: 2.1GiB Apparent size: 1.9GiB Items: 156583

ncdu is a character-based graphics interface to du. You can now use your arrow keys
to navigate the file structure to discover where the big unused files are. Press ? for
help.

WARNING
Be careful not to press the D key, because it’s used to delete a file or directory.

Discussion
You can also list all the packages and their sizes by using the following command:

bone# dpkg-query -Wf '${Installed-Size}\t${Package}\n' | sort -rn | less

TIP
The less command is a handy way to view an output one screen at at time. Press the space bar to
advance to the next page. Press D for half a page and Q to quit. Run less --help for more tips.

Just be careful what you remove. You might be using something that you think is safe
to delete.

5.19 Installing Additional Node.js Packages

Problem
You are working with JavaScript and want to build on what others have done.

Solution
Node Package Manager (npm [https://www.npmjs.org/]) is used to install new
packages. For example, suppose that you are wiring up a GPS (Recipe 2.8) and want
to use the nmea JavaScript package to decode the National Marine Electronics
Association (NMEA) data from the GPS. Install the nmea package with the following
command:

bone# npm install -g nmea
npm http GET https://registry.npmjs.org/nmea
npm http 200 https://registry.npmjs.org/nmea
npm http GET https://registry.npmjs.org/nmea/-/nmea-0.0.7.tgz
npm http 200 https://registry.npmjs.org/nmea/-/nmea-0.0.7.tgz
nmea@0.0.7 /usr/local/lib/node_modules/nmea

The -g instructs to install globally. That way, you can use nmea from any directory. If
-g is not given, you can use nmea only in the directory in which you installed it.

https://www.npmjs.org/

Discussion
Node.js is a platform built on Chrome’s JavaScript runtime. It’s what runs the
JavaScript we have been using. More than 112,000 packages have been written for
Node.js and are available using npm. Visit the npm site (Figure 5-17) to see what’s
available.

Figure 5-17. The Node Package Manager website

TIP
Use the web browser on your host computer to visit npmjs.org. When you find packages you want,
go back to your Bone and use the npm install command to install them on the Bone.

http://nodejs.org/
http://bit.ly/1wFB3fE
https://www.npmjs.org/

To see what Node.js packages are installed, run the following command:

bone# npm list -g | less
/usr/local/lib
├─┬ bonescript@0.2.4
│ ├─┬ epoll@0.0.7
│ │ └── nan@0.4.4
│ ├─┬ express@3.1.0
│ │ ├── buffer-crc32@0.1.1
│ │ ├── commander@0.6.1
│ │ ├─┬ connect@2.7.2
│ │ │ ├── bytes@0.1.0
│ │ │ ├── formidable@1.0.11
│ │ │ ├── pause@0.0.1
│ │ │ └── qs@0.5.1
...

The output provides a listing of what packages are installed (such as BoneScript) and
what packages they depend on. Here, bonescript depends on epoll, which depends
on nan, and so on.

5.20 Using Python to Interact with the Physical World

Problem
You want to use Python on the Bone to talk to the world.

Solution
So far, we’ve focused on using JavaScript and the BoneScript API for interfacing
BeagleBone Black to the physical world. BoneScript provides an easy way to
interface the Bone to the world, but there are other programming languages out there.
This recipe provides the steps needed to work with Python, and Recipe 5.21 does the
same for C.
Adafruit has produced an excellent library for the Bone, and it’s already installed.
Ensure that the BBIO library is up-to-date:

bone# pip install Adafruit_BBIO
Requirement already satisfied (use --upgrade to upgrade):
 Adafruit-BBIO in /usr/local/lib/python2.7/dist-packages
Cleaning up...

Now that you’re ready to go, add the code in Example 5-3 to a file called
blinkLED.py.

Example 5-3. Use Python to blink an LED (blinkLED.py)
#!/usr/bin/env python
import Adafruit_BBIO.GPIO as GPIO
import time

pin = "P9_14"

GPIO.setup(pin, GPIO.OUT)

while True:
 GPIO.output(pin, GPIO.HIGH)
 time.sleep(0.5)
 GPIO.output(pin, GPIO.LOW)
 time.sleep(0.5)

Wire your LED as shown in Recipe 3.2 and run it with the following command:

bone# chmod +x blinkLED.py.
bone# ./blinkLED.py.

Adafruit’s Setting up IO Python Library on BeagleBone Black does a nice job
showing how to use the BBIO library.

http://www.adafruit.com/
http://bit.ly/1Mt9kDS
http://bit.ly/1C5dkaK

Discussion
Many of the constructs we have been using with BoneScript carry right over to
Python. The BBIO GitHub site provides examples of how to poll for inputs, use pulse
width modulation (PWM), and so on.
If you comment-out the time.sleep(0.5), you can measure how fast Python can
toggle the output pin.

http://bit.ly/1Mt9kDS

5.21 Using C to Interact with the Physical World

Problem
You want to use C on the Bone to talk to the world.

Solution
The C solution isn’t as simple as the BoneScript or Python solution (Recipe 5.20),
but it does work and is much faster. libsoc is a “C library for interfacing with
common SoC {system on chip} peripherals through generic kernel interfaces” by
Jack Mitchell. Here’s how to get and install it:

bone# git clone https://github.com/jackmitch/libsoc.git
bone# cd libsoc
bone# ./autogen.sh # Takes about a minute
bone# ./configure # Another minute
bone# make # 30 seconds
bone# make install

This installs the libsoc library in /usr/local/lib. Add the code in Example 5-4 to a
file called blinkLED.c.

Example 5-4. Use C to blink an LED (blinkLED.c)
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

#include "libsoc_gpio.h"
#include "libsoc_debug.h"

// Blinks an LED attached to P9_14 (gpio1_18, 32+18=50)
#define GPIO_OUTPUT 50

int main(void) {
 gpio *gpio_output; // Create gpio pointer
 libsoc_set_debug(1); // Enable debug output
 // Request gpio
 gpio_output = libsoc_gpio_request(GPIO_OUTPUT, LS_SHARED);
 // Set direction to OUTPUT
 libsoc_gpio_set_direction(gpio_output, OUTPUT);

 libsoc_set_debug(0); // Turn off debug printing for fast toggle

 int i;
 for (i=0; i<1000000; i++) { // Toggle the GPIO 100 times
 libsoc_gpio_set_level(gpio_output, HIGH);
 // usleep(100000); // sleep 100,000 uS
 libsoc_gpio_set_level(gpio_output, LOW);
 // usleep(100000);
 }

 if (gpio_output) {
 libsoc_gpio_free(gpio_output); // Free gpio request memory
 }

 return EXIT_SUCCESS;
}

https://github.com/jackmitch/libsoc
http://www.embed.me.uk/

NOTE
In BoneScript and Python, we refer to the GPIO pins by the header position (P9_14, for example). In
libsoc, we refer to them by an internal GPIO number. Figure 5-18 shows how to map from header
position to GPIO pin. For example, P9_14 has GPIO_50 next to it. That means libsoc needs to use
GPIO 50 to interface with P9_14.

Figure 5-18. Mapping from header pin to internal GPIO number

Compile and run the code:

bone# gcc -o blinkLED blinkLED.c -lsoc
bone# ./blinkLED
libsoc-debug: debug enabled (libsoc_set_debug)
libsoc-gpio-debug: requested gpio (50, libsoc_gpio_request)
libsoc-gpio-debug: GPIO already exported (50, libsoc_gpio_request)
libsoc-gpio-debug: setting direction to out (50, libsoc_gpio_set_direction)
libsoc-debug: debug disabled (libsoc_set_debug)

NOTE
If you have an older image, you might need to install the libsoc library. You can do that with apt-get
if you have network access and the right feeds on your Bone. Install libsoc2 for the library and
libsoc-dev for the header files.

Discussion
It takes a little more code than Python, but it works, and it can be fast. Try
uncommenting libsoc_set_debug(0) and commenting-out the usleeps to see how
fast it can go. I measured a 6 μs period without the sleeps.
The test folder on GitHub has some good sample code that shows how to set up
callback to respond to changes in an input pin’s value, i2c, pwm, spi, and more.
1 Figure 5-4 was originally posted by Jason Kridner at http://beagleboard.org/media
under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

http://bit.ly/1EXDFYO
http://beagleboard.org/media
http://creativecommons.org/licenses/by-sa/3.0/

Chapter 6. Internet of Things

6.0 Introduction
You can easily connect BeagleBone Black to the Internet via a wire (Recipe 5.11),
wirelessly (Recipe 5.12), or through the USB to a host and then to the Internet
(Recipe 5.13). Either way, it opens up a world of possibilities for the “Internet of
Things” (IoT).
Now that you’re online, this chapter offers various things to do with your connection.

6.1 Accessing Your Host Computer’s Files on the Bone

Problem
You want to access a file on a Linux host computer that’s attached to the Bone.

Solution
If you are running Linux on a host computer attached to BeagleBone Black, it’s not
hard to mount the Bone’s files on the host or the host’s files on the Bone by using
sshfs. Suppose that you want to access files on the host from the Bone. First, install
sshfs:

bone# apt-get install sshfs

Now, mount the files to an empty directory (substitute your username on the host
computer for username and the IP address of the host for 192.168.7.1):

bone# mkdir host
bone# sshfs username@$192.168.7.1:. host
bone# cd host
bone# ls

The ls command will now list the files in your home directory on your host
computer. You can edit them as if they were local to the Bone. You can access all the
files by substituting :/ for the :. following the IP address.

You can go the other way, too. Suppose that you are on your Linux host computer and
want to access files on your Bone. Install sshfs:

host$ sudo apt-get install sshfs

and then access:

host$ mkdir /mnt/bone
host$ sshfs root@$192.168.7.2:/ /mnt/bone
host$ cd /mnt/bone
host$ ls

Here, we are accessing the files on the Bone as root. We’ve mounted the entire file
system, starting with /, so you can access any file. Of course, with great power
comes great responsibility, so be careful.

Discussion
The sshfs command gives you easy access from one computer to another. When you
are done, you can unmount the files by using the following commands:

host$ umount /mnt/bone
bone# umount home

6.2 Serving Web Pages from the Bone

Problem
You want to use BeagleBone Black as a web server.

Solution
BeagleBone Black already has a couple of web servers running. This recipe shows
how to use the Node.js-based server. Recipe 6.13 shows how to use Apache.
When you point your browser to 192.168.7.2, you are using the Node.js web server
The web pages are served from /var/lib/cloud9. Add the HTML in Example 6-1 to a
file called /var/lib/cloud9/test.html, and then point your browser to
192.168.7.2:test.html.

Example 6-1. A sample web page (test.html)
<!DOCTYPE html>
<html>
<body>

<h1>My First Heading</h1>

<p>My first paragraph.</p>

</body>
</html>

You will see the web page shown in Figure 6-1.

Figure 6-1. test.html as served by Node.js

Discussion
The Bone is already set up to serve many pages from /var/lib/cloud9. For example,
/var/lib/cloud9/Support has the help pages for BoneScript. If you are going to
create many of your own pages, consider putting them in their own directory.

6.3 Interacting with the Bone via a Web Browser

Problem
BeagleBone Black is interacting with the physical world nicely via BoneScript, and
you want to display that information on a web browser.

Solution
Node.js is a platform built on Chrome’s JavaScript runtime for easily building fast,
scalable network applications. Recipe 6.2 shows how to use the node server that’s
already running. This recipe shows how easy it is to build your own server.
First, create a directory for this recipe:

bone# mkdir serverExample
bone# cd serverExample

Add the code in Example 6-2 to a file called server.js in the serverExample
directory.

Example 6-2. Javascript code for a simple Node.js-based web server (server.js)
#!/usr/bin/env node
// Initial idea from Getting Started With node.js and socket.io
// by Constantine Aaron Cois, Ph.D. (www.codehenge.net)
// http://codehenge.net/blog/2011/12/getting-started-with-node-js-and-socket-io-
// v0-7-part-2/
// This is a simple server for the various web frontends
"use strict";

var port = 9090, // Port on which to listen
 http = require('http'),
 url = require('url'),
 fs = require('fs'),
 b = require('bonescript');

var server = http.createServer(servePage);

server.listen(port);
console.log("Listening on " + port);

function servePage(req, res) {
 var path = url.parse(req.url).pathname;
 console.log("path: " + path);

 fs.readFile(__dirname + path, function (err, data) {
 if (err) {
 return send404(res);
 }
 res.write(data, 'utf8');
 res.end();
 });
}

function send404(res) {
 res.writeHead(404);
 res.write('404 - page not found');
 res.end();
}

http://nodejs.org/
http://code.google.com/p/v8/

Creates the server. Whenever a browser requests a page from port 9090, the
function servepage is called.

Instructs the server to begin listening on port 9090.

When servepage is called, req contains the path to the page being requested.
This code extracts the path to the page.

readFile reads the entire page being requested.

Be sure the page is there; if not, send the famous 404 error.

Write the page to the web browser.
Add the HTML in Example 6-1 to a file called test.html in the serverExample
directory, and then run this:

bone# cd serverExample
bone# chmod +x server.js
bone# ./server.js
Listening on 9090

Now, navigate to 192.168.7.2:9090/test.html on your host computer (or the Bone)
browser, and you will see something like Figure 6-2.

Figure 6-2. Test page served by our custom node-based server

Note that the only difference between Figure 6-2 and Figure 6-1 is that the first uses
port 9090.

Discussion
You can add whatever files you want; just put them in the serverExample directory
with server.js. The files can link to one another and external pages. It will all just
work.

6.4 Displaying GPIO Status in a Web Browser

Problem
You want a web page to display the status of a GPIO pin.

Solution
This solution builds on the Node.js-based web server solution in Recipe 6.3.
To make this recipe, you will need:

Breadboard and jumper wires (see “Prototyping Equipment”)

Pushbutton switch (see “Miscellaneous”)

Wire your pushbutton as shown in Figure 2-5. Add the code in Example 6-3 to a file
called GPIOserver.js in the serverExample directory.

Example 6-3. A simple Node.js-based web server to read a GPIO (GPIOserver.js)
#!/usr/bin/env node
// Initial idea from Getting Started With node.js and socket.io
// http://codehenge.net/blog/2011/12/getting-started-with-node-js-and-socket-io-
// v0-7-part-2/
// This is a simple server for the various web frontends
// Display status of P9_42
"use strict";

var port = 9090, // Port on which to listen
 http = require('http'),
 url = require('url'),
 fs = require('fs'),
 b = require('bonescript'),
 gpio = 'P9_42'; // gpio port to read

var htmlStart = "\
<!DOCTYPE html>\
<html>\
<body>\
\
<h1>" + gpio + "</h1>\
data = ";

var htmlEnd = "\
</body>\
</html>";

var server = http.createServer(servePage);

b.pinMode(gpio, b.INPUT, 7, 'pulldown');

server.listen(port);
console.log("Listening on " + port);

function servePage(req, res) {
 var path = url.parse(req.url).pathname;
 console.log("path: " + path);
 if (path === '/gpio') {
 var data = b.digitalRead(gpio);
 res.write(htmlStart + data + htmlEnd, 'utf8');
 res.end();
 } else {

 fs.readFile(__dirname + path, function (err, data) {
 if (err) {
 return send404(res);
 }
 res.write(data, 'utf8');
 res.end();
 });
 }
}

function send404(res) {
 res.writeHead(404);
 res.write('404 - page not found');
 res.end();
}

This the the HTML to send to the server before the data value.

This is the HTML for after the data.

Normally, we’d send a file, but if /gpio is requested, we’ll build our own page
and include the value of the GPIO pin.

Read the value of the GPIO pin.

Concatenate the HTML code with the data and send it to the browser.
Now, run the following command:

bone# ./GPIOserver.js
Listening on 9090

Point your browser to http://192.168.7.2:9090/gpio, and the page will look like
Figure 6-3.

http://192.168.7.2:9090/gpio

Figure 6-3. Status of a GPIO pin on a web page

Currently, the 0 shows that the button isn’t pressed. Try refreshing the page while
pushing the button, and you will see 1 displayed.

Discussion
It’s not hard to assemble your own HTML with the GPIO data. It’s an easy extension
to write a program to display the status of all the GPIO pins.

6.5 Continuously Displaying the GPIO Value via
jsfiddle

Problem
The value of your GPIO port keeps changing, and you want your web page to always
show the current value.

Solution
We’ll attack this problem in two steps. This recipe will show how to use an external
website (jsfiddle [http://jsfiddle.net/]) to read a GPIO pin on the Bone (yup, an
external site can read the GPIO pins on the Bone). Recipe 6.6 will show how to
move the code to run locally on the Bone.
To make this recipe, you will need:

Breadboard and jumper wires (see “Prototyping Equipment”)

Pushbutton switch (see “Miscellaneous”)

10 kΩ trimpot (variable resistor) (see “Resistors”)

jsfiddle is a website that lets you fiddle with JavaScript. It’s best introduced by an
example. Point your browser to jQuery example, and you will see the screen shown
in Figure 6-4.

http://jsfiddle.net/
http://jsfiddle.net/
http://bit.ly/19c75ql

Figure 6-4. jsfiddle example of GPIO

The page has four panels. The upper-left panel shows your HTML code. The lower-
left panel shows the JavaScript that animates the HTML. The upper-right panel
shows the CSS code that formats your HTML (not used here), and the lower-right
panel shows what your rendered page looks like.
Wire your pushbutton switch to P8_19 (use Figure 2-5 as an example, but note that
the pushbutton in that figure is wired to P9_42, instead) and the variable resistor to
P9_36, as shown in Figure 2-8.

NOTE
You can use any GPIO pin and any analog-in pin; just edit the code to match your setup.

Press the Run button on the jsfiddle page. The values in the lower-right panel will
track your button and variable resistor in real time.

Discussion
Wow! What is happening here? The JavaScript code is running on the browser, but
when you get to a BoneScript statement such as b.analogRead(SLIDER,
onSliderRead);, the browser does a remote procedure call (RPC) to the Bone to
read the value. The value is returned to the browser, and it continues running. This is
a very powerful setup. The same BoneScript code that runs on the Bone and interacts
with the hardware can also run on a remote browser and still interact with the Bone!
Let’s take a close look at the code in Example 6-4.

Example 6-4. BoneScript running in a browser and reading BeagleBone Black
hardware (jQueryDemo.js)
setTargetAddress('192.168.7.2', {
 initialized: run
});

function run() {
 var b = require('bonescript');
 var SLIDER = 'P9_36';
 var BUTTON = 'P8_19';
 b.pinMode(BUTTON, b.INPUT);

 getSliderStatus();

 function getSliderStatus() {
 b.analogRead(SLIDER, onSliderRead);
 }

 function onSliderRead(x) {
 if (!x.err) {
 $('#sliderStatus').html(x.value.toFixed(3));
 }
 getButtonStatus()
 }

 function getButtonStatus() {
 b.digitalRead(BUTTON, onButtonRead);
 }

 function onButtonRead(x) {
 if (!x.err) {
 $('#buttonStatus').html(x.value);
 }
 setTimeout(getSliderStatus, 20);
 }
}

Direct the browser where to find your Bone. After the connection is made, run
is called.

Bring in the BoneScript library.

Select which analog port (SLIDER) and which GPIO pin (BUTTON) to use.

Call getSliderStatus() to get things started.

Read the analog-in and call onSliderRead when the value is available.

Here’s an important step. If there is no error, set the value of sliderStatus to
the value read. x.value is the analog value read. Adding .toFixed(3) makes
it display only three digits. $('#sliderStatus') is our connection to the
HTML. The # specifies to look for the HTML with the matching ID. In our case,
$('sliderStatus') instructs us to look for the HTML elements with
id="sliderStatus". In this example, it’s -
. Adding the .html() (giving $('#sliderStatus').html) makes the
statement refer to everything between and , which initially is
just -. The entire statement says to change whatever is between the spans to the
analog value that was read. And the web page instantly changes that value.

Now, move on to reading the button.

As before, call onButtonRead when the value is read.

If no error, update the element with id="buttonStatus".

Finally, wait 20 ms and start all over again.
We’ve just opened up a whole now world with the Bone. Now, you can easily grab
data from the physical world via sensors on the Bone and display it in a browser
anywhere in the world.

See Also
jsfiddle is great for experimenting with your code, but what if want everything to be
served from your Bone and not use an external site? Check out Recipe 6.6.

6.6 Continuously Displaying the GPIO Value

Problem
The value of your GPIO port keeps changing, and you want your web page to always
show the current value, but you don’t want to use an external site.

Solution
Recipe 6.5 shows how to use BoneScript in a browser to read GPIO pins on the
Bone, but it requires the use of an external website. This recipe shows how to move
from jsfiddle to the Bone, with a few simple steps.
Go to a working jsfiddle page (such as the one shown in Figure 6-4) and do the
following:

1. In the lower-left panel, select all the BoneScript code and copy it to a file. In
this case, call it jQueryDemo.js. Save it in the serverExample directory.

2. From the upper-left panel, select all the HTML code and copy it to
jQueryDemo.html in the serverExample directory.

3. We need to add code to inform the browser where to find the external libraries
we are using. Edit jQueryDemo.html and before your HTML, add the following
lines:

<html>
 <head>
 <title>BoneScript jQuery Demo</title>
 <script src="static/jquery.js"></script>
 <script src="static/bonescript.js"></script>
 <script src="jQueryDemo.js"></script>
 </head>
<body>

4. Add the following lines after your HTML:

</body>
</html>

5. Open http://192.168.7.2/serverExample/jQueryDemo.html, and you’ll now see
your values in your own web page.

NOTE
There are several useful JavaScript libraries already located in /var/lib/cloud9/static, and this recipe
makes use of a couple of them here.

http://192.168.7.2/serverExample/jQueryDemo.html

Discussion
The additional HTML used in this recipe is loaded in code for jquery.js,
bonescript.js, and our own jQueryDemo.js. How did we know to add jquery.js and
bonescript.js? Look in the left column of Figure 6-4. Under External Resources,
bonescript.js is listed, thus alerting us that we need to include it. But what about
jquery.js? Click Frameworks & Extensions, and you’ll see Figure 6-5.

Figure 6-5. jsfiddle Frameworks & Extensions

Here, jQuery is listed. This lets us know that we need to include it.

6.7 Plotting Data

Problem
1. You have live data coming into your Bone, and you want to plot it.

Solution
There are a number of JavaScript-based plotting packages out there. This recipe uses
flot because it strikes a nice balance between ease-of-use and power.
To make this recipe, you will need:

Breadboard and jumper wires (see “Prototyping Equipment”)

10 kΩ trimpot (variable resistor) (see “Resistors”)

Wire your variable resistor to P9_36, as shown in Figure 2-8. Go to jsfiddle Flot
Demo for a nice quick demo. You will the screen shown in Figure 6-6. Try changing
the variable resistor, and watch the plot respond in real time.

Figure 6-6. jsfiddle Flot Demo

See Recipe 6.5 for a description of the jsfiddle panels. In Figure 6-6, the lower-right
panel displays a live scrolling chart of the values being read from the variable
resistor.

http://bit.ly/1MrHm9L
http://www.flotcharts.org/
http://bit.ly/1E5DW85

Discussion
You can perform plotting externally, via the jsfiddle site, or locally.

Plotting with jsfiddle
The HTML panel in Figure 6-6 simply creates an area called myplot in which to
draw the plot. The JavaScript code in Example 6-5 then reads the analog in and
creates the plot to display.

Example 6-5. Code for plotting data with Flot (flotDemo.js)
setTargetAddress('192.168.7.2', {
 initialized: run
});

function run() {
 var b = require('bonescript');
 var POT = 'P9_36';

 var container = $("#myplot");
 var totalPoints = container.outerWidth() / 2 || 250;
 var data = [];
 var plotOptions = {
 series: {
 shadowSize: 0
 },
 yaxis: {
 min: 0,
 max: 1
 },
 xaxis: {
 min: 0,
 max: totalPoints,
 show: false
 }
 };
 var plot = $.plot(container, getData(), plotOptions);

 drawGraph();

 function drawGraph() {
 plot.setData(getData());
 plot.draw();
 b.analogRead(POT, onAnalogRead);
 }

 // Handle data back from potentiometer
 function onAnalogRead(x) {
 if (!x.err && typeof x.value == 'number') {
 pushData(x.value);
 }
 setTimeout(drawGraph, 20);
 }

 function pushData(y) {
 if (data.length && (data.length + 1) > totalPoints) {
 data = data.slice(1);
 }

http://jsfiddle.net/

 if (data.length < totalPoints) {
 data.push(y);
 }
 }

 function getData() {
 var res = [];
 for (var i = 0; i < data.length; ++i) {
 res.push([i, data[i]]);
 }
 var series = [{
 data: res,
 lines: {
 fill: true
 }
 }];
 return series;
 }
}

Direct the browser where to find the Bone. After it is initialized, it calls run to
get things going.

Read in the BoneScript library.

Pick which analog-in to use.

Pick where on the web page to draw the plot. In this case, the code defines only
one place, myplot.

Decide how many points can be plotted.

Set various plotting options.

Initialize the plot.

