

Python	Programming	with	Raspberry	Pi

	
			
	
	

	
		

Build	small	yet	powerful	robots	and	automation	systems	with	Raspberry	Pi	Zero

		
	
	
	

	

Sai	Yamanoor
Srihari	Yamanoor

	

							BIRMINGHAM	-	MUMBAI

Python	Programming	with	Raspberry	Pi

Copyright	©	2017	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in
any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its	dealers	and	distributors	will	be	held	liable	for
any	damages	caused	or	alleged	to	be	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and
products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot
guarantee	the	accuracy	of	this	information.

First	published:	April	2017

Production	reference:	1260417

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78646-757-7

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Sai	Yamanoor
Srihari	Yamanoor

Copy	Editors

Safis	Editing

Dipti	Mankame

Reviewer

Ian	McAlpine

Project	Coordinator

Judie	Jose

Commissioning	Editor

Vijin	Boricha

Proofreader

Safis	Editing

Acquisition	Editor

Rahul	Nair

Indexer

Pratik	Shirodkar

Content	Development	Editor

Abhishek	Jadhav

Graphics

Kirk	D'Penha

Technical	Editor

Gaurav	Suri

Production	Coordinator

Shantanu	N.	Zagade

About	the	Authors

Sai	Yamanoor	is	an	embedded	systems	engineer	working	for	a	private	startup	school	in	the	San	Francisco
Bay	Area,	where	he	builds	devices	that	helps	students	achieve	their	full	potential.	He	completed	his
graduate	studies	in	Mechanical	Engineering	at	Carnegie	Mellon	University,	Pittsburgh	PA,	and	his
undergraduate	work	in	Mechatronics	Engineering	from	Sri	Krishna	College	of	Engineering	and
Technology,	Coimbatore,	India.	His	interests,	deeply	rooted	in	DIY	and	ppen	software	and	hardware
cultures,	include	developing	gadgets	and	apps	that	improve	Quality	of	Life,	Internet	of	Things,
crowdfunding,	education,	and	new	technologies.	In	his	spare	time,	he	plays	with	various	devices	and
architectures	such	as	the	Raspberry	Pi,	Arduino,	Galileo,	Android	devices	and	others.	Sai	blogs	about	his
adventures	with	Mechatronics	at	the	aptly	named	Mechatronics	Craze	blog	at	http://mechatronicscraze.wordpress.c
om/.	You	can	find	his	project	portfolios	at	http://saiyamanoor.com.

This	book	is	Sai's	second	title	and	he	has	earlier	published	a	book	titled	Raspberry	Pi	Mechatronics
Projects.

I	would	like	to	thank	my	parents	for	encouraging	me	in	all	my	endeavors	and	for	making	me	what	I	am
today.	I	am	thankful	to	my	brother	who	has	helped	me	shape	my	career	all	these	years.	I	would	like	to
sincerely	apologize	to	Balaji	Raghavendra	for	the	mixup	with	the	first	book	and	sincerely	thank	him
for	his	reviews	and	advice	on	the	first	book.	I	am	also	thankful	to	the	team	at	Packt,	especially
Abhishek	who	was	patient	and	understanding	under	trying	circumstances.

Srihari	Yamanoor	is	a	mechanical	engineer,	working	on	medical	devices,	sustainability,	and	robotics	in
the	San	Francisco	Bay	Area.	He	completed	his	graduate	studies	in	Mechanical	Engineering	at	Stanford
University,	and	his	undergraduate	studies	in	Mechanical	Engineering	from	PSG	College	of	Technology,
Coimbatore,	India.	He	is	severally	certified	in	SolidWorks,	Simulation,	Sustainable	Design,	PDM	as	well
as,	in	quality	and	reliability	engineering	and	auditing.	His	interests	have	a	wide	range,	from	DIY,
crowdfunding,	AI,	travelling,	and	photography	to	gardening	and	ecology.	In	his	spare	time,	he	is	either
traveling	across	California,	dabbling	in	nature	photography,	or	at	home,	tinkering	with	his	garden	and
playing	with	his	cats.

I	have	many	people	to	thank	for	any	and	all	success	in	my	life,	one	of	the	culminations	being	this
second	book.	I	start	with	my	parents	for	always	making	sure	that	I	put	my	career	and	education	first.
My	brother	Sai	Yamanoor,	is	the	main	reason	I	have	my	name	on	not	one,	but	two	books!	I	have	to
thank	several	professors	and	teachers,	not	the	least	of	whom	are	Kenneth	Waldron,	Dr.	Radhakrishnan,
Dr.	R.	Rudramoorthy,	Dr.	K.A.	Jagadeesh,	Cyril	"Master",	and	the	Late	"Master"	Williams.	Of	course,
I'd	be	remiss,	if	I	didn’t	acknowledge	my	mentors,	Russ	Sampson,	James	Stubbs,	Mukund	Patel,	and
Anna	Tamura.	Then,	I	have	my	dearest	friends,	Patrick	Nguyen,	Anna	Jao,	Andrew	Eib,	Vishnu	Prasad

http://mechatronicscraze.wordpress.com/
http://saiyamanoor.com

Ramachandran,	and	David	Ma,	who	have	put	up	with	my	quirks	over	the	last	several	years,	patiently
offering	advice	and	helping	me	weather	several	storms.	I	too	would	like	to	apologize	to	Balaji
Raghavendra,	who	was	left	out	of	the	acknowledgements	from	our	last	book,	purely	by	accident,	and
nevertheless,	inexcusably	so.	Without	your	help,	we	would	not	have	been	able	to	complete	that	book
and	start	on	this	one.	I	second	Sai	in	recognizing	Abhishek	Jadhav’s	immeasurable	patience	and
guidance	throughout	the	course	of	the	publication	of	this	book.	Last	but	not	the	least,	there	are	my
beloved	felines,	the	glaring	that	keeps	me	going	–	Bob,	Gi-Ve,	Fish	Bone	and	Saxi.
We	would	like	to	acknowledge	that	100%	of	the	proceeds	in	revenue	and	profits	of	the	authors,	is	being
turned	over	to	worthy	non-profits.

About	the	Reviewer

Ian	McAlpine	had	his	first	introduction	to	computers	was	his	school's	Research	Machines	RML-380Z
and	his	physics	teacher's	Compukit	UK101.	That	was	followed	by	a	Sinclair	ZX81	and	then	a	BBC	Micro
Model	A,	which	he	still	has	to	this	day.	That	interest	resulted	in	a	MEng	degree	in	Electronic	Systems
Engineering	from	Aston	University	and	an	MSc	degree	in	Information	Technology	from	the	University	of
Liverpool.	Ian	is	currently	a	Senior	Product	Expert	in	the	BI	&	Analytics	Competence	Centre	at	SAP	Labs
in	Vancouver,	Canada.

The	introduction	of	the	Raspberry	Pi	rekindled	his	desire	to	"tinker",	but	also	provided	an	opportunity	to
give	back	to	the	community.	Consequently	Ian	was	a	very	active	volunteer	for	3	years	on	The	MagPi,	a
monthly	magazine	for	the	Raspberry	Pi,	which	you	can	read	online	or	download	for	free	at	http://www.raspberr
ypi.org/magpi/.	He	also	holds	an	amateur	radio	license	(callsign	VE7FTO)	and	is	a	communications	volunteer
for	his	local	community	Emergency	Management	Office.	He	was	a	technical	reviewer	for	Packt	books,
such	as	Raspberry	Pi	Cookbook	for	Python	Programmers,	Raspberry	Pi	Projects	for	Kids,	and
Raspberry	Pi	2	Server	Essentials.

I	would	like	to	thank	my	darling	wife,	Louise,	and	my	awesome	kids	Emily	and	Molly	for	allowing	me
to	disappear	into	my	"office"…and	for	training	our	dog	to	fetch	me!

http://www.raspberrypi.org/magpi/

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub	files
available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print	book	customer,	you	are
entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a	range	of	free
newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and	eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to	all	Packt	books	and
video	courses,	as	well	as	industry-leading	tools	to	help	you	plan	your	personal	development	and	advance
your	career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?

Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

	

Customer	Feedback
	

Thanks	for	purchasing	this	Packt	book.	At	Packt,	quality	is	at	the	heart	of	our	editorial	process.	To	help	us
improve,	please	leave	us	an	honest	review	on	this	book's	Amazon	page	at	https://www.amazon.com/dp/1786467577.

If	you'd	like	to	join	our	team	of	regular	reviewers,	you	can	e-mail	us	at	customerreviews@packtpub.com.	We
award	our	regular	reviewers	with	free	eBooks	and	videos	in	exchange	for	their	valuable	feedback.	Help
us	be	relentless	in	improving	our	products!

	

	

https://www.amazon.com/dp/1786467577

Table	of	Contents

	

Preface
What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support
Downloading	the	example	code

Downloading	the	color	images	of	this	book

Errata

Piracy

Questions

1.	 Getting	Started	with	Python	and	the	Raspberry	Pi	Zero
Let's	get	started!

Things	needed	for	this	book
Buying	the	Raspberry	Pi	Zero

Introduction	to	the	Raspberry	Pi	Zero
The	features	of	the	Raspberry	Pi	Zero

The	setup	of	the	Raspberry	Pi	Zero
Soldering	the	GPIO	headers

Enclosure	for	the	Raspberry	Pi	Zero

OS	setup	for	the	Raspberry	Pi
micro	SD	card	preparation

Let's	learn	Python!

The	Hello	World	example
Setting	up	your	Raspberry	Pi	Zero	for	Python	programming

IDLE's	interactive	tool

The	text	editor	approach

Launching	the	Python	interpreter	via	the	Linux	Terminal

Executing	Python	scripts	using	the	Linux	Terminal

The	print()	function

The	help()	function

Summary

2.	 Arithmetic	Operations,	Loops,	and	Blinky	Lights
Hardware	required	for	this	chapter

Arithmetic	operations

Bitwise	operators	in	Python

Logical	operators

Data	types	and	variables	in	Python

Reading	inputs	from	the	user
The	formatted	string	output

The	str.format()	method

An	exercise	for	the	reader

Another	exercise	for	the	reader

Concatenating	strings

Loops	in	Python
A	for	loop

Indentation
Nested	loops

A	while	loop

Raspberry	Pi's	GPIO
Blinky	lights

Code

The	applications	of	GPIO	control

Summary

3.	 Conditional	Statements,	Functions,	and	Lists
Conditional	statements

An	if-else	statement

if-elif-else	statement
Breaking	out	of	loops

The	applications	of	conditional	statements:	executing	tasks	using	GPIO
Breaking	out	a	loop	by	counting	button	presses

Functions	in	Python
Passing	arguments	to	a	function:

Returning	values	from	a	function

The	scope	of	variables	in	a	function

GPIO	callback	functions
DC	motor	control	in	Python

Some	mini-project	challenges	for	the	reader

Summary

4.	 Communication	Interfaces
UART	–	serial	port

Raspberry	Pi	Zero's	UART	port
Setting	up	the	Raspberry	Pi	Zero	serial	port

Example	1	–	interfacing	a	carbon	dioxide	sensor	to	the	Raspberry	Pi

Python	code	for	serial	port	communication

I2C	communication

Example	2	–	PiGlow

Installing	libraries
Example

Example	3	–	Sensorian	add-on	hardware	for	the	Raspberry	Pi
I2C	drivers	for	the	lux	sensor

Challenge

The	SPI	interface
Example	4	–	writing	to	external	memory	chip

Challenge	to	the	reader

Summary

5.	 Data	Types	and	Object-Oriented	Programming	in	Python
Lists

Operations	that	could	be	performed	on	a	list
Append	element	to	list:

Remove	element	from	list:

Retrieving	the	index	of	an	element

Popping	an	element	from	the	list

Counting	the	instances	of	an	element:

Inserting	element	at	a	specific	position:
Challenge	to	the	reader

Extending	a	list

Clearing	the	elements	of	a	list

Sorting	the	elements	of	a	list

Reverse	the	order	of	elements	in	list

Create	copies	of	a	list

Accessing	list	elements

Accessing	a	set	of	elements	within	a	list

List	membership

Let's	build	a	simple	game!

Dictionaries

Tuples

Sets

OOP	in	Python
Revisiting	the	student	ID	card	example

Class

Adding	methods	to	a	class

Doc	strings	in	Python

self

Speaker	controller
Light	control	daemon

Summary

6.	 File	I/O	and	Python	Utilities
File	I/O

Reading	from	a	file
Reading	lines

Writing	to	a	file

Appending	to	a	file
seek

Read	n	bytes

r+
Challenge	to	the	reader

The	with	keyword

configparser
Challenge	to	the	reader

Reading/writing	to	CSV	files
Writing	to	CSV	files

Reading	from	CSV	files

Python	utilities
The	os	module

Checking	a	file's	existence

Checking	for	a	folder's	existence

Deleting	files

Killing	a	process

Monitoring	a	process

The	glob	module
Challenge	to	the	reader

The	shutil	module

The	subprocess	module

The	sys	module

Summary

7.	 Requests	and	Web	Frameworks
The	try/except	keywords

try...except...else

try...except...else...finally

Connecting	to	the	Internet	–	web	requests
The	application	of	requests	–	retrieving	weather	information

The	application	of	requests	–	publishing	events	to	the	Internet

Flask	web	framework
Installing	Flask

Building	our	first	example

Controlling	appliances	using	the	Flask	framework

Summary

8.	 Awesome	Things	You	Could	Develop	Using	Python
Image	processing	using	a	Raspberry	Pi	Zero

OpenCV
The	verification	of	the	installation

A	challenge	to	the	reader

Installing	the	camera	to	the	Raspberry	Zero

Speech	recognition

Automating	routing	tasks

Improving	daily	commute
A	challenge	to	the	reader

Project	challenge

Improving	your	vocabulary
A	challenge	to	the	reader

Project	challenge

Logging

Threading	in	Python

PEP8	style	guide	for	Python
Verifying	PEP8	guidelines

Summary

9.	 Lets	Build	a	Robot!
Components	of	the	robot

Setting	up	remote	login
Changing	the	password

Enabling	SSH	access

Chassis	setup
Motor	driver	and	motor	selection

Preparing	the	motor	driver	circuit

Raspberry	Pi	Zero	and	motor	driver	assembly
Raspberry	Pi	Zero	and	motor	driver	assembly

Robot	Power	supply	setup

Setting	up	the	motor	power	supply
Using	the	Raspberry	Pi	Zero's	5V	power	supply

Using	an	external	power	supply

Testing	the	motors
Motor	driver	detection

Detecting	motor	driver

Motor	test
Dependencies

Camera	setup
Verification	of	camera	function

The	web	interface

Camera	setup	for	the	web	interface

Buttons	for	robot	control

Troubleshooting	tips

Project	enhancements

Summary

10.	 Home	Automation	Using	the	Raspberry	Pi	Zero
Voice	activated	personal	assistant

Installing	requisite	packages

How	does	it	work?

Setting	up	the	audio	tools
Connecting	the	speaker

Connecting	the	microphone

Houndify

Building	voice	commands
Adding	a	button

Web	framework	based	appliance	control/dashboard
Building	the	web	dashboard

Personal	Health	Improvement—Sitting	is	the	new	smoking
Installing	requisite	software	packages

Getting	access	keys	for	Fitbit	client

Fitbit	API	Test
Building	the	visual	aid

Smart	lawn	sprinkler

Summary

11.	 Tips	and	Tricks
Change	your	Raspberry	Pi's	password

Updating	your	OS

Setting	up	your	development	environment
SSH	access	via	Windows

SSH	access	via	Linux/macOS

Transferring	files	to/from	your	Pi
WinSCP

Mac/Linux	environment

Git

Command-line	text	editors

Graphical	text	editors

SSH	aliases	(on	Mac/Linux	Terminals)

Saving	SSH	sessions	on	PuTTY

VNC	access	to	Raspberry	Pi
The	RUN	switch	of	the	Raspberry	Pi	Zero	board

GPIO	pin	mapping
Stackable	breadboard

Summary

Preface
The	Raspberry	Pi	represents	the	best	in	innovation	in	computer	science,	education,	entertainment,	hobby
hacking,	and	several	other	categories	that	you	can	classify	the	device	family	into.	Even	as	this	book	is
entering	publication,	the	Raspberry	Pi	family	of	products	have	become	the	third	best	selling	computers	of
all	time.	It	is	anyone’s	guess	that	with	the	continuing	innovation	coming	out	of	the	Raspberry	Pi
Foundation	and	the	thousands	of	people	across	the	planet	constantly	demonstrating	newer	and	better
examples	innovative	solutions	with	the	various	flavors	of	Raspberry	Pi,	what	new	heights	this	product
line	might	reach!

One	of	the	main	goals	of	the	Raspberry	Pi	is	affordability.	And	the	purpose	of	this	book	is	to	allow	the
beginner	to	learn	Programming	in	Python,	as	well	as	manipulating	hardware.	The	reader	may	have
worked	a	little	bit	on	hardware,	and	a	little	bit	on	programming,	and	want	to	strengthen	skills	in	either
area.	The	reader	may	also	just	be	interested	in	doing	more	projects	with	the	Pi	Zero	in	Python,	and	of
course,	some	of	the	projects	in	this	book,	briefly	highlighted	below	might	be	of	interest.

The	book	starts	off	with	some	warm	up	examples,	helping	develop	a	familiarity	with	the	Raspberry	Pi
environment,	and	the	projects	increase	in	variety	and	complexity	as	the	book	progresses.	While,	readers
who	have	advanced	a	bit	before	approaching	the	book	can	skip	a	few	chapters,	we	recommend	beginners
progress	through	all	chapters,	since	the	concepts	build	on	top	of	each	other.

What	this	book	covers
Chapter	1,	Getting	Started	with	Python	and	the	Raspberry	Pi	Zero,	introduces	the	Raspberry	Pi	Zero	and
the	Python	programming	language,	its	history,	and	its	features.	We	will	set	up	the	Raspberry	Pi	for	Python
development	and	write	the	first	program.

Chapter	2,	Arithmetic	Operations,	Loops,	and	Blinky	Lights,	walks	through	the	arithmetic	operations	in
Python	and	loops	in	Python.	In	the	second	half	of	the	chapter,	we	will	discuss	the	Raspberry	Pi	Zero’s
GPIO	interface	and	then	learn	to	blink	an	LED	using	a	GPIO	pin.

Chapter	3,	Conditional	Statements,	Functions,	and	Lists,	discusses	the	types	of	conditional	statements,
variables,	and	logical	operators	in	Python.	We	will	also	discuss	functions	in	Python.	Then,	we	will	learn
to	write	a	function	that	is	used	to	control	DC	motors	using	the	Raspberry	Pi	Zero.

Chapter	4,	Communication	Interfaces,	covers	all	the	communication	interfaces	available	on	the	Raspberry
Pi	Zero.	This	includes	the	I2C,	UART,	and	the	SPI	interface.	These	communication	interfaces	are	widely
used	to	interface	sensors.	Hence,	we	will	demonstrate	the	operation	of	each	interface	using	a	sensor	as	an
example.

Chapter	5,	Data	Types	and	Object-Oriented	Programming	in	Python,	discusses	object-oriented
programming	in	Python	and	the	advantages	of	object-oriented	programming.	We	will	discuss	this	using	a
practical	example.

Chapter	6,	File	I/O	and	Python	Utilities,	discusses	reading	and	writing	to	files.	We	discuss	creating	and
updating	config	files.	We	will	also	discuss	some	utilities	available	in	Python.

Chapter	7,	Requests	and	Web	Frameworks,	discusses	libraries	and	frameworks	that	enable	retrieving	data
from	the	Web.	We	will	discuss	an	example,	fetching	local	weather	information.	We	will	also	discuss
running	a	web	server	on	the	Raspberry	Pi	Zero.

Chapter	8,	Awesome	Things	You	Could	Develop	Using	Python,	discusses	libraries	and	frameworks	that
enable	retrieving	data	from	the	web.	We	will	discuss	examples	such	as	fetching	the	local	weather
information.	We	will	also	discuss	running	a	web	server	on	the	Raspberry	Pi	Zero.

Chapter	9,	Let's	Build	a	Robot!,	shows	how	we	built	an	indoor	robot	using	the	Raspberry	Pi	Zero	as	the
controller	and	documented	our	experience	as	a	step-by-step	guide.	We	wanted	to	demonstrate	the
awesomeness	of	the	combination	of	Python	and	the	Raspberry	Pi	Zero’s	peripherals.

Chapter	10,	Home	Automation	Using	The	Raspberry	Pi	Zero,	discusses	four	projects,	a	voice-activated
personal	assistant,	a	web	framework-based	appliance	control,	a	physical	activity	motivation	tool,	and	a
smart	lawn	sprinkler.	Through	these	projects	we	provide	more	examples	of	the	new	hardware	and
programming	implementations.

Chapter	11,	Tips	and	Tricks,	concludes	the	book	with	useful	hardware	and	software	tips	and	shortcuts	that
will	help	you	as	you	step	beyond	the	concepts	and	exercises	in	this	book	to	implement	your	own	projects

and	solutions,	or	simply	explore	the	areas	of	programming	and	hardware	hacking	as	a	hobby	and	a	source
of	entertainment.

	

What	you	need	for	this	book
	

The	following	hardware	is	recommended:

A	laptop	computer,	with	any	OS
Raspberry	Pi	Zero
A	microSD	card,	either	8	GB	or	16	GB
A	USB	keyboard
A	USB	mouse
A	display	with	HDMI	input
A	USB	Wi-Fi	card
Power	supply,	minimum	500	mA.
Display	cables
Other	accessories,	as	required	to	complete	the	various	projects	in	the	book

	

	

Who	this	book	is	for
	

This	book	is	primarily	aimed	at	hobbyists	and	makers.	So,	some	basic	exposure	to	programming,
hardware	and	the	Linux	OS	is	assumed.	Even	without	exposure	to	these	areas,	it	is	possible	to	follow
along	and	benefit	from	the	book.	Wherever	possible,	we	have	tried	our	best	to	point	you	to	free,	open
and/or	cost	effective	resources	to	follow	along	with	the	projects	in	the	book.

.

	

	

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds	of	information.
Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,	dummy
URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	"The	remove()	method	finds	the	first	instance
of	the	element	(passed	an	argument)	and	removes	it	from	the	list."

A	block	of	code	is	set	as	follows:

try:	

									input_value	=	int(value)	

						except	ValueError	as	error:		

									print("The	value	is	invalid	%s"	%	error)

Any	command-line	input	or	output	is	written	as	follows:

				sudo	pip3	install	schedule

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for	example,	in
menus	or	dialog	boxes,	appear	in	the	text	like	this:	"Select	the	A8	Serial	option	from	the	drop-down
menu."

Warnings	or	important	notes	appear	in	a	box	like	this.

Tips	and	tricks	appear	like	this.

	

Reader	feedback
	

Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book-what	you
liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles	that	you	will	really	get
the	most	out	of.
To	send	us	general	feedback,	simply	e-mail	feedback@packtpub.com,	and	mention	the	book's	title	in	the	subject
of	your	message.
If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a
book,	see	our	author	guide	at	www.packtpub.com/authors.

	

	

http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to	get	the	most
from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at	http://www.packtpub.com.	If	you
purchased	this	book	elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the	latest	version
of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

You	can	download	the	latest	code	samples	from	the	code	repository	belonging	to	this	book	from	the
author's	code	repository	at	https://github.com/sai-y/pywpi.	You	can	find	additional	resources	including	bonus
projects	at	http://pywithpi.com.

The	code	bundle	for	the	book	is	also	hosted	on	Packt's	GitHub	repository	at	https://github.com/PacktPublishing/Pyth
on-Programming-with-Raspberry-Pi-Zero.	We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and
videos	available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/sai-y/pywpi
http://pywithpi.com
https://github.com/PacktPublishing/Python-Programming-with-Raspberry-Pi-Zero
https://github.com/PacktPublishing/

Downloading	the	color	images	of	this	book
We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams	used	in	this	book.
The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You	can	download	this	file
from	https://www.packtpub.com/sites/default/files/downloads/PythonProgrammingwithRaspberryPiZero_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/PythonProgrammingwithRaspberryPiZero_ColorImages.pdf

	

Errata
	

Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.	If	you	find
a	mistake	in	one	of	our	books-maybe	a	mistake	in	the	text	or	the	code-we	would	be	grateful	if	you	could
report	this	to	us.	By	doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve	subsequent
versions	of	this	book.	If	you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.
Once	your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be	uploaded	to	our
website	or	added	to	any	list	of	existing	errata	under	the	Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to	https://www.packtpub.com/books/content/support	and	enter	the	name	of
the	book	in	the	search	field.	The	required	information	will	appear	under	the	Errata	section.

	

	

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At	Packt,	we	take
the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across	any	illegal	copies	of	our
works	in	any	form	on	the	Internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable	content.

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at	questions@packtpub.com,	and	we	will
do	our	best	to	address	the	problem.

	

Getting	Started	with	Python	and	the	Raspberry
Pi	Zero
	

Over	the	past	few	years,	the	Raspberry	Pi	family	of	single	board	computers	has	proved	to	be	a
revolutionary	set	of	tools	for	learning,	fun,	and	several	serious	projects!	People	over	the	world	are	now
equipped	with	the	means	to	learn	computer	architecture,	computer	programming,	robotics,	sensory
systems,	home	automation,	and	much	more,	with	ease	and	without	blowing	a	hole	in	their	wallets.	This
book	hopes	to	help	you,	the	reader,	in	the	journey	to	learn	programming	in	Python	through	the	Raspberry
Pi	Zero.	Among	programming	languages,	Python	is	simultaneously	one	of	the	simplest	and	easiest	to	learn
as	well	as	one	of	the	most	versatile	languages.	Join	us	over	the	next	few	chapters	as	we	first	familiarize
ourselves	with	the	Raspberry	Pi	Zero,	a	unique	and	excitingly	simple	and	cheap	computer	and	Python,
gradually	building	projects	of	increasing	challenge	and	complexity.

In	this	chapter,	we	will	discuss	the	following:

Introduction	to	the	Raspberry	Pi	Zero	and	its	features
The	setup	of	the	Raspberry	Pi	Zero
An	introduction	to	the	Python	programming	language
The	setup	of	the	development	environment	and	writing	the	first	program

	

Let's	get	started!
In	the	first	chapter,	we	will	learn	about	the	Raspberry	Pi	Zero,	set	things	up	for	learning	Python	with	this
book,	and	write	our	first	piece	of	code	in	Python.

	

Things	needed	for	this	book
	

The	following	items	are	needed	for	this	book.	The	sources	provided	are	just	a	suggestion.	The	reader	is
welcome	to	buy	them	from	an	equivalent	alternative	source:

Name Link Cost	(in
USD)

Raspberry	Pi	Zero	(v1.3	or	higher) (The	purchase	of	the	Raspberry	Pi	would	be
discussed	separately) $5.00

USB	hub http://amzn.com/B003M0NURK $7.00
approx

USB	OTG	cable https://www.adafruit.com/products/1099 $2.50

Micro	HDMI	to	HDMI	adapter	cable https://www.adafruit.com/products/1358 $6.95

USB	Wi-Fi	adapter http://amzn.com/B00LWE14TO $9.45

Micro	USB	power	supply http://amzn.com/B00DZLSEVI $3.50

Electronics	starter	kit	(or	similar) http://amzn.com/B00IT6AYJO $25.00

2x20	headers https://www.adafruit.com/products/2822 $0.95

NOOBS	micro	SD	card	or	a	blank	8
GB	micro	SD	card

http://amzn.com/B00ENPQ1GK $13.00

Raspberry	Pi	camera	module	(optional) http://a.co/6qWiJe6 $25.00

Raspberry	Pi	camera	adapter	(optional) https://www.adafruit.com/product/3170 $5.95

The	other	items	needed	for	this	include	a	USB	mouse,	USB	keyboard,	and	a	monitor	with	the	HDMI
output	or	DVI	output.	We	will	also	need	an	HDMI	cable	(or	DVI	to	HDMI	cable	if	the	monitor	has	an	DVI
output).	Some	vendors	such	as	the	Pi	Hut	sell	the	Raspberry	Pi	Zero	accessories	as	a	kit	(for	example,	http
s://thepihut.com/collections/raspberry-pi-accessories/products/raspberry-pi-zero-essential-kit).

Apart	from	the	components	mentioned	in	this	section,	we	will	also	discuss	certain
features	of	the	Raspberry	Pi	Zero	and	Python	programming	using	additional	components
such	as	sensors	and	GPIO	expanders.	These	components	are	optional	but	definitely
useful	while	learning	the	different	aspects	of	Python	programming.

The	electronics	starter	kit	mentioned	in	the	bill	of	materials	is	just	an	example.	Feel	free
to	order	any	beginners	electronics	kit	(that	contains	a	similar	mix	of	electronic
components).

	

http://amzn.com/B003M0NURK
https://www.adafruit.com/products/1099
https://www.adafruit.com/products/1358
http://amzn.com/B00LWE14TO
http://amzn.com/B00DZLSEVI
http://amzn.com/B00IT6AYJO
https://www.adafruit.com/products/2822
http://amzn.com/B00ENPQ1GK
http://a.co/6qWiJe6
https://www.adafruit.com/product/3170
https://thepihut.com/collections/raspberry-pi-accessories/products/raspberry-pi-zero-essential-kit

	

Buying	the	Raspberry	Pi	Zero
The	Raspberry	Pi	Zero	is	sold	by	distributors	such	as	the	Newark	element14,	Pi	Hut,	and	Adafruit.	At
the	time	of	writing	this	book,	we	encountered	difficulties	in	buying	a	Raspberry	Pi	Zero.	We	recommend
monitoring	websites	such	as	www.whereismypizero.com	to	find	out	when	the	Raspberry	Pi	Zero	becomes
available.	We	believe	that	it	is	rare	to	locate	the	Pi	Zero	because	of	its	popularity.	We	are	not	aware	if
there	might	be	an	abundant	stock	of	the	Raspberry	Pi	Zero	in	the	future.	The	examples	discussed	in	this
book	are	also	compatible	with	the	other	flavors	of	the	Raspberry	Pi	(for	example,	Raspberry	Pi	3).

Pi	Zero	availability	information	provided	by	www.whereismypizero.com

While	purchasing	the	Raspberry	Pi	Zero,	make	sure	that	the	board	version	is	1.3	or	higher.	The	board
version	is	printed	on	the	backside	of	the	board	(the	example	of	this	is	shown	in	the	following	picture).
Verify	that	the	board	version	using	the	seller's	product	description	before	purchase:

Raspberry	Pi	board	version

http://www.whereismypizero.com

	

Introduction	to	the	Raspberry	Pi	Zero
	

The	Raspberry	Pi	Zero	is	a	small	computer	that	costs	about	$5	and	smaller	than	a	credit	card,	designed	by
the	Raspberry	Pi	Foundation	(a	nonprofit	organization	with	the	mission	to	teach	computer	science	to
students,	especially	those	who	lack	of	access	to	the	requisite	tools).	The	Raspberry	Pi	Zero	was	preceded
by	the	Raspberry	Pi	Models	A	and	B.	A	detailed	history	of	the	Raspberry	Pi	and	the	different	models	of
the	Raspberry	Pi	is	available	on	http://elinux.org/RPi_General_History.	The	Raspberry	Pi	Zero	was	released	on
26th	November	2015	(Thanksgiving	Day).

A	fun	fact	for	the	readers	is	that	one	of	the	authors	of	this	book,	Sai	Yamanoor,	drove	from
San	Francisco	to	Los	Angeles	(700+	miles	for	a	round	trip	in	one	day)	on	the	day	after
Thanksgiving	to	buy	the	Raspberry	Pi	Zero	from	a	local	store.

	

	

http://elinux.org/RPi_General_History

The	features	of	the	Raspberry	Pi	Zero
The	Raspberry	Pi	Zero	is	powered	by	a	1	GHz	BCM2835	processor	and	512	MB	RAM.	BCM2835	is	a
System	on	a	Chip	(SoC)	developed	by	Broadcom	semiconductors.	SoC	is	one	where	all	the	components
required	to	run	a	computer	are	available	on	a	single	chip	(for	example,	the	BCM2835	includes	CPU,
GPU,	peripherals	such	as	USB	interface).	The	documentation	for	the	BCM2835	SoC	is	available	at	https://
www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/README.md.

The	Raspberry	Pi	Zero	board	version	1.3

Let's	briefly	discuss	the	features	of	the	Raspberry	Pi	Zero	using	the	preceding	picture	marked	with
numbered	rectangles:

1.	 The	mini	HDMI	interface:	The	mini	HDMI	interface	is	used	to	connect	a	display	to	the	Raspberry
Pi	Zero.	The	HDMI	interface	can	be	used	to	drive	a	display	of	maximum	resolution	of	1920x1080
pixels.

2.	 USB	On-The-Go	interface:	In	the	interest	of	keeping	things	low	cost,	the	Raspberry	Pi	Zero	comes
with	a	USB	On-The-Group	(OTG)	interface.	This	interface	enables	interfacing	USB	devices	such
as	a	mouse	and	keyboard.	Using	a	USB	OTG	to	USB-A	female	converter.	We	need	a	USB	hub	to
interface	any	USB	accessory.

3.	 Power	supply:	The	micro-B	USB	adapter	is	used	to	power	the	Raspberry	Pi	zero,	and	it	draws
about	a	maximum	of	200	mA	of	current.

4.	 micro	SD	card	slot:	The	Raspberry	Pi's	operating	system	(OS)	resides	in	a	micro	SD	card	and	the
bootloader	on	the	processor	loads	it	upon	powering	up.

5.	 GPIO	interface:	The	Raspberry	Pi	Zero	comes	with	a	40-pin	general	purpose	input/output
(GPIO)	header	that	is	arranged	in	two	rows	of	20	pins.	The	Raspberry	Pi	Zero's	GPIO	interface	is
shipped	without	a	soldered	header.	The	GPIO	header	is	used	to	interface	sensors,	control	actuators,
and	interface	appliances.	The	GPIO	header	also	consists	of	communication	interfaces	such	as	UART
and	I2C.	We	will	discuss	the	GPIO	in	detail	in	the	second	chapter.

6.	 RUN	and	TV	pins:	There	are	two	pins	labeled	as	RUN	below	the	GPIO	header.	These	pins	are	used

https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/README.md

to	reset	the	Raspberry	Pi	using	a	small	tactile	switch/push	button.	The	TV	pin	is	used	to	provide	a
composite	video	output.

7.	 Camera	interface:	Raspberry	Pi	Zero	boards	(version	1.3	or	higher)	come	with	a	camera	interface.
This	enables	interfacing	a	camera	designed	by	the	Raspberry	Pi	Foundation	(https://www.raspberrypi.org/pro
ducts/camera-module-v2/).

All	these	features	of	the	Raspberry	Pi	have	enabled	them	to	be	used	by	hobbyists	in	projects	involving
home	automation,	holiday	decorations,	and	more,	limited	only	by	your	imagination.	Scientists	have	used
them	in	experiments,	including	tracking	of	bees,	tracking	wildlife,	perform	computation-intensive
experiments.	Engineers	have	used	the	Raspberry	Pi	to	build	robots,	mine	bitcoins,	check	Internet	speeds
to	send	Twitter	messages	when	the	speeds	are	slow,	and	order	pizza!

https://www.raspberrypi.org/products/camera-module-v2/

The	setup	of	the	Raspberry	Pi	Zero
In	this	section,	we	will	solder	some	headers	onto	the	Raspberry	Pi,	load	the	OS	onto	a	micro	SD	card,
and	fire	the	Raspberry	Pi	Zero	for	the	first	example.

Soldering	the	GPIO	headers
In	this	book,	we	will	discuss	the	different	aspects	of	Python	programming	using	the	Raspberry	Pi's	GPIO
pins.	The	Raspberry	Pi	Zero	ships	without	the	GPIO	header	pins.	Let's	go	ahead	and	solder	the	GPIO
pins.	We	have	also	uploaded	a	video	tutorials	to	this	book's	website	that	demonstrates	soldering	the
headers	onto	the	Raspberry	Pi	Zero.

As	mentioned	before,	the	Raspberry	Pi's	GPIO	section	consists	of	40	pins.	This	is	arranged	in	two	rows
of	20	pins	each.	We	will	need	either	two	sets	of	20-pin	male	headers	or	a	20-pin	double-row	male
header.	These	are	available	from	vendors	such	as	Digikey	and	Mouser.	The	headers	for	the	Raspberry	Pi
are	also	sold	as	a	kit	by	vendors	like	the	Pi	Hut	(https://thepihut.com/collections/raspberry-pi-zero/products/raspberry-pi-zero-
essential-kit).

2x20	headers	for	the	Raspberry	Pi	Zero

In	order	to	solder	the	headers	onto	the	Raspberry	Pi	Zero,	arrange	the	headers	on	a	breadboard,	as	shown
in	the	following	figure:

https://thepihut.com/collections/raspberry-pi-zero/products/raspberry-pi-zero-essential-kit

Arranging	the	headers	to	solder	onto	the	Raspberry	Pi

Perform	the	following	steps:

1.	 Arrange	the	Raspberry	Pi	on	top	of	the	headers	upside	down.
2.	 Gently	hold	the	Raspberry	Pi	(to	make	sure	that	the	headers	are	positioned	correctly	while

soldering)	and	solder	the	headers	onto	the	Raspberry	Pi.

3.	 Inspect	the	board	to	ensure	that	the	headers	are	soldered	properly	and	carefully	remove	the
Raspberry	Pi	Zero	off	the	breadboard.

Headers	soldered	onto	the	Raspberry	Pi

We	are	all	set	to	make	use	of	the	GPIO	pins	in	this	book!	Let's	move	on	to	the	next	section.

Soldering	the	headers	onto	the	Raspberry	Pi	using	a	breadboard	might	damage	the
breadboard	if	the	right	temperature	setting	isn't	used.	The	metal	contacts	of	the
breadboard	might	permanently	expand	resulting	in	permanent	damage.	Training	in	basic
soldering	techniques	is	crucial,	and	there	are	plenty	of	tutorials	on	this	topic.

Enclosure	for	the	Raspberry	Pi	Zero
Setting	up	a	Raspberry	Pi	zero	inside	an	enclosure	is	completely	optional	but	definitely	useful	while
working	on	your	projects.	There	are	a	plenty	of	enclosures	sold	by	vendors.	Alternatively,	you	may
download	an	enclosure	design	from	Thingiverse	and	3D	print	them.	We	found	this	enclosure	to	suit	our
needs	at	http://www.thingiverse.com/thing:1203246	as	it	provides	access	to	the	GPIO	headers.	3D	printing	services
such	as	3D	Hubs	(https://www.3dhubs.com/)	would	print	the	enclosure	for	a	charge	of	$9	via	a	local	printer.
Alternately,	you	can	also	use	predesigned	project	enclosures	or	design	one	that	can	be	constructed	using
plexiglass	or	similar	materials.

Raspberry	Pi	Zero	in	an	enclosure

http://www.thingiverse.com/thing:1203246
https://www.3dhubs.com/

	

OS	setup	for	the	Raspberry	Pi
	

Let's	go	ahead	and	prepare	a	micro	SD	card	to	set	up	the	Raspberry	Pi	Zero.	In	this	book,	we	will	be
working	with	the	Raspbian	OS.	The	Raspbian	OS	has	a	wide	user	base,	and	the	OS	is	officially
supported	by	the	Raspberry	Pi	Foundation.	Hence,	it	is	easier	to	find	support	on	forums	while	working	on
projects	as	more	people	are	familiar	with	the	OS.

	

	

micro	SD	card	preparation
If	you	had	purchased	a	micro	SD	card	that	comes	pre-flashed	with	the	Raspbian	New	Out	of	the	Box
Software	(NOOBS)	image,	you	may	skip	the	micro	SD	card	preparation:

1.	 The	first	step	is	downloading	the	Raspbian	NOOBS	image.	The	image	can	be	downloaded	from	https:/
/www.raspberrypi.org/downloads/noobs/.

Downloads	the	Raspberry	Pi	NOOBS	image

2.	 Format	your	SD	card	using	the	SD	Card	Formatter	tool.	Make	sure	that	the	FORMAT	SIZE
ADJUSTMENT	is	ON	as	shown	in	the	snapshot	(available	from	https://www.sdcard.org/downloads/formatter_4/i
ndex.html):

Format	the	SD	card

3.	 Extract	the	downloaded	ZIP	file	and	copy	the	contents	of	the	file	to	the	formatted	micro	SD	card.

https://www.raspberrypi.org/downloads/noobs/
https://www.sdcard.org/downloads/formatter_4/index.html

4.	 Set	up	the	Raspberry	Pi	(not	necessarily	in	the	same	order):

Interface	the	HDMI	cable	from	the	monitor	via	the	mini	HDMI	interface
USB	hub	via	the	USB	OTG	interface	of	the	Raspberry	Pi	Zero
Micro-USB	cable	to	power	the	Raspberry	Pi	Zero
Plug	in	a	Wi-Fi	adapter,	a	keyboard,	and	a	mouse	to	the	Raspberry	Pi	Zero

Raspberry	Pi	Zero	with	the	keyboard,	the	mouse,	and	the	Wi-Fi	adapter

5.	 Power	up	the	Raspberry	Pi,	and	it	should	automatically	flash	the	OS	onto	the	SD	card	and	launch	the
desktop	at	startup.

6.	 The	first	step	after	startup	is	changing	the	Raspberry	Pi's	password.	Go	to	menu	(the	Raspberry	Pi
symbol	located	at	the	top-left	corner)	and	select	Raspberry	Pi	Configuration	under	Preferences.

Launch	Raspberry	Pi	configuration

7.	 Under	the	System	tab,	change	the	password:

Change	the	password

8.	 Under	the	Localisation	tab,	change	the	locale,	time	zone,	and	keyboard	settings	based	upon	your
region.

9.	 When	the	installation	is	complete,	connect	the	Raspberry	Pi	Zero	to	the	wireless	network	(using	the
wireless	tab	on	the	top	right).

Raspberry	Pi	desktop	upon	launch

10.	 Let's	launch	the	command-line	terminal	of	the	Raspberry	Pi	to	perform	some	software	updates.

Launching	the	command-line	terminal

11.	 Run	the	following	commands	from	the	command-line	terminal:

sudo	apt-get	update

							sudo	apt-get	upgrade

The	OS	upgrade	should	complete	within	a	couple	of	minutes.

The	Raspberry	Pi	Foundation	hosts	a	video	on	its	website	that	provides	a	visual	aid	to	set
up	the	Raspberry	Pi.	This	video	is	available	at	https://vimeo.com/90518800.

https://vimeo.com/90518800

	

Let's	learn	Python!
	

Python	is	a	high-level	programming	language	invented	by	Guido	Van	Rossum.	It	is	advantageous	to	learn
Python	using	the	Raspberry	Pi	for	the	following	reasons:

It	has	a	very	simple	syntax	and	hence	is	very	easy	to	understand.
It	offers	the	flexibility	of	implementing	ideas	as	a	sequence	of	scripts.	This	is	helpful	to	hobbyists	to
implement	their	ideas.
There	are	Python	libraries	for	the	Raspberry	Pi's	GPIO.	This	enables	easy	interfacing	of
sensors/appliances	with	the	Raspberry	Pi.
Python	is	used	in	a	wide	range	of	applications	by	technology	giants	such	as	Google.	These
applications	range	from	simple	robots	to	personal	AI	assistance	and	control	modules	in	space.
The	Raspberry	Pi	has	a	growing	fan	base.	This	combined	with	the	vast	user	base	of	Python	means
that	there	is	no	scarcity	of	learning	resources	or	support	for	projects.

In	this	book,	we	will	learn	Python	version	3.x.	We	will	learn	each	major	aspect	of	Python	programming
using	a	demonstrative	example.	Find	out	the	awesomeness	of	Python	by	learning	to	do	things	by	yourself!
Keep	in	mind	that	there	is	Python	2.x,	and	it	has	subtle	differences	from	Python	3.x.

If	you	are	comfortable	with	the	Linux	command-line	terminal,	we	recommend	setting	up
your	Raspberry	Pi	for	remote	development,	as	shown	in	Chapter	11,	Tips	and	Tricks.

