

Raspberry Pi: Amazing
Projects from Scratch

Explore the powers of Raspberry Pi and build your very
own projects right out of the box

A course in three modules

BIRMINGHAM - MUMBAI

Raspberry Pi: Amazing Projects from Scratch

Copyright © 2016 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy
of the information presented. However, the information contained in this course
is sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Published on: September 2016

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78712-849-1

www.packtpub.com

Credits

Authors
Ashwin Pajankar

Arush Kakkar

Matthew Poole

Richard Grimmett.

Reviewers
Nathan Johnson

Elliot Kermit-Canfild

Anna Torlen

Lihang Li

Cédric Verstraeten

Ashwin Pajankar

Werner Ziegelwanger

Content Development Editor
Sumeet Sawant

Production Coordinator
Arvindkumar Gupta

[i]

Preface
Machine learning and predictive analytics are becoming one of the key strategies for
unlocking growth in a challenging contemporary marketplace .It is one of the fastest
growing trends in modern computing and everyone wants to get into the field of
machine learning. In order to obtain sufficient recognition in this field, one must be
able to understand and design a machine learning system that serves the needs of a
project. The idea is to prepare a Learning Path that will help you to tackle the real-
world complexities of modern machine learning with innovative and cutting-edge
techniques. Also, it will give you a solid foundation in the machine learning design
process, and enable you to build customized machine learning models to solve
unique problems

What this learning path covers
Module 1, Raspberry Pi By Example, provides you an introduction to the Raspberry Pi.
It helps in building games with PyGame and creation of real-life applications with the
Raspberry Pi. It further demonstrates the GPIO and cameras with advanced concepts
in OpenCV. This module further delves with setting up a web server and creating
network utilities.

Module 2, Building a Home Security System with Raspberry Pi, lets you explore the GPIO
Port along with building input/ output expansion board which helps in overcoming
the limitations on GPIO. It helps you to create log files based on events using Bash
Scripts. This module further covers a miscellany of things for accessing home
security control panel.

Module 3, Raspberry Pi Robotics Essentials, starts with configuring and programming
Raspberry Pi, along with construction of biped platform. It further covers in-depth
planning of biped with the details of connecting webcam, hardware and software in
order to use input visual data into our system.

Preface

[ii]

What you need for this learning path
• Module 1, Raspberry Pi By Example, recommends you to use the following

kit:
Raspberry Pi Model B, B+ or 2 (Multiple boards for last two chapters)
USB hub, powered preferably
Networking hub
PC for preparing SD card
Webcam and/or Pi Camera

• Module 2, Building a Home Security System with Raspberry Pi,, will need
the following software:
Gparted dd fake-hwclock
Win32 Disk Imager 0.9.5 PuTTY
i2c-tools

• Module 3, Raspberry Pi Robotics Essentials, asks you to use Raspbian, putty,
Image Writer for Windows, libusb-1.0-0-dev and VncServer.

Who this learning path is for
Novice programmers and hobbyists who want to understand how to use Raspberry
Pi to build interesting projects and home automation systems, as well as for those
who want to delve deeper into the world of Raspberry Pi

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this course—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the course's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Preface

[iii]

Customer support
Now that you are the proud owner of a Packt course, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this course from your account at
http://www.packtpub.com. If you purchased this course elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the course in the Search box.
5. Select the course for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this course from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
course's webpage at the Packt Publishing website. This page can be accessed by
entering the course's name in the Search box. Please note that you need to be logged
in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the course is also hosted on GitHub at https://github.com/
PacktPublishing/Raspberry-Pi-Making-Amazing-Projects-Right-from-
Scratch-

Preface

[iv]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our courses—maybe a mistake in the text
or the code—we would be grateful if you could report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this course. If you find any errata, please report them by visiting http://www.
packtpub.com/submit-errata, selecting your course, clicking on the Errata
Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the course in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this course, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[i]

Course Module 1: Raspberry Pi By Example

Chapter 1: Introduction to Raspberry Pi and Python 3
Single-board computers 3
Raspberry Pi 5
Operating systems 9
Setting up the Raspberry Pi 10
Getting started with Python 21
Summary 30

Chapter 2: Minecraft Pi 31
Introduction to Minecraft Pi 31
Playing Minecraft Pi 32
Python programming for Minecraft Pi 40
Summary 46

Chapter 3: Building Games with PyGame 47
Introducing PyGame 47
Installing PyGame 48
Drawing a binary fractal tree 49
Building a snake game 53
Summary 60

Chapter 4: Working with a Webcam and Pi Camera 61
Working with webcams 61
Working with the Pi Camera and NoIR Camera modules 68
Summary 74

Table of Contents

[ii]

Chapter 5: Introduction to GPIO Programming 75
Introducing GPIO pins 76
Building an LED Blinker 78
Installing PiGlow 82
Using PiGlow 85
Building a binary clock 87
Summary 91

Chapter 6: Creating Animated Movies with Raspberry Pi 93
Introducing stop-motion animation 93
Setting up the prerequisites 94
Rendering the video 100
Summary 101

Chapter 7: Introduction to Computer Vision 103
Introducing Computer Vision 104
Introducing OpenCV 104
Setting up Pi for Computer Vision 105
Introducing NumPy 108
Working with images 111
Working with Webcam using OpenCV 116
Retrieving image properties 119
Arithmetic operations on images 120
Splitting and merging image color channels 124
Logical operations on images 126
Colorspaces and conversions 128
Tracking in real time based on color 131
Summary 132

Chapter 8: Creating Your Own Motion Detection and
Tracking System 133

Thresholding images 133
Noise 138
Morphological transformations on images 143
Motion detection and tracking 144
Summary 148

Chapter 9: Grove Sensors and the Raspberry Pi 149
Introducing the GrovePi 149
Setting up the GrovePi 151
Displaying the weather 156
Intruder detection system 159
Summary 161

Table of Contents

[iii]

Chapter 10: Internet of Things with the Raspberry Pi 163
Introducing the Internet of Things 164
Installing the Twitter API for Python 164
Setting up a SQLite database in Python 170
Building a tweeting weather station 174
Summary 180

Chapter 11: Build Your Own Supercomputer with Raspberry Pi 181
Introducing a Pi-based supercomputer 182
Installing and configuring MPICH2 and MPI4PY 182
Setting up the Raspberry Pi cluster 190
Setting up SSH access from the host to the client 193
Running code in parallel 195
Performance benchmarking of the cluster 196
Introducing N-Body simulations 196
Installing and running GalaxSee 198
Summary 201

Chapter 12: Advanced Networking with Raspberry Pi 203
Introducing DHCP 203
A few networking concepts 204
Configuring a Raspberry Pi to act as a DHCP server 206
Introducing Domain Naming System (DNS) 210
Setting up a DNS server on the Pi 211
Configuring the setup for a web server 213
Automating node discovery in a network 215
Summary 217

Chapter 13: Setting Up a Web Server on the Raspberry Pi 219
Introducing and installing Apache on Raspbian 220
Installing PHP and MySQL 222
Installing WordPress 223
Summary 231

Chapter 14: Network Programming in Python with the Pi 233
The basics of sockets 233
The difference between TCP and UDP 234
Looking back 254
A Telnet client in Python 254
A chat program 256
References 261
Exercise 262
Summary 262

Table of Contents

[iv]

Chapter 15: Newer Raspberry Pi Models 263
The Raspberry Pi Zero 263
The Raspberry Pi 3 268

Course Module 2: Building a Home Security System with
Raspberry Pi

Chapter 1: Setting Up Your Raspberry Pi 273
Which flavor of Pi? 273
Preparing the SD card 278
Setting up your Pi 284
Summary 290

Chapter 2: Connecting Things to Your Pi with GPIO 291
Prerequisites 291
Say hello to the GPIO 292
Getting acquainted with the GPIO 296
The most elaborate light switch in the world 303
Summary 305

Chapter 3: Extending Your Pi to Connect More Things 307
Prerequisites 307
The I2C bus 308
Give me power 310
Building an I2C expander 312
Using ready-made expansion boards 317
Summary 319

Chapter 4: Adding a Magnetic Contact Sensor 321
Prerequisites 321
The working of magnetic contact sensors 322
Setting up the I2C port expander 324
Connecting our magnetic contact sensor 329
Monitoring the sensor 331
Anti-tamper circuits 332
Getting into the zone 334
Summary 336

Table of Contents

[v]

Chapter 5: Adding a Passive Infrared Motion Sensor 337
Prerequisites 338
Passive infrared sensors explained 338
Give me power (again) 341
Connecting our PIR motion sensor 341
12V alarm zone circuits 343
Wireless PIR motion sensors 345
Logging detection data 350
Summary 351

Chapter 6: Adding Cameras to Our Security System 353
Prerequisites 354
The Raspberry Pi camera module 354
Be a video star 359
You have new mail 361
Night vision 364
Using USB cameras 369
The multicamera setup 371
Summary 372

Chapter 7: Building a Web-Based Control Panel 373
Installing the web server 374
Being in control 377
The master configuration file 378
Creating the web page 380
Remote access to our control panel 392
Summary 397

Chapter 8: A Miscellany of Things 399
Arming and disarming the system 399
Driving inductive loads 401
Beyond intrusion 402
Remote administration for our Raspberry Pi 407
Summary 411

Chapter 9: Putting It All Together 413
Alarm system diagram 413
Designing the control scripts 416
Building the control script 418
Automatically starting the system 430
Preserving the SD card 431
Conclusion 432
Summary 433

Table of Contents

[vi]

Course Module 3: Raspberry Pi Robotics Essentials

Chapter 1: Configuring and Programming Raspberry Pi 437
Configuring Raspberry Pi – the brain of your robot 438
Installing the operating system 440
Adding a remote graphical user interface 447
Programming on Raspberry Pi 453
Summary 461

Chapter 2: Building the Biped 463
Building robots that can walk 463
How servo motors work 463
Building the biped platform 464
Using a servo controller to control the servos 475
Communicating with the servo controller with a PC 478
Connecting the servo controller to the Raspberry Pi 480
Creating a program to control your biped 484
Summary 487

Chapter 3: Motion for the Biped 489
A basic stable pose 490
A basic walking motion 493
A basic turn for the robot 502
Summary 504

Chapter 4: Avoiding Obstacles Using Sensors 505
Connecting Raspberry Pi to an infrared sensor 505
Connecting Raspberry Pi to a USB sonar sensor 516
Summary 522

Chapter 5: Path Planning and Your Biped 523
Connecting a digital compass to the Raspberry Pi 523
Accessing the compass programmatically 526
Dynamic path planning for your robot 533
Summary 540

Chapter 6: Adding Vision to Your Biped 541
Installing a camera on your biped robot 541
Downloading and installing OpenCV – a fully featured vision library 548
Edge Detection and OpenCv 550
Color and motion finding 554
Summary 558

Table of Contents

[vii]

Chapter 7: Accessing Your Biped Remotely 559
Adding a wireless dongle and creating an access point 559
Adding a joystick remote control 563
Adding the capability to see remotely 570
Summary 571

Bibliography 573

Module 1

Raspberry Pi By Example

Start building amazing projects with the Raspberry Pi right out of the box

[3]

Introduction to Raspberry Pi
and Python

One can learn about topics in computer science in an easy way with the Raspberry
Pi and Python. The Raspberry Pi family of single-board computers uses Python
as the preferred development language. Using Raspberry Pi and Python to learn
programming and computer science-related concepts is one of the best ways to start
your journey in this amazing world of computers that is full of creative possibilities.
We will explore these possibilities in this book.

We will commence our journey in this chapter by getting ourselves familiar with the
following topics:

• Single-board computers
• Raspberry Pi
• Raspbian
• Setting up Raspberry Pi
• Basics of Python
• Turtle programming with Python

Single-board computers
A single-board computer system is a complete computer on a single circuit board.
The board includes a processor(s), RAM, input/output (I/O), and networking
ports for interfacing devices. Unlike traditional computer systems, a single-board
computer is not modular and its hardware cannot be upgraded as it is integrated on
the board itself. Single-board computers are used as low-cost computers in academia,
research, and embedded systems. The use of single-board computers in embedded
systems is quite prevalent and many individuals and organizations have developed
and released fully functional products based on single-board computers.

Introduction to Raspberry Pi and Python

[4]

The Microcomputer Trainer MMD-1 designed by John Titus in 1976 is the first true
single-board microcomputer that was based on the Intel C8080A. It was called dyna
-micro in the prototyping phase, and the production units were called MMD-1 (short
for Mini Micro Designer 1).

Popular single-board computers available in the market include but are not
limited to Raspberry Pi, Banana Pro, BeagleBone Black, and Cubieboard.
The following images are of the front view of BeagleBone Black, Banana Pro,
and Cubieboard 4, respectively:

Chapter 1

[5]

Raspberry Pi
The Raspberry Pi is a series of low-cost, palm-sized single-board computers
developed by Raspberry Pi Foundation in the UK. The intention behind the creation
of the Raspberry Pi is to promote the teaching of basic computer skills in schools,
which it serves very well. Raspberry Pi has expanded its footprint well beyond
its intended purpose by penetrating the embedded systems market and computer
science research.

This is the home page of Raspberry Pi Foundation:
http://www.raspberrypi.org.

The Raspberry Pi is manufactured with licensed agreements with Newark element14,
RS Components, Allied Electronics, and Egoman. These companies manufacture and
sell the Raspberry Pi. The hardware is the same across all manufacturers.

The following table displays the URLs of the manufacturers' websites, where you can
shop for Pi and related items online:

Manufacturer Website
Newark element14 http://www.newark.com

RS Components http://uk.rs-online.com

Egoman http://www.egoman.com.cn

Allied Electronics http://www.alliedelec.com

You can also shop for Pi and the other third-party add-ons at the following links:

• http://shop.pimoroni.com

• http://www.adafruit.com

Raspberry Pi models
The following are, at the time of writing this, the major models of Raspberry Pi:

• Model A (not in production; discontinued in favor of the production of later
and upgraded models)

• Model A+ (currently in production and available for purchase)
• Model B (available for purchase but not in production)
• Model B+ (currently in production and available for purchase)
• Raspberry Pi 2 Model B (currently in production and available for purchase)

http://www.raspberrypi.org
http://www.newark.com
http://uk.rs-online.com
http://www.egoman.com.cn
http://www.alliedelec.com
http://shop.pimoroni.com
http://www.adafruit.com

Introduction to Raspberry Pi and Python

[6]

Check out the Product page of Raspberry Pi at
http://www.raspberrypi.org/products/.

Additionally, Raspberry Pi is also available in a more flexible form factor intended
for industrial and embedded applications. It is known as Compute Module.
A Compute Module prototyping kit is also made available by the foundation.

Check out the following URLs for the Compute Module and Compute
Module development kit, respectively:
http://www.raspberrypi.org/products/compute-module/

http://www.raspberrypi.org/products/compute-module-
development-kit/

The following table compares the currently available models of Pi:

Broadcom BCM2835(CPU, GPU,
DSP, SDRAM, one USB port)

700 MHz single-core ARM1176JZF-S

Broadcom videoCore IV @ 250 MHz

Model B+

600mA
(3.5 W)

516 MB SDRAM

5V via Micro USB or GPIO Headers (Power supply through micro
USB is recommended.)

SOC (System
on a chip)

CPU

GPU

Memory
(shared with
GPU)

USB 2.0 ports

On Board
Storage

Networking

Power Source

Power Ratings

Model B

700mA
(3.5 W)

SD /
MMC /
SDIO
card slot

10/100.Mbit/s Ethernet, no Bluetooth or Wi-Fi

Model A

256 MB
SDRAM

200mA
(1 W)

None

MicroSD
slot

1 2

Pi 2 Model B

900 MHz quad-core ARM
Cortex-A7

Broadcom.BCM2836 (CPU,
GPU, DSP, SDRAM, one
USB port)

800mA
(4 W)

1 GB SDRAM

MicroSD slot

4

http://www.raspberrypi.org/products/
http://www.raspberrypi.org/products/compute-module/
http://www.raspberrypi.org/products/compute-module-development-kit/
http://www.raspberrypi.org/products/compute-module-development-kit/

Chapter 1

[7]

The following image shows the top view of the Raspberry Pi Model B front:

The following image shows the top view of the flip side of Raspberry Pi Model B:

Introduction to Raspberry Pi and Python

[8]

The following image shows the top view of the Raspberry Pi Model B+ front:

The following image shows the top view of the flip side of Raspberry Pi Model B+:

Chapter 1

[9]

The following image shows the top view of the Raspberry Pi 2 Model B front. The
location of the connectors and important ICs (integrated circuits) on the board is not
different from Pi B+:

We will be using Raspberry Pi 2 Model B throughout this book. However, all the
applications and programs in this book will work on all the models of Pi.

Operating systems
The Raspberry Pi primarily uses Unix-like Linux-kernel-based operating systems,
such as variants of Debian and Fedora.

Raspberry Pi Models A, A+, B, and B+ are based on the ARM11 family chip, which
runs on the ARMv6 instruction set. The ARMv6 instruction set does not support
Ubuntu and Windows.

Introduction to Raspberry Pi and Python

[10]

However, the recently launched Raspberry Pi 2 is based on ARM Cortex A7, which is
capable of running Windows 10 and Ubuntu (Snappy Core). The following operating
systems are officially supported by all the models of Raspberry Pi and are available
for download at the download page:

• Raspbian: We will be using this with Raspberry Pi throughout the book
• OpenELEC
• Pidora (Fedora Remix)
• RASPBMC
• RISC OS

Windows 10 and Ubuntu are only supported by the recently launched Pi 2.

Raspbian
Raspbian is an unofficial variant of Debian armhf (ARM Hard Float) compiled for
hard float code that will run on Raspberry Pi computers. It is a free operating system
based on Debian optimized for the Raspberry Pi hardware.

To know more about Raspbian, visit http://www.raspbian.org/.

Setting up the Raspberry Pi
We need the following hardware to set up a Pi.

• Raspberry Pi 2 Model B (hereafter, this will be referred only as Pi).
• Power Supply: A micro USB power supply.

http://www.raspbian.org/

Chapter 1

[11]

Considering that we are going for slightly power-intensive usage of our Pi
(such as connecting Pi Camera, webcam, and third-party sensors for Pi), a
5V 2A power supply is recommended. The micro USB pin is shown in the
following image:

You can find a similar one online at
http://www.adafruit.com/product/1995.

• A standard USB keyboard
• A MicroSD card and a MicroSD to SD card converter

We need a minimum 4 GB Micro SD card.

• A USB mouse
• A monitor

You can use either an HDMI monitor or a standard VGA monitor.

http://www.adafruit.com/product/1995

Introduction to Raspberry Pi and Python

[12]

• A monitor connection cable and converter
If you are using HDMI monitor, then an HDMI cable will be sufficient. If you
are using a VGA monitor, then you need to use an HDMI to VGA converter
with a VGA cable. Some special changes need to be made to the /boot/
config.txt file if you're using a VGA monitor, which will be explained in
the next section.

You can find a similar one online at
https://www.adafruit.com/products/1151.

• A Windows, Linux, or Mac OS computer with a MicroSD card reader and an
Internet connection

Preparing MicroSD card manually
This is the original way to install an OS into a MicroSD card, and many users,
including me, still prefer it. It allows the SD card to be prepared manually before
it is used and it allows easier access to configuration files such as /boot/config.
txt, which we might have to modify in a few cases before booting up. The default
Raspbian image consists of only two partitions, BOOT and SYSTEM, which will fit into
a 2 GB card. However, I recommend that you use a minimum 4 GB card to be on
safe side. Choosing an 8 GB card will be adequate for most of the applications we
are going to develop in this book.

https://www.adafruit.com/products/1151

Chapter 1

[13]

The following are the instructions for Windows users:

1. Download the Win32DiskImager installer, which is available at http://
sourceforge.net/projects/win32diskimager/files/latest/download
and then install it.

2. Download the installable version of WinZip, which is available at
http://www.winzip.com/prod_down.html, and install it.

3. Go to http://www.raspberrypi.org/downloads and download the latest
image of Raspbian. It will be a compressed file in the ZIP format and will
need to be extracted.

4. Extract the ZIP file using WinZip. The extracted file will be in the
.img format.

5. Insert the microSD card into the card reader and plug the card reader into the
computer. Many computers nowadays have an inbuilt SD card reader. In this
case, you will need to insert the microSD card into the microSD to SD card
converter and insert it into the computer's inbuilt SD card reader. MicroSD
to SD card converters usually come bundled with microSD cards in the same
package. If that's not the case, then you will have to procure it separately.

6. Run Win32DiskImager.exe and write the image onto the SD card:

http://sourceforge.net/projects/win32diskimager/files/latest/download
http://sourceforge.net/projects/win32diskimager/files/latest/download
http://www.winzip.com/prod_down.html
http://www.raspberrypi.org/downloads

Introduction to Raspberry Pi and Python

[14]

You might receive the following message if the card reader's write protection
is on:

7. Toggle the write protection notch and try again. You will see the
following message:

8. Click on Yes and it will start writing the image file to the microSD card:

Chapter 1

[15]

9. Once the image is successfully written, it will display the following message:

If you are using Linux, then you can find the instructions at
https://www.raspberrypi.org/documentation/
installation/installing-images/linux.md.
If you are using Mac OS, then you can find the instructions
at https://www.raspberrypi.org/documentation/
installation/installing-images/mac.md.

If you have an HDMI monitor, then skip this step. This additional step is required
only if you are planning to use a VGA monitor in place of an HDMI monitor.

Browse the microSD card on the computer. Locate and open config.txt. We have
to edit the file in order to enable proper display on the VGA monitor.

By default, the commented options (which have # at the beginning) are disabled. We
are enabling this option by uncommenting this line, that is, by removing # from the
beginning of the commented line. This is what you need to do:

1. Change #disable_overscan=1 to disable_overscan=1.
2. Change #hdmi_force_hotplug=1 to hdmi_force_hotplug=1.
3. Change #hdmi_group=1 to hdmi_group=2.
4. Change #hdmi_mode=1 to hdmi_mode=16.
5. Change #hdmi_drive=2 to hdmi_drive=2.
6. Change #config_hdmi_boost=4 to config_hdmi_boost=4.
7. Save the file.

https://www.raspberrypi.org/documentation/installation/installing-images/linux.md
https://www.raspberrypi.org/documentation/installation/installing-images/linux.md
https://www.raspberrypi.org/documentation/installation/installing-images/mac.md
https://www.raspberrypi.org/documentation/installation/installing-images/mac.md

Introduction to Raspberry Pi and Python

[16]

Booting up our Pi for the first time
Let's boot up our Pi for the first time with the microSD card:

1. Insert the microSD card into the microSD card slot of the Pi.
2. Connect the Pi to the HDMI monitor. If you are connecting the VGA monitor,

connect it using the HDMI to VGA converter.
3. Connect the USB mouse and the USB keyboard.
4. Connect the Pi to a power supply using the micro USB power cable.

Make sure the power is switched off at this point.
5. Check all the connections once and then switch on the power supply

of the Pi.

At this stage, our Pi will start booting up. You will see a green light on the Pi board
blinking. This means that it's working! Now, there are few more things we need to
do before we can really start using our Pi. Once it boots up, it will show the desktop
as follows:

Chapter 1

[17]

Once the desktop is visible, go to Menu | Accessories | lxterminal. Then, type sudo
raspi-config. A text-based menu, such as the following, will appear:

Introduction to Raspberry Pi and Python

[18]

Perform the following steps. We need to use arrow keys and the Enter key to select
options in the text-based menu. Press Enter to select a menu item. Also, we can use
the Tab key to directly go to the Select and Finish buttons:

1. Select Expand Filesystem.
2. In Boot Options, select B4 Desktop Autologin, as shown in the

following screenshot:

The default username is pi and the password is raspberry.
We need it when we don't choose any of the preceding autologin
options. We can change this password from the second option in
the raspi-config menu.
We can also choose to boot to the console by selecting any of
the first two options in the preceding menu. The default shell
of Raspbian is Bash. We can confirm it by typing the following
command:
echo $SHELL

We can always go to the graphical desktop from the Command
Prompt by typing the startx command in the console.

3. Go to Internationalisation Options | Change Timezone.
4. Go to Internationalisation Options | Change Keyboard Layout | Change it

to US (the default is UK).

Chapter 1

[19]

5. Select Enable Camera.
6. Select Advanced Options.
7. Under this option, select Memory Split and enter 64MB for GPU.

This option decides how much RAM is used by the GPU (Graphics Processor Unit).
The more RAM is allocated to the GPU, the more intensive graphics processing can
be done. 64 MB is a good value for most graphics purposes.

Once all these options are modified, select Finish. This will prompt for a reboot of
the Pi. Choose Yes and let it reboot. Once rebooted, it will automatically take us to
the Raspbian Desktop again.

You can always invoke the raspi-config tool from Command Prompt with the
following command and change the settings:

sudo raspi-config

Shutting down and rebooting Pi safely
In the Raspbian menu, there are options to shut down and reboot the Pi.

If we click on the following Menu button on the desktop, it will display
multiple options:

Introduction to Raspberry Pi and Python

[20]

The following image shows the last option:

If we click on the preceding option, the following window will appear:

Also, from Command Prompt LXTerminal, we can shut down Pi safely by issuing
the following command:

sudo shutdown –h now

An alternative command for this is as follows:

sudo halt

You can reboot Pi with the following command:

sudo reboot

Updating the Pi
Now we have a working Pi running on the Raspbian OS. Let's update our Pi. Make
sure you have a working wired or wireless Internet connection with reasonable
speed for this activity:

1. Connect your Pi to an Internet modem or router with an Ethernet cable or
plug in the Wi-Fi dongle to one of the USB ports.

2. Run the following command to restart the networking service:
sudo service networking restart

Chapter 1

[21]

3. Make sure that your Raspberry Pi is connected to the Internet by typing the
following command:
ping –c4 www.google.com

4. apt (Advanced Package Tool) is the utility used to install and remove
software in Debian and its variants. We need to use it to update our
Pi software.

5. Run the following commands in a sequence:

 ° sudo apt-get update: This command synchronizes the package
list from the source. Indexes of all the packages are refreshed. This
command must be issued before we issue the upgrade command.

 ° sudo apt-get upgrade: This command will install the newest
versions of all the already installed software. Any obsolete packages/
utilities are not removed automatically. If any software is in its
newest version, then it's left as it is.

 ° sudo rpi-update: This command is used to upgrade the firmware.
The kernel and firmware are installed as a Debian package, and so
they will also get updates. These packages are updated infrequently
after extensive testing.

 ° sudo reboot: This will reboot the computer.

Getting started with Python
Python is a high-level general-purpose programming language. It supports multiple
programming paradigms, such as object-oriented programming, imperative
programming, functional programming, procedural programming, aspect-oriented
programming, and metaprogramming. It has a dynamic type system, automatic
memory management, and a large standard library to carry out various tasks. It
emphasizes code readability, and its syntax allows you to carry out tasks in fewer
lines of code than other programming languages, such as C or C++.

Python was conceived and implemented by Guido van Rossum at CWI in the
Netherlands as a successor to the ABC language, capable of exception handling and
interfacing with the Amoeba operating system platform. Van Rossum is Python's
principal author, and he continues to have the central role in deciding the direction
of Python. He has been endowed with the title benevolent dictator for life (BDFL)
by the worldwide Python community.

Introduction to Raspberry Pi and Python

[22]

The core philosophy of the Python programming language is mentioned in this URL:
https://www.python.org/dev/peps/pep-0020/; its first few lines are as follows:

"Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts."

Python is the preferred programming language for the Raspberry Pi family of
computers. Its interpreter comes preinstalled with Raspbian, and there is no need for
any additional installation to get started with code. It is recommended that you have
chapter wise directories for the code examples presented in this book, as shown in
the following diagram:

Let's get started with Python. Open Raspbian's Command Prompt LXTerminal. It
is located as a shortcut on the taskbar. Alternately, we can find it by navigating to
Menu | Accessories | Terminal. We can start Python in interactive mode by typing
python in the prompt and then pressing the Enter key. It will take us to the Python
interactive shell, as follows:

https://www.python.org/dev/peps/pep-0020/

Chapter 1

[23]

Now type the following lines and press Enter:

print "Hello World!"

The output will be as follows:

Python 2.7.3 (default, Mar 18 2014, 05:13:23)

[GCC 4.6.3] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> print "Hello World!"

Hello World!

Congrats! We have started with Python programming. The interactive mode of
Python is suitable for small programs. Press Ctrl + D to exit the interactive shell.
For large and code-intensive projects, it's recommended that you use Python in
script mode. In this book, we will be using Python in script mode unless specified
explicitly. Let's look at how to use Python in script mode.

Introduction to Raspberry Pi and Python

[24]

Create a subdirectory, book, in the /home/pi directory for the code examples in
this book. We can do this with mkdir book (by default, we are be in the /home/
pi directory). Then, navigate to this recently created directory with the cd book
command. We can verify our current directory with the pwd command. It returns
the current directory as follows:

pi@raspberrypi ~ $ mkdir book

pi@raspberrypi ~ $ cd book

pi@raspberrypi ~/book $ pwd

/home/pi/book

pi@raspberrypi ~/book $

As discussed earlier, we need to keep the code of each chapter in separate directories
for better organization. Now, create the chapter01 directory for this chapter in
the current book directory using mkdir chapter01. Navigate to this with cd
chapter01. At the beginning of each chapter, we are required to create a directory
for the chapter under /home/pi/book for the code examples of that chapter.

We will now create a script file for our code and run it.

Use the Nano text editor to create and edit script files. If we type nano prog1.py,
then Nano will open prog1.py for editing if it already exists in the current directory;
otherwise, it will create a new file with the name prog1.py. You can exit the Nano
editor by pressing Ctrl + X.

You can find more information about nano at
http://www.nano-editor.org/.

Alternatively, you can use the Leafpad text editor. We can find it by navigating to
Menu | Accessories. Or, we can invoke it from Command Prompt with the leafpad
prog1.py command.

Finally, you can also use vim, but you will need to install it by running the
following command:

sudo apt-get install vim

This is the link for an interactive tutorial on vim:
http://www.openvim.com/.

http://www.nano-editor.org/
http://www.openvim.com/

Chapter 1

[25]

Let's write the same Python code and run it as a script. Write the following code with
Nano, Leafpad, or vim, and save it as prog1.py:

print "Hello World!"

To run the preceding program, use the python prog1.py command, and the output
will be as follows.

We will run all the other Python programs in this book in the same way.

Let's try some more examples to have more hands-on Python.

The following is the iterative program to calculate the factorial of a given
positive integer:

def fact(n):
 num = 1
 while n >= 1:
 num = num * n
 n = n - 1
 return num

print (fact(10))

In the preceding program, def fact(n) is a user-defined function that accepts an
argument. The logic used to calculate the factorial of a positive integer follows the
definition and the function returns a calculated factorial. The last line of the program
calls the factorial function and prints the returned output as follows:

pi@raspberrypi ~/book/chapter01 $ python prog2.py

3628800

The following is an iterative program for the Fibonacci series:

def fib(n):
 a=0
 b=1
 for i in range(n):
 temp=a
 a=b
 b=temp+b
 return a

for i in range (0,10):
 print (fib(i))

Introduction to Raspberry Pi and Python

[26]

The preceding program prints the first 10 numbers in the Fibonacci series.
A more "Pythonic" way of writing the same program, which eliminates the
use of a temporary variable, is as follows:

def fib(n):
 a,b = 0,1
 for i in range(n):
 a,b = b,a+b
 return a

for i in range(0,10):
 print (fib(i))

The output of both of the preceding programs is the same and is as follows:

pi@raspberrypi ~/book/chapter01 $ python prog4.py

0

1

1

2

3

5

8

13

21

34

Turtle programming with Python
Turtle graphics is one of the best ways to learn programming for beginners.
Originally, it was part of the Logo programming language, which was primarily
used to introduce programming in schools. Python has the turtle module, which is
an implementation of the same functionality provided by the original turtle. We can
write programs with this module in a procedural as well as object-oriented way.

In Python, when we need to access a module that is not part of the current code, we
need to import it. Over the course of the book, we will be importing various modules
as and when needed, which will provide us with specific functionalities.

Let's get started with importing the turtle module, as shown here:

import turtle

Chapter 1

[27]

The following code creates objects for turtle and the screen classes, respectively:

t=turtle.Turtle()
disp=turtle.Screen()

We will use the t.color() function with which we can set the pen and fill color,
as follows:

t.color("black","yellow")

We will call the t.begin_fill() and t.end_fill() functions to have our shape
filled with a fill color:

t.begin_fill()
t.end_fill()

The code to draw an actual shape we need will be in between these two function
calls, as follows:

t.begin_fill()
while 1:
 t.forward(100)
 t.left(190)
 if abs(t.pos())<1:
 break
t.end_fill()
disp.exitonclick()

In the preceding code, t.forward() is used to move the turtle forward a specified
distance, and t.left() is used to rotate the turtle left by 190 degrees. t.pos()
returns the current coordinates of the turtle.

Finally, we use disp.exitonclick() to close the current output window when we
click on the exit button.

At the start, the turtle cursor is at (0,0) and is pointed toward the positive
direction of the x axis (facing right).

Introduction to Raspberry Pi and Python

[28]

The output of the program will be a cursor drawing the desired shape progressively,
and it helps the programmer understand how the program is actually working.
The final output of the preceding program is as follows:

Detailed documentation for the turtle API can be found at
https://docs.python.org/2/library/turtle.html.

Next, we will learn the concept of recursion. In terms of programming, recursion
means calling the same block of code within itself. For a procedural and modular
style of programming, this stands for calling a function or method within itself.
Usually, this is done to break a big problem into similar problems with smaller input
sizes and then collect the output of all these smaller problems to derive the output of
the big problem. One of the best ways to see recursion at work is to visualize it using
a turtle. We will now write a program to draw a fractal tree using recursion.

https://docs.python.org/2/library/turtle.html

Chapter 1

[29]

First, we start by importing the required libraries, as follows:

import turtle
import random

We need the random library for the randint() function, which returns a random
integer in the provided range. This is needed to make our generated tree seem
different every time. Then, we will define a function to draw a part of the
tree recursively:

def fractal_tree(b_len,t):
 if b_len > 5:
 temp=random.randint(1, b_len)
 temp_angle = random.randint(1, 25)
 t.forward(temp)
 t.right(temp_angle)
 fractal_tree(b_len-10,t)
 t.left(2 * temp_angle)
 fractal_tree(b_len-10,t)
 t.right(temp_angle)
 t.backward(temp)

In the preceding program, we are calling the same function twice in order to draw
the further branches of the tree. If the b_len parameter is less than or equal to
5, then it will be a leaf (which means that the function will not be called again);
else, the recursion will continue. We are randomizing the angle and length of the
movement of the turtle while drawing the branches here; otherwise, the tree will be
symmetrical, which is very unlikely in real life. The combination of t.forward(),
t.backward(), t.left(), and t.right() ensures that at the end of each function
call, the turtle cursor is at the same position as where it started.

Finally, we write the routine to call this recursive function:

t=turtle.Turtle()
disp=turtle.Screen()
t.left(90)
t.up()
t.backward(100)
t.down()
t.color("green")
fractal_tree(120,t)
disp.exitonclick()

Introduction to Raspberry Pi and Python

[30]

The cursor does not draw the movements between the t.up() and t.down()
function calls. In the preceding code, we are moving the cursor downward by 100
positions so that the tree should fit in the turtle graphics window. When we call
fractal_tree() with 120 as the argument, it takes more than 30 minutes due to
the high degree of recursion. The output of the preceding program is as follows:

Summary
In this chapter, we learned about the background of Raspberry Pi and Python.
We understood the details of the different models of Pi. We learned how to set up
the Raspberry Pi for programming. We also performed some hands-on Python
programs. Then, we learned some graphics programming with the turtle library.
This got us started with the Pi and the Python programming language, which we
will be using throughout the rest of the book.

In the next chapter, we will learn how to play and program minecraft-pi.

[31]

Minecraft Pi
In the previous chapter, we learned how to set up the Pi and looked at Python and
turtle modules briefly. In this chapter, we are going to explore the Pi version of a
popular computer game, Minecraft. We will also learn how to program Minecraft
with Python as the programming interface and use it to script user actions and build
wonderful things.

We will cover the following topics in this chapter:

• Introducing Minecraft Pi
• Playing Minecraft Pi
• Programming Minecraft Pi with Python

Introduction to Minecraft Pi
Minecraft is a very popular open world game. Like all other open world games,
the player can freely explore the virtual world in a Minecraft Pi game. Minecraft
was created by Markus Persson, and the game was later developed and published
by the company Mojang, which is a Microsoft Game Studios subsidiary now. Jens
Bergensten is the current lead designer and lead developer for the game. The alpha
version of the game was released for PCs in 2009, and the complete version was
released in 2011. The game is available for various platforms, which include PCs,
Linux, Mac OS, iOS, Android, PlayStation, Xbox, and Raspberry Pi.

You can get more information on Minecraft at
https://minecraft.net/.

https://minecraft.net/

Minecraft Pi

[32]

The version of this game for the Raspberry Pi is known as Minecraft Pi, and it was
released in 2013. It was developed by Aron Nieminen and Daniel Frisk. Minecraft
Pi focuses on the creative and building aspect of the game and does not include
gathering resources and combat.

Playing Minecraft Pi
Minecraft Pi comes preinstalled in the latest version of Raspbian. So, there is no
need for an additional installation. Minecraft Pi can be found by navigating to
Menu | Games. Alternatively, we can start it by typing minecraft-pi in
lxterminal. The following screen will appear once we start the game:

Chapter 2

[33]

Click on the Start Game button. Then, the following window will appear:

Click on Create New and it will start generating a new world for the gameplay:

Minecraft Pi

[34]

Once the new world for the gameplay is generated, the player character is placed in
the virtual world. The default view in the game is the first-person view. It will look
as follows:

In Minecraft Pi, a new world is randomly generated in a procedural
manner. This means that the world is randomly created with the
algorithm rather than using predetermined components. So, no two
worlds in Minecraft Pi will be the same. You can learn more about
procedural generation from https://en.wikipedia.org/wiki/
Procedural_generation.

We can switch from the first-person view to the third-person view by pressing the
Esc key or by clicking on the following button for a view change:

https://en.wikipedia.org/wiki/Procedural_generation
https://en.wikipedia.org/wiki/Procedural_generation

Chapter 2

[35]

Once this button is clicked on, it will change to the following button:

At this point, once we return to the game by pressing the Esc key or clicking on the
Back to game button, we will see our Minecraft Pi character in the third person,
as follows:

We can change this view to the first person view again by following the preceding
steps.

Minecraft Pi

[36]

Movement control in Minecraft Pi
We can use a mouse to look around and also make use of the following keys for
the movement:

Key Action
W Forward
S Backward
A Left
D Right
Spacebar Jump
Double spacebar Fly or fall

Like most first/third-person games, movement is controlled by WSAD keys on the
keyboard. The character jumps if spacebar is pressed once. If we hit spacebar twice,
the character is lifted in the air, as shown in the following screenshot:

Chapter 2

[37]

At this point, WSAD keys can be used to fly in the air. We can increase the altitude
by pressing spacebar while flying. The following screenshot shows the game world
view from a higher altitude:

If spacebar is pressed twice while flying, then the character will fall on the ground.
While the character is falling, if we press spacebar twice, it will stop falling.

Action control in Minecraft Pi
By default, the player character starts with a sword in hand. If we right-click with the
sword in hand, it will remove the block in front of the character.

There is a quick draw panel at the bottom of the screen, as follows:

Minecraft Pi

[38]

Any item can be selected by scrolling the mouse wheel or using the numbers on the
keyboard. The quick draw panel always hold eight items, and the current item in the
hand is highlighted as follows:

More items can be accessed by pressing the E key. This will open the inventory,
as follows:

Chapter 2

[39]

Items in the inventory can be navigated by WSAD keys. While the inventory is open,
if the Esc key is pressed, it will cancel the inventory without choosing an item. Items
in the inventory can be chosen by clicking on the item, and the item will be added to
the quick draw panel as well as the character's hand, as follows:

With a block in the character's hand, right-clicking will place the block in front of
the character and left-clicking will remove it. The number of blocks available to the
player character is infinite.

Minecraft Pi features a creative mode, so the character does not take environmental
damage (for example, when the character falls, it does not die) and is not affected by
hunger. This game mode helps players focus on building and creating large projects.

Unlike other editions of Minecraft, Minecraft Pi does not feature any other
gameplay modes.

Minecraft Pi

[40]

Other controls in Minecraft Pi
When a game is running, pressing the Tab key will take the focus away from the
game, and the mouse cursor will be freed to enable interaction with other windows
on the desktop. Pressing Esc will pause the game and will take us to the game menu,
where we can toggle views (as seen earlier), enable/disable sound, and quit the
main window.

Now, with all this information on the movements and the actions in
the Minecraft Pi virtual game world, try to create a few things before
continuing with the remainder of this chapter.

Python programming for Minecraft Pi
Minecraft Pi comes with the Python programming interface. This means that it's
possible to script the action of a character in the game using Python. In this section,
we will learn how to use Python programming to script the character actions as well
as create amazing effects in the Minecraft world.

Start Minecraft Pi and create the world. Once it's done, while the game is running,
free the mouse by pressing the Tab key and opening lxterminal. Create the /home/
pi/book/chapter02 directory. Navigate to the directory and write the following
code in the prog1.py file:

import mcpi.minecraft as minecraft

mc = minecraft.Minecraft.create()

mc.postToChat("Hello Minecraft World!")

The preceding program first imports the Minecraft Pi Python API. The second
statement creates the connection to Minecraft, and the third statement posts the
message to the game chat.

Chapter 2

[41]

Run the preceding code; the following is its output:

Let's take a look at some of the most important functions of the Minecraft Pi
Python API.

We can see the player's current coordinates in the game window in the top-left
corner of the window. We can retrieve these coordinates with getPos(). The
following is the code to retrieve the player character's current coordinates and
print them:

import mcpi.minecraft as minecraft
mc = minecraft.Minecraft.create()
cur_pos = mc.player.getPos()
print cur_pos.x ; print cur_pos.y ; print cur_pos.z

This will print the current coordinates to the screen. Alternatively, the following
syntax can be used to achieve this:

import mcpi.minecraft as minecraft
mc = minecraft.Minecraft.create()
cur_x , cur_y , cur_z = mc.player.getPos()
print cur_x ; print cur_y ; print cur_z

Minecraft Pi

[42]

The setPos() function can be used to set the character's position. We need to pass
the desired coordinates of the character to this function, as follows:

import mcpi.minecraft as minecraft
mc = minecraft.Minecraft.create()
cur_x , cur_y , cur_z = mc.player.getPos()
mc.player.setPos(cur_x+10, cur_y, cur_z)

The preceding code will displace the character by 10 blocks in the x axis.

The following code will set the character position 100 blocks higher than the current
position, and as a result, the character will start falling:

mc.player.setPos(cur_x, cur_y + 100 , cur_z)

We can place the blocks of our choice with the setBlock() function. We need to
pass the coordinates of the block (the first three arguments) and the type of the block
(the fourth argument) we need to set to this function as follows:

import mcpi.minecraft as minecraft
import mcpi.block as block
mc = minecraft.Minecraft.create()
cur_x , cur_y , cur_z = mc.player.getPos()
mc.setBlock(cur_x + 1 , cur_y , cur_z , block.ICE.id)

You will find an ice block placed in front of you. If you do not find the block, then try
to look around; it will be just beside or behind you.

Some blocks (such as wool and wood) have additional properties. We can pass
this additional property as the fifth argument to the function for the wool and
wood block types. The following code creates a column of a wool block with all
the possible colors:

import mcpi.minecraft as minecraft
import mcpi.block as block
mc = minecraft.Minecraft.create()
cur_x , cur_y , cur_z = mc.player.getPos()

for i in range (0 , 15):
 mc.setBlock(cur_x + 1 , cur_y + i , cur_z , block.WOOL.id, i)

Run the preceding code and check the output for yourself.

Chapter 2

[43]

We can use setBlocks() to place multiple blocks for a given volume. The following
example places multiple gold blocks:

import mcpi.minecraft as minecraft
import mcpi.block as block
mc = minecraft.Minecraft.create()
cur_x , cur_y , cur_z = mc.player.getPos()

mc.setBlocks(cur_x + 1 , cur_y + 1 , cur_z + 1 , cur_x + 6 ,
cur_y + 6 , cur_z + 6 , block.GOLD_BLOCK.id)

We can also use mathematical equations to draw geometric shapes in the game
world. Now we know that setBlock() is used to place a single block. We can use
this function in a single for loop to create a line of blocks. Calling this function in a
double for loop will set a two-dimensional geometric shape. We can further extend
this by introducing one more for loop. This will create a three-dimensional shape.
The following code places a golden sphere near the player's position. We will place
the gold block in the positions where the coordinates satisfy the equation of the
sphere with a radius of 10 blocks:

import mcpi.minecraft as minecraft
import mcpi.block as block

mc = minecraft.Minecraft.create()

r = 10

cur_x , cur_y , cur_z = mc.player.getPos()

for x in range(r*-1,r):
 for y in range(r*-1, r):
 for z in range(r*-1,r):
 if x**2 + y**2 + z**2 < r**2:
 mc.setBlock(cur_x + x, cur_y + (y + 20) , cur_z - (
 z + 20) , block.GOLD_BLOCK)

Minecraft Pi

[44]

The following is the output of the preceding program:

The following code places a gold block below the player's current position until the
execution of the code is terminated by pressing Ctrl + C:

import mcpi.minecraft as minecraft
import mcpi.block as block
import time

mc = minecraft.Minecraft.create()

while 1:
 cur_x, cur_y , cur_z = mc.player.getPos()
 mc.setBlock(cur_x,cur_y-1,cur_z,block.GOLD_BLOCK.id)
 time.sleep(0.1)

Chapter 2

[45]

The following is the output of the preceding code:

Now, we will conclude the chapter with some explosions. We can place a TNT block
near us. It can be activated by left-clicking while holding the sword in hand. It will
explode in a few seconds. The explosion will destroy some blocks in the blast radius:

cur_x, cur_y , cur_z = mc.player.getPos()
mc.setBlocks(cur_x+1,cur_y,cur_z, block.TNT.id,1)
This can be made more spectacular by placing multiple TNT blocks,
as follows:
import mcpi.minecraft as minecraft
import mcpi.block as block

mc = minecraft.Minecraft.create()

cur_x, cur_y , cur_z = mc.player.getPos()
mc.setBlocks(cur_x+1,cur_y,cur_z,cur_x+4,cur_y+3,
cur_z+3,block.TNT.id,1)

Minecraft Pi

[46]

Once blocks are placed, activate the TNT block by the sword. The following is
the screenshot of an explosion after activating the TNT blocks placed by the
preceding code:

The detailed Minecraft Pi Python API can be found at http://www.
stuffaboutcode.com/p/minecraft-api-reference.html.

Summary
In this chapter, we got ourselves familiarized with the Minecraft Pi gameplay and
learned how to program it using the Python API. We learned how to place and
remove a block. Also, we implemented the code required to create some wonderful
geometric shapes. In the end, we learned how to activate and explode TNT blocks to
blow the large areas in the in-game world.

In the next chapter, we will learn how to use the Pygame library in order to create a
game for the Pi.

http://www.stuffaboutcode.com/p/minecraft-api-reference.html
http://www.stuffaboutcode.com/p/minecraft-api-reference.html

[47]

Building Games
with PyGame

In the previous chapter, we learned how to get started with Minecraft on Raspberry
Pi and how to play it and use Python to manipulate things. Continuing with the
same theme, we will now take a look at a gaming library in Python called PyGame
and also learn how to create simple games with it. In this chapter, we will go through
the following topics:

• Introducing PyGame
• Drawing a fractal tree
• Building a simple snake game

Introducing PyGame
PyGame is a set of Python modules designed for the writing of video games. It is
built on top of the existing Simple DirectMedia (SDL) library, and it works with
multiple backends, such as OpenGL, DirectX, X11, and so on. It was built with the
intention of making game programming easier and faster without getting into the
low-level C code that was traditionally used to achieve good real-time performance.
It is also very flexible and comes with many operating systems. It is very fast as it can
use multiple core CPUs very easily and also use optimized C and assembly code for
core functions.

Building Games with PyGame

[48]

PyGame was built to replace PySDL after its development was discontinued.
Originally written by Pete Shinners, it is a community project from 2004 and is
released under the open source free software GNU's lesser general public license.
Since it is very simple to use and is open source, it has a lot of members in the
international community and so it enjoys access to a lot of resources that other
libraries may lack. There are many tutorials that can build different games with
PyGame. It contains the following modules

Module The description
cdrom Manages CD-ROM devices and audio playback
cursors Loads cursor images and includes standard cursors
display Controls the display window or screen
draw Draws simple shapes onto a surface
event Manages events and the event queue
font Creates and renders Truetype fonts
image Saves and loads images
joystick Manages joystick devices
key Manages the keyboard
mouse Manages the mouse
movie Used for the playback of MPEG movies
sndarray Manipulates sounds with Numeric
surfarray Manipulates images with Numeric
time Controls timing
transform Scales, rotates, and flips images

For more information on the PyGame library, you can visit
www.pygame.org.

Installing PyGame
PyGame usually comes installed with the latest Raspbian distribution, but if it isn't
you can use the following command to install it:

sudo apt-get install python-pygame

www.pygame.org

Chapter 3

[49]

Test your installation by opening a Python terminal by entering python in a regular
terminal and pressing Enter. Now, execute the following command:

import pygame

Now that you have your system set up and you have hopefully checked out the
PyGame website to explore its complete functionalities, we will move on to build
the binary fractal tree to introduce you to the workings of PyGame. Let's begin!

Drawing a binary fractal tree
A binary fractal tree is defined recursively by binary branching. Typically, it consists
of a trunk of length 1, which splits into two branches of decreasing or equal length,
each of which makes an angle Q with the direction of the trunk. Furthermore, both
of these branches are divided into two branches, each making an angle Q with the
direction of its parent branch, and so on. Continuing in this way, we can infinitely
make branches, and the collective diagram is called a fractal tree. The following
diagram visually shows what such a fractal tree might look like:

Building Games with PyGame

[50]

Now, let's move on to the code and take a look at how such a fractal tree can
be constructed with PyGame. Following this paragraph is the complete code,
and we will go through it statement by statement in further paragraphs:

import pygame
import math
import random
import time

width = 800
height = 600

pygame.init()
window = pygame.display.set_mode((width, height))
pygame.display.set_caption("Fractal Tree")
screen = pygame.display.get_surface()

def Fractal_Tree(x1, y1, theta, depth):
 if depth:
 rand_length=random.randint(1,10)
 rand_angle=random.randint(10,20)
 x2 = x1 + int(math.cos(math.radians(theta)) * depth * rand_
length)
 y2 = y1 + int(math.sin(math.radians(theta)) * depth * rand_length)
 if (depth < 5):
 clr = (0 , 255 , 0)
 else:
 clr = (255, 255 , 255)
 pygame.draw.line(screen, clr , (x1, y1), (x2, y2), 2)
 Fractal_Tree(x2, y2, theta - rand_angle, depth - 1)
 Fractal_Tree(x2, y2, theta + rand_angle, depth - 1)

Fractal_Tree((width/2), (height-10) , -90, 12)
pygame.display.flip()

while True:
 for event in pygame.event.get():
 if event.type == pygame.QUIT or event.type ==
 pygame.KEYDOWN:
 pygame.quit()
 exit(0)

Chapter 3

[51]

Save the preceding code as prog1.py and then run the following:

 python prog1.py

You will now get the following output:

If you increase the depth by 2 with a slight increase in the canvas area, the fractal tree
now looks like this:

Building Games with PyGame

[52]

The new tree looks considerably denser and more branched out than the original tree.

Now, since you know what the output looks like, let's grab our magnifying glasses
and sift through the program to understand how it works!

The first four lines are there to satisfy the dependencies required to build the
program. These are PyGame, a math library, a library to generate random numbers,
and a library to keep track of time for delay functions. Next, we specify the
dimensions for the screen space required for our program.

The pygame.init() method initializes all the modules that were loaded as part of
importing pygame in the first statement. It is required to be executed if you want to
be able use any functionality of PyGame. The display.set_mode() method creates
a new Surface object, which represents the area on the screen that is visible to the
user. It takes a tuple consisting of the dimensions of the window as the argument:
the width and height variables in this case. It is literally the canvas on which you
can draw. Anything you do to this object will be shown to the user. Images and
other objects are represented as PyGame objects, and you can overlay them on the
the main surface. Then, we set the title of the window using the caption() method,
and finally, the screen variable actually gets the object that the display is stored in.
So now, our canvas is stored in the screen variable, and we will use it to make any
changes to the canvas.

The Fractal_Tree function should be fairly easy to understand. It takes four
arguments: the starting point of the branch (X1, Y1), the angle of the branch with
respect to the positive x axis—which is a horizontal line going to your right when
you look at the computer screen, and the depth of the fractal tree (which indicates
the levels in the tree). It is called for the first time in the 28th line with appropriate
arguments. You might notice that towards the end of the function, it calls itself using
different arguments. These kinds of function are called recursive functions and are
very useful in tasks where there is repetition and where the same task needs to be
performed with minor differences.

If the depth is positive, it selects a random length and angle for the next branch by
selecting a random integer from the randint() method of the random package. It
then specifies the coordinates of the end of that branch, which are labeled X2 and Y2.
If the depth is less that 5, it selects the color of the line as green; otherwise, it is white.
Here, it is important to understand that the color is represented in the RGB format.
Hence, (0, 255, 0) means green. Similarly, (255, 0, 0) will be red. The three numbers
in the tuple represent the intensity of RGB colors; hence, we can select any color
using a mixture of these three intensities.

Chapter 3

[53]

Finally, there is a recursive call to itself (Fractal_tree), and the program then
draws the second level of the fractal tree and so on until the depth becomes zero.
There are two recursive calls: one to draw the left branch and the other to draw
the right branch. If you've noticed, the function isn't actually executed until the
28th line. And once it is executed, the complete pattern is drawn at once due to
the recursiveness of the function, but it still isn't displayed. The next line, pygame.
display.flip(), is responsible for displaying the drawn shapes on screen:

while True:
 for event in pygame.event.get():
If event.type == pygame.QUIT or event.type == pygame.KEYDOWN:
 pygame.quit()
 exit(0)

This block of code is there to ensure that PyGame quits properly and specifies how
to shut down the program. The event.get()method clears the event queue so that
you always get the last event that occurred. An event queue consists of all the key
presses and mouse clicks that happen, and they are stored in a Last In First Out
(LIFO) fashion. You will see this while loop in almost every PyGame program as it
handles the exit of the program properly. If you are using IDLE, then not shutting
down PyGame properly can cause it to hang. In this case, PyGame quits when
pygame.quit() is executed. Finally, with exit(0), Python also quits and closes
the application.

As we are randomizing the length and the angle every time the function calls itself,
no two branches will be exactly the same, giving it the appearance of the irregularity
of real-life trees. By induction, no two trees will be same.

You can modify parts of this code to see for yourself how the tree behavior changes
on changing a few variables, such as theta and depth. Now that we have completed
all the basics of PyGame and can implement fairly complex problems, we are now
ready to move on to a real challenge: making an actual game.

Building a snake game
Who doesn't remember the classic game called Snake, which involves a snake
chasing a morsel of food? It is probably the very first game that you played as
a child. The basic premise of the game is that you control a snake and lead it
to a morsel of food. Every time the snake consumes that food, it grows by one
unit length, and if the snake hits a boundary wall or itself, it dies. Now as you
can imagine, the more you play the game, the longer the snake grows, which,
consequently, makes it more difficult to control the snake. In some versions of the
game, the speed of the snake also increases, making it even more difficult to control.
There comes a point where you simply run out of screen space and the snake
inevitably hits a wall or itself, and the game is over.

Building Games with PyGame

[54]

Here, we will learn how to build such a game. The basic logic of playing the game
will be to have a moving rectangle, of which we know the leading point coordinates.
This will be our snake. It will be controlled by the four arrow keys. The piece of food
is initialized randomly on the screen. At each point of time, we will check whether
the rectangle has hit the boundary wall or itself since we know the position of the
snake at every point of time. If it has, then the program will exit. Let's now look at
the code sectionwise; the code will be explained after each section:

from pygame.locals import *
import pygame
import random
import sys
import time

pygame.init()

fpsClock = pygame.time.Clock()

gameSurface = pygame.display.set_mode((800, 600))
pygame.display.set_caption('Pi Snake')

foodcolor = pygame.Color(0, 255, 0)
backgroundcolor = pygame.Color(255, 255, 255)
snakecolor = pygame.Color(0, 0, 0)
textcolor = pygame.Color(255, 0, 0)

snakePos = [120,240]
snakeSeg = [[120,240],[120,220]]
foodPosition = [400,300]
foodSpawned = 1
Dir = 'D'
changeDir = Dir
Score = 0
Speed = 5
SpeedCount = 0

Now, we will learn what each block of code does, but for brevity the very basics are
skipped as we have already learned about them in the previous sections.

Chapter 3

[55]

The first few lines before the finish() function initialize PyGame and set the
game parameters. The pygame.time.Clock()function is used to track time within
the game, and this is mostly used for frames per second, or FPS. While it seems
somewhat trivial, FPS is very important and can be tweaked. We can increase or
decrease the FPS to control the speed of the game. Going further into the code,
we can choose options such as the screen size, the color of the snake, the starting
position, the starting speed, and so on. The snakePos list variable has the head of the
snake, and snakeSeg will contain the initial coordinates of the segment of the snake
in a nested list. The first element contains the coordinates of the head, and the second
element contains the coordinates of the tail. This block of code also defines the initial
food position, the state of the food, the initial direction, the initial speed, and the
initial player score:

def finish():
 finishFont = pygame.font.Font(None, 56)
 msg = "Game Over! Score = " + str(Score)
 finishSurf = finishFont.render(msg, True, textcolor)
 finishRect = finishSurf.get_rect()
 finishRect.midtop = (400, 10)
 gameSurface.blit(finishSurf, finishRect)
 pygame.display.flip()
 time.sleep(5)
 pygame.quit()
 exit(0)

The preceding block of code defines the finishing procedure for the game. As we will
see in the following code, finish() is called when the snake either hits the walls or
itself. In this, we first specify the message that we want to display and its properties,
such as the font, and then we add the final score to it. Then, we render the message
via the render() function, which operates on the finishFont variable. Then, we
get a rectangle via get_rect(), and finally we draw those via the blit() function.
When using PyGame, blit() is a very important function that allows us to draw one
image on top of the other. In our case, this is very useful because it allows us to draw
a bounding rectangle over the message that we show as a part of the ending of the
game. Finally, we render our message on screen via the display.flip() function
and after a delay of 5 seconds, we quit the game:

while 1:
 for event in pygame.event.get():
if event.type == QUIT:
pygame.quit()
 exit(0)
elif event.type == KEYDOWN:
if event.key == ord('d') or event.key == K_RIGHT:

Building Games with PyGame

[56]

changeDir = 'R'
if event.key == ord('a') or event.key == K_LEFT:
changeDir = 'L'
if event.key == ord('w') or event.key == K_UP:
changeDir = 'U'
if event.key == ord('s') or event.key == K_DOWN:
changeDir = 'D'
if event.key == K_ESCAPE:
pygame.event.post(pygame.event.Event(QUIT))
 pygame.quit()
 exit(0)

if changeDir == 'R' and not Dir == 'L':
Dir = changeDir
if changeDir == 'L' and not Dir == 'R':
Dir = changeDir
if changeDir == 'U' and not Dir == 'D':
Dir = changeDir
if changeDir == 'D' and not Dir == 'U':
Dir = changeDir

if Dir == 'R':
snakePos[0] += 20
if Dir == 'L':
snakePos[0] -= 20
if Dir == 'U':
snakePos[1] -= 20
if Dir == 'D':
snakePos[1] += 20

Then, we move on to the infinite while loop, which contains the bulk of the game's
logic. Also, as mentioned earlier, the pygame.event.get()function gets the type
of event; according to what is pressed, it changes the state of some parameters. For
example, pressing the Esc key causes the game to quit, and pressing the arrow keys
changes the direction of the snake. After that, we check whether the new direction is
directly opposite to the old direction and change the direction only if it isn't. In this
case, changedDir is only an intermediate variable. We then change the position of
the snake according to the direction that's selected. Each shift in position signifies a
shift of 20 pixels on screen:

snakeSeg.insert(0,list(snakePos))
if snakePos[0] == foodPosition[0] and snakePos[1] == foodPosition[1]:
foodSpawned = 0
Score = Score + 1
SpeedCount = SpeedCount + 1

Chapter 3

[57]

if SpeedCount == 5 :
SpeedCount = 0
Speed = Speed + 1
else:
snakeSeg.pop()

if foodSpawned == 0:
x = random.randrange(1,40)
y = random.randrange(1,30)
foodPosition = [int(x*20),int(y*20)]
foodSpawned = 1

gameSurface.fill(backgroundcolor)
for position in snakeSeg:
pygame.draw.rect(gameSurface,snakecolor,Rect(position[0], position[1],
20, 20))
pygame.draw.circle(gameSurface,foodcolor,(foodPosition[0]+10,
foodPosition[1]+10), 10, 0)
pygame.display.flip()
if snakePos[0] > 780 or snakePos[0] < 0:
finish()
if snakePos[1] > 580 or snakePos[1] < 0:
finish()
for snakeBody in snakeSeg[1:]:
if snakePos[0] == snakeBody[0] and snakePos[1] == snakeBody[1]:
finish()
fpsClock.tick(Speed)

It is important to keep in mind that at this point, nothing is rendered on screen.
We are just implementing the logic for the game, and only after we are done with
that will anything be rendered on the screen. This will be done with the pygame.
display.flip()function. Another important thing is that there is another function
named pygame.display.update(). The difference between these two is that the
update() function only updates specific areas of the surface, whereas the flip()
function updates the entire surface. However, if we don't give any arguments to the
update() function, then it will also update the entire surface.

Building Games with PyGame

[58]

Now, since we changed the position of the head of the snake, we have to update
the snakeSeg variable to reflect this change in the snake body. For this, we use the
insert() method and give the position of object we want to append and the new
coordinates. This adds the new coordinates of the snake head into the snakeSeg
variable. Then comes the interesting part, where we check whether the snake has
reached the food. If it has, we increment the score, set the foodSpawned state to
False, and increase SpeedCount by one. So, once the speed count reaches five, the
speed is increased by one unit. If not, then we remove the last coordinate with the
pop() method. This is interesting because if the snake has eaten the food, then its
length will increase; consequently, the pop() method in the else statement will not
be executed, and the length of the snake will be increased by one unit.

In the next block of code, we check whether the food is spawned; if not, we randomly
spawn it, keeping in mind the dimensions of the screen. The randrange()function
from the random package allows us to do exactly that.

Finally, we get to the part where the actual rendering takes place. Rendering is
nothing but a term for the process that is required to generate and display something
on screen. The first statement fills the screen with our selected background color so
that everything else on the screen is easily visible:

for position in snakeSeg:
pygame.draw.rect(gameSurface,snakecolor,Rect(position[0], position[1],
20, 20))

The preceding block of code loops through all the coordinates present in the
snakeSeg variable and fills the space between them with the color specified for
our snake in the initialization code. The rect function takes three inputs: the
window name on which the game will be played, the color of the rectangle, and the
coordinates of the rectangle that are given by the Rect function. The Rect function
itself takes four arguments: the x and y position and height and width of the
rectangle. This means that for every coordinate contained in the snakeSeg variable,
we draw on a rectangle that has dimensions of 20 x 20 pixels. So, we can see that
we do not have to keep track of the snake as a whole; we only have to keep track of
the coordinates that describe the snake.

Next, we draw our food using the circle() method from the draw module in the
PyGame package. This method takes five arguments: the window name, the color,
the centre of the circle, the radius, and the width of the circle. The centre of the
circle is given by a tuple that contains the x and y coordinates that we selected
previously. The next statement, pygame.display.flip(), actually displays
what we have just drawn.

Chapter 3

[59]

Then, we check for the conditions in which the game can end: hitting the wall or
itself. When it hits an exit condition, the finish()function is called. The first two
lines of the function are self-explanatory. In the third line, render() basically makes
the text displayable. But it is not displayed yet. It will only be displayed once we
call the pygame.display.flip() function. The next two lines set the position of
the textbox that will be displayed on the window. And, finally, we quit the PyGame
window and the program after a delay of 5 seconds.

Save this program in a file named prog2.py and run it using the following command:

python prog2.py

This is what you will be greeted with:

We can play the game for as long as we want (and we should because it's our
creation) and when we exit, the game will be greeted by the same message that
was defined in the finish() function!

Building Games with PyGame

[60]

As you may recognize, in the preceding screenshot, the black shape is the snake and
the green circle is its food. You can play around with it and try to get an idea of the
logic behind this game as to how it might be programmed.

With this, we complete the implementation of the snake game, and you should
try out the program for yourself. An even better way to fully understand how
the program works is to change some parameters and see how that affects the
playing experience.