Draw the graph on the web page.

Set the data and draw. Then read the next value and call onAnalogRead when
it’s ready.

If no error, add newest value to the data array.

Do it all over again in 20 ms.

Plotting locally
You can do plotting locally by following the process in Recipe 6.6:

1. Copy the JavaScript code in the lower-left panel and save it in a file called
flotDemo.js.

2. Copy the HTML in the upper-left panel and add the header material. Example 6-
6 loads the flot library in addition to jquery and our own code.

Example 6-6. flotDemo.html (flotDemo.html)
<html>
 <head>
 <title>BoneScript Flot Demo</title>
 <script src="/static/flot/jquery.min.js"></script>
 <script src="/static/flot/jquery.flot.min.js"></script>
 <script src="/static/bonescript.js"></script>
 <script src="flotDemo.js"></script>
 </head>
<body>

<h1>BoneScript Flot Demo</h1>
<div id="myplot" style="width:500px;height:300px;"></div>

</body>
</html>

3. Put both files in the serverExample subdirectory under the Cloud9 IDE
(/var/lib/cloud9).

4. Browse to http://192.168.7.2/serverExample/flotDemo.html, and you’ll have a
local version of your demo running.

Go explore the Flot site and see what other plots you can do.

http://192.168.7.2/serverExample/flotDemo.html
http://www.flotcharts.org/

6.8 Sending an Email

Problem
You want to send an email via Gmail from the Bone.

Solution
First, you need to set up a Gmail account, if you don’t already have one. Next, install
nodemailer:

bone# npm install -g nodemailer

Then add the code in Example 6-7 to a file named nodemailer-test.js in the
serverExample directory. Be sure to substitute your own Gmail username and
password for user and pass.

Example 6-7. Sending email using nodemailer (nodemailer-test.js)
#!/usr/bin/env node
// From: https://github.com/andris9/Nodemailer

var nodemailer = require('nodemailer');

// create reusable transporter object using SMTP transport
var transporter = nodemailer.createTransport({
 service: 'gmail',
 auth: {
 user: 'yourUser@gmail.com',
 pass: 'yourPass'
 }
});

// NB! No need to re-create the transporter object. You can use
// the same transporter object for all e-mails

// set up e-mail data with unicode symbols
var mailOptions = {
 from: 'Your User <yourUser@gmail.edu>', // sender address
 to: 'anotherUser@gmail.edu', // list of receivers
 subject: 'Test of nodemail', // Subject line
 text: 'Hello world from modemailer', // plaintext body
 html: 'Hello world<p>Way to go!</p>' // html body
};

// send mail with defined transport object
transporter.sendMail(mailOptions, function(error, info){
 if(error){
 console.log(error);
 }else{
 console.log('Message sent: ' + info.response);
 }
});

// Nodemailer is licensed under MIT license
// (https://github.com/andris9/Nodemailer/blob/master/LICENSE).
// Basically you can do whatever you want to with it

Then run the script to send the email:

bone# chmod +x nodemailer-test.js
bone# .\nodemailer-test.js

https://mail.google.com

WARNING
This solution requires your Gmail password to be in plain text in a file, which is a security problem.
Make sure you know who has access to your Bone. Also, if you remove the microSD card, make
sure you know who has access to it. Anyone with your microSD card can read your Gmail password.

Discussion
Be careful about putting this into a loop. Gmail presently limits you to 500 emails per
day and 10 MB per message.

http://group-mail.com/email-marketing/how-to-send-bulk-emails-using-gmail/

6.9 Sending an SMS Message

Problem
You want to send a text message from BeagleBone Black.

Solution
There are a number of SMS services out there. This recipe uses Twilio because you
can use it for free, but you will need to verify the number to which you are texting.
First, go to Twilio’s home page and set up an account. Note your account SID and
authorization token. If you are using the free version, be sure to verify your numbers.
Next, install Trilio by using the following command:

bone# npm install -g twilio

Finally, add the code in Example 6-8 to a file named twilio-test.js and run it. Your
text will be sent.

Example 6-8. Sending SMS messages using Twilio (twilio-test.js)
#!/usr/bin/env node
// From: http://twilio.github.io/twilio-node/
// Twilio Credentials
var accountSid = '';
var authToken = '';

//require the Twilio module and create a REST client
var client = require('twilio')(accountSid, authToken);

client.messages.create({
 to: "812555121",
 from: "+2605551212",
 body: "This is a test",
}, function(err, message) {
 console.log(message.sid);
});

// https://github.com/twilio/twilio-node/blob/master/LICENSE
// The MIT License (MIT)
// Copyright (c) 2010 Stephen Walters
// Copyright (c) 2012 Twilio Inc.

// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
// of the Software, and to permit persons to whom the Software is furnished to do
// so, subject to the following conditions:

// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

http://bit.ly/1MrHBBF
https://www.twilio.com/
http://bit.ly/19c7GZ7

Discussion
Twilio allows a small number of free text messages, enough to test your code and to
play around some.

6.10 Displaying the Current Weather Conditions

Problem
You want to display the current weather conditions.

Solution
Because your Bone is on the network, it’s not hard to access the current weather
conditions from a weather API. First, install a JavaScript module:

bone# npm install -g weather-js (Took about 4 minutes on a slow connection)

Then add the code in Example 6-9 to a file named weather.js.

Example 6-9. Code for getting current weather conditions (weather.js)
#!/usr/bin/env node
// Install with npm install weather-js
var weather = require('weather-js');

// Options:
// search: location name or zipcode
// degreeType: F or C

weather.find({search: 'Terre Haute, IN', degreeType: 'F'},
 function(err, result) {
 if (err) {
 console.log(err);
 }
 console.log(JSON.stringify(result, null, 2));
 console.log(JSON.stringify(result[0].current, null, 2));
 console.log(JSON.stringify(result[0].forecast[0], null, 2));
 });

Prints everything returned by the weather site.

Prints only the current weather conditions.

Prints the forecast for the next day.
Run this by using the following commands:

bone# chmod +x weather.js
bone# ./weather.js
...
{
 "temperature": "74",
 "skycode": "28",
 "skytext": "Mostly Cloudy",
 "date": "2014-07-28",
 "observationtime": "14:53:00",
 "observationpoint": "Terre Haute, Terre Haute International Airport -
 Hulman Field",
 "feelslike": "74",
 "humidity": "53",
 "winddisplay": "15 mph NW",
 "day": "Monday",

 "shortday": "Mon",
 "windspeed": "15",
 "imageUrl": "http://wst.s-msn.com/i/en-us/law/28.gif"
}

Discussion
The weather API returns lots of information. Use JavaScript to extract the
information you want.

6.11 Sending and Receiving Tweets

Problem
You want to send and receive tweets (Twitter posts) with your Bone.

Solution
First, install the Twitter node package:

bone# npm install node-twitter

Before creating a Twitter app, you need to authenticate with Twitter:
1. Go to the Twitter Application Management page and click Create New App.

2. Fill in the requested information and click “Create your Twitter application.”
You can leave the Callback URL blank.

3. Click the API Keys tab. If you plan to have the Bone send tweets, click “modify
app permissions” to the right of “Access level.”

4. Select “Read and Write” and click “Update settings.”

5. Click the API Keys tab.

6. Near the bottom of the page, click “Create my access token.”

7. Create a file called twitterKeys.js and add the following code to it, substituting
your keys for xxx:

exports.API_KEY = 'xxx';
exports.API_SECRET = 'xxx';
exports.TOKEN = 'xxx';
exports.TOKEN_SECRET = 'xxx';

Add the code in Example 6-10 to a file called twitterTimeLine.js and run it to see
your timeline.

Example 6-10. Code to display your Twitter timeline (twitterTimeLine.js)
#!/usr/bin/env node
// From: https://www.npmjs.org/package/node-twitter
// The Twitter REST API can be accessed using Twitter.RestClient. The following
// code example shows how to retrieve tweets from the authenticated user's timeline.
var Twitter = require('node-twitter');
var key = require('./twitterKeys');

var twitterRestClient = new Twitter.RestClient(
 key.API_KEY, key.API_SECRET,
 key.TOKEN, key.TOKEN_SECRET
);

twitterRestClient.statusesHomeTimeline({}, function(error, result) {
 if (error) {
 console.log('Error: ' +
 (error.code ? error.code + ' ' + error.message : error.message));

https://apps.twitter.com/

 }

 if (result) {
 console.log(result);
 }
});

// node-twitter is made available under terms of the BSD 3-Clause License.
// http://www.opensource.org/licenses/BSD-3-Clause

Use the code in Example 6-11 to send a tweet with a picture.

Example 6-11. Code to send a tweet with a picture (twitterUpload.js)
#!/usr/bin/env node
// From: https://www.npmjs.org/package/node-twitter
// Tweets with attached image media (JPG, PNG or GIF) can be posted
// using the upload API endpoint.
var Twitter = require('node-twitter');
var b = require('bonescript');
var key = require('./twitterKeys');

var twitterRestClient = new Twitter.RestClient(
 key.API_KEY, key.API_SECRET,
 key.TOKEN, key.TOKEN_SECRET
);

twitterRestClient.statusesUpdateWithMedia(
 {
 'status': 'Posting a tweet w/ attached media.',
 'media[]': '/root/cookbook-atlas/images/cover.png'
 },
 function(error, result) {
 if (error) {
 console.log('Error: ' +
 (error.code ? error.code + ' ' + error.message : error.message));
 }

 if (result) {
 console.log(result);
 }
 }
);

// node-twitter is made available under terms of the BSD 3-Clause License.
// http://www.opensource.org/licenses/BSD-3-Clause

The code in Example 6-12 sends a tweet whenever a button is pushed.

Example 6-12. Tweet when a button is pushed (twitterPushbutton.js)
#!/usr/bin/env node
// From: https://www.npmjs.org/package/node-twitter
// Tweets with attached image media (JPG, PNG or GIF) can be posted
// using the upload API endpoint.
var Twitter = require('node-twitter');
var b = require('bonescript');
var key = require('./twitterKeys');
var gpio = "P9_42";
var count = 0;

b.pinMode(gpio, b.INPUT);
b.attachInterrupt(gpio, sendTweet, b.FALLING);

var twitterRestClient = new Twitter.RestClient(
 key.API_KEY, key.API_SECRET,
 key.TOKEN, key.TOKEN_SECRET
);

function sendTweet() {
 console.log("Sending...");
 count++;

 twitterRestClient.statusesUpdate(
 {'status': 'Posting tweet ' + count + ' via my BeagleBone Black', },
 function(error, result) {
 if (error) {
 console.log('Error: ' +
 (error.code ? error.code + ' ' + error.message : error.message));
 }

 if (result) {
 console.log(result);
 }
 }
);
}

// node-twitter is made available under terms of the BSD 3-Clause License.
// http://www.opensource.org/licenses/BSD-3-Clause

To see many other examples, go to iStrategyLabs’ node-twitter GitHub page.

http://bit.ly/18AvSTW

Discussion
This opens up many new possibilities. You can read a temperature sensor and tweet
its value whenever it changes, or you can turn on an LED whenever a certain hashtag
is used. What are you going to tweet?

6.12 Wiring the IoT with Node-RED

Problem
You want BeagleBone to interact with the Internet, but you want to program it
graphically.

Solution
Node-RED is a visual tool for wiring the IoT. It makes it easy to turn on a light when
a certain hashtag is tweeted, or spin a motor if the forecast is for hot weather.

Installing Node-RED
To install Node-RED, run the following commands:

bone# cd # Change to home directory
bone# git clone https://github.com/node-red/node-red.git
bone# cd node-red/
bone# npm install --production # almost 6 minutes
bone# cd nodes
bone# git clone https://github.com/node-red/node-red-nodes.git # 2 seconds
bone# cd ~/node-red

To run Node-RED, use the following commands:

bone# cd ~/node-red
bone# node red.js
Welcome to Node-RED
===================

18 Aug 16:31:43 - [red] Version: 0.8.1.git
18 Aug 16:31:43 - [red] Loading palette nodes
18 Aug 16:31:49 - [26-rawserial.js] Info : only really needed for
 Windows boxes without serialport npm module installed.
18 Aug 16:31:56 - --
18 Aug 16:31:56 - [red] Failed to register 44 node types
18 Aug 16:31:56 - [red] Run with -v for details
18 Aug 16:31:56 - --
18 Aug 16:31:56 - [red] Server now running at http://127.0.0.1:1880/
18 Aug 16:31:56 - [red] Loading flows : flows_yoder-debian-bone.json

The second-to-last line informs you that Node-RED is listening on part 1880. Point
your browser to http://192.168.7.2:1880, and you will see the screen shown in
Figure 6-7.

http://nodered.org/
http://192.168.7.2:1880

Figure 6-7. The Node-RED web page

Building a Node-RED Flow
The example in this recipe builds a Node-RED flow that will toggle an LED
whenever a certain hashtag is tweeted. But first, you need to set up the Node-RED
flow with the twitter node:

1. On the Node-RED web page, scroll down until you see the social nodes on the
left side of the page.

2. Drag the twitter node to the canvas, as shown in Figure 6-8.

Figure 6-8. Node-RED twitter node

3. Authorize Twitter by double-clicking the twitter node. You’ll see the screen
shown in Figure 6-9.

Figure 6-9. Node-RED Twitter authorization, step 1

4. Click the pencil button to bring up the dialog box shown in Figure 6-10.

Figure 6-10. Node-RED twitter authorization, step 2

5. Click the “here” link, as shown in Figure 6-10, and you’ll be taken to Twitter to
authorize Node-RED.

6. Log in to Twitter and click the “Authorize app” button (Figure 6-11).

Figure 6-11. Node-RED Twitter site authorization

7. When you’re back to Node-RED, click the Add button, add your Twitter
credentials, enter the hashtags to respond to (Figure 6-12), and then click the Ok
button.

Figure 6-12. Node-RED adding the #BeagleBone hashtag

8. Go back to the left panel, scroll up to the top, and then drag the debug node to
the canvas. (debug is in the output section.)

9. Connect the two nodes by clicking and dragging (Figure 6-13).

Figure 6-13. Node-RED Twitter adding debug node and connecting

10. In the right panel, in the upper-right corner, click the “debug” tab.

11. Finally, click the Deploy button above the “debug” tab.

Your Node-RED flow is now running on the Bone. Test it by going to Twitter and
tweeting something with the hashtag #BeagleBone. Your Bone is now responding to
events happening out in the world.

Adding an LED Toggle
Now, we’re ready to add the LED toggle:

1. Wire up an LED as shown in Recipe 3.2. Mine is wired to P9_14.

2. Scroll to the bottom of the left panel and drag the bbb-discrete-out node
(second from the bottom of the bbb nodes) to the canvas and wire it (Figure 6-
14).

Figure 6-14. Node-RED adding bbb-discrete-out node

3. Double-click the node, select your GPIO pin and “Toggle state,” and then set
“Startup as” to 1 (Figure 6-15).

Figure 6-15. Node-RED adding bbb-discrete-out configuration

4. Click Ok and then Deploy.

Test again. The LED will toggle every time the hashtag #BeagleBone is tweeted.
With a little more exploring, you should be able to have your Bone ringing a bell or
spinning a motor in response to tweets.

Discussion
We’ve just opened up a whole other world of IoT. Go explore. You’ll find all sorts of
ways to interact with the Bone and the Internet. For example, if you install the
following nodes, you can use Texas Instruments’ SensorTag (Recipe 2.11) with Node-
RED (be sure to restart Node-RED after installing):

bone# apt-get install libbluetooth-dev
bone# npm install -g sensortag

In fact, there are many other nodes that you can install, including these useful nodes:

npm install -g badwords ntwitter oauth sentiment wordpos xml2js firmata
npm install -g fs.notify serialport feedparser pushbullet irc simple-xmpp
npm install -g redis mongodb node-stringprep
npm install -g imap js2xmlparser nodemailer arduino-firmata heatmiser wemo
npm install -g stomp-client wake_on_lan node-dweetio komponist nma growl
npm install -g node-prowl pusher pushover-notifications snapchat twilio aws-sdk
npm install -g node-hue-api level pusher-client mysql sqlite3 suncalc
npm install -g dynamodb-data-types node-postgres-named

The Node-RED documentation shows many other things you can do with Node-RED,
and the Node-RED flows site lists many things others are trying. Go and explore.

http://nodered.org/docs/
http://flows.nodered.org/

6.13 Serving Web Pages from the Bone by Using Apache

Problem
You want to use BeagleBone Black as an Apache web server.

Solution
Apache (the most popular web server on the Internet since 1996) is already running
on the Bone. Point your browser to http://192.168.7.2:8080/, and you’ll see a screen
that looks like Figure 6-16.

Figure 6-16. Apache running on the Bone with no files to view

What you are seeing is a listing of the files in Apache’s root directory (/var/www/).
In this case, there are no files to show. Add the HTML in Example 6-1 to a file called
/var/www/test.html and refresh your browser. You will see the screen shown in
Figure 6-17.

https://httpd.apache.org/
http://192.168.7.2:8080/

Figure 6-17. The test.html file appears

Click the test.html link to display the screen in Figure 6-18.

Figure 6-18. Apache running on the Bone showing test.html

You can place any number of files in /var/www/ and access them with Apache.

Discussion
A computer can have a number of services (such as SSH, FTP, or a web browser)
that use the network. Port numbers are the way of specifying the computer to which
service you want to connect. When you point your web browser to an IP address such
as 192.168.7.2, the browser assumes you want port 80. Apache defaults to listening
on port 80, so your browser connects to Apache by default.

The Bone, however, has something else already listening to port 80, so Apache (on
the Bone) has been configured to listen to port 8080. How do you know what port
Apache is using? Try the following command:

bone# netstat -taupn
Active Internet connections (servers and established)
Proto Local Address Foreign Address PID/Program name
tcp 127.0.0.1:3350 0.0.0.0:* 880/xrdp-sesman
tcp 0.0.0.0:22 0.0.0.0:* 860/sshd
tcp 127.0.0.1:6010 0.0.0.0:* 1143/0
tcp 127.0.0.1:6011 0.0.0.0:* 17227/4
tcp 0.0.0.0:1883 0.0.0.0:* 625/mosquitto
tcp 0.0.0.0:3389 0.0.0.0:* 859/xrdp
tcp 192.168.7.2:22 192.168.7.1:59284 1143/0
tcp 192.168.7.2:22 192.168.7.1:45655 17227/4
tcp6 :::22 :::* 860/sshd
tcp6 :::3000 :::* 1/systemd
tcp6 ::1:6010 :::* 1143/0
tcp6 ::1:6011 :::* 17227/4
tcp6 :::1883 :::* 625/mosquitto
tcp6 :::8080 :::* 368/apache2
tcp6 :::80 :::* 1/systemd
tcp6 192.168.7.2:80 192.168.7.1:34251 1102/node
tcp6 192.168.7.2:3000 137.112.41.137:53894 1104/node
tcp6 192.168.7.2:3000 192.168.7.1:51422 1104/node
tcp6 192.168.7.2:3000 137.112.41.137:54480 1104/node
udp 0.0.0.0:58536 0.0.0.0:* 530/avahi-daemon: r
udp 0 0.0.0.0:5353 0.0.0.0:* 530/avahi-daemon: r
udp 0 0.0.0.0:67 0.0.0.0:* 1011/udhcpd
udp6 :::42706 :::* 530/avahi-daemon: r
udp6 :::5353 :::* 530/avahi-daemon: r

NOTE
To allow the output to fit on the width of the printed page, the Recv-Q, Send-Q, and State columns
have been removed from the preceding code listing.

The Local Address column lists the IP addresses and port numbers. Here, apache2
is shown listening on port 8080, and node is listening on port 80. Here’s how to
switch Apache back to port 80.

First, move node to another port by editing
/lib/systemd/system/bonescript.socket. Initially, it begins with this:

[Socket]
ListenStream=80

Change the 80 to another port number — 8081, for example.

Next, move apache2 to another port by editing the /etc/apache2/ports.conf file. A
few lines down, you will find these lines:

NameVirtualHost *:8080
Listen 8080

Change both instances of 8080 to 80 and reboot to make the changes effective.

Now, pointing a browser to 192.168.7.2 will use the Apache server.

6.14 Communicating over a Serial Connection to an
Arduino or LaunchPad

Problem
You would like your Bone to talk to an Arduino or LaunchPad.

Solution
The common serial port (also know as a UART) is the simplest way to talk between
the two. Wire it up as shown in Figure 6-19.

WARNING
BeagleBone Black runs at 3.3 V. When wiring other devices to it, ensure that they are also 3.3 V.
The LaunchPad I’m using is 3.3 V, but many Arduinos are 5.0 V and thus won’t work. Or worse,
they might damage your Bone.

Figure 6-19. Wiring a LaunchPad to a Bone via the common serial port

Add the code (or sketch, as it’s called in Arduino-speak) in Example 6-13 to a file
called launchPad.ino and run it on your LaunchPad.

Example 6-13. LaunchPad code for communicating via the UART (launchPad.ino)
/*
 Tests connection to a BeagleBone
 Mark A. Yoder

 Waits for input on Serial Port
 g - Green toggle
 r - Red toggle
*/
char inChar = 0; // incoming serial byte
int red = 0;
int green = 0;

void setup()
{
 // initialize the digital pin as an output.
 pinMode(RED_LED, OUTPUT);
 pinMode(GREEN_LED, OUTPUT);
 // start serial port at 9600 bps:
 Serial.begin(9600);
 Serial.print("Command (r, g): ");

 digitalWrite(GREEN_LED, green);
 digitalWrite(RED_LED, red);
}

void loop()
{
 if(Serial.available() > 0) {
 inChar = Serial.read();
 switch(inChar) {
 case 'g':
 green = ~green;
 digitalWrite(GREEN_LED, green);
 Serial.println("Green");
 break;
 case 'r':
 red = ~red;
 digitalWrite(RED_LED, red);
 Serial.println("Red");
 break;
 }
 Serial.print("Command (r, g): ");
 }
}

Set the mode for the built-in red and green LEDs.

Start the serial port at 9600 baud.

Prompt the user, which in this case is the Bone.

Set the LEDs to the current values of the red and green variables.

Wait for characters to arrive on the serial port.

After the characters are received, read it and respond to it.

On the Bone, add the script in Example 6-14 to a file called launchPad.js and run it.

Example 6-14. Code for communicating via the UART (launchPad.js)
#!/usr/bin/env node
// Need to add exports.serialParsers = m.module.parsers;
// to /usr/local/lib/node_modules/bonescript/serial.js
var b = require('bonescript');

var port = '/dev/ttyO1';
var options = {
 baudrate: 9600,
 parser: b.serialParsers.readline("\n")
};

b.serialOpen(port, options, onSerial);

function onSerial(x) {
 console.log(x.event);
 if (x.err) {
 console.log('***ERROR*** ' + JSON.stringify(x));
 }
 if (x.event == 'open') {
 console.log('***OPENED***');
 setInterval(sendCommand, 1000);
 }
 if (x.event == 'data') {
 console.log(String(x.data));
 }
}

var command = ['r', 'g'];
var commIdx = 1;

function sendCommand() {
 // console.log('Command: ' + command[commIdx]);
 b.serialWrite(port, command[commIdx++]);
 if(commIdx >= command.length) {
 commIdx = 0;
 }
}

Select which serial port to use. Figure 6-20 shows what’s available. We’ve
wired P9_24 and P9_26, so we are using serial port /dev/ttyO1. (Note that’s
the letter O and not the number zero.)

Set the baudrate to 9600, which matches the setting on the LaunchPad.

Read one line at a time up to the newline character (\n).

Open the serial port and call onSerial() whenever there is data available.

Determine what event has happened on the serial port and respond to it.

If the serial port has been opened, start calling sendCommand() every 1000 ms.

These are the two commands to send.

Write the character out to the serial port and to the LaunchPad.

Move to the next command.

Figure 6-20. Table of UART outputs

Discussion
When you run the script in Example 6-14, the Bone opens up the serial port and every
second sends a new command, either r or g. The LaunchPad waits for the command
and, when it arrives, responds by toggling the corresponding LED.

Chapter 7. The Kernel

7.0 Introduction
The kernel is the heart of the Linux operating system. It’s the software that takes the
low-level requests, such as reading or writing files, or reading and writing general-
purpose input/output (GPIO) pins, and maps them to the hardware. When you install a
new version of the OS (Recipe 1.3), you get a certain version of the kernel.
You usually won’t need to mess with the kernel, but sometimes you might want to try
something new that requires a different kernel. This chapter shows how to switch
kernels. The nice thing is you can have multiple kernels on your system at the same
time and select from among them which to boot up.

NOTE
We assume here that you are logged on to your Bone as root and superuser privileges. You also need
to be logged in to your Linux host computer as a nonsuperuser.

7.1 Updating the Kernel

Problem
You have an out-of-date kernel and want to want to make it current.

Solution
Use the following command to determine which kernel you are running:

bone# uname -a
Linux beaglebone 3.8.13-bone67 #1 SMP Wed Sep 24 21:30:03 UTC 2014 armv7l
 GNU/Linux

The 3.8.13-bone67 string is the kernel version.