	

	

	

The	Hello	World	example
	

Since	we	are	done	setting	up	the	Raspberry	Pi,	let's	get	things	rolling	by	writing	our	first	piece	of	code	in
Python.	While	learning	a	new	programming	language,	it	is	customary	to	get	started	by	printing	Hello	World
on	the	computer	screen.	Let's	print	the	following	message:	I	am	excited	to	learn	Python	programming	with	the
Raspberry	Pi	Zero	using	Python.

In	this	book,	we	will	learn	Python	using	the	Integrated	Development	and	Learning	Environment
(IDLE)	tool.	We	chose	IDLE	for	the	following	reasons:

The	tool	is	installed	and	shipped	as	a	package	in	the	Raspbian	OS	image.	No	additional	installation
is	required.
It	is	equipped	with	an	interactive	tool	that	enables	performing	checks	on	a	piece	of	code	or	a
specific	feature	of	the	Python	language.
It	comes	with	a	text	editor	that	enables	writing	code	according	to	the	conventions	of	the	Python
programming	language.	The	text	editor	provides	a	color	code	for	different	elements	of	a	Python
script.	This	helps	in	writing	a	Python	script	with	relative	ease.
The	tool	enables	a	step-by-step	execution	of	any	code	sample	and	identify	problems	in	it.

	

	

Setting	up	your	Raspberry	Pi	Zero	for	Python
programming
	

Before	we	get	started,	let's	go	ahead	and	set	up	the	Raspberry	Pi	Zero	to	suit	our	needs:

1.	 Let's	add	a	shortcut	to	IDLE3	(for	developing	in	Python	3.x)	on	the	Raspberry	Pi's	desktop.	Under
the	Programming	submenu	(located	at	the	top-left	corner	of	your	Raspberry	Pi	Zero's	desktop),	right-
click	on	Python	3	(IDLE)	and	click	on	Add	to	desktop.	This	adds	a	shortcut	to	the	IDLE	tool	on	your
desktop	thus	making	it	easily	accessible.

Add	shortcut	to	IDLE3	to	the	Raspberry	Pi's	desktop

2.	 In	order	to	save	all	the	code	samples,	let's	go	ahead	and	create	a	folder	named	code_samples	on	the
Raspberry	Pi's	desktop.	Right-click	on	your	desktop	and	create	a	new	folder.

	

print("I	am	excited	to	learn	Python	with	the	Raspberry	Pi	Zero")

3.	 This	should	print	the	following	to	the	interactive	command-line	tool's	screen:

We	did	it!	We	wrote	a	single	line	that	prints	out	a	line	of	text	to	the	Raspberry	Pi's	screen.

	

The	text	editor	approach
	

The	command-line	tool	is	useful	for	test	coding	logic,	but	it	is	neither	practical	nor	elegant	to	write	code
using	the	interactive	tool.	It	is	easier	to	write	a	bunch	of	code	at	a	time	and	test	it.	Let's	repeat	the	same
example	using	IDLE's	text	editor:

1.	 Launch	IDLE's	text	editor	(in	IDLE,	File	|	New	File),	enter	the	hello	world	line	discussed	in	the
previous	section	and	save	it	as	helloworld.py.

2.	 Now,	the	code	could	be	executed	by	either	pressing	the	F5	key	or	clicking	on	Run	Module	from	the
drop-down	menu	Run,	and	you	will	get	the	output	as	shown	in	the	following	figure:

	

	

Launching	the	Python	interpreter	via	the	Linux
Terminal
It	is	also	possible	to	use	the	Python	interpreter	via	the	Linux	Terminal.	Programmers	mostly	use	this	to
test	their	code	or	refer	to	the	Python	documentation	tool,	pydoc.	This	approach	is	convenient	if	the
readers	plan	to	use	a	text	editor	other	than	IDLE:

1.	 Launch	the	Raspberry	Pi's	command-line	terminal	from	the	desktop	toolbar.

Launching	the	command-line	terminal

2.	 Type	the	command,python3	and	press	Enter.	This	should	launch	Python	3.x	on	the	terminal.
3.	 Now,	try	running	the	same	piece	of	code	discussed	in	the	previous	section:

print("I	am	excited	to	learn	Python	with	the	Raspberry	Pi	Zero")

This	would	give	the	following	screenshot	as	the	result:

The	result	should	be	similar	to	that	of	the	previous	two	sections	The	Python	interpreter	in	the
Linux	Terminal	may	be	closed	by	typing	exit()	and	pressing	the	return	key

cd	/home/pi/Desktop/code_samples

python3	helloworld.py

python3	/home/pi/Desktop/code_samples/hello_world.py

We	did	it!	We	just	wrote	our	first	piece	of	code	and	discussed	different	ways	to	execute
the	code.

The	print()	function
In	our	first	helloworld	example,	we	discussed	printing	something	on	the	screen.	We	used	the	print()	function
to	obtain	our	result.	In	Python,	a	function	is	a	code	block	that	executes	a	set	of	defined	tasks.	The	print()
function	is	a	part	of	Python's	standard	library	that	prints	any	combination	of	alphanumeric	characters	that
is	passed	as	an	argument	between	the	quotes.	The	print()	function	is	used	to	print	information	to	the
screen.	It	is	especially	helpful	while	trying	to	debug	the	code.	In	this	example,	the	print()	function	was
used	to	print	a	message	on	the	screen.

In	this	chapter,	the	function	print()	executed	the	string	I	am	excited	to	learn	Python	programming	with	the	Raspberry
Pi	Zero	(we	will	discuss	strings	in	the	later	section	of	this	book).	It	is	also	possible	to	write	custom
function	to	execute	a	repetitive	task	required	by	the	user.

Similarly,	the	exit()	function	executes	the	predefined	task	of	exiting	the	Python	interpreter	at	the	user's
call.

The	help()	function
While	getting	started,	it	is	going	to	be	difficult	to	remember	the	syntax	of	every	function	in	Python.	It	is
possible	to	refer	to	a	function's	documentation	and	syntax	using	the	help	function	in	Python.	For	example,
in	order	to	find	the	use	of	the	print	function	in	Python,	we	can	call	help	on	the	command-line	terminal	or
the	interactive	shell	as	follows:	help(print)

This	would	return	a	detailed	description	of	the	function	and	its	syntax:

	

Summary
	

That's	it!	In	this	chapter,	we	set	up	the	Raspberry	Pi	Zero	to	write	our	first	program	in	Python.	We	also
explored	different	options	to	write	a	Python	program.	You	are	now	ready	and	on	your	way	to	learn	Python
with	the	Raspberry	Pi.	In	the	next	chapter,	we	will	dig	deeper	and	learn	more	about	the	GPIO	pins	while
executing	a	simple	project	that	makes	LEDs	blink.

	

	

	

Arithmetic	Operations,	Loops,	and	Blinky	Lights
	

In	the	previous	chapter,	we	discussed	printing	a	line	of	text	on	the	screen.	In	this	chapter,	we	will	review
arithmetic	operations	and	variables	in	Python.	We	will	also	discuss	strings	and	accepting	user	inputs	in
Python.	You	will	learn	about	the	Raspberry	Pi's	GPIO	and	its	features	and	write	code	in	Python	that	makes
an	LED	blink	using	the	Raspberry	Pi's	GPIO.	We	will	also	discuss	a	practical	application	of	controlling
the	Raspberry	Pi's	GPIO.

In	this	chapter,	we	will	cover	the	following	topics:

Arithmetic	operations	in	Python
Bitwise	operators	in	Python
Logical	operators	in	Python
Data	types	and	variables	in	Python
Loops	in	Python
Raspberry	Pi	Zero's	GPIO	interface.

	

	

Hardware	required	for	this	chapter
	

In	this	chapter,	we	will	be	discussing	examples	where	we	will	be	controlling	the	Raspberry	Pi's	GPIO.
We	will	need	a	breadboard,	jumper	wires,	LEDs,	and	some	resistors	(330	or	470	Ohms)	to	discuss	these
examples.

We	will	also	need	some	optional	hardware	that	we	will	discuss	in	the	last	section	of	this	chapter.

	

	

>>>123+456	
	579

>>>456-123	
	333	
	>>>123-456	
	-333

>>>123*456	
	56088

>>>456/22	
	20.727272727272727	
	>>>456/2.0	

228.0	
	>>>int(456/228)	
	2

>>>4%2	
	0	
	>>>3%2	
	1

>>>9//7	
	1	
	>>>7//3	
	2	
	>>>79//25	
	3

Bitwise	operators	in	Python
In	Python,	it	is	possible	to	perform	bit-level	operations	on	numbers.	This	is	especially	helpful	while
parsing	information	from	certain	sensors.	For	example,	Some	sensors	share	their	output	at	a	certain
frequency.	When	a	new	data	point	is	available,	a	certain	bit	is	set	indicating	that	the	data	is	available.
Bitwise	operators	can	be	used	to	check	whether	a	particular	bit	is	set	before	retrieving	the	datapoint	from
the	sensor.

If	you	are	interested	in	a	deep	dive	on	bitwise	operators,	we	recommend	getting	started	at	https://en.wikipedia.o
rg/wiki/Bitwise_operation.

Consider	the	numbers	3	and	2	whose	binary	equivalents	are	011	and	010,	respectively.	Let's	take	a	look	at
different	operators	that	perform	the	operation	on	every	bit	of	the	number:

The	AND	operator:	The	AND	operator	is	used	to	perform	the	AND	operation	on	two	numbers.	Try
this	using	the	Python	interpreter:

>>>3&2	

							2

This	is	equivalent	to	the	following	AND	operation:

0	1	1	&

			0	1	0

			0	1	0	(the	binary	representation	of	the	number	2)

The	OR	operator:	The	OR	operator	is	used	to	perform	the	OR	operation	on	two	numbers	as
follows:

>>>3|2	

							3

This	is	equivalent	to	the	following	OR	operation:

0	1	1	OR

			0	1	0

			0	1	1	(the	binary	representation	of	the	number	3)

The	NOT	operator:	The	NOT	operator	flips	the	bits	of	a	number.	see	the	following	example:

>>>~1	

							-2

In	the	preceding	example,	the	bits	are	flipped,	that	is,	1	as	0	and	0	as	1.	So,	the	binary	representation	of	1	is
0001	and	when	the	bitwise	NOT	operation	is	performed,	the	result	is	1110.	The	interpreter	returns	the	result
as	-2	because	negative	numbers	are	stored	as	their	two's	complement.	The	two's	complement	of	1	is	-2.

For	a	better	understanding	of	two's	complement	and	so	on,	we	recommend	reading	the
following	articles,	https://wiki.python.org/moin/BitwiseOperators	and	https://en.wikipedia.org/wiki/Two's_co
mplement.

https://en.wikipedia.org/wiki/Bitwise_operation
https://wiki.python.org/moin/BitwiseOperators
https://en.wikipedia.org/wiki/Two's_complement

The	XOR	operator:	An	exclusive	OR	operation	can	be	performed	as	follows:

>>>3^2	

							1

Left	shift	operator:	The	left	shift	operator	enables	shifting	the	bits	of	a	given	value	to	the	left	by	the
desired	number	of	places.	For	example,	bit	shifting	the	number	3	to	the	left	gives	us	the	number	6.	The
binary	representation	of	the	number	3	is	0011.	Left	shifting	the	bits	by	one	position	will	give	us	0110,
that	is,	the	number	6:

>>>3<<1	

							6

Right	shift	operator:	The	right	shift	operator	enables	shifting	the	bits	of	a	given	value	to	the	right	by
the	desired	number	of	places.	Launch	the	command-line	interpreter	and	try	this	yourself.	What
happens	when	you	bit	shift	the	number	6	to	the	right	by	one	position?

>>>3==3	
	True	
	>>>3==2	
	False

>>>3!=2	
	True	
	>>>2!=2	
	False

>>>3>2	
	True	
	>>>2>3	
	False

>>>2<3	
	True	
	>>>3<2	
	False

>>>4>=3	
	True	
	>>>3>=3	
	True	
	>>>2>=3	
	False

>>>2<=2	
	True	
	>>>2<=3	
	True	
	>>>3<=2	
	False

>>>name	=	'John	Smith'	
	>>>address	=	'123	Main	Street'

>>>age	=	29	
	>>>employee_id	=	123456	
	>>>height	=	179.5	

>>>zip_code	=	94560

>>>organ_donor	=	True

>>>a	=	c=	1	
	>>>b	=	a

>>>del(a)

There	are	other	data	types	in	Python,	including	lists,	tuples,	and	dictionaries.	We	will
discuss	this	in	detail	in	the	next	chapter.

Reading	inputs	from	the	user
In	the	previous	chapter,	we	printed	something	on	the	screen	for	the	user.	Now,	we	will	discuss	a	simple
program	where	we	ask	the	user	to	enter	two	numbers	and	the	program	returns	the	sum	of	two	numbers.	For
now,	we	are	going	to	pretend	that	the	user	always	provides	a	valid	input.

In	Python,	user	input	to	a	Python	program	can	be	provided	using	the	input()	function	(https://docs.python.org/3/libra
ry/functions.html#input):	var	=	input("Enter	the	first	number:	")

In	the	preceding	example,	we	are	making	use	of	the	input()	function	to	seek	the	user's	input	of	the	number.
The	input()	function	takes	the	prompt	("Enter	the	first	number:	")	as	an	argument	and	returns	the	user	input.	In
this	example,	the	user	input	is	stored	in	the	variable,	var.	In	order	to	add	two	numbers,	we	make	use	of	the
input()	function	to	request	user	to	provide	two	numbers	as	input:	var1	=	input("Enter	the	first	number:	")	
var2	=	input("Enter	the	second	number:	")	
total	=	int(var1)	+	int(var2)	
print("The	sum	is	%d"	%	total)

We	are	making	use	of	the	input()	function	to	seek	user	input	on	two	numbers.	In	this	case,	the	user	number
is	stored	in	var1	and	var2,	respectively.
The	user	input	is	a	string.	We	need	to	convert	them	into	integers	before	adding	them.	We	can	convert	a
string	to	an	integer	using	the	int()	function	(https://docs.python.org/3/library/functions.html#int).

The	int()	function	takes	the	string	as	an	argument	and	returns	the	converted	integer.	The	converted	integers
are	added	and	stored	in	the	variable,	total.	The	preceding	example	is	available	for	download	along	with
this	chapter	as	input_function.py.

If	the	user	input	is	invalid,	the	int()	function	will	throw	an	exception	indicating	that	an
error	has	occurred.	Hence,	we	assumed	that	user	inputs	are	valid	in	this	example.	In	a
later	chapter,	we	will	discuss	catching	exceptions	that	are	caused	by	invalid	inputs.

The	following	snapshot	shows	the	program	output:

The	input_function.py	output

https://docs.python.org/3/library/functions.html#input
https://docs.python.org/3/library/functions.html#int

print("The	sum	is	%d"	%	total)

print("The	sum	of	%d	and	%d	is	%d"	%	(var1,	var2,	total))

print("The	sum	of	3	and	2	is	{total}".format(total=5))

The	str.format()	method
The	format()	method	enables	formatting	the	string	using	braces	({})	as	placeholders.	In	the	preceding
example,	we	use	total	as	a	placeholder	and	use	the	format	method	of	the	string	class	to	fill	each	place
holder.

An	exercise	for	the	reader
Make	use	of	the	format()	method	to	format	a	string	with	more	than	one	variable.

Let's	build	a	console/command-line	application	that	takes	inputs	from	the	user	and	print	it	on	the	screen.
Let's	create	a	new	file	named	input_test.py,	(available	along	with	this	chapter's	downloads)	take	some	user
inputs	and	print	them	on	the	screen:

name	=	input("What	is	your	name?	")	

				address	=	input("What	is	your	address?	")	

				age	=	input("How	old	are	you?	")	

				print("My	name	is	"	+	name)	

				print("I	am	"	+	age	+	"	years	old")	

				print("My	address	is	"	+	address)

Execute	the	program	and	see	what	happens:

The	input_test.py	output

The	preceding	example	is	available	for	download	along	with	this	chapter	as	input_test.py.

Another	exercise	for	the	reader
Repeat	the	earlier	example	using	the	string	formatting	techniques.

Concatenating	strings
In	the	preceding	example,	we	printed	the	user	inputs	in	combination	with	another	string.	For	example,	we
took	the	user	input	name	and	printed	the	sentence	as	My	name	is	Sai.	The	process	of	appending	one	string	to
another	is	called	concatenation.

In	Python,	strings	can	be	concatenated	by	adding	+	between	two	strings:	name	=	input("What	is	your
name?	")	
print("My	name	is	"	+	name)

It	is	possible	to	concatenate	two	strings,	but	it	is	not	possible	to	concatenate	an	integer.	Let's	consider	the
following	example:	id	=	5	
print("My	id	is	"	+	id)

It	would	throw	an	error	implying	that	integers	and	strings	cannot	be	combined:

An	exception

It	is	possible	to	convert	an	integer	to	string	and	concatenate	it	to	another	string:	print("My	id	is	"	+	str(id))

This	would	give	the	following	result:

Loops	in	Python
Sometimes,	a	specific	task	has	to	be	repeated	several	times.	In	such	cases,	we	could	use	loops.	In	Python,
there	are	two	types	of	loops,	namely	the	for	loop	and	while	loop.	Let's	review	them	with	specific
examples.

A	for	loop
In	Python,	a	for	loop	is	used	to	execute	a	task	for	n	times.	A	for	loop	iterates	through	each	element	of	a
sequence.	This	sequence	could	be	a	dictionary,	list,	or	any	other	iterator.	For	example,	let's	discuss	an
example	where	we	execute	a	loop:

for	i	in	range(0,	10):	

							print("Loop	execution	no:	",	i)

In	the	preceding	example,	the	print	statement	is	executed	10	times:

In	order	to	execute	the	print	task	10	times,	the	range()	function	(https://docs.python.org/2/library/functions.html#range)
was	used.	The	range	function	generates	a	list	of	numbers	for	a	start	and	stop	values	that	are	passed	as	an
arguments	to	the	function.	In	this	case,	0	and	10	are	passed	as	arguments	to	the	range()	function.	This	returns
a	list	containing	numbers	from	0	to	9.	The	for	loop	iterates	through	the	code	block	for	each	element	in	steps
of	1.	The	range	function	can	also	generate	a	list	of	numbers	in	steps	of	2.	This	is	done	by	passing	the	start
value,	stop	value,	and	the	step	value	as	arguments	to	the	range()	function:

for	i	in	range(0,	20,	2):	

							print("Loop	execution	no:	",	i)

In	this	example,	0	is	the	start	value,	20	is	the	stop	value,	and	2	is	the	step	value.	This	generates	a	list	of	10
numbers	in	steps	of	two:

The	range	function	can	be	used	to	count	down	from	a	given	number.	Let's	say	we	would	like	to	count	down
from	10	to	1:

for	i	in	range(10,	0,	-1):	

							print("Count	down	no:	",	i)

The	output	would	be	something	like:

https://docs.python.org/2/library/functions.html#range

The	general	syntax	of	the	range	function	is	range(start,	stop,	step_count).	It	generates	a	sequence	of	numbers
from	start	to	n-1	where	n	is	the	stop	value.

Indentation
Note	the	indentation	in	the	for	loop	block:	for	i	in	range(10,	1,	-1):	
print("Count	down	no:	",	i)

Python	executes	the	block	of	code	under	the	for	loop	statement.	It	is	one	of	the	features	of	the	Python
programming	language.	It	executes	any	piece	of	code	under	the	for	loop	as	long	as	it	has	same	level	of
indentation:	for	i	in	range(0,10):	
#start	of	block	
print("Hello")	
#end	of	block

The	indentation	has	the	following	two	uses:

It	makes	the	code	readable
It	helps	us	identify	the	block	of	code	to	be	executed	in	a	loop

It	is	important	to	pay	attention	to	indentation	in	Python	as	it	directly	affects	how	a	piece	of	code	is
executed.

Nested	loops
In	Python,	it	is	possible	to	implement	a	loop	within	a	loop.	For	example,	let's	say	we	have	to	print	x	and	y
coordinates	of	a	map.	We	can	use	nested	loops	to	implement	this:

for	x	in	range(0,3):	

			for	y	in	range(0,3):	

									print(x,y)

The	expected	output	is:

Be	careful	about	code	indentation	in	nested	loops	as	it	may	throw	errors.	Consider	the
following	example:

for	x	in	range(0,10):	

			for	y	in	range(0,10):	

			print(x,y)

The	Python	interpreter	would	throw	the	following	error:

SyntaxError:	expected	an	indented	block

This	is	visible	in	the	following	screenshot:

Hence,	it	is	important	to	pay	attention	to	indentation	in	Python	(especially	nested	loops)	to	successfully
execute	the	code.	IDLE's	text	editor	automatically	indents	code	as	you	write	them.	This	should	aid	with
understanding	indentation	in	Python.

A	while	loop
while	loops	are	used	when	a	specific	task	is	supposed	to	be	executed	until	a	specific	condition	is	met.	while
loops	are	commonly	used	to	execute	code	in	an	infinite	loop.	Let's	look	at	a	specific	example	where	we
would	like	to	print	the	value	of	i	from	0	to	9:

i=0	

while	i<10:	

		print("The	value	of	i	is	",i)	

		i+=1

Inside	the	while	loop,	we	increment	i	by	1	for	every	iteration.	The	value	of	i	is	incremented	as	follows:

i	+=	1

This	is	equivalent	to	i	=	i+1.

This	example	would	execute	the	code	until	the	value	of	i	is	less	than	10.	It	is	also	possible	to	execute
something	in	an	infinite	loop:

i=0	

while	True:	

		print("The	value	of	i	is	",i)	

		i+=1

The	execution	of	this	infinite	loop	can	be	stopped	by	pressing	Ctrl	+	C	on	your	keyboard.

It	is	also	possible	to	have	nested	while	loops:

i=0	

j=0	

while	i<10:	

		while	j<10:	

				print("The	value	of	i,j	is	",i,",",j)	

				i+=1	

				j+=1

Similar	to	for	loops,	while	loops	also	rely	on	the	indented	code	block	to	execute	a	piece	of	code.

Python	enables	printing	a	combination	of	strings	and	integers	as	long	as	they	are
presented	as	arguments	to	the	print	function	separated	by	commas.	In	the	earlier-
mentioned	example,	The	value	of	i,j	is,	i	are	arguments	to	the	print	function.	You	will	learn
more	about	functions	and	arguments	in	the	next	chapter.	This	feature	enables	formatting
the	output	string	to	suit	our	needs.

Raspberry	Pi's	GPIO
The	Raspberry	Pi	Zero	comes	with	a	40-pin	GPIO	header.	Out	of	these	40	pins,	we	can	use	26	pins	either
to	read	inputs	(from	sensors)	or	control	outputs.	The	other	pins	are	power	supply	pins	(5V,	3.3V,	and

Ground	pins):	

Raspberry	Pi	Zero	GPIO	mapping	(source:	https://www.raspberrypi.org/documentation/usage/gpio-plus-and-raspi2/README.md)

We	can	use	up	to	26	pins	of	the	Raspberry	Pi's	GPIO	to	interface	appliances	and	control	them.	But,	there
are	certain	pins	that	have	an	alternative	function,	which	will	be	discussed	in	the	later	chapters.

The	earlier	image	shows	the	mapping	of	the	Raspberry	Pi's	GPIO	pins.	The	numbers	in	the	circle
correspond	to	the	pin	numbers	on	the	Raspberry	Pi's	processor.	For	example,	GPIO	pin	2	(second	pin
from	the	left	on	the	bottom	row)	corresponds	to	the	GPIO	pin	2	on	the	Raspberry	Pi's	processor	and	not
the	physical	pin	location	on	the	GPIO	header.

In	the	beginning,	it	might	be	confusing	to	try	and	understand	the	pin	mapping.	Keep	a	GPIO	pin	handout
(available	for	download	along	with	this	chapter)	for	your	reference.	It	takes	some	time	to	get	used	to	the
GPIO	pin	mapping	of	the	Raspberry	Pi	Zero.

The	Raspberry	Pi	Zero's	GPIO	pins	are	3.3V	tolerant,	that	is,	if	a	voltage	greater	than
3.3V	is	applied	to	the	pin,	it	may	permanently	damage	the	pin.	When	set	to	high,	the	pins
are	set	to	3.3V	and	0V	when	the	pins	are	set	to	low.

Blinky	lights
Let's	discuss	an	example	where	we	make	use	of	the	Raspberry	Pi	Zero's	GPIO.	We	will	interface	an	LED
to	the	Raspberry	Pi	Zero	and	make	it	blink	on	and	off	with	a	1-second	interval.

Let's	wire	up	the	Raspberry	Pi	zero	to	get	started:

Blinky	schematic	generated	using	Fritzing

In	the	preceding	schematic,	the	GPIO	pin	2	is	connected	to	the	anode	(the	longest	leg)	of	the	LED.	The
cathode	of	the	LED	is	connected	to	the	ground	pin	of	the	Raspberry	Pi	Zero.	A	330	Ohm	current	limiting
resistor	is	also	used	to	limit	the	flow	of	the	current.

Breadboard	connections	to	the	Raspberry	Pi	Zero

Code
We	will	make	use	of	the	python3-gpiozero	library	(https://gpiozero.readthedocs.io/en/v1.3.1/).	The	Raspbian	Jessie	OS
image	comes	with	the	pre-installed	library.	It	is	very	simple	to	use,	and	it	is	the	best	option	to	get	started
as	a	beginner.	It	supports	a	standard	set	of	devices	that	helps	us	get	started	easily.

For	example,	in	order	to	interface	an	LED,	we	need	to	import	the	LED	class	from	the	gpiozero	library:

from	gpiozero	import	LED

We	will	be	turning	the	LED	on	and	off	at	a	1-second	interval.	In	order	to	do	so,	we	will	be	importing	the
time	library.	In	Python,	we	need	to	import	a	library	to	make	use	of	it.	Since	we	interfaced	the	LED	to	the
GPIO	pin	2,	let's	make	a	mention	of	that	in	our	code:

import	time	

led	=	LED(2)

We	just	created	a	variable	named	led	and	defined	that	we	will	be	making	use	of	GPIO	pin	2	in	the	LED
class.	Let's	make	use	of	a	while	loop	to	turn	the	LED	on	and	off	with	a	1-second	interval.

The	gpiozero	library's	LED	class	comes	with	functions	named	on()	and	off()	to	set	the	GPIO	pin	2	to	high
and	low,	respectively:

while	True:	

				led.on()	

				time.sleep(1)	

				led.off()	

				time.sleep(1)

In	Python's	time	library,	there	is	a	sleep	function	that	enables	introducing	a	1-second	delay	between	turning
on/off	the	LED.	This	is	executed	in	an	infinite	loop!	We	just	built	a	practical	example	using	the	Raspberry
Pi	Zero.

Putting	all	the	code	together	in	a	file	named	blinky.py	(available	for	download	along	with	this	book),	run
the	code	from	the	command-line	terminal	(alternatively,	you	may	use	IDLE3):

python3	blinky.py

https://gpiozero.readthedocs.io/en/v1.3.1/

The	applications	of	GPIO	control
Now	that	we	have	implemented	our	first	example,	let's	discuss	some	possible	applications	of	being	able
to	control	the	GPIO.	We	could	use	the	Raspberry	Pi's	GPIO	to	control	the	lights	in	our	homes.	We	will
make	use	of	the	same	example	to	control	a	table	lamp!

There	is	a	product	called	the	PowerSwitch	Tail	II	(http://www.powerswitchtail.com/Pages/default.aspx)	that	enables
interfacing	AC	appliances	like	a	table	lamp	to	a	Raspberry	Pi.	The	PowerSwitch	Tail	comes	with	control
pins	(that	can	take	a	3.3V	high	signal)	that	could	be	used	to	turn	on/off	a	lamp.	The	switch	comes	with	the
requisite	circuitry/protection	to	interface	it	directly	to	a	Raspberry	Pi	Zero:	

The	Pi	Zero	interfaced	to	the	PowerSwitch	Tail	II

Let's	take	the	same	example	from	the	previous	section	and	connect	the	GPIO	pin	2	to	the	+in	pin	of	the
PowerSwitch	Tail.	Let's	connect	the	ground	pin	of	the	Raspberry	Pi	Zero's	GPIO	header	to	the
PowerSwitch	Tail's	-in	pain.	The	PowerSwitch	Tail	should	be	connected	to	the	AC	mains.	The	lamp
should	be	connected	to	the	AC	output	of	the	switch.	If	we	use	the	same	piece	of	code	and	connect	a	lamp
to	the	PowerSwitch	Tail,	we	should	be	able	to	turn	on/off	with	a	1-second	interval.

PowerSwitch	Tail	II	connected	to	a	Raspberry	Pi	Zero

This	appliance	control	using	the	LED	blinking	code	is	just	an	example.	It	is	not
recommended	to	turn	on/off	a	table	lamp	at	such	short	intervals.	In	future	chapters,	we
will	make	use	of	the	Raspberry	Pi	Zero's	GPIO	to	control	appliances	from	anywhere	on
the	Internet.

http://www.powerswitchtail.com/Pages/default.aspx

	

Summary
	

In	this	chapter,	we	reviewed	the	integers,	boolean,	and	string	data	types	as	well	as	arithmetic	operations
and	logical	operators	in	Python.	We	also	discussed	accepting	user	inputs	and	loops.	We	introduced
ourselves	to	the	Raspberry	Pi	Zero's	GPIO	and	discussed	an	LED	blinking	example.	We	took	the	same
example	to	control	a	table	lamp!

Have	you	heard	of	the	chat	application	named	Slack?	How	about	controlling	a	table	lamp	at	home	from
your	laptop	at	work?	If	that	piques	your	interest,	work	with	us	toward	that	over	the	next	few	chapters.

	

	

	

Conditional	Statements,	Functions,	and	Lists
	

In	this	chapter,	we	will	build	upon	what	you	learned	in	the	previous	chapter.	You	will	learn	about
conditional	statements	and	how	to	make	use	of	logical	operators	to	check	conditions	using	conditional
statements.	Next,	you	will	learn	to	write	simple	functions	in	Python	and	discuss	interfacing	inputs	to	the
Raspberry	Pi's	GPIO	header	using	a	tactile	switch	(momentary	push	button).	We	will	also	discuss	motor
control	(this	is	a	run-up	to	the	final	project)	using	the	Raspberry	Pi	Zero	and	control	the	motors	using	the
switch	inputs.	Let's	get	to	it!
In	this	chapter,	we	will	discuss	the	following	topics:

Conditional	statements	in	Python

Using	conditional	inputs	to	take	actions	based	on	GPIO	pin	states
Breaking	out	of	loops	using	conditional	statement

Functions	in	Python

GPIO	callback	functions
Motor	control	in	Python

	

Conditional	statements
In	Python,	conditional	statements	are	used	to	determine	if	a	specific	condition	is	met	by	testing	whether	a
condition	is	true	or	false.	Conditional	statements	are	used	to	determine	how	a	program	is	executed.	For
example,	conditional	statements	could	be	used	to	determine	whether	it	is	time	to	turn	on	the	lights.	The
syntax	is	as	follows:	if	condition_is_true:

do_something()

The	condition	is	usually	tested	using	a	logical	operator,	and	the	set	of	tasks	under	the	indented	block	is
executed.	Let's	consider	the	example,	check_address_if_statement.py	(available	for	download	with	this
chapter)	where	the	user	input	to	a	program	needs	to	be	verified	using	a	yes	or	no	question:	check_address
=	input("Is	your	address	correct(yes/no)?	")	
if	check_address	==	"yes":	
print("Thanks.	Your	address	has	been	saved")	
if	check_address	==	"no":	
del(address)	
print("Your	address	has	been	deleted.	Try	again")

In	this	example,	the	program	expects	a	yes	or	no	input.	If	the	user	provides	the	input	yes,	the	condition	if
check_address	==	"yes"	is	true,	the	message	Your	address	has	been	saved	is	printed	on	the	screen.

Likewise,	if	the	user	input	is	no,	the	program	executes	the	indented	code	block	under	the	logical	test
condition	if	check_address	==	"no"	and	deletes	the	variable	address.

check_address	=	input("Is	your	address	correct(yes/no)?	")	
if	check_address	==
"yes":	
	print("Thanks.	Your	address	has	been	saved")	
else:	
	del(address)

	print("Your	address	has	been	deleted.	Try	again")

In	this	example,	if	the	user	input	is	yes,	the	indented	code	block	under	if	is	executed.
Otherwise,	the	code	block	under	else	is	executed.

if-elif-else	statement
In	the	preceding	example,	the	program	executes	any	piece	of	code	under	the	else	block	for	any	user	input
other	than	yes	that	is	if	the	user	pressed	the	return	key	without	providing	any	input	or	provided	random
characters	instead	of	no,	the	if-elif-else	statement	works	as	follows:	check_address	=	input("Is	your
address	correct(yes/no)?	")	
if	check_address	==	"yes":	
print("Thanks.	Your	address	has	been	saved")	
elif	check_address	==	"no":	
del(address)	
print("Your	address	has	been	deleted.	Try	again")	
else:	
print("Invalid	input.	Try	again")

If	the	user	input	is	yes,	the	indented	code	block	under	the	if	statement	is	executed.	If	the	user	input	is	no,	the
indented	code	block	under	elif	(else-if)	is	executed.	If	the	user	input	is	something	else,	the	program	prints
the	message:	Invalid	input.	Try	again.

It	is	important	to	note	that	the	code	block	indentation	determines	the	block	of	code	that	needs	to	be
executed	when	a	specific	condition	is	met.	We	recommend	modifying	the	indentation	of	the	conditional
statement	block	and	find	out	what	happens	to	the	program	execution.	This	will	help	understand	the
importance	of	indentation	in	Python.

In	the	three	examples	that	we	discussed	so	far,	it	could	be	noted	that	an	if	statement	does	not	need	to	be
complemented	by	an	else	statement.	The	else	and	elif	statements	need	to	have	a	preceding	if	statement	or
the	program	execution	would	result	in	an	error.

i	=	0	
while	True:	
	print("The	value	of	i	is	",	i)	
	i	+=	1	
	if	i	>	100:

	break

In	the	preceding	example,	the	while	loop	is	executed	in	an	infinite	loop.	The	value	of	i	is
incremented	and	printed	on	the	screen.	The	program	breaks	out	of	the	while	loop	when
the	value	of	i	is	greater	than	100	and	the	value	of	i	is	printed	from	1	to	100.

The	applications	of	conditional	statements:
executing	tasks	using	GPIO
In	the	previous	chapter,	we	discussed	interfacing	outputs	to	the	Raspberry	Pi's	GPIO.	Let's	discuss	an
example	where	a	simple	push	button	is	pressed.	A	button	press	is	detected	by	reading	the	GPIO	pin	state.
We	are	going	to	make	use	of	conditional	statements	to	execute	a	task	based	on	the	GPIO	pin	state.

Let	us	connect	a	button	to	the	Raspberry	Pi's	GPIO.	All	you	need	to	get	started	are	a	button,	pull-up
resistor,	and	a	few	jumper	wires.	The	figure	given	later	shows	an	illustration	on	connecting	the	push
button	to	the	Raspberry	Pi	Zero.	One	of	the	push	button's	terminals	is	connected	to	the	ground	pin	of	the
Raspberry	Pi	Zero's	GPIO	pin.

The	schematic	of	the	button's	interface	is	shown	here:

Raspberry	Pi	GPIO	schematic

The	other	terminal	of	the	push	button	is	pulled	up	to	3.3V	using	a	10	K	resistor.	The	junction	of	the	push
button	terminal	and	the	10	K	resistor	is	connected	to	the	GPIO	pin	2	(refer	to	the	BCM	GPIO	pin	map
shared	in	the	earlier	chapter).

Interfacing	the	push	button	to	the	Raspberry	Pi	Zero's	GPIO	-	an	image	generated	using	Fritzing

Let's	review	the	code	required	to	review	the	button	state.	We	make	use	of	loops	and	conditional

statements	to	read	the	button	inputs	using	the	Raspberry	Pi	Zero.

We	will	be	making	use	of	the	gpiozero	library	introduced	in	the	previous	chapter.	The	code	sample	for	this
section	is	GPIO_button_test.py	and	available	for	download	along	with	this	chapter.

In	a	later	chapter,	we	will	discuss	object-oriented	programming	(OOP).	For	now,	let's	briefly	discuss
the	concept	of	classes	for	this	example.	A	class	in	Python	is	a	blueprint	that	contains	all	the	attributes	that
define	an	object.	For	example,	the	Button	class	of	the	gpiozero	library	contains	all	attributes	required	to
interface	a	button	to	the	Raspberry	Pi	Zero's	GPIO	interface.	These	attributes	include	button	states	and
functions	required	to	check	the	button	states	and	so	on.	In	order	to	interface	a	button	and	read	its	states,
we	need	to	make	use	of	this	blueprint.	The	process	of	creating	a	copy	of	this	blueprint	is	called
instantiation.

Let's	get	started	with	importing	the	gpiozero	library	and	instantiate	the	Button	class	of	the	gpiozero	library	(we
will	discuss	Python's	classes,	objects,	and	their	attributes	in	a	later	chapter).	The	button	is	interfaced	to
GPIO	pin	2.	We	need	to	pass	the	pin	number	as	an	argument	during	instantiation:

from	gpiozero	import	Button	

#button	is	interfaced	to	GPIO	2	

button	=	Button(2)

The	gpiozero	library's	documentation	is	available	at	http://gpiozero.readthedocs.io/en/v1.2.0/api_input.html.	According	to
the	documentation,	there	is	a	variable	named	is_pressed	in	the	Button	class	that	could	be	tested	using	a
conditional	statement	to	determine	if	the	button	is	pressed:

if	button.is_pressed:	

				print("Button	pressed")

Whenever	the	button	is	pressed,	the	message	Button	pressed	is	printed	on	the	screen.	Let's	stick	this	code
snippet	inside	an	infinite	loop:

from	gpiozero	import	Button	

#button	is	interfaced	to	GPIO	2	

button	=	Button(2)

while	True:	

		if	button.is_pressed:	

				print("Button	pressed")

In	an	infinite	while	loop,	the	program	constantly	checks	for	a	button	press	and	prints	the	message	as	long	as
the	button	is	being	pressed.	Once	the	button	is	released,	it	goes	back	to	checking	whether	the	button	is
pressed.

http://gpiozero.readthedocs.io/en/v1.2.0/api_input.html

Breaking	out	a	loop	by	counting	button	presses
Let's	review	another	example	where	we	would	like	to	count	the	number	of	button	presses	and	break	out	of
the	infinite	loop	when	the	button	has	received	a	predetermined	number	of	presses:	i	=	0	
while	True:	
if	button.is_pressed:	
button.wait_for_release()	
i	+=	1	
print("Button	pressed")	

if	i	>=	10:	
break

The	preceding	example	is	available	for	downloading	along	with	this	chapter	as	GPIO_button_loop_break.py.

In	this	example,	the	program	checks	for	the	state	of	the	is_pressed	variable.	On	receiving	a	button	press,	the
program	can	be	paused	until	the	button	is	released	using	the	wait_for_release	method.	When	the	button	is
released,	the	variable	used	to	store	the	number	of	presses	is	incremented	by	one.

The	program	breaks	out	of	the	infinite	loop,	when	the	button	has	received	10	presses.

A	red	momentary	push	button	interfaced	to	Raspberry	Pi	Zero	GPIO	pin	2

Functions	in	Python
We	briefly	discussed	functions	in	Python.	Functions	execute	a	predefined	set	of	task.	print	is	one	example
of	a	function	in	Python.	It	enables	printing	something	to	the	screen.	Let's	discuss	writing	our	own	functions
in	Python.

A	function	can	be	declared	in	Python	using	the	def	keyword.	A	function	could	be	defined	as	follows:

def	my_func():	

			print("This	is	a	simple	function")

In	this	function	my_func,	the	print	statement	is	written	under	an	indented	code	block.	Any	block	of	code	that
is	indented	under	the	function	definition	is	executed	when	the	function	is	called	during	the	code	execution.
The	function	could	be	executed	as	my_func().

Passing	arguments	to	a	function:
A	function	is	always	defined	with	parentheses.	The	parentheses	are	used	to	pass	any	requisite	arguments
to	a	function.	Arguments	are	parameters	required	to	execute	a	function.	In	the	earlier	example,	there	are	no
arguments	passed	to	the	function.

Let's	review	an	example	where	we	pass	an	argument	to	a	function:

def	add_function(a,	b):	

		c	=	a	+	b	

		print("The	sum	of	a	and	b	is	",	c)

In	this	example,	a	and	b	are	arguments	to	the	function.	The	function	adds	a	and	b	and	prints	the	sum	on	the
screen.	When	the	function	add_function	is	called	by	passing	the	arguments	3	and	2	as	add_function(3,2)	where	a
is	3	and	b	is	2,	respectively.

Hence,	the	arguments	a	and	b	are	required	to	execute	function,	or	calling	the	function	without	the	arguments
would	result	in	an	error.	Errors	related	to	missing	arguments	could	be	avoided	by	setting	default	values	to
the	arguments:

def	add_function(a=0,	b=0):	

		c	=	a	+	b	

		print("The	sum	of	a	and	b	is	",	c)

The	preceding	function	expects	two	arguments.	If	we	pass	only	one	argument	to	this	function,	the	other
defaults	to	zero.	For	example,	add_function(a=3),	b	defaults	to	0,	or	add_function(b=2),	a	defaults	to	0.	When	an
argument	is	not	furnished	while	calling	a	function,	it	defaults	to	zero	(declared	in	the	function).

Similarly,	the	print	function	prints	any	variable	passed	as	an	argument.	If	the	print	function	is	called
without	any	arguments,	a	blank	line	is	printed.

def	square(a):	
	return	a**2

In	this	example,	the	function	returns	a	square	of	the	argument.	In	Python,	the	return
keyword	is	used	to	return	a	value	requested	upon	completion	of	execution.

The	scope	of	variables	in	a	function
There	are	two	types	of	variables	in	a	Python	program:	local	and	global	variables.	Local	variables	are
local	to	a	function,	that	is,	it	is	a	variable	declared	within	a	function	is	accessible	within	that	function.
The	example	is	as	follows:

def	add_function():	

		a	=	3	

		b	=	2	

		c	=	a	+	b	

		print("The	sum	of	a	and	b	is	",	c)

In	this	example,	the	variables	a	and	b	are	local	to	the	function	add_function.	Let's	consider	an	example	of	a
global	variable:

a	=	3	

b	=	2	

def	add_function():	

		c	=	a	+	b	

		print("The	sum	of	a	and	b	is	",	c)	

add_function()

In	this	case,	the	variables	a	and	b	are	declared	in	the	main	body	of	the	Python	script.	They	are	accessible
across	the	entire	program.	Now,	let's	consider	this	example:

a	=	3	

def	my_function():	

		a	=	5	

		print("The	value	of	a	is	",	a)

my_function()	

print("The	value	of	a	is	",	a)

The	program	output	is:

The	value	of	a	is

						5

						The	value	of	a	is

						3

In	this	case,	when	my_function	is	called,	the	value	of	a	is	5	and	the	value	of	a	is	3	in	the	print	statement	of	the
main	body	of	the	script.	In	Python,	it	is	not	possible	to	explicitly	modify	the	value	of	global	variables
inside	functions.	In	order	to	modify	the	value	of	a	global	variable,	we	need	to	make	use	of	the	global
keyword:

a	=	3	

def	my_function():	

		global	a	

		a	=	5	

		print("The	value	of	a	is	",	a)

my_function()	

print("The	value	of	a	is	",	a)

In	general,	it	is	not	recommended	to	modify	variables	inside	functions	as	it	is	not	a	very	safe	practice	of
modifying	variables.	The	best	practice	would	be	passing	variables	as	arguments	and	returning	the

modified	value.	Consider	the	following	example:

a	=	3	

def	my_function(a):	

		a	=	5	

		print("The	value	of	a	is	",	a)	

		return	a	

a	=	my_function(a)	

print("The	value	of	a	is	",	a)

In	the	preceding	program,	the	value	of	a	is	3.	It	is	passed	as	an	argument	to	my_function.	The	function	returns
5,	which	is	saved	to	a.	We	were	able	to	safely	modify	the	value	of	a.