Summary
In this chapter, we learned about PyGame and its capabilities. We also learned how
to build a binary fractal tree with random branches.

Furthermore, we built a snake game and used it to gain further experience in
programming games using PyGame. You can also modify the game to gain any
additional features you like.

Using these examples as an inspiration, you can also try to build games of your own.
You can combine your knowledge of the chapter on Minecraft to build your own
simple Minecraft clone!

In the next chapter, we will learn about the basics of Pi Camera and its webcam and
how to capture images using them. We will also build some real-life examples using
the Python language.

[61]

Working with a Webcam and
Pi Camera

In the previous chapter, we learned how to set up and write our own games
using pygame. In this chapter, we will learn how to use different types and uses of
cameras with our Pi. Let's take a look at the topics we will study and implement in
this chapter:

• Working with a webcam
• Crontab
• Timelapse using a webcam
• Webcam video recording and playback
• Pi Camera and Pi NoIR comparison
• Timelapse using Pi Camera
• The PiCamera module in Python

Working with webcams
USB webcams are a great way to capture images and videos. Raspberry Pi supports
common USB webcams.

To be on the safe side, here is a list of the webcams supported by Pi:
http://elinux.org/RPi_USB_Webcams.

http://elinux.org/RPi_USB_Webcams

Working with a Webcam and Pi Camera

[62]

I am using a Logitech HD c310 USB Webcam as shown in the following image:

You can purchase it online, and you can find the product details
and the specifications at http://www.logitech.com/en-in/
product/hd-webcam-c310.

Attach your USB webcam to Raspberry Pi through the USB port on Pi and run the
lsusb command in the terminal. This command lists all the USB devices connected
to the computer. The output should be similar to the following output depending on
which port is used to connect the USB webcam:

pi@raspberrypi ~/book/chapter04 $ lsusb

Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp.

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.

Bus 001 Device 004: ID 148f:2070 Ralink Technology, Corp. RT2070 Wireless
Adapter

Bus 001 Device 007: ID 046d:081b Logitech, Inc. Webcam C310

Bus 001 Device 006: ID 1c4f:0003 SiGma Micro HID controller

Bus 001 Device 005: ID 1c4f:0002 SiGma Micro Keyboard TRACER Gamma Ivory

http://www.logitech.com/en-in/product/hd-webcam-c310
http://www.logitech.com/en-in/product/hd-webcam-c310

Chapter 4

[63]

Then, install the fswebcam utility by running the following command:

sudo apt-get install fswebcam

fswebcam is a simple command-line utility that captures images with webcams for
Linux computers. Once the installation is done, you can use the following command
to create a directory for output images:

mkdir /home/pi/book/output

Then, run the following command to capture the image:

fswebcam -r 1280x960 --no-banner ~/book/output/camtest.jpg

This will capture an image with a resolution of 1280 x 960. You might want to try
another resolution for your learning. The --no-banner command will disable the
timestamp banner. The image will be saved with the filename mentioned. If you
run this command multiple times with the same filename, the image file will be
overwritten each time. So, make sure that you change the filename if you want to
save previously captured images. The text output of the command should be similar
to the following output:

--- Opening /dev/video0...

Trying source module v4l2...

/dev/video0 opened.

No input was specified, using the first.

--- Capturing frame...

Corrupt JPEG data: 2 extraneous bytes before marker 0xd5

Captured frame in 0.00 seconds.

--- Processing captured image...

Disabling banner.

Writing JPEG image to '/home/pi/book/output/camtest.jpg'.

Crontab
Cron is a time-based job scheduler in Unix-like computer operating systems. It is
driven by a crontab (cron table) file, which is a configuration file that specifies
shell commands to be run periodically on a given schedule. It is used to schedule
commands or shell scripts to run periodically at a fixed time, date, or interval.

The syntax for crontab in order to schedule a command or script is as follows:

1 2 3 4 5 /location/command

Working with a Webcam and Pi Camera

[64]

Here are the definitions:

• 1: Minutes (0-59)
• 2: Hours (0-23)
• 3: Days (0-31)
• 4: Months [0-12 (1 for January)]
• 5: Days of the week [0-7 (7 or 0 for Sunday)]
• /location/command: The script or command name to be scheduled

The crontab entry to run any script or command every minute is as follows:

* * * * * /location/command 2>&1

We will be using crontab in many chapters in this book. In the next section, we
will learn how to use crontab to schedule a script to capture images periodically
in order to create the timelapse sequence.

You can refer to this URL for more details on crontab:
http://www.adminschoice.com/crontab-quick-reference.

Creating a timelapse sequence using
fswebcam
Timelapse photography means capturing photographs in regular intervals and
playing the images with a higher frequency in time than those that were shot. For
example, if you capture images with a frequency of one image per minute for 10
hours, you will get 600 images. If you combine all these images in a video with
30 images per second, you will get 10 hours of timelapse video compressed in 20
seconds. You can use your USB webcam with Raspberry Pi to achieve this. We
already know how to use the Raspberry Pi with a webcam and the fswebcam utility
to capture an image. The trick is to write a script that captures images with different
names and then add this script in crontab and make it run at regular intervals.

Begin with creating a directory for captured images:

mkdir /home/pi/book/output/timelapse

http://www.adminschoice.com/crontab-quick-reference

Chapter 4

[65]

Open an editor of your choice, write the following code, and save it as
timelapse.sh:

#!/bin/bash

DATE=$(date +"%Y-%m-%d_%H%M")
fswebcam -r 1280x960 --no-banner
/home/pi/book/output/timelapse/garden_$DATE.jpg

Make the script executable using:

chmod +x timelapse.sh

This shell script captures the image and saves it with the current timestamp in its
name. Thus, we get an image with a new filename every time as the file contains
the timestamp. The second line in the script creates the timestamp that we're
using in the filename. Run this script manually once, and make sure that the
image is saved in the /home/pi/book/output/timelapse directory with the
garden_<timestamp>.jpg name.

To run this script at regular intervals, we need to schedule it in crontab.

The crontab entry to run our script every minute is as follows:

* * * * * /home/pi/book/chapter04/timelapse.sh 2>&1

Open the crontab of the Pi user with crontab –e. It will open crontab with
nano as the editor. Add the preceding line to crontab, save it, and exit it.

Once you exit crontab, it will show the following message:

no crontab for pi - using an empty one

crontab: installing new crontab

Our timelapse webcam setup is now live. If you want to change the image capture
frequency, then you have to change the crontab settings. To set it every 5 minutes,
change it to */5 * * * *. To set it for every 2 hours, use 0 */2 * * *. Make
sure that your MicroSD card has enough free space to store all the images for the
time duration for which you need to keep your timelapse setup.

Working with a Webcam and Pi Camera

[66]

Once you capture all the images, the next part is to encode them all in a fast playing
video, preferably 20 to 30 frames per second. For this part, the mencoder utility
is recommended. The following are the steps to create a timelapse video with
mencoder on a Raspberry Pi or any Debian/Ubuntu machine:

1. Install mencoder using sudo apt-get install mencoder
2. Navigate to the output directory by using:

cd /home/pi/book/output/timelapse

3. Create a list of your timelapse sequence images using:
ls garden_*.jpg > timelapse.txt

4. Use the following command to create a video:

mencoder -nosound -ovc lavc -lavcopts vcodec=mpeg4:aspect=16
/9:vbitrate=8000000 -vf scale=1280:960 -o timelapse.avi -mf
type=jpeg:fps=30 mf://@timelapse.txt

This will create a video with name timelapse.avi in the current directory with all
the images listed in timelapse.txt with a 30 fps frame rate. The statement contains
the details of the video codec, aspect ratio, bit rate, and scale. For more information,
you can run man mencoder on Command Prompt. We will cover how to play a
video in the next section.

Webcam video recording and playback
We can use a webcam to record live videos using avconv. Install avconv using
sudo apt-get install libav-tools. Use the following command to record
a video:

avconv -f video4linux2 -r 25 -s 1280x960 -i /dev/video0 ~/book/output/
VideoStream.avi

It will show following output on the screen:

pi@raspberrypi ~ $ avconv -f video4linux2 -r 25 -s 1280x960 -i /dev/
video0 ~/book/output/VideoStream.avi

avconv version 9.14-6:9.14-1rpi1rpi1, Copyright (c) 2000-2014 the Libav
developers

 built on Jul 22 2014 15:08:12 with gcc 4.6 (Debian 4.6.3-14+rpi1)

[video4linux2 @ 0x5d6720] The driver changed the time per frame from 1/25
to 2/15

[video4linux2 @ 0x5d6720] Estimating duration from bitrate, this may be
inaccurate

Chapter 4

[67]

Input #0, video4linux2, from '/dev/video0':

 Duration: N/A, start: 629.030244, bitrate: 147456 kb/s

 Stream #0.0: Video: rawvideo, yuyv422, 1280x960, 147456 kb/s, 1000k
tbn, 7.50 tbc

Output #0, avi, to '/home/pi/book/output/VideoStream.avi':

 Metadata:

 ISFT : Lavf54.20.4

 Stream #0.0: Video: mpeg4, yuv420p, 1280x960, q=2-31, 200 kb/s, 25
tbn, 25 tbc

Stream mapping:

 Stream #0:0 -> #0:0 (rawvideo -> mpeg4)

Press ctrl-c to stop encoding

frame= 182 fps= 7 q=31.0 Lsize= 802kB time=7.28 bitrate=
902.4kbits/s

video:792kB audio:0kB global headers:0kB muxing overhead 1.249878%

Received signal 2: terminating.

You can terminate the recording sequence by pressing Ctrl + C.

We can play the video using omxplayer. It comes with the latest raspbian,
so there is no need to install it. To play a file with the name vid.mjpg, use
the following command:

omxplayer ~/book/output/VideoStream.avi

It will play the video and display some output similar to the one here:

pi@raspberrypi ~ $ omxplayer ~/book/output/VideoStream.avi

Video codec omx-mpeg4 width 1280 height 960 profile 0 fps 25.000000

Subtitle count: 0, state: off, index: 1, delay: 0

V:PortSettingsChanged: 1280x960@25.00 interlace:0 deinterlace:0
anaglyph:0 par:1.00 layer:0

have a nice day ;)

Try playing timelapse and record videos using omxplayer.

Working with a Webcam and Pi Camera

[68]

Working with the Pi Camera and NoIR
Camera modules
These camera modules are specially manufactured for Raspberry Pi and work with
all the available models. You will need to connect the camera module to the CSI port,
located behind the Ethernet port, and activate the camera using the raspi-config
utility if you haven't already.

You can find the video instructions to connect the camera module to
Raspberry Pi at http://www.raspberrypi.org/help/camera-
module-setup/.

This page lists the types of camera modules available: http://www.raspberrypi.
org/products/.

Two types of camera modules are available for the Pi. These are Pi Camera and Pi
NoIR camera, and they can be found at https://www.raspberrypi.org/products/
camera-module/ and https://www.raspberrypi.org/products/pi-noir-
camera/, respectively.

The following image shows Pi Camera and Pi NoIR Camera boards side by side:

http://www.raspberrypi.org/help/camera-module-setup/
http://www.raspberrypi.org/help/camera-module-setup/
http://www.raspberrypi.org/products/
http://www.raspberrypi.org/products/
https://www.raspberrypi.org/products/camera-module/
https://www.raspberrypi.org/products/camera-module/
https://www.raspberrypi.org/products/pi-noir-camera/
https://www.raspberrypi.org/products/pi-noir-camera/

Chapter 4

[69]

The following image shows the Pi Camera board connected to the Pi:

The following is an image of the Pi Camera board placed in the camera case:

The main difference between Pi Camera and Pi NoIR Camera is that Pi Camera gives
better results in good lighting conditions, whereas Pi NoIR (NoIR stands for No-Infra
Red) is used for low light photography. To use NoIR Camera in complete darkness,
we need to flood the object to be photographed with infrared light.

This is a good time to take a look at the various enclosures for Raspberry
Pi Models. You can find various cases available online at https://www.
adafruit.com/categories/289.

https://www.adafruit.com/categories/289
https://www.adafruit.com/categories/289

Working with a Webcam and Pi Camera

[70]

An example of a Raspberry Pi case is as follows:

Using raspistill and raspivid
To capture images and videos using the Raspberry Pi Camera module, we need to
use raspistill and raspivid utilities.

To capture an image, run the following command:

raspistill -o cam_module_pic.jpg

This will capture and save the image with name cam_module_pic.jpg in the
current directory.

To capture a 20 second video with the camera module, run the following command:

raspivid –o test.avi –t 20000

This will capture and save the video with name test.avi in the current directory.
Unlike fswebcam and avconv, raspistill and raspivid do not write anything
to the console. So, you need to check the current directory for the output. Also,
one can run the echo $? command to check whether these commands executed
successfully. We can also mention the complete location of the file to be saved in
these command, as shown in the following example:

raspistill -o /home/pi/book/output/cam_module_pic.jpg

Just like fswebcam, raspistill can be used to record the timelapse sequence.
In our timelapse shell script, replace the line that contains fswebcam with the
appropriate raspistill command to capture the timelapse sequence and use
mencoder again to create the video. This is left as an exercise for the readers.

Chapter 4

[71]

Now, let's take a look at the images taken with the Pi Camera under different
lighting conditions.

The following is the image with normal lighting and the backlight:

The following is the image with only the backlight:

Working with a Webcam and Pi Camera

[72]

The following is the image with normal lighting and no backlight:

For NoIR camera usage in the night under low light conditions, use IR illuminator
light for better results. You can get it online. A typical off-the-shelf LED IR
illuminator suitable for our purpose will look like the one shown here:

Chapter 4

[73]

Using picamera in Python with the Pi Camera
module
The picamera is a Python package that provides a programming interface to the Pi
Camera module. The most recent version of raspbian has picamera preinstalled.
If you do not have it installed, you can install it using:

sudo apt-get install python-picamera

The following program quickly demonstrates the basic usage of the picamera
module to capture an image:

import picamera
import time

with picamera.PiCamera() as cam:
 cam.resolution=(1024,768)
 cam.start_preview()
 time.sleep(5)
 cam.capture('/home/pi/book/output/still.jpg')

We have to import time and picamera modules first. cam.start_preview()
will start the preview, and time.sleep(5) will wait for 5 seconds before
cam.capture() captures and saves image in the specified file.

There is a built-in function in picamera for timelapse photography. The following
program demonstrates its usage:

import picamera
import time

with picamera.PiCamera() as cam:
 cam.resolution=(1024,768)
 cam.start_preview()
 time.sleep(3)
 for count,
 imagefile in enumerate(cam.capture_continuous
 ('/home/pi/book/output/image{counter:
 02d}.jpg')):
 print 'Capturing and saving ' + imagefile
 time.sleep(1)
 if count == 10:
 break

Working with a Webcam and Pi Camera

[74]

In the preceding code, cam.capture_continuous() is used to capture the
timelapse sequence using the Pi camera module.

Checkout more examples and API references for the picamera
module at http://picamera.readthedocs.org/.

The Pi camera versus the webcam
Now, after using the webcam and the Pi Camera, it's a good time to understand the
differences, the pros, and the cons of using these.

The Pi camera board does not use a USB port and is directly interfaced to the Pi.
So, it provides better performance than a webcam in terms of the frame rate and
resolution. We can directly use the picamera module in Python to work on images
and videos. However, the Pi camera cannot be used with any other computer.

A webcam uses an USB port for interface, and because of that, it can be used with
any computer. However, compared to the Pi Camera its performance, it is lower in
terms of the frame rate and resolution.

Summary
In this chapter, we learned how to use a webcam and the Pi camera. We also
learned how to use utilities such as fswebcam, avconv, raspistill, raspivid,
mencoder, and omxplayer. We covered how to use crontab. We used the Python
picamera module to programmatically work with the Pi camera board. Finally, we
compared the Pi camera and the webcam. We will be reusing all the code examples
and concepts for some real-life projects soon.

In the next chapter, we will learn about programming Pi GPIO with PiGlow, which is
a third-party add-on board for the Pi.

http://picamera.readthedocs.org/

[75]

Introduction to GPIO
Programming

In the previous chapter, we learned how to use a webcam and Pi Camera to capture
images and videos. We also built a timelapse photography box to get experience
about the real-life uses of what we learned.

In this chapter, we are going to adopt a hardware-focused approach and use
Raspberry Pi's most talked about feature: its GPIO (short for General Purpose Input
Output) pins. Specifically, we will learn how to use GPIO pins on Raspberry Pi B+
and Raspberry Pi 2. Once we get familiar with the use of the pins, we will also build
a real-life project to further our knowledge of their use. The following topics will be
covered in the chapter:

• Introducing GPIO pins
• Blinking an LED with GPIO pins
• Adding push button controls
• Learning about PiGlow

Introduction to GPIO Programming

[76]

Introducing GPIO pins
Most of you may know where GPIO pins are located on the Raspberry Pi. If not,
the following illustration will make it clear:

The following is a top view of the Raspberry Pi B+ board, which will help you see the
components even more clearly:

Chapter 5

[77]

The following diagram of the GPIO pins gives information about the naming
convention and the function of each of the pins:

Note that the GPIO pins of Raspberry Pi B+ and Pi 2 are the same.

As you can see from the preceding diagram, there are four power pins, two for 3.3V
and two for 5V, 8 ground pins distributed across the rail, 26 GPIO pins—some of
which also provide protocols such as UART, SPI, PCM, PWM, I2C—and two pins
reserved for accessing the EEPROM via I2C.

GPIO pins can be ON or OFF and HIGH or LOW. When a 3.3V pin is high, it outputs
3.3V, and when it is low, it outputs 0V. A GPIO pin can act as an input as well as an
output but not both at the same time. To use it as an output is as simple as setting the
pin state to ON or OFF.

Introduction to GPIO Programming

[78]

To use GPIO pins, we will use a simple Python library called RPi.GPIO, which takes
out all the effort and makes it easy to configure and use the pins. Configuring a pin
to be an output or an input requires only a single statement. We will now see how
to manipulate GPIO pins to use this library.

Take care to use Broadcom chip names for the GPIO pins. You can look this up in
the diagram given earlier. If our pin has been set to the output mode, we can also set
its activation or voltage level to HIGH or LOW. Keep in mind that in the case of the
Raspberry Pi, high voltage is represented by 3.3V, and low voltage is represented by
0V. It will be damaging for the Raspberry Pi if you connect a 5V device to its 3.3V
GPIO pins. However, you can use two 5V pins to power a small add-on, such as an
LED or a buzzer. If you plan to use anything that requires more current, ensure that
you use a separate power supply as the Pi can supply only a limited current. So,
directly powering a motor from the Pi is not a good idea.

You can do amazing things with the input pins. Not only can you take inputs from
a button, but you can also connect sensors, such as a light sensor, smoke sensor,
and temperature sensor to build all kinds of amazing projects. You can also use
an Internet-connected Raspberry Pi to control your outputs from anywhere in the
world! But the networking part is outside the scope of this chapter.

A simple project at this point would be to build a simple LED blinking program.
So let's see how that works!

Building an LED Blinker
For this project, you will require a humble low-power LED with the color of your
choice, which can be obtained at your local hardware store or can be ordered online.
The Raspberry Pi will act as both the switch and the power supply. In fact, we will
power and switch the LED from the same output pin. The complete code and the
wiring diagram has been given here. We will learn the code line by line following the
diagram. Connect your LED to the Raspberry Pi, as shown. In an LED, the longer leg
is the positive pin by convention, and the shorter leg has negative polarity. So take
care to connect it the right way, or it might get damaged:

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BOARD)
GPIO.setup(7, GPIO.OUT)

def Blink(speed):
 GPIO.output(7,True)
 time.sleep(speed)

Chapter 5

[79]

 GPIO.output(7,False)
 time.sleep(speed)
 GPIO.cleanup()

Blink(1)

Once you've connected the LED as shown, go ahead and save the code as prog1.py,
and execute the following command:

python prog1.py

If everything goes according to the plan, you should now see your LED blinking.
Now we will analyze the code to see what exactly was done.

As usual, we begin the Python program by importing the required dependencies.
RPi.GPIO is the Python library that provides the API that allows us to use GPIO
pins. It is preinstalled on the Raspbian operating system. Then, we import the time
module that will provide us with the delay for the blink.

Introduction to GPIO Programming

[80]

GPIO.setmode() sets the addressing mode of the GPIO pins. There are two modes,
namely BOARD and BCM. The BOARD mode addresses the pins by the numbering
given on the board. For example, in the preceding GPIO diagram, the GPIO04 is
pin 7. The other mode is BCM and it defines the pins according to the Broadcom
Firmware on the Raspberry Pi. So, the GPIO04 pin will be referred to as 4 rather than
7. The next statement, GPIO.setup(), configures the specified pin to be an output or
input depending on the argument.

Now, we'll move on to the main chunk of the code, which is the Blink() function.
The GPIO.output() function takes two arguments: the pin number and the logical
operation to be performed. In the first output statement, we set pin 7 to HIGH, and
then in the second output statement, we set it to LOW. In between these functions,
we have the sleep() function from the time package, which takes only one
argument: the time in seconds. It does nothing but delay the execution of the next
statement by the input number of seconds, which could also be fractions such as 0.5
or 0.2. The last statement in the Blink()function is the cleanup() function, which
resets all the ports you have used back to the input mode. This prevents the pin from
being damaged when you have set HIGH as an output and then accidentally connect
it to ground, which would short-circuit the port. So, it's safer to leave the ports
as inputs.

Connecting a button
As we saw in the previous section, connecting an LED to a GPIO pin was easy, and
the code was simple. In this section, we will use the same general code in order to
program a GPIO pin to take an input from the button and if the button is pressed,
light the LED that we have already connected in the previous section. We will now
take a look at the code and then explain those lines that were not encountered in the
previous section:

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BOARD)

GPIO.setup(12, GPIO.IN, pull_up_down = GPIO.PUD_UP)
GPIO.setup(7, GPIO.OUT)

while True:
 input_state = GPIO.input(12)

if input_state == False:
 print('Button Pressed')
GPIO.output(7, True)

Chapter 5

[81]

else :
 print('Button Not Pressed')
GPIO.output(7, False)

Now, save the code as prog2.py and run it with the following command:

python prog2.py

In this section, we configure pin #12 (by board numbering) to be an output via the
same GPIO.setup() statement that we used in the previous section. But here, we
have an extra argument, pull_up_down=GPIO.PUD_UP. This means that the internal
resistor for the GPIO pin is being pulled up to 3.3V, and it will return False when
the button is pressed. This is a little counter-intuitive, but without pulling up or
down, the input will be left "floating", which means that the Pi will not be able to
determine a button press simply because it does not have anything to compare the
voltage level to!

Now we enter the infinite while loop, where it checks for the button state using the
GPIO.input()function. As mentioned earlier, if the button is pressed, input_state
will return False and the LED will be lit up. If, instead, the button is not pressed
anymore, the LED will go off!

Simple, isn't it? Let's move on a more complicated add-on.

Introduction to GPIO Programming

[82]

Installing PiGlow
The following figure shows the PiGlow board:

Since we have learned how to control an LED and a button via Raspberry Pi GPIO
pins, we will now move on to a module called PiGlow, which is an add-on board for
the Raspberry Pi and provides 18 individually controlled LEDs, and which you can
use via a provided library. We will now proceed to install the software requirements
for PiGlow by using a script provided by Pimoroni itself. To install PiGlow, run the
following command in a new terminal:

curl get.pimoroni.com/piglow | bash

To check whether PiGlow has been installed properly, open a Python terminal and
execute the following command:

import piglow

If it is successful, then continue.

To confirm whether I2C has been enabled, open the Raspberry Pi configuration tool
by entering the following command:

sudo raspi-config

Chapter 5

[83]

Then, select the Advanced Options menu from the displayed options.

When we enter the Advanced Options menu of raspi-config, we are greeted by the
following screen. We will now select the A7 option, which is I2C.

Introduction to GPIO Programming

[84]

Once we select the I2C menu, the following display will be shown:

Select Yes for both the previous screen and the following one:

Chapter 5

[85]

Using PiGlow
PiGlow has a set of female GPIO railings, which cover the Raspberry Pi's male GPIO
rails. In case of Raspberry Pi 2 and B+, the size of the railing in PiGlow is shorter, so
we need to make sure that PiGlow is attached to only lower numbered pins on the
Raspberry Pi.

You can find out more about PiGlow on the Pimoroni website at
https://shop.pimoroni.com/products/piglow.

We can now proceed to control the LEDs on the PiGlow board. Open up a Python
terminal and execute the following statements in a sequential order:

import piglow
piglow.red(64)

Here, we import the particular library in Python first. The red() method selects all
the red LEDs on the PiGlow board. It takes only one argument, the intensity of the
LEDs, which can be a number from 0 to 255. You can also try to pass the number
255 to the red() method to see how it affects the intensity of the LED. In this case,
passing 0 would mean that the LED is off. But once we execute the earlier two
statements, nothing will happen. We have to update the PiGlow with our changes
by issuing the following command:

piglow.show()

Why? Because if we are setting up a pattern, lighting the LED costs time and
resources. However, we can use the show method to draw the changes
instantaneously. If you find this strange, you can turn this off by turning
auto-update on with the following command:

piglow.auto_update = True

Similar to the red() method used earlier, we also have functions to control different
colors, namely white, blue, green, yellow, and orange.

But maybe we want to control each arm of the light rather than all the lights of a
single color. Well, we can do that with the arm() function! Take a look:

piglow.arm(0, 128)

https://shop.pimoroni.com/products/piglow

Introduction to GPIO Programming

[86]

The arm function takes two arguments. The first is the number of the arm, and
second is the intensity from 0 to 255. For example, in the earlier statement, we set
the LEDs of the first arm to an intensity of value 128, which is half of the full level of
brightness. Suppose we want to control arbitrary LEDs according to what we specify.
We're in luck! The set() function lets us control individual LEDs. It can be used in
the following ways:

• set(0, 255): This sets LED 0 to full brightness
• set([1, 3, 5], 200): This sets LEDs 1, 3, and 5 to a 200 level of brightness
• set(0, [255, 255, 255]): This sets three LEDs starting at 0 index to

full brightness

Now that we have learned the basics of using PiGlow, we will move on to building
real-life examples with it. First, we will build a very simple example that looks like
the arms of PiGlow are like cycle's spokes. Cool, right? The code is given here,
and an explanation is as follows:

import time
import piglow

i = 0

while True:
 print(i)
piglow.all(0)
piglow.set(i % 18, [15, 31, 63, 127, 255, 127, 63, 31, 15])
piglow.show()
i += 1
time.sleep(0.1)

Now save the program as prog1.py and run it with the following command:

python prog1.py

As with every Python program, we first import the dependencies required, which in
this case are the time library and the PiGlow library we just installed. Next, we set up
the counter to keep track of which LED we want to light up and to execute the bulk
of the program we enter into an infinite while loop. This while loop will continue
lighting the LEDs until we kill the program.

Chapter 5

[87]

First, we print the status of the counter, and then we execute the all() function,
which will refresh all the LEDs and ensure that they are turned off at the beginning.
We then use the third form of the set() function we saw earlier. This means that
starting from the zeroth LED, we light up nine LEDs in an ascending and then
descending fashion. The i % 18 will give the remainder of i divided by 18 so that the
index of the LED remains within the range of 0 to 18 at all times. Then, we actually
show the pattern that we set in the earlier statement via the show() function. Finally,
we increment the counter and add a delay of 100 milliseconds.

This pattern gets repeated for every LED, and when done in quick succession,
it appears like the spokes are cycling.

This was a very basic example, and now we're ready to move on to a more
complicated one, which involves building a binary clock. Let's begin!

Building a binary clock
In this example, we will be building a binary clock using the club PiGlow in which
each hour, minute, and second is represented by the three arms of PiGlow. The
numbers are displayed in the binary format. We will now look at the code and
learn what each part does:

import piglow
from time import sleep
from datetime import datetime

piglow.auto_update = True

show12hr = 1
ledbrightness = 10

piglow.all(0)

hourcount = 0
currenthour = 0

Introduction to GPIO Programming

[88]

Like the previous example, we import PiGlow and the time libraries, but we also
import an additional library, datetime, which gives us the current time. Then, we
set the auto-update parameter to true so that PiGlow updates as soon as we make
a change to it rather than pushing all the changes at once. We will now set some
customization parameters, namely selecting between a 12-hour format or a 24-hour
format and the brightness of the LEDs. With that completed, we refresh the LED to the
0 level and set the hour counters. Now we are ready to move on the meat of the code:

while True:
 time = datetime.now().time()
print(str(time))
hour = time.hour
min = time.minute
sec = time.second

if show12hr == 1:
 if hour > 12:
 hour = hour - 12

if currenthour != hour:
 hourcount = hour
currenthour = hour

for x in range(6):
 piglow.led(13 + x, (hour & (1 << x)) * ledbrightness)

for x in range(6):
 piglow.led(7 + x, (min & (1 << x)) * ledbrightness)

for x in range(6):
 piglow.led(1 + x, (sec & (1 << x)) * ledbrightness)

if hourcount != 0:
 sleep(0.5)
piglow.white(ledbrightness)
sleep(0.5)
hourcount = hourcount - 1
else :
 sleep(0.1)

The main code logic is executed inside an infinite while loop so that the program
never stops.

Chapter 5

[89]

We can now proceed to learn what it is that makes the program tick. First, we must
determine the current time, which is done by the datetime.now().time() method.
Then, we store each of current hour, minute, and time in a separate variable to
display them on separate arms. In the next if statement, we merely check whether
we want to display the 12-hour format, and if we do, we subtract 12 from the current
hour if it is greater than 12. So, something like 15 will be represented as 3. We have
two variables named currenthour and hourcount, which serve to keep the correct
hour displayed on the PiGlow arm by decrementing hourcount whenever an hour
passes. This way, the hour is decreased, which is necessary if we are using the 12
hour mode. To understand the next statements, which are actually responsible for
lighting up the LEDs, we need to understand the logic operators in Python. Some of
these are given as follows:

Operation Description
X and Y Logical AND
X or Y Logical OR
Not X Logical NOT
X | Y Bitwise OR
X ^ Y Bitwise XOR
X & Y Bitwise AND
X << Y Bitwise Left Shift
X >> Y Bitwise Right Shift

We are now greeted with a for loop. It has a very simple format as follows:

for (variable) in range(upper limit): The variable is a counter that starts from 0 and
gets incremented after each iteration even though we don't explicitly do it. The upper
limit, specified as the argument of the range() method, tells the for loop how many
iterations are to be executed.

So, for x in range(6), we will set up x as a counter and the loop will be executed
exactly six times. This is preferred since each arm has six LEDs, and each of
them can be set without having six separate statements.

Introduction to GPIO Programming

[90]

To understand what the following piece of code does, we will need to delve into
the world of binary numbers and bitwise operations. You will also notice that in the
argument of the led() function, we are doing a bitwise operation of the numbers.
Why so? In the first iteration of the for loop, the value of x is 0, and the binary
representation of 1 is 00000001. So, the bitwise shift operation will introduce no
change. In the second iteration, however, the value of x will be 1. So, a 1-bit left shift
will result in the binary number 00000010, which is the representation of integer
2. Similarly, the third iteration will result in 00000100, which is binary for 4. Now,
there is also the bitwise AND operation on the variables holding the values of hours,
minutes, and seconds. Consider, for example, that the current hour is 3 p.m. The
binary representation will be 00000011. If we do a bitwise AND operation in the first
iteration, we get 00000001. This is 1 and it is multiplied with the ledbrightness
variable; we light up the 13 + 0 = 13th LED at a brightness of 10. This LED is the
first LED of the arm that is represented by hours. Now, doing a bitwise AND in
the second iteration, we have hour = 00000011 and 1 << x = 00000010. The result
is 00000010, which is the integer 2. This means that the 14th LED will light with a
brightness of 20. But in the third iteration, since 1 << x = 00000100, we get the
integer 0 at the output, which means that the 15th LED will not light at all!

Applying the same logic if the time is 4 pm, the 13th LED will not light up, the 14th
LED will not light up, but the 15th LED will light up with a brightness of 40. Going
in the same direction, we now have an intuitive understanding of how the hours,
minutes, and seconds of the binary clock are represented.

Finally, we design the program to flash all the white LEDs once the hour finishes.
We also add 500-ms delays on both sides of the flash so that it doesn't appear too
sudden. Then, we decrement the hour count and the whole program repeats with
the updated time.

Now, save the code as prog3.py and run it with the following command:

python prog3.py

You will now be able to see the hours, minutes, and seconds represented as binary
numbers on PiGlow!

Chapter 5

[91]

Summary
This chapter was particularly interesting and hands-on because we learned how to
manipulate hardware from software! This is exactly the reason why the Raspberry Pi
and other boards with GPIO pins have become so popular. They allow you to control
real-life hardware applications with software.

We can create potentially unlimited applications for the Pi just by changing the
sensors connected to it and tweaking the code. We can build stuff such as home
automation systems, security applications, wearable devices, and many more with
just this small board! In this chapter, we had the humble beginnings of such projects
where we first learned to blink an LED, which wasn't very impressive by itself. Then,
we learned how to control that same LED with a button, which was a bit more fun.

Then, we learned about PiGlow and how to connect it to the Raspberry Pi. We
learned the various API commands that are used to control the LEDs on PiGlow,
and using these commands, we built a binary clock.

With these solid foundations, we then moved on to an even more complicated
undertaking, which involved a little theory and a bit of clever programming in
Python, which greatly reduced our effort.

In our next chapter, we will learn how to create animated movies. We will use a
more software-based approach and make animations such as stop motion.

[93]

Creating Animated Movies
with Raspberry Pi

In the previous chapter, we learned how to use GPIO pins to control LEDs and get
input from buttons. We also learned how to control the PiGlow module with its
provided Python API. In Chapter 4, Working with Webcam and Pi Camera, we learned
how to operate Pi Camera or a general webcam to capture images and videos. In
this chapter, we will combine the two concepts and learn how to create stop-motion
animation. In this chapter, we will learn about the following:

• Creating a stop-motion animation using a push button
• Examining the theory behind stop-motion
• Revisiting some GPIO concepts
• Using the ffmpeg library to render the shots into a video

Introducing stop-motion animation
A stop-motion animation is basically a video of sequenced images, such as those
where an object is physically manipulated so that it appears to move on its own
when the video is played. The position of the object is changed incrementally after
each shot so that over a course of multiple frames, it appears as though the object
is moving. A common subject for stop-motion animations is a clay object, such as a
bird, animal, and so on.

Creating Animated Movies with Raspberry Pi

[94]

Setting up the prerequisites
In addition to the Raspberry Pi, for this chapter we will require the following:

• Pi Camera
• Tactile push button
• Breadboard
• A few jumper cables

1. The tactile button can be purchased from your local hardware shop or online
from sellers such as Adafruit. It might look something like the following:

2. The breadboard is basically a temporary connection mechanism for electronic
components. Each pin in the 5-pin row is connected to each other, so they
behave as a common terminal for each component connected to the same
row. All the pins in the side rail are electrically connected and primarily
serve as power lines. A breadboard looks like the following:

Chapter 6

[95]

Jumper cables are nothing but wires that allow us to connect different rows in a
breadboard and look like this:

We will require the ffmpeg library installed on our Pi. This can be installed with the
following command:

sudo apt-get install ffmpeg

Once the installation is finished, you can test it by executing the following command:

avconv

If it is installed properly, then you should see some information about the avconv
tool. If not, then try to install it properly and then run the command again.

Setting up and testing the camera
Before booting up the Pi, we need to connect Pi Camera to it. This is as simple as
locating the camera port beside the Ethernet port, inserting the camera strip in it,
and pushing the tab down to secure it.

You can now test to check whether this works. After booting up the Pi, issue the
following command:

raspistill -o image.jpg

Creating Animated Movies with Raspberry Pi

[96]

If everything went fine, you should now see an image in your home directory. Open
it to check whether the camera took a satisfactory picture. Don't worry if it is upside
down as we will correct this shortly. It will look something like this:

Chapter 6

[97]

Now, we will look at the code to take a picture with Python. As we did earlier,
we will first see the code completely and then learn what it does statement by
statement. Here it is:

import picamera
from time import sleep

with picamera.PiCamera() as camera:
 camera.start_preview()
 sleep(3)
 camera.capture('/home/pi/image.jpg')
 camera.stop_preview()

We first import the PI camera library, which is required to take pictures with PiCam.
We also import the time library to provide delays in taking a picture. The next
statement essentially ensures that we can access picamera.PiCamera() with the
same camera. The camera.start_preview() method starts a preview screen for the
camera, and after a delay of 3 seconds the capture() method takes a picture. The
argument to the capture command gives the filename for the image file. Finally, the
stop_preview() method stops the preview.

Save the file as prog1.py and run it with the following command as this is a
python3 program:

python3 prog1.py

Now, double-click on the new image file from the File Explorer and check whether it
is upside down. If it is, then add the following two lines before the start_preview()
method to correct it:

camera.vflip = True
camera.hflip = True

Creating Animated Movies with Raspberry Pi

[98]

Adding the hardware button
To our current setup, we will add a hardware input button so that we can take
pictures when we press that button. So, connect a tactile button to the Raspberry Pi,
as shown in the following image:

Chapter 6

[99]

This time, we will use the BCM convention when specifying GPIO pins. We will
connect the button to the GPIO17 pin. Then, we will modify the code so that it looks
like the following:

import picamera
from RPi import GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setup(17, GPIO.IN, GPIO.PUD_UP)

with picamera.PiCamera() as camera:
 camera.start_preview()
 GPIO.wait_for_edge(17, GPIO.FALLING)
 camera.capture('/home/pi/image.jpg')
 camera.stop_preview()

Save the preceding program as prog2.py and run it with the following command:

python3 prog2.py

We will now see what each line of code does, except those that we already saw in the
previous program. To use the GPIO pins, we have to import the RPi.GPIO library,
as we did in the previous chapter. Then, we set the GPIO addressing mode as BCM,
which uses the Broadcom convention rather than numbering the pins on the board.
This means that we can address the GPIO pin by its GPIO number rather than its
board number. With the setup() method, we configure the pin to be an input and
set it so that it is pulled up by default.

The function that actually does the magic is wait_for_edge(). It takes the pin
number as the first argument and GPIO_FALLING as the second. This means that the
function will be triggered only when the signal at pin 17 goes from high to low or
when it falls. So, it will be triggered when the button goes from the pressed state to
the unpressed state; that is, it will be triggered when we leave the button rather than
when we press the button. The next statements capture and save the image and then
exit the preview. If we want to take a selfie, then we can add a delay after the wait_
for_edge() function in order to enable us to get into position. Also, don't forget to
add the two commands to correct an upside down picture if such a need arises.

Now that we have successfully taken individual photos without a camera, it's time to
try taking a series of still images and combining them in order to make a stop-motion
animation. Just so that your home folder does not just get messy, we can create a new
folder and enter it with the following commands:

mkdir stopmotion

cd stopmotion

Creating Animated Movies with Raspberry Pi

[100]

Modify the given code and add a loop to take a picture every time the button is
pressed. The new code looks like the following:

import picamera
from RPi import GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setup(17, GPIO.IN, GPIO.PUD_UP)

with picamera.PiCamera() as camera:
 camera.start_preview()
 frame = 1
 while True:
 GPIO.wait_for_edge(17, GPIO.FALLING)
 camera.capture('/home/pi/stopmotion/frame%03d.jpg' % frame)
 frame += 1
 camera.stop_preview()

What we have done is create an infinite while loop that keeps taking photographs as
long as the button is pressed. The frame variable keeps track of the current frame and
saves the corresponding image in the folder.

But be careful about the space limitations of your SD card. If we
hold down the button for long, the Pi could run out of space and
crash once it run out of space, causing us to lose all the data and
potentially corrupting the SD card.

Now, save the program as prog3.py and run it with the following command:

python3 prog3.py

Run the program and collect as many images as required for our stop-motion project.
Press Ctrl + C to exit the program and open the File Manager to see your images.

Rendering the video
We are now ready to render the video from the sequence of images we just collected.
We will begin rendering the video by entering the terminal window. Navigate to the
stopmotion folder with the following command:

cd /home/pi/stopmotion

Then, execute the following command to begin rendering the video:

avconv -r 10 -qscale 2 -i frame%03d.jpg animation.mp4

Chapter 6

[101]

We will now see what each part of this command does:

• -r specifies the frame rate for the video, which is currently set at 10
• -qscale specifies the quality for the video and can range from 2-5
• -i specifies the input file

Once the rendering is complete, you can play it with the following command:

omxplayer animation.mp4

Congratulations! You have just created your own stop-motion animation creator!
Go ahead and try it out. Build your own interesting animations and upload them
on YouTube.

Summary
In this chapter, we revised how to use Pi Camera with the Raspberry Pi and take
photos with it. We learned a neat trick to correct our photos if they are upside
down. We also learned how to use a GPIO to use a tactile button to act as the
trigger for our images.

Once we obtained the images required for our animation, we proceeded to combine
those images in a video, where we specified the frame rate and quality. Finally,
we rendered the video using the ffmpeg library.

In the next chapter, we will learn about the popular open source image processing
library, OpenCV, and get it set up on the Raspberry Pi. We will also implement
some interesting projects, such as video processing, logical operations on an image,
colorspace conversions, and much more!

[103]

Introduction to
Computer Vision

In the previous chapter, we implemented a battery-operated portable Pi time-lapse
box and a stop motion recording system. In this chapter, we will cover the basics of
computer vision with Pi using the OpenCV library. OpenCV is a simple yet powerful
tool for any computer vision enthusiast. One can learn about computer vision in an
easy way by writing OpenCV programs in Python. Using a Raspberry Pi computer
and Python for OpenCV programming is one of the best ways to start your journey
in the world of computer vision. We will cover the following topics in detail in
this chapter:

• Introducing computer vision
• Introducing OpenCV
• Setting up Pi for computer vision and NumPy
• Image basics in OpenCV
• Webcam video processing with OpenCV
• Arithmetic and logical operations on images
• Colorspace and the conversion of colorspace
• Object tracking based on colors

Introduction to Computer Vision

[104]

Introducing Computer Vision
Computer vision is an area of computer science, mathematics, and electrical
engineering. It includes ways to acquire, process, analyze, and understand images
and videos from the real world in order to mimic human vision. Also, unlike human
vision, computer vision can also be used to analyze and process depth and infrared
images. Computer vision is also concerned with the theory of information extraction
from images and videos. A computer vision system can accept different forms of
data as an input, including—but not limited to—images, image sequences, and
videos that can be streamed from multiple sources to further process and extract
useful information from it for decision making. Artificial intelligence and computer
vision share many topics, such as image processing, pattern recognition, and
machine learning techniques.

Introducing OpenCV
OpenCV (short for Open Source Computer Vision) is a library of programming
functions for computer vision. It was initially developed by the Intel Russia research
center in Nizhny Novgorod, and it is currently maintained by Itseez.

You can read more about Itseez at http://itseez.com/.

This is a cross-platform library, which means that it can be implemented and
operated on different operating systems. It focuses mainly on image and video
processing. In addition to this, it has several GUI and event handling features for
the user's convenience.

OpenCV was released under a Berkeley Software Distribution (BSD) license, and
hence, it is free for both academic and commercial use. It has interfaces for popular
programming languages, such as C/C++, Python, and Java, and it runs on a variety
of operating systems, including Windows, Android, and Unix-like operating
systems.

You can explore the OpenCV homepage, www.opencv.org,
for further details.

http://itseez.com/
www.opencv.org

Chapter 7

[105]

OpenCV was initially an Intel Research initiative to develop tools to analyze images.
The following is the timeline of OpenCV in brief:

In August 2012, support for OpenCV was taken over by a nonprofit foundation,
www.OpenCV.org, which is currently developing it further. It also maintains a
developer and user site for OpenCV.

At the time of writing this, the stable version of OpenCV is 2.4.10.
Version 3.0 Beta is also available.

Setting up Pi for Computer Vision
Make sure that you have a working, wired Internet connection with reasonable
speed for this activity. Now, let's prepare our Pi for computer vision:

1. Connect your Pi to the Internet through Ethernet or a Wi-Fi USB dongle.
2. Run the following command to restart the networking service:

sudo service networking restart

3. Make sure that Raspberry Pi is connected to the Internet by typing in the
following command:
ping –c4 www.google.com

If the command fails, then check the Internet connection with some other
device and resolve the issue. After that, repeat the preceding steps again.

www.OpenCV.org

Introduction to Computer Vision

[106]

4. Run the following commands in a sequence:
sudo apt-get update

sudo apt-get upgrade

sudo rpi-update

sudo reboot –h now

5. After this, we will need to install a few necessary packages and dependencies
for OpenCV. The following is the list of packages we need to install. You just
need to connect your Pi to the Internet and type this in:
sudo apt-get install <package-name> -y

Here, <package-name> is one of the following packages:

libopencv-dev libpng3 libdc1394-22-dev

build-essential libpnglite-dev libdc1394-22

libavformat-dev zlib1g-dbg libdc1394-utils

x264 zlib1g libv4l-0

v4l-utils zlib1g-dev libv4l-dev

ffmpeg pngtools libpython2.6

libcv2.3 libtiff4-dev python-dev

libcvaux2.3 libtiff4 python2.6-dev

libhighgui2.3 libtiffxx0c2 libgtk2.0-dev

libpng++-dev libtiff-tools libunicap2-dev

opencv-doc libjpeg8 libeigen3-deva

libcv-dev libjpeg8-dev libswscale-dev

libcvaux-dev libjpeg8-dbg libjpeg-dev

libhighgui-dev libavcodec-dev libwebp-dev

python-numpy libavcodec53 libpng-dev

python-scipy libavformat53 libtiff5-dev

python-matplotlib libgstreamer0.10-0-dbg libjasper-dev

python-pandas libgstreamer0.10-0 libopenexr-dev

python-nose libgstreamer0.10-dev libgdal-dev

v4l-utils libxine1-ffmpeg python-tk

libgtkglext1-dev libxine-dev python3-dev

libpng12-0 libxine1-bin python3-tk

libpng12-dev libunicap2 python3-numpy

Chapter 7

[107]

For example, you have to install x264, then you will need to to type
the following:
sudo apt-get install x264 -y

This will install the necessary package. Similarly, install all the previously
mentioned packages. If a package is already installed on your Pi, then it will
show the following message:
Reading package lists... Done

Building dependency tree

Reading state information... Done

x264 is already the newest version.

0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

In this case, don't worry. This package is already installed and comes with its
newest version. Just proceed with installing all the other packages in the list
one by one.

6. Finally, install OpenCV for Python with this:

sudo apt-get install python-opencv -y

This is the easiest way to install OpenCV for Python; however, there is a
problem with this. Raspbian repositories may not always contain the latest
version of OpenCV. For example, at the time of writing this, Raspbian
repository contains 2.4.1, while the latest OpenCV version is 2.4.10. With
respect to the Python API, the latest version will always contain much better
support and more functionality.
For the convenience of the readers, all these commands are included in an
executable shell script, chapter07.sh, in the code bundle. Just run the script
with the following command:
./chapter07.sh

This will install all the required packages and dependencies to get started
with OpenCV on Pi.

Introduction to Computer Vision

[108]

Another method to do the same is to compile OpenCV from the
source, which I will not recommend for beginners as it's a bit
complex and will take a lot of time.

Testing the OpenCV installation with Python
In Python, it's very easy to code for OpenCV. It requires very few lines of code
compared to C/C++, and powerful libraries such as NumPy can be exploited for
multidimensional data structures required for image processing.

Open a terminal and type python, and then type the following lines:

>>> import cv2

>>> print cv2.__version__

This will show us the version of OpenCV installed on the Pi, which is 2.4.1 in
our case.

Introducing NumPy
NumPy is the fundamental package used for scientific computing with Python
and it is matrix library for linear algebra. NumPy can also be used as an efficient
multidimensional container of generic data. Arbitrary datatypes can be defined and
used. NumPy is an extension to the Python programming language, adding support
for large, multidimensional arrays and matrices, along with a large library of high-
level mathematical functions to operate on these arrays. We will be using NumPy
arrays throughout this book in order to represent images and carry out complex
mathematical operations on them. NumPy comes with many built-in functions for all
these operations so that we do not have to worry about all the basic array operations.
We can directly focus on the concepts and code for computer vision. All OpenCV
array structures are converted to and from Numpy arrays. So, whatever operations
you can compute in Numpy, we can process them with OpenCV.

In this book, we will be using NumPy with OpenCV a lot. Let's start with some
simple example programs that will demonstrate the real power of NumPy.

Open python in the terminal and try out the upcoming examples.

Chapter 7

[109]

Array creation
Let's look at some examples of array creation. array()method is used very
frequently in the remainder of the book. There are many ways to create arrays of
different types. We will explore these ways as and when required throughout the
remainder of this book:

>>> import numpy as np

>>> x=np.array([1,2,3])

>>> x

array([1, 2, 3])

>>> y=range(10)

>>> y

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Basic operations on arrays
We are going to learn about a linspace()function now. It takes three parameters:
start_num, end_num, and count. This creates an array with equally spaced points
starting with start_num and ending with end_num. Try out the following example:

>>> a=np.array([1,3,6,9])

>>> b=np.linspace(0,15,4)

>>> c=a-b

>>> c

array([1., -2., -4., -6.])

The following is the code to calculate the square of every element in an array:

>>> a**2

array([1, 9, 36, 81])

Introduction to Computer Vision

[110]

Linear algebra
Let's explore some linear algebra examples. We will look at the transpose(), inv(),
solve(), and dot() functions, which are useful for linear algebra:

>>> a=np.array([[1,2,3],[4,5,6],[7,8,9]])

>>> a.transpose()

array([[1, 4, 7],

 [2, 5, 8],

 [3, 6, 9]])

>>> np.linalg.inv(a)

array([[-4.50359963e+15, 9.00719925e+15, -4.50359963e+15],

 [9.00719925e+15, -1.80143985e+16, 9.00719925e+15],

 [-4.50359963e+15, 9.00719925e+15, -4.50359963e+15]])

>>> b=np.array([3,2,1])

>>> np.linalg.solve(a,b)

array([-9.66666667, 15.33333333, -6.])

>>> c= np.random.rand(3,3)

>>> c

array([[0.69551123, 0.18417943, 0.0298238],

 [0.11574883, 0.39692914, 0.93640691],

 [0.36908272, 0.53802672, 0.2333465]])

>>> np.dot(a,c)

array([[2.03425705, 2.59211786, 2.60267713],

 [5.57528539, 5.94952371, 6.20140877],

 [9.11631372, 9.30692956, 9.80014041]])

You can explore NumPy in detail at http://www.numpy.org/.

http://www.numpy.org/

Chapter 7

[111]

Working with images
Let's get started with the basics of OpenCV's Python API. All the scripts we will
write and run will use the OpenCV library, which must be imported with the import
cv2 line. We will import few more libraries as required, and in the next sections and
chapters, cv2.imread() will be used to import an image. It takes two arguments.
The first argument is the image filename. The image should be in the same directory
where the Python script is the absolute path that should be provided to cv2.
imread(). It reads images and saves them as NumPy arrays.

The second argument is a flag that specifies that the mode image should be read.
The flag can have the following values:

• cv2.IMREAD_COLOR: This loads a color image; it is the default flag
• cv2.IMREAD_GRAYSCALE: This loads an image in the grayscale mode
• cv2.IMREAD_UNCHANGED: This loads an image as it includes an alpha channel

The numeric values of the preceding flags are 1, 0, and -1, respectively.

Take a look at the following code:

import cv2 #This imports opencv
#This reads and stores image in color into variable img
img = cv2.imread('lena_color_512.tif',cv2.IMREAD_COLOR)

Now, the last line in the preceding code is the same as this:

img = cv2.imread('lena_color_512.tif',1)

We will be using the numeric values of this flag throughout the book.

The following code is used to display the image:

cv2.imshow('Lena',img)
cv2.waitKey(0)
cv2.destroyWindow('Lena')

Introduction to Computer Vision

[112]

The cv2.imshow() function is used to display an image. The first argument is a
string that is the window name, and the second argument is the variable that holds
the image that is to be displayed.

cv2.waitKey() is a keyboard function. Its argument is the time in milliseconds.
The function waits for specified milliseconds for any keyboard key press. If 0 is
passed, it waits indefinitely for a key press. It is the only method to fetch and handle
events. We must use this for cv2.imshow() or no image will be displayed on screen.

cv2.destroyWindow() function takes a window name as a parameter and destroys
that window. If we want to destroy all the windows in the current program, we can
use cv2.destroyAllWindows().

We can also create a window with a specific name in advance and assign an image to
that window later. In many cases, we will have to create a window before we have
an image. This can be done using the following code:

cv2.namedWindow('Lena', cv2.WINDOW_AUTOSIZE)
cv2.imshow('Lena',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

Putting it all together, we have the following script:

import cv2
img = cv2.imread('lena_color_512.tif',1)
cv2.imshow('Lena',img)
cv2.waitKey(0)
cv2.destroyWindow('Lena')

Chapter 7

[113]

To summarize, the preceding script imports an image, displays it, and waits for the
keystroke to close the window. The screenshot is as follows:

Introduction to Computer Vision

[114]

The cv2.imwrite() function is used to save an image to a specific path. The first
argument is the name of the file and second is the variable pointing to the image
we want to save. Also, cv2.waitKey() can be used to detect specific keystrokes.
Let's test the usage of both the functions in the following code snippet:

import cv2
img = cv2.imread('lena_color_512.tif', 1)
cv2.imshow('Lena', img)
keyPress = cv2.waitKey(0)
if keyPress == ord('q'):
 cv2.destroyWindow('Lena')
elif keyPress == ord('s'): cv2.imwrite('output.jpg', img)
cv2.destroyWindow('Lena')

Here, keyPress = cv2.waitKey(0) is used to save the value of the keystroke
in the keyPress variable. Given a string of length one, ord() returns an integer
representing the Unicode code point of the character when the argument is a
Unicode object or the value of the byte when the argument is an 8-bit string. Based
on keyPress, we either exit or exit after saving the image. For example, if the Esc key
is pressed, the cv2.waitKey()function will return 27.

Using matplotlib
We can also use matplotlib to display images. matplotlib is a 2D plotting library
for Python. It provides a wide range of plotting options, which we will be using in
the next chapter. Let's look at a basic example of matplotlib:

import cv2
import matplotlib.pyplot as plt
#Program to load a color image in gray scale and to display using
 matplotlib
img = cv2.imread('lena_color_512.tif',0)
plt.imshow(img,cmap='gray')
plt.title('Lena')
plt.xticks([])
plt.yticks([])
plt.show()

Chapter 7

[115]

In this example, we are reading an image in grayscale and displaying it using
matplotlib. The following screenshot shows the plot of the image:

The plt.xticks([]) and plt.yticks([]) functions can be used to disable x and
y axis. Run the preceding code again, and this time, comment out the two lines with
the plt.xticks([]) and plt.yticks([]) functions.

The cv2.imread() OpenCV function reads images and saves them as NumPy arrays
of Blue, Green, and Red (BGR) pixels.

Introduction to Computer Vision

[116]

However, plt.imshow() displays images in the RGB format. So, if we read an image
as it is with cv2.imread() and display it using plt.imshow(), then the value for
blue will be treated as the value for red and vice versa by plt.imshow(), and it
will display an image with distorted colors. Try out the preceding code with the
following alterations in the respective lines to experience the concept:

img = cv2.imread('lena_color_512.tif',1)
plt.imshow(img)

To remedy this issue, we need to convert an image read in the BGR format into an
RGB array format by cv2.imread()so that plt.imshow() will be able to render it
in a way that makes sense to us. We will be using the cv2.cvtColor() function for
this, which we will learn soon.

Explore this URL to get more information on matplotlib:
http://matplotlib.org/.

Working with Webcam using OpenCV
OpenCV has a functionality to work with standard USB webcams. Let's take a look at
an example to capture an image from a webcam:

import cv2

initialize the camera
cam = cv2.VideoCapture(0)
ret, image = cam.read()

if ret:
 cv2.imshow('SnapshotTest',image)
 cv2.waitKey(0)
 cv2.destroyWindow('SnapshotTest')
 cv2.imwrite('/home/pi/book/output/SnapshotTest.jpg',image)
cam.release()

In the preceding code, cv2.VideoCapture() creates a video capture object. The
argument for it can either be a video device or a file. In this case, we are passing a
device index, which is 0. If we have more cameras, then we can pass the appropriate
device index based on what camera to choose. If you have one camera, just pass 0.

http://matplotlib.org/

Chapter 7

[117]

You can find out the number of cameras and associated device indexes using the
following command:

ls -l /dev/video*

Once cam.read() returns a Boolean value ret and the frame which is the image it
captured. If the image capture is successful, then ret will be True; otherwise, it will
be False. The previously listed code will capture an image with the camera device,
/dev/video0, display it, and then save it. cam.release() will release the device.

This code can be used with slight modifications to display live video stream from
the webcam:

import cv2

cam = cv2.VideoCapture(0)
print 'Default Resolution is ' + str(int(cam.get(3))) + 'x' +
 str(int(cam.get(4)))
w=1024
h=768
cam.set(3,w)
cam.set(4,h)
print 'Now resolution is set to ' + str(w) + 'x' + str(h)

while(True):
 # Capture frame-by-frame
 ret, frame = cam.read()

 # Display the resulting frame
 cv2.imshow('Video Test',frame)

 # Wait for Escape Key
 if cv2.waitKey(1) == 27 :
 break

When everything done, release the capture
cam.release()
cv2.destroyAllWindows()

You can access the features of the video device with cam.get(propertyID). 3 stands
for the width and 4 stands for the height. These properties can be set with
cam.set(propertyID, value).

Introduction to Computer Vision

[118]

The preceding code first displays the default resolution and then sets it to 1024 x
768 and displays the live video stream till the Esc key is pressed. This is the basic
skeleton logic for all the live video processing with OpenCV. We will make use of
this in future.

Saving a video using OpenCV
We need to use the cv2.VideoWriter() function to write a video to a file. Take a
look at the following code:

import cv2
cam = cv2.VideoCapture(0)
output = cv2.VideoWriter('VideoStream.avi',
cv2.cv.CV_FOURCC(*'WMV2'),40.0,(640,480))

while (cam.isOpened()):
 ret, frame = cam.read()
 if ret == True:
 output.write(frame)
 cv2.imshow('VideoStream', frame)
 if cv2.waitKey(1) == 27 :
 break
 else:
 break

cam.release()
output.release()
cv2.destroyAllWindows()

In the preceding code, cv2.VideoWriter() accepts the following parameters:

• Filename: This is the name of the video file.
• FourCC: This stands for Four Character Code. We have to use the cv2.

cv.CV_FOURCC()function for this. This function accepts FourCC in the *'code'
format. This means that for DIVX, we need to pass *'DIVX', and so on. Some
supported formats are DIVX, XVID, H264, MJPG, WMV1, and WMV2.

You can read more about FourCC at www.fourcc.org.

• Framerate: This is the rate of the frames to be captured per second.
• Resolution: This is the resolution of the video to be captured.

www.fourcc.org

Chapter 7

[119]

The preceding code records the video till the Esc key is pressed and saves it in the
specified file.

Pi Camera and OpenCV
The following code demonstrates the use of Picamera with OpenCV. It shows
a preview for 3 seconds, captures an image, and displays it on screen using
cv2.imshow():

import picamera
import picamera.array
import time
import cv2

with picamera.PiCamera() as camera:
 rawCap=picamera.array.PiRGBArray(camera)
 camera.start_preview()
 time.sleep(3)
 camera.capture(rawCap,format="bgr")
 image=rawCap.array
cv2.imshow("Test",image)
cv2.waitKey(0)
cv2.destroyAllWindows()

Retrieving image properties
We can retrieve and use many image properties with OpenCV functions. Take a look
at the following code:

import cv2
img = cv2.imread('lena_color_512.tif',1)
print img.shape
print img.size
print img.dtype

The img.shape operation returns the shape of the image, that is, its dimensions
and the number of color channels. The output of the previously listed code will be
as follows:

(512, 512, 3)
786432
uint8

Introduction to Computer Vision

[120]

If the image is colored, then img.shape returns a triplet containing the number of
rows, the number of columns, and the number of channels in the image. Usually, the
number of channels is three, representing the red, green, and blue channels. If the
image is grayscale, then img.shape only returns the number of rows and the number
of columns. Try to modify the preceding code to read the image in the grayscale
mode and observe the output of img.shape.

The img.size operation returns the total number of pixels, and img.dtype returns
the image datatype.

Arithmetic operations on images
In this section, we will take a look at the various arithmetic operations that can be
performed on images. Images are represented as matrices in OpenCV. So, arithmetic
operations on images are the same as arithmetic operations on matrices. Images must
be of the same size in order to perform arithmetic operations with images, and these
operations are performed on individual pixels .cv2.add() method is used to add
two images, where images are passed as parameters.

The cv2.subtract() method is used to subtract one image from another.

We know that subtraction operation is not commutative; so, cv2.
subtract(img1,img2) and cv2.(img2,img1) will yield different
results, whereas cv2.add(img1,img2) and cv2.add(img2,img1)
will yield the same result as the addition operation is commutative. Both
the images have to be of the same size and type as that explained earlier.

Check out the following code:

import cv2
img1 = cv2.imread('4.2.03.tiff',1)
img2 = cv2.imread('4.2.04.tiff',1)
cv2.imshow('Image1',img1)
cv2.waitKey(0)
cv2.imshow('Image2',img2)
cv2.waitKey(0)
cv2.imshow('Addition',cv2.add(img1,img2))
cv2.waitKey(0)
cv2.imshow('Image1-Image2',cv2.subtract(img1,img2))
cv2.waitKey(0)
cv2.imshow('Image2-Image1',cv2.subtract(img2,img1))
cv2.waitKey(0)
cv2.destroyAllWindows()

Chapter 7

[121]

The preceding code demonstrates the usage of arithmetic functions on images.
Image2 is the same Lena image that we experimented with in the previous chapter,
so I am not including its output window. The following is the output window
of Image1:

Introduction to Computer Vision

[122]

The following is the output of the Addition:

Chapter 7

[123]

The following is the output window of Image1-Image2:

Introduction to Computer Vision

[124]

The following is the output window if Image2-Image1:

Splitting and merging image color
channels
On several occasions, we might be interested in working separately with the red,
green, and blue channels. For example, we might want to build a histogram for
each channel of an image.

Chapter 7

[125]

The cv2.split() method is used to split an image into three different intensity
arrays for each color channel, whereas cv2.merge() is used to merge different
arrays into a single multichannel array, that is, a color image. Let's take a look at
an example:

import cv2
img = cv2.imread('4.2.03.tiff',1)
b,g,r = cv2.split (img)
cv2.imshow('Blue Channel',b)
cv2.imshow('Green Channel',g)
cv2.imshow('Red Channel',r)
img=cv2.merge((b,g,r))
cv2.imshow('Merged Output',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

The preceding program first splits the image into three channels (blue, green, and
red) and then displays each one of them. The separate channels will only hold the
intensity values of that color, and they will be essentially displayed as grayscale
intensity images. Then, the program will merge all the channels back into an image
and display it.

Negating an image
In mathematical terms, the negative of an image is the inversion of colors. For
a grayscale image, it is even simpler! The negative of a grayscale image is just
the intensity inversion, which can be achieved by finding the complement of the
intensity from 255. A pixel value ranges from 0 to 255 and, therefore, negation is the
subtraction of the pixel value from the maximum value, that is, 255. The code for this
is as follows:

import cv2
img = cv2.imread('4.2.07.tiff')
grayscale = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
negative = abs(255-grayscale)
cv2.imshow('Original',img)
cv2.imshow('Grayscale',grayscale)
cv2.imshow('Negative',negative)
cv2.waitKey(0)
cv2.destroyAllWindows()

The negative of a negative will be the original grayscale image. Try this
on your own by taking the image negative of a negative again.

Introduction to Computer Vision

[126]

Logical operations on images
OpenCV provides bitwise logical operation functions on images. We will take a
look at functions that provide bitwise logical AND, OR, XOR (exclusive OR), and
NOT (inversion) functionalities. These functions can be better demonstrated visually
with grayscale images. I am going to use barcode images in horizontal and vertical
orientations for demonstration. Look at the following code:

import cv2
import matplotlib.pyplot as plt

img1 = cv2.imread('Barcode_Hor.png',0)
img2 = cv2.imread('Barcode_Ver.png',0)
not_out=cv2.bitwise_not(img1)
and_out=cv2.bitwise_and(img1,img2)
or_out=cv2.bitwise_or(img1,img2)
xor_out=cv2.bitwise_xor(img1,img2)

titles = ['Image 1','Image 2','Image 1 NOT','AND','OR','XOR']
images = [img1,img2,not_out,and_out,or_out,xor_out]

for i in xrange(6):
 plt.subplot(2,3,i+1)
 plt.imshow(images[i],cmap='gray')
 plt.title(titles[i])
 plt.xticks([]),plt.yticks([])
plt.show()

We first read images in the grayscale mode and calculate the NOT, AND, OR, and
XOR, and then, with matplotlib, we display them in a neat way. We are leveraging
the plt.subplot() function here to display multiple images. In this example,
we are creating a two row and three column grid for our images and displaying
each image in every part of the grid. You can modify this line and make it
plt.subplot(3,2,i+1) in order to create a three row and two column grid.