To update to the current kernel, ensure that your Bone is on the Internet (Recipe 5.13
or Recipe 5.11) and then run the following commands:

bone# apt-cache pkgnames | grep linux-image | sort | less
...
linux-image-3.15.8-armv7-x5
linux-image-3.15.8-bone5
linux-image-3.15.8-bone6
...
linux-image-3.16.0-rc7-bone1
...
linux-image-3.8.13-bone60
linux-image-3.8.13-bone61
linux-image-3.8.13-bone62
bone# apt-get install linux-image-3.14.23-ti-r35
bone# reboot
bone# uname -a
Linux beaglebone 3.14.23-ti-r35 #1 SMP PREEMPT Wed Nov 19 21:11:08 UTC 2014 armv7l
 GNU/Linux

The first command lists the versions of the kernel that are available. The second
command installs one. After you have rebooted, the new kernel will be running.
If the current kernel is doing its job adequately, you probably don’t need to update,
but sometimes a new software package requires a more up-to-date kernel.
Fortunately, precompiled kernels are available and ready to download.

Discussion
If you have loaded multiple kernels, it’s easy to switch between them without
downloading them again:

bone# ls /boot
config-3.15.6-bone5 System.map-3.15.6-bone5
config-3.16.0-rc5-bone0 System.map-3.16.0-rc5-bone0
config-3.8.13-bone59 System.map-3.8.13-bone59
config-3.8.13-bone60 System.map-3.8.13-bone60
dtbs uboot
initrd.img-3.15.6-bone5 uEnv.txt
initrd.img-3.16.0-rc5-bone0 vmlinuz-3.15.6-bone5
initrd.img-3.8.13-bone59 vmlinuz-3.16.0-rc5-bone0
initrd.img-3.8.13-bone60 vmlinuz-3.8.13-bone59
SOC.sh vmlinuz-3.8.13-bone60
bone# head -4 /boot/uEnv.txt
#Docs: http://elinux.org/Beagleboard:U-boot_partitioning_layout_2.0

uname_r=3.8.13-bone67

The first command lists which kernels you have downloaded. The second command
shows the first few lines of /boot/uEnv.txt, which is the file that specifies which
kernel to boot. Edit /boot/uEnv.txt by changing 3.8.13-bone60 to the kernel you
want and then reboot.
If there is a problem and you can’t access the Bone through the network, see Recipe
5.5 for how to connect to the Bone by using an FTDI cable.

7.2 Building and Installing Kernel Modules

Problem
You need to use a peripheral for which there currently is no driver, or you need to
improve the performance of an interface previously handled in user space.

Solution
The solution is to run in kernel space by building a kernel module. There are entire
books on writing Linux Device Drivers. This recipe assumes that the driver has
already been written and shows how to compile and install it. After you’ve followed
the steps for this simple module, you will be able to apply them to any other module.
For our example module, add the code in Example 7-1 to a file called hello.c.

Example 7-1. Simple Kernel Module (hello.c)
#include <linux/module.h> /* Needed by all modules */
#include <linux/kernel.h> /* Needed for KERN_INFO */
#include <linux/init.h> /* Needed for the macros */

static int __init hello_start(void)
{
 printk(KERN_INFO "Loading hello module...\n");
 printk(KERN_INFO "Hello, World!\n");
 return 0;
}

static void __exit hello_end(void)
{
 printk(KERN_INFO "Goodbye Boris\n");
}

module_init(hello_start);
module_exit(hello_end);

MODULE_AUTHOR("Boris Houndleroy");
MODULE_DESCRIPTION("Hello World Example");
MODULE_LICENSE("GPL");

When compiling on the Bone, all you need to do is load the Kernel Headers for the
version of the kernel you’re running:

bone# apt-get install linux-headers-`uname -r`

NOTE
The quotes around uname -r are backtick characters. On a United States keyboard, the backtick key
is to the left of the 1 key.

This took a little more than three minutes on my Bone. The uname -r part of the
command looks up what version of the kernel you are running and loads the headers
for it.
Next, add the code in Example 7-2 to a file called Makefile.

Example 7-2. Simple Kernel Module (Makefile)

http://bit.ly/1Fb0usf

obj-m := hello.o
KDIR := /lib/modules/$(shell uname -r)/build

all:
<TAB>make -C $(KDIR) M=$$PWD

clean:
<TAB>rm hello.mod.c hello.o modules.order hello.mod.o Module.symvers

NOTE
Replace the two instances of <TAB> with a tab character (the key left of the Q key on a United States
keyboard). The tab characters are very important to makefiles and must appear as shown.

Now, compile the kernel module by using the make command:

bone# make
make -C /lib/modules/3.8.13-bone67/build \
 SUBDIRS=/root/cookbook-atlas/images/kernel/hello modules
make[1]: Entering directory `/usr/src/linux-headers-3.8.13-bone67'
 CC [M] /root/cookbook-atlas/images/kernel/hello/hello.o
 Building modules, stage 2.
 MODPOST 1 modules
 CC /root/cookbook-atlas/images/kernel/hello/hello.mod.o
 LD [M] /root/cookbook-atlas/images/kernel/hello/hello.ko
make[1]: Leaving directory `/usr/src/linux-headers-3.8.13-bone67'
bone# ls
Makefile hello.c hello.mod.c hello.o
Module.symvers hello.ko hello.mod.o modules.order

Notice that several files have been created. hello.ko is the one you want. Try a
couple of commands with it:

bone# modinfo hello.ko
filename: /root/hello/hello.ko
srcversion: 87C6AEED7791B4B90C3B50C
depends:
vermagic: 3.8.13-bone67 SMP mod_unload modversions ARMv7 thumb2 p2v8
bone# insmod hello.ko
bone# dmesg | tail -4
[419313.320052] bone-iio-helper helper.15: ready
[419313.322776] bone-capemgr bone_capemgr.9: slot #8: Applied #1 overlays.
[491540.999431] Loading hello module...
[491540.999476] Hello world

The first command displays information about the module. The insmod command
inserts the module into the running kernel. If all goes well, nothing is displayed, but
the module does print something in the kernel log. The dmesg command displays the
messages in the log, and the tail -4 command shows the last four messages. The
last two messages are from the module. It worked!

Discussion
When you are finished with a module, you can also remove it:

bone# rmmod hello.ko
bone# dmesg | tail -4
[419313.322776] bone-capemgr bone_capemgr.9: slot #8: Applied #1 overlays.
[491540.999431] Loading hello module...
[491540.999476] Hello world
[492094.541102] Goodbye Mr.

The log message shows it has been successfully removed. You can also remove
unneeded files:

bone# make clean
rm hello.mod.c hello.o modules.order hello.mod.o Module.symvers
bone# ls
Makefile hello.c hello.ko

7.3 Controlling LEDs by Using SYSFS Entries

Problem
You want to control the onboard LEDs from the command line.

Solution
On Linux, everything is a file; that is, you can access all the inputs and outputs, the
LEDs, and so on by opening the right file and reading or writing to it. For example,
try the following:

bone# cd /sys/class/leds/
bone# ls
beaglebone:green:usr0 beaglebone:green:usr2
beaglebone:green:usr1 beaglebone:green:usr3

What you are seeing are four directories, one for each onboard LED. Now try this:

bone# cd beaglebone\:green\:usr0
bone# ls
brightness device max_brightness power subsystem trigger uevent
bone# cat trigger
none nand-disk mmc0 mmc1 timer oneshot [heartbeat]
 backlight gpio cpu0 default-on transient

The first command changes into the directory for LED usr0, which is the LED
closest to the edge of the board. The [heartbeat] indicates that the default trigger
(behavior) for the LED is to blink in the heartbeat pattern. Look at your LED. Is it
blinking in a heartbeat pattern?
Then try the following:

bone# echo none > trigger
bone# cat trigger
[none] nand-disk mmc0 mmc1 timer oneshot heartbeat
 backlight gpio cpu0 default-on transient

This instructs the LED to use none for a trigger. Look again. It should be no longer
blinking.
Now, try turning it on and off:

bone# echo 1 > brightness
bone# echo 0 > brightness

The LED should be turning on and off with the commands.

http://bit.ly/1AjhWUW

Discussion
This recipe uses sysfs, a virtual file system provided by the Linux kernel to talk to
hardware. There are many other things to explore in sysfs. Try looking around:

bone# cd /sys
bone# ls
block bus class dev devices firmware fs kernel module power
bone# cd class
bone# ls
arvo graphics lcd power_supply scsi_host usbmon
backlight hidraw leds pps sound vc
bdi hwmon logibone pwm spidev video4linux
block i2c-adapter mbox pyra spi_master virtio-ports
bsg i2c-dev mdio_bus rc thermal vtconsole
dma input mem regulator timed_output watchdog
drm isku misc rtc tty
dvb kone mmc_host savu ubi
firmware koneplus mtd scsi_device udc
gpio kovaplus net scsi_disk uio

It’s not hard to guess what’s controlled by some of these files.

http://bit.ly/1C6OBUV

7.4 Controlling GPIOs by Using SYSFS Entries

Problem
You want to control a GPIO pin from the command line.

Solution
Recipe 7.3 introduces the sysfs. This recipe shows how to read and write a GPIO
pin.

Reading a GPIO Pin via sysfs
Suppose that you want to read the state of the P9_42 GPIO pin. (Recipe 2.3 shows
how to wire a switch to P9_42.) First, you need to map the P9 header location to
GPIO number using Figure 7-1, which shows that P9_42 maps to GPIO 7.

Figure 7-1. Mapping P9_42 header position to GPIO 7

Next, change to the GPIO sysfs directory:

bone# cd /sys/class/gpio/
bone# ls
export gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

The ls command shows all the GPIO pins that have be exported. In this case, none
have, so you see only the four GPIO controllers. Export using the export command:

bone# echo 7 > export
bone# ls
export gpio7 gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

Now you can see the gpio7 directory. Change into the gpio7 directory and look

around:

bone# cd gpio7
bone# ls
active_low direction edge power subsystem uevent value
bone# cat direction
in
bone# cat value
0

Notice that the pin is already configured to be an input pin. (If it wasn’t already
configured that way, use echo in > direction to configure it.) You can also see
that its current value is 0 — that is, it isn’t pressed. Try pressing and holding it and
running again:

bone# cat value
1

The 1 informs you that the switch is pressed. When you are done with GPIO 7, you
can always unexport it:

bone# cd ..
bone# echo 7 > unexport
bone# ls
export gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

Writing a GPIO Pin via sysfs
Now, suppose that you want to control an external LED. Recipe 3.2 shows how to
wire an LED to P9_14. Figure 7-1 shows P9_14 is GPIO 50. Following the approach
in Recipe 7.4, enable GPIO 50 and make it an output:

bone# cd /sys/class/gpio/
bone# echo 50 > export
bone# ls
gpio50 gpiochip0 gpiochip32 gpiochip64 gpiochip96
bone# cd gpio50
bone# ls
active_low direction edge power subsystem uevent value
bone# cat direction
in

By default, P9_14 is set as an input. Switch it to an output and turn it on:

bone# echo out > direction
bone# echo 1 > value
bone# echo 0 > value

The LED turns on when a 1 is written to value and turns off when a 0 is written.

Discussion
In Linux, interfaces to everything are turned into files. Although not everything is
documented, you can learn more about the interfaces the kernel provides by checking
out the ABI documentation. For example, the LED interface is documented in the
ABI/testing/sysfs-class-led file. This documentation is part of the Linux kernel source
tree, so you might find updates within the source tree of your particular kernel
version.
The source tree for the kernel used in this book is located at
https://github.com/beagleboard/linux/tree/3.8.

http://bit.ly/1MtgLLp
http://bit.ly/1GEXGVS
https://github.com/beagleboard/linux/tree/3.8

7.5 Compiling the Kernel

Problem
You need to download, patch, and compile the kernel from its source code.

Solution
This is easier than it sounds, thanks to some very powerful scripts.

WARNING
Be sure to run this recipe on your host computer. The Bone has enough computational power to
compile a module or two, but compiling the entire kernel takes lots of time and resourses.

Downloading and Compiling the Kernel
To download and compile the kernel, follow these steps:

host$ git clone https://github.com/RobertCNelson/bb-kernel.git
host$ cd bb-kernel
host$ git tag
host$ git checkout 3.8.13-bone60 -b v3.8.13-bone60
host$./build_kernel.sh

The first command clones a repository with the tools to build the kernel for the
Bone.

This command lists all the different versions of the kernel that you can build.
You’ll need to pick one of these. How do you know which one to pick? A good
first step is to choose the one you are currently running. uname -a will reveal
which one that is. When you are able to reproduce the current kernel, go to
Linux Kernel Newbies to see what features are available in other kernels.
LinuxChanges shows the features in the newest kernel and LinuxVersions links
to features of pervious kernels.

When you know which kernel to try, use git checkout to check it out. This
command checks out at tag 3.8.13-bone60 and creates a new branch,
v3.8.13-bone60.

build_kernel is the master builder. If needed, it will download the cross
compilers needed to compile the kernel (linaro [http://www.linaro.org/] is the
current cross compiler). If there is a kernel at ~/linux-dev, it will use it;
otherwise, it will download a copy to bb-kernel/ignore/linux-src. It will then
patch the kernel so that it will run on the Bone.

http://kernelnewbies.org/
http://bit.ly/1AjiL00
http://bit.ly/1MrIHx3
http://www.linaro.org/

After the kernel is patched, you’ll see a screen similar to Figure 7-2, on which you
can configure the kernel.

Figure 7-2. Kernel configuration menu

You can use the arrow keys to navigate. No changes need to be made, so you can just
press the right arrow and Enter to start the kernel compiling. The entire process took
about 25 minutes on my 8-core host.
The bb-kernel/KERNEL directory contains the source code for the kernel. The bb-
kernel/deploy directory contains the compiled kernel and the files needed to run it.

Installing the Kernel on the Bone
To copy the new kernel and all its files to the microSD card, you need to halt the
Bone, and then pull the microSD card out and put it in an microSD card reader on
your host computer. Run Disk (see Recipe 1.3) to learn where the microSD card
appears on your host (mine appears in /dev/sdb). Then open the bb-kernel/system.sh
file and find this line near the end:

#MMC=/dev/sde

Change that line to look like this (where /dev/sdb is the path to your device):

MMC=/dev/sdb

Now, while in the bb-kernel directory, run the following command:

host$ tools/install_kernel.sh
[sudo] password for yoder:

I see...
fdisk -l:
Disk /dev/sda: 160.0 GB, 160041885696 bytes
Disk /dev/sdb: 3951 MB, 3951034368 bytes
Disk /dev/sdc: 100 MB, 100663296 bytes

lsblk:
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 149.1G 0 disk
├─sda1 8:1 0 141.1G 0 part /
├─sda2 8:2 0 1K 0 part
└─sda5 8:5 0 8G 0 part [SWAP]
sdb 8:16 1 3.7G 0 disk
├─sdb1 8:17 1 16M 0 part
└─sdb2 8:18 1 3.7G 0 part
sdc 8:32 1 96M 0 disk

Are you 100% sure, on selecting [/dev/sdb] (y/n)? y

The script lists the partitions it sees and asks if you have the correct one. If you are
sure, press Y, and the script will uncompress and copy the files to the correct
locations on your card. When this is finished, eject your card, plug it into the Bone,
and boot it up. Run uname -a, and you will see that you are running your compiled
kernel.

Discussion
It is also possible to package your kernel as a .deb package and use dpkg -i to
install the kernel. This also makes it possible to test bleeding-edge kernels from the
BeagleBoard.org build server.

http://builds.beagleboard.org

7.6 Using the Installed Cross Compiler

Problem
You have followed the instructions in Recipe 7.5 and want to use the cross compiler
it has downloaded.

TIP
You can cross-compile without installing the entire kernel source by running the following:

host$ sudo apt-get install gcc-arm-linux-gnueabihf

Then skip down to “Setting Up Variables”.

Solution
Recipe 7.5 installs a cross compiler, but you need to set up a couple of things so that
it can be found. Recipe 7.5 installed the kernel and other tools in a directory called
bb-kernel. Run the following commands to find the path to the cross compiler:

host$ cd bb-kernel/dl
host$ ls
gcc-linaro-arm-linux-gnueabihf-4.7-2013.04-20130415_linux
gcc-linaro-arm-linux-gnueabihf-4.7-2013.04-20130415_linux.tar.xz

Here, the path to the cross compiler contains the version number of the compiler.
Yours might be different from mine. cd into it:

host$ cd gcc-linaro-arm-linux-gnueabihf-4.7-2013.04-20130415_linux
host$ ls
20130415-gcc-linaro-arm-linux-gnueabihf bin libexec
arm-linux-gnueabihf lib share

At this point, we are interested in what’s in bin:

host$ cd bin
host$ ls
arm-linux-gnueabihf-addr2line arm-linux-gnueabihf-gfortran
arm-linux-gnueabihf-ar arm-linux-gnueabihf-gprof
arm-linux-gnueabihf-as arm-linux-gnueabihf-ld
arm-linux-gnueabihf-c++ arm-linux-gnueabihf-ld.bfd
arm-linux-gnueabihf-c++filt arm-linux-gnueabihf-ldd
arm-linux-gnueabihf-cpp arm-linux-gnueabihf-ld.gold
arm-linux-gnueabihf-ct-ng.config arm-linux-gnueabihf-nm
arm-linux-gnueabihf-elfedit arm-linux-gnueabihf-objcopy
arm-linux-gnueabihf-g++ arm-linux-gnueabihf-objdump
arm-linux-gnueabihf-gcc arm-linux-gnueabihf-pkg-config
arm-linux-gnueabihf-gcc-4.7.3 arm-linux-gnueabihf-pkg-config-real
arm-linux-gnueabihf-gcc-ar arm-linux-gnueabihf-ranlib
arm-linux-gnueabihf-gcc-nm arm-linux-gnueabihf-readelf
arm-linux-gnueabihf-gcc-ranlib arm-linux-gnueabihf-size
arm-linux-gnueabihf-gcov arm-linux-gnueabihf-strings
arm-linux-gnueabihf-gdb arm-linux-gnueabihf-strip

What you see are all the cross-development tools. You need to add this directory to
the $PATH the shell uses to find the commands it runs:

host$ pwd
/home/yoder/BeagleBoard/bb-kernel/dl/\
 gcc-linaro-arm-linux-gnueabihf-4.7-2013.04-20130415_linux/bin

host$ echo $PATH
 /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:\
 /usr/games:/usr/local/games

The first command displays the path to the directory where the cross-development
tools are located. The second shows which directories are searched to find
commands to be run. Currently, the cross-development tools are not in the $PATH.
Let’s add it:

host$ export PATH=`pwd`:$PATH
host$ echo $PATH
/home/yoder/BeagleBoard/bb-kernel/dl/\
 gcc-linaro-arm-linux-gnueabihf-4.7-2013.04-20130415_linux/bin:\
 /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:\
 /usr/games:/usr/local/games

NOTE
Those are backtick characters (left of the “1” key on your keyboard) around pwd.

The second line shows the $PATH now contains the directory with the cross-
development tools.

Setting Up Variables
Now, set up a couple of variables to know which compiler you are using:

host$ export ARCH=arm
host$ export CROSS_COMPILE=arm-linux-gnueabihf-

These lines set up the standard environmental variables so that you can determine
which cross-development tools to use. Test the cross compiler by adding Example 7-
3 to a file named helloWorld.c.

Example 7-3. Simple helloWorld.c to test cross compiling (helloWorld.c)
#include <stdio.h>

int main(int argc, char **argv) {
 printf("Hello, World! \n");
}

You can then cross-compile by using the following commands:

host$ ${CROSS_COMPILE}gcc helloWorld.c
host$ file a.out
a.out: ELF 32-bit LSB executable, ARM, version 1 (SYSV),
 dynamically linked (uses shared libs), for GNU/Linux 2.6.31,
 BuildID[sha1]=0x10182364352b9f3cb15d1aa61395aeede11a52ad, not stripped

The file command shows that a.out was compiled for an ARM processor.

Discussion
You can copy and run a.out on the Bone with the following commands:

host$ scp a.out root@192.168.7.2:.
a.out 100% 8422 8.2KB/s 00:00
host$ ssh root@192.168.7.2 ./a.out
Hello, World!

The first line copies a.out to the home directory of root on the Bone at 192.168.7.2.
The second line runs a.out on the Bone.

7.7 Applying Patches

Problem
You have a patch file that you need to apply to the kernel.

Solution
Example 7-4 shows a patch file that you can use on the kernel.

Example 7-4. Simple kernel patch file (hello.patch)
From eaf4f7ea7d540bc8bb57283a8f68321ddb4401f4 Mon Sep 17 00:00:00 2001
From: Jason Kridner <jdk@ti.com>
Date: Tue, 12 Feb 2013 02:18:03 +0000
Subject: [PATCH] hello: example kernel modules

 hello/Makefile | 7 +++++++
 hello/hello.c | 18 ++++++++++++++++++
 2 files changed, 25 insertions(+), 0 deletions(-)
 create mode 100644 hello/Makefile
 create mode 100644 hello/hello.c

diff --git a/hello/Makefile b/hello/Makefile
new file mode 100644
index 0000000..4b23da7
--- /dev/null
+++ b/hello/Makefile
@@ -0,0 +1,7 @@
+obj-m := hello.o
+
+PWD := $(shell pwd)
+KDIR := ${PWD}/..
+
+default:
+ make -C $(KDIR) SUBDIRS=$(PWD) modules
diff --git a/hello/hello.c b/hello/hello.c
new file mode 100644
index 0000000..157d490
--- /dev/null
+++ b/hello/hello.c
@@ -0,0 +1,22 @@
+#include <linux/module.h> /* Needed by all modules */
+#include <linux/kernel.h> /* Needed for KERN_INFO */
+#include <linux/init.h> /* Needed for the macros */
+
+static int __init hello_start(void)
+{
+ printk(KERN_INFO "Loading hello module...\n");
+ printk(KERN_INFO "Hello, World!\n");
+ return 0;
+}
+
+static void __exit hello_end(void)
+{
+ printk(KERN_INFO "Goodbye Boris\n");
+}
+
+module_init(hello_start);
+module_exit(hello_end);
+
+MODULE_AUTHOR("Boris Houndleroy");
+MODULE_DESCRIPTION("Hello World Example");
+MODULE_LICENSE("GPL");

Here’s how to use it:

1. Install the kernel sources (Recipe 7.5).

2. Change to the kernel directory (cd bb-kernel/KERNEL).

3. Add Example 7-4 to a file named hello.patch in the bb-kernel/KERNEL
directory.

4. Run the following commands:

host$ cd bb-kernel/KERNEL
host$ patch -p1 < hello.patch
patching file hello/Makefile
patching file hello/hello.c

The output of the patch command apprises you of what it’s doing. Look in the hello
directory to see what was created:

host$ cd hello
host$ ls
hello.c Makefile

Discussion
Recipe 7.2 shows how to build and install a module, and Recipe 7.8 shows how to
create your own patch file.

7.8 Creating Your Own Patch File

Problem
You made a few changes to the kernel, and you want to share them with your friends.

Solution
Create a patch file that contains just the changes you have made. Before making your
changes, check out a new branch:

host$ cd bb-kernel/KERNEL
host$ git status
On branch master
nothing to commit (working directory clean)

Good, so far no changes have been made. Now, create a new branch:

host$ git checkout -b hello1
host$ git status
On branch hello1
nothing to commit (working directory clean)

You’ve created a new branch called hello1 and checked it out. Now, make whatever
changes to the kernel you want. I did some work with a simple character driver that
we can use as an example:

host$ cd bb-kernel/KERNEL/drivers/char/
host$ git status
On branch hello1
Changes not staged for commit:
(use "git add file..." to update what will be committed)
(use "git checkout -- file..." to discard changes in working directory)
#
modified: Kconfig
modified: Makefile
#
Untracked files:
(use "git add file..." to include in what will be committed)
#
examples/
no changes added to commit (use "git add" and/or "git commit -a")

Add the files that were created and commit them:

host$ git add Kconfig Makefile examples
host$ git status
On branch hello1
Changes to be committed:
(use "git reset HEAD file..." to unstage)
#
modified: Kconfig
modified: Makefile
new file: examples/Makefile
new file: examples/hello1.c
#
host$ git commit -m "Files for hello1 kernel module"
[hello1 99346d5] Files for hello1 kernel module
 4 files changed, 33 insertions(+)

 create mode 100644 drivers/char/examples/Makefile
 create mode 100644 drivers/char/examples/hello1.c

Finally, create the patch file:

host$ git format-patch master --stdout > hello1.patch

Discussion
master is the branch you were on before creating the hello1 branch. The git
format-patch command creates a hello1.patch file, which includes instructions on
what files to change, create, or remove, to move from the master branch to the
hello1 branch.