GPIO	callback	functions
Let's	review	some	uses	of	functions	with	the	GPIO	example.	Functions	can	be	used	in	order	to	handle
specific	events	related	to	the	GPIO	pins	of	the	Raspberry	Pi.	For	example,	the	gpiozero	library	provides
the	capability	of	calling	a	function	either	when	a	button	is	pressed	or	released:	from	gpiozero	import
Button	

def	button_pressed():	
print("button	pressed")

def	button_released():	
print("button	released")

#button	is	interfaced	to	GPIO	2	
button	=	Button(2)	
button.when_pressed	=	button_pressed	
button.when_released	=	button_released

while	True:	
pass

In	this	example,	we	make	use	of	the	attributes	when_pressed	and	when_released	of	the	library's	GPIO	class.
When	the	button	is	pressed,	the	function	button_pressed	is	executed.	Likewise,	when	the	button	is	released,
the	function	button_released	is	executed.	We	make	use	of	the	while	loop	to	avoid	exiting	the	program	and
keep	listening	for	button	events.	The	pass	keyword	is	used	to	avoid	an	error	and	nothing	happens	when	a
pass	keyword	is	executed.

This	capability	of	being	able	to	execute	different	functions	for	different	events	is	useful	in	applications
like	home	automation.	For	example,	it	could	be	used	to	turn	on	lights	when	it	is	dark	and	vice	versa.

DC	motor	control	in	Python
In	this	section,	we	will	discuss	motor	control	using	the	Raspberry	Pi	Zero.	Why	discuss	motor	control?
As	we	progress	through	different	topics	in	this	book,	we	will	culminate	in	building	a	mobile	robot.
Hence,	we	need	to	discuss	writing	code	in	Python	to	control	a	motor	using	a	Raspberry	Pi.

In	order	to	control	a	motor,	we	need	an	H-bridge	motor	driver	(Discussing	H-bridge	is	beyond	our
scope.	There	are	several	resources	for	H-bridge	motor	drivers:	http://www.mcmanis.com/chuck/robotics/tutorial/h-bridg
e/).	There	are	several	motor	driver	kits	designed	for	the	Raspberry	Pi.	In	this	section,	we	will	make	use	of
the	following	kit:	https://www.pololu.com/product/2753.

The	Pololu	product	page	also	provides	instructions	on	how	to	connect	the	motor.	Let's	get	to	writing	some
Python	code	to	operate	the	motor:

from	gpiozero	import	Motor	

from	gpiozero	import	OutputDevice	

import	time

motor_1_direction	=	OutputDevice(13)	

motor_2_direction	=	OutputDevice(12)

motor	=	Motor(5,	6)

motor_1_direction.on()	

motor_2_direction.on()

motor.forward()

time.sleep(10)

motor.stop()

motor_1_direction.off()	

motor_2_direction.off()

Raspberry	Pi	based	motor	control

In	order	to	control	the	motor,	let's	declare	the	pins,	the	motor's	speed	pins	and	direction	pins.	As	per	the
motor	driver's	documentation,	the	motors	are	controlled	by	GPIO	pins	12,	13	and	5,	6,	respectively.

from	gpiozero	import	Motor	

from	gpiozero	import	OutputDevice	

import	time	

http://www.mcmanis.com/chuck/robotics/tutorial/h-bridge/
https://www.pololu.com/product/2753

motor_1_direction	=	OutputDevice(13)	

motor_2_direction	=	OutputDevice(12)	

motor	=	Motor(5,	6)

Controlling	the	motor	is	as	simple	as	turning	on	the	motor	using	the	on()	method	and	moving	the	motor	in
the	forward	direction	using	the	forward()	method:

motor.forward()

Similarly,	reversing	the	motor	direction	could	be	done	by	calling	the	reverse()	method.	Stopping	the	motor
could	be	done	by:

motor.stop()

	

Some	mini-project	challenges	for	the	reader
	

Here	are	some	of	mini-project	challenged	for	our	readers:

In	this	chapter,	we	discussed	interfacing	inputs	for	the	Raspberry	Pi	and	controlling	motors.	Think
about	a	project	where	we	could	drive	a	mobile	robot	that	reads	inputs	from	whisker	switches	and
operate	a	mobile	robot.	Is	it	possible	to	build	a	wall	following	robot	in	combination	with	the	limit
switches	and	motors?
We	discussed	controlling	a	DC	motor	in	this	chapter.	How	do	we	control	a	stepper	motor	using	a
Raspberry	Pi?
How	can	we	interface	a	motion	sensor	to	control	the	lights	at	home	using	a	Raspberry	Pi	Zero?

Read	on	to	find	out!

Interested	in	playing	tricks	on	your	friends	with	your	Raspberry	Pi	Zero?	Check	this
book's	website!

	

	

Summary
In	this	chapter,	we	discussed	conditional	statements	and	the	applications	of	conditional	statements	in
Python.	We	also	discussed	functions	in	Python,	passing	arguments	to	a	function,	returning	values	from	a
function	and	scope	of	variables	in	a	Python	program.	We	discussed	callback	functions	and	motor	control
in	Python.

	

Communication	Interfaces
	

So	far,	we	have	discussed	loops,	conditional	statements,	and	functions	in	Python.	We	also	discussed
interfacing	output	devices	and	simple	digital	input	devices.

In	this	chapter,	we	will	discuss	the	following	communication	interfaces:

UART	–	serial	port
Serial	Peripheral	Interface
I2C	interface

We	will	be	making	use	of	different	sensors/electronic	components	to	demonstrate	writing
code	in	Python	for	these	interfaces.	We	leave	it	up	to	you	to	pick	a	component	of	your
choice	to	explore	these	communication	interfaces.

	

	

	

UART	–	serial	port
	

Universal	Asynchronous	Receiver/Transmitter	(UART),	a	serial	port,	is	a	communication	interface
where	the	data	is	transmitted	serially	in	bits	from	a	sensor	to	the	host	computer.	Using	a	serial	port	is	one
of	the	oldest	forms	of	communication	protocol.	It	is	used	in	data	logging	where	microcontrollers	collect
data	from	sensors	and	transmit	the	data	via	a	serial	port.	There	are	also	sensors	that	transmit	data	via
serial	communication	as	responses	to	incoming	commands.

We	will	not	go	into	the	theory	behind	serial	port	communications	(there's	plenty	of	theory	available	on	the
Web	at	https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter).	We	will	be	discussing	the	use	of	the
serial	port	to	interface	different	sensors	with	the	Raspberry	Pi.

	

	

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter

Raspberry	Pi	Zero's	UART	port
Typically,	UART	ports	consist	of	a	receiver	(Rx)	and	a	transmitter	(Tx)	pin	that	receive	and	transmit	data.
The	Raspberry	Pi's	GPIO	header	comes	with	an	UART	port.	The	GPIO	pins	14	(the	Tx	pin)	and	15	(is	the
Rx	pin)	serve	as	the	UART	port	for	the	Raspberry	Pi:	

GPIO	pins	14	and	15	are	the	UART	pins	(image	source:	https://www.rs-online.com/designspark/introducing-the-raspberry-pi-b-plus)

Setting	up	the	Raspberry	Pi	Zero	serial	port
In	order	to	use	the	serial	port	to	talk	to	sensors,	the	serial	port	login/console	needs	to	be	disabled.	In	the
Raspbian	OS	image,	this	is	enabled	by	default	as	it	enables	easy	debugging.

The	serial	port	login	can	be	disabled	via	raspi-config:

1.	 Launch	the	terminal	and	run	this	command:

sudo	raspi-config

2.	 Select	Advanced	Options	from	the	main	menu	of	raspi-config:

Select	Advanced	Options	from	the	raspi-config	menu

3.	 Select	the	A8	Serial	option	from	the	drop-down	menu:

Select	A8	Serial	from	the	dropdown

4.	 Disable	serial	login:

Disable	serial	login

5.	 Finish	the	configuration	and	reboot	at	the	end:

Save	config	and	reboot

Example	1	–	interfacing	a	carbon	dioxide	sensor
to	the	Raspberry	Pi
We	will	be	making	use	of	the	K30	carbon	dioxide	sensor	(its	documentation	is	available	here,	http://co2meter
s.com/Documentation/Datasheets/DS30-01%20-%20K30.pdf).	It	has	a	range	of	0-10,000	ppm,	and	the	sensor	provides	it
carbon	dioxide	concentration	readings	via	serial	port	as	a	response	to	certain	commands	from	the
Raspberry	Pi.

The	following	diagram	shows	the	connections	between	the	Raspberry	Pi	and	the	K30	carbon	dioxide
sensor:

K30	carbon	dioxide	sensor	interfaced	with	the	Raspberry	Pi

The	receiver	(Rx)	pin	of	the	sensor	is	connected	to	the	transmitter	(Tx-GPIO	14	(UART_TXD))	pin	of
the	Raspberry	Pi	Zero	(the	yellow	wire	in	the	preceding	figure).	The	transmitter	(Tx)	pin	of	the	sensor	is
connected	to	the	receiver	(Rx-GPIO	15	(UART_RXD))	pin	of	the	Raspberry	Pi	Zero	(the	green	wire	in
the	preceding	figure).

In	order	to	power	the	sensor,	the	G+	pin	of	the	sensor	(the	red	wire	in	the	preceding	figure)	is	connected
to	the	5V	pin	of	the	Raspberry	Pi	Zero.	The	G0	pin	of	the	sensor	is	connected	to	the	GND	pin	of	the
Raspberry	Pi	Zero	(black	wire	in	the	earlier	figure).

Typically,	serial	port	communication	is	initiated	by	specifying	the	baud	rate,	the	number	of	bits	in	a	frame,
stop	bit,	and	flow	control.

http://co2meters.com/Documentation/Datasheets/DS30-01%20-%20K30.pdf

import	serial	
	ser	=	serial.Serial("/dev/ttyAMA0")

ser.write(bytearray([0xFE,	0x44,	0x00,	0x08,	0x02,	0x9F,	0x25]))

resp	=	ser.read(7)

high	=	resp[3]	
	low	=	resp[4]	
	co2	=	(high*256)	+	low

import	serial	
	import	time	
	import	array	
	ser	=
serial.Serial("/dev/ttyAMA0")	
	print("Serial	Connected!")	
	ser.flushInput()

	time.sleep(1)	

	while	True:	
	ser.write(bytearray([0xFE,	0x44,	0x00,
0x08,
	0x02,	0x9F,	0x25]))	
	#	wait	for	sensor	to	respond	
	time.sleep(.01)

	resp	=	ser.read(7)	
	high	=	resp[3]	
	low	=	resp[4]	
	co2	=	(high*256)
+	low	
	print()	
	print()	
	print("Co2	=	"	+	str(co2))	
	time.sleep(1)

8.	 Save	the	code	to	a	file	and	try	executing	it.

I2C	communication
Inter-Integrated	Circuit	(I2C)	communication	is	a	type	of	serial	communication	that	allows	interfacing
multiple	sensors	to	the	computer.	I2C	communication	consists	of	two	wires	of	a	clock	and	a	data	line.	The
Raspberry	Pi	Zero's	clock	and	data	pins	for	I2C	communication	are	GPIO	3	(SCL)	and	GPIO	2	(SDA),
respectively.	In	order	to	communicate	with	multiple	sensors	over	the	same	bus,	sensors/actuators	that
communicate	via	I2C	protocol	are	usually	addressed	by	their	7-bit	address.	It	is	possible	to	have	two	or
more	Raspberry	Pi	boards	talking	to	the	same	sensor	on	the	same	I2C	bus.	This	enables	building	a	sensor
network	around	the	Raspberry	Pi.

The	I2C	communication	lines	are	open	drain	lines;	hence,	they	are	pulled	up	using	resistors,	as	shown	in
the	following	figure:

I2C	setup

Let's	review	an	example	of	I2C	communication	using	an	example.

Example	2	–	PiGlow
The	PiGlow	is	a	piece	of	add-on	hardware	for	the	Raspberry	Pi	that	consists	of	18	LEDs	interfaced	with
the	SN3218	chip.	This	chip	permits	controlling	the	LEDs	via	the	I2C	interface.	The	chip's	7-bit	address	is
0x54.

To	interface	the	add-on	hardware,	the	SCL	pin	is	connected	to	GPIO	3	and	SDA	pin	to	GPIO	2;	the
ground	pins	and	the	power	supply	pins	are	connected	to	the	counterparts	of	the	add-on	hardware,
respectively.

The	PiGlow	comes	with	a	library	that	comes	which	abstracts	the	I2C	communication:	https://github.com/pimoroni/
piglow.

Although	the	library	is	a	wrapper	around	the	I2C	interface	for	the	library,	we	recommend	reading	through
the	code	to	understand	the	internal	mechanism	to	operate	the	LEDs:	

PiGlow	stacked	on	top	of	the	Raspberry	Pi

https://github.com/pimoroni/piglow

Installing	libraries
The	PiGlow	library	may	be	installed	by	running	the	following	from	the	command-line	terminal:

				curl	get.pimoroni.com/piglow	|	bash

Example
On	the	completion	of	installation,	switch	to	the	example	folder	(/home/pi/Pimoroni/piglow)	and	run	one	of	the
examples:	python3	bar.py

It	should	run	blinky	light	effects	as	shown	in	the	following	figure:

Blinky	lights	on	the	PiGlow

Similarly,	there	are	libraries	to	talk	to	real-time	clocks,	LCD	displays,	and	so	on	using	I2C
communication.	If	you	are	interested	in	writing	your	own	interface	that	provides	the	nitty-gritty	detail	of
I2C	communication	with	sensors/output	devices,	check	out	this	book's	accompanying	website	for	some
examples.

Example	3	–	Sensorian	add-on	hardware	for	the
Raspberry	Pi
The	Sensorian	is	an	add-on	hardware	designed	for	the	Raspberry	Pi.	This	add-on	hardware	comes	with
different	types	of	sensors,	including	a	light	sensor,	barometer,	accelerometer,	LCD	display	interface,	flash
memory,	capacitive	touch	sensors,	and	a	real-time	clock.

The	sensors	on	this	add-on	hardware	is	sufficient	to	learn	using	all	the	communication	interfaces
discussed	in	this	chapter:

Sensorian	hardware	stacked	on	top	of	the	Raspberry	Pi	Zero

In	this	section,	we	will	discuss	an	example	where	we	will	measure	the	ambient	light	levels	using	a
Raspberry	Pi	Zero	via	the	I2C	interface.	The	sensor	on	the	add-on	hardware	board	is	the	APDS-9300
sensor	(www.avagotech.com/docs/AV02-1077EN).

http://www.avagotech.com/docs/AV02-1077EN

I2C	drivers	for	the	lux	sensor
The	drivers	are	available	from	the	GitHub	repository	for	the	Sensorian	hardware	(https://github.com/sensorian/se
nsorian-firmware.git).	Let's	clone	the	repository	from	the	command-line	terminal:	git	clone
https://github.com/sensorian/sensorian-firmware.git

Let's	make	use	of	the	drivers	(which	is	available	in	the	~/sensorian-firmware/Drivers_Python/APDS-9300	folder)	to
read	the	values	from	the	two	ADC	channels	of	the	sensor:

import	time	

import	APDS9300	as	LuxSens	

import	sys	

AmbientLight	=	LuxSens.APDS9300()	

while	True:	

			time.sleep(1)	

			channel1	=	AmbientLight.readChannel(1)																							

			channel2	=	AmbientLight.readChannel(0)	

			Lux	=	AmbientLight.getLuxLevel(channel1,channel2)	

			print("Lux	output:	%d."	%	Lux)

With	the	ADC	values	available	from	both	the	channel,	the	ambient	light	value	can	be	calculated	by	the
driver	using	the	following	formula	(retrieved	from	the	sensor	datasheet):

Ambient	light	levels	calculated	using	the	ADC	values

This	calculation	is	performed	by	the	attribute	getLuxLevel.	Under	normal	lighting	conditions,	the	ambient
light	level	(measured	in	lux)	was	around	2.	The	measured	output	was	0	when	we	covered	the	lux	sensor
with	the	palm.	This	sensor	could	be	used	to	measure	ambient	light	and	adjust	the	room	lighting
accordingly.

https://github.com/sensorian/sensorian-firmware.git

Challenge
We	discussed	measuring	ambient	light	levels	using	the	lux	sensor.	How	do	we	make	use	of	the	lux	output
(ambient	light	levels)	to	control	the	room	lighting?

	

The	SPI	interface
	

There	is	another	type	of	serial	communication	interface	named	the	Serial	Peripheral	Interface	(SPI).
This	interface	has	to	be	enabled	via	raspi-config	(this	is	similar	to	enabling	serial	port	interface	earlier	in
this	chapter).	Using	the	SPI	interface	is	similar	to	that	of	I2C	interface	and	the	serial	port.

Typically,	an	SPI	interface	consists	of	a	clock	line,	data-in,	data-out,	and	a	Slave	Select	(SS)	line.	Unlike
I2C	communication	(where	we	could	connect	multiple	masters),	there	can	be	only	one	master	(the
Raspberry	Pi	Zero),	but	multiple	slaves	on	the	same	bus.	The	SS	pin	enables	selecting	a	specific	sensor
that	the	Raspberry	Pi	Zero	is	reading/writing	data	when	there	are	multiple	sensors	connected	to	the	same
bus.

	

	

Example	4	–	writing	to	external	memory	chip
Let's	review	an	example	where	we	write	to	a	flash	memory	chip	on	the	Sensorian	add-on	hardware	via
the	SPI	interface.	The	drivers	for	the	SPI	interface	and	the	memory	chip	are	available	from	the	same
GitHub	repository.

Since	we	already	have	the	drivers	downloaded,	let's	review	an	example	available	with	drivers:	import
sys	
import	time	
import	S25FL204K	as	Memory

Let's	initialize	and	write	the	message	hello	to	the	memory:

Flash_memory	=	Memory.S25FL204K()	

Flash_memory.writeStatusRegister(0x00)	

message	=	"hello"	

flash_memory.writeArray(0x000000,list(message),	message.len())

Now,	let's	try	to	read	the	data	we	just	wrote	to	the	external	memory:

data	=	flash_memory.readArray(0x000000,	message.len())	

print("Data	Read	from	memory:	")	

print(''.join(data))

The	code	sample	is	available	for	download	with	this	chapter	(memory_test.py).

We	were	able	to	demonstrate	using	the	SPI	to	read/write	to	an	external	memory	chip.

Challenge	to	the	reader
In	the	figure	here,	there	is	an	LED	strip	(https://www.adafruit.com/product/306)	interfaced	to	the	SPI	interface	of	the
Raspberry	Pi	add	on	hardware	using	the	Adafruit	Cobbler	(https://www.adafruit.com/product/914).	We	are
providing	a	clue	on	how	to	interface	the	LED	strip	to	the	Raspberry	Pi	Zero.	We	would	like	to	see	if	you
are	able	to	find	a	solution	to	interface	the	LED	strip	by	yourself.	Refer	to	this	book's	website	for	the
answer.

LED	strip	interfaced	with	the	Adafruit	Cobbler	for	the	Raspberry	Pi	Zero

https://www.adafruit.com/product/306
https://www.adafruit.com/product/914

	

Summary
	

In	this	chapter,	we	have	discussed	different	communication	interfaces	that	are	available	on	the	Raspberry
Pi	Zero.	These	interfaces	include	I2C,	SPI,	and	UART.	We	will	be	making	use	of	these	interfaces	in	our
final	projects.	We	discussed	these	interfaces	using	a	carbon	dioxide	sensor,	LED	driver,	and	a	sensor
platform.	In	the	next	chapter,	we	will	discuss	object-oriented	programming	and	its	distinct	advantages.	We
will	discuss	the	need	for	object-oriented	programming	using	an	example.	Object-oriented	programming
can	be	especially	helpful	in	scenarios	where	you	have	to	write	your	own	drivers	to	control	a	component
of	your	robot	or	write	an	interface	library	for	a	sensor.

	

	

	

Data	Types	and	Object-Oriented	Programming
in	Python
	

In	this	chapter,	we	will	discuss	data	types	and	object-oriented	programming	(OOP)	in	Python.	We	will
discuss	data	types	including	lists,	dictionaries,	tuples	and	sets	in	Python.	We	will	also	discuss	OOP,	it's
necessity	and	how	to	write	object-oriented	code	in	Python	for	Raspberry	Pi	based	projects	(such	as,	using
OOP	to	control	appliances	at	home).	We	will	discuss	making	use	of	OOP	in	a	Raspberry	Pi	Zero	project.

	

	

Lists
In	Python,	a	list	is	a	data	type	(its	documentation	is	available	here,	https://docs.python.org/3.4/tutorial/datastructures.ht
ml#)	that	could	be	used	to	store	elements	in	a	sequence.

The	topics	discussed	in	this	chapter	can	be	difficult	to	grasp	unless	used	in	practice.	Any
example	that	is	represented	using	this	notation:	>>>	indicates	that	it	could	be	tested	using
the	Python	interpreter.

A	list	may	consist	of	strings,	objects	(discussed	in	detail	in	this	chapter)	or	numbers,	and	so	on.	For
instance,	the	following	are	examples	of	lists:

>>>	sequence	=	[1,	2,	3,	4,	5,	6]

				>>>	example_list	=	['apple',	'orange',	1.0,	2.0,	3]

In	the	preceding	set	of	examples,	the	sequence	list	consists	of	numbers	between	1	and	6	while	the	example_list
list	consists	of	a	combination	of	strings,	integer,	and	floating-point	numbers.	A	list	is	represented	by
square	brackets	([]).	Items	can	be	added	to	a	list	separated	by	commas:

>>>	type(sequence)

				<class	'list'>

Since	a	list	is	an	ordered	sequence	of	elements,	the	elements	of	a	list	could	be	fetched	by	iterating	through
the	list	elements	using	a	for	loop	as	follows:

for	item	in	sequence:	

				print("The	number	is	",	item)

The	output	is	something	as	follows:

				The	number	is		1

				The	number	is		2

				The	number	is		3

				The	number	is		4

				The	number	is		5

				The	number	is		6

Since	Python's	loop	can	iterate	through	a	sequence	of	elements,	it	fetches	each	element	and	assigns	it	to
item.	This	item	is	printed	on	the	console.

https://docs.python.org/3.4/tutorial/datastructures.html

>>>	dir(sequence)
	['__add__',	'__class__',
'__contains__',	'__delattr__',
	'__delitem__',	'__dir__',	'__doc__',	'__eq__',

'__format__',	'__ge__',	'__getattribute__',	'__getitem__',
	'__gt__',	'__hash__',
'__iadd__',	'__imul__',	'__init__',	
	'__iter__',	'__le__',	'__len__',	'__lt__',	'__mul__',

	'__ne__',	'__new__',	'__reduce__',	'__reduce_ex__',
	'__repr__',
'__reversed__',	'__rmul__',	'__setattr__',	
	'__setitem__',	'__sizeof__',	'__str__',
'__subclasshook__',	
	'append',	'clear',	'copy',	'count',	'extend',	'index',
	'insert',
'pop',	'remove',	'reverse',	'sort']

These	attributes	enable	performing	different	operations	on	a	list.	Let's	discuss	each
attribute	in	detail.

Append	element	to	list:
It	is	possible	to	add	an	element	using	the	append()	method:

				>>>	sequence.append(7)

				>>>	sequence

				[1,	2,	3,	4,	5,	6,	7]

>>>	sequence	=	[1,	1,	2,	3,	4,	7,	5,	6,	7]
	>>>
sequence.remove(7)
	>>>	sequence
	[1,	1,
2,	3,	4,	5,	6,	7]

>>>	sequence.remove(1)
	>>>	sequence

	[1,	2,	3,	4,	5,	6,	7]

>>>	sequence.remove(1)
	>>>	sequence

	[2,	3,	4,	5,	6,	7]

Retrieving	the	index	of	an	element
The	index()	method	returns	the	position	of	an	element	in	a	list:	>>>	index_list	=	[1,	2,	3,	4,	5,	6,	7]
>>>	index_list.index(5)
4

In	this	example,	the	method	returns	the	index	of	the	element	5.	Since	Python	uses	zero-based	indexing	that
is	the	index	is	counted	from	0	and	hence	the	index	of	the	element	5	is	4:	random_list	=	[2,	2,	4,	5,	5,	5,	6,
7,	7,	8]
>>>	random_list.index(5)
3

In	this	example,	the	method	returns	the	position	of	the	first	instance	of	the	element.	The	element	5	is
located	at	the	third	position.

Popping	an	element	from	the	list
The	pop()	method	enables	removing	an	element	from	a	specified	position	and	return	it:	>>>	index_list	=
[1,	2,	3,	4,	5,	6,	7]
>>>	index_list.pop(3)
4
>>>	index_list
[1,	2,	3,	5,	6,	7]

In	this	example,	the	index_list	list	consists	of	numbers	between	1	and	7.	When	the	third	element	is	popped
by	passing	the	index	position	(3)	as	an	argument,	the	number	4	is	removed	from	the	list	and	returned.

If	no	arguments	are	provided	for	the	index	position,	the	last	element	is	popped	and	returned:	>>>
index_list.pop()
7
>>>	index_list
[1,	2,	3,	5,	6]

In	this	example,	the	last	element	(7)	was	popped	and	returned.

Counting	the	instances	of	an	element:
The	count()	method	returns	the	number	of	times	an	element	appears	in	a	list.	For	example,	the	element
appears	twice	in	the	list:	random_list.

				>>>	random_list	=	[2,	9,	8,	4,	3,	2,	1,	7]

				>>>	random_list.count(2)

				2

>>>	day_of_week	=	['Monday',	'Tuesday',	'Thursday',
	'Friday',	'Saturday']

>>>	day_of_week.insert(2,	'Wednesday')
	>>>
day_of_week
	['Monday',	'Tuesday',	'Wednesday',	'Thursday',

	'Friday',	'Saturday']

Challenge	to	the	reader
In	the	preceding	list,	Sunday	is	missing.	Use	the	insert	attribute	of	lists	to	insert	it	at	the	correct	position.

>>>	day_of_week.extend(sequence)
	>>>
day_of_week
	['Monday',	'Tuesday',	'Wednesday',	'Thursday',
'Friday',
	'Saturday',	1,	2,	3,	4,	5,	6]

>>>	[1,	2,	3]	+	[4,	5,	6]
	[1,	2,	3,	4,	5,	6]

sequence.insert(6,	[1,	2,	3])
	>>>	sequence

	[1,	2,	3,	4,	5,	6,	[1,	2,	3]]

Clearing	the	elements	of	a	list
All	the	elements	of	a	list	could	be	deleted	using	the	clear()	method:

				>>>	sequence.clear()

				>>>	sequence

				[]

random_list	=	[8,	7,	5,	2,	2,	5,	7,	5,	6,	4]
	>>>
random_list.sort()
	>>>	random_list
	[2,	2,
4,	5,	5,	5,	6,	7,	7,	8]

>>>	day_of_week	=	['Monday',	'Tuesday',	'Thursday',
	'Friday',	'Saturday']

	>>>	day_of_week.sort()
	>>>
day_of_week
	['Friday',	'Monday',	'Saturday',	'Thursday',
'Tuesday']

Reverse	the	order	of	elements	in	list
The	reverse()	method	enables	the	reversing	the	order	of	the	list	elements:

				>>>	random_list	=	[8,	7,	5,	2,	2,	5,	7,	5,	6,	4]

				>>>	random_list.reverse()

				>>>	random_list

				[4,	6,	5,	7,	5,	2,	2,	5,	7,	8]

Create	copies	of	a	list
The	copy()	method	enables	creating	copies	of	a	list:

				>>>	copy_list	=	random_list.copy()

				>>>	copy_list

				[4,	6,	5,	7,	5,	2,	2,	5,	7,	8]

Accessing	list	elements
The	list	elements	could	be	accessed	by	specifying	the	index	position	of	the	list_name[i]	element.	For
example,	the	zeroth	list	element	of	the	random_list	list	could	be	accessed	as	follows:

				>>>	random_list	=	[4,	6,	5,	7,	5,	2,	2,	5,	7,	8]	

				>>>	random_list[0]4>>>	random_list[3]7

Accessing	a	set	of	elements	within	a	list
It	is	possible	to	access	elements	between	specified	indices.	For	example,	it	is	possible	to	retrieve	all
elements	between	indices	2	and	4:

>>>	random_list[2:5]

				[5,	7,	5]

The	first	six	elements	of	a	list	could	be	accessed	as	follows:

>>>	random_list[:6]

				[4,	6,	5,	7,	5,	2]

The	elements	of	a	list	could	be	printed	in	the	reverse	order	as	follows:

>>>	random_list[::-1]

				[8,	7,	5,	2,	2,	5,	7,	5,	6,	4]

Every	second	element	in	the	list	could	be	fetched	as	follows:

>>>	random_list[::2]

				[4,	5,	5,	2,	7]

It	is	also	possible	to	fetch	every	second	element	after	the	second	element	after	skipping	the	first	two
elements:

>>>	random_list[2::2]

				[5,	5,	2,	7]

	>>>	random_list	=	[2,	1,	0,	8,	3,	1,	10,	9,	5,	4]

>>>	6	in	random_list
	False
	>>>
4	in	random_list
	True

random_list	=	[]

random_number	=	random.randint(0,10)

for	index	in	range(0,10):
	random_number	=	random.randint(0,	10)

random_list.append(random_number)
	print("The	items	in	random_list	are	")

print(random_list)

The	items	in	random_list	are
	[2,	1,	0,	8,	3,	1,	10,	9,	5,	4]

We	discussed	generating	a	list	of	random	numbers.	The	next	step	is	taking	user	input
where	we	ask	the	user	to	make	a	guess	for	a	number	between	0	and	10.	If	the	number	is	a
member	of	the	list,	the	message	Your	guess	is	correct	is	printed	to	the	screen,	else,	the
message	Sorry!	Your	guess	is	incorrect	is	printed.	We	leave	the	second	part	as	a
challenge	to	the	reader.	Get	started	with	the	list_generator.py	code	sample	available	for
download	with	this	chapter.

Dictionaries
A	dictionary	(https://docs.python.org/3.4/tutorial/datastructures.html#dictionaries)	is	a	data	type	that	is	an	unordered
collection	of	key	and	value	pairs.	Each	key	in	a	dictionary	has	an	associated	value.	An	example	of	a
dictionary	is:	>>>	my_dict	=	{1:	"Hello",	2:	"World"}
>>>	my_dict

{1:	'Hello',	2:	'World'}

A	dictionary	is	created	by	using	the	braces	{}.	At	the	time	of	creation,	new	members	are	added	to	the
dictionary	in	the	following	format:	key:	value	(shown	in	the	preceding	example).	In	the	previous	example	1
and	2	are	keys	while	'Hello'	and	'World'	are	the	associated	values.	Each	value	added	to	a	dictionary	needs
to	have	an	associated	key.

The	elements	of	a	dictionary	do	not	have	an	order	i.e.	the	elements	cannot	be	retrieved	in	the	order	they
were	added.	It	is	possible	to	retrieving	the	values	of	a	dictionary	by	iterating	through	the	keys.	Let's
consider	the	following	example:	>>>	my_dict	=	{1:	"Hello",	2:	"World",	3:	"I",	4:	"am",
5:	"excited",	6:	"to",	7:	"learn",	8:	"Python"	}

There	are	several	ways	to	print	the	keys	or	values	of	a	dictionary:	>>>	for	key	in	my_dict:

...	

print(my_dict[value])

...

Hello

World

I

am

excited

to

learn

Python

In	the	preceding	example,	we	iterate	through	the	keys	of	the	dictionary	and	retrieve	the	value	using	the

https://docs.python.org/3.4/tutorial/datastructures.html#dictionaries

key,	my_dict[key].	It	is	also	possible	to	retrieve	the	values	using	the	values()	method	available	with
dictionaries:	>>>	for	value	in	my_dict.values():

...	

print(value)

...

Hello

World

I

am

excited

to

learn

Python

The	keys	of	a	dictionary	can	be	an	integer,	string,	or	a	tuple.	The	keys	of	a	dictionary	need	to	be	unique
and	it	is	immutable,	that	is	a	key	cannot	be	modified	after	creation.	Duplicates	of	a	key	cannot	be	created.
If	a	new	value	is	added	to	an	existing	key,	the	latest	value	is	stored	in	the	dictionary.	Let's	consider	the
following	example:

A	new	key/value	pair	could	be	added	to	a	dictionary	as	follows:

							>>>	my_dict[9]	=	'test'

							>>>	my_dict

							{1:	'Hello',	2:	'World',	3:	'I',	4:	'am',	5:	'excited',

							6:	'to',	7:	'learn',	8:	'Python',	9:	'test'}

Let's	try	creating	a	duplicate	of	the	key	9:

							>>>	my_dict[9]	=	'programming'

							>>>	my_dict

							{1:	'Hello',	2:	'World',	3:	'I',	4:	'am',	5:	'excited',

							6:	'to',	7:	'learn',	8:	'Python',	9:	'programming'}

As	shown	in	the	preceding	example,	when	we	try	to	create	a	duplicate,	the	value	of	the	existing	key
is	modified.
It	is	possible	to	have	multiple	values	associated	with	a	key.	For	example,	as	a	list	or	a	dictionary:

						>>>	my_dict	=	{1:	"Hello",	2:	"World",	3:	"I",	4:	"am",

						"values":	[1,	2,	3,4,	5],	"test":	{"1":	1,	"2":	2}	}	

Dictionaries	are	useful	in	scenarios	like	parsing	CSV	files	and	associating	each	row	with	a	unique
key.	Dictionaries	are	also	used	to	encode	and	decode	JSON	data

Tuples
A	tuple	(pronounced	either	like	two-ple	or	tuh-ple)	is	an	immutable	data	type	that	are	ordered	and
separated	by	a	comma.	A	tuple	can	be	created	as	follows:	>>>	my_tuple	=	1,	2,	3,	4,	5

>>>	my_tuple	
(1,	2,	3,	4,	5)

Since	tuples	are	immutable,	the	value	at	a	given	index	cannot	be	modified:	>>>	my_tuple[1]	=	3
Traceback	(most	recent	call	last):
File	"<stdin>",	line	1,	in	<module>
TypeError:	'tuple'	object	does	not	support	item	assignment

A	tuple	can	consist	of	a	number,	string,	or	a	list.	Since	lists	are	mutable,	if	a	list	is	a	member	of	a
tuple,	it	can	be	modified.	For	example:	>>>	my_tuple	=	1,	2,	3,	4,	[1,	2,	4,	5]
>>>	my_tuple[4][2]	=	3
>>>	my_tuple
(1,	2,	3,	4,	[1,	2,	3,	5])

Tuples	are	especially	useful	in	scenarios	where	the	value	cannot	be	modified.	Tuples	are	also	used	to
return	values	from	a	function.	Let's	consider	the	following	example:	>>>	for	value	in
my_dict.items():	
...	

print(value)	
...

(1,	'Hello')	
(2,	'World')	
(3,	'I')	
(4,	'am')	
('test',	{'1':	1,	'2':	2})	
('values',	[1,	2,	3,	4,	5])

In	the	preceding	example,	the	items()	method	returns	a	list	of	tuples.

Sets
A	set	(https://docs.python.org/3/tutorial/datastructures.html#sets)	is	an	unordered	collection	of	immutable	elements
without	duplicate	entries.	A	set	could	be	created	as	follows:	>>>	my_set	=	set([1,	2,	3,	4,	5])

>>>	my_set	
{1,	2,	3,	4,	5}

Now,	let's	add	a	duplicate	list	to	this	set:	>>>	my_set.update([1,	2,	3,	4,	5])	
>>>	my_set	
{1,	2,	3,	4,	5}

Sets	enable	avoid	duplication	of	entries	and	saving	the	unique	entries.	A	single	element	can	be
added	to	a	set	as	follows:	>>>	my_set	=	set([1,	2,	3,	4,	5])

>>>	my_set.add(6)

>>>	my_set

{1,	2,	3,	4,	5,	6}

Sets	are	used	to	test	memberships	of	an	element	among	different	sets.	There	are	different	methods
that	are	related	to	membership	tests.	We	recommend	learning	about	each	method	using	the
documentation	on	sets	(run	help(my_set)	to	find	the	different	methods	available	for	membership	tests).

https://docs.python.org/3/tutorial/datastructures.html#sets

OOP	in	Python
OOP	is	a	concept	that	helps	simplifying	your	code	and	eases	application	development.	It	is	especially
useful	in	reusing	your	code.	Object-oriented	code	enables	reusing	your	code	for	sensors	that	use	the
communications	interface.	For	example,	all	sensors	that	are	equipped	with	a	UART	port	could	be	grouped
together	using	object-oriented	code.

One	example	of	OOP	is	the	GPIO	Zero	library	(https://www.raspberrypi.org/blog/gpio-zero-a-friendly-python-api-for-physica
l-computing/)	used	in	previous	chapters.	In	fact,	everything	is	an	object	in	Python.

Object-oriented	code	is	especially	helpful	in	collaboration	with	other	people	on	a	project.	For	example,
you	could	implement	a	sensor	driver	using	object-oriented	code	in	Python	and	document	its	usage.	This
enables	other	developers	to	develop	an	application	without	paying	attention	to	the	nitty-gritty	detail
behind	the	sensor's	interface.	OOP	provides	modularity	to	an	application	that	simplifies	application
development.	We	are	going	to	review	an	example	in	this	chapter	that	demonstrates	the	advantage	of	OOP.
In	this	chapter,	we	will	be	making	use	of	OOP	to	bring	modularity	to	our	project.

Let's	get	started!

https://www.raspberrypi.org/blog/gpio-zero-a-friendly-python-api-for-physical-computing/

Revisiting	the	student	ID	card	example
Let's	revisit	the	ID	card	example	from	Chapter	2,	Arithmetic	Operations,	Loops,	and	Blinky	Lights
(input_test.py).	We	discussed	writing	a	simple	program	that	captures	and	prints	the	information	belonging
to	a	student.	A	student's	contact	information	could	be	retrieved	and	stored	as	follows:

name	=	input("What	is	your	name?	")	

address	=	input("What	is	your	address?	")	

age	=	input("How	old	are	you?	")

Now,	consider	a	scenario	where	the	information	of	10	students	has	to	be	saved	and	retrieved	at	any	point
during	program	execution.	We	would	need	to	come	up	with	a	nomenclature	for	the	variables	used	to	save
the	student	information.	It	would	be	a	clutter	if	we	use	30	different	variables	to	store	information
belonging	to	each	student.	This	is	where	object	oriented	programming	can	be	really	helpful.

Let's	rewrite	this	example	using	OOP	to	simplify	the	problem.	The	first	step	in	OOP	is	declaring	a
structure	for	the	object.	This	is	done	by	defining	a	class.	The	class	determines	the	functions	of	an	object.
Let's	write	a	Python	class	that	defines	the	structure	for	a	student	object.

Class
Since	we	are	going	to	save	student	information,	the	class	is	going	to	be	called	Student.	A	class	is	defined
using	the	class	keyword	as	follows:

class	Student(object):

Thus,	a	class	called	Student	has	been	defined.	Whenever	a	new	object	is	created,	the	method	__init__()	(the
underscore	indicate	that	the	init	method	is	a	magic	method,	that	is	it	is	a	function	that	is	called	by	Python
when	an	object	is	created)	is	called	internally	by	Python.

This	method	is	defined	within	the	class:

class	Student(object):	

				"""A	Python	class	to	store	student	information"""	

				def	__init__(self,	name,	address,	age):	

								self.name	=	name	

								self.address	=	address	

								self.age	=	age

In	this	example,	the	arguments	to	the	__init__	method	include	name,	age	and	address.	These	arguments	are
called	attributes.	These	attributes	enable	creating	a	unique	object	that	belongs	to	the	Student	class.	Hence,
in	this	example,	while	creating	an	instance	of	the	Student	class,	the	attributes	name,	age,	and	address	are
required	arguments.

Let's	create	an	object	(also	called	an	instance)	belonging	to	the	Student	class:

student1	=	Student("John	Doe",	"123	Main	Street,	Newark,	CA",	"29")

In	this	example,	we	created	an	object	belonging	to	the	Student	class	called	student1	where	John	Doe	(name),	29
(age)	and	123	Main	Street,	Newark,	CA(address)	are	attributes	required	to	create	an	object.	When	we	create	an
object	that	belongs	to	the	Student	class	by	passing	the	requisite	arguments	(declared	earlier	in	the	__init__()
method	of	the	Student	class),	the	__init__()	method	is	automatically	called	to	initialize	the	object.	Upon
initialization,	the	information	related	to	student1	is	stored	under	the	object	student1.

Now,	the	information	belonging	to	student1	could	be	retrieved	as	follows:

print(student1.name)	

print(student1.age)	

print(student1.address)

Now,	let's	create	another	object	called	student2:

student2	=	Student("Jane	Doe",	"123	Main	Street,	San	Jose,	CA",	"27")

We	created	two	objects	called	student1	and	student2.	Each	object's	attributes	are	accessible	as	student1.name,
student2.name	and	so	on.	In	the	absence	of	object	oriented	programming,	we	will	have	to	create	variables
like	student1_name,	student1_age,	student1_address,	student2_name,	student2_age	and	student2_address	and	so	on.	Thus,
OOP	enables	modularizing	the	code.

Adding	methods	to	a	class
Let's	add	some	methods	to	our	Student	class	that	would	help	retrieve	a	student's	information:

class	Student(object):	

				"""A	Python	class	to	store	student	information"""	

				def	__init__(self,	name,	age,	address):	

								self.name	=	name	

								self.address	=	address	

								self.age	=	age	

				def	return_name(self):	

								"""return	student	name"""	

								return	self.name	

				def	return_age(self):	

								"""return	student	age"""	

								return	self.age	

				def	return_address(self):	

								"""return	student	address"""	

								return	self.address

In	this	example,	we	have	added	three	methods	namely	return_name(),	return_age()	and	return_address()	that
returns	the	attributes	name,	age	and	address	respectively.	These	methods	of	a	class	are	called	callable
attributes.	Let's	review	a	quick	example	where	we	make	use	of	these	callable	attributes	to	print	an
object's	information.

student1	=	Student("John	Doe",	"29",	"123	Main	Street,	Newark,	CA")	

print(student1.return_name())	

print(student1.return_age())	

print(student1.return_address())

So	far,	we	discussed	methods	that	retrieves	information	about	a	student.	Let's	include	a	method	in	our
class	that	enables	updating	information	belonging	to	a	student.	Now,	let's	add	another	method	to	the	class
that	enables	updating	address	by	a	student:

def	update_address(self,	address):	

				"""update	student	address"""	

				self.address	=	address	

				return	self.address

Let's	compare	the	student1	object's	address	before	and	after	updating	the	address:

print(student1.address())	

print(student1.update_address("234	Main	Street,	Newark,	CA"))

This	would	print	the	following	output	to	your	screen:

123	Main	Street,	Newark,	CA

				234	Main	Street,	Newark,	CA

Thus,	we	have	written	our	first	object-oriented	code	that	demonstrates	the	ability	to	modularize	the	code.
The	preceding	code	sample	is	available	for	download	along	with	this	chapter	as	student_info.py.

Doc	strings	in	Python
In	the	object	oriented	example,	you	might	have	noticed	a	sentence	enclosed	in	triple	double	quotes:

"""A	Python	class	to	store	student	information"""

This	is	called	a	doc	string.	The	doc	string	is	used	to	document	information	about	a	class	or	a	method.	Doc
strings	are	especially	helpful	while	trying	to	store	information	related	to	the	usage	of	a	method	or	a	class
(this	will	be	demonstrated	later	in	this	chapter).	Doc	strings	are	also	used	at	the	beginning	of	a	file	to
store	multi-line	comments	related	to	an	application	or	a	code	sample.	Doc	strings	are	ignored	by	the
Python	interpreter	and	they	are	meant	to	provide	documentation	about	a	class	to	fellow	programmers.