We can do this without a loop in the following way. For each image, you have to
write the following statements. I am writing this for the first image here only. Go
ahead and write it for the rest of the five images:

plt.subplot(2,3,1) , plt.imshow(img1,cmap='gray') , plt.title('Image
1') , plt.xticks([]),plt.yticks([])

Chapter 7

[127]

Finally, use plt.show() to display. This technique is to avoid the loop where there is
very small number of images to be displayed: usually 2 or 3. The output of this will
be exactly the same, as follows:

You might want to make a note of the fact that a logical NOT
operation is the negative of the image.
You can check out the Python OpenCV API documentation at
http://docs.opencv.org/modules/refman.html.

http://docs.opencv.org/modules/refman.html

Introduction to Computer Vision

[128]

Colorspaces and conversions
A colorspace is a mathematical model used to represent colors. Usually, colorspaces
are used to represent colors in a numerical form and perform mathematical and
logical operations with them. In this book, the colorspaces we mostly use are BGR
(OpenCV's default colorspace), RGB, HSV, and grayscale. BGR stand for Blue,
Green, and Red. HSV represents colors in the Hue, Saturation, and Value format.
OpenCV has a cv2.cvtColor(img,conv_flag) function that allows us to change
the colorspace of an img image, while the source and target colorspaces are indicated
in the conv_flag parameter. We have learned that OpenCV loads images in the
BGR format, and matplotlib uses the RGB format for images. So, before displaying
images with matplotlib, we need to convert images from BGR to the RGB
colorspace. Take a look at the following code. The programs read image in the color
mode using cv2.imread(), which imports the image in the BGR colorspace. Then,
it converts it into RGB using cv2.cvtColor(), and finally, it uses matplotlib to
display the image:

import cv2
import matplotlib.pyplot as plt

img = cv2.imread('4.2.07.tiff',1)
img = cv2.cvtColor(img , cv2.COLOR_BGR2RGB)
plt.imshow(img), plt.title('COLOR IMAGE'), plt.xticks([]),
 plt.yticks([])
plt.show()

Another way to convert an image from BGR to RGB is to first split the image
into three separate channels (B, G, and R channels) and merge them in the BGR
order. However, this takes more time as split and merge operations are inherently
computationally costly, making them slower and inefficient. The following code
shows this method:

import cv2
import matplotlib.pyplot as plt
img = cv2.imread('4.2.07.tiff',1)
b,g,r = cv2.split(img)
img=cv2.merge((r,g,b))
plt.imshow(img), plt.title('COLOR IMAGE'), plt.xticks([]),
 plt.yticks([])
plt.show()

Chapter 7

[129]

The output of both the programs is the same as that shown in the following screenshot:

If you need to know the colorspace conversion flags, then the following snippet
of code will assist you in finding the list of available flags for your current
OpenCV installation:

import cv2
j=0
for filename in dir(cv2):
 if filename.startswith('COLOR_'):
 print filename
 j=j+1

print 'There are ' + str(j) + ' Colorspace Conversion flags in
 OpenCV'

Introduction to Computer Vision

[130]

The last few lines of the output will be as follows (I am not including the complete
output due to space limitation):

.

.

.
COLOR_YUV420P2BGRA
COLOR_YUV420P2GRAY
COLOR_YUV420P2RGB
COLOR_YUV420P2RGBA
COLOR_YUV420SP2BGR
COLOR_YUV420SP2BGRA
COLOR_YUV420SP2GRAY
COLOR_YUV420SP2RGB
COLOR_YUV420SP2RGBA
There are 176 Colorspace Conversion flags in OpenCV

The following code converts a color from BGR to HSV and prints it:

>>> import cv2

>>> import numpy as np

>>> c = cv2.cvtColor(np.uint8[[[255,0,0]]]),cv2.COLOR_BGR2HSV)

>>> print c

[[[120 255 255]]]

The preceding snippet of code prints an HSV value of Blue represented in BGR.

Hue, Saturation, Value (HSV) is a color model that describes colors (hue or tint) in
terms of their shade (the saturation or the amount of gray) and their brightness (the
value or luminance). Hue is expressed as a number representing hues of red, yellow,
green, cyan , blue, and magenta. Saturation is the amount of gray in the color. Value
works in conjunction with saturation and describes the brightness or intensity of
the color.

Chapter 7

[131]

Tracking in real time based on color
Let's study a real-life application of this concept. In the HSV format, it's much easier
to recognize the color range. If we need to track a specific color object, we will need
to define a color range in HSV and then convert the captured image in the HSV
format and check whether the part of that image falls within the HSV color range of
our interest. We can use the cv2.inRange() function to achieve this. This function
takes an image, the upper and lower bounds of the colors, and then it checks the
range criteria for each pixel. If the pixel value falls in the given color range, then
the corresponding pixel in the output image is 0; otherwise, it is 255, thus creating a
binary mask. We can use bitwise_and() to extract the color range we're interested
in using this binary mask thereafter. Take a look at the following code to understand
this concept:

import numpy as np
import cv2

cam = cv2.VideoCapture(0)

while (True):
 ret, frame = cam.read()

hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

image_mask = cv2.inRange(hsv, np.array([40, 50, 50]),
 np.array([80, 255, 255]))

output = cv2.bitwise_and(frame, frame, mask = image_mask)

cv2.imshow('Original', frame)
cv2.imshow('Output', output)

if cv2.waitKey(1) == 27:
 break

cv2.destroyAllWindows()
cam.release()

Introduction to Computer Vision

[132]

We're tracking the green-colored objects in this program. The output should be
similar to the following figure. I used green tea bag tags as the test object.

The mask image is not included in the preceding figure. You can see it yourself by
adding cv2.imshow('Image Mask',image_mask) to the code. It will be a binary
(pure black and white) image.

We can also track multiple colors by tweaking this code a bit. We need to modify
the preceding code by creating a mask for another color range. Then, we can use
cv2.add() to get the combined mask for two distinct color ranges, as follows:

blue=cv2.inRange(hsv, np.array([100,50,50]),
 np.array([140,255,255]))
green=cv2.inRange(hsv,np.array([40,50,50]),np.array([80,255,255]))
image_mask=cv2.add(blue,green)
output=cv2.bitwise_and(frame,frame,mask=image_mask)

Try this code and check the output by yourself.

Summary
In this chapter, we learned the basics of computer vision with OpenCV and Pi. We
also went through the basic image processing operations and implemented a real-life
project to track objects in a live video stream based on the color.

In the next chapter, we will learn some more advanced concepts in computer vision
and implement a fully fledged motion detection system with Pi and a webcam with
the use of these concepts.

[133]

Creating Your Own Motion
Detection and Tracking

System
In the previous chapter, we studied the basics of the OpenCV library. We set up our
Pi for OpenCV programming with Python and implemented a simple project to track
an object based on the color in OpenCV with a live webcam feed. In this chapter,
we will learn about some more advanced concepts and implement one more project
based on OpenCV. In this chapter, we will learn about the following topics:

• Thresholding
• Noise reduction
• Morphological operations on images
• Contours in OpenCV
• Real-time motion detection and tracking

Thresholding images
Thresholding is a way to segment images. Although thresholding methods and
algorithms are available for colored images, it works best on grayscale images.
Thresholding usually (but not always) converts grayscale images into binary
images (in a binary image, each pixel can have only one of the two possible
values: white or black). Thresholding the image is usually the first step in
many image processing applications.

Creating Your Own Motion Detection and Tracking System

[134]

The way thresholding works is very simple. We define a threshold value. For a pixel
in a grayscale image, if the value of grayscale intensity is greater than the threshold,
then we assign a value to the pixel (for example, white); otherwise, we assign a black
value to the pixel. This is the simplest form of thresholding. Also, there are many
other variations of this method, which we will look at now.

In OpenCV, the cv2.threshold() function is used to threshold images. Its input
includes grayscale image, threshold values, maxVal, and threshold methods as
parameters and returns the thresholded image as the output. maxVal is the value
assigned to the pixel if the pixel intensity is greater (or lesser in some methods)
than the threshold. There are many threshold methods available in OpenCV; in the
beginning, the simplest form of thresholding we saw was cv2.THRESH_BINARY.
Let's look at the mathematical representation of some of the threshold methods.

Say (x,y) is the input pixel; then, operations for threshold methods will be as follows:

• cv2.THRESH_BINARY

If intensity(x,y)> threshold, then set intensity(x,y)=maxVal; else, set
intensity(x,y) = 0

• cv2.THRESH_BINARY_INV

If intensity(x,y)> threshold, then set intensity(x,y)=0; else,
set intensity(x,y) = maxVal

• cv2.THRESH_TRUNC

If intensity(x,y)> threshold, then set intensity(x,y)=threshold; else,
leave intensity(x,y) as it is

• cv2.THRESH_TOZERO

If intensity(x,y)> threshold, then leave intensity(x,y) as it is; else, set
intensity(x,y) = 0

• cv2.THRESH_TOZERO_INV

If intensity(x,y)> threshold, then set intensity(x,y)=0; else, leave
intensity(x,y) as it is

The demonstration of the threshold functionality usually works best on grayscale
images with a gradually increasing gradient. In the following example, we are
setting the value of the threshold as 127, so the image is segmened in two sets of
pixels depending on the value of their intensity:

import cv2
import matplotlib.pyplot as plt

Chapter 8

[135]

img = cv2.imread('gray21.512.tiff',0)
th=127
max_val=255
ret,o1 = cv2.threshold(img,th,max_val,cv2.THRESH_BINARY)
ret,o2 = cv2.threshold(img,th,max_val,cv2.THRESH_BINARY_INV)
ret,o3 = cv2.threshold(img,th,max_val,cv2.THRESH_TOZERO)
ret,o4 = cv2.threshold(img,th,max_val,cv2.THRESH_TOZERO_INV)
ret,o5 = cv2.threshold(img,th,max_val,cv2.THRESH_TRUNC)

titles = ['Input Image','BINARY','BINARY_INV','TOZERO',
 'TOZERO_INV','TRUNC']
output = [img, o1, o2, o3, o4, o5]

for i in xrange(6):
 plt.subplot(2,3,i+1),plt.imshow(output[i],cmap='gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()

The output of the preceding code will be as follows:

Creating Your Own Motion Detection and Tracking System

[136]

Otsu's method
Otsu's method for thresholding automatically determines the value of the
threshold for images that have two peaks in their histogram (bimodal
histograms). The following is a bimodal histogram:

This usually means that the image has background and foreground pixels and Otsu's
method is the best way to separate these two sets of pixels automatically without
specifying a threshold value.

Otsu's method is not the best way for those images that are not in the background
and foreground model and may provide improper output if applied.

This method is applied in addition to other methods, and the threshold is passed as
0. Try out the following code:

ret,output=cv2.threshold(image,0,255,cv2.THRESH_BINARY+cv2.THRESH_
OTSU)

Chapter 8

[137]

The output of this will be as follows. This is a screenshot of a tank in a desert:

Creating Your Own Motion Detection and Tracking System

[138]

Noise
Noise means an unwanted signal. Image/video noise means unwanted variations
in intensity (for grayscale image) or colors (for color images) that are not present in
the real object being photographed or recorded. Image noise is a form of electronic
disruption and could come from many sources, such as camera sensors and circuitry
in digital or analog cameras. Noise in digital cameras is equivalent to the film grain
of analog cameras. Though some noise is always present in any output of electronic
devices, a high amount of image noise considerably degrades the overall image
quality, making it useless for the intended purpose. To represent the quality of the
electronic output (in our case, digital images), the mathematical term signal-to-noise
ratio (SNR) is a very useful term. Mathematically, it's defined as follows:

SignalPowerSNR
NoisePower

=

More signal-to-noise ratio translates into better quality image.

Kernels for noise removal
In the following concepts and their implementations, we are going to use kernels.
Kernels are square matrices used in image processing. We can apply a kernel to an
image to get different results, such as the blurring, smoothing, edge detection, and
sharpening of an image. One of the main uses of kernels is to apply a low pass filter
to an image. Low pass filters average out rapid changes in the intensity of the image
pixels. This basically smoothens or blurs the image. A simple averaging kernel can be
mathematically represented as follows:

AllOnesMatrixK
Rows Cols

=
∗

For row = cols = 3, kernel will be as follows:

1 1 1
1 1 1
1 1 1
9

K

 =

Chapter 8

[139]

The value of the rows and columns in the kernel is always odd.

We can use the following NumPy code to create this kernel:

K=np.ones((3,3),np.uint32)/9

2D convolution filtering
cv2.filter2D() function convolves the previously mentioned kernel with the
image, thus applying a linear filter to the image. This function accepts the source
image and depth of the destination image (-1 in our case, where -1 means the same
depth as the source image) and a kernel. Take a look at the following code. It applies
a 7 x 7 averaging filter to an image:

import cv2
importnumpy as np
frommatplotlib import pyplot as plt

img = cv2.imread('4.2.03.tiff',1)

input = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
output = cv2.filter2D(input,-1,np.ones((7,7),np.float32)/49)

plt.subplot(121),plt.imshow(input),plt.title('Input')
plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(output),plt.title('Output')
plt.xticks([]), plt.yticks([])
plt.show()

The output will be a filtered image, as follows:

Creating Your Own Motion Detection and Tracking System

[140]

Low pass filtering
As discussed in the kernels section, low pass filters are excellent when it comes to
removing sharp components (high frequency information) such as edges and noise
and retaining low frequency information (so-called low pass filters), thus blurring or
smoothening them.

Let's explore the low pass filtering functions available in OpenCV. We do not have to
create and pass the kernel as an argument to these functions; instead, these functions
create the kernel based on the size of the kernel we pass as the parameter.

cv2.boxFilter() function takes the image, depth, and size of the kernel as inputs
and blurs the image. We can specify normalize as either True or False. If it's True,
the matrix in the kernel would have 1

rows cols∗
 as its coefficient; thus, the matrix is

called a normalized box filter. If normalize is False, then the coefficient will be 1,
and it will be an unnormalized box filter. An unnormalized box filter is useful for the
computing of various integral characteristics over each pixel neighborhood, such as
covariance matrices of image derivatives (used in dense optical flow algorithms, and
so on). The following code demonstrates a normalized box filter:

output=cv2.boxFilter(input,-1,(3,3),normalize=True)

The output of the code will be as follows, and it will have less smoothing than the
previous one due to the size of the kernel matrix:

The cv2.blur() function directly provides the normalized box filter by accepting
the input image and the kernel size as parameters without the need to specify the
normalize parameter. The output for the following code will be exactly the
same as the preceding output:

output = cv2.blur(input,(3,3))

Chapter 8

[141]

As an exercise, try passing normalize as False for an unnormalised box filter to
cv2.boxFilter() and view the output.

The cv2.GaussianBlur() function uses the Gaussian kernel in place of the box filter
to be applied. This filter is highly effective against Gaussian noise. The following is
the code that can be used for this function:

output = cv2.GaussianBlur(input,(3,3),0)

You might want to read more about Gaussian noise at http://
homepages.inf.ed.ac.uk/rbf/HIPR2/noise.htm.

The following is the output of the earlier code where the input is the image with
Gaussian noise and the output is the image with removed Gaussian noise.

http://homepages.inf.ed.ac.uk/rbf/HIPR2/noise.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/noise.htm

Creating Your Own Motion Detection and Tracking System

[142]

cv2.medianBlur() is used for the median blurring of the image using the median
filter. It calculates the median of all the values under the kernel, and the center pixel
in the kernel is replaced with the calculated median. In this filter, a window slides
along the image, and the median intensity value of the pixels within the window
becomes the output intensity of the pixel being processed. This is highly effective
against salt and pepper noise. We need to pass an input image and an odd positive
integer (not the rows, columns tuple like the previous two functions) to this function.
The following code introduces salt and pepper noise in the image and then applies
cv2.medianBlur() to that in order to remove the noise:

import cv2
importnumpy as np
import random
frommatplotlib
import pyplot as plt

img = cv2.imread('lena_color_512.tif', 1)

input = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

output = np.zeros(input.shape, np.uint8)
p = 0.2# probablity of noise
fori in range(input.shape[0]):
 for j in range(input.shape[1]):
 r = random.random()
if r < p / 2:
 output[i][j] = 0, 0, 0
elif r < p:
 output[i][j] = 255, 255, 255
else :
 output[i][j] = input[i][j]

noise_removed = cv2.medianBlur(output, 3)

plt.subplot(121), plt.imshow(output), plt.title('Noisy Image')
plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(noise_removed), plt.title('Median
 Filtering')
plt.xticks([]), plt.yticks([])
plt.show()

You will find that the salt and pepper noise is drastically reduced and the image is
much more comprehensible to the human eye.

Chapter 8

[143]

Morphological transformations on
images
Morphological operations are based on image shapes, and they work best on binary
images. We can use these to get away with a lot of unwanted information, such as
noise in an image. Any morphological operation requires two inputs: image and
kernel. In this section, we will explore the erosion, dilation, and gradient of an image.
Since binary images are most suitable for explaining this concept, we will use a
binary image (black and white) to study the concepts.

Erosion removes the boundaries in the image and slims it. In a binary image, white
is the foreground and black is the background. All the pixels at the boundary of the
white foreground image are made zero, thus slimming the image and eroding away
the boundary. Dilation is exactly opposite of erosion; it expands the foreground
image boundary and flattens it. The extent of to erosion and dilation depends on the
kernel and the number of iterations. The morphological gradient of an image is the
difference between dilation and erosion. It will return the outline of an image. Check
out the following code for the basic usage of these operations in OpenCV. We will be
using these in our next chapter to refine our image for better output:

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('morphological.tif',0)
kernel = np.ones((5,5),np.uint8)

Creating Your Own Motion Detection and Tracking System

[144]

erosion = cv2.erode(img,kernel,iterations = 2)
dilation = cv2.dilate(img,kernel,iterations = 2)
gradient = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel)

titles=['Original','Erosion','Dilation','Gradient']
output=[img,erosion,dilation,gradient]

for i in xrange(4):
 plt.subplot(2,2,i+1),plt.imshow(output[i],cmap='gray')
 plt.title(titles[i]),plt.xticks([]),plt.yticks([])
plt.show()

The output will be as follows:

Motion detection and tracking
We will now build a sophisticated motion detection and tracking system with
simple logic to find the difference between subsequent frames from a video feed,
such as a webcam stream and plotting contours around the area where the
difference is detected.

Chapter 8

[145]

Let's import the required libraries and initialize the webcam:

import cv2
import numpy as np

cap = cv2.VideoCapture(0)

We will need a kernel for the dilation operation that we will create in advance rather
than creating it every time in the loop:

k=np.ones((3,3),np.uint8)

The following code will capture and store the subsequent frames:

t0 = cap.read()[1]
t1 = cap.read()[1]

Now we initiate the while loop and calculate the difference between the frames and
convert the output to grayscale for further processing:

while(True):

 d=cv2.absdiff(t1,t0)

 grey = cv2.cvtColor(d, cv2.COLOR_BGR2GRAY)

The output will be as follows, and it shows difference of pixels between the frames:

This image might contain some noise, so we will blur it first:

 blur = cv2.GaussianBlur(grey,(3,3),0)

Creating Your Own Motion Detection and Tracking System

[146]

We use binary threshold to convert this noise-removed output into a binary image
with the following code:

 ret, th = cv2.threshold(blur, 15, 255, cv2.THRESH_BINARY)

The final operation will be to dilate the image so that it will be easier for us to find
the boundary clearly:

 dilated=cv2.dilate(th,k,iterations=2)

The output of the preceding step will be the following:

Then, we find and draw the contours for the preceding image with the
following code:

 contours, hierarchy =
 cv2.findContours(dilated,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

 t2=t0
 cv2.drawContours(t2, contours, -1, (0,255,0), 2)

 cv2.imshow('Output', t2)

Finally, we assign the latest frame to the older frame and capture the next frame with
the webcam with the following code:

 t0=t1
 t1=cap.read()[1]

Chapter 8

[147]

We terminate the loop once we detect the Esc keypress, as usual:

 if cv2.waitKey(5) == 27 :
 break

Once the loop is terminated, we release the camera and destroy the display window:

cap.release()
cv2.destroyAllWindows()

This will draw the contour roughly around the area where the movement is detected,
as shown in the following screenshot:

This code works very well for slow movements. You can make the output more
interesting by drawing contours with different colors. Also, you can find out
the centroid of the contours and draw crosshairs or circles corresponding to
the centroids.

If you wish to explore OpenCV with Raspberry Pi in more depth, go
through Raspberry Pi Computer Vision Programming. Here is the link:
https://www.packtpub.com/hardware-and-creative/
raspberry-pi-computer-vision-programming.

https://www.packtpub.com/hardware-and-creative/raspberry-pi-computer-vision-programming
https://www.packtpub.com/hardware-and-creative/raspberry-pi-computer-vision-programming

Creating Your Own Motion Detection and Tracking System

[148]

Summary
In this chapter, we learned about the advanced topics of computer vision with
OpenCV and Pi.

We learned about advanced image processing techniques, such as thresholding,
noise reduction, contours, and morphological operations. Finally, we implemented
all these techniques to build a real-life application for image processing.

In the next chapter, we will learn about the basics of interfacing Pi with Grove Shield
and Grove Sensors.

[149]

Grove Sensors and the
Raspberry Pi

In the previous chapter, we discussed object detection and tracking and also learned
to detect motion in scenes. Along the way, we also learned various concepts of image
processing that may also be used for different applications.

In this chapter, we will be moving forward from the software-based approach of the
previous chapter and explore the hardware capabilities of the Raspberry Pi. We will
also learn about an add-on called the GrovePi Shield, which will extend the GPIO
capabilities of the Pi platform and make it even easier to connect new sensors to it.
In this chapter, we will learn about the following:

• Introducing the GrovePi Shield and sensors
• Setting up the Shield with the Raspberry Pi
• Building a weather station
• Building an intruder detection system

Introducing the GrovePi
The GrovePi Shield is an open source platform to connect a range of sensors called
the Grove sensors to the Raspberry Pi. We can create our own Internet of Things
applications without any need for soldering using the GrovePi! Grove is an
easy-to-use collection of more than a hundred Plug and Play modules that we can
use to sense and interact with the physical world. The array of sensors include relays,
temperature sensors, OLED displays, ultrasonic ranger, joystick, accelerometer,
humidity sensor, GPS, and so on. They are divided on the basis of the following
six categories: Environment Monitoring, Motion Sensing, User Interface, Physical
Monitoring, Logic Gate, and Power.

Grove Sensors and the Raspberry Pi

[150]

You can interact and monitor the world using the sensors and then store the data on
your Raspberry Pi bridging the gap to the real world!

As you can see from the preceding image, the GrovePi slips over the Raspberry Pi
and has a variety of sockets to hold the different sensors that you might want to
add to your Raspberry Pi. It works with the Raspberry Pi models A, A+, B, B+, 2,
and uses an open source library made available by its creators to allow users to
program in Python, C, C++, Go, and NodeJS.

For this chapter, we will need the following components:

• Humidity and temperature sensor (http://www.seeedstudio.com/depot/
Grove-TempHumi-Sensor-p-745.html?cPath=25_125)

• LED (http://www.seeedstudio.com/depot/Grove-Red-LED-p-1142.
html?cPath=81_35)

• Ultrasonic ranger (http://www.seeedstudio.com/depot/Grove-
Ultrasonic-Ranger-p-960.html?cPath=25_31)

http://www.seeedstudio.com/depot/Grove-TempHumi-Sensor-p-745.html?cPath=25_125
http://www.seeedstudio.com/depot/Grove-TempHumi-Sensor-p-745.html?cPath=25_125
http://www.seeedstudio.com/depot/Grove-Red-LED-p-1142.html?cPath=81_35
http://www.seeedstudio.com/depot/Grove-Red-LED-p-1142.html?cPath=81_35
http://www.seeedstudio.com/depot/Grove-Ultrasonic-Ranger-p-960.html?cPath=25_31
http://www.seeedstudio.com/depot/Grove-Ultrasonic-Ranger-p-960.html?cPath=25_31

Chapter 9

[151]

• OLED display (http://www.seeedstudio.com/depot/Grove-OLED-
Display-096-p-824.html?cPath=34_36)

• Buzzer (http://www.seeedstudio.com/depot/Grove-Buzzer-p-768.
html?cPath=38)

• GrovePi+ (http://www.seeedstudio.com/depot/GrovePi-p-2241.html)

All of the preceding are available on the SeeedStudio website.

You can find out more about the GrovePi and the sensors on
their creator's website:
http://www.dexterindustries.com/

Setting up the GrovePi
Let us have a look at an image of the GrovePi:

http://www.seeedstudio.com/depot/Grove-OLED-Display-096-p-824.html?cPath=34_36
http://www.seeedstudio.com/depot/Grove-OLED-Display-096-p-824.html?cPath=34_36
http://www.seeedstudio.com/depot/Grove-Buzzer-p-768.html?cPath=38
http://www.seeedstudio.com/depot/Grove-Buzzer-p-768.html?cPath=38
http://www.seeedstudio.com/depot/GrovePi-p-2241.html
http://www.dexterindustries.com/

Grove Sensors and the Raspberry Pi

[152]

As you can see from the preceding image, GrovePi has a socket that allows it to fit
directly over the Raspberry Pi. Once we do that, we can begin to set up the software
on the Raspberry Pi to use the shield. The steps are given next.

1. Turn on the Raspberry Pi without the GrovePi attached and open a terminal
window either by using a monitor or through ssh:

2. It is recommended that we install GrovePi on the desktop so we first cd into
the desktop directory with the following command:
$ cd /home/pi/Desktop

3. Now clone the repository from GitHub into the desktop with the
following command:
$ sudo git clone https://github.com/DexterInd/GrovePi

Chapter 9

[153]

4. We are now ready to execute the install script for the GrovePi. But we must
first make the script executable and then run it:
$ cd /home/pi/Desktop/GrovePi/Script

$ sudo chmod +x install.sh

$ sudo ./install.sh

5. The terminal will ask you to press ENTER and subsequently Y to continue, so
please do press Enter to install all the required packages.

Grove Sensors and the Raspberry Pi

[154]

The setup will now be completed and your Raspberry Pi will be restarted
automatically. With the Raspberry Pi powered off, attach the GrovePi and
then turn it on.

Now we will check if the Raspberry Pi detected the GrovePi upon reboot. Run:

$ sudo i2cdetect -y 1

The command i2cdetect detects any peripherals that are connected to the I2C
Pins of the Raspberry Pi, which are GPIO02 and GPIO03 in the case of Pi B+ and Pi
2. These are the pins that the GrovePi Shield uses to establish a connection to the
Raspberry Pi.

Chapter 9

[155]

In case you have a Raspberry Pi model that was produced before October 2012,
you can run the following:

$ sudo i2cdetect -y 0

If you see a '04' in the output matrix, that means the GrovePi is detected by the
Raspberry Pi I2C port. We can now test to see if it works properly. To test, connect
an LED module to the D4 port and run the LED Blink Python example that comes
bundled with the Github repository we cloned in an earlier step. To do that, run the
following command:

$ cd /home/pi/Desktop/GrovePi/Software/Python

$ sudo python grove_led_blink.py

If everything was installed correctly in the previous steps, the LED on port D4
should now start blinking.

Congratulations, we have successfully set up the GrovePi to work with the
Raspberry Pi and we will now move on to some complex and interesting
examples to explore the functionality of the GrovePi.

Grove Sensors and the Raspberry Pi

[156]

Displaying the weather
For our first project, we will be using the humidity and temperature sensor
of the gross array and use its measurements to be displayed on an OLED display.
You will need the two modules and some connection cables to set up the hardware
for this project.

Connect the only display module to any of the three i2c ports on the GrovePi,
and connect the humidity and temperature sensor to port D7. Now we will
have a look at the following code and then learn what each statement does:

from grovepi import *
from grove_oled import *
dht_sensor_port = 7
oled_init()
oled_clearDisplay()
oled_setNormalDisplay()

Chapter 9

[157]

oled_setVerticalMode()
time.sleep(.1)
while True:
 try:
 [temp,hum] = dht(dht_sensor_port,1)
 print "temp =", temp, "C\thumidity =", hum,"%"
 t = str(temp)
 h = str(hum)
 oled_setTextXY(0,1)
 oled_putString("WEATHER")
 oled_setTextXY(2,0)
 oled_putString("Temp:")
 oled_putString(t+'C')
 oled_setTextXY(3,0)
 oled_putString("Hum :")
 oled_putString(h+"%")
 except (IOError,TypeError) as e:
 print "Error"

Save the preceding code as prog1.py and run it. You should see the temperature and
humidity values being reported on the terminal, as well as on the OLED screen:

The first two statements are responsible for importing the dependencies required for
the GrovePi Shield and OLED module to work. The asterisk tells Python to import
all the classes and functions from the given modules. The second statement creates
a variable where the port number for the DHT module is saved. The next statements
set up the OLED module for writing data to it. The functions initialize the module,
clear the display, and set the vertical mode so that if we write anything subsequently
it appears natural. It is recommended that these four statements be executed at the
start of any Python program that uses the OLED module.

Grove Sensors and the Raspberry Pi

[158]

Next, we add an infinite while loop so that the program keeps on running until
the user terminates it. Inside the while loop, we run the code that is responsible for
getting the data from the sensor and displaying it on the OLED module. One of the
common mistakes when getting data from any source is that the data might not be
available. So we always check the validity and availability of data before executing
any code to manipulate or use that data. This is why we must add a try catch
statement so that if the data is not available, the program does not crash but
gives us an error statement.

Inside the try block, our first statement is to get the data from the DHT module using
the dht() function. This function takes two arguments: the sensor port number and
the type of board connected. We'll enter 1 if the board is DHT Pro and 0 if the board
is DHT. It also gives us the output in the form of a list containing two elements: the
temperature and humidity level.

In the next statement, we print the humidity level and temperature to the terminal
so that the user can look at it. The values that we get from the dht() command are
integers, but to display them on the OLED screen we need to convert them to strings.
This is what the str() method does. It takes an input like integer, float, list, and so
on and gives a string output.

The subsequent commands that begin with oled_ are all to manipulate the display
of the data on the OLED screen. With the oled_setTextXY() method, we can set the
cursor to display the data. It takes the X and Y coordinates as arguments and sets the
cursor there. Next, with the oled_putString() method, we actually push the string
data to be displayed on the cursor we just set. We do this three times: first to set the
title as 'WEATHER', second to set the temperature and its units, and finally to set the
humidity and its percentage. Since this method only takes the string as input, it was
necessary to convert the integer values of temperature and humidity to the string
before using it here.

Finally, we read the last statement that does nothing but handle any error that might
be encountered in the try block. If it does encounter an error of any sort, it prints
Error instead of crashing.

We will now move on to our next project, which uses an ultrasonic sensor and
a Pi Camera (or a normal webcam if you so choose). Any idea about what we're
going to make?

Chapter 9

[159]

Intruder detection system
Do you have any data that would cause damage if it fell into the wrong hands?
Or do you wish to know who enters a specific place when you're not present?
Well, you can now easily answer these questions by building your own intruder
detection system!

As mentioned before, this project uses an ultrasonic range sensor for the
GrovePi and a PiCam to take pictures if any movement is detected by the ultrasonic
ranger. Connect the ultrasonic ranger to port D4 of the Grove Pi, the buzzer to D5,
the status LED to D3, and the Pi Camera to the port provided on the Raspberry Pi as
learned in Chapter 4, Working with Webcam and Pi Camera. Following the theme of the
book, we will first look at the whole code, and then learn what each statement does,
line by line:

import picamera
import grovepi
from time import sleep

camera = picamera.PiCamera()
counter = 0
led = 3
buzzer = 5
ultrasonic = 4

while True:
 try:
 if grovepi.ultrasonicRead(ultrasonic) < 100:
 print 'Intruder Detected'
 grovepi.analogWrite(buzzer, 100)
 grovepi.digitalWrite(led, 1)
 sleep(.5)
 grovepi.analogWrite(buzzer, 0)
 grovepi.digitalWrite(led, 0)
 camera.capture('image' + counter + '.jpg')
 print 'Image Captured'
 sleep(2)
 except IOError:
 print "Error"

Grove Sensors and the Raspberry Pi

[160]

Save the preceding code as prog2.py and run it. Now, try to come in front of the
ultrasonic sensor and you will see the output on the terminal, and have your picture
taken as an intruder!

The code itself is very simple to understand, as it is just an amalgamation of parts
from Chapter 4, Working with Webcam and Pi Camera, which we have already learned,
and parts from the previous example. We start by importing the dependencies for
the Pi Camera and GrovePi sensors.

As a setting-up step, we set the camera variable to be an object for our Pi Camera and
it can be used to take pictures. We set a counter for the number of pictures and set
the LED and buzzer to be used on ports D3 and D5 respectively. We also import the
sleep method from the 'time' module to add delays. Like before, we include a 'try,
except' block in the infinite while loop, so that when errors are encountered, it does
not crash.

Basic algorithm for the intruder detection can be described as: Whenever anything
comes in front of the ultrasonic ranger whose range is less than 100 cms, it means
that there is an intruder. If the preceding condition is true, then sound the buzzer,
light the LED, and take a picture. The ultrasonicRead() method from the GrovePi
module reads the output from the ultrasonic ranger that is connected to port D7
of the GrovePi. If the distance is less than 100 cms, then we proceed to execute
the intruder detection alarm procedure. First, we output Intruder detected to
the terminal, then we turn on the buzzer by the analogWrite() method and the
LED with the digitalWrite() method. The analogue write method takes the
port number of the peripheral and a value from 0 to 255. The higher the value, the
higher the intensity of the signal transmitted to the peripheral. The digitalWrite()
method also takes the port number as an input and a binary number, to set the port
high or low. We wait for half a second and then turn both the buzzer and LED off.
Finally, we capture a photo with the camera pointed toward the direction of the
ultrasonic ranger. Congratulations! We now have a photo of the intruder. Now, if we
do not add some delay after taking a photo, the code will repeat itself and since the
intruder is likely to still be there, the Raspberry Pi may take an unnecessarily large
amount of photos. This is likely to burden the CPU and take resources away from
other threads that might be running. So we add a two-second delay.

We can also experiment by varying the delay values to see what works best. I leave
the reader with an interesting exercise of adding more peripherals to expand the
functionality of the system, such as adding a keypad or a switch to turn off the
system when it is not required.

Chapter 9

[161]

Summary
In this chapter, we learned how to connect and interface the GrovePi Shield with
the Raspberry Pi, and how to connect the various sensors to it, and use their data to
display on external peripherals. We also looked at and understood two examples
that can be used easily in real life for useful tasks.

In the next chapter, we will learn about the Internet of Things and how to connect
sensors to get the data online and use it effectively. For example, we can extend
the intruder detection example and make it such that it e-mails us the photo of the
intruder it just took. In this way, we can receive real-time updates from our chosen
monitored location. The Internet of Things is a very useful concept and due to the
inexpensiveness of the components it takes to get a working system, it is becoming
very popular across the globe to make 'dumb' devices 'intelligent'.

[163]

Internet of Things with the
Raspberry Pi

In the previous chapter, we learned to interface different kinds of sensors to the
Raspberry Pi to get data from the real world and output some text so that the user
can infer the state of his surroundings, such as temperature, humidity, and so on.
We also built a surveillance system that takes pictures of any intruder. Now, these
are all standalone systems and cannot communicate with any other systems.

In this chapter, we will concentrate on the concept of the Internet of Things.
This means that we can connect standalone systems, just like the ones we built
in the previous chapters, to the Internet. We will connect devices to the Internet
and learn how to interact with different web services. The following topics will be
covered in this chapter:

• Installing the Twitter API for Python
• Using Tweepy
• Setting up a SQLite database
• Building a tweeting weather station

Internet of Things with the Raspberry Pi

[164]

Introducing the Internet of Things
The Internet of Things is all about connecting the devices that were previously
not connected to the Internet, in order to make them smarter and more controllable.
Since the size and cost of electronic devices are dropping exponentially, we can now
afford to incorporate them in our daily use, are garden watering systems, home
automation/monitoring systems, and so on. The Internet of Things in this way has
opened up a whole host of opportunities, the advantages of which are being taken
up by hobbyists, startups, and major companies alike. At the heart of the Internet of
Things revolution are small micro computers and sensors that allow these devices to
connect to the Internet and exchange data between them.

As mentioned before, in this particular chapter we will extend our previous projects
by connecting the Raspberry Pi to the Internet, and make additional projects to
demonstrate the capability of the Internet of Things.

We will now learn to exchange data from the Twitter API and post our sensor
readings to Twitter.

Installing the Twitter API for Python
API (Application Programming Interface) and it allows developers to communicate
with various web services. Since Python is, by default, installed on the Raspberry
Pi, we will use a Python script to communicate with the Twitter API over the Web.
For this, we will use an open source library called Tweepy. It works with Python
versions as old as 2.6 and is still under active development. So bugs are likely to be
fewer and, if any are found, they are likely to be fixed quickly.

The GitHub repository for Tweepy can be found at the following
link, so that new issues can be submitted and the code can be
understood much more clearly:
https://github.com/tweepy/tweepy

We will now proceed to install it and learn how to use it to do things such as
sending tweets.

This library can be installed using pip, with the following command:

sudo pip install python-twitter

https://github.com/tweepy/tweepy

Chapter 10

[165]

We can also install bleeding-edge versions of the library by cloning it from GitHub.
Run the following command:

git clone https://github.com/tweepy/tweepy.git

cd tweepy

sudo python setup.py install

You can also find more information about using Tweepy and the
full extent of its capabilities on its official documentation website:
http://tweepy.readthedocs.org/en/v3.5.0/.

Using Tweepy
Tweepy was built to be easy to set up and use, and in that regard it is of one of the
most useable libraries for communicating with the Twitter API. It takes no more than
four lines of code to set it up for use. However, before we can use it to communicate
with our account on Twitter, we need to set up a developer app on Twitter. For
this, we log on to https://apps.twitter.com, sign in to our Twitter account and
hit Create New App, after which we will be greeted by a window that allows us to
create a new application, as shown in the following window:

http://tweepy.readthedocs.org/en/v3.5.0/
https://apps.twitter.com

Internet of Things with the Raspberry Pi

[166]

Fill in all the required details such as Name, Description, and Website. Remember,
if you don't plan on using this app on a website, you can also put in a placeholder
instead of an actual website. Finally, sign the developer agreement and you will have
successfully created a Twitter app to use with your Python script. From this app,
we will need a Consumer Secret (API Secret) and a Consumer Key (API Key) to use
the Tweepy library, which is required for obtaining oauth authentication from the
Twitter app. Next, we need to create an access code for our app that is required for
communication with the Twitter API.

Chapter 10

[167]

From the preceding page, click the manage keys and access tokens to get to the page
where you can get your consumer codes and access tokens. The following menu will
give the consumer keys:

And the following screen will show us our application codes and also give an option
to generate new access codes for our application:

Internet of Things with the Raspberry Pi

[168]

We can now proceed to learn how to use Tweepy to get a list of followers. The code
is given next, and the explanation follows:

import tweepy

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)

api = tweepy.API(auth)

user = api.get_user('twitter')

print user.screen_name
print user.followers_count
for friend in user.friends():
 print friend.screen_name

api.update_status(' Tweepy says : Hello, world!')

In this example, we first import the Tweepy library into Python to use its
functionality. We first need to register our Python script (client) to be able to
communicate with the Twitter API. For this, we will enter the Consumer Key and
the Consumer Secret in the argument of the OAuthHandler method of the Tweepy
API. Next, we set the access codes for opening up the Twitter API for our client's
use. This is important because we need to have an access token for the app to be
able to do things like send tweets, reading tweets, or viewing followers, and so
on. Access codes for the Twitter app can be found in its settings, just below the
Consumer Codes.

We have so far set the authentication details, but we still need to do the
authentication to send tweets. This is accomplished by the API() function in the
Tweepy module. We first create an api variable that contains all the methods for
interacting with the Twitter API.

The next statement gets the user associated with our unique Consumer Key.
Every registered user will have this key and it is unique for every user so they can
correctly identify themselves. The get_user() method takes as an argument, the
name of the service (Twitter in this case) that we need from the user, and passes the
authentication codes that we have got from the previous statement to get the user
details. This is stored in the user variable. This variable will have members such as
the name, followers, following, and so on.

Chapter 10

[169]

To check that we really get the correct user from this method, we only need to print
the correct members of the user variable. So we first print to the command line, the
screen name, and the follower count. The next while loop loops over the friends()
method of the user variable and stores each follower detail in the friend variable.
Then we print the name of each friend to the command line. This way, we can check
if we have our user details correct or not.

Finally, we can send a tweet using the update_status() method of the Tweepy API.
This method takes a string as input and sends out a tweet. However, if a string is
more than 140 characters in length, the statement will silently fail that is, it will fail
without giving an error.

Now enter your Consumer and Access codes! Save this example as prog1.py and
run it with the following command:

python prog1.py

You should see the user details on the terminal, and a tweet from your user:

'Tweepy says : Hello, World!'

In addition to the preceding functionality, we can also use Tweepy to do other things
such as reading statuses. Some of the more important functionality is detailed next:

• api.home_timeline([since_id], [max_id], [count], [page]):
Returns the 20 most recent tweets on the user's timeline. count specifies
the number of tweets to retrieve

• Api.user_timeline([id/user_id/screen_name], [since_id], [max_
id], [count], [page]): Returns the 20 most recent tweets from the
specified user or, if none is given, from the authenticating user

• Api.get_status(id): Returns the status by ID
• Api.update_with_media(filename, [status], [in_reply_to_status_

id], [lat], [long], [source], [place_id], [file]): Updates the
authenticated user's status with media

Congratulations! We have successfully set up a Twitter app using Python and
communicated with the API. We will now move on to the next example where
we learn how to set up a SQLite database to store some data on the Raspberry Pi.

Internet of Things with the Raspberry Pi

[170]

Setting up a SQLite database in Python
SQLite (pronounced Sequel Lite) is a lightweight disk-based database that doesn't
require a separate server process and uses a modified version of the SQL query
language to access the data. The entire database is saved in a single file and can
be used for internal data storage. It is also possible to make a prototype of an
application using SQLite and then port the code to work with a larger database with
minimal modifications. The Python standard library has a module called sqlite3
included, which is intended to work with this database. This module is SQL
interface-compliant with DB-API 2.0.

You can find more information and the full API reference for the
SQLite3 module on its official website: https://docs.python.
org/2/library/sqlite3.html.

Next is an example on how to use the sqlite3 module to create a SQLite database to
store and retrieve some data. We will go through the code, statement by statement,
and analyze what each statement does and also discuss any variations that might
be possible.

import sqlite3

conn = sqlite3.connect('raspi.db')
cursor = conn.cursor()

#Inserting Data
cursor.execute('''
 CREATE TABLE users(id INTEGER PRIMARY KEY, name TEXT,
 email TEXT unique, password TEXT)
''')
cursor.execute('''INSERT INTO users(name, email, password)
 VALUES(?,?,?)''', ('Luke',
 'luke@skywalker.com', 'iamurfather'))

cursor.execute('''INSERT INTO users(name, email, password)
 VALUES(?,?,?)''', ('Darth Vader',
 'darth@vader.com', 'darkside'))

conn.commit()

https://docs.python.org/2/library/sqlite3.html
https://docs.python.org/2/library/sqlite3.html

Chapter 10

[171]

#Retrieving Data

user_id = 1
cursor.execute('''SELECT name, email, password FROM users WHERE
id=?''', (user_id,))
user1 = cursor.fetchone()
print(user1[0])
allusers = cursor.fetchall()
for row in allusers:
 print('{0} : {1}, {2}'.format(row[0], row[1], row[2]))

#Deleting or Updating Data

new_email = 'vader@deathstar.com'
userid = 2
cursor.execute('''UPDATE users SET email = ? WHERE id = ? ''',
(new_email, userid))

del_userid = 1
cursor.execute('''DELETE FROM users WHERE id = ? ''',
(del_userid,))

conn.commit()
conn.close()

We will now study the data exchanges that took place in the database in the
preceding given Python script. Since sqlite3 is a default Python module, we
don't need to install any additional dependencies. So we import the module into
our Python program, and create a new file to save the database with the sqlite.
connect() method. This method creates a new file for the database if none exists,
and if it does the method connects to it and loads the existing database inside the
file. Next, we create a cursor that acts as a pointer to the data inside the database. As
such, we can only manipulate the data that the cursor is pointing to. We do this with
the cursor() method that operates on the connection variable, which we created in
the last statement.

Internet of Things with the Raspberry Pi

[172]

Currently, our file does not have a database, so with the next lines of code we create
a database and insert some data in it. The execute() method takes SQL commands
as one of the arguments to manipulate data. Hence, to create the database, we
execute the CREATE TABLE query. In this case, we create a table named users that
will have a minimum of one data column, which is the key number of the data. This
ensures that the data has a unique serial ID by which it can be accessed. We save
three fields for each user: the name, the e-mail ID, and the password. So this database
can be used for logging in to an application where different users can log in. The
TEXT type in SQL is the same as str in Python, INTEGER is int, REAL is float. To
make sure that no two users enter the same e-mail ID, we add a "unique" marker to
the e-mail column. Now that we have created a database, we need to add some data
to it. We use the INSERT INTO command to accomplish this. After inserting into vi,
mention the name of the database into which we want to insert the data with the
names of the arguments. Then the values function will take the actual values of the
data. The ? means that the data is given as a value in a tuple. We repeat the same
process with different data to add rows to the database. Notice that we didn't need
to set the serial ID of the data for it to be saved properly. That is one advantage of
having a cursor in the database. It automatically places new data in the next available
row in the database. To actually write the data into the database file and save it, we
need to commit our changes. This is done by the commit() function that operates on
the connection variable. You can visualize the database with a free tool called SQLite
Database Browser. This is what the database looks like after we have made the
changes just specified:

Now that we have learned how to insert new data into the database, we will see how
to read existing data from the database.

First, we need to know the serial-id, name, e-mail, or password of the user that we
need to retrieve. Let's assume in this case we want to retrieve the user details by
the serial ID. So we execute the SELECT command, which selects a row based on the
condition that is given. If no condition is given, it will automatically select the first
row in the database. The whole statement is close to plain English, so should be easy
to understand. Basically, it selects the columns specified from the database name that
is given according to a condition given after WHERE.

Chapter 10

[173]

So, after the preceding statement our cursor is pointing toward the row whose ID is
1. The fetchone() method fetches the data from the row that the cursor is pointing
to, and saves it in the user1 variable as a list. Then, we simply print the first element
of the list, which is the user's name in this case. However, if we want to fetch the data
from all the rows in the database, we execute the fetchall() method. This points
the cursor at all the rows in the database starting from the first one, and saves the
result in the allusers variable. Then, we simply print the data in a for loop.

We have now learned how to save and retrieve data from the database. But what
if we want to update user details or delete data? The next block of code (in the
preceding code snippet) teaches us exactly that.

Assume that we want to update the e-mail ID of the second user in the database.
We first set the new e-mail ID in a string variable, and then the user that we want to
select in an integer variable. Then, to update the data, we use the UPDATE SQL query.
It takes two or more arguments in addition to the database that we want to update:
the data that we want to update and a condition, in this case the serial ID of the row.
Both of which we give by using the ? technique we described earlier. The condition
operator WHERE operates in exactly the same way in UPDATE as it does in SELECT,
pointing the cursor according to the condition given. After the update, this is what
our table looks like:

To delete some data, we use the DELETE query and select the database with the FROM
query. We also employ the condition by using the WHERE query and giving it the
serial ID we want to delete.

Internet of Things with the Raspberry Pi

[174]

Since we have changed the data in the database, to write the changes into the file
we use the commit() method, and finally release the file from the Python script
with the close() method. This ensures that no new changes can be made to the file
unless it is connected again. If we close the file without committing the changes, no
changes will be reflected in the database and we will have lost any changes that we
previously made. This is what the table looks like after we delete the first row:

Finally, we have learned how to save and update data into a database, and
retrieve it on demand for our use. We also know, from our previous Twitter tutorial,
how to send updates to Twitter. So for our next project, we will build a tweeting
weather station that will also save the data into a database. Sounds interesting?
Let's get into it.

Building a tweeting weather station
This is a continuation of the project that we built in the previous chapter and that
used the temperature and humidity Grove sensor with the Raspberry Pi to display
the weather conditions. We will be using the same hardware.

Chapter 10

[175]

The only difference now is that instead of displaying the weather on the terminal,
we will be live-tweeting it, and also saving the information into a database for
later retrieval.

Internet of Things with the Raspberry Pi

[176]

To revisit the project, we should go through it once again by turning to Chapter 9,
Grove Sensors and the Raspberry Pi. Much of the code that was used previously will be
used again, with the addition of the blocks where we tweet the information and save
it in a database. For this project, it is recommended that you make a new Twitter
account and create a new app on it to get the Consumer and Access codes.

The full Python script is presented next. We know what most of the code does
because of the previous projects that we have built, including the weather station,
Twitter bot, and SQLite database, but there is a brief summary at the end of the code.

from grovepi import *
from grove_oled import *
import tweepy
import sqlite3
import datetime

dht_sensor_port = 7

oled_init()
oled_clearDisplay()
oled_setNormalDisplay()
oled_setVerticalMode()
time.sleep(.1)

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth)

conn = sqlite3.connect('raspi_weather.db')
cursor = conn.cursor()

cursor.execute('''
 CREATE TABLE weather(id INTEGER PRIMARY KEY, time TEXT,
 temp INTEGER, hum INTEGER)
''')

while True:
 try:
 [temp,hum] = dht(dht_sensor_port,1)

Chapter 10

[177]

 print "temp =", temp, "C\thumidity =", hum,"%"
 t = str(temp)
 h = str(hum)
 time = str(datetime.datetime.time(datetime.datetime.
now()))

 oled_setTextXY(0,1)
 oled_putString("WEATHER")

 oled_setTextXY(2,0)
 oled_putString("Temp:")
 oled_putString(t+'C')

 oled_setTextXY(3,0)
 oled_putString("Hum :")
 oled_putString(h+"%")
 api.update_status("Temperature : " + t + " C, " +
 "Humidity : " + h + "% ")
 cursor.execute('''INSERT INTO weather(time, temp,
 hum)
 VALUES(?,?,?)''', (time, t, h))

 except (IOError,TypeError) as e:
 print "Error"

As is evident from the preceding code, it is an updated version of the weather
station we built in the previous chapter. We add the consumer and access codes
for our Twitter application so that we can tweet the weather information directly
from this script. We import the Tweepy library and set up the access. We also
import the sqlite3 module and create a new database called weather, which has
three data columns: time, temperature, and humidity, in addition to the serial
number column. Finally, in addition to displaying the temperature and humidity
on the OLED screen, we also update it in our tweet and save it in the database we
just created along with the time information. The time information is given by the
datetime module that is included with the default Python installation. datetime.
datetime.now() gives the current date and time. datetime.datetime.time()
gives the current time provided we are only given datetime.datetime.now()
as an argument.

Internet of Things with the Raspberry Pi

[178]

The tweets from our script will look like this:

And if we browse the database that we just created, it looks something like this:

Chapter 10

[179]

We have now built a weather station that not only monitors and saves weather
information for you but also broadcasts it to the world! An interesting extension
to this would be to add speech capabilities so that the Raspberry Pi speaks out the
weather information via a speaker. The espeak library is an easy-to-use library
that accomplishes this easily and effectively. Moreover, you can also hook up
to a weather service that has a web API and get your Pi to speak out weather
forecasts too!

Adding speech capabilities to our weather
station
Speech is one of the many ways in which humans communicate. And it's fascinating
to make machines do the things that humans do effortlessly. For precisely that
reason, we will add speech capabilities to our tweeting weather station so that it can
speak out the weather, and we no longer have to stare at our OLED screen or scroll
our Twitter feed to learn about the weather. For this task, we will be using an open
source tool called espeak, which is a text-to-speech engine and also has an API
for Python.

First, install the espeak library with the following commands:

sudo apt-get install espeak

sudo apt-get install python-espeak

The good thing about this library is that we can use it from the terminal or from the
Python console. To try it out, make sure that you have a speaker connected to the Pi
and execute the following command from the Linux terminal:

espeak I will tell you the weather'

This will produce the speech output and we will be able to hear it from the speaker.
Cool, right?

Next, we will learn how to use it with Python and then also add it to our weather
station project. Open a Python console by typing python in a Linux terminal. To
import the dependencies, execute the following statement:

>>> from espeak import espeak

Internet of Things with the Raspberry Pi

[180]

This imports the dependencies required for the speech output. Using espeak from
Python is also as easy as:

 >>> espeak.synth("I am the weatherman")

The synth method in the espeak module accepts a string and produces speech based
on that. It's not the best-sounding voice, but it works!

To add this to the weather station, we can add the following statement inside our
while loop:

espeak.synth("The current temperature is : " + str(temp))

espeak.synth("Humidity level is : " + str(hum) + "percent")

This works because Python supports string concatenation. This means that we
can combine two strings just by adding a + sign between them. However, the temp
and hum variables are not string variables. So we need to convert them to strings by
the str() method. The Str() method takes any type of variable and converts it into
a string.

We can also use the espeak library to tell us many different things about our
environment by getting the state from the Grove Sensors.

Summary
In this chapter, we learned how to use Python to communicate with Twitter by using
an open source library, Tweepy. We learned how to use Tweepy to send tweets.
We also learned how to create a database, save and update data in it, and get some
data from an existing database. Toward the end, we extended the capabilities of the
weather station we built in Chapter 9, Grove Sensors and the Raspberry Pi and added
tweeting and data-saving functionalities to it. We also added speech capabilities to it
to make it easier to use.

In the next chapter, we will be exploring the interesting topic of parallel computing.
We will be using multiple Raspberry Pis to create a cluster of computers that perform
computations faster by working in tandem towards a single task. A master Pi will
control other slave Pis and outsource its computations to them, so that the task is
performed faster. We will use this setup to perform an n-body simulation, which is
by itself a very computationally challenging task.

[181]

Build Your Own
Supercomputer with

Raspberry Pi
In the previous chapter, we learned how to get the Raspberry Pi to communicate
with the Internet, along with some more topics. We learned how to set up the
Twitter API and how to send out tweets using it. We also learned how to save data
in a database and retrieve it later. Finally, we combined the two concepts and the
weather station we built in Chapter 9, Grove Sensors and the Raspberry Pi to create a
tweeting weather station that also saves the temperature and humidity data in
a database.

In all the chapters prior to this one, we explored the Raspberry Pi functionalities.
But this chapter will be different in the sense that we will learn how to combine two
or more Raspberry Pi devices to create a more powerful computer. Indeed, if you
combine enough Raspberry Pi devices, you can make your own supercomputer!
Sounds interesting? We will cover the following in this chapter:

• Using a network switch to create a static network for Pi devices
• Installing and setting up MPICH2 and MPI4PY and running on a single node
• Using the static network of multiple Pi devices is to create an MPI (short for

Message Parsing Interface) cluster
• Performance the benchmarking of cluster
• Running GalaxSee (N Body simulation)

Build Your Own Supercomputer with Raspberry Pi

[182]

Introducing a Pi-based supercomputer
The basic requirements for the building of a supercomputer are as follows:

• Multiple processors
• A mechanism to interconnect them

We already have multiple processors in the form of multiple Raspberry Pi devices.
We connect them via a networking hub, which is connected to each Pi via an
Ethernet cable. A networking hub is nothing but a router that can accept Ethernet
cables. There are dedicated networking hubs that can support many connections
but for the purposes of this chapter, we can use a normal Wi-Fi router that accepts
four LAN connections in addition to wireless connections. This is because we will
not build a cluster of more than four Pi devices. You are welcome to add more
devices to this cluster in order to increase your computing power. So, the hardware
requirements for this chapter are as follows:

• Three Raspberry Pi devices
• Three Raspbian-installed SD cards
• A networking hub
• Three Ethernet cables
• Power supply for every device

Installing and configuring MPICH2 and
MPI4PY
Before we can begin installing the libraries to a network of multiple Pi devices,
we need to configure our Raspbian installation to make things a bit easier.

Boot up a Raspberry Pi and in the terminal, enter the following command:

sudo raspi-config

Chapter 11

[183]

It is assumed that you have followed all the setup steps that are preferred on first
starting up the Raspberry Pi. These are as follows:

1. Expand the filesystem.

2. Overclock the system (this is optional). We will be using a Pi overclocked to
800MHz as shown below:

Build Your Own Supercomputer with Raspberry Pi

[184]

3. Now, enter the advanced menu by selecting Advanced Options. We need to
configure the following:

1. Set the hostname to Pi1.

2. Enable SSH.

Chapter 11

[185]

We need to enable auto login so that we do not need to manually log in every Pi once
we fire it up. Auto login is enabled by default in the latest versions of the Raspbian
operating system, so we don't need to perform the following procedure on the latest
version. To enable auto login, exit the configuration menu, but don't reboot yet.
To set the auto login, open the inittab file with the following command:

sudo nano /etc/inittab

Comment out the following line:

1:2345:respawn:/sbin/getty --noclear 38400 tty1

This is done so that it looks like this:

#1:2345:respawn:/sbin/getty --noclear 38400 tty1

Then, add the following line:

1:2345:respawn:/bin/login -f pi tty1 </dev/tty1 >/dev/tty1 2>&1

Build Your Own Supercomputer with Raspberry Pi

[186]

Save the file and reboot the Pi with sudo reboot. When it boots up, you should be
auto-logged in.

We are now ready to proceed and begin installing the software that is required to
run a cluster of computers.

Installing the MPICH library
MPICH is a freely available, easily portable, and widely used implementation of
the MPI standard, which is a message parsing protocol for distributed memory
applications used in parallel computing. Work on the first version of MPICH was
started around 1992 and is currently in its third version. MPICH is one of the most
popular implementations of the MPI standard due to the fact that it is used as a
foundation for a vast majority of MPI implementations, including ones by IBM,
Cray, Microsoft, and so on.

To know more about the MPICH library, visit
http://www.mpich.org/.

At the time of writing, the latest version of MPICH is 3.2. The installation
instructions for this are presented. However, these should work on all the
sub-versions of MPICH3 and most of the later versions of MPICH2.

To begin the installation, ensure that the Raspberry Pi has a valid Internet
connection. Run the following commands in order to get a working installation
of MPICH:

1. Update your Raspbian distribution:
sudo apt-get update

2. Create a directory to store the MPICH files:
mkdir mpich

cd ~/mpich

3. Get the MPICH tar file:
wget http://www.mpich.org/static/downloads/3.2/mpich-3.2.tar.gz

4. Extract the tar archive:
tar xfz mpich-3.2.tar.gz

http://www.mpich.org/

Chapter 11

[187]

5. This will contain the MPICH installation and build the following:
sudo mkdir /home/rpimpi/

sudo mkdir /home/rpimpi/mpi-install

mkdir /home/pi/mpi-build

cd /home/pi/mpi-build

6. Fortran is a dependency for MPI:

sudo apt-get install gfortran

Now, since we created a build folder for the MPICH installation earlier, we need to
configure the installation script and point it to the folder where we want the interface
to be installed. We do this by running the configure script and setting the build
prefix to the installation directory:

sudo /home/pi/mpich/mpich-3.2/configure -prefix=/home/rpimpi/mpi-install

Finally, we carry out the actual installation.

sudo make

sudo make install

Keep in mind that this build might take about an hour to
complete. Make sure that the Raspberry Pi stays on for the
entire period of the build.

Edit the bashrc file so that the path to the MPICH installation is loaded to the PATH
variable every time we open a new terminal window. To do that, open the file in the
terminal with the following command:

nano ~/.bashrc

Then, add the following line at the end:

PATH=$PATH:/home/rpimpi/mpi-install/bin

Save and exit the bashrc file by pressing Ctrl + X and then click on Return. We will
now test the installation. For that, reboot the Pi:

sudo reboot

Build Your Own Supercomputer with Raspberry Pi

[188]

Then, run the following command:

mpiexec -n 1 hostname

If the preceding command returns Pi1, or whatever you set your hostname to be,
then our MPICH installation is successful and we can proceed to the next step.

We will now look at a short C program that uses MPICH. This is given as follows:

#include "mpi.h"
#include <stdio.h>

void main(int argc, char *argv[]) {
 int rank, size
 MPI_Init(argc, argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("I have %d rank and %d size \n", rank, size);
 MPI_Finalize();
}

This program runs on a single node and discovers the total number of nodes in a
network. It then communicates with the MPI processes on other nodes and finds
out its own rank.

The MPI_Init()function initiates the MPICH process on our computer according to
the given information about the IP addresses in a network. The MPI_Comm_rank()
function and the MPI_Comm_size() function get the rank of the current process and
the total size of the network and save them in rank and size variables, respectively.
The MPI_Finalize() function is nothing but an exit routine that ends the MPI
process cleanly.

On its own, MPICH can be run using C and Fortran languages. But that might be a
hindrance for a lot of users. But fret not! We can use MPICH in Python by installing
the Python API called MPI4PY.

Installing MPI4PY
The conventional way of installing the mpi4py module from a package manager
such as apt-get or aptitude does not work because it tries to install the openMPI
library along with it, which conflicts with the existing installation of MPICH.

Chapter 11

[189]

So, we have to install it manually. We do this by first cloning the repository
from BitBucket:

git clone https://bitbucket.org/mpi4py/mpi4py

Make sure that all the dependencies for the library are met. These are as follows:

• Python 2.6 or higher
• A functional MPICH installation
• Cython

The first two dependencies are already met. We can install Cython with the
following command:

sudo apt-get install cython

The following commands will install mpi4py with the setup.py installation script:

cd mpi4py

python setup.py build

python setup.py install

Add the path to the installation of mpi4py to PYTHONPATH so that the Python
environment knows where the installation files are located. This ensures that
we are easily able to import mpi4py into our Python applications:

export PYTHONPATH=/home/pi/mpi4py

Finally, run a test script to test the installation:

python demo/helloworld.py

Build Your Own Supercomputer with Raspberry Pi

[190]

Now that we have completely set up the system to use MPICH, we need to do
this for every Pi we wish to use. We can run all of the earlier commands in freshly
installed SD cards, but the better option would be to copy the card we prepared
earlier into blank SD cards. This saves us the hassle of completely setting up the
system from scratch. But remember to change the hostname to our standard scheme
(such as Pi01 and Pi02) after the fresh SD card has been set up in a new Raspberry Pi.
For Windows, there is an easy-to-use tool called Win32 Disk Imager, which we can
use to clone the card into an .img file and then copy it to another blank SD card. If
you are using OS X or Linux, then the following procedure should be followed:

1. Copy the OS from an existing card:
sudo dd bs=4M if=/dev/disk2 of=~/Desktop/raspi.img

Replace disk2 with your own SD card

2. Remove the card and insert a new card.
3. Unmount the card.
4. Format the SD card.
5. Copy the OS to the SD card:

sudo dd bs=4M if=~/Desktop/raspi.img of=/dev/disk2

To know more about the mpi4py library and to have a look at
the various demos, you can visit the official Git repository on
BitBucket at https://bitbucket.org/mpi4py/mpi4py.

Setting up the Raspberry Pi cluster
Now that we have a running Raspbian distribution in all the Raspberry Pi devices
that we wish to use, we will now connect them to create a cluster. We would need a
networking hub that has at least the same number of LAN ports as the size of your
cluster should be. For the purposes of this chapter, we will use three Raspberry Pis,
so we would need a hub that has at least three LAN ports.

https://bitbucket.org/mpi4py/mpi4py

Chapter 11

[191]

If you have a Wi-Fi router, then it should already have some ports at the back,
as shown in the following image:

Build Your Own Supercomputer with Raspberry Pi

[192]

We also need three networking cables, such as those with an Ethernet connector,
where one port goes into the Raspberry Pi and the other goes into the networking
hub. They will look like the ones shown in the following image:

Chapter 11

[193]

Connect one end of the Ethernet cable to the Raspberry Pi and the other end to the
router for all the devices. Once we complete this networking setup, we can move on
to connecting the Raspberry Pi devices with software.

Setting up SSH access from the host to
the client
In the setup described here, one master node will control the other slave nodes. The
master is called the host and the slaves are called clients. To access the client from the
host, we use something called SSH. It is used to get the terminal access to the client
from the host, and the command used is as follows:

ssh pi@192.168.1.5

Here, the preceding IP address can be replaced with the IP address of our
Raspberry Pi. The IP address of a Pi can be found by simply opening up a
new terminal and entering the following command:

ifconfig

This will give you the IP address associated with your connected network and the
interface, which is eth0 in our case. A small problem with using this is that every
time we try to SSH into a client, we need a password. To remove this restriction, we
need to authorize the master to log in to the client. How we do that is by generating
an RSA key from the master and then transferring it to the client. Each device has
a unique RSA key, and hence, whenever a client receives an SSH request from an
authorized RSA device, it will not ask for the password. To do that, we must first
generate a public private key pair from the master, which is done using a command
in the following format:

ssh-keygen -t rsa -C "your_email@youremail.com"

Build Your Own Supercomputer with Raspberry Pi

[194]

It will look something like this:

To transfer this key into the slave Raspberry Pis, we need to know each of their IP
addresses. This is easily done by logging into their Pi and entering ifconfig.