Chapter 8. Real-Time I/O

8.0 Introduction
Sometimes, when BeagleBone Black interacts with the physical world, it needs to
respond in a timely manner. For example, your robot has just detected that one of the
driving motors needs to turn a bit faster. Systems that can respond quickly to a real
event are known as real-time systems. There are two broad categories of real-time
systems: soft and hard.
In a soft real-time system, the real-time requirements should be met most of the time,
where most depends on the system. A video playback system is a good example. The
goal might be to display 60 frames per second, but it doesn’t matter much if you miss
a frame now and then. In a 100 percent hard real-time system, you can never fail to
respond in time. Think of an airbag deployment system on a car. You can’t even be 50
ms late.
Systems running Linux generally can’t do 100 percent hard real-time processing,
because Linux gets in the way. However, the Bone has an ARM processor running
Linux and two additional 32-bit programmable real-time units (PRUs
[http://bit.ly/1EzTPZv]) available to do real-time processing. Although the PRUs
can achieve 100 percent hard real-time, they take some effort to use.
This chapter shows several ways to do real-time input/output (I/O), starting with the
effortless, yet slower BoneScript and moving up with increasing speed (and effort) to
using the PRUs.

NOTE
In this chapter, as in the others, we assume that you are logged in as root (as indicated by the bone#
prompt). This gives you quick access to the general-purpose input/output (GPIO) ports without having
to use sudo each time.

http://bit.ly/1EzTPZv

8.1 I/O with BoneScript

Problem
You want to read an input pin and write it to the output as quickly as possible with
BoneScript.

Solution
Recipe 2.3 shows how to read a pushbutton switch and Recipe 3.2 controls an
external LED. This recipe combines the two to read the switch and turn on the LED
in response to it. To make this recipe, you will need:

Breadboard and jumper wires (see “Prototyping Equipment”)

Pushbutton switch (see “Miscellaneous”)

220 Ω resistor (see “Resistors”)

LED (see “Opto-Electronics”)

Wire up the pushbutton and LED as shown in Figure 8-1.

Figure 8-1. Diagram for wiring a pushbutton and LED with the LED attached to P9_12

The code in Example 8-1 reads GPIO port P9_42, which is attached to the
pushbutton, and turns on the LED attached to P9_12 when the button is pushed.

Example 8-1. Monitoring a pushbutton using a callback function (pushLED.js)

#!/usr/bin/env node
var b = require('bonescript');
var button = 'P9_42';
var LED = 'P9_14';

b.pinMode(button, b.INPUT, 7, 'pulldown', 'fast', doAttach);
function doAttach(x) {
 if(x.err) {
 console.log('x.err = ' + x.err);
 return;
 }
 b.attachInterrupt(button, true, b.CHANGE, flashLED);
}

b.pinMode(LED, b.OUTPUT);

function flashLED(x) {
 if(x.attached) {
 console.log("Interrupt handler attached");
 return;
 }
 console.log('x.value = ' + x.value);
 console.log('x.err = ' + x.err);
 b.digitalWrite(LED, x.value);
}

Add the code to a file named pushLED.js and run it by using the following
commands:

bone# chmod +x pushLED.js
bone# ./pushLED.js

Press ^C (Ctrl-C) to stop the code.

Discussion
BoneScript makes it easy to interact with the physical world. Here, every time the
status of the pushbutton changes, flashLED() is called to update the state of the LED.
BoneScript is more than fast enough to respond to a human pushing a button. But
instead of the switch, what if you had a high-speed signal on the input, and what if
you needed a device other than an LED for the output? Would BoneScript be fast
enough? It depends on what you mean by “high speed.” If BoneScript isn’t fast
enough, check out Recipe 8.2.

8.2 I/O with C and libsoc

Problem
You want to use the C language to process inputs in real time, or BoneScript isn’t fast
enough.

Solution
Recipe 8.1 shows how to control an LED with a pushbutton using BoneScript. This
recipe accomplishes the same thing using C and libsoc. Recipe 5.21 shows how to
use C and libsoc to access the GPIO pins.

Wire up the pushbutton and LED as shown in Figure 8-1. Follow the instructions in
Recipe 5.21 to install libsoc. Then add the code in Example 8-2 to a file named
pushLED.c.

Example 8-2. Code for reading a switch and blinking an LED using libsoc
(pushLED.c)
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

#include "libsoc_gpio.h"
#include "libsoc_debug.h"

/**
 *
 * This gpio_test is intended to be run on BeagleBone
 * and reads pin P9_42 (gpio7) and write the value to P9_12 (gpio60).
 *
 * The GPIO_OUTPUT and INPUT defines can be changed to support any two pins.
 *
 */

#define GPIO_OUTPUT 60
#define GPIO_INPUT 7

// Create both gpio pointers
 gpio *gpio_output, *gpio_input;

static int interrupt_count = 0;

int callback_test(void* arg) {
 int* tmp_count = (int*) arg;
 int value;

 *tmp_count = *tmp_count + 1;
 value = libsoc_gpio_get_level (gpio_input);
 libsoc_gpio_set_level(gpio_output, value);
 // Comment out the following line to make the code respond faster
 printf("Got it (%d), button = %d\n", *tmp_count, value);

 return EXIT_SUCCESS;
}

int main(void) {
 // Enable debug output
 libsoc_set_debug(1);

 // Request gpios
 gpio_output = libsoc_gpio_request(GPIO_OUTPUT, LS_SHARED);
 gpio_input = libsoc_gpio_request(GPIO_INPUT, LS_SHARED);

 // Set direction to OUTPUT
 libsoc_gpio_set_direction(gpio_output, OUTPUT);

 // Set direction to INPUT
 libsoc_gpio_set_direction(gpio_input, INPUT);

 // Set edge to BOTH
 libsoc_gpio_set_edge(gpio_input, BOTH);

 // Set up callback
 libsoc_gpio_callback_interrupt(gpio_input, &callback_test,
 (void*) &interrupt_count);

 printf("Push the button...\n");
 // Disaple debug output so the code will respond faster
 libsoc_set_debug(0);

 sleep(10);

 libsoc_set_debug(1);

 // Cancel the callback on interrupt
 libsoc_gpio_callback_interrupt_cancel(gpio_input);

 //If gpio_request was successful
 if (gpio_input) { // Free gpio request memory
 libsoc_gpio_free(gpio_input);
 }

 if (gpio_output) { // Free gpio request memory
 libsoc_gpio_free(gpio_output);
 }

 return EXIT_SUCCESS;
}

Compile and run the code:

bone# gcc -o pushLED pushLED.c /usr/local/lib/libsoc.so
bone# ./pushLED
libsoc-debug: debug enabled (libsoc_set_debug)
libsoc-gpio-debug: requested gpio (60, libsoc_gpio_request)
libsoc-gpio-debug: GPIO already exported (60, libsoc_gpio_request)
libsoc-gpio-debug: requested gpio (7, libsoc_gpio_request)
libsoc-gpio-debug: GPIO already exported (7, libsoc_gpio_request)
libsoc-gpio-debug: setting direction to out (60, libsoc_gpio_set_direction)
libsoc-gpio-debug: setting direction to in (7, libsoc_gpio_set_direction)
BOTH: 3
libsoc-gpio-debug: setting edge to both (7, libsoc_gpio_set_edge)
BOTH: 3
libsoc-gpio-debug: creating new callback (7, libsoc_gpio_callback_interrupt)
Push the button...
libsoc-debug: debug disabled (libsoc_set_debug)
Got it (1), button = 1
Got it (2), button = 0
Got it (3), button = 1
Got it (4), button = 1
Got it (5), button = 0
libsoc-debug: debug enabled (libsoc_set_debug)
libsoc-gpio-debug: callback thread was stopped
 (7, libsoc_gpio_callback_interrupt_cancel)
libsoc-gpio-debug: freeing gpio (7, libsoc_gpio_free)
libsoc-gpio-debug: freeing gpio (60, libsoc_gpio_free)

The code responds quickly to the pushbutton. If you need more speed, comment-out
the printf command in the interrupt service routine.

Discussion
Because C code is compiled, it can respond more quickly and consistently to the
interrupts than the BoneScript code. libsoc uses the Linux GPIO interface (Recipe
7.4) and is therefore portable to other Linux systems.
If you need even more speed, you can bypass the Linux interface and communicate
directly with the hardware, as described in Recipe 8.3.

8.3 I/O with devmem2

Problem
Your C code using libsoc isn’t responding fast enough to the input signal. You want
to read the GPIO registers directly.

Solution
The solution is to use a simple utility called devmem2, with which you can read and
write registers from the command line.

WARNING
This solution is much more involved than the previous ones. You need to understand binary and hex
numbers and be able to read the AM335x Technical Reference Manual.

First, download and install devmem2:

bone# wget http://free-electrons.com/pub/mirror/devmem2.c
bone# gcc -o devmem2 devmem2.c
bone# mv devmem2 /usr/bin

This solution will read a pushbutton attached to P9_42 and flash an LED attached to
P9_13. Note that this is a change from the previous solutions that makes the code
used here much simpler. Wire up your Bone as shown in Figure 8-2.

http://bit.ly/1B4Cm45

Figure 8-2. Diagram for wiring a pushbutton and LED with the LED attached to P9_13

Now, flash the LED attached to P9_13 using the Linux sysfs interface (Recipe 7.4).
To do this, first look up which GPIO number P9_13 is attached to by referring to
Figure 5-18. Finding P9_13 at GPIO 31, export GPIO 31 and make it an output:

bone# cd cd /sys/class/gpio/
bone# echo 31 > export
bone# cd gpio31
bone# echo out > direction
bone# echo 1 > value
bone# echo 0 > value

The LED will turn on when 1 is echoed into value and off when 0 is echoed.

Now that you know the LED is working, look up its memory address. This is where
things get very detailed. First, download the AM335x Technical Reference Manual.
Look up GPIO0 in the Memory Map chapter (sensors). Table 2-2 indicates that GPIO0
starts at address 0x44E0_7000. Then go to Section 25.4.1, “GPIO Registers.” This
shows that GPIO_DATAIN has an offset of 0x138, GPIO_CLEARDATAOUT has an offset
of 0x190, and GPIO_SETDATAOUT has an offset of 0x194.

This means you read from address 0x44E0_7000 + 0x138 = 0x44E0_7138 to see the

http://bit.ly/1B4Cm45

status of the LED:

bone# devmem2 0x44E07138
/dev/mem opened.
Memory mapped at address 0xb6f8e000.
Value at address 0x44E07138 (0xb6f8e138): 0xC000C404

The returned value 0xC000C404 (1100 0000 0000 0000 1100 0100 0000 0100
in binary) has bit 31 set to 1, which means the LED is on. Turn the LED off by
writing 0x80000000 (1000 0000 0000 0000 0000 0000 0000 0000 binary) to the
GPIO_CLEARDATA register at 0x44E0_7000 + 0x190 = 0x44E0_7190:

bone# devmem2 0x44E07190 w 0x80000000
/dev/mem opened.
Memory mapped at address 0xb6fd7000.
Value at address 0x44E07190 (0xb6fd7190): 0x80000000
Written 0x80000000; readback 0x0

The LED is now off.
You read the pushbutton switch in a similar way. Figure 5-18 says P9_42 is GPIO 7,
which means bit 7 is the state of P9_42. The devmem2 in this example reads 0x0,
which means all bits are 0, including GPIO 7. Section 25.4.1 of the Technical
Reference Manual instructs you to use offset 0x13C to read GPIO_DATAOUT. Push the
pushbutton and run devmem2:

bone# devmem2 0x44e07138
/dev/mem opened.
Memory mapped at address 0xb6fe2000.
Value at address 0x44E07138 (0xb6fe2138): 0x4000C484

Here, bit 7 is set in 0x4000C484, showing the button is pushed.

Discussion
This is much more tedious than the previous methods, but it’s what’s necessary if you
need to minimize the time to read an input. Recipe 8.4 shows how to read and write
these addresses from C.

8.4 I/O with C and mmap()

Problem
Your C code using libsoc isn’t responding fast enough to the input signal.

Solution
In smaller processors that aren’t running an operating system, you can read and write
a given memory address directly from C. With Linux running on Bone, many of the
memory locations are hardware protected, so you can’t accidentally access them
directly.
This recipe shows how to use mmap() (memory map) to map the GPIO registers to an
array in C. Then all you need to do is access the array to read and write the registers.

WARNING
This solution is much more involved than the previous ones. You need to understand binary and hex
numbers and be able to read the AM335x Technical Reference Manual.

This solution will read a pushbutton attached to P9_42 and flash an LED attached to
P9_13. Note that this is a change from the previous solutions that makes the code
used here much simpler.

TIP
See Recipe 8.3 for details on mapping the GPIO numbers to memory addresses.

Add the code in Example 8-3 to a file named pushLEDmmap.h.

Example 8-3. Memory address definitions (pushLEDmmap.h)
// From: http://stackoverflow.com/questions/13124271/driving-beaglebone-gpio
// -through-dev-mem
// user contributions licensed under cc by-sa 3.0 with attribution required
// http://creativecommons.org/licenses/by-sa/3.0/
// http://blog.stackoverflow.com/2009/06/attribution-required/
// Author: madscientist159 (http://stackoverflow.com/users/3000377/madscientist159)

#ifndef _BEAGLEBONE_GPIO_H_
#define _BEAGLEBONE_GPIO_H_

#define GPIO0_START_ADDR 0x44e07000
#define GPIO0_END_ADDR 0x44e08000
#define GPIO0_SIZE (GPIO0_END_ADDR - GPIO0_START_ADDR)

#define GPIO1_START_ADDR 0x4804C000
#define GPIO1_END_ADDR 0x4804D000
#define GPIO1_SIZE (GPIO1_END_ADDR - GPIO1_START_ADDR)

#define GPIO2_START_ADDR 0x41A4C000
#define GPIO2_END_ADDR 0x41A4D000

#define GPIO2_SIZE (GPIO2_END_ADDR - GPIO2_START_ADDR)

#define GPIO3_START_ADDR 0x41A4E000
#define GPIO3_END_ADDR 0x41A4F000
#define GPIO3_SIZE (GPIO3_END_ADDR - GPIO3_START_ADDR)

#define GPIO_DATAIN 0x138
#define GPIO_SETDATAOUT 0x194
#define GPIO_CLEARDATAOUT 0x190

#define GPIO_03 (1<<3)
#define GPIO_07 (1<<7)
#define GPIO_31 (1<<31)
#define GPIO_60 (1<<28)
#endif

Add the code in Example 8-4 to a file named pushLEDmmap.c.

Example 8-4. Code for directly reading memory addresses (pushLEDmmap.c)
// From: http://stackoverflow.com/questions/13124271/driving-beaglebone-gpio
// -through-dev-mem
// user contributions licensed under cc by-sa 3.0 with attribution required
// http://creativecommons.org/licenses/by-sa/3.0/
// http://blog.stackoverflow.com/2009/06/attribution-required/
// Author: madscientist159 (http://stackoverflow.com/users/3000377/madscientist159)
//
// Read one gpio pin and write it out to another using mmap.
// Be sure to set -O3 when compiling.
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <signal.h> // Defines signal-handling functions (i.e. trap Ctrl-C)
#include "pushLEDmmap.h"

// Global variables
int keepgoing = 1; // Set to 0 when Ctrl-c is pressed

// Callback called when SIGINT is sent to the process (Ctrl-C)
void signal_handler(int sig) {
 printf("\nCtrl-C pressed, cleaning up and exiting...\n");
 keepgoing = 0;
}

int main(int argc, char *argv[]) {
 volatile void *gpio_addr;
 volatile unsigned int *gpio_datain;
 volatile unsigned int *gpio_setdataout_addr;
 volatile unsigned int *gpio_cleardataout_addr;

 // Set the signal callback for Ctrl-C
 signal(SIGINT, signal_handler);

 int fd = open("/dev/mem", O_RDWR);

 printf("Mapping %X - %X (size: %X)\n", GPIO0_START_ADDR, GPIO0_END_ADDR,
 GPIO0_SIZE);

 gpio_addr = mmap(0, GPIO0_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd,
 GPIO0_START_ADDR);

 gpio_datain = gpio_addr + GPIO_DATAIN;
 gpio_setdataout_addr = gpio_addr + GPIO_SETDATAOUT;

 gpio_cleardataout_addr = gpio_addr + GPIO_CLEARDATAOUT;

 if(gpio_addr == MAP_FAILED) {
 printf("Unable to map GPIO\n");
 exit(1);
 }
 printf("GPIO mapped to %p\n", gpio_addr);
 printf("GPIO SETDATAOUTADDR mapped to %p\n", gpio_setdataout_addr);
 printf("GPIO CLEARDATAOUT mapped to %p\n", gpio_cleardataout_addr);

 printf("Start copying GPIO_07 to GPIO_31\n");
 while(keepgoing) {
 if(*gpio_datain & GPIO_07) {
 *gpio_setdataout_addr= GPIO_31;
 } else {
 *gpio_cleardataout_addr = GPIO_31;
 }
 //usleep(1);
 }

 munmap((void *)gpio_addr, GPIO0_SIZE);
 close(fd);
 return 0;
}

Now, compile and run the code:

bone# gcc -O3 pushLEDmmap.c -o pushLEDmmap
bone# ./pushLEDmmap
Mapping 44E07000 - 44E08000 (size: 1000)
GPIO mapped to 0xb6fac000
GPIO SETDATAOUTADDR mapped to 0xb6fac194
GPIO CLEARDATAOUT mapped to 0xb6fac190
Start copying GPIO_07 to GPIO_31
^C
Ctrl-C pressed, cleaning up and exiting...

The code is in a tight while loop that checks the status of GPIO 7 and copies it to
GPIO 31.

Discussion
This code is very fast at copying one GPIO bit to another. The disadvantage is that it
uses 100 percent of the CPU. If you need the CPU to do other things, try
uncommenting the usleep() command and recompiling. In my case, the response is
fast, but only 30 percent of the CPU is used.
In this code, the mmap() command is used to map the GPIO0 registers to gpio_addr.
The next few lines add the register offsets to gpio_addr to get the address for the
registers being used. The code then goes into a tight while loop checking GPIO 7 and
writing to GPIO 31.
The code uses -O3 when compiling to tell the compiler to optimize the code.

This is likely the fastest way to process GPIOs with this kernel. The problem is that
other programs are running on the Bone while this one is running. Sometimes, one of
those programs can be using the CPU when the GPIO changes, and your program
won’t get control until several milliseconds later. Recipe 8.5 shows how to
reconfigure the kernel to minimize the time your program can be interrupted.

8.5 Modifying the Linux Kernel to Use Xenomai

Problem
Your program can’t get control of the processor quickly enough to do your real-time
processing.

Solution
Xenomai is a set of kernel patches that allow the Bone to respond to real-time events
in a predicable way. These instructions are based on Bruno Martins’ Xenomai on the
BeagleBone Black in 14 easy steps.

TIP
The Xenomai kernel is used to provide real-time motion control within the Machinekit distribution for
the Bone. You might get a quick start by checking out the images provided on the Machinekit blog.

NOTE
The Xenomai kernel is now available in the BeagleBoard.org Debian package feeds, and you can
install it by using apt-get install xenomai-runtime. Nevertheless, we find it useful to include the
details of building the Xenomai kernel.

WARNING
This recipe requires downloading and patching the kernel. This is advanced work.

First, download, compile, and install the kernel, following the instructions in Recipe
7.5. This will ensure that everything is in place and working before you start
changing things.
Next, visit Xenomai’s download page to find the latest version of Xenomai (at the
time of this writing, it’s 2.6.4). Download it with the following command
(substituting the URL for the latest version you find on Xenomai’s download page):

host$ wget http://download.gna.org/xenomai/stable/latest/xenomai-2.6.4.tar.bz2

Check out the latest kernel:

host$ cd bb-kernel/KERNEL
host$ uname -a
host$ git tags | sort | less

Pick the tag that is close to your current version of the kernel. This command checks
out the 3.8.13-bone67 version of the kernel and creates a branch named xenomai:

http://xenomai.org/
http://bit.ly/1EXIEZu
http://bit.ly/1NK71xS
http://bit.ly/1C6QxwN

host$ git checkout 3.8.13-bone67 -b xenomai

Patching the kernel
Patch the kernel by using the following commands:

host$ cd bb-kernel/KERNEL
host$ patch -p1 < ../../xenomai-2.6.4/ksrc/arch/arm/patches/\
 beaglebone/ipipe-core-3.8.13-beaglebone-pre.patch
host$ patch -p1 < ../../xenomai-2.6.4/ksrc/arch/arm/patches/\
 ipipe-core-3.8.13-arm-4.patch
host$ patch -p1 < ../../xenomai-2.6.4/ksrc/arch/arm/patches/\
 beaglebone/ipipe-core-3.8.13-beaglebone-post.patch

NOTE
These commands assume bb-kernel and xenomai-2.6.4 are at the same directory level.

Then get one more patch from Xenomai’s website. Add the code in Example 8-5 to a
file named thumb.patch.

Example 8-5. One last patch (thumb.patch)
diff --git a/arch/arm/kernel/entry-armv.S b/arch/arm/kernel/entry-armv.S
index e2bc263..6f4d9f0 100644
--- a/arch/arm/kernel/entry-armv.S
+++ b/arch/arm/kernel/entry-armv.S
@@ -469,6 +469,7 @@ __irq_usr:
 kuser_cmpxchg_check
 irq_handler
 #ifdef CONFIG_IPIPE
+THUMB(it ne)
 bne __ipipe_ret_to_user_irqs_disabled
 #endif /* CONFIG_IPIPE */
 get_thread_info tsk
@@ -767,6 +768,7 @@ ENTRY(ret_from_exception)
 disable_irq
 bl __ipipe_check_root
 cmp r0, #1
+THUMB(it ne)
 bne __ipipe_ret_to_user_irqs_disabled @ Fast exit path over non-root domains
 #endif /* CONFIG_IPIPE */
 get_thread_info tsk

Run the following command to apply the patch:

host$ patch -p1 < thumb.patch

Prepare the kernel:

host$ cd ../../xenomai-2.6.4/scripts
host$./prepare-kernel.sh --arch=arm --linux=../../bb-kernel/KERNEL/

http://bit.ly/1Mti9gQ

Now you’re ready to compile the kernel with these new patches:

host$ cd ../../bb-kernel
host$ tools/rebuild.sh

When the configuration menu displays (as shown in Figure 8-3), make the following
changes:

1. Select “CPU Power Management” → “CPU Frequency scaling, disable [] CPU
Frequency scaling.”

2. Select “Real-time sub-system” →” Drivers” → “Testing drivers, enable
everything.”

Figure 8-3. Configuing Xenomai

Then sit back and wait awhile. After the new kernel is built, install it following the
instructions in “Installing the Kernel on the Bone”.

Setting up the Bone
You are now ready to test the new Xenomai kernel. Copy Xenomai to the Bone:

host$ scp -r xenomai-2.6.4 192.168.7.2:.

NOTE
This command assumes that the Bone is at 192.168.7.2.

Run the following commands on the Bone:

bone# cd ~/xenomai-2.6.4
bone# ./configure CFLAGS="-march=armv7-a -mfpu=vfp3" LDFLAGS="-march=armv7-a \
 -mfpu=vfp3"
bone# make
bone# make install

./configure takes about a minute, make six more minutes, and install another
minute.
Next, copy the drivers:

bone# cd; mkdir xenomai_drivers; cd xenomai_drivers

host$ cd bb-kernel/KERNEL/drivers/xenomai/testing
host$ scp *.ko 192.168.7.2:xenomai_drivers

bone# insmode xeno_klat.ko

Testing
Go ahead and run some tests:

bone# usr/xenomai/bin/latency
== Sampling period: 1000 us
== Test mode: periodic user-mode task
== All results in microseconds
warming up...
RTT| 00:00:01 (periodic user-mode task, 1000 us period, priority 99)
RTH|----lat min|----lat avg|----lat max|-overrun|---msw|---lat best|--lat worst
RTD| 3.624| 3.833| 20.458| 0| 0| 3.624| 20.458
RTD| 2.749| 3.749| 22.583| 0| 0| 2.749| 22.583
RTD| 2.749| 4.583| 25.499| 0| 0| 2.749| 25.499
RTD| 2.749| 3.708| 20.541| 0| 0| 2.749| 25.499
RTD| 2.749| 3.749| 21.916| 0| 0| 2.749| 25.499
---|-----------|-----------|-----------|--------|------|-------------------------
RTS| 2.749| 3.916| 25.499| 0| 0| 00:00:05/00:00:05

Discussion
The details of how to use Xenomai are beyond the scope of this book, but you can
browse over to Xenomai’s website for examples and help on what to do next.

http://xenomai.org/

8.6 I/O with PRU Speak

Problem
You require better timing than running C on the ARM can give you.

Solution
The AM335x processor on the Bone has an ARM processor that is running Linux, but
it also has two 32-bit PRUs that are available for processing I/O. It takes a fair
amount of understanding to program the PRU. Fortunately, a 2014 Google Summer of
Code project produced PRU Speak, an adaptation of the BotSpeak language for the
PRU. This solution shows how to use it.