Similarly,	the	Python	interpreter	ignores	any	single	line	comment	that	starts	with	a	#	sign.	Single	line
comments	are	generally	used	to	make	a	specific	note	on	a	block	of	code.	The	practice	of	including	well-
structured	comments	makes	your	code	readable.

For	example,	the	following	code	snippet	informs	the	reader	that	a	random	number	between	0	and	9	is
generated	and	stored	in	the	variable	rand_num:	#	generate	a	random	number	between	0	and	9	
rand_num	=	random.randrange(0,10)

On	the	contrary,	a	comment	that	provides	no	context	is	going	to	confuse	someone	who	is	reviewing	your
code:

#	Todo:	Fix	this	later

It	is	quite	possible	that	you	may	not	be	able	to	recall	what	needs	fixing	when	you	revisit	the	code	later.

Student(student1,	"John	Doe",	"29",	"123	Main	Street,	Newark,	CA")

Student.return_address(student1)

The	self	keyword	simplifies	how	we	access	an	object's	attributes	in	this	case.	Now,	let's
review	some	examples	where	we	make	use	of	OOP	involving	the	Raspberry	Pi.

Speaker	controller
Let's	write	a	Python	class	(tone_player.py	in	downloads)	that	plays	a	musical	tone	indicating	that	the	boot-
up	of	your	Raspberry	Pi	is	complete.	For	this	section,	you	will	need	a	USB	sound	card	and	a	speaker
interfaced	to	the	USB	hub	of	the	Raspberry	Pi.

Let's	call	our	class	TonePlayer.	This	class	should	be	capable	of	controlling	the	speaker	volume	and	playing
any	file	passed	as	an	argument	while	creating	an	object:	class	TonePlayer(object):	
"""A	Python	class	to	play	boot-up	complete	tone"""	

def	__init__(self,	file_name):	
self.file_name	=	file_name

In	this	case,	the	file	that	has	to	be	played	by	the	TonePlayer	class	has	to	be	passed	an	argument.	For
example:

tone_player	=	TonePlayer("/home/pi/tone.wav")

We	also	need	to	be	able	to	set	the	volume	level	at	which	the	tone	has	to	be	played.	Let's	add	a	method	to
do	the	same:

def	set_volume(self,	value):	

				"""set	tone	sound	volume"""	

				subprocess.Popen(["amixer",	"set",	"'PCM'",	str(value)],	

				shell=False)

In	the	set_volume	method,	we	make	use	of	Python's	subprocess	module	to	run	the	Linux	system	command	that
adjusts	the	sound	drive	volume.

The	most	essential	method	for	this	class	is	the	play	command.	When	the	play	method	is	called,	we	need	to
play	the	tone	sound	using	Linux's	a	play	command:	def	play(self):
"""play	the	wav	file"""
subprocess.Popen(["aplay",	self.file_name],	shell=False)

Put	it	all	together:

import	subprocess	

class	TonePlayer(object):	

				"""A	Python	class	to	play	boot-up	complete	tone"""	

				def	__init__(self,	file_name):	

								self.file_name	=	file_name	

				def	set_volume(self,	value):	

								"""set	tone	sound	volume"""	

								subprocess.Popen(["amixer",	"set",	"'PCM'",	str(value)],

								shell=False)	

				def	play(self):	

								"""play	the	wav	file"""	

								subprocess.Popen(["aplay",	self.file_name],	shell=False)	

if	__name__	==	"__main__":	

				tone_player	=	TonePlayer("/home/pi/tone.wav")	

				tone_player.set_volume(75)	

				tone_player.play()

Save	the	TonePlayer	class	to	your	Raspberry	Pi	(save	it	to	a	file	called	tone_player.py)	and	use	a	tone	sound
file	from	sources	like	freesound	(https://www.freesound.org/people/zippi1/sounds/18872/).	Save	it	to	a	location	of	your
choice	and	try	running	the	code.	It	should	play	the	tone	sound	at	the	desired	volume!

Now,	edit	/etc/rc.local	and	add	the	following	line	to	the	end	of	the	file	(right	before	the	exit	0	line):

python3	/home/pi/toneplayer.py

This	should	play	a	tone	whenever	the	Pi	boots	up!

https://www.freesound.org/people/zippi1/sounds/18872/

Light	control	daemon
Let's	review	another	example	where	we	implement	a	simple	daemon	using	OOP	that	turns	on/off	lights	at
specified	times	of	the	day.	In	order	to	be	able	to	perform	tasks	at	scheduled	times,	we	will	make	use	of
the	schedule	library	(https://github.com/dbader/schedule).	It	could	be	installed	as	follows:

sudo	pip3	install	schedule

Let's	call	our	class,	LightScheduler.	It	should	be	capable	of	accepting	start	and	top	times	to	turn	on/off	lights
at	given	times.	It	should	also	provide	override	capabilities	to	let	the	user	turn	on/off	lights	as	necessary.
Let's	assume	that	the	light	is	controlled	using	PowerSwitch	Tail	II	(http://www.powerswitchtail.com/Pages/default.asp
x).	It	is	interfaced	as	follows:

Raspberry	Pi	Zero	interfaced	to	the	PowerSwitch	Tail	II

The	following	is	the	LightSchedular	class	created:

class	LightScheduler(object):	

				"""A	Python	class	to	turn	on/off	lights"""	

				def	__init__(self,	start_time,	stop_time):	

								self.start_time	=	start_time	

								self.stop_time	=	stop_time	

								#	lamp	is	connected	to	GPIO	pin2.

								self.lights	=	OutputDevice(2)

Whenever	an	instance	of	LightScheduler	is	created,	the	GPIO	pin	is	initialized	to	control	the	PowerSwitch
Tail	II.	Now,	let's	add	methods	to	turn	on/off	lights:

def	init_schedule(self):	

								#	set	the	schedule	

								schedule.every().day.at(self.start_time).do(self.on)	

								schedule.every().day.at(self.stop_time).do(self.off)	

				def	on(self):	

								"""turn	on	lights"""	

								self.lights.on()	

				def	off(self):	

								"""turn	off	lights"""	

								self.lights.off()

In	the	init_schedule()	method,	the	start	and	stop	times	that	were	passed	as	arguments	are	used	to	initialize
schedule	to	turn	on/off	the	lights	at	the	specified	times.

Put	it	together,	we	have:

https://github.com/dbader/schedule
http://www.powerswitchtail.com/Pages/default.aspx

import	schedule	

import	time	

from	gpiozero	import	OutputDevice	

class	LightScheduler(object):	

				"""A	Python	class	to	turn	on/off	lights"""	

				def	__init__(self,	start_time,	stop_time):	

								self.start_time	=	start_time	

								self.stop_time	=	stop_time	

								#	lamp	is	connected	to	GPIO	pin2.

								self.lights	=	OutputDevice(2)	

				def	init_schedule(self):	

								#	set	the	schedule	

								schedule.every().day.at(self.start_time).do(self.on)	

								schedule.every().day.at(self.stop_time).do(self.off)	

				def	on(self):	

								"""turn	on	lights"""	

								self.lights.on()	

				def	off(self):	

								"""turn	off	lights"""	

								self.lights.off()	

if	__name__	==	"__main__":	

				lamp	=	LightScheduler("18:30",	"9:30")	

				lamp.on()	

				time.sleep(50)	

				lamp.off()	

				lamp.init_schedule()	

				while	True:

								schedule.run_pending()	

								time.sleep(1)

In	the	preceding	example,	the	lights	are	scheduled	to	be	turned	on	at	6:30	p.m.	and	turned	off	at	9:30	a.m.
Once	the	jobs	are	scheduled,	the	program	enters	an	infinite	loop	where	it	awaits	task	execution.	This
example	could	be	run	as	a	daemon	by	executing	the	file	at	start-up	(add	a	line	called	light_scheduler.py	to
/etc/rc.local).	After	scheduling	the	job,	it	will	continue	to	run	as	a	daemon	in	the	background.

This	is	just	a	basic	introduction	to	OOP	and	its	applications	(keeping	the	beginner	in
mind).	Refer	to	this	book's	website	for	more	examples	on	OOP.

	

Summary
	

In	this	chapter,	we	discussed	lists	and	the	advantages	of	OOP.	We	discussed	OOP	examples	using	the
Raspberry	Pi	as	the	center	of	the	examples.	Since	the	book	is	targeted	mostly	towards	beginners,	we
decided	to	stick	to	the	basics	of	OOP	while	discussing	examples.	There	are	advanced	aspects	that	are
beyond	the	scope	of	the	book.	We	leave	it	up	to	the	reader	to	learn	advanced	concepts	using	other
examples	available	on	this	book's	site.

	

	

	

File	I/O	and	Python	Utilities
	

In	this	chapter,	we	are	going	to	discuss	file	I/O,	that	is	reading,	writing	and	appending	to	file	in	detail.	We
are	also	going	to	discuss	Python	utilities	that	enable	manipulating	files	and	interacting	with	the	operating
system.	Each	topic	has	a	different	level	of	complexity	that	we	will	discuss	using	an	example.	Let's	get
started!

	

	

	

File	I/O
	

We	are	discussing	file	I/O	for	two	reasons:

In	the	world	of	Linux	operating	systems,	everything	is	a	file.	Interaction	with	peripherals	on	the
Raspberry	Pi	is	similar	to	reading	from/writing	to	a	file.	For	example:	In	Chapter	4,	Communication
Interfaces,	we	discussed	serial	port	communication.	You	should	be	able	to	observe	that	serial	port
communication	is	like	a	file	read/write	operation.
We	use	file	I/O	in	some	form	in	every	project.	For	example:	Writing	sensor	data	to	a	CSV	file	or
reading	pre-configured	options	for	a	web	server,	and	so	on.

Hence,	we	thought	it	would	be	useful	to	discuss	file	I/O	in	Python	as	its	own	chapter	(detailed
documentation	available	from	here:	https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files)	and	discuss
examples	where	it	could	play	a	role	while	developing	applications	on	the	Raspberry	Pi	Zero.

	

	

https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files

if	__name__	==	"__main__":
	#	open	text	file	to	read
	file	=
open('read_line.txt',	'r')
	#	read	from	file	and	store	it	to	data
	data	=	file.read()

	print(data)
	file.close()

file	=	open('read_line.txt',	'r')

data	=	file.read()	
	print(data)

I	am	learning	Python	Programming	using	the	Raspberry	Pi	Zero

Reading	lines
Sometimes,	it	is	necessary	to	read	the	contents	of	a	file	by	line-by-file.	In	Python,	there	are	two	options	to
do	this:	readline()	and	readlines():

readline():	As	the	name	suggests,	this	in-built	function	enables	reading	one	line	at	a	time.	Let's	review
this	using	an	example:

if	__name__	==	"__main__":	

										#	open	text	file	to	read

										file	=	open('read_line.txt',	'r')	

										#	read	a	line	from	the	file

										data	=	file.readline()	

										print(data)	

										#	read	another	line	from	the	file	

										data	=	file.readline()	

										print(data)	

										file.close()

When	the	preceding	code	snippet	is	executed	(available	for	download	as	read_line_from_file.py
along	with	this	chapter),	the	read_line.txt	file	is	opened	and	a	single	line	is	returned	by	the
readline()	function.	This	line	is	stored	in	the	variable	data.	Since	the	function	is	called	twice	in	this
program,	the	output	is	as	follows:

							I	am	learning	Python	Programming	using	the	Raspberry	Pi	Zero.	

							This	is	the	second	line.

A	new	line	is	returned	every	time	the	readline	function	is	called	and	it	returns	an	empty	string	when
the	end-of-file	has	reached.

readlines():	This	function	reads	the	entire	content	of	a	file	in	lines	and	stores	each	it	to	a	list:

if	__name__	==	"__main__":	

											#	open	text	file	to	read

											file	=	open('read_lines.txt',	'r')	

											#	read	a	line	from	the	file

											data	=	file.readlines()	

											for	line	in	data:	

															print(line)	

											file.close()

Since	the	lines	of	the	files	is	stored	as	a	list,	it	could	be	retrieved	by	iterating	through	the	list:

data	=	file.readlines()	

											for	line	in	data:	

															print(line)

The	preceding	code	snippet	is	available	for	download	along	with	this	chapter	as
read_lines_from_file.py.

file	=	open('write_file.txt',	'w')

file.write('I	am	excited	to	learn	Python	using
	Raspberry	Pi	Zero')

if	__name__	==	"__main__":	
	#	open	text	file	to	write
	file	=
open('write_file.txt',	'w')	
	#	write	a	line	from	the	file
	file.write('I	am	excited	to
learn	Python	using
	Raspberry	Pi	Zero	\n')	
	file.close()	

	file	=
open('write_file.txt',	'r')	
	data	=	file.read()	
	print(data)	
	file.close()

I	am	excited	to	learn	Python	using	Raspberry	Pi	Zero

if	__name__	==	"__main__":	
	#	open	text	file	to	append
	file	=
open('write_file.txt',	'a')	
	#	append	a	line	from	the	file
	file.write('This	is	a	line
appended	to	the	file\n')	
	file.close()	

	file	=	open('write_file.txt',	'r')	

data	=	file.read()	
	print(data)	
	file.close()

I	am	excited	to	learn	Python	using	Raspberry	Pi	Zero

This	is	a	line	appended	to	the	file

seek
Once	a	file	is	opened,	the	file	pointer	that	is	used	in	file	I/O	moves	from	the	beginning	to	the	end	of	the
file.	It	is	possible	to	move	the	pointer	to	a	specific	position	and	read	the	data	from	that	position.	This	is
especially	useful	when	we	are	interested	in	a	specific	line	of	a	file.	Let's	consider	the	text	file
write_file.txt	from	the	previous	example.	The	contents	of	the	file	include:

I	am	excited	to	learn	Python	using	Raspberry	Pi	Zero

				This	is	a	line	appended	to	the	file

Let's	try	to	skip	the	first	line	and	read	only	the	second	line	using	seek:

if	__name__	==	"__main__":	

			#	open	text	file	to	read

			file	=	open('write_file.txt',	'r')	

			#	read	the	second	line	from	the	file

			file.seek(53)	

			data	=	file.read()	

			print(data)	

			file.close()

In	the	preceding	example	(available	for	download	along	with	this	chapter	as	seek_in_file.py),	the	seek
function	is	used	to	move	the	pointer	to	byte	53	that	is	the	end	of	first	line.	Then	the	file's	contents	are	read
and	stored	into	the	variable.	When	this	code	snippet	is	executed,	the	output	is	as	follows:

This	is	a	line	appended	to	the	file

Thus,	seek	enables	moving	the	file	pointer	to	a	specific	position.

if	__name__	==	"__main__":	
	#	open	text	file	to	read	and	write	
	file	=
open('write_file.txt',	'r')	

	#	set	the	pointer	to	the	desired	position	

file.seek(5)	
	data	=	file.read(1)	
	print(data)	

	#	rewind	the
pointer
	file.seek(5)	
	data	=	file.read(7)	
	print(data)	
	file.close()

file.seek(5)	
	data	=	file.read(1)	
	print(data)

file.seek(5)	
	data	=	file.read(7)	
	print(data)

r+
We	discussed	reading	and	writing	to	files	using	the	r	and	w	flags.	There	is	another	called	r+.	This	flag
enables	reading	and	writing	to	a	file.	Let's	review	an	example	that	enables	us	to	understand	this	flag.

Let's	review	the	contents	of	write_file.txt	once	again:

I	am	excited	to	learn	Python	using	Raspberry	Pi	Zero

				This	is	a	line	appended	to	the	file

Let's	modify	the	second	line	to	read:	This	is	a	line	that	was	modified.	The	code	sample	is	available	for
download	along	with	this	chapter	as	seek_to_write.py.

if	__name__	==	"__main__":	

			#	open	text	file	to	read	and	write	

			file	=	open('write_file.txt',	'r+')	

			#	set	the	pointer	to	the	desired	position	

			file.seek(68)	

			file.write('that	was	modified	\n')	

			#	rewind	the	pointer	to	the	beginning	of	the	file

			file.seek(0)	

			data	=	file.read()	

			print(data)	

			file.close()

Let's	review	how	this	example	works:

1.	 The	first	step	in	this	example	is	opening	the	file	using	the	r+	flag.	This	enables	reading	and	writing	to
the	file.

2.	 The	next	step	is	moving	to	the	68th	byte	of	the	file
3.	 The	that	was	modified	string	is	written	to	the	file	at	this	position.	The	spaces	at	the	end	of	the	string	are

used	to	overwrite	the	original	content	of	the	second	sentence.
4.	 Now,	the	file	pointer	is	set	to	the	beginning	of	the	file	and	its	contents	are	read.
5.	 When	the	preceding	code	snippet	is	executed,	the	modified	file	contents	are	printed	to	the	screen	as

follows:

I	am	excited	to	learn	Python	using	Raspberry	Pi	Zero

							This	is	a	line	that	was	modified

There	is	another	a+	flag	that	enables	appending	data	to	the	end	of	the	file	and	reading	at	the	same	time.	We
will	leave	this	to	the	reader	to	figure	out	using	the	examples	discussed	so	far.

We	have	discussed	different	examples	on	reading	and	writing	to	files	in	Python.	It	can	be
overwhelming	without	sufficient	experience	in	programming.	We	strongly	recommend
working	through	the	different	code	samples	provided	in	this	chapter

Challenge	to	the	reader
Use	the	a+	flag	to	open	the	write_file.txt	file	(discussed	in	different	examples)	and	append	a	line	to	the	file.
Set	the	file	pointer	using	seek	and	print	its	contents.	You	may	open	the	file	only	once	in	the	program.

if	__name__	==	"__main__":	
	with	open('write_file.txt',	'r+')	as	file:	
	#	read
the	contents	of	the	file	and	print	to	the	screen	
	print(file.read())	

file.write("This	is	a	line	appended	to	the	file")	

	#rewind	the	file	and	read	its
contents	
	file.seek(0)	
	print(file.read())	
	#	the	file	is	automatically	closed
at	this	point	
	print("Exited	the	with	keyword	code	block")

In	the	preceding	example	(with_keyword_example),	we	skipped	closing	the	file	as	the
with	keyword	takes	care	of	closing	the	file	once	the	execution	of	the	indented	code	block
is	complete.	The	with	keyword	also	takes	care	of	closing	the	file	while	leaving	the	code
block	due	to	an	error.	This	ensures	that	the	resources	are	cleaned	up	properly	in	any
scenario.	Going	forward,	we	will	be	using	the	with	keyword	for	file	I/O.

configparser
Let's	discuss	some	aspects	of	Python	programming	that	is	especially	helpful	while	developing
applications	using	the	Raspberry	Pi.	One	such	tool	is	the	configparser	available	in	Python.	The	configparser
module	(https://docs.python.org/3.4/library/configparser.html)	is	used	to	read/write	config	files	for	applications.

In	software	development,	config	files	are	generally	used	to	store	constants	such	as	access	credentials,
device	ID,	and	so	on	In	the	context	of	a	Raspberry	Pi,	configparser	could	be	used	to	store	the	list	of	all
GPIO	pins	in	use,	addresses	of	sensors	interfaced	via	the	I2C	interface,	and	so	on.	Let's	discuss	three
examples	where	we	learn	making	use	of	the	configparser	module.	In	the	first	example	we	will	create	a
config	file	using	the	configparser.	In	the	second	example,	we	will	make	use	of	the	configparser	to	read	the
config	values	and	in	the	third	example,	we	will	discuss	modifying	config	files	in	the	final	example.

Example	1:

In	the	first	example,	let's	create	a	config	file	that	stores	information	including	device	ID,	GPIO	pins	in
use,	sensor	interface	address,	debug	switch,	and	access	credentials:

import	configparser	

if	__name__	==	"__main__":	

			#	initialize	ConfigParser	

			config_parser	=	configparser.ConfigParser()	

			#	Let's	create	a	config	file	

			with	open('raspi.cfg',	'w')	as	config_file:	

									#Let's	add	a	section	called	ApplicationInfo	

									config_parser.add_section('AppInfo')	

									#let's	add	config	information	under	this	section	

									config_parser.set('AppInfo',	'id',	'123')	

									config_parser.set('AppInfo',	'gpio',	'2')	

									config_parser.set('AppInfo',	'debug_switch',	'True')	

									config_parser.set('AppInfo',	'sensor_address',	'0x62')	

									#Let's	add	another	section	for	credentials	

									config_parser.add_section('Credentials')	

									config_parser.set('Credentials',	'token',	'abcxyz123')	

									config_parser.write(config_file)	

			print("Config	File	Creation	Complete")

Let's	discuss	the	preceding	code	example	(available	for	download	along	with	this	chapter	as
config_parser_write.py)	in	detail:

1.	 The	first	step	is	importing	the	configparser	module	and	creating	an	instance	of	the	ConfigParser	class.
This	instance	is	going	to	be	called	config_parser:

config_parser	=	configparser.ConfigParser()

2.	 Now,	we	open	a	config	file	called	raspi.cfg	using	the	with	keyword.	Since	the	file	doesn't	exist,	a	new
config	file	is	created.

3.	 The	config	file	is	going	to	consist	of	two	sections	namely	AppInfo	and	Credentials.

4.	 The	two	sections	could	be	created	using	the	add_section	method	as	follows:

https://docs.python.org/3.4/library/configparser.html

config_parser.add_section('AppInfo')	

							config_parser.add_section('Credentials')

5.	 Each	section	is	going	to	consist	of	different	set	of	constants.	Each	constant	could	be	added	to	the
relevant	section	using	the	set	method.	The	required	arguments	to	the	set	method	include	the	section
name	(under	which	the	parameter/constant	is	going	to	be	located),	the	name	of	the	parameter/constant
and	its	corresponding	value.	For	example:	The	id	parameter	can	be	added	to	the	AppInfo	section	and
assigned	a	value	of	123	as	follows:

config_parser.set('AppInfo',	'id',	'123')

6.	 The	final	step	is	saving	these	config	values	to	the	file.	This	is	accomplished	using	the	config_parser
method,	write.	The	file	is	closed	once	the	program	exits	the	indented	block	under	the	with	keyword:

config_parser.write(config_file)

We	strongly	recommend	trying	the	code	snippets	yourself	and	use	these	snippets	as	a
reference.	You	will	learn	a	lot	by	making	mistakes	and	possibly	arrive	with	a	better
solution	than	the	one	discussed	here.

When	the	preceding	code	snippet	is	executed,	a	config	file	called	raspi.cfg	is	created.	The	contents	of	the
config	file	would	include	the	contents	shown	as	follows:

[AppInfo]	

id	=	123	

gpio	=	2	

debug_switch	=	True	

sensor_address	=	0x62	

[Credentials]	

token	=	abcxyz123

Example	2:

Let's	discuss	an	example	where	we	read	config	parameters	from	a	config	file	created	in	the	previous
example:

import	configparser	

if	__name__	==	"__main__":	

			#	initialize	ConfigParser	

			config_parser	=	configparser.ConfigParser()	

			#	Let's	read	the	config	file	

			config_parser.read('raspi.cfg')	

			#	Read	config	variables	

			device_id	=	config_parser.get('AppInfo',	'id')	

			debug_switch	=	config_parser.get('AppInfo',	'debug_switch')	

			sensor_address	=	config_parser.get('AppInfo',	'sensor_address')	

			#	execute	the	code	if	the	debug	switch	is	true	

			if	debug_switch	==	"True":

									print("The	device	id	is	"	+	device_id)	

									print("The	sensor_address	is	"	+	sensor_address)

If	the	config	files	are	created	in	the	format	shown,	the	ConfigParser	class	should	be	able	to
parse	it.	It	is	not	really	necessary	to	create	config	files	using	a	Python	program.	We	just
wanted	to	show	programmatic	creation	of	config	files	as	it	is	easier	to	programmatically
create	config	files	for	multiple	devices	at	the	same	time.

The	preceding	example	is	available	for	download	along	with	this	chapter	(config_parser_read.py).	Let's
discuss	how	this	code	sample	works:

1.	 The	first	step	is	initializing	an	instance	of	the	ConfigParser	class	called	config_parser.
2.	 The	second	step	is	loading	and	reading	the	config	file	using	the	instance	method	read.
3.	 Since	we	know	the	structure	of	the	config	file,	let's	go	ahead	and	read	some	constants	available

under	the	section	AppInfo.	The	config	file	parameters	can	be	read	using	the	get	method.	The	required
arguments	include	the	section	under	which	the	config	parameter	is	located	and	the	name	of	the
parameter.	For	example:	The	config	id	parameter	is	located	under	the	AppInfo	section.	Hence,	the
required	arguments	to	the	method	include	AppInfo	and	id:

device_id	=	config_parser.get('AppInfo',	'id')

4.	 Now	that	the	config	parameters	are	read	into	variables,	let's	make	use	of	it	in	our	program.	For
example:	Let's	test	if	the	debug_switch	variable	(a	switch	to	determine	if	the	program	is	in	debug	mode)
and	print	the	other	config	parameters	that	were	retrieved	from	the	file:

if	debug_switch	==	"True":

											print("The	device	id	is	"	+	device_id)	

											print("The	sensor_address	is	"	+	sensor_address)

Example	3:

Let's	discuss	an	example	where	we	would	like	to	modify	an	existing	config	file.	This	is	especially	useful
in	situations	where	we	need	to	update	the	firmware	version	number	in	the	config	file	after	performing	a
firmware	update.

The	following	code	snippet	is	available	for	download	as	config_parser_modify.py	along	with	this	chapter:

import	configparser	

if	__name__	==	"__main__":	

			#	initialize	ConfigParser	

			config_parser	=	configparser.ConfigParser()	

			#	Let's	read	the	config	file	

			config_parser.read('raspi.cfg')	

			#	Set	firmware	version	

			config_parser.set('AppInfo',	'fw_version',	'A3')	

			#	write	the	updated	config	to	the	config	file	

			with	open('raspi.cfg',	'w')	as	config_file:	

							config_parser.write(config_file)

Let's	discuss	how	this	works:

1.	 As	always,	the	first	step	is	initializing	an	instance	of	the	ConfigParser	class.	The	config	file	is	loaded
using	the	method	read:

#	initialize	ConfigParser	

							config_parser	=	configparser.ConfigParser()	

							#	Let's	read	the	config	file	

							config_parser.read('raspi.cfg')

2.	 The	required	parameter	is	updated	using	the	set	method	(discussed	in	a	previous	example):

#	Set	firmware	version	

							config_parser.set('AppInfo',	'fw_version',	'A3')

3.	 The	updated	config	is	saved	to	the	config	file	using	the	write	method:

with	open('raspi.cfg',	'w')	as	config_file:	

										config_parser.write(config_file)

Challenge	to	the	reader
Using	example	3	as	a	reference,	update	the	config	parameter	debug_switch	to	the	value	False.	Repeat	example
2	and	see	what	happens.

Reading/writing	to	CSV	files
In	this	section,	we	are	going	to	discuss	reading/writing	to	CSV	files.	This	module	(https://docs.python.org/3.4/libra
ry/csv.html)	is	useful	in	data	logging	applications.	Since	we	will	be	discussing	data	logging	in
the	next	chapter,	let's	review	reading/writing	to	CSV	files.

https://docs.python.org/3.4/library/csv.html

with	open("csv_example.csv",	'w')	as	csv_file:

csv_writer	=	csv.writer(csv_file)

csv_writer.writerow([123,	456,	789])

import	csv	
	if	__name__	==	"__main__":	
	#	initialize	csv	writer	
	with
open("csv_example.csv",	'w')	as	csv_file:	
	csv_writer	=	csv.writer(csv_file)	

csv_writer.writerow([123,	456,	789])	
	csv_writer.writerow(["Red",	"Green",
"Blue"])

	123,456,789
	Red,Green,Blue

with	open("csv_example.csv",	'r')	as	csv_file:

csv_reader	=	csv.reader(csv_file)

for	row	in	csv_reader:	
	print(row)

import	csv	

	if	__name__	==	"__main__":	
	#	initialize	csv	writer	

with	open("csv_example.csv",	'r')	as	csv_file:	
	csv_reader	=	csv.reader(csv_file)

	for	row	in	csv_reader:	
	print(row)

['123',	'456',	'789']
	['Red',	'Green',	'Blue']

	

Python	utilities
	

Python	comes	with	several	utilities	that	enables	interacting	with	other	files	and	the	operating	system	itself.
We	have	identified	all	those	Python	utilities	that	we	have	used	in	our	past	projects.	Let's	discuss	the
different	modules	and	their	uses	as	we	might	use	them	in	the	final	project	of	this	book.

	

	

The	os	module
As	the	name	suggests,	this	module	(https://docs.python.org/3.1/library/os.html)	enables	interacting	with	the	operating
system.	Let's	discuss	some	of	its	applications	with	examples.

https://docs.python.org/3.1/library/os.html

import	os
if	__name__	==	"__main__":
	#	Check	if	file	exists
	if
os.path.isfile('/home/pi/Desktop/code_samples/write_file.txt'):
	print('The	file	exists!')

	else:
	print('The	file	does	not	exist!')

if	os.path.isfile('/home/pi/Desktop/code_samples/write_file.txt'):	
	print('The	file
exists!')	
else:	
	print('The	file	does	not	exist!')

#	Confirm	code_samples'	existence	
if
os.path.isdir('/home/pi/Desktop/code_samples'):	
	print('The	directory	exists!')

else:	
	print('The	directory	does	not	exist!')

os.remove('/home/pi/Desktop/code_samples/read_file.txt')

Killing	a	process
It	is	possible	to	kill	an	application	running	on	the	Raspberry	Pi	by	passing	process	pid	to	the	kill()
function.	In	the	previous	chapter,	we	discussed	the	light_scheduler	example	that	runs	as	a	background
process	on	the	Raspberry	Pi.	To	demonstrate	killing	a	process,	we	are	going	to	attempt	killing	that
process.	We	need	to	determine	the	process	pid	of	the	light_scheduler	process	(you	may	pick	an	application
that	was	started	by	you	as	a	user	and	not	do	not	touch	root	processes).	The	process	pid	could	be	retrieved
from	the	command-line	terminal	using	the	following	command:	ps	aux

It	spits	out	the	processes	currently	running	on	the	Raspberry	Pi	(shown	in	the	following	figure).	The
process	pid	for	the	light_scheduler	application	is	1815:

light_scheduler	daemon's	PID

Assuming	we	know	the	process	pid	of	the	application	that	needs	to	be	killed,	let's	review	killing	the
function	using	kill().	The	arguments	required	to	kill	the	function	include	the	process	pid	and	signal
(signal.SIGKILL)	that	needs	to	be	sent	to	the	process	to	kill	the	application:	import	os
import	signal
if	__name__	==	"__main__":
#kill	the	application
try:
os.kill(1815,	signal.SIGKILL)
except	OSError	as	error:
print("OS	Error	"	+	str(error))

The	signal	module	(https://docs.python.org/3/library/signal.html)	contains	the	constants	that	represents	the	signals	that
could	be	used	to	stop	an	application.	In	this	code	snippet,	we	make	use	of	the	SIGKILL	signal.	Try	running
the	ps	command	(ps	aux)	and	you	will	notice	that	the	light_scheduler	application	has	been	killed.

https://docs.python.org/2/library/signal.html)

Monitoring	a	process
In	the	previous	example,	we	discussed	killing	an	application	using	the	kill()	function.	You	might	have
noticed	that	we	made	use	of	something	called	the	try/except	keywords	to	attempt	killing	the	application.	We
will	discuss	these	keywords	in	detail	in	the	next	chapter.

It	is	also	possible	to	monitor	whether	an	application	is	running	using	the	kill()	function	using	the	try/except
keywords.	We	will	discuss	monitoring	processes	using	the	kill()	function	after	introducing	the	concept	of
trapping	exceptions	using	try/except	keywords.

All	examples	discussed	in	the	os	module	are	available	for	download	along	with	this	chapter	as	os_utils.py.

The	glob	module
The	glob	module	(https://docs.python.org/3/library/glob.html)	enables	identifying	files	of	a	specific	extension	or	files
that	have	a	specific	pattern.	For	example,	it	is	possible	to	list	all	Python	files	in	a	folder	as	follows:

#	List	all	files

for	file	in	glob.glob('*.py'):

				print(file)

The	glob()	function	returns	a	list	of	files	that	contains	the	.py	extension.	A	for	loop	is	used	to	iterate	through
the	list	and	print	each	file.	When	the	preceding	code	snippet	is	executed,	the	output	contains	the	list	of	all
code	samples	belonging	to	this	chapter	(output	truncated	for	representation):

read_from_file.py

config_parser_read.py

append_to_file.py

read_line_from_file.py

config_parser_modify.py

python_utils.py

config_parser_write.py

csv_write.py

This	module	is	especially	helpful	with	listing	files	that	have	a	specific	pattern.	For	example:	Let's
consider	a	scenario	where	you	would	like	to	upload	files	that	were	created	from	different	trials	of	an
experiment.	You	are	only	interested	in	files	that	are	of	the	following	format:	file1xx.txt	where	x	stands	for
any	digit	between	0	and	9.	Those	files	could	be	sorted	and	listed	as	follows:

#	List	all	files	of	the	format	1xx.txt

for	file	in	glob.glob('txt_files/file1[0-9][0-9].txt'):

				print(file)

In	the	preceding	example,	[0-9]	means	that	the	file	name	could	contain	any	digit	between	0	and	9.	Since	we
are	looking	for	files	of	the	file1xx.txt	format,	the	search	pattern	that	is	passed	an	argument	to	the	glob()
function	is	file1[0-9][0-9].txt.

When	the	preceding	code	snippet	is	executed,	the	output	contains	all	text	files	of	the	specified	format:

txt_files/file126.txt

txt_files/file125.txt

txt_files/file124.txt

txt_files/file123.txt

txt_files/file127.txt

We	came	across	this	article	that	explains	the	use	of	expressions	for	sorting	files:	http://www.linuxjournal.com/conte
nt/bash-extended-globbing.	The	same	concept	can	be	extended	to	searching	for	files	using	the	glob	module.

https://docs.python.org/3/library/glob.html
http://www.linuxjournal.com/content/bash-extended-globbing

	

Challenge	to	the	reader
	

The	examples	discussed	with	the	glob	module	are	available	for	download	along	with	this	chapter	as
glob_example.py.	In	one	of	the	examples,	we	discussed	listing	files	of	a	specific	format.	How	would	you	go
about	listing	files	that	are	of	the	following	format:	filexxxx.*?	(Here	x	represents	any	number	between	0
and	9.	*	represents	any	file	extension.)

	

	

The	shutil	module
The	shutil	module	(https://docs.python.org/3/library/shutil.html)	enables	moving	and	copying	files	between	folders
using	the	move()	and	copy()	methods.	In	the	previous	section,	we	listed	all	text	files	within	the	folder,
txt_files.	Let's	move	these	files	to	the	current	directory	(where	the	code	is	being	executed)	using	move(),
make	a	copy	of	these	files	once	again	in	txt_files	and	finally	remove	the	text	files	from	the	current
directory:

import	glob

import	shutil

import	os

if	__name__	==	"__main__":

				#	move	files	to	the	current	directory

				for	file	in	glob.glob('txt_files/file1[0-9][0-9].txt'):

								shutil.move(file,	'.')

				#	make	a	copy	of	files	in	the	folder	'txt_files'	and	delete	them

				for	file	in	glob.glob('file1[0-9][0-9].txt'):

								shutil.copy(file,	'txt_files')

								os.remove(file)

In	the	preceding	example	(available	for	download	along	with	this	chapter	as	shutil_example.py),	the	files	are
being	moved	as	well	as	copied	from	the	origin	to	the	destination	by	specifying	the	source	and	the
destination	as	the	first	and	second	arguments	respectively.

The	files	to	be	moved	(or	copied)	are	identified	using	the	glob	module.	Then,	each	file	is	moved	or	copied
using	their	corresponding	methods.

https://docs.python.org/3/library/shutil.html

import	subprocess
if	__name__	==	"__main__":
	subprocess.Popen(['aplay',
'tone.wav'])

In	the	preceding	example,	tone.wav	(WAVE	file	that	needs	to	be	played)	and	the
command	that	needs	to	be	run	are	passed	as	a	list	argument	to	the	function.	There	are
several	other	commands	from	the	subprocess	module	that	serve	a	similar	purpose.	We
leave	it	to	your	exploration.

The	sys	module
The	sys	module	(https://docs.python.org/3/library/sys.html)	allows	interacting	with	the	Python	run-time	interpreter.
One	of	the	functions	of	the	sys	module	is	parsing	command-line	arguments	provided	as	inputs	to	the
program.	Let's	write	a	program	that	reads	and	prints	the	contents	of	the	file	that	is	passed	as	an	argument
to	the	program:	import	sys
if	__name__	==	"__main__":
with	open(sys.argv[1],	'r')	as	read_file:
print(read_file.read())

Try	running	the	preceding	example	as	follows:

python3	sys_example.py	read_lines.txt

The	preceding	example	is	available	for	download	along	with	this	chapter	as	sys_example.py.	The	list	of
command-line	arguments	passed	while	running	the	program	are	available	as	a	argv	list	in	the	sys	module.
argv[0]	is	usually	the	name	of	the	Python	program	and	argv[1]	is	usually	the	first	argument	passed	to	the
function.

When	sys_example.py	is	executed	with	read_lines.txt	as	an	argument,	the	program	should	print	the	contents	of
the	text	file:	I	am	learning	Python	Programming	using	the	Raspberry	Pi	Zero.
This	is	the	second	line.
Line	3.
Line	4.
Line	5.
Line	6.
Line	7.

https://docs.python.org/3/library/sys.html

Summary
In	this	chapter,	we	discussed	file	I/O	–	reading	and	writing	to	files,	different	flags	used	to	read,	write,	and
append	to	files.	We	talked	about	moving	file	pointers	to	different	points	in	a	file	to	retrieve	specific
content	or	overwrite	the	contents	of	a	file	at	a	specific	location.	We	discussed	the	ConfigParser	module	in
Python	and	its	application	in	storing/retrieving	config	parameters	for	applications	along	with	reading	and
writing	to	CSV	files.

Finally,	we	discussed	different	Python	utilities	that	have	a	potential	use	in	our	project.	We	will	be
extensively	making	use	of	file	I/O	and	the	discussed	Python	utilities	in	our	final	project.	We	strongly
recommend	familiarizing	yourself	with	the	concepts	discussed	in	this	chapter	before	moving	onto	the	final
projects	discussed	in	this	book.

In	the	upcoming	chapters,	we	will	discuss	uploading	sensor	data	stored	in	CSV	files	to	the	cloud	and
logging	errors	encountered	during	the	execution	of	an	application.	See	you	in	the	next	chapter!

	

Requests	and	Web	Frameworks
	

The	main	topics	of	this	chapter	are	requests	and	web	frameworks	in	Python.	We	are	going	to	discuss
libraries	and	frameworks	that	enable	retrieving	data	from	the	Web	(for	example,	get	weather	updates),
upload	data	to	a	remote	server	(for	example,	log	sensor	data),	or	control	appliances	on	a	local	network.
We	will	also	discuss	topics	that	will	help	with	learning	the	core	topics	of	this	chapter.

	

	

The	try/except	keywords
So	far,	we	have	reviewed	and	tested	all	our	examples	assuming	the	ideal	condition,	that	is,	the	execution
of	the	program	will	encounter	no	errors.	On	the	contrary,	applications	fail	from	time	to	time	either	due	to
external	factors,	such	as	invalid	user	input	and	poor	Internet	connectivity,	or	program	logic	errors	caused
by	the	programmer.	In	such	cases,	we	want	the	program	to	report/log	the	nature	of	error	and	either
continue	its	execution	or	clean	up	resources	before	exiting	the	program.	The	try/except	keywords	offer	a
mechanism	to	trap	an	error	that	occurs	during	a	program's	execution	and	take	remedial	action.	Because	it
is	possible	to	trap	and	log	an	error	in	crucial	parts	of	the	code,	the	try/except	keywords	are	especially
useful	while	debugging	an	application.

Let's	understand	the	try/except	keywords	by	comparing	two	examples.	Let's	build	a	simple	guessing	game
where	the	user	is	asked	to	guess	a	number	between	0	and	9:

1.	 A	random	number	(between	0	and	9)	is	generated	using	Python's	random	module.	If	the	user's	guess	of
the	generated	number	is	right,	the	Python	program	declares	the	user	as	the	winner	and	exits	the	game.

2.	 If	the	user	input	is	the	letter	x,	the	program	quits	the	game.
3.	 The	user	input	is	converted	into	an	integer	using	the	int()	function.	A	sanity	check	is	performed	to

determine	whether	the	user	input	is	a	number	between	0	and	9.
4.	 The	integer	is	compared	against	a	random	number.	If	they	are	the	same,	the	user	is	declared	the

winner	and	the	program	exits	the	game.

Let's	observe	what	happens	when	we	deliberately	provide	an	erroneous	input	to	this	program	(the	code
snippet	shown	here	is	available	for	download	along	with	this	chapter	as	guessing_game.py):

import	random

if	__name__	==	"__main__":

				while	True:

								#	generate	a	random	number	between	0	and	9

								rand_num	=	random.randrange(0,10)

								#	prompt	the	user	for	a	number

								value	=	input("Enter	a	number	between	0	and	9:	")

								if	value	==	'x':

												print("Thanks	for	playing!	Bye!")

												break

								input_value	=	int(value)

								if	input_value	<	0	or	input_value	>	9:

												print("Input	invalid.	Enter	a	number	between	0	and	9.")

								if	input_value	==	rand_num:

												print("Your	guess	is	correct!	You	win!")

												break

								else:

												print("Nope!	The	random	value	was	%s"	%	rand_num)

Let's	execute	the	preceding	code	snippet	and	provide	the	input	hello	to	the	program:

Enter	a	number	between	0	and	9:	hello

				Traceback	(most	recent	call	last):

								File	"guessing_game.py",	line	12,	in	<module>

												input_value	=	int(value)

				ValueError:	invalid	literal	for	int()	with	base	10:	'hello'

In	the	preceding	example,	the	program	fails	when	it	is	trying	to	convert	the	user	input	hello	to	an	integer.
The	program	execution	ends	with	an	exception.	An	exception	highlights	the	line	where	the	error	has
occurred.	In	this	case,	it	has	occurred	in	line	10:

File	"guessing_game.py",	line	12,	in	<module>

				input_value	=	int(value)

The	nature	of	the	error	is	also	highlighted	in	the	exception.	In	this	example,	the	last	line	indicates	that	the
exception	thrown	is	ValueError:

ValueError:	invalid	literal	for	int()	with	base	10:	'hello'

Let's	discuss	the	same	example	(available	for	download	along	with	this	chapter	as	try_and_except.py)	that
makes	use	of	the	try/except	keywords.	It	is	possible	to	continue	playing	the	game	after	trapping	this
exception	and	printing	it	to	the	screen.	We	have	the	following	code:

import	random

if	__name__	==	"__main__":

				while	True:

								#	generate	a	random	number	between	0	and	9

								rand_num	=	random.randrange(0,10)

								#	prompt	the	user	for	a	number

								value	=	input("Enter	a	number	between	0	and	9:	")

								if	value	==	'x':

												print("Thanks	for	playing!	Bye!")

								try:

												input_value	=	int(value)

								except	ValueError	as	error:

												print("The	value	is	invalid	%s"	%	error)

												continue

								if	input_value	<	0	or	input_value	>	9:

												print("Input	invalid.	Enter	a	number	between	0	and	9.")

												continue

								if	input_value	==	rand_num:

												print("Your	guess	is	correct!	You	win!")

												break

								else:

												print("Nope!	The	random	value	was	%s"	%	rand_num)

Let's	discuss	how	the	same	example	works	with	the	try/except	keywords:

1.	 From	the	previous	example,	we	know	that	when	a	user	provides	the	wrong	input	(for	example,	a
letter	instead	of	a	number	between	0	and	9),	the	exception	occurs	at	line	10	(where	the	user	input	is
converted	into	an	integer),	and	the	nature	of	the	error	is	named	ValueError.