Next, we need to copy our keys to the slave Raspberry Pi. This is done by the
following command, replacing the given IP address with the IP address of your
own Raspberry Pi:

cat ~/.ssh/id_rsa.pub | ssh pi@192.168.1.5 "mkdir .ssh;cat >> .ssh/
authorized_keys"

Now that we have copied our keys to the slave Raspberry Pi, we should be able to
log in without a password with the standard SSH command:

ssh pi@192.168.1.5

Chapter 11

[195]

Running code in parallel
We have now successfully completed the prerequisites for the running of code on
multiple machines. We will now learn how to run our code on the Raspberry Pi
cluster using the MPICH library. We will first run a demo included with the mpi4py
module, and then we will run an N-Body simulation on our cluster. Sounds fun?
Let's get into it.

First, we need to tell the MPICH library the IP address of each of the Pis in our
network. This is done by simply creating a new file called machinefile in the home
folder, which contains a list of the IP addresses of all the Raspberry Pis connected to
our network. Execute the following command to create the file:

nano machinefile

Then, add the IP address of each Raspberry Pi in a new line so that the final result
looks like this:

Note that we have added three IP addresses because two Raspberry Pis are slaves
and one is a master. So, the MPICH library knows that it needs to run the code on
these three devices. Also, note that MPICH does not differentiate between devices. It
just needs a valid installation of the library to run properly. This means that we can
add different versions of Raspberry Pi to our cluster or even other computers such as
a BeagleBone, which has a valid installation of MPICH.

To test our setup, we navigate to the mpi4py/demo directory with the
following command:

cd ~/mpi4py/demo

Build Your Own Supercomputer with Raspberry Pi

[196]

Then, we run the following command:

mpiexec -f ~/machinefile -n 3 python helloworld.py

It will give an output similar to this:

Performance benchmarking of the cluster
Since we have successfully created a cluster of Raspberry Pis, we now need to test
their performance. One way of doing that is to measure the latency between different
nodes. To this end, Ohio State University has created some benchmarking tests
that are included with the mpi4py library. We will run a few of these to measure
the performance of our cluster. Simply put, latency measures the amount of time a
packet takes to reach its destination and get a response. The lower the latency, the
better a cluster will perform. The tests are given in the demo folder of the mpi4py
directory. These run in this fashion: the osu_bcast benchmark measures the latency
of the MPI_Bcast collective operation across N processes. It measures the minimum,
maximum, and average latency for various message lengths and over a large number
of iterations.

To run the osu_allgather.py test, we execute the following command:

mpiexec -f machinefile -n 3 python osu_allgather.py

As an interesting experiment, try to gather the latency variation with different sizes
of data. It should give you a unique insight into the functioning of the network.

Introducing N-Body simulations
An N-Body simulation is a simulation of a dynamic system of particles that are
under the influence of physical forces, such as gravity or magnetism. It is mostly
used in astrophysics to study the processes involving nonlinear structure formation,
such as the formation of galaxies, planets, and suns. They are also used to study
the evolution of the large-scale structure of the universe, including estimating the
dynamics of a few body systems such as the earth, moon, and sun.

Chapter 11

[197]

Now, N-body simulations require a lot of computational resources. For example,
a 10-body system has 10*9 forces that need to be computed at the same time. You
can see that, if we increase the number of particles, the number of forces increases
exponentially. So a 100-body system will require 9,900 forces to be calculated
simultaneously. That is why N-Body simulations are generally run on powerful
computers. However, we are going to use our Raspberry Pi cluster to accomplish
this task because it has three times the computational power of a single Raspberry Pi.
For this task, we will use an open source library called GalaxSee.

GalaxSee is modeled as discrete bodies interacting through gravity. The acceleration
of an object is given by the sum of the forces acting on that object, divided by
its mass. If you know the acceleration of a body, you can calculate the change in
velocity, and if you know the velocity, you can calculate the change in the position.
Consequently, you will have the position of each object at every point of time. The
more objects you have, the more forces you will need to calculate, and every object
must know about every other object. To reduce the computational load on a single
processor, the Galaxy code is an implementation of simple parallelism. The most
computationally heavy calculations involve calculating the forces on a single object,
and hence, each client is involved with that calculation given the object's information
and the information about each object that exerts force on it. The master then collects
the computed forces from the clients.

2 bodies
2 forces

3 bodies
6 forces

4 bodies
12 forces

N bodies
N (N-1) forces

Build Your Own Supercomputer with Raspberry Pi

[198]

In this way, we can simulate an N-Body simulation with code running in parallel.
Next, we will see how to install and get GalaxSee running.

To learn more about the GalaxSee library, visit
https://www.shodor.org/master/galaxsee/.

Installing and running GalaxSee
Now that we have a basic idea of what an N-Body simulation is and how
different bodies interact with each other, we will proceed to the installation
of the GalaxSee library.

First, we need to download the archive of the source code. We can do this with the
wget command:

wget http://www.shodor.org/refdesk/Resources/Tutorials/MPIExamples/Gal.
tgz

Next, we extract the .tgz archive, assuming it was downloaded to the home folder.
If the path is different, we need to enter the correct path:

tar -xvzf ~/Gal.tgz

Navigate to the folder:

cd Gal

We need to use Makefile to successfully build GalaxSee on our Raspberry Pi. To do
that, open the file in the terminal:

nano Makefile

Then, change the line:

cc = mpicc

to:

cc = mpic++

https://www.shodor.org/master/galaxsee/

Chapter 11

[199]

This is done so that the final result looks like this:

To build the program, simply run this:

make

Now if you enter ls inside the Gal folder, you will see a newly created executable
file named GalaxSee. Run the file with the following command:

./GalaxSee

Build Your Own Supercomputer with Raspberry Pi

[200]

This will execute the program and will open a new window that looks like
the following:

Here, the white dots are the bodies that are interacting with each other with the force
of gravity. There are a few options that you can configure in GalaxSee to change the
number of bodies or their interaction. For example, run the following command:

./GalaxSee 200 400 10000

Here, the first argument to the program, 200, gives the number of bodies to be
simulated. The second argument gives the speed of the simulation. The higher the
number, the higher the speed. The third argument gives the amount of time to run
the simulation in milliseconds. So, in the preceding command, we will simulate 200
bodies for 10 seconds. Obviously, we can experiment with different variables and see
how these variables affect the simulation.

The preceding example was running on a single Raspberry Pi. But as promised, we
will now see how to run it on a cluster. It will probably be surprising if we learn that
the program can run on a cluster of Raspberry Pi devices with a single command and
one that we've seen before. The following command does the trick:

mpiexec -f ~/machinefile -n 3 ./GalaxSee

Chapter 11

[201]

In the preceding command, mpiexec initiates the MPI process on our host computer.
Here, we will give it three points of data on which to execute the GalaxSee program.
These are as follows:

• The path to the file containing the IP addresses for each device in
the network

• The number of devices to be used
• The path to the executable file

The -f option specifies the machinefile. The -n option specifies the number of
devices to be used, and finally, we give the GalaxSee executable file to it.

Try it for yourself! If you try to increase the number of bodies in the simulation on
a single Raspberry Pi, it would probably run slower. But if you try the same on a
cluster, it will definitely run faster because now, we have a lot more computational
resources at our disposal.

Summary
This chapter was unique in the sense that we learned how to execute software
not on a single Raspberry Pi but on multiple ones. We learned the advantages of
using parallel computation and learned how to build our own network of clustered
Raspberry Pi devices. We also learned how to install the libraries required for
parallel computations so that we can run our own software in the cluster. We learned
how to configure the Raspberry Pis in our network to communicate with each other
and make the communication hassle-free. Once we set up a system, we tested it to to
measure the response in the form of latency.

Finally, we learned about the concept of N-body simulation and configured an open
source program to simulate it. W also saw how increasing the number of bodies in
the simulation could affect the speed of the program's execution.

In the next chapter, we will expand upon this knowledge about clusters and learn
about advanced networking concepts, such as DNS and DHCP. We will learn how to
add functionalities such as a domain name service and auto detection of nodes and
how to initiate a remote shutdown of the cluster.

[203]

Advanced Networking with
Raspberry Pi

In the previous chapter, we built a cluster of Raspberry Pis that all interact with each
other on a common network to accomplish a single task at a much greater speed
than a single Raspberry Pi would perform. In fact, the MPI library is basically a
networking library that delegates some computations to other processors connected
in a network so that the master node doesn't have to deal with them. Now, in this
chapter, we will learn about special networking concepts that power them kinds of
cluster computers and in fact, the whole Internet. In this chapter, we will learn about:

•	 Adding DHCP capabilities to our cluster
•	 Adding a domain name system capability to our cluster
•	 Writing a script for the autodetection of nodes
•	 Writing scripts for the remote shutdown of cluster nodes

Introducing DHCP
DHCP (Dynamic Host Configuration Protocol): The host is simply a server, which
means that the host computer is responsible for providing a service. The service
could be of any kind. For example, a web server is responsible for hosting the
files required for viewing a website. Again, the server implements the necessary
communication protocols to allow many players to play against each other. A
computer or application that uses the services offered by a server is called a client.
Now you might know that every computer on the Internet is identified by a unique
address known as the IP address.

Advanced Networking with Raspberry Pi

[204]

A DHCP server is responsible for allocating such IP addresses to all the nodes in a
network, and keeping track of the allocated addresses. In DHCP, dynamic means
constantly changing, host means server, configuration refers to configuring your
network settings, and protocol means a set of rules on how to do things. Described
next is the procedure for the allocation of IP addresses by a DHCP server.

Suppose a node wants to join a network. It first sends a message to the server asking
to be allocated an IP address. The server sends a message with an IP address and a
time duration for which the node might keep that IP address. Then the server notes
down the IP address given to the node in a table, along with the time it was given at
and the validity duration.

Now, when the node joins a network, it has no way of knowing if there is a DHCP
server. So it sends out a broadcast signal to the whole network intended just for the
DHCP server. If there is a server, it sends out a reply offering an address.

Now, consider the situation when a node is shutting down or leaving the network
cleanly. It sends out a signal to the server identifying itself and offers the IP address
back to the DHCP server. The server then modifies the table, strikes off the host's
name from the IP address, and then marks it available for allocation to other nodes
in the network. But what if the node doesn't exit cleanly? For example, when the
machine loses power or the network cable is just yanked out of it. This is where the
time duration of allocation comes in handy. Once the duration of allocation of that
IP address has passed, the node is automatically struck off from the table and that
address becomes available again. Every time the server receives a packet of data
from the host, its duration of allocation is automatically refreshed.

A few networking concepts
Since we have learned how a DHCP server operates, we will now work through an
introduction to some important concepts related to networking that might be useful
in understanding the operation of the network and also for debugging any errors we
may encounter.

Though it might not look like it on first read, an IP address follows a predefined set
of conventions and it is not handed out randomly. The IP address that is visible,
for example 192.168.1.10, is actually composed of binary numbers. Each number
separated by a decimal is actually a binary octet. So the preceding IP address actually
looks like the following:

11000000 10101000 00000001 00001010

Chapter 12

[205]

Now, an IP address is classified into multiple classes according to the address
allocated to it by the DHCP server. They serve as a hierarchical system and also help
to segment the IP address into classes such as private address and external address.
They also help in distributing the IP address ranges to entities such as countries,
service providers, and so on. There are the following classes of IP addresses:

• Class A: In this class, the first bit of the first octet is always set to zero.
So, the first octet ranges from 00000000 – 01111111, or 0 – 127.
So Class A can only have an IP address from 1.X.X.X – 126.X.X.X as
127.0.0.1 is reserved for loopback IP addresses, that is, for the machine
to refer to itself. Hence, this class can only have 126 networks (2^7 – 2) and
16777214 (2^24 -2) hosts.

• Class B: Here, the first two bits of the first are set to 1 and 0 respectively.
So, the first octet ranges from 10000000 – 10111111 or, 128 – 191.
So, Class B can only have IP addresses ranging from 128.0.X.X –
191.255.X.X. Hence, this class can have 16,384 (2^14) networks and 65,534
(2^16 – 2) hosts.

• Class C: The first three bits of the first octet are set to 110. The range
of the first octet is from 11000000 – 11011111, or 192 – 223. So, Class C
can have IP addresses ranging from 192.0.0.X – 234.255.255.X. This
means that Class C has a total of 20,97,152 (2^21) networks and 254 (2^8 -2)
host addresses.

• Class D: This class of network has the first four bits of the first octet
set as 1110. That gives it a range of 11100000 – 11101111 or 235 – 239.
However, unlike the preceding three classes, Class D is used exclusively
for multicasting. So, there is no need to get individual IP addresses, because
individual host data is not required for this network to operate.

• Class E: This class is reserved exclusively use for experiments, or R&D,
or study. The IP addresses in this class can range from 240.0.0.0 –
255.255.255.254.

Advanced Networking with Raspberry Pi

[206]

Now, we move on to the concept of a subnet mask. A subnet mask is basically
a 32-bit address that divides an IP address into the network and host addresses.
A subnet mask sets all the bits for the network as 1 and all the bits for the host as 0.
So, the subnet masks for the different classes of networks are given as follows:

•	 Class A: 255.0.0.0
•	 Class B: 255.255.0.0
•	 Class C: 255.255.255.0

Class D and Class E do not have subnet addresses because Class D has multicast
addresses and Class E only consists of reserved addresses.

Configuring a Raspberry Pi to act as a
DHCP server
Now, we will perform a hands-on implementation of the preceding concept by
setting up a Raspberry Pi from our cluster to act as the DHCP server. The Raspberry
Pi selected for the purpose should be properly marked for identification because
there can be only one DHCP server in a network. More than one can cause a lot of
problems! If we have more than one DHCP server in a single network, the client
nodes will get confused as to which server to send the IP allocation request to.
We first need to install a program called dnsmasq, and we can do that with the
following commands:

sudo apt-get update

sudo apt-get install dnsmasq

Once this is installed, we can go ahead and disconnect the Internet from the LAN
and connect the network to a non-DHCP hub. Why, you may ask? Because the
conventional routers that we use have a DHCP server built into them. So configuring
a Raspberry Pi as a server and connecting it to the router might cause some
problems. So we just connect it to a networking hub that interconnects all the
nodes. We are now ready to modify the Raspberry Pi to get it running as a server.

By convention, DHCP servers will have the lowest IP address in a network from
the range of IP addresses. And for a lot of private networks, this IP address space
looks like this: 192.168.0.X. This means that the DHCP server will generally have
192.168.0.1 as the IP address and the other nodes will have 192.168.0.2, 3, 4, and
so on up to 254 IP addresses.

Chapter 12

[207]

So, logically, we need our Raspberry Pi to have this address and hold on to it so it
defaults to the DHCP server every time the network is initiated. So, edit the network
interfaces file:

sudo nano /etc/network/interfaces

In the interfaces file, eth0 refers to the connection from the ethernet port. If you've
connected a Wi-Fi dongle to it, you will also see a wlan0 interface. This translates to
Wireless LAN 0. Now, since our Pi is connected via an ethernet port, we find the
following statement:

iface eth0 inet dhcp

Basically, this line is the one responsible for the Raspberry Pi acting as a DHCP
client because it tells the Pi to try to get an IP address from a DHCP server, from the
interface eth0. But since we want our Raspberry Pi to act as a DHCP server in the
network, we comment this line out. Then, to set a static IP address for our server,
we add the following lines:

iface eth0 inet dhcp
auto eth0
iface eth0 inet static
address 192.168.1.1
netmask 255.255.255.0

The interfaces file might look something like:

The static option tells the Raspberry Pi to configure a static IP address and netmask,
which is given in the statement below. Now, save this file by pressing Ctrl + X and
Enter. To restart the networking service, enter the following command:

sudo service networking restart

Advanced Networking with Raspberry Pi

[208]

Now, the Raspberry Pi's IP address will always be set to 192.168.1.1. We can also
check this, as we did previously, by entering the command:

ifconfig

Now, we need to set up the software we installed earlier: dnsmasq. This is nothing but
a DHCP server application for which we need to manually specify a configuration file
according to our preferences. But since there already exists a default configuration file,
we will make a backup of it. To do that, enter the following commands:

cd /etc

sudo mv dnsmasq.conf dnsmasq.default

The following command creates a new configuration file for dnsmasq:

sudo nano dnsmasq.conf

Once in the editing screen, enter the following lines into the configuration file:

interface=eth0

dhcp-range=192.168.1.2,192.168.1.254,255.255.255.0,12h

The first line in the file specifies the interface on which to listen to incoming
DHCP requests. In this case, we have set it up to be the ethernet port of the Pi.
The dhcp-range takes in four parameters:

•	 Lowest IP address to be allotted
•	 Highest IP address to be allotted
•	 Netmask
•	 Lease duration

We can now save and close the file by pressing Ctrl + X and Enter. For the settings to
take effect, we need to ensure that our DHCP serves the Raspberry Pi and is the only
device connected to the networking hub. Once all the other devices are removed, we
can restart the DHCP service by:

sudo service dnsmasq restart

The DHCP server is now running and can listen to requests from clients connected to
the same networking hub.

Chapter 12

[209]

Finally, ensure that none of the other Raspberry Pis have a static IP address that is in
conflict with our DHCP server. Preferably, there should not be any Pi with a static IP
configured. The /etc/network/interfaces file should be as follows:

iface eth0 inet dhcp
auto eth0
iface eth0 inet static
address 192.168.0.1
netmask 255.255.255.0

Exit nano and restart the networking service with the following command:

sudo service networking restart

Now, we can connect all the Client Raspberry Pis to the networking hub. Once they
are all switched on, they should be able to acquire their respective IP addresses
from the DHCP server immediately. We can also check the allocated IP addresses
by running the ifconfig command on the clients. The IP addresses are allocated
randomly from the range given to the DHCP server.

Once the IP addresses are acquired, everything should work as expected. We can
check the connections by pinging different nodes from another node. Do this with
the following command:

ping 192.168.1.X

where X is the IP address of the other node. We can also check the connection to the
DHCP server with:

ping 192.168.1.1

Another interesting experiment that can be performed with the setup is actually
observing the connections go up and down. Firstly, we can shut down a client and
observe it give back the IP address to the server. Run the following on a client of
your selection:

sudo ifdown eth0

Once we do that, we will see an output similar to the following:

Listening on LPF/eth0/b8:27:eb:a8:6b:cc

Sending on LPF/eth0/b8:27:eb:a8:6b:cc

Sending on Socket/fallback

DHCPRELEASE on eth0 to 192.168.1.1 port 67

Advanced Networking with Raspberry Pi

[210]

DHCPRELEASE is the actual statement where the IP address is handed back to the
server by the client. Similarly, we restart the eth0 and observe the DHCP address
being acquired. Run the following command:

sudo ifup eth0

We will see an output similar to the following:

Listening on LPF/eth0/b8:27:eb:a8:6b:cc

Sending on LPF/eth0/b8:27:eb:a8:6b:cc

Sending on Socket/fallback

DHCPDISCOVER on eth0 to 255.255.255.255 port 67 interval 7
DHCPREQUEST on eth0 to 255.255.255.255 port 67

DHCPOFFER from 192.168.1.1

DHCPACK from 192.168.1.1
bound to 192.168.0.X -- renewal in 40000 seconds

In this exchange, DCHPDISCOVER, DHCPREQUEST, DHCPOFFER, and DHCPACK are of
importance. They correlate with the acquisition procedure in the IP address through
a DHCP server, as described before. It is left as an exercise to the reader to figure out
their respective functions.

Introducing Domain Naming System
(DNS)
In the previous section, we learned to add the DHCP server to our Raspberry Pi
cluster. This was done mainly so that each Raspberry Pi in our cluster could be
identified by a unique IP address. Now, as you can imagine, the bigger our cluster
grows, the harder it is going to be to remember the IP address of each Raspberry Pi.
Humans find it hard to remember long sequences of numbers, which is what the IP
addresses are. But there is a way by which we can easily connect to different nodes
without having to remember their IP addresses.

This method is called a Domain Name System (DNS). Its basic function is to translate
IP addresses into words so that it becomes easier for us to remember. For example,
the DNS server will translate the IP address 192.168.5.43 into raspberrypi.org
and vice versa to make it easier to connect to. Indeed, this is what happens on the
Internet. Each website has an IP address behind it.

Chapter 12

[211]

When you type a URL into your browser, your computer first contacts the DNS
server and asks for the IP address that it is associated with. The DNS server then
searches its database for the name and returns the IP address to your computer.
This whole process is called a DNS query.

Now, we can have multiple DNS servers in a single network. This way, when one
DNS server doesn't have an address saved in its database, it can pass the query to the
second DNS server, and so on. This is known as an iterative DNS query. This is what
actually happens on the Internet. There are millions of websites on the Internet and
having a single DNS server that holds a large database is not only unfeasible but also
unreliable. So, there are millions of DNS servers that are distributed across the world
and act together to resolve billions of translation requests from millions of clients.

But here is an interesting problem. In a DHCP network, IP
addresses are dynamic, which means that the IP address of a node
might change. Think about how a DNS server might handle that
situation. You can do that as an exercise.

Setting up a DNS server on the Pi
Now, we will learn about the practical part of setting up a Domain Name System
server on our own cluster of Raspberry Pis so as to learn the intricacies of the system.
We will set up a DNS server on the same Pi on which we set up the DHCP server
earlier. Since we took care to see that it is easily identifiable from the other client
Raspberry Pis, we can begin the setting-up procedure.

We use the same software, dnsmasq, which we used for the DHCP server, as it also
has the capability to run a DNS server. Other than that, we don't need to install
anything extra. As a sanity check, before beginning the following tutorial, try to ping
the server from one of the clients. Although multiple DNS servers can be configured,
for the purposes of this tutorial, we will be using only one Raspberry Pi as the server.

As the DNS server doesn't have a broadcast system like DHCP, the clients can't
locate it easily. So they need to be told the IP address of the DNS server, and one way
of doing it is to make the DHCP server pass the IP address to the client. This can be
done at the same time as the DHCP server is allotting its own IP address. In this case,
the IP address of both the DHCP server and the DNS server is the same. Open up the
dnsmasq configuration file (dnsmasq.conf) for editing with the following command:

sudo nano /etc/dnsmasq.conf

Advanced Networking with Raspberry Pi

[212]

The first thing we do is specify that the IP address of the DNS server and DHCP
server is the same. To do this, add the following line at the end of the file:

dhcp-option=6,192.168.1.1

Now that the clients know where the DNS server is located, we need to create a
lookup database that contains the IP addresses with their corresponding names.
Although in actual DNS servers a more sophisticated database platform is used,
for example SQL, here we will use a simple text file as a demonstration. Add the
following two lines to the configuration file:

no-hosts

addn-hosts=/etc/hosts.dnsmasq

Here, the no-hosts line tells dnsmasq to ignore the default /etc/hosts file for
DNS queries. And the next line specifies that our own file, /etc/hosts.dnsmasq,
should be used for DNS queries.

The next step in this process is to create our hosts file. To do that, enter the
following command:

sudo nano /etc/hosts.dnsmasq

Since this file that didn't exist before, we should now be editing a blank file.
New entries can be added in a specific format, which is the IP Address, followed
by a tab, followed by the name. For example:

192.168.1.1 server

Here, the first part is the IP address, the second part is the tab spacing, and the third
part is the name associated with that IP address.

We have to add a tab instead of multiple spaces for it to work.

Now, save and exit this file. Make sure that the server is the only device connected
to the networking switch. Unplug all other devices before restarting the dnsmasq
service. Restart the service with the following command:

sudo service dnsmasq restart

But there is one more thing. Since our server is set up with a static IP address, we
also need to tell the DHCP server to use its own DNS server. We do that through a
file named /etc/resolv.conf. Open it for editing by:

sudo nano /etc/resolve.conf

Chapter 12

[213]

Change the contents of the file to:

nameserver 127.0.0.1

Now, 127.0.0.1 is a reserved IP address that is used to refer to one's own system.
So, it would be the same if we put 192.168.1.1 as the IP address. However, if the
server's IP address changes, we would need to change this file manually. So, we
put 127.0.0.1 as the IP address of the nameserver. Exit the file and restart the
networking service:

sudo service networking restart

Finally, connect all the client Raspberry Pis to the networking hub. They should start
receiving their allocated IP addresses. Once all the Pis are connected to the network,
you can run:

ping server

And you will start getting a response. If this is successful, it means that the ping
request was first passed to the DNS server inside the server Pi and, when the
hostname was resolved, a response was obtained from the IP address of the server.

Configuring the setup for a web server
Let's say, for example, one of the Raspberry Pis is configured as a web server. So,
the task now will be to set up the cluster in such a way that you can type a name
in a browser and have the home page of the web server load up!

By convention, web servers are supposed to have static IP addresses. This is so
that DNS servers can store their hostnames without worrying too much about IP
addresses changing. Since we earlier put in the entire range of IP addresses possible
as the range for the DHCP server, we will modify that range so that we can reserve
some static IP addresses for our web servers. For this, again edit the /etc/dnsmasq.
conf file and modify the dhcp-range variable to the following:

dhcp-range=192.168.1.40,192.168.1.254,255.255.255.0,12h

So, now we have non-DHCP IP addresses from 192.168.1.2 to 192.168.1.39, which we
can allot to the web servers. One of the ways to do this is to modify /etc/network/
interfaces and /etc/resolve.conf on the web server itself and set it so that the
web server always gets a static IP address. But, we can also identify the web server
by its MAC address, which is the unique hardware address of the network interface,
and give it the same IP address every time.

Advanced Networking with Raspberry Pi

[214]

This would require a modification of the dnsmasq.conf file. We need to know
the MAC address of our web server Pi for this. It can be easily found by executing
ifconfig in a new terminal and looking for the HWaddr field ; it will be in the form
b8:27:eb:a8:6b:cc. Remember that this address is unique for every device. Once
we have this address, we will add the following line in the dnsmasq.conf file on the
server Pi to assign a specific IP address for this MAC address:

dhcp-host=b8:27:eb:a8:6b:cc,192.168.1.5

This configures the DHCP server to always allot the 192.168.1.5 IP address for
this MAC address. Now, we just need to add a name for our web server in the
hosts.dnsconf file. Open it for editing with nano and just add the following
line at the end of the file:

192.168.1.5 webserver

So, it finally looks like this:

Restart the dnsmasq service for the changes to take effect by:

sudo service dnsmasq restart

Finally, we have to make the web server Pi take up the new IP address so
that it can be addressed by name in the DNS server. To do this, execute the
following commands:

sudo ifdown eth0

sudo ifup eth0

This will make the Raspberry Pi disengage with the DHCP server; when it tries to
re-acquire the IP address, the DHCP server will allot the static IP address we defined
in the configuration file.

Chapter 12

[215]

To test if the DNS server works with the web server or not, you can run the following
command from any of the other client Pis:

ping webserver

If you get a response, it means a DNS server is set up correctly. If not, then you need
to check whether all the steps were followed correctly.

Automating node discovery in a network
Currently, we have very few devices in our network. But, there will be a situation
when there will be many nodes and managing them manually will be a difficult task.
In a large cluster, there will be many nodes that are inactive or unserviceable. If we
try to connect to them using a script that has the IP address of the clients hardcoded,
we will meet with a lot of errors. This is why there is a need for automatic node
detection that automatically detects the active nodes in a network and saves that
information so that other programs can use it. One such program is MPICH, which
we learned about in the previous chapter. As you might have learned, whenever we
execute a program using MPICH, we have specified a filename that contains a list
of active nodes that can be used for computations. However, if one of the nodes is
inactive or unresponsive, the script will not work properly and will waste valuable
computation resources.

For node discovery in a network, we will use a program called Nmap, which is short
for network map. Nmap is a free security scanner, port discovery, and network
exploration tool. Install it using the following command:

sudo apt-get install nmap

Find out more about Nmap here:
https://nmap.org/.

As we learned with the IP addresses in the second section, the following IP address:

192.168.1.1

actually looks like the following:

11000000 10101000 00000001 00000001

https://nmap.org/

Advanced Networking with Raspberry Pi

[216]

Now that we have this information, we can move on to learn how to use the Nmap
tool. The commands for scanning active IP addresses are:

nmap -sP 192.168.1.0/24

nmap -sP 192.168.1.5-100

This is what the output looks like:

The preceding are two separate commands and we will learn what each of them
does. The first command scans the whole range of IP addresses in a network from
192.168.1.0 – 192.168.1.255. In this command, we specify a mask of 24 bits,
which basically tells Nmap to not change the first 24 bits of the IP address, which,
according to the information we learned earlier, means that the first three numbers
of the IP address will remain constant and only the last number will be varied and
checked for a response. Since our network will only contain IP addresses starting
with 192.168.1, due to the way our DHCP server is set up, this approach is good.

The second command explicitly specifies the range of the IP addresses to scan. This is
useful as you want to find active nodes in a specific range. One use case for this is to
find out all the client nodes in a network.

Chapter 12

[217]

Summary
In this chapter, we built upon the foundations laid down in the previous chapter
to gain more understanding about the concepts of networking and how they are
applied to a cluster of Raspberry Pis.

Specifically, we learned how to set up a DHCP server on a Raspberry Pi and
learned the mechanics of how IP addresses are allocated to different clients.
We also observed the exact procedure of how the allocation takes place.

As a next step, we set up a DNS server, too, that works with the DHCP server and
assigns names to the IP addresses so that the nodes are easily accessible. Using the
same methodology, we learned how to assign a name for a Raspberry Pi-based web
server so that we can open websites on our own network.

Finally, we learned about a tool that helps us discover active nodes on the network
so that we do not have to face the inconvenience of assigning computations to a non-
active node that could potentially crash a program or wrong computations.

[219]

Setting Up a Web Server on
the Raspberry Pi

In the previous two chapters, we discussed the networking capabilities of the
Raspberry Pi. In Chapter 11, Build Your Own Supercomputer with Raspberry Pi, we
built a network of Raspberry Pi devices that were able to communicate with each
other and share the computational burden, thereby significantly reducing the time
required for a task to complete. In the next chapter, Chapter 12, Advanced Networking
with Raspberry Pi, we learned about more advanced networking concepts such as
DHCP servers, DNS systems, and so on. In addition to that, we made our own
intranet with a few Pi devices.

Continuing the same theme, we will now set up a web server on a single Raspberry
Pi and set up a WordPress installation on it. The web server that we will be using is
Apache, as it is one of the most popular servers, and has high usage within the open
source community. In this chapter, we will be covering the following topics:

• Introducing and installing Apache
• Learning to serve HTML websites
• Installing PHP and MySQL
• Installing WordPress
• Configuring WordPress

Setting Up a Web Server on the Raspberry Pi

[220]

Introducing and installing Apache on
Raspbian
The Apache HTTP server is extremely popular and is the world's most used web
server software currently. It enjoys the support of the open source community
because it is developed and maintained by an open community of developers under
the umbrella of the Apache Software Foundation. Although most commonly used on
a Unix-like system, it is available for a variety of other operating systems including
Microsoft Windows. In 2009, it became the first web server to be used by more than a
hundred million websites and currently it is estimated to serve over 50 percent of all
websites and 37 percent of the top servers across domains.

One of the reasons it is so popular is that it supports a wide variety of features and
many more features can be implemented as compiled modules that can extend
the core functionality. For example, on its own, Apache can serve HTML files over
HTTP, but with additional modules installed, it can also serve web pages using
languages such as Python. It also has a variety of language interfaces that include
Python, PHP, and Perl.

Now, installing the web server on a Raspbian distribution is extremely easy.
We need to install the apache2 package with the following command:

$ sudo apt-get install apache2

During installation, the package automatically creates our demo HTML file that you
can see if you type 127.0.0.1 or http://localhost/ on your URL bar. We can also
see this if we navigate to the Pi's IP address from another machine connected to the
same network such as 192.168.1.5. Replace this IP address with your own Pi's IP
address in the network. You can find the IP address by typing the following on the
Raspberry Pi's terminal:

$ hostname -I

Chapter 13

[221]

The default page looks like this:

If we see this page, it means that our installation has been successful. This is just a
single HTML file that can be found at /var/www/html/index.html. Let's look at the
details of this folder. Navigate to the folder by:

$ cd /var/www/html/

And then execute the following command to see the properties of the files in
the folder:

$ ls -al

Setting Up a Web Server on the Raspberry Pi

[222]

This command lists the files and a few of their properties. You will see the
following output:

The meaning of the columns respectively is:

• Permissions of the file
• Number of files in the directory
• User that owns the file/directory
• Group that owns the file/directory
• File size
• Last modified date

Since the owner of the index.html file is root, we need to take ownership of the file
before editing it. To do that, enter the following command:

$ sudo chown pi: index.html

We can also replace the index.html file with our own HTML file and serve a fully
fledged HTML website complete with CSS classes.

However, a simple HTML website sounds too basic, right? Since we are on the
final leg of this book, we should do something more advanced. That's right, in the
following sections we will be learning how to set up a WordPress website. For that,
however, we first need to install a few tools that WordPress uses.

Installing PHP and MySQL
PHP is one of the most popular programming languages in use today for the web
look at. It is the code that runs on the server when it receives a request for a website.
Unlike HTML, PHP can generate dynamic web pages that can change the look and
content on the fly. We chose PHP to work with because WordPress uses PHP. Now,
install PHP and the accompanying Apache packages with the following command:

$ sudo apt-get install php5 libapache2-mod-php5

We now have PHP installed with its accompanying Apache packages, and we will
proceed to test it.

Chapter 13

[223]

Navigate to the HTML folder and create a new index.php file:

$ cd /var/www/html/

$ sudo nano index.php

Add a test line to it:

<?php echo "hello world"; ?>

Save the file and exit by pressing Ctrl + X and then Y. We also need to remove
the index.html file because HTML takes precedence over PHP. Do that with the
following command:

sudo rm index.html

Navigate to 127.0.0.1 or localhost in the browser and you will be greeted by the
hello world message. Let's now set up something static.

Replace the hello world line with the following:

<?php echo date('Y-m-d H:i:s'); ?>

Now that we have installed PHP to process the web pages that we want, the next
step is to install a database to store some data. Our database of choice will be
MySQL simply because WordPress uses it to store IDs of things such as Post,
Pages, Comments, Users, and so on.

To install MySQL and its PHP packages, run the following command:

sudo apt-get install mysql-server php5-mysql

Once the installation proceeds, you will be asked for a root password for creating the
databases. Enter the password and remember it for future use.

Installing WordPress
Now that we are done installing the dependencies, the next step is getting the
WordPress files in the HTML folder. Fortunately for us, WordPress provides a tar
archive of the latest version of WordPress on this link: http://wordpress.org/
latest.tar.gz. We now need to place the files contained in this folder in our web
server folder. To do that, we first need to take ownership of the folder. To carry
out that entire process, we execute the following commands:

$ cd /var/www/html/
$ sudo chown pi:
$ sudo rm *
$ wget http://wordpress.org/latest.tar.gz

http://wordpress.org/latest.tar.gz
http://wordpress.org/latest.tar.gz

Setting Up a Web Server on the Raspberry Pi

[224]

In a nutshell, we first navigate to the HTML folder, take ownership of the folder,
remove all the pre-existing files, and then fetch the WordPress archive. Next, we
extract the contents of the archive and place them in the HTML folder. We do that
with the following commands:

$ tar xzf latest.tar.gz

$ mv wordpress/*

$ rm -rf wordpress latest.tar.gz

Now, if you run the ls command, you will see the following output:

Configuring the WordPress installation
Once the files are properly placed in the right locations, to activate the installation
and start using the WordPress website, we first need to set up a MySQL database
that WordPress can use. To set up the database, execute the following command:

$ mysql -uroot -p

Chapter 13

[225]

This sets up the database so that the user is root and the -p option prompts the
terminal to ask for the password. Enter the same password that you entered while
installing the MySQL database. We are then greeted with a MySQL terminal that
looks like this:

Once inside the terminal, execute the following statement:

mysql> create database wordpress;

You will be greeted by the following message:

Finally, exit the terminal by pressing Ctrl + D.

Setting Up a Web Server on the Raspberry Pi

[226]

To complete the installation, we need to access the WordPress installation page,
located on our local host. So go ahead and enter 127.0.0.1 in your browser and
you will be greeted with the following page:

Chapter 13

[227]

This means that WordPress is properly configured. We now hit Let's go! to proceed
to the next step. This takes us to the following page:

Setting Up a Web Server on the Raspberry Pi

[228]

Enter all the details for the database including the password that you set earlier.
Enter the details on the page as given in the preceding screenshot, and then press
Submit. The installation wizard will give an error message that it was unable to
write the wp-config.php file to the filesystem. There is no reason to panic here,
because it also gives us the content of the wp-config.php file that we can use to
create the file manually. The error looks like this:

So, now copy the text given in the dialog box, and open a new terminal. Create a new
wp-config.php file in the HTML folder with the following commands:

$ cd /var/www/html

$ sudo nano wp-config.php

Chapter 13

[229]

Go ahead and paste the content that was copied. We can right-click to paste or
simply press Ctrl + Shift + V. Save and exit the file by pressing Ctrl + X and then Y.
Once the file is created, go back to the browser and hit the Run the Install button.
After processing for a few seconds, the page returns the following screen:

Now, we are ready to enter our details to create a user and begin using the
WordPress website. Enter the details, and you've successfully created it.

Setting Up a Web Server on the Raspberry Pi

[230]

You can log in to your website by appending /wp-admin.php to your website URL.
For example, in our case the admin page will be given by 127.0.0.1/wp-admin.php,
and it looks like this:

To find out more about WordPress, log on to their website:
https://wordpress.org/

https://wordpress.org/

Chapter 13

[231]

It would be an interesting exercise for you to continue with the process and try to
run a fully fledged website on the Raspberry Pi and see how it handles the loads of
running a heavy website complete with custom theme, pictures, and so on.

Summary
This chapter was a general extension of the previous two chapters, expanding on the
concepts of networking built previously and using them to set up a web server on
our intranet.

In this chapter, we installed the Apache web server on our Pi. To set up the
WordPress website, we installed all the dependencies including PHP and MySQL.
Then we downloaded the WordPress files and set up a MySQL database to work
with it.

Finally, we configured the installation and resolved the errors that we generated to
arrive at a complete installation.

In next chapter, we will learn network programming with Raspberry Pi using sockets
in Python.

[233]

Network Programming in
Python with the Pi

A network socket is an endpoint of a connection across computer networks.
Nowadays, almost all communication between computers and distinct networks
is based on the Internet Protocol, which uses sockets as a basis of communication.
A socket is an abstract reference that a local program can pass to the network API
to make use of a connection. Sockets are internally often represented in network
programming APIs simply as integers, which identify which connection to use.
In brief, we will be covering the following topics in this chapter:

• The basics of sockets
• The difference between TCP and UDP sockets
• UDP sockets
• TCP sockets
• The Telnet program
• A chat application

The basics of sockets
A socket API is an application programming interface, provided by the operating
system (OS), that allows application programs to initiate, control, and use network
sockets programmatically for communication. Internet socket APIs are usually
based on the Berkeley sockets standard. In the Berkeley sockets standard, sockets
are a form of file descriptor, adhering to the Unix philosophy that everything is a file.
Thus, we can read, write, open, and close sockets in the same way as we do files.
In inter-process communications, each end will have its own socket, but these
may use different socket-programming APIs. However, they are abstracted by the
network protocol.

Network Programming in Python with the Pi

[234]

A socket address is a combination of an Internet Protocol (IP) address and a
port number. Internet sockets deliver and receive data packets to and from the
appropriate application process or thread. On a computer with an IP address, every
network-related program or utility will have its own unique socket or set of sockets.
This ensures that the incoming data is redirected to the correct application.

The difference between TCP and UDP
There are two types of protocols in the IP suite. They are Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP). TCP is a connection-oriented IP
which means that once a connection is established, data can be sent in a bidirectional
manner. UDP is a much simpler, connectionless Internet protocol. Multiple messages
are sent as packets in chunks using UDP. Let's distinguish between the two with
clear points, as follows:

TCP UDP

TCP is a connection-oriented protocol. UDP is a connectionless protocol.

Using this mode, a message makes its way
across the Internet from one computer and
network to another. This is connection based.

UDP is also a protocol used in message
transport or transfer. It is not a connection-
based protocol. A program using UDP can
send a lot of packets to another, and that
would be the end of the relationship.

TCP is suited to applications that require
high reliability, and transmission time is
relatively less critical.

UDP is suitable for applications that need
fast, efficient transmission, such as games
and live-streaming videos.

Protocols utilizing TCP include HTTP,
HTTPS, FTP, SMTP, and Telnet.

Protocols utilizing UDP include DNS, DHCP,
TFTP, SNMP, RIP, and VoIP.

Data is read as a stream of bytes; no
distinguishing indications are transmitted to
signal message segment boundaries.

Packets are sent individually and are checked
for integrity only on arrival. Packets have
headers and endpoints.

TCP performs error checking. UDP performs error checking. However, it
has no recovery options for missed or corrupt
packets.

The data transferred remains intact and
arrives in the same order (known as in-order)
in which it was sent.

There is no guarantee that the messages or
packets sent will reach at all or will be in the
same order as transmitted.

Chapter 14

[235]

The architecture and programming of UDP
sockets
Here is the architecture of a UDP client-server system:

Network Programming in Python with the Pi

[236]

UDP is an Internet protocol. Just like its counterpart TCP (which we will discuss
soon), UDP is a protocol for the transfer of packets from one host to another.
However, as seen in the diagram, it has some important differences from TCP.
Unlike TCP, UDP is connectionless and is not a stream-oriented protocol. This
means a UDP server just catches incoming packets from any and many hosts
without establishing a reliable and dedicated connection for the transfer of data
between processes.

A UDP socket is created as follows in Python:

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

SOCK_DGRAM specifies a UDP socket.

Sending and receiving data with UDP
As UDP sockets are connectionless sockets, communication is done with the socket
functions sendto() and recvfrom(). These functions do not require a socket to be
connected to another peer explicitly. They just send and receive directly to and from
a given IP address.

UDP servers and NCAT
The simplest form of a UDP server in Python is as follows:

import socket
port = 5000
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.bind(("", port))
print "waiting on port:", port
while 1:
 data, addr = s.recvfrom(1024)
 print data

Instead of having a listen() function, a UDP server has to open a socket and
wait to receive incoming packets. As is evident from the code snippet, there is no
listen() or accept() function. Save the above code and execute it from a terminal
and then connect to it using the NCAT utility. NCAT is an alternative to Telnet, and
it is more powerful than Telnet and packed with more features. Run the program
and, in another terminal window, use NCAT. Here is the output of the execution of
the program and NCAT:

pi@raspberrypi ~/book/chapter14 $ nc localhost 5000 -u -v
Connection to localhost 5000 port [udp/*] succeeded!

Hello
Ok

Chapter 14

[237]

The -u flag in the command indicates the UDP protocol. The message we send
should be displayed on the server terminal.

An echo server using Python UDP sockets
Here is the code for an echo server in Python:

import socket
import sys

HOST = '' # Symbolic name meaning all available interfaces
PORT = 8888 # Arbitrary non-privileged port

Datagram (udp) socket
try :
 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 print 'Socket created'
except socket.error, msg :
 print 'Failed to create socket. Error Code : ' + str(msg[0]) + '
Message ' + msg[1]
 sys.exit()

Bind socket to local host and port
try:
 s.bind((HOST, PORT))
except socket.error , msg:
 print 'Bind failed. Error Code : ' + str(msg[0]) + ' Message '
 + msg[1]
 sys.exit()

print 'Socket bind complete'

#now keep talking with the client
while 1:
 # receive data from client (data, addr)
 d = s.recvfrom(1024)
 data = d[0]
 addr = d[1]

 if not data:
 break

 reply = 'OK...' + data

Network Programming in Python with the Pi

[238]

 s.sendto(reply , addr)
 print 'Message[' + addr[0] + ':' + str(addr[1]) + '] - ' +
 data.strip()

s.close()

This program will start a UDP server process on the mentioned port (in our case, it's
8888). Save the program and run it in a terminal. To test the program, open another
terminal and use the NCAT utility to connect to this server, as follows:

pi@raspberrypi ~/book/chapter14 $ nc -vv localhost 8888 -u

Connection to localhost 8888 port [udp/*] succeeded!

OK...XOK...XOK...XOK...XOK...X

OK...

Hello

OK...Hello

How are you?

OK...How are you?

Use NCAT again to send messages to the UDP server, and the UDP server will reply
back with OK... prefixed to the message.

The server process terminal also displays the details about the client connected,
as follows:

$ python prog2.py

Socket created

Socket bind complete

Message[127.0.0.1:46622] - Hello

Message[127.0.0.1:46622] - How are you?

It is important to note that unlike a TCP server, a UDP server can handle multiple
clients directly as there is no explicit connection with a client (hence connectionless).
It can receive from any client and send a reply to it. No threads are required as we do
in TCP servers.

A UDP client
The code for a UDP client is as follows:

import socket #for sockets
import sys #for exit

Chapter 14

[239]

create dgram udp socket
try:
 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
except socket.error:
 print 'Failed to create socket'
 sys.exit()

host = 'localhost';
port = 8888;

while(1) :
 msg = raw_input('Enter message to send : ')

 try :
 #Set the whole string
 s.sendto(msg, (host, port))

 # receive data from client (data, addr)
 d = s.recvfrom(1024)
 reply = d[0]
 addr = d[1]

 print 'Server reply : ' + reply

 except socket.error, msg:
 print 'Error Code : ' + str(msg[0]) + ' Message ' + msg[1]
 sys.exit()

The client will connect to the UDP server and exchange messages as follows:

pi@raspberrypi ~/book/chapter14 $ python prog3.py

Enter message to send : Hello

Server reply : OK...Hello

Enter message to send : How are you

Server reply : OK...How are you

Enter message to send : Ok

Server reply : OK...Ok

Enter message to send :

The programs for the UDP protocol are simple to code as there are no explicit
connections from the UDP clients to the UDP server.

In the next subsection, we will learn about TCP sockets.

Network Programming in Python with the Pi

[240]

The architecture of TCP sockets
The following is a diagram of the TCP client-server architecture:

Chapter 14

[241]

Creating a TCP socket
Here is an example of creating a TCP socket:

import socket #for sockets

create an AF_INET, STREAM socket (TCP)
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

print 'Socket Created'

The socket.socket()function creates a socket and returns a socket descriptor,
which can be used in other socket-related functions.

This code will create a socket with the following properties:

• Address family: AF_INET (this is for IP version 4, or IPv4)
• Type: SOCK_STREAM (this specifies a connection-oriented protocol,

that is, TCP)

If any of the socket functions fail, then Python throws an exception called
socket.error, which must be caught as follows:

import socket #for sockets
import sys for exit

try:
 create an AF_INET, STREAM socket (TCP)
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
except socket.error, msg:
 print 'Failed to create socket. Error code: ' + str(msg[0]) + ' ,
Error message : ' + msg[1]
 sys.exit();

print 'Socket Created'

In this way, we have created a TCP socket successfully. We can connect to a server,
for example, https://www.google.com, using this socket.

Connecting to a server with a TCP socket
We can connect to a remote server on a certain port number. We need two things for
this: the IP address of the remote server we are connecting to and a port number to
connect to. We will use the IP address of https://www.google.com as a sample in
the following code.

http://www.google.com
https://www.google.com

Network Programming in Python with the Pi

[242]

First, we need to get the IP address of the remote host or URL, since before
connecting to a remote host, its IP address is required. In Python, obtaining
the IP address is quite simple:

import socket #for sockets
import sys #for exit

try:
 #create an AF_INET, STREAM socket (TCP)
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
except socket.error, msg:
 print 'Failed to create socket. Error code: ' + str(msg[0]) + ' ,
Error message : ' + msg[1]
 sys.exit();

print 'Socket Created'

host = 'www.google.com'

try:
 remote_ip = socket.gethostbyname(host)

except socket.gaierror:
 #could not resolve
 print 'Hostname could not be resolved. Exiting'
 sys.exit()

print 'Ip address of ' + host + ' is ' + remote_ip

Now that we have the IP address of the remote host or URL, we can connect to it on
a certain port using the connect() function:

import socket #for sockets
import sys #for exit

try:
 create an AF_INET, STREAM socket (TCP)
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
except socket.error, msg:
 print 'Failed to create socket. Error code: ' + str(msg[0]) + ' ,
Error message : ' + msg[1]
 sys.exit();

print 'Socket Created'

Chapter 14

[243]

host = 'www.google.com'
port = 80

try:
 remote_ip = socket.gethostbyname(host)

except socket.gaierror:
 could not resolve
 print 'Hostname could not be resolved. Exiting'
 sys.exit()

print 'Ip address of ' + host + ' is ' + remote_ip

Connect to remote server
s.connect((remote_ip , port))

print 'Socket Connected to ' + host + ' on ip ' + remote_ip

Run the program and notice that its output in the terminal is as follows:

pi@raspberrypi ~/book/chapter14 $ python prog4.py

Socket Created

Ip address of www.google.com is 74.125.236.83

Socket Connected to www.google.com on ip 74.125.236.83

It creates a TCP socket and then connects to a remote host. If we try connecting to a
port different from port 80, then we should not be able to connect, which indicates
that the port is not open for any connections. This logic can be used to build a
port scanner.

The concept of connections applies to SOCK_STREAM/TCP type of sockets.
A connection means an explicit or reliable stream or pipeline of data such
that there can be multiple such streams and each can have communication
of its own. Think of this as a pipe that is not interfered with by data from
other pipes. Another important property of stream connections is that the
packets have an order or sequence; hence, they are always sent, arrive,
and are processed in order.
Other sockets, such as UDP, ICMP, and ARP, don't have the concept of an
explicit connection or pipeline. These are connectionless communications,
as we have seen with an example in the case of UDP. This means that we
keep sending or receiving packets from anybody and everybody.

Network Programming in Python with the Pi

[244]

The sendall()function will send all the data. Let's send some data to
https://www.google.com. The code for it is as follows:

import socket #for sockets
import sys #for exit

try:
 #create an AF_INET, STREAM socket (TCP)
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
except socket.error, msg:
 print 'Failed to create socket. Error code: ' + str(msg[0]) + ' ,
Error message : ' + msg[1]
 sys.exit();

print 'Socket Created'

host = 'www.google.com'
port = 80

try:
 remote_ip = socket.gethostbyname(host)

except socket.gaierror:
 #could not resolve
 print 'Hostname could not be resolved. Exiting'
 sys.exit()

print 'Ip address of ' + host + ' is ' + remote_ip

#Connect to remote server
s.connect((remote_ip , port))

print 'Socket Connected to ' + host + ' on ip ' + remote_ip

#Send some data to remote server
message = "GET / HTTP/1.1\r\n\r\n"

try :
 #Set the whole string
 s.sendall(message)
except socket.error:
 #Send failed
 print 'Send failed'
 sys.exit()

print 'Message send successfully'

https://www.google.com

Chapter 14

[245]

In this example, we first connect to an IP address and then send the string message
GET / HTTP/1.1\r\n\r\n to it. The message is actually an HTTP command to fetch
the main page of the website.

Now that we have sent some data, it's time to receive a reply from the server. So let's
do it.

Receiving data from the server
The recv()function is used to receive data on a socket. In the following example,
we will send a message and receive a reply from the server with Python:

import socket #for sockets
import sys #for exit

#create an INET, STREAMing socket
try:
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
except socket.error:
 print 'Failed to create socket'
 sys.exit()

print 'Socket Created'

host = 'www.google.com';
port = 80;

try:
 remote_ip = socket.gethostbyname(host)

except socket.gaierror:
 #could not resolve
 print 'Hostname could not be resolved. Exiting'
 sys.exit()

#Connect to remote server
s.connect((remote_ip , port))

print 'Socket Connected to ' + host + ' on ip ' + remote_ip

#Send some data to remote server
message = "GET / HTTP/1.1\r\n\r\n"

Network Programming in Python with the Pi

[246]

try :
 #Set the whole string
 s.sendall(message)
except socket.error:
 #Send failed
 print 'Send failed'
 sys.exit()

print 'Message send successfully'

#Now receive data
reply = s.recv(4096)

print reply

Your web browser also does the same thing when you use it to open
www.google.com.

This socket activity represents a client socket. A client is a system that connects to a
remote host to fetch the required data.

The other type of socket activity is called a server system. A server is a system that
uses sockets to receive incoming connections and provide them with the required
data. It is just the opposite of the client system. So, https://www.google.com is a
server system and a web browser is a client system. To be more specific, https://
www.google.com is an HTTP server and a web browser is an HTTP client.

Programming socket servers
Now, we move on to learning how to program socket servers. Servers basically
perform the following sequence of tasks:

1. Open a socket
2. Bind to an address (and port)
3. Listen for incoming client connection requests
4. Accept connections
5. Receive/send data from/to clients

We already know to open a socket. So, the next thing to learn will be how to bind it.

http://www.google.com
www.google.com
https://www.google.com
https://www.google.com
https://www.google.com

Chapter 14

[247]

Binding a socket
The bind()function can be used to bind a socket to a particular IP address and port.
It needs a sockaddr_in structure similar to the connect() function:

import socket
import sys

HOST = '' # Symbolic name meaning all available interfaces
PORT = 8888 # Arbitrary non-privileged port

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print 'Socket created'

try:
 s.bind((HOST, PORT))
except socket.error , msg:
 print 'Bind failed. Error Code : ' + str(msg[0]) + ' Message ' +
msg[1]
 sys.exit()

print 'Socket bind complete'

Now that the binding is done, it's time to make the socket listen to incoming
connection requests. We bind a socket to a particular IP address and a certain port
number. By doing this, we ensure that all incoming data packets directed towards
this port number are received by the server application.

Also, there cannot be more than one socket bound to the same port.

Listening for incoming connections
After binding a socket to a particular port, the next thing we need to do is listen for
incoming connections. For this, we need to switch the socket to listening mode. The
socket_listen()function is used to put the socket in listening mode. To accomplish
this, we need to add the following line after the bind code:

s.listen(10)
print 'Socket now listening'

The parameter of the listen()function is called the backlog. It is used to control the
number of incoming connections that are kept waiting if the program using that port
is already busy. So, by mentioning 10, we mean that if 10 connections are already
waiting to be processed, then the eleventh new connection request shall be rejected.
This will be clearer after checking socket_accept().

Network Programming in Python with the Pi

[248]

Here is the code to do that:

import socket
import sys

HOST = '' # Symbolic name meaning all available interfaces
PORT = 8888 # Arbitrary non-privileged port

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print 'Socket created'

try:
 s.bind((HOST, PORT))
except socket.error , msg:
 print 'Bind failed. Error Code : ' + str(msg[0]) + ' Message ' +
msg[1]
 sys.exit()

print 'Socket bind complete'

s.listen(10)
print 'Socket now listening'

#wait to accept a connection - blocking call
conn, addr = s.accept()

#display client information
print 'Connected with ' + addr[0] + ':' + str(addr[1])

Run the program. It should show you the following:

pi@raspberrypi ~/book/chapter14 $ python prog7.py

Socket created

Socket bind complete

Socket now listening

So now, this program is waiting for incoming client connections on port 8888.
Don't close this program; ensure that you keep it running.

Now, a client can connect to the server on this port. We will use the Telnet client for
testing this. Open a terminal and type this:

$ telnet localhost 8888

Chapter 14

[249]

It will immediately show the following:

pi@raspberrypi ~/book/chapter14 $ telnet localhost 8888

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

Connection closed by foreign host.

pi@raspberrypi ~/book/chapter14 $

And this is what the server will show:

pi@raspberrypi ~/book/chapter14 $ python prog7.py

Socket created

Socket bind complete

Socket now listening

Connected with 127.0.0.1:59954

So now, we can see that the client is connected to the server. We accepted an
incoming connection but closed it immediately. There are lots of tasks that can be
accomplished after an incoming connection is established. The connection was
established between two hosts for the purpose of communication. So let's reply
to the client.

The sendall()function can be used to send something to the socket of the incoming
connection, and the client should be able to receive it. Here is the code for that:

import socket
import sys

HOST = '' # Symbolic name meaning all available interfaces
PORT = 8888 # Arbitrary non-privileged port

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print 'Socket created'

try:
 s.bind((HOST, PORT))
except socket.error , msg:
 print 'Bind failed. Error Code : ' + str(msg[0]) + ' Message '
 + msg[1]
 sys.exit()

print 'Socket bind complete'

Network Programming in Python with the Pi

[250]

s.listen(10)
print 'Socket now listening'

#wait to accept a connection - blocking call
conn, addr = s.accept()

print 'Connected with ' + addr[0] + ':' + str(addr[1])

#now keep talking with the client
data = conn.recv(1024)
conn.sendall(data)

conn.close()
s.close()

Run this code in a terminal window and connect to this server using Telnet from
another terminal; you should be able to see this:

pi@raspberrypi ~/book/chapter14 $ telnet localhost 8888

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

happy

happy

Connection closed by foreign host.

So, the client (Telnet) received a reply from the server.

We can see that the connection is closed immediately after this, simply because the
server program terminates immediately after accepting the request and responding
with the reply. A server process is supposed to be running all the time; the simplest
way to accomplish this is to iterate the accept method in a loop so that it can receive
incoming connections all the time.

So, a live server will always be up and running. The code for this is as follows:

import socket
import sys

HOST = '' # Symbolic name meaning all available interfaces
PORT = 5000 # Arbitrary non-privileged port

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Chapter 14

[251]

print 'Socket created'

try:
 s.bind((HOST, PORT))
except socket.error , msg:
 print 'Bind failed. Error Code : ' + str(msg[0]) + ' Message '
 + msg[1]
 sys.exit()

print 'Socket bind complete'

s.listen(10)
print 'Socket now listening'

#now keep talking with the client
while 1:
 #wait to accept a connection - blocking call
 conn, addr = s.accept()
 print 'Connected with ' + addr[0] + ':' + str(addr[1])

 data = conn.recv(1024)
 reply = 'OK...' + data
 if not data:
 break

 conn.sendall(reply)

conn.close()
s.close()

Now run this server program in a terminal, and open three other terminals.

From each of the three terminals, perform a Telnet to the server port.

Each of the Telnet terminals will show output as follows:

pi@raspberrypi ~/book/chapter14 $ telnet localhost 5000

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

happy

OK .. happy

Connection closed by foreign host.

Network Programming in Python with the Pi

[252]

The server terminal will show the following:

pi@raspberrypi ~/book/chapter14 $ python prog9.py

Socket created

Socket bind complete

Socket now listening

Connected with 127.0.0.1:60225

Connected with 127.0.0.1:60237

Connected with 127.0.0.1:60239

So now, the server is up and the Telnet terminals are also connected to it. Now,
terminate the server program. All Telnet terminals will show Connection closed
by foreign host.

Handling multiple connections
To handle every connection, we need separate handling code to run along with the
main server thread, which accepts incoming connection requests. One way to achieve
this is to use threads. The main server program accepts an incoming connection
request and provisions a new thread to handle communication for the connection,
and then, the server goes back to accept more incoming connection requests.

This is the required code:

import socket
import sys
from thread import *

HOST = '' # Symbolic name meaning all available interfaces
PORT = 8888 # Arbitrary non-privileged port

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print 'Socket created'

#Bind socket to local host and port
try:
 s.bind((HOST, PORT))
except socket.error , msg:
 print 'Bind failed. Error Code : ' + str(msg[0]) + ' Message '
 + msg[1]
 sys.exit()

print 'Socket bind complete'

Chapter 14

[253]

#Start listening on socket
s.listen(10)
print 'Socket now listening'

#Function for handling connections. This will be used to create
threads
def clientthread(conn):
 #Sending message to connected client
 conn.send('Welcome to the server. Type something and hit
 enter\n') #send only takes string

 #infinite loop so that function do not terminate and thread do
 not end.
 while True:

 #Receiving from client
 data = conn.recv(1024)
 reply = 'OK...' + data
 if not data:
 break

 conn.sendall(reply)

 #came out of loop
 conn.close()

#now keep talking with the client
while 1:
 #wait to accept a connection - blocking call
 conn, addr = s.accept()
 print 'Connected with ' + addr[0] + ':' + str(addr[1])

 #start new thread takes 1st argument as a function name to be
 run, second is the tuple of arguments to the function.
 start_new_thread(clientthread ,(conn,))

s.close()

Run this server code and open three terminals like before. Now, the server will create
a thread for each client connecting to it.

Network Programming in Python with the Pi

[254]

The Telnet terminals will show output as follows:

pi@raspberrypi ~/book/chapter14 $ telnet localhost 8888

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

Welcome to the server. Type something and hit enter

hi

OK...hi

asd

OK...asd

cv

OK...cv

The server terminal will look like this:

pi@raspberrypi ~/book/chapter14 $ python prog10.py

Socket created

Socket bind complete

Socket now listening

Connected with 127.0.0.1:60730

Connected with 127.0.0.1:60731

This connection handler takes the input from the client and replies with the same.

Looking back
By now, we have learned the basics of socket programming in Python. When testing
these programs, if you face the following error, simply change the port number, and
the server will run fine:

Bind failed. Error Code : 98 Message Address already in use

A Telnet client in Python
The Telnet client is a simple command-line program that is used to connect to socket
servers and exchange messages. The following is an example of how to use Telnet to
connect to https://www.google.com and fetch the homepage:

$ telnet www.google.com 80

https://www.google.com

Chapter 14

[255]

This command will connect to www.google.com on port 80.

$ telnet www.google.com 80

Trying 74.125.236.69...

Connected to www.google.com.

Escape character is '^]'

Now that it is connected, the Telnet command can take user input and send it
to the respective server, and whatever the server replies will be displayed in the
terminal. For example, send the HTTP GET command in the following format and
hit Enter twice:

GET / HTTP/1.1

Sending this will generate a response from the server. Now we will make a similar
Telnet program. The program is simple: we will implement a program that takes
user input and fetches results from the remote server in parallel using the threads.
One thread will keep receiving messages from the server and another will keep
taking in user input. But there is another way to do this apart from threads: the
select() function. This function allows you to monitor multiple sockets or streams
for readability and will generate an event if any of the sockets are ready.

The code for it is as follows:

import socket, select, string, sys

#main function
if __name__ == "__main__":

 if(len(sys.argv) < 3) :
 sys.exit()

 host = sys.argv[1]
 port = int(sys.argv[2])

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.settimeout(2)

 # connect to remote host
 try :
 s.connect((host, port))
 except :
 print 'Unable to connect'
 sys.exit()

Network Programming in Python with the Pi

[256]

 print 'Connected to remote host'

 while 1:
 socket_list = [sys.stdin, s]

 # Get the list sockets which are readable
 read_sockets, write_sockets, error_sockets =
 select.select(socket_list , [], [])

 for sock in read_sockets:
 #incoming message from remote server
 if sock == s:
 data = sock.recv(4096)
 if not data :
 print 'Connection closed'
 sys.exit()
 else :
 #print data
 sys.stdout.write(data)

 #user entered a message
 else :
 msg = sys.stdin.readline()
 s.send(msg)

The execution of this program is shown here. It connects to the remote host
google.com.

$ python telnet.py google.com 80

Connected to remote host

Once connected, it shows the appropriate connected message. Once the message is
displayed, type in some message to send to the remote server. Type the same GET
message and send it by hitting Enter twice. A response will be generated.

A chat program
In the previous section, we went through the basics of creating a socket server and
client in Python. In this section, we will write a chat application in Python that is
powered by Python sockets.

The chat application we are going to make will be a common chat room rather than
a peer-to-peer chat. So this means that multiple chat users can connect to the chat
server and exchange messages. Every message is broadcast to every connected
chat user.

Chapter 14

[257]

The chat server
The chat server performs the following tasks:

• It accepts multiple incoming connections for the client.
• It reads incoming messages from each client and broadcasts them to all the

other connected clients.

The following is the code for the chat server:

import socket, select

#Function to broadcast chat messages to all connected clients
def broadcast_data (sock, message):
 #Do not send the message to master socket and the client who
 has send us the message
 for socket in CONNECTION_LIST:
 if socket != server_socket and socket != sock :
 try :
 socket.send(message)
 except :
 # broken socket connection may be, chat client
 pressed ctrl+c for example
 socket.close()
 CONNECTION_LIST.remove(socket)

if __name__ == "__main__":

 # List to keep track of socket descriptors
 CONNECTION_LIST = []
 RECV_BUFFER = 4096 # Advisable to keep it as an exponent of 2
 PORT = 5000

 server_socket = socket.socket(socket.AF_INET,
 socket.SOCK_STREAM)
 # this has no effect, why ?
 server_socket.setsockopt(socket.SOL_SOCKET,
 socket.SO_REUSEADDR, 1)
 server_socket.bind(("0.0.0.0", PORT))
 server_socket.listen(10)

 # Add server socket to the list of readable connections
 CONNECTION_LIST.append(server_socket)

 print "Chat server started on port " + str(PORT)

Network Programming in Python with the Pi

[258]

 while 1:
 # Get the list sockets which are ready to be read through
select
 read_sockets,write_sockets,error_sockets =
 select.select(CONNECTION_LIST,[],[])

 for sock in read_sockets:
 #New connection
 if sock == server_socket:
 # Handle the case in which there is a new
 connection recieved through server_socket
 sockfd, addr = server_socket.accept()
 CONNECTION_LIST.append(sockfd)
 print "Client (%s, %s) connected" % addr

 broadcast_data(sockfd, "[%s:%s] entered room\n" %
 addr)

 #Some incoming message from a client
 else:
 # Data received from client, process it
 try:
 #In Windows, sometimes when a TCP program
 closes abruptly,
 # a "Connection reset by peer" exception will
 be thrown
 data = sock.recv(RECV_BUFFER)
 if data:
 broadcast_data(sock, "\r" + '<' +
 str(sock.getpeername()) + '> ' + data)

 except:
 broadcast_data(sock, "Client (%s, %s) is
 offline" % addr)
 print "Client (%s, %s) is offline" % addr
 sock.close()
 CONNECTION_LIST.remove(sock)
 continue

 server_socket.close()

In this code, the server program opens up port 5000 to listen for incoming
connections from the clients. The chat client must connect to the same port. We can
change the port number if we want by specifying another number that is not used by
any other program or process.