Background
PRU Speak comprises three main parts:

Kernel
The pru_speak.ko Linux kernel driver module loads PRU code and provides
communication between the kernel and the firmware running on the PRU. An
associated device tree overlay called BB_PRUSPEAK-00A0.dtbo configures the
pin access and firmware loaded on to the PRUs.

Firmware
pru0_firmware and pru1_firmware are the firmware files for each of the two
PRUs.

Userspace
A Python user space component includes bs_tcp_server.py; a TCP socket
listener that provides an interface to the PRU Speak interpreter; and
pru_speak.py, a library for invoking PRU Speak commands from within a
Python script.

Prerequisites
Many of the pins easily accessible by the PRU are taken up by the HDMI interface
discussed in Recipe 5.1. If you haven’t already edited uEnv.txt, you can run these
commands to disable the HDMI interface and reboot:

bone# sed -i \
 '/cape_disable=capemgr.disable_partno=BB-BONELT-HDMI,BB-BONELT-HDMIN$/ \
 \s/^#//' /boot/uEnv.txt
bone# shutdown -r now

To build the firmware files, you first need to install the TI PRU C compiler:

bone# apt-get update
bone# apt-get install ti-pru-cgt-installer
Reading package lists... Done
Building dependency tree

http://bit.ly/1AjlarF
http://bit.ly/1wXT1eO
http://botspeak.org/

Reading state information... Done
The following NEW packages will be installed:
 ti-pru-cgt-installer
0 upgraded, 1 newly installed, 0 to remove and 30 not upgraded.
Need to get 13.1 kB of archives.
After this operation, 67.6 kB of additional disk space will be used.
Get:1 http://repos.rcn-ee.net/debian/ wheezy/main ti-pru-cgt-installer \
 all 2.1.0-1~bpo70+20141201+1 [13.1 kB]
Fetched 13.1 kB in 0s (38.1 kB/s)
Selecting previously unselected package ti-pru-cgt-installer.
(Reading database ... 59608 files and directories currently installed.)
Unpacking ti-pru-cgt-installer \
 (from .../ti-pru-cgt-installer_2.1.0-1~bpo70+20141201+1_all.deb) ...
Setting up ti-pru-cgt-installer (2.1.0-1~bpo70+20141201+1) ...
--2015-01-19 18:59:14-- http://downloads.ti.com/codegen/esd/cgt_public_sw/\
PRU/2.1.0/ti_cgt_pru_2.1.0_armlinuxa8hf_busybox_installer.sh
Resolving downloads.ti.com (downloads.ti.com)... 23.62.97.64, 23.62.97.66
Connecting to downloads.ti.com (downloads.ti.com)|23.62.97.64|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 39666613 (38M) [application/x-sh]
Saving to: `ti_cgt_pru_2.1.0_armlinuxa8hf_busybox_installer.sh'

100%[====================================>] 39,666,613 75.3K/s in 7m 39s

2015-01-19 19:06:54 (84.5 KB/s)-`ti_cgt_pru_2.1.0_arm..hf_busybox_installer.sh'\
 saved [39666613/39666613]

Installing PRU Code Generation tools version 2.1.0 into /
 please wait, or press CTRL-C to abort

Extracting archive
Installing files
[####################] 100%
Installed successfully into /

Installation
Clone the PRU Speak repository and run the install.sh shell script:

bone# git clone git://github.com/jadonk/pruspeak.git
bone# cd pruspeak
bone# ./install.sh
if [! -d "/lib/modules/3.8.13-bone68/build"]; then apt-get install \
 linux-headers-3.8.13-bone68; fi
make -C /lib/modules/3.8.13-bone68/build M=/root/pruspeak/src/driver modules
make[1]: Entering directory `/usr/src/linux-headers-3.8.13-bone68'
 CC [M] /root/pruspeak/src/driver/pru_speak.o
 Building modules, stage 2.
 MODPOST 1 modules
 CC /root/pruspeak/src/driver/pru_speak.mod.o
 LD [M] /root/pruspeak/src/driver/pru_speak.ko
make[1]: Leaving directory `/usr/src/linux-headers-3.8.13-bone68'
make -C /lib/modules/3.8.13-bone68/build M=/root/pruspeak/src/driver
modules_install
make[1]: Entering directory `/usr/src/linux-headers-3.8.13-bone68'
 INSTALL /root/pruspeak/src/driver/pru_speak.ko
 DEPMOD 3.8.13-bone68
make[1]: Leaving directory `/usr/src/linux-headers-3.8.13-bone68'
lnkpru -i/usr/share/ti/cgt-pru/lib pru0_firmware.obj pru0_syscall.obj \
 AM3359_PRU.cmd -o=pru0_firmware
lnkpru -i/usr/share/ti/cgt-pru/lib pru1_firmware.obj AM3359_PRU.cmd
-o=pru1_firmware
install -m 444 pru0_firmware /lib/firmware
install -m 444 pru1_firmware /lib/firmware

dtc -O dtb -o BB-PRUSPEAK-00A0.dtbo -b 0 -@ BB-PRUSPEAK-00A0.dts
install -m 644 BB-PRUSPEAK-00A0.dtbo /lib/firmware
python setup.py build
running build
running build_py
python setup.py build
running build
running build_py
python setup.py install
running install
.
.
.
Processing pru_speak-0.0-py2.7.egg
Removing /usr/local/lib/python2.7/dist-packages/pru_speak-0.0-py2.7.egg
Copying pru_speak-0.0-py2.7.egg to /usr/local/lib/python2.7/dist-packages
pru-speak 0.0 is already the active version in easy-install.pth

Installed /usr/local/lib/python2.7/dist-packages/pru_speak-0.0-py2.7.egg
Processing dependencies for pru-speak==0.0
Searching for ply==3.4
Best match: ply 3.4
Processing ply-3.4-py2.7.egg
ply 3.4 is already the active version in easy-install.pth

Using /usr/local/lib/python2.7/dist-packages/ply-3.4-py2.7.egg
Finished processing dependencies for pru-speak==0.0
install -m 755 bs_tcp_server.py /usr/bin
install -m 755 bs_shell.py /usr/bin

Runing the Kernel Module
Use the modprobe command to load the kernel module and config-pin to load the
device tree overlay:

bone# modprobe pru_speak
bone# config-pin overlay BB-PRUSPEAK

The kernel module will need to be reloaded after rebooting, unless it’s been added to
/etc/modules-load.d/modules.conf and /boot/uEnv.txt.

Running the Script
The PRU is now ready to run code. Add the code in Example 8-6 to a file named
pruSpeak.py. This code copies the input on P8_16 to the output on P9_31.

Example 8-6. Code for copying P8_16 to P9_31 using the PRU (pruSpeak.py)
#!/usr/bin/env python
from pru_speak import pru_speak

Copy the signal on pin P8_16 to P9_31
code = '''\
SCRIPT
SET var1, DIO[14]
SET DIO[0], var1
GOTO 0
ENDSCRIPT
RUN
'''

halt = '''\
HALT
'''

ret = pru_speak.execute_instruction(code)
print ret

Then run the code by using the following command:

bone# ./pruSpeak.py
Generating LALR tables
Initializing PRU Speak
0 0x110000FF SET var1, DIO[14]
1 0x01400000 SET DIO[0], var1
2 0x15000000 GOTO 0
3 0x7F000000 ENDSCRIPT

[285212927, 20971520, 352321536, 2130706432]
[]
PRU Speak object deleted

The code will return immediately, but the PRU will continue to run.
The PRU has quick access to only a subset of GPIO pins. This example reads GPIO
P8_16 and writes to P9_31, so you have to wire up the pushbutton and LED as shown
in Figure 8-4.

Figure 8-4. Diagram for wiring a pushbutton and LED for the PRU

Now, when you push the button, the LED should respond.

Discussion
In addition to invoking PRU Speak scripts via Python, it is also possible to open a
shell or TCP socket to the interpreter. When running a script, it is also possible to
modify variables to communicate with the running script.

Running PRU Speak via Shell
To invoke a shell interface to PRU Speak, run bs_shell.py:

bone# bs_shell.py
Generating LALR tables
Initializing PRU Speak
ps>SCRIPT
...SET DIO[0],var1
...GOTO 0
...ENDSCRIPT
...
0 0x01400001 SET DIO[0],var1
1 0x15000000 GOTO 0
2 0x7F000000 ENDSCRIPT

[]
ps>RUN
...
[20971521, 352321536, 2130706432]
[]
ps>SET var1,1
...
[1]
ps>SET var1,0
...
[0]
ps>Closing terminal
PRU Speak object deleted

Press Enter on a blank line to complete input to the shell. Press ^C (Ctrl-C) to exit the
shell.

Running PRU Speak via TCP socket
Running the interpreter over a TCP socket enables tools like Labview to
communicate with the Bone in a platform-independent way. Use netcat (nc) to
interact with the interpreter from the command line:

bone# bs_tcp_server.py 2&>1 > /var/log/pruspeak.log &
[1] 2594
bone # nc localhost 6060
SCRIPT

SET DIO[0],1

WAIT 100

SET DIO[0],0

WAIT 100

GOTO 0

ENDSCRIPT

RUN

^C

Press ^C (Ctrl-C) to exit nc.

NOTE
Currently, pressing ^D (Ctrl-D) within nc will cause the socket listener script to close.

You should now see the LED blinking.

Looking Ahead
At the time of this writing, PRU Speak is still under heavy development. Be sure to
check the README file for the latest installation and usage guidelines. Currently,
only direct PRU GPIO access is implemented, but support for ADCs and additional
GPIOs is in the works.
If you are looking to develop your own firmware for the PRUs, this example should
provide a template for extending your own interface code.

http://bit.ly/1B4DrsC

Chapter 9. Capes

9.0 Introduction
Previous chapters of this book show a variety of ways to interface BeagleBone Black
to the physical world by using a breadboard and wiring to the P8 and P9 headers.
This is a great approach because it’s easy to modify your circuit to debug it or try
new things. At some point, though, you might want a more permanent solution, either
because you need to move the Bone and you don’t want wires coming loose, or
because you want to share your hardware with the masses.
You can easily expand the functionality of the Bone by adding a cape. A cape is
simply a board — often a printed circuit board (PCB) — that connects to the P8 and
P9 headers and follows a few standard pin usages. You can stack up to four capes
onto the Bone. Capes can range in size from Bone-sized (Recipe 9.2) to much larger
than the Bone (Recipe 9.1).
This chapter shows how to attach a couple of capes, move your design to a
protoboard, then to a PCB, and finally on to mass production.

http://bit.ly/1wucweC

9.1 Using a Seven-Inch LCD Cape

Problem
You want to display the Bone’s desktop on a portable LCD.

Solution
A number of LCD capes are built for the Bone, ranging in size from three to seven
inches. This recipe attaches a seven-inch BeagleBone LCD7 from CircuitCo (shown
in Figure 9-1) to the Bone.

Figure 9-1. Seven-inch LCD from CircuitCo 1

To make this recipe, you will need:
Seven-inch LCD cape (see “Miscellaneous”)

A 5 V power supply (see “Miscellaneous”)

Just attach the Bone to the back of the LCD, making sure pin 1 of P9 lines up with pin
1 of P9 on the LCD. Apply a 5 V power supply, and the desktop will appear on your
LCD, as shown in Figure 9-2.

http://bit.ly/1AjlXJ9
http://bit.ly/1NK8Hra
http://circuitco.com/

Figure 9-2. Seven-inch LCD desktop

Attach a USB keyboard and mouse, and you have a portable Bone. Wireless
keyboard and mouse combinations make a nice solution to avoid the need to add a
USB hub.

https://www.adafruit.com/products/922

Discussion
I have a Rev A2 LCD display that was originally designed for the BeagleBone
(White). I use it with the BeagleBone Black, but I have to remove the Bone from the
LCD in order to update the onboard flash since the onboard flash signals are
subjected to load and noises from the cape, creating problems with updating the
onboard flash. Other than that, it works fine with BeagleBone Black.

9.2 Using a 128 x 128-Pixel LCD Cape

Problem
You want to use a small LCD to display things other than the desktop.

Solution
The MiniDisplay is a 128 x 128 full-color LCD cape that just fits on the Bone, as
shown in Figure 9-3.

Figure 9-3. MiniDisplay 128 x 128-pixel LCD from CircuitCo

To make this recipe, you will need:
MiniDisplay LCD cape (see “Miscellaneous”)

Attach to the Bone and apply power. Then run the following commands:

From http://elinux.org/CircuitCo:MiniDisplay_Cape
Datasheet:
https://www.crystalfontz.com/products/document/3277/ST7735_V2.1_20100505.pdf
bone# wget http://elinux.org/images/e/e4/Minidisplay-example.tar.gz
bone# tar zmxvf Minidisplay-example.tar.gz
bone# cd minidisplay-example
bone# make
bone# ./minidisplay-test
Unable to initialize SPI: No such file or directory
Aborted

http://bit.ly/1xd0r8p

WARNING
You might get a compiler warning, but the code should run fine.

The MiniDisplay uses the Serial Peripheral Interface (SPI) interface, and it’s not
initialized. The manufacturer’s website suggests enabling SPI0 by using the following
commands:

bone# export SLOTS=/sys/devices/bone_capemgr.*/slots
bone# echo BB-SPIDEV0 > $SLOTS

Hmmm, something isn’t working here. Here’s how to see what happened:

bone# dmesg | tail
[625.334497] bone_capemgr.9: part_number 'BB-SPIDEV0', version 'N/A'
[625.334673] bone_capemgr.9: slot #11: generic override
[625.334720] bone_capemgr.9: bone: Using override eeprom data at slot 11
[625.334769] bone_capemgr.9: slot #11: 'Override Board Name,00A0,Override \
 Manuf,BB-SPIDEV0'
[625.335026] bone_capemgr.9: slot #11: \Requesting part number/version based \
 'BB-SPIDEV0-00A0.dtbo
[625.335076] bone_capemgr.9: slot #11: Requesting firmware \
 'BB-SPIDEV0-00A0.dtbo' \
 for board-name 'Override Board Name', version '00A0'
[625.335144] bone_capemgr.9: slot #11: dtbo 'BB-SPIDEV0-00A0.dtbo' loaded; \
 converting to live tree
[625.341842] bone_capemgr.9: slot #11: BB-SPIDEV0 conflict P9.21 \
 (#10:bspwm_P9_21_b)
[625.351296] bone_capemgr.9: slot #11: Failed verification

Shows there is a conflict for pin P9_21: it’s already configured for pulse width
modulation (PWM).

Here’s how to see what’s already configured:

bone# cat $SLOTS
 0: 54:PF---
 1: 55:PF---
 2: 56:PF---
 3: 57:PF---
 4: ff:P-O-L Bone-LT-eMMC-2G,00A0,Texas Instrument,BB-BONE-EMMC-2G
 5: ff:P-O-L Bone-Black-HDMI,00A0,Texas Instrument,BB-BONELT-HDMI
 7: ff:P-O-L Override Board Name,00A0,Override Manuf,bspm_P9_42_27
 8: ff:P-O-L Override Board Name,00A0,Override Manuf,bspm_P9_41_27
 9: ff:P-O-L Override Board Name,00A0,Override Manuf,am33xx_pwm
10: ff:P-O-L Override Board Name,00A0,Override Manuf,bspwm_P9_21_b

http://bit.ly/1xd0r8p

You can see the eMMC, HDMI, and three PWMs are already using some of the
pins. Slot 10 shows P9_21 is in use by a PWM.

You can unconfigure it by using the following commands:

bone# echo -10 > $SLOTS
bone# cat $SLOTS
 0: 54:PF---
 1: 55:PF---
 2: 56:PF---
 3: 57:PF---
 4: ff:P-O-L Bone-LT-eMMC-2G,00A0,Texas Instrument,BB-BONE-EMMC-2G
 5: ff:P-O-L Bone-Black-HDMI,00A0,Texas Instrument,BB-BONELT-HDMI
 7: ff:P-O-L Override Board Name,00A0,Override Manuf,bspm_P9_42_27
 8: ff:P-O-L Override Board Name,00A0,Override Manuf,bspm_P9_41_27
 9: ff:P-O-L Override Board Name,00A0,Override Manuf,am33xx_pwm

Now P9_21 is free for the MiniDisplay to use.

NOTE
In future Bone images, all of the pins will already be allocated as part of the main device tree using
runtime pinmux helpers and configured at runtime using the config-pin utility. This would eliminate
the need for device tree overlays in most cases.

Now, configure it for the MiniDisplay and run a test:

bone# echo BB-SPIDEV0 > $SLOTS
bone# ./minidisplay-test

You then see Boris, as shown in Figure 9-4.

Figure 9-4. MiniDisplay showing Boris 2

http://bit.ly/1EXLeP2

Discussion
The MiniDisplay uses an SPI hardware interface, so it can run very fast. In this
recipe, the data is sent to the display at 15 Mbps.
As an improvement to the MiniDisplay cape, you could add a cape EEPROM, which
would avoid the need for users to manually load the device tree overlay. An
additional improvement would be to include the support code in the default Bone
Debian image by putting it in Debian package feed and including it in the image
builder script. As a final improvement, you could provide a kernel driver to enable
typical applications to display images on the screen or play videos.

http://bit.ly/1C6SaKM

9.3 Connecting Multiple Capes

Problem
You want to use more than one cape at a time.

Solution
First, look at each cape that you want to stack mechanically. Are they all using
stacking headers like the ones shown in Figure 9-5? No more than one should be
using non-stacking headers.

Figure 9-5. Stacking headers

Note that larger LCD panels might provide expansion headers, such as the ones
shown in Figure 9-6, rather than the stacking headers, and that those can also be used
for adding additional capes.

Figure 9-6. Back side of LCD7 cape 3

Next, take a note of each pin utilized by each cape. The BeagleBone Capes catalog
provides a graphical representation for the pin usage of most capes, as shown in
Figure 9-7 for the Circuitco Audio Cape.

http://beaglebonecapes.com

Figure 9-7. Pins utilized by CircuitCo Audio Cape 4

In most cases, the same pin should never be used on two different capes, though in
some cases, pins can be shared. Here are some exceptions:

GND

The ground (GND) pins should be shared between the capes, and there’s no need
to worry about consumed resources on those pins.

VDD_3V3

The 3.3 V power supply (VDD_3V3) pins can be shared by all capes to supply
power, but the total combined consumption of all the capes should be less than
500 mA (250 mA per VDD_3V3 pin).

VDD_5V

The 5.0 V power supply (VDD_5V) pins can be shared by all capes to supply
power, but the total combined consumption of all the capes should be less than 2
A (1 A per VDD_5V pin). It is possible for one, and only one, of the capes to
provide power to this pin rather than consume it, and it should provide at least 3
A to ensure proper system function. Note that when no voltage is applied to the
DC connector, nor from a cape, these pins will not be powered, even if power
is provided via USB.

SYS_5V

The regulated 5.0 V power supply (SYS_5V) pins can be shared by all capes to
supply power, but the total combined consumption of all the capes should be
less than 500 mA (250 mA per SYS_5V pin).

VADC and AGND
The ADC reference voltage pins can be shared by all capes.

I2C2_SCL and I2C2_SDA
I2C is a shared bus, and the I2C2_SCL and I2C2_SDA pins default to having this
bus enabled for use by cape expansion ID EEPROMs.

Discussion
You have more issues to consider beyond just whether the pin functions are
available, because every change to the topology of a circuit has at least some impact.
There are changes to the transmission line behavior, changes to the capacitance and
inductance of the signal, and more.
At low speeds, such as below 1 MHz, most of these effects can be ignored, but it is
important to pay attention to the electrical specifications in the data sheet of any
device you are using. When you try out your circuits, use an oscilloscope at various
points on the significant signals to ensure that you see the behavior you expect. Don’t
assume that just because things seem to be generally working that there isn’t
something marginal about your construction. The manufacturer of your capes likely
didn’t think a lot about them being used with other capes.

9.4 Moving from a Breadboard to a Protoboard

Problem
You have your circuit working fine on the breadboard, but you want a more reliable
solution.

Solution
Solder your components to a protoboard.
To make this recipe, you will need:

Protoboard (see “Prototyping Equipment”)

Soldering iron (see “Miscellaneous”)

Your other components

Many places make premade circuit boards that are laid out like the breadboard we
have been using. Figure 9-8 shows the BeagleBone Breadboard, which is just one
protoboard option.

Figure 9-8. BeagleBone breadboard 5

You just solder your parts on the protoboard as you had them on the breadboard.

http://bit.ly/1HCwtB4

Discussion
You can find many tutorials online that show how to move from a breadboard to a
protoboard, including tips on soldering. Evil Mad Scientist is one such site where
you can find a good tutorial.
Many protocapes will mount on BeagleBone Black and provide a place to solder
components. See the BeagleBone Capes catalog for a selection. For example, if you
want something that more closely matches a larger and more typical breadboard
layout, consider the Perma-Proto Breadboard PCB from Adafruit.
Using a protoboard is a useful solution if you want your parts soldered down but
don’t want to go through the trouble of making a PCB.

http://bit.ly/18AzcOW
http://bit.ly/1AjlXJ9
https://www.adafruit.com/products/590

9.5 Creating a Prototype Schematic

Problem
You’ve wired up a circuit on a breadboard. How do you turn that prototype into a
schematic others can read and that you can import into other design tools?

Solution
In “About the Diagrams”, we introduced Fritzing as a useful tool for drawing block
diagrams. Fritzing can also do circuit schematics and printed-circuit layout. For
example, Figure 9-9 shows a block diagram for a simple robot controller
(quickBot.fzz is the name of the Fritzing file used to create the diagram).

Figure 9-9. A simple robot controller diagram (quickBot.fzz)

The controller has an H-bridge to drive two DC motors (Recipe 4.3), an IR range
sensor, and two headers for attaching analog encoders for the motors. Both the IR
sensor and the encoders have analog outputs that exceed 1.8 V, so each is run through
a voltage divider (two resistors) to scale the voltage to the correct range (see Recipe
2.6 for a voltage divider example).
Figure 9-10 shows the schematic automatically generated by Fritzing. It’s a mess. It’s
up to you to fix it.

Figure 9-10. Automatically generated schematic

Figure 9-11 shows my cleaned-up schematic. I did it by moving the parts around until
it looked better.

Figure 9-11. Cleaned-up schematic

Discussion
In Fritzing, you can zoom in on the schematic and check your wiring. In the zoomed-in
section shown in Figure 9-12, you can see the pin labels on the L293D. You also can
see I left a V+ pin unattached. This is the sort of error that’s easier to catch in the
schematic view than the diagram view.

Figure 9-12. Zoomed-in schematic

You might find that you want to create your design in a more advanced design tool,
perhaps because it has the library components you desire, it integrates better with
other tools you are using, or it has some other feature (such as simulation) of which
you’d like to take advantage.

9.6 Verifying Your Cape Design

Problem
You’ve got a design. How do you quickly verify that it works?

Solution
To make this recipe, you will need:

An oscilloscope (see “Miscellaneous”)

Break down your design into functional subcomponents and write tests for each. Use
components you already know are working, such as the onboard LEDs, to display the
test status with the code in Example 9-1.

Example 9-1. Testing the quickBot motors interface (quickBot_motor_test.js)
#!/usr/bin/env node
var b = require('bonescript');
var M1_SPEED = 'P9_16';
var M1_FORWARD = 'P8_15';
var M1_BACKWARD = 'P8_13';
var M2_SPEED = 'P9_14';
var M2_FORWARD = 'P8_9';
var M2_BACKWARD = 'P8_11';
var freq = 50;
var fast = 0.95;
var slow = 0.7;
var state = 0;

b.pinMode(M1_FORWARD, b.OUTPUT);
b.pinMode(M1_BACKWARD, b.OUTPUT);
b.pinMode(M2_FORWARD, b.OUTPUT);
b.pinMode(M2_BACKWARD, b.OUTPUT);
b.analogWrite(M1_SPEED, 0, freq);
b.analogWrite(M2_SPEED, 0, freq);

updateMotors();

function updateMotors() {
 //console.log("Setting state = " + state);
 updateLEDs(state);
 switch(state) {
 case 0:
 default:
 M1_set(0);
 M2_set(0);
 state = 1;
 break;
 case 1:
 M1_set(slow);
 M2_set(slow);
 state = 2;
 break;
 case 2:
 M1_set(slow);
 M2_set(-slow);
 state = 3;
 break;
 case 3:
 M1_set(-slow);
 M2_set(slow);
 state = 4;
 break;
 case 4:
 M1_set(fast);

 M2_set(fast);
 state = 0;
 break;
 }
 setTimeout(updateMotors, 2000);
}

function updateLEDs(state) {
 switch(state) {
 case 0:
 b.digitalWrite("USR0", b.LOW);
 b.digitalWrite("USR1", b.LOW);
 b.digitalWrite("USR2", b.LOW);
 b.digitalWrite("USR3", b.LOW);
 break;
 case 1:
 b.digitalWrite("USR0", b.HIGH);
 b.digitalWrite("USR1", b.LOW);
 b.digitalWrite("USR2", b.LOW);
 b.digitalWrite("USR3", b.LOW);
 break;
 case 2:
 b.digitalWrite("USR0", b.LOW);
 b.digitalWrite("USR1", b.HIGH);
 b.digitalWrite("USR2", b.LOW);
 b.digitalWrite("USR3", b.LOW);
 break;
 case 3:
 b.digitalWrite("USR0", b.LOW);
 b.digitalWrite("USR1", b.LOW);
 b.digitalWrite("USR2", b.HIGH);
 b.digitalWrite("USR3", b.LOW);
 break;
 case 4:
 b.digitalWrite("USR0", b.LOW);
 b.digitalWrite("USR1", b.LOW);
 b.digitalWrite("USR2", b.LOW);
 b.digitalWrite("USR3", b.HIGH);
 break;
 }
}

function M1_set(speed) {
 speed = (speed > 1) ? 1 : speed;
 speed = (speed < -1) ? -1 : speed;
 b.digitalWrite(M1_FORWARD, b.LOW);
 b.digitalWrite(M1_BACKWARD, b.LOW);
 if(speed > 0) {
 b.digitalWrite(M1_FORWARD, b.HIGH);
 } else if(speed < 0) {
 b.digitalWrite(M1_BACKWARD, b.HIGH);
 }
 b.analogWrite(M1_SPEED, Math.abs(speed), freq);
}

function M2_set(speed) {
 speed = (speed > 1) ? 1 : speed;
 speed = (speed < -1) ? -1 : speed;
 b.digitalWrite(M2_FORWARD, b.LOW);
 b.digitalWrite(M2_BACKWARD, b.LOW);
 if(speed > 0) {
 b.digitalWrite(M2_FORWARD, b.HIGH);
 } else if(speed < 0) {
 b.digitalWrite(M2_BACKWARD, b.HIGH);
 }
 b.analogWrite(M2_SPEED, Math.abs(speed), freq);

}

Define each pin as a variable. This makes it easy to change to another pin if you
decide that is necessary.