2.	 It	is	possible	to	avoid	interruption	of	the	program's	execution	by	wrapping	this	in	a	try...except	block:

try:	

									input_value	=	int(value)	

						except	ValueError	as	error:

									print("The	value	is	invalid	%s"	%	error)

3.	 On	receiving	a	user	input,	the	program	attempts	converting	the	user	input	into	an	integer	under	the	try
block.

4.	 If	ValueError	has	occurred,	error	is	trapped	by	the	except	block,	and	the	following	message	is	printed	to

the	screen	along	with	the	actual	error	message:

except	ValueError	as	error:

											print("The	value	is	invalid	%s"	%	error)

5.	 Try	executing	the	code	example	and	try	providing	an	invalid	input.	You	will	note	that	the	program
prints	the	error	message	(along	with	the	nature	of	the	error)	and	goes	back	to	the	top	of	the	game	loop
and	continues	seeking	valid	user	input:

Enter	a	number	between	0	and	9:	3

							Nope!	The	random	value	was	5

							Enter	a	number	between	0	and	9:	hello

							The	value	is	invalid	invalid	literal	for	int()	with

							base	10:	'hello'

							Enter	a	number	between	0	and	10:	4

							Nope!	The	random	value	was	6

The	try...except	block	comes	with	a	substantial	processing	power	cost.	Hence,	it	is	important	to	keep	the
try...except	block	as	short	as	possible.	Because	we	know	that	the	error	occurs	on	the	line	where	we
attempt	converting	the	user	input	into	an	integer,	we	wrap	it	in	a	try...except	block	to	trap	an	error.

Thus,	the	try/except	keywords	are	used	to	prevent	any	abnormal	behavior	in	a	program's	execution	due	to
an	error.	It	enables	logging	the	error	and	taking	remedial	action.	Similar	to	the	try...except	block,	there	are
also	try...except...else	and	try...except...else	code	blocks.	Let's	quickly	review	those	options	with	a	couple
of	examples.

try:
	input_value	=	int(value)
except	ValueError	as	error:
	print("The	value
is	invalid	%s"	%	error)
else:
	if	input_value	<	0	or	input_value	>	9:

print("Input	invalid.	Enter	a	number	between	0	and	9.")
	elif	input_value	==
rand_num:
	print("Your	guess	is	correct!	You	win!")
	break
	else:

print("Nope!	The	random	value	was	%s"	%	rand_num)

The	modified	guessing	game	example	that	makes	use	of	the	try...except...else	block
is	available	for	download	along	with	this	chapter	as	try_except_else.py.	In	this
example,	the	program	compares	the	user	input	against	the	random	number	only	if	a	valid
user	input	was	received.	It	otherwise	skips	the	else	block	and	goes	back	to	the	top	of	the
loop	to	accept	the	next	user	input.	Thus,	try...except...else	is	used	when	we	want	a
specific	code	block	to	be	executed	when	no	exceptions	are	raised	due	to	the	code	in	the
try	block.

try...except...else...finally
As	the	name	suggests,	the	finally	block	is	used	to	execute	a	block	of	code	on	leaving	the	try	block.	This
block	of	code	is	executed	even	after	an	exception	is	raised.	This	is	useful	in	scenarios	where	we	need	to
clean	up	resources	and	free	up	memory	before	moving	on	to	the	next	stage.

Let's	demonstrate	the	function	of	the	finally	block	using	our	guessing	game.	To	understand	how	the	finally
keyword	works,	let's	make	use	of	a	counter	variable	named	count	that	is	incremented	in	the	finally	block,
and	another	counter	variable	named	valid_count	that	is	incremented	in	the	else	block.	We	have	the	following
code:

count	=	0

valid_count	=	0

while	True:

		#	generate	a	random	number	between	0	and	9

		rand_num	=	random.randrange(0,10)

		#	prompt	the	user	for	a	number

		value	=	input("Enter	a	number	between	0	and	9:	")

		if	value	==	'x':

						print("Thanks	for	playing!	Bye!")

		try:

						input_value	=	int(value)

		except	ValueError	as	error:

						print("The	value	is	invalid	%s"	%	error)

		else:

						if	input_value	<	0	or	input_value	>	9:

										print("Input	invalid.	Enter	a	number	between	0	and	9.")

										continue

						valid_count	+=	1

						if	input_value	==	rand_num:

										print("Your	guess	is	correct!	You	win!")

										break

						else:

										print("Nope!	The	random	value	was	%s"	%	rand_num)

		finally:

						count	+=	1

print("You	won	the	game	in	%d	attempts	"\

						"and	%d	inputs	were	valid"	%	(count,	valid_count))

The	preceding	code	snippet	is	from	the	try_except_else_finally.py	code	sample	(available	for	download
along	with	this	chapter).	Try	executing	the	code	sample	and	playing	the	game.	You	will	note	the	total
number	of	attempts	it	took	to	win	the	game	and	the	number	of	inputs	that	were	valid:

Enter	a	number	between	0	and	9:	g

				The	value	is	invalid	invalid	literal	for	int()	with

				base	10:	'g'

				Enter	a	number	between	0	and	9:	3

				Your	guess	is	correct!	You	win!

				You	won	the	game	in	9	attempts	and	8	inputs	were	valid

This	demonstrates	how	the	try-except-else-finally	block	works.	Any	code	under	the	else	keyword	is
executed	when	the	critical	code	block	(under	the	try	keyword)	is	executed	successfully,	whereas	the	code
block	under	the	finally	keyword	is	executed	while	exiting	the	try...except	block	(useful	for	cleaning	up
resources	while	exiting	a	code	block).

Try	providing	invalid	inputs	while	playing	the	game	using	the	previous	code	example	to	understand	the

code	block	flow.

Connecting	to	the	Internet	–	web	requests
Now	that	we	discussed	the	try/except	keywords,	let's	make	use	of	it	to	build	a	simple	application	that
connects	to	the	Internet.	We	will	write	a	simple	application	that	retrieves	the	current	time	from	the
Internet.	We	will	be	making	use	of	the	requests	library	for	Python	(http://requests.readthedocs.io/en/master/#).

The	requests	module	enables	connecting	to	the	Web	and	retrieving	information.	In	order	to	do	so,	we	need
to	make	use	of	the	get()	method	from	the	requests	module	to	make	a	request:

import	requests

response	=	requests.get('http://nist.time.gov/actualtime.cgi')

In	the	preceding	code	snippet,	we	are	passing	a	URL	as	an	argument	to	the	get()	method.	In	this	case,	it	is
the	URL	that	returns	the	current	time	in	the	Unix	format	(https://en.wikipedia.org/wiki/Unix_time).

Let's	make	use	of	the	try/except	keywords	to	make	a	request	to	get	the	current	time:

#!/usr/bin/python3

import	requests

if	__name__	==	"__main__":

		#	Source	for	link:	http://stackoverflow.com/a/30635751/822170

		try:

				response	=	requests.get('http://nist.time.gov/actualtime.cgi')

				print(response.text)

		except	requests.exceptions.ConnectionError	as	error:

				print("Something	went	wrong.	Try	again")

In	the	preceding	example	(available	for	download	along	with	this	chapter	as	internet_access.py),	the	request
is	made	under	the	try	block,	and	the	response	(returned	by	response.text)	is	printed	to	the	screen.

If	there	is	an	error	while	executing	the	request	to	retrieve	the	current	time,	ConnectionError	is	raised	(http://requ
ests.readthedocs.io/en/master/user/quickstart/#errors-and-exceptions).	This	error	could	either	be	caused	by	the	lack	of	an
Internet	connection	or	an	incorrect	URL.	This	error	is	caught	by	the	except	block.	Try	running	the	example,
and	it	should	return	the	current	time	from	time.gov:

<timestamp	time="1474421525322329"	delay="0"/>

http://requests.readthedocs.io/en/master/
https://en.wikipedia.org/wiki/Unix_time
http://requests.readthedocs.io/en/master/user/quickstart/#errors-and-exceptions

	{"coord":{"lon":-122.42,"lat":37.77},"weather":[{"id":800,	

"main":"Clear","description":"clear	sky","icon":"01n"}],"base":	
	"stations","main":
{"temp":71.82,"pressure":1011,"humidity":50,	

"temp_min":68,"temp_max":75.99},"wind":
	{"speed":13.04,"deg":291},

"clouds":{"all":0},"dt":1474505391,"sys":{"type":3,"id":9966,	

"message":0.0143,"country":"US","sunrise":1474552682,	

"sunset":1474596336},"id":5391959,"name":"San	
	Francisco","cod":200}

response	=	requests.get(URL)	
	json_data	=	response.json()

print(json_data['main']['temp'])

#!/usr/bin/python3

	import	requests

	#	generate	your	own	API
key
	APP_ID	=	'5d6f02fd4472611a20f4ce602010ee0c'
	ZIP	=	94103
	URL	=
"""http://api.openweathermap.org/data/2.5/weather?zip={}
	&appid=
{}&units=imperial""".format(ZIP,	APP_ID)

	if	__name__	==	"__main__":

	#	API	Documentation:	http://openweathermap.org/

current#current_JSON
	try:
	#	encode	data	payload	and	post	it
	response	=
requests.get(URL)
	json_data	=	response.json()
	print("Temperature	is	%s
degrees	Fahrenheit"	%
	json_data['main']['temp'])
	except
requests.exceptions.ConnectionError	as	error:
	print("The	error	is	%s"	%	error)

Temperature	is	68.79	degrees	Fahrenheit

The	application	of	requests	–	publishing	events	to
the	Internet
In	the	previous	example,	we	retrieved	information	from	the	Internet.	Let's	consider	an	example	where	we
have	to	publish	a	sensor	event	somewhere	on	the	Internet.	This	could	be	either	a	cat	door	opening	while
you	are	away	from	home	or	someone	at	your	doorstep	stepping	on	the	doormat.	Because	we	discussed
interfacing	sensors	to	the	Raspberry	Pi	Zero	in	the	previous	chapter,	let's	discuss	a	scenario	where	we
could	post	these	events	to	Slack—a	workplace	communication	tool,	Twitter,	or	cloud	services	such	as
Phant	(https://data.sparkfun.com/).

In	this	example,	we	will	post	these	events	to	Slack	using	requests.	Let's	send	a	direct	message	to	ourselves
on	Slack	whenever	a	sensor	event	such	as	a	cat	door	opening	occurs.	We	need	a	URL	to	post	these	sensor
events	to	Slack.	Let's	review	generating	a	URL	in	order	to	post	sensor	events	to	Slack:

1.	 The	first	step	in	generating	a	URL	is	creating	an	incoming	webhook.	A	webhook	is	a	type	request
that	can	post	messages	that	are	carried	as	a	payload	to	applications	such	as	Slack.

2.	 If	you	are	a	member	of	a	Slack	team	named	TeamX,	launch	your	team's	application	directory,	namely
teamx.slack.com/apps	in	a	browser:

Launch	your	team's	app	directory

3.	 Search	for	incoming	webhooks	in	your	app	directory	and	select	the	first	option,	Incoming	WebHooks	(as
shown	in	the	following	screenshot):

https://data.sparkfun.com/

Select	incoming	webhooks

4.	 Click	on	Add	Configuration:

Add	Configuration

5.	 Let's	send	a	private	message	to	ourselves	when	an	event	occurs.	Select	Privately	to	(you)	as	the
option	and	create	a	webhook	by	clicking	on	Add	Incoming	WebHooks	integration:

Select	Privately	to	you

6.	 We	have	generated	a	URL	to	send	direct	messages	about	sensor	events	(URL	partially	concealed):

Generated	URL

7.	 Now,	we	can	send	direct	message	to	ourselves	on	Slack	using	the	previously-mentioned	URL.	The
sensor	event	can	be	published	to	Slack	as	a	JSON	payload.	Let's	review	posting	a	sensor	event	to
Slack.

8.	 For	example,	let's	consider	posting	a	message	when	a	cat	door	opens.	The	first	step	is	preparing	the
JSON	payload	for	the	message.	According	to	the	Slack	API	documentation	(https://api.slack.com/custom-inte
grations),	the	message	payload	needs	to	be	in	the	following	format:

payload	=	{"text":	"The	cat	door	was	just	opened!"}

9.	 In	order	to	publish	this	event,	we	will	make	use	of	the	post()	method	from	the	requests	module.	The
data	payload	needs	to	be	encoded	in	JSON	format	while	posting	it:

response	=	requests.post(URL,	json.dumps(payload))

10.	 Putting	it	all	together,	we	have	this:

#!/usr/bin/python3

							import	requests

							import	json

							#	generate	your	own	URL

							URL	=	'https://hooks.slack.com/services/'

							if	__name__	==	"__main__":

									payload	=	{"text":	"The	cat	door	was	just	opened!"}

									try:

											#	encode	data	payload	and	post	it

											response	=	requests.post(URL,	json.dumps(payload))

											print(response.text)

									except	requests.exceptions.ConnectionError	as	error:

											print("The	error	is	%s"	%	error)

11.	 On	posting	the	message,	the	request	returns	ok	as	a	response.	This	indicates	that	the	post	was
successful.

12.	 Generate	your	own	URL	and	execute	the	preceding	example	(available	for	download	along	with	this
chapter	as	slack_post.py).	You	will	receive	a	direct	message	on	Slack:

Direct	message	on	Slack

https://api.slack.com/custom-integrations)

Now,	try	interfacing	a	sensor	to	the	Raspberry	Pi	Zero	(discussed	in	previous	chapters)	and	post	the
sensor	events	to	Slack.

It	is	also	possible	to	post	sensor	events	to	Twitter	and	have	your	Raspberry	Pi	Zero	check	for	new	e-
mails	and	so	on.	Check	this	book's	website	for	more	examples.

	

Flask	web	framework
	

In	our	final	section,	we	will	discuss	web	frameworks	in	Python.	We	will	discuss	the	Flask	framework	(http
://flask.pocoo.org/).	Python-based	frameworks	enable	interfacing	sensors	to	a	network	using	the	Raspberry	Pi
Zero.	This	enables	controlling	appliances	and	reading	data	from	sensors	from	anywhere	within	a	network.
Let's	get	started!

	

	

http://flask.pocoo.org/

Installing	Flask
The	first	step	is	installing	the	Flask	framework.	It	can	be	done	as	follows:

				sudo	pip3	install	flask

Building	our	first	example
The	Flask	framework	documentation	explains	building	the	first	example.	Modify	the	example	from	the
documentation	as	follows:	#!/usr/bin/python3

from	flask	import	Flask
app	=	Flask(__name__)

@app.route("/")
def	hello():
return	"Hello	World!"

if	__name__	==	"__main__":
app.run('0.0.0.0')

Launch	this	example	(available	for	download	along	with	this	chapter	as	flask_example.py)	and	it	should
launch	a	server	on	the	Raspberry	Pi	Zero	visible	to	the	network.	On	another	computer,	launch	a	browser
and	enter	the	IP	address	of	the	Raspberry	Pi	Zero	along	with	port	number,	5000,	as	a	suffix	(as	shown	in	the
following	snapshot).	It	should	take	you	to	the	index	page	of	the	server	that	displays	the	message	Hello

World!:	

The	Flask	framework-based	web	server	on	the	Raspberry	Pi	Zero

You	can	find	the	IP	address	of	your	Raspberry	Pi	Zero	using	the	ifconfig	command	on	the	command-line
terminal.

Controlling	appliances	using	the	Flask
framework
Let's	try	turning	on/off	appliances	at	home	using	the	Flask	framework.	In	previous	chapters,	we	made	use
of	PowerSwitch	Tail	II	to	control	a	table	lamp	using	the	Raspberry	Pi	Zero.	Let's	try	to	control	the	same
using	the	Flask	framework.	Connect	PowerSwitch	Tail,	as	shown	in	the	following	figure:

Controlling	a	table	lamp	using	the	Flask	framework

According	to	the	Flask	framework	documentation,	it	is	possible	to	route	a	URL	to	a	specific	function.	For
example,	it	is	possible	to	bind	/lamp/<control>	using	route()	to	the	control()	function:

@app.route("/lamp/<control>")	

def	control(control):	

		if	control	==	"on":	

				lights.on()	

		elif	control	==	"off":	

				lights.off()	

		return	"Table	lamp	is	now	%s"	%	control

In	the	preceding	code	snippet,	<control>	is	a	variable	that	can	be	passed	on	as	an	argument	to	the	binding
function.	This	enables	us	to	turn	the	lamp	on/off.	For	example,	<IP	address>:5000/lamp/on	turns	on	the	lamp,
and	vice	versa.	Putting	it	all	together,	we	have	this:

#!/usr/bin/python3	

from	flask	import	Flask	

from	gpiozero	import	OutputDevice	

app	=	Flask(__name__)	

lights	=	OutputDevice(2)	

@app.route("/lamp/<control>")	

def	control(control):	

		if	control	==	"on":	

				lights.on()	

		elif	control	==	"off":	

				lights.off()	

		return	"Table	lamp	is	now	%s"	%	control	

if	__name__	==	"__main__":	

				app.run('0.0.0.0')

The	preceding	example	is	available	for	download	along	with	this	chapter	as	appliance_control.py.	Launch
the	Flask-based	web	server	and	open	a	web	server	on	another	computer.	In	order	to	turn	on	the	lamp,
enter	<IP	Address	of	the	Raspberry	Pi	Zero>:5000/lamp/on	as	URL:

This	should	turn	on	the	lamp:

Thus,	we	have	built	a	simple	framework	that	enables	controlling	appliances	within	the	network.	It	is
possible	to	include	buttons	to	an	HTML	page	and	route	them	to	a	specific	URL	to	perform	a	specific
function.	There	are	several	other	frameworks	in	Python	that	enable	developing	web	applications.	We	have
merely	introduced	you	to	different	applications	that	are	possible	with	Python.	We	recommend	that	you
check	out	this	book's	website	for	more	examples,	such	as	controlling	Halloween	decorations	and	other
holiday	decorations	using	the	Flask	framework.

	

Summary
	

In	this	chapter,	we	discussed	the	try/except	keywords	in	Python.	We	also	discussed	developing
applications	that	retrieves	information	from	the	Internet,	as	well	as	publishing	sensor	events	to	the
Internet.	We	also	discussed	the	Flask	web	framework	for	Python	and	demonstrated	the	control	of
appliances	within	a	network.	In	the	next	chapter,	we	will	discuss	some	advanced	topics	in	Python.

	

	

Awesome	Things	You	Could	Develop	Using
Python
In	this	chapter,	we	will	discuss	some	advanced	topics	in	Python.	We	will	also	discuss	certain	unique
topics	(such	as	image	processing)	that	let	you	get	started	with	application	development	in	Python.

Image	processing	using	a	Raspberry	Pi	Zero
The	Raspberry	Pi	Zero	is	an	inexpensive	piece	of	hardware	that	is	powered	by	a	1	GHz	processor.	While
it	is	not	powerful	to	run	certain	advanced	image	processing	operations,	it	can	help	you	learn	the	basics	on
a	$25	budget	(the	cost	of	Raspberry	Pi	Zero	and	a	camera).

We	recommend	using	a	16	GB	card	(or	higher)	with	your	Raspberry	Pi	Zero	in	order	to
install	the	image	processing	tool	set	discussed	in	this	section.

For	example,	you	could	use	a	Raspberry	Pi	Zero	to	track	a	bird	in	your	backyard.	In	this	chapter,	we	are
going	to	discuss	different	ways	to	get	started	with	image	processing	on	the	Raspberry	Pi	Zero.

In	order	to	test	some	examples	using	the	camera	in	this	section,	a	Raspberry	Pi	Zero	v1.3	or	later	is
required.	Check	the	back	of	your	Raspberry	Pi	Zero	to	verify	the	board	version:	

Identifying	your	Raspberry	Pi	Zero's	version

OpenCV
OpenCV	is	an	open	source	toolbox	that	consists	of	different	software	tools	developed	for	image
processing.	OpenCV	is	a	cross-platform	toolbox	that	has	been	developed	with	support	for	different
operating	systems.	Because	OpenCV	is	available	under	an	open	source	license,	researchers	across	the
world	have	contributed	to	its	growth	by	developing	tools	and	techniques.	This	has	made	developing
applications	with	relative	ease.	Some	applications	of	OpenCV	include	face	recognition	and	license	plate
recognition.

Due	to	its	limited	processing	power,	it	can	take	several	hours	to	complete	the	installation
of	the	framework.	It	took	us	approximately	10	hours	at	our	end.

We	followed	the	instructions	to	install	OpenCV	on	the	Raspberry	Pi	Zero	from	http://www.pyimagesearch.com/201
5/10/26/how-to-install-opencv-3-on-raspbian-jessie/.We	specifically	followed	the	instructions	to	install	OpenCV	with
Python	3.x	bindings	and	verified	the	installation	process.	It	took	us	approximately	10	hours	to	finish
installing	OpenCV	on	the	Raspberry	Pi	Zero.	We	are	not	repeating	the	instructions	in	the	interest	of	not
reinventing	the	wheel.

http://www.pyimagesearch.com/2015/10/26/how-to-install-opencv-3-on-raspbian-jessie/

The	verification	of	the	installation
Let's	make	sure	that	the	OpenCV	installation	and	its	Python	bindings	work.	Launch	the	command-line
terminal	and	make	sure	that	you	have	launched	the	cv	virtual	environment	by	executing	the	workon	cv
command	(you	can	verify	that	you	are	in	the	cv	virtual	environment):

Verify	that	you	are	in	the	cv	virtual	environment

Now,	let's	make	sure	that	our	installation	works	correctly.	Launch	the	Python	interpreter	from	the
command	line	and	try	to	import	the	cv2	module:

>>>	import	cv2

				>>>	cv2.__version__

				'3.0.0'

This	proves	that	OpenCV	is	installed	on	the	Raspberry	Pi	Zero.	Let's	write	a	hello	world	example
involving	OpenCV.	In	this	example,	we	are	going	to	open	an	image	(this	can	be	any	color	image	on	your
Raspberry	Pi	Zero's	desktop)	and	display	it	after	converting	it	to	grayscale.	We	will	be	using	the
following	documentation	to	write	our	first	example:	http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_gui/py_image_displa
y/py_image_display.html.

According	to	the	documentation,	we	need	to	make	use	of	the	imread()	function	to	read	the	contents	of	the
image	file.	We	also	need	to	specify	the	format	in	which	we	would	like	to	read	the	image.	In	this	case,	we
are	going	to	read	the	image	in	grayscale	format.	This	is	specified	by	cv2.IMREAD_GRAYSCALE	that	is	passed	as
the	second	argument	to	the	function:

import	cv2	

img	=	cv2.imread('/home/pi/screenshot.jpg',cv2.IMREAD_GRAYSCALE)

Now	that	the	image	is	loaded	in	grayscale	format	and	saved	to	the	img	variable,	we	need	to	display	it	in	a
new	window.	This	is	enabled	by	the	imshow()	function.	According	to	the	documentation,	we	can	display	an
image	by	specifying	the	window	name	as	the	first	argument	and	the	image	as	the	second	argument:

cv2.imshow('image',img)

In	this	case,	we	are	going	to	open	a	window	named	image	and	display	the	contents	of	img	that	we	loaded	in
the	previous	step.	We	will	display	the	image	until	a	keystroke	is	received.	This	is	achieved	using	the
cv2.waitKey()	function.	According	to	the	documentation,	the	waitkey()	function	listens	for	keyboard	events:

cv2.waitKey(0)

The	0	argument	indicates	that	we	are	going	to	wait	indefinitely	for	a	keystroke.	According	to	the
documentation,	when	the	duration,	in	milliseconds,	is	passed	as	an	argument,	the	waitkey()	function	listens
to	keystrokes	for	the	specified	duration.	When	any	key	is	pressed,	the	window	is	closed	by	the
destroyAllWindows()	function:

http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_gui/py_image_display/py_image_display.html

cv2.destroyAllWindows()

Putting	it	all	together,	we	have	this:

import	cv2

img	=	cv2.imread('/home/pi/screenshot.jpg',cv2.IMREAD_GRAYSCALE)

cv2.imshow('image',img)

cv2.waitKey(0)

cv2.destroyAllWindows()

The	preceding	code	sample	is	available	for	download	along	with	this	chapter	as	opencv_test.py.	Once	you
are	done	installing	OpenCV	libraries,	try	loading	an	image	as	shown	in	this	example.	It	should	load	an
image	in	grayscale,	as	shown	in	the	following	figure:

The	Raspberry	Pi	desktop	loaded	in	grayscale

This	window	would	close	at	the	press	of	any	key.

A	challenge	to	the	reader
In	the	preceding	example,	the	window	closes	at	the	press	of	any	key.	Take	a	look	at	the	documentation	and
determine	if	it	is	possible	to	close	all	windows	at	the	press	of	a	mouse	button.

Installing	the	camera	to	the	Raspberry	Zero
A	camera	connector	and	a	camera	is	required	for	testing	our	next	example.	One	source	to	buy	the	camera
and	the	adapter	is	provided	here:

Name Source

Raspberry	Pi	Zero	camera	adapter https://thepihut.com/products/raspberry-pi-zero-camera-adapter

Raspberry	Pi	camera https://thepihut.com/products/raspberry-pi-camera-module

Perform	the	following	steps	to	install	a	camera	to	the	Raspberry	Pi	Zero:

1.	 The	first	step	is	interfacing	the	camera	to	the	Raspberry	Pi	Zero.	The	camera	adapter	can	be	installed
as	shown	in	the	following	figure.	Lift	the	connector	tab	and	slide	the	camera	adapter	and	press	the
connector	gently:

2.	 We	need	to	enable	the	camera	interface	on	the	Raspberry	Pi	Zero.	On	your	desktop,	go	to
Preferences	and	launch	Raspberry	Pi	Configuration.	Under	the	Interfaces	tab	of	the	Raspberry	Pi
configuration,	enable	the	camera,	and	save	the	configuration:

https://thepihut.com/products/raspberry-pi-zero-camera-adapter
https://thepihut.com/products/raspberry-pi-camera-module

Enable	the	camera	interface

3.	 Let's	test	the	camera	by	taking	a	picture	by	running	the	following	command	from	the	command-line
terminal:

raspistill	-o	/home/pi/Desktop/test.jpg

4.	 It	should	take	a	picture	and	save	it	to	your	Raspberry	Pi's	desktop.	Verify	that	the	camera	is
functioning	correctly.	If	you	are	not	able	to	get	the	camera	working,	we	recommend	the
troubleshooting	guide	published	by	the	Raspberry	Pi	Foundation:	https://www.raspberrypi.org/documentation/ras
pbian/applications/camera.md.

The	camera	cable	is	a	bit	unwieldy,	and	it	can	make	things	difficult	while	trying	to	take	a	picture.	We
recommend	using	a	camera	mount.	We	found	this	one	to	be	useful	(shown	in	the	following	image)	at	http://a.

co/hQolR7O:	

Use	a	mount	for	your	Raspberry	Pi's	camera

Let's	take	the	camera	for	a	spin	and	use	it	alongside	OpenCV	libraries:

1.	 We	are	going	to	take	a	picture	using	the	camera	and	display	it	using	the	OpenCV	framework.	In	order
to	access	the	camera	in	Python,	we	need	the	picamera	package.	This	can	be	installed	as	follows:

pip3	install	picamera

2.	 Let's	make	sure	that	the	package	works	as	intended	with	a	simple	program.	The	documentation	for
the	picamera	package	is	available	at	https://picamera.readthedocs.io/en/release-1.12/api_camera.html.

3.	 The	first	step	is	initializing	the	PiCamera	class.	This	is	followed	by	flipping	the	image	across	the
vertical	axis.	This	is	only	required	because	the	camera	is	mounted	upside	down	on	the	mount.	This
may	not	be	necessary	with	other	mounts:

with	PiCamera()	as	camera:	

							camera.vflip	=	True

4.	 Before	taking	a	picture,	we	can	preview	the	picture	that	is	going	to	be	captured	using	the
start_preview()	method:

camera.start_preview()

5.	 Let's	preview	for	10	seconds	before	we	take	a	picture.	We	can	take	a	picture	using	the	capture()
method:

sleep(10)	

							camera.capture("/home/pi/Desktop/desktop_shot.jpg")	

https://www.raspberrypi.org/documentation/raspbian/applications/camera.md
http://a.co/hQolR7O
https://picamera.readthedocs.io/en/release-1.12/api_camera.html

							camera.stop_preview()

6.	 The	capture()	method	requires	the	file	location	as	an	argument	(as	shown	in	the	preceding	snippet).
Once	we	are	done,	we	can	close	the	camera	preview	using	stop_preview().

7.	 Putting	it	altogether,	we	have	this:

from	picamera	import	PiCamera	

							from	time	import	sleep

							if	__name__	==	"__main__":	

									with	PiCamera()	as	camera:	

											camera.vflip	=	True	

											camera.start_preview()	

											sleep(10)	

											camera.capture("/home/pi/Desktop/desktop_shot.jpg")	

											camera.stop_preview()

The	preceding	code	sample	is	available	for	download	along	with	this	chapter	as
picamera_test.py.	A	snapshot	taken	using	the	camera	is	shown	in	the	following	figure:	

Image	captured	using	the	Raspberry	Pi	camera	module

8.	 Let's	combine	this	example	with	the	previous	one—convert	this	image	to	grayscale	and	display	it
until	a	key	is	pressed.	Ensure	that	you	are	still	within	the	cv	virtual	environment	workspace.

9.	 Let's	convert	the	captured	image	to	grayscale	as	follows:

img	=	cv2.imread("/home/pi/Desktop/desktop_shot.jpg",

							cv2.IMREAD_GRAYSCALE)

The	following	is	the	image	converted	upon	capture:

Image	converted	to	grayscale	upon	capture

10.	 Now	we	can	display	the	grayscale	image	as	follows:

cv2.imshow("image",	img)	

							cv2.waitKey(0)	

							cv2.destroyAllWindows()

The	modified	example	is	available	for	download	as	picamera_opencvtest.py.

So	far,	we	have	demonstrated	developing	image	processing	applications	in	Python.	In	Chapter	10,	Home
Automation	Using	the	Raspberry	Pi	Zero,	we	have	demonstrated	another	example	using	OpenCV.	This
should	get	you	kick-started	with	learning	OpenCV	in	Python.	We	also	recommend	checking	out	examples
available	with	the	OpenCV	Python	binding	documentation	(link	provided	in	the	introduction	part	of	this
section).

Speech	recognition
In	this	section,	we	will	discuss	developing	a	speech	recognition	example	in	Python	involving	speech
recognition.	We	will	make	use	of	the	requests	module	(discussed	in	the	previous	chapter)	to	transcribe
audio	using	wit.ai	(https://wit.ai/).

There	are	several	speech	recognition	tools,	including	Google's	Speech	API,	IBM	Watson,
Microsoft	Bing's	speech	recognition	API.	We	are	demonstrating	wit.ai	as	an	example.

Speech	recognition	can	be	useful	in	applications	where	we	would	like	to	enable	the	Raspberry	Pi	Zero
responses	to	voice	commands.	For	example,	in	Chapter	10,	Home	Automation	Using	the	Raspberry	Pi	Zero,
we	will	be	working	on	a	home	automation	project.	We	could	make	use	of	speech	recognition	to	respond	to
voice	commands.

Let's	review	building	the	speech	recognition	application	in	Python	using	wit.ai	(its	documentation	is
available	here	at	https://github.com/wit-ai/pywit).	In	order	to	perform	speech	recognition	and	recognize	voice
commands,	we	will	need	a	microphone.	However,	we	will	demonstrate	using	a	readily	available	audio
sample.	We	will	make	use	of	audio	samples	made	available	by	a	research	publication	(available	at	http://ec
s.utdallas.edu/loizou/speech/noizeus/clean.zip).

The	wit.ai	API	license	states	that	the	tool	is	free	to	use,	but	the	audio	uploaded	to	their
servers	are	used	to	tune	their	speech	transcription	tool.

We	will	now	attempt	transcribing	the	sp02.wav	audio	sample	performing	the	following	steps:

1.	 The	first	step	is	signing	up	for	an	account	with	wit.ai.	Make	a	note	of	the	API	as	shown	in	the
following	screenshot:

2.	 The	first	step	is	installing	the	requests	library.	It	could	be	installed	as	follows:

pip3	install	requests	

3.	 According	to	the	wit.ai	documentation,	we	need	to	add	custom	headers	to	our	request	that	includes
the	API	key	(replace	$TOKEN	with	the	token	from	your	account).	We	also	need	to	specify	the	file	format
in	the	header.	In	this	case,	it	is	a	.wav	file,	and	the	sampling	frequency	is	8000	Hz:

import	requests	

https://wit.ai/
https://github.com/wit-ai/pywit
http://ecs.utdallas.edu/loizou/speech/noizeus/clean.zip

							if	__name__	==	"__main__":	

									url	=	'https://api.wit.ai/speech?v=20161002'	

									headers	=	{"Authorization":	"Bearer	$TOKEN",	

																				"Content-Type":	"audio/wav"}

4.	 In	order	to	transcribe	the	audio	sample,	we	need	to	attach	the	audio	sample	in	the	request	body:

files	=	open('sp02.wav',	'rb')	

							response	=	requests.post(url,	headers=headers,	data=files)	

							print(response.status_code)	

							print(response.text)

5.	 Putting	it	all	together,	gives	us	this:

#!/usr/bin/python3	

							import	requests	

							if	__name__	==	"__main__":	

									url	=	'https://api.wit.ai/speech?v=20161002'	

									headers	=	{"Authorization":	"Bearer	$TOKEN",	

																				"Content-Type":	"audio/wav"}	

									files	=	open('sp02.wav',	'rb')	

									response	=	requests.post(url,	headers=headers,	data=files)	

									print(response.status_code)	

									print(response.text)

The	preceding	code	sample	is	available	for	download	along	with	this	chapter	as	wit_ai.py.	Try	executing
the	preceding	code	sample,	and	it	should	transcribe	the	audio	sample:	sp02.wav.	We	have	the	following
code:

200

{

		"msg_id"	:	"fae9cc3a-f7ed-4831-87ba-6a08e95f515b",

		"_text"	:	"he	knew	the	the	great	young	actress",

		"outcomes"	:	[{

				"_text"	:	"he	knew	the	the	great	young	actress",

				"confidence"	:	0.678,

				"intent"	:	"DataQuery",

				"entities"	:	{

						"value"	:	[{

								"confidence"	:	0.7145905790744499,

								"type"	:	"value",

								"value"	:	"he",

								"suggested"	:	true

						},	{

								"confidence"	:	0.5699616515542044,

								"type"	:	"value",

								"value"	:	"the",

								"suggested"	:	true

						},	{

								"confidence"	:	0.5981701138805214,

								"type"	:	"value",

								"value"	:	"great",

								"suggested"	:	true

						},	{

								"confidence"	:	0.8999612482250062,

								"type"	:	"value",

								"value"	:	"actress",

								"suggested"	:	true

						}]

				}

		}],

		"WARNING"	:	"DEPRECATED"

}

The	audio	sample	contains	the	following	recording:	He	knew	the	skill	of	the	great	young	actress.
According	to	the	wit.ai	API,	the	transcription	is	He	knew	the	the	great	young	actress.	The	word	error	rate
is	22%	(https://en.wikipedia.org/wiki/Word_error_rate).

https://en.wikipedia.org/wiki/Word_error_rate

We	will	be	making	use	of	the	speech	transcription	API	to	issue	voice	commands	in	our
home	automation	project.

	

Automating	routing	tasks
	

In	this	section,	we	are	going	to	discuss	automating	routing	tasks	in	Python.	We	took	two	examples	such
that	they	demonstrate	the	ability	of	a	Raspberry	Pi	Zero	acting	as	a	personal	assistant.	The	first	example
involves	improving	your	commute,	whereas	the	second	example	serves	as	an	aid	to	improve	your
vocabulary.	Let's	get	started.

	

	

Improving	daily	commute
Many	cities	and	public	transit	systems	have	started	sharing	data	with	the	public	in	the	interest	of	being
transparent	and	improving	their	operational	efficiency.	Transit	systems	have	started	sharing	advisories
and	transit	information	to	the	public	through	an	API.	This	enables	anyone	to	develop	mobile	applications
that	provide	information	to	commuters.	At	times,	it	helps	with	easing	congestion	within	the	public	transit
system.

This	example	was	inspired	by	a	friend	who	tracks	bicycle	availability	in	San	Francisco's	bike	share
stations.	In	the	San	Francisco	Bay	Area,	there	is	a	bicycle	sharing	program	that	enables	commuters	to	rent
a	bike	from	a	transit	center	to	their	work.	In	a	crowded	city	like	San	Francisco,	bike	availability	at	a
given	station	fluctuates	depending	on	the	time	of	day.

This	friend	wanted	to	plan	his	day	based	on	bike	availability	at	the	nearest	bike	share	station.	If	there	are
very	few	bikes	left	at	the	station,	this	friend	preferred	leaving	early	to	rent	a	bike.	He	was	looking	for	a
simple	hack	that	would	push	a	notification	to	his	phone	when	the	number	of	bikes	is	below	a	certain
threshold.	San	Francisco's	bike	share	program	makes	this	data	available	at	http://feeds.bayareabikeshare.com/station
s/stations.json.

Let's	review	building	a	simple	example	that	would	enable	sending	a	push	notification	to	a	mobile	device.
In	order	to	send	a	mobile	push	notification,	we	will	be	making	use	of	If	This	Then	That	(IFTTT)—a
service	that	enables	connecting	your	project	to	third-party	services.

In	this	example,	we	will	parse	the	data	available	in	JSON	format,	check	the	number	of	available	bikes	at
a	specific	station,	and	if	it	is	lower	than	the	specified	threshold,	it	triggers	a	notification	on	your	mobile
device.

Let's	get	started:

1.	 The	first	step	is	retrieving	the	bike	availability	from	the	bike	share	service.	This	data	is	available	in
JSON	format	at	http://feeds.bayareabikeshare.com/stations/stations.json.	The	data	includes	bike	availability
throughout	the	network.

2.	 The	bike	availability	at	each	station	is	provided	with	parameters,	such	as	station	ID,	station	name,
address,	number	of	bikes	available,	and	so	on.

3.	 In	this	example,	we	will	retrieve	the	bike	availability	for	the	Townsend	at	7th	station	in	San	Francisco.
The	station	ID	is	65	(open	the	earlier-mentioned	link	in	a	browser	to	find	id).	Let's	write	some	Python
code	to	retrieve	the	bike	availability	data	and	parse	this	information:

import	requests	

							BIKE_URL	=	http://feeds.bayareabikeshare.com/stations	

							/stations.json	

							#	fetch	the	bike	share	information	

							response	=	requests.get(BIKE_URL)	

							parsed_data	=	response.json()

The	first	step	is	fetching	the	data	using	a	GET	request	(via	the	requests	module).	The	requests	module

http://feeds.bayareabikeshare.com/stations/stations.json
http://feeds.bayareabikeshare.com/stations/stations.json

provides	an	inbuilt	JSON	decoder.	The	JSON	data	can	be	parsed	by	calling	the	json()	function.

4.	 Now,	we	can	iterate	through	the	dictionary	of	stations	and	find	the	bike	availability	at	Townsend	at	7th,
by	performing	the	following	steps:

1.	 In	the	retrieved	data,	each	station's	data	is	furnished	with	an	ID.	The	station	ID	in	question	is	65
(open	the	data	feed	URL	provided	earlier	in	a	browser	to	understand	the	data	format;	a	snippet
of	the	data	is	shown	in	the	following	screenshot):

A	snippet	of	the	bike	share	data	feed	fetched	using	a	browser

2.	 We	need	to	iterate	through	the	values	and	determine	if	the	station	id	matches	that	of	Townsend	at
7th:

station_list	=	parsed_data['stationBeanList']	

														for	station	in	station_list:	

																if	station['id']	==	65	and	

																			station['availableBikes']	<	2:	

																		print("The	available	bikes	is	%d"	%	station

																		['availableBikes'])

3.	 If	there	are	less	than	2	bikes	available	at	the	station,	we	push	a	mobile	notification	to	our	mobile
device.

6.	 In	order	to	receive	mobile	notifications,	you	need	to	install	IF	by	IFTTT	app	(available	for	Apple
and	Android	devices).

7.	 We	also	need	to	set	up	a	recipe	on	IFTTT	to	trigger	mobile	notifications.	Sign	up	for	an	account	at	htt
ps://ifttt.com/.

IFTTT	is	a	service	that	enables	creating	recipes	that	connecting	devices	to	different	applications
and	automating	tasks.	For	example,	it	is	possible	to	log	events	tracked	by	the	Raspberry	Pi	Zero	to
a	spreadsheet	on	your	Google	Drive.

All	recipes	on	IFTTT	follow	a	common	template—if	this	then	that,	that	is,	if	a	particular	event
has	occurred,	then	a	specific	action	is	triggered.	For	this	example,	we	need	to	create	an	applet	that
triggers	a	mobile	notification	on	receiving	a	web	request.

7.	 You	can	start	creating	an	applet	using	the	drop-down	menu	under	your	account,	as	shown	in	the
following	screenshot:

Start	creating	a	recipe	on	IFTTT

https://ifttt.com/

8.	 It	should	take	you	to	a	recipe	setup	page	(shown	as	follows).	Click	on	this	and	set	up	an	incoming
web	request:

Click	on	this

9.	 Select	the	Maker	Webhooks	channel	as	the	incoming	trigger:

Select	the	Maker	Webhooks	channel

10.	 Select	Receive	a	web	request.	A	web	request	from	the	Raspberry	Pi	would	act	as	a	trigger	to	send	a
mobile	notification:

Select	Receive	a	web	request

11.	 Create	a	trigger	named	mobile_notify:

Create	a	new	trigger	named	mobile_notify

12.	 It	is	time	to	create	an	action	for	the	incoming	trigger.	Click	on	that.

Click	on	that

13.	 Select	Notifications:

Select	Notifications

14.	 Now,	let's	format	the	notification	that	we	would	like	to	receive	on	our	devices:

Setup	notification	for	your	device

15.	 In	the	mobile	notification,	we	need	to	receive	the	number	of	bikes	available	at	the	bike	share	station.
Click	on	the	+	Ingredient	button	and	select	Value1.

Format	the	message	to	suit	your	needs.	For	example,	when	a	notification	is	triggered	by	the
Raspberry	Pi,	it	would	be	great	to	receive	a	message	in	the	following	format:	Time	to	go	home!	Only	2
bikes	are	available	at	Townsend	&	7th!

16.	 Once	you	are	satisfied	with	the	message	format,	select	Create	action	and	your	recipe	should	be
ready!

Create	a	recipe

17.	 In	order	to	trigger	a	notification	on	our	mobile	device,	we	need	a	URL	to	make	the	POST	request	and	a
trigger	key.	This	is	available	under	Services	|	Maker	Webhooks	|	Settings	in	your	IFTTT	account.

The	trigger	can	be	located	here:

Open	the	URL	listed	in	the	preceding	screenshot	in	a	new	browser	window.	It	provides	the	URL
for	the	POST	request	as	well	as	an	explanation	on	(shown	in	the	following	screenshot)	how	to	make
a	web	request:

Making	a	POST	request	using	the	earlier-mentioned	URL	(key	concealed	for	privacy)

18.	 While	making	a	request	(as	explained	in	the	IFTTT	documentation),	if	we	include	the	number	of
bikes	in	the	JSON	body	of	request	(using	Value1),	it	can	be	shown	on	the	mobile	notification.