Chapter 14

[259]

The server handles multiple chat clients with multiplexing based on the select()
function. The select() function monitors all the client sockets and the master socket
for any readable activity. If any of the client sockets are readable, then it means that
one of the chat clients has sent a message to the server.

When the select() function returns, read_sockets will be an array consisting of all
socket descriptors that are readable. When the master socket is readable, the server
will accept the new connection. If any of the client sockets is readable, the server will
read the message and broadcast it back to all the other clients except the one who
sent the message. If the broadcast function fails to send the message to any of the
clients, the client is presumed to be disconnected, the connection is closed, and the
corresponding socket is removed from the connections list.

The chat client
Now, let's code the chat client that will connect to the chat server and exchange the
messages. The chat client is based on the Telnet program in Python, which we have
already worked on. It connects to a remote server and exchanges messages.

The chat client performs the following tasks:

• It listens for incoming messages from the server.
• It checks for user input, in case the user types in a message and then sends it

to the chat server to which it is connected.

The client has to actually listen for server messages and user input simultaneously.
To accomplish this, we can use the select() function. The select() function can
monitor multiple sockets or file descriptors simultaneously for activity. When a
message from the server arrives on the connected socket, it is readable, and when the
user types a message from the keyboard and hits Enter, the stdin stream is readable.

So, the select() function has to monitor two streams: the first is the socket that
is connected to the remote web server, and the second is stdin or terminal input
stream from the keyboard. The select() function waits until some activity happens.
So, after calling the select() function, the function itself will return only when
either the server socket receives a message or the user enters a message using the
keyboard. If nothing happens, it keeps on waiting.

We can create an array of the stdin file descriptor that is available from the sys
module and the server sockets. Then, we call the select() function, passing it the
list. The select() function returns a list of arrays that are readable, writable, or have
an error.

Network Programming in Python with the Pi

[260]

Here is the Python code that implements the previous logic using the select()
function as follows:

import socket, select, string, sys

def prompt() :
 sys.stdout.write('<You> ')
 sys.stdout.flush()

#main function
if __name__ == "__main__":

 if(len(sys.argv) < 3) :
 print 'Usage : python telnet.py hostname port'
 sys.exit()

 host = sys.argv[1]
 port = int(sys.argv[2])

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.settimeout(2)

 # connect to remote host
 try :
 s.connect((host, port))
 except :
 print 'Unable to connect'
 sys.exit()

 print 'Connected to remote host. Start sending messages'
 prompt()

 while 1:
 socket_list = [sys.stdin, s]

 # Get the list sockets which are readable
 read_sockets, write_sockets, error_sockets =
 select.select(socket_list , [], [])

 for sock in read_sockets:
 #incoming message from remote server
 if sock == s:
 data = sock.recv(4096)

 if not data :
 print '\nDisconnected from chat server'
 sys.exit()
 else :
 #print data
 sys.stdout.write(data)

Chapter 14

[261]

 prompt()

 #user entered a message
 else :
 msg = sys.stdin.readline()
 s.send(msg)
 prompt()

Execute the chat client from multiple consoles as follows:

$ python telnet.py localhost 5000
Connected to remote host. Start sending messages
<You> hello
<You> I am fine
<('127.0.0.1', 38378)> ok good
<You>
on another console
<You> [127.0.0.1:39339] entered room
<('127.0.0.1', 39339)> hello
<('127.0.0.1', 39339)> I am fine
<You> ok good

In this way, the messages sent by one client can be seen on the terminal of the
other client.

References
The code and definitions in this chapter have been referred to from a few online
sources, as follows:

• http://www.binarytides.com/python-socket-programming-tutorial

• http://www.binarytides.com/python-socket-server-code-example

• http://www.binarytides.com/code-chat-application-server-client-
sockets-python

• http://www.binarytides.com/code-telnet-client-sockets-python

• http://www.binarytides.com/programming-udp-sockets-in-python

• http://www.binarytides.com/socket-programming-c-linux-tutorial/

• http://www.diffen.com/difference/TCP_vs_UDP

• http://eprints.uthm.edu.my/7531/1/FAYAD_MOHAMMED_MOHAMMED_
GHAWBAR_24.pdf

• http://www.cs.dartmouth.edu/~campbell/cs60/UDPsockets.jpg

• http://www.cs.dartmouth.edu/~campbell/cs60/TCPsockets.jpg

http://www.binarytides.com/python-socket-programming-tutorial
http://www.binarytides.com/python-socket-server-code-example
http://www.binarytides.com/code-chat-application-server-client-sockets-python
http://www.binarytides.com/code-chat-application-server-client-sockets-python
http://www.binarytides.com/code-telnet-client-sockets-python
http://www.binarytides.com/socket-programming-c-linux-tutorial/
http://www.binarytides.com/socket-programming-c-linux-tutorial/
http://eprints.uthm.edu.my/7531/1/FAYAD_MOHAMMED_MOHAMMED_GHAWBAR_24.pdf
http://eprints.uthm.edu.my/7531/1/FAYAD_MOHAMMED_MOHAMMED_GHAWBAR_24.pdf
http://eprints.uthm.edu.my/7531/1/FAYAD_MOHAMMED_MOHAMMED_GHAWBAR_24.pdf
http://www.cs.dartmouth.edu/~campbell/cs60/UDPsockets.jpg
http://www.cs.dartmouth.edu/~campbell/cs60/UDPsockets.jpg
http://www.cs.dartmouth.edu/~campbell/cs60/UDPsockets.jpg
http://www.cs.dartmouth.edu/~campbell/cs60/TCPsockets.jpg
http://www.cs.dartmouth.edu/~campbell/cs60/TCPsockets.jpg

Network Programming in Python with the Pi

[262]

Exercise
Additionally, you can learn more about raw sockets in Python from the
following links:

• http://www.binarytides.com/raw-socket-programming-in-python-
linux

• http://www.binarytides.com/python-syn-flood-program-raw-
sockets-linux

Summary
In this chapter, we learned about the concepts required to understand the transfer
of data between two or more machines, in which the sender is termed as a server
and the receiver is termed as the client. We also learned the basics of establishing a
connection between a server and a client.

We built both UDP and TCP socket programs using Python and learned how to
perform tasks such as connecting to a server, sending messages, receiving messages,
and so on. Finally, we combined all that we learned to create a simple chat program
that would allow two users to communicate with each other. We can now build our
own instant messaging service!

Now that we are at the end of the book, take some time to go over the projects
that you have successfully built. We have completed some projects, ranging from
the beginner level to the advanced level, and learned a lot about the intricacies
of working with the Raspberry Pi and all its parallel concepts firsthand. Starting
from the introduction of the Raspberry Pi to projects such as motion detection from
images and intruder detection using the concepts of the Internet of Things, we have
covered almost everything that you would require to build some interesting projects
of your own.

We hope this inspires you to keep on building fun projects that are not only
interesting to set up and cool to watch but also useful to the world in general.
Keep on hacking!

http://www.binarytides.com/raw-socket-programming-in-python-linux
http://www.binarytides.com/raw-socket-programming-in-python-linux
http://www.binarytides.com/python-syn-flood-program-raw-sockets-linux
http://www.binarytides.com/python-syn-flood-program-raw-sockets-linux

[263]

Newer Raspberry Pi Models
The latest additions in the Raspberry Pi family are the Raspberry Pi Zero and
Raspberry Pi 3. We did not discuss these new additions in the earlier chapters. So,
let's focus on a few details of both these new members of the Raspberry Pi family.

The Raspberry Pi Zero
The size of a Raspberry Pi Zero is half the size of a Model A+. This is ideal for
embedded projects where size and power requirements are stringent. Here are the
specifications for the Raspberry Pi Zero:

• A 1-GHz, single-core CPU
• 512 MB of RAM
• Mini HDMI and USB on-the-go ports
• Micro USB power
• A HAT-compatible 40-pin header
• Composite video and reset headers

Newer Raspberry Pi Models

[264]

Here is an image of the Pi Zero, obtained from www.wired.co.uk:

There are two ways in which we can connect the Pi Zero to a display:

• Using mini-HDMI-to-HDMI converter, shown here:

www.wired.co.uk

Chapter 15

[265]

You can purchase one from Adafruit, using these links:
https://www.adafruit.com/products/2775

https://www.adafruit.com/products/2819

• Also, we can use VGA for display. For this, we need to use a
mini-HDMI-to-VGA adapter.

This can be purchased at
https://www.adafruit.com/products/3048.

https://www.adafruit.com/products/2775
https://www.adafruit.com/products/2819
https://www.adafruit.com/products/3048

Newer Raspberry Pi Models

[266]

For conveniently using the GPIO pins of the Pi Zero, you can use any one of the
following two-pin strip GPIO headers:

• https://www.adafruit.com/products/2822

https://www.adafruit.com/products/2822

Chapter 15

[267]

• https://www.adafruit.com/products/2823

Also, for connecting various devices, a mini-USB-to-USB converter can be used.

https://www.adafruit.com/products/2823

Newer Raspberry Pi Models

[268]

This can be obtained from https://www.adafruit.com/
products/2910.

The Raspberry Pi 3
The Raspberry Pi 3 is the latest addition to the Raspberry Pi family. It is a
third-generation Raspberry Pi. It replaced the Raspberry Pi 2 Model B in
February 2016. Compared to the Pi 2, it has the following features:

• A 1.2-GHz 64-bit quad-core ARMv8 CPU
• 802.11n onboard wireless LAN
• Bluetooth 4.1
• Bluetooth Low Energy (BLE)

https://www.adafruit.com/products/2910
https://www.adafruit.com/products/2910

Chapter 15

[269]

Also, like the Raspberry Pi 2, also has the following features:

• Four USB ports
• 40 GPIO pins
• A full-HDMI port
• An Ethernet port
• A combined 3.5mm audio jack and composite video
• A camera interface (CSI)
• A display interface (DSI)
• A micro-SD card slot (now push-pull rather than push-push)
• A VideoCore IV 3D graphics core

The form factor of the Pi 3 is identical to that of the Pi 2 and Pi 1 Model B+. The Pi 3
has complete backward compatibility with the Pi 1 and 2.

The product description for the Pi Zero and Pi 3 can be found on
Raspberry Pi's official product pages:
https://www.raspberrypi.org/products/pi-zero/

https://www.raspberrypi.org/products/raspberry-pi-3-
model-b/

https://www.raspberrypi.org/products/pi-zero/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

Module 2

Building a Home Security System with Raspberry Pi

Build your own sophisticated modular home security system
using the popular Raspberry Pi board

[273]

Setting Up Your Raspberry Pi
Before we can get into the realms of building our home security system, there's a bit
of preparation work needed to get our Raspberry Pi up and running. So, we're going
to go through the initial steps needed to get our Pi ready to be worked on.

In this chapter, we will cover the following topics:

• Exploring the different versions of the Raspberry Pi that are available
• Choosing the right Raspberry Pi version for your system
• Preparing the SD Card with the Raspbian Operating System
• Learning how to remotely access the Raspberry Pi over your home network
• Updating our operating system with the latest packages
• Exploring the time-keeping options on the Raspberry Pi
• Setting the user and root passwords to secure our Raspberry Pi

Which flavor of Pi?
Since the Raspberry Pi was released in 2012, there have been several versions
of the mini-PC board released. I'll go though each of the versions released with
their respective features so that you can choose which one is suitable for your
particular project.

Setting Up Your Raspberry Pi

[274]

The good news is that it doesn't really matter which version you use in terms of
power, as our home security system doesn't necessarily need loads of processing
power, depending on what you want your system to do, of course). You might
have an older board kicking about that will work for you.

The other piece of good news is that the GPIO interface pin layouts are the same
across all the versions. The later versions have more pins, but the original 26 pins
still remain in the same place.

The latest Raspberry Pi Version 2

Chapter 1

[275]

Raspberry Pi Model A
The baby of the family is the Model A; it was released as a lower-cost version of the
Model B, shown in the following section. Its main differences from the Model B are
that it features just 256Mb of memory and has no Ethernet port; so if you want to
connect this board to a network, you are limited to using a USB Wi-Fi dongle.

The Raspberry Pi Model A Board Layout

Setting Up Your Raspberry Pi

[276]

Raspberry Pi Model B
This was the first version of Raspberry Pi to be released; an updated revision,
which improved the power system and USB port protection, came later. It features
512Mb of memory and has an Ethernet port for connecting to your network. This is
probably the most common version used, and having the Ethernet port is incredibly
useful, especially to get up and run quickly in order to set up and configure your Pi
without the need for a keyboard and monitor.

The Raspberry Pi Model B Layout

Raspberry Pi Model B+ and Model 2
In 2014, the Raspberry Pi Foundation released a new version of the board that
had some fundamental changes as compared to the previous version. The most
fundamental changes were the board layout, form factor, and mounting points—
much to the dismay of the many enclosure and accessory manufacturers out there.

In fact, we were in the middle of prototyping an enclosure for a commercial product
that we were developing based on the Raspberry Pi—fortunately we caught wind
of the board change in the nick of time and were able to change our enclosure to
support the upcoming model B+.

Chapter 1

[277]

The main electronic changes to this board are the addition of 2 more USB ports that
can deliver more power to peripherals, an expanded GPIO interface, and the removal
of the composite video port that is now consolidated into the audio jack. It also now
uses a micro SD card with a better card slot.

In February 2015, a more powerful Raspberry Pi was released: the Raspberry Pi
Model 2. It's similar to the Model B+ in terms of form-factor and interfaces, but
is now reportedly 6-times faster than the Model B/B+ with its upgraded ARM
processor and 1Gb of memory.

At the same low cost of less than £30, it's a fantastic little board and a great power-
house for embedded systems.

The Raspberry Pi Model B+ and Model 2 Layout

Model comparison table
Model A Model B Model B+ Version 2

Processor ARM1176JZF-S 700 MHz processor,
VideoCore IV GPU

Quad-
core ARM
Cortex-A7
CPU and a
VideoCore
IV dual-
core GPU

Memory 256Kb 512Kb 512Kb 1Gb

USB Ports 2 2 4 4

Setting Up Your Raspberry Pi

[278]

Model A Model B Model B+ Version 2
Ethernet No Yes Yes Yes

No.GPIO
Pins

26 26 40 40

Storage SD Card SD Card Micro SD
Card

Micro SD
Card

So which one?
Essentially, any version of the Raspberry Pi will work with the modules presented in
this book, but if you want to exploit features such as the camera, which may require
more processing power and memory, or want to have an Ethernet connection, you'll
need to use the Model B.

If you want to start plugging additional stuff into the USB port, such as a GSM
modem, then I recommend that you use the Model B+ as it delivers more power
to those kinds of devices without the need for additional USB hubs.

If you want to do more processing with video and images from an attached camera,
or want to connect lots of things, then go for the latest Model 2 board. I'm going
to assume that's the one you have chosen for this project, and that's the one I'll be
using throughout this book; just be aware of any limitations if you choose to use
an earlier model.

The Raspberry Pi Foundation site has more detailed
information about each model. You can visit it at
https://www.raspberrypi.org/products.

Preparing the SD card
The Raspberry Pi only boots from an SD card (or micro SD card for the B+ and v2
models), and cannot boot from an external drive or USB stick (well that's not strictly
true, but is beyond the scope of this book).

It's recommended that you use a Class 10 SD card for performance, but a Class 4 or 6
card will be fine for this project. You'll need to have a minimum card size of 4Gb.

Now that we have our Raspberry Pi board and SD card to hand, we need to prepare
the SD Card specifically for our home security system. We're going to use the standard
Raspbian operating system as there really is no reason to use any other distribution;
it's the de facto choice for the Raspberry Pi.

Chapter 1

[279]

Downloading the Raspbian image
You'll need to grab the latest Raspbian OS image from the Raspberry Pi site at
https://www.raspberrypi.org/downloads.

Download the Raspbian OS ZIP file containing the image to your PC.

At the time of writing, the latest version was Raspbian Jessie
version 4.1 (2015-09-24-raspbian-jessie.zip).

Once downloaded, unzip the file and you'll have the file, 2015-09-24-raspbian-
jessie.img.

The next thing to do is burn this image to your SD card…

Using Microsoft Windows
On a Windows PC, the best way to burn the image to your SD card is to use the
Win32 Disk Imager utility. This can be downloaded from http://sourceforge.
net/projects/win32diskimager.

The current version, at the time of writing, is 0.9.5.

It doesn't have an installer, and launches directly from the EXE file.

Now, it's time to create your SD card image:

1. Insert your SD card into the PC and launch the Win32 Disk Imager.
2. Select the SD card device drive letter (make sure it's right!).
3. Choose the Raspbian image file you've just downloaded.

Setting Up Your Raspberry Pi

[280]

4. Click on the Write button to create the SD card image.

Using Linux
On a Linux PC, you'll need to use the gparted and dd utilities to burn the image on
your SD card.

Carry out the following steps to create your SD card image:

1. Extract 2015-09-24-raspbian-jessie.img to your Home folder.
2. Insert your SD card into the PC.
3. If you're not already in a shell terminal window, open one (you can use

Ctrl + Alt + T on most graphical-based desktop systems).
4. Type the following command in the shell terminal:

$ sudo fdisk -l

In the list check, your SD card appears as a drive device (for example, /dev/
sdb). It's crucial that you ensure you use the right device in the next step.
We'll assume that your device is /sdb.

5. To burn the image to the SD card, type the following command:
$ sudo dd if=2015-09-24-raspbian-jessie.img of=/dev/sdb

6. Hit Enter and go make a cup of tea or coffee as this will take a while.
You'll know that it's finished when the command ($) prompt re-appears.

7. When the command prompt does re-appear, type the following command:
$ sudo sync

8. Once that command has finished, you can remove the SD card from the PC.

Chapter 1

[281]

Booting your Pi
You're now ready to boot up your Raspberry Pi. Pop your shiny new SD card into it
and plug in the power.

Assuming that you have a monitor attached to your Pi, you should see your system
booting up nicely. Although you could wait for it to boot up and connect to it via a
terminal session (we'll look at that later), I recommend that you connect a monitor
to it, at least in the first instance, just to make sure everything is working correctly.

In the new Jessie version of Raspbian, you'll boot straight into a desktop GUI, which
is a major change from previous versions, where you'd be taken to the raspi-config
utility, the first time the system is run, where you'd set up your Pi, and importantly,
expand the file system to use the entire space available on your SD card.

Debian Jessie boots into the GUI by default

Expanding the file system
When you first create your Raspbian SD card, you'll only be left with about 200Mb
of space in the file system, regardless of the size of your SD card. This is not much
use, so we want to expand the file system so that it uses all of the available space
on the card.

Fortunately, this is very easy on the Raspberry Pi now, as this function is available
in the Raspberry Pi Configuration Tool on the desktop.

Setting Up Your Raspberry Pi

[282]

To access the new configuration tool, go to Menu and select Preferences |
Raspberry Pi Configuration.

The new Raspberry Pi Configuration Tool

Goodbye GUI
Most of our work is going to be done in the command-line
interface (CLI). Therefore, before we reboot the system in a
minute, let's change the Boot option by selecting To CLI, as
shown in the previous screenshot, so boot into the command
line going forward.

Anyway, now we click on the Expand Filesystem button, and in a couple of seconds,
you'll see a confirmation message. The filesystem will be expanded when the system
next reboots.

Using the raspi-config utility
If you have an older version of Raspbian, or you're not using the desktop GUI, then
you'll need to use the raspi-config utility (which is still better than the old days when
we had to do this manually in the shell). The first time you boot up, you'll be taken
straight to the raspi-config utility.

Chapter 1

[283]

The first option is the Expand Filesystem option; select this and you'll see various
commands scrolling up the screen. Once it's finished, you'll see the following message:

Root partition has been resized.

The filesystem will be enlarged upon the next reboot

Click on OK.

Select Finish on the config screen and reboot your Pi when prompted.

After your Pi reboots with its fuller file system, you'll be taken straight to the shell
prompt where you can log in with the default user and password.

Login: pi

Password: raspberry

Setting Up Your Raspberry Pi

[284]

Setting up your Pi
When you boot into the shell and have the Ethernet connected, hopefully the Pi will
have connected to your home network and acquired an IP address from your router.
If this is the case, you should see the IP address that has been issued just before the
login prompt, as shown in the following screenshot:

As you can see from my screenshot, it's given me the IP address, 192.168.0.118.
This is good because I can now access the Pi remotely, using a secure shell (SSH)
client to connect to it from the comfort of my laptop. This is particularly useful when
my Pi is in the office and I want to sit on my sofa in front of the telly but still work on
it, which I often do when I'm feeling lazy.

Chapter 1

[285]

To do this, download PuTTY: a utility that allows you to connect to shell terminals
remotely over the network. You can download it from http://www.putty.org.

Install and launch PuTTY and you're ready to connect to your Pi remotely from the
comfort of your sofa.

Setting Up Your Raspberry Pi

[286]

Type the IP address of the Raspberry Pi into the Host Name box and click on Open.
You'll be connected to your Pi in a remote terminal window. Once you've logged in,
you can do pretty much everything on your Pi, as if you were sitting in front of it.

We'll assume from now on that most of the work we do will be through a remote
shell session, unless highlighted otherwise.

If you want to use the command line to launch the Raspberry Pi remote shell—for
example, from another Linux system—use the following command from your
terminal window:

ssh pi@192.168.0.125

Chapter 1

[287]

You'll then be prompted for the Pi's password and taken into a shell session.

The Pi shell session launched from a Debian desktop terminal window

Getting up to date
Something that you should get into the habit of doing is updating the operating
system regularly; even though you may have the latest image installed, it's very
likely that there are updated packages available. To update your OS, enter the
following command:

$ sudo apt-get update

After this, enter the following one:

$ sudo apt-get dist-upgrade

This may take a while, depending on the number of updates required.

Getting the right time
The Raspberry Pi doesn't have on-board real-time clock hardware. This is one of the
deliberate omissions to keep the cost of the board down. Instead, the Pi gets its time
when it boots up from time servers on the Internet using the Network Time Protocol
(NTP). However, if there is no Internet connection at the time of booting up, then the
time will be wrong.

In our security system, it's important that the time is kept accurate
so that timestamps on log files and images are correct.

Setting Up Your Raspberry Pi

[288]

fake-hwclock
The fake-hwclock package is included in the latest Raspbian distributions, but in
other past versions it wasn't. If you need to install it, use the command that follows:

$ sudo apt-get install fake-hwclock

fake-hwclock is used by the Raspberry Pi to try and keep time when there is no
network connection. It will regularly save the current time and restore it at boot-up.
The obvious problem with this is that if the Pi has been switched off a few days,
then the time will be set to the last time that it was on, using fake-hwclock.

If you want to see what time it last logged, type the following command:

$ cat /etc/fake-hwclock.data

ntp
The Network Time Protocol (NTP) is used when there is an Internet connection
available and it can request the latest most accurate time from one or more time
servers on the Internet.

By default, the ntp service is enabled on the latest Raspbian distribution, but it will
initially get its time at boot-up from fake-hwclock if there is no Internet connection.
There may be times when it's necessary to force the ntp service to update from the
Internet—for example, if the Internet connection is restored sometime after boot-up.

To force the ntp service to update from the Internet, use the following commands:

$ service ntp stop

$ ntpd –gq

$ service ntp start

Talking of security…
There's no point in having a security system if the system itself is not secure. So, now
we'll change the default password for the pi user.

From the prompt, type the following command:

$ sudo passwd pi
pi@raspberrypi ~ $ sudo passwd pi
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

Chapter 1

[289]

What is this sudo thing anyway?
You'd have noticed that we've been putting sudo at the start of each command
that we run in the terminal window. This is so that commands are run as the root
user—the highest security level. This elevated security is required to perform many
operations. sudo actually means super do.

If you can't be bothered to type sudo every time, then you can switch to the super
user by typing the following:

$ sudo su

You'll see that the prompt changed from a $ to a #, which indicates that you are now
running as the root user.

So, this might be a good time to change the root user password too! To do this, type
the following:

passwd
root@raspberrypi:/home/pi# passwd
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
root@raspberrypi:/home/pi#

Connecting via Wi-Fi
You can also connect your Raspberry Pi to your network using Wi-Fi by plugging
a USB dongle into it. There are additional configuration steps required to make this
work, which are beyond the scope of this chapter, but there are many resources
available covering this subject.

You can find recipes for connecting your Raspberry Pi using Wi-Fi in
the Raspberry Pi Networking Cookbook by Rick Golden, published
by Packt Publishing (https://www.packtpub.com/hardware-
and-creative/raspberry-pi-networking-cookbook).

Setting Up Your Raspberry Pi

[290]

Summary
In this chapter, we took our Raspberry Pi out of its box and prepared it to be the
centerpiece of our home security system. Along the way, we installed and set up
the operating system, connected our Pi to the network, and accessed it remotely.
We also secured our Pi and made sure it could keep the right time.

In the next chapter, we're going to explore the GPIO port and the various interfaces
it features. We'll look at the various things we can connect to the Raspberry Pi
using the GPIO port, including switches and sensors, as we start to build our
home security system.

[291]

Connecting Things to
Your Pi with GPIO

The Raspberry Pi has lots of ways to connect things to it, such as plugging things
into the USB ports, connecting devices to the on-board camera and display ports,
and connecting things to the various interfaces that make up the GPIO connector.
As part of our home security project, we'll be focusing mainly on connecting things
to the GPIO connector.

In this chapter, we will cover the following topics:

• Examining the GPIO connector and what each of the pins does
• Learning about the I2C and SPI buses that will be used in later chapters
• Connecting an LED and a switch safely to the data pins, and accessing these

data pins using simple scripts
• Understanding the USB ports and their limitations

Prerequisites
Along with your Raspberry Pi, you'll need the following parts for the projects in
this chapter:

• A breadboard
• An LED
• A 220 ohm resistor (red, red, black)
• A 10K ohm resistor (brown, black, orange)
• A pushbutton or toggle switch

Connecting Things to Your Pi with GPIO

[292]

• A hook-up wire:

Our little collection of parts

Say hello to the GPIO
The GPIO connector is the large group of pins on the edge of your Raspberry
Pi board. On earlier models, there were 26 pins that made up this connector.
But, ever since the Model B+, there have been 40 pins, although the first 26 pins
are identical to the previous models, and it's these 26 pins we'll be working with.
You won't need to worry about the rest of the pins.

Essentially, the GPIO connector provides access to following:

• Power supplies
• Digital I/O pins
• I2C bus
• SPI bus
• UART Serial bus

Chapter 2

[293]

Some of the pins on the GPIO have more than one purpose, depending on how they
are programmed. The following diagram is a reference guide to all of the pins on
the GPIO. The GPIO numbers on the yellow labels relate directly to those on the
Broadcom chip, and are numbers generally used within the scripts.

Digital I/O pins
The GPIO has 8 digital input/output pins available for use. These can be used to
switch things on and off (in output mode), and also to detect when external things are
switched on and off (input mode). Each pin can be configured independently for input
or output operation, and I have labelled them D0 to D7 in the preceding diagram.

Obviously, if we were to use each of these pins to drive or sense an individual
device, we would be limited to a maximum of 8 devices that could be connected
to our home security system. In many scenarios, this is probably not enough, so in
the next chapter we'll learn how to use the GPIO to connect many more things to
our Raspberry Pi.

Connecting Things to Your Pi with GPIO

[294]

The I2C bus
The Inter-Integrated Circuit (I2C) bus is a low-speed interface that can connect
multiple devices and simple sensors using a 2-wire interface without the need for a
separate clock or device select line. Typically, this bus can operate at speeds up to
100kbit/s. We'll be covering this in the next chapter to help us expand our digital
I/O and connect more things.

The SPI bus
The Serial Peripheral Interface (SPI) bus is a synchronous two-way serial connection
between a master and a slave device. It can be used to access more complex sensors or
drive displays.

The master device provides the synchronization, and each transmission is
synchronized by a clock pulse on SCLK (GPIO11/pin 23). Data is transmitted
on the MOSI (master-out-slave-in) and MISO (master-in-slave-out) (pins 19
and 21 respectively).

The UART serial bus
The Universal Asynchronous Receiver and Transmitter (UART) bus is a way to
communicate with external devices over a serial data connection, and is a common
way for the Raspberry Pi to access data from devices such as GPS modules, which
often come with serial connections. It can be a little bit fiddly getting the Pi set up to
communicate with UART-connected devices, as it's also tied in with the operating
system's serial console.

USB ports
We're probably all familiar with Universal Serial Bus (USB) ports as we use them to
connect all sorts of things to our PCs, such as keyboards, mouses, and hard disks. On
the Raspberry Pi, it's just the same; we can connect keyboards, mouses, and dongles
to give us Wi-Fi and Bluetooth connectivity.

Chapter 2

[295]

Official Raspberry Pi USB Wi-Fi Dongle

On earlier Raspberry Pi models, the amount of current that the ports delivered was
pretty low and caused all sorts of problems if too much current was drawn by the
connected devices. This was significantly improved from the model B+ onwards,
and it's now possible to connect GSM/LTE dongles without any problems.

There are still limitations, however, if you want to connect things such as hard disk
drives; these can still draw more current than what can be supplied by the Raspberry
Pi USB ports, so it's recommended that a powered USB hub or USB power injector be
used when connecting these types of devices to your Pi.

Power connections
The GPIO connector also provides access to the on-board power supplies. The +5V
connection (pins 2 and 4) is essentially the +5V input from the external power supply
connected to the micro-USB power port. This can be used to power small external
circuits if necessary, although it is recommended that an additional external +5V
supply be used if significant current is required.

The +3.3V supply (pins 1 and 17) is the output from the on-board 3.3V regulator
and provides a small amount of current up to 50mA. If you need to draw more
than 50mA for your external circuits, then you should use an external power supply.
I'll show you how to build one later in this book.

The I/O pins on the Raspberry Pi operate at 3.3V levels. Connecting
voltages higher than this to the pins could irreversibly damage your
Pi. If you follow the instructions in this book, then everything should
be fine, but randomly connecting things to your Pi that use lots of
power will break it!

Connecting Things to Your Pi with GPIO

[296]

Getting acquainted with the GPIO
Before we embark on connecting lots of things to our Pi board, it might be a good
idea to just get acquainted with the GPIO through a couple of simple projects that
will help us understand how to interact with the digital I/O pins using shell scripts.

Let there be light
This simple little project shows how to connect a GPIO output to an LED, and switch
it on and off using shell commands.

The following diagram shows how to connect up the circuit using a breadboard:

The pretty diagram that you just saw was produced using a free
software tool from fritzing, which is an open-source hardware
initiative to make electronics accessible as creative material for
anyone. Download it from fritzing.org.

Chapter 2

[297]

The LED anode (the positive side) is connected to the D0 digital I/O (pin 11 of the
connector or GPIO17). When this pin is switched on, it will provide a 3.3V supply
to the LED.

The LED is connected to the Ground pin via a 220R resistor on the cathode (negative
side). The resistor limits the voltage to the LED and the current through it, otherwise
it would burn out, as you can only supply up to about 2V to LEDs. With a current of
around 10mA being drawn by the LED on a 3.3V supply, a 220R resistor works well
to protect both it and the GPIO.

Here's the circuit diagram for it:

Calculating LED Resistor Values…
While this book is not really a course on electronics theory, I thought it
would be handy to show you how to work out the resistor values for
LEDs using Ohms Law, as we'll be covering this again later.
As I mentioned, a typical LED will drop about 2V across it, although this
varies according to color and type. This is called the forward voltage of
the device or VLED.
The current required by an LED is around 10mA, again depending on its
specification. We'll call this current flowing through the LED, ILED.
Essentially, the voltage across the resistor will be the supply voltage
minus the voltage drop across the LED (for example,.2V). So, if we
have a 12V supply (VS), the voltage across the resistor will be 10V
(VS – VLED).
According to Ohms Law, the resistance R is the voltage across it divided
by the current flowing through it: R = V / I. As we require 10mA flowing
through it, with a voltage of 10V across it, the resistance required is 10V
divided by 0.01A, which is 1,000 ohms or 1K.
In summary, R = (VS-VLED) / ILED.

Connecting Things to Your Pi with GPIO

[298]

Now, to turn the LED on and off: the GPIO pins are actually mapped as devices in
the Linux file system, so using shell commands is easy, although there are many
libraries available out there that allow you to control the GPIO using Python, for
example. However, so that you don't have to learn a new language, we're going
to do everything using shell commands.

The D0 pin that we are connected to is actually GPIO17 as far as the Raspberry Pi is
concerned (take a look at the previous diagram for reference). The first thing we need
to do is create file access to this GPIO pin. We do this with the following command:

$ sudo echo 17 > /sys/class/gpio/export

We then have to set the pin's direction to out:

$ sudo echo out > /sys/class/gpio/gpio17/direction

Next we can switch the pin on to turn the LED on:

$ sudo echo 1 > /sys/class/gpio/gpio17/value

To switch the LED off, we use this command:

$ sudo echo 0 > /sys/class/gpio/gpio17/value

Once we've finished with a GPIO port we can remove its file access:

$ sudo echo 17 > /sys/class/gpio/unexport

Getting flashy…
We can put these commands together in a single Bash script to create a flashing LED.
To create the flashy script, create a new text file in nano or some other text editor.
Or, as I usually do (don't forget that I'm quite lazy), create the text file on your laptop,
and then copy it to the remote Pi using WinSCP (although, read my note in the box
that follows if you want to prevent some heartache).

Chapter 2

[299]

The following is the code listing for led-flash.sh:

#!/bin/bash
sudo echo 17 > /sys/class/gpio/export
sudo echo out > /sys/class/gpio/gpio17/direction
loop forever
while true
do
 sudo echo 1 > /sys/class/gpio/gpio17/value
 sleep 0.5
 sudo echo 0 > /sys/class/gpio/gpio17/value
 sleep 0.5
done

If you use Windows to create your files, remember to save your
files with the end-of-line format being Linux (a single 0x0a or Line
Feed character) rather than Windows (0x0a + 0x0d or Line Feed
+ Carriage Return characters), otherwise you might find that your
Bash script does not run properly on the Raspberry Pi. Text editors
on Windows, such as the excellent Notepad++, will convert your
script line ends for you.

Run the script by calling led-flash.sh (assuming that's what you've called it). If
you're in the same directory as the script, this can be done by typing the following:

$ sudo bash ./led-flash.sh

Since this is an endless loop with the LED flashing on and off at half second intervals,
you'll need to break out of it by using CTRL + C to stop the script.

Don't forget to remove the GPIO pin from file access by using the following command:

$ sudo echo 17 > /sys/class/gpio/unexport

Otherwise, you'll see the error, echo: write error: Device or resource busy,
if you re-run the script, as the first line tries to set GPIO17 for file access again.

Connecting Things to Your Pi with GPIO

[300]

Adding a switch
In this project, we'll see how to connect a switch to a GPIO input and write a shell
script to read the state of the switch—that is, whether it's switched on or off.

Connect a switch to your Pi's GPIO27 pin, as shown in the following diagram:

Pulling yourself together
A really important thing to realize about GPIO inputs is that they are in what's called
a floating state. This means that, as far as the operating system is concerned, it doesn't
know what its reference state is unless it is presented with a known voltage.

This is where our resistor comes into play—it pulls up the GPIO pin to a known
voltage of 3.3V, which gives it a default state of HIGH (or binary 1).

When the pushbutton switch is pressed, this takes the GPIO pin to 0V, which is a
LOW state (or binary 0).

Chapter 2

[301]

Here's the circuit diagram for our GPIO switch:

The detection script
Now that we've connected the switch to our Raspberry Pi, we need to write a little
script that will detect when the switch has been pushed.

It's similar to the previous LED script shown, but this time we'll set the GPIO pin as
an input and read its logic level.

In this project, we've connected our switch to D2, which is GPIO27 (again, refer to
the earlier GPIO pin-out diagram). As before, we need to create file access for the
pin by entering the following command:

$ sudo echo 27 > /sys/class/gpio/export

And now, set its direction to in:

$ sudo echo in > /sys/class/gpio/gpio27/direction

We're now ready to read its value, and we can do this with the following command:

$ sudo cat /sys/class/gpio/gpio17/value

You'll notice that it will have returned 1, or a high state. This is because of the
pull-up resistor we were talking about earlier. This means that its default state,
when the switch isn't pushed, is high.

Connecting Things to Your Pi with GPIO

[302]

When the switch is pushed, the value should be read as 0 or low. If you have
more than two hands, you can try this by pushing the button and re-running
the command. Or, we can just create a script to poll the switch state.

The code listing for poll-switch.sh is as follows:

#!/bin/bash
sudo echo 27 > /sys/class/gpio/export
sudo echo in > /sys/class/gpio/gpio27/direction

loop forever
while true
do
 # read the switch state
 SWITCH=$(sudo cat /sys/class/gpio/gpio27/value)

 if [$SWITCH == 1]; then
 #switch not pushed so wait for a second
 sleep 1
 else
 #switch was pushed
 echo "You've pushed my button"
 fi
done

When you run the script and then push the button, you should see You've pushed
my button scrolling up the console screen until you stop pressing it.

Don't forget that, once we've finished with the GPIO port, we can remove its file access:

$ sudo echo 27 > /sys/class/gpio/unexport

We've now seen how to easily read a switch input, and the same circuit and script
can be used to read other sensors, such as door contact switches, reed switches, or
anything else that has an on and off state.

Chapter 2

[303]

The most elaborate light switch in
the world
By combining the two little projects earlier, we can now create a system that will do
something useful when the pushbutton switch is pushed—for example, switching
on the LED that we also have connected. Granted, we could just connect the LED
directly to the switch and a battery, but not only would that be boring, it would
defeat the point of what we're trying to do, which is programmatically sensing
and controlling things.

Here's the breadboard layout for our elaborate light switch:

Connecting Things to Your Pi with GPIO

[304]

And here's the circuit diagram:

The illuminating script
Our full Bash script for our elaborate light switch is demonstrated next. This will
loop endlessly, detecting the state of the switch GPIO pin, and will turn on the LED
GPIO pin when the switch is pushed.

The code listing for light-switch.sh is as follows:

#!/bin/bash

#set up the LED GPIO pin
sudo echo 17 > /sys/class/gpio/export
sudo echo out > /sys/class/gpio/gpio17/direction

#set up the switch GPIO pin
sudo echo 27 > /sys/class/gpio/export
sudo echo in > /sys/class/gpio/gpio27/direction

loop forever
while true

Chapter 2

[305]

do
 # read the switch state
 SWITCH=$(sudo cat /sys/class/gpio/gpio27/value)

 #0=Pushed 1=Not Pushed
 if [$SWITCH = "1"]
 then
 #switch not pushed so turn off LED pin
 sudo echo 0 > /sys/class/gpio/gpio17/value
 else
 #switch was pushed so turn on LED pin
 sudo echo 1 > /sys/class/gpio/gpio17/value
 fi
 #short delay
 sleep 0.5
done

So, here we are—we have a script that will detect an input state and do something in
response; in this case, it will switch on an LED. We're now forming the basis of how
we are going to put together our home security system.

Remember, don't connect anything to your Raspberry Pi in place
of the LED, such as a buzzer or any other device that consumes
lots of current. This is likely to irreversibly render your board
dead. We'll look at ways, later on in this book, to control devices
with higher power requirements.

Summary
In this chapter, we introduced various ways to connect your Raspberry Pi to the
outside world by looking at the various interfaces available on the GPIO. We've
understood how to connect things to the digital pins on your Raspberry Pi's GPIO
connector, and control and read them using simple Bash scripts. In particular, we've
safely and properly connected a switch to a digital input pin, which will form the
foundation for our home security detection circuits.

In the next chapter, we'll look at ways to expand the number of things we can
connect to our Raspberry Pi, overcoming the limitation of having just the 8 digital
pins available to us on the GPIO by tapping into other interfaces on the GPIO and
building our own input/output expansion board.

[307]

Extending Your Pi to
Connect More Things

We're now going to look at ways to expand the number of things we can connect
to our Raspberry Pi, overcoming the limitation of having just the 8 digital pins
available. We're going to do this by building our own expansion board to give us
what could in theory be an unlimited number of digital inputs and outputs.

We're also going to overcome the limitations of the +3.3V power available to us by
building our own +3.3V power supply that taps off the Raspberry Pi's +5V supply.

In this chapter, we will cover the following:

• Looking at the I2C bus in detail
• Learning about serial-to-parallel and parallel-to-serial conversions
• Building a +3.3V power supply
• Building an I2C-based port expander to give us more inputs and outputs
• Looking at alternative ready-made expansion boards

Prerequisites
Along with your Raspberry Pi, you'll need the following parts for the projects in
this chapter:

• A copper strip board (or Veroboard®)
• An LD1117V33 voltage regulator
• A 2 x 100nF, 16V ceramic capacitor
• A 10uF, 16V electrolytic capacitor

Extending Your Pi to Connect More Things

[308]

• A 1 x MCP23017 16-bit port expander IC
• A 4 x 10K-ohm resistor
• A hook-up wire

The I2C bus
In the previous chapter, we briefly touched on the I2C bus (or Inter-Integrated
Circuit bus), which is a way to connect multiple devices together using just two
wires. I2C was invented in the early 1980s by Philips as a way to link computer
peripherals together using a common protocol. You can think of I2C as a kind of
early form of USB.

I2C typically operates at relatively low speeds of up to 100kbit/s, compared to much
faster interfaces such as Ethernet, which typically operates at up to 1Gbit/s, or USB,
which can operate at up to 480Mbit/s. However, this is fast enough to connect basic
sensors, display devices, or other peripherals such as real-time clocks—in fact; there
are faster versions of the protocol that some devices will support.

Just 2 wires
I2C is a bi-directional serial communication protocol that operates over two wires:

• The Serial Data Line (SDA) wire transmits the data to and from the master
device. Referring back to the GPIO reference in Chapter 2, Connecting Things
to Your Pi with GPIO, this is pin 3 of the GPIO connector.

• The Serial Clock Line (SCL) wire handles all timing and flow control for the
data on the bus. This is pin 5 of the GPIO connector.

You'll remember that we spoke about pull-up resistors, in the previous chapter,
which ensure that the GPIO digital inputs are pulled to a known state. Well, this is
required for the two lines on the I2C bus, and by default the lines should be pulled
high with resistors. However, on the Raspberry Pi, this has already been done for us,
so we don't need to worry about it in our case.

What's your address?
So, if we can use just two wires to communicate with multiple devices, how does our
Raspberry Pi know which device to talk to? This is where the I2C protocol comes into
its own. Each device connected to the bus has its own unique ID, or address, made
up of 7-bits or 10-bits. Some devices will allow you to set the address to ensure that
it's unique within your system, but other devices have their addresses hardcoded by
the manufacturer.

Chapter 3

[309]

The two addressing methods (7- and 10-bit) are interoperable and you can have
devices on the same bus that use either method, since the Raspberry Pi itself
supports both methods. So, with a 10-bit addressing scheme, you can see that we
can connect a lot of things to our Raspberry Pi using the I2C bus, as compared to
the limited number of digital pins on the GPIO!

There is a parallel universe
Data is normally transmitted in serial mode or parallel mode, depending on
things such as the required data speed, cable distance, and functionality. Most
data communication between systems is transmitted in serial mode over a couple
of wires, such as the I2C bus mentioned earlier, but this also includes things such
as the Ethernet, RS232/422, and USB.

Within a computer system, data is transmitted in parallel mode using buses whose
width matches the word size of the digital system communicating between chips.
In parallel mode, all bits of the data word are transmitted simultaneously over their
respective data lines within the bus, rather than as sequential bits along a single line.

The digital I/O pins we've been talking about (including the ones on the Raspberry
Pi's GPIO connector) are usually grouped together as a parallel bus. On our system,
we'll be using parallel buses (groups of digital I/O pins) that are 8-bits wide. That is,
the bus has 8 wires that can be set or read using 8-bit binary values (our word size).

A representation of an 8-bit data bus

Extending Your Pi to Connect More Things

[310]

So, in the preceding diagram we have the 8 digital I/O wires on our bus. If we
wanted to make the bits (or wires) 0, 1, and 4 high or on, with the rest low or off,
then we'd address the bus and set it to the following values:

• In binary, this would be 00010011
• In hex, this would be 0x13
• In decimal, this would be 19 (represented by 16+2+1)

So, in other words, to switch on data lines 0, 1, and 4, we send the byte value, 19,
to the bus's address.

Serial-to-parallel conversion
So, now that we know what numbers to send to our bus to switch on or switch off
certain digital outputs, or read certain digital inputs, how do we do this using our
I2C bus, which is a serial interface?

Fortunately, there are many integrated circuits (ICs) available that allow us to do
this simply and easily. These ICs are called shift registers and perform serial-to-
parallel conversions, taking the data from the serial I2C bus and converting the
incoming bits to a parallel representation by setting each of the parallel bus outputs.

When reading the parallel bus data lines as inputs, the reverse happens, converting the
bits into a serial form on the I2C bus; this is known as parallel-to-serial conversion.

This is quite a simplistic overview and there are many resources available that explain
these operations; we'll see this in action later in the chapter, but first…

Give me power
You'll remember from the previous chapter that most things to do with the GPIO
operate on a +3.3V level, rather than the +5V level that is often associated with
digital circuits. This is the same with our I2C-based shift registers—they need to
operate on +3.3V levels as well, in order to work with the Raspberry Pi.

You'll also recall, however, that there's not much +3.3V juice available directly from
the Raspberry Pi—in fact, just 50mA. This is really not enough for our interface. So,
before we go any further, we're going to build our own +3.3V power supply, which
is sufficient for our system.

Chapter 3

[311]

For our power supply, we're going to use a basic 3.3V voltage regulator
(type LD1117V33) that will take our slightly more plentiful +5V supply from the
Raspberry Pi and regulate it to a nice smooth +3.3V supply. We should be able to
draw a few hundred milliamps from this supply—enough for the I/O circuitry on
our security system.

The parts required for our power supply are as follows:

• A LD1117V33 voltage regulator
• A 100nF, 16V ceramic capacitor
• A 10uF, 16V electrolytic capacitor

Here's the circuit diagram for our +3.3V power supply:

As with all our components, the LD1117V33 regulator is widely available from many
electronic component suppliers.

Extending Your Pi to Connect More Things

[312]

Our power supply can be easily built on a small piece of strip board like this:

The strip board is shown from the top in the preceding layout.
That is, the copper tracks are on the underside of the board and the
components are inserted from the plain top-side and soldered to the
strips underneath. In this layout, it's not necessary to cut any of the
tracks on the strip board.

Building an I2C expander
Right, now that we've worked out what we need to do to give us more digital I/O
pins, and built our power supply for it, we can build our expansion port.

To do this, we're going to use a chip designed exactly for the job: the MCP23017,
manufactured by Microchip and widely available from electronic suppliers.

Chapter 3

[313]

The MCP23017 is an integrated circuit that connects directly to the I2C bus
(the SDA and SCL pins we talked about earlier) and gives us 16 bi-directional
input and output pins. If required, we can connect up to 8 of these chips to
the same bus, giving us up to 128 inputs and outputs (yes, I know that I said
"virtually unlimited" previously, but I'll explain later).

An MCP23017 integrated circuit pinout

The full datasheet for the MCP23017 is available on Microchip's site,
which can be found at www.microchip.com/MCP23017.

The I2C port expander circuit
The basic parts you will need to build your port expander are as follows:

• A 1 x MCP23017 16-bit port expander IC
• A 4 x 10K-ohm resistor
• A 1 x 100nF, 16V ceramic capacitor
• A copper strip board (or Veroboard®)
• A hook-up wire

Extending Your Pi to Connect More Things

[314]

Here's the circuit diagram for our I2C port expander circuit. It looks complicated,
but actually most of the lines are for connections to the outside world:

Let's walk through the circuit
On the right-hand side, the connector, CN1, is our Raspberry Pi GPIO connector—
note that we're only using four of the pins:

• The +5V Output (Pin 2)
• The I2C SDA (Pin 3)
• The I2C SCL (Pin 5)
• The 0V/GND (Pin 6)

You'll see my friend, the +3.3V regulator (U1, C1, and C2), discussed earlier. This takes
the +5V output from the Raspberry Pi and gives us our +3.3V for use by the rest of
the circuit.

The main component is U2—our MCP23017 port expander chip. Pins 9 and 10 on the
chip are connected to the +3.3V supply and the GND, respectively, and C3 is used as
a discoupling capacitor close to the chip to reduce any noise on the power supply.

Chapter 3

[315]

The MCP23017 can be used as a 16-bit expander, or as 2 x 8-bit expanders. In our
circuit, we have split the device to give us 2 x 8-bit busses: I/O Bus A and I/O Bus B.
Each pin on the busses can be programmed to work as an input or output.

Connecting things to the input/output pins
The input and output pins on our busses can't usually be
connected to things directly—they provide limited current
and need to be interfaced correctly to things such as buzzers
and lights; they must also be protected against damaging
input signals. In the next chapter, we'll learn how to connect
safely to our I/O ports.

The I2C SDA/SCL lines from the Raspberry Pi are connected to pins 12 and 13 of the
chip. You'll see that there are also additional I2C outputs (PL1 to PL3) to illustrate
that we can connect other devices to the I2C bus, such as another MCP23017 chip to
give us a further 16 digital I/Os.

Resistor R1 is used to hold the RESET pin (18) high. By bringing this pin low, you
can reset the chip.

Resistors R2 to R4 are used to hold the address pins A0 to A2 (pins 15-17) low.

Highs and lows

When we use the terms high and low in respect to digital pins or inputs, we are simply
describing whether the logic level of the pin is at a binary 1 or 0, respectively. Digital
pins don't like to be left floating—whereby they are neither high nor low—as this can
cause unpredictable operations. Therefore, we always make sure they are held at a
determined logic level. In general, connecting the pin to 0V (or ground) ensures that
it's held at logic level 0, and connecting to the positive supply (e.g. 3.3V) ensures that
it's held at logic level 1.

Remember I mentioned earlier that you can connect a large number of devices to the
I2C bus in order to give us a virtually unlimited number of I/O pins? Well, actually
in many cases, this is not strictly true. This is because of the addressing scheme for
I2C devices, which makes all devices identifiable when they are all connected to the
same two wires (their unique address). The address of each device is agreed upon in
advance by manufacturers to make sure that everyone's devices will work together
on the same bus without creating conflicts. As such, the address is pre-programmed
into the device.

Extending Your Pi to Connect More Things

[316]

The MCP23017 has been given its unique base address, but can be modified by
changing the address pins A0-A2 high or low; thus, in effect, it can be configured
to be one of 8 addresses. This is why you can only have a maximum of 8 of these
chips on the same I2C bus, giving us a theoretical maximum of 128 I/O pins
(that is, 16 I/Os x 8 chips).

Building your expansion board
This circuit can easily be built on a small piece of stripboard. The following image
shows an example of the layout, which looks a bit simpler than the circuit diagram.
In the next chapter, we'll learn how to connect up our board and program it so we
can check that it works.

Chapter 3

[317]

When using stripboard, make sure that you cut the tracks between
the two rows of pins on the MCP23017 so that they aren't shorted
together. You can buy track cutters, which make this task easy,
from many electronic suppliers. Again, on the preceding layout,
the copper strips are underneath the board with the components
on the plain side.

You might want to add the +3.3V power supply circuit to the same piece of
stripboard too, to keep everything contained together.

In the next chapter, we will learn how to program the device
so that we can use it in our home security system.

Using ready-made expansion boards
While it's much more satisfying to build your own stuff, you might want to look at
buying some readily available expansion boards for your home security system if
you're not yet confident with your soldering iron, or if you just simply don't have
the time.

Following are some ready-made expansion boards that you can obtain; they should
work as part of our home security system with a bit of modification to our scripts to
support the libraries that are required by the hardware.

Hobbytronics MCP23017 expander port kit
This kit is almost identical to our own circuit in the previous section of this chapter.
The kit comes with an MCP23017, a PCB, and various connectors. The boards are
designed to be daisy-chained together so that you can have multiple expanders to
give you more input/output ports. Note that this kit is not pre-built and requires
soldering, but I thought I'd include it because it's the board that I use to build
such systems when prototyping. You can get it directly from Hobbytronics at
http://bit.ly/mcp23017.

Extending Your Pi to Connect More Things

[318]

PiFace Digital I/O expansion board
The PiFace Digital I/O expansion board is a pre-built version of our board, but it uses
the MSP23S17 chip variant that operates over the SPI bus instead of the I2C bus. The
board is designed with 8 inputs and 8 outputs, as well as several additional pieces of
hardware including a couple of relays, some LEDs, and some switches. Note that the
code in this book for our system will need to be modified to work with this board,
since it uses a different interface and different libraries. It's available from Farnell
element14 at http://bit.ly/2434230.

The PiFace Digital I/O Expansion Board

Gertboard
The Gertboard is a Raspberry Pi add-on board designed by Gert van Loo—one
of the hardware engineers involved in the original design of the Raspberry Pi.

It's a very capable and reasonably-priced board that comes fully assembled and
features 12 buffered input/output lines, open collector drivers for switching
on devices that need a fair bit of current (such as sounders and lights), plus a
digital-to-analog converter.

You can only connect one of these boards to your Raspberry Pi, so if you need
more I/O lines you'll need to use something else as well. But it's a great board to
experiment with. Interestingly, it features an ATmega microcontroller, which is
the same as the one that the Arduino uses, and you can, in fact, use the Arduino
development environment for the device.

Chapter 3

[319]

Once again, the code in this book for our system will need to be modified to work
with this board.

The Gertboard is available from Farnell element14 at http://bit.ly/2250034.

Assembled Gertboard

Summary
We've now looked at the I2C bus in detail, and learned how to build an expansion
port using this interface so that we can connect many more things to our Raspberry Pi,
rather than being restricted to just the 8 digital I/O pins offered by the Raspberry Pi's
GPIO port. In addition to that, we explored other ready-made boards that can be used
to connect lots of things to our Raspberry Pi. We have also built a power supply that
will give us more +3.3V power than we can obtain from the Raspberry Pi directly.

In the next chapter, we'll start to actually connect things to our home security
system, such as magnetic sensors and other types of contact devices, and learn
how to program our I2C expansion port using Bash scripts so that we can read
the state of our sensors and switch on warning LEDs. We'll also start developing
the control scripts for our system, which will allow us to arm and disarm the
system and add delay timers.

[321]

Adding a Magnetic
Contact Sensor

Now that we have built our port expander hardware, we need to learn how to
program it so that our Raspberry Pi can detect the things that we connect to it as
part of our home security system. We will begin by connecting switches to our
system in the form of magnetic sensors—the most common component used in
home security systems to detect intrusions through doors and windows.

In this chapter we will cover the following topics:

• Learning about reed switches and how they work as door sensors
• Enabling and setting up the I2C bus on the Raspberry Pi
• Connecting our sensor to an input on our port expander
• Learning how to access our I2C port expander from a Bash script
• Writing a script that will detect the state of our door sensor
• Looking at other types of contact sensors that can be connected

and programmed in the same way

Prerequisites
You'll need the following parts for the exercises in this chapter:

• Our Raspberry Pi and Port Expander board
• 8 x 10K ohm resistors
• A magnetic door sensor and magnet
• A hook-up wire
• A 4-core alarm wire

Adding a Magnetic Contact Sensor

[322]

The working of magnetic contact sensors
A reed switch is essentially what makes up our magnetic contact sensor. A reed
switch comprises two metal contacts made of magnetic material (called reeds) placed
inside a glass envelope. When the contacts touch, the switch is on, and when they
spring apart, the switch is off and the circuit is broken. The way to control these
contacts is by means of a magnetic field that makes or breaks the circuit when it is
near to the switch.

A normally open (NO) type of reed switch is normally switched off until a magnet
comes close to the switch, which then pulls the contacts together.

A normally closed (NC) variety works the other way with the switch being normally
on until the magnet comes close to the switch, pulling the two contacts apart.

A typical type of reed switch

You can now see how a magnetic reed switch can be a useful sensor in security
applications, and in particular for our home security system, to detect when doors
and windows are opened and closed. We simply put a reed switch on the door frame
and connect it to our security system, with the magnet placed opposite the switch on
the actual door. When the door opens and closes, it makes or breaks the contacts in
our reed switch.

Reed switches and their magnets, which are designed for security systems, usually
come enclosed in little plastic housings, making them easy to screw onto the door
and frame.

Chapter 4

[323]

A door-frame-mounted magnetic sensor containing a reed switch (Type: Cherry MP201801)

The magnetic sensor is mounted on the door frame (obviously, so it can connect to
the alarm circuit wires), while the respective magnet will be attached to the door,
close enough to the edge such that the sensor contacts connect (or break, depending
on the type) when the magnet is directly opposite it.

A respective door-mounted magnetic actuator (Type: Cherry AS201801)

Adding a Magnetic Contact Sensor

[324]

Setting up the I2C port expander
Now that we have built our port expander, we need to get it ready to connect our
sensors to. First, we need to install the tools on the Raspberry Pi to allow us to use
the I2C bus and program devices connected to it, including the MCP23017 chip that
makes up our port expander.

Don't connect your port expander to the Raspberry Pi until
after you've set up the I2C bus on your system.

Enabling the I2C Bus
It's highly likely that the module for using the I2C bus hasn't been loaded by default.
Fortunately, doing this is fairly straightforward and can be done using the Raspberry
Pi configuration tool. Perform the following steps:

1. Launch the Raspberry Pi configuration tool with the following command:
$ sudo raspi-config

Chapter 4

[325]

2. Select option 8: Advanced Options.

3. Select Option A7: I2C.

Adding a Magnetic Contact Sensor

[326]

4. Select <Yes>.
5. Reboot your Raspberry Pi for the setting to take effect.

Now that the I2C bus has been enabled, we need to set up the operating system
so that the required modules are loaded each time the system boots. To do this,
perform the following steps:

1. Edit the Modules file using the following line:
$ sudo nano /etc/modules

2. Add the following lines to the file:
i2c-bcm2708

i2c-dev

3. Save the file and exit Nano.

Installing the I2C tools package
So that we can easily access the I2C bus using Bash scripts, we need to install the
i2c-tools package:

$ sudo apt-get install i2c-tools

Once installed, we should shutdown our system:

sudo shutdown –h now

After activity has stopped, switch off your Raspberry Pi, connect your port expander
to the GPIO port, and power it back up so that we can start using it.

As a quick sanity check, you can see if I2C support has been loaded by typing:

$ ls /dev/i2c-*

This should give you a list of at least one bus—for example, /dev/i2c-1—if the
module is loaded. If it's not, you'll probably get the following response:

 ls: cannot access /dev/i2c-*: No such file or directory

In this case, you'll need to check back through the previous steps as something hasn't
happened properly.

Chapter 4

[327]

Finding our devices
The i2c-tools package installs several different tools to help us use our port
expander attached to the bus. The i2cdetect tool allows us to find I2C buses
and devices attached to the busses.

To get a list of I2C busses on our system, type the following:

$ sudo i2cdetect -l

You should get the following response:

pi@raspberrypi ~ $ sudo i2cdetect -l

i2c-1 i2c 20804000.i2c I2C adapter

The preceding output shows that we have one I2C bus, and this will be the one
connected to our GPIO. Note that earlier models of the Raspberry Pi may return the
device ID as being i2c-0.

We can now use the tool to scan for all of the devices attached to our bus. We do this
by specifying the bus ID, as in the following command:

$ sudo i2cdetect 1

With nothing attached to the I2C bus (that is, without our port expander attached)
we'd expect to see the following output:

pi@raspberrypi ~ $ sudo i2cdetect 1

WARNING! This program can confuse your I2C bus, cause data loss and
worse!

I will probe file /dev/i2c-1.

I will probe address range 0x03-0x77.

Continue? [Y/n] Y

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

pi@raspberrypi ~ $

Nothing found on the I2C bus

Adding a Magnetic Contact Sensor

[328]

With our port expander attached, we should see the following output:

pi@raspberrypi ~ $ i2cdetect 1

WARNING! This program can confuse your I2C bus, cause data loss and
worse!

I will probe file /dev/i2c-1.

I will probe address range 0x03-0x77.

Continue? [Y/n] Y

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: 20 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

pi@raspberrypi ~ $

Our I2C port expander slave device can be found at the address, 0x20 (32 decimal).

The preceding address is the location of our MCP23017 chip
connected to the I2C bus. If you don't see this, then there's
probably a wiring issue and you'll need to go back and check.

You'll recall that we can add up to 8 of these devices to the I2C bus by setting the
A0-A2 pins to a unique address. If A0 is set to high, then the address of the device
will be shown as 0x21 (33 decimal)—and up to 0x27 (39 decimal), if all pins are high.

Setting up the port expander
As discussed in the previous chapter, we can have 2 x 8-bit busses on our port
expander, with each pin being defined as an input or output. On the expander
board we built, we called them I/O BUS A and I/O BUS B.

To configure the MCP23017 chip on the I2C bus, we can send it the appropriate
commands using the i2cset tool we installed earlier.

Chapter 4

[329]

On our home security system, we are going to assign all of the pins on BUS A as
inputs for connecting our sensors to it. To do this, we use the following command:

$ sudo i2cset –y 1 0x20 0x00 0xFF

What does this command mean?
• -y: This runs the command without user interaction.
• 1: This is the ID of the bus (for example, i2c-1).
• 0x20: This is the address of the chip.
• 0x00: This is the data register on the chip (in this case,

the PORT A pin assignment).
• 0xFF: This is the Value loaded into the data register

(in this case, all pins as inputs—binary %11111111).

You can check that the data register has been set correctly by reading it using
the following:

$ sudo i2cget –y 1 0x20 0x00

This should return a value of 0xFF, which is the value we set earlier.

Connecting our magnetic contact sensor
Now that we've got our port expander working with the Raspberry Pi, we can start
connecting things to it and create the scripts that will monitor the sensors on the
input pins.

Let's go back to our port expander stripboard that was built in the previous chapter
and connect our magnetic sensor. But first, we need to ensure that all of our inputs
are pulled low by default using 10Kohm resistors. This prevents them from being
in a floating state and giving us spurious data when we read the port's data.

In the following diagram, I've connected the pull-down resistors
externally, but you may want to include them directly on the
stripboard. Toward the end of this book, we'll have a new board
layout that brings everything that we've been prototyping so far
together in a single solution.

To check the port's input value, we use the i2cget command:

$ sudo i2cget –y 1 0x20 0x12

This should return 0x00, which means all inputs are off (binary %00000000).

Adding a Magnetic Contact Sensor

[330]

What does this command mean?
• -y: This runs the command without user interaction.
• 1: This is the ID of the bus (for example i2c-1).
• 0x20: This is the address of the chip.
• 0x12: This is the data register on the chip (in this

case, the PORT A read value).

Now let's connect one side of our magnetic sensor's reed switch to data pin 0 of
BUS A (which we'll call GPA0 for reference), and the other side to our +3.3V line.
By default, the switch is normally open (NO), which means that the input is still
pulled low by the resistor.

But when you move the accompanying magnet near to the sensor switch (for example,
if the door is closed), the switch will close, pulling the input high to the +3.3V line. If
you read the port's input value now, by running the same command, you should see
that it returns 0x01, indicating that the first bit is high (binary %00000001).

Chapter 4

[331]

Monitoring the sensor
Now that we have everything in place and our magnetic sensor is detecting whether
the door is closed, we can monitor this sensor with a simple Bash script that uses the
I2C tool commands that we installed earlier.

The code listing for poll-magnetic-switch.sh is as follows:

#!/bin/bash
sudo i2cset –y 1 0x20 0x00 0xFF

loop forever
while true
do
 # read the sensor state
 SWITCH=$(sudo i2cget –y 1 0x20 0x12)

 if [$SWITCH == "0x01"]
 then
 #contact closed so wait for a second
 echo "The door is closed!"
 sleep 1
 else
 #contact was opened
 echo "The door is open!"
 fi
done

When you run the script and then push the button, you should see "The door is open!"
scrolling up the console screen until you stop pressing it.