Make other simple parameters variables. Again, this makes it easy to update
them. When creating this test, I found that the PWM frequency to drive the
motors needed to be relatively low to get over the kickback shown in Figure 9-
13. I also found that I needed to get up to about 70 percent duty cycle for my
circuit to reliably start the motors turning.

Use a simple variable such as state to keep track of the test phase. This is used
in a switch statement to jump to the code to configure for that test phase and
updated after configuring for the current phase in order to select the next phase.
Note that the next phase isn’t entered until after a two-second delay, as specified
in the call to setTimeout().

Perform the initial setup of all the pins.

The first time a PWM pin is used, it is configured with the update frequency. It
is important to set this just once to the right frequency, because other PWM
channels might use the same PWM controller, and attempts to reset the PWM
frequency might fail. The pinMode() function doesn’t have an argument for
providing the update frequency, so use the analogWrite() function, instead.
You can review using the PWM in Recipe 4.1.

updateMotors() is the test function for the motors and is defined after all the
setup and initialization code. The code calls this function every two seconds
using the setTimeout() JavaScript function. The first call is used to prime the
loop.

The call to console.log() was initially here to observe the state transitions in
the debug console, but it was replaced with the updateLEDs() call. Using the
USER LEDs makes it possible to note the state transitions without having
visibility of the debug console. updateLEDs() is defined later.

The M1_set() and M2_set() functions are defined near the bottom and do the
work of configuring the motor drivers into a particular state. They take a single
argument of speed, as defined between -1 (maximum reverse), 0 (stop), and 1
(maximum forward).

Perform simple bounds checking to ensure that speed values are between -1 and
1.

The analogWrite() call uses the absolute value of speed, making any negative
numbers a positive magnitude.

Figure 9-13. quickBot motor test showing kickback

Using the solution in Recipe 1.8, you can untether from your coding station to test
your design at your lab workbench, as shown in Figure 9-14.

Figure 9-14. quickBot motor test code under scope

SparkFun provides a useful guide to using an oscilloscope. You might want to check
it out if you’ve never used an oscilloscope before. Looking at the stimulus you’ll
generate before you connect up your hardware will help you avoid surprises.

http://bit.ly/18AzuoR

Discussion
As with most of the examples in this book, this recipe provides solutions for
interfacing with various devices using JavaScript and the BoneScript library. For
higher performance, you might often find reasons to move your code into C (Recipe
5.21), into the kernel (Recipe 7.2), or onto the PRUs (Recipe 8.6). Nevertheless,
having something that quickly verifies the electrical and mechanical aspects of your
design enables you to move forward with those aspects while you continue to refine
your software.

9.7 Laying Out Your Cape PCB

Problem
You’ve generated a diagram and schematic for your circuit and verified that they are
correct. How do you create a PCB?

Solution
If you’ve been using Fritzing, all you need to do is click the PCB tab, and there’s your
board. Well, almost. Much like the schematic view shown in Recipe 9.5, you need to
do some layout work before it’s actually usable. I just moved the components around
until they seemed to be grouped logically and then clicked the Autoroute button. After
a minute or two of trying various layouts, Fritzing picked the one it determined to be
the best. Figure 9-15 shows the results.

Figure 9-15. Simple robot PCB

The Fritzing pre-fab web page has a few helpful hints, including checking the widths
of all your traces and cleaning up any questionable routing created by the autorouter.

http://bit.ly/1HCxokQ

Discussion
The PCB in Figure 9-15 is a two-sided board. One color (or shade of gray in the
printed book) represents traces on one side of the board, and the other color (or
shade of gray) is the other side. Sometimes, you’ll see a trace come to a small circle
and then change colors. This is where it is switching sides of the board through
what’s called a via. One of the goals of PCB design is to minimize the number of
vias.
Figure 9-15 wasn’t my first try or my last. My approach was to see what was needed
to hook where and move the components around to make it easier for the autorouter to
carry out its job.

NOTE
There are entire books and websites dedicated to creating PCB layouts. Look around and see what
you can find. SparkFun’s guide to making PCBs is particularly useful.

Customizing the Board Outline
One challenge that slipped my first pass review was the board outline. The part we
installed in “About the Diagrams” is meant to represent BeagleBone Black, not a
cape, so the outline doesn’t have the notch cut out of it for the Ethernet connector.
The Fritzing custom PCB outline page describes how to create and use a custom
board outline. Although it is possible to use a drawing tool like Inkscape, I chose to
use the SVG path command directly to create Example 9-2.

Example 9-2. Outline SVG for BeagleBone cape
(beaglebone_cape_boardoutline.svg)
<?xml version='1.0' encoding='UTF-8' standalone='no'?>
<svg xmlns="http://www.w3.org/2000/svg" version="1.1"
 width="306" height="193.5"><!-- -->
 <g id="board"><!-- -->
 <path fill="#338040" id="boardoutline" d="M 22.5,0 l 0,56 L 72,56
 q 5,0 5,5 l 0,53.5 q 0,5 -5,5 L 0,119.5 L 0,171 Q 0,193.5 22.5,193.5
 l 238.5,0 c 24.85281,0 45,-20.14719 45,-45 L 306,45
 C 306,20.14719 285.85281,0 261,0 z"/><!-- -->
 </g>
</svg>

This is a standard SVG header. The width and height are set based on the
BeagleBone outline provided in the Adafruit library.

http://bit.ly/1wXTLki
http://bit.ly/1xd1aGV
https://inkscape.org/en/
http://bit.ly/1b2aZmn

Fritzing requires the element to be within a layer called board.

Fritzing requires the color to be #338040 and the layer to be called
boardoutline. The units end up being 1/90 of an inch. That is, take the
numbers in the SVG code and divide by 90 to get the numbers from the System
Reference Manual.

The measurements are taken from the BeagleBone Black System Reference Manual,
as shown in Figure 9-16.

Figure 9-16. Cape dimensions

You can observe the rendered output of Example 9-2 quickly by opening the file in a
web browser, as shown in Figure 9-17.

http://bit.ly/1C5rSa8

Figure 9-17. Rendered cape outline in Chrome

After you have the SVG outline, you’ll need to select the PCB in Fritzing and select a
custom shape in the Inspector box. Begin with the original background, as shown in
Figure 9-18.

Figure 9-18. PCB with original board, without notch for Ethernet connector

Hide all but the Board Layer (Figure 9-19).

Figure 9-19. PCB with all but the Board Layer hidden

Select the PCB1 object and then, in the Inspector pane, scroll down to the “load
image file” button (Figure 9-20).

Figure 9-20. Clicking :load image file: with PCB1 selected

Navigate to the beaglebone_cape_boardoutline.svg file created in Example 9-2, as
shown in Figure 9-21.

Figure 9-21. Selecting the .svg file

Turn on the other layers and line up the Board Layer with the rest of the PCB, as
shown in Figure 9-22.

Figure 9-22. PCB Inspector

Now, you can save your file and send it off to be made, as described in Recipe 9.9.

PCB Design Alternatives

There are other free PCB design programs. Here are a few.

EAGLE
Eagle PCB and DesignSpark PCB are two popular design programs. Many capes
(and other PCBs) are designed with Eagle PCB, and the files are available. For
example, the MiniDisplay cape (Recipe 9.2) has the schematic shown in Figure 9-23
and PCB shown in Figure 9-24.

Figure 9-23. Schematic for the MiniDisplay cape

http://www.cadsoftusa.com/
http://bit.ly/19cbwS0

Figure 9-24. PCB for MiniDisplay cape

A good starting point is to take the PCB layout for the MiniDisplay and edit it for
your project. The connectors for P8 and P9 are already in place and ready to go.

Eagle PCB is a powerful system with many good tutorials online. The free version
runs on Windows, Mac, and Linux, but it has three limitations:

The usable board area is limited to 100 x 80 mm (4 x 3.2 inches).

You can use only two signal layers (Top and Bottom).

The schematic editor can create only one sheet.

You can install Eagle PCB on your Linux host by using the following command:

host$ sudo apt-get install eagle
Reading package lists... Done
Building dependency tree
Reading state information... Done
...
Setting up eagle (6.5.0-1) ...
Processing triggers for libc-bin (2.19-0ubuntu6.4) ...
host$ eagle

You’ll see the startup screen shown in Figure 9-25.

http://bit.ly/1E5Kh3l

Figure 9-25. Eagle PCB startup screen

Click “Run as Freeware.” When my Eagle started, it said it needed to be updated. To
update on Linux, follow the link provided by Eagle and download eagle-lin-
7.2.0.run (or whatever version is current.). Then run the following commands:

host$ chmod +x eagle-lin-7.2.0.run
host$./eagle-lin-7.2.0.run

A series of screens will appear. Click Next. When you see a screen that looks like
Figure 9-26, note the Destination Directory.

Figure 9-26. The Eagle installation destination directory

Continue clicking Next until it’s installed. Then run the following commands (where
~/eagle-7.2.0 is the path you noted in Figure 9-26):

host$ cd /usr/bin
host$ sudo rm eagle
host$ sudo ln -s ~/eagle-7.2.0/bin/eagle .
host$ cd
host$ eagle

The ls command links eagle in /usr/bin, so you can run eagle from any directory.
After eagle starts, you’ll see the start screen shown in Figure 9-27.

Figure 9-27. The Eagle start screen

Ensure that the correct version number appears.
If you are moving a design from Fritzing to Eagle, see Recipe 9.8 for tips on
converting from one to the other.

DesignSpark PCB
The free DesignSpark PCB doesn’t have the same limitations as Eagle PCB, but it
runs only on Windows. Also, it doesn’t seem to have the following of Eagle at this
time.

Upverter
In addition to free solutions you run on your desktop, you can also work with a

http://bit.ly/19cbwS0

browser-based tool called Upverter. With Upverter, you can collaborate easily,
editing your designs from anywhere on the Internet. It also provides many conversion
options and a PCB fabrication service.

NOTE
Don’t confuse Upverter with Upconverter (Recipe 9.8). Though their names differ by only three
letters, they differ greatly in what they do.

Kicad
Unlike the previously mentioned free (no-cost) solutions, Kicad is open source and
provides some features beyond those of Fritzing. Notably, CircuitHub (discussed in
Recipe 9.11) provides support for uploading Kicad designs.

https://upverter.com/
http://bit.ly/1b2bnBg
http://circuithub.com/

9.8 Migrating a Fritzing Schematic to Another Tool

Problem
You created your schematic in Fritzing, but it doesn’t integrate with everything you
need. How can you move the schematic to another tool?

Solution
Use the Upverter schematic-file-converter Python script. For example, suppose that
you want to convert the Fritzing file for the diagram shown in Figure 9-9. First,
install Upverter.
I found it necessary to install libfreetype6 and freetype-py onto my system, but
you might not need this first step:

host$ sudo apt-get install libfreetype6
Reading package lists... Done
Building dependency tree
Reading state information... Done
libfreetype6 is already the newest version.
0 upgraded, 0 newly installed, 0 to remove and 154 not upgraded.
host$ sudo pip install freetype-py
Downloading/unpacking freetype-py
 Running setup.py egg_info for package freetype-py

Installing collected packages: freetype-py
 Running setup.py install for freetype-py

Successfully installed freetype-py
Cleaning up...

NOTE
All these commands are being run on the Linux-based host computer, as shown by the host$ prompt.
Log in as a normal user, not root.

Now, install the schematic-file-converter tool:

host$ git clone git@github.com:upverter/schematic-file-converter.git
Cloning into 'schematic-file-converter'...
remote: Counting objects: 22251, done.
remote: Total 22251 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (22251/22251), 39.45 MiB | 7.28 MiB/s, done.
Resolving deltas: 100% (14761/14761), done.
Checking connectivity... done.
Checking out files: 100% (16880/16880), done.
host$ cd schematic-file-converter
host$ sudo python setup.py install
.
.
.
Extracting python_upconvert-0.8.9-py2.7.egg to \
 /usr/local/lib/python2.7/dist-packages
Adding python-upconvert 0.8.9 to easy-install.pth file

Installed /usr/local/lib/python2.7/dist-packages/python_upconvert-0.8.9-py2.7.egg
Processing dependencies for python-upconvert==0.8.9
Finished processing dependencies for python-upconvert==0.8.9
host$ cd ..

http://bit.ly/1wXUkdM

host$ python -m upconvert.upconverter -h
usage: upconverter.py [-h] [-i INPUT] [-f TYPE] [-o OUTPUT] [-t TYPE]
 [-s SYMDIRS [SYMDIRS ...]] [--unsupported]
 [--raise-errors] [--profile] [-v] [--formats]

optional arguments:
 -h, --help show this help message and exit
 -i INPUT, --input INPUT
 read INPUT file in
 -f TYPE, --from TYPE read input file as TYPE
 -o OUTPUT, --output OUTPUT
 write OUTPUT file out
 -t TYPE, --to TYPE write output file as TYPE
 -s SYMDIRS [SYMDIRS ...], --sym-dirs SYMDIRS [SYMDIRS ...]
 specify SYMDIRS to search for .sym files (for gEDA
 only)
 --unsupported run with an unsupported python version
 --raise-errors show tracebacks for parsing and writing errors
 --profile collect profiling information
 -v, --version print version information and quit
 --formats print supported formats and quit

At the time of this writing, Upverter suppports the following file types:

File type Support

openjson i/o

kicad i/o

geda i/o

eagle i/o

eaglexml i/o

fritzing in only, schematic only

gerber i/o

specctra i/o

image out only

ncdrill out only

bom (csv) out only

netlist (csv) out only

After Upverter is installed, run the file (quickBot.fzz) that generated Figure 9-9
through Upverter:

host$ python -m upconvert.upconverter -i quickBot.fzz \
-f fritzing -o quickBot-eaglexml.sch -t eaglexml --unsupported
WARNING: RUNNING UNSUPPORTED VERSION OF PYTHON (2.7 > 2.6)
DEBUG:main:parsing quickBot.fzz in format fritzing

host$ ls -l
total 188
-rw-rw-r-- 1 ubuntu ubuntu 63914 Nov 25 19:47 quickBot-eaglexml.sch
-rw-r--r-- 1 ubuntu ubuntu 122193 Nov 25 19:43 quickBot.fzz
drwxrwxr-x 9 ubuntu ubuntu 4096 Nov 25 19:42 schematic-file-converter

Figure 9-28 shows the output of the conversion.

Figure 9-28. Output of Upverter conversion

No one said it would be pretty!

Discussion
I found that Eagle was more generous at reading in the eaglexml format than the
eagle format. This also made it easier to hand-edit any translation issues.

9.9 Producing a Prototype

Problem
You have your PCB all designed. How do you get it made?

Solution
To make this recipe, you will need:

A completed design (see Recipe 9.7)

Soldering iron (see “Miscellaneous”)

Oscilloscope (see “Miscellaneous”)

Multimeter (see “Miscellaneous”)

Your other components

Upload your design to OSH Park and order a few boards. Figure 9-29 shows a
resulting shared project page for the quickBot cape created in Recipe 9.7. We’ll
proceed to break down how this design was uploaded and shared to enable ordering
fabricated PCBs.

Figure 9-29. The OSH Park QuickBot Cape shared project page

Within Fritzing, click the menu next to “Export for PCB” and choose “Extended
Gerber,” as shown in Figure 9-30. You’ll need to choose a directory in which to save
them and then compress them all into a Zip file. The WikiHow article on creating Zip
files might be helpful if you aren’t very experienced at making these.

http://oshpark.com
http://bit.ly/1MtlzAp
http://bit.ly/1Br5lEh
http://bit.ly/1B4GqRU

Figure 9-30. Choosing “Extended Gerber” in Fritzing

Things on the OSH Park website are reasonably self-explanatory. You’ll need to
create an account and upload the Zip file containing the Gerber files you created. If
you are a cautious person, you might choose to examine the Gerber files with a
Gerber file viewer first. The Fritzing fabrication FAQ offers several suggestions,
including gerbv for Windows and Linux users.
When your upload is complete, you’ll be given a quote, shown images for review,
and presented with options for accepting and ordering. After you have accepted the
design, your list of accepted designs will also include the option of enabling sharing
of your designs so that others can order a PCB, as well. If you are looking to make
some money on your design, you’ll want to go another route, like the one described in
Recipe 9.11. Figure 9-31 shows the resulting PCB that arrives in the mail.

http://oshpark.com
http://bit.ly/1B4GzEZ
http://bit.ly/18bUgeA
http://gerbv.sourceforge.net/
https://oshpark.com/users/current

Figure 9-31. QuickBot PCB

Now is a good time to ensure that you have all of your components and a soldering
station set up as in Recipe 9.4, as well as an oscilloscope, as used in Recipe 9.6.
When you get your board, it is often informative to “buzz out” a few connections by
using a multimeter. If you’ve never used a multimeter before, the SparkFun or
Adafruit tutorials might be helpful. Set your meter to continuity testing mode and
probe between points where the headers are and where they should be connecting to
your components. This would be more difficult and less accurate after you solder
down your components, so it is a good idea to keep a bare board around just for this
purpose.
You’ll also want to examine your board mechanically before soldering parts down.
You don’t want to waste components on a PCB that might need to be altered or
replaced.
When you begin assembling your board, it is advisable to assemble it in functional
subsections, if possible, to help narrow down any potential issues. Figure 9-32
shows the motor portion wired up and running the test in Example 9-1.

http://bit.ly/18bUgeA
http://bit.ly/1Br5Xtv

Figure 9-32. QuickBot motors under test

Continue assembling and testing your board until you are happy. If you find issues,
you might choose to cut traces and use point-to-point wiring to resolve your issues
before placing an order for a new PCB. Better right the second time than the third!

Discussion
There are several solutions for milling a PCB on your own and several alternative
online PCB fabrications service vendors. Fritzing even has a fabrication option of its
own. If you are in Europe, that might be more convenient than OSHPark. I placed an
order with Fritzing a few days ahead of placing an order at OSHPark, but the
OSHPark order arrived about a week before the order from Fritzing. This is mostly
due to the fact I live in the United States.

http://fab.fritzing.org

9.10 Creating Contents for Your Cape Configuration
EEPROM

Problem
Your cape is ready to go, and you want it to automatically initialize when the Bone
boots up.

Solution
Complete capes have an I2C EEPROM on board that contains configuration
information that is read at boot time. Adventures in BeagleBone Cape EEPROMs
gives a helpful description of two methods for programming the EEPROM. How to
Roll your own BeagleBone Capes is a good four-part series on creating a cape,
including how to wire and program the EEPROM.

http://bit.ly/1Fb64uF
http://bit.ly/1E5M7RJ

Discussion
The most important thing to remember when making a cape is that you’re working
within an ecosystem of Bone developers. Describe the high-level features of your
cape and your proposed EEPROM comments to the group mailing list and follow up
on the live chat group to ensure that you get a response. This is the best way to
confirm that your cape is supported by the out-of-box software, making it easier for
people buying your cape to get it running.

http://beagleboard.org/discuss
http://beagleboard.org/chat

9.11 Putting Your Cape Design into Production

Problem
You want to share your cape with others. How do you scale up?

Solution
CircuitHub offers a great tool to get a quick quote on assembled PCBs. To make
things simple, I downloaded the CircuitCo MiniDisplay Cape Eagle design materials
and uploaded them to CircuitHub.
After the design is uploaded, you’ll need to review the parts to verify that CircuitHub
has or can order the right ones. Find the parts in the catalog by changing the text in the
search box and clicking the magnifying glass. When you’ve found a suitable match,
select it to confirm its use in your design, as shown in Figure 9-33.

Figure 9-33. CircuitHub part matching

When you’ve selected all of your parts, a quote tool appears at the bottom of the
page, as shown in Figure 9-34.

https://circuithub.com/
http://bit.ly/1C5uvJc

Figure 9-34. CircuitHub quote generation

Checking out the pricing on the MiniDisplay Cape (without including the LCD itself)
in Table 9-1, you can get a quick idea of how increased volume can dramatically
impact the per-unit costs.

Table 9-1. CircuitHub price examples (all
prices USD)

Quantity 1 10 100 1000 10,000

PCB $208.68 $21.75 $3.30 $0.98 $0.90

Parts $11.56 $2.55 $1.54 $1.01 $0.92

Assembly $249.84 $30.69 $7.40 $2.79 $2.32

Per unit $470.09 $54.99 $12.25 $4.79 $4.16

Total $470.09 $550.00 $1,225.25 $4,796.00 $41,665.79

Checking the Crystalfontz web page for the LCD, you can find the prices for the
LCDs as well, as shown in Table 9-2.

Table 9-2. LCD pricing (USD)

Quantity 1 10 100 1000 10,000

Per unit $12.12 $7.30 $3.86 $2.84 $2.84

http://bit.ly/1GF6xqE

Total $12.12 $73.00 $386.00 $2,840.00 $28,400.00

To enable more cape developers to launch their designs to the market, CircuitHub has
launched a group buy campaign site. You, as a cape developer, can choose how much
markup you need to be paid for your work and launch the campaign to the public.
Money is only collected if and when the desired target quantity is reached, so there’s
no risk that the boards will cost too much to be affordable. This is a great way to
cost-effectively launch your boards to market!

http://campaign.circuithub.com

Discussion
There’s no real substitute for getting to know your contract manufacturer, its
capabilities, communication style, strengths, and weaknesses. Look around your town
to see if anyone is doing this type of work and see if they’ll give you a tour.

NOTE
Don’t confuse CircuitHub and CircuitCo. CircuitCo is the official contract manufacturer of
BeagleBoard.org and not the same company as CircuitHub, the online contract manufacturing
service. CircuitCo would be an excellent choice for you to consider to perform your contract
manufacturing, but it doesn’t offer an online quote service at this point, so it isn’t as easy to include
details on how to engage with it in this book.

1 Figure 9-1 was originally posted by CircuitCo at
http://elinux.org/File:BeagleBone-LCD7-Front.jpg under a Creative Commons
Attribution-ShareAlike 3.0 Unported License.
2 Figure 9-4 was originally posted by David Anders at
http://elinux.org/File:Minidisplay-boris.jpg under a Creative Commons Attribution-
ShareAlike 3.0 Unported License.
3 Figure 9-6 was originally posted by CircuitCo at
http://elinux.org/File:BeagleBone-LCD-Backside.jpg under a Creative Commons
Attribution-ShareAlike 3.0 Unported License.
4 Figure 9-7 was originally posted by Djackson at
http://elinux.org/File:Audio_pins_revb.png under a Creative Commons Attribution-
ShareAlike 3.0 Unported License.
5 Figure 9-8 was originally posted by William Traynor at
http://elinux.org/File:BeagleBone-Breadboard.jpg under a Creative Commons
Attribution-ShareAlike 3.0 Unported License.

http://elinux.org/File:BeagleBone-LCD7-Front.jpg
http://creativecommons.org/licenses/by-sa/3.0/
http://elinux.org/File:Minidisplay-boris.jpg
http://creativecommons.org/licenses/by-sa/3.0/
http://elinux.org/File:BeagleBone-LCD-Backside.jpg
http://creativecommons.org/licenses/by-sa/3.0/
http://elinux.org/File:Audio_pins_revb.png
http://creativecommons.org/licenses/by-sa/3.0/
http://elinux.org/File:BeagleBone-Breadboard.jpg
http://creativecommons.org/licenses/by-sa/3.0/

Appendix A. Parts and Suppliers

Parts
The following tables list where you can find the parts used in this book. We have
listed only one or two sources here, but you can often find a given part in many
places.