19.	 Let's	revisit	the	Python	example	to	make	a	web	request	when	the	number	of	bikes	is	below	a	certain
threshold.	Save	the	IFTTT	URL	and	your	IFTTT	access	key	(retrieved	from	your	IFTTT	account)	to
your	code	as	follows:

IFTTT_URL	=	"https://maker.ifttt.com/trigger/mobile_notify/	

							with/key/$KEY"

20.	 When	the	number	of	bikes	is	below	a	certain	threshold,	we	need	to	make	a	POST	request	with	the	bike
information	encoded	in	the	JSON	body:

for	station	in	station_list:	

									if	station['id']	==	65	and	

												station['availableBikes']	<	3:	

											print("The	available	bikes	is	%d"	%	

											station['availableBikes'])	

											payload	=	{"value1":	station['availableBikes']}	

											response	=	requests.post(IFTTT_URL,	json=payload)	

											if	response.status_code	==	200:	

													print("Notification	successfully	triggered")

21.	 In	the	preceding	code	snippet,	if	there	are	less	than	three	bikes,	a	POST	request	is	made	using	the
requests	module.	The	number	of	available	bikes	is	encoded	with	the	key	value1:

payload	=	{"value1":	station['availableBikes']}

22.	 Putting	it	all	together,	we	have	this:

#!/usr/bin/python3	

							import	requests	

							import	datetime	

							BIKE_URL	=	"http://feeds.bayareabikeshare.com/stations/

							stations.json"	

							#	find	your	key	from	ifttt	

							IFTTT_URL	=	"https://maker.ifttt.com/trigger/mobile_notify/

							with/key/$KEY"	

							if	__name__	==	"__main__":	

									#	fetch	the	bike	share	information	

									response	=	requests.get(BIKE_URL)	

									parsed_data	=	response.json()	

									station_list	=	parsed_data['stationBeanList']	

									for	station	in	station_list:	

											if	station['id']	==	65	and	

														station['availableBikes']	<	10:	

													print("The	available	bikes	is	%d"	%	station

													['availableBikes'])	

			payload	=	{"value1":	station['availableBikes']}	

													response	=	requests.post(IFTTT_URL,	json=payload)	

													if	response.status_code	==	200:	

															print("Notification	successfully	triggered")

The	preceding	code	sample	is	available	for	download	along	with	this	chapter	as	bike_share.py.	Try
executing	it	after	setting	up	a	recipe	on	IFTTT.	If	necessary,	adjust	the	threshold	for	the	number	of
available	bikes.	You	should	receive	a	mobile	notification	on	your	device:

Notification	on	your	mobile	device

	

A	challenge	to	the	reader
	

In	this	example,	the	bike	information	is	fetched	and	parsed	and	if	necessary,	a	notification	is	triggered.
How	would	you	go	about	modifying	this	code	example	to	make	sure	that	it	is	executed	between	a	given
time	of	the	day?	(hint:	make	use	of	datetime	module).

How	would	you	go	about	building	a	desktop	display	that	serves	as	a	visual	aid?

	

	

	

Project	challenge
	

Try	to	find	out	if	the	transit	systems	in	your	area	provide	such	data	to	its	users.	How	would	you	make	use
of	the	data	to	help	commuters	save	time?	For	example,	how	would	you	provide	transit	system	advisories
to	your	friends/colleagues	using	such	data?

On	completion	of	the	book,	we	will	post	a	similar	example	using	the	data	from	San
Francisco	Bay	Area	Rapid	Transit	(BART).

	

	

git	clone	https://github.com/wordnik/wordnik-python3.git

	cd	wordnik-python3/
	sudo	python3	setup.py
install

#	sign	up	for	an	API	key	
	API_KEY	=	'API_KEY'	
	apiUrl	=
'http://api.wordnik.com/v4'	
	client	=	swagger.ApiClient(API_KEY,	apiUrl)	

wordsApi	=	WordsApi.WordsApi(client)

example	=	wordsApi.getWordOfTheDay()

print("The	word	of	the	day	is	%s"	%	example.word)	
	print("The	definition	is	%s"
%example.definitions[0].text)

#!/usr/bin/python3	

	from	wordnik	import	*	

	#	sign	up	for	an	API
key	
	API_KEY	=	'API_KEY'	
	apiUrl	=	'http://api.wordnik.com/v4'	

if	__name__	==	"__main__":	
	client	=	swagger.ApiClient(API_KEY,	apiUrl)	

wordsApi	=	WordsApi.WordsApi(client)	
	example	=	wordsApi.getWordOfTheDay()

	print("The	word	of	the	day	is	%s"	%	example.word)	
	print("The	definition	is
%s"	%example.definitions[0].text)

The	word	of	the	day	is	transpare
	The	definition	is	To	be,
or	cause	to	be,	transparent;	to	appear,
	or	cause	to	appear,	or	be	seen,	through
something.

A	challenge	to	the	reader
How	would	you	daemonize	this	application	such	that	the	word	of	the	day	is	updated	every	day?	(hint:
cronjob	or	datetime).

	

Project	challenge
	

It	is	possible	to	build	a	word	game	using	the	wordnik	API.	Think	of	a	word	game	that	is	entertaining	as	well
as	helps	improve	your	vocabulary.	How	would	you	go	about	building	something	that	prompts	questions	to
the	player	and	accepting	answer	inputs?

Try	displaying	the	word	of	the	day	on	a	display.	How	would	you	implement	this?

	

	

Logging
This	is	a	topic	that	is	going	to	be	useful	for	the	next	two	chapters.	Logging	(https://docs.python.org/3/library/logging.h
tml)	helps	with	troubleshooting	a	problem.	It	helps	with	determining	the	root	cause	of	a	problem	by	tracing
back	through	the	sequence	of	events	logged	by	the	application.	While	we	will	be	making	extensive	use	of
logging	in	the	next	two	chapters,	let's	review	logging	using	a	simple	application.	In	order	to	review
logging,	let's	review	it	by	making	a	POST	request:

1.	 The	first	step	in	logging	is	setting	the	log	file	location	and	the	log	level:

logging.basicConfig(format='%(asctime)s	:	%(levelname)s	:

							%(message)s',	filename='log_file.log',	level=logging.INFO)

While	initializing	the	logging	class,	we	need	to	specify	the	format	for	logging	information,	errors,
and	so	on	to	the	file.	In	this	case,	the	format	is	as	follows:

format='%(asctime)s	:	%(levelname)s	:	%(message)s'

The	log	messages	are	in	the	following	format:

2016-10-25	20:28:07,940	:	INFO	:	Starting	new	HTTPS

							connection	(1):

							maker.ifttt.com

The	log	messages	are	saved	to	a	file	named	log_file.log.

The	logging	level	determines	the	level	of	logging	needed	for	our	application.	The	different	log
levels	include	DEBUG,	INFO,	WARN,	and	ERROR.

In	this	example,	we	have	set	the	logging	level	to	INFO.	So,	any	log	message	belonging	to	INFO,
WARNING,	or	ERROR	levels	are	saved	to	the	file.

If	the	logging	level	is	set	to	ERROR,	only	those	log	messages	are	saved	to	the	file.

2.	 Let's	log	a	message	based	on	the	outcome	of	the	POST	request:

response	=	requests.post(IFTTT_URL,	json=payload)	

							if	response.status_code	==	200:	

									logging.info("Notification	successfully	triggered")	

							else:	

									logging.error("POST	request	failed")

3.	 Putting	it	all	together,	we	have	this:

#!/usr/bin/python3	

							import	requests	

							import	logging	

							#	find	your	key	from	ifttt	

							IFTTT_URL	=	"https://maker.ifttt.com/trigger/rf_trigger/

							with/key/$key"	

							if	__name__	==	"__main__":	

									#	fetch	the	bike	share	information	

									logging.basicConfig(format='%(asctime)s	:	%(levelname)s

https://docs.python.org/3/library/logging.html

									:	%(message)s',	filename='log_file.log',	level=logging.INFO)	

									payload	=	{"value1":	"Sample_1",	"value2":	"Sample_2"}	

									response	=	requests.post(IFTTT_URL,	json=payload)	

									if	response.status_code	==	200:	

											logging.info("Notification	successfully	triggered")	

									else:	

											logging.error("POST	request	failed")

The	preceding	code	sample	(logging_example.py)	is	available	for	download	along	with	this	chapter.	This	is	a
very	soft	introduction	to	the	concept	of	logging	in	Python.	We	are	going	to	make	use	of	logging	to
troubleshoot	any	errors	in	our	project.

In	the	final	chapter,	we	will	discuss	best	practices	in	logging.

Threading	in	Python
In	this	section,	we	are	going	to	discuss	the	concept	of	threading	in	Python.	We	will	be	making	use	of
threading	in	the	next	chapter.	Threads	enable	running	multiple	processes	at	the	same	time.	For	example,
we	can	run	motors	while	listening	to	incoming	events	from	sensors.	Let's	demonstrate	this	with	an
example.

We	are	going	to	emulate	a	situation	where	we	would	like	to	process	events	from	sensors	of	the	same	type.
In	this	example,	we	are	just	going	to	print	something	to	the	screen.	We	need	to	define	a	function	that	listens
to	events	from	each	sensor:

def	sensor_processing(string):	

		for	num	in	range(5):	

				time.sleep(5)	

				print("%s:	Iteration:	%d"	%(string,	num))

We	can	make	use	of	the	preceding	function	to	listen	for	sensor	events	from	three	different	sensors	at	the
same	time	using	the	threading	module	in	Python:

thread_1	=	threading.Thread(target=sensor_processing,	args=("Sensor	1",))	

thread_1.start()	

thread_2	=	threading.Thread(target=sensor_processing,	args=("Sensor	2",))	

thread_2.start()	

thread_3	=	threading.Thread(target=sensor_processing,	args=("Sensor	3",))	

thread_3.start()

Putting	it	all	together,	we	have	this:

import	threading	

import	time	

def	sensor_processing(string):	

		for	num	in	range(5):	

				time.sleep(5)	

				print("%s:	Iteration:	%d"	%(string,	num))	

if	__name__	==	'__main__':	

		thread_1	=	threading.Thread(target=sensor_processing,	args=("Sensor	1",))	

		thread_1.start()	

		thread_2	=	threading.Thread(target=sensor_processing,	args=("Sensor	2",))	

		thread_2.start()	

		thread_3	=	threading.Thread(target=sensor_processing,	args=("Sensor	3",))	

		thread_3.start()

The	preceding	code	sample	(available	for	download	as	threading_example.py)	starts	three	threads	that	listens
to	events	from	three	sensors	at	the	same	time.	The	output	looks	something	like	this:

Thread	1:	Iteration:	0	

Thread	2:	Iteration:	0	

Thread	3:	Iteration:	0	

Thread	2:	Iteration:	1	

Thread	1:	Iteration:	1	

Thread	3:	Iteration:	1	

Thread	2:	Iteration:	2	

Thread	1:	Iteration:	2	

Thread	3:	Iteration:	2	

Thread	1:	Iteration:	3	

Thread	2:	Iteration:	3	

Thread	3:	Iteration:	3	

Thread	1:	Iteration:	4	

Thread	2:	Iteration:	4	

Thread	3:	Iteration:	4

In	the	next	chapter,	we	are	going	to	make	use	of	threading	to	control	the	motors	of	a	robot-based	on	sensor
inputs.

	

PEP8	style	guide	for	Python
	

PEP8	is	a	style	guide	for	Python	that	helps	programmers	write	readable	code.	It	is	important	to	follow
certain	conventions	to	make	our	code	readable.	Some	examples	of	coding	conventions	include	the
following:

Inline	comments	should	start	with	a	#	and	be	followed	by	a	single	space.
Variables	should	have	the	following	convention:	first_var.
Avoiding	trailing	whitespaces	on	each	line.	For	example,	if	name	==	"test":	should	not	be	followed	by
whitespaces.

You	can	read	the	entire	PEP8	standards	at	https://www.python.org/dev/peps/pep-0008/#block-
comments.

	

	

https://www.python.org/dev/peps/pep-0008/#block-comments

Verifying	PEP8	guidelines
There	are	tools	to	verify	PEP8	standards	of	your	code.	After	writing	a	code	sample,	ensure	that	your	code
adheres	to	PEP8	standards.	This	can	be	done	using	the	pep8	package.	It	can	be	installed	as	follows:	pip3
install	pep8

Let's	check	whether	one	of	our	code	samples	has	been	written	according	to	the	PEP8	convention.	This	can
be	done	as	follows:

pep8	opencv_test.py

The	check	indicated	the	following	errors:

opencv_test.py:5:50:	E231	missing	whitespace	after	','

				opencv_test.py:6:19:	E231	missing	whitespace	after	','

As	the	output	indicates,	the	following	lines	are	missing	a	whitespace	after	a	comma	on	lines	5	and	6:

Missing	trailing	whitespace	after	the	comma

Let's	fix	the	problem,	and	our	code	should	adhere	to	PEP8	conventions.	Recheck	the	file	and	the	errors
would	have	disappeared.	In	order	to	make	your	code	readable,	always	run	a	PEP8	check	before	checking
in	your	code	to	a	public	repository.

	

Summary
	

In	this	chapter,	we	discussed	advanced	topics	in	Python.	We	discussed	topics	including	speech
recognition,	building	a	commuter	information	tool,	and	a	Python	client	to	improve	your	vocabulary.	There
are	advanced	tools	in	Python	that	are	widely	used	in	the	fields	of	data	science,	AI,	and	so	on.	We	hope
that	the	topics	discussed	in	this	chapter	are	the	first	step	in	learning	such	tools.

	

	

Lets	Build	a	Robot!
In	this	chapter,	we	built	an	indoor	robot	(using	the	Raspberry	Pi	Zero	as	the	controller)	and	documented
our	experience	in	a	step-by-step	guide.	We	wanted	to	demonstrate	the	awesomeness	of	the	combination	of
Python	programming	language	and	the	Raspberry	Pi	Zero's	peripherals.	We	have	also	included
suggestions	to	build	an	outdoor	robot	as	well	as	suggestions	for	additional	accessories	for	your	robot.	At
the	end	of	this	chapter,	we	have	included	additional	learning	resources	to	build	your	own	robot.	Let's	get
started!

In	this	chapter,	we	are	going	to	access	the	Raspberry	Pi	Zero	via	remote	login	(SSH)	and
remotely	transferred	files	from	the	Raspberry	Pi	Zero.	If	you	are	not	familiar	with	the
command-line	interface,	we	recommend	proceeding	to	Chapter	11,	Tips	and	Tricks,	to	set	up
your	local	desktop	environment.

A	Raspberry	Pi	Zero	powered	robot

Since	we	will	be	making	use	of	a	camera	for	our	robot,	Raspberry	Pi	Zero	v1.3	or	higher	is	needed	for
this	chapter.	Your	Raspberry	Pi	Zero's	board	version	is	available	on	the	back.	Refer	to	the	following
picture:

Identifying	your	Raspberry	Pi	Zero's	version

	

Components	of	the	robot
	

Let's	discuss	the	components	of	the	robot	using	the	labeled	picture	as	an	aid	(shown	in	the	following
figure):

Components	of	the	robot

The	following	is	an	explanation	for	the	components	of	the	robot:

The	Raspberry	Pi	Zero	controls	the	movement	of	the	robot	using	a	motor	driver	circuit	(stacked	on
top	of	the	Raspberry	Pi	Zero)
The	motors	of	the	robot	are	connected	to	the	motor	driver	circuit
A	USB	battery	pack	is	used	to	power	the	Raspberry	Pi	Zero.	A	separate	AA	battery	pack	is	used	to
drive	the	motors
The	robot	is	also	equipped	with	a	camera	module	that	helps	with	driving	the	robot

We	have	included	a	suggested	list	of	components	where	we	chose	the	cheapest	source	available	for	the
component.	You	are	welcome	to	substitute	with	your	own	components.	For	example,	you	can	use	a
webcam	instead	of	using	the	Raspberry	Pi	camera	module:

Component Source Quantity Price	(in
USD)

Chassis https://www.adafruit.com/products/29
43 1 9.95

Chassis	top	plate https://www.adafruit.com/products/29
44 1 4.95

A	set	of	M2.5	rows,	spacers,	and	nuts http://a.co/dpdmb1B 1 11.99

DC	motors	in	servo	body https://www.adafruit.com/products/29
41 2 3.50

https://www.adafruit.com/products/2943
https://www.adafruit.com/products/2944
http://a.co/dpdmb1B
https://www.adafruit.com/products/2941

Wheel https://www.adafruit.com/products/27
44 2 2.50

Castor	wheel https://www.adafruit.com/products/29
42 1 1.95

Raspberry	Pi	Zero https://www.adafruit.com/products/34
00 1 5.00

A	Raspberry	Pi	Zero	camera	module http://a.co/07iFhxC 1 24.99

A	Raspberry	Pi	Zero	camera	adapter https://www.adafruit.com/products/31
57 1 5.95

A	motor	driver	circuitry	for	Raspberry	Pi
Zero

https://www.adafruit.com/products/23
48 1 22.50

USB	battery	pack http://a.co/9vQLx2t 1 5.09

AA	battery	pack	(4	batteries) http://a.co/hVPxfzD 1 5.18

AA	batteries NA 4 N.A.

Raspberry	Pi	camera	module	mount https://www.adafruit.com/products/14
34 1 4.95

In	the	interest	of	saving	time,	we	chose	off-the-shelf	accessories	to	build	robot.	We	specifically	chose
Adafruit	for	the	ease	of	purchase	and	shipping.	If	you	are	interested	in	building	a	robot	that	needs	to	suit
outdoor	conditions,	we	recommend	a	chassis	similar	to	http://www.robotshop.com/en/iron-man-3-4wd-all-terrain-chassis-ar
duino.html.

As	makers,	we	recommend	making	your	own	chassis	and	control	circuitry	(especially	the	motor	drive).
You	can	make	use	of	software	such	as	Autodesk	Fusion	(the	link	is	available	in	the	resources	section)	to
design	the	chassis.

	

	

https://www.adafruit.com/products/2744
https://www.adafruit.com/products/2942
https://www.adafruit.com/products/3400
http://a.co/07iFhxC
https://www.adafruit.com/products/3157
https://www.adafruit.com/products/2348
http://a.co/9vQLx2t
http://a.co/hVPxfzD
https://www.adafruit.com/products/1434
http://www.robotshop.com/en/iron-man-3-4wd-all-terrain-chassis-arduino.html

	

Setting	up	remote	login
	

To	control	the	robot	remotely,	we	need	to	set	up	remote	login	access,	that	is,	enable	the	SSH	access.
Secure	Shell	(SSH),	and	it	is	a	protocol	that	enables	remote	access	of	a	computer.	The	SSH	access	is
disabled	by	default	on	the	Raspbian	operating	system	for	security	reasons.	In	this	section,	we	will	enable
the	SSH	access	to	the	Raspberry	Pi	Zero	and	change	the	Raspberry	Pi	Zero's	default	password.

If	you	are	not	familiar	with	the	SSH	access,	we	have	provided	a	quick	tutorial	in	Chapter
11,	Tips	and	Tricks.	We	would	like	to	keep	the	focus	on	building	the	robot	in	this	chapter.

	

	

Changing	the	password
Before	we	enable	the	SSH	access,	we	need	to	change	the	default	password	of	the	Raspberry	Pi	Zero.	This
is	to	avoid	any	potential	threat	to	your	computer	and	your	robot!	We	have	advocated	changing	default
passwords	on	multiple	occasions	in	this	chapter.	Default	passwords	have	wreaked	havoc	across	the
Internet.

Recommended	reading	Mirai	botnet	attack:	http://fortune.com/2016/10/23/internet-attack-perpetrator/.

On	your	desktop,	go	to	Menu	|	Preferences	and	launch	Raspberry	Pi	Configuration.	Under	the	System	tab,
there	is	an	option	to	change	the	password	under	the	System	tab	(shown	in	the	following	screenshot):	

Change	your	Raspberry	Pi	Zero's	default	password

http://fortune.com/2016/10/23/internet-attack-perpetrator/

Enabling	SSH	access
Under	the	Interfaces	tab	of	the	Raspberry	Pi	configuration,	select	Enable	for	SSH	(as	shown	in	the

following	screenshot):	

Enable	SSH	under	the	Interfaces	tab	Reboot	your	Raspberry	Pi	Zero,	and	you	should	be	able	to	access	your	Raspberry	Pi	Zero	via	SSH.

Refer	to	Chapter	11,	Tips	and	Tricks,	for	the	SSH	access	to	your	Raspberry	Pi	Zero	from
Windows,	*nix	operating	systems	(beyond	the	scope	of	this	chapter).

Chassis	setup
The	robot	is	going	to	have	a	differential	steering	mechanism.	Thus,	it	is	going	to	be	steered	by	two
motors.	It	is	going	to	be	supported	by	a	third	castor	that	acts	as	a	support.

In	a	differential	steering	mechanism	arrangement,	the	robot	moves	in	the	forward	direction	or	backward
direction	when	both	the	wheels	of	the	robot	are	rotating	in	the	same	direction.	The	robot	can	turn	left	or
right	by	rotating	one	wheel	faster	than	the	other	wheel.	For	example,	in	order	to	rotate	left,	the	right	motor
needs	to	rotate	faster	than	the	left	and	vice	versa.

In	order	to	reach	a	better	understanding	of	the	differential	steering	mechanism,	we	recommend	building
out	the	chassis	and	testing	it	with	the	Raspberry	Pi	Zero	(We	are	going	to	test	our	chassis	using	a	simple
program	in	the	later	part	of	this	chapter).

We	have	provided	additional	resources	on	differential	steering	at	the	end	of	this	chapter.

Chassis	prep	for	the	robot

1.	 The	chassis	comes	with	the	required	provisions	along	with	the	screws	required	to	mount	the	motors.
Ensure	that	the	motor's	wires	are	facing	the	same	side	(Refer	to	the	picture	given	later).	Similarly,
the	castor	wheel	can	be	assembled	at	the	front,	as	shown	in	the	picture	here:

Assemble	motors	and	mount	castor	wheels

2.	 The	next	step	is	mounting	the	wheels.	The	wheels	are	designed	to	be	press-fitted	directly	onto	the
motor	shaft.

Assembling	wheels	onto	the	servo

3.	 Lock	the	wheels	in	place	using	a	screw	(comes	with	the	wheels)

Lock	the	wheel	onto	the	shaft

Thus,	we	are	done	setting	up	the	chassis	for	the	robot.	Let's	move	on	to	the	next	section.

Motor	driver	and	motor	selection
The	motor	driver	circuit	(https://www.adafruit.com/product/2348)	can	be	used	to	connect	four	DC	motors	or	two
stepper	motors.	The	motor	driver	is	rated	to	provide	1.2	A	of	current	per	motor	under	continuous
operation.	This	sufficiently	meets	the	robot's	motor	power	requirement.

https://www.adafruit.com/product/2348

Preparing	the	motor	driver	circuit
The	motor	driver	circuit	comes	as	a	kit,	and	it	requires	some	soldering	(shown	in	the	figure	here).

Adafruit	DC	and	Stepper	Motor	HAT	for	Raspberry	Pi-Mini	Kit	(picture	source:	adafruit.com)

1.	 The	first	step	in	the	assembly	process	is	to	solder	the	40	pin	header.	Stack	the	header	on	top	of	your
Raspberry	Pi	Zero	and	as	shown	in	the	picture	here:

Stack	the	header	on	top	of	the	Raspberry	Pi	Zero

2.	 Position	the	motor	driver	(as	shown	in	the	picture	here)	on	top	of	the	header.	Hold	on	to	the	motor
driver	board	so	that	the	board	is	not	tilted	while	soldering.

Stack	the	motor	HAT	on	top	of	the	Raspberry	Pi	Zero

3.	 Solder	the	corner	pins	of	the	motor	driver	first	and	proceed	to	solder	the	other	pins.

Note	the	motor	driver	board	soldered	such	that	the	board	is	parallel	to	the	Raspberry	Pi	Zero

4.	 Now,	solder	the	3.5	mm	terminals	(see	the	blue	colored	ones	in	the	picture)	by	flipping	the	board

Solder	the	3.5	mm	terminals

5.	 The	motor	driver	board	is	ready	to	use!

The	motor	driver	is	ready	to	use

Raspberry	Pi	Zero	and	motor	driver	assembly
In	this	section,	we	are	going	to	test	the	movements	of	the	robot.	This	includes	testing	the	motor	driver	and
basic	movements	of	the	robot.

Raspberry	Pi	Zero	and	motor	driver	assembly
In	this	section,	we	are	going	to	assemble	the	Raspberry	Pi	Zero	and	the	motor	driver	on	to	the	robot
chassis.

1.	 In	order	to	mount	the	Raspberry	Pi	Zero	on	to	the	chassis,	we	need	4	M2.5	screws	and	nuts
(Mounting	hole	specification	available	at	https://www.raspberrypi.org/documentation/hardware/raspberrypi/mechanical/r
pi-zero-v1_2_dimensions.pdf).

2.	 The	chassis	we	selected	comes	with	slots	that	enables	mounting	the	Raspberry	Pi	Zero	directly	on	to
the	chassis.	Based	on	your	chassis	design,	you	may	have	to	drill	clearance	holes	to	mount	the
Raspberry	Pi	Zero.

Mounting	the	Raspberry	Pi	Zero	onto	the	chassis

While	mounting	the	Raspberry	Pi	Zero,	we	ensured	that	we	are	able	to	plug	in	the	HDMI
cable,	USB	cable,	and	so	on	for	testing	purposes.

3.	 The	chassis	we	have	used	is	made	of	anodized	aluminum;hence,	it	is	nonconductive.	We	mounted	the
Raspberry	Pi	Zero	directly,	without	any	insulation	between	the	chassis	and	the	Raspberry	Pi	Zero.

Ensure	that	you	don't	short	circuit	any	component	by	accidentally	exposing	them	directly
to	conductive	metal	surfaces.

4.	 Stack	the	motor	driver	on	top	of	the	Raspberry	Pi	Zero	(as	shown	in	the	previous	section).
5.	 The	two	motors	of	the	robot	need	to	be	connected	to	the	Raspberry	Pi	Zero:
6.	 The	motor	driver	comes	with	motor	terminals	M1	through	M4.	Let's	connect	the	left	and	right	DC

motors	to	M1	and	M2,	respectively.

https://www.raspberrypi.org/documentation/hardware/raspberrypi/mechanical/rpi-zero-v1_2_dimensions.pdf

Red	and	black	wires	connected	from	both	the	motors	to	the	motor	driver	terminals

7.	 Each	motor	comes	with	two	terminals,	that	is,	black	wire	and	a	red	wire.	Connect	the	black	wire	to
the	left-most	terminal	of	the	bridge	M1	and	the	red	wire	to	the	right-hand	side	terminal	of	the	bridge
M1	(as	shown	in	the	picture	earlier).	Similarly,	the	right	motor	is	connected	to	the	bridge	M2.

Now,	that	we	have	connected	the	motors,	we	need	to	test	the	motor	function	and	verify	that	the	motors	are
rotating	in	the	same	direction.	In	order	to	do	so,	we	need	to	set	up	the	robot's	power	supply.

Robot	Power	supply	setup
In	this	section,	we	will	discuss	setting	up	the	power	supply	for	the	Raspberry	Pi	Zero.	We	will	discuss
powering	the	Raspberry	Pi	Zero	and	the	motors	of	the	robot.	Let's	discuss	the	major	components	of	our
robot	and	their	power	consumption:

The	Raspberry	Pi	Zero	requires	a	5V	power	supply,	and	it	draws	about	150	mA	of	current	(Source:	h
ttp://raspberrypi.stackexchange.com/a/40393/1470).
The	two	DC	motors	of	the	robot	consume	about	150	mA	each.
The	camera	module	consumes	250	mA	of	current	(Source:	https://www.raspberrypi.org/help/faqs/#cameraPower).

The	total	power	consumption	estimate	is	about	550	mA	(150	+	150*2	+	250).

In	order	to	calculate	the	battery	capacity,	we	also	need	to	decide	the	duration	of	continuous	operation
before	requiring	a	recharge.	We	wanted	the	robot	to	operate	at	least	for	2	hours	before	requiring	a
recharge.	The	battery	capacity	can	be	calculated	using	the	following	formula:

In	our	case,	this	would	be:

550mA	*	2	hours	=	1100	mAh

We	also	found	a	battery	life	calculator	from	Digi-Key:
http://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-battery-life

According	to	the	Digi-Key	calculator,	we	need	to	account	for	factors	that	affect	the	battery	life.
Accounting	for	such	factors,	the	battery	capacity	would	be:

1100	mAh	/0.7	=	1571.42	mAh

We	took	this	number	into	account	while	purchasing	a	battery	for	the	robot.	We	decided	to	purchase	this
2200mAh	USB	battery	pack	that	operates	at	5V	(shown	in	the	picture	later	and	the	link	for	purchase	has	been
shared	with	the	bill	of	materials	discussed	earlier	in	this	chapter):

2200	mAh	5V	USB	battery	pack

Ensure	that	the	battery	pack	is	fully	charged	before	assembling	it	on	to	the	robot:

http://raspberrypi.stackexchange.com/a/40393/1470
https://www.raspberrypi.org/help/faqs/#cameraPower
http://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-battery-life

1.	 Once	the	battery	pack	is	fully	charged,	mount	it	on	to	the	robot	using	double-sided	tape	and	plug	a
micro-USB	cable,	as	shown	in	the	picture:

2200	mAh	5V	USB	battery	pack

2.	 We	need	to	verify	that	the	Raspberry	Pi	Zero	powers	up	when	a	battery	pack	is	used.
3.	 Plug	in	the	HDMI	cable	(that	is	connected	to	a	monitor)	and	using	a	very	short	micro-USB	cable,	try

to	power	up	the	Raspberry	Pi	Zero	and	make	sure	that	everything	powers	up	correctly.

Setting	up	the	motor	power	supply
Now	that	we	have	set	up	the	power	supply	for	the	robot	and	verified	that	the	Raspberry	Pi	Zero	powers
up	using	the	USB	battery	pack,	we	will	discuss	power	supply	options	to	drive	the	motors	of	the	robot.	We
are	discussing	this	because	the	type	of	motor,	and	its	power	supply	determines	the	performance	of	our
robot.	Let's	get	started!

Let's	revisit	the	motor	driver	that	we	set	up	in	the	previous	section.	The	unique	feature	of	this	motor
driver	is	that	it	is	equipped	with	its	own	voltage	regulator	and	polarity	protection.	Thus,	it	enables
connecting	an	external	power	supply	to	power	the	motors	(shown	in	the	picture	here)

Motor	driver	power	terminals

This	motor	driver	enables	driving	any	motor	with	a	voltage	requirement	of	5-12V	and	current	rating	of
1.2A.	There	are	two	options	to	power	the	motors	of	your	robot:

Using	the	Raspberry	Pi	Zero's	5V	GPIO	power	supply
Using	an	external	power	supply

Using	the	Raspberry	Pi	Zero's	5V	power	supply
The	motor	driver	is	designed	such	that	it	can	act	as	a	prototyping	platform.	There	is	a	bank	of	5V	and
3.3V	power	supply	pins	that	is	connected	to	the	Raspberry	Pi	Zero's	5V	and	3.3V	GPIO	pins.	These	GPIO
pins	are	rated	to	provide	a	current	of	1.5A	(Source:	https://pinout.xyz/pinout/pin2_5v_power).	They	are	directly
connected	to	the	5V	USB	input	of	your	Raspberry	Pi	Zero.	(The	USB	battery	pack	used	in	this	robot	is
rated	to	provide	an	output	of	5V,	1	A).

1.	 The	first	step	in	connecting	the	Raspberry	Pi's	5V	GPIO	power	supply	is	soldering	a	red	and	black
piece	of	wire	(of	appropriate	length)	from	the	5V	and	GND	pins,	respectively	(as	shown	in	the
figure	here):

Solder	red	and	black	pieces	of	wires	from	5V	and	GND	pins

2.	 Now,	connect	the	red	and	black	wires	to	terminal	marked	5-12V	motor	power	(Red	wire	goes	to	+
and	Black	wire	goes	to	-).

Connect	5V	and	GND	to	the	motor	power	supply	terminals

3.	 Now,	power	up	your	Raspberry	Pi	Zero	and	measure	the	voltage	across	your	motor	power	supply
terminals.	It	should	be	receiving	5V,	and	the	power	LED	of	the	motor	driver	should	be	glowing	green
(as	shown	in	the	next	picture).	If	not,	check	the	solder	connections	of	the	motor	driver.

https://pinout.xyz/pinout/pin2_5v_power

Green	LED	lights	up	when	the	Raspberry	Pi	Zero	is	powered	up

4.	 This	method	is	useful	only	when	low-power	motors	are	used	(like	the	ones	used	in	this	chapter).	If
you	have	a	motor	with	a	higher	voltage	rating	(voltage	rating	greater	than	5V),	you	need	to	connect	an
external	power	supply.	We	will	review	connecting	an	external	power	supply	in	the	next	section.

If	you	find	your	Raspberry	Pi	Zero	constantly	resetting	itself	while	driving	your	robot,	it
is	possible	that	the	USB	battery	pack	is	not	able	to	drive	the	robot's	motors.	It	is	time	to
connect	an	external	power	supply!

Using	an	external	power	supply
In	this	section,	we	are	going	to	discuss	connecting	an	external	power	supply	to	drive	the	motors.	We	will
discuss	connecting	a	6V	power	supply	to	power	the	motors.

1.	 We	will	make	use	of	a	battery	pack	that	consists	of	4	AA	batteries	to	drive	the	motors	(battery	packs
available	at	http://a.co/hVPxfzD).

2.	 We	need	to	install	the	battery	pack	such	that	it	leads	could	be	connected	to	the	motor	drivers	power
terminals.

3.	 The	robot	chassis	kit	came	with	an	additional	aluminum	plate	that	could	be	used	to	install	the	battery
pack	(shown	in	the	figure	here):

Additional	aluminium	plate	to	hold	the	battery	pack

4.	 We	made	use	of	four	M2.5	stand-offs	(shown	in	the	picture)	to	hold	the	aluminum	plate:

Assemble	M2.5	stand-offs	to	hold	the	aluminium	plate

5.	 Now,	we	used	M2.5	screws	to	secure	the	aluminum	plate	(as	shown	in	the	figure	here):

http://a.co/hVPxfzD

Secure	the	aluminium	plate

6.	 Using	double-sided	tape,	the	battery	pack	was	installed	(the	battery	pack	contains	four	AA	batteries)
on	top	of	the	aluminum	plate.	Then,	the	red	and	black	wires	of	the	battery	pack	are	connected	to	the	+
and	-	terminals	of	the	motor	driver,	respectively	(as	shown	in	the	figure	here).

Battery	installed	on	the	aluminium	plate

7.	 Slide	the	battery	pack	switch	to	ON,	and	the	motor	driver	should	turn	on	as	explained	in	the	previous
section.

Thus,	the	power	supply	setup	is	complete.	In	the	next	section,	we	will	discuss	taking	the	robot	on	a	test
drive.

If	you	are	looking	for	a	battery	with	a	higher	capacity	for	your	robot,	we	recommend
considering	LiPo	batteries.	This	also	means	that	you	need	motors	with	a	better	rating
and	a	chassis	that	can	withstand	the	battery	weight.

Testing	the	motors
In	this	section,	we	will	verify	that	the	motor	driver	is	detected	by	the	Raspberry	Pi	Zero	and	test	the	motor
function.	In	the	test,	we	will	verify	that	the	motors	are	rotating	in	the	same	direction.

Motor	driver	detection
In	this	section,	we	will	verify	that	the	motor	driver	is	detected	by	the	Raspberry	Pi	Zero.	The	Raspberry
Pi	Zero	talks	to	the	motor	driver	via	the	I2C	interface	(Refer	to	Chapter	4,	Communication	Interfaces,	if
you	are	not	familiar	with	the	I2C	interface).	Hence,	we	need	to	enable	the	I2C	interface	of	the	Raspberry
Pi	Zero.	There	are	two	ways	to	enable	the	I2C	interface:

Method	1:	From	the	Desktop

Like	enabling	ssh	by	launching	the	Raspberry	Pi	Configuration	from	your	Raspberry	Pi	Zero's	desktop,	you
can	enable	the	I2C	interface	from	the	interface	tab	of	the	configuration	(shown	in	the	snapshot	here):

Enable	I2C	interface

Method	2:	From	the	command	line

We	strongly	recommend	using	this	method	as	a	practice	toward	getting	comfortable	with	the	command-
line	interface	on	the	Raspberry	Pi	and	remote	login	via	ssh.

1.	 Log	in	to	your	Raspberry	Pi	Zero	via	ssh	(Refer	to	Chapter	11,	Tips	and	Tricks,	for	a	tutorial	on	the	ssh
access).

2.	 Upon	login,	launch	raspi-config	as	follows:

sudo	raspi-config.

3.	 It	should	launch	the	config	options	menu	(shown	in	the	screenshot	here):

The	raspi-config	menu

4.	 Select	Option	7:	Advanced	Options	(using	the	keyboard)	and	select	A7:	I2C

Select	the	I2C	interface

5.	 Select	Yes	to	enable	the	I2C	interface.

Enable	the	I2C	interface

6.	 Now	that	the	I2C	interface	is	enabled,	let's	get	started	with	detecting	the	motor	driver.

Detecting	motor	driver
The	motor	driver	is	connected	to	I2C	port-1	(the	I2C	port-0	serves	a	different	purpose.	Refer	to	Chapter	11,
Tips	and	Tricks,	for	more	information).	We	will	make	use	of	the	i2cdetect	command	to	scan	for	devices
connected	via	the	I2C	interface.	On	your	command-line	interface,	run	the	following	command:

sudo	i2cdetect	-y	1	

It	provides	an	output	that	looks	like	this:

0

1

2

3

4

5

6

7

8

9

a

b

c

d

e

f	

00:

--	--	--	--	--	--	--	--	--	--	--	--	--	

10:	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	

20:	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	

30:	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	

40:	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	

50:	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	

60:	60	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	

70:	70	--	--	--	--	--	--	--

	

I2C	chips	come	with	a	7-bit	address	that	is	used	to	identify	the	chip	and	establish	communication.	In
this	case,	the	I2C	interface	address	is	0x60	(refer	to	the	motor	driver	documentation	at	https://learn.adafruit
.com/adafruit-dc-and-stepper-motor-hat-for-raspberry-pi).	As	shown	in	the	output	earlier,	the	Raspberry	Pi	Zero

https://learn.adafruit.com/adafruit-dc-and-stepper-motor-hat-for-raspberry-pi

detects	the	motor	driver.	It	is	time	to	test	if	we	can	control	the	motors.

	

Motor	test
	

In	this	section,	we	are	going	to	test	the	motors;	that	is,	determine	if	we	can	drive	the	motors	using	the
motor	driver.	In	this	test,	we	determined	if	the	Raspberry	Pi's	supply	was	sufficient	to	drive	the	motors
(or	whether	an	external	battery	pack)	was	necessary.

In	order	to	get	started,	we	need	to	install	the	motor	driver	libraries	(distributed	by	Adafruit	under	MIT
license)	and	its	dependency	packages.

	

	

Dependencies
The	dependencies	for	the	motor	driver	libraries	may	be	installed	from	the	command-line	terminal	of	your
Raspberry	Pi	Zero	as	follows	(you	may	skip	this	step	if	you	installed	these	tools	while	working	on	Chapter	
4,	Communication	Interfaces):

sudo	apt-get	update

				sudo	apt-get	install	python3-dev	python3-smbus

The	next	step	is	cloning	the	motor	driver	library:

git	clone	https://github.com/sai-y/Adafruit-Motor-HAT-Python-

				Library.git

This	library	is	a	fork	of	the	Adafruit	Motor	HAT	library.	We	fixed	some	issues	to	make	the
library	installation	compatible	with	Python	3.x.

The	library	can	be	installed	as	follows:

cd	Adafruit-Motor-HAT-Python-Library

				sudo	python3	setup.py	install

Now	that	the	libraries	are	installed,	let's	write	a	program	that	rotates	the	motors	continuously:

1.	 As	always,	the	first	step	is	importing	the	MotorHAT	module:

from	Adafruit_MotorHAT	import	Adafruit_MotorHAT,	

							Adafruit_DCMotor

2.	 The	next	step	is	to	create	an	instance	of	the	MotorHAT	class	and	establish	the	interface	with	the	motor
driver	(as	discussed	in	the	previous	section,	the	motor	driver's	7-bit	address	is	0x60).

3.	 The	motors	of	the	robot	are	connected	to	channels	1	and	2.	Hence,	we	need	to	initialize	two
instances	of	the	Adafruit_DCMotor	class	that	represent	the	left	and	right	motors	of	the	robot:

left_motor	=	motor_driver.getMotor(1)	

							right_motor	=	motor_driver.getMotor(2)

4.	 The	next	step	is	setting	the	motor	speed	and	motor	direction.	The	motor	speed	can	be	set	using	an
integer	between	0	and	255	(which	corresponds	to	0%	and	100%	of	the	motor's	rated	rpm).	Let's	set
the	motor	speed	at	100%:

left_motor.setSpeed(255)	

							right_motor.setSpeed(255)

5.	 Let's	rotate	the	motors	in	the	forward	direction:

left_motor.run(Adafruit_MotorHAT.FORWARD)	

							right_motor.run(Adafruit_MotorHAT.FORWARD)

6.	 Let's	rotate	both	the	motors	in	the	forward	direction	for	5	seconds	and	then	reduce	the	speed:

left_motor.setSpeed(200)	

							right_motor.setSpeed(200)

7.	 Now,	let's	rotate	the	motors	in	the	reverse	direction:

left_motor.run(Adafruit_MotorHAT.BACKWARD)	

							right_motor.run(Adafruit_MotorHAT.BACKWARD)

8.	 Let's	turn	off	the	motors	once	we	are	done	rotating	the	motors	in	the	reverse	direction	for	5	seconds:

left_motor.run(Adafruit_MotorHAT.RELEASE)	

							right_motor.run(Adafruit_MotorHAT.RELEASE)

Putting	it	altogether:

from	Adafruit_MotorHAT	import	Adafruit_MotorHAT,	Adafruit_DCMotor	

from	time	import	sleep	

if	__name__	==	"__main__":	

		motor_driver	=	Adafruit_MotorHAT(addr=0x60)	

		left_motor	=	motor_driver.getMotor(1)	

		right_motor	=	motor_driver.getMotor(2)	

		left_motor.setSpeed(255)	

		right_motor.setSpeed(255)	

		left_motor.run(Adafruit_MotorHAT.FORWARD)	

		right_motor.run(Adafruit_MotorHAT.FORWARD)	

		sleep(5)	

		left_motor.setSpeed(200)	

		right_motor.setSpeed(200)	

		left_motor.run(Adafruit_MotorHAT.BACKWARD)	

		right_motor.run(Adafruit_MotorHAT.BACKWARD)	

		sleep(5)	

		left_motor.run(Adafruit_MotorHAT.RELEASE)	

		right_motor.run(Adafruit_MotorHAT.RELEASE)

The	preceding	code	sample	is	available	for	download	along	with	this	chapter	as	motor_test.py.	Recharge
the	USB	battery	pack	before	you	test	the	motors.	We	picked	the	test	duration	long	enough	to	verify	the
motor	direction,	performance,	and	so	on.

If	your	Raspberry	Pi	Zero	seems	to	be	resetting	itself	while	running	or	the	motors	aren't
running	at	the	rated	speed,	it	is	an	indicator	that	the	motors	are	not	being	driven	with	the
sufficient	current.	Switch	over	to	a	power	source	that	meets	the	requirement	(this	may
involve	switching	from	the	GPIO's	power	supply	to	the	battery	pack	or	switching	to	a
battery	pack	of	higher	capacity).

Now	that	the	motors	are	tested,	let	us	set	up	a	camera	for	the	robot.

Camera	setup
You	will	need	a	Raspberry	Pi	Zero	1.3	or	higher	to	set	up	the	camera.	We	discussed
identifying	your	Raspberry	Pi	Zero's	board	version	at	the	beginning	of	this	chapter.	You
may	also	skip	this	section	if	you	are	familiar	with	setting	up	the	camera	from	Chapter	8,
Awesome	Things	You	Could	Develop	Using	Python.

In	this	section,	we	will	set	up	the	camera	for	the	robot.	The	Raspberry	Pi	Zero	(v1.3	onward)	comes	with
a	camera	adapter.	This	enables	adding	a	camera	module	to	the	robot	(designed	and	manufactured	by	the
Raspberry	Pi	foundation).	The	camera	module	was	designed	to	suit	different	models	of	the	Raspberry	Pi.