By combining this with our elaborate light switch project in chapter 2, we can switch
on the LED connected to GPIO17 when the door is opened:

#!/bin/bash

#set up the LED GPIO pin
sudo echo 17 > /sys/class/gpio/export
sudo echo out > /sys/class/gpio/gpio17/direction

#set up port expander
sudo i2cset –y 1 0x20 0x00 0xFF

Adding a Magnetic Contact Sensor

[332]

loop forever
while true
do
 # read the sensor state
 SWITCH=$(sudo i2cget –y 1 0x20 0x12)

 if [$SWITCH == "0x01"]
 then
 #switch not pushed so turn off LED pin
 sudo echo 0 > /sys/class/gpio/gpio17/value
 else
 #switch was pushed so turn on LED pin
 sudo echo 1 > /sys/class/gpio/gpio17/value
 fi
 #short delay
 sleep 0.5
done

Later, as we add more sensors to different input pins, we will need to
be able to detect which one has been triggered. We'll look at writing
a Bash function later in the book, which will parse the returned hex
value from the i2cget command, and tell us exactly which of the 8
inputs is high.

Anti-tamper circuits
If you take a closer look at our system, you might realize that depending on whether
you are detecting normally open or normally closed sensor switches, it is possible
to tamper with the sensor channel by simply cutting the wire. So, in the case of a
normally open switch, it wouldn't activate the monitoring system if the wires were
cut, as it would always appear to be open, even if the switch was closed.

To mitigate this, most alarm systems feature a 4-core wiring system to connect the
sensor devices to the main control board—two cores are used to connect the sensor
and two are used to create an anti-tamper loop, which then itself forms a sensor
input for monitoring.

Chapter 4

[333]

4-core alarm cable

Take a look at the following circuit so that you see what I mean:

Adding a Magnetic Contact Sensor

[334]

In this circuit, we have two sensors: one for monitoring a window and one for
monitoring a door. These are connected to the I/O BUS A inputs, 0 and 1 (or GPA0
and GPA1, as we like to call them). As before, they are pulled down to 0V by resistors
but, when switches are closed, the positive voltage rail takes the inputs high.

However, we've also added an anti-tamper loop throughout the whole system,
which is connected to GPA7 for monitoring. The loop is daisy-chained through each
of the cables connecting the sensors to the controller board. All the time the loop is
intact, the input GPA7 is kept high, but if the cable is cut anywhere, the current will
stop flowing through it and the resistor, R3, will pull the input low. This will then be
detected by the monitoring script.

Many security sensor products provide a facility to terminate anti-tamper loop wires
within them.

So, in our home security system, we're going to assign GPA7 as our anti-tamper loop.

Getting into the zone
It may have occurred to you by now that even a modest-sized property could require
plenty of door and window sensors; thus, if we used one input for each sensor, we'd
soon run out unless we put more and more port expanders onto the system. The same
is true for commercially available security systems.

So, the way this is dealt with is by creating zones, with each zone containing a group of
sensors. A bedroom, for example, may be defined as one zone with a window sensor, a
door sensor, and movement detector forming that zone. In this scenario, each sensor is
connected to the next in a series (or daisy-chained); if one of them triggers, it will alert
the monitoring system that there was a trigger in the zone. Obviously, though, it may
not necessarily be the actual detector, which in most applications isn't really an issue.

However, this can introduce some challenges when we're considering mixing normally
open and normally closed type sensors within a zone, but this is something we will
explore later on in this book.

Chapter 4

[335]

The other sensors you can use are listed as follows:

• Hall Effect Sensor: Hall-effect sensors are simple electronic chips that are
used to detect magnetic fields placed near them. They are not dissimilar
to the reed switch we've been using; however, because they are electronic
devices, they are able to measure the degree of proximity in relation to the
magnet (or the strength of magnetism), rather than being just on or off, as is
the case with the reed switch. Also, because they are solid-state, they could
be seen as being more reliable than mechanical switches.

A low-cost hall effect sensor—Allegro Microsystems A1302KUA-T

• Pressure Mat Sensors: Pressure mats are used to detect a person standing or
walking on them, and can be placed under a floor mat to hide them from sight.
They can even be used in a chair to detect people sitting on it. Essentially,
they are switches, just like the reed switch, except that they are activated by
the pressure of walking on them, and so, can be wired and used in exactly the
same way as for our magnetic sensor circuits.

A pressure switch can be used under a front-door mat

Adding a Magnetic Contact Sensor

[336]

Summary
In this chapter, we got our I2C-based port expander configured and working, and
we experimented with it by connecting a magnetic sensor—one of the most commonly
used sensors in security systems. We've also learned how to interact with I2C devices
using Bash scripts, and how to read and write data to and from these devices.

In addition, we should now be beginning to understand the various elements and
building blocks of a security system, including anti-tamper loops and zones. These
are concepts that will prepare us for later on in the book, when we start to piece all
of this together and build our final, all-encompassing system.

In the next chapter, we will look at passive infra-red motion detectors, how they
work, and how we can connect the wired and wireless types to our home security
system. We'll also learn how to create log files based on events using Bash scripts
so that we can maintain a history of detector states as they change.

[337]

Adding a Passive Infrared
Motion Sensor

In the previous chapter, we started adding basic but commonly used magnetic
switch sensors to our home security system and reading their status to protect doors
and windows from intrusion. We also looked at how we can divide our home into
zones, such as by individual rooms, so that we can group our sensors into logical
circuits, which can then be identified as part of these zones rather than as individual
sensor inputs.

We will now add motion sensors to our system in the form of Passive Infra-Red
(PIR) detectors. These detectors come in a variety of types, and you may have seen
them lurking in the corners of rooms. Fundamentally, they all work in the same
way, which is detecting the presence of body heat within a certain range; so, they
are commonly used to trigger alarm systems when somebody (or something,
such as a pet cat) enters a room.

A typical PIR motion sensor (type GardScan QX-PIR)

Adding a Passive Infrared Motion Sensor

[338]

In this chapter, we will:

• Learn how PIR detectors work and how they are set up
• Connect a wired PIR detector to an input on our port expander
• Start using a 12V power supply instead of 3.3V in our zone circuits
• Learn how to interface 12V circuits safely with our GPIO ports
• Learn how to connect a 433 MHz wireless receiver to our Raspberry Pi
• Connect a remote-controlled switch to our system using 433 MHz radio

signals
• Write a script that will detect and log the state of our detector inputs when it

changes

Prerequisites
You'll need the following parts for this chapter (apart from the components used in
the previous chapter):

• A passive infrared detector, the wired type (this is available from any
DIY store)

• A 4N25/4N35 opto-isolator
• A 1N4148 diode
• A 1-Kohm resistor
• A 10-Kohm resistor
• A 433 MHz receiver module and remote transmitter (this is optional)
• A 12V power supply
• A hook-up wire
• A 6 core alarm wire

Passive infrared sensors explained
You might not realize it, but all objects radiate heat energy (including your coffee
table); it's just that you can't see it because heat consists essentially of infrared waves,
which are invisible to the human eye (exactly the same as your TV remote control).
These waves can, however, be detected by electronic devices designed for such a
purpose, such as the infrared receiver in your TV that detects the energy emitted by
your remote control when the buttons are pressed.

Chapter 5

[339]

You probably do realize, however, that living things such as us, our cat, and the
mouse under the floorboards generate quite a bit of heat. Passive infrared motion
sensors used in security systems and automatic lights are designed to detect this
level of heat. The term passive is used because the sensors themselves do not radiate
any energy for detection purposes—instead, they just detect the infrared radiation
emitted by objects. This is notably different from devices such as ultrasonic sensors
and radars, which rely on detecting reflections from objects of the pulses of energy
that the sensors send out.

PIR sensors need to be a little smart because they effectively have to cope with
constantly varying temperatures in the room. They settle on the background
temperature of the room they are in, such as that of a wall or floor that they point
to. When an object, such as one of us or our cat, moves between the detector unit
and the background object, the temperature in front of the sensor rises to the body
temperature quickly, and this in turn triggers the system.

Setting up your PIR sensor
PIR sensor devices come in many formats, including different materials in sensor
chips and the lens in front of the sensor view window that can widely affect the range,
field of view, and sensitivity of the device. Therefore, your best guide to setting up a
sensor will usually be in that little bit of instruction paper that comes with it.

However, regardless of the type of PIR sensor you have, here are some general
guidelines when considering where you mount your sensor in order to avoid false
triggers:

• Ensure that the device is mounted on a solid foundation and not affected by
vibration

• Never mount it in a location where direct or reflected sunlight can be picked
up by the lens

• Similarly, never mount the device facing or above heat sources
• Don't mount the unit in draughty locations as this will affect its background

temperature calibration

The location of the unit also depends on the area you want to protect. You may want
to detect people entering your living room from the hallway, so your coverage area
could be defined as being from the corner of the room where the device is mounted
to the living room door.

PIR sensors usually offer a fixed field of view (for example 90 or 110 degrees) but
have a varying range, depending on the angle at which they are pointing down and
the height at which they are located.

Adding a Passive Infrared Motion Sensor

[340]

In my system, I will use a Gardscan QX PIR Detector for my wired units, which
is a pretty good, low-cost unit available from RS Components (the order code is
493-1289). This unit has a field view of 110 degrees and a range of up to 12 meters,
depending on the configurable down angle that it's mounted at. The coverage
patterns for this particular unit, as taken from its datasheet, are shown in the
following figure. Note that from these patterns not every part of the area in front
of the device is covered, which is possibly not quite what you expect. This is why
positioning the units in accordance with the device's datasheet is so important.

GardScan QX-PIR coverage pattern for its 110 degree field view (top/plan view)

Here is a diagram of the side view as well:

GardScan QX-PIR coverage pattern depending on the angle configured plus a "look-down" window (side view)

Chapter 5

[341]

Give me power (again)
Before we can go on to connect off-the-shelf security devices to our alarm system,
we need to have a power supply that's compatible with such devices. Typically,
alarm circuits and their devices use a 12V supply with enough current to drive
all the devices and the alarm control system itself.

Fortunately, this is not too difficult to sort out, but it is something we need to
do now; otherwise, we won't be able to connect and power our PIR sensors. The
easiest way to do this is to buy a high-quality 12V mains adapter that provides a
nice regulated supply. These are readily available from online stores or electronics
suppliers. Alternatively, you can build your own 12V regulated supply and add it to
the power supply strip board that we built in Chapter 3, Extending Your Pi to Connect
More Things.

Another option is to use battery-powered PIR sensors, which means
that you wouldn't have to power the unit from the security system's
panel itself; however, it obviously also means that the batteries would
need replacing from time to time. The wireless PIR we will look at
later in this chapter is battery-powered.

We'll take a look at handling higher-voltage sensor circuits later on in this chapter so
that we don't blow up our home security control circuits or the Raspberry Pi.

Connecting our PIR motion sensor
Commercially available alarm systems connect to their devices using a 4 core or 6
core alarm cable. In the previous chapter, we used a 4 core cable because we were
connecting a switch that needed two wires plus an antitamper loop, which needed
another two wires.

For our PIR sensor circuit, we need the same four wires; however, we also need
to send power to the device from the control panel, so an additional two wires are
needed for this—hence the requirement for a 6 core cable.

Adding a Passive Infrared Motion Sensor

[342]

The following diagram shows the wiring connections for my GardScan PIR sensor,
but this is in fact typical for most off-the-shelf security system devices:

Typical connections for security system sensor devices

Similar to the magnetic contact sensors that we looked at in the previous chapter,
devices can come with either a normally closed (NC) or a normally open (NO)
alarm. This particular device has a normally closed output, which means that the
alarm circuit will be broken when the detector is triggered. This is the preferred
configuration for our sensor devices as this means that they can be wired in a series
within each of our zones.

We can now add this sensor device into the alarm circuit that we started putting
together in the previous chapter. The following diagram shows the circuit for all our
sensors so far wired into a single zone:

A schematic for our zone with all three sensors plus tamper loop in the same zone

Chapter 5

[343]

Up until now, we used the +3.3V power supply to pass through the sensor switches
and alarm circuit. In fact, this is not a good idea, and we've been doing this only for
convenience to test out our GPIO inputs.

In reality, and in our final system, we really should use a 12V supply to pass through
the sensor and antitamper circuits. This is because a higher voltage travels better
through the system and is less susceptible to noise, which could prevent triggering
or cause false triggering. This also makes it compatible with commercially available
systems and accessories.

12V alarm zone circuits
Making our zone circuits use 12V instead of 3.3V is as simple as changing the power
supply, and in fact all of sensors we used so far can handle 12V power passed
through their switches.

However, if we were to present the 12V circuit to the inputs on our GPIO port on the
Raspberry Pi or our port expander, we would expect to see some magic smoke and
smell something burning. So, we need to add some circuitry that allows us to use
12V alarm circuits as well as protect our control board inputs.

Alarm circuit protection
An effective way to protect our zone inputs from 12V alarm inputs is to use a little
low-cost device called an opto-isolator. As the name suggests, this isolates the alarm
circuit from the digital inputs of the control board using light.

Inside an opto-isolator (also called an opto-coupler) is an infrared LED, which
transmits light to a photo-transistor when a current is passed through it, thus
switching it on. The circuits are electrically isolated as they are controlled only
by light.

Adding a Passive Infrared Motion Sensor

[344]

The 4N25 (shown in the preceding image) and 4N35 are low-cost, 6-pin opto-coupler
devices, and most manufactures tend to use the pin layout shown in the following
diagram:

Now that we know how we will couple our 12V alarm circuit with the inputs on our
control panel, let's build the entire circuit, which we'll use for each of the zones that
we add to our system.

A 12V zone circuit optically isolated from the GPIO input

How it works
At this time, we're assuming that our zone circuits are normally closed—that is, the
alarm triggers when the circuit is broken.

Chapter 5

[345]

The 12V supply is passed through the LED of the opto-isolator with the current being
limited by the 1-Kohm resistor. The 1N4148 diode, in reverse, is there to protect the
opto-coupler from reverse-polarity voltages.

The 1-Kohm resistor is calculated from the fact that we have a 12V
supply and a forward voltage drop (Vf) of 1.2V across the LED with
a current (If) of about 10 mA.

While the alarm circuit is closed, the current flows, and the LED is on. This keeps
the transistor on and the input to the GPIO port is held low. If the alarm circuit
is broken, the opto-coupler LED switches off, and this in turn switches off the
transistor. The GPIO input is then pulled high by the 10-Kohm resistor.

This is quite simple but effective, eh?

The other advantage of this circuit is that it should fail positive—that is, if the
opto-coupler should fail for any reason, the alarm input on the GPIO port should
be pulled high, thus triggering it rather than it just failing silently.

Wireless PIR motion sensors
Wireless motion sensors are now commonly available at a low cost, allowing them
to be installed practically anywhere without any wiring from the alarm control
panel. Some of them still require an external power supply, but many operate on
batteries. The alarm system must contain a wireless receiver compatible with the
wireless sensor.

In this section, we'll take a look at how we can use our Raspberry Pi-based security
system with wireless receiver devices.

433-MHz wireless alarm systems
Wireless systems use an unlicensed radio frequency to communicate between
the various components of an alarm system. In the UK, the two most popular
frequencies used are 433 MHz and 868 MHz. While the more recent systems now use
the 868-MHz frequency, 433 MHz is still in widespread use as it has a slightly longer
range than an 868-MHz system. However, the 433-MHz band is also used by many
other devices, which makes it congested, whereas 868 MHz is generally used only for
alarm systems.

While wireless security systems can be convenient, it's important to understand the
advantages and disadvantages of using wireless rather than wired systems.

Adding a Passive Infrared Motion Sensor

[346]

The advantages are as follows:

• Their ease and speed of installation
• Their ease of removal, which means that you can take them anywhere with you
• Expanding the system in the future can be easier, with most systems

automatically detecting new units

The disadvantages are as follows:

• They are more expensive than wired systems, sometimes three or four times
the cost

• They are not as secure as wired systems and cannot achieve a security
grading greater than two in accordance with European Standard BSEN 50131
(although, this grade is suitable for domestic properties)

• Wireless devices need to have their batteries replaced at regular intervals
• Wireless systems are less reliable and susceptible to interference and even

radio jamming

Connecting a 433-MHz receiver
In the past, it was possible to roll out your own 433-MHz receiver for the Raspberry
Pi using an inexpensive receiver, such as the XY-MV-5V module along with the
433-Util library that was put together by a guy called Mark Wolfe, a contributor on
GitHub. Essentially, he gathered together code relating to 433-MHz communications
and put it all into this library. Originally developed for Arduino, this has now been
ported to the Raspberry Pi.

You can then use a readily available transmitter, such as a key fob or any other 433-
MHz transmitter, and take a look at the incoming code as you press each button on
the transmitter.

A XY-MK-5V Generic 433-MHz receiver module

Chapter 5

[347]

Finding a suitable 433-MHz receiver should be easy as websites such as Amazon and
eBay are awash with them, and they cost as little as a couple of pounds.

Note that the 433-MHz band is a free for many types of devices. As
such, there are various different types of receiver, and although they
may all state that they are 433-MHz receivers, they can operate using
AM or FM, and some only detect certain types of data. Some, such as
the Quasar QAM range, may also require special decoder chips in order
to read transmitted data and may only work with paired transmitters.

The receiver module can pick up signals from a key fob remote control, such as the
one shown in the following image (this can be picked up from the home security
section of any local DIY store), which gets an output as a series of square waves.
These square waves are then decoded by the 433-Util software.

A Novar/Blyss 433MHz wireless remote control

I liked this particular remote control because I thought it would be good as the
arm and disarm device for our home security system. I will talk about arming
and disarming in Chapter 8, A Miscellany of Things, where we will look at the
ways to achieve this.

Adding a Passive Infrared Motion Sensor

[348]

The alternative approach (because we have no
choice)
I started off the previous section with the words "In the past…". This is because in
recent times, I've not been able to get the 433-Util software working with receiver
modules, which used to work in the past). I'm not entirely sure why this is so;
however, I can only guess that because the software uses "bit banging" to decode
incoming data signals, the timing is no longer correct, perhaps because later
Raspberry Pi boards are faster and therefore mess up the routines.

What is bit banging?
Bit banging is a way of using software for serial communication
instead of dedicated hardware. The software is responsible for all the
parameters of the signal, including timing, levels, and synchronization.
Bit banging can be seen as a bit of a hack, but it does allow the
implementation of different protocols at a very low cost without any
hardware changes.

So, in order to make our lives easier (and actually make the device work on all
flavors of Pi), we will resort to using a dedicated receiver module that you can pick
up for less than £5 on Amazon and doesn't require all this software bit banging
nonsense. You'll notice from the following image that it still uses a similar XY-MK-
5V radio receiver; it's just that the host board decodes the signals for us and switches
a relay on or off in response to a command from the remote control.

If you're still interested in the 433-Util software project and want to
try and roll out your own receiver, you can find the original project
at https://github.com/ninjablocks/433Utils.

A Hielec transmitter fob and receiver module, available on Amazon

Chapter 5

[349]

The fact that it just switches a relay on and off means that we can easily implement
this in our home security system because it simply acts as a switch. When you press
the button on the transmitter, the relay switches the contacts on; press it again, and
the relay switches off. The screw terminals on the board provide us with access to the
relay terminals.

The receiver wiring diagram
As we are just dealing with a switch input, we can use the same circuit as we did
with the zone circuit earlier but connected to our arm/disarm GPIO input, which
we'll determine in Chapter 9, Putting It All Together.

Circuit to interface the receiver module with a GPIO input

When the receiver module switches the relay on, this will complete the 12V circuit
through the opto-coupler's LED by turning it on. This will make the transistor pull
the GPIO pin down to ground, giving it a low input.

You can use this type of circuit for any paired receiver for the wireless security
devices that you want to use in your system.

Adding a Passive Infrared Motion Sensor

[350]

Logging detection data
With any system, it's useful to be able to log data when something happens. We can
do this with our detectors too by writing to a log file every time a detector in a zone
is triggered. This way, you can keep a log of every time someone enters a room,
which you can review at a later date even if the system isn't armed. You can also
keep a log of when the system is armed and disarmed.

Here's a simple script that shows you how to do this whenever an event happens on
our zones connected to the GPIO inputs:

#!/bin/bash

#set up the I2C expansion port
sudo i2cset –y 1 0x20 0x00 0xFF

#reset status
CURR_STATE="0x00"
LAST_STATE="0x00"

#path to the log file
LOG_FILE="/etc/pi-alarm/zones.log"

loop forever
while true
do
 # read the gpio inputs
 CURR_STATE=$(sudo i2cget –y 1 0x20 0x12)

 #check if state has changed
 if ["$CURR_STATE" != "$LAST_STATE"]
 then
 #write change to log file
 TIMESTAMP=`date "+%Y-%m-%d %H:%M:%S"`
 echo "$TIMESTAMP Zone Status Changed from $LAST_STATE to
 $CURR_STATE" > $LOG_FILE
 fi
 $LAST_STATE = $CURR_STATE
 sleep 1
done

The preceding example is quite simple, but it can be made more useful by actually
writing out the zone or zones that change by decoding the hex value that's returned
by the i2cget command in the constituent zones.

Chapter 5

[351]

In Chapter 9, Putting It All Together, you'll learn how this is done in order
to display the individual status of each zone on a web page. You can
use exactly the same technique to do this for your log files and, in fact,
output to the log file by expanding on the same script.

Summary
In this chapter, we started off by learning how passive infrared sensors are used to
detect motion to protect a predefined coverage area from intrusion. We then looked
at connecting these to the inputs on our port expander via opto-couplers as we will
now use 12V to power the alarm zone circuits.

We then looked at wireless alarm systems that operate on the open 433-MHz band,
which is commonly used for security devices. After exploring the possibility of using
the legacy 433-Util bit-banging software on our Raspberry Pi to decode the signals
transmitted by devices using a simple receiver, we opted to use a paired receiver
device that will interface easily with our alarm circuit inputs.

Finally, we created a simple script that will log the changes in our alarm inputs to a
text file, which can later be expanded to log exactly what's going on with the system
in detail.

[353]

Adding Cameras to Our
Security System

Until now, we've been putting together the elements that will allow us to connect
sensors to our alarm system to detect intrusions using either switches or passive
infra-red motion detectors, which in turn will tell our Raspberry Pi that something
has happened in a particular zone. These elements will all come together as a whole
system later in this book.

Our system is now going to become a whole lot more sophisticated with the addition
of cameras to take pictures and video clips, and e-mail them to us straightaway when
it detects something.

We'll also use e-mail to send us alerts on our smart phone when we're out and about
when any of the sensors in the system are triggered.

In this chapter we will cover the following topics:

• Setting up the Raspberry Pi camera module and learning how to capture
stills and video images

• Learning how to overlay captured images with text and time-stamps
• Triggering image captures with a motion detector
• E-mailing the image and video files to us in real time
• Understanding the differences between capturing images during the day

and during the night
• Switching on and off security lighting and other high-current devices

when required
• Connecting a USB webcam instead of the native camera module

Adding Cameras to Our Security System

[354]

Prerequisites
You'll need the following parts for this chapter, on top of the components used in the
previous chapter:

• A Raspberry Pi standard camera module
• A Raspberry Pi NoIR camera module
• An Infra-Red LED array and/or visible LED array
• A USB webcam

The Raspberry Pi camera module
The Raspberry Pi Camera Module is an official Raspberry Pi accessory that works
with all models of the Pi, and can be used to take high-definition stills and video
images. It connects directly to the Pi board's camera serial interface (CSI) port,
which is dedicated to these modules to enable high-speed operation.

The camera itself is a 5 megapixel fixed-focus sensor supporting 1080p, 720p, and
VGA video modes and still captures.

The official Raspberry Pi Camera Module

Chapter 6

[355]

You can also obtain housings for the camera modules, which, unless you're going to
build your own enclosure for the camera system, I recommend you use.

Raspberry Pi camera housings come in various colors and styles

Connecting the camera module
As previously mentioned, the module connects directly to the Raspberry Pi board via
its dedicated camera interfaces, as shown in the following image. When connecting
the camera, the contact side of the ribbon cable is toward the HDMI connector and
the blue side of the cable is toward the network connector.

Connect the camera module to the dedicated interface

Adding Cameras to Our Security System

[356]

As you can see in the following image, the ribbon connector is not that long, so the
camera needs to be located close to the Raspberry Pi. By using a camera enclosure,
you could actually mount the camera directly on top of the Raspberry Pi case itself,
if that works for you.

The camera module, housed within an enclosure

Setting up the camera module
Before we can use the camera module, we need to enable camera support on the
Raspberry Pi. To do this, we use the raspi-config tool, as we did with the I2C
bus earlier in our journey.

1. Connect to your Raspberry Pi the lazy way from your sofa using SSH,
or directly using a keyboard and monitor.

2. Once you've logged in, launch the config tool with the following command:
$ sudo raspi-config

Chapter 6

[357]

3. And then, select 5 Enable Camera.

4. You'll then be asked to confirm whether you want to enable camera support.

5. Select <Enable>.
6. Then, select Finish and reboot your Pi to enable the camera settings.

Adding Cameras to Our Security System

[358]

Testing the camera module
Once your Raspberry Pi has rebooted, your camera should be enabled. We can test
this by taking a still image using the raspistill utility:

$ raspistill –v -o test.img

This will delay for 5 seconds then take a picture, while displaying various pieces of
information, such as that shown in the following screenshot:

The camera module needs at least 128 MB of GPU memory to
operate properly on Raspian. If you experience any issues, first
ensure that the the gpu_mem setting in the /boot/config.txt
configuration file is set to at least 128.

And if all goes well, you should find the file, test.jpg, in your home folder.
As you're connected via the shell, you wouldn't have seen the 5 second preview
image displayed when the command was running.

If you download the image file to your PC, you should see a nice quality snap taken
by the camera module.

Chapter 6

[359]

The test photo taken by the Raspberry Pi Camera Module

If you find that raspistill outputs errors when you run it, ensure
that it is connected properly at both ends of the ribbon cable. One
other catch is that sometimes the ribbon that connects the actual
camera lens component to the tiny connector on the camera board
can come loose. Just ensure that this is securely connected too. I've
had this issue a couple times after the camera modules have been
taken out of my box of random test bits to be used.

The raspistill utility has loads of options for manipulating the images it captures,
and we'll use some of them a bit later in our capture script. In the meantime, to see
the available options, run raspistill without any options and they will be listed:

$ raspistill

Be a video star
Now that we know our camera module is working, we can try and capture some
video. To do this, we'll use the raspivid utility. The following command will take
5 seconds of high-definition video and save the file to your Raspberry Pi:

$ raspivid –o test.h264 –t 5000

You'll notice that file is called test.h264—this is because the video is captured as a
raw H.264 video stream. Unfortunately, not many media players will handle these
files (although VLC player will—it rocks and handles practically anything you throw
at it—get it on your PC at www.videolan.org).

Adding Cameras to Our Security System

[360]

If you want to play the file on smartphones and conventional media players, then
we will need to wrap it in a container format, such as MPEG-4, and give the file a
.mp4 extension.

To do this, we'll use the GPAC package, which is an open source multimedia
framework. It comes with a utility called MP4Box, which is a tool we'll use to
create an MP4 container for our video file:

1. First, install the GPAC package:
$ sudo apt-get install gpac

2. Once it's installed, run the command to convert the test video we created:
$ MP4Box -fps 30 -add test.h264 test.mp4

You should now have the file, test.mp4, which you can download and play on your
PC or smartphone.

Another popular conversion tool is ffmpeg, which I use a lot on
Windows to convert video files; however, it can be quite complex
and although there is a package for the Raspberry Pi, I actually
couldn't get it to convert properly on the Pi. MP4Box is much
more straightforward and fitting for our needs.

Caught on camera
So, we now have a method of capturing still images and video, which we can put
to use in our security system. If we want to have this running constantly, we could
write a script to take video constantly, but this would soon fill up our memory card
and wouldn't be particularly efficient. So, we'll combine our camera system with the
motion detectors we connected earlier.

In the last chapter, we created an alarm zone which had a couple of sensors and a
motion detector connected to our system on the input GPA0. So, let's write a script
that will take a video clip whenever the motion detector is triggered:

#!/bin/bash

#set up port expander
sudo i2cset –y 1 0x20 0x00 0xFF

loop forever
while true

Chapter 6

[361]

do
 # read the GPA inputs
 GPA=$(sudo i2cget –y 1 0x20 0x12)

 # detect the zone on input 0
 if [$GPA == "0x01"]
 then
 #circuit normally closed so zone is OK
 #short delay
sleep 0.5

 else
 #zone is activated so take a 20 sec video clip

 #filename will be based on current timestamp
 sDate='date +%d%m%y'
 sTime='date +%T'
 echo "Zone 1 Activate at $sDate $sTime"

#take video clip
raspivid –o $sDate$sTime.h264 –t 20000

#convert to MP4
MP4Box -fps 30 -add $sDate$sTime.h264 $sDate$sTime.mp4
 fi
done

You have new mail
Having the images stored on your Raspberry Pi is not really much use—ideally,
you would want the images sent to you straightaway, as soon as they are captured,
so that you can view them on your smartphone.

An easy, quick, and reliable way to do this is to simply have them e-mailed to you.
Hence we're going to add an e-mailing functionality to our home security system
so that image captures are attached to a message and sent to your e-mail address
straightaway, which you can access from your smartphone. The images can then be
removed from your Raspberry Pi to prevent the SD card space from being clogged
up with these reasonably large files.

Adding Cameras to Our Security System

[362]

Setting up the e-mail sender client
Fortunately, there are some good packages available that will help us with this.
Carry out the following steps to install the email packages we need:

1. Update the package installer with the following command:
$ sudo apt-get update

2. Install and set up the SMTP client with the following command:
$ sudo apt-get install ssmtp

You'll now need to set up the client to send emails through your email account.
In the following configuration file, I've assumed that you have a Gmail account.
The settings may be different if you use another email provider.

3. Open the ssmtp configuration file using Nano or another text editor:
$ sudo nano /etc/ssmtp/ssmtp.conf

4. Replace the entries with the following configuration:
root=<your-username>@gmail.com
mailhub=smtp.gmail.com:587
rewriteDomain=gmail.com
AuthUser=<your-username>@gmail.com
AuthPass=<your-password>
FromLineOverride=YES
UseSTARTTLS=YES

5. ssmtp can be used on its own but can be a bit of a faff while automatically
sending emails (by default, you manually type the email in with the
command line, or create a text file), so we're also going to install the
mailutils package:
$ sudo apt-get install mailutils

6. Once it's installed, we can use the mail command to send emails more
easily. Send a test email through the (G)mail account that we set up earlier,
using the following command to make sure your settings are working:
$ echo "Test Email" | mail –s "Test Pi-Mail" me@mydomain.com

If all goes well, you should receive the test email in your mailbox within a few
seconds or so.

Chapter 6

[363]

Sending attachments
Now that we can send basic emails from our home security system, let's try sending
the still image taken from our camera earlier. But first, we need to install yet another
package to help us with this:

$ sudo apt-get install mpack

Once that's installed, you can send the test image file we took previously by using
the following command:

$ sudo mpack –s "Security Photo" test.jpg me@mydomain.com

We now have all of the elements needed to send alerts and images from our home
security system directly to our smartphone using email.

Where was that taken?
Ordinarily, you could just annotate the email message with where and when the
attached image was taken, but that wouldn't be as cool as actually overlaying the
image with some text, would it? So let's do some magic with the help of imagemagick,
which is a popular command-line image manipulation tool. Install it with the
following line:

$ sudo apt-get install imagemagick

We'll now use the command line to take the test photo that we took earlier, overlay
some text using one of the imagemagick utilities, and save it to another file:

$ convert test.jpg –fill red –pointsize 48 annotate +20+60 'Camera 1'
annotated.jpg

Adding Cameras to Our Security System

[364]

After a few seconds, this will have generated a file called annotated.jpg containing
our image with Camera 1 written in red in the top corner. When we put all of this
together in our final system, we'll also overlay the image with a time stamp.

At the moment, the images generated by the raspistill tool are
pretty large, being high resolution photos. This makes manipulating
and sending them a bit time-consuming as far as processing time
is concerned, so when we build our final system, we'll be using the
raspistill options, –w, –h and, –q, to reduce the size and quality
of the images to make the system more efficient.

To capture smaller image files, try using the following command:

$ raspistill -o test.img –h 768 –w 1024 –q 25

Night vision
The standard Raspberry Pi camera is great for taking daytime snaps of people
walking up the garden path, but when it comes to night time shots, it's not really
suitable. There are two ways of dealing with this: the first is to illuminate the capture
area with a bright light when the PIR detector is triggered, and the second is to use
the Raspberry Pi NoIR camera module and an infra-red LED array to let the camera
see in the dark. More about that in a minute.

Chapter 6

[365]

The Raspberry Pi NoIR camera module; it looks similar to the standard model

An illuminating experience
In order to switch on a light or LED array from the Raspberry Pi GPIO or our port
expander circuit, we need something that will allow us to drive higher currents and
voltages than can be provided by the GPIO ports alone.

A good candidate for this is the TIP120 Darlington transistor, which will allow
us to switch on and off loads of up to 80V and 5 A from our GPIO pins. In our full
system later on, we're going to use Port B of our MCP23017 port expander to control
outputs, but the principle stands for any of the GPIO outputs available to us.

TIP120 transistors can be bought cheaply but can drive large loads

Adding Cameras to Our Security System

[366]

The following circuit shows how we can drive big loads from our GPIO port outputs.

In our example circuit, we're using a GPIO output pin to control the base of our
transistor via a 220 ohm resistor. When the GPIO pin goes high, the transistor is
switched on and allows the 12V circuit to flow through the LED array.

In the preceding circuit, there is no current limiting for the LEDs because they are
connected in series, and so with nine of them, each dropping about 1.5V across, this
is about right for a 12V supply (yes I know I've only included six LEDs here but it's
just for illustration). Remember to adjust for your particular needs. This circuit could
easily drive other loads, such as bulbs or sounders.

If you intend to drive high power loads, you will probably need
to attach the TIP120 to a heat sink that will dissipate any heat and
prevent it from over-heating and burning out. In our circuit that
was demonstrated previously, however, you probably won't need
one as we're only driving a couple of hundred milliwatts at most.

The Elaborate light switch re-visited
Expanding once again on our elaborate light switch from previous chapters, we can
once again write a Bash script that will switch on our camera light, take a snap with
the camera, and e-mail it to us when a PIR detector is triggered.

Chapter 6

[367]

For the following script, we're assuming that the output controlling the TIP120
transistor is the Raspberry PI GPIO17 pin (D0 or pin 11 of our connector), which
replaces the LED in our earlier set-up. The input from the PIR trigger is, again,
connected to the GPA0 (port A, data pin 0) of our MCP23017 port expander.
All the other inputs are tied low, as before, using 10 K resistors:

#!/bin/bash

#set up the High Load GPIO pin
sudo echo 17 > /sys/class/gpio/export
sudo echo out > /sys/class/gpio/gpio17/direction

#set up port expander Port A for inputs
sudo i2cset –y 1 0x20 0x00 0xFF

#clear the output by default to switch light off
sudo echo 0 > /sys/class/gpio/gpio17/value

loop forever
while true
do
 # read the sensor state
 SWITCH=$(sudo i2cget –y 1 0x20 0x12)

 #PIR is normally closed so pin is held high
 if [$SWITCH != "0x01"]
 then
 #PIR was triggered – pin taken low

 #switch on lamp driver
 sudo echo 1 > /sys/class/gpio/gpio17/value
 sleep 0.5

#take a still image
 sudo raspistill –o –image.jpg –h 768 –w 1024 –q 25

 #email the image
 mpack –s "Security Alert Photo" test.jpg me@mydomain.com

 #switch off the lamp driver
 sudo echo 0 > /sys/class/gpio/gpio17/value

Adding Cameras to Our Security System

[368]

 fi
 #short delay
 sleep 0.5
done

pir-camera-trigger.sh

You'll now see that we've started developing the foundations of the software that
will control our home security system.

Is that a badger?
If you don't want to illuminate an area before capturing an image, you can use
infra-red lighting in conjunction with a compatible camera. The standard Raspberry
Pi camera module won't work with infra-red lighting because it contains an infra-red
filter, but we can use the NoIR version of the camera module instead.

The Raspberry Pi NoIR camera module is exactly the same as the standard one,
except that it doesn't have an infra-red filter built in, which means it will see in the
dark with the aid of infra-red lighting. This makes it good for watching badgers at
night as well as for use in our home security system.

You will need an infra-red LED array or cluster to invisibly illuminate the area
you want to capture with the camera. These are readily available in various form
factors and intensities, or you can build your own using individual infra-red LEDs
purchased from an electronics store.

The Kingbright infra-red LED cluster runs from a 6V supply, which means you can connect two
in series—one on either side of the camera.

Chapter 6

[369]

Connecting and driving the LED cluster modules works exactly the same as our
illuminating light above, using the TIP120 driver circuit. The only difference is
that we humans can't see when the LEDs are on.

Using USB cameras
Instead of using the Raspberry Pi Camera Module, it's also possible to use a standard
USB webcam to take still images. You should be aware though that the dedicated
camera module is far superior to a USB webcam in terms of image quality. Although,
you may already have a webcam knocking about in your box of bits, so why not try it?

Installing the webcam
After you've connected your webcam to a USB port on your Pi, you can check
whether it's been recognized using the lsusb command:

$ lsusb

I'm using a Logitech webcam that gets reported as follows with lsusb (Device 006):

pi@raspberrypi ~ $ lsusb
Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp.
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.
Bus 001 Device 006: ID 046d:08d8 Logitech, Inc. QuickCam for Notebook
Deluxe

Not all webcams will work with the Raspberry Pi. Even though
it may be recognized as a USB device, it might not actually work
properly with the operating system and create a video device (for
example, /dev/video0). For example, an old cheap Trust webcam
I had appeared as a USB device but wouldn't capture any images.
You can check whether your webcam is likely to work with the
Pi by checking your make and model at http://elinux.org/
RPi_USB_Webcams.

So, now that the Pi knows that we have a webcam device attached, we can use the
fswebcam utility to capture image frames. You can find out more about fswebcam
from the developer's site at http://www.sanslogic.co.uk/fswebcam.

Install fswebcam with the following:

$ sudo apt-get install fswebcam

Adding Cameras to Our Security System

[370]

Taking a snap
You can now test the webcam by capturing a still image, which can be done by
running the following command:

$ fswebcam test.jpg

You should expect to see output similar to the following:

fswebcam has lots of options for things like the resolution and
quality of the image. Use the command fswebcam -? to get a
list of all options.

Snap snap snap
fswebcam doesn't take video streams, but you can set it up to take a series of frames
at regular intervals. For example, to take a snap every 10 seconds, you can use the
following command:

$ fswebcam frame.jpg -l 10

An example of how this would be useful can be demonstrated by setting the webcam
to take a snap every few seconds in the background (the –q switch runs fswebcam
in the background). When our security system is triggered, we could then take the
latest image snapped with the webcam which could be looking down your pathway.

For the purpose of putting together our entire system later in this book, we'll be
focusing on the Raspberry Pi Camera Module, but you can always replace the code
with the previous examples if you want to use USB webcams instead.

Chapter 6

[371]

You'll notice that fswebcam, unlike raspistill, has the ability to overlay the images
with timestamp information, so you don't need to worry about overlaying text as we
did previously. Look at the fswebcam command line options for more information.

The multicamera setup
It may have occurred to you that the Raspberry Pi has only one camera module
input. Now, this is obviously limiting if you want to have multiple cameras around
your property that are triggered by motion detectors.

However, there is nothing stopping us from building standalone units that have
a separate Raspberry Pi board with a PIR detector, Camera Module, and network
connection, either using a Wi-Fi dongle or Ethernet.

Because you only need a single input to the Raspberry Pi to detect when the PIR
motion sensor is triggered, you can use the on-board GPIO port to connect the
sensor, rather than using a port expander. The Raspberry Pi will email the alert
over the network, and could alert the main controller Pi if required—making it a
slave sensor device.

You can readily obtain small PIR detectors, such as the Parallax one shown next,
which you can mount onto a Raspberry Pi Case along with the camera module,
creating a self-contained unit.

A Parallax PIR motion sensor (type 555-28027)

Adding Cameras to Our Security System

[372]

The Slave driver
While it may seem quite elaborate to have a Raspberry Pi for each camera—think
about it—you can actually build each camera unit with all of the components for
around £50, which is significantly cheaper than buying a wireless smart camera.
If you really want to be clever, you could also use this as a slave device to accept
further sensor inputs local to the unit.

There is nothing to stop you from connecting a GPIO output pin on the slave unit to
drive an input on the main controller and control the pin depending on the state of
its local sensors. By running a 6-core cable between the units, you could even power
the slave unit if your power supply is man enough (you'd need to have a supply of
5V @ 1A for the slave Pi running along the wire).

I'm not going to go into any more detail about this configuration at this time, but you
could set yourself a challenge to create a fully distributed home security system using
multiple Raspberry Pis and the building blocks and concepts learned in this book.

Summary
In this chapter, we learned how to connect both Raspberry Pi camera modules
and USB cameras to our Pi board in order to take image and video captures when
required by our home security system. We also learned how to overlay our images
with informative text and have the files immediately emailed to us.

In order to capture images from our camera at night, we also looked at ways to
illuminate the capture area using both visible and infra-red lighting, with the ability
to switch the lighting on and off as required by using a high-current Darlington
transistor driver.

In the next chapter, we're going to get down to the business of putting together
modules by building a mobile-optimized web-based control panel for our home
security system. We'll learn how to set up a Web server on our Raspberry Pi and
manipulate files using our Web control panel, which means that we'll start to
explore how all of the elements we've encountered so far can come together as
part of our final system.

[373]

Building a Web-Based
Control Panel

We've now got all of our hardware elements together for us to create a complete
home-security system featuring contact switches for our doors and windows, and
motion detectors and cameras to take happy snaps of wannabe intruders! I've
deliberately guided you through this in a modular fashion so that you can pick and
choose and expand on the hardware sensor elements that suit your requirements.
In Chapter 9, Putting It All Together we will be wiring all of this together to form the
complete system based on zones that we looked at earlier.

One thing that all home security systems require is a control panel that allows us to
arm and disarm the system and monitor the status of the zones within our system.
We might also want to do things such as only arm certain zones, or have the system
automatically arm and disarm at certain times of the day.

The hardware required for this, such as switches, LEDs, and LCD displays, can be
quite expensive and time-consuming to put together; they can also make the system
less configurable and flexible. So, in our system, we're going to build a Web-based
control panel that we can access from our mobile phone browser. This also means
that we can control the system remotely, when we are out of the house.

In this chapter, we will cover the following:

• Defining the scope of our home security in terms of the number of zones we
will be monitoring and the I/O ports we will use

• Learning how to install and configure a web server on our Raspberry Pi
• Developing a basic HTML5 web page for our alarm control panel
• Learning how to use PHP scripts to dynamically configure our system from

the web page

Building a Web-Based Control Panel

[374]

Installing the web server
There are several web servers readily available that we could install on our Raspberry
Pi, and they would all be suitable for our system. But I like the lighttpd web server as
it's easy to use and lightweight. lighttpd is often referred to, and affectionately known
as, "Lighty"—which to be honest is less of a mouthful than lighttpd.

As well as the Web server itself, we're also going to install PHP support, which will
allow us to write dynamic web pages to interact with the Linux system. Now, to be
honest, I'm not a massive fan of PHP for commercial Web-based deployments for
many reasons, but for a small embedded-Linux system such as our home security
system, it's perfect and works really well. It's also quite straightforward to get into
if you've never done server-side Web-scripting as well.

To perform the following steps, you'll need to be logged into your Raspberry Pi via
the terminal console (for example, PuTTY):

1. Update the package installer:
$ sudo apt-get update

2. Install the lighttpd Web server:
$ sudo apt-get install lighttpd

Once installed, it will automatically start up as a background service, and
will do so each time your Raspberry Pi starts up.

3. Install PHP5 support:
$ sudo apt-get install php5-cgi

4. Now, we need to enable the PHP FastCGI module in our web server:
$ sudo lighty-enable-mod fastcgi-php

5. And finally, we need to restart the Web server:
$ sudo /etc/init.d/lighttpd

That's it! You should now have your PHP Web server installed. By default, the
web content files get installed in the location, /var/www, and Lighty installs a test
placeholder page in this location, which you can access from your browser by simply
entering the IP address of your Raspberry Pi, as shown in the following screenshot:

Chapter 7

[375]

The Lighttpd placeholder page

Testing the PHP5 installation
While we're at it, we should also test our PHP installation, as this is fundamental
to building our console. This can be done by writing a simple PHP script page
that, if PHP is installed correctly, will return information about its environment
and configuration:

1. First, go to the web content folder:
$ cd /var/www

Building a Web-Based Control Panel

[376]

2. In Nano, create a file called phpinfo.php:
$ sudo nano phpinfo.php

3. In the editor, enter just the following single line, then save and exit from Nano:
<?php phpinfo(); ?>

Now, in your browser, enter the IP address of your Raspberry Pi followed by /
phpinfo.php, for example, http://192.168.0.110/phpinfo.php, and you should be
presented with the following page:

The PHP info page generated by the Web server

Now that we know our web server is working properly, we can start creating our
console web page.

Chapter 7

[377]

Being in control
So that we know what controls we want on our alarm control panel, we need to map
out our system with the number of zone inputs and control inputs and outputs. As
you'll remember from Chapter 3, Extending Your Pi to Connect More Things we can
essentially have up to 16 zones in our system using the two I/O ports on our port
expander. We also have the eight GPIO pins at our disposal on the Raspberry Pi board
itself. So, let's now allocate these outputs and document them in the table that follows.

I'm going to set up an 8-zone system for my alarm inputs using port A on the I/O
expander board, using the native GPIO pins for things such as buttons and alert
outputs. One reason for doing it in this configuration is that the system can always
fail-safe—so if the expander board fails, the Raspberry Pi can still communicate alerts
and buzzers connected to it.

Port I/O Pin Label/Purpose
Expander A 0 (A0) Zone 1 Input (Entry/Exit Channel)

1 (A1) Zone 2 Input
2 (A2) Zone 3 Input
3 (A3) Zone 4 Input
4 (A4) Zone 5 Input
5 (A5) Zone 6 Input
6 (A6) Zone 7 Input
7 (A7) Zone 8 – Anti-Tamper Loop Input

Expander B 0 (B0)
1 (B1)
2 (B2)
3 (B3)
4 (B4)
5 (B5)
6 (B6)
7 (B7)

R-Pi GPIO 0 (GP0) Arm/Disarm Switch (Input)
1 (GP1)

2 (GP2)
3 (GP3)
4 (GP4) Armed LED (Output)

Building a Web-Based Control Panel

[378]

Port I/O Pin Label/Purpose
5 (GP5) Arm/Disarm Buzzer (Output)
6 (GP6) Alarm LED (Output)
7 (GP7) Alarm Bell (Output)

Arming yourself
The terms arm and disarm are alarm system-speak for switching the alarm monitoring
on (arming the system) and off (disarming the system). Zone 1 of our system is going
to be linked to the arming and disarming part of the system as it will be connected to
the sensors on the door that we leave or enter from; this will be a special zone for entry
or exit purposes.

When we set the alarm, we need a bit of time to get out of the house. The way that
the system knows we've left the property is by monitoring the exit zone to see if
we've opened and then closed the front door behind us within the time allowed.

Similarly, when we return, we will open the front door, but we don't want the
alarm to go off straightaway—we need a chance to disarm the system within a
given amount of time. We will arm and disarm the system via our web-based
control panel, or by using a switch of some sort on the input GP0.

The master configuration file
Our system will use a master configuration file that will tell it how everything is
set up and connected. This configuration file will be used by both the web control
panel and the main alarm control scripts so that the two sub-systems can "talk" to
each other. Let's create the file with our initial settings.

The settings file will be stored in the same location as where we will create our
control scripts in Chapter 9, Putting It All Together, which is in the folder. /etc/pi-
alarm. So, let's create this folder, and give it execute rights so that our scripts can
be run:

$ cd /etc

$ sudo mkdir pi-alarm

$ sudo chmod 777 pi-alarm

We'll now create the master configuration file, to be used by our system, in this folder:

$ cd pi-alarm

$ sudo nano alarm.cfg

Chapter 7

[379]

As before, you don't have to create your files in Nano on the
Raspberry Pi—you can create them on your desktop computer,
and then transfer them to your Pi using SCP.

ALARM MASTER CONFIG FILE

#Number of zones in the system
NUM_ZONES=8

#Display labels for each zone
ZONE_LABEL_1="Zone 1 - Entry/Exit"
ZONE_LABEL_2="Zone 2"
ZONE_LABEL_3="Zone 3"
ZONE_LABEL_4="Zone 4"
ZONE_LABEL_5="Zone 5"
ZONE_LABEL_6="Zone 6"
ZONE_LABEL_7="Zone 7"
ZONE_LABEL_8="Zone 8"

#Zones that are enabled
#Set to 0 to Disable or 1 to Enable
ZONE_ENABLE_1=1
ZONE_ENABLE_2=1
ZONE_ENABLE_3=1
ZONE_ENABLE_4=1
ZONE_ENABLE_5=1
ZONE_ENABLE_6=1
ZONE_ENABLE_7=1
ZONE_ENABLE_8=1

SYSTEM_ARMED=0

#Zone status
#Set to 1 if zone is triggered
ZONE_STATUS_1=0
ZONE_STATUS_2=0
ZONE_STATUS_3=0
ZONE_STATUS_4=0
ZONE_STATUS_5=0
ZONE_STATUS_6=0
ZONE_STATUS_7=0
ZONE_STATUS_8=0

alarm.cfg file

Building a Web-Based Control Panel

[380]

Creating the web page
Our Web-based control panel is going to be a single PHP-driven HTML5 web page
which will be mobile optimized. HTML5 is the latest mark-up standard for web
pages and is supported by most modern smartphones and browsers. We will also
create a cascading style-sheet (CSS) that will make our page look half reasonable
on mobile devices.

To create the web files, I recommend that you use something like the excellent
Notepad++ on your desktop computer, rather than doing it directly on the Raspberry
Pi. Alternatively, if you are a seasoned web developer, you may already have your
IDE of choice.

The control panel HTML template
The first thing we'll do is create an HTML file that we can use to test our layout
before we put the HTML into a PHP file to make it interact with our system. This
makes it easier to tweak the way we want it to look beforehand, without the PHP
scripts getting in the way.

This is not a tutorial on Web development—there is a plethora of books
out there on that subject—but I hope the code is clear enough for you
to work out what's going on. The code I'm going to show you is fully
functional, so you can just use what I give you without having to do
any more. Hopefully, it makes your control panel look OK too!

The following mark-up gives you a basic control panel with status for our 8 zones,
a master arm and disarm switch, and switches to enable or disable any of our zones.

The <head> section of the code contains some <meta> tags that help mobile devices
know that it's a mobile-friendly site. In the main <body> mark-up, we have a section
for each zone that contains the zone's name and an on/off switch. Each zone is in its
container so that we can also highlight a particular zone that needs our attention, for
example, if it's triggered.

You can find the full HTML5 markup for our control panel in the alarm-panel.html
file located inside the code folder of chapter 7.

Chapter 7

[381]

Giving it some style
At the moment, this page doesn't look that great (in fact, it looks awful, like
something from the 1990s); it isn't particularly good for mobile devices and would
most certainly fail the sausage test. So, we're going to apply some styling to make
it look not half bad. Although the preceding mark-up contains a reference to a
CSS file—we haven't created that file—so this is what our page currently looks
like (as I said: it looks awful):

The web control panel without any styling

The following CSS3 mark-up is designed specifically for our control panel, and it
makes it look quite nice while also making it usable on touch-screen mobile devices.
The CSS is quite long and seems overwhelming, but you don't need to do anything
with it, or understand it, if you don't want to—the only thing you need to know is
that it's been designed for modern browsers and smartphones, so don't expect it to
work on Internet Explorer 7, or probably even IE9!

Building a Web-Based Control Panel

[382]

In essence, it contains the styling for the following:

• Preparing the browser for our mobile layout
• Our text and zone areas
• Creating cool switches instead of boring checkboxes
• Making an area flash on and off when we need it to

/* Clear browser margin and padding defaults */
body, div, dl, dt, dd, ul, ol, li, h1, h2, h3, h4, h5, h6, pre, form,
fieldset, input, textarea, p {
margin:0;padding:0;-webkit-text-size-adjust:none;
}

body {
 background: #ffffff;
 color: #4A5651;
 font-family: "Trebuchet MS", Helvetica, sans-serif;
 font-size:10px;
 height: 100%;
 padding:0;
 margin:0 auto;
 max-width:320px;
 min-width:240px;
 text-align: left;
 width:100%;
 -webkit-box-shadow: 0px 20px 40px 0px rgba(0,0,0,0.50);
 -moz-box-shadow: 0px 20px 40px 0px rgba(0,0,0,0.50);
 box-shadow: 0px 20px 40px 0px rgba(0,0,0,0.50);
}

p, .zoneLabel {
 font-size:16px;
 margin:5px;
 line-height:1.4;
 color:#4A5651;
}

#header h1 {
 font-size:20px;
 line-height:40px;
 margin:0;
 padding:0 0 0 15px;
 text-align:center;

Chapter 7

[383]

 text-overflow: ellipsis;
 font-weight:bold;
}

.zoneControl, .masterControl{
 border-bottom:1px solid #dddddd;
 margin-top:5px;
 margin-bottom:0px;
 padding:5px;
 display:block;
 width:100%;
}

.zoneLabel {
 font-weight:bold;
 text-overflow:ellipsis;
}

input[type="submit"] {
 border: none;
 background-color: #0b70cc;
 color: white;
 height: 32px;
 display: block;
 padding: 4px 7px;
 float: left;
 border-radius: 8px;
 position: relative;
 bottom: 1px;
 margin-left: 4px;
 text-align: center;
}
input[type="submit"]:hover {background-color: #b2ceec;color:
#0b70cc;border: none;border: 1px solid #b2ceec;}

/* Flashing animation */
@-webkit-keyframes flash{0%, 50%, 100% {opacity: 1;} 25%, 75%
{opacity: 0;}}
@keyframes flash {0%, 50%, 100% {opacity: 1;} 25%, 75% {opacity: 0;}}
.flash {
 -webkit-animation-name:
 flash;animation-name:
 flash;color:#f00000;
}

Building a Web-Based Control Panel

[384]

.animated {
 -webkit-animation-duration: 1s;
 animation-duration: 1s;
 -webkit-animation-fill-mode: both;
 animation-fill-mode: both;
 animation-iteration-count:infinite;
 -webkit-animation-iteration-count:infinite;
}

/*
 ON/OFF SWITCH STYLES
 The rather cool On/Off switch styling was generated on
 https://proto.io/freebies/onoff/
*/
.onoffswitch {
 position: relative;
 width: 90px;
 -webkit-user-select: none;
 -moz-user-select: none;
 -ms-user-select: none;
}

.onoffswitch-checkbox {
 display: none;
}

.onoffswitch-label {
 display: block;
 overflow: hidden;
 cursor: pointer;
 border: 2px solid #FFFFFF;
 border-radius: 20px;
}

.onoffswitch-inner {
 display: block;
 width: 200%;
 margin-left: -100%;
 transition: margin 0.3s ease-in 0s;
}

 .onoffswitch-inner:before, .onoffswitch-inner:after {
 display: block;
 float: left;

Chapter 7

[385]

 width: 50%;
 height: 30px;
 padding: 0;
 line-height: 30px;
 font-size: 14px;
 color: white;
 font-family: Trebuchet, Arial, sans-serif;
 font-weight: bold;
 box-sizing: border-box;
 }

 .onoffswitch-inner:before {
 content: "ON";
 padding-left: 10px;
 background-color: #34C290;
 color: #FFFFFF;
 }

 .onoffswitch-inner:after {
 content: "OFF";
 padding-right: 10px;
 background-color: #EEEEEE;
 color: #999999;
 text-align: right;
 }

.onoffswitch-switch {
 display: block;
 width: 18px;
 margin: 6px;
 background: #FFFFFF;
 position: absolute;
 top: 0;
 bottom: 0;
 right: 56px;
 border: 2px solid #FFFFFF;
 border-radius: 20px;
 transition: all 0.3s ease-in 0s;
}

.onoffswitch-checkbox:checked + .onoffswitch-label .onoffswitch-inner
{
 margin-left: 0;
}

Building a Web-Based Control Panel

[386]

.onoffswitch-checkbox:checked + .onoffswitch-label .onoffswitch-switch
{
 right: 0px;
}

.masterswitch {
 position: relative;
 width: 90px;
 -webkit-user-select: none;
 -moz-user-select: none;
 -ms-user-select: none;
}

.masterswitch-checkbox {
 display: none;
}

.masterswitch-label {
 display: block;
 overflow: hidden;
 cursor: pointer;
 border: 2px solid #FFFFFF;
 border-radius: 20px;
}

.masterswitch-inner {
 display: block;
 width: 200%;
 margin-left: -100%;
 transition: margin 0.3s ease-in 0s;
}

.masterswitch-inner:before, .masterswitch-inner:after {
 display: block;
 float: left;
 width: 50%;
 height: 30px;
 padding: 0;
 line-height: 30px;
 font-size: 12px;
 color: white;
 font-family: Trebuchet, Arial, sans-serif;
 font-weight: bold;
 box-sizing: border-box;

Chapter 7

[387]

}

.masterswitch-inner:before {
 content: "ARMED";
 padding-left: 10px;
 background-color: #F00000;
 color: #FFFFFF;
}

.masterswitch-inner:after {
 content: "OFF";
 padding-right: 10px;
 background-color: #EEEEEE;
 color: #999999;
 text-align: right;
}

.masterswitch-switch {
 display: block;
 width: 18px;
 margin: 6px;
 background: #FFFFFF;
 position: absolute;
 top: 0;
 bottom: 0;
 right: 56px;
 border: 2px solid #FFFFFF;
 border-radius: 20px;
 transition: all 0.3s ease-in 0s;
}

.masterswitch-checkbox:checked + .masterswitch-label .masterswitch-
inner {
 margin-left: 0;
}

.masterswitch-checkbox:checked + .masterswitch-label .masterswitch-
switch {
 right: 0px;
}
/* END OF SWITCH STYLES */

Building a Web-Based Control Panel

[388]

Web control panel style sheet – alarm-panel.css

Apply the stylesheet and this is what you end up with (a little bit nicer, I think
you'll agree):

The web control panel with styling

Chapter 7

[389]

Making it dynamic
Now that we have the layout code defined for our control panel page, we can insert
it in our PHP page so that it can be modified dynamically by the PHP script on the
Web server, depending on the status of our home security system.

The PHP script will help us achieve the following basic functions:

• Updating the configuration file with the position of the on/off switches
for zones

• Arming and disarming the system
• Telling us which zone has been triggered when an intrusion has

been detected

Again, I'm not going to go into detail about how the PHP code works, but hopefully
the comments within the code will help you follow what's going on, and also help
you modify it if you want to change its behavior.

Getting a bit of help first
Unless you change some of the PHP configuration, it can be a nightmare trying to
work out what's gone wrong if you have a small bug in your code, as basically you
are presented with…nothing!

So, before we create and build our PHP page, we'll change a couple of settings in
the PHP configuration file to make sure we know if there are any issues:

1. Open the configuration file with Nano:
$ sudo nano /etc/php5/cgi/php.ini

2. The file is a bit large and unwieldy, but battle your way through it, find these
settings, and change them as follows:
error_reporting = E_ALL

display_errors = On

3. Save the file and exit Nano.
4. Finally, restart Lighty:

$ sudo /etc/init.d/lighttpd restart

Building a Web-Based Control Panel

[390]

The main PHP code
And here it is… But don't run it yet—there's still a bit more to do…

You can find the full main PHP code in the index.php file located inside the code
folder of chapter 7. In our Web server content folder, we should now have the
following files:

pi@raspberrypi ~ $ ls -1 /var/www
alarm-panel.css
alarm-panel.html
index.lighttpd.html
index.php
phpinfo.php

I'm someone else
Now, before we can actually open this PHP web page successfully, we need to be
aware of the fact that the Web server, by default, actually runs as a different user
called www-data. This means that it doesn't ordinarily have the right to perform
certain operations; in particular, those that interact with the file system.

If you worked through the previous PHP script, you'll see that it actually executes
some Linux commands to read and update our alarm.cfg file.

In the same way that we have to put sudo in front of many commands because we're
not the root user, it is true for other users as well, including www-data. So, to give the
Web server rights to execute certain commands, we need to add it as a sudoer, using
the visudo utility.

Run the utility to open the sudoer configuration file:

$ sudo visudo

At the bottom of the file, add the following line:

www-data ALL=(ALL) NOPASSWD:/bin/cat,/etc/pi-alarm/update-alarm-
setting.sh

Then save the file and exit.

Chapter 7

[391]

The final thing we have to do is create a small Bash script that will handle the task of
updating settings in our alarm.cfg file. The reason why we need to do this is because
we're going to use the Linux sed command to update the file. The way that we are
invoking the sed command means that it needs to create a temporary file. Unless we
do a bit of work with configuring the Web server because of its file location context, it
won't work. So, it's easier to create a stub Bash script that is called by the PHP script.
In this way, the Bash environment deals with the temporary file context.

So, we'll create the following Bash script and save it in our /etc/pi-alarm folder:

#!/bin/bash
#/etc/pi-alarm/update-alarm-setting.sh
##
Provides access to the sed command from
PHP as it needs write access to a temp
folder.
$1 - Setting Name
$2 - Setting Value
##

sed -i "s/^\($1\s*= *\).*/\1$2/" /etc/pi-alarm/alarm.cfg

update-alarm-setting.sh

And then we need to give the script execution rights:

$ sudo chmod 777 /etc/pi-alarm/update-alarm-setting.sh

This is what we should see in our /etc/pi-alarm folder at this time:

pi@raspberrypi ~ $ ls -1 /etc/pi-alarm
alarm.cfg
update-alarm-setting.sh

Right, after all that, I think we can now launch the control panel page in our browser
at

http://<my-pi-ip>.

index.php is configured as a default page in Lighty's config, so you don't need to
add it to the end of the URL; just the IP address will suffice.

Building a Web-Based Control Panel

[392]

By changing the switch positions and then clicking on the Update System button,
you should find that the setting values get updated accordingly in alarm.cfg. You
can now see how this file will be the way for the status to be exchanged between our
web console and the security system scripts that we'll develop in Chapter 9, Putting It
All Together.

The final operational control panel

Remote access to our control panel
While we can set up our system to receive email alerts when our system detects an
intrusion, it would be really useful to be able to access our Web-based control panel
wherever we are so that we can perhaps arm and disarm the system or switch off
certain zones when we're not there.

Chapter 7

[393]

However, in order to make this possible we need to do a few things:

Setting up a dynamic DNS account
Most of us won't have a fixed IP address for the Internet connection in our home; it is
likely to change from time to time, especially when we reboot or unplug our router,
whereby our Internet service provider assigns us a new one when we next connect to
them. Because of this, we can't rely on using the IP address to get to our home network
when we're out and about. To solve this, we need to set up a dynamic DNS account
that will allow us to set up a domain name for our home network (for example,
myhomenetwork.com).

It works by having a service that runs inside your network, such as on your router
or laptop, that updates the dynamic DNS service hosting your domain name with
the current IP address of your Internet connection. Then, when you use your domain
name in your browser, it will take you to a Web server on your home network.

Popular dynamic DNS providers out there include No-IP (www.noip.com) and
DynDNS (www.dyn.com). You can also get a free DnsOMatic account with OpenDNS
to manage your services (www.dnsomatic.com).

My Netgear NAS device has a DnsOMatic updater service add-on

Building a Web-Based Control Panel

[394]

My Netgear Router has the option of updating a Dynamic DNS service

The Raspberry Pi dynamic DNS client
Since your Raspberry Pi-based home security system is likely to always be on,
you might want to install the ddclient updater service on there instead:

$ sudo apt-get install ddclient

Once installed, you can set it up for your particular service and account details
using the following config file:

$ sudo nano /etc/ddclient.conf

Setting up a static IP on your Raspberry Pi
So that our home network always knows where to find your Raspberry Pi, we need
to set up a static IP address on it, assuming that it currently acquires an IP address
from your router's DHCP server each time it boots up.

1. To do this, we need to edit the network settings on the Raspberry Pi.
In Nano, open the following configuration file:
$ sudo nano /etc/network/interfaces

Chapter 7

[395]

2. You'll probably find the Ethernet port configuration set to something like this:
auto eth0

allow-hotplug eth0

iface eth0 inet manual

3. Change this configuration to be an unused static IP address on your network.
In my case, I've set it to 192.168.0.99. The gateway setting is the IP address
of my Internet router:
auto eth0
allow-hotplug eth0
iface eth0 inet static
 address 192.168.0.99
 netmask 255.255.255.0
 gateway 192.168.0.1

4. Now, we need to restart the networking service—note that you'll be
disconnected from your terminal session. You'll need to reconnect
using the new IP address:
$ sudo /etc/init.d/networking restart

If you have any issues, simply restart the Pi with sudo reboot and all should be
good when it comes back up.