Table A-1. United States suppliers

Supplier Website Notes

Adafruit http://www.adafruit.com Good for modules and parts

Amazon http://www.amazon.com/ Carries everything

Digikey http://www.digikey.com/ Wide range of components

MakerShed http://www.makershed.com/ Good for modules, kits, and tools

RadioShack http://www.radioshack.com/ Walk-in stores

SeeedStudio http://www.seeedstudio.com/depot/ Low-cost modules

SparkFun http://www.sparkfun.com Good for modules and parts

Table A-2. Other suppliers

Supplier Website Notes

Element14 http://element14.com/BeagleBone World-wide BeagleBoard.org-compliant clone of BeagleBone
Black, carries many accessories

http://www.adafruit.com
http://www.amazon.com/
http://www.digikey.com/
http://www.makershed.com/
http://www.radioshack.com/
http://www.seeedstudio.com/depot/
http://www.sparkfun.com
http://element14.com/BeagleBone

Prototyping Equipment
Many of the hardware projects in this book use jumper wires and a breadboard. We
prefer the preformed wires that lie flat on the board. Table A-3 lists places with
jumper wires, and Table A-4 shows where you can get breadboards.

Table A-3. Jumper wires

Supplier Website

Amazon http://www.amazon.com/Elenco-Piece-Pre-formed-Jumper-Wire/dp/B0002H7AIG

Digikey http://www.digikey.com/product-detail/en/TW-E012-000/438-1049-ND/643115

RadioShack http://www.radioshack.com/solderless-breadboard-jumper-wire-
kit/2760173.html#.VG5i1PnF8fA

SparkFun https://www.sparkfun.com/products/124

Table A-4. Breadboards

Supplier Website

Amazon http://www.amazon.com/s/ref=nb_sb_noss_1?url=search-alias%3Dtoys-and-games&field-
keywords=breadboards&sprefix=breadboards%2Ctoys-and-games

Digikey http://www.digikey.com/product-search/en/prototyping-products/solderless-
breadboards/2359510?k=breadboard

RadioShack http://www.radioshack.com/search?q=breadboard

SparkFun https://www.sparkfun.com/search/results?term=breadboard

CircuitCo http://elinux.org/CircuitCo:BeagleBone_Breadboard

If you want something more permanent, try Adafruit’s Perma-Proto Breadboard, laid
out like a breadboard.

http://www.amazon.com/Elenco-Piece-Pre-formed-Jumper-Wire/dp/B0002H7AIG
http://www.digikey.com/product-detail/en/TW-E012-000/438-1049-ND/643115
http://www.radioshack.com/solderless-breadboard-jumper-wire-kit/2760173.html#.VG5i1PnF8fA
https://www.sparkfun.com/products/124
http://www.amazon.com/s/ref=nb_sb_noss_1?url=search-alias%3Dtoys-and-games&field-keywords=breadboards&sprefix=breadboards%2Ctoys-and-games
http://www.digikey.com/product-search/en/prototyping-products/solderless-breadboards/2359510?k=breadboard
http://www.radioshack.com/search?q=breadboard
https://www.sparkfun.com/search/results?term=breadboard
http://elinux.org/CircuitCo:BeagleBone_Breadboard
https://www.adafruit.com/product/1609

Resistors
We use 220 Ω, 1 kΩ, 4.7 kΩ, 10 kΩ, 20 kΩ, and 22 kΩ resistors in this book. All are
0.25 W. The easiest way to get all these, and many more, is to order SparkFun’s
Resistor Kit. It’s a great way to be ready for future projects, because it has 500
resistors. RadioShack’s 500-piece Resistor Assortment is a bit more expensive, but
it has a wider variety of resistors.
If you don’t need an entire kit of resistors, you can order a la carte from a number of
places. RadioShack has 5-packs, and DigiKey has more than a quarter million
through-hole resistors at good prices, but make sure you are ordering the right one.
You can find the 10 kΩ trimpot (or variable resistor) at SparkFun, Adafruit, or
RadioShack.
Flex resistors (sometimes called flex sensors or bend sensors) are available at
SparkFun and Adafruit.

http://bit.ly/1EXREh8
http://shack.net/1B4Io4V
http://shack.net/1E5NoIC
http://bit.ly/1C6WQjZ
http://bit.ly/18ACvpm
http://bit.ly/1NKg1Tv
http://shack.net/1Ag286e
http://bit.ly/1Br7HD2
http://bit.ly/1HCGoql

Transistors and Diodes
The 2N3904 is a common NPN transistor that you can get almost anywhere. Even
Amazon has it. Adafruit has a nice 10-pack. SparkFun lets you buy them one at a
time. DigiKey will gladly sell you 100,000.
The 1N4001 is a popular 1A diode. Buy one at SparkFun, 10 at Adafruit, 25 at
RadioShack, or 40,000 at DigiKey.

http://bit.ly/1B4J8H4
http://amzn.to/1AjvcsD
http://bit.ly/1b2dgxT
http://bit.ly/1GrZj5P
http://bit.ly/1GF8H9K
http://bit.ly/1EbRzF6
http://bit.ly/1Ajw54G
http://bit.ly/1Gs05zP
http://shack.net/1E5OTXi
http://bit.ly/18ADlT2

Integrated Circuits
The PCA9306 is a small integrated circuit (IC) that converts voltage levels between
3.3 V and 5 V. You can get it cheaply in large quantities from DigiKey, but it’s in a
very small, hard-to-use, surface-mount package. Instead, you can get it from
SparkFun on a Breakout board, which plugs into a breadboard.
The L293D is an H-bridge IC with which you can control large loads (such as
motors) in both directions. SparkFun, Adafruit, and DigiKey all have it in a DIP
package that easily plugs into a breadboard.
The ULN2003 is a 7 darlington NPN transistor IC array used to drive motors one
way. You can get it from DigiKey. A possible substitution is ULN2803 available
from SparkFun and Adafruit.

The TMP102 is an I2C-based digital temperature sensor. You can buy them in bulk
from DigiKey, but it’s too small for a breadboard. SparkFun sells it on a breakout
board that works well with a breadboard.
The DS18B20 is a one-wire digital temperature sensor that looks like a three-
terminal transistor. Both SparkFun and Adafruit carry it.

http://bit.ly/1Fb8REd
http://bit.ly/19ceTsd
http://bit.ly/1wujQqk
http://bit.ly/18bXChR
http://bit.ly/1xd43Yh
http://bit.ly/18bXKOk
http://bit.ly/1D5UQIB
http://bit.ly/1xd4oKy
http://bit.ly/1EXWhaU
http://bit.ly/1EA02Vx
http://bit.ly/1GFafAE
http://bit.ly/1Fba7Hv
http://bit.ly/1EbSYvC

Opto-Electronics
LEDs are light-emitting diodes. LEDs come in a wide range of colors, brightnesses,
and styles. You can get a basic red LED at SparkFun, Adafuit, RadioShack, and
DigiKey.

Many places carry bicolor LED matrices, but be sure to get one with an I2C interface.
Adafruit is where I got mine.

http://bit.ly/1BwZvQj
http://bit.ly/1GFaHPi
http://bit.ly/1GFaH1M
http://shack.net/1KWVVGE
http://bit.ly/1b2f2PD
http://bit.ly/18AENVn

Capes
There are a number of sources for capes for BeagleBone Black. BeagleBoard.org
keeps a current list.

http://bit.ly/1AjlXJ9

Miscellaneous
Here are some things that don’t fit in the other categories.

Table A-5. Miscellaneous

3.3 V FTDI cable SparkFun, Adafruit

USB WiFi adapter Adafruit

Female HDMI to male microHDMI adapter Amazon

HDMI cable SparkFun

Micro HDMI to HDMI cable Adafruit

HDMI to DVI Cable SparkFun

HDMI monitor Amazon

Powered USB hub Amazon, Adafruit

Keyboard with USB hub Amazon

Soldering iron SparkFun, Adafruit

Oscilloscope Adafruit

Multimeter SparkFun, Adafruit

PowerSwitch Tail II SparkFun, Adafruit

Servo motor SparkFun, Adafruit

5 V power supply SparkFun, Adafruit

3 V to 5 V motor SparkFun, Adafruit

3 V to 5 V bipolar stepper motor SparkFun, Adafruit

3 V to 5 V unipolar stepper motor Adafruit

Pushbutton switch SparkFun, Adafruit

Magnetic reed switch SparkFun

LV-MaxSonar-EZ1 Sonar Range Finder SparkFun, Amazon

HC-SR04 Ultrsonic Range Sensor Amazon

Rotary encoder SparkFun, Adafruit

http://bit.ly/1FMeXsG
http://bit.ly/18AF1Mm
http://www.adafruit.com/products/814
http://amzn.to/1C5BcLp
https://www.sparkfun.com/products/11572
http://www.adafruit.com/products/1322
https://www.sparkfun.com/products/12612
http://amzn.to/1B4MABD
http://amzn.to/1NKm2zB
http://www.adafruit.com/products/961
http://amzn.to/1FbblSX
http://bit.ly/1FMfUkP
http://bit.ly/1EXZ6J1
https://www.adafruit.com/products/468
http://bit.ly/1C5BUbu
http://bit.ly/1wXX3np
http://bit.ly/1Ag5bLP
http://bit.ly/1wXX8aF
http://bit.ly/1C72cvw
http://bit.ly/1HCPQdl
http://bit.ly/1C72q5C
http://bit.ly/18c0n2D
http://bit.ly/1b2g65Y
http://bit.ly/1C72DWF
http://bit.ly/1Bx2hVU
http://bit.ly/18c0HhV
http://www.adafruit.com/products/858
http://bit.ly/1AjDf90
http://bit.ly/1b2glhw
https://www.sparkfun.com/products/8642
http://bit.ly/1C73dDH
http://amzn.to/1wXXvlP
http://amzn.to/1FbcPNa
http://bit.ly/1D5ZypK
http://bit.ly/1D5ZGp3

GPS receiver SparkFun, Adafruit

BLE USB dongle Adafruit

SensorTag DigiKey, Amazon, TI

Syba SD-CM-UAUD USB Stereo Audio Adapter Amazon

Sabrent External Sound Box USB-SBCV Amazon

Vantec USB External 7.1 Channel Audio Adapter Amazon

Nokia 5110 LCD Adafruit, SparkFun

BeagleBone LCD7 eLinux

MiniDisplay Cape eLinux

http://bit.ly/1EA2sn0
http://bit.ly/1MrS2VV
http://www.adafruit.com/products/1327
http://bit.ly/18AGPVt
http://amzn.to/1EA2B9U
https://store.ti.com/CC2541-SensorTag-Development-Kit-P3192.aspx
http://amzn.to/1EA2GdI
http://amzn.to/1C74kTU
http://amzn.to/19cinev
http://bit.ly/1Ag6LgG
http://bit.ly/19cizdu
http://elinux.org/CircuitCo:BeagleBone_LCD7#Distributors
http://elinux.org/CircuitCo:MiniDisplay_Cape

Index

Symbols

character, Discussion, Solution

$ character, Discussion

120 V devices, Problem

5 V devices, Problem, Discussion

^C (Ctrl-C) command, Solution, Discussion, Discussion, Discussion,
Discussion, Running PRU Speak via Shell

` character (backtick), Solution, Solution

~ character, Solution

A

ABI documentation, Discussion

accelerometers, Problem

Adafruit BBIO library, Solution

Adafruit Bicolor 8x8 LED Square Pixel Matrix, Problem

Adafruit Neopixel LED strings, Problem

adduser, Solution

Advanced Linus Sound Architecture (ALSA), Solution

advanced operations

accessing command shell via SSH, Problem

accessing command shell via virtual serial port, Problem

copying files, Problem

editing text file from GNU/Linux command shell, Problem

Ethernet-based Internet connections, Problem

firewalls, Problem

freeing memory space, Problem

GNU/Linux commands, Problem

installing additional Node.js packages, Problem

installing additional packages, Problem

interactions via C, Problem

interactions via Python, Problem

remote control via VNC server, Problem

removing packages, Problem

running standalone, Problem

selecting host computer OS, Problem

sharing host's Internet connection over USB, Problem

using graphical editors, Problem

verifying OS version from the shell, Problem

viewing system messages, Problem, Solution

WiFi-based Internet connections, Problem

AM335x Technical Reference Manual, Problem

analog voltage sensors, Problem

analog-to-digital converter (ADC) inputs, Introduction, Solution

analogWrite(), Solution, Problem

Apache web servers, Problem

applications

running automatically, Problem

running from Cloud9, Problem

apt-get

installing packages with, Solution

removing packages installed with, Problem

Arduino, Problem

ARM processor, Introduction

attachInterrupt(), Solution, Solution, Discussion

audio files

HDMI audio, Discussion

recording, Problem

text-to-speech programs, Problem

autoremove, Discussion

Autoroute, Problem

autorun folder, Solution

B

b.analogWrite(), Solution, Problem

b.attachInterrupt(), Solution, Solution, Discussion

b.digitalRead(), Discussion

b.pinMode(), Solution, Solution, Discussion

backports, Discussion

backtick (`) character, Solution, Solution

backups, onboard flash, Problem, Discussion

bash command window, Solution, Solution

basic operations

backups, Problem, Discussion

BeagleBone/BeagleBoard selection, Problem

BoneScript API tutorials, Problem

editing code with Cloud9, Problem

getting started, Problem

OS updates, Problem, Problem

running applications automatically, Problem

running JavaScript applications from Cloud9, Problem

running latest OS version, Problem

shut-down, Solution

updating onboard flash, Problem

wiring a breadboard, Problem

BBIO library, Solution

beagleboard.org web page, Solution

BeagleBoards

BeagleBoard-X15, BeagleBoard-X15

BeagleBoard-xM, BeagleBoard-xM

selecting, Problem

BeagleBones

BeagleBone White, BeagleBone White

benefits of, Who This Book Is For, BeagleBone Black

development ecosystem, Discussion

selecting, Problem

binary numbers, Solution

bipolar stepper motors, Introduction, Problem

blinked.js, Problem

Bluetooth Low Energy (BLE), Problem

BONE101 GitHub page, Discussion

BoneScript

API examples page, Solution

displaying GPIO pin values via, Solution

input/output (I/O) with, Problem

interactive guide, Solution

running applications automatically, Problem

tutorials for, Problem

bootable partitions, Linux

breadboards

sensor connection through, Discussion

suppliers for, Prototyping Equipment

vs. protoboards, Problem

wiring, Problem

bulk email, Discussion

buses, Discussion

C

C language

benefits of interfacing via, Problem

mapping GPIO registers with mmap() and, Problem

real time I/O with, Problem

cape headers

P8/P9 connection options, Problem

P8/P9 diagram, Introduction

stacking vs. non-stacking, Problem

capes

audio, Problem

basics of, Introduction

connecting multiple, Problem

design verification, Problem

EEPROM, Discussion, Problem

LCD display, 128 x 128-pixel, Problem

LCD display, seven-inch, Problem

printed circuit board layout, Problem

protoboards for, Problem

prototype production, Problem

prototype schematics, Problem

scaling up production, Problem

sources of, Capes

cd (change directory) command, Solution, Solution, Solution

chmod (change mode) command, Solution, Discussion

Chrome, Solution

Chromium web browser, Removing preinstalled packages

circuit schematics, Solution, Problem

CircuitCo, Discussion

CircuitHub, Solution

Cloud9

editing code using, Problem

root user, Discussion

running BoneScript applications from, Problem

running JavaScript applications from, Problem, Solution

themes, Solution

web page for, Solution

website for, Discussion

code

editing with Cloud9, Problem

entering and running on sensors, Problem

obtaining and using examples, Using Code Examples

stopping, Solution

command shell, accessing, Problem, Problem

commands

cd (change directory), Solution, Solution, Solution

chmod (change mode), Solution, Discussion

dd, Linux

df, Solution

dmesg, Solution

du (disk usage), Discovering big files

in Linux, Problem

insmod, Solution

iptables, Problem

ls, Solution, Solution

mkdir (make directory), Solution

mount, Solution

running via virtual serial port, Discussion

scp (secure copy), Discussion

sshfs, Problem

tail, Solution

usleep(), Discussion

^C (Ctrl-C), Solution, Discussion, Discussion, Discussion, Discussion,
Running PRU Speak via Shell

console.log(), Discussion

current weather conditions, Problem

D

D (delete) key, Discovering big files

Dallas Semiconductor DS18B20, Problem

data

plotting live, Problem

streaming, Problem

DC motors

controlling direction of, Problem

controlling speed of, Problem

motions available, Introduction

dd command, Linux

Debian

determining version, Problem

finding latest version of, Problem

normal user, Discussion, Solution

package manager, Problem

debugging

at boot time, Problem

breadboards, Discussion, Introduction

in node-RED, Building a Node-RED Flow

low-level, Problem

using Cloud9, Problem, Solution

with libsoc library, Solution

design verification, Problem

DesignSpark PCB, PCB Design Alternatives

devmem2 utility, Problem

df command, Solution

DHCP (Dynamical Host Configuration Protocol), Solution

diagrams, software for, About the Diagrams

(see also Fritzing)

dial position, Problem

dictionary, installing, Solution

digital I/O pins, Discussion

digital temperature sensors, Problem

digitalRead(), Discussion

diodes, suppliers for, Transistors and Diodes

directories

changing, Solution, Solution

creating new, Solution

deleting, Discovering big files

determining size of, Discovering big files

listing files in, Solution

disk space, determining, Linux, Discovering big files

displays

DVI-D, Solution

fading external LEDs, Problem

HDMI, Problem

LCD, seven-inch, Problem

LED matrix, Problem

NeoPixel LED strings, Problem

Nokia 5510 LCD, Problem

toggling external LEDs, Problem

toggling onboard LEDs, Problem

viewing individual screens, Discussion

distance sensors, Problem, Problem

dmesg command, Solution

Domain Name System (DNS) servers, Letting your bone see the world:
setting up IP masquerading

drivers

building, Problem

installing USB, Solution

DS18B20 temperature sensor, Problem

du (disk usage) command, Discovering big files

DVI-D displays, Solution

E

Eagle PCB, PCB Design Alternatives

Echo output, Solution

editors

graphics-based, Problem

text-based, Problem

web-based, Problem

EEPROM capes, Discussion, Problem

email, Problem

eMMC memory (see onboard flash)

environmental sensors

temperature, Problem, Problem

TI SensorTag, Problem, Discussion

eQEP2 encoder, Solution

exec(), Discussion

external power supplies, Discussion, Solution

F

fade(), Discussion

files

accessing from host computer, Problem

audio, Problem, Problem, Discussion

converting schematics, Problem

copying, Problem

deleting, Discovering big files

discovering large, Discovering big files

editing text, Problem

listing, Solution

patch file application, Problem

patch file creation, Problem

virtual file system for, Problem

Firefox, Solution

firewalls, Problem

flashLED(), Discussion

flex sensors, Problem

flite text-to-speech program, Problem

flot plotting package, Problem

force-sensitive resistors, Problem

Fritzing

creating circuit schematics with, Solution

exporting schematics from, Problem

installing, About the Diagrams

printed circuit board tab in, Problem

prototype production with, Solution

FTDI pins, Problem

G

global positioning system (GPS), Problem, Solution

Gmail, Problem

GPIO pins

avoiding burn outs, Discussion

controlling via sysfs entries, Problem

displaying status of, Problem

displaying value continuously, Problem

displaying value via jsfiddle, Problem

for sensor connections, Introduction

header pin mapping for libsoc, Solution

pull-up and -down resistors, Discussion, Discussion

(see also input/output (I/O))

graphical editors, Problem

graphics, displaying, Problem

gyroscopes, Problem

H

H-bridges, Problem, Problem

halt command, Solution

hard real-time systems, Introduction

hardware

5 V devices, Problem, Discussion

building drivers for, Problem

creating illustrations of, About the Diagrams

creating prototype schematics, Solution

(see also prototypes)

high-voltage devices, Problem

radio-controlled, Discussion

HC-SR04 Ultrasonic Range Sensor, Problem

HDMI displays, Problem

hex numbers, Solution

high-resolution timers, Discussion

high-voltage devices, Problem

hobby servo motors (see servo motors)

host computer

accessing files from, Problem

accessing graphical desktop from, Problem

editing code using Cloud9, Problem

installing USB drivers for, Solution

Linux OS, Linux

Mac OS, Mac

OS selection, Problem

sharing Internet connection over USB, Problem

Windows OS, Windows

hostname, setting, Setting your Bone’s hostname

hrtime(), Discussion

humidity sensor, Problem

I

ID.txt, Problem

ifconfig command, Solution, Solution

input mode, Introduction

input/output (I/O)

soft vs. hard real-time systems, Introduction

via Serial Peripheral Interface (SPI), Solution

with BoneScript, Problem

with C and libsoc, Problem

with C and mmap(), Problem

with devmem2, Problem

with programmable real-time units (PRUs), Problem

with Xenomai, Problem

insmod command, Solution

Integrated Circuits (ICs), suppliers for, Integrated Circuits

integrated development environment (IDE), Solution

(see also Cloud9)

Internet

Ethernet-based connections, Problem

interactions via Node-RED, Problem

passwords, Discussion

sharing host computer's connection, Problem

WiFi-based connections, Problem

Internet Explorer, Solution

IP address

locating, Solution, Solution

masquerading, Letting your bone see the world: setting up IP
masquerading

iptables command, Problem

iwconfig command, Solution

I²C-based serial protocol, Problem, Problem

J

JavaScript

running applications from Cloud9, Problem

sensor communication with, Problem

tutorials for, Problem

Jessie, Discussion

jsfiddle, Problem

jumper wires, Prototyping Equipment

K

kernel (see Linux kernel)

keyboards, Problem, Solution

Kicad, PCB Design Alternatives

L

L293D H-Bridge IC, Problem, Problem

LaunchPad, Problem

LCD displays, Problem, Problem, Problem

leafpad editor, Solution

LEDs

Adafruit Neopixel LED strings, Problem

controlling from command line, Problem

controlling via Python, Solution

fading external, Problem

I²C-based matrix, Problem

suppliers for, Opto-Electronics

toggling external, Problem

toggling onboard, Problem

toggling with Node-RED, Adding an LED Toggle

USER LEDs, Solution

(see also input/output (I/O))

LEDscape library, Discussion

level translators, Problem

libsoc library, Problem, Problem

light sensors, Problem

limiting resistors, Problem

Linux

common commands, Problem

Debian, Problem, Discussion, Problem

real-time processing with, Introduction

root user in, Discussion

running latest version of, Linux

Linux kernel

building/installing modules, Problem

compiling, Problem

controlling GPIO pins via sysfs, Problem

controlling LEDs from command line, Problem

downloading, Downloading and Compiling the Kernel

functions of, Introduction

installing, Installing the Kernel on the Bone

Kernel Headers, Solution

modifying to use Xenomai, Problem

patch file application, Problem

patch file creation, Problem

PRU Speak, Background

source tree for, Discussion

switching between versions, Discussion

updating, Problem

using installed cross-compiler, Problem

ls command, Solution, Solution

LV-MaxSonar-EZ1 Sonar Range Finder, Problem

M

MAC address, locating, Solution

Machinekit distribution, Solution

magnetic switches, Problem

magnetometers, Problem

makefiles, Solution

masquerading, Letting your bone see the world: setting up IP masquerading

microcontrollers, reading data from, Problem

microSD card

booting from, Solution

copying files to/from, Problem

freeing space on, Problem

MiniDisplay, Problem

mkdir (make directory) command, Solution

mmap(), Problem

motion sensors, Problem

motors

bipolar stepper control, Problem

DC motor direction control, Problem

DC motor speed control, Problem

servo motor control, Problem

types of, Introduction

unipolar stepper control, Problem

(see also input/output (I/O))

mount command, Solution

mouse, Problem, Solution

move(), Discussion

multimeters, Solution

N

nano editor, Problem

National Marine Electronics Association (NMEA), Solution, Solution

Neopixel LED strings, Problem

networking

accessing files on host computer, Problem

displaying GPIO pin status, Problem

displaying GPIO value continuously, Problem

displaying GPIO value via jsfiddle, Problem

displaying weather conditions, Problem

graphical programing via Node-RED, Problem

interaction over serial connection, Problem

interaction via web browsers, Problem

Internet connections, Introduction

plotting live data, Problem

sending email, Problem

sending SMS messages, Problem

sending/receiving Twitter posts, Problem

serving web pages, Problem, Problem

Node Package Manager, Problem

Node-RED, Problem

Node.js web server, Problem

Nokia 5510 LCD display, Problem

non-stacking headers, Problem

normal user, Discussion, Solution

O

on/off sensors, Problem

onboard flash

backing up, Problem, Discussion

copying files to/from, Problem

extracting, Problem

freeing space on, Problem

programming, Solution

updating, Problem

online dictionary, installing, Solution

onReadByte(), Solution

onSerial function, Discussion

operating system (OS)