The	Raspberry	Pi	Zero's	camera	interface	needs	an	adapter	that	is	different	than	the	ones	meant	for	other
models.	The	sources	to	purchase	the	camera	and	the	adapter	were	shared	with	the	bill	of	materials	of	this
chapter.

Let's	get	started:

1.	 Ensure	that	your	Raspberry	Pi	Zero	is	powered	down	and	identify	the	shorter	side	of	the	camera
adapter.	In	the	image	shown	here,	the	shorter	side	is	to	the	right.

Pi	Zero	Camera	Adapter-Image	source:	adafruit.com

2.	 Carefully,	slide	out	the	camera	interface	of	the	Raspberry	Pi	zero	(as	shown	in	the	picture	here).	Pay
attention	to	avoid	breaking	your	camera	interface	tab.

Slide	the	tabs	of	the	camera	interface	carefully

3.	 Gently	slide	in	the	camera	module.	Latch	the	camera	adapter	cable	and	gently	tug	on	it	to	make	sure
that	the	adapter	cable	doesn't	slide	out	of	its	position.	The	camera	adapter	should	be	seated,	as
shown	in	the	picture	here.

Camera	adapter	placement

4.	 Repeat	the	exercise	for	the	other	end	of	the	camera	adapter	to	interface	it	with	the	camera	module.

Insert	adapter	on	the	other	side

5.	 The	camera	adapter	cable	can	be	unwieldy	while	trying	to	install	the	camera	on	the	robot.	We
recommend	installing	a	mount	(source	shared	in	the	bill	of	materials).

Raspberry	Pi	camera	module	mount

6.	 Using	the	double-sided	tape,	install	the	camera	to	the	front	of	your	robot.

Camera	mounted	in	front	of	the	robot

7.	 Log	in	to	your	Raspberry	Pi	Zero's	desktop	via	ssh	to	enable	and	test	the	camera	interface.
8.	 Enabling	the	camera	interface	is	similar	to	enabling	the	I2C	interface	discussed	earlier	in	this

chapter.	Launch	Raspberry	Pi	configuration	using	the	raspi-config	command:

sudo	raspi-config

Select	Option	P1:	Enable	Camera	(found	under	Interfacing	Options	of	the	main	configuration

menu)	and	enable	the	camera:	

The	screenshot	of	the	Raspberry	Configuration	screen

9.	 Reboot	your	Raspberry	Pi	Zero!

raspistill	-o	test_picture	

scp	pi@192.168.86.111:/home/pi/test_output.

3.	 Examine	the	picture	taken	using	the	Raspberry	Pi	camera	module	to	verify	its
function

Picture	of	a	coffee	cup	taken	using	the	Raspberry	Pi	camera	module	Now	that	we	have
verified	the	function	of	the	robot's	components,	we	are	going	to	bring	everything	together
in	the	next	section.

The	web	interface
Our	objective	behind	building	this	robot	as	one	of	our	final	projects	is	to	demonstrate	using	the	topics
discussed	in	this	book	in	application	development.	To	that	end,	we	are	going	to	make	use	of	object-
oriented	programming	and	web	frameworks	to	build	a	web	interface	to	control	the	robot.

In	Chapter	7,	Requests	and	Web	Frameworks,	we	discussed	the	flask	web	framework.	We	are	going	to	make
use	of	flask	to	stream	a	live	view	of	the	camera	module	to	a	browser.	We	are	also	going	to	add	buttons	to
the	web	interface	that	enables	steering	the	robot.	Let's	get	started!

Refer	to	Chapter	7,	Requests	and	Web	Frameworks,	for	installation	instructions	and	a	basic
tutorial	on	the	flask	framework.

Let's	get	started	by	implementing	a	simple	web	interface	where	we	add	four	buttons	to	control	the	robot	in
the	forward,	reverse,	left,	and	right	directions.	Let's	assume	that	the	robot	moves	at	maximum	speed	in	all
directions.

We	are	going	to	make	use	of	object-oriented	programming	to	implement	the	motor	control.	We	are	going	to
demonstrate	the	use	of	object-oriented	programming	to	simplify	things	(this	concept	of	simplification	is
known	as	abstraction).	Let's	implement	a	Robot	class	that	implements	the	motor	control.	This	Robot	class
would	initialize	the	motor	driver	and	handle	all	control	functions	of	the	robot.

1.	 Open	a	file	named	robot.py	to	implement	the	Robot	class.
2.	 In	order	to	control	the	movement	of	the	robot,	the	robot	needs	the	motor	driver	channels	that	are

being	used	(to	drive	the	motors)	as	inputs	during	initialization.
3.	 Hence,	the	__init__()	function	of	the	Robot	class	would	be	something	as	follows:

import	time	

							from	Adafruit_MotorHAT	import	Adafruit_MotorHAT	

							class	Robot(object):	

									def	__init__(self,	left_channel,	right_channel):	

											self.motor	=	Adafruit_MotorHAT(0x60)	

											self.left_motor	=	self.motor.getMotor(left_channel)	

											self.right_motor	=	self.motor.getMotor(right_channel)

4.	 In	the	preceding	code	snippet,	the	__init__()	function	requires	the	channels	being	used	to	connect	the
left	and	right	motors	to	the	motor	driver	board	as	arguments.

5.	 When	an	instance	of	the	Robot	class	is	created,	the	motor	driver	(Adafruit_MotorHAT)	is	initialized	and	the
motor	channels	are	initialized.

6.	 Let's	write	methods	to	move	the	robot	in	the	forward	and	reverse	directions:

def	forward(self,	duration):	

									self.set_speed()	

									self.left_motor.run(Adafruit_MotorHAT.FORWARD)	

									self.right_motor.run(Adafruit_MotorHAT.FORWARD)	

									time.sleep(duration)	

									self.stop()	

							def	reverse(self,	duration):	

									self.set_speed()	

									self.left_motor.run(Adafruit_MotorHAT.BACKWARD)	

									self.right_motor.run(Adafruit_MotorHAT.BACKWARD)	

									time.sleep(duration)	

									self.stop()

7.	 Let's	also	write	methods	to	move	the	robot	in	left-	and	right-hand	side	directions.	In	order	to	turn	the
robot	left,	we	need	to	turn	the	left	motor	off	and	keep	the	right	motor	on	and	vice	versa.	This	creates
a	turning	moment	and	turns	the	robot	in	that	direction:

def	left(self,	duration):	

									self.set_speed()	

									self.right_motor.run(Adafruit_MotorHAT.FORWARD)	

									time.sleep(duration)	

									self.stop()	

							def	right(self,	duration):	

									self.set_speed()	

									self.left_motor.run(Adafruit_MotorHAT.FORWARD)	

									time.sleep(duration)	

									self.stop()

8.	 Thus,	we	have	implemented	a	Robot	class	that	drives	the	robot	in	the	four	directions.	Let's	implement
a	simple	test	so	that	we	can	test	the	Robot	class	before	we	use	it	in	our	main	program:

if	__name__	==	"__main__":	

									#	create	an	instance		of	the	robot	class	with	channels	1	and	2	

									robot	=	Robot(1,2)	

									print("Moving	forward...")	

									robot.forward(5)	

									print("Moving	backward...")	

									robot.reverse(5)	

									robot.stop()

The	preceding	code	sample	is	available	for	download	along	with	this	chapter	as	robot.py.	Try	to	run	the
program	with	the	motor	driver.	It	should	run	the	motor	in	forward	and	reverse	directions	for	5	seconds.
Now	that	we	have	implemented	a	stand-alone	module	for	the	robot's	control,	let's	move	on	to	the	web
interface.

sudo	apt-get	install	motion

daemon	on
	threshold	99999

framerate	90
	stream_maxrate	100

stream_localhost	off

	start_motion_daemon=yes

start)

	if	check_daemon_enabled	;
then

	if	!	[-d	/var/run/motion];	then

	mkdir	/var/run/motion

fi

	chown	motion:motion	/var/run/motion

	sudo	modprobe	bcm2835-v4l2

	chmod	777	/var/run/motion

	sleep
30

	log_daemon_msg	"Starting	$DESC"	"$NAME"

<!DOCTYPE	html>
	<html>
<span	class="apple-converted-
space">	<head>
	<title>Raspberry	Pi
Zero	Robot</title>
	</head>

	<body>
	<iframe	id="stream"	

src="http://<IP_Address_of_your_Raspberry_Pi>
	:8081/?action=stream"
width="320"	height="240">
	</iframe>
<span	class="apple-converted-
space">		</body>

</html>

from	flask	import	Flask,	render_template

	app	=	Flask(__name__)

@app.route("/")
	<span	class="apple-
converted-space">def	hello():
	return
render_template('index.html')

	if
__name__	==	"__main__":

app.run('0.0.0.0')

python3	web_interface.py

10.	 Open	a	browser	on	your	laptop	and	go	to	the	IP	address	of	your	Raspberry	Pi	Zero
(port	5000)	to	see	a	live	stream	of	your	Raspberry	Pi	cam	module.

The	snapshot	of	the	live	webcam	stream	(Raspberry	Pi	Cam	module)

Let's	move	on	to	the	next	step	to	add	buttons	to	the	web	interface.

Buttons	for	robot	control
In	this	section,	we	will	add	implement	buttons	to	the	web	interface	to	drive	the	robot.

1.	 The	first	step	is	adding	four	buttons	to	index.html.	We	will	be	making	use	of	HTML	Table	to	add	four
buttons	(Code	snippet	shortened	for	brevity	and	refer	to	http://www.w3schools.com/html/html_tables.asp	for
more	information	on	HTML	tables):

<table	style="width:100%;	max-width:	500px;	height:300px;">	

									<tr>	

											<td>	

													<form	action="/forward"	method="POST">	

															<input	type="submit"	value="forward"	style="float:

															left;	width:80%	;">	

															</br>	

													</form>	

											</td>	

							...	

							</table>

2.	 In	web_interface.py,	we	need	to	implement	a	method	that	accepts	POST	requests	from	the	buttons.	For
example,	the	method	to	accept	requests	from	/forward	can	be	implemented	as	follows:

@app.route('/forward',	methods	=	['POST'])	

							def	forward():	

											my_robot.forward(0.25)	

											return	redirect('/')

3.	 Putting	it	altogether,	web_interface.py	looks	something	as	follows:

from	flask	import	Flask,	render_template,	request,	redirect	

							from	robot	import	Robot		

							app	=	Flask(__name__)	

							my_robot	=	Robot(1,2)	

							@app.route("/")	

							def	hello():	

											return	render_template('index.html')	

							@app.route('/forward',	methods	=	['POST'])	

							def	forward():	

											my_robot.forward(0.25)	

											return	redirect('/')	

							@app.route('/reverse',	methods	=	['POST'])	

							def	reverse():	

											my_robot.reverse(0.25)	

											return	redirect('/')	

							@app.route('/left',	methods	=	['POST'])	

							def	left():	

											my_robot.left(0.25)	

											return	redirect('/')	

							@app.route('/right',	methods	=	['POST'])	

							def	right():	

											my_robot.right(0.25)	

											return	redirect('/')	

							if	__name__	==	"__main__":	

											app.run('0.0.0.0')

The	preceding	code	sample	is	available	for	download	along	with	this	chapter	as	web_interface.py	(along

http://www.w3schools.com/html/html_tables.asp

with	index.html).	Add	the	following	line	to	/etc/rc.local(before	exit	0):

python3	/<path_to_webserver_file>/web_interface.py

Reboot	your	Raspberry	Pi	Zero,	and	you	should	see	a	live	feed	of	the	robot's	camera.	You	should	also	be
able	to	control	the	robot	from	the	browser!

Control	your	robot	a	browser!

	

Troubleshooting	tips
	

Here	are	some	of	the	problems	we	encountered	while	building	the	robot:

We	broke	our	Raspberry	Pi	Zero's	camera	interface	tab	while	assembling	the	camera	module.	We
had	to	replace	the	Raspberry	Pi	Zero.
We	encountered	some	ghost	issues	with	our	motor	drive	circuitry.	We	were	not	able	to	detect	the
motor	driver	on	certain	occasions.	We	had	to	replace	the	power	supply	for	the	motor	driver.	We	will
keep	this	book's	website	updated	when	we	find	the	root	cause	of	this	issue.
We	encountered	a	lot	of	issues	getting	the	web	stream	setup	for	the	browser.	We	had	to	tweak	a	lot	of
settings	to	get	it	working.	We	found	some	articles	to	fix	the	issue.	We	have	shared	them	in	the
references	section	of	this	book.

	

	

Project	enhancements
	

Consider	making	enhancements	to	the	web	interface	such	that	you	could	alter	the	speed	of	your	robot.
If	you	are	planning	to	build	a	robot	that	operates	in	outdoor	conditions,	you	potentially	add	a	GPS
sensor.	Most	GPS	sensors	stream	data	via	the	UART	interface.	We	recommend	reading	Chapter	4,
Communication	Interfaces	for	examples.
The	distance	of	obstacles	can	be	measured	using	this	sensor:	https://www.adafruit.com/products/3317.	This	can
be	helpful	in	telemetry	applications.
*	In	this	book,	we	used	a	camera	to	drive	the	robot.	It	is	possible	to	take	pictures	and	understand	the
objects	in	a	scene	using	this	image	understanding	tool:	https://cloud.google.com/vision/.

	

https://www.adafruit.com/products/3317
https://cloud.google.com/vision/

	

Summary
	

In	this	chapter,	we	built	a	robot	that	consists	of	a	pair	of	motors	driven	by	a	Raspberry	Pi	using	a	motor
driver.	The	robot	is	also	equipped	with	a	camera	module	to	aid	steering	the	robot.	It	consists	of	two
battery	packs	to	power	the	Raspberry	Pi	Zero	and	motors,	respectively.	We	will	also	upload	a	video	of
the	robot's	operation	to	this	book's	website.

Learning	resources

Differential	steering	mechanism:
https://www.robotix.in/tutorial/mechanical/drivemechtut/
Video	lecture	on	differential	steering	mechanism:
https://www.coursera.org/learn/mobile-robot/lecture/GnbnD/differential-drive-
robots
Make	Magazine:	Building	your	own	chassis:
https://makezine.com/projects/designing-a-robot-chassis/
Society	of	robots:	Guide	to	building	your	own	chassis:
http://www.societyofrobots.com/mechanics_chassisconstruction.shtml
Adafruit's	motor	driver	documentation:	https://learn.adafruit.com/adafruit-dc-and-
stepper-motor-hat-for-raspberry-pi
Adafruit	motor	selection	guide:	https://learn.adafruit.com/adafruit-motor-selection-
guide
Adafruit's	guide	on	building	a	simple	Raspberry	Pi	based
robot:https://learn.adafruit.com/simple-raspberry-pi-robot/overview
Flask	framework	and	form	submission:http://opentechschool.github.io/python-
flask/core/form-submission.html
Raspberry	Pi	Camera	Setup	for	web	streaming:
http://jamespoole.me/2016/04/29/web-controlled-robot-with-video-stream/

	

	

	

Home	Automation	Using	the	Raspberry	Pi	Zero
	

As	the	title	of	the	chapter	suggests,	we	will	discuss	home	improvement	projects	involving	the	Raspberry
Pi	Zero	in	this	chapter.	We	selected	our	projects	such	that	each	example	could	be	executed	as	a	weekend
project.

The	projects	include	the	following	topics:

Voice-activated	personal	assistant
Web	framework-based	appliance	control
Physical	activity	motivation	tool
Smart	lawn	sprinkler

	

	

Voice	activated	personal	assistant
	

In	our	first	project,	we	are	going	to	emulate	personal	assistants	such	as	Google	Home	(https://madeby.google.co
m/home/)	and	Amazon	Echo	(http://a.co/cQ6zJk6)	using	a	Raspberry	Pi	Zero.	We	will	build	an	application
where	we	can	add	reminders	and	events	to	a	calendar	and	controlling	appliances.

We	will	be	making	use	of	houndify	(houndify.com)—a	tool	that	is	designed	to	provide	interactions	with
smart	devices.	We	will	install	the	requisite	software	tools	on	the	Raspberry	Pi	Zero.	We	will	interface	a
button	to	the	Raspberry	Pi	Zero's	GPIO.	We	will	write	some	code	to	create	reminders	and	turn	on/off
appliances	using	Houndify.

The	following	accessories	(apart	from	your	Raspberry	Pi	Zero)	are	recommended	for	this	project:

Item Source Price	(in	USD)

USB	sound	card http://a.co/824dfM8 8.79

Microphone	amplifier	board	with	adjustable	gain https://www.adafruit.com/products/1713 7.95

3.5	mm	auxiliary	cable https://www.adafruit.com/products/2698 2.50

Momentary	push	button	set https://www.adafruit.com/products/1009 5.95

Breadboard,	resistors,	jumper	wires,	and	capacitors N.	A. N.	A.

Speaker	(suggestion) http://a.co/3h9uaTI 14.99

	

https://madeby.google.com/home/
http://a.co/cQ6zJk6
http://houndify.com
http://a.co/824dfM8
https://www.adafruit.com/products/1713
https://www.adafruit.com/products/2698
https://www.adafruit.com/products/1009
http://a.co/3h9uaTI

Installing	requisite	packages
The	first	step	is	installing	the	requisite	packages	for	the	project.	This	includes	the	following	packages:
python3-pyaudio	python3-numpy.	They	may	be	installed	as	follows:

sudo	apt-get	update

sudo	apt-get	install	alsa-utils	mplayer	python3-numpy

	

How	does	it	work?
	

The	following	are	the	steps	to	be	performed:

1.	 A	push	button	is	interfaced	to	the	Raspberry	Pi	Zero's	GPIO.	When	the	GPIO	button	is	pressed,	the
recorder	is	turned	on	(at	the	start	of	a	beep	sound	from	the	speaker).

2.	 The	recorder	accepts	the	user	request	and	processes	it	using	the	Houndify	library.
3.	 The	assistant	processes	the	audio	file	using	Houndify	and	responds	to	the	user	request.

In	this	project,	we	are	using	a	push	button	to	start	listening	to	user	requests,	whereas
commercially	available	products,	such	as	Amazon's	Echo	or	the	Google	Home,	have
special	hardware	(along	with	software)	to	enable	this	capability.	We	are	using	a	push
button	to	simplify	the	problem.

	

	

Setting	up	the	audio	tools
In	this	section,	we	will	connect	the	USB	sound	card,	speaker,	and	the	microphone	for	the	project.

	aplay	-l
	****	List	of	PLAYBACK
Hardware	Devices	****
	card	0:	ALSA
[bcm2835	ALSA],	device	0:	bcm2835	
	ALSA	[bcm2835	ALSA]

	Subdevices:	8/8

	Subdevice	#0:	subdevice	#0
	Subdevice	#1:	subdevice	#1
	Subdevice	#2:	subdevice	#2
	Subdevice	#3:	subdevice	#3
	Subdevice	#4:	subdevice	#4
	Subdevice	#5:	subdevice	#5
	Subdevice	#6:	subdevice	#6
	Subdevice	#7:	subdevice	#7
	card	0:	ALSA	[bcm2835	ALSA],	device	1:	bcm2835	
	ALSA	[bcm2835
IEC958/HDMI]
	Subdevices:	1/1

	Subdevice	#0:	subdevice	#0

	card	1:	Set	[C-Media	USB	Headphone	Set],	

device	0:	USB	Audio	[USB	Audio]

Subdevices:	1/1
	Subdevice	#0:
subdevice	#0

	nano	~/.asoundrc

pcm.!default	{
		type	hw
		card	1

}

	ctl.!default	{
		type	hw

		card	1
	}

	aplay	test.wav

If	everything	is	configured	properly,	you	should	be	able	to	play	audio	using	your	USB
sound	card	and	speaker.	If	you	are	not	able	to	play	the	audio,	check	the	connections	and
make	sure	that	your	USB	sound	card	is	enumerated	correctly	and	you	have	chosen	the
right	audio	source	in	the	configuration	file.	In	the	next	section,	we	will	set	up	the
microphone.

Connecting	the	microphone
In	this	section,	we	will	be	setting	up	an	omnidirectional	microphone	to	listen	for	commands/inputs.

We	tested	off-the-shelf	electret	microphones,	and	the	audio	quality	was	not	sufficient	to
perform	speech	recognition	on	the	recorded	audio	samples.	As	an	alternative,	we
recommend	boundary	microphones	for	a	wide	pickup,	for	example,	http://a.co/8YKSy4c.

MAX9814	with	omnidirectional	microphone	Source:	Adafruit.com

1.	 The	gain	of	the	amplifier	can	be	set	to	three	levels:	60	dB	when	the	gain	pin	is	unconnected,	50	dB
when	the	gain	pin	is	connected	to	ground,	and	40	dB	when	the	gain	pin	is	connected	to	Vdd.

2.	 Connect	Vdd	and	the	GND	pins	to	the	5V	and	GND	pins	of	the	Raspberry	Pi's	GPIO	pins	(,pins	4
and	6	of	the	Raspberry	Pi's	GPIO).

3.	 Cut	the	3.5	mm	cable	into	two	halves.	It	consists	of	three	wires	connected	to	the	Tip,	Ring	and
Sleeve	of	the	3.5	mm	connector	(as	shown	in	the	picture	here).	Use	a	multimeter	to	identify	the
Sleeve,	Tip,	and	Ring	wires	of	the	3.5	mm	connector.

Cut	the	auxiliary	cable	and	identify	the	three	wires	of	the	cable

4.	 Connect	a	100	mF	electrolytic	capacitor	to	the	output	of	the	amplifier	where	the	positive	lead	is
connected	to	the	output	and	the	other	end	is	connected	to	the	tip	of	the	3.5	mm	connector.	The	ground
pin	of	the	amplifier	is	connected	to	the	sleeve	of	the	3.5	mm	connector.

http://a.co/8YKSy4c

Microphone	connections	to	the	3.5	mm	connector

The	microphone	is	ready	to	use.	Power	the	microphone	using	the	GPIO	pins	of	the	Raspberry	Pi	Zero	and
plug	the	3.5	mm	connector	into	the	input	terminals	of	the	USB	sound	card	(marked	with	the	microphone
symbol).

Microphone	connected	to	3.5	mm	connector

We	are	ready	to	test	the	microphone	and	set	an	optimal	capture	volume.	From	the	Raspberry	Pi	Zero's
command-line	terminal,	run	the	following	command:	arecord	-f	dat	-D	plughw:2	
--duration=10~/home/pi/rectest.wav

This	will	record	the	file	for	10	seconds.	Play	it	back	using	the	aplay	command:

							aplay	rectest.wav

You	should	be	able	to	hear	the	recorded	conversation.	Check	your	connections	whether	you	don't	hear
anything	(GND,	5V,	amplifier	output	pins,	and	so	on.	We	have	also	included	additional	resources	for	the
microphone	troubleshooting	at	the	end	of	this	chapter).
If	the	recorded	content	is	too	loud	or	too	feeble,	adjust	the	capture	volume	using	alsamixer.	Launch	alsamixer
from	the	command-line	terminal:	

alsamixer	control	panel

Press	F5	to	view	all	options.	Use	the	arrow	keys	to	adjust	the	value	and	M	to	disable	autogain	control.
Let's	move	on	to	the	next	section	where	we	build	our	application.

Houndify
Houndify	(www.houndify.com)	is	a	tool	that	enables	adding	voice	interaction	to	devices.	Their	free	account
enables	performing	44	different	types	of	actions.	Sign	up	for	an	account	on	their	website	and	activate	it
(via	your	e-mail).

1.	 Once	your	account	is	activated,	go	to	your	account	dashboard	to	create	a	new	client:

On	creating	a	new	account,	a	new	client	is	automatically	created.	This	client	may	not
work	properly.	Delete	it	and	create	a	new	client	from	the	dashboard.

Create	new	client

2.	 Give	a	name	to	your	application	and	select	the	platform	to	be	Home	Automation.

http://www.houndify.com

Name	the	application	and	select	the	platform

3.	 The	next	step	is	selecting	domains,	that	is,	the	nature	of	applications	the	assistant	must	support.
Select	Weather,	Stock	Market,	Dictionary,	and	so	on.

Enable	domains

4.	 Click	on	Save	&	Continue.	Once	you	have	created	your	new	client,	click	on	it	(from	the	dashboard)
to	retrieve	the	following	credentials:	Client	ID	and	Client	Key.

Copy	the	Client	id	and	the	Client	Key	from	the	dashboard

5.	 We	also	need	to	download	the	SDK	for	Python	3.x	(latest	version	available	at	https://docs.houndify.com/sdks
#python):

							wget	

							https://static.houndify.com/sdks/python

							/0.5.0/houndify_python3_sdk_0.5.0.tar.gz

6.	 Extract	the	package	as	follows:

							tar	-xvzf	houndify_python3_sdk_0.5.0.tar.gzrm	

							houndify_python3_sdk_0.5.0.tar.gz

7.	 The	SDK	comes	with	plenty	of	examples	to	get	started.	Let's	consider	a	scenario	where	you	would
like	to	find	out	the	weather	at	your	current	location	by	interacting	with	the	voice	assistant:

1.	 Get	your	current	GPS	coordinates	from	a	tool	such	as	Google	Maps.	For	example,	the	GPS
coordinates	for	a	specific	intersection	in	San	Francisco,	California	is	37.778724,
-122.414778.	Let's	try	to	find	the	weather	at	this	specific	location.

2.	 Open	the	sample_wave.py	file	and	modify	line	39	of	the	file:

client.setLocation(37.778724,	-37.778724)

3.	 Save	the	file	and	from	the	command-line	terminal,	change	directories	to	the	Houndify	SDK	folder:

cd	houndify_python3_sdk_0.5.0/	

														./sample_wave.py	<client_id>	<client_key>	

														test_audio/whatistheweatherthere_nb.wav

4.	 After	processing	the	request,	it	should	print	a	detailed	response:

src="//static.midomi.com/corpus/H_Zk82fGHFX/build/js/

														templates.min.js"></script>'}},	'TemplateName':	

														'VerticalTemplateList',	'AutoListen':	False,	

														'WeatherCommandKind':	'ShowWeatherCurrentConditions',	

														'SpokenResponseLong':	'The	weather	is	45	degrees	and

														mostly	clear	in	San	Francisco.',

We	verified	the	function	and	setup	of	the	Houndify	SDK	by	testing	the	example.	We	uploaded	an	audio	file
to	the	Houndify	server	requesting	the	current	weather	information	(play	the	audio	file	and	find	out).	The
sample_wave.py	script	takes	the	client_id,	client_key,	and	the	audio	file	as	inputs.	It	prints	out	the	output	from

https://docs.houndify.com/sdks#python

the	Houndify	server.

You	need	to	enable	specific	domains	to	retrieve	specific	information.	For	example,	we
enabled	the	weather	domain	to	retrieve	the	weather	information.	It	is	also	possible	to	add
custom	commands	to	the	program.

In	the	next	section,	we	will	modify	sample_wave.py	to	build	our	application.

Building	voice	commands
Let's	get	started	with	building	our	voice	assistant	that	we	can	use	to	find	the	weather	and	turn	on/off	lights.
Because	we	enabled	the	weather	domain	while	setting	up	our	Houndify	account,	we	need	to	add	custom
commands	to	turn	on/off	lights:

1.	 On	your	Houndify	dashboard,	go	to	your	client's	home	page.	Dashboard	|	Click	on	your	client.
2.	 Locate	Custom	Commands	on	the	navigation	bar	to	the	left.	Let's	add	a	custom	command	each	to	turn

on	and	turn	off	the	light.

3.	 Delete	ClientMatch	#1	that	comes	as	a	template	with	the	custom	commands.

Locate	Custom	commands	and	Delete	Client	Match	#1

4.	 Select	Add	ClientMatch	to	add	a	custom	command	to	turn	on	lights.	Populate	the	fields	with	the
following	information:

Expression:	["Turn"].("Lights").	["ON"]
Result:	{"action":	"turn_light_on"}
SpokenResponse:	Turning	Lights	On
SpokenResponseLong:	Turning	your	Lights	On
WrittenResponse:	Turning	Lights	On

WrittenResponseLong:	Turning	your	Lights	On

5.	 Repeat	the	preceding	steps	to	add	a	command	to	turn	lights	off

Test	and	verify	that	these	commands	work	using	sample_wave.py.	Make	your	own	recording	for	the	test.	We
have	also	provided	audio	files	along	with	this	chapter's	download	(available	in	the	folder	audio_files).

Let's	make	a	copy	of	sample_wave.py	to	build	our	assistant.	We	recommend	reading	through	the	file	and
familiarizing	yourself	with	its	function.	The	detailed	documentation	for	the	Houndify	SDK	is	available	at	
https://docs.houndify.com/sdks/docs/python:

1.	 In	the	file	stream_wav.py,	the	StreamingHoundClient	class	is	used	to	send	audio	queries,	such	as	request	for
weather	information	and	commands	to	turn	on/off	lights.

2.	 The	MyListener	class	inherits	the	HoundListener	class	(from	the	houndify	SDK).
3.	 The	MyListener	class	implements	callback	functions	for	three	scenarios:

Partial	Transcription	(the	onPartialTranscript	method)
Complete	Transcription	(the	onFinalResponse	method)
Error	State	(the	onError	method)

4.	 We	need	to	make	use	of	action	intents	to	turning	on/off	lights	using	voice	command.
5.	 When	we	implemented	the	custom	commands	on	the	Houndify	website,	we	added	an	action	intent	for

each	command.	For	example,	the	action	intent	for	turning	on	the	lights	was:

{	

											"action":	"turn_light_on"

							}

6.	 In	order	to	turn	on/off	the	lights	based	on	the	received	action	intent,	we	need	to	import	the	OutputDevice
class	from	gpiozero:

from	gpiozero	import	OutputDevice

7.	 The	GPIO	pin	that	controls	the	light	is	initialized	in	the	__init__	method	of	the	MyListener	class:

class	MyListener(houndify.HoundListener):	

									def	__init__(self):	

											self.light	=	OutputDevice(3)

8.	 On	completing	transcription,	if	an	action	intent	is	received,	the	lights	are	either	turned	on	or	turned
off.	It	is	implemented	as	follows:

def	onFinalResponse(self,	response):	

									if	"AllResults"	in	response:	

											result	=	response["AllResults"][0]	

											if	result['CommandKind']	==	"ClientMatchCommand":	

													if	result["Result"]["action"]	==	"turn_light_on":	

															self.light.on()	

													elif	result["Result"]["action"]	==	"turn_light_off":	

															self.light.off()

response	is	a	dictionary	that	consists	of	the	parsed	json	response.	Refer	to	the	SDK
documentation	and	try	printing	the	response	yourself	to	understand	its	structure.

https://docs.houndify.com/sdks/docs/python

9.	 We	also	need	to	announce	the	voice	assistant's	action	while	turning	on/off	lights.	We	explored
different	text-to-speech	tools,	and	they	sounded	robotic	when	compared	with	off-the-shelf	products
such	as	the	Google	Home	or	Amazon	Echo.	We	came	across	this	script	that	makes	use	of	the	Google
Speech-to-Text	engine	at	http://elinux.org/RPi_Text_to_Speech_(Speech_Synthesis).

Because	the	script	makes	use	of	Google's	text-to-speech	engine,	it	connects	to	the
Internet	to	fetch	the	transcribed	audio	data.

1.	 Open	a	new	shell	script	from	the	Raspberry	Pi's	command-line	terminal:

														nano	speech.sh

2.	 Paste	the	following	contents:

	#!/bin/bash	

														say()	{	local	IFS=+;/usr/bin/mplayer

														-ao	alsa	-really-quiet	-noconsolecontrols	

														"http://translate.google.com/translate_tts?

														ie=UTF-8&client=tw-ob&q=$*&tl=En-us";	}	

														say	$*

3.	 Make	the	file	executable:

chmod	u+x	speech.sh

4.	 We	are	going	to	make	use	of	this	script	to	announce	any	actions	by	the	assistant.	Test	it	from	the
command	line	using	the	following	code:

														~/speech.sh	"Hello,	World!"

5.	 The	system	calls	to	announce	the	voice	assistant	actions	are	implemented	as	follows:

if	result["Result"]["action"]	==	"turn_light_on":	

																self.light.on()	

																os.system("~/speech.sh	Turning	Lights	On")	

														elif	result["Result"]["action"]	==	"turn_light_off":	

																self.light.off()	

																os.system("~/speech.sh	Turning	Lights	Off")

Let's	test	what	we	have	built	so	far	in	this	section.	The	preceding	code	snippets	are	available	for
download	along	with	this	chapter	as	voice_assistant_inital.py.	Make	it	executable	as	follows:	chmod	+x
voice_assistant_initial.py

Test	the	program	as	follows	(audio	files	are	also	available	for	download	with	this	chapter):
./voice_assistant.py	turn_lights_on.wav

http://elinux.org/RPi_Text_to_Speech_(Speech_Synthesis)

Adding	a	button
Let's	add	a	button	to	our	voice	assistant.	This	momentary	push	button	is	connected	to	pin	2	(BCM
numbering)	and	the	LED	is	connected	to	pin	3.

Voice	Assistant	interface	setup

1.	 In	order	to	read	the	button	presses,	we	need	to	import	the	Button	class	from	gpiozero:

from	gpiozero	import	Button,	OutputDevice

2.	 When	a	button	is	pressed,	the	voice	assistant	needs	to	play	a	beep	sound	indicating	that	it	is	awaiting
the	user's	command.	Beep	sounds	of	your	choice	can	be	downloaded	from	www.freesound.org.

3.	 Following	the	beep	sound,	the	user	command	is	recorded	for	a	duration	of	5	seconds.	The	recorded
file	is	then	processed	using	the	Houndify	SDK.	The	following	code	snippet	shows	the	trigger
function	that	is	called	when	the	button	is	pressed:

def	trigger_function():	

									os.system("aplay	-D	plughw:1,0	/home/pi/beep.wav")	

									os.system("arecord	-D	plughw:2,0	-f	S16_LE	-d	5	

									/home/pi/query.wav")	

									os.system("aplay	-D	plughw:1,0	/home/pi/beep.wav")	

									call_houndify()

4.	 The	trigger	function	is	registered	as	follows:

button	=	Button(4)	

							button.when_released	=	trigger_function

http://www.freesound.org

Connect	the	button	and	the	LED	to	the	Raspberry	Pi's	GPIO	interface	to	test	the	voice	assistant.

Voice	assistant	setup

The	voice	assistant	code	file	is	available	for	download	along	with	this	chapter	as	voice_assistant.py.
Download	the	code	sample	and	try	the	following	commands:

What	is	the	weather	in	San	Francisco?What	is	the	weather	in	Santa	Clara,	California?Turn	Lights	OnTurn	Lights	Off

We	have	shared	a	video	(on	this	book's	site)	that	demonstrates	the	function	of	the	voice	assistant.	Now,
we	have	demonstrated	the	voice	assistant	using	an	LED.	In	order	to	control	a	table	lamp,	simply	replace
the	LED	with	a	power	switch	tail	II	(http://www.powerswitchtail.com/Pages/default.aspx).

Things	to	keep	in	mind:

1.	 Add	voice_assistant.py	to	/etc/rc.local	so	that	it	starts	automatically	on	boot.
2.	 The	entire	setup	can	be	unwieldy.	Assemble	the	components	inside	an	enclosure	to	organize	the

wiring.

http://www.powerswitchtail.com/Pages/default.aspx

3.	 Because	the	project	involves	electrical	appliances,	use	prescribed	cables	and	terminate	them
properly.	Ensure	that	the	cables	are	connected	properly.	We	will	share	examples	of	the	same	on	our
website.

Project	ideas	and	enhancements:

Currently,	the	assistant	works	only	at	the	press	of	a	button.	How	will	you	make	it	listen	for	a
keyword?	For	example,	"Ok,	Google"	or	"Alexa"?
Is	it	possible	to	have	a	remote	trigger?	Think	something	on	the	lines	of	Amazon	Tap.
If	you	have	lights	such	as	Philips	Hue	or	Internet-connected	switches	such	as	WeMo	switch
smartplug	or	the	TP-Link	Smart	switch,	you	can	control	them	using	a	voice	assistant.	IFTTT
provides	applets	to	control	them	yourself.	Create	a	maker	channel	web	hook	to	control	them.	Refer
to	Chapter	8	for	examples.

Web	framework	based	appliance
control/dashboard
In	this	section,	we	will	review	building	a	dashboard	in	order	to	control	appliances.	This	could	be	a
dashboard	for	the	aquarium	where	you	would	like	to	monitor	all	the	requisite	parameters	for	the	tank	or	a
dashboard	for	the	garden	where	you	can	control	the	flow	control	valves	for	your	garden	based	on
information	from	the	sensors.	We	will	demonstrate	this	with	a	simple	example	and	show	how	you	can	use
it	to	meet	your	requirements.

We	will	make	use	of	the	flask	framework	to	build	our	dashboard.	If	you	haven't	installed	the	flask
framework	(from	the	previous	chapters),	you	can	install	it	as	follows:	sudo	pip3	install	flask

If	you	are	not	familiar	with	the	flask	framework,	we	have	written	up	some	basics	and	getting	started	in	Cha
pter	7,	Requests	and	Web	Frameworks.	We	are	going	to	discuss	controlling	the	relay	board	(shown	in	the
picture	here)	from	a	web	dashboard	(available	at	http://a.co/1qE0I3U).

Relay	module

The	relay	board	consists	of	eight	relays	that	could	be	used	to	control	eight	devices.	The	relays	are	rated
for	10A,	125V	AC	and	10A,	28V	DC.

It	is	important	to	follow	safety	regulations	while	trying	to	control	AC	appliances	using	a
relay	board.	If	you	are	a	beginner	in	electronics,	we	recommend	using	the	unit,	http://a.co/9
WJtANZ.	It	comes	with	the	requisite	circuitry	and	protections	(shown	in	the	following
figure).	Safety	first!

http://a.co/1qE0I3U
http://a.co/9WJtANZ

Enclosed	high	power	relay	for	Raspberry	Pi

Each	relay	on	the	8-relay	board	consists	of	the	following	components:	an	optocoupler,	transistor,	relay,
and	a	freewheeling	diode	(shown	in	the	schematic	here):	

Schematic	of	one	relay	on	8-relay	board	(generated	using	fritzing)

The	schematic	is	used	to	explain	the	function	of	the	relay	board;	hence,	it	is	not	accurate.
It	is	missing	some	discrete	components.

1.	 The	relay	board	requires	a	5V	power	supply	(through	the	Vcc	pin):

Vcc,	GND	and	GPIO	pins

2.	 Each	relay	on	the	relay	board	is	controlled	by	pins	IN1	through	IN8.	Each	pin	is	connected	to	an
optocoupler	(optoisolator-U1	in	the	schematic).	The	function	of	the	isolator	is	to	separate	the
Raspberry	Pi	from	high	voltages	connected	to	the	relay.	It	protects	from	any	transient	voltages	while
switching	the	relays	(we	have	provided	additional	resources	at	the	end	of	this	chapter	to	better
understand	optocouplers).

3.	 The	phototransistor	of	the	optocoupler	is	connected	to	the	base	of	an	NPN	transistor.	The	NPN
transistor's	collector	pin	is	connected	to	a	relay,	whereas	the	emitter	is	connected	to	the	ground.

4.	 The	relay	is	driven	by	an	active-low	signal	that	is	when	a	0V	signal	is	given	to	one	of	the	pins,	IN1
through	IN8.	The	phototransistor	(of	the	optocoupler)	sends	a	high	signal	to	the	base	of	the	transistor.
Here,	the	transistor	acts	as	a	switch.	It	closes	the	circuit	and	thus	energizes	the	relay.	This	is
basically	the	transistor	switching	circuit	that	we	discussed	in	an	earlier	chapter	except	for	an
additional	component,	the	optocoupler.	An	LED	lights	up	indicating	that	the	relay	is	energized.

The	components	of	each	relay	circuit	(labeled)

We	strongly	recommend	reading	about	optocouplers	to	understand	their	need	and	how	an
active-low	signal	to	this	relay	board	drives	the	relays.

5.	 Across	each	relay,	there	is	a	flywheel	diode.	A	flywheel	diode	protects	the	circuit	from	any
inductive	kickback	voltages	of	the	relay	when	the	relay	is	de-energized/turned	off.	(We	have
included	a	reading	resource	on	relays	and	inductive	kickbacks	at	the	end	of	this	chapter.)

6.	 Each	relay	has	three	terminals,	namely	the	common	terminal,	normally	open	terminal,	and	the
normally	closed	terminal.	When	an	active-low	signal	is	used	to	drive	one	of	the	relays,	the	common
terminal	comes	into	contact	with	the	normally	open	terminal.	When	the	relay	is	de-energized,	the
common	terminal	comes	into	contact	with	the	normally	closed	terminal.	Hence,	the	terminals	have
the	name,	normally	open	and	normally	closed	(The	terminals	are	highlighted	with	the	labels	N.O.,	C,
and	N.C.	in	the	picture	here).

The	terminals	of	a	relay

7.	 The	device	that	needs	to	be	controlled	using	the	web	dashboard	needs	to	be	connected	to	the	relay
terminals,	as	shown	in	the	schematic	given	later.	For	example,	let's	consider	a	device	that	is
powered	using	a	12V	adapter.	The	device's	needs	to	be	rigged	such	that	the	positive	terminal	of	the
power	jack	is	connected	to	the	common	terminal	of	the	relay.	The	normally	open	terminal	is
connected	to	the	device's	positive	line.	The	device's	ground	is	left	untouched.	Keep	the	power
adapter	plugged	in,	and	the	device	shouldn't	turn	on	as	long	as	the	relay	is	not	energized.	Let's
review	controlling	this	device	using	a	web	dashboard.

Schematic	to	rig	a	12V	DC	appliance	with	a	relay

For	an	AC	power	appliance,	we	recommend	using	the	power	switch	tail	II	or	the	AC	relay
unit	discussed	earlier	in	this	section.	They	are	safe	for	hobby	grade	applications.

Building	the	web	dashboard
The	first	step	is	creating	the	html	template	for	the	dashboard.	Our	dashboard	is	going	to	enable	controlling
four	appliances,	that	is,	turn	them	on	or	off:

1.	 In	our	dashboard,	we	need	an	htmltable	where	each	row	on	the	table	represents	a	device,	as	follows:

<table>	

											<tr>	

															<td>	

																			<input	type="checkbox"	name="relay"	

																				value="relay_0">Motor</input>	</br>	

															</td>	

											<td>	

															<input	type="radio"	name="state_0"	value="On">On

															</input>	

																			<input	type="radio"	name="state_0"	value="Off"	

																			checked="checked">Off</input>

											</td>	

							</table>

2.	 In	the	preceding	code	snippet,	each	device	state	is	encapsulated	in	a	data	cell	<td>,	each	device	is
represented	by	a	checkbox,	and	the	device	state	is	represented	by	an	on/off	radio	button.	For	example,	a
motor	is	represented	as	follows:

<td>	

										<input	type="checkbox"	name="relay"	

										value="relay_0">Motor</input>	</br>	

							</td>	

							<td>	

										<input	type="radio"	name="state_0"	value="On">On

										</input>	

											<input	type="radio"	name="state_0"	value="Off"	

											checked="checked">Off</input>			

							</td>

On	the	dashboard,	this	would	be	represented	as	follows:

Device	represented	by	a	checkbox	and	radio	button

3.	 The	table	is	encapsulated	in	an	html	form:

<form	action="/energize"	method="POST">	

										<table>	

										.	

										.	

										.	