Port-forwarding
The final piece of this puzzle is to make sure that our Internet router will direct
incoming traffic on a given port to our Raspberry Pi's Web server. For the purpose
of this example, I'm going to assume that we are going to stick to the default, port 80,
on our Web server.

A word about security
Given that our Web server will now be accessible from the
outside world, we need to be mindful about securing our
system properly. The two main ways to do this are to change
the Web server port to a random number other than 80 (for
example, 8799) and add password protection to your site by
applying basic authentication. Both of these can be done in
the lighttpd configuration file.

Building a Web-Based Control Panel

[396]

Most routers will allow you to set up port-forwarding as part of their firewall
configuration. Essentially, setting this means that any incoming traffic from the
Internet on a given TCP port will be allowed to pass through the router and will
be directed to the device with the specified IP address. On my Netgear router,
it's set up as shown in the following screenshot:

Setting up port-forwarding on a Netgear router

Now, when you enter your personal domain name in your browser, when you're
away from home you should be taken to your alarm control panel.

You might also want to consider opening up port 22 so that you can
access the Raspberry Pi directly using PuTTy and SSH from outside
your network.

Chapter 7

[397]

Summary
We've now started building the software that will control our home security system
by determining the format of the main configuration file. We've also installed a Web
server and built a basic single-page control panel with PHP, HTML5, and CSS3,
which can be accessed nicely on our mobile phone, allowing us to configure our
system and view the status.

In addition, we've learned how to configure our home network and Raspberry Pi so
that we can access our control panel when we're away from home.

In Chapter 9, Putting It All Together, we'll put all of the electronic elements together and
write the main scripts that will run the home security system. But before that, in the
next chapter, we're going to look at a few other bits and pieces, such as adding other
sensors, not necessarily related to intruder detection, to our home security system.
We'll also look at how we can administer our entire Raspberry Pi system remotely
using a Web browser, in addition to accessing our home security control panel.

[399]

A Miscellany of Things
The previous chapters have provided us with the foundation and elements to design
and put together our entire home security system, which we will do in the next chapter.
I hope that I've guided you through this journey in a fairly structured and logical way
so that you are ready to do that.

Beforehand, though, I'm including this chapter dubbed a Miscellany of Things, as
that's exactly what it is. It comprises a few optional, but useful, extras that we should
consider for our system, but that don't really warrant a whole chapter in their own
right. I guess you could refer to them as footnotes to previous chapters.

As such, we will take a look at the following topics:

• Ways to arm and disarm the system without the web-based panel
• Driving inductive loads safely from our GPIO outputs
• Adding an escaped water sensor input to our system
• Adding a temperature sensor input to our system
• How carbon monoxide detectors could be added to our system
• Remotely managing our Raspberry Pi using Webmin

Arming and disarming the system
We've included a switch on our Web-based control panel so that you can arm and
disarm the system from your smartphone. However, this is probably not the most
convenient way of doing it, especially when you're rushing out of the house, or
you've returned home with a phone whose battery is flat. So, we need to find an
additional way of arming and disarming our system at the entry and exit point of
our property.

A Miscellany of Things

[400]

In the zone list table in the previous chapter, you'll notice that I assigned input GP0
on the Raspberry Pi GPIO as our arm/disarm switch input. This input will work in
conjunction with our control panel switch.

This input can as be a simple as a toggle switch, or a bit more secure, such as a key
switch or electronic keypad. Either way, it will be wired to ground GP0 (GPIO17)
on our Raspberry Pi when the system is armed.

The circuit diagram for our arm/disarm switch

If you have switches or other such devices that will be outside and exposed to the
elements, you'll need to ensure that they are suitable for outdoor use so that they
don't get damaged and compromise the integrity of the system.

The IP67-rated key switch, suitable for outdoor use (type Lorlin WRL-5-E-S-2-B)

Chapter 8

[401]

By using a standalone security keypad, you can allow each user to have their own
code to arm and disarm the system. For example, the CDVI ECO 100 is a low-cost
keypad that allows up to a 100 users. When the correct code is entered, it will arm
the system by closing an internal switch. When the code is entered again, the keypad
will disarm the system by opening the switch.

The CDVI ECO 100 programmable keypad

Driving inductive loads
I talked about driving large loads in Chapter 6, Adding Cameras to Our Security System,
but now is probably a good time to expand on this a bit and talk about driving
inductive loads such as bells and incandescent lamps. In the previous circuit example,
I used the TIP120 Darlington transistor to drive an LED array that was not inductive.
With inductive loads, you need to add a bit of diode protection to protect the circuit
against spikes generated by the coils within relays and bells as they switch on and off.

A Miscellany of Things

[402]

Here's the modified circuit for our digital load driver with a 1N4007 rectifier diode
for protection:

The digital load driver with diode protection

Beyond intrusion
Home security is not just about protecting our property against intrusion, it's also
about protecting against other risks too, such as flood, fire, carbon monoxide leaks,
and so on. So, it makes sense to extend our home security system to detect these
other risks too.

You may choose to set up the system so that certain types of alerts only come to
your phone as emails, rather than triggering all of the outside bells, lights, and
whistles. This can be done by adapting the scripts in the next chapter so that
they operate how you want them to.

A simple water detector
There's nothing worse than being away for a few days and coming home to a flooded
kitchen because a leak has developed under the sink. Our simple circuit will detect
the presence of water and trigger an input on our home security system, which can
then alert you. You can also buy kits and ready-built modules to do this, but the
following circuit is cheap and features our opto-isolator as we're going to have a
different voltage for our actual detector.

Chapter 8

[403]

The circuit for a simple water detector, isolated from our GPIO input

How it works
When water is placed across the probes, current flows through the water, and so,
through the R3/R4 potential divider on the base of transistor Q1. When the current
at the base is high enough to saturate it, the transistor will switch on fully, allowing
the LED inside the opto-coupler to switch on. This in turn will pull down the input
pin to our system to ground via the photo-transistor inside the optocoupler.

You can use the trimmer, R4, to calibrate the sensor by adjusting its sensitivity.
Any generic NPN bipolar transistor should work here, but obviously, they all
have different operating parameters, so choose a suitable one.

A Miscellany of Things

[404]

A simple temperature sensor
If we want to be alerted when the ambient temperature reaches a certain threshold,
then we can build a circuit using the commonly used LM34/LM35 temperature
sensors. It's a simple device with just three pins: power, ground, and output, providing
a voltage proportional to the temperature. The difference between the LM34 and
LM35 is that the LM34 produces an output of 10mV/°F, whereas the LM35 produces
10mV/°C. There is also an LM335 variant that produces an output of 100mV/°K.

Pinout taken from the Texas Instruments LM35DZ datasheet

It may have occurred to you at this point that this is an analogue device—so how
do we interface that with our wholly digital system? One way is to incorporate an
analogue-to-digital interface onto our input control board and read the data coming
in from that so that we know the exact temperature, but that's probably a bit beyond
the scope of this book. So, we're going to implement a circuit that will alert us when
the temperature exceeds a pre-defined threshold, which is probably all we need in
the context of our home security system.

If you're interested in building an analogue-to-digital module
to extend your home security, then take a look at something
such as the PCF8591 chip from NXP, which is an I2C-based
analogue-to-digital converter. This will connect to the I2C bus
that we're already using, and so it is effectively just an add-on.
http://bit.ly/NXPPCF8591T

For our temperature detector circuit, we will use an operational amplifier
configured as a comparator that will trigger our opto-coupler input when the
pre-set temperature is reached. So, for fire detection, we might want to detect
when the ambient temperature has exceeded 50°C.

http://bit.ly/NXPPCF8591T

Chapter 8

[405]

The temperature threshold sensor to drive our digital input

How it works
The reference voltage is set by the variable resistor, R4, which forms a voltage
divider between the 12V and the ground. This essentially means that the reference
voltage on the +ve input of the op-amp comparator can be between 0 and 12V.
Assuming that we want to detect when 50° is reached, we will need the op-amp to
trigger when the –ve is 500mV (10mV/°C).

In our circuit, the output of the op-amp is high in its normal state, which keeps
the opto-coupler on. However, when the threshold is reached, the output of the
op-amp is driven low, switching off the transistor Q1, and hence, the opto-coupler.
This pulls our alarm input high via resistor R2.

A carbon monoxide detector
It's entirely possible to build smoke and carbon-monoxide detectors that we can
connect to our home security system in a similar way to the previous sensors,
although they are a little bit more complex as they can require special handling.
The SparkFun MQ-7 Carbon Monoxide (CO) detector (which is actually made by
Winsen Electronics) can be implemented in a similar way to our temperature sensor,
triggering an alarm input when a particular threshold is reached.

A Miscellany of Things

[406]

The Winsen MQ-7 carbon monoxide gas detector, available from SparkFun.

The maximum safe continuous exposure to carbon monoxide (CO) is
9ppm (parts-per-million) according to ASHRAE (www.ashrae.org),
and you should certainly not be exposed to CO higher than this for
prolonged periods of time, with 35ppm being the absolute maximum
for a normal 8-hour working day.

The MQ-7 detector has a sensitivity of between 10 and 500ppm, so in my mind,
I'd want to be alerted as soon as it picks up anything, therefore we should set our
comparator's reference voltage to the lower end of the scale, in accordance with
the sensitivity curve taken from the datasheet, shown as follows:

The sensitivity curve taken from the Winsen MQ-7 manufacturer's datasheet.

Chapter 8

[407]

Warning
I've included this section on carbon monoxide detection more for
interest than anything else. It's nasty stuff, and while rolling out
your own detector is OK for interest's sake, please keep it just for
that. It's useful to have this in our home security system to alert
us when we're out of the house as an addition, but this should not
be a replacement for a commercially available one that sits next to
your boiler with all of the certifications, standards, and so on, and
makes a very loud noise when we're in the house.

Remote administration for our
Raspberry Pi
In the previous chapter, we learned how to set up our system and home network so
that we can remotely access the alarm control panel from wherever we are. I'm now
going to show you how to extend this to be able to administer and monitor our entire
Raspberry Pi system.

Getting Webmin
Webmin is a rather fine and well established web-based interface for administering
Unix/Linux systems. You can find everything about Webmin on its website at www.
webmin.com. I'm assuming, as throughout this book, that you are using the Raspbian
distribution on our Pi when it comes to installing Webmin.

There are a couple of ways to install Webmin: either by manually downloading and
unpacking it, or by updating our repository sources so that we can use apt-get.
I'm going to opt for the latter, so any dependencies are automatically installed and
updates can be managed more easily in the future. There are a few steps, but it's
pretty straightforward:

Updating the repository sources
1. The first thing we need to do is update our repository sources to include the

Webmin repositories:
$ sudo nano /etc/apt/sources.list

2. Add the following two lines to the end of the file:
deb http://download.webmin.com/download/repository sarge
contrib

A Miscellany of Things

[408]

deb
http://webmin.mirror.somersettechsolutions.co.uk/repository
sarge contrib

3. Save and exit Nano.

Importing the signing key
1. Next, we need to download and import the repository's signing key:

$ cd ~

$ sudo wget http://www.webmin.com/jcameron-key.asc

$ sudo apt-key add jcameron-key.asc

2. Now that we have everything we need, we can update the package installer
and install Webmin. It can take a while, so you might want to go and make
yourself a cup of tea or coffee:
$ sudo apt-get update

$ sudo apt-get install webmin

3. Once it's installed, you should see the following message in the shell window:

Webmin installation

Chapter 8

[409]

Accessing Webmin locally
Webmin, by default, runs on port 10000 and uses the secure HTTPS protocol; so, to
access it, you need to enter the following URL in your browser:

https://<my-ip>:10000

Where <my-ip> is the IP address of your Raspberry Pi.

In the previous chapter, we set up a static IP address on our system; in my case, I set
up the address as 192.168.0.99. So, to access Webmin on my system, I would use:

https://192.168.0.99:10000

HTTPS Privacy Errors
In some browsers, such as Google Chrome, you might see a privacy
error as you try to access the Webmin Web page. This is because the
SSL certificate behind the HTTPS connection is not signed by a known
authority. This is fine—just tell your browser that you want to accept
this and proceed (in Chrome, you need to click on the Advanced link
first to access that option).

A Miscellany of Things

[410]

You can log into Webmin using the root or pi user account, or any other account that
has sudo rights:

Webmin login

Once logged in, you'll be presented with the main system information page. Have a
good poke around in it because there's lots of useful stuff you can see and do.

Webmin system information view

Chapter 8

[411]

Webmin comes with a lot of modules, and not all of them are installed; therefore,
you might want to explore the Un-used Modules section of the panel to see if there
is anything you want to add to Webmin.

Remotely accessing Webmin
In the same way that we set up remote access for our alarm control panel in the
previous chapter, you can do it with Webmin—just set up port-forwarding on
your router for port 10000. You can then access Webmin from anywhere using
https://<my-public-ip>:10000.

Summary
Well, this has been a bit of a mix-and-match of various topics to end on before we
put together our home security system framework. I hope you enjoyed these various
footnotes to previous chapters, and that it's given you some ideas on how far you can
take your home security system.

We started by looking at ways we can arm and disarm our system without having
to access the Web-based control panel, by adding a mechanical or digital switch to
an arm/disarm input.

We then looked at adding analogue-type sensors to our system, which can alert us
when a threshold has been reached by using operational amplifiers set up as voltage
comparators. The idea behind these comparator circuits can be implemented for
different types of sensors where you want to know when a certain voltage threshold
has been reached at the analogue sensor output.

Finally, we learned how to install Webmin on our Raspberry Pi so that we can
monitor and configure many aspects of the Linux operating system.

The next chapter is the moment we've all been waiting for; we're going to take all
of the elements and concepts from the previous chapters and put together our full
system comprising the elements we want to feature. The star of the show will be our
Bash scripts, which will glue together all of these elements and provide the control
logic for the entire system.

[413]

Putting It All Together
Over the past eight chapters, we've explored the elements and concepts of a full-
featured home security system that you'd expect to have installed in your property.
It's been presented in a modular fashion so that you can choose which features you
want for your system, to allow you to make it as compact and basic or large and
complex as you require.

Fundamentally, the idea behind a home security system is to detect whether particular
zone inputs are triggered high or low by an external sensor, be that a switch, motion
detector, or water detector. At the end of the day, as far as the control software is
concerned, the type of sensor is irrelevant and the system software's job is to simply
check the state of its inputs and alert accordingly.

In this final chapter, we're going to put all of the concepts together to come up with
a security system framework and write the control scripts around it. This is what we
will cover:

• Defining a high-level overview of our system, detailing the connected elements
• Building the entire modular security system framework control script,

exploring the code in detail
• Delving into some detailed shell scripting techniques to perform certain tasks
• Learning how to make our system automatically start at boot-time
• Preventing the burning out of our SD card by creating a RAM-based file system

Alarm system diagram
So that we don't get lost in this process, the first thing I recommend is to come up
with a complete system diagram that we can follow. I do this for any system I design
and put together so that it can be built in a structured way, and easily documented
and modified.

Putting It All Together

[414]

For the home security system in this chapter, I have come up with the following
system diagram that we will look to as a framework. The whole concept is designed
to be modular, so you can come up with your own system to suit your requirements
and implement it accordingly, using the scripts presented in this chapter.

The final home security system diagram

Chapter 9

[415]

Overview of the system elements
The preceding system diagram comprises the elements and modules that we have
discussed in previous chapters. Here's a quick recap of these:

A +12V power supply
This is the primary power supply to our system, which we will obtain from an external
mains adapter that could be battery-backed. This supply needs to be smooth and
regulated to ensure that it remains stable for the system as currently drawn.

All of the alarm wiring and sensors will be supplied with this power, as will
peripherals such as sounders and bells, which usually operate from a 12V supply.
Chapter 5, Adding a Passive Infrared Motion Sensor discussed the merits of using a
12V supply for the alarm circuits.

A +3.3V power supply
This supply is a regulated +3.3V supply for the digital port expander circuit; it also
provides the logical alarm zone inputs via an opto-coupler. The +3.3V power supply
can be derived from either the +12V supply (recommended), or the +5V supply from
the Raspberry Pi's GPIO connector, using a voltage regulator chosen according to
how much current you need.

Chapter 3, Extending Your Pi to Connect More Things, showed you how to build a +3.3V
regulated supply.

The opto-isolator input module
This will isolate the +12V zone input power lines from the port expander and GPIO
digital inputs, which should only have a maximum of +3.3V presented to them when
triggered high.

The circuit for these opto-isolated input modules was discussed and shown in
Chapter 5, Adding a Passive Infrared Motion Sensor.

The port expander
The port expander is our main digital input/output system that will take the alarm
zone inputs and transmit them to the Raspberry Pi using the I2C bus, or allow the
Raspberry Pi to switch outputs on and off.

We built our MCP23017-based port expander circuit in Chapter 3, Extending Your Pi to
Connect More Things and configured the software for it in Chapter 4, Adding a Magnetic
Contact Sensor.

Putting It All Together

[416]

An arm/disarm switch
The arm/disarm input overrides the arm/disarm soft-switch function on our
web-based control panel, and is a switch (key, digital keypad, or otherwise)
connected to GP0 directly on the Raspberry Pi's GPIO connector.

Remember to connect any switch circuit appropriately to the GPIO pin to avoid
damage to your Raspberry Pi. This was discussed in Chapter 2, Connecting Things
to Your Pi with GPIO.

Alarm outputs
In our system, we have several output devices that are controlled by our Raspberry
Pi via output driver circuits. We have an output for an entry/exit buzzer, an armed
status LED, an alarm bell, and an alarm LED indicator.

These are switched on and off by our Raspberry Pi GPIO connector via driver
circuits that allow us to drive high current and inductive loads using the GPIO pins.
These driver circuits, based around TIP120 Darlington transistors, were discussed in
Chapter 6, Adding Cameras to Our Security System and Chapter 8, A Miscellany of Things.

Designing the control scripts
Before we start writing the scripts to control our alarm systems, it is probably a good
idea to outline the high-level process for the system. The following flow-chart helps
us picture how our system should work, and the various logical decisions our script
needs to make.

The flowchart might look a bit complicated with all its lines in different directions,
but it's actually pretty linear and in a downward direction. Referring to the
flowchart, it shows the following tasks that the control script will be doing:

• Sitting quietly until the system is armed either by the hardware key switch
or the web-based panel's soft switch.

• When the system is first armed, it will sound the exit buzzer for a
pre-determined amount of time before actually arming the system.
This gives you a chance to leave the property or disarm the system
again, before it starts monitoring the inputs.

• Once the system is armed, the armed LED will be switched on and the
system will wait to see if any of the alarm zone inputs are triggered. It will
also wait to see if the alarm is disarmed on your return to the property. We
can optionally put an entry timer in here on the entry zone to delay before
triggering the alarm.

Chapter 9

[417]

• If the alarm is ultimately triggered, then the main alarm bell will be switched
on, as well as the exit buzzer. The main bell should only sound for a while,
depending on environmental restrictions in your neighborhood, and so, this
will be switched off after a pre-defined period, but the internal buzzer will
stay on.

• When triggered, the system will then wait for you to disarm it, before
resetting it.

The control script flowchart

Putting It All Together

[418]

Building the control script
Now that we have designed our system the way we want it to work, we can start
writing our Bash control script. As before, we'll locate our scripts in the folder, /etc/
pi-alarm, which, you'll remember from Chapter 7, Building a Web-Based Control Panel,
is also where our Web-based control panel writes its configuration status file, alarm.
cfg to. We'll be referring to that file in our scripts too.

In this script, we are going to use the bc tool (the Bash command-line calculator)
to convert hex values to binary. It's not installed by default, so you'll need to get
the package:

$ sudo apt-get update

$ sudo apt-get install bc

Our script file is quite long so, as before, you might want to sit
on the sofa and write it on your laptop using something such as
Notepad++. Remember, however, if you're using a PC, ensure
that the end-of-line (EOL) format is converted to the Unix format,
otherwise the Bash script won't run on the Pi when you copy it
across. Notepad++ will do this for you.

Exploring the script code
I'm now going to walk you through the various sections of the control script code
I've written, which will be used as a framework for our system. I say "framework"
because, while it will provide you with a fully functional control script for the
system, it can be modified and extended to suit your particular requirements.

The following code listings are all part of the single bash script, alarm-control.sh,
that can be downloaded in full with comments from the Packt Publishing website.

Declarations
We'll start off by setting up the various control variables needed to track the
system's state:

#!/bin/bash
#/etc/pi-alarm/alarm-control.sh

ALM_BELL_DURATION=600 #duration in seconds the alarm bell
should sound for
ALM_EXIT_DELAY=30 #entry/exit zone delay in seconds

Chapter 9

[419]

ALM_KEY_ARMED=0 #status of the arm/disarm key switch
ALM_SYS_ARMED=0 #armed status of the system

ALM_ZONE_INPUT_READ="" #this will store the value of the zone
inputs read
ALM_ZONE_INPUT_STAT="00000000" #binary representation of the inputs
(b7-b0)
ALM_ZONE_INPUT_PREV="" #previous zone input status
ALM_ZONE_TRIGGER=0 #this will be set to 1 if one or more zones is
triggered
ALM_ZONES_STAT=(0 0 0 0 0 0 0 0) #dynamic array of normalised zone
status (z1 to z8 order) - 1 is triggered

STAT_RET_VAL="" #return value from functions

Because we could face the situation whereby a HIGH or a LOW input could
represent a triggered zone, depending on its configuration and wiring, I have
introduced an array of normalized status flags in the variable, ALM_ZONES_STAT,
which will be the definitive state as far as the script is concerned. We'll look at
the function that deals with this later.

Updating config settings
In Chapter 7, Building a Web-Based Control Panel, we introduced the configuration
file, alarm.cfg, which stores the system status and configuration for the benefit of
the Web-based control panel. This file not only needs to be read by the main control
script to get any settings made using the control panel, but also needs to be updated
with status values from the main control script so that they can be presented back to
the control panel, essentially exchanging data between the two sub-systems.

Therefore, we're going to include a helper function that contains the same code called
by the Web page PHP script to update this file from the control panel:

#This helper function will update the alarm config
#file with the specified value (alarm.cfg) so that
#the Web panel can know the latest status
function almUpdateConfigSetting()
{
 #$1 - Setting Name
 #$2 - Setting Value
 sudo sed -i "s/^\($1\s*= *\).*/\1$2/" /etc/pi-alarm/alarm.cfg
}

Putting It All Together

[420]

Setting up the GPIO
We now need to set up the Raspberry Pi's GPIO pins for our purposes, as outlined
by the earlier system diagram. The following commands were first discussed in
Chapter 2, Connecting Things to Your Pi with GPIO:

GPIO SET UP
#Set up the Raspberry Pi GPIO pins
#Refer to Chapter 2 for info
#D0 (GPIO17) Arm/Disarm Key Input
sudo echo 17 > /sys/class/gpio/export
sudo echo in > /sys/class/gpio/gpio17/direction

#D4 (GPIO23) Armed LED Output
sudo echo 23 > /sys/class/gpio/export
sudo echo out > /sys/class/gpio/gpio23/direction
sudo echo 0 > /sys/class/gpio/gpio23/value

#D5 (GPIO24) Exit Buzzer Output
sudo echo 24 > /sys/class/gpio/export
sudo echo out > /sys/class/gpio/gpio24/direction
sudo echo 0 > /sys/class/gpio/gpio24/value

#D6 (GPIO25) Alarm LED Output
sudo echo 25 > /sys/class/gpio/export
sudo echo out > /sys/class/gpio/gpio25/direction
sudo echo 0 > /sys/class/gpio/gpio25/value

#D7 (GPIO4) Alarm Bell Output
sudo echo 4 > /sys/class/gpio/export
sudo echo out > /sys/class/gpio/gpio4/direction
sudo echo 0 > /sys/class/gpio/gpio4/value

Note that you can only export a GPIO pin once, unless it has been
subsequently unexported. Therefore, you might see the error, echo:
write error: Device or resource busy, if you re-run the
script when it tries to export the pin again. You can safely ignore this.

We'll also throw in a few helper functions that will easily allow us to switch on or off
various outputs to simplify the main code. I'm a big fan of implementing functions,
however simple, as they keep the code modular, reusable, and simpler to read in
most cases:

#This helper function will switch a specified GPIO output on or off
function almSetGPIOValue()

Chapter 9

[421]

{
 #$1 - GPIO pin number
 #$2 - Value
 sudo echo $2 > /sys/class/gpio/gpio$1/value
}
#Helper functions to switch on and off the outputs
function almSetArmedLED()
{
 #$1 - 0 or 1 (Off or On)
 almSetGPIOValue 23 $1
 echo "[ALM] Armed LED set to $1"
}
function almSetExitBuzzer()
{
 #$1 - 0 or 1 (Off or On)
 almSetGPIOValue 24 $1
 echo "[ALM] Exit Buzzer set to $1"
}
function almSetAlarmLED()
{
 #$1 - 0 or 1 (Off or On)
 almSetGPIOValue 25 $1
 echo "[ALM] Alarm Trigger LED set to $1"
}
function almSetAlarmBell()
{
 #$1 - 0 or 1 (Off or On)
 almSetGPIOValue 4 $1
 echo "[ALM] Alarm Bell set to $1"
}

And, we'll add a helper function that will read the ARM switch status from the D0
(GPIO17) of the Raspberry Pi and from the web-console to see if the ARM soft switch
has been set:

#this function returns whether the system is armed via
#either the web console or key switch
function almGetArmedSwitchStatus()
{
 STAT_RET_VAL="0"
 #read arm key switch input from
 local L_VAL=$(sudo cat /sys/class/gpio/gpio17/value)
 if [$L_VAL -eq 1]; then
 #system has been armed with key switch

Putting It All Together

[422]

 echo "[ALM] System ARMED with key switch"
 ALM_KEY_ARMED=1
 almUpdateConfigSetting "SYSTEM_ARMED" "1" #set system armed
 console flag
 STAT_RET_VAL="1"
 else
 #read system armed value from web console config file
 if [$SYSTEM_ARMED == 1]; then
 echo "[ALM] System ARMED with web console"
 STAT_RET_VAL="1"
 fi
 fi
}

Setting up the I2C port expander
The next few lines of code set up the I2C port expander to set all of the pins, on both
Port A and Port B, as inputs. In our system here, we're only using Port A, but this
allows us to have another 8 inputs if we want to expand our system. We originally
looked at this in Chapter 4, Adding a Magnetic Contact Sensor:

PORT EXPANDER SET UP
#Refer to Chapter 4 for more information about the I2C bus

#We will set up I/O BUS A as all inputs
sudo i2cset -y 1 0x20 0x00 0xFF

#Whilst we're not using BUS B in our system,
#we can set that up as all inputs too
sudo i2cset -y 1 0x20 0x01 0xFF

If you don't have your I2C port expander attached, then you'll see the
following error when you try to run these commands: Error: Write failed

Decoding the zone inputs status
The next function is a big one—and key to our system. It will read the Port A value
from the I2C port expander. It'll be returned as a hexadecimal value, so we need to
convert this to a binary value with a 0 or 1 flag representing each input bit. We'll use
the bc tool installed earlier to do this.

Chapter 9

[423]

Once we have the status of each input bit, we then normalize the status by determining
whether a 0 or a 1 determines a positive trigger. The resulting output is the array,
ALM_ZONES_STAT, which contains the status of each zone—with a 1 representing a
positive triggered zone de-facto:

#This function will read the port inputs and set the
#status of each zone
function almReadZoneInputs()
{
 #preserve previous zone status
 ALM_ZONE_INPUT_PREV=$ALM_ZONE_INPUT_STAT
 #read the 8-bit hex value of port a
 ALM_ZONE_INPUT_READ=$(sudo i2cget -y 1 0x20 0x12)

 if [[$ALM_ZONE_INPUT_READ = *"Error"*]]; then
 #An error occurred reading the I2C bus - set default value
 ALM_ZONE_INPUT_READ="0x00"
 fi

 #remove the 0x at the start of the value to get the hex value
 local L_HEX=${ALM_ZONE_INPUT_READ:2}
 #convert the hex value to binary
 local L_BIN=$(echo "obase=2; ibase=16; $L_HEX" | bc)
 #zero pad the binary to represent all 8 bits (b7-b0)
 ALM_ZONE_INPUT_STAT=$(printf "%08d" $L_BIN)

 echo "[ALM] Zone I/O Status: $ALM_ZONE_INPUT_STAT
 ($ALM_ZONE_INPUT_READ)"

 #check each zone input to see if it's in a triggered state
 #a triggered state may be either 1 or 0 depending on the input's
 configuration
 #you'll need to set the logic here accordingly for each input
 #the ALM_ZONES_STAT array contains the definitive trigger value
 for each input

 #zone 1 test (bit 0)
 local L_FLG=${ALM_ZONE_INPUT_STAT:7:1}
 if [$L_FLG -eq 0]; then ALM_ZONES_STAT[0]=0; else
 ALM_ZONES_STAT[0]=1; fi

 #zone 2 test (bit 1)
 local L_FLG=${ALM_ZONE_INPUT_STAT:6:1}
 if [$L_FLG -eq 0]; then ALM_ZONES_STAT[1]=0; else
 ALM_ZONES_STAT[1]=1; fi

Putting It All Together

[424]

 #zone 3 test (bit 2)
 local L_FLG=${ALM_ZONE_INPUT_STAT:5:1}
 if [$L_FLG -eq 0]; then ALM_ZONES_STAT[2]=0; else
 ALM_ZONES_STAT[2]=1; fi

 #zone 4 test (bit 3)
 local L_FLG=${ALM_ZONE_INPUT_STAT:4:1}
 if [$L_FLG -eq 0]; then ALM_ZONES_STAT[3]=0; else
 ALM_ZONES_STAT[3]=1; fi

 #zone 5 test (bit 4)
 local L_FLG=${ALM_ZONE_INPUT_STAT:3:1}
 if [$L_FLG -eq 0]; then ALM_ZONES_STAT[4]=0; else
 ALM_ZONES_STAT[4]=1; fi

 #zone 6 test (bit 5)
 local L_FLG=${ALM_ZONE_INPUT_STAT:2:1}
 if [$L_FLG -eq 0]; then ALM_ZONES_STAT[5]=0; else
 ALM_ZONES_STAT[5]=1; fi

 #zone 7 test (bit 6)
 local L_FLG=${ALM_ZONE_INPUT_STAT:1:1}
 if [$L_FLG -eq 0]; then ALM_ZONES_STAT[6]=0; else
 ALM_ZONES_STAT[6]=1; fi

 #zone 8 test (bit 7)
 local L_FLG=${ALM_ZONE_INPUT_STAT:0:1}
 if [$L_FLG -eq 0]; then ALM_ZONES_STAT[7]=0; else
 ALM_ZONES_STAT[7]=1; fi

 echo "[ALM] Zone Trigger Status: $ALM_ZONES_STAT[*]"
}

Initialization
Now that we have declared our module-level variables and helper functions, we will
start our main routine. First, we'll initialize the system that clears the SYSTEM_ARMED
status and reads in the initial settings from the config file:

initialise system
echo "[ALM] Initialising system..."
almUpdateConfigSetting "SYSTEM_ARMED" "0" #clear system armed
console flag
sleep 1
sudo cat /etc/pi-alarm/alarm.cfg

Chapter 9

[425]

sleep 1
echo "[ALM] Initialising done"
#############################

The system monitoring loop
The script then jumps into a never-ending loop that will be the main control system,
monitoring the arm/disarm status and, when armed, monitoring the zone input
status and responding accordingly:

loop continuously###########
while true
do

 # wait for system to be armed ###############
 echo "[ALM] Alarm now in STAND-BY state - waiting to be armed"
 almSetArmedLED 0 #switch off armed LED
 STAT_RET_VAL="0"
 while [[$STAT_RET_VAL = "0"]]; do
 sleep 1
 #read the control panel status file
 . /etc/pi-alarm/alarm.cfg
 almGetArmedSwitchStatus #result is returned in STAT_RET_VAL
 echo -n "*" # indicate standby mode
 done
 ###

Arming the system
When the system goes into the ARMED state, it will first switch on the exit buzzer
and then wait for a pre-determined amount of time. This will give you time to leave
the property or disarm the system:

 # perform exit delay ########################
 echo "[ALM] Alarm now in EXIT DELAY state"
 almSetExitBuzzer 1 #switch on exit buzzer
 COUNTER=$ALM_EXIT_DELAY
 while [[$STAT_RET_VAL = "1" && $COUNTER -gt 0]]; do
 sleep 1
 #read the control panel status file
 . /etc/pi-alarm/alarm.cfg
 almGetArmedSwitchStatus #result is returned in STAT_RET_VAL
 COUNTER-=1
 echo -n "X$COUNTER " # indicate exit mode

Putting It All Together

[426]

 done
 almSetExitBuzzer 0 #switch off exit buzzer
 ###

 # system now armed - monitor inputs #########
 ALM_SYS_ARMED=1
 echo "[ALM] Alarm now in ARMED state"
 almSetArmedLED 1 #switch on armed LED

 #read the control panel status file
 . /etc/pi-alarm/alarm.cfg
 almReadZoneInputs # > ALM_ZONES_STAT[x]

Monitoring the zones
Once armed, the system will monitor the zone inputs in a continuous loop until
either the system is disarmed, or a zone input is triggered. When a zone is triggered,
it will check against the ZONE_ENABLE_n configuration to see if that zone has been
disabled (this is done in the Web-based control panel). If the zone is not disabled,
then the alarm system is deemed triggered.

The ZONE_STATUS_n setting is also updated here so that the web-based control panel
indicates which zone or zones have been triggered:

 #check each zone input to set if it's enable
 #and has been triggered
 #NUM_ZONES setting is stored in alarm.cfg

 while [[$ALM_SYS_ARMED -eq 1]]; do
 echo -n "A" #indicate armed mode

 ALM_ZONE_TRIGGER=0
 for ((i=$NUM_ZONES; i>0; i--)); do
 if [[$ALM_ZONES_STAT[$i-1] -eq 1]]; then
 #zone has been triggered
 echo "[ALM] Zone $i TRIGGERED"
 E_VAR="ZONE_ENABLE_$i"
 E_VAL=`echo "$E_VAR"` #get zone enabled status loaded from
 alarm.cfg

 if [[$E_VAL -eq 1]]; then
 #zone is enabled
 ALM_ZONE_TRIGGER=1 #set alarm triggered flag
 echo "[ALM] Zone $i ENABLED - alarm will be triggered"

Chapter 9

[427]

 almUpdateConfigSetting "ZONE_STATUS_$i" "1"

 ## YOU CAN INSERT CODE HERE TO TAKE CAMERA IMAGE IF YOU
 WANT##
 ## REFER BACK TO CHAPTER 6 ##

 fi
 fi
 done

 . /etc/pi-alarm/alarm.cfg
 almGetArmedSwitchStatus #result is returned in STAT_RET_VAL

Entry delay
When an alarm zone is triggered, it will first check whether it was the entry/exit
zone that was triggered. If it was, then the system will delay before sounding the
main alarm to give you a chance to disarm the system. Only the entry buzzer will
sound at this time:

 if [[$ALM_ZONE_TRIGGER -eq 1]]; then
 # alarm has been triggered
 almSetAlarmLED 1
 echo "[ALM] A zone has been triggered"

 #####################################
 # ZONE 1 is the ENTRY zone - if that's triggered then delay
 if [[$ALM_ZONES_STAT[0] -eq 1]]; then
 # perform entry delay ###########
 echo "[ALM] Alarm now in ENTRY state"
 setExitBuzzer 1 #switch on entry/exit buzzer

 COUNTER=$ALM_EXIT_DELAY
 STAT_RET_VAL="0"
 while [[$STAT_RET_VAL = "1" && $COUNTER -gt 0]]; do
 echo -n "E$COUNTER " #indicate entry mode
 sleep 1
 #read the control panel status file
 . /etc/pi-alarm/alarm.cfg
 almGetArmedSwitchStatus #result is returned in STAT_RET_VAL
 COUNTER-=1
 done
 fi
 #####################################

Putting It All Together

[428]

Sounding the main alarm
If, at this point, the system hasn't been disarmed, then we need to sound the main
bell. We have a duration limit for sounding the bell to cater to environmental noise
restrictions; we wouldn't want the alarm sounding for hours, annoying the neighbors
until we got home. At this point, you can also add code from Chapter 6, Adding Cameras
to Our Security System, if you want to be sent an alert email to your mobile device:

 #####################################
 # STAY in TRIGGERED mode until system has been disarmed
 if [[$STAT_RET_VAL = "1"]]; then
 #alarm has not been disabled
 almSetAlarmBell 1 #switch on alarm bell
 echo "[ALM] Alarm now in TRIGGERED state"

 ## YOU CAN INSERT CODE HERE TO SEND YOU AN EMAIL IF YOU
 WANT##
 ## REFER BACK TO CHAPTER 6 ##

 COUNTER=0
 STAT_RET_VAL="0"
 while [[$STAT_RET_VAL = "1"]]; do
 echo -n "T$COUNTER " #indicate triggered mode
 sleep 1
 #read the control panel status file
 . /etc/pi-alarm/alarm.cfg
 almGetArmedSwitchStatus #result is returned in STAT_RET_VAL

 COUNTER+=1
 if [[$COUNTER -gt $ALM_BELL_DURATION]]; then
 almSetAlarmBell 0 #switch off alarm bell
 echo "[ALM] Bell has been switched OFF"
 fi
 done
 fi
 #####################################

Disarming and resetting the system
When we disarm the system, we need to reset its status and complete the monitoring
loop so that we can start all over again and wait for it to be re-armed:

 # alarm has been disarmed ##########
 echo "[ALM] Alarm has been DISARMED"

Chapter 9

[429]

 ALM_SYS_ARMED=0
 almSetAlarmBell 0 #switch off alarm bell
 almSetExitBuzzer 0 #switch off exit buzzer
 almSetAlarmLED 0
 almSetArmedLED 0 #switch off armed LED

 #####################################
 fi

 done
 ###

done
###

We're done (almost)…
And there we have it: a framework for an entire alarm control script on our
Raspberry Pi. Additional features that you may want to implement within your
script could include the following:

• Sending a photo or video clip from a zone's camera when it's triggered
• Sending an email alert with status details when the alarm has been triggered
• Writing a regular log file recording historical status information
• Adding additional environmental sensors to port B

Each of the script blocks is taken from the single script file,
alarm-control.sh, so you should be able to put all of
the described pieces together into one file to have a fully
functional script.

As always, before we can run it we need to give the script execute rights:

$ sudo chmod 777 /etc/pi-alarm/alarm-control.sh

After we copy the script to our Raspberry Pi, this is what we should see in our /etc/
pi-alarm folder:

pi@raspberrypi ~ $ ls -1 /etc/pi-alarm
alarm.cfg
alarm-control.sh
update-alarm-setting.sh

Putting It All Together

[430]

Automatically starting the system
Now, obviously, we don't want to have to manually start the alarm control script
each time the Raspberry Pi boots up, for example, after a power failure—for a start,
we may not even be there. Therefore, we need to set up our operating system so that
it will automatically start up the alarm-control.sh script at boot time.

To do this, we need to edit the rc.local file using Nano:

$ sudo nano /etc/rc.local

Before the line containing exit 0, insert the following line:

sudo /etc/pi-alarm/alarm-control.sh &

The & symbol at the end of the line is important because it will then
make the script run in a different process, otherwise the rc.local
script would never exit.

Your rc.local file should now look something like this:

#!/bin/sh -e
#
rc.local
#
This script is executed at the end of each multiuser runlevel.
Make sure that the script will "exit 0" on success or any other
value on error.
#
In order to enable or disable this script just change the execution
bits.
#
By default this script does nothing.

Print the IP address
_IP=$(hostname -I) || true
if ["$_IP"]; then
 printf "My IP address is %s\n" "$_IP"
fi

sudo /etc/pi-alarm/alarm-control.sh &
exit 0

The operating system runs the rc.local script after the system boots up, so you can
put anything in there that you want to happen automatically at this time.

Chapter 9

[431]

Preserving the SD card
One final topic I want to share with you is that of preserving your Raspberry Pi's
SD card. SD cards have a finite write cycle, and continuous writing to the card will
eventually burn it out. If we're going to be writing lots of log file entries and taking
lots of camera images, we will want to protect our SD card in order to maintain the
integrity and reliability of our system; using the system RAM instead can help us
with this.

Creating a RAM-based file system
Our Raspberry Pi has plenty of fast system RAM available to us (1Gb on the latest
models) that isn't susceptible to this write burn-out issue. Therefore, I'm going to
show you how to allocate some of it to create a temporary disk in memory, which
we can write files to that we don't need kept on the SD card. Such files would include
the, quite large, camera image files that will be emailed out of the system— which,
therefore, don't need to be stored permanently. You should also consider any log
files that are regularly written to, which would then be shipped off the system at
regular intervals.

Remember that this is a RAM-based file system, so content will be
lost when the Raspberry Pi shuts down or reboots. So, don't store
any data here that you want to persist after a restart.

Let's create a Bash script file called setup-ramfs.sh, and copy it to our
/etc/pi-alarm folder:

#!/bin/bash
#/etc/pi-alarm/setup-ramfs.sh

RAM_DISK="/ramfs"
RAM_DISK_SIZE=64M

Create RAM Disk
if [! -z "$RAM_DISK"]; then
 echo "[INIT] Creating RAM Disk... $RAM_DISK"
 mkdir -p $RAM_DISK
 chmod 777 $RAM_DISK
 mount -t tmpfs -o size=$RAM_DISK_SIZE tmpts $RAM_DISK/
 echo "[INIT] RAM Disk created at $RAM_DISK"
fi
##

Putting It All Together

[432]

setup-ramfs.sh RAM disk creation script

Running the preceding script will create a RAM disk folder at /ramfs—you can treat
it just like any other folder; it's just that it resides in the system memory rather than
on the SD card:

$ cd /ramfs

$ ls

You can call this script from the alarm-control.sh script as part of the initialization
process by including the line:

. /etc/pi-alarm/setup-ramfs.sh

Conclusion
The Raspberry Pi is a powerful little beast and a great platform for building
low-cost, but highly capable, embedded systems. The interfaces built into its GPIO
connector make it easy to bolt on modules using simple low-cost electronics and a
bit of configuration to create very functional and flexible systems. The inclusion of
a dedicated camera interface and networking interfaces give you everything you
could possible need for an Internet-connected home security system.

I've covered a lot of topics in this book, and I could have gone on and on, but I hope
that what I have presented has been done in a structured and methodical way, and
has given you the tools and techniques to carry on this journey so that you are able
to create the perfect home security system for your needs.

Tips for building systems
As a systems guy who has to work with many different technologies and disciplines
on a day-to-day basis, I just want to leave you with the following thoughts to
consider, if you choose to build upon the system we've put together in this book,
which, of course, I hope you will:

• Create a high-level diagram of your proposed system first—a bit like the
one I produced earlier in this chapter.

• Define everything in a modular way so that you can build and test your
system in small chunks. This makes it much easier to spot issues early on.

• Building the system using smaller modules makes it easier to re-use and
replace circuits and code, and don't be afraid to mix-and-match technologies
using what's best for the individual module.

Chapter 9

[433]

• Don't try to re-invent the wheel—use existing code and circuit resources that
are proven to work. This makes it much quicker to get things working and
minimizes the number of times you have to hit your head against a brick
wall. I call it blagging.

Summary
Well, we've reached the end of our journey to build a fully functional and extensible
home security system using the mighty Raspberry Pi mini-PC. In this final chapter,
we put together all of the elements and concepts from the previous chapters to create
a home security framework, both from a hardware and software perspective.

In particular, this chapter guided us toward building a modular framework for our
home security system, implementing features that you would find in any commercially
available system, and also things that you don't see out there. We walked through the
complete control script, exploring its various sections and understanding how they fit
into our system.

We also learned how to automatically start-up our home security system script
when our Raspberry Pi boots up, and how data is shared between the Pi and the
web-based control panel in real-time via the configuration file. Finally, we looked at
how to prevent our SD card from burning out by creating a rather useful RAM-based
temporary file system.

Module 3

Raspberry Pi Robotics Essentials

Harness the power of Raspberry Pi with Six Degrees of Freedom (6DoF)
to create an amazing walking robot.

[437]

Configuring and
Programming Raspberry Pi

Robots are beginning to infiltrate our world. They come in all shapes and sizes,
with a wide range of capabilities. And, just like the evolution of the personal
computer before them, much of what is happening in the robot development world
is coming from hobbyists and do-it-yourselfers that are using a new generation of
inexpensive hardware and free, open source software to build machines with all
kinds of amazing capabilities. In this book, you will learn how to build robots by
building a robot, a four-legged quadruped with sensor and vision capabilities. The
skills you will learn, however, can also be used on a wide variety of walking, rolling,
swimming, or flying robots.

In this chapter, you'll learn:

• How to configure your Raspberry Pi, the control center of your robot,
with the Raspbian operating system

• How to set up a remote development environment so you can program
your robot

• Basic programming skills in both Python and C so you can both create and
edit the programs your robot will need to do all those amazing things

Configuring and Programming Raspberry Pi

[438]

Configuring Raspberry Pi – the brain of
your robot
One of the most important parts of your robot is the processor system you use to
control all the different hardware. In this book, you'll learn how to use Raspberry
Pi, a small, inexpensive, easy-to-use processor system. Raspberry Pi comes in
several flavors – the original A and B model, and the new and improved A+ and B+
model. The B+ flavor is the most popular and comes with additional input/output
capability, four USB connections, more memory, and will be the flavor we'll focus on
in this book.

Here are the items you'll need to set up an initial Raspberry Pi development
environment:

• A Raspberry Pi, Model B 2. There are three other Raspberry Pi models, the
B+, the B, and the A. These are models with less processing power and
different hardware configurations. In this book, we'll focus on the Raspberry
Pi Model B 2; it has the best processing power and the most useful input/
output access. However, many of the items in this book will also work with
the Raspberry Pi B+ and A versions, perhaps with some additional hardware.

• The USB cable to provide power to the board.
• A microSD card — at least 4 GB.
• A microSD card writer.
• Another computer that is connected to the Internet.
• An Internet connection for the board — for the initial configuration steps,

you'll need a LAN cable and wired LAN connection.
• A wireless LAN device.

Chapter 1

[439]

Here is what the Raspberry Pi B 2 board looks like:

You should also acquaint yourself with the different connections on the board.
Here they are on the B 2, labelled for your information:

Configuring and Programming Raspberry Pi

[440]

Installing the operating system
Before you get started, you'll need to download and create a card with the Raspbian
operating system. You are going to install Raspbian, an open source version of the
Debian version of Linux, on your Raspberry Pi.

There are two approaches to getting Raspbian on your board. The board is getting
popular enough that you can now buy an SD card that already has Rasbpian
installed, or you can download it onto your personal computer and then install it on
the card. If you are going to download a distribution, you need to decide if you are
going to use a Windows computer to download and create an SD card, or a
Linux machine.

No matter which machine you are going to use, you'll need to download an image.
Open a browser window. Go to the Raspberry Pi site, www.raspberrypi.org, and
select Downloads from the top of the page. This will give you a variety of download
choices. Go to the Raspbian section and select the .zip file just to the right of the
image identifier. This will download an archived file that has the image for your
Raspbian operating system. Note the default username and password; you'll need
those later.

If you're using Windows, you'll need to unzip the file using an archiving program
like 7-Zip. This will leave you with a file that has the .img extension, a file that can
be imaged on your card. Next, you'll need a program that can write the image to
the card. Use Image Writer if you are going to create your card using a Windows
machine. You can find a link to this program at the top of the download section on
the www.raspberrypi.org website. Plug your card into the PC, run this program,
and you should see this:

www.raspberrypi.org
www.raspberrypi.org

Chapter 1

[441]

Select the correct card and image; it should look something like this:

Then select Write. This will take some time, but when it is complete, eject the card
from the PC.

If you are using Linux, you'll need to unarchive the file and then write it to the
card. You can do all of this with one command. However, you do need to find
the /dev device label for your card. You can do this with the ls -la /dev/sd*
command. If you run this before you plug in your card, you might see something
like the following:

Configuring and Programming Raspberry Pi

[442]

After plugging in your card, you might see something like the following:

Note that your card is sdb. Now, go to the directory where you downloaded the
archived image file and issue the following command:

sudo dd if=2015-01-31-raspbian.img of=/dev/sdX

The 2015-01-31-raspbian.img command will be replaced with the image file that
you downloaded, and /dev/sdX will be replaced with your card ID; in this example,
/dev/sdb.

Once your card image has been created, install it on the Raspberry Pi. You'll also
need to plug your Raspberry Pi into the LAN cable, and the LAN cable into your
wired LAN network.

If you don't have a wired connection, you can complete the
following steps by connecting your Raspberry Pi directly to a
monitor, keyboard, and mouse.

Power the device. The POWER LED should light and your device should boot from
the card. To configure the card, you'll need to access it remotely. To do this, you'll
now need to connect to the device via SSH, a secure protocol that allows you to
control one computer remotely from another computer.

Chapter 1

[443]

One of the challenges of accessing the system remotely is that you need to know
the IP address of your board. There is a way to discover this by using an IP scanner
application. There are several scanners available for free; on Windows, a possible
choice is Advanced IP Scanner, which is available from http://www.advanced-ip-
scanner.com/. Here is what the program looks like when it is run:

Clicking on the Scan selector scans for all the devices connected to the network.
You can also do this in Linux; one application for IP scanning in Linux is called
Nmap. To install Nmap, type in sudo apt-get install nmap. To run Nmap, type
in sudo nmap -sP 10.25.155.1/154 and the scanner will scan the addresses from
10.25.155.1 to 10.25.155.154.

These scanners can let you know which addresses are being used, and this should
then let you find your Raspberry Pi IP address. Since you are going to access your
device via SSH, you'll also need an SSH terminal program running on your remote
computer. If you are running Microsoft Windows, you can download such an
application. One simple and easy choice is Putty. It is free and does a very good job
of allowing you to save your configuration so you don't have to type it in each time.
This program is available at www.putty.org.

http://www.advanced-ip-scanner.com/
http://www.advanced-ip-scanner.com/
www.putty.org

Configuring and Programming Raspberry Pi

[444]

Download Putty on your Microsoft Windows machine. Then run putty.exe.
You should see a configuration window. It will look something like the
following screenshot:

Type in the inet addr from the IP Scanner in the Host Name space and make sure
that the SSH is selected. You may want to save this configuration under Raspberry Pi
so you can reload it each time.

When you click on Open, the system will try to open a terminal window onto your
Raspberry Pi via the LAN connection. The first time you do this, you will get a
warning about an RSA key, as the two computers don't know about each other; so
Windows is complaining that a computer it doesn't know is about to be connected in
a fairly intimate way. Simply click on OK, and you should get a terminal with a login
prompt, like the following screenshot:

Chapter 1

[445]

Now you can log in and issue commands to your Raspberry Pi. If you'd like to do
this from a Linux machine, the process is even simpler. Bring up a terminal window
and then type in ssh pi@xxx.xxx.xxx.xxx –p 22, where xxx.xxx.xxx.xxx is
the inet addr of your device. This will then bring you to the login screen of your
Raspberry Pi, which should look similar to the previous screenshot.

After your log in, you should get a screen that looks like the following:

Configuring and Programming Raspberry Pi

[446]

First, you'll want to expand the file system to take up the entire card. So, hit the Enter
key, and you'll see the following screen:

Hit Enter once again and you'll go back to the main configuration screen. Now,
select the Enable Boot to Desktop/Scratch option.

Chapter 1

[447]

When you hit Enter, you'll see the following screen:

You can also choose to overclock your device. This is a way for you to get higher
performance from your system. However, there is a risk that you can end up with
a system that has reliability problems.

Once you are done and are back at the main configuration menu, hit the Tab key
until you are positioned over the <Finish> selection, then hit Enter. Then, hit Enter
again so that you can reboot your Raspberry Pi. This time, when you log in, you
will not see any configuration selections. However, if you ever want to change your
configuration choices, you can run the configuration tool by typing in raspi-config
at the command prompt.

Adding a remote graphical user interface
For some steps in your robot build, you will need a graphical look at your system.
You can get this on your Raspberry Pi using an application called vncserver. You'll
need to install a version of this on your Raspberry Pi by typing in sudo apt-get
install tightvncserver in a terminal window on your Raspberry Pi.

Configuring and Programming Raspberry Pi

[448]

Tightvncserver is an application that will allow you to remotely view your complete
graphical desktop. Once you have it installed, you can do the following:

1. You'll need to start the server by typing in vncserver in a terminal window
on the Raspberry Pi.

2. You will then be prompted for a password, prompted to verify the password,
and then asked if you'd like to have a view only password. Remember the
password you entered; you'll need it to remotely log in via a VNC viewer.

3. You'll need a VNC viewer application for your remote computer; a good
choice is Real VNC, available from http://www.realvnc.com/download/
viewer/. When you run it, you should see this:

4. Enter the VNC server address, which is the IP address of your Raspberry
Pi, and click on Connect. You will get a warning about an unencrypted
connection; select Continue and you will get this pop-up window:

http://www.realvnc.com/download/viewer/
http://www.realvnc.com/download/viewer/

Chapter 1

[449]

5. Type in the password you just entered while starting the vncserver, and you
should then get a graphical view of your Raspberry Pi, which looks like the
following screenshot:

You can now access all the capabilities of your system, albeit they may be slower if
you are doing a graphics-intense data transfer. To avoid having to type in vncserver
each time you boot your Raspberry Pi, use the instructions at http://www.
havetheknowhow.com/Configure-the-server/Run-VNC-on-boot.html.

http://www.havetheknowhow.com/Configure-the-server/Run-VNC-on-boot.html
http://www.havetheknowhow.com/Configure-the-server/Run-VNC-on-boot.html

Configuring and Programming Raspberry Pi

[450]

Vncserver is also available via Linux. You can use an application called Remote
Desktop Viewer to view the remote Raspberry Pi Windows system. If you have not
installed this application, install it using the updated software application based on
the type of Linux system you have. Once you have the software, do the following:

1. Run the application, and you should see the following screenshot:

2. Make sure that vncserver is running on the Raspberry Pi; the easiest way to
do this is to log in using SSH and run vncserver at the prompt. Now, click
on Connect on the Remote Desktop Viewer. Fill in the screen as follows.
Under the Protocol selection, choose VNC, and you should see the
following screenshot:

Chapter 1

[451]

3. Now, enter the Host inet address—make sure to include :1 at the end, and
then click on Connect. You'll need to enter the vncserver password you set
up, like the following screenshot:

Configuring and Programming Raspberry Pi

[452]

You should now see the graphical screen of the Raspberry Pi. You are ready to start
interacting with the system!

Establishing wireless access
Now that your system is configured, the next step is to connect your Raspberry Pi to
your remote computer using wireless. To do this, you'll add a wireless USB device
and configure it. See http://elinux.org/RPi_USB_Wi-Fi_Adapters to identify
wireless devices that have been verified to work with Raspberry Pi. Here is one
available at many online electronics outlets:

To connect to your wireless LAN, boot the system and edit the network file by typing
in sudo nano /etc/network/interfaces. Then, edit the file to look like this:

http://elinux.org/RPi_USB_Wi-Fi_Adapters

Chapter 1

[453]

Reboot your device and it should now be connected to your wireless network.

If you are using a US keyboard, you may need to edit the keyboard
file for your keyboard to use nano effectively. To do this, type in sudo
nano /etc/default/keyboard and change XKBLAYOUT="gb" to
XKBLAYOUT="us".

Your system has lots of capabilities. Feel free to play with the system, which will give
you an understanding of what is already there and what you'll want to add from a
software perspective.

Programming on Raspberry Pi
One last bit of introduction. You'll need some basic programming skills to be
successful on your project. This section will touch a little on Python and C
programming on the Raspberry Pi.

Configuring and Programming Raspberry Pi

[454]

Creating and running Python programs on the
Raspberry Pi
You'll be using Python for two reasons. First, it is a simple language that is intuitive
and very easy to use. Second, a lot of open source functionality in the robotics world
is available in Python. To work the examples in this section, you'll need a version
of Python installed. Fortunately, the basic Raspbian system has a version already
installed, so you are ready to begin.

If you are new to programming, there are a number of different
websites that provide interactive tutorials. If you'd like to practice some
of the basic programming concepts in Python using these tools, go to
www.codeacademy.com or http://www.learnpython.org/ and
give it a try.

But, to get you started, let's first cover how to create and run a Python file. It turns
out that Python is an interactive language, so you could run Python and then type
in commands one at a time. However, you want to use Python to create programs,
so you are going to create Python programs and then run these programs from the
command line by invoking Python.

Open an example Python file by typing in emacs example.py. Now, put some code
in the file. Start with the lines shown in the following screenshot:

www.codeacademy.com
http://www.learnpython.org/

Chapter 1

[455]

Your code may be color coded. I have removed the color coding
here so that it is easier to read.

Let's go through the code to see what is happening:

1. a = input("Input value: "): One of the basic needs of a program is to get
input from the user. The raw_input part allows us to do that. The data will
be input by the user and stored in a. The prompt "Input value:" will be
shown to the user.

2. b = input("Input second value: "): This data will also be input by the
user and stored in b. The prompt "Input second value:" will be shown to
the user.

3. c = a + b: This is an example of something you can do with the data; in this
example, you can add a and b.

4. print c: Another basic need of our program is to print out results. The print
command prints out the value of c.

Once you have created your program, save it (using ctrl-x ctrl-s) and quit
emacs (using ctrl-x ctrl-c). Now, from the command line, run your program by
typing in python example.py. You should see something similar to the following
screenshot:

Configuring and Programming Raspberry Pi

[456]

You can also run the program right from the command line without typing in
python example.py by adding one line to the program. Now, the program should
look like the following screenshot:

Adding #!/usr/bin/python as the first line simply makes this file available for us to
execute from the command line. Once you have saved the file and exited emacs, type
in chmod +x example.py. This will change the file's execution permissions, so the
computer will now believe it and execute it. You should be able to simply type in ./
example.py and the program should run, as shown in the following screenshot:

Note that if you simply type in example.py, the system will not find the executable
file. In this case, the file has not been registered with the system, so you have to give
it a path to the file. In this case, ./ is the current directory.

Chapter 1

[457]

An introduction to the C/C++ programming
language
Now that you've been introduced to a simple programming language in Python,
you'll also need a bit of exposure to a more complex, but powerful, language called
C. C is the original language of Linux and has been around for many decades, but is
still widely used by open source developers. It is similar to Python, but is also a bit
different, and since you may need to understand and make changes to C code, you
should be familiar with it and know how it is used.

As with Python, you will need to have access to the language capabilities. These
come in the form of a compiler and build system, which turns your text files into
ones that contain programs to machine code that the processor can actually execute.
To do this, type in sudo apt-get install build-essential. This will install the
programs you need to turn your code into executables for the system.

Now that the tools are installed, let's walk through some simple examples. Here is
the first C/C++ code example:

Configuring and Programming Raspberry Pi

[458]

The following is an explanation of the code:

• #include <iostream>: This is a library that is included so that your
program can input data from the keyboard and output information to
the screen.

• int main(): As with Python, we can put functions and classes in the file, but
you will always want to start execution at a known point; C defines this as
the main function.

• int a;: This defines a variable named a, of type int. C is what we call a
strongly typed language, which means that we need to declare the type of
the variable we are defining. The normal types are int, a number that has
no decimal points; float, a number that requires decimal points; char, a
character of text, and bool, a true or false value. Also note that every line
in C ends with the ; character.

• int b;: This defines a variable named b, of type int.
• int c;: This defines a variable named c, of type int.
• std::cout << "Input value: ";: This will display the string "Input

value: " on the screen.
• std::cin >> a;: The input that the user types will go into the variable a.
• std::cout << "Input second value: ";: This will display the string

"Input second value: " on the screen.
• std::cin >> b;: The input that the user types will go into the variable b.
• c = a + b: The statement is a simple addition of two values.
• std::cout << c << std::endl;: The cout command prints out the value

of c. The endl command at the end prints out a carriage return so that the
next character appears on the next line.

• return 0;: The main function ends and returns 0.

To run this program, you'll need to run a compile process to turn it into an
executable program that you can run. To do this, after you have created the program,
type in g++ example2.cpp –o example2. This will then process your program,
turning it into a file that the computer can execute. The name of the executable
program will be example2 (as specified by the name after the –o option).

Chapter 1

[459]

If you run an ls on your directory after you have compiled this, you should see the
example2 file in your directory, as shown in the following screenshot:

If you run into a problem, the compiler will try to help you figure out the problem.
If, for example, you forgot the int before a in the expression int a, you would get
the following error when you try to compile:

Configuring and Programming Raspberry Pi

[460]

The error message indicates a problem in the int main() function and tells you
that the variable a was not successfully declared. Once you have the file compiled,
to run the executable, type in ./example2, and you should be able to create the
following result:

If you are interested in learning more about C programming, there are
several good tutorials out on the Internet that can help-for example, at
http://www.cprogramming.com/tutorial/c-tutorial.html
and http://thenewboston.org/list.php?cat=14.

There is one more aspect of C you will need to know about. The compile process
that you just encountered seemed fairly straightforward. However, if you have
your functionality distributed between a lot of files or need lots of libraries,
the command-line approach to executing a compile can get unwieldy.

http://www.cprogramming.com/tutorial/c-tutorial.html
http://thenewboston.org/list.php?cat=14

Chapter 1

[461]

The C development environment provides a way to automate this process; it is called
the make process. When using this, you create a text program named makefile that
defines the files you want to include and compile, and then, instead of typing a long
command or set of commands, you simply type in make and the system will execute
a compile based on the definitions in the makefile program. There are several good
tutorials that talk more about this system-for example, http://www.cs.colby.edu/
maxwell/courses/tutorials/maketutor/ or http://mrbook.org/tutorials/
make/.

Now you are equipped to edit and create your own programming files. The next
chapters will provide you with lots of opportunities to practice your skills as you
translate lines of code into cool robotic capabilities.

Summary
Congratulations! You have your Raspberry Pi up and working. No gathering dust
in the bin for this piece of hardware, Now, you are ready to start commanding your
Raspberry Pi to do something.

The next chapter will show you how to construct your biped robot.

http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/
http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/
http://mrbook.org/tutorials/make/
http://mrbook.org/tutorials/make/

[463]

Building the Biped
Now that you've got your Raspberry Pi 2 Model B all configured and ready to
go, you'll need to add some hardware to control and interface. In this chapter,
you'll learn:

• How to build a basic 10 Degrees of Freedom (DOF) biped
• How to use a servo motor controller connected to the USB port of the

Raspberry Pi to control the servos to make your robot move

Building robots that can walk
There are several choices when considering how to create a mobile robot. One of
the more interesting choices is a robot that can walk. This normally comes in three
versions: a biped robot with two legs, a biped robot with four legs, and a hexapod
robot with six legs. While each offers an interesting and different set of possibilities,
in this chapter, you'll build a basic, 10 DOF biped.

You'll be using a total of 10 servos for your project, as each leg has 5 points that can
move, or 5 degrees of freedom (DOF). As servos are the most critical component of
this project, it is perhaps useful to go through a tutorial on servos and learn how to
control them.

How servo motors work
Servo motors are somewhat similar to DC motors. However, there is an important
difference. While DC motors are generally designed to move in a continuous
way—rotating 360 degrees at a given speed—servos are generally designed to
move to a limited set of angles. In other words, in the DC motor world, you generally
want your motors to spin with a continuous rotation speed that you control. In the
servo world, you want your motor to move to a specific position that you control.

Building the Biped

[464]

This is done by sending a Pulse-Width-Modulated (PWM) signal to the control
connector of the servo. The length of this pulse will control the angle of the servo
like this:

These pulses are sent out with a repetition rate of 60 Hz. You can position the servo
to any angle by setting the correct control pulse.

Building the biped platform
There are several approaches to building your biped platform. Perhaps the most
simple is to purchase a set of basic parts; this is the example you'll see in this
chapter. There are several kit possibilities out there, including one at http://
www.robotshop.com/en/lynxmotion-biped-robot-scout-bps-ns-servos.
html, a kit like the one offered at http://www.ebay.com/itm/10-DOF-Biped-
Robot-Mechanical-Leg-Robot-Servo-Motor-Bracket-NO-Servo-Motor-good-
/131162548695?pt=LH_DefaultDomain_0&hash=item1e89e5a9d7, or the one at
http://www.amazon.com/gp/product/B00DR7GA4I/ref=oh_aui_detailpage_
o04_s00?ie=UTF8&psc=1. This is the specific kit we'll use in this chapter.