Linux, Linux

Mac, Mac

running the latest, Problem

selecting for host computer, Problem

updating, Problem, Problem, Problem

verifying from the shell, Problem

Windows, Windows

opto-electronics, suppliers for, Opto-Electronics

OSH Park, Solution

outputs

controlling 5 V devices, Problem

controlling high-voltage devices, Problem

DVI-D, Solution

fading external LEDs, Problem

LED matrix, Problem

microHDMI, Problem

NeoPixel LED strings, Problem

Nokia 5510 LCD display, Problem

toggling external LEDs, Problem

toggling onboard LEDs, Problem

P

P8/P9 cape headers

diagram of, Introduction

sensor connection options, Problem

partitions, Linux

parts, sources for, Parts

passive on/off sensors, Problem

passwords

changing, Solution, Changing passwords

setting, Discussion

patches, applying, Problem

PCA9306 level translator, Problem

ping(), Discussion

pingEnd(), Discussion

pinMode(), Solution, Solution, Discussion

plotting live data, Problem

ports

defaults, Discussion

determining current, Discussion

port forwarding, Letting the world see your bone: setting up port
forwarding

position sensors, Problem, Problem

power supplies, external, Discussion, Solution

pressure sensors, Problem

printed-circuit layout, Solution

printStatus(), Discussion

process.on(), Discussion

programmable real-time units (PRUs), Discussion, Introduction, Problem

programs

installing, Problem

removing, Problem

protoboards, Problem

prototypes

equipment for, Prototyping Equipment

production of, Problem, Problem

schematics for, Problem

soldering protoboards, Problem

PRU Speak, Problem

pulse width modulation (PWM), Solution, Problem, Discussion

pulse width sensors, Problem

pushbutton sensors, Problem

pushbutton.js file, Solution, Solution

Python, Solution, Problem

Q

quadrature encoder, Solution

R

R/C motors (see servo motors)

radio-controlled toys, Discussion

rails, Discussion

readRange(), Discussion

real-time systems, Introduction

recording audio files, Problem

Remmina Remote Desktop Client, Solution

remote procedure call (RPC), Discussion

remove option, Solution

resistor divider circuits, Solution

resistors

suppliers for, Resistors

toggling external LEDs with, Problem

RJ45 connector, Solution, Problem

root user, Discussion, Discussion, Solution

rotary encoders, Problem

S

schematic-file-converters, Problem

scp (secure copy) command, Discussion

SD cards

booting from, Solution

copying files to/from, Problem

formatting, Linux

freeing space on, Problem

selecting, Discussion

security issues

email, Solution

passwords, Discussion, Solution, Changing passwords

sensors

analog or variable voltage, Problem

Bluetooth 4.0 interface for, Problem

connection options, Problem

entering and running code, Problem

interfaces for, Introduction

passive on/off, Problem

rotation, Problem

smart, Problem

temperature, Problem, Problem

variable pulse width, Problem

variable resistance, Problem

SensorTag, Problem, Discussion

Serial Peripheral Interface (SPI), Solution

serial ports

interaction via, Problem

UARTs, Solution

virtual, Problem

series resistors, Problem

servo motors

controlling, Problem

motions available, Introduction

setInterval(), Discussion, Discussion, Discussion, Discussion

shut down, Solution

SMS messages, Problem

Socket.IO, Discussion

soft real-time systems, Introduction

software

installing additional Node.js packages, Problem

installing packages, Problem

OS updates, Problem, Problem, Problem

removing packages, Problem

removing preinstalled, Problem

updating Linux kernel, Problem

soldering

components to protoboards, Problem

prototypes, Problem

solenoids, Problem

(see also DC motors)

speakForSelf(), Discussion

speech, Problem

SSH (Secure Shell)

configuration file, Discussion

connecting via, Problem

installing, Discussion

sshfs command, Problem

stacking headers, Problem

START.htm, Solution, Solution

stepper motors

controlling bipolar, Problem

controlling unipolar, Problem

motions available, Introduction, Discussion

types of, Introduction

streaming data, Problem

superusers, Discussion, Solution

suppliers, websites for, Parts

sweep(), Discussion

sysfs virtual file system

controlling GPIO pins with, Problem

controlling LEDs with, Problem

system messages, viewing, Problem, Solution

T

tab character, Solution

tail command, Solution

temperature sensors

Dallas Semiconductor DS18B20, Problem

Sensor Tag, Problem

SensorTag, Discussion

TMP102 sensor, Problem

text files, editing, Problem

text messages, Problem

text, displaying, Problem

text-to-speech programs, Problem

TI SensorTag, Problem, Discussion

TMP102 sensor, Problem

.toFixed(), A variable resistor with three terminals

transistors, suppliers for, Transistors and Diodes

Trigger input, Solution

trimpots, A variable resistor with three terminals

Tukaani Project, Mac

tweets, sending/receiving, Problem

Twilio, Problem

Twitter posts, Problem

U

UARTs (serial ports), Solution, Problem

ULN2003 Darlington Transistor Array IC, Problem

unipolar stepper motors, Introduction, Problem

Upconverter, Problem

Upverter, PCB Design Alternatives

USB 2.0 host port, Introduction

USB audio adapters, Problem

USB devices, Discussion, Solution

USB drivers, installing, Solution

USB wireless adapters, Problem

USER LEDs, Solution, Problem

usleep() command, Discussion

V

variable pulse width sensors, Problem

variable resistance sensors

reading, Problem

three terminal, A variable resistor with three terminals

two terminal, A variable resistor with two terminals

variable voltage sensors, Problem

Virtual Network Computing (VNC) server, Problem

virtual serial port, Problem

voltage sensors, Problem

W

weather APIs, Problem

web browsers

Chrome Chromium, Removing preinstalled packages

selecting, Solution

web servers

creating your own, Problem

using BeagleBone as, Problem, Problem

Wheezy, Discussion

wicd-curses, Solution

WiFi adapters, Problem

wireless networks, connecting to, Problem

Workspace file tree, Problem

X

Xenomai, Problem

xz utility, Mac

About the Authors
Prof. Mark A. Yoder is a professor of Electrical and Computer Engineering (ECE) at
Rose-Hulman Institute of Technology in Terre Haute, Indiana. In January 2012, he
was named the first Lawrence J. Giacoletto Chair in ECE. He received the school’s
Board of Trustees Outstanding Scholar Award in 2003. Dr. Yoder likes teaching
Embedded Linux and Digital Signal Processing (DSP). He is coauthor of two award-
winning texts, Signal Processing First and DSP First: A Multimedia Approach, both
with Jim McClellan and Ron Schafer. Mark and his wife, Sarah, have three boys and
seven girls ranging in age from 12 to 31 years old.
Jason Kridner is the cofounder of the BeagleBoard.org Foundation, a United States-
based 501(c) non-profit corporation existing to provide education in and promotion
of the design and use of open source software and hardware in embedded computing.
A veteran of Texas Instruments and the semiconductor industry with more than 20
years’ experience, Kridner has deep insights into the future of electronics, pioneering
both Texas Instruments’ and the semiconductor industry’s open source efforts and
engagements with open hardware. In his free time, Kridner uses BeagleBone Black to
explore his creativity with creations like the StacheCam, which uses a webcam and
computer vision to detect faces and superimpose fancy mustaches.

Colophon
The animal on the cover of BeagleBone Cookbook is a Harrier (canis lupus
familiaris). The Harrier is a medium, hound-bred dog derived from other hound
breeds. The Harrier was developed in the UK in the late 13th century and bred for
hunting purposes. They are closely related to the Beagle breed, but are not as popular
as domesticated pets. The Harrier breed is often referred to as “Beagles on steroids.”
Full-grown Harriers can average in size between 19 and 21 inches tall and weigh
between 45 and 50 pounds. The breed’s coat can consist of two to three colors that
might include a combination of white, tan, black, or red. They strongly resemble
English Foxhounds but are smaller in size. Although the Harrier is a short-haired
breed, they still need to be brushed at least once a week to remove dead hair. They
are high-energy dogs and having a large, outdoor area for exercise is preferable, but
be sure it is fenced in, as they will take off after smaller animals.
The Harrier is a good breed for household pets. This is most likely due to their
friendly demeanor and ability to get along with people of all ages, as well as other
dogs. They prefer to be in the company of others, but have the hunter’s instinct to prey
on smaller animals with unfamiliar scents. Harriers should be exposed to other
animals early in their lives if there is anticipation of having multiple, non-canine pets
in the home. The breed is also known to be vocal with baying, so be prepared to be
alerted at anything that may pique the interest of the Harrier.
Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.
The cover image is from Lydekker’s Royal Natural History. The cover fonts are
URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

Preface
Who This Book Is For

How to Use This Book

Conventions Used in This Book

Using Code Examples

About the Diagrams

Safari® Books Online

How to Contact Us

Acknowledgments

Basics
1.0. Introduction

1.1. Picking Your Beagle

1.2. Getting Started, Out of the Box

1.3. Verifying You Have the Latest Version of the OS on Your Bone

1.4. Running the BoneScript API Tutorials

1.5. Wiring a Breadboard

1.6. Editing Code Using the Cloud9 IDE

1.7. Running JavaScript Applications from the Cloud9 IDE

1.8. Running Applications Automatically

1.9. Finding the Latest Version of the OS for Your Bone

1.10. Running the Latest Version of the OS on Your Bone

1.11. Updating the OS on Your Bone

1.12. Backing Up the Onboard Flash

1.13. Updating the Onboard Flash

Sensors
2.0. Introduction

2.1. Choosing a Method to Connect Your Sensor

2.2. Input and Run a JavaScript Application for Talking to Sensors

2.3. Reading the Status of a Pushbutton or Magnetic Switch (Passive
On/Off Sensor)

2.4. Reading a Position, Light, or Force Sensor (Variable Resistance
Sensor)

2.5. Reading a Distance Sensor (Analog or Variable Voltage Sensor)

2.6. Reading a Distance Sensor (Variable Pulse Width Sensor)

2.7. Accurately Reading the Position of a Motor or Dial

2.8. Acquiring Data by Using a Smart Sensor over a Serial Connection

2.9. Measuring a Temperature

2.10. Reading Temperature via a Dallas 1-Wire Device

2.11. Sensing All Sorts of Things with SensorTag via Bluetooth v4.0

2.12. Playing and Recording Audio

Displays and Other Outputs
3.0. Introduction

3.1. Toggling an Onboard LED

3.2. Toggling an External LED

3.3. Toggling a High-Voltage External Device

3.4. Fading an External LED

3.5. Writing to an LED Matrix

3.6. Driving a 5 V Device

3.7. Writing to a NeoPixel LED String

3.8. Using a Nokia 5510 LCD Display

3.9. Making Your Bone Speak

Motors
4.0. Introduction

4.1. Controlling a Servo Motor

4.2. Controlling the Speed of a DC Motor

4.3. Controlling the Speed and Direction of a DC Motor

4.4. Driving a Bipolar Stepper Motor

4.5. Driving a Unipolar Stepper Motor

Beyond the Basics
5.0. Introduction

5.1. Running Your Bone Standalone

5.2. Selecting an OS for Your Development Host Computer

5.3. Getting to the Command Shell via SSH

5.4. Getting to the Command Shell via the Virtual Serial Port

5.5. Viewing and Debugging the Kernel and u-boot Messages at Boot Time

5.6. Verifying You Have the Latest Version of the OS on Your Bone from
the Shell

5.7. Controlling the Bone Remotely with VNC

5.8. Learning Typical GNU/Linux Commands

5.9. Editing a Text File from the GNU/Linux Command Shell

5.10. Using a Graphical Editor

5.11. Establishing an Ethernet-Based Internet Connection

5.12. Establishing a WiFi-Based Internet Connection

5.13. Sharing the Host’s Internet Connection over USB

5.14. Setting Up a Firewall

5.15. Installing Additional Packages from the Debian Package Feed

5.16. Removing Packages Installed with apt-get

5.17. Copying Files Between the Onboard Flash and the MicroSD Card

5.18. Freeing Space on the Onboard Flash or MicroSD Card

5.19. Installing Additional Node.js Packages

5.20. Using Python to Interact with the Physical World

5.21. Using C to Interact with the Physical World

Internet of Things
6.0. Introduction

6.1. Accessing Your Host Computer’s Files on the Bone

6.2. Serving Web Pages from the Bone

6.3. Interacting with the Bone via a Web Browser

6.4. Displaying GPIO Status in a Web Browser

6.5. Continuously Displaying the GPIO Value via jsfiddle

6.6. Continuously Displaying the GPIO Value

6.7. Plotting Data

6.8. Sending an Email

6.9. Sending an SMS Message

6.10. Displaying the Current Weather Conditions

6.11. Sending and Receiving Tweets

6.12. Wiring the IoT with Node-RED

6.13. Serving Web Pages from the Bone by Using Apache

6.14. Communicating over a Serial Connection to an Arduino or
LaunchPad

The Kernel
7.0. Introduction

7.1. Updating the Kernel

7.2. Building and Installing Kernel Modules

7.3. Controlling LEDs by Using SYSFS Entries

7.4. Controlling GPIOs by Using SYSFS Entries

7.5. Compiling the Kernel

7.6. Using the Installed Cross Compiler

7.7. Applying Patches

7.8. Creating Your Own Patch File

Real-Time I/O
8.0. Introduction

8.1. I/O with BoneScript

8.2. I/O with C and libsoc

8.3. I/O with devmem2

8.4. I/O with C and mmap()

8.5. Modifying the Linux Kernel to Use Xenomai

8.6. I/O with PRU Speak

Capes
9.0. Introduction

9.1. Using a Seven-Inch LCD Cape

9.2. Using a 128 x 128-Pixel LCD Cape

9.3. Connecting Multiple Capes

9.4. Moving from a Breadboard to a Protoboard

9.5. Creating a Prototype Schematic

9.6. Verifying Your Cape Design

9.7. Laying Out Your Cape PCB

9.8. Migrating a Fritzing Schematic to Another Tool

9.9. Producing a Prototype

9.10. Creating Contents for Your Cape Configuration EEPROM

9.11. Putting Your Cape Design into Production

Parts and Suppliers
Parts

Prototyping Equipment

Resistors

Transistors and Diodes

Integrated Circuits

Opto-Electronics

Capes

Miscellaneous

Index

	Preface
	Who This Book Is For
	How to Use This Book
	Conventions Used in This Book
	Using Code Examples
	About the Diagrams
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	1. Basics
	1.0. Introduction
	1.1. Picking Your Beagle
	Problem
	Solution
	Discussion
	The Original BeagleBoard
	BeagleBoard-xM
	BeagleBone White
	BeagleBone Black
	BeagleBoard-X15

	1.2. Getting Started, Out of the Box
	Problem
	Solution
	Discussion

	1.3. Verifying You Have the Latest Version of the OS on Your Bone
	Problem
	Solution
	Discussion

	1.4. Running the BoneScript API Tutorials
	Problem
	Solution
	Discussion

	1.5. Wiring a Breadboard
	Problem
	Solution
	Discussion

	1.6. Editing Code Using the Cloud9 IDE
	Problem
	Solution
	Discussion

	1.7. Running JavaScript Applications from the Cloud9 IDE
	Problem
	Solution
	Discussion

	1.8. Running Applications Automatically
	Problem
	Solution
	Discussion

	1.9. Finding the Latest Version of the OS for Your Bone
	Problem
	Solution
	Discussion

	1.10. Running the Latest Version of the OS on Your Bone
	Problem
	Solution
	Windows
	Linux
	Mac

	Discussion

	1.11. Updating the OS on Your Bone
	Problem
	Solution
	Discussion

	1.12. Backing Up the Onboard Flash
	Problem
	Solution
	Discussion

	1.13. Updating the Onboard Flash
	Problem
	Solution

	2. Sensors
	2.0. Introduction
	2.1. Choosing a Method to Connect Your Sensor
	Problem
	Solution
	Discussion

	2.2. Input and Run a JavaScript Application for Talking to Sensors
	Problem
	Solution
	Discussion

	2.3. Reading the Status of a Pushbutton or Magnetic Switch (Passive On/Off Sensor)
	Problem
	Solution
	Discussion

	2.4. Reading a Position, Light, or Force Sensor (Variable Resistance Sensor)
	Problem
	Solution
	A variable resistor with three terminals
	A variable resistor with two terminals

	Discussion

	2.5. Reading a Distance Sensor (Analog or Variable Voltage Sensor)
	Problem
	Solution
	Discussion

	2.6. Reading a Distance Sensor (Variable Pulse Width Sensor)
	Problem
	Solution
	Discussion

	2.7. Accurately Reading the Position of a Motor or Dial
	Problem
	Solution
	Discussion
	See Also

	2.8. Acquiring Data by Using a Smart Sensor over a Serial Connection
	Problem
	Solution
	Discussion

	2.9. Measuring a Temperature
	Problem
	Solution
	Discussion

	2.10. Reading Temperature via a Dallas 1-Wire Device
	Problem
	Solution
	Discussion

	2.11. Sensing All Sorts of Things with SensorTag via Bluetooth v4.0
	Problem
	Solution
	Discussion

	2.12. Playing and Recording Audio
	Problem
	Solution
	Discussion

	3. Displays and Other Outputs
	3.0. Introduction
	3.1. Toggling an Onboard LED
	Problem
	Solution
	Discussion

	3.2. Toggling an External LED
	Problem
	Solution
	Discussion

	3.3. Toggling a High-Voltage External Device
	Problem
	Solution
	Discussion

	3.4. Fading an External LED
	Problem
	Solution
	Discussion

	3.5. Writing to an LED Matrix
	Problem
	Solution
	Discussion

	3.6. Driving a 5 V Device
	Problem
	Solution
	Discussion

	3.7. Writing to a NeoPixel LED String
	Problem
	Solution
	Discussion

	3.8. Using a Nokia 5510 LCD Display
	Problem
	Solution
	Discussion

	3.9. Making Your Bone Speak
	Problem
	Solution
	Discussion

	4. Motors
	4.0. Introduction
	4.1. Controlling a Servo Motor
	Problem
	Solution
	Discussion

	4.2. Controlling the Speed of a DC Motor
	Problem
	Solution
	Discussion
	See Also

	4.3. Controlling the Speed and Direction of a DC Motor
	Problem
	Solution
	Discussion

	4.4. Driving a Bipolar Stepper Motor
	Problem
	Solution
	Discussion

	4.5. Driving a Unipolar Stepper Motor
	Problem
	Solution
	Discussion

	5. Beyond the Basics
	5.0. Introduction
	5.1. Running Your Bone Standalone
	Problem
	Solution
	Discussion

	5.2. Selecting an OS for Your Development Host Computer
	Problem
	Solution
	Discussion

	5.3. Getting to the Command Shell via SSH
	Problem
	Solution
	Discussion

	5.4. Getting to the Command Shell via the Virtual Serial Port
	Problem
	Solution
	Discussion

	5.5. Viewing and Debugging the Kernel and u-boot Messages at Boot Time
	Problem
	Solution
	Discussion

	5.6. Verifying You Have the Latest Version of the OS on Your Bone from the Shell
	Problem
	Solution
	Discussion

	5.7. Controlling the Bone Remotely with VNC
	Problem
	Solution
	Discussion

	5.8. Learning Typical GNU/Linux Commands
	Problem
	Solution
	Discussion

	5.9. Editing a Text File from the GNU/Linux Command Shell
	Problem
	Solution
	Discussion

	5.10. Using a Graphical Editor
	Problem
	Solution

	5.11. Establishing an Ethernet-Based Internet Connection
	Problem
	Solution
	Discussion
	Changing passwords
	Setting your Bone’s hostname

	5.12. Establishing a WiFi-Based Internet Connection
	Problem
	Solution
	Discussion

	5.13. Sharing the Host’s Internet Connection over USB
	Problem
	Solution
	Letting your bone see the world: setting up IP masquerading
	Letting the world see your bone: setting up port forwarding

	Discussion

	5.14. Setting Up a Firewall
	Problem
	Solution
	Discussion

	5.15. Installing Additional Packages from the Debian Package Feed
	Problem
	Solution
	Discussion

	5.16. Removing Packages Installed with apt-get
	Problem
	Solution
	Discussion

	5.17. Copying Files Between the Onboard Flash and the MicroSD Card
	Problem
	Solution
	Discussion

	5.18. Freeing Space on the Onboard Flash or MicroSD Card
	Problem
	Solution
	Removing preinstalled packages
	Discovering big files

	Discussion

	5.19. Installing Additional Node.js Packages
	Problem
	Solution
	Discussion

	5.20. Using Python to Interact with the Physical World
	Problem
	Solution
	Discussion

	5.21. Using C to Interact with the Physical World
	Problem
	Solution
	Discussion

	6. Internet of Things
	6.0. Introduction
	6.1. Accessing Your Host Computer’s Files on the Bone
	Problem
	Solution
	Discussion

	6.2. Serving Web Pages from the Bone
	Problem
	Solution
	Discussion

	6.3. Interacting with the Bone via a Web Browser
	Problem
	Solution
	Discussion

	6.4. Displaying GPIO Status in a Web Browser
	Problem
	Solution
	Discussion

	6.5. Continuously Displaying the GPIO Value via jsfiddle
	Problem
	Solution
	Discussion
	See Also

	6.6. Continuously Displaying the GPIO Value
	Problem
	Solution
	Discussion

	6.7. Plotting Data
	Problem
	Solution
	Discussion
	Plotting with jsfiddle
	Plotting locally

	6.8. Sending an Email
	Problem
	Solution
	Discussion

	6.9. Sending an SMS Message
	Problem
	Solution
	Discussion

	6.10. Displaying the Current Weather Conditions
	Problem
	Solution
	Discussion

	6.11. Sending and Receiving Tweets
	Problem
	Solution
	Discussion

	6.12. Wiring the IoT with Node-RED
	Problem
	Solution
	Installing Node-RED
	Building a Node-RED Flow
	Adding an LED Toggle

	Discussion

	6.13. Serving Web Pages from the Bone by Using Apache
	Problem
	Solution
	Discussion

	6.14. Communicating over a Serial Connection to an Arduino or LaunchPad
	Problem
	Solution
	Discussion

	7. The Kernel
	7.0. Introduction
	7.1. Updating the Kernel
	Problem
	Solution
	Discussion

	7.2. Building and Installing Kernel Modules
	Problem
	Solution
	Discussion

	7.3. Controlling LEDs by Using SYSFS Entries
	Problem
	Solution
	Discussion

	7.4. Controlling GPIOs by Using SYSFS Entries
	Problem
	Solution
	Reading a GPIO Pin via sysfs
	Writing a GPIO Pin via sysfs

	Discussion

	7.5. Compiling the Kernel
	Problem
	Solution
	Downloading and Compiling the Kernel
	Installing the Kernel on the Bone

	Discussion

	7.6. Using the Installed Cross Compiler
	Problem
	Solution
	Setting Up Variables
	Discussion

	7.7. Applying Patches
	Problem
	Solution
	Discussion

	7.8. Creating Your Own Patch File
	Problem
	Solution
	Discussion

	8. Real-Time I/O
	8.0. Introduction
	8.1. I/O with BoneScript
	Problem
	Solution
	Discussion

	8.2. I/O with C and libsoc
	Problem
	Solution
	Discussion

	8.3. I/O with devmem2
	Problem
	Solution
	Discussion

	8.4. I/O with C and mmap()
	Problem
	Solution
	Discussion

	8.5. Modifying the Linux Kernel to Use Xenomai
	Problem
	Solution
	Patching the kernel
	Setting up the Bone
	Testing

	Discussion

	8.6. I/O with PRU Speak
	Problem
	Solution
	Background
	Prerequisites
	Installation
	Runing the Kernel Module
	Running the Script

	Discussion
	Running PRU Speak via Shell
	Running PRU Speak via TCP socket
	Looking Ahead

	9. Capes
	9.0. Introduction
	9.1. Using a Seven-Inch LCD Cape
	Problem
	Solution
	Discussion

	9.2. Using a 128 x 128-Pixel LCD Cape
	Problem
	Solution
	Discussion

	9.3. Connecting Multiple Capes
	Problem
	Solution
	Discussion

	9.4. Moving from a Breadboard to a Protoboard
	Problem
	Solution
	Discussion

	9.5. Creating a Prototype Schematic
	Problem
	Solution
	Discussion

	9.6. Verifying Your Cape Design
	Problem
	Solution
	Discussion

	9.7. Laying Out Your Cape PCB
	Problem
	Solution
	Discussion
	Customizing the Board Outline
	PCB Design Alternatives

	9.8. Migrating a Fritzing Schematic to Another Tool
	Problem
	Solution
	Discussion

	9.9. Producing a Prototype
	Problem
	Solution
	Discussion

	9.10. Creating Contents for Your Cape Configuration EEPROM
	Problem
	Solution
	Discussion

	9.11. Putting Your Cape Design into Production
	Problem
	Solution
	Discussion

	A. Parts and Suppliers
	Parts
	Prototyping Equipment
	Resistors
	Transistors and Diodes
	Integrated Circuits
	Opto-Electronics
	Capes
	Miscellaneous

	Index