										</table>	

							</form>

4.	 The	device	states	are	submitted	to	the	flask	server	when	the	user	hits	the	energize	button:

<input	type="submit"	value="Energize"	class="button">

Energize	button

5.	 On	the	server	side,	we	need	to	set	up	the	GPIO	pins	used	to	control	the	relays:

NUM_APPLIANCES	=	4	

							relay_index	=	[2,	3,	4,	14]

6.	 The	list	relay_index	represents	the	GPIO	pins	being	used	to	control	the	relays.
7.	 Before	starting	the	server,	we	need	to	create	an	OutputDevice	object	(from	the	gpiozero	module)	for	all

the	devices:

for	i	in	range(NUM_APPLIANCES):	

															devices.append(OutputDevice(relay_index[i],	

																																						active_high=False))

8.	 The	OutputDevice	object	meant	for	each	device/relay	is	initialized	and	added	to	the	devices	list.
9.	 When	the	form	is	submitted	(by	hitting	the	energize	button),	the	POST	request	is	handled	by	the

energize()	method.
10.	 We	are	controlling	four	devices	that	are	represented	by	relay_x,	and	their	corresponding	states	are

represented	by	state_x,	that	is,	On	or	Off.	The	default	state	is	Off.
11.	 When	a	form	is	submitted	by	the	user,	we	determine	if	the	POST	request	contains	information	related	to

each	device.	If	a	specific	device	needs	to	be	turned	on/off,	we	call	the	on()/off()	method	of	that
device's	object:

relays	=	request.form.getlist("relay")	

							for	idx	in	range(0,	NUM_APPLIANCES):	

											device_name	=	"relay_"	+	str(idx)	

											if	device_name	in	relays:	

															device_state	=	"state_"	+	str(idx)	

															state	=	request.form.get(device_state)	

															print(state)	

															if	state	==	"On":	

																			print(state)	

																			devices[idx].on()	

															elif	state	==	"Off":	

																			print(state)	

																			devices[idx].off()

12.	 In	the	preceding	code	snippet,	we	fetch	information	related	to	all	relays	as	a	list:

relays	=	request.form.getlist("relay")

13.	 In	the	form,	each	device	is	represented	by	a	value	relay_x	(relay_0	through	relay_3).	A	for	loop	is	used
to	determine	a	specific	relay	is	turned	on/off.	The	state	of	each	device	is	represented	by	the	value
state_x	where	x	corresponds	to	the	device	(from	0	through	3).

14.	 The	GPIO	pins	used	in	this	example	are	connected	to	the	relay	board	pins,	IN1	through	IN4.	The
relay	board	is	powered	by	the	Raspberry	Pi's	GPIO	power	supply.	Alternatively,	you	may	power	it
using	an	external	power	supply.	(You	still	need	to	connect	the	ground	pin	of	the	Raspberry	Pi	Zero	to
the	relay	board.)

15.	 The	earlier-mentioned	dashboard	is	available	along	with	this	chapter	under	the	subfolder

flask_framework_appliance	(including	the	flask	server,	html	files,	and	so	on.).	In	the	following	snapshot,
the	Motor	and	Tank	Light	2	are	checked	and	set	to	On.	In	the	picturehere,	the	first	and	the	third	relay
are	energized.

Turning	on	Motor	and	Tank	Light	2

Relays	1	and	3	energized

Exercise	for	the	reader:

In	this	section,	we	made	use	of	a	POST	request	to	control	devices.	How	would	you	make	use	of	a	GET	request
to	display	room	temperature	from	a	temperature	sensor?

Project	ideas/enhancements:

With	some	basic	web	design	skills,	you	should	be	able	to	build	a	dashboard	with	better	aesthetic
appeal.
Keep	in	mind	that	a	dashboard	should	provide	as	detailed	information	as	possible.	Determine	how
data	visualization	tools	could	enhance	your	dashboard.
Consider	replacing	the	checkbox	and	radio	buttons	with	a	sliding	toggle	switch	(the	type	used	in
mobile	applications).
You	can	build	a	dashboard	for	switching	holiday	light	sequences	from	your	local	browser.	Think	of
ways	to	compete	with	your	neighbours	during	the	holidays.
You	can	permanently	install	the	relay	board	and	the	Raspberry	Pi	Zero	in	a	weather	proof	enclosure
as	given	at	http://www.mcmelectronics.com/product/21-14635.	Check	out	this	book's	website	for	some	examples.

http://www.mcmelectronics.com/product/21-14635

Personal	Health	Improvement—Sitting	is	the
new	smoking

This	project	makes	use	of	specific	accessories.	You	are	welcome	to	substitute	it	with
alternatives.

So	far,	we	have	discussed	projects	that	could	be	an	enhancement	around	your	living	environment.	In	this
section,	we	are	going	to	write	some	Python	code	on	the	Raspberry	Pi	Zero	and	build	a	tool	that	helps
improving	your	personal	help.

According	to	the	World	Health	Organization,	physical	activity	of	150	minutes	in	a	week	can	help	you	stay
healthy.	Recent	studies	have	found	that	walking	10,000	steps	in	a	day	can	help	avoid	life	style	diseases.
We	have	been	making	use	of	pedometers	to	keep	track	of	our	daily	physical	activity.	It	is	difficult	to
maintain	consistency	in	physical	activity	as	we	tend	to	ignore	our	personal	health	over	daily
commitments.	For	example,	in	the	physical	activity	timeline	shown	here,	you	will	note	that	all	the	physical
activity	is	concentrated	toward	the	end	of	the	day.

Physical	activity	in	a	day	(data	fetched	from	a	commercially	available	pedometer)

We	are	going	to	build	a	visual	aid	that	would	remind	us	to	stay	physically	active.	We	believe	that	this	tool
should	help	put	your	personal	fitness	tracker	to	good	use.	The	following	are	the	recommended	accessories
for	this	project:

Pedometer:	The	cost	of	pedometers	vary	anywhere	from	$20-$100.	We	recommend	getting	a	tracker
from	Fitbit	since	it	comes	with	extensive	developer	resources.	It	is	not	required	to	have	a	tracker.
We	are	going	to	demonstrate	this	visual	aid	using	a	Fitbit	One	(http://a.co/8xyNSmg)	and	suggest
alternatives	at	the	end.
Pimoroni	Blinkt	(optional):	This	is	an	LED	strip	(https://www.adafruit.com/product/3195)	that	can	be	stacked
on	top	of	your	Raspberry	Pi	Zero's	GPIO	pins	(shown	in	the	picture	here).

Pimoroni	Blinkt

http://a.co/8xyNSmg
https://www.adafruit.com/product/3195

Pimoroni	Rainbow	HAT	(optional	https://www.adafruit.com/products/3354):	This	is	an	add-on	hardware
designed	for	the	Android	Things	platform	on	the	Raspberry	Pi.	It	comes	with	LEDs,	14-segment
displays,	and	a	buzzer.	It	can	come	handy	for	the	project.

Rainbow	HAT	for	android	things

Alternatively,	you	may	add	LED	strips	and	components	to	this	visual	aid	using	your	creativity.

https://www.adafruit.com/products/3354

sudo	pip3	install	fitbit	cherrypy	schedule

sudo	apt-get	install	python3-blinkt

curl	-sS	https://get.pimoroni.com/rainbowhat	|
bash

Getting	access	keys	for	Fitbit	client
We	need	access	keys	to	make	use	of	the	Fitbit	API.	There	is	a	script	available	from	the	fitbit	python	client
repository	at	https://github.com/orcasgit/python-fitbit.

The	access	keys	can	also	be	obtained	from	the	command-line	terminal	of	a	Linux	or	Mac
OS	laptop.

1.	 Create	a	new	app	at	https://dev.fitbit.com/apps:

Register	a	new	app	at	dev.fitbit.com

2.	 While	registering	a	new	application,	fill	in	the	description	including	the	name	of	your	application
and	give	a	temporary	description,	organization,	website,	and	so	on,	and	set	the	OAuth	2.0
Application	Type	to	Personal	and	access	type	to	Read-Only.	Set	the	callback	URL	to
http://127.0.0.1:8080.

Set	callback	URL

3.	 Once	your	application	is	created,	copy	the	Client	ID	and	Client	Secret	from	application's	dashboard.

https://github.com/orcasgit/python-fitbit
https://dev.fitbit.com/apps

Note	down	the	client_id	and	client	secret

4.	 From	the	Raspberry	Pi's	command-line	terminal,	download	the	following	script:

							wget	https://raw.githubusercontent.com/orcasgit/

							python-fitbit/master/gather_keys_oauth2.py

The	next	step	needs	to	be	executed	by	opening	the	command-line	terminal	from	your
Raspberry	Pi	Zero's	desktop	(not	via	remote	access).

5.	 Execute	the	script	by	passing	the	client	id	and	client	secret	as	arguments:

							python3	gather_keys_oauth2.py	<client_id>	<client_secret>

6.	 It	should	launch	a	browser	on	your	Raspberry	Pi	Zero's	desktop	and	direct	you	to	a	page	on	https://www
.fitbit.com/home	requesting	your	authorization	to	access	your	information.

https://www.fitbit.com/home

Authorize	access	to	your	data

7.	 If	the	authorization	was	successful,	it	should	redirect	you	to	a	page	where	the	following	information
is	displayed:

Authorization	to	access	the	Fitbit	API

8.	 Close	the	browser	and	copy	the	refresh_token	and	access_token	information	displayed	on	the	command
prompt.

Copy	access_token	and	refresh_token	We	are	ready	to	use	the	Fitbit	API!	Let's	test	it	out!

import	fitbit

fbit_client	=	fitbit.Fitbit(CONSUMER_KEY,	
	CONSUMER_SECRET,	

access_token=ACCESS_TOKEN,	
	refresh_token=REFRESH_TOKEN)

now	=	datetime.datetime.now()	
	end_time	=	now.strftime("%H:%M")	

response	=	fbit_client.intraday_time_series('activities/steps',	
	detail_level='15min',

	start_time="00:00",	
	end_time=end_time)

print(response['activities-steps'][0]['value'])

7.	 This	example	is	available	for	download	along	with	this	chapter	as	fitbit_client.py.
If	you	have	a	Fitbit	tracker,	register	an	application	and	test	this	example	for	yourself.

import	blinkt	
	import	datetime	
	import	fitbit	
	import	time	
	import
schedule

CONSUMER_KEY	=	"INSERT_KEY"	
	CONSUMER_SECRET	=
"INSERT_SECRET"	
	ACCESS_TOKEN	=	"INSER_TOKEN"	

REFRESH_TOKEN	=	"INSERT_TOKEN"

def	refresh_token():	
	global	REFRESH_TOKEN	
	oauth	=
fitbit.FitbitOauth2Client(client_id=CONSUMER_KEY,	

client_secret=CONSUMER_SECRET,	
	refresh_token=REFRESH_TOKEN,	

access_token=ACCESS_TOKEN)	
	REFRESH_TOKEN	=	oauth.refresh_token()

def	get_steps():	
	num_steps	=	0	
	client	=	fitbit.Fitbit(CONSUMER_KEY,	

CONSUMER_SECRET,	
	access_token=ACCESS_TOKEN,	

refresh_token=REFRESH_TOKEN)	
	try:	
	now	=	datetime.datetime.now()

	end_time	=	now.strftime("%H:%M")	
	response	=	

client.intraday_time_series('activities/steps',	
	detail_level='15min',	

start_time="00:00",	
	end_time=end_time)	
	except	Exception	as	error:	

print(error)	
	else:	
	str_steps	=	response['activities-steps'][0]['value']	

print(str_steps)	
	try:	
	num_steps	=	int(str_steps)	
	except	ValueError:

	pass	
	return	num_steps

schedule.every(8).hours.do(refresh_token)

#	update	steps	every	15	minutes	
	if	(time.time()	-	current_time)	>	900:	

current_time	=	time.time()	
	steps	=	get_steps()	

	num_leds	=	steps	//	1250

	if	num_leds	>	8:	
	num_leds	=	8	

	for	i	in	range(num_leds):

	blinkt.set_pixel(i,	0,	255,	0)	

	if	num_leds	<=	7:	

blinkt.set_pixel(num_leds,	255,	0,	0)	
	blinkt.show()	
	time.sleep(1)	

blinkt.set_pixel(num_leds,	0,	0,	0)	
	blinkt.show()	
	time.sleep(1)

8.	 For	every	multiple	of	1250	steps,	we	set	an	LED's	color	to	green	using	the
blinkt.set_pixel()	method.	We	set	the	next	LED	to	a	blinking	red.	For	example,	at
the	time	of	writing	this	section,	the	total	number	of	steps	was	1604.	This	is	(1250	x1)
+	354	steps.	Hence,	we	light	up	one	LED	in	green	and	the	next	LED	blinks	red.	This
indicates	that	the	steps	are	in	progress.

9.	 The	picture	here	shows	the	blinking	red	LED	when	the	progress	was	less	than	1250
steps:

Physical	activity	progress	less	than	1250	steps

10.	 After	walking	around,	the	progress	shifted	to	the	right	by	one	LED:

Physical	activity	at	1604	steps

11.	 The	next	step	is	to	set	off	a	buzzer	when	there	is	no	minimum	physical	activity.	This
is	achieved	by	connecting	a	buzzer	to	the	GPIO	pins	of	the	Raspberry	Pi	Zero.	We
have	demonstrated	the	use	of	a	buzzer	in	an	earlier	chapter.

12.	 The	earlier	example	is	available	for	download	along	with	this	chapter	as
visual_aid.py.	We	will	let	you	figure	out	the	logic	to	set	off	a	buzzer	when	there	is
no	minimum	physical	activity	in	a	period	(for	example,	an	hour).

Install	this	visual	aid	somewhere	prominent	and	find	out	if	it	motivates	you	to	stay
physically	active!	If	you	make	use	of	the	Pimoroni	Rainbow	HAT,	you	can	display	the
steps	using	the	14-segment	display.

Smart	lawn	sprinkler
In	drought-struck	states	like	California,	United	States,	there	are	severe	restrictions	on	water	usage	in
certain	parts	of	the	state.	For	example:	In	summer,	some	cities	passed	an	ordinance	restricting	water	usage
to	250	gallons	per	day.	In	such	states,	it	is	ridiculous	to	find	lawn	sprinklers	going	off	the	day	before	the
rain.	We	are	going	to	build	a	lawn	sprinkler	controller	that	only	turns	on	when	there	is	no	rain	predicted
for	the	next	day.

In	order	to	build	a	smart	lawn	sprinkler,	we	need	a	flow	control	solenoid	valve	(for	example,	https://www.spa
rkfun.com/products/10456).	Make	sure	that	the	valve	can	meet	the	water	pressure	requirements.	This	flow
control	valve	can	be	interfaced	to	the	Raspberry	Pi	Zero	using	a	transistor	switching	circuit	discussed	in
earlier	chapters	or	the	relay	board	we	discussed	earlier	in	this	chapter.

1.	 We	will	be	making	use	of	DarkSky	API	(https://darksky.net)	to	fetch	the	weather	information.	It	provides
a	simple	response	format	that	could	be	used	to	determine	if	it	was	going	to	rain	the	next	day.

2.	 Sign	up	for	a	free	account	at	the	website	and	get	a	developer	key	from	the	console.
3.	 According	to	the	API	documentation,	the	local	weather	information	may	be	obtained	as	follows:

https://api.darksky.net/forecast/[key]/[latitude],[longitude]

4.	 The	latitude	and	longitudinal	coordinates	can	be	obtained	using	a	simple	web	search.	For	example,
the	request	URL	for	Newark,	CA	is:

URL	=	("https://api.darksky.net/forecast/key"	

							"/37.8267,-122.4233?exclude=currently,minutely,hourly")

5.	 The	response	includes	the	current,	minutely,	and	hourly	forecasts.	They	can	be	excluded	using	the	exclude
parameter	as	shown	in	the	preceding	URL.

6.	 Now,	we	need	to	turn	on	the	sprinkler	only	if	it	is	not	going	to	rain	the	next	day.	According	to	the	API
documentation,	the	weather	forecast	is	returned	as	a	Data	Point	object.	The	data	points	include	a	field
named	icon	that	indicates	whether	it	is	going	to	be	clear,	cloudy,	or	rainy.

7.	 Let's	write	a	method	check_weather()	that	fetches	the	weather	for	the	week:

def	check_weather():	

										try:	

																response	=	requests.get(URL)	

										except	Exception	as	error:	

																print(error)	

										else:	

																if	response.status_code	==	200:	

																						data	=	response.json()	

																						if	data["daily"]["data"][1]["icon"]	==	"rain":	

																												return	True	

																						else:	

																												return	False

8.	 If	the	GET	request	was	successful,	which	can	be	determined	by	the	status	code	of	the	response,	the	json
response	is	decoded	using	the	json()	method.

9.	 The	next	day's	weather	information	is	available	at	data["daily"]["data"][1]	(Print	the	response	and
verify	it	for	yourself).

10.	 Since	the	icon	key	provides	a	machine-readable	response,	it	could	be	used	to	turn	on	the	sprinkler.

https://www.sparkfun.com/products/10456
https://darksky.net

Hence,	the	check_weather()	returns	True	if	it	is	going	to	rain	and	vice	versa.

We	will	let	you	figure	out	interfacing	the	solenoid	valve	using	the	GPIO	pins.	The	earlier	code	sample	is
available	for	download	along	with	this	chapter	as	lawn_sprinkler.py.

Exercise	for	the	reader:

We	are	making	use	of	the	next	day's	weather	information	to	turn	on	the	sprinkler.	Go	through	the
documentation	and	modify	the	code	to	account	for	current	weather	information.

Project	enhancements:

How	would	you	go	about	adding	a	moisture	sensor	to	the	controller?
How	would	you	interface	the	sensor	to	the	Raspberry	Pi	Zero	and	make	use	of	it	in	turn	on	the
sprinkler?

	

Summary
	

In	this	chapter,	we	reviewed	four	projects	involving	the	Raspberry	Pi	Zero	(and	Python	programming)	that
focused	on	specific	improvements	around	the	house.	This	includes	a	voice	assistant,	web	framework-
based	appliance	control,	physical	activity	motivation	tool,	and	a	smart	lawn	sprinkler.	The	idea	behind
these	projects	were	to	demonstrate	the	applications	of	python	programming	in	improving	our	quality	of
life.	We	could	demonstrate	that	it	is	possible	to	build	applications	(using	the	Raspberry	Pi	Zero)	that	can
serve	as	a	better	alternative	to	expensive	off-the-shelf	products.

We	also	recommend	the	following	project	ideas	for	your	consideration:

Slack	channel-based	appliance	control:	Are	you	concerned	about	the	temperature	conditions	back
home	for	your	pets	while	you	are	away	at	work?	How	about	setting	up	a	temperature	sensor	to	send	a
slack	channel	alert	suggesting	that	you	turn	on	the	air	conditioner?
Tabletop	fountain:	Using	a	Raspberry	Pi	Zero	and	an	RGB	LED	strip,	you	can	create	lighting	effects
for	a	tabletop	fountain.
Bird	feeder	monitor:	This	is	something	we	have	been	working	on	for	a	while	now.	We	are	trying	to
track	birds	that	come	to	feed	in	a	backyard	feeder.	The	bird	feeder	is	equipped	with	a	Raspberry	Pi
Zero	and	a	camera.	Stay	tuned	to	this	book's	website	for	some	updates.
Holiday	lights	controller:	How	about	some	special	light	and	audio	effects	during	the	holidays?
Controlling	off-the-shelf	products	using	Raspberry	Pi	Zero:	Do	you	have	a	lot	of	Wi-Fi-enabled
electrical	outlets	lying	around	unused?	Why	not	try	to	control	them	using	your	Raspberry	Pi	Zero
(hint:	IFTTT).
Pomodoro	timer:	Have	you	heard	of	the	Pomodoro	technique	for	productivity?	How	about	an
interactive	device	to	improve	your	productivity?

Learning	Resources

Setting	USB	Soundcard	as	the	default	audio	source:	http://raspberrypi.stackexchange.com/a
/44825/1470
arecord/aplay	options:	http://quicktoots.linux-audio.com/toots/quick-toot-arecord_and_rtmix-1.html
MAX9814	setup	tutorial:	https://learn.adafruit.com/adafruit-agc-electret-microphone-amplifier-max9
814/wiring-and-test
Understanding	optocouplers:	https://www.elprocus.com/opto-couplers-types-applications/
Relays	and	kickback	voltages:	http://www.coilgun.info/theoryinductors/inductivekickback.htm

	

	

http://raspberrypi.stackexchange.com/a/44825/1470
http://quicktoots.linux-audio.com/toots/quick-toot-arecord_and_rtmix-1.html
https://learn.adafruit.com/adafruit-agc-electret-microphone-amplifier-max9814/wiring-and-test
https://www.elprocus.com/opto-couplers-types-applications/
http://www.coilgun.info/theoryinductors/inductivekickback.htm

	

Tips	and	Tricks
	

We	have	discussed	different	concepts	of	Python	programming	and	the	applications	you	could	develop	in
Python	using	the	Raspberry	Pi	Zero	as	a	platform.	Before	we	call	it	a	day,	we	would	like	to	present	some
tips	and	tricks	that	could	be	useful	to	you.	We	will	also	discuss	topics	that	we	promised	to	discuss	in	this
chapter.

	

	

	

Change	your	Raspberry	Pi's	password
	

As	you	develop	applications,	you	will	gravitate	toward	buying	more	than	one	Raspberry	Pi	Zero	boards.
As	soon	as	you	finish	setting	up	the	micro	SD	card	and	power	up	the	board,	change	the	default	password
for	your	Raspbian	login.	Default	passwords	on	connected	devices	wreaked	havoc	during	Mirai	botnet
attacks	of	2016	(https://blogs.akamai.com/2016/10/620-gbps-attack-post-mortem.html).	Considering	the	magnitude	of	the
attacks,	the	Raspberry	Pi	foundation	released	a	new	OS	update	(https://www.raspberrypi.org/blog/a-security-update-for-
raspbian-pixel/)	that	disables	SSH	access	to	the	Raspberry	Pi	by	default.	You	can	change	the	password	in	the
following	two	ways:

Change	it	from	the	desktop.	Go	to	Menu	|	Preferences	|	Raspberry	Pi	Configuration.	Under	the	System
tab,	select	Change	Password.
Launch	the	command-line	terminal	and	enter	passwd	at	the	prompt.	It	will	prompt	you	for	the	current
password	of	the	Raspberry	Pi	desktop	followed	by	the	new	password.

	

https://blogs.akamai.com/2016/10/620-gbps-attack-post-mortem.html
https://www.raspberrypi.org/blog/a-security-update-for-raspbian-pixel/

sudo	apt-get	update
	sudo	apt-get	dist-upgrade

Sometimes,	OS	updates	can	break	the	stability	of	some	interface	drivers.	Proceed	with
caution	and	check	relevant	forums	for	any	reports	of	problems.

Setting	up	your	development	environment
Let's	discuss	setting	up	your	development	environment	in	order	to	work	on	your	Raspberry	Pi	Zero:

1.	 SSH	access	to	the	Raspberry	Pi	is	disabled	by	default.	Launch	Raspberry	Pi	configuration	from	your
desktop.	On	the	top-left	corner,	Go	to	Menu	|	Preferences	|	Raspberry	Pi	Configuration:

Launch	Raspberry	Pi	configuration

2.	 Under	the	Interfaces	tab	of	the	Raspberry	Pi	configuration,	enable	SSH	and	VNC	and	click	on	OK	to
save	changes.

Enable	SSH	and	VNC

3.	 Launch	the	Raspberry	Pi's	Command	Prompt	and	type	the	following	command:	ifconfig.	If	you
connected	your	Raspberry	Pi	Zero	to	the	network	using	a	Wi-Fi	adapter,	locate	the	IP	address	of	your
Raspberry	Pi	Zero	under	wlan0,	as	shown	in	the	following	screenshot.	In	this	case,	the	IP	address	is
192.168.86.111:

IP	address	of	the	Raspberry	Pi	Zero

4.	 You	can	also	find	the	IP	address	by	hovering	over	the	Wi-Fi	symbol	on	the	top-right	corner.

The	IP	address	information	may	not	be	useful	if	your	network	is	behind	a	firewall.	For
example,	public	wireless	networks,	such	as	a	coffee	shop,	have	firewalls.

Now	that	the	Raspberry	Pi	Zero	is	set	up	for	SSH	access,	let's	try	to	gain	access	to	the	Raspberry	Pi
remotely.

SSH	access	via	Windows
1.	 If	you	have	a	Windows	laptop,	download	PuTTY	client	from	(http://www.chiark.greenend.org.uk/~sgtatham/putty

/download.html).	Launch	putty.exe.

Launch	putty.exe

2.	 Enter	the	IP	address	of	your	Raspberry	Pi	Zero	in	the	highlighted	area	and	click	on	Open.
3.	 Select	Yes	if	a	prompt	(like	the	one	shown	in	the	following	screenshot)	shows	up	to	save	the

settings:

Select	Yes

4.	 Log	in	as	pi	and	enter	your	Raspberry	Pi's	password:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Log	in	as	pi

5.	 You	have	now	gained	remote	access	of	your	Raspberry	Pi.	Try	executing	the	commands	on	your
desktop.

Play	with	the	remote	desktop

6.	 If	the	PuTTY	SSH	session	disconnects	for	some	reason,	right-click	and	select	Restart	Session.

Restart	a	session	with	a	right-click

SSH	access	via	Linux/macOS
Perform	the	following	steps	for	SSH	access	via	Linux/macOS:

1.	 On	a	macOS,	you	can	launch	the	Terminal	as	follows:	Press	command	+	spacebar	and	launch	the
search	tool.	Enter	Terminal	and	click	on	the	first	option	to	launch	a	new	Terminal	window.

Launch	Terminal

2.	 On	the	Terminal,	log	in	to	your	Raspberry	Pi	using	the	ssh	command:

ssh	pi@192.168.86.111	-p	22

3.	 Enter	the	password	of	your	Raspberry	Pi	when	prompted	and	gain	remote	access	to	your	Raspberry
Pi.

Remote	access	via	macOS	terminal

4.	 On	an	Ubuntu	desktop,	a	Terminal	can	be	launched	using	the	shortcut	Ctrl	+	Alt	+	T	on	the	keyboard.
SSH	access	is	similar	to	that	of	macOS.

An	SSH	access	via	Ubuntu

	

Transferring	files	to/from	your	Pi
	

While	writing	code	for	your	project,	it	would	be	easier	to	write	the	code	on	a	laptop	and	transfer	the	files
to	the	Raspberry	Pi	to	test	it	remotely.	This	is	helpful,	especially	while	remote	access	is	necessary	(for
example,	the	robot	in	Chapter	9,	Let's	build	a	robot!).

	

	

WinSCP
1.	 On	a	Windows	machine,	WinSCP	(https://winscp.net/eng/index.php)	could	be	used	for	files	transfers	in	both

directions.	Download	the	software	and	install	it	on	your	laptop.
2.	 Launch	WinSCP	and	enter	the	IP	address,	username,	and	password	of	the	Raspberry	Pi	Zero	in	the

window.	Under	the	File	protocol:	drop-down	menu,	choose	SFTP	or	SCP.

Enter	the	IP	address,	username,	and	password

3.	 Click	on	Yes	when	the	software	prompts	whether	it	is	a	trusted	host:

Click	on	Yes	on	this	warning

4.	 If	the	credentials	are	correct,	the	software	should	provide	the	remote	access	of	the	Raspberry	Pi
Zero's	filesystem.	In	order	to	download	files	or	upload	files,	just	right-click	and	choose	the
upload/download	option	(shown	in	the	following	screenshot):

https://winscp.net/eng/index.php

Upload/download	files	with	a	right-click

scp	<filename>	pi@<IP	address>:<destination>
	scp
my_file	pi@192.168.1.2:/home/pi/Documents

scp	pi@<IP	address>:<file	location>	<local	destination>

scp	pi@192.168.1.2:/home/pi/Documents/myfile	Documents

	

Git
	

Git	is	a	version	control	tool	that	can	be	helpful	while	developing	applications.	It	also	enables	sharing
code	samples	with	others.	For	example,	this	book's	latest	code	samples	are	all	checked	into	https://github.com/
sai-y/pywpi.git.	Since	git	enables	version	control,	it	is	possible	to	save	copies	of	the	code	at	different	stages
of	the	project.	It	is	also	possible	to	revert	to	a	known	working	version	if	there	are	problems	in	the	code.

While	writing	this	book,	we	wrote	our	code	using	text	editors,	such	as	Notepad++	and	Sublime	Text
editor.	and	saved	them	to	our	repositories	on	github.	On	the	Raspberry	Pi	side,	we	made	a	copy	of	the
repository	from	github	and	tested	our	code.	Git	also	enables	creating	branches,	which	is	a	cloned	image	of
the	code	repository.	Git	branches	enable	working	on	a	new	feature	or	fix	an	existing	problem	without
breaking	the	working	version	of	the	code.	Once	the	feature	has	been	implemented	or	a	problem	is	fixed,
we	can	merge	the	changes	with	the	main	branch	of	the	repository.	We	recommend	finishing	this	tutorial	to
understand	the	importance	of	Git,	so	refer	to	https://guides.github.com/activities/hello-world/.

	

	

https://github.com/sai-y/pywpi.git
https://guides.github.com/activities/hello-world/

Command-line	text	editors
From	time	to	time,	there	might	be	a	need	to	make	minor	changes	to	code	files	or	change	configuration	files
from	the	command	line.	It	is	impractical	to	use	a	graphical	text	editor	every	time.	There	are	command-line
text	editors	that	can	come	handy	with	some	practice.

One	useful	text	editor	that	comes	with	the	Raspbian	OS	is	nano.	nano	is	a	very	simple	text	editor,	and	it	is
very	easy	to	use.	For	example,	let's	consider	a	scenario	where	we	would	like	to	add	a	secret	key	for	an
API	in	your	code	file.	This	could	be	accomplished	by	opening	the	file	via	the	Command	Prompt	(SSH	or
the	command-line	terminal	from	the	desktop):	nano	visual_aid.py

It	should	open	the	contents	of	the	file,	as	shown	in	the	following	screenshot:	

nano	text	editor

1.	 Navigate	to	the	line	that	needs	editing	using	the	keyboard's	arrow	keys.	The	line	could	be	edited
manually,	or	the	secret	key	could	be	pasted	into	the	file	(CMD	+	V	on	Mac,	Ctrl	+	Shift	+	V	on
Ubuntu	Terminal	and	simply	right-click	on	PuTTY).

2.	 Once	the	file	editing	is	complete,	press	Ctrl	+	X	to	finish	editing	and	Press	Y	to	save	the	changes:

Save	changes

3.	 Press	Enter	at	the	next	prompt	to	save	the	contents	to	the	file.

Save	contents	to	the	original	file	Learning	to	use	command-line	text	editors	can	come	handy	while	working	on	projects.

There	are	other	text	editors	such	as	vi	and	vim.	However,	nano	text	editor	is	much	simpler	to
use.

Graphical	text	editors
Apart	from	IDLE's	graphical	text	editor,	there	are	many	other	text	editors	out	there.	On	Windows,	we
recommend	using	Notepad++	(https://notepad-plus-plus.org/).	It	comes	with	a	lot	of	plugins	and	features	that
distinguish	Python	keywords	from	other	parts	of	the	code.	It	also	provides	visual	aid	to	indent	your	code
properly.

Notepad++	editor

While	Notepad++	is	free,	there	is	a	cross-platform	(there	is	a	version	for	Windows,	Ubuntu,	and	Mac)
text	editor	named	Sublime	(https://www.sublimetext.com/)	that	comes	with	an	evaluation	license,	but	the	license
costs	USD	70.	We	believe	that	it	is	worth	the	cost	because	it	comes	with	a	rich	development	environment.

https://notepad-plus-plus.org/
https://www.sublimetext.com/

Sublime	text	editor

SSH	aliases	(on	Mac/Linux	Terminals)
While	working	on	a	project,	SSH	aliases	can	come	handy	for	the	remote	access	of	the	Raspberry	Pi.	An
alias	is	a	shortcut	for	any	command.	For	example,	an	alias	for	SSH	login	can	be	implemented	as	follows:
nano	~/.bash_aliases

Add	the	following	line	to	the	file	(make	sure	that	the	IP	address	of	the	Raspberry	Pi	is	added):	alias
my_pi='ssh	pi@192.168.1.2	-p	2'

Load	the	alias	file:

source	~/.bash_aliases

Now,	we	can	access	the	pi	simply	by	calling	my_pi	into	the	Command	Prompt.	Try	it	for	yourself!

Saving	SSH	sessions	on	PuTTY
In	a	Windows	environment,	it	is	possible	to	save	SSH	sessions	for	repeated	usage.	Launch	Putty,	enter	the
IP	address	of	the	Raspberry	Pi,	and	save	it	with	a	session	name,	as	shown	in	the	following	screenshot:	

Save	session

Whenever	the	SSH	access	to	the	Raspberry	Pi	is	needed,	launch	PuTTY	and	load	my_session	(shown	in	the
following	screenshot):

Load	session

VNC	access	to	Raspberry	Pi
While	enabling	SSH,	we	also	enabled	VNC.	VNC	is	a	tool	that	enables	remote	viewing	of	the	Raspberry
Pi	desktop.	Because	VNC	is	already	enabled	on	the	Raspberry	Pi,	download	and	install	VNC	viewer	(http
s://www.realvnc.com/download/viewer/).	VNC	viewer	is	available	for	all	operating	systems:

1.	 Log	in	is	very	simple.	Just	enter	the	Raspberry	Pi's	username	and	password:

Login

2.	 It	should	take	you	directly	to	the	Raspberry	Pi's	desktop.

Raspberry	Pi	desktop	via	VNC

https://www.realvnc.com/download/viewer/

SSH	via	USB	OTG	port

This	trick	is	meant	for	advanced	users	only.

We	came	across	this	nifty	trick	at	https://gist.github.com/gbaman/975e2db164b3ca2b51ae11e45e8fd40a.	This	is	helpful
when	you	do	not	have	a	USB	Wi-Fi	adapter	and	a	USB	OTG	converter.	We	can	connect	the	Raspberry
Pi's	USB-OTG	port	directly	to	the	USB	port	of	a	computer	(using	a	micro-USB	cable)	and	access	it	via
SSH.	This	is	enabled	due	to	the	fact	that	the	USB	OTG	port	of	the	Raspberry	Pi	Zero	enumerates	as	a
USB-over-Ethernet	device	when	connected	to	a	computer:

1.	 Once	the	micro	SD	card	is	flashed	with	the	Raspbian	Jessie	OS,	open	the	SD	card's	contents	and
locate	the	file	config.txt.

2.	 At	the	end	of	the	file,	config.txt,	add	the	following	line	to	the	file:	dtoverlay=dwc2.
3.	 In	the	file,	cmdline.txt,	add	modules-load=dwc2,g_ether	after	rootwait.	Make	sure	that	each	parameter	of	this

file	is	separated	by	a	single	space.
4.	 Save	the	file	and	insert	the	SD	card	into	your	Raspberry	Pi	Zero.
5.	 On	a	command-line	terminal,	log	in	using	ssh	pi@raspberrypi.local.	This	should	work	on	Mac/Ubuntu

environment.	In	a	Windows	environment,	Bonjour	protocol	drivers	are	necessary	(https://support.apple.com
/kb/DL999?locale=en_US).	In	addition,	RNDIS	Ethernet	drivers	are	also	necessary	(http://developer.toradex.com/k
nowledge-base/how-to-install-microsoft-rndis-driver-for-windows-7).

https://gist.github.com/gbaman/975e2db164b3ca2b51ae11e45e8fd40a
https://support.apple.com/kb/DL999?locale=en_US
http://developer.toradex.com/knowledge-base/how-to-install-microsoft-rndis-driver-for-windows-7

The	RUN	switch	of	the	Raspberry	Pi	Zero	board
The	Raspberry	Pi	Zero	has	a	terminal	marked	RUN	with	two	pins.	This	terminal	could	be	used	to	reset	the
Raspberry	Pi	Zero.	This	is	especially	if	the	Raspberry	Pi	Zero	is	installed	some	place	inaccessible.	The
Raspberry	Pi	Zero	can	be	reset	by	connecting	a	momentary	push	button	across	the	two	pins.	Because	a
momentary	contact	is	sufficient	to	reset	the	board,	this	terminal	can	be	useful	where	the	Raspberry	Pi	Zero
is	installed	at	a	very	distant	location,	and	it	could	reset	using	an	Internet	connection	(provided	that	there	is
another	device	that	controls	the	RUN	terminal	pins).

The	location	of	the	Run	Pins	on	the	Raspberry	Pi	Zero

We	also	found	this	excellent	tutorial	to	set	up	a	reset	switch	for	the	Raspberry	Pi	-	https://bl
og.adafruit.com/2014/10/10/making-a-reset-switch-for-your-raspberry-pi-model-b-run-pads-piday-raspberrypi-rasp
berry_pi/.

https://blog.adafruit.com/2014/10/10/making-a-reset-switch-for-your-raspberry-pi-model-b-run-pads-piday-raspberrypi-raspberry_pi/

GPIO	pin	mapping
For	an	absolute	beginner	with	the	Raspberry	Pi	Zero,	this	GPIO	mapping	plate	can	be	handy.	It	maps	all
the	GPIO	pins	of	the	Raspberry	Pi	Zero.

GPIO	Plate	for	the	Raspberry	Pi	Zero.	Picture	source:	adafruit.com

It	freely	fits	and	sits	directly	on	the	top	of	the	GPIO	pins,	as	shown	in	the	picture.	The	labels	can	help
with	prototyping.

Stackable	breadboard
This	stackable	breadboard	is	useful	to	a	beginner	in	electronics.	It	provides	access	to	all	the	GPIO	pins
and	a	breadboard	is	sitting	right	next	to	it.	This	can	be	helpful	to	quickly	prototype	circuits	for	your
project	needs.

Stackable	breadboard	This	breadboard	is	available	at	(http://rasp.io/prohat/).	We	also	found	another	enclosure	with	breadboard	right	next	to	it-h
ttp://a.co/dLdxaO1.

http://rasp.io/prohat/
http://a.co/dLdxaO1

	

Summary
	

In	this	chapter,	we	discussed	different	tips	and	tricks	to	get	started	with	Python	programming	using	the
Raspberry	Pi	Zero.	We	hope	that	the	content	provided	in	this	chapter	and	all	other	chapters	help	you	get
started.

We	wrote	this	book	keeping	hands-on	practice	in	mind,	and	we	believe	that	we	have	presented	the	best
iteration	of	our	idea.	Good	luck	with	your	projects!

	

	

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	Getting Started with Python and the Raspberry Pi Zero
	Let's get started!
	Things needed for this book
	Buying the Raspberry Pi Zero

	Introduction to the Raspberry Pi Zero
	The features of the Raspberry Pi Zero

	The setup of the Raspberry Pi Zero
	Soldering the GPIO headers
	Enclosure for the Raspberry Pi Zero

	OS setup for the Raspberry Pi
	micro SD card preparation

	Let's learn Python!
	The Hello World example
	Setting up your Raspberry Pi Zero for Python programming
	IDLE's interactive tool
	The text editor approach
	Launching the Python interpreter via the Linux Terminal
	Executing Python scripts using the Linux Terminal
	The print() function
	The help() function

	Summary

	Arithmetic Operations, Loops, and Blinky Lights
	Hardware required for this chapter
	Arithmetic operations
	Bitwise operators in Python
	Logical operators
	Data types and variables in Python
	Reading inputs from the user
	The formatted string output
	The str.format() method
	An exercise for the reader
	Another exercise for the reader

	Concatenating strings

	Loops in Python
	A for loop
	Indentation
	Nested loops

	A while loop

	Raspberry Pi's GPIO
	Blinky lights
	Code

	The applications of GPIO control

	Summary

	Conditional Statements, Functions, and Lists
	Conditional statements
	An if-else statement
	if-elif-else statement
	Breaking out of loops

	The applications of conditional statements: executing tasks using GPIO
	Breaking out a loop by counting button presses

	Functions in Python
	Passing arguments to a function:
	Returning values from a function
	The scope of variables in a function
	GPIO callback functions
	DC motor control in Python

	Some mini-project challenges for the reader
	Summary

	Communication Interfaces
	UART – serial port
	Raspberry Pi Zero's UART port
	Setting up the Raspberry Pi Zero serial port

	Example 1 – interfacing a carbon dioxide sensor to the Raspberry Pi
	Python code for serial port communication
	I2C communication
	Example 2 – PiGlow
	Installing libraries
	Example

	Example 3 – Sensorian add-on hardware for the Raspberry Pi
	I2C drivers for the lux sensor
	Challenge

	The SPI interface
	Example 4 – writing to external memory chip
	Challenge to the reader

	Summary

	Data Types and Object-Oriented Programming in Python
	Lists
	Operations that could be performed on a list
	Append element to list:
	Remove element from list:
	Retrieving the index of an element
	Popping an element from the list
	Counting the instances of an element:
	Inserting element at a specific position:
	Challenge to the reader

	Extending a list
	Clearing the elements of a list
	Sorting the elements of a list
	Reverse the order of elements in list
	Create copies of a list
	Accessing list elements
	Accessing a set of elements within a list

	List membership

	Let's build a simple game!

	Dictionaries
	Tuples
	Sets
	OOP in Python
	Revisiting the student ID card example
	Class
	Adding methods to a class
	Doc strings in Python
	self

	Speaker controller
	Light control daemon

	Summary

	File I/O and Python Utilities
	File I/O
	Reading from a file
	Reading lines

	Writing to a file
	Appending to a file
	seek
	Read n bytes
	r+
	Challenge to the reader

	The with keyword
	configparser
	Challenge to the reader

	Reading/writing to CSV files
	Writing to CSV files
	Reading from CSV files

	Python utilities
	The os module
	Checking a file's existence
	Checking for a folder's existence
	Deleting files
	Killing a process
	Monitoring a process

	The glob module
	Challenge to the reader

	The shutil module
	The subprocess module
	The sys module

	Summary

	Requests and Web Frameworks
	The try/except keywords
	try...except...else
	try...except...else...finally

	Connecting to the Internet – web requests
	The application of requests – retrieving weather information
	The application of requests – publishing events to the Internet

	Flask web framework
	Installing Flask
	Building our first example
	Controlling appliances using the Flask framework

	Summary

	Awesome Things You Could Develop Using Python
	Image processing using a Raspberry Pi Zero
	OpenCV
	The verification of the installation
	A challenge to the reader

	Installing the camera to the Raspberry Zero

	Speech recognition
	Automating routing tasks
	Improving daily commute
	A challenge to the reader
	Project challenge

	Improving your vocabulary
	A challenge to the reader
	Project challenge

	Logging
	Threading in Python
	PEP8 style guide for Python
	Verifying PEP8 guidelines

	Summary

	Lets Build a Robot!
	Components of the robot
	Setting up remote login
	Changing the password
	Enabling SSH access

	Chassis setup
	Motor driver and motor selection

	Preparing the motor driver circuit
	Raspberry Pi Zero and motor driver assembly
	Raspberry Pi Zero and motor driver assembly
	Robot Power supply setup
	Setting up the motor power supply
	Using the Raspberry Pi Zero's 5V power supply
	Using an external power supply

	Testing the motors
	Motor driver detection
	Detecting motor driver

	Motor test
	Dependencies

	Camera setup
	Verification of camera function

	The web interface
	Camera setup for the web interface
	Buttons for robot control
	Troubleshooting tips
	Project enhancements
	Summary

	Home Automation Using the Raspberry Pi Zero
	Voice activated personal assistant
	Installing requisite packages
	How does it work?
	Setting up the audio tools
	Connecting the speaker

	Connecting the microphone
	Houndify
	Building voice commands
	Adding a button

	Web framework based appliance control/dashboard
	Building the web dashboard

	Personal Health Improvement—Sitting is the new smoking
	Installing requisite software packages
	Getting access keys for Fitbit client

	Fitbit API Test
	Building the visual aid

	Smart lawn sprinkler
	Summary

	Tips and Tricks
	Change your Raspberry Pi's password
	Updating your OS

	Setting up your development environment
	SSH access via Windows
	SSH access via Linux/macOS
	Transferring files to/from your Pi
	WinSCP
	Mac/Linux environment

	Git
	Command-line text editors
	Graphical text editors
	SSH aliases (on Mac/Linux Terminals)
	Saving SSH sessions on PuTTY

	VNC access to Raspberry Pi
	The RUN switch of the Raspberry Pi Zero board
	GPIO pin mapping
	Stackable breadboard

	Summary