In the end, your biped will work more like the legs of a Tyrannosaurus Rex of
a human, but this will make it easier to program, and it will power down more
gracefully. It will also be a bit more stable.

http://www.robotshop.com/en/lynxmotion-biped-robot-scout-bps-ns-servos.html
http://www.robotshop.com/en/lynxmotion-biped-robot-scout-bps-ns-servos.html
http://www.robotshop.com/en/lynxmotion-biped-robot-scout-bps-ns-servos.html
http://www.ebay.com/itm/10-DOF-Biped-Robot-Mechanical-Leg-Robot-Servo-Motor-Bracket-NO-Servo-Motor-good-/131162548695?pt=LH_DefaultDomain_0&hash=item1e89e5a9d7
http://www.ebay.com/itm/10-DOF-Biped-Robot-Mechanical-Leg-Robot-Servo-Motor-Bracket-NO-Servo-Motor-good-/131162548695?pt=LH_DefaultDomain_0&hash=item1e89e5a9d7
http://www.ebay.com/itm/10-DOF-Biped-Robot-Mechanical-Leg-Robot-Servo-Motor-Bracket-NO-Servo-Motor-good-/131162548695?pt=LH_DefaultDomain_0&hash=item1e89e5a9d7
http://www.amazon.com/gp/product/B00DR7GA4I/ref=oh_aui_detailpage_o04_s00?ie=UTF8&psc=1
http://www.amazon.com/gp/product/B00DR7GA4I/ref=oh_aui_detailpage_o04_s00?ie=UTF8&psc=1

Chapter 2

[465]

You'll also need 10 standard size servos. There are several possible choices, but Hitec
servos are relatively inexpensive servos and you can get them at most hobby shops
and online electronics retailers. One of the important steps in this process is to select
the model of the servo. Servos come in different model numbers, primarily based on
the amount of torque they can generate.

Torque is the force that the servo can exert to move the part connected to it. In this
case, your servos will need to lift and move the weight associated with your biped,
so you'll need a servo with enough torque to do this. However, there are different
torque needs for your biped robot. The angle joints will not lift the entire leg, so
they can be servos with a lower servo rating, for example, the HS-422 servos. For
the knee servo, you'll need a more powerful servo. In this case, I suggest that you
use model HS-645MGHB servos. The hip joint that lifts the leg is where you will
need the most torque to be able to lift the leg. Here, too, I suggest that you use the
model HS-645MG servos. You can also just use 10 HS-645MG servos for all the
servos, but they are more expensive, so using different servos will save you
some money.

One final piece that you'll need is some metal servo horns. These servo horns are
optional, but they will make your biped robot much more solid than the plastic servo
horns that normally come with the servos. Here is a picture of one of these horns:

Building the Biped

[466]

Here are the steps to assemble the biped:

1. Attach the first ankle servo to the foot. To do this, find the foot plate,
as shown here:

This is the bottom of the foot. Notice the beveled holes-you'll be using
bevel-headed bolts to connect a servo bracket to the foot plate,
as shown here:

Chapter 2

[467]

2. Make sure that the bottom of the foot is flat. Before you mount the servo
to this bracket, you'll first connect a U-shaped bracket to this servo bracket
using one of the bearings in the kit, like this:

Building the Biped

[468]

3. Finally, mount one of the servos in the bracket and connect the U-shaped
bracket to the servo horn, as shown here:

4. This first servo should allow your biped to move the foot, tipping it side
to side. Now, add the second ankle servo to the foot. This will allow your
biped to tip the ankle front to back. To do this, connect a servo bracket to
the assembly you just created, and then add a U bracket to this assembly,
like this:

Chapter 2

[469]

5. Now, add the bracket to this assembly, like this:

Building the Biped

[470]

6. Now, you can add the knee servo to your biped. However, you'll first want
to connect the upper leg, the longest U bracket, to a servo bracket, like this:

Chapter 2

[471]

7. Now, connect this assembly, using another bearing, to the lower leg that you
have already built, like this:

Building the Biped

[472]

8. Now, you can mount the knee servo in this place. If you have different
servos, use a more powerful servo in the knee joint. Here is a picture:

9. The last step is to put the hip together. First, you'll put the servo that turns
the leg, connecting it to a servo bracket, as shown here:

Chapter 2

[473]

10. Now, connect this servo bracket to the long U bracket, and mount the servo
that lifts the entire leg. This is another place; if you are using different servos,
you'll want to use a servo with a significant torque. The entire assembly
should look like this:

11. Put the other leg together. It will be a mirror image of the first leg.
12. Now, you'll connect both legs to the hip by first connecting a servo bracket

connector to the hip piece, in two places, like this:

Building the Biped

[474]

13. Finally, mount the top of the leg servos into the brackets, like this:

Your biped is now ready to walk. Now that you have the basic hardware assembled,
you can turn your attention to the electronics.

Chapter 2

[475]

Using a servo controller to control the
servos
To make your biped walk, you first need to connect the servo motor controller to
the servos. The servo controller you are going to use for this project is a simple
servo motor controller utilizing the USB from Pololu—Pololu item number 1354
is available at pololu.com—that can control 18 servo motors. Here is a picture of
the unit:

Make sure that you order the assembled version. This piece of hardware will turn
USB commands from Raspberry Pi into signals that control your servo motors.
Pololu creates a number of different versions of this controller, and each one is able
to control a certain number of servos. In this case, you may want to choose the 18
servo version, so that you can control all 12 servos with one controller, and you may
also add an additional servo to control the direction of a camera or sensor. You could
also choose the 12 servo version. One advantage of the 18 servo controller is the ease
of connecting power to the unit via screw-type connectors.

There are two connections you'll need to make to the servo controller in order to get
started: the first to the servo motors and the second to a battery.

Building the Biped

[476]

First, connect the servos to the controller. In order to be consistent, let's connect
your 12 servos to the connections marked 0 through 11 on the controller using
this configuration:

Servo Connector Servo
0 Right ankle in/out
1 Right ankle front/back
2 Right knee
3 Right hip up/down
4 Right hip turn
5 Left ankle in/out
6 Left ankle front/back
7 Left knee
8 Left up/down
9 Left hip turn

Here is a picture of the back of the controller; this will tell us where to connect
our servos:

Chapter 2

[477]

Now, you need to connect the servo motor controller to your battery. For this project,
you can use a 2S RC LiPo battery; it will supply the 7.4 volts and the current required
by your servos, which can be on the order of 2 amps. Here is a picture:

This battery will come with two connectors, one with larger gauge wires for normal
usage and a smaller connector to connect to the battery recharger. You can use the
XT60 Connector Pairs, solder some wires to the mating connector of the battery,
and then insert the bare end of the wires into the servo controller.

Your system is now functional. You can connect the motor controller to your
personal computer to check whether you can communicate with it. To do this,
connect a mini USB cable between the servo controller and your personal computer.

Building the Biped

[478]

Communicating with the servo controller
with a PC
Now that the hardware is connected, you can use some software provided by Polulu
to control the servos. Let's do this using your personal computer. First, download
the Polulu SW from www.pololu.com/docs/0J40/3.a, and install it based on the
instructions on the website. Once it is installed, run the software, and you should see
this screen:

First, you will need to change the configuration in Serial Settings, so select the Serial
Settings tabs, and you should see this:

www.pololu.com/docs/0J40/3.a

Chapter 2

[479]

Make sure that USB Chained is selected; this will allow you to connect and control the
motor controller over USB. Now, go back to the main screen by selecting the Status
tab; now, you can actually turn on the 10 servos. The screen should look like this:

Building the Biped

[480]

Now you can use the sliders to actually control the servos. Turn on servo 0. Make
sure that servo 0 moves the lower-right ankle servo. You can also use this to center
the servos. Set servo 1 so that the slider is in the middle. Now, unscrew the servo
horn on the servo until the servos are centered at this location. At the zero location
of all servos, your biped should look like this:

Connecting the servo controller to the
Raspberry Pi
You've checked the servo motor controller and the servos. You can now connect
the motor controller up to the Raspberry Pi and make sure that you can control the
servos from it.

Chapter 2

[481]

Now, let's talk to the motor controller. Here are the steps:

1. Connect Raspberry Pi to the motor controller by connecting a mini USB
to a mini USB cable. Connect the cable to the USB host connection on the
Raspberry Pi, like this:

2. Download the Linux code from Pololu at www.pololu.com/docs/0J40/3.b.
Perhaps the best way to do this is to log on to your Raspberry Pi and
then type wget http://www.pololu.com/file/download/maestro-
linux-100507.tar.gz?file_id=0J315.

3. Then, move the file using mv maestro-linux-100507.tar.gz\?file_
id\=0J315 maestro-linux-100507.tar.gz.

Building the Biped

[482]

4. Unpack the file by typing tar –xvf maestro_linux_011507.tar.gz. This
will create a directory called maestro_linux. Go to this directory by typing
cd maestro_linux, and then type ls; you should see something like this:

The README.txt document will give you explicit instructions on how to install the
software. Unfortunately, you can't run MaestroControlCenter on your Raspberry
Pi; the version of Windows it uses doesn't support the graphics, but you can control
your servos using the UscCmd command-line application. First, type./UscCmd
--list, and you should see the following:

Chapter 2

[483]

The unit sees your servo controller. If you just type ./UscCmd, you can see all the
commands you could send to your controller:

Building the Biped

[484]

Note that you can send a specific target angle to a servo, although the target is not in
angle values, so it makes it a bit difficult to know where you are sending your servo.
With a servo and battery connected to the servo controller, try to type ./UscCmd
--servo 0, 10. The servo will move to its full angle position. Type ./UscCmd –
servo 0, 0, and it will stop the servo from trying to move. In the next section, you'll
write some Python code that will translate your angles to the commands that the
servo controller will want to see in order to move it to specific angle locations. If you
are struggling with the USB connection, refer to http://www.linux-usb.org/FAQ.
html for more information.

If you didn't run the Windows version of Maestro Controller and
set Serial Settings to USB Chained, your motor controller may not
respond. Rerun the MaestroController code and set Serial Settings
to USB Chained.

Creating a program to control your biped
Now you know that you can talk to your servo motor controller and move your
servos. In this section, you'll create a Python program that will let you talk to your
servos to move them at specific angles. You can use Python as it is very simple and
easy to run.

Let's start with a simple program that will make your legged mobile robot's servos
go to 90 degrees (which should be somewhere close to the middle between the 0 to
180 degrees you can set). Here is the code:

http://www.linux-usb.org/FAQ.html
http://www.linux-usb.org/FAQ.html

Chapter 2

[485]

Here is an explanation of the code:

• #!/usr/bin/python: This first line allows you to make this Python file
execute from the command line.

• import serial: This line imports the serial library. You need the serial
library to talk to your unit via the USB.

• def setAngle(ser, channel, angle):: This function converts your
desired setting of servo and angle into the serial command that the servo
motor controller needs. To understand the specifics of the code used to
control the servos, refer to https://www.pololu.com/docs/0J40.

https://www.pololu.com/docs/0J40

Building the Biped

[486]

• ser = serial.Serial("/dev/ttyACM0", 9600): This opens the serial port
connection to your servo controller.

• for i in range(0, 9): For loop to access all nine servos.
• setAngle(ser, i, 90): Now, you can set each servo to the middle (home)

position. The default would be to set each servo to 90 degrees. If your legs
aren't in their middle position, you can adjust them by adjusting the position
of the servo horns on each servo.

To access the serial port, you'll need to make sure that you have the Python serial
library. If you don't, then type apt-get install python-serial. After you have
installed the serial library, you can run your program by typing python quad.py.

Once you have the basic home position set, you can ask your robot to do something.
Let's start by having your biped move its foot. Here is the Python code:

Chapter 2

[487]

In this case, you are using your setAngle command to set your servos to manipulate
your robot's right ankle.

Summary
You now have a robot than can move! In the next chapter, you'll learn how to make
your robot do many amazing things. You'll learn how to make it walk forward and
backward and how to make it dance and turn. With some basic knowledge, any
number of movements is possible.

[489]

Motion for the Biped
Now that you've got your biped all up and running, you can start developing
interesting ways to make it move. In this chapter, you'll learn

• How to adjust the positions of your servos for the Tyrannosaurus Rex pose
• The basic walking gait for your robot
• The basic turn for your robot

Before you begin, however, it will be best if you create a harness for your biped. Your
robot is going to be inherently unstable with only two legs, and, as you experiment,
you're going to make some mistakes. With only two legs, these mistakes can, and
probably will, result in your robot toppling over, which can damage the robot.

If you have an electronics board vise, or an "Extra Hands" device, they can be useful
for this purpose. Here is a picture of how to use this device to create a harness:

Motion for the Biped

[490]

If you don't, you can easily create this sort of overhead support using a PVC pipe
or wood. Really, just something to keep your biped from crashing over during your
experimentation.

A basic stable pose
Now that your biped is built and you know how to program the servos using
Python, you can experiment with some basic poses. You'll first create a program that
allows you to set individual servos so that you can experiment. Here is the program:

This code includes the Python setAngle function from Chapter 2, Building the Biped.
The specifics were taken from the www.pololu.com website, but it simply allows you
to set a specific servo to a specific angle.

The next part of the code sets all of the servos to their center location. The final piece
of the code, the while 1: code set, simply asks the user for a servo and an angle, and
then sends the command to the servo controller.

www.pololu.com

Chapter 3

[491]

Once the program is run, you should see your biped standing straight up. If not, you
may need to center your servos by adjusting the position of the horns. This is a useful
pose, but there are others that are more stable. As an excellent first example, you can
change the pose to be more like a Tyrannosaurus Rex pose, with knees pointing back.
Here are the basic servo positions:

Servo Angle
1 60
2 60
3 60
6 120
7 120
8 120

The robot pose should look like this:

Motion for the Biped

[492]

You can use these angles to achieve this pose. However, this will leave you with
some limited movement, as your servos will be toward the end of their ability to
move in one direction. As this is going to be the starting pose for your robot, to
achieve maximum flexibility, you'll want to center the servos at this position.
To do this, run the default, robot.py, to set the legs to the center position. Now,
adjust the servo horns to achieve this pose while the values of the servos are at a
90 degree angle.

It should look like this:

Now that you have a stable base to work from, you can start programming a simple
walking motion.

Chapter 3

[493]

A basic walking motion
Your robot is poised to walk, however, you first have to get a leg off the ground.
Of course, that is easy enough; if you simply lift the leg by changing the angle of the
knee joint, your leg can get off the ground. You may also want to change the angle
of the front to back ankle; this will allow you to lift the leg without raising it quite
as high.

However, you'll have a problem if you change just these two servos; as you lift the
leg, your robot will fall over. This is due to a simple principle called the center of
gravity. When your robot is at rest, your center of gravity looks like this:

Motion for the Biped

[494]

It is clear that if you lift a leg, the robot will fall over in the direction of the leg that
has been lifted. What you need to do is to shift the center of gravity over the leg that
will be left on the ground using the ankle servo that can tilt the robot left and right,
so that it ends up like this:

You'll then want to set your servos to lift the left leg. Here is a side view of these
servo settings:

Chapter 3

[495]

Now, it's time for some Python code to make this happen. You'll start with your
robot.py code and will add the following lines to a function called liftLeftLeg:

Motion for the Biped

[496]

This will tip the robot onto its right leg, and then lift the left leg, like this:

Now, it is fairly easy to step forward. Just move the hip joint on the left leg forward,
and then move the ankle joint on the right leg to tip the entire robot forward. Here is
the diagram and servo settings:

Chapter 3

[497]

Here is the Python code:

Motion for the Biped

[498]

Here is a picture of the robot:

Chapter 3

[499]

This is the first stage of a walking gait. So, let's detail all the motions you'll need
in order to walk your robot forward. Here are the side view diagrams of the
different states:

Motion for the Biped

[500]

These are the pictures of the robot in each of the different states:

Chapter 3

[501]

Here is the Python code for each of the functions for the different states:

You'll notice that each function has a number of different servo control statements;
these must be performed in this order to get the desired result.

Motion for the Biped

[502]

Here is the Python code to sequence the functions for two steps: one with the left leg,
and the other with the right leg:

This is a very simple gait; it's not particularly elegant. You can see that each state is
made up of many individual servo moves. You can certainly add more servo moves
to make it smoother and more refined. Your exact servo angle settings will certainly
vary from these; you'll need to do some experimentation to get your biped's legs
positioned correctly.

Now that you can walk, you will also need to teach your robot how to turn.

A basic turn for the robot
Your robot can walk forward, but you'll also want your robot to be able to turn. Your
turning is limited to the amount you can turn the hip of your robot, which is around
20 degrees for this robot. So, to perform a full 90 degree turn, you'll need to take the
turn in several steps. The big difference here is that when you return to the standing
state, you do not want to reset your hip rotation servos to 90 degrees. Here are the
diagrams, including several that are rear view, for a turn:

Chapter 3

[503]

Here is the Python code for a basic turning operation:

Motion for the Biped

[504]

And here is the Python code to chain these basic states together to step a turn:

Now your robot can walk and turn! Obviously, your robot could walk backward
by reversing the order of servo control statements in each of the functions. There
are many more types of motions you can program with your robot, following the
planning method outlined in this chapter.

Summary
Now, your robot is mobile. The next step is to add some sensors so that your robot
can avoid, or find, objects in its path.

[505]

Avoiding Obstacles
Using Sensors

You've constructed your biped robot. Now, your robot can move around. But what
if you want the robot to sense the outside world, so you don't run into things? In this
chapter, you'll discover how to add some sensors to help avoid barriers.

Specifically, you'll learn:

• How to connect Raspberry Pi to an IR (infrared) sensor
• How to connect Raspberry Pi to a USB sonar sensor to detect the world
• How to connect Raspberry Pi and its GPIO to a sonar sensor to detect

the world

Connecting Raspberry Pi to an infrared
sensor
Your robot can now move around, but you'll want to be able to sense a barrier or a
target. One of the ways to do this is with an IR sensor. First, a tutorial on IR sensors
is required. An IR sensor has both a transmitter and a sensor. The transmitter sends
out a narrow beam of light, and the sensor receives this beam of light.

Avoiding Obstacles Using Sensors

[506]

The difference in transit ends up as an angle measurement in the sensor, as shown in
the following figure:

The different angles give you an indication of the distance from the object.
The sensor turns these angle measurements into a voltage that you can sense to
determine the distance. Unfortunately, the relationship between the output of the
sensor and the distance is not linear, so you'll need to do some calibration in order to
predict the actual distance and its relationship to the output of the sensor.

IR sensors are quite accurate, certainly with a low percentage of
errors; however, they may not work well if the area is brightly
lit. The accuracy is also affected by the reflective nature of
the material being sensed. This can be a consideration when
deciding which sensors to use.

Before you get started, you'll need to get a sensor. One of the more popular ones is an
inexpensive IR sensor by Sharp. It is available at many online electronics stores, and
it comes in models that sense various distances. You'll be using the Sharp 2Y0A02
model, a unit that provides sensing to a distance of 150 cm. Here is a picture of
the sensor:

Chapter 4

[507]

You'll also want to make sure you also get the connector cable for the device;
it normally comes with the device. Here is a picture of the sensor with the
cable attached:

As noted in the tutorial, the voltage out of the sensor will be a voltage that will be an
indication of the distance. However, this is an analog signal, and the Raspberry Pi
doesn't have an analog-to-digital converter that can convert this analog voltage to a
number that you can read in your program. You'll need to add an analog to digital
converter to your project.

Avoiding Obstacles Using Sensors

[508]

There are two choices. If you want an analog-to-digital converter that plugs
directly into the USB interface, there is one offered by www.phidgets.com. This
board is really quite amazing; it takes the analog signals, turns them into digital
numbers using an analog to digital converter, and then makes them available so
that they can be read from the USB port. The model number of this part is 1011_0 -
PhidgetInterfaceKit 2/2/2 and it is shown in the following:

Unfortunately, it takes a bit of programming expertise to get it up and running. The
other choice is to use an analog-to-digital converter that connects to the GPIO pins
of the Raspberry Pi. There is a part, the ADC pi+ from www.abelectronics.co.uk,
that does this. It is pictured here:

www.phidgets.com
www.abelectronics.co.uk

Chapter 4

[509]

This device is easier to program, so this is what you'll use in this project. Now, let's
connect the sensor:

1. Solder header pins to the ADC Pi+ board to connect it to the ADC, like this:

2. Now, plug the board into the Raspberry Pi B 2. Here is a picture of
the combination:

Avoiding Obstacles Using Sensors

[510]

3. Now, you'll connect the IR sensor to the ADC. To connect this unit, you'll
connect the three pins that are available at the bottom of the sensor. Here is
the connection list:

ADC-DAC Board Sensor Pin
5V Vcc
GND Gnd
In1 Vo

Unfortunately, there are no labels on the unit, but here are the pins
you'll connect:

It's easiest to connect to the three-wire cable that normally comes with the
sensor. Once the pins are connected, you are ready to access the data from
the sensor via a Python program on the Raspberry Pi. The entire system
looks like this:

Chapter 4

[511]

Now, you are ready to add some code to read the IR sensor. You'll need to follow
these steps to talk to the ADC:

1. The first step in enabling the ADC is to enable the I2C interface. This is done
by running raspi-config and selecting 8 Advanced Options like this:

Avoiding Obstacles Using Sensors

[512]

2. Once there, go to the A7 I2C selection to enable the I2C like this:

Perform all the selections to enable the I2C interface and load the library,
and then reboot the Raspberry Pi.
You'll also need to edit the /etc/modules file and add the following
two lines:

Chapter 4

[513]

Reboot the Raspberry Pi. You can see whether the I2C is enabled by typing
sudo i2cdetect -y 1, and you should see something like this:

The I2C device, your ADC, is available at the 68 and 69 addresses.

3. Now, you can download the code. To do this, type git clone https://
github.com/abelectronicsuk/ABElectronics_Python_Libraries.git
from the home directory, and the Python libraries will be installed on your
Raspberry Pi.

4. Go to the ./ABElecttronics_Python_Libraries/ADCPi directory; here
are the programs for your specific hardware. Following the instructions in
the README.md file, type sudo apt-get update, and then type sudo apt-
get install python-smbus. This will install the smbus library, which are
required for the ADC to work. Also, type sudo adduser pi i2c to add pi
to the group that can access i2c.

Avoiding Obstacles Using Sensors

[514]

5. You'll need to edit your .bashrc file in your home directory, adding the
following lines:

Adding this line will add this library to the path so that you can access the
functionality. Reboot the Raspberry Pi.

6. Now, you can run one of the demo programs. Type python demo-
readvoltage.py, and you should see something like this:

Chapter 4

[515]

These raw readings are great, but now you'll want to build a program that
takes the data from the first ADC and translates it to the distance. To do this,
you'll need a graph of the voltage to distance readings for your sensor. Here
is the graph for the IR sensor in this example:

There are really two parts to the curve; the first is the distance up to about
15 centimeters, and the second is the distance from 15 centimeters to 150
centimeters. It is easiest to build a simple mathematical model that ignores
distances closer than 15 centimeters and models the distance from 15
centimeters. For more information on how to build this model, refer to
http://davstott.me.uk/index.php/2013/06/02/raspberry-pi-sharp-
infrared/. Here is the Python program using this model:

http://davstott.me.uk/index.php/2013/06/02/raspberry-pi-sharp-infrared/
http://davstott.me.uk/index.php/2013/06/02/raspberry-pi-sharp-infrared/

Avoiding Obstacles Using Sensors

[516]

The only new line of code is the distance = (1.0 / (adc.read_adc_voltage(1) /
13.15)) - 0.35 line. It converts your voltage to distance. You can now run your
program and you'll see the results in centimeters, like this:

Now, you can measure the distance to objects using your IR sensor!

Connecting Raspberry Pi to a USB sonar
sensor
There is yet another way to sense the presence of objects: using a sonar sensor. But
before you add this capability to your system, here's a little tutorial on sonar sensors.
This type of sensor uses ultrasonic sound to calculate the distance from an object.
The sound wave travels out from the sensor, as illustrated in the following figure:

Chapter 4

[517]

The device sends out a sound wave 10 times a second. If an object is in the path of
these waves, then the waves reflect off the object, sending waves that return to the
sensor, as shown in the following figure:

The sensor then measures any return. It uses the time difference between when
the sound wave was sent out and when it returned to measure the distance from
the object.

Avoiding Obstacles Using Sensors

[518]

Sonar sensors are also quite accurate, normally with low percentage
errors, and are not affected by the lighting or color in the environment.

There are several choices if you want to use a sonar sensor to sense the distance. The
first is to use a sonar sensor that connects to the USB port. The following is an image
of a USB sonar sensor:

This is the USB-ProxSonar-EZ sensor, and can be purchased directly from MaxBotix
or on Amazon. There are several models, each with a different distance specification;
however, they all work in the same way.

You can also choose a sonar sensor that connects to the GPIO of the Raspberry Pi.
Here is a picture of this sort of inexpensive sonar sensor:

Chapter 4

[519]

This sensor is less expensive and easy to use; it takes a bit of processing power to
coordinate the efforts of timing the send and receive signals, but the Raspberry Pi B
2 has the processing power needed. Here are the steps to set up this sonar sensor to
sense the distance:

1. The first step is to understand the GPIO pins of the Raspberry Pi B 2. Here is
a diagram of the layout of the pins:

In this case, you'll need to connect to the 5 volt connection of the Raspberry
Pi B2, which is pin 2. You'll also need to connect to the GND, which is pin 6.
You'll use pin 16 as an output trigger pin and pin 18 (GPIO24) as an input to
time the echo from the sonar sensor.

Avoiding Obstacles Using Sensors

[520]

2. Now that you know the pins you'll connect to, you can connect the sonar
sensor. There is a problem, as you can't connect the 5 volt return from the sonar
sensor directly to the Raspberry Pi GPIO pins; they want 3.3 volts. You'll need
to build a voltage divider that will reduce the 5 volts to 3.3 volts. This can be
done with two resistors, which are connected as shown in this diagram:

If you'd like more information on how the voltage divider works in
this configuration, refer to http://www.modmypi.com/blog/hc-sr04-
ultrasonic-range-sensor-on-the-raspberry-pi. The combination of
these two resistors will reduce the voltage to the desired levels. You may
want to put all of this is in a small breadboard, as shown here:

http://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
http://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi

Chapter 4

[521]

Finally, connect it to the Raspberry Pi, like this:

3. Now that the device is connected, you'll need a bit of code to read in the
value, make sure it is settled (a stable measurement), and then convert it to
distance. Here is the Python code for this program:

Avoiding Obstacles Using Sensors

[522]

Now, you should be able to run the program and see a result, like this:

Now that you have your sensors up and working, you can avoid or find
objects with your biped.

Summary
Congratulations! You can now detect and avoid walls and other barriers to your
robot. You can also use these sensors to detect objects that you might want to find.
In the next chapter, you'll learn how to perform path planning to move your robot
from point A to point B and even give your robot intelligence as to what to do if it
encounters a barrier in its path.

[523]

Path Planning
and Your Biped

Now that your biped is up and mobile and able to find barriers, you can now start
to have it move around autonomously. However, you'll want to have your robot
planed his path, that is, if it knows where it has started and the desired end point,
it can move from the starting point to the end point.

In this chapter, you will be learning about:

• How to add a compass to your biped, so you'll have a sense of direction
• Learning some basic path planning techniques for your robot

Connecting a digital compass to the
Raspberry Pi
One of the important pieces of information that might be useful for your robot, it if is
going to plan its own path, is its direction of travel. So, let's learn how to hook up a
digital compass to the Raspberry Pi.

Path Planning and Your Biped

[524]

There are several chips that provide digital compass capability; one of the most
common is the HMC5883L 3-Axis Digital Compass chip. This chip is packaged onto
a module by several companies, but almost all of them result in a similar interface.
The following is a picture of one the GY-271 HMC5883L Triple Axis Compass
Magnetometer Sensor Module, which is available from a number of online retailers:

This type of digital compass uses magnetic sensors to discover the earth's magnetic
field. The output of these sensors is then made accessible to the outside world
through a set of registers that allow the user to set things such as the sample rate,
and continuous or single sampling. The x, y, and z directions are output-using
registers as well.

The connections to this chip are straightforward and the device communicates with
the Raspberry Pi by using the I2C bus, a standard serial communications bus. The
I2C interface is a synchronous serial interface and provides more performance than
an asynchronous Rx/Tx serial interface. The SCL data line provides a clock, while
the data flows on the SDA line. The bus also provides addressing so that more than
one device can be connected to the master device at the same time. On the back of the
module, the connections are labeled, as shown in the following image:

Chapter 5

[525]

You'll then connect the device to the GPIO pins on Raspberry Pi. The following is the
pin out of Raspberry Pi:

Path Planning and Your Biped

[526]

Connect your device to the VCC on the device to Pin 1 (3.3 V) on Raspberry Pi.
Connect GND to Pin 9 (GND). Connect SCL on the device to Pin 5 (GPIO 3) and SDA
to Pin 3 (GPIO 2) on the device. Notice that you will not connect the Data Ready
(DRDY) line. Now, you are ready to communicate with the device.

Accessing the compass programmatically
In order to access the compass capability, you'll need to enable the I2C library on
Raspberry. If you used the IR sensor and ADC additional hardware in Chapter 4,
Avoiding Obstacles Using Sensors, you will have already done this. If not, follow
these instructions to enable the I2C interface:

1. Run raspi-config. Select the Configure advanced settings, as shown in the
following screenshot:

Chapter 5

[527]

From the next selection page, select the Enable/disable automatic loading of
the I2C interface, as shown in the following screenshot:

Then select yes, as shown in the following screenshot:

Path Planning and Your Biped

[528]

You'll also want to edit the file /etc/modules and add the lines i2c-bcm2708
and i2c-dev, as shown in the following screenshot:

And one final edit, change the last line in /boot/config.txt, as shown in
the following screenshot:

Chapter 5

[529]

Now, reboot Raspberry Pi.

2. With the device connected, you can see if the system knows about your
device. To do this, type the following command:

You can see the device at 1e.

3. Now you communicate with your digital compass. To do this, you'll need
to create a Python program. But before you create your Python code, you'll
want to download a library that will make this all much easier. To do this,
first create a directory a directory called compass and cd to that directory.
Then, type git clone https://github.com/quick2wire/quick2wire-
python-api.git to download the quick2wire-python-api library. Finally,
type git clone https://bitbucket.org/thinkbowl/i2clibraries.git
to get the i2clibraries.

Path Planning and Your Biped

[530]

You'll also need to set some environment variables. Do this by going to
your home directory and editing the .bashrc file, adding these two lines
at the end:

4. Now, you can create the following Python code:

Chapter 5

[531]

5. Now, run the code by typing python3 compass.py command and you
should see:

Now, you can add direction to your project! As you move the device around,
you should see the Heading value change.

This is a basic program; you can find out more about other features
that are available with this library at http://think-bowl.com/
raspberry-pi/i2c-python-library-3-axis-digital-
compass-hmc5883l-with-the-raspberry-pi/.

http://think-bowl.com/raspberry-pi/i2c-python-library-3-axis-digital-compass-hmc5883l-with-the-raspberry-pi/.
http://think-bowl.com/raspberry-pi/i2c-python-library-3-axis-digital-compass-hmc5883l-with-the-raspberry-pi/.
http://think-bowl.com/raspberry-pi/i2c-python-library-3-axis-digital-compass-hmc5883l-with-the-raspberry-pi/.

Path Planning and Your Biped

[532]

One final step in developing your compass code is to make it a file where the
functions can then be imported to a different Python program. To do this,
edit the file so that all of the code is in functions, as shown by the following:

Then you'll be able to use the import capability of Python to import this
functionality into a different Python file.

Chapter 5

[533]

Dynamic path planning for your robot
Now that you can see barriers and also know direction, you'll want to do dynamic
path planning. Dynamic path planning simply means that you don't have a
knowledge of the entire world with all the possible barriers before you encounter
them. Your robot will have to decide how to proceed while it is in the middle
and actually moving. This can be a complex topic, but there are some basics that
you can start to understand and apply as you ask your robot to move around its
environment. Let's first address the problem of knowing where you want to go and
needing to execute a path without barriers, and then adding in barriers.

Basic path planning
In order to talk about dynamic path planning, that is, planning a path where
you don't know what barriers you might encounter, you'll need a framework to
understand where your robot is as well as to determine the location of the goal.
One common framework is an x-y grid. The following is a drawing of such a grid:

Path Planning and Your Biped

[534]

There are three key points:

• The lower left point is a fixed reference position. The directions x and y
are also fixed, and all other positions will be measured with respect to this
position and these directions.

• Another important point is the starting location of your robot. Your robot
will then keep track of its location by using its x coordinate, or position itself
with respect to some fixed reference position in the x direction, and its y
coordinate, its position with respect to some fixed reference position in the y
direction to the goal. It will use the compass to keep track of these directions.

• The third important point is the position of the goal, also given in x and
y coordinates with respect to the fixed reference position. If you know
the starting location and the starting angle of your robot ,you can plan an
optimum (shortest distance) path to this goal. To do this, you can use the
goal location and the robot location, and some fairly simple math to calculate
the distance and angle from the robot to the goal.

To calculate the distance, use the following equation:

() ()()2 2d X goal X goal Y goal Y robot= − + −

Use the following equation to tell your robot how far to travel to the goal.
A second equation will tell your robot the angle it needs to travel:

arctan Y goal Y robot
X goal X goal

θ
 −

= −

The following is a graphical representation of these two pieces
of information:

Chapter 5

[535]

Now that you have a goal angle and distance, you can program your robot to move.
To do this, you will write a program to do path planning and call the movement
functions that you created in Chapter 3, Motion for the Biped. You will, however, need
to know the distance that your robot travels in a step so that you can tell your robot
how far to travel in steps, not distance units.

You'll also need to be able to translate the distance that might be covered by your
robot in a turn; however, this distance may be too small to be of any importance.
If you then know the angle and the distance, you can move your robot to the goal.

The following are the steps you will program:

1. Calculate the distance in units that your robot will need to travel in order to
reach the goal. Convert this to number of steps to achieve this distance.

2. Calculate the angle that your robot will need to travel to reach the goal.
You'll use the compass and your robot turn functions in order to achieve
this angle.

3. Now, call the step functions the proper number of times required to move
your robot the correct distance.

Path Planning and Your Biped

[536]

That's it. Now, we will use some very simple Python code that executes this by using
functions to move the robot forward and turn the robot. In this case, it makes sense
to create a file called robotLib.py with all of the functions that do the actual servo
settings to step the biped robot forward and turn the robot. You'll then import these
functions using the from robotLib import * statement, and your Python program
can call these functions. This makes the path planning Python program much smaller
and more manageable. You'll do the same thing with the compass program, using
the from compass import * command.

For more information on how to import the functions from one Python
file to another, refer to http://www.tutorialspoint.com/python/
python_modules.htm.

The following is a listing of the program:

http://www.tutorialspoint.com/python/python_modules.htm
http://www.tutorialspoint.com/python/python_modules.htm

Chapter 5

[537]

In this program, the user enters the goal location and the robot first decides the
shortest direction to the desired angle by reading the angle. To make it simple, the
robot is placed in the grid with it heading in the direction of angle 0. If the goal angle
is less than 180 degrees, the robot will turn right. If it is greater than 180 degrees, the
robot will turn left. The robot turns until the desired angle and its measured angle
are within a few degrees. Then, the robot takes the number of steps to reach the goal.

Avoiding obstacles
Planning paths without obstacles, as has been shown, is quite easy. However, it
becomes a bit more challenging when your robot needs to walk around obstacles.
Let's look at an instance where there is an obstacle in the path that you calculated
previously. It might look like the following:

You can still use the same path planning algorithm to find the starting angle;
however, you'll now need to use your sonar sensor to detect the obstacle. When
your sonar sensor detects the obstacle, you'll need to stop and recalculate a path
to avoid the barrier, and then recalculate the desired path to the goal. One very
simple way to do this, when your robot senses a barrier, is to turn right 90 degrees,
go a fixed distance, and then recalculate the optimum path. When you turn back to
move toward the target, if you sense no barrier, you will be able to move along the
optimum path.

Path Planning and Your Biped

[538]

However, if your robot encounters the obstacle again, it will repeat the process,
until it reaches the goal. In this case, using these rules, the robot will travel the
following path:

There is one more step you'll need to take before adding the sonar sensor's capability
to your robot. You'll need to change the sonar sensor code so that it can be added to
the Python code as a library. The following is that code:

Chapter 5

[539]

You'll also import this code using the from compass import * statement. You'll
also be using the time library and the time.sleep command to add delay between
different statements in the code. And the following is the first part of the code that
uses all of this to detect the barrier, turn to the right, then first part of the Python
code that utilizes the sonar sensor:

Path Planning and Your Biped

[540]

And the following is the final piece of the code:

Now, this algorithm is quite simple; there are others that have much more complex
responses to barriers. You can also see that by adding sonar sensors to the sides
your robot could actually sense when the barrier has ended. You could also provide
more complex decision processes about which way to turn to avoid an object. Again,
there are many different path finding algorithms. See http://www.academia.
edu/837604/A_Simple_Local_Path_Planning_Algorithm_for_Autonomous_
Mobile_Robots for an example of this. These more complex algorithms can be
explored by using the basic functionality that you have built in this chapter.

Summary
You've now added path planning to your robot's capability. Your robot can now not
only move from point A to point B, but can also avoid barriers that might be in the
way. In the next chapter, you'll learn how to add a webcam to your biped. This will
introduce a whole new set of ways for your robot to experience the world around it.

http://www.academia.edu/837604/A_Simple_Local_Path_Planning_Algorithm_for_Autonomous_Mobile_Robots
http://www.academia.edu/837604/A_Simple_Local_Path_Planning_Algorithm_for_Autonomous_Mobile_Robots
http://www.academia.edu/837604/A_Simple_Local_Path_Planning_Algorithm_for_Autonomous_Mobile_Robots

[541]

Adding Vision to Your Biped
Now that your biped is up and mobile, is able to find barriers, and knows how to
plan its path, you can now start to have it move around autonomously. However,
you may want your robot to follow a color or motion.

In this chapter, you will be learning:

• How to add a webcam to your biped robot
• How to add RaspiCam to your biped robot
• How to install and use OpenCV, an open source vision package
• How to follow motion with your biped robot

Installing a camera on your biped robot
Having vision capability is a real advantage for your biped robot; you'll use this
functionality in lots of different applications. Fortunately, adding hardware and
software for vision is both easy and inexpensive. There are two choices as far as
vision hardware is concerned. You can add a USB webcam to your system, or you
can add RaspiCam, a camera designed specifically for Raspberry Pi.

Adding Vision to Your Biped

[542]

Installing a USB camera on Raspberry Pi
Connecting a USB camera is very easy. Just plug it into the USB slot. To make sure
that your device is connected, type lsusb. You should see the following:

This shows a Creative Webcam located at Bus 001 Device 004: ID 041e:4095. To make
sure that the system sees this as a video device, type ls /dev/v* command and you
should see something like the following:

Chapter 6

[543]

The /dev/video0 is the webcam device. Now that your device is connected, let's
actually see if you can capture images and video. There are several tools that can
allow you to access the webcam, but a simple program with video controls is
called luvcview. To install this, type sudo apt-get install luvcview. Once
the application is installed, you'll want to run it. To do this, you'll either need
to be connected directly to a display or able to access Raspberry Pi via a
remote VNC connection, such as vncserver, as displaying images will
require a graphical interface.

Once you are connected in this manner, open a terminal window on Raspberry Pi
and run luvcview. You should see something like the following:

Don't worry about the quality of the image, you'll be capturing and processing your
images inside of OpenCV, a vision framework.

Adding Vision to Your Biped

[544]

Installing RaspiCam on Raspberry Pi
The other choice for seeing the outside world on Raspberry Pi is to use the
RaspiCam. Installing this camera is a bit more involved; you are going to connect it
to a special connector on the Raspberry Pi. The following is a picture of the camera
with its special connector:

You may also want to add the protective cover for the camera; assembling it looks
like the following:

Chapter 6

[545]

Now you are ready to connect the camera to Raspberry Pi. The camera connects to
the Raspberry Pi by installing it into the connector marked Camera on the Raspberry
Pi. To see how this is done, see the video at http://www.raspberrypi.org/help/
camera-module-setup/.

Now that the camera is connected, you'll want to enable the camera using the
raspi-config utility. Type sudo raspi-config, then select the Enable Camera,
as shown in the following screenshot:

http://www.raspberrypi.org/help/camera-module-setup/
http://www.raspberrypi.org/help/camera-module-setup/

Adding Vision to Your Biped

[546]

Now reboot Raspberry Pi. If you are developing from a remote computer and
want to see your images, you will want to open a vncserver connection between
your computer and the Raspberry Pi. For details, see Chapter 1, Configuring
and Programming Raspberry Pi. To take a picture with the camera, simply type
raspistill -o image.jpg. This will take a picture with the camera, and then
store the image in the image.jpg file. Once you have the picture, you can view it by
opening the Raspberry Pi image viewer by selecting the lower left icon for Menu,
then Accessories, and then Image Viewer, as shown in the following screenshot:

Chapter 6

[547]

Open the image.jpg file, and you should see the results of your picture:

Before you can access OpenCV with the Raspberry Pi camera, you'll need to do
two things. First, you'll need to add a Python library; it is called picamera. To get
this, and the required libraries, type sudo apt-get install python-picamera
python3-picamera python-rpi.gpio. Second, you'll need to type sudo modprobe
bcm2835-v4l2. The Raspberry Pi camera can now be used in the OpenCV examples
in the next section.

Adding Vision to Your Biped

[548]

Downloading and installing OpenCV – a
fully featured vision library
Now that you have your camera connected, you can begin to access some amazing
capabilities that have been provided by the open source community. Open a terminal
window and type the following commands:

1. sudo apt-get update: You're going to download a number of new software
packages, so it is good to make sure that everything is up to date.

2. sudo apt-get install build-essential: Although you may have done
this earlier, this library is essential to build OpenCV.

3. sudo apt-get install libavformat-dev: This library provides a way to
code and decode audio and video streams.

4. sudo apt-get install ffmpeg: This library provides a way to transcode
audio and video streams.

5. sudo apt-get install libcv2.4 libcvaux2.4 libhighgui2.4: This
command shows the basic OpenCV libraries. Note the number in the
command. This will almost certainly change as new versions of OpenCV
become available. If 2.4 does not work, either try 3.0 or search on Google for
the latest version of OpenCV.

6. sudo apt-get install python-opencv: This is the Python development
kit needed for OpenCV, as you are going to use Python.

7. sudo apt-get install opencv-doc: This command will show the
documentation for OpenCV just in case you need it.

8. sudo apt-get install libcv-dev: This command shows the header file
and static libraries to compile OpenCV.

9. sudo apt-get install libcvaux-dev: This command shows more
development tools for compiling OpenCV.

10. sudo apt-get install libhighgui-dev: This is another package that
provides header files and static libraries to compile OpenCV.

11. Now type cp -r /usr/share/doc/opencv-doc/examples /home/pi/.
This will copy all the examples to your home directory.

Now that OpenCV is installed, you can try one of the examples. Go to the /
home/pi/examples/python directory. If you do an ls, you'll see a file named
camera.py. This file has the most basic code for capturing and displaying a
stream of picture images. Before you run the code, make a copy of it using cp
camera.py myCamera.py. Then, edit the file to look like the following:

Chapter 6

[549]

The two lines that you'll add are the two with the cv.SetCaptureProperty;
they will set the resolution of the image to 360 by 240. To run this program,
you'll need to either have a display and keyboard connected to Raspberry
Pi or use vncviewer. When you run the code, you should see the window
displayed, as shown in the following image:

If you are using RaspiCam and don't see an image, you will need to run
the sudo modprobe bcm2835-v4l2 command. Now you can see the
outside world!

Adding Vision to Your Biped

[550]

You may want to play with the resolution to find the optimum settings for
your application. Bigger images are great—they give you a more detailed
view on the world—but they also take up significantly more processing
power. You'll play with this more as you actually ask your system to do
some real image processing. Be careful if you are going to use vncserver to
understand your system performance, as this will significantly slow down
the update rate. An image that is twice the size (width/height) will involve
four times more processing. You can now use this capability to do a number
of impressive tasks.

Edge Detection and OpenCv
Fortunately, one of the examples in the OpenCV Python set is a program named
edge.py. The following is that file (with blank lines removed):

Chapter 6

[551]

This program uses the Canny image detection algorithm implemented by OpenCV to
find the edges in any image. For more on the Canny edge algorithm, refer to http://
dasl.mem.drexel.edu/alumni/bGreen/www.pages.drexel.edu/_weg22/can_
tut.html or http://opencv-python-tutroals.readthedocs.org/en/latest/
py_tutorials/py_imgproc/py_canny/py_canny.html. You captured an image
earlier; you can use this program to look at the edges and to also see how setting
a different threshold can show more/less edges. Run the program with the image
captured earlier and you will see the following:

http://dasl.mem.drexel.edu/alumni/bGreen/www.pages.drexel.edu/_weg22/can_tut.html
http://dasl.mem.drexel.edu/alumni/bGreen/www.pages.drexel.edu/_weg22/can_tut.html
http://dasl.mem.drexel.edu/alumni/bGreen/www.pages.drexel.edu/_weg22/can_tut.html
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_imgproc/py_canny/py_canny.html
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_imgproc/py_canny/py_canny.html

Adding Vision to Your Biped

[552]

You will notice that there is a threshold slide bar setting at the top. If you adjust
this threshold up, it will find fewer edges—the edges that have a larger threshold.
The picture for a setting of 30 is as follows:

Chapter 6

[553]

Now you can see how this process could be translated to an image of a blank floor
and a barrier. The following is such an image with a possible barrier:

You can calibrate the distance to the object based on the pixels and the position of
the camera.

Adding Vision to Your Biped

[554]

Color and motion finding
OpenCV and your webcam can also track colored objects. This will be useful if
you want your biped to follow a colored object. OpenCV makes this amazingly
simple by providing some high-level libraries that can help us with this task.
To accomplish this, you'll edit a file to look something like what is shown in
the following screenshot:

Let's look specifically at the code that makes it possible to isolate the colored ball:

• hue_img = cv.CvtColor(frame, cv.CV_BGR2HSV): This line creates a new
image that stores the image as per the values of hue (color), saturation, and
value (HSV), instead of the red, green, and blue (RGB) pixel values of the
original image. Converting to HSV focuses our processing more on the color,
as opposed to the amount of light hitting it.

Chapter 6

[555]

• threshold_img = cv.InRangeS(hue_img, low_range, high_range): The
low_range, high_range parameters determine the color range. In this case,
it is an orange ball, so you want to detect the color orange. For a good tutorial
on using hue to specify color, refer to http://www.tomjewett.com/colors/
hsb.html. Also, http://www.shervinemami.info/colorConversion.html
includes a program that you can use to determine your values by selecting a
specific color.

Run the program. If you see a single black image, move this window, and
you will expose the original image window as well. Now, take your target
(in this case, an orange ping-pong ball) and move it into the frame. You
should see something like what is shown in the following screenshot:

http://www.tomjewett.com/colors/hsb.html
http://www.tomjewett.com/colors/hsb.html
http://www.shervinemami.info/colorConversion.html

Adding Vision to Your Biped

[556]

Notice the white pixels in our threshold image showing where the ball is
located. You can add more OpenCV code that gives the actual location of the
ball. In our original image file of the ball's location, you can actually draw a
rectangle around the ball as an indicator. Edit the file to look as follows:

The added lines look like the following:

• hue_image = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV): This line
creates a hue image out of the RGB image that was captured. Hue is easier
to deal with when trying to capture real world images; for details, refer to
http://www.bogotobogo.com/python/OpenCV_Python/python_opencv3_
Changing_ColorSpaces_RGB_HSV_HLS.php.

• threshold_img = cv2.inRange(hue_image, low_range, high_range):
This creates a new image that contains only those pixels that occur between
the low_range and high_range n-tuples.

http://www.bogotobogo.com/python/OpenCV_Python/python_opencv3_Changing_ColorSpaces_RGB_HSV_HLS.php
http://www.bogotobogo.com/python/OpenCV_Python/python_opencv3_Changing_ColorSpaces_RGB_HSV_HLS.php

Chapter 6

[557]

• contour, hierarchy = cv2.findContours(threshold_img, cv2.RETR_
TREE, cv2.CHAIN_APPROX_SIMPLE): This finds the contours, or groups of
like pixels, in the threshold_img image.

• center = contour[0]: This identifies the first contour.
• moment = cv2.moments(center): This finds the moment of this group of

pixels.
• (x,y),radius = cv2.minEnclosingCircle(center): This gives the x and

y locations and the radius of the minimum circle that will enclose this group
of pixels.

• center = (int(x),int(y)): Find the center of the x and y locations.
• radius = int(radius): The integer radius of the circle.
• img = cv2.circle(frame,center,radius,(0,255,0),2): Draw a circle

on the image.

Now that the code is ready, you can run it. You should see something that looks like
the following screenshot:

You can now track your object. You can modify the color by changing the low_range
and high_range n-tuples. You also have the location of your object, so you can use
the location to do path planning for your robot.

Adding Vision to Your Biped

[558]

Summary
Your biped robot can walk, use sensors to avoid barriers, plans its path, and even
see barriers or target. In the final chapter, you'll learn to connect your biped robot
remotely so that you can control it and monitor it, without the wires.

[559]

Accessing Your Biped
Remotely

Now that your biped is up and running, you'll want to able to send it on its way
into the world, but still be able to monitor and control it remotely. This will help
you in development as well as deployment and will open up all sorts of new
scenarios and applications.

In this chapter, you will learn:

• How to add a wireless LAN dongle to your biped robot and set it up
as a wireless access point

• How to control your biped robot using this access and a joystick
• How to use the wireless LAN connection to get First Person Video (FPV)

back so that you can see what your biped robot is seeing

Adding a wireless dongle and creating an
access point
In Chapter 1, Configuring and Programming Raspberry Pi, you learned how to add a
wireless dongle and have the Raspberry Pi connect to your wireless network. This is
a useful way to access the Raspberry Pi, but if you want to take your robot outside
the coverage of your wireless LAN, you'll want to set it up as an access point.

Accessing Your Biped Remotely

[560]

The first step in doing this is to install the wireless LAN device. One device that is
inexpensive and easy to configure is the Edimax Wifi Adapter device (the product
information is available at http://www.edimax.com/edimax/merchandise/
merchandise_detail/data/edimax/global/wireless_adapters_n150/ew-
7811un). It is available at most online electronic outlets:

Once you have installed the device and booted Raspberry Pi, type lsusb command.
This should display something like the following screenshot:

http://www.edimax.com/edimax/merchandise/merchandise_detail/data/edimax/global/wireless_adapters_n150/ew-7811un)
http://www.edimax.com/edimax/merchandise/merchandise_detail/data/edimax/global/wireless_adapters_n150/ew-7811un)
http://www.edimax.com/edimax/merchandise/merchandise_detail/data/edimax/global/wireless_adapters_n150/ew-7811un)

Chapter 7

[561]

The Edimax device is listed in the set of devices connected to the USB port.
Now, execute the following steps:

1. Make sure that you have hostapd installed by typing sudo apt-get
install hostapd. This application is a background application that
controls the configuration of wireless on Raspberry Pi.

2. The default version of hostapd unfortunately does not support the Edimax
chipset by default. So, you'll need to download a version that does by typing
wget http://www.daveconroy.com/wp3/wp-content/uploads/2013/07/
hostapd.zip.

3. Now, unzip this file by typing unzip hostapd.zip.
4. Make a backup of your original hostapd application by typing sudo mv /

usr/sbin/hostapd /usr/sbin/hostapd.bak. This way, you'll have it if you
want to restore it later.

5. Now, move the new version of hostapd to the proper directory by typing
sudo mv hostapd /usr/sbin/hostapd.edimax.

6. For the next step, type sudo ln -sf /usr/sbin/hostapd.edimax /usr/
sbin/hostapd; this will create a soft link to the new file so that it will be
executed as the hostapd application.

7. Type sudo chown root.root /usr/sbin/hostapd, and this will change the
owner and the group of this file to root.

8. Type sudo chmod 755 /usr/sbin/hostapd to make this file executable to
the owner.

9. Now you will want to configure your wireless access point. Edit the file by
typing sudo emacs /etc/hostapd/hostapd.conf so that it looks like the
following screenshot:

Accessing Your Biped Remotely

[562]

10. You'll now want to edit the /etc/network/interfaces file, as shown in the
following screenshot:

11. This will set the address of the access point to 10.10.0.1.
12. Now, type sudo apt-get install isc-dhcp-server to install a dhcp

server so that devices that connect to it will be able to get a dynamic address.
13. Now, edit the /etc/dhcp/dhcpd.conf and add these lines:

Chapter 7

[563]

14. The next step is to edit the /etc/default/hostapd so that this will all start
at power up by adding this line:

15. Now type the following two commands; sudo update-rc.d hostapd
enable and sudo update-rc.d isc-dhcp-server enable and then
reboot the Raspberry Pi.

You should now be able to connect to your Raspberry Pi as a wireless access point.

Adding a joystick remote control
Now that you can access your Raspberry Pi from a remote computer, you can
SSH, just like you may have been doing with a wired connection, issue commands,
and even control the biped using the remote computer. This introduces a number
of different possibilities, one of which is to control your project with a joystick
connected to the remote computer.

To add the game controller, you'll need to first find a game controller that can
connect to your computer. If you are using Microsoft Windows as the OS on the host
computer, pretty much any USB controller that can connect to a PC will work. The
same type of controller also works if you are using Linux for the remote computer.
In fact, you can use another Raspberry Pi as the remote computer.

Accessing Your Biped Remotely

[564]

Since the joystick will be connected to the remote computer, you'll need to run two
programs: one on the remote computer and one on the Raspberry Pi on the biped
robot. You'll also need a way to communicate between them. In the following
example, you'll use the wireless LAN interface and a client-server model of
communication. You'll run the server program on the remote computer, and the
client program on the Raspberry Pi on the biped robot.

For an excellent tutorial of this type of model and how it is used in a
gaming application, see http://www.raywenderlich.com/38732/
multiplayer-game-programming-for-teens-with-python.

The first step is to simply plug in your USB game controller to the remote computer.
Once you have the controller connected to the remote computer, you'll need to create
a Python program on the Raspberry Pi that will take the signals sent from the remote
computer client and send the control to the server running on Raspberry Pi so that
you can send the correct signals to the servos on your biped.

Before you do this, you'll need to install the libraries on Raspberry Pi that will allow
this to work. The first is a library called pygame. Install this by typing sudo apt-
get install python-pygame. You'll also need to install a set of Python install tools
by typing sudo apt-get install python-setuptools. Then, you'll need a LAN
communication layer library called PodSixNet. This will allow the two applications,
the client on the remote computer and the server running on Raspberry Pi, to
communicate. To install this, follow the instructions at http://mccormick.cx/
projects/PodSixNet/. Now you are ready to create the program on Raspberry Pi
on the biped. The first part of the program is the Python functions from the program
you created in Chapter 3, Motion for the Biped. In this section, you'll create a class
called QuadGame. This class will take the inputs from the game controller connected
to the server and turn them into commands that will be sent to the servo controller
for your biped robot.

The following is a table of those controls:

Joystick control Biped control
Button 2 Robot home position
Button 1 Robot turn right
Button 3 Robot turn left
Joystick Up Robot walk forward

http://www.raywenderlich.com/38732/multiplayer-game-programming-for-teens-with-python
http://www.raywenderlich.com/38732/multiplayer-game-programming-for-teens-with-python
http://mccormick.cx/projects/PodSixNet/
http://mccormick.cx/projects/PodSixNet/

Chapter 7

[565]

Now, the following is the initial part of the code, the Python import statements:

And the following is the BoxesGame class, the code that will respond to the joystick:

Accessing Your Biped Remotely

[566]

This is the interesting part of the code. This code takes the input from the remote
computer and translates it into action. The first if statement determines what type
of data is being sent from the remote computer with the joystick attached. It can be
a button press, where data["type"] == 10, and then the statement data["info"]
["button"] == 2 determines that button 2 has been pressed. In this case, this
will send commands that will cause the robot to go to the home position. If the
if data["type"] == 7:, then this is a joystick event, and the if data["info"]
["value"] < - 0.9, then this will determine that the joystick is in the up position
and the robot should move forward.

The following is the final part of the joystick controller aspect of the client program
for completeness:

This final piece of code initializes the game loop, which loops while taking the
inputs, sends them to the servo controller, and on to the flight controller.

You'll also need a server program running on the remote computer that will take
the signals from the game controller and send them to the client. You'll be writing
this code in Python using Python version 2.7, which can be installed from here.
Additionally, you'll need to install the pygame library. If you are using Linux on the
remote computer, then type sudo apt-get install python-pygame. If you are
using Microsoft Windows on the remote machine, then follow the instructions at
http://www.pygame.org/download.shtml.

http://www.pygame.org/download.shtml

Chapter 7

[567]

You'll also need the LAN communication layer described previously. You can find
a version that will run on Microsoft Windows or Linux at http://mccormick.cx/
projects/PodSixNet/. The following is a listing of the server code in two parts:

http://mccormick.cx/projects/PodSixNet/
http://mccormick.cx/projects/PodSixNet/

Accessing Your Biped Remotely

[568]

This first part creates three classes:

1. The first, class ClientChannel, establishes a communication channel for
your project.

2. The second, class BoxServer, sets up a server so that you can communicate
the joystick action to the Raspberry Pi on the biped.

3. Finally, the third class, Game , just initializes a game that contains everything
you'll need.

The following is the latter part of the code:

Chapter 7

[569]

This part of the code initializes the joystick so that all the controls can be sent to the
biped's Raspberry Pi.

You'll need to run these programs on both computers, entering the Internet address
of the remote computer connected to the joystick. The following is what running
the program on that computer will look like, before running the program on the
remote computer:

And the following is what the program will look like when run on the Raspberry Pi
and connected to the robot:

Accessing Your Biped Remotely

[570]

Finally, the following is what the program will look like on the remote computer
when the robot's Raspberry Pi is up and connected:

Now you can control you robot remotely using the joystick!

Adding the capability to see remotely
Your biped can now get information from your remote computer and respond to
joystick key presses, but you may want to be able to see what the biped sees from
its webcam. This is straightforward to configure with a webcam, vncserver, and the
capability you used in Chapter 6, Adding Vision to Your Biped. Using this method, you
can easily get a picture of what your biped is seeing, and it should be something like
the following:

Chapter 7

[571]

Now you can both see where your robot is going and control it via a joystick.

Summary
That's it, but really it is only the beginning. Your robot has some basic motions
and some basic control capability, but now you should also have the knowledge
and skills to take your biped robot much further. You can teach it how to dance,
follow gestures, and almost anything that you can imagine.

[573]

Bibliography
This Learning Path is packaged keeping your journey in mind. It includes content
from the following Packt products:

• Raspberry Pi By Example, Ashwin Pajankar and Arush Kakkar
• Building a Home Security System with Raspberry Pi, Matthew Poole
• Raspberry Pi Robotics Essentials, Richard Grimmett

Thank you for buying

Raspberry Pi: Amazing
Projects from Scratch

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Preface
	Table of Contents
	Module 1: Raspberry Pi By Example
	Chapter 1: Introduction to Raspberry Pi and Python
	Single-board computers
	Raspberry Pi
	Operating systems
	Setting up the Raspberry Pi
	Getting started with Python
	Summary

	Chapter 2: Minecraft Pi
	Introduction to Minecraft Pi
	Playing Minecraft Pi
	Python programming for Minecraft Pi
	Summary

	Chapter 3: Building Games
with PyGame
	Introducing PyGame
	Installing PyGame
	Drawing a binary fractal tree
	Building a snake game
	Summary

	Chapter 4: Working with a Webcam and Pi Camera
	Working with webcams
	Working with the Pi Camera and NoIR Camera modules
	Summary

	Chapter 5: Introduction to GPIO Programming
	Introducing GPIO pins
	Building an LED Blinker
	Installing PiGlow
	Using PiGlow
	Building a binary clock
	Summary

	Chapter 6: Creating Animated Movies with Raspberry Pi
	Introducing stop-motion animation
	Setting up the prerequisites
	Rendering the video
	Summary

	Chapter 7: Introduction to
Computer Vision
	Introducing Computer Vision
	Introducing OpenCV
	Setting up Pi for Computer Vision
	Introducing NumPy
	Working with images
	Working with Webcam using OpenCV
	Retrieving image properties
	Arithmetic operations on images
	Splitting and merging image color channels
	Logical operations on images
	Colorspaces and conversions
	Tracking in real time based on color
	Summary

	Chapter 8: Creating Your Own Motion Detection and Tracking System
	Thresholding images
	Noise
	Morphological transformations on images
	Motion detection and tracking
	Summary

	Chapter 9: Grove Sensors and the Raspberry Pi
	Introducing the GrovePi
	Setting up the GrovePi
	Displaying the weather
	Intruder detection system
	Summary

	Chapter 10: Internet of Things with the Raspberry Pi
	Introducing the Internet of Things
	Installing the Twitter API for Python
	Setting up a SQLite database in Python
	Building a tweeting weather station
	Summary

	Chapter 11: Build Your Own Supercomputer with Raspberry Pi
	Introducing a Pi-based supercomputer
	Installing and configuring MPICH2 and MPI4PY
	Setting up the Raspberry Pi cluster
	Setting up SSH access from the host to the client
	Running code in parallel
	Performance benchmarking of the cluster
	Introducing N-Body simulations
	Installing and running GalaxSee
	Summary

	Chapter 12: Advanced Networking with Raspberry Pi
	Introducing DHCP
	A few networking concepts
	Configuring a Raspberry Pi to act as a DHCP server
	Introducing Domain Naming System (DNS)
	Setting up a DNS server on the Pi
	Configuring the setup for a web server
	Automating node discovery in a network
	Summary

	Chapter 13: Setting Up a Web Server on the Raspberry Pi
	Introducing and installing Apache on Raspbian
	Installing PHP and MySQL
	Installing WordPress
	Summary

	Chapter 14: Network Programming in Python with the Pi
	The basics of sockets
	The difference between TCP and UDP
	Looking back
	A Telnet client in Python
	A chat program
	References
	Exercise
	Summary

	Chapter 15: Newer Raspberry Pi Models
	The Raspberry Pi Zero
	The Raspberry Pi 3

	Module 2: Building a Home Security System with Raspberry Pi
	Chapter 1: Setting Up Your Raspberry Pi
	Which flavor of Pi?
	Preparing the SD card
	Setting up your Pi
	Summary

	Chapter 2: Connecting Things to
Your Pi with GPIO
	Prerequisites
	Say hello to the GPIO
	Getting acquainted with the GPIO
	The most elaborate light switch in
the world
	Summary

	Chapter 3: Extending Your Pi to
Connect More Things
	Prerequisites
	The I2C bus
	Give me power
	Building an I2C expander
	Using ready-made expansion boards
	Summary

	Chapter 4: Adding a Magnetic
Contact Sensor
	Prerequisites
	The working of magnetic contact sensors
	Setting up the I2C port expander
	Connecting our magnetic contact sensor
	Monitoring the sensor
	Anti-tamper circuits
	Getting into the zone
	Summary

	Chapter 5: Adding a Passive Infrared Motion Sensor
	Prerequisites
	Passive infrared sensors explained
	Give me power (again)
	Connecting our PIR motion sensor
	12V alarm zone circuits
	Wireless PIR motion sensors
	Logging detection data
	Summary

	Chapter 6: Adding Cameras to Our Security System
	Prerequisites
	The Raspberry Pi camera module
	Be a video star
	You have new mail
	Night vision
	Using USB cameras
	The multicamera setup
	Summary

	Chapter 7: Building a Web-Based Control Panel
	Installing the web server
	Being in control
	The master configuration file
	Creating the web page
	Remote access to our control panel
	Summary

	Chapter 8: A Miscellany of Things
	Arming and disarming the system
	Driving inductive loads
	Beyond intrusion
	Remote administration for our
Raspberry Pi
	Summary

	Chapter 9: Putting It All Together
	Alarm system diagram
	Designing the control scripts
	Building the control script
	Automatically starting the system
	Preserving the SD card
	Conclusion
	Summary

	Module 3: Raspberry Pi Robotics Essentials
	Chapter 1: Configuring and Programming Raspberry Pi
	Configuring Raspberry Pi – the brain of your robot
	Installing the operating system
	Adding a remote graphical user interface
	Programming on Raspberry Pi
	Summary

	Chapter 2: Building the Biped
	Building robots that can walk
	How servo motors work
	Building the biped platform
	Using a servo controller to control the servos
	Communicating with the servo controller with a PC
	Connecting the servo controller to the Raspberry Pi
	Creating a program to control your biped
	Summary

	Chapter 3: Motion for the Biped
	A basic stable pose
	A basic walking motion
	A basic turn for the robot
	Summary

	Chapter 4: Avoiding Obstacles
Using Sensors
	Connecting Raspberry Pi to an infrared sensor
	Connecting Raspberry Pi to a USB sonar sensor
	Summary

	Chapter 5: Path Planning
and Your Biped
	Connecting a digital compass to the Raspberry Pi
	Accessing the compass programmatically
	Dynamic path planning for your robot
	Summary

	Chapter 6: Adding Vision to Your Biped
	Installing a camera on your biped robot
	Downloading and installing OpenCV – a fully featured vision library
	Edge Detection and OpenCv
	Color and motion finding
	Summary

	Chapter 7: Accessing Your Biped Remotely
	Adding a wireless dongle and creating an access point
	Adding a joystick remote control
	Adding the capability to see remotely
	Summary

	Biblography

